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“Prediction is very difficult, especially if it’s about the future.”

Nils Bohr



iii

WROCLAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Environmental engineering and Mining and Geology

Faculty of Geoengineering, Mining and Geology

Doctor of Philosophy

Modelling and analysis of long-term historical data of time-varying complex
systems in the presence of impulsive noise for condition monitoring

by Hamid SHIRI

The field of long-term data analytics has gained considerable interest in recent years
due to its crucial role in extracting useful insights, knowledge, and wisdom from
long term datasets. In industrial contexts, the development of sensor technology
and improvements in information and communication technologies have made it
possible to collect large amounts of data, ranging from minutes to years. These care-
fully selected datasets are extremely helpful resources for informing and improving
decision-making processes.
Using long-term data for machine health assessments and prognostics of machine is
an important application in the field of condition-based maintenance (CBM). Early
identification of system degradation and precise estimation of remaining useful life
(RUL) are crucial for preserving the reliability and safety of industrial systems, while
also reducing the risks associated with unexpected failures and maintenance ex-
penses.

Complexities in long-term health index data, including non-stationary behavior,
non-linearity, and non-Gaussian noise, pose severe challenges for machine health
assessments and prognostic applications. The presence of non-stationary behavior
in time series can lead to biased parameter estimates, erroneous correlations, and
inaccurate predictions due to dynamic changes. This means that such data requires
an advanced analysis approach and a complex model. On the other hand, non-
Gaussian noise, especially heavy-tailed noise, breaks the Gaussian assumptions in
time series models. This can cause estimates to be biased and make them more
sensitive to outliers, so robust modeling techniques are needed for accurate analysis
and prediction.

The thesis proposes a three-stage model to generate long-term health index degra-
dation data, addressing non-stationary behavior and it’s non-Gaussian character. It
develops a robust framework using techniques capable of handling non-Gaussian
noise to analyze and characterize historical degradation data. Additionally, it intro-
duces robust offline and online segmentation methods based on deterministic trends
in the health index, followed by the development of a maximum correntropy ex-
tended Kalman filter (MCEKF) for probabilistic estimation of RUL, considering the
presence of non-Gaussian noise. Analytical studies on synthetic and real datasets
with varying levels of non-Gaussian noise demonstrate the effectiveness of these
approaches.
Keywords : machine health assessments, prognostics, segmentation, health index,
remaining useful life, extended Kalman filter, robust methods, non-Gaussian noise,
non-stationary.
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Chapter 1

Introduction

The advancement of technology in data acquisition, transmission, and storage has
facilitated the emergence of long-term historical data. Within the industrial sector,
there is notable growth in the production of data at different rates and scales, origi-
nating from diverse sources such as sensor-rich condition monitoring systems (CMS)
and supervisory control and data acquisition (SCADA) systems. These data sources
constitute a rapidly growing repository for research in CBM. This is particularly
noteworthy, as both researchers and experts recognize the massive potential of ex-
tracting meaning full information from these term historical data.

1.1 Evolvement of maintenance strategy

A significant change in maintenance strategies has taken place within the domain of
maintenance research, as illustrated in Fig.1.1. In essence, a transition has occurred
from corrective maintenance to preventive maintenance (PM). Throughout history,
corrective maintenance practices have been characterized by a "fail and fix" mental-
ity, in which maintenance actions were performed in response to apparatus failure
and were deemed reactive in nature. However, this reactive approach frequently
resulted in unanticipated shutdowns, which posed environmental and safety risks
and caused significant economic losses.

Companies implemented a PM strategy, which involves proactively performing
maintenance and repair activities prior to asset failure, in order to mitigate the po-
tential repercussions. PM may be determined by the equipment’s health condition
(referred to as CBM) or by a predetermined schedule (known as time-based main-
tenance). At the outset, project management endeavors were frequently executed
at predetermined time intervals, depending on the knowledge and proficiency of
engineers and technicians or the guidance provided by the original equipment man-
ufacturer (OEM) through laboratory experiments and reliability theory.

In order to recommend PM intervals, computational simulations of complex sys-
tems have been implemented in tandem with developments in computing technol-
ogy. However, there are two significant disadvantages to a predetermined mainte-
nance strategy, despite its ability to reduce unanticipated breakdowns. In the first
place, excessive maintenance may result in substantial costs, which do not necessar-
ily enhance the dependability of the apparatus. Furthermore, this approach operates
under the assumption that failure behavior is predictable, which may not accurately
represent the complex interplay between systems and components, environmental
influences, equipment aging, and other variables that frequently affect failure be-
havior.

In contrast, predictive maintenance was suggested as a remedy for these issues.
CBM initiates maintenance tasks when necessary in accordance with the health con-
dition of the apparatus to forecast future failures. CBM, in contrast to predetermined
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maintenance, modifies maintenance activities in response to condition data, thereby
documenting the equipment’s ever-changing state. This process involves the collec-
tion and measurement of extensive volumes of data via condition monitoring, in situ
inspection, or testing. Subsequently, a multitude of data analysis methodologies,
including signal processing, machine learning, and data mining, are implemented
to evaluate the health of the apparatus and aid in the formulation of maintenance
strategies.

FIGURE 1.1: Maintenance strategy.

1.2 Condition based maintenance

CBM is a form of preventive maintenance that combines condition monitoring, in-
spection, testing, analysis, and subsequent maintenance actions [1]. The core com-
ponents of CBM implementation include continuous, periodic, or on-demand con-
dition monitoring, inspection, and testing, tailored to the criticality of the monitored
item. Subsequent analysis evaluates the health condition and predicts the RUL of the
item, forming the foundation of a CBM strategy. The final step involves determining
maintenance actions through a decision-making process that considers maintenance
resources, operational contexts, and inputs from other systems.

An open system architecture for condition-based maintenance (OSA-CBM) has
been devised in accordance with the functional specifications outlined in ISO-13374
for condition monitoring and machinery diagnostics [2]. As illustrated in Fig. 1.2,
the OSA-CBM architecture comprises seven layers: data acquisition, data prepro-
cessing and health index construction, state detection, machine health assessment,
prognostics, decision support, and presentation, which will be discussed in the next
step.
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FIGURE 1.2: Condition based maintenance workflow.

• Data acquisition (Step 1): The initial stage involves collecting raw data from
various sources, such as sensor measurements, thermal images, acoustic record-
ings, and machinery vibrations. These data streams, originating from various
systems with differing sampling rates, serve to monitor machinery operation,
presenting integration challenges within the maintenance domain.

• Data preprocessing and health index construction (Step 2): This phase, simi-
lar to data preparation in typical data mining processes, involves the transfor-
mation of raw data into a final dataset for analysis. Techniques such as data
cleansing, feature selection, and standardization ensure an accurate represen-
tation of machinery condition, necessitating tailored approaches.

• State detection (Step 3): Also termed fault detection, this step compares data
with predefined limits to determine proper functioning or anomalies. Sensitiv-
ity to changes in the operational context and adaptability to new environments
are crucial.

• Machine health assessment (Step 4): This phase evaluates degradation, diag-
nosing faults with associated confidence levels, considering the health history
and operational context.

• Prognostics (Step 5): Forecasting future states involves estimating RUL using
prognostic and predictive models, with the assignment of confidence levels
reflecting inherent uncertainty.

• Decision support (Step 6): Recommendations based on predictions, mission
profiles, objectives, and resource limitations require detailed advisories for
maintenance scheduling.

• Presentation (Step 7): An interactive interface centralizes the data and the re-
sults, enabling deeper analysis.

The OSA-CBM architecture offers a comprehensive framework for CBM, with
each layer requiring individualized treatment and the development of specific tech-
niques. Ideally, the tasks delineated in these layers should be executed sequentially
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to autonomously schedule CBM activities. However, in certain instances, the seam-
less progression through this linked chain may be hindered due to a lack of knowl-
edge in particular layers. For example, the absence of suitable prognostic models can
impede the automatic execution of the prognostic task. In such scenarios, the use of
expert knowledge and experience becomes imperative to perform subsequent proce-
dures. However, the preceding procedures remain informative and furnish a robust
factual foundation for human judgments. The focal point of this thesis lies in inves-
tigating tasks spanning from layer 4 to layer 5 within the OSA-CBM architecture.

1.3 Machinery’s long term condition monitoring data

Condition monitoring data, sourced from various channels, contain valuable infor-
mation about the systems. In particular, in the domain of CBM, data collected from
different machines play a pivotal role. This data, acquired over hours, days, months,
or even years, is used to monitor the health of machines and encompasses a wealth
of information about the machine’s historical operating conditions. Such data have
immense potential for CBM applications. Figs. 1.3, and 1.4, illustrate some raw
historical degradation data collected from the bearing.

FIGURE 1.3:
Recorded verti-
cal vibration of
degraded bearing

over time.

FIGURE 1.4:
Recorded hori-
zontal vibration of
degraded bearing

over time.

However, as discussed, working with raw signals may not be optimal, and it
may be better to extract features from the raw signal and use them to represent the
health state of the machine. This approach offers several benefits. Firstly, it reduces
the volume of the signal for further processing. Additionally, extracting features
from the raw signal allows for the derivation of knowledge-based features that may
better represent the health state of the machine compared to the raw signal alone.
Moreover, feature extraction provides an opportunity to view the signal in different
ways, potentially revealing insights that may not be apparent when analyzing the
raw signal directly.



5

Chapter 2

Problem formulation and state of
the art

This chapter focuses on investigating the research area, which includes problem for-
mulation, purpose and objectives, research questions, limitations, and state-of-the-
art.

2.1 Problem formulation

Machine health assessment and prognosis are two crucial phases of CBM. As dis-
cussed in Chapter 1, the input for these phases is the health index, which reflects
the health state of the system. However, in many industrial settings, machines op-
erate under varying and harsh conditions, leading to non-stationary and non-linear
behavior in the health index. Additionally, evidence of non-Gaussian noise, partic-
ularly heavy-tailed noise, can often be observed in the health index.

Various sources can contribute to this non-Gaussian noise, for example, in min-
ing applications, falling ore onto equipment can generate such noise. Similarly, in
aviation and wind turbines, see Fig. 2.1, turbulence can act as another source of
non-Gaussian noise. Additionally, unpredictable electromagnetic behavior can also
generate non-Gaussian noise.

FIGURE 2.1: Helicopter noise source [3].

Fig 2.2 illustrates a health index from a wind turbine (further details are provided
in Chapter 3), serving as an example of non-stationary, non-linear behavior with
evidence of non-Gaussian noise in real-world applications.
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FIGURE 2.2: Wind turbine health index.

As depicted in Fig. 2.2, numerous outliers are evident over time. The presence
of these outliers can significantly impact the performance of classical approaches,
which typically assume Gaussian noise, when attempting to characterize the health
index. Moreover, modeling such sequences of health indices while accounting for
non-Gaussian noise poses a considerable challenge.

Facilitating maintenance decision making and developing effective diagnostics
and prognostic models in harsh environments are crucial research directions. There-
fore, this study places emphasis on addressing the challenges associated with non-
Gaussian noise and non-stationary behavior in long-term health index data for ma-
chine health assessment and prognostics applications.

2.2 Purpose and objectives

This section outlines the purpose and objectives of the research.
The primary objective of the research is to investigate, explore, and develop ap-

proaches to the assessment and prognosis of machinery health based on long-term
data.

The specific objectives include:

• Investigation of the effect of non-Gaussian noise on modeling long-term health
index data.

• Development of robust framework for identifying and modeling long-term
health index data in the presence of non-Gaussian noise.

• Development of segmentation approach based on long-term data for the pur-
pose of machine health assessment while considering non-Gaussian noise.

• Development of robust probabilistic models for machine prognostics based on
long-term health index data in the presence of non-Gaussian noise.
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2.3 Research questions

To accomplish the stated objectives, the following research questions have been for-
mulated:

• How can a model be developed to effectively handle long-term historical degra-
dation data in the presence of non-Gaussian noise?

• What methods should be employed to properly identify, characterize, and ex-
tract useful information from long-term historical degradation data for the de-
velopment of robust data-driven degradation models?

• How can the segmentation of long-term degradation data be robustly per-
formed, particularly in the presence of non-Gaussian noise?

• What approaches should be employed to robustly predict RUL based on long-
term degradation data, especially in the presence of non-Gaussian noise?

2.4 Author’s Contribution to the Field

In this thesis, we explore the modeling, analysis, segmentation, and prediction of
RUL using long-term HI data. Our primary focus is on HI data with non-Gaussian
(heavy-tailed) noise. While the use of long-term HI data in CBM programs is becom-
ing more popular, there is still a lack of well-established references for handling HI
data with non-Gaussian noise. Therefore, this thesis proposes a new framework for
modeling and identifying long-term HI data in the presence of non-Gaussian noise
(see Chapter 4).

Additionally, this dissertation introduces robust approaches for segmenting HI
data into three stages based on historical data and an online method for real-time
segmentation into three stages (see Chapter 5). Finally, it presents a probabilistic
method for predicting RUL using an exponential state degradation model and a
robust filter (see Chapter 6). The main goal is to contribute to the field by establishing
statistical-based modeling approaches.

We have published several articles related to long-term HI data modeling, iden-
tification, segmentation, and RUL prediction.

The results obtained in this thesis were published in the following articles:

I Żuławiński, W., Maraj-Zygmąt, K., Shiri, H., Wyłomańska, A., and Zimroz, R.
(2023). Framework for stochastic modelling of long-term non-homogeneous
data with non-Gaussian characteristics for machine condition prognosis. Me-
chanical Systems and Signal Processing, 184, 109677.

II Shiri, H., Zimroz, P., Wodecki, J., Wyłomańska, A., Zimroz, R., and Szabat, K.
(2023). Using long-term condition monitoring data with non-Gaussian noise
for online diagnostics. Mechanical Systems and Signal Processing, 200, 110472.

III Shiri, H., Zimroz, P., Wodecki, J., Wyłomańska, A., and Zimroz, R. (2023).
Data-driven segmentation of long-term condition monitoring data in the pres-
ence of heavy-tailed distributed noise with finite-variance. Mechanical Sys-
tems and Signal Processing, 205, 110833.

IV Shiri, H., Zimroz, P., Wyłomańska, A., and Zimroz, R. (2024). Estimation of
machinery’s remaining useful life in the presence of non-Gaussian noise by
using a robust extended Kalman filter. Measurement, 114882.
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In paper I, a robust framework for modeling and identifying long-term HI data
in the presence of non-Gaussian noise was introduced. In paper II, a robust seg-
mentation approach based on dynamic trends and historical HI data to segment HI
into three distinct stages was proposed. Additionally, in paper III, an online robust
switching method for segmenting HI data into three stages was introduced. Finally,
in paper IV, a robust probabilistic approach based on Bayesian theory to predict RUL
was proposed.

2.5 Authorship of mentioned papers

The Table 2.1 shows the participation of each author in the listed papers with respect
to the following activities.
1-Developing the core concepts of the issue;
2-Conducting the research;
3-Drafting the paper;
4-Reviewing significant intellectual materials;
5-Giving the final approval for submission.

Paper I Paper II Paper III Paper IV
Hamid Shiri 2-5 1-5 1-5 1-5

Pawel Zimroz - 2,4,5 2,4,5 2,4,5
Radoslaw Zimroz 1,4,5 1,4,5 1,4,5 1,4,5

Agnieszka Wyłomańska 1,4,5 1,4,5 1,4,5 1,4,5
Wojciech Żuławiński 1-5 - - -

Katarzyna Maraj-Zygmąt 1-5 - - -
Jacek Wodecki - 4-5 4-5 -

Krzysztof Szabat - 4-5 - -

TABLE 2.1: The contribution of authors of mentioned papers (the
numbers refers to the research activities as mentioned).

2.6 Scope of research

The scope of this research encompasses the study of knowledge-based data-driven
approaches for machine health assessment and prognostics, focusing on long-term
health index data in the presence of non-Gaussian noise. Specifically, the research
aims to:

1. Develop a robust framework for identifying and characterizing long-term
health index data for modeling purposes in the presence of non-Gaussian noise, see
Chapter 4.

2. Develop offline and online segmentation models for long-term health index
data without relying on threshold values for machine health assessment in the pres-
ence of non-Gaussian noise, see Chapter 5.

3. Develop a probabilistic approach for machine prognostics based on health
index data in the presence of non-Gaussian noise, see Chapter 6.
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These research objectives also involve comparing the proposed approaches with
classical methods based on Gaussian assumptions to elucidate the impact of non-
Gaussian noise on performance results. The performance of all approaches is inde-
pendently verified using synthetic data and real datasets.

2.7 Limitations of this research

The limitations of this thesis can be described as follows:
1. In this thesis, the effect of health index construction and the methodology for

extracting this health index are not investigated. This aspect could have significant
implications for the performance and accuracy of the developed approaches. In this
thesis, it is assumed that the selected health index is the best indicator for describing
the degradation process.

2. The non-linear behavior of the health index is not thoroughly investigated in
detail. Non-linear in the health index can introduce complexities that were not fully
addressed in this investigation.

3. In Chapters 5 and 6, approaches were developed based on parameters identi-
fied and tuned using historical data. However, in some cases, historical data may not
be available or may not adequately represent future conditions, potentially limiting
the generalizability of the developed approaches.

4. To estimate the RUL, the results provided in this thesis are based on known
end-of-life (EOL) thresholds. However, determining the exact EOL threshold can be
a challenging task that requires further study beyond the scope of this thesis

2.8 State of the art

This section will cover state of the art of modeling, segmentation and prediction of
the long-term condition monitoring data.

2.8.1 Modeling of long-term health index data

Recent years have witnessed significant research endeavors in degradation model-
ing and prediction, broadly delineated into three categories, see Fig. 2.3: data-driven
models [4, 5, 6, 7], physics-based models [8], and hybrid models [9, 10], see Fig.2.3.
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FIGURE 2.3: Long-term degradation modeling, prediction ap-
proaches.

Physics-based models aim to accurately represent the degradation process by
utilizing mathematical formulations rooted in the principles of failure and damage
mechanics. These models are capable of producing highly precise results, as they
are grounded in well-established physical laws and mechanisms. The parameters
of physics-based models are intrinsically linked to material properties and stress
levels, which are typically determined through specific experimental methods, fi-
nite element analysis, or other appropriate techniques. One of the most widely
utilized physics-based models for predicting the RUL of machinery is the Paris-
Erdogan model. Initially proposed in [11] to describe crack growth behavior, the
Paris-Erdogan model has since undergone numerous adaptations and applications
within machinery prognostics [12, 13].

For example, Wang et al. [14] and Lei et al. [15] modified the Paris-Erdogan
model to develop empirical models for machinery RUL prediction. Liao [16] and
Sun et al. [17] further advanced the Paris-Erdogan model by converting it into a
state-space model, enhancing its predictive capabilities. Beyond the Paris-Erdogan
model and its derivatives, several other physics-based models have been employed
in the field of machinery RUL prediction. Oppenheimer et al. [18] utilized the For-
man crack growth law [19] to estimate the RUL of the cracked rotor shafts. Sim-
ilarly, Baraldi et al. [20], and Hu et al. [21] applied the Norton law to describe
creep behavior in turbines, combining this approach with Kalman filtering (KF) and
particle filtering techniques for RUL prediction. Furthermore, Chan et al. [22] devel-
oped a time-dependent crack growth model specifically for turbo-propulsion sys-
tems, while El-Tawil et al. [23] incorporated stochastic descriptions into a non-linear
damage law to predict the RUL of pipeline tubes.

However, the accuracy of these models depends on the availability of detailed
and precise physical representations of the system being studied. In many cases,
such detailed information may be difficult to obtain or may require extensive data
collection and analysis. Additionally, the implementation of physics-based models
often involves significant computational resources and time, due to the complexity
of the underlying equations and the need for high-resolution simulations. Conse-
quently, while physics-based models are powerful tools for understanding and pre-
dicting degradation processes, their practical application may be limited by these
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demanding requirements.

Data-driven approaches focus on constructing models that characterize degra-
dation processes using historical data. These methods are particularly useful in
scenarios where developing physics-based models is challenging. Data-driven ap-
proaches can be categorized into two main subclasses: AI-based methods (e.g., [24,
25]) and statistical based-model methods (e.g., [26, 27, 28]).

AI-based methods are highly effective in modeling and predicting degradation
processes. AI methods use sophisticated artificial intelligence algorithms to discover
machinery degradation trends from observations rather than physics-based or sta-
tistical models. These methods are particularly adept at addressing prognostic chal-
lenges in complex mechanical systems where degradation processes are difficult to
model using traditional methods. AI-based techniques are the second largest cate-
gory of articles, behind statistical models-based approaches [29]. Although popular,
AI approaches are sometimes criticized for their lack of transparency, garnering the
nickname "black boxes." Because AI model decision-making processes are hard to
understand, this opacity exists.

In machinery prognostics, artificial neural networks (ANNs), neuro-fuzzy (NF)
systems, suport vector machine (SVM), K-nearest neighbor (KNN) and Gaussian
process regression (GPR) are employed. These methods have distinct benefits and
have advanced the prognostics of machinery. Sbarufatti et al. [30] integrated feed-
forward neural networks (FFNNs) with sequential Monte Carlo sampling to predict
the RUL of fatigue cracks. This hybrid approach leverages the pattern recognition
capabilities of FFNNs and the probabilistic framework of Monte Carlo sampling to
improve predictive accuracy. Similarly, Pan et al. [31] and Xiao et al. [32] employed
FFNNs for multistep ahead predictions of bearing health states, demonstrating the
efficacy of neural networks in forecasting the progression of bearing degradation.
These studies highlight the potential of combining FFNNs with advanced sampling
techniques to improve prognostic performance in various applications. Recurrent
neural networks (RNNs) are extensively utilized in RUL prediction due to their pro-
ficiency in handling explicit time-series data. Zemouri et al. [33] introduced a recur-
rent radial basis function network and applied it to predict the RUL of machinery,
leveraging the network’s capability to model temporal dependencies. Furthermore,
Malhi et al. [34] proposed a competitive learning-based approach to enhance the
training methodology of RNNs, with the objective of improving the accuracy of
long-term prediction. These advances underscore the effectiveness of RNNs and
their variants in accurately forecasting machine degradation over extended periods.
El-Koujok et al. [35] presented a NF prognostic technique that balances model com-
plexity and accuracy using parsimony. This ensures the efficiency of the model and
the predictive power of the model. Ishibashi et al. [36] created a fuzzy rule-based
genetic prognostic system with genetically optimized membership functions. This
strategy fine-tunes fuzzy rules using evolutionary methods to improve system flex-
ibility and accuracy. Liu et al. [37] used two covariance functions to improve the
long-term prediction of GPR. This method captures global deterioration patterns
and local regeneration behaviors, improving predictions. Aye et al. [38] predicted
the degradation of the bearing of the rolling element using an integrated GPR model.
Their research shows that GPR can describe complicated deterioration patterns and
provide an accurate prognosis.

However, they typically require large amounts of training data to achieve accu-
rate and reliable results. This dependency on extensive datasets can pose significant
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limitations in real-world applications, where such comprehensive data may not be
readily available.

Statistical based-model techniques, also known as empirical model-based ap-
proaches, estimate machinery’s RUL using empirical models. Methods often use a
probability density function (PDF) to forecast RUL based on data [6]. Without apply-
ing physical principles, these strategies fit observational data into random coefficient
or stochastic process models using probabilistic methods to create RUL prediction
models.
For degrading uncertainty, random variances are added to the model parameters.
Variances originate from temporal, unit-to-unit, and measurement sources [39]. Sta-
tistical based-model techniques are especially successful in characterizing deteriora-
tion uncertainty and its impact on RUL forecasts. Statistical based-model help ma-
chinery prognostics by using these uncertainties to understand and forecast equip-
ment degradation.

One of the most commonly used statistical-based models is the autoregressive
(AR) model, which implies that a machine’s future state value is linearly related to
previous observations and random errors [40]. Qian et al. [41] predicted bearing
degradation using the AR model, which captured linear relationships in the degra-
dation data. Barraza-Barraza et al. [42] used three AR models with exogenous fac-
tors to predict the RUL of aluminum plates with fatigue fractures, demonstrating
the flexibility of the model. Escobet et al. [43] predicted the RUL of a conveyor
belt system using an AR model, demonstrating the adaptability of AR models in
prognostic applications. Statistical based-model techniques have been thoroughly
reviewed and categorized into different groups [6, 7]. To avoid repetition, this thesis
categorizes these techniques into two subgroups, as illustrated in Fig. 2.4. The first
main group consists of methods developed based on Gaussian assumptions, while
the second group encompasses methods based on non-Gaussian assumptions.

FIGURE 2.4: Statistical based-model approaches according the as-
sumption of the noise.

Wiener process models usually include drift and diffusion terms following Brow-
nian motion. Bian et al. [44] developed a covariance-dependent degradation model
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to better capture variability. Doksum et al. [45] used Wiener process models to pre-
dict RUL in accelerated degradation testing with variable stress. Whitmore et al. [46]
suggested a time scale transformation technique to stabilize Wiener process models
by converting time-varying degrading drift to constant drift. Tseng et al. [47] used
Wiener process models to predict RUL and plan appropriate burn-in practices. Park
et al. [48] created Wiener process models that use a cumulative damage method to
better understand the accumulation of damage over time. Gebraeel et al. [49] sug-
gested a Brownian motion error-based exponential model for improved prediction
accuracy.
BM models assume the Markov property, which states that the future state relies
only on the present state and not on the previous behavior. This assumption does
not always hold in practice. Xi et al. [50] developed a degradation model using
fractional Brownian motion (FBM) to estimate RUL, addressing long-range depen-
dencies in degradation processes.
BM and FBM have stationary increments. The increments of both systems have
the same distribution. However, FBM may represent non-stationary degradation
processes when only the drift factor is non-linear. The non-stationary degradation
model is taken solely into account in increment expectations, since drift terms rep-
resent the deterministic element of the process [51]. The variety of degradation pro-
cesses is usually predictable and random. Non-stationary properties of a random
portion must be considered.

Most random-coefficient models use normally distributed random coefficients to
represent the stochasticity of degradation. Lu et al. [52] and Meeker et al. [53] used
Monte Carlo simulation to forecast the PDF of RUL for machinery degradation pro-
cesses using non-linear mixed-effects models. Bayesian parameter estimation was
used by Gebraeel et al. [49] to suggest an exponential model with random error
terms. Park et al. [54] defined degradation processes using a non-linear random-
coefficient model and estimated parameters using maximum likelihood estimation.
This method captures complicated degradation patterns and estimates parameters
for a better prognosis. Coble et al. [55] developed a prognostic approach that in-
corporates previous beliefs into random coefficient models, allowing the prediction
of the RUL for machining tools. This novel method improves the strength and pre-
cision of prognostic predictions by integrating past information into the modeling
procedure. Random coefficient models have the benefit of using variations in ran-
dom coefficients to provide prediction results which offer a PDF of RUL. However,
the assumption that the random coefficients follow a Gaussian distribution may re-
strict their practicality. Furthermore, these models lack the ability to include tempo-
ral fluctuations in the RUL predictions, which are essential to correctly represent the
dynamic character of degradation processes as they unfold over time.

In the literature, non-Gaussian processes such as the Gamma process, General-
ized Cauchy (GC) process, and processes with heavy-tailed distributions, such as
fractional Lévy stable motion (FLSM), are also considered. These alternative pro-
cesses offer valuable alternatives to Gaussian models, allowing for the incorpora-
tion of non-normal distributions and heavy-tailed behaviors [56]. By considering
non-Gaussian processes, researchers can more accurately capture the complex vari-
ability and extreme events often observed in real-world degradation processes.

Gamma process models assume that the increments of degradation processes at
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disjoint time intervals are independent random variables with a Gamma distribu-
tion. This assumption enables the characterization of degradation processes with
non-negative, continuous-time increments, making Gamma process models partic-
ularly suitable for modeling phenomena such as degradation, wear, or fatigue where
positive accumulative effects occur over time. Noortwijk et al. [57] presented a com-
prehensive review of the progress made in stochastic degradation modeling using
Gamma processes. They summarized many applications and achievements in this
subject. Kuniewski et al. [58] hypothesized that degradation process begins at an un-
predictable moment, following a non-uniform Poisson process, and then progresses
according to a Gamma process. Bagdonavicius et al. [59] analyzed degradation
processes using a Gamma process model. They took into account the impact of vari-
ables and traumatic events on degradation phenomena. Lawless et al. [60] created
a manageable Gamma process model that considers the impact of random degra-
dation rates. This improves the model’s ability to accurately anticipate complicated
deterioration patterns. Similarly to BM models, Gamma process models are adept
at capturing the temporal variability of degradation processes. However, they also
have certain limitations. One such limitation is that the noise in Gamma process
models must follow a Gamma distribution, restricting their effectiveness to describ-
ing monotonic degradation processes. This constraint may limit their applicability
in scenarios where degradation exhibits non-monotonic or non-linear behaviors.

The GC process model is a stochastic process used to characterize random vari-
ables with heavy-tailed distributions. It is an extension of the Cauchy distribution
and offers a flexible framework for modeling phenomena characterized by extreme
events and outliers. Liu et al. [61] introduced a novel RUL prediction model based
on the GC process, which is characterized by independent parameters. Their model
leverages the flexibility and heavy-tailed nature of the GC process to improve the
accuracy of RUL predictions for various engineering systems. Similarly, Hong et
al. [62] proposed an iterative model of the GC process with long-range dependence
(LRD) characteristics to predict the RUL of lithium-ion batteries. By incorporating
LRD features into the GC process, their model accounts for the persistence of degra-
dation patterns over time, leading to more reliable and robust predictions of battery
RUL. The GC process may lack the mathematical tractability and simplicity of other
stochastic processes, such as the Gaussian process. This can make it more difficult
to analyze and interpret the results of models based on the GC process, especially
in complex engineering systems, where interpretability is crucial. Furthermore, the
GC process may require a larger amount of data to accurately estimate its parame-
ters compared to simpler models, which can be a limitation in scenarios where data
availability is limited or costly to obtain.

Lévy stable motion is a stochastic process characterized by its stability property,
which means that the sum of a large number of independently and identically dis-
tributed random variables converges in distribution to a Lévy stable distribution.
These distributions have heavy tails making them suitable for modeling phenom-
ena with extreme value. The FLSM is a generalization of the Lévy stable motion that
incorporates fractional integration or differentiation into the process. This allows
for the modeling of phenomena with long memory or fractal properties, where the
correlation between observations decays slowly over time. The FLSM is particularly
useful for modeling time series data with long-range dependence. Li et al. [56] de-
veloped a novel framework for the prediction of RUL based on performance evalua-
tion and geometric fractional Lévy stable motion (GFLSM) with adaptive non-linear
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drift. In their approach, multiple degradation stages are consolidated into a rela-
tively unified model using GFLSM. The long-range dependence and self-similarity
of the degradation process are captured by the relationship between the Hurst ex-
ponent and the stability exponent. Duan et al. [63] introduced a multi-modal FLSM
degradation model to predict the technical life or RUL of the equipment. This model
incorporates multiple modes of degradation, allowing the characterization of com-
plex degradation patterns observed in real-world systems. Using FLSM, which cap-
tures the long-range dependence and self-similarity of degradation processes, the
proposed model offers an effective framework for accurately predicting equipment
lifespan and RUL.

Indeed, the mentioned stochastic models, including FLSM, have their strengths
and limitations, and their suitability depends on specific assumptions and character-
istics of the data. Although FLSM and other heavy-tailed models may better capture
the behavior of real-world data compared to Gaussian models, they may still have
limitations in certain scenarios.
One limitation is that the scale parameter, which determines the spread or variability
of the distribution, is often assumed to follow a specific function, such as a power-
law function in the case of FLSM. This assumption may oversimplify the variability
in real data, particularly in cases where the data exhibit complex and heterogeneous
behavior. Furthermore, the assumption of a specific heavy-tailed distribution, such
as the α-stable distribution in the case of FLSM, may not always accurately capture
the true distribution of the data. Different types of heavy-tailed distribution may be
more appropriate for different datasets, and a one-size-fits-all approach may not be
suitable.

Furthermore, the choice of distribution for the random part of the model may
vary depending on the characteristics of the data. Although α-stable distributions
are commonly used to model heavy-tailed behavior, other distributions, such as the
generalized extreme value distribution or the Cauchy distribution, may also be suit-
able for certain types of data.

Alternative methods for modeling health index data include the Kalman filter
or its variants, Markov jump systems, state-space models, and other conventional
approaches. Moreover, reliability models have been proposed that clarify HI data
fluctuations.

In summary, while stochastic models such as FLSM offer valuable tools for cap-
turing heavy-tailed behavior in real-world data [56], it is essential to consider the
assumptions and limitations of these models and to carefully assess their suitability
for the specific characteristics of the data at hand. In addition, flexibility in model
selection and parameter estimation techniques may be necessary to accommodate
the diverse and complex nature of real-world data sets.

In addressing the limitations of individual categories in the prediction of RULs,
researchers have explored hybrid approaches that integrate the strengths of different
methods. These hybrid methodologies aim to leverage the advantages of diverse
approaches to improve predictive precision and robustness. Some notable strategies
include:

• Combining degradation models with particle filters or Kalman filter: Sev-
eral studies have utilized a combination of different degradation models, such
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as physics-based, data-driven, or statistical models, and integrated them with
particle filters or Kalman filter family for RUL prediction [64]. This approach
enables the incorporation of both the deterministic and stochastic aspects of
degradation processes, leading to improved prognostic capabilities.

• Fusion strategies for predictive maintenance approaches: Researchers have
developed fusion strategies to combine predictions from multiple approaches,
such as physics-based, data-driven, and statistical models, into a unified RUL
estimate [65]. These fusion strategies may include techniques from machine
learning, statistical inference, or expert systems to integrate predictions and
make a final decision.

• Hybridization of machine learning and statistical models: Hybrid approaches
have been proposed that combine machine learning techniques, such as ar-
tificial neural networks (ANNs), with statistical models, such as AR models
[66]. By integrating the complementary strengths of these methods, hybrid ap-
proaches can capture complex patterns in data while incorporating uncertainty
quantification from statistical models.

• Integrated diagnosis and prognosis frameworks: Some researchers have de-
veloped integrated frameworks that combine diagnosis and prognosis func-
tions to provide a comprehensive solution to predict RUL [67]. These frame-
works leverage both historical data and real-time monitoring information to
continuously update and refine RUL estimates, enhancing reliability and time-
liness in prognostic assessments.

For further information on hybrid RUL prediction approaches and their applica-
tions, additional information can be found in the literature [9, 10, 68]. These hybrid
methodologies represent promising avenues for advancing RUL prediction capabil-
ities, offering more accurate and robust prognostic solutions for a wide range of
engineering systems and applications.

2.8.2 Segmentation of long-term health index data

The calculation of the RUL should begin with the initiation of the unhealthy stage,
known as the first predicting time (FPT). This is because the observations made dur-
ing the healthy stage do not provide significant information regarding the degrading
trend of the unhealthy stage. Hence, rather than exerting excessive effort to utilize
intricate models, such as those with switching regimes or non-linear trends, a more
feasible and evaluative approach may involve dividing the health index into distinct
health stages (HS) and predicting the RUL based on the final stage. Typically, while
HS is evaluated, the health index is compared to a limit value, which is usually given
by the manufacturer. This limit value represents the threshold at which the HS tran-
sitions from a "Good Condition" (healthy stage) to the "Warning" (degradation stage)
and from a "Warning" to the "Alarm" stage (critical stage). Regrettably, in numerous
cases, the limit values or anticipated useful life are unknown, a common occurrence
in the raw materials sector [5], particularly when the machine is unique. Further-
more, it should be noted that most of these thresholds are established by manufac-
turing sectors and are determined according to specific requirements for working
and environmental circumstances, which may become invalid when situations alter.
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Recently, numerous scholarly articles have been published on the identification
of change points in time series data across various domains, including finance, medi-
cine, and meteorology, please see the following references [69, 70, 71, 72, 73, 74].

Additionally, it is worth mentioning that this procedure is referred to as regime-
switching point identification or signal segmentation in alternative circles. Signal
segmentation is a commonly used technique in signal processing applications to di-
vide the original data into segments that are similar or to extract the underlying
pattern. Gasior et al. [75] employed segmentation techniques to isolate shocks from
vibrations in sieving screens. Kucharczyk et al. [76] employed stochastic modeling
to segment seismic signals. Grzesiek et al. [77] introduced an approach for identi-
fying regime changes, namely when regime A undergoes a seamless transformation
into regime B. Furthermore, several studies have been published within the PHM
community, focusing on the categorization of health index into various HS. Several
of these publications categorize HI into two distinct stages. Alkan et al. [78] in-
troduced an approach for diagnosing problems in electromechanical systems. The
method relies on a variance-sensitive adaptive alarm threshold and principal com-
ponent analysis (PCA). Fink et al. [79] described the prediction of RUL as a two-stage
classification process aimed at identifying the machine’s condition after a specified
time interval. Hu et al. [80] employed a one-class support vector machine and a
Gaussian threshold model to perform condition monitoring on turbo-pumps.

The two-stage division is only valuable for cases where the degradation trends
of machinery in the unhealthy stage are consistent and can be represented utilizing
a single degradation model. However, the degradation trends of machinery may
change as a result of different fault patterns or operational situations. In light of this
situation, the detrimental phase should be divided into distinct stages according to
varied patterns of degeneration.

A few of these research divided HI and spectra into several stages, with chang-
ing points detection approaches. Kimotho et al. [81] divided the degradation trend
into five stages based on the changes in frequency amplitude in the power spectra
density. Sutrisno et al. [82] categorized the degradation of the bearing into several
phases using anomaly detection of frequency spectra. Hu et al. [83] divided the
concept of HI into four stages by identifying the points at which confidence levels
change.

Machine learning methods are commonly employed for long-term data analysis
in tasks such as categorization, defect detection, and prognosis. These techniques
have been applied in various studies, including those by [5, 84, 85, 86, 87]. In this sce-
nario, unsupervised classification, namely clustering, is necessary due to the vary-
ing settings under which each machine operates, making data labeling a challeng-
ing endeavor. Therefore, the clustering method has significant potential to partition
long-term data into regimes. The researchers in [85] introduced a long-short-term
memory (LSTM) network combined with a clustering technique to forecast the RUL
in many stages. Singh et al. [86] proposed an adaptive data-driven model-based
method for identifying regime-changing locations using K-means clustering.

Discrete state transition models, such as hidden Markov models (HMMs) [88,
89, 90], and dynamic state-space models [91, 92, 93], are commonly used to divide
degradation processes into many stages. However, the majority of the research cited
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was conducted with the premise that observation noise follows a Gaussian distribu-
tion. However, in many real-world applications, particularly in the field of PHM,
this assumption is not appropriate. Impulsive noise is frequently detected and can
be accurately characterized by a heavy-tailed distribution.

Due to the random nature of the degradation process seen in the HI data, con-
ventional algorithms described in the literature may not be able to perform the seg-
mentation procedure accurately [94, 95, 96].
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Chapter 3

Experimental data

3.1 Experimental data

In this section, the experimental dataset utilized in this thesis will be thoroughly
examined

3.1.1 FEMTO dataset

Introduction of the dataset

The dataset was released to the public during the IEEE International Conference
on PHM in 2012 and was provided by the Franche-Comté Electronics Mechanics
Thermal Science and Optics–Sciences and Technologies Institute, as stated by [97].
Consisting of 17 run-to-failure datasets of rolling element bearings obtained from
the PRONOSTIA platform, as shown in Fig. 3.1, this dataset was used to perform
accelerated degradation tests, effectively simulating the equivalent of several years
of bearing wear in a few hours. This was accomplished by providing a significant
magnitude radial force that exceeded the maximum dynamic load capacity of the
bearings. During testing, the rotational speed of the bearings remained consistent.
The data collection process was made easier by using two accelerometers and a ther-
mocouple, which recorded vibration signals and bearing temperatures. Bearing fail-
ure was determined to have occurred when the magnitude of the vibration signal
was greater than 20 g.

This dataset specifically captures instances of bearing degradation that occur nat-
urally, without any preexisting flaws or artificial manipulations. Adding to the com-
plexity of the dataset is the restricted accessibility of only two training units for each
operational situation. In addition, various failure patterns and lifespans distinguish
distinct units, even when exposed to identical conditions. The variation between
training and testing units exacerbates the issue of predicting the RUL.

The vibration signals in the dataset have poor frequency resolution because each
sample covers a time interval of 0.1 s, resulting in a frequency resolution of 10 Hz.
Therefore, traditional fault diagnostic techniques that depend on intricate frequency
analysis are not suitable for this particular dataset.

In addition, the dataset demonstrates the spread of initial faults from one com-
ponent to other components through frequent contact, leading to the simultaneous
emergence of several fault patterns, as seen in Fig. 3.2. This behavior highlights the
appropriateness of the dataset for dealing with complex predictive tasks involving
several faults.
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This dataset is commonly used for health index construction [98, 99, 100, 101,
102, 103, 15, 104], healthy stage evaluation [105, 106, 107, 108, 5], and RUL predic-
tion [109, 110, 111, 31, 112, 32].

FIGURE 3.1: FEMTO
test rigs [97].

FIGURE 3.2:
Different faults
of rolling
element bear-

ings [97].

In this thesis, the proposed methodology is applied to the bearing labeled 1−1
within the FEMTO dataset. The data in this dataset have been gathered under spe-
cific operating conditions, precisely at 1800 rpm and with an applied load of 4000 N.
For each set of vibration data, the RMS is calculated, which is subsequently used as
the health index for our analysis, see Fig. 3.3.

Our selection of this particular case study stems from the fact that this case is a
good example of a three-stage degradation model, as shown in Fig. 3.3. This model
exhibits distinct stages: initially, a consistent amplitude of the vibration signal char-
acterizes a healthy stage; subsequently, a gradual linear increase in amplitude signi-
fies the onset of degradation; finally, a dramatic surge in the amplitude of the signal
marks the critical stage. This progression shows a monotonic behavior, which is sig-
nificant for our analysis. Furthermore, as noted in [113], the random component
of this case study adheres closely to a Gaussian distribution. This observation sup-
ports our objective of demonstrating the effectiveness of our proposed model in a
real world scenario where the distribution of random parts is approximately Gaus-
sian.

FIGURE 3.3: Raw vibration data for case study bearing 1−1, each set
of color is related a set of raw vibration data.
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3.1.2 IMS dataset

The data collection in issue was sourced from the intelligent maintenance systems
(IMS) center at the university of Cincinnati [114], and it is accessible through NASA’s
prognostic data repository [115]. This dataset consists of three separate subsets of
bearing deterioration tests. Each test consisted of installing four Rexnord ZA-2115
double row bearings on a shared shaft, as shown in Fig. 3.4. Vibration signals were
captured by placing accelerometers on bearing housings, and a specialized oil cir-
culation system was designed to guarantee proper lubrication of the bearings. To
facilitate debris collection, a magnetic stopper was incorporated into the oil feed-
back pipe. The test execution was meant to be adaptive, using an electrical switch
that would automatically stop the process when the amount of trash reached a spe-
cific limit. After the tests were completed, the bearings were thoroughly examined
and the identified fault patterns carefully documented.

Vibration signals possess a high level of frequency resolution, making them very
suitable for diagnosing faults using frequency analysis techniques. As stated in the
data instructions [115], each file contains 20480 data samples that were taken at a
rate of 20 kHz. As a result, operators can obtain important characteristics in the
frequency domain to track the deterioration of particular bearing components, such
as rollers, outer ring, and inner ring. After the tests were completed, the researchers
saw and documented precise fault patterns for each bearing. These fault patterns are
shown in Fig. 3.5, providing valuable information for researchers to investigate the
connections between distinct fault patterns and their associated deterioration trends.

This dataset has been extensively used in various publications concerning seg-
mentation [116, 117], RUL prediction [118, 119, 120, 121, 12] and condition monitor-
ing [114].

FIGURE 3.4: IMS test
rig [114].

FIGURE 3.5: Differ-
ent faults of rolling
element bearings

[114].

The IMS data collection consists of three separate subsets. In this thesis, subset
3 is selected and we chose to examine the vibration of bearing number 3 as a case
study, as shown in Fig. 3.6. Subset 3 collects data during a recording period that
starts on April 4, 2004, at 09:27:46, and ends on April 4, 2004, at 19:01:57. The dataset
consists of vibration data taken from four channels. The channel arrangement is as
follows: bearing 1 corresponds to channel 1, bearing 2 corresponds to channel 2,
bearing 3 corresponds to channel 3, and bearing 4 corresponds to channel 4. The
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information is documented at a 10-minute frequency in ASCII file format. The ex-
periment ends with a failure event in the outer race of bearing number 3, as seen in
Fig. 3.5.

This specific case from the IMS dataset is selected because it has unique charac-
teristics, particularly the unusually short period between deterioration and critical
stages. This rapid transition could potentially be classified as a two-stage model
rather than a multistage model. This particular case also presents an extra situa-
tion in which the noise distribution closely resembles a Gaussian distribution, hence
increasing its significance for our research.

FIGURE 3.6: Raw vibration data for IMS dataset: subset 3, bearing 3,
each set of color is related a set of raw vibration data.

3.1.3 Wind turbine dataset

The wind turbine dataset consists of sensor data obtained from the high-speed bear-
ing shaft of a 2.2 MW wind turbine, as shown in Fig. 3.7. This dataset includes
measurements of the energy of the bearing’s inner race, taken at 10-minute intervals
during a span of about 50 days. The specific bearing being examined exhibits an in-
ner race defect and is classified as SKF 32222 J2 tapered roller bearings. This specific
tapered roller bearing (TRB) has an outer diameter of 200 mm, an inner diameter of
110 mm, and a total length of 56 mm. It is equipped with 20 rolling components
arranged at a 16 ° taper angle and has an approximate weight of 20 pounds. The
bearing in issue is supported by two pillow blocks and is supplied with a load cell
to quantify the force exerted on the bearing. The wind turbine functions at varied
frequencies ranging from 2 to 100 Hz, with a load cell that can measure loads up to
1000 pounds. However, most of the tests were carried out at loads of either 150 or
300 pounds. To reduce the probability of severe gearbox failure, the maximum test
load applied was kept at 50% of the power rating. More detailed information on this
dataset can be found in the reference cited as [122].
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FIGURE 3.7: Wind turbine test rigs [122].

The inner race energy is selected as the representative health index for the wind
turbine dataset in our suggested approach. To obtain more comprehensive informa-
tion on the process of extracting health indicators, please refer to the publication by
Bechhoefer et al. [123] . Specifically, as shown in Fig. 3.8, this dataset is distinguished
by a conspicuous presence of outliers. Therefore, it is suitable to classify this dataset
as having a trend affected by non-Gaussian noise.

Moreover, the health index experiences fluctuation that can be ascribed to dy-
namic factors such as load variations or even phenomena such as self-healing. The
intricate behavior, which is observed in real-world situations, poses a significant dif-
ficulty for the tasks of segmentation and predicting RUL. The intricate dynamics of
the system highlight the inherent challenge in accurately characterizing it for the
actual implementation of predictive maintenance.

FIGURE 3.8: Wind turbine health index [122].

3.2 Synthetic degradation model

Within the realm of PHM, a widely accepted belief centers on the path that HI values
follow as the degradation process unfolds. Several current approaches are based on
the assumption that HI values demonstrate distinct patterns during the lifetime of
the machine, as illustrated in Fig. 3.9.

In this thesis, the degradation process is shown as consisting of three separate
regimes, as shown in panel (f) of Fig. 3.9. Each regime may have both trend and
random components (see Fig. 3.10).
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Regime 1 proposes a condition of no deterioration, perhaps with possible slight
variations. Regime 2 is responsible for a phase of linear degradation increase that is
accompanied by random fluctuations in noise (referred to as the slow degradation
stage). Regime 3 signifies a rapid increase in degradation, characterized by expo-
nential growth. This model is widely used in the literature [124, 125].

FIGURE 3.9: Types of feature variations and degradation models:
(a) good condition (constant trend), (b) good to gradual wear (lin-
ear trend) (c) switch from good to bad condition, (d) good to accel-
erated wear (linear trend), (e) good to accelerated wear (exponential
trend), (f) three regimes model (good, linear progress and exponen-

tial progress of degradation).

FIGURE 3.10: The preliminary model used for our analysis. The red
solid line represents the theoretical trend line, two vertical dashed
lines point out the change of regime (Healthy Stage/ Degradation/

Critical stage). Note constant variance of random component.

Upon initial examination of the actual HI data, it becomes evident that they
display heterogeneous properties that change over time. Furthermore, these data
may contain a substantial level of interdependence among random components and
exhibit a distribution with heavy tails that deviate from the Gaussian distribution.
In addition, our observations indicate the presence of three separate regimes, each
corresponding to various stages of the process of degeneration. The data in these
regimes exhibit varying properties, including differences in both deterministic com-
ponents and scales. Additionally, there is a transition in the distribution of random
components from Gaussian (or nearly Gaussian) to severely non-Gaussian distribu-
tions. The proposed HI is illustrated in Fig. 3.11.
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FIGURE 3.11: Long-term data variation simulated from the adopted
model.

Based on the data features mentioned before, the following model is suggested
for synthetic degradation data {S(t)} for the simulation research

S(t) = R(t) + T(t). (3.1)

The terms {R(t)} and T(t) refer to the random and deterministic (that is, trend)
components, respectively. Both of these components are comprised of three distinct
regimes, labeled regime 1, regime 2, and regime 3. These regimes correspond to
three underlying states (healthy, warning, and alarm) and dictate the behavior of
the process in terms of both the trend and noise scale. Suppose that we have a
sample signal HI denoted as S(1), · · · , S(N). The transition point from regime 1 to
regime 2 is represented as τ1, while the transition point from regime 2 to regime 3
is represented as τ2, where 1 < τ1 < τ2 < N. To clarify, the signal can be divided
into different regimes. Specifically, the sequence S(1), · · · , S(τ1) represents regime
1, the sequence S(τ1 + 1), · · · , S(τ2) represents regime 2, and the sequence S(τ2 +
1), · · · , S(N) represents regime 3. It can be used in the same terminology for the
sequences {R(t)} and the function T(t).

The random component associated with {R(t)} is created using the following
method. To begin, the sequence of AR time series with an order of p that corresponds
to the time series {R2(t)} satisfying (3.2)

R2(t)− ϕ1R2(t − 1)− · · · − ϕpR2(t − p) = R3(t), (3.2)

where {R2(t)} is the stationary AR model with order p > 0 (AR(p)) and the polyno-
mial

ϕ(z) = 1 − ϕ1z − · · · − ϕpzp ̸= 0. (3.3)

.
The sequence {R3(t)} is independent and identically distributed (iid) random

variables, where the scale parameter is equal to one. In the subsequent part, the
simulation analysis is conducted under the assumption of two different distributions
for the random component: Gaussian and α-stable, see Appendix A. Regarding the
Gaussian distribution, it is assumed that R3(t) follows a normal distribution with
mean 0 and standard deviation 1. On the other hand, in the α-stable scenario, it is
assumed that R3(t) follows a α-stable distribution with parameters α, 0, 1√

2
, and 0.
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To simplify matters, it is assumed that the distribution is the same in each regime.
However, as stated in Table. 3.1, in reality, it may vary between different regimes.
The random component of the model is described below

R(t) = SC(t)R2(t). (3.4)

The function SC(t) represents the scale that changes over time. The behavior of
the system varies depending on the regime. In regime 1, the scale increases linearly
from σ1 to σ2, with both values being relatively close to each other. In regime 2, the
scale continues to increase linearly from σ2 to σ3. Finally, in regime 3, the scale grows
exponentially from σ3 to σ4. The function SC(t) is defined in the following manner

SC(t) =


a1t + b1 0 < t ≤ τ1,
a2t + b2 τ1 < t ≤ τ2,
a3 exp(b3t) τ2 < t ≤ N.

(3.5)

The constants a1, b1, a2, b2, a3, and b3 are determined based on conditions SC(1) = σ1,
SC(τ1) = σ2, SC(τ2) = σ3, and SC(N) = σ4.

The behavior of the deterministic component T(t) varies depending on the regime.
It should be noted that in regime 1, the level remains constant and is represented by
the symbol c1. Next, in regimes 2 and 3, it is examined linear and exponential func-
tions are examined, respectively, that have the same growth characteristics as the
corresponding regimes of the scale function SC(t). Furthermore, it is made the as-
sumption that the function T(t) does not have discontinuities at the regime change
points τ1 and τ2. Assuming these conditions, the deterministic component of the
signal can be expressed as

T(t) =


c1 0 < t ≤ τ1,
a2t + c2 τ1 < t ≤ τ2,
a3 exp(b3t) + c3 τ2 < t ≤ N.

(3.6)

The values of c2 and c3 are determined in a manner that ensures the continuity of
the function T(t). In Fig. 3.12, it is shown the deterministic component T(t) and the
scale function SC(t) for the given parameter values: τ1 = 600, τ2 = 900, N = 1000,
σ1 = 1, σ2 = 2, σ3 = 10, σ4 = 40, and c1 = 10. In addition, Fig. 3.13 shows the
simulated signals for the sequence {S(t)}. The random component {R2(t)} follows
an AR model with parameters p = 1 and ϕ = 0.5. The sequence {R3(t)} is generated
from a α-stable distribution. In this analysis, three more values of the α- parameter
are examined, specifically α ∈ {1.95, 1.9, 1.85}. It is evident that in the case of a
Gaussian-distributed signal, it cannot detect significant outliers. However, in the
case of a non-Gaussian heavy-tailed distribution, strong spikes can be observed in
the data. As the value of α decreases, the likelihood of experiencing higher impulses
in the signal increases.

Finally, the important features of suggested model are described in Table 3.1.
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FIGURE 3.12: The deterministic component T(t) and the scale func-
tion SC(t) for the following values of the parameters of the model:
τ1 = 600, τ2 = 900, N = 1000, σ1 = 1, σ2 = 2, σ3 = 10, σ4 = 40 and
c1 = 10. The left panel is shown the determinstic part of simulated
HI and the right panel is demonstrated the scale of the random part.

FIGURE 3.13: The exemplary data from the model with determin-
istic component T(t) and scale function SC(t) presented in Fig. 3.12.
The random components of the model correspond to the AR(1) model
with ϕ = 0.5. Four cases of distributions are considered: Gaussian (α-
stable with α = 2), and non-Gaussian α-stable with α = 1.95, 1.9 and

α = 1.85.

TABLE 3.1: Main characteristics of the data for three regimes indi-
cated in Fig. 3.11.

regime 1 regime 2 regime 3
Trend constant linear exponential
Scale nearly con-

stant
linearly grow-
ing

exp. growing

Autodependence of random component relatively
small

significant significant

Coefficients of the stochastic model negligible significant significant
Distribution of the random component nearly Gaus-

sian
non-Gaussian strongly non-

Gaussian
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Chapter 4

Long-term health index data
modeling and identification

4.1 Introduction of long-term health index data modeling

Analyzing historical data is a crucial step in the data-driven approach to build mod-
els that accurately predict sample of HI. In Chapter 3, three open-source benchmark
datasets are introduced, along with an artificial three-stage degradation model de-
veloped to generate synthetic degradation data. Continuing from the previous chap-
ter, this section aims to introduce a framework and tools to identify the charac-
teristics of series of health indexes. However, conventional approaches often face
challenges when handling extended non-stationary data with non-Gaussian charac-
teristics. In addition, due to the nature of the degradation process, the behavior and
characteristics of the HI can completely change from one stage to another. Therefore,
it is essential to segment and analyze the data on the basis of stages. This chapter
presents a detailed methodology and appropriate mathematical tool specifically to
handle complex health index datasets. The segmentation of long-term degradation
data is discussed in detail in Chapter 5.
This framework addresses the challenge of distinguishing between deterministic
and random elements, capturing the heavy-tailed and time-varying characteristics
of the data, and detecting any hidden dependencies within the random part. In ad-
dition, it identifies the distribution that governs the random component.
In summary, this chapter establishes a systematic framework for analyzing data with
the aim of creating models for intricate and enduring datasets. Although the pro-
posed approach draws inspiration from predictive maintenance, it appears to be
applicable to a wider range of individuals, particularly academics who deal with
non-Gaussian, non-homogeneous, and time-varying data.

4.2 Methodology: a framework for long-term health index
data modelling

The schematic diagram of the framework is shown in Fig. 4.1. To begin, the out-
line the overarching approach for the proposed framework is investigated. Next,
the illustration of the techniques employed in the scheme for data that follows a
Gaussian distribution (Section 4.2.1) and data that exhibits non-Gaussian behavior
(Section 4.2.2) is described.
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FIGURE 4.1: The framework for modelling of long-term data. Each
block of this diagram is described in details in Section 4.2.

Deterministic and random components separation
Initially, we detect the deterministic component (represented as T(t)) in the long-
term data (represented as {S(t)}). Based on our initial investigation, it appears that
the data analyzed in this chapter cannot be accurately characterized by a single de-
terministic function. Specifically, significantly intricate scenario in which the deter-
ministic component varies based on the condition associated with the healthy state,
warning, and alarm is witnessed. Therefore, in this following, the deterministic com-
ponent by calculating the empirical location measure for overlapping segments from
windows of a specified length w, without segmenting the data is determined. For
the measurement of location, two statistical methods are suggested. Please refer to
Section 4.2.1 for data that follows a Gaussian distribution, and Section 4.2.2 for data
that does not follow a Gaussian distribution. This stage is essential for seprating the
random component that is sprated from the raw data. The series, written as {R(t)},
is obtained by eliminating the deterministic component.

Random component normalisation
The time series {R(t)} is considered to represent the random component of the
raw data. Our initial examination unequivocally demonstrates that the sequence
{R(t)} has a non-homogeneous structure primarily influenced by the changing scale
throughout time. In the next stage of the proposed framework, the goal is to stan-
dardize the data by determining the time-dependent empirical scale parameter. This
parameter is then computed for segments of length w with overlapping o for the se-
ries corresponding to {R(t)}. Consequently, the component SC(t) is acquired. Af-
terwards, data normalization to produce the series {R2(t)} is done, which exhibits
a homogenous structure with time-constant properties. The issue of identifying the
time-varying scale is addressed separately in Section 4.2.1 for the Gaussian case and
in Section 4.2.2 for the non-Gaussian case.

Random component modelling
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Next, the autodependence of the time series {R2(t)} is analyzed. It is essential to
undertake this stage in order to identify the model that accurately describes the sig-
nal. Once the sample autodependence measurements confirm that the signal con-
sists of independent observations, the next step is to identify the appropriate dis-
tribution. Alternatively, it is necessary to initially select the appropriate time series
model and thereafter compute its residuals, represented as {R3(t)}. Autodepen-
dence measurements might also be helpful at this stage to verify if the residuals of
the fitted model can be regarded as independent observations. Ultimately, the ap-
propriate distribution D is fitted to the sequence {R3(t)} (or the sequence {R2(t)}).
The sample autodependence measures utilized in the aforementioned stages are ex-
plained in Section 4.2.1 for the Gaussian case and in Section 4.2.2 assuming a non-
Gaussian distribution. The series {R2(t)}, which is generated by normalizing the
time-dependent scale parameter, demonstrates behavior that is suitable for the lin-
ear AR model. Within the framework, it refers to it as M1. Also, the time series
{R3(t)} is iid. In the classic approach, it is assumed that the residuals {R3(t)} follow
a Gaussian distribution. However, there are also circumstances when non-Gaussian
heavy-tailed distributed noises are examined. The data examined in this chapter
also demonstrate such characteristic.

Subsequently, it is suggested using a straightforward visual test to determine if
a distribution fits properly and to verify if it exhibits non-Gaussian behavior. The
test involves comparing the empirical tail of the distribution with the theoretical tail
of the tested distribution, using the estimated parameters obtained from the random
sample under consideration. Through this visual examination, it can also determine
which of the tested distributions is more suitable for the analyzed data. The tail of
the distribution of a random variable X is defined as 1 − FX(x), where FX(·) rep-
resents the cumulative distribution function (CDF) of X. The empirical tail of the
random sample x = {x1, x2, · · · , xn} is the complement of the empirical CDF F̂x(x),
where F̂x(·) is the empirical CDF for x as defined in [126]

F̂x(x) =
1
n

n

∑
j=1

1{xj ≤ x}, (4.1)

where 1{A} represents the indicator function of a set A. The theoretical distribu-
tions that include the Gaussian distribution, the α-stable distribution, and the t loca-
tion scale distribution are tested . The α-stable and t location scale distributions are
categorized as non-Gaussian heavy-tailed distributions, see Appendix A.

In the simulation research described in Section 4.3, the Kolmogorov-Smirnov
(KS) statistic is employed to verify that the tested distribution is the most appro-
priate one, or more suitable than the alternative distribution. The KS statistic is
often used to measure the distance between the empirical distribution function of
a sample and the CDF of a reference distribution, or between the empirical distri-
bution functions of two samples. Additionally, it serves as a test statistic for the KS
goodness-of-fit test

KS = sup
x

∣∣F̂x(x)− FX(x)
∣∣ . (4.2)

The function FX(·) represents the CDF of the theoretical distribution being evalu-
ated. The parameters used in this CDF are calculated from the random sample x.
A low value of the KS statistic suggests that the observed distribution closely re-
sembles the distribution being tested. For the estimation of the parameters, for all
considered distributions, we use the MLE method.
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In the last stage of the proposed framework, the deterministic trend T(t), the
time-varying scale SC(t), the time series model M1, and the distribution D that is
fitted to the independent observations of either {R3(t)} or {R2(t)} are combined.

In the subsequent sections, a comprehensive explanation of the algorithms em-
ployed in the framework that has been provided. As previously stated, it is neces-
sary to replace the conventional procedures designed for Gaussian distributed mod-
els with robust ones that are better suited for non-Gaussian heavy-tailed data in all
steps of the procedure.

4.2.1 Algorithms for Gaussian distributed data

Deterministic and random components separation
Within the overall structure, the initial pivotal stage involves determining the deter-
ministic trend T(t). The classical statistic commonly used as a measure of location
is simply the average of a sample. In this scenario, it simply compute the moving
average (MA) for overlapping segments (with an overlap of o) of a specific length w
and use it as the deterministic component of the signal {S(t)}.

Random component normalisation
The conventional estimator for the scale parameter is the sample standard deviation,
which is defined as the square root of the variance of the signal x = {x1, x2, · · · , xn}

SCx =

√√√√ 1
n − 1

n

∑
j=1

(
xj − x

)2, (4.3)

where x represents sample mean for the signal x. Due to the presence of time-
varying scale in the data, the empirical standard deviation in the Gaussian scenario
for segments of length w with overlapping o is utilized. Under those circumstances,
the segments are regarded as quasi-homogeneous sub-signals.

Random component modelling
Within this section , our initial step involves analyzing the autodependence of the
normalized signal associated with {R2(t)}. This component is essential for verifying
whether the signal can be regarded as an independent sequence or for identifying
the appropriate time series model that accurately describes the data (referred to as
M1). The autocorrelation function (ACF) is the primary measure of autodependence
utilized in time series analysis. The sample version of the stationary signal x =
{x1, x2, · · · , xn} is defined as follows [127]

ρ̂x(h) =
γ̂x(h)
γ̂x(0)

, −n < h < n, (4.4)

where γ̂x(·) is the sample autocovariance function (ACVF) given by

γ̂x(h) =
1
n

n−|h|

∑
j=1

(xj − x)(xj+|h| − x). (4.5)

Furthermore, h is referred to as a lag. When the analyzed signal follows a distri-
bution with limited variance, such as a Gaussian distribution, the estimator ρ̂x(·) is
regarded as the most efficient estimate of the ACF. By visual inspection its behavior,
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one can determine whether the signal in question displays long- or short-range de-
pendence, or if it can be regarded as an independent sample. The high significance
level of the ρ̂x(·) function for h > 0 suggests that the considered signal exhibits self-
dependence. The suggested framework applies the sample ACF to the Gaussian
case for the signal corresponding to {R2(t)} and {R3(t)}, which are residual series
of the fitted time series model.

After confirming the dependence of the data, it can proceed to fitting the time-
series model in the random component’s modeling phase. In this analysis, the model
of order p as defined in Eq. (3.2) is examined. In order to determine the most suitable
order p, utilizing a criterion that is universally applicable and does not require any
assumptions about the distribution of the data is suggested. For any value of p
ranging from 1 to pmax, the parameters of the AR(p) model using the Yule-Walker
method, specifically in the case of a Gaussian distribution are calculated. Next, the
estimated model’s residuals are calculated and their sample ACF is analyzed. To be
more precise, the statistic is calculated and defined as

Kx(p) = max
h=1,··· ,hmax

|ρ̂x(h)|2. (4.6)

The function ρ̂x(·) is defined in Eq. (4.4) for the residual series obtained from the
fitted AR(p) model. The value hmax represents the set maximum lag value. The opti-
mal order, denoted as popt, is chosen when the statistic Kx(popt) reaches its smallest
value. This straightforward approach is easily understood. The ideal model is one
in which the residuals can be regarded as an independent sample. This means that
the sample ACF for residuals at lag h>0 is either zero or extremely close to zero.

After identification of the proper orderp,the parameters of the AR(p) model are
estimated. The Yule-Walker method is the standard strategy for finite-variance mod-
els, and it relies on the autocovariance function (ACVF) of the time series model. The
algorithm replaces the theoretical ACVF with the empirical ACVF stated in Eq.(4.5).
Additional information regarding the Yule-Walker algorithm for the AR model with
a finite-variance distribution can be found in the [127].

4.2.2 Algorithms for non-Gaussian heavy-tailed distributed data (robust
approach)

Deterministic and random components separation
If the data shows non-Gaussian behavior, the MA method may not be enough for ac-
curately identifying the deterministic component since it is affected by extreme ob-
servations. This is particularly crucial when the window length w is quite short and
there are isolated outliers in the signal. The presence of big values can have a consid-
erable impact on the sample mean, perhaps causing the observed trend to deviate
from the expected theoretical trend. Therefore, when dealing with non-Gaussian
data, it is advisable to utilize a more robust statistical measure such as the empirical
location measure. This chapter utilizes the moving median (MM) technique to an-
alyze segments extracted from windows of a specified length, denoted as w, with a
specified amount of overlap, denoted as o.

Random component normalisation
If the data display non-Gaussian behavior, the theoretical variance (and therefore
standard deviation) can be infinite, such as in the case of the α-stable distribution
with α < 2. Therefore, in this scenario, utilizing the robust estimator of the scale
parameter for the signal x = {x1, x2, · · · , xn}, which is determined by the kth order
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statistic [128, 129, 130] is suggested

SCQ
x = d{|xi − xj|; i < j}(k), (4.7)

where d is a constant value and k = (h
2) ≈ (n

2)/4, where h = [n/2] + 1 and [·] denotes
the integer part.

Random component modelling
The conventional ACF is not suitable for identifying autodependence in non-Gaussian
heavy-tailed data. Therefore, utilizing the robust form of the sample ACF as defined
in Eq. (4.4) for the classic (Gaussian) scenario is suggested . Given the sorted signal
x = {x1, x2, · · · , xn}, two vectors: vector u, which includes the first n − h observa-
tions, and vector v, which includes the last n − h observations are calculated. The
robust sample ACF is defined as follows [129]

ρ̂Q
x (h) =

(SCQ
u+v)

2 − (SCQ
u−v)

2

(SCQ
u+v)

2 + (SCQ
u−v)

2
, (4.8)

where SCQ
x is defined in Eq. (4.7). The robust version of ACVF is given by

γ̂Q
x (h) =

1
4

[
(SCQ

u+v)
2 − (SCQ

u−v)
2
]

. (4.9)

In order to determine the most suitable order p for the AR model in the non-
Gaussian scenario, a new approach that can be seen as a robust adaptation of the
methodology previously used in the Gaussian situation is utilized. Specifically, for
a given range of values for p ( p = 1, 2, · · · , pmax), the statistic Kx(p) as specified
in Eq. (4.6) is calculated. However, the sample ACF defined in Eq. (4.4), is replaced
here by robust variant as given in Eq. (4.8). In addition, the specific methodology
outlined below, which is a robust variation of the Yule-Walker method, to estimate
the parameters of the AR model is suggested. The optimal order popt is determined
by selecting the argument for which the statistic Kx(p) is minimized.

Ultimately, the values of the optimal AR(p) model’s parameters using the re-
silient variation of the Yule-Walker approach discussed in Section 4.2.2 are calcu-
lated. However, in this case, the robust estimator of the sample ACVF, which is
specified in Eq. (4.9) is utilized.

4.2.3 Summary

In Table 4.1, a brief summary of the framework discussed above is provided. Here,
the key distinctions between the suggested methods for the classical (designed for
data that follows a Gaussian distribution) and robust (designed for data that follows
a non-Gaussian heavy-tailed distribution) approaches is outlined.
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TABLE 4.1: The summary of the framework for data modelling - clas-
sical and robust approaches.

classical approach robust approach
Deterministic and random component separation

Deterministic component identification moving average moving median
Random component normalisation

Time-varying scale identification sample standard
deviation

sample robust scale
parameter

Autodependence identification sample ACF sample robust ACF
Random component modelling

Identification of the model’s order based on sample
ACF

based on sample ro-
bust ACF

Estimation of the model’s parameters classical Yule-
Walker approach

robust Yule-Walker
approach

Identification of the residuals autodependence sample ACF sample robust ACF
Testing distribution of the residual series Gaussian distribu-

tion testing
selected non-
Gaussian distribu-
tion testing

Distribution fitting MLE method for
Gaussian distr.

MLE method for
identified non-
Gaussian distr.

4.3 Validation of the proposed approach by simulated data
analysis

In this section, the efficiency of the proposed methodology for simulated signals
from the model described in Section 3.2 is presented. The parameters used in the
model are as follows: τ1 = 600, τ2 = 900, N = 1000, σ1 = 1, σ2 = 2, σ3 = 10,
σ4 = 40 and c1 = 10. Moreover, the random part corresponds to the AR(1) model
with ϕ = 0.5. In the simulation study and real data analysis, t = 1, 2, · · · , N denotes
the time point (number of observation).

The sequence {R3(t)} is analyzed under four different distribution scenarios:
one Gaussian distribution and three non-Gaussian α-stable distributions with α val-
ues of 1.95, 1.9, and 1.85. In each of the considered cases, it is simulated 100 datasets
from the proposed model. The exemplary signals are presented in Fig. 3.13.
We apply the methods given in Section 4.2 to each distribution case of the {R3(t)}
sequence and to each simulated dataset. The window length for trend identification
is assumed to be 101 observations, whereas for scale identification it is assumed to be
50. These values have been determined by experimentation, although their selection
is not crucial. For each phase of the methodology, the classical approach specifically
designed for Gaussian distributed signals are employed. Please refer to the left pan-
els of Figs. 4.2 to 4.5 for more details. The middle panels of Figs labeled as 4.2 to 4.5
illustrate the robust technique specifically designed for signals with non-Gaussian
heavy-tailed distributions. The Figs labeled as 4.2 to 4.5. The findings for each of
the simulated datasets are presented in the left and middle panels using grey lines,
whereas the equivalent theoretical functions are shown using a black line.

The fourth row displays the empirical tails (1 − F̂x(x)) for the residual series
{R3(t)} obtained using the Yule-Walker method. The left panel shows the classical
version, while the middle panel shows the robust version. The black lines represent
the tails of the theoretical (tested) distribution (1 − FX(x)).

In the final columns of Fig. 4.2-4.5, the statistics that allow us to parameterize
and compare the outcomes of conventional and robust algorithms are shown. In
the first and second rows of Fig. 4.2-4.5, the root mean square errors (RMSE) for
the identified trends (first rows) and scales (second rows) independently for each
t = 1, 2, · · · , N are calculated. The RMSE is defined as the square root of the mean
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squared difference between the theoretical value and its estimator. RMSE is a com-
monly employed metric for quantifying the disparities between anticipated values
(in this case, estimated suitable functions) and the theoretical values (depicted by
black lines on the plots). The RMSE is a metric that combines the sizes of the errors
in predictions for different data points into a single measure of how well the predic-
tions perform. It is always greater than or equal to zero, and a value of zero (which
is rarely attained in real-world scenarios) would imply a perfect match. Typically,
a lower RMSE is preferable to a bigger one. The RMSE is computed for each time
point t = 1, 2, · · · , N individually across the datasets. The boxplots of the estimators
for the ϕ parameter, generated using the Yule-Walker methodology and based on
the sample (or robust sample) ACVF, are presented in the third rows of Figs. 4.2-4.5.
Assuming ϕ = 0.5, the boxplot that aligns more closely with the theoretical value
indicates a more efficient strategy.
In descriptive statistics, a boxplot is a graphical representation that displays the cen-
tral tendency, spread, and skewness of numerical data using quartiles. Boxplots are
a type of graphical representation that do not rely on specific assumptions about the
statistical distribution of a population. They are used to show the variability in sam-
ples taken from a statistical population. The spacings within each subsection of the
boxplot represent the extent of dispersion and skewness of the data, typically stated
using the five-number summary. The boxplot is frequently employed as a means of
graphically comparing different methodologies. The boxplot displaying a median
that is closer to the theoretical value and a smaller box length signifies the method’s
higher efficiency.

Finally, in the fourth rows and right panels of Fig. 4.2-4.5, the KS statistic is pre-
sented, which is specified in Eq. (4.2), for the distribution being tested, as deter-
mined by the CDF FX(x). A lower value of the KS statistic suggests that the observed
distribution of the sample is more similar to the theoretical distribution being tested.

In Fig. 4.2, the outcomes for the Gaussian distributed model is represented. Both
the classic and robust techniques get similar outcomes in this scenario. The RMSE
values for trend and scale identification are similar. Furthermore, the estimators of
the ϕ parameter obtained by Yule-Walker techniques exhibit a high degree of sim-
ilarity. The KS statistics for testing Gaussian distribution on the series {R3(t)} are
small and have similar values. This suggests that the use of classical techniques is
effective for Gaussian distributed signals.



4.3. Validation of the proposed approach by simulated data analysis 37

FIGURE 4.2: The outcomes of the proposed procedures for simulated
data are organized across four rows, representing trend, scale, AR
model, and distribution tail identification, respectively. These are pre-
sented in three columns: the left column indicates the classical ap-
proach tailored for Gaussian distributed signals, the middle column
represents the robust approach suited for non-Gaussian heavy-tailed
distributed signals, and the right column illustrates the evaluation
of results through RMSE for trend and scale, alongside boxplots for
random components. Specifically, the random component R3(t) is

distributed as Gaussian (i.e., α-stable with α = 2).

The scenario shifts when the analyzed signals display non-Gaussian heavy-tailed
characteristics, specifically when the random component {R3(t)} follows an α-stable
distribution with α < 2. The appropriate situations are illustrated in Figs. 4.3-4.5.
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FIGURE 4.3: The outcomes of the proposed procedures for simulated
data are delineated across four rows, representing trend, scale, AR
model, and distribution tail identification, respectively. The com-
parison is presented in three columns: the left column signifies the
classical approach tailored for Gaussian distributed signals, the mid-
dle column represents the robust approach suited for non-Gaussian
heavy-tailed distributed signals, and the right column illustrates the
evaluation of results via RMSE for trend and scale, alongside boxplots
for random components. Specifically, the random component R3(t)

is distributed according to the α-stable distribution with α = 1.95.

It is evident that the robust algorithms are more efficient than the traditional
approaches. The methods specifically designed for non-Gaussian heavy-tailed dis-
tributed signals yield the lowest RMSE values for trend and scale identification. Fur-
thermore, the estimators of the ϕ parameter are in closer proximity to the theoretical
value ϕ = 0.5, indicating that the robust technique performs better than the standard
Yule-Walker methodology.
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FIGURE 4.4: The outcomes of the suggested methods for simulated
data are presented in rows 1-4, representing trend, scale, AR model,
and distribution tail identification, respectively. The left column is
dedicated to the classical technique, which is suitable for signals that
follow a Gaussian distribution. The middle column is dedicated to
the robust approach, which is designed for signals that have a non-
Gaussian heavy-tailed distribution. The right column evaluates the
results using the RMSE for both the trend and scale, as well as box-
plots for the random components. The random component {R3(t)}

follows a α-stable distribution with a value of α equal to 1.9.

Finally, the comparison is made with the tested distributions, namely the α-stable
distributions with α values of 1.95, 1.9, and 1.85, respectively. These distributions
are shown in the fourth rows of the Figs. The Figs. labeled as 4.3 to 4.5 provide
unambiguous evidence that the observed distribution of the signal associated with
the {R3(t)} sequence matches the distribution being tested when the robust version
of the technique is used. The KS statistic has a smaller magnitude in the robust
technique compared to the traditional methodology. The more pronounced the ef-
fectiveness of the robust algorithms becomes as the α value decreases. The simula-
tion analysis provides clear evidence supporting the use of dedicated algorithms for
heavy-tailed dispersed signals. Furthermore, the robust algorithms can be regarded
as universally applicable, as they also demonstrate effectiveness with Gaussian data.
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FIGURE 4.5: The simulated data was analyzed using proposed
methodologies to identify trends, scales, AR models, and distribution
tails. These results are presented in rows 1-4. The left column repre-
sents the traditional approach, which is designed for signals that fol-
low a Gaussian distribution. The center column represents the robust
approach, which is designed for signals that have a non-Gaussian
heavy-tailed distribution. The right column is used to evaluate the
results using the RMSE for both trend and scale, as well as boxplots
for the random components. The random component {R3(t)} fol-

lows a α-stable distribution with a value of α equal to 1.85.
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4.4 Real data analysis

In this section, the novel methodology using established real-world datasets (FEMTO
data and wind turbine data) is implemented. As mentioned, these datasets serve
as standard benchmarks in academic research and competitions, each exhibiting
specific noise characteristics. For both datasets, the robust approach as the proper
methodology for Gaussian and non-Gaussian-distributed time series is used.

4.4.1 Results of applying the proposed framework to FEMTO dataset

The findings related to the FEMTO data are shown in Fig. 4.6. Panel (a) illustrates the
identification of the trend component using a window of 51 observations, while in
panel (c), the scale is identified using a window of 100 data points. In particular, the
estimated trend displays varying patterns over time: initially remaining relatively
constant, transitioning into a linear function, and ultimately exhibiting characteris-
tics akin to an exponential function. This trend component aligns with the simulated
model described in Section 3.2. Upon removing the deterministic trend, the random
component is obtained (panel (b)), revealing non-homogeneity and varying scales
within the sequence. These preliminary results validate our hypothesis, notably the
observation that the scale of the random component increases over time, necessitat-
ing data normalization before further analysis.
The identified scale function, shown in panel (c), demonstrates non-linear growth in
the scale of the random component, particularly evident in the final regime where
noise magnitudes significantly escalate, potentially impacting prognosis quality to-
ward the end of the lifetime curve. Panel (d) displays the random element that
follows the normalization process, representing the sequence R2(t). The empir-
ical robust ACF presented in panel (e) clearly indicates short-range dependency
in the data. However, the relatively modest values of the empirical robust ACF
suggest insignificant coefficients in the model, attributable to nearly negligible self-
dependence in the data derived from a test rig under constant load/speed condi-
tions.
In the following, AR model will be fitted to the data, determining the optimal or-
der of p = 10. The coefficients of the model are relatively small: ϕ1 = 0.1683, ϕ2 =
0.0385, ϕ3 = 0.0114, ϕ4 = 0.004, ϕ5 = 0.0093, ϕ6 = −0.0412, ϕ7 = −0.0378, ϕ8 =
0.0034, ϕ9 = −0.0551, ϕ10 = 0. Panel (f) displays the residual series for the sequence
{R3(t)}, with its robust empirical ACF depicted in panel (g), indicating indepen-
dent observations. Comparison of actual and theoretical tails in panel (h) suggests
that the residual series follows a t location-scale distribution with ν = 8.57, as its
empirical tail closely resembles that of the t location-scale distribution rather than
the α-stable distribution. This observation rejects the Gaussian distribution assump-
tion, further supported by panel (i), which compares the normalized histogram of
the residual signal with PDF of theoretical distributions.
This outcome validates our assumption that the random component does not adhere
to a Gaussian distribution, though the degree of non-Gaussian remains relatively in-
significant.
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FIGURE 4.6: FEMTO data modelling - the robust approach. Results
of each step of the proposed framework: (a) identified trend T(t), (b)
random component {R(t)}, (c) identified scale SC(t), (d) normalized
random component {R2(t)}, (e) autocorrelation of normalized ran-
dom component, (f) residuals of AR model, (g) autocorrelation of the
residual series, (h) comparison of fitted tails, (i) comparison of fitted

distributions PDF.

In Table 4.2 the characteristics identified for the FEMTO dataset is summarized.

TABLE 4.2: Identified characteristics for the FEMTO data set.

Trend time-varying
Scale time-varying

Autodependence of random component negligible
Coefficients of AR model negligible

Distribution of the random component t location-scale with ν = 8.57.

4.4.2 Results of applying the proposed framework to wind turbine dataset

The results regarding the modeling of wind turbine data are presented in Fig. 4.7. In
panel (a), the deterministic trend component is highlighted . In particular, this com-
ponent exhibits dynamic variability over time, aligning closely with our theoretical
postulations.
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FIGURE 4.7: Wind turbine data modelling - the robust approach. Re-
sults of each step of the proposed framework: (a) identified trend
T(t), (b) random component {R(t)}, (c) identified scale SC(t), (d)
normalized random component {R2(t)}, (e) autocorrelation of nor-
malized random component, (f) residuals of AR model, (g) autocor-
relation of the residual series, (h) comparison of fitted tails, (i) com-

parison of fitted distributions PDF.

Upon eliminating the deterministic trend, the random component is gotten, as
illustrated in panel (b). The observed sequance exhibits non-stationary behavior,
attributed to its evolving scale over time. Concurrently, the component correspond-
ing to the sequence SC(t) is demonstrated in panel (c), revealing distinct evidence
of seasonality within the random component. Furthermore, our developed model
is validated within this context, showcasing discernible patterns of growth within
each regime (0− 2000 and 2000− 4000), subsequently evolving into a more complex
structure.

The normalized data are presented in panel (d), highlighting a notable depen-
dence within this domain. Then, panel (e) shows the empirical robust ACF, which
exhibits significant differences from the FEMTO data. This results in parameters
significantly different from zero in the fitted AR model, specifically an AR model
of order 4 (AR(4)), with the following estimated parameters: ϕ1 = 0.54, ϕ2 = 0.1,
ϕ3 = 0.036, and ϕ4 = 0.016. The residual series for the sequence {R3(t)} is pre-
sented in panel (f), while the empirical ACF for this series is shown in panel (g),
indicating a series of seemingly independent observations post-implementation of
the inverse AR filter, markedly reducing the data’s dependence.

Comparative analysis of empirical and theoretical tails, corresponding to three
tested distributions with parameters estimated from the data, suggests a closer re-
semblance of the residual series to the t location-scale distribution (with ν = 6.33),
see Appendix A, over the α-stable distribution, decisively rejecting the Gaussian
distribution. This assertion is further supported by contrasting the actual and theo-
retical PDFs, as depicted in panel (i). The notable attributes of the suitable elements
are summarized in Table 4.3.
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TABLE 4.3: Identified characteristics for the wind turbine dataset.

Trend time-varying
Scale time-varying

Autodependence of random component significant
Coefficients of AR model significantly non-zero

Distribution of the random component t location-scale with ν = 6.33

4.4.3 Discussion

The findings derived from the real datasets confirm the initial hypotheses underly-
ing the respective models. Our analysis discerns time-varying deterministic trends
and scale functions present within both datasets. Moreover, autodependence is iden-
tified in both cases. It is important to mention that although the autodependence in
the FEMTO dataset may not be significant, there is a noticeable autodependence
in the wind turbine dataset, highlighting its importance. Both situations exhibit a
non-Gaussian distribution in the discovered random component’s distribution. The
distribution of the first dataset, known as FEMTO data, is more similar to a Gaus-
sian distribution due to its higher ν parameter. In contrast, the wind turbine dataset
exhibits impulsive (non-Gaussian) behavior, as indicated by the smaller value of the
parameter responsible for this behavior in the fitted t location-scale distribution. In
this chapter, the models corresponding to the three regimes outlined in Section 3.2
as separate entities is not analyzed. Here, it is used the simplistic premise that the
random component of the analyzed datasets is represented by a single stochastic
model. Furthermore, it is assumed that the distribution of this model remains con-
stant throughout time.

In order to validate the findings, the quantile lines produced by the fitted models
when applied to the two real datasets is carefully examined. It is important to note
that the display of quantile lines obtained from the fitted model is a common way
to determine how well the model fits the data. This approach is widely used in
both academic literature and real-world applications. The process of constructing
the quantile lines involves several steps. Firstly, the model to actual data and obtain
a fit is applied. Next, a certain number of trajectories based on the fitted model is
simulated. Lastly, for each time point, the quantiles at specific levels, creating is
computed what it is call quantile lines. If the real data falls within these calculated
intervals as expected, it indicates that the fitted model is accurate. These quantile
lines, derived from various fitted models, can also help us figure out the best model
or indicate which one among those studied fits the real data the best.

The models have been synthesized and the simulation results are shown in Fig.
4.8. The image displays the genuine datasets using gray lines (FEMTO data in the
top panel and wind turbine data in the bottom panel). The generated quantile lines,
representing the 5% and 95% levels, are shown in black. These quantile lines were
obtained by simulating 100 trajectories based on the fitted models.
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FIGURE 4.8: The validation of the approach for real datasets (repre-
sented by grey lines) is demonstrated: the top panel showcases the
FEMTO data, while the bottom panel displays the wind turbine data.
Moreover, the constructed quantile lines (depicted by black lines) at
the 5% and 95% levels are established based on 100 simulated trajec-

tories corresponding to the fitted non-Gaussian models.

FIGURE 4.9: The validation of the approach for real datasets (depicted
by grey lines) is presented: the top panel represents the FEMTO data,
while the bottom panel displays the wind turbine data. Additionally,
the constructed quantile lines (illustrated by blue lines) at the 5% and
95% levels are based on 100 simulated trajectories corresponding to

the fitted Gaussian models.

To confirm the suitability of employing the non-Gaussian model with non- homo-
geneous characteristics, the quantile lines in Fig. 4.9 are presented. These lines are
produced using a simple Gaussian model, which includes a time-varying trend and
Gaussian noise. This model represents the standard approach for data modeling in
such scenarios. Similarly to before, the quantile lines are created using the 100 tra-
jectories of the fitted model, with the quantile values set at 5% and 95%. In this case,
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the moving median approach was used to fit the deterministic trend and the maxi-
mum likelihood method was used to estimate the Gaussian distribution parameters
for the detrended data. By comparing Figs. 4.8 and 4.9, it becomes evident that the
classical model is not suitable for the actual datasets. The Gaussian models seem to
overestimate the data from the initial regime (healthy stage) and underestimate the
data from the subsequent section (critical stage).

As a result, fitted models do not adequately capture the distinctive features of
the datasets and cannot be deemed ideal, especially for prognostic purposes. Con-
versely, upon analyzing the quantile lines of the proposed non-Gaussian non- homo-
geneous model, it becomes apparent that the simulated and actual data coincide
seamlessly for both datasets.

To demonstrate the superiority of the proposed model over the Gaussian-based
technique, Fig. 4.10, it is shown the quantile lines at the 95% level for both datasets
produced using both approaches. The quantile lines are represented by black and
blue lines, respectively. In addition, the difference between the two approaches is
shown. It can be inferred that the quantiles for the first regime, which represents
the healthy stage, have greater values in the Gaussian-based model compared to the
non-Gaussian-based method. However, in the critical stage, the situation is reversed.
The significant differences in quantiles between the non-Gaussian and Gaussian-
based models underscore the strong suitability of the proposed model. Ultimately,
the RMSE between the quantiles for models based on non-Gaussian and Gaussian
distributions is computed. The FEMTO data yield a value of 0.0239, however, the
wind turbine data yields a value of 0.0540. The disparity in RMSE values is asso-
ciated with the variability in the scale function and the non-Gaussian nature of the
residuals. The FEMTO data were found to follow a t location-scale distribution with
a higher number of degrees of freedom compared to the wind turbine data. This
suggests that the FEMTO data exhibit a distribution that is more similar to a Gaus-
sian distribution than the wind turbine data. It is vital to note that the selection of
window size, done by trial and error, for trend estimate and scale identification is
significant but not crucial. The window size should be large enough to minimize
bias in the generated statistics, while also small enough to ensure precision in the
time domain. The window size for the trend and the scale differs because the rate of
change for the trend is slower than the rate of change for scale. The size of the win-
dow does not have a direct impact on the calculation of the ACF and the applicable
AR model.
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FIGURE 4.10: The quantile lines at the 95% level for the FEMTO data
(top panel) and wind turbine data (bottom panel) are compared for
two models: the suggested non-Gaussian non-homogeneous model
and the Gaussian-based model, which includes Gaussian noise and a
deterministic trend. The red lines represent the differences between
the computed quantile lines. The quantile lines were produced using

100 trajectories of the simulated models in all situations.

4.5 Chapter highlights

This chapter addresses the challenge of identifying characteristics in long-term health
index data from a condition monitoring system. A new framework introduces new
components to the classical approach, particularly suited for non-Gaussian noise
distributions and time-varying random characteristics. The efficacy of proposed
approach is evaluated throw the simulated health index in the presence of differ-
ent levels of non-Gaussian noise. The proposed framework is also applied on two
real datasets. In both real cases the results confirm the time-varying characteristic
component in the deterministic and random parts. However, the results has been
demonstrated that the distribution of the noise in case of FEMTO dataset is close to
the Gaussian distribution, however in case of the wind turbine the distribution of
noise is far from the Gaussian distribution.

The novel insights and framework presented in this chapter allow for the cre-
ation of advanced models that closely mimic real degradation trajectories, particu-
larly in case of the presence of the non-Gaussian noise. These simulated data can be
used to train machine learning-driven prognostic systems.

Furthermore, the tools and framework introduced enable effective segmentation
of health index data for advanced modeling, such as predicting the RUL. This seg-
mentation improves predictive maintenance strategies by facilitating the targeted
analysis of different degradation stages. The methodologies discussed help practi-
tioners understand the underlying patterns and behaviors, leading to more reliable
RUL predictions and improved decision making in asset management and mainte-
nance planning.
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Chapter 5

Segmentation of health index data

This chapter primarily focuses on the segmentation of the HI. Segmenting the HI
provides an opportunity to construct precise models for future analysis, such as
predicting RUL. However, due to the complex behavior of the HI, including non-
Gaussian noise, this segmentation task necessitates the use of appropriate tools, as
discussed in previous sections.

Therefore, this chapter is divided into two main subsections. The first subsec-
tion investigates the segmentation problem based on historical HI data, while the
second addresses the problem as a one-step prediction task. This division allows for
a comprehensive exploration of segmentation methodologies that cater to different
analytical scenarios and data processing requirements.

5.1 Segmentation of long-term historical health index data

In this subsection, the segmentation problem is addressed using historical data. The
degradation process is assumed to consist of three stages, each characterized by a
specific deterministic trend. Based on this understanding, a segmentation method
is developed to effectively identify and delineate these distinct stages within the
degradation process.

5.1.1 Methodology of segmenting long-term historical health index data

The long-term HI data is presumed to have three distinct stages with different be-
haviors. The goal is to divide the time series into three parts using robust regression
methods to achieve the most accurate fit for each model.

5.1.2 Piece-wise regression models

This category of techniques enables the data to be divided into three pieces, each
characterized by a distinct model form. Three functional components are utilized:
constant, linear, and exponential, as illustrated below

ŷt(Θ) =


f1(t, θ1) = θ1, 0 < t ≤ τ1,
f2(t, θ2, θ3) = θ2t + θ3, τ1 < t ≤ τ2,
f3(t, θ4, θ5, θ6) = θ4 exp(θ5t) + θ6, τ2 < t ≤ N,

(5.1)

here, ŷt represents the estimation of y, which is the observed series of HI. The func-
tions f1(.), f2(.), and f3(.) denote constant, linear, and exponential functions, respec-
tively. In addition, the variables τ1 and τ2 represent changing point between healthy
stage and degradation stage (CP1) and changing point between degradation stage
to critical stage (CP2), respectively. The quantity N corresponds to the length of the
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signal, while θ1, ..., θ6 are constants that need to be fitted. These constants are used
to simulate the deterministic components of HI.

Ordinary least squares

The ordinary least squares (OLS) is fundamental technique relies on reducing the
sum of the squares of the residuals of the model. The procedure designed to find
optimal set of parameters iterates in two loops through possible divisions into three
windows, allowing identification of the optimal values for τ1 and τ2

Θ̂ = argmin
Θ

τ1−1

∑
t=1

(yt − f1(t, θ1))
2 +

τ2−1

∑
t=τ1

(yt − f2(t, θ2, θ3))
2 +

N

∑
t=τ2

(yt − f3(t, θ4, θ5, θ6))
2.

(5.2)
When dealing with observations that have Gaussian noise, the best parameters

can be calculated using MLE using residuals that are distributed according to a
Gaussian distribution.

Dynamic programming segmentation

This approach utilizes optimized dynamic programming to achieve optimal seg-
mentation of the time series of observations yt = {y1, y2, · · · , yN}. The model pa-
rameters are estimated on the basis of the MLE using a Gaussian distribution. The
computational expense of this paradigm is substantial when using dynamic pro-
gramming. To obtain further information about this approach, please refer to the
following sources [131, 132].

Iterative reweighted least squares

The iterative reweighted least squares (IRLS) method is a modified version of the
OLS method. In IRLS, weights are assigned to error terms based on their changing
variance, which is assumed to be finite. For each time t, the weight wt is equal to the
reciprocal of the corresponding standard deviation σt of the observation error term.
The weights are adjusted iteratively. In each step, denoted by j, the vector of weights
w(j)

t , t = 1, . . . , N is used to update the parameters of the piecewise regression

Θ̂(j) = argmin
Θ

τ1−1

∑
t=1

w(j)
t (yt − f1(t, θ

(j−1)
1 ))2 +

τ2−1

∑
t=τ1

w(j)
t (yt − f2(t, θ

(j−1)
2 , θ

(j−1)
3 ))2+

N

∑
t=τ2

w(j)
t (yt − f3(t, θ

(j−1)
4 , θ

(j−1)
5 , θ

(j−1)
6 ))2.

(5.3)

The variable Θ̂(j) represents the current set of values for Θ in the j-th iteration
of the IRLS algorithm. One of the iterative approaches used to determine appropri-
ate weights is the Tukey biweight function ϕTu(y) = y(1 − y2)2, which is applied to
the residuals of the model. This method is implemented in the Matlab robustfit()

function, as stated in [133]. The weights w(j)
t are adjusted using the formula de-

scribed in [134].
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Least absolute error

The least absolute error (LAE) utilized the cost function which is the sum of abso-
lute deviations, rather than the sum of squares. The method described in [135] is a
well-established alternative to the OLS method. It is particularly useful for making
robust adjustments to regression parameters, even when dealing with infinite vari-
ance. The optimization technique, which incorporates the LAE cost function with
varying points, is specified as follows

Θ̂ = argmin
Θ

τ1−1

∑
t=1

|yt − f1(t, θ1)|+
τ2−1

∑
t=τ1

|yt − f2(t, θ2, θ3)|+
N

∑
t=τ2

|yt − f3(t, θ4, θ5, θ6)|.

(5.4)
Similarly to the OLS approach, all potential divisions are evaluated in three

stages to determine τ1 and τ2. This approach is advantageous when the errors ex-
hibit a heavy-tailed distribution rather than a Gaussian distribution.

5.1.3 Student’s t distribution estimation

Student’s t distribution estimation (ST) method assumes that the residuals of the
model in each degradation stage follow a scaled Student’s t distribution

rt =


σ1ut, 0 < t ≤ τ1,
σ2ut, τ1 < t ≤ τ2,
σ3ut, τ2 < t ≤ N.

(5.5)

The series ut = {u1, u2, · · · , uN} consists of independent random variables that fol-
low a Student’s t distribution. Each segment of the series, denoted by i = 1, 2, 3,
has νi degrees of freedom. This feature allows for the presence of extreme values
in the error distribution and enhances the ability to accurately model non-Gaussian
observation data by providing a more resilient fitting process. The estimation ap-
proach relies on the MLE technique, which is applied to every potential split into
three stages. The optimal collection of parameters is determined to satisfy the fol-
lowing criteria

Θ̂ =argmin
Θ

τ1−1

∑
t=1

log
(

pν1

(yt − f1(t, θ1)

σ1

))
+

τ2−1

∑
t=τ1

log
(

pν2

(yt − f2(t, θ2, θ3)

σ2

))
+

N

∑
t=τ2

log
(

pν3

(yt − f3(t, θ4, θ5, θ6)

σ3

))
,

(5.6)

where pν(·) is the PDF of Student’s t distribution , see Appendix.A.
Furthermore, it is important to mention that the most favorable values for the

parameters of the methods explained in this section (namely OLS, IRLS, LAE, and
ST) are discovered by unconstrained multivariate optimization using a derivative-
free approach. The fminsearch function in Matlab is utilized for this purpose.
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5.1.4 Hidden Markov models and Expectation-Maximization algorithm

For a shorter notation, in this subsection, the process of observations is denoted as
yt = {y1, y2, · · · , yN}. . HMM are the models in which to describe the evolution of
the observation process X, an additional unobserved process (hidden states) zt =
{z1, z2, · · · , zn} is introduced so that the whole system has the Markov property.
As hidden states are unknown, the full likelihood of a system P(y, z|Θ) cannot be
calculated directly to obtain the parameters using the MLE method. The standard
iterative method that can be used instead is called Expectation-Maximization (EM)
algorithm. First, some initial values of Θ(0) are set. The next EM procedure is based
on repeated steps in calculating the likelihood expectation given the distribution of
z conditioned with y and Θ = Θ(u) and reassigning Θ to new values that maximize
the conditional expectation. The u-th step can be described with the update formula

Θ(u+1) = argmax
Θ

Ez|y,Θ=Θ(u)

(
P(y, z)|Θ

)
, (5.7)

where the letter E stands for conditional expectation. Two different models from
this class are considered. However, they share the same equation for evolution of X
given z, which is a polynomial (of degree p) regression

yt =
p

∑
i=0

βi,zk ti + σzt ϵt, (5.8)

where t = 1, . . . N, the constants β0,zk to βp,zk are polynomial coefficients in the state
(degradation stage) zk, and ϵt is Gaussian white noise. The set of p + 1 polynomial
coefficients depends on the current stage zt. The hidden states can be interpreted
as degradation stages indexed from 1 to K in the proper order from healthy state to
full degradation (thus K denotes the number of distinct degradation stages). In this
thesis, according to the framework described in Section 2, K is set to 3.

In the HMM approach, CP1 and CP2 are not included in Θ. The result of the fit
of the HMM model to the data contains probabilities for each t of the current stage
zt equal to 1, . . . , K. The state with the highest probability indicates the degradation
state of the observed machine at time t, thus obtaining the division of the degrada-
tion process into three stages.

Hidden Markov model regression

Hidden Markov model regression (HMMR) approach employs a mixture of polyno-
mial regressions handled by hidden states of a discrete-time Markov chain. Chang-
ing of the stages is therefore fully described by the initial distribution and the one-
step transition matrix. Significant restrictions are therefore placed on the transition
probabilities to better reflect the nature of the process. Thus, for all l = 1, . . . , K, the
following is obtained

P
(

zt+1 = k|zt = l
)
= 0, for k /∈ {l, l + 1}, (5.9)

and generally nonzero otherwise. The parameters are estimated through the Baum-
Welch algorithm as described in [131].
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Hidden logistic process

In Hidden logistic process (HLP) method, the unobserved switching stage process
affecting the set of polynomial regression coefficients is modeled with a multino-
mial logistic regression model. The distribution of the current stage zt in the HLP is
assumed to be as follows

πt,k(β) = P(zt = k|β) =
exp(∑

p
i=0 βkiti)

∑K
l=1 exp(∑p

i=0 βliti)
, for k = 1, . . . , K, (5.10)

where β = [βki]k=1,...,K, i=0,...,p is matrix containing p + 1 regression parameters for
all K degradation stages. As z is not observed, the Gaussian distribution of yt given
zt must be included in the total log-likelihood of the model. In terms of probability
density functions, the following is obtained (see [131])

p(X|Θ) =
N

∑
t=1

log
K

∑
k=1

πt,k(β)pΘ(yt|zt = k), (5.11)

where the Gaussian PDF denoted with pΘ(yt|zt = k) comes from Eq. (5.8). The
resulting model is a special case of a time-heterogeneous Gaussian mixture model.
A dedicated EM for this approach is described in [131]. As shown there, in a single
iteration of EM the expectation term is a function of Θ (compare Eq. (5.7)) can be
separated into two terms, one dependent on β and the other dependent on σ and β.
Thus, fitting of these two sets of parameters can be done independently. Matrix β is
estimated utilizing a multi-class IRLS approach.

5.1.5 Analysis of simulated data

Based on the assumption of Section 3.2, the long-term data model is used to generate
HI observations. After the mentioned methodologies are employed to segment the
data into three stages in the presence of Gaussian noise and non-Gaussian noise. In
addition, to show the performance of the methodology, the results were compared
together.
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FIGURE 5.1: Simulated HI: (a) deterministic part with marked chang-
ing points, (b) Gaussian noise, (c) non-Gaussian noise with ν = 3, (d)
HI in presence of Gaussian noise, (e) HI in presence of non-Gaussian

noise.

Analysis for Gaussian distributed model

The proposed methodology is implemented in this subsection using the data gen-
erated by the proposed model, assuming that the noise term follows a Gaussian
distribution with mean 0 and standard deviation 1, denoted as R̃(t) ∼ N (0, 1). The
segmentation results for the simulated data are collectively shown for all of the cho-
sen methods. As a result of the simulation process, the healthy stage will transition
to the degradation stage (CP1, represented by τ1) at Time=1000, and CP2 (repre-
sented by τ2) will occur at Time=1600.

The exemplary simulated trajectory, along with the predicted changing points
CP1 and CP2 resulting from each of the methods, can be shown in Fig. 5.2. It is
evident that in this scenario, when Gaussian noise is present in all stages, the chosen
algorithms were able to accurately detect CP1. CP1 is accurately detected by most
approaches, including ST, LAE, and IRLS. Other methods also identify this moment
around between Time=1000 and Time=1088, which is acceptable. However, the HLP
method detects this point at Time=882, earlier than the required time. On the basis
of this fact, the transition between the last two phases is noteworthy. CP2 was iden-
tified using most approaches, except for IRLS, OLS and HLP, which were unable to
identify this point as suitable.
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FIGURE 5.2: Changing points detection in the presence of Gaussian
noise.

The estimation technique was iterated 100 times using the same model. The
estimation results are depicted in boxplot in Fig. 5.3. Horizontal red lines correspond
to the mean estimation results, while the gray dashed line represents the real value
of the change point. Estimation of CP1 and CP2, determined by HMMR, HLP, and
DPS, exhibits minimal variation, as indicated by the tiny value of the IQR. However,
in the case of CP1, the result is positively skewed away from the true value of 1000.
Regarding CP2, most of the methods (except IRLS, OLS and ST) exhibit a notable
presence of outliers on the lower end, deviating from the actual value of 1600.

FIGURE 5.3: Monte Carlo analysis for changing point detection in
presence of Gaussian noise, left subplot is boxplot of detected CP1

and right subplot is boxplot of detected CP2.

Additionally, the mean squared error (MSE) is computed by comparing the gen-
uine changing point values (CP1=1000 and CP2=1600) with the estimations obtained
from the Monte Carlo simulation conducted for each approach. The illustration can
be seen in Fig. 5.4. As depicted in Fig. 5.4, the IRLS approach exhibits the lowest
MSE while identifying CP1, but the greatest MSE when detecting CP2. In addition,
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the ST technique has a high capability to accurately detect CP2. Nevertheless, it has
failed to match CP2’s performance in detecting CP1. Upon doing a comprehensive
comparison of all the bars, it can be deduced that the DPS, HMMR, and ST tech-
niques exhibit the lowest MSE when subjected to Gaussian noise.

FIGURE 5.4: MSE for Monte Carlo analysis for changing point detec-
tion in presence of Gaussian noise.

Analysis for non-Gaussian distributed model

In this section, the suggested approach is used to analyze the data produced by the
suggested model with a random component that follows a Student’s t distribution.
The analysis considers various values of the parameter ν, ranging from just above
2 to a sufficiently large value. The former represents the limit case where the vari-
ance becomes infinite, resulting in a highly non-Gaussian distribution. The latter
represents a value where the distribution closely resembles a Gaussian distribution.

Based on the simulation technique, CP1 and CP2 have values of Time=1000 and
Time=1600, respectively. Fig.5.5 displays a simulated trajectory, along with the es-
timated changing points CP1 and CP2, obtained from different approaches. This
example refers to a scenario with degrees of freedom ν = 2.1. CP1 is accurately iden-
tified using methods such as ST and LAE, whereas other approaches do not detect
this point correctly. For example, HMMR, DPS, IRLS, and HLP identify this point at
Time=347, 348, 600, and 900, respectively. Additionally, OLS detects this point with
a delay at Time=1280. ST and LAE accurately detected CP2, while HMMR and DPS
detected it with a small delay at Time = 1612, which is acceptable. However, IRLS on
OLS identified this point at Time=1400 and 1440, which is significantly earlier than
expected. The results of HLP are deemed insignificant.
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FIGURE 5.5: Segmentation results for non-Gaussian simulation case
with ν = 2.1.

In order to validate the effectiveness of the techniques, the estimation procedure
was replicated 100 times using the same model but with varying degrees of non-
Gaussian noise. The estimation results are depicted using boxplot in Fig. 5.6. Upon
evaluating the box plot, it is evident that the ST approach outperforms other meth-
ods in detecting changing points, particularly CP2, in the presence of varying levels
of non-Gaussian noise.

(A) (B)

(C) (D)

FIGURE 5.6: Monte Carlo analysis for changing point detection in the
presence of different levels of non-Gaussian noise, (a) ν = 2.1, (b)

ν = 3, (c) ν = 5, (d) ν = 10.
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Furthermore, the MSE is computed using actual changing points (CP1=1000 and
CP2=1600) for each Monte Carlo simulation, considering various values of ν. The
resulting MSE values are illustrated in Fig. 5.7. Panel (a) of Fig. 5.7 illustrates that
the MSE of several methods used to detect CP1, including OLS, HMMR, DPS, and
to some extent HLP, has shown an increase as ν decreases. This decrease in ν leads
to an increase in impulsiveness. However, decreasing the ν value does not signifi-
cantly impact the MSE of robust methods such as ST, LAE, and IRLS. Furthermore,
it should be noted that ST, IRLS and HLP methods exhibit the lowest MSE when it
comes to detecting CP1, outperforming all other specified approaches. Similarly, the
MSE of the approaches for CP2 is displayed in panel (b) of Fig. 5.7. The MSE of
methods such as HMMR, DPS, and OLS increased as ν decreased, while the MSE of
methods like ST, LAE, IRLS, and HLP remained unaffected by a decrease in ν. In ad-
dition, the ST approach has the ability to detect CP2 with the lowest MSE compared
to all other methods.

(A) (B)

FIGURE 5.7: MSE for Monte Carlo analysis for changing point detec-
tion in the presence of different levels of non-Gaussian noise, (a) bar

plot of MSE for CP1, (b) bar plot of MSE for CP2.

To establish the universality of the suggested strategy, the methodology was also
validated for a different non-Gaussian distribution, specifically the α-stable distri-
bution [136]. Random variables following a α-stable distribution, excluding the
Gaussian case, exhibit infinite variance. Consequently, the task of identifying chang-
ing points becomes far more challenging compared to the scenario discussed in this
study, even for the non-Gaussian distribution under analysis.

5.1.6 Real data analysis

In this part, the suggested methodology will be implemented and evaluated using
existing real datasets to evaluate the performance of proposed approach in real case.

Results for IMS dataset

The segmentation methods’ results for this case study are shown in panel (a) of Fig.
5.8. Panel (a) of Fig. 5.8 clearly shows that most approaches identified the first
change point (CP1), which marks the transition from the healthy stage to the degra-
dation stage, occurring between Time=500 and 560. Based on a visual examination of
the HI and the corresponding outcomes, it appears that most of the approaches pro-
duced satisfactory results. For the second change point (the point where the trend
shifts from the degradation stage to the critical stage), many approaches including
OLS, HMMR, DPS, IRLS, and HLP identified this point roughly at Time = 700, where
there was a significant increase in the value of HI. The LAE approach has discovered
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at Time=800, and subsequently, the HI values exhibit rapid growth. Unfortunately,
both of the stated occurrences appear to be inaccurate representations of CP2 points
on a global scale, as the HI values have been shown to decrease. It is claimed that
CP2 = 900, as determined by the ST technique, is accurate due to the trend of ex-
ponential decline observed in the data beyond that point, which spans a significant
period of time. To validate these findings, envelope analysis is employed on each set
of vibrations and the results are subsequently plotted in panel (b) of Fig. 5.8. For fur-
ther information on envelope analysis, the following references are recommended:
[137, 138, 139, 140].

In panel (b) of Fig. 5.8, it is evident that after Time = 527, a harmonic frequency
has emerged, specifically the ball pass frequency outer (BPFO) fundamental har-
monic. This indicates that the bearing has entered the degradation stage. After
comparing the envelope analysis and segmentation approaches, it can be inferred
that the ST and HLP methods yield the most optimal result.

(A) (B)

FIGURE 5.8: Changing points detection IMS datasets case number 2,
(a) result of changing points detection method, (b) envelope spectrum

of the raw vibration signal.

Results for FEMTO dataset

The results of the segmentation methods for this case study are displayed in Fig. 5.9.
It is evident that this dataset adheres precisely to the concept of three distinct stages:
from Time = 0 to around 1300, it remains relatively constant, followed by a linear
increase up to Time = 2700, and finally experiencing fast development. There is no-
ticeable noise, particularly in the middle stage, and some minor outliers can also be
observed. Therefore, it is classified as a pattern that exhibits almost Gaussian noise.
As depicted in Fig. 5.9, most algorithms identified the initial change point (the point
where the transition from a healthy to a degraded state occurs) between Time=1200
and 1400, with the exception of HMM-based algorithms such as HMMR and HLP,
which detected the first change point significantly later than it actually occurred. Ac-
cording to the initial visual inspection, the first point of change should be identified
around Time = 1000. This indicates that the ST approach has the ability to identify
this spot with a tolerable margin of error. It is important to note that the transition
between healthy and degraded stages is gradual and not easily detectable. Based
on the information provided in Fig. 5.9, the second changing point is expected to
occur approximately at Time=2700. At this moment, the HI is observed to undergo a
significant and rapid increase on a worldwide scale. Thus, it can be inferred that the
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ST, OLS, HMMR, and HLP algorithms are capable of detecting this point. However,
the LAE, DPS, and IRLS approaches have failed to accurately identify this spot.

FIGURE 5.9: Result of changing points detection methods for the
FEMTO datasets.

Results for wind turbine dataset

In order to implement the suggested method on the wind turbine datasets, the inner
race energy is chosen as the health indicator. Fig. 2.2 clearly displays a significant
number of outliers in this dataset. Therefore, it is classified as a pattern exhibiting
non-Gaussian noise. Furthermore, certain oscillations have been observed in the HI,
which have been found to be associated with changes in the load or certain phenom-
ena such as self-healing. This particular behavior poses considerable difficulty for
the segmentation and prediction of RUL. The results of the segmentation methods
for this case study are provided in Fig. 5.10. The CP1 (change point indicating the
transition from a healthy stage to a degrading stage) is identified by all methods
between the dates of 15 March and 21 March. Specifically, OLS, ST, LAE and IRLS
detected this point on 15 March, while HMMR, DPS, and HLP identified it on 18
March, 18 March and 19 March, respectively.

Based on the analysis of Fig. 5.10, it appears that 15 March is a more suitable
choice for CP1. This is because, following this date, the HI experiences a signifi-
cant increase until 21 April. This suggests that the point in question is detected by
HMMR, HLP, and DPS with a certain delay. On 8 April, a CP2 indicating the transi-
tion from the deterioration stage to the critical stage trend was identified for HMMR,
DPS, and HLP. Regrettably, all the stated approaches appear to incorrectly identify
CP2 locations on a global scale. Furthermore, it is incorrect for LAE to have iden-
tified CP2 when HI values began to decline. Meanwhile, ST and IRLS detected it
on April 20th. Based on the trend of the data showing an exponential development
with reduced fluctuations over a significant period of time, it can be inferred that
CP2=20 April is the accurate CP2. A separate iteration of these datasets is used to
verify the precision of the findings. This version of the datasets consists of a raw vi-
bration signal that is captured for a duration of six seconds every day. The sampling
rate for this signal is 100k. You can refer to panel (a) in Fig. 5.11 for a visual rep-
resentation. Therefore, it signifies that it has an exceptional potential to implement
diverse frequency analysis in order to perform condition monitoring. The envelope
analysis is performed on each set of vibrations, and the resulting data are progres-
sively presented in panel (b) of Fig. 5.11. Panel (b) of Fig. 5.11 clearly shows the
emergence of the harmonic frequency, specifically the fundamental harmonic of the
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ball pass frequency , after 14 March. This indicates that the bearing has entered a
stage of degeneration. Furthermore, following the date of 22 April, there was a sig-
nificant and sudden increase in the amplitude of the harmonic frequency, indicating
a potential occurrence of CP2. Upon analyzing the results of the segmentation ap-
proach, it is evident that the IRLS and ST methods exhibit the most favorable results
for this particular scenario.

FIGURE 5.10: Changing points detection of wind turbine datasets.

(A) (B)

FIGURE 5.11: Changing points detection wind turbine, (a) raw vibra-
tion data, (b) envelope spectrum map.

Discussion

The percentage error for detecting the changes in all the actual datasets is demon-
strated in Fig. 5.12. As can be seen in both sub-figures for both CP1 and CP2, the
ST method has the lowest percentage error. In contrast, error percentage for the
rest of the methods has fluctuated on different datasets, which can include the fact
that considering non-Gaussian noise distribution improves the process of detecting
changing points in long-term condition monitoring data.
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(A) (B)

FIGURE 5.12: Percentage error for real datasets changing points de-
tection, (a) percentage error for CP1, (b) percentage error for CP2.

5.2 Probabilistic segmentation of long-term health index data

Previously, the possibility of dividing long-term historical data into three stages us-
ing the deterministic component was showcased. In addition, the influence of non-
Gaussian noise on the effectiveness of segmentation techniques was clarified.

However, real-life scenarios require an online method for practical functionality.
Henceforth, in the subsequent part of this section, the process of segmenting such
data using an online technique will be demonstrated, thereby enhancing its appli-
cability in real-world scenarios. The following introduces three dynamic models to
characterize different stages of machine health: the healthy stage (constant trend),
the degradation stage (linear growth) and the critical stage (exponential or polyno-
mial behavior). These models facilitate the investigation of the degradation process.
A robust Bayesian approach has been developed for these dynamic models to per-
form one-step state predictions. This method is integrated with a dynamic linear
model approach to construct a switching model, which provides both one-step pre-
dictions of the HI sequence and probabilistic results for the online segmentation of
HI data simultaneously.

5.2.1 Methodology of probabilistic segmentation of long-term health in-
dex data

Bayesian approach is a highly promising strategy for online segmentation. Signif-
icantly, it provides an opportunity to utilize the information from historical data
acquired in Chapter 4 for the purpose of segmentation. Furthermore, the Bayesian
technique offers the benefit of yielding probabilistic outcomes, which can help re-
duce uncertainty. Nevertheless, it has previously been observed that the effective-
ness of the conventional Bayesian method is vulnerable to outliers. Therefore, a
robust Bayesian technique has been devised to tackle this issue, and its effectiveness
will be evaluated in comparison to the traditional Bayesian approach.

Kalman filter

The KF is a type of Bayesian filter that is used to estimate the recursive state of a dy-
namic system. This is achieved by reducing the MSE, even when there is process and
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measurement noise present. The KF operates according to the following principles

xst = Atxst−1 + qt,
yt = Htxst + mt,

(5.12)

where xst is the actual state at time t and yt is its observation, the matrix At de-
scribes the state-transition model, qt is the process noise, Ht is the observation ma-
trix, which maps the actual state space into the observed space, and mt is the ob-
servation noise. The noise terms qt and mt are assumed to be normally distributed:
qt ∼ N (0, Qt), mt ∼ N (0, Mt). In the literature, several approaches can be em-
ployed to extract KF formulation: for instance, Bayesian rule, maximum posterior
approaches (MAP), orthogonal principle, and weighted least square method (WLS).
To describe the state estimation procedure given the observations yt, we need to in-
troduce the notation of x̂st|t and x̂st|t−1 being the posterior and the prior estimates
of the state xst given the observations till the time t and t − 1, respectively. The cost
function in WLS, defined as a sum of two squared quadratic norms [141], which
combines the measurement (first term) and the prior estimate (second term) in find-
ing the optimal posterior estimate of the xst, is given as follows

J =
1
2
∥yt − Htxst∥2

M−1
t
+

1
2

∥∥xst − Atx̂st−1|t−1
∥∥2

P−1
t|t−1

, (5.13)

where −1 in the superscript denotes matrix inversion, quadratic norm of a vector u
defined with a weights matrix W is the quadratic form obtained with the formula
(denoting matrix transposition with T in the superscript)

∥u∥W =
√

uTWu (5.14)

and Pt|t−1 is the prior estimate covariance matrix

Pt|t−1 = E[(xst − x̂st|t−1)(xst − x̂st|t−1)
T]. (5.15)

The posterior estimate covariance matrix Pt|t is expressed in an analogous way as
above

Pt|t = E[(xst − x̂st|t)(xst − x̂st|t)
T]. (5.16)

The KF formulation can be derived by minimizing J from Eq. (5.13) with respect to
xst, namely the posterior estimator of the state of the model is defined as

x̂st|t = argmin
xst

{J}. (5.17)

At the same time the covariance matrix is also estimated. The resulting recursive
procedure is described with the following equations which are usually divided into
two steps, namely the prediction step

x̂st|t−1 = At x̂st−1|t−1,
P̂t|t−1 = AtP̂t−1|t−1At

T + Qt,
(5.18)

and the update step

x̂st|t = x̂st|t−1 + Kt(yt − Htx̂st|t−1),
P̂t|t = (I − KtHt)P̂t|t−1(I − KtHt)T + KtMtKt

T.
(5.19)
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The term Kt in the above equations is called Kalman gain and for the standard KF
its optimal value is given by the formula

Kt = P̂t|t−1HT
t (HtP̂t|t−1HT

t + Mt)
−1. (5.20)

As mentioned before, the KF gives the optimal solution when both the process noise
and the measurement noise have a Gaussian distribution. For other distributions,
the KF produces a sub-optimal solution, which is because only the second-order
measurement information is used.

In the following subsection, the maximum correntropy Kalman filter (MCKF) is
derived to handle non-Gaussian noise based on the following references [142, 141,
143, 144].

Maximum correntropy Kalman filter

In the following, for the model expressed with Eq. (6.5) another form of an objective
function is introduced [141]. Based on the maximum correntropy criterion it has the
form

JMC = Gσ(∥yt − Htxst∥M−1
t
) + Gσ(

∥∥xst − Atx̂st−1|t−1
∥∥

P−1
t|t−1

), (5.21)

where Gσ(u) = exp(− u2

2σ2 ) and σ is kernel size.
This function used instead of a previous cost function makes the estimation more

robust in the presence of non-Gaussian noise, which is the case when the real obser-
vation process does not necessarily fulfill the assumptions of the KF model. The
MCKF formulation can be derived by finding xst that maximizes the objective func-
tion JMC given by Eq. (5.21). It should be emphasized that in the derivation based
on WLS to obtain the solution given by a closed formula, an approximation is made,
namely the posterior estimate is replaced at one place with the prior estimate, i.e.
x̂st|t ≈ x̂st|t−1 (please see [141] for details). The prediction and update steps are
driven by the same equations as for the standard KF; see Eq. (5.18) and (5.19) but the
optimal Kalman gain for the MCKF is given with the formula

Kt = P̂t|t−1λtHT
t (HtP̂t|t−1λtHT

t + Mt)
−1, (5.22)

where
λt = Gσ

(∥∥yt − Htx̂st|t−1
∥∥

M−1
t

)
. (5.23)

In the state estimation procedure using MCKF, when a significant outlier appears,
the term yt − Htx̂st|t−1 in Eq. (5.19) (usually called innovation or pre-fit residual)
diverges, but Kt controls the divergence of the estimator x̂st|t. Please see references
[142, 141, 143, 144] for more details about the procedure of driving equations and
stability.

To illustrate the performance of MCKF, a two-state dynamic system is considered
as follows

xst = Atxst−1 +qt, yt = Htxst +mt + tt(ν), At =

[
1 ∆t
0 1

]
, Ht =

[
1 0

]
,

(5.24)
where ∆t is the discrimination step size and, for this case, ∆t = 0.1. The initial pa-

rameters of estimator are x̂s0|0 = [ 0 0 ]T, P̂0|0 = [
6.2e − 08 1.2e − 06;
1.2 − 06 2.5 − 05

]. Note
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that in this special case yt and mt both reduce from a vector to a scalar. The noise
terms qt and mt are normally distributed.
Where qt ∼ N ([0; 0], [ 1

4 (∆t)4, 1
2 (∆t)3; 1

2 (∆t)3, (∆t)2]), mt ∼ N (0, 10). The addi-
tional term tt(ν) is a non-Gaussian noise generated as a series of of independent
random variables from Student’s t-distribution with number of degrees of freedom
ν = 2.8 (please note that this term is not included in the standard KF model).

The simulation results are plotted in Fig. 5.13. Panel (a) presents an actual state
by a red line, and the observation of the real state includes heavy-tailed noise. As
can be seen in panel (b) of Fig. 5.13, in the presence of impulsive noise, MCKF
could properly track the mean state, while standard KF estimation was affected by
heavy-tailed distributed noise and therefore could not follow the mean state with
comparable accuracy.

FIGURE 5.13: State estimation in the presence of non-Gaussian noise,
(a) measurement signal and real state, (b) results of state estimation

with KF and MCKF.

Switching maximum correntropy Kalman filter

In this subsection, the switching maximum correntropy Kalman filter (SMCKF) is
introduced, which is a robust version of SKF. The SMCKF can be described as a
dynamic Bayesian network in which, during the lifetime of the system, different KF
or MCKF models are switched between. See Fig. 5.14. The additional process SMt
called switching variable is introduced. Its state space is finite, that is, it consists of
k values: 1, 2, . . . , k. If SMt = j, the degradation process is in the j-th of k subsequent
stages and the process xst is in this stage modeled with the j-th of k MCKF models.
In each time step, both the switching model variable SMt and the state variable
xst are hidden and thus must be figured out from observation yt. This may cause
numerical problems, especially when the number of stages is increased, as argued
in [145]. Kevin et al.in [146], developed an approximation approach, namely the
generalized pseudo-Bayesian (GPB) method, to solve this issue.
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FIGURE 5.14: Dynamic Bayesian network.

Our goal in the segmentation through degradation stages is to evaluate, based on
the measurement yt = {y1, . . . , yN}, the probabilities of the model being in a specific
stage at each time t which directly corresponds to the values of

π
j
t = P(SMt = j|y1:N) (5.25)

for j = 1, . . . , k. Note that the above probabilities are those filtered with the SMCKF
based on measurement yt. For modeling the process SMt, a discrete-time Markov
chain is used. Thus, the non-filtered probabilities can be expressed with a recursive
formula. Namely, the transition probabilities of SMt, denoted as zij = P(SMt = j |
SMt−1 = i) (assumed to be time-invariant), are given as

P(SMt = j) =
k

∑
i=1

P(SMt−1 = i) · zij. (5.26)

The framework used is similar to the one in [141] and it is based on the assump-
tion that, in general, all parameters of the model, i.e., At, Qt, Ht and Mt, as well as
the form of the state vector xst, may explicitly depend on the current value of SMt.
In contrast to [141], it is assumed that in each of the 1 to k-th stages, the current HI
needs to be estimated using MCKF instead of KF. Thus, the Kalman gain is calcu-
lated using Eq. (5.22), which contains the coefficient λt. Likewise, the covariance
matrix of the innovation term ϵt = yt − Htx̂st|t−1 (given the measurement until time
t) contains the same coefficient λt. Namely, ϵt ∼ N (0, Ct) is obtained, where Ct is
given by the formula

Ct = HtP̂t|t−1λtHT
t + Mt. (5.27)

As noted earlier, the parameters of the degradation model depend on SMt de-
scribing the current stage. The estimates x̂st|t and P̂t|t, obtained by repeating itera-
tions of SMCKF, so would be different for each possible series of {SM1, . . . , SMN}.
To reduce the computational complexity of the algorithm (and avoid iterating MCKFs
through all possible trajectories of SMt), the procedure is limited to iterating only
through the possible values of the switching variable in the current and previous
time, i.e., yt and st−1. Therefore, the following form of the conditional probability
density function is assumed

P(ϵt = u|SMt−1 = i, SMt = j, y1:t) = g0,Ct(u), (5.28)

where gµ,Σ(u) is multivariate Gaussian probability density function of the random
variable with mean vector µ and covariance matrix Σ.
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Using Bayes’ theorem conditioned on ϵt, the following is obtained

P(SMt−1 = i, SMt = j|ϵt, y1:t−1) =
g0,Ct(ϵt) · P(SMt−1 = i, SMt = j|y1:t−1)

∑k
l=1 ∑k

m=1 g0,Ct(ϵt) · P(SMt−1 = m, SMt = l|y1:t−1)
,

(5.29)
which holds for each pair of indices i and j. By summing these probabilities with
respect to i (and using the definition of transition probabilities), a recursive formula
for the filtered probability of the j-th MCKF model is obtained

π
j
t = P(SMt = j|ϵt, y1:t−1)

=
k

∑
i=1

P(SMt−1 = i, SMt = j|ϵt, y1:t−1)

=
∑k

i=1 g0,Ct(ϵt) · πi
t−1 · zij

∑k
l=1 ∑k

m=1 g0,Ct(ϵt) · πl
t−1 · zlm

.

(5.30)

This formula can be applied to calculate π
j
t at each step of the SMCKF.

To make the estimation procedure feasible at each time iteration, after the pre-
diction and update steps (described in the previous subsections), an approximation
step is added. This step merges the estimates, removing the dependence on previous
values of the switching variable. Thus, only the estimates x̂st|t and P̂t|t for k × k pairs
of possible values of SMt−1 and SMt need to be stored in memory. For the estimates
calculated given the specific realization of the switching variable process, let us in-
troduce the following notation: x̂st|t|SMt−1=i,SMt=j stands for the posterior estimate
of xst obtained for SMt−1 = i and SMt = j.

The approximate value of the posterior estimate x̂st|t given SMt is evaluated
taking a weighted mean of the state estimates obtained with each of the MCKS-s, i.e.
starting with each of k possible values of k of SMt−1. A similar formula is applied
to the covariance matrices of the estimates. The two approximation formulas are the
following

x̃st|t|SMt=j =
k

∑
i=1

wij
t x̂st|t|SMt−1=i,SMt=j, (5.31)

P̃t|t|st=j =
k

∑
i=1

wij
t (P̂t|t|SMt−1=i,SMt=j + rrT), (5.32)

where r = x̃st|t|SMt=j − x̂st|t|SMt−1=i,SMt=j. Using Bayes’ theorem and applying the
results of Eq. (5.29) and (5.30), the proper weights are obtained

wij
t = P(SMt−1 = i|SMt = j, ϵt, y1:t−1)

=
P(SMt−1 = i, SMt = j|ϵt, y1:t−1)

P(SMt = j|ϵt, y1:t−1)

=
g0,Ct(ϵt) · πi

t−1 · zij

∑k
l=1 g0,Ct(ϵt) · πl

t−1 · zl j
.

(5.33)

In this way, k estimates, after multiplying to k × k posterior estimates in prediction-
update steps, reduce back to k values in the approximation step. The approximated
values of the state estimate and covariance matrix (which overwrite the posterior)
are then used as an input to the prediction step (obtaining new priors) in the next
time iteration of the SMCKF.
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More theoretical details on the procedure of the switching structure (in the case
of SKF which is analogous to the and stability of the model) are available in [146].
The SMCKF, which is composed of multiple MCKFs with different state-space mod-
els, is applied to track changes in the degradation process. Then SMCKF is switched
between the selected models according to their likelihood (Gaussian distribution of
the innovation term) calculated from HI. Thanks to the use of the maximum corren-
tropy criterion, the procedure is more robust than in the case of SKF. It should be
noted that, for applying this approach, the degradation model should be selected
based on the case’s physics.

Based on the primary assumption, the degradation process comprises three stages.
Three MCKF models are used to simulate the healthy, degradation and, critical stage.
According to [147, 148] the polynomial MCKFs of zero, first, and second order are
illustrated below, respectively. Using superscripts to denote the current value of the
switching variable SMt, the proposed models corresponding to each of the HI stages
are presented. The model matrices and covariance matrices of the model noise are
as follows

A1
t =

 1 0 0
0 0 0
0 0 0

 , A2
t =

 1 ∆t 0
0 1 0
0 0 0

 , A3
t =

 1 ∆t (∆t)2

2
0 1 ∆t
0 0 1

 , (5.34)

Q1
t = β

 1 0 0
0 0 0
0 0 0

 , Q2
t = β

 (∆t)3

3
(∆t)2

2 0
(∆t)2

2 ∆t 0
0 0 0

 , Q3
t = β


(∆t)5

20
(∆t)4

8
(∆t)3

6
(∆t)4

8
(∆t)3

3
(∆t)2

2
(∆t)3

6
(∆t)2

2 ∆t

 ,

(5.35)
where ∆t is the discrimination step of the process and observations (constant for
data) and β is a scalar hyper-parameter (related to the noise) that can describe the
uncertainty of the filter in actual application, which can be used for tuning of the
SMCKF for a different machine.

Observation matrices corresponding to polynomial MCKFs of zero, first, and
second order are defined as follows

H1
t = H2

t = H3
t =

[
1 , 0 , 0

]
. (5.36)

The measurement noise term is a scalar in proposed application, and its variance
(reducing Mt to a scalar) is fixed and independent on SMt. For each case, different
values are used depending on the particular scenario (simulation, real data anal-
ysis), as described in the following sections. The matrix containing the transition
probabilities zij is fixed and defined as follows [91, 148]

Z =

 0.998 0.001 0.001
∼ 0 0.999 0.001
∼ 0 ∼ 0 1

 . (5.37)

Note that, as the subdiagonal elements of Z are approximately equal to 0, there is
no possibility of transition to the previous state (zero value is not explicitly assigned
only to avoid numerical problems). The rate of degradation is supposed to only
progress from healthy to degradation and critical stages, as it is common character-
istic for a degradation process that the machine does not spontaneously repair. The
superdiagonal elements of Z were arbitrarily chosen (all set as 000.1) to somehow
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render the rare but inevitable event of the transition to the regime of larger degra-
dation. For each regime, the biggest probability is naturally assigned to diagonal
elements which are related to the event of remaining in the current regime.

The vector containing initial probabilities of each stage or MCKF (i.e π1
0, π2

0 and
π3

0) is set as [91, 148]
π0 =

[
0.9 , 0.05 , 0.05

]
. (5.38)

The first component of π0 has the biggest value, which stands for another natural
assumption: at the beginning the machine was most likely healthy.

The initial estimate state of the model and its covariance matrix have the follow-
ing form, respectively

x̃s0|0 =

 y0
0
0

 , P̃0|0 =

 1 0 0
0 1 0
0 0 1

 , (5.39)

where y0 is the initial measurement (a scalar in this case).

5.2.2 Simulation

In this part, initially, the long-term data is generated using the assumptions outlined
in Chapter 3. Next, the suggested approach is utilized to divide the data into three
distinct stages for two separate scenarios: 1) when there is Gaussian noise and 2)
when there is Student’s t-distributed noise , see Appendix A.

Result for Gaussian distributed model

The proposed methodology is implemented in this subsection using the data gen-
erated by the recommended model. It is assumed that the noise term follows a
Gaussian distribution, with R̂(t) being distributed as N (0, 1). The segmentation
results for the simulated data are collectively shown for all of the chosen methods.
At Time=1000, the healthy stage transitions to the deterioration stage (referred to as
changing point 1 or CP1). The border between the degradation stage and the critical
stage (referred to as the changing point 2 or CP2) occurs at Time=1600.

The findings of the suggested approach, together with the standard SKF, are pro-
vided in Fig. 5.15. Panel (a) displays the HI and the actual point of change. Panels
(b) and (c) show the likelihood of each step (i.e. π1

t , π2
t , π3

t ) executed by SKF and
SMCKF, respectively. The colors green, yellow, and red correspond to the stages
of health, degeneration, and criticality, respectively. On these panels, it is evident
that from time = 0 to 1000, the likelihood of the model being in the healthy stage is
the largest compared to the other two stages. However, as time approaches 1000,
the probability of the healthy stage decreases while the probability of the degrada-
tion stage grows. From Time=1000 to Time=1600, the degradation stage consistently
has the highest likelihood stage. After the time reaches 1600, the critical stage has the
greatest likelihood. As anticipated, when Gaussian noise is present, both approaches
yield nearly identical results. Furthermore, panels (d) and (e) show the state that is
most likely to occur during the deterioration process, as well as the points at which
the phases change.
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FIGURE 5.15: Detection of the stages in the presence of Gaussian
noise, (a) HI, (b) probability of stages performed by SKF, (c) proba-
bility of stages performed by SMCKF, (d) most probable stages based
on the implementation of SKF, (e) most probable stages based on the

implementation of SMCKF.

Result for non-Gaussian distributed model

In this section, the suggested approach is implemented on data generated by the
provided model, assuming that the noise component follows the Student’s t distri-
bution with a specified degree of freedom v = 3. Based on the simulation technique,
CP1 and CP2 have values of Time=1000 and Time=1600, respectively.

Fig. 5.16 displays the outcomes of the suggested techniques in non-Gaussian
noise conditions. Panels (b) and (c) display the estimated probabilities of each con-
dition using SKF and MCSKF, respectively, throughout the deterioration process. In
panel (b), the probability of being in the healthy stage (represented by the green line)
begins to decrease starting at Time=300. After some fluctuations with the degrada-
tion stage (represented by the yellow line), around Time=880, the degradation stage
becomes the most probable stage and remains so until Time=1446. At this point in
time, the critic stage has a higher likelihood than the other two stages. However,
as depicted in panel (b) of Fig. 5.16, the SKF has deviated from the expected path
after Time=1500. Panel (c) displays the outcome of the SMCKF. The panels (d) and
(e) display the most likely stage in the degradation process and the points of change
identified using SKF and SMCKF. Upon comparing the two final panels, it is ev-
ident that the SMCKF result is more proximate to the actual changing points, as
anticipated. However, SKF has been greatly impacted by non-Gaussian noise and
ultimately deviates, rendering the results from SKF unacceptable.
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FIGURE 5.16: Detection of the stages in the presence of non-Gaussian
noise, (a) HI, (b) probability of stages by SKF, (c) probability of stages
by SMCKF, (d) most probable stages based on the implementation of
SKF, (e) most probable stages based on the implementation of SM-

CKF.

The procedure was replicated 100 times using the same model but with varying
levels of non-Gaussian noise (represented by different degrees of freedom, ν). The
sensitivity and specificity values were calculated for each simulation, and the mean
values were calculated. These mean values are presented in Fig. 5.17 and Fig. 5.18
for sensitivity and specificity, respectively. Furthermore, it is important to mention
that the kernel size value is consistently chosen as σ = 0.391 for all simulations.

The sensitivity results are shown in Fig. 5.17. Panel (a) clearly demonstrates
that the SKF technique outperforms the suggested method during the healthy stage.
However, the discrepancy is minimal, and both methods yield values close to one
over different ranges of ν. The sensitivity results for the degradation stage are shown
in panel (b). It is evident that the results for SMCKF remain rather consistent with
different values of ν, with a sensitivity value greater than 0.9. In contrast, the sensi-
tivity of SKF is significantly lower for lower values of ν. In addition, panel (b) shows
that the sensitivity of the SKF is enhanced by increasing the value of ν, indicating the
impact of the non-Gaussianity level on the performance of the SKF. Furthermore, the
circumstances in the last stage (referred to as the crucial stage) are identical to those
in the degradation stage, as depicted in panel (c). The sensitivity of the SMCKF is
greater (approximately one) and more consistent than that of the SKF during the fi-
nal stage. Moreover, it is important to note that based on the findings depicted in
Fig. 5.17, specifically in the final two panels, the SMCKF exhibits a superior perfor-
mance compared to the SKF, even when the noise distribution is completely similar
to the Gaussian distribution (for v = 100).
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FIGURE 5.17: Sensitivity analysis, (a) health stage, (b) degradation
stage, (c) critical stage.

The results of specificity are shown in Fig. 5.18. As observed in panels (a) and
(b), the SMCKF exhibits a greater (roughly close to one) and more consistent speci-
ficity value compared to SKF. Furthermore, in each of the aforementioned panels,
the specificity of the SKF is significantly diminished for smaller values of ν. Similar
to sensitivity, the impact of the non-Gaussianity level on the performance of SKF
is apparent. Furthermore, at the last step (referred to as the critical stage), the SKF
exhibits superior performance compared to the SMCKF. However, the disparity be-
tween the two methods is minimal, and both approaches demonstrate a specificity
near to 1 for all ν values.

FIGURE 5.18: Specificity analysis, (a) health stage, (b) degradation
stage, (c) critical stage.

5.2.3 Real data analysis

In this section, the proposed methodology is verified using existing real datasets.
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Result for FEMTO dataset

Fig. 5.19 presents the results of the SMCKF and the SKF applied to the FEMTO
dataset. The probability of the phases (i.e. π1

t , π2
t , π3

t ) during the deterioration pro-
cess is depicted in panels (b) and (c) using SKF and SMCKF, respectively. The panels
(d) and (e) depict the most likely stage detected and the points at which the stages
change, as determined by SKF and SMCKF. Upon comparing the outcomes of SKF
and SMCKF in the final two panels, it becomes evident that the results are largely
similar. However, in panel (d) where SKF is depicted, there is noticeable fluctuation
around Time=1300. Furthermore, in both approaches, the crucial phase is discovered
at Time=2411, indicating that it is recognized prior to the actual point of transition.

FIGURE 5.19: Segmentation of the FEMTO datasets, (a) HI, (b) prob-
ability of stage by SKF, (c) probability of stage by SMCKF, (d) most
probable stages based on the implementation of SKF, (e) most proba-

ble stages based on the implementation of SMCKF.

Results for Wind turbine dataset

The wind turbine dataset showcases the outcomes of the SMCKF and SKF, as de-
picted in Fig. 5.20. Panel (b) displays the probability of phases in the degradation
process according to SKF, while panel (c) shows the probability based on SMCKF.
Furthermore, panels (d) and (e) depict the most likely stage identified by SKF and
SMCKF, as well as the places at which the stages transition. Upon comparing the
results of SKF and SMCKF in the last two panels, it is evident that both approaches
identified 18-Mar as the initial change point. However, SKF detected the second
changing point on 9-Apr, whereas SMCKF saw this point on 21-Apr.
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FIGURE 5.20: Segmentation of the wind turbine datasets, (a) HI, (b)
probability of stage by SKF, (c) probability of stage by SMCKF, (d)
most probable stages based on the implementation of SKF, (e) most

probable stages based on the implementation of SMCKF.

As mentioned previously, this dataset consists of two versions. The second ver-
sion consists a raw vibration signal that is recorded for six seconds every day, with
a sampling rate of 100k. Please refer to panel (a) in Fig. 5.11 for more details. There-
fore, it possesses a remarkable capacity to utilize diverse techniques of frequency
analysis for the purpose of conducting condition monitoring. The envelope analysis
is performed on each set of vibrations, and the results are then presented sequen-
tially in panel (b) of Fig. 5.11. Panel (b) in Fig. 5.11 illustrates the presence of
a harmonic frequency after 18 March, indicating that the bearing has entered the
degradation stage. Furthermore, following the date of April 22nd, there is a signif-
icant increase in the amplitude of the harmonic frequency, which can be classified
as CP2. Upon comparing the findings of the SMCKF and SKF methods with the en-
velope analysis, it is evident that CP1 and CP2, as identified by the SMCKF (CP1 =
18 March and CP2 = 22 April), correspond closely to the CP1 and CP2 recognized
through visual inspection in the envelope analysis.

Moreover, in this chapter, the kernel size σ was determined through a trial and
error process, which is a limitation of the suggested methodology. However, this
issue is acknowledged and planned to be addressed in future research.

5.3 Chapter highlights

In this chapter, the segmentation of long-term data using both offline and online
approaches is explored. In the first part of this chapter, the regression approach
is employed to divide the HI into three different segments based on its determin-
istic behavior in the presence of varying levels of non-Gaussian noise. The aim is
to demonstrate the effect of this type of noise on segmentation performance. The
results indicate that robust methods, both in the simulated and real cases, yield su-
perior outcomes.
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While the first part of this chapter showcases the potential for segmenting the
HI based on deterministic behavior, the second part focuses on developing a robust
online Bayesian approach for segmenting the HI, making it more applicable for real-
world scenarios.

Segmenting health indices into three regimes (health, slow degradation, and
fast degradation) based on their dynamic behavior, especially in the presence of
non-Gaussian (heavy-tailed) noise, offers several practical advantages in industries
where data is affected by non-Gaussian noise, such as mining. These robust pro-
posed approaches focus on dynamic trends rather than fixed thresholds. By doing
so, the system can reduce the frequency of false alarms that commonly occur in tradi-
tional threshold-based methods. In addition, the development of a robust approach
for segmenting the HI into different regimes in this chapter could pave the way for
the creation of simpler prediction models in the subsequent chapters.
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Chapter 6

Predicting of remaining useful life
based on long-term health index

In this chapter, the prediction of RUL is explored, particularly in the presence of
non-Gaussian noise. Previous chapters have laid the groundwork by demonstrating
how to model, identify, and segment the HI, while also thoroughly investigating the
effects of non-Gaussian noise. Therefore, this chapter shifts its focus to prediction, a
crucial aspect for decision-making, PHM applications.

6.1 Probabilistic methodology for predicting remaining use-
ful life

This section delineates the methodology founded on a degradation process for esti-
mating the RUL. The RUL estimation workflow, as proposed approach, is depicted
in Fig. 6.1. The acquired data, such as sensor-recorded vibration data, act as indi-
cators for monitoring the machine’s health condition. Using signal processing tech-
niques, a HI is constructed from the measured signals, effectively representing the
machine’s health status. Based on the evolving degradation patterns of the HI, the
life of the machinery is segmented into three distinct stages: healthy, degradation,
and critical stages, with the FPT marking the initial entry into the critical stage.

During the critical stage, a state-space degradation model is introduced, with its
parameters estimated using the MCEKF and updated in real time as new HI values
become available. An EOL threshold is defined, facilitating the calculation of the
PDF of the estimated RUL based on the constructed degradation model and the EOL
threshold.

Furthermore, the details of the state-space degradation model and the theories
behind it, including the derivation of the EKF and MCEKF, are explained in the
following subsections.
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Raw vibra-
tion data.

Use fea-
tures as a
HI.

Detect FPT.

Set the EOL
threshold.
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parameters of the
state space degra-
dation model by
using MCEKF
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parameters.

Calculate
PDF of
RUL.

End

FIGURE 6.1: Complete procedure for estimation of the distribution of
RUL.

6.1.1 Remaining useful life

The RUL is a key metric in machine prognostics, indicating the expected operational
duration before repair or replacement is needed. Fig. 6.2 provides a visual repre-
sentation of RUL. Our methodology emphasizes training a predictive model exclu-
sively with historical data. Subsequently, this model is utilized to forecast future
degradation process values, accompanied by CI. The estimated degradation curve is
analyzed to identify the moment when it initially exceeds a predefined EOL thresh-
old, denoted tEOL. The predicted RUL is then calculated as the difference between
this failure time tEOL and the last observation time in the training dataset (t0), repre-
sented as tEOL − t0.
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FIGURE 6.2: Concept of RUL of the equipment.

6.1.2 State space degradation model

As confirmed by the findings in [149], the exponential model consistently demon-
strates a better global regression performance compared to polynomial and other
conventional models. Consequently, the ensuing exponential model is adopted as
the degradation pattern designated for the analysis of the third regime of the degra-
dation process (critical stage)

St = a exp(bt) + c, (6.1)

where St corresponds to last stage of the HI model, see section 3.2, t is the discrete
time and a, b, c represent the parameters of the model that need to be initialized with
real data.

Recognizing the intricate and time sensitive nature of the degradation process,
this study postulates that the model parameters a, b, c, are subject to temporal vari-
ations. This assumption is closely aligned with the dynamics of the degradation
process in the real world. Let the dynamic state xst be defined as a column vector
xst = [a, b, c]T and yt is observation. Furthermore, recognizing the impact of external
noise and inherent uncertainty, the subsequent state-space model is introduced{

xst = xst−1 + qt

yt = a exp(bt) + c + mt
, (6.2)

where, the process noise is denoted as qt, presumed to be a vector white noise, i.e.
series of independent identically distributed zero-mean random vectors. This noise
factor is characterized by the covariance matrix Qt. Under no explicit assumption
about the distribution, a general location-scale distribution is assumed for qt at each
t, denoted as: qt ∼ p(0, Qt); the first parameter is the mean and the second param-
eter is the squared scale in this notation. In addition, mt is assumed to be a scalar
white noise (i.e., a series of independent identically distributed zero-mean scalar
random variables), not necessarily Gaussian, to suit the case of heavy-tailed noise
inherent in real data (in the Kalman filter framework it is called the measurement
noise; however, in this work, it does not have such an explicit interpretation). Noise
mt is characterized by a parameter of the time scale Mt. Here, let us only denote
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(analogously to qt) a general distribution of mt, i.e. mt ∼ p(0, Mt), for each t. Keep-
ing an analogy with the degradation model from Eq. (6.5), the relationship between
HI and the parameters featured in Eq. (6.2) is mapped, denoting it with the non-
linear functions f and h as follows

f(xst−1) = xst−1, (6.3)

h(xst) = at exp(btt) + ct. (6.4)

Furthermore, x̂s0 – the initial state estimate, and P̂0|0 – the initial estimate for the
posterior covariance matrix, are set. Additionally, all values of Qt and Mt need to
be defined as well. In the following two subsections, EKF is described and MCEKF
is introduced, considering more general notation. Please note that in the general
approach, yt would be replaced with a vector yt, the scalar function h with a vector
function h, and the scale parameter Mt would be replaced with the matrix Mt, which
refers to the covariance matrix in the Gaussian case.

6.1.3 Extended Kalman filter

The EKF works based on the use of Taylor series to transform non-linear filtering
problems into linear forms. The discrete non-linear state-space representation of the
model can be presented as follows

xst = f(xst−1) + qt,
yt = h(xst) + mt,

(6.5)

where xst is the unknown dynamic state at time t and yt is its observation, respec-
tively – both of them are in general vectors of selected size. Furthermore, qt and
mt represent processes and measurement noise that are considered Gaussian dis-
tributed: qt ∼ N (0, Qt), mt ∼ N (0, Mt). The derivation process follows the same
steps as outlined in Section 5.2.1, but the MCEKF employs the following Eq.(6.6) and
Eq.(6.7) to linearize the system and the rest is the same

At =
df

dxs
|x̂st−1|t−1 , (6.6)

Ht =
dh
dxs

|x̂st|t−1 . (6.7)

6.1.4 Discussion of the hyperparameters setting

In the state estimation procedure using MCEKF, the term yt − h(x̂st|t−1) in Eq.
(5.19) (also known as the innovation or prefit residual) diverges when a significant
outlier occurs. However, the estimator x̂t|t is controlled by Kt to prevent divergence.
For more information on the stability issue, refer to the following sources: [142, 141,
143, 144].

Furthermore, it is important to note that in the MCEKF, the σ parameter, also
known as kernel size, determines the level of sensitivity of the filter to discrepancies
between the predicted and measured states. A higher value of σ increases the filter’s
tolerance to deviations, whereas a lower value of σ enhances its sensitivity to minor
variations. This increased sensitivity can help to reject outliers, but it may also make
the filter more susceptible to noise. Hence, the careful selection of an appropriate
value for σ is vital to achieve a balance between resistance to noise and sensitivity to
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variations in the data. Determining the optimal value of σ for a certain application
typically requires testing or expertise in the field.

As mentioned in the reference [150], the process error, denoted as qt, encom-
passes the uncertainty related to the filter’s ability to represent real-world dynamics.
A reduction in process error improves the filter’s ability to accurately fit condition
monitoring data, increasing the model’s sensitivity to subtle changes. However, this
may also make the model more prone to overfitting. Therefore, it is crucial to ap-
propriately allocate the values for the members of the matrix Qt, which represent
the noise parameters that affect the system dynamics. This matrix is designated as
a constant covariance matrix, denoted as Qt = Q. The diagonal nature of the ma-
trix is a result of assuming uncorrelated (white) noise. The off-diagonal entries are
zero, suggesting that there is no correlation between distinct state variables. The
diagonal elements represent the variances of each individual state variable. It is im-
portant to note that the noise is not uniform in all directions - the diagonal elements
might differ from each other. This is because the healthy, degraded, and critical
stages have distinct characteristics. Choosing modest values for the individual di-
agonal members of the covariance matrix indicates a low level of uncertainty in the
dynamics of the process. This suggests that a good understanding of the system’s
behavior or minimal noise affecting the system is initially assumed. These numbers
were determined by analyzing historical data obtained from comparable cases. For
detailed insights into the ability to analyze past degradation data, refer to earlier
publication [149]. However, considering the fluctuations in material qualities on the
microscopic scale, working conditions, and environmental influences, it may be nec-
essary to modify the matrix Q individually, potentially by enhancing a particular
diagonal member.

Similarly, the measurement error, represented as mt, is found by computing the
variance of the stationary measurements obtained while the machine is in normal
working condition. The specific constant value of the measurement error scale pa-
rameter, denoted as Mt = M, may vary between different scenarios. The validity
of assuming stationary measurements from well-functioning machinery, as utilized
in this study, is thoroughly confirmed by the analysis of data from many examples,
hence affirming its practical application.

The initial covariance matrix, denoted P0|0, is arbitrarily chosen with an identity
matrix. The MCEKF model for the prognostic evaluation of bearing degradation is
constructed by establishing matrices and defining initial values.
6.1.5 End of the life of machine’s equipment

The EOL in machinery is a critical parameter and selecting the right threshold is
paramount for effective maintenance and operation. It marks the point at which a
machine is expected to become unreliable, which makes it crucial for scheduling pre-
ventive maintenance, cost reduction, safety, resource optimization, reliability, and
environmental impact. The key to success lies in data-driven approaches, such as
predictive maintenance techniques and thorough data analysis, which enable orga-
nizations to accurately identify and set appropriate EOL thresholds for their ma-
chinery. It should be noted that choosing an appropriate EOL value for real datasets
presents a considerable challenge, and this has been the subject of extensive research
over the past decade [56, 151]. The complexity of this task endures.
The main objective of this study is not to choose a particular EOL criterion for the
degradation process. Alternatively, the proposed method can be used to compute
the RUL for various EOL levels. For simulated datasets, the EOL threshold is es-
tablished as the magnitude of the endpoint of the deterministic component, and the



82 Chapter 6. Predicting of remaining useful life based on long-term health index

RUL is determined using this threshold. In the actual case study, where it is difficult
to choose the threshold, it was selected using historical data. Specifically, the am-
plitude of one of the points in the last stage was determined as the EOL threshold,
and the RUL was then estimated correspondingly. However, it should be acknowl-
edged that the choice of threshold could potentially be determined using a different
method, and the specific selection of the EOL threshold would not influence the
overall context of this research work. The aim of this study is to present a robust
method that minimizes the impact of outliers, such as heavy-tailed noise, on the
prediction of HI using a Bayesian approach.

6.2 Simulation and results

6.2.1 Results for simulated signal

In this subsection, proposed methodology is applied to simulated data based on
Subsection 6.2.1. the HI data is generated from the last stage (exponential part). The
simulation is restricted only to the third regime starting from the FPT. To demon-
strate the performance of the proposed method and to compare it with other filters
from the KF family, the classic EKF and UKF were applied as well-known MCKF for
non-linear state estimation. For more details on EKF and UKF, the reader is encour-
aged to refer to [152, 153].

Degradation process in the presence of the Gaussian noise

The degradation curves is simulated based on Subsection 6.2.1 from last regime.
Also, the distribution of noise is consider Gaussian. The final results of applying
the proposed method to the simulated data are presented in Fig. 6.3. The top panel
illustrates the degradation curves and the EOL level. In each step, the data sequence
originating from the FPT onward to the specific time point t was used to iteratively
refine the model and derive accurate predictive estimates of the RUL. The bottom
panel shows the estimated mean of RUL using unscented kalman filter (UKF), see
[152] for more details, EKF, and the proposed MCEKF. At the same time the dif-
ference in time between the EOL point and the specific data point was calculated to
represent the real RUL at that point. The black dashed line and the purple area show
the real RUL value and the accuracy bound ±20%, respectively, calculated for each
data point t from FPT onward.

As expected, when the dataset size is small, the accuracy of RUL estimation using
all filters is sub-optimal. As depicted in the lower panel, both the UKF and EKF tend
to underestimate RUL, while the MCEKF tends to overestimate it. This discrepancy
highlights the limitation of data-driven estimation methods when data availability
is limited. After a while, around t = 180, it can be seen that MCEKF is approaching
the accuracy bound and approximately remains in the accuracy bound until the end
of the life. Meanwhile, the performance of UKF and EKF has improved with time.
The results of these two methods are close to, however, until t = 430 not entirely
within the accuracy bound. After that, their performance is approximately same as
the results that performed by MCEKF approach and it is acceptable. Furthermore,
it should be mentioned that the kernel size for MCEKF was determined as σ = 0.5
through a trial and error process, which serves as a crucial hyperparameter for the
MCEKF algorithm. The selected σ value lies within an arbitrary range above zero,
and it is noteworthy that when a large value for the σ is selected, the trends of both
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the MCEKF and the EKF align. It is important to highlight that selecting a lower
value of σ enhances the robustness of the model against outlying data points.

FIGURE 6.3: Final results of predicted RUL in the presence of the
Gaussian noise, top panel: HI and EOL, bottom panel: predicting
RUL results performed by EKF, UKF, and proposed MCEKF, and the

real RUL ±20% accuracy bound.

The PDF changing over time, portraying the estimated RUL values obtained by
the means of the MCEKF technique, is shown in Fig. 6.4. Evidently, in the initial
stages, where the dataset contains an insufficient number of data points, the PDF of
the estimated RUL does not yield favorable outcomes. However, a discernible im-
provement becomes apparent as the size of the dataset increases, allowing the PDF
to progressively enclose the real RUL. In particular, beyond the temporal threshold
of t = 200, the mean of the PDF aligns closely with the actual values of the RUL.
Moreover, the 90% CI related to the estimated RUL, derived from 100 simulated tra-
jectories using the MCEKF model, is presented in Fig. 6.5. As can be seen; after
t = 200, the RUL values are within the scope of 90% CI. This notable alignment be-
tween the real RUL and the 90% CI serves as evidence for the efficacy of proposed
method, especially in the context of its robustness against the influence of the Gaus-
sian noise.

FIGURE 6.4: PDF of
the estimated RUL
in the presence of
the Gaussian noise,
changing over time.

FIGURE 6.5: The 90%
CI of RUL estimated
using MCEKF for the
simulated HI in the
presence of Gaussian

noise.
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Degradation process in the presence of the non-Gaussian noise

The simulated degradation curve for the last regime based on Chapter 3 in the pres-
ence of non-Gaussian noise (Student’s t with ν = 2.1) and a time-varying exponential
scale is shown in Fig. 6.6. Panel (a) presents HI and the deterministic trend of the HI.
The random component is demonstrated in panel (b). As can be seen, the scale of
the random component is exponentially growing over time. In panels (c) and (d), the
scale and generated non-Gaussian noise used for the simulated degradation curve
are shown.

FIGURE 6.6: Simulated HI in the presence of non-Gaussian noise.

The final results of applying the proposed method to the simulated data are pre-
sented in Fig. 6.7. The top panel shows the degradation curves and the level of
EOL. In the top panel, there are some strong outliers (related to non-Gaussian noise)
around t = 240, 380, 430, 480 are highlighted on the degradation curve. One can
expect that they may affect the non-robust methods. The bottom panel shows the es-
timated RUL using EKF, UKF, and the proposed MCEKF. The black dashed line and
the purple area show the real RUL value ±20% accuracy bound (assigned for the as-
sessment of the RUL prediction). As previously, when the number of data is lower,
the precision of the estimated RUL for all filters tested is low, according to the bottom
panel, RUL was underestimated by EKF and UKF, and overestimated by MCEKF. It
can be seen that after a while, approximately starting from t = 150, RUL estimated
by MCEKF remains in the accuracy bound until the end of the life. At the same
time, the performance of UKF and EKF has improved over time and their results are
close to the accuracy bound. However, until t = 180 the obtained trajectories are
beyond the accuracy bound and after that the performance improved. Nevertheless,
they are inferior to the MCEKF’s result. Also, it can be clearly seen that in the case
of the noise having non-Gaussian characteristics (top panel), the performance of the
UKF and EKF is dramatically reduced (see the circles in the top and bottom panel).
Furthermore, when examining the results from the UKF and EKF, around t = 430,
it is evident that an outlier contributes to the divergence of estimated RUL, leading
the filter to provide results with negative amplitude which cannot intersect the EOL
threshold. This deviation ultimately impacts the RUL estimation, suggesting an in-
crease towards infinity at that specific time. At the same time, the proposed MCEKF
could handle the effect of the outliers and remain in the accuracy bound. It should
be noted that for this case, the kernel size of MCEKF was selected to be equal to
σ = 0.45 by trial and error, as in the previous case.
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FIGURE 6.7: Final results of predicted RUL in the presence of the non-
Gaussian noise, top panel: HI and EOL, bottom panel: the mean of
the predicted RUL performed by EKF, UKF, and proposed MCEKF,

and the real RUL ±20% accuracy bound.

The PDF portraying the estimated RUL values obtained using the MCEKF tech-
nique is shown in Fig. 6.8. As in the previous case, in the initial stages where the
dataset contains an insufficient number of data points, the PDF of the estimated RUL
does not yield a favorable outcome. However, a discernible improvement becomes
apparent as the size of the dataset increases, allowing the PDF to progressively en-
close the real RUL. Furthermore, 90% CI related to the estimated RUL, derived from
100 simulated trajectories using the MCEKF model, is presented in Fig. 6.9. As can
be seen, after t = 200, the RUL values are within the scope of the 90% CI. This no-
table alignment between the real RUL and the CI serves as evidence of the efficacy
of proposed model, notably in the context of its robustness against influence of the
non-Gaussian noise.

FIGURE 6.8: PDF of
the estimated RUL in
the presence of the
non-Gaussian noise,
changing over time.

FIGURE 6.9: The
90% CI of the RUL
estimated by using
MCEKF for sim-
ulated HI in the
presence of non-

Gaussian noise.

To confirm the performance of the proposed method, this procedure was re-
peated for 100 simulated cases in the presence of Gaussian noise, and the results
were presented using box plots (see Fig. 6.10). The MAE was used to compare the
performance of the methods; see Eq. (6.8). It should be noted that a lower MAE
value indicates better performance. It is defined as follows



86 Chapter 6. Predicting of remaining useful life based on long-term health index

MAE =
1
N

N

∑
t=1

∣∣∣RUL(t)− R̂UL(t)
∣∣∣, (6.8)

where N is the number of all the data points in which the RUL is calculated, R̂UL(t)
is the estimated RUL at the time (data point) t, and RUL(t) = N − t is the real RUL.

As can be seen in Fig. 6.10, the median of the MAE for MCEKF has the low-
est value, the same for the first and third quantiles of MCEKF, which means that it
worked better to predict RUL in comparison to the other two methods. It should be
noted that the kernel size for MCEKF is selected as σ = 0.81.

FIGURE 6.10: MAE based on 100 simulated cases in the presence of
the Gaussian noise.

To confirm the performance of the proposed method, this procedure was re-
peated for 100 simulated cases in the presence of non-Gaussian noise (Student’s t
with ν = 2.1), and the results were presented using boxplots; see Fig. 6.11 as pre-
viously. As can be seen in Fig. 6.11, the median of the MAE for MCEKF has the
lowest value, the same for the first and third quantiles of MCEKF, which means that
this method worked better than the other two to predict RUL. The kernel size for
MCEKF is selected as σ = 0.56.

FIGURE 6.11: Boxplots of MAE based on 100 simulated cases in the
presence of the non-Gaussian noise (Student’s t distributed noise with

ν = 2.1).

Furthermore, to clarify the impact of varying levels of non-Gaussianity on the
estimated RUL derived from these filters, a simulation involving 100 trajectories for
different levels of the degree of freedom ν of Student’s t distribution was conducted.
Subsequently, these methodologies were used for the estimation of the RUL and the
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MAE was calculated by contrasting the actual RUL with the mean of the predicted
RUL. The results of these calculated MAE values are illustrated in Fig. 6.12. It is
evident from the results that the MCEKF consistently exhibits lower MAE values
in different degrees of non-Gaussian noise compared to the outcomes of EKF and
UKF. This observation underscores the robustness of MCEKF when faced with non-
Gaussian noise scenarios.

FIGURE 6.12: Boxplots of MAE for 100 simulated trajectories for case
of non-Gaussian noise for different levels of non-Gaussianity (Stu-
dent’s t distributed noise with different levels of the ν value). left
panel is represented boxplot of MAE for provided result by MCEKF,
middle panel is represented boxplot of MAE for provided result by
EKF, and right panel is represented boxplot of MAE for provided re-

sult by UKF.

FIGURE 6.13: Box-
plot of MAE between
real RUL and mean
of estimated RUL
for 100 simulated
trajectories for case
of Gaussian noise
with different kernel

size σ for MCEKF.

FIGURE 6.14: Box-
plot of MAE between
real RUL and mean
of estimated RUL
based for 100 simu-
lated trajectories for
case of non-Gaussian
noise (Student’s t
distributed noise
with ν = 2.1) with
different kernel size

σ for MCEKF.

6.3 Result for real dataset

In this section, the results arising from the implementation of the suggested method-
ology on real-world datasets are explained. Specifically, the efficacy of the approach
was investigated in three distinct datasets.
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6.3.1 Results for FEMTO dataset

In this subsection, the proposed method is applied to estimate the RUL of the FEMTO
dataset from the last regime. The FPT is detected by SMCKF in subsection 5.

Fig. 6.15, shows the results of applying the proposed approach to the FEMTO
dataset. Top panel illustrates the degradation curves and the level of EOL. The bot-
tom panel shows the estimated results using EKF, UKF, and the proposed MCEKF.
The black dashed line and the purple area show the real RUL value and the ±20%
accuracy bound to predict RUL. As could be expected, when the amount of data is
lower, the accuracy of the estimated RUL by using all filters is non-desirably low.
Based on bottom panel, EKF, UKF and MCEKF first overestimated RUL. After a
while, around t = 30, it can be seen that all the methods are reaching the accuracy
bound and remain approximately inside until the end of their useful life. In addition,
the selected parameters for MCEKF are presented in Table 6.1 and the parameters of
EKF and UKF are selected as the same values as for MCEKF.

FIGURE 6.15: Final results of estimated RUL for FEMTO dataset, top
panel: HI and EOL, bottom panel: predicted RUL results performed
by EKF, UKF and proposed MCEKF, and real RUL ±20% accuracy

bound.

The PDF showing the estimated RUL values from the MCEKF technique is shown
in Fig. 6.16. Evidently, in the initial stages, where the dataset contains an insufficient
number of data points, the PDF of the estimated RUL does not yield favorable re-
sults. However, a discernible improvement becomes apparent as the dataset size
increases, allowing the PDF to progressively enclose the RUL distribution. In par-
ticular, beyond the temporal threshold of t = 30, the mean of the PDF aligns closely
with the actual value of the RUL. Furthermore, 90% CI related to the estimated RUL,
derived from 100 simulated trajectories using the MCEKF model, is presented in
Fig. 6.17. As can be seen; after t = 30, the RUL values are within the scope of the
90% CI.
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FIGURE 6.16: PDF
of estimated RUL,
changing over time,
obtained by using
MCEKF for FEMTO

dataset.

FIGURE 6.17: The
90% CI of esti-
mated RUL by using
MCEKF for FEMTO

dataset.

To illustrate the sensitivity of the proposed methodology to the hyperparameter
σ (kernel bandwidth for the MCEKF), an analysis was conducted employing differ-
ent ranges of σ. The results related to the estimated RUL are shown in Fig. 6.18. In
particular, in this scenario, the selection of a higher value of σ yields more accurate
results compared to opting for a lower value of σ. To reinforce this observation, the
MAE computed between the real RUL and the estimated RUL using the proposed
method is presented in Fig. 6.19, further affirming the findings from the preceding
Fig. 6.18.

FIGURE 6.18: Pre-
dicted RUL results
performed by pro-
posed MCEKF with
different value σ and
20% accuracy bound.

FIGURE 6.19: MAE
between the pre-
dicted RUL per-
formed by proposed
MCEKF with differ-
ent value σ and real

RUL.

TABLE 6.1: Selected parameters value for MCEKF in case of FEMTO
dataset.

MCEKF parameters Qt Mt σ

FEMTO dataset diag(0.00001, 0.00001, 0.00001) 0.0038 0.87
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6.3.2 Results for IMS dataset

In this part, the proposed method is used to estimate the RUL of IMS dataset from
last stage. Panel (a) in Fig. 6.20 shows the complete degradation curves for this case
study. Also, the small window shows the area after FPT that is detected by method
SMCKF, which is used to estimate RUL.

FIGURE 6.20: (a) Health index (RMS) of IMS dataset: subset 3, bearing
3 (b) FPT detected by SMCKF.

The results of applying all of the methods on the IMS dataset are presented in
Fig. 6.21. Top panel illustrates the degradation curves and EOL level. Bottom panel
shows the estimated results using EKF, UKF, and proposed MCEKF. The black dash
line and the purple area show the real RUL value ±20% accuracy bound for predict-
ing RUL. As expected, when the dataset size is small, the accuracy of RUL estima-
tion using all filters is sub-optimal. Based on bottom panel, EKF, UKF, and MCEKF
overestimated RUL at first. After a while, around t = 30, it can be seen that MCEKF
reaches the accuracy bound and remains approximately within it until the end of the
life, while UKF and EKF do not provide accurate results. Furthermore, the details
of the parameters chosen for the MCEKF are provided in Table 6.2. It is important
to note that, for a fair comparative analysis, the parameters of the EKF and the UKF
have been set to the same values as those used in the MCEKF.

FIGURE 6.21: Final results of estimated RUL for IMS dataset, top
panel: HI and EOL, bottom panel: predicted RUL results performed
by EKF, UKF and proposed MCEKF, and real RUL ±20% accuracy

bound.
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The PDF of the estimated RUL values obtained using the MCEKF technique is
shown in Fig. 6.22. Evidently, in the initial stages, where the dataset contains an in-
sufficient number of data points, the PDF of the estimated RUL does not yield favor-
able results. However, a discernible improvement becomes apparent as the dataset
size increases, allowing the PDF to progressively enclose the real RUL. In particular,
beyond the temporal threshold of t = 30, the mean of the PDF aligns closely with the
actual RUL value. Furthermore, 90% CI related to the estimated RUL, derived from
100 simulated trajectories using the MCEKF model, is presented in Fig. 6.23. As can
be seen; after t = 30, the RUL values are within the scope of 90% CI.

FIGURE 6.22: PDF
of estimated RUL,
changing over time,
obtained by using
MCEKF for IMS

dataset.

FIGURE 6.23: The
90% CI of esti-
mated RUL by using
MCEKF for IMS

dataset.

To illustrate the sensitivity of the proposed methodology to the hyperparameter
σ (kernel bandwidth for the MCEKF), an analysis was conducted employing differ-
ent ranges of σ. The results pertaining to the estimated RUL are shown in Fig. 6.24.
In particular, in this scenario, the selection of a σ value between 0.25 and 0.4 yields
more accurate results compared to opting for a lower or higher value of σ. To rein-
force this observation, the MAE calculated between the real RUL and the estimated
RUL using the proposed method is presented in Fig. 6.25, further affirming the find-
ings of the preceding Fig. 6.24.

FIGURE 6.24: Pre-
dicted RUL results
performed by pro-
posed MCEKF with
different value σ and
20% accuracy bound.

FIGURE 6.25: MAE
between the pre-
dicted RUL per-
formed by proposed
MCEKF with differ-
ent value σ and real

RUL.
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TABLE 6.2: Selected parameters value for MCEKF in case of IMS
dataset.

MCEKF parameters Qt Mt σ

IMS dataset diag(0.00001, 0.00001, 0.00001) 0.0038 0.27

6.3.3 Results for wind turbine dataset

In this subsection, the proposed method is used to estimate the RUL of the wind
turbine dataset. It is important to emphasize that FPT is detected by using SMCKF
(see, Subsection 5.2.3). Therefore, the focus here is on the RUL estimation starting
from the FPT calculated in previous chapter.

Fig. 6.26, shows the results of applying the proposed method to the wind turbine
dataset. Top panel illustrates the degradation curves and the level of EOL. Bottom
panel shows the estimated results using EKF, UKF, and the proposed MCEKF. The
black dashed line and the purple area show the accuracy bound to the real RUL
value ±20% to predict RUL.

As expected, for scenarios where the dataset is limited, the RUL estimates ob-
tained with all filtering methodologies exhibit suboptimal accuracy. The bottom
panel analysis shows that the initial results from EKF, UKF, and MCEKF overes-
timate the RUL. A noticeable convergence towards the accuracy bond can be dis-
cerned around t = 180. However, it is imperative to acknowledge that due to the
non-linear trajectory of the HI, achieving precise results remains a challenge.

Subsequently, the results of all methodologies, obtained iteratively, are shown as
time passes. As it can be seen; after t = 300, the mean RUL estimated by MCEKF is
closely aligned with the accuracy bound, while the other results produced by EKF
and UKF exhibit less accurate results. It should be noted that around t = 310 and
t = 440, the RUL estimates derived from EKF and UKF appear to be susceptible to
the influence of non-Gaussian noise. In contrast, the MCEKF, as expected, reduced
the impact of such non-Gaussian noise. In this study, the parameters of the MCEKF
applicable to the case study are carefully chosen by trial and error. These parameter
choices are detailed in Table 6.3. Importantly, for a consistent comparison, the mea-
surement noise and process noise parameters have been set to the same values for
the EKF, UKF, and MCEKF.

FIGURE 6.26: Final results of estimated RUL for wind turbine dataset,
top panel: HI and EOL, bottom panel: predicted RUL results per-
formed by EKF, UKF and proposed MCEKF, and real RUL ±20% ac-

curacy bound.
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The PDF of the estimated RUL values from the MCEKF approach is shown in
Fig. 6.27. As in previous cases, in the initial stages, where the dataset contains an
insufficient number of data points, the PDF of the estimated RUL does not yield fa-
vorable outcomes. However, a discernible improvement becomes apparent as the
dataset size increases, allowing the PDF to progressively enclose the RUL distri-
bution. In particular, beyond the temporal threshold of t = 250, the PDF closely
matches the actual RUL value. Moreover, the 90% CI related to the estimated RUL,
derived from 100 simulated trajectories using the MCEKF model, is shown in Fig. 6.28.
As can be seen, after t = 260, the RUL values are within the scope of the 90% CI. This
notable alignment between the real RUL and the 90% CI serves as evidence for the
efficacy of the proposed model, particularly in terms of its robustness against non-
Gaussian noise influence and the non-linear trend of the HI.

FIGURE 6.27: PDF
of estimated RUL,
changing over time,
obtained by using
MCEKF for wind

turbine dataset.

FIGURE 6.28: The
90% CI of esti-
mated RUL by using
MCEKF for wind

turbine dataset.

To illustrate the sensitivity of the proposed methodology to the hyperparame-
ter σ (kernel bandwidth for the MCEKF), an analysis was conducted using differ-
ent ranges of σ. The results regarding the estimated RUL are depicted in Fig. 6.29.
Specifically, in this scenario, selecting a σ value between 0.25 and 0.4 yields more ac-
curate results compared to choosing either a lower or higher σ value. To underscore
this observation, the MAE between the real RUL and the estimated RUL using the
proposed method is presented in Fig. 6.30, which further corroborates the findings
from Fig. 6.29.

FIGURE 6.29: Pre-
dicted RUL results
performed by pro-
posed MCEKF with
different value σ and
20% accuracy bound.

FIGURE 6.30: MAE
between the pre-
dicted RUL per-
formed by proposed
MCEKF with differ-
ent value σ and real

RUL.
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TABLE 6.3: Selected parameters value for MCEKF in case of wind
turbine dataset.

MCEKF parameters Qt Mt σ

wind turbine dataset diag(0.00001, 0.00001, 0.00001) 0.0265 0.28

6.3.4 Discussion

The effectiveness of the proposed methods has been validated by the results de-
rived from three real-world datasets. The EKF, UKF, and the proposed MCEKF all
produce satisfactory and acceptable outcomes for the FEMTO dataset due to its pre-
dominantly monotonous nature. Furthermore, earlier research has established that
the noise distribution for this particular case study is closely akin to a Gaussian dis-
tribution.

The observations from the wind turbine dataset align with expectations and
show distinct behavior. The dynamics of this dataset display non-linear charac-
teristics, unlike the monotonic patterns seen in the FEMTO or IMS datasets. This
non-monotonic behavior can be attributed to factors such as load fluctuations, self-
repair mechanisms, and changes in ambient conditions. The presence of occasional
spikes further supports the evidence of a non-Gaussian noise distribution.

However, the proposed method outperforms both the EKF and the UKF for the
wind turbine dataset. Despite this, the average predicted RUL produced by all meth-
ods fluctuates between overestimation and underestimation as time progresses. It is
important to emphasize that the estimation of the RUL is a complex undertaking,
encompassing multiple aspects rather than a single prediction point. As demon-
strated by the wind turbine dataset, although the mean predicted RUL may differ
from the actual RUL, the key point is that the 90% CI effectively encompasses the
range of RUL. This validates the strength and effectiveness of the proposed method
in dealing with the complex patterns and non-Gaussian noise impact present in the
dataset.

To fully understand the performance of the method, the normalized MAE be-
tween the actual RUL and the estimated mean RUL in all datasets is provided using
Eq. (6.8), as shown in Fig. 6.31. Specifically, it is illustrated in this figure that the
proposed MCEKF demonstrates a markedly diminished MAE compared to both the
EKF and the UKF.

FIGURE 6.31: Calculated MAE for all datasets.

In fact, while the results presented here underscore the substantial potential of
the proposed model for the estimation of RUL, the general features of methods from
the KF family remain acknowledged. This family of algorithms mainly deals with
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the deterministic part of the degradation process, whereas the PDF of the estimated
RUL mostly relates to uncertainties in the deterministic part of the degradation pro-
cess.

In light of this understanding, future endeavors will strategically align with this
paradigm. It is proposed to develop a hybrid model that integrates the strengths
inherent in the MCEKF with stochastic methodologies designed to specifically en-
capsulate the stochastic aspects of the degradation process. It is expected that this
integration will effectively leverage the precision of MCEKF’s deterministic estima-
tion with the power of stochastic methods in modeling the random part, thereby
providing a more comprehensive and refined framework for RUL estimation. This
approach may have the potential to further enhance the accuracy and robustness
of RUL estimation while taking into account both deterministic and stochastic ele-
ments.





97

Chapter 7

Conclusion, contributions and
future research

This chapter provides an overall evaluation of the research, presents a concise overview
of the contributions made, and proposes potential avenues for further research.

7.1 Conclusion

Nowadays, with the advancement in data acquisition, storage, and transmission
technologies, there is a growing emphasis on data-driven approaches for CBM. In
industrial settings, vast amounts of data and signals are generated that indicate the
condition of machinery. However, these data are often combined with noise and ex-
hibit time-varying behavior, presenting significant challenges in analyzing and uti-
lizing them to predict the future state of machinery for CBM applications. Therefore,
in this thesis, the impact of non-Gaussian noise and the non-stationary behavior of
HI data are investigated. Solutions are proposed to extract meaningful information
from historical HI data, segment the HI, and predict the RUL. The main achieve-
ments of this dissertation are summarized below.

1. Development of an artificial HI model for generating HI: Based on observa-
tions from real datasets, a model for generating artificial HI data was proposed. This
model is based on a three-stage degradation process, which includes healthy, degra-
dation (slow degradation), and critical (fast degradation) states of machinery. Unlike
traditional three-stage models that assume constant variance of the random compo-
nent and Gaussian noise distribution, this thesis extends the model to consider time-
varying variance (scale in the case of non-Gaussian noise) and dependencies of the
random component, making it more realistic. The proposed model allows for the
generation of synthetic data with non-Gaussian noise distributions, such as α-stable
and Student’s t, providing more flexible tools for simulating realistic HI data.

2. Framework for identifying characteristics of HI: A novel framework for iden-
tifying the characteristics of HI based on historical data was developed. This step is
crucial before selecting a model for segmentation or prediction, as it involves analyz-
ing and identifying the main characteristics of HI. Proper mathematical tools were
proposed to detect the deterministic (global behavior) and random components of
HI, which is particularly important when dealing with uncertainty in the presence of
non-Gaussian noise. The findings confirmed that non-Gaussian noise significantly
affects the proper detection of deterministic and random components, as traditional
approaches based on Gaussian assumptions fail under such conditions. The pro-
posed framework, which tolerates the effects of non-Gaussian noise, successfully
identifies both deterministic and random components, providing insightful informa-
tion about the degradation process and forming the basis for developing segmenta-
tion and prediction models. The performance of the proposed framework was tested
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using simulated signals with Gaussian and different levels of non-Gaussian noise,
as well as two real datasets. The first dataset, FEMTO, showed that the identified
deterministic part behavior changed from constant to linear and then to exponential
or polynomial. The detected variance of the random component exhibited similar
behavior. The identified AR coefficients are close to zero, indicating no dependen-
cies in the random part, and fitting distributions on the residuals confirmed that the
noise distribution of the dataset was close to Gaussian. In contrast, the wind turbine
dataset revealed more complex trends, especially in the random part where the iden-
tified scale showed a complex trend at the end of the procedure. Dependencies in
the random part were detected, and fitting distributions on the residuals confirmed
non-Gaussian noise distribution. The same workflow was repeated using a tradi-
tional approach based on Gaussian assumptions. The HI was regenerated based
on identified components by both the Gaussian-based framework and the proposed
framework. The results confirmed that the Gaussian-based framework could not
accurately track the behavior of the original signal in the case of the wind turbine
dataset. However, the proposed framework generated HI that closely matched the
original wind turbine HI, demonstrating the superiority of the proposed framework
over traditional Gaussian-based methods.

3. Development of offline segmentation methods: Based on the findings from the
previous step, segmentation methods for historical HI data were developed accord-
ing to the deterministic part behavior, considering the random noise distribution.
Segmentation of historical data is crucial because it allows for localized analysis of
HI and enables the development of switching models, where each model could have
different behaviors, making complex and precise models particularly for prediction.
In this thesis, a segmentation approach based on three polynomial functions (con-
stant, linear, and exponential) was proposed, associated with healthy, degradation,
and critical stages, respectively. To demonstrate the effect of non-Gaussian noise,
various regression methods, including robust methods and those based on Gaussian
assumptions, were employed to fit these three functions to the data and identify the
proper change points between stages.

The results for simulated data and three real datasets (FEMTO, IMS, and wind
turbine) proved that approaches based on robust methods, such as regression meth-
ods using Student’s t-loss function or least absolute error loss function, performed
better in detecting change points between stages, especially in the presence of non-
Gaussian noise. While most methods provided acceptable results in the presence of
Gaussian noise, robust methods excelled with non-Gaussian noise. For the FEMTO
and IMS datasets, where noise distribution is close to Gaussian, and the wind tur-
bine dataset, where noise distribution is non-Gaussian, the proposed segmentation
approach based on dynamic trends (constant, linear, and exponential) was validated.
The robust regression methods, particularly those developed using Student’s t-loss
function, provided the best results for the wind turbine dataset, aligning well with
expert analysis. Overall, it was concluded that using robust loss functions is most
helpful for segmenting HI into three stages, providing more reliable results.

4. Development of online segmentation methods: Building on the historical data
segmentation methods, this thesis developed online segmentation methods to pro-
vide probabilistic results about stages in real-time applications. The SMCKF was
developed as a robust version of the SKF. This switching approach uses three dy-
namic models to describe the healthy, degradation, and critical stages, utilizing first,
second, and third-order polynomial Kalman filters. Given that the correntropy crite-
rion is more robust than classical mean square error, the proposed SMCKF provided
better results compared to the SKF in the presence of non-Gaussian noise.



7.2. Practical perspectives on the proposed approaches 99

This robustness was demonstrated by applying the proposed SMCKF to segment
simulated HI data in the presence of Gaussian and various levels of non-Gaussian
noise. Additionally, the SMCKF and SKF were employed to segment the FEMTO
and wind turbine datasets. For the FEMTO dataset, where noise distribution is close
to Gaussian, both approaches provided proper results. However, for the wind tur-
bine dataset, where noise distribution is non-Gaussian, the classical SKF was ad-
versely affected by non-Gaussian noise. In contrast, the proposed SMCKF handled
the non-Gaussian noise effectively, providing results that better matched the real
change points.

Another advantage of this switching model is its Bayesian nature, allowing the
integration of historical information extracted from the framework into the model
for more accurate results. Additionally, this model provides probabilistic results,
valuable for decision-making and health assessment of machinery. The switching
model can also perform one-step predictions, useful for machinery health predic-
tion, which will be further investigated in the conclusion.

5. One-step prediction of HI dat for predicting RUL: In the final part of this thesis,
a method for one-step prediction of the HI was developed based on an exponential
state space degradation model from the first point of the last detected stage to pre-
dict RUL. The MCEKF, a robust version of the classical EKF, was applied to the ex-
ponential state space degradation model. As previously discussed, the correntropy
criterion is more robust than the classical mean square error approach. Thus, the
proposed MCEKF approach provided more accurate prediction results compared to
the classical EKF.

This was demonstrated by employing the proposed MCEKF approach to pre-
dict the next value of the simulated HI in the presence of Gaussian and various
levels of non-Gaussian noise. The ultimate validation of the MCEKF method was
carried out through its application to three benchmark real-world datasets, includ-
ing IMS, FEMTO, and wind turbine datasets. This real-world deployment served a
dual purpose: to confirm the effectiveness of the proposed approach in accurate HI
prediction and to validate its applicability and efficacy within authentic operational
environments.

The introduced methods demonstrated superiority through comparative simu-
lations, coupled with its successful deployment on real-world datasets, confirms its
potential as an invaluable tool in the realm of mechanical systems prognostics and
health management. Additionally, based on the Bayesian nature of MCEKF, it is
possible to utilize historical data gained from the framework to provide more accu-
rate results. The probabilistic results are also useful for dealing with uncertainties.
Furthermore, by providing a threshold for the end of life, it is possible to RUL.

In conclusion, this research provides a robust framework for handling long-term
degradation data amidst non-Gaussian noise, with significant implications for ma-
chine learning, condition monitoring, and predictive maintenance. The models and
methods developed in this thesis offer a comprehensive solution to the challenges in
HI data analysis and prognostics, improving the accuracy and reliability of degra-
dation assessments and predictions.

7.2 Practical perspectives on the proposed approaches

In industries, like mining industry, where data acquisition is plagued by heavy-
tailed noise, practical application of the theories and methodologies discussed in this
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thesis could significantly enhance CBM strategies. Mining operations typically gen-
erate vast amounts of data from machinery and sensors that are intrinsically noisy
and non-Gaussian in nature. The development of an artificial HI model that ac-
counts for non-Gaussian noise distributions, such as α-stable and Student’s t, pro-
vides a more realistic simulation of actual HI data, reflecting true operational envi-
ronments. Furthermore, the novel framework for identifying characteristics of HI
can be particularly beneficial in recognizing patterns, anomalies of machines. Seg-
mentation of HI to different degradation stages despite the noise, which is crucial
for timely maintenance decisions. Employing segmentation methods that consider
non-Gaussian noise, and the subsequent robust probablstic techniques like SMCKF,
can significantly improve the accuracy in determining the critical change points be-
tween different machinery states. These methodologies enable mining companies to
better predict machinery failures and optimize maintenance schedules, thus reduc-
ing downtime and enhancing operational efficiency. This practical approach under-
scores the importance of adapting advanced data analysis techniques to the specific
challenges posed by industries with heavy-tailed noise in their data streams.

7.3 Contributions

This PhD thesis makes several significant contributions to the field of long-term HI
degradation data analysis, particularly in the presence of non-Gaussian noise:

• A novel three-stage model, incorporating time-varying characteristics and non-
Gaussian noise in the random component, has been developed for generating
long-term HI degradation data.

• A new framework for robustly identifying the characteristics of long-term HI
data, considering non-Gaussian noise, has been developed. This framework
can be applied to real HI datasets to precisely analyze them.

• A novel switching method based on the SMCKF based on the three-stage model
has been derived to identify each stage of the degradation process while ac-
counting for non-Gaussian noise. This model can be used for probabilistic and
online machinery health assessments.

• A new method based the MCEKF, based on a state-space exponential degrada-
tion model, has been developed to provide probabilistic results for estimating
RUL while considering non-Gaussian noise.

7.4 Future research

This thesis opens several avenues for future research in the field of long-term HI
degradation data analysis, particularly in the presence of non-Gaussian noise. Some
promising topics for further investigation include:

• Developing advanced machine learning algorithms to handle non-Gaussian
noise in HI data more effectively.

• Exploring the use of deep learning techniques for prognostics and health as-
sessments in the presence of non-Gaussian noise.

• Studying the development of optimization algorithms for tuning model pa-
rameters in the presence of non-Gaussian noise to improve the accuracy of
health assessments.
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• Exploring the integration of domain knowledge and expert systems to enhance
the performance of health assessment models in scenarios with non-Gaussian
noise.
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Appendix A

Considered distributions

• The Gaussian distribution N (µ, σ) is defined through the PDF [154, 126]

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

, x ∈ R, (A.1)

where µ ∈ R is the mean and σ > 0 is the standard deviation.

• The α-stable distribution S(α, β, γ, δ) is defined through the characteristic func-
tion [155, 156]

Φ(t) =

{
exp

(
−γα|t|α

[
1 + iβsign(t) tan πα

2 ((γ|t|)1−α − 1)
]
+ iδt

)
for α ̸= 1,

exp
(
−γ|t|

[
1 + iβsign(t) 2

π ln(γ|t|)
]
+ iδt

)
for α = 1,

(A.2)

where 0 < α ≤ 2 - stability parameter, −1 ≤ β ≤ 1 - skewness parameter,
γ > 0 - scale parameter and δ ∈ R - location parameter. Notice that Gaussian
distribution is a special case of the α-stable distribution. The α-stable distri-
bution with α = 2 corresponds to the normal distribution. It is the only case
when the variance is finite.

• The Student’s t distribution is a fundamental statistical tool that incorporates
an essential parameter: degrees of freedom ν. This distribution provides a ro-
bust framework for modeling data, accommodating deviations from normal-
ity. Widely utilized in statistical inference, hypothesis testing, and modeling
scenarios involving small sample sizes or unknown population standard de-
viation, the Student’s t distribution enhances the accuracy and reliability of
statistical conclusions.

The probability density function of the Student’s t distribution is expressed as
follows:

f (x; ν) =
Γ
(

ν+1
2

)
√

νπ Γ
(

ν
2

) (
1 +

x2

ν

)− ν+1
2

, (A.3)

where Γ is Gama function.The mean of the Student’s t distribution exists if
ν > 1. For ν ≤ 1, the mean is undefined. The variance exists if ν > 2. For
1 < ν ≤ 2, the variance is infinite, and for ν ≤ 1, the variance is undefined.

• The t location-scale distribution t(µ, σ, ν) is defined through the PDF [157, 158]
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where , µ ∈ R - location parameter, σ > 0 - scale parameter and ν > 0 - shape
parameter. The variance is only defined for values of ν > 2. If a given random
variable X ∼ t(µ, σ, ν), then (X − µ)/σ has a Student’s t distribution with ν
degrees of freedom. When ν tends to infinity, then Student’s t distribution
tends to a Gaussian distribution.
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