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Abstract

Machine learning (ML) methods have been studied in a variety of applications and
data types. Since most downstream ML models expect a vector from a continuous
space as input, representation learning methods have been developed to automatically
create representation vectors (embeddings) for the input data. While many embedding
methods exist for traditional data types, such as BERT for text or ResNet for images,
this task is much more difficult for graph-structured data. Graphs can be used to
describe objects (using nodes) and their relationships (using edges). For simple graphs,
the main objective of representation learning methods is to capture the graph’s structure.
Nowadays, graphs contain multiple information sources, i.e., besides the structure (nodes
and edges), one can assign attributes to nodes, edges, and even whole graphs (attributed
graphs). Deriving appropriate graph representations is important for ML tasks to
enable them to perform well, e.g., node classification or link prediction.

In recent years, various graph representation learning methods have been proposed.
Despite the success of these methods, the following issues and research gaps are still
not covered. First of all, most proposed approaches are inherently transductive (they
optimize a fixed-size embedding matrix). Such a setting does not allow obtaining
embeddings for previously unseen examples. Moreover, for real-world, large-scale graphs
with millions or even billions of nodes, this solution requires an infeasible amount of
memory and is impractical as graphs tend to evolve over time. The next major issue is
that the (semi-)supervised setting requires labeled data. Obtaining such labels is an
expensive and time-consuming task. Unsupervised (and self-supervised) learning has
shown that graph representations can also be derived solely from the network structure
and attributes. Yet, many proposed approaches were introduced in the semi-supervised
setting, i.e., the model is jointly optimized in a particular downstream task. Hence,
their expressive power is also limited by the choice of the downstream task and its
connected loss function. In the unsupervised setting, the focus is on the only available
structural and attribute information. Finally, the last issue concerns the problem of
defining negative samples in contrastive loss functions utilized in unsupervised graph
representation learning methods. The quality of the embeddings and, consequently, the
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performance of downstream tasks highly depend on how the negative samples are defined.
Choosing appropriate negative samples is particularly difficult in graphs compared to
other data types. Hence, the research community was exploring negative-sample-free
methods in computer vision or natural language processing but were not explored for
graphs.

The objectives of the doctoral dissertation were: 1) verifying whether the usage of
the cross-correlation measure applied to augmented views of an attributed graph allows
training a graph neural network in a self-supervised setting, such that this GNN computes
better node representation vectors than existing self-supervised approaches, measured
by the performance in downstream tasks and training time complexity, 2) developing a
deep neural network model for calculating edge representation vectors that is trained
using a combination of a contrastive learning objective with a feature reconstruction
loss, such that this method’s embedding vectors are better in downstream tasks than
those obtained as aggregations of source and target node representations, 3) developing
an incremental learning method for node representation vectors in dynamic graphs,
which utilizes any kind of static node embeddings from consecutive graph snapshots
and exhibits a lower time and memory complexity than contemporary methods for
representation learning on dynamic graphs while providing competitive quality measure
gains, and 4) developing a method for fusing together node attribute information with
a given precomputed structural node embedding, resulting in a single low-dimensional
embedding that performs better in downstream tasks than: the structural embedding,
the node attributes or other attributed node representation learning methods.

The dissertation is a collection of thematically related works in the form of five
scientific publications centered around the topic of unsupervised representation learning
methods for graphs.

The first publication (Graph Barlow Twins: A self-supervised representation learning
framework for graphs) proposes a novel framework for self-supervised representation
learning of nodes in attributed graphs, which utilizes the empirical cross-correlation
matrix between embeddings of two augmented views of a graph. It provides a sim-
ple yet powerful symmetrical neural network architecture and does not require any
negative samples in the training process. Experimental evaluation shows that the
node representations computed by the proposed framework achieved an analogous
performance compared to state-of-the-art methods while requiring substantially fewer
hyperparameters and converging in order of magnitude training steps earlier, leading to
an overall speedup of up to 42 times compared to state-of-the-art methods.
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In the second article (AttrE2vec: Unsupervised attributed edge representation learn-
ing), a novel method for learning edge representation vectors was introduced. It explores
edge neighborhoods via random walks and applies an aggregation function to obtain
neighborhood summaries, which are passed along with edge attributes to a deep neural
network encoder module. The model is optimized using a compound loss function
consisting of a contrastive learning one (to capture the graph structure) and a feature
reconstruction loss (to ensure the edge attributes are encoded in the representation
vector). Experiments showed that the proposed method build more powerful edge
vector representations that achieved better performance in edge classification and edge
clustering tasks than other state-of-the-art approaches.

The third publication (FILDNE: A Framework for Incremental Learning of Dynamic
Networks Embeddings) proposes a novel framework for learning node representation
vectors in dynamic graphs using an incremental learning approach. The model utilizes
any provided static node representation learning method and applies it to the dynamic
graph (modeled as a sequence of graph snapshots). Next, the framework aggregates
the embedding vectors from consecutive snapshots using a linear convex combination
function, whose parameters are estimated using a Dirichlet-Multinomial model based
on an unsupervised link prediction task. The experimental evaluation showed that
the proposed framework reduces memory and computational costs while providing
competitive quality measure gains with respect to contemporary methods.

The fourth (Retrofitting Structural Graph Embeddings with Node Attribute Infor-
mation) and fifth article (A deeper look at Graph Embedding RetroFitting) tackled the
problem of updating (retrofitting) precomputed structural node representation vectors
with node attribute information. First, a method based on a threefold objective function,
consisting of an invariance loss (to preserve the structural embedding information), a
graph neighbor loss (to increase the similarity of vectors of nodes connected by edges),
and an attribute neighbor loss (to increase the similarity of vectors of nodes with similar
attributes), was introduced. The experimental evaluation showed that the proposed
method achieved better results in a node classification task than other attributed node
representation learning methods. However, the method’s hyperparameters required
a manual adjustment, and the objective function contained redundant terms. Hence,
the fifth article proposed an extension of the introduced method – it simplified the
objective function and proposed an algorithm for automatic hyperparameter estimation.
An extended experimental evaluation showed that the new method computed better
representation vectors than existing approaches for attributed graphs.
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To sum up, the results of studies conducted within this doctoral dissertation showed
that there exist unsupervised representation learning methods for selected graph en-
tities (nodes, edges) that compute better representation vectors than state-of-the-art
unsupervised methods measured by means of downstream task evaluation.
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Streszczenie

Metody uczenia maszynowego (ML) były badane w różnych zastosowaniach dla
różnych rodzajów danych. Ponieważ większość modeli uczenia maszynowego oczekuje
na wejściu wektora z ciągłej przestrzeni, zaproponowano metody uczenia reprezentacji,
które automatycznie tworzą wektory reprezentacji (osadzenia) dla danych wejściowych.
Podczas gdy istnieje wiele metod osadzania dla tradycyjnych typów danych, takich
jak BERT dla tekstu czy ResNet dla obrazów, zadanie to jest znacznie trudniejsze
dla danych o strukturze grafu. Grafy mogą być używane do opisania obiektów (za
pomocą węzłów) i ich relacji (za pomocą krawędzi). Dla prostych grafów głównym
celem metod uczenia reprezentacji jest uchwycenie struktury grafu. Grafy jednakże
mogą zawierać dodatkowe informacje, tzn. oprócz struktury (węzłów i krawędzi), można
przypisać atrybuty do węzłów, krawędzi, a nawet całych grafów (grafy atrybutowane).
Budowa odpowiednich wektorów reprezentacji dla grafów jest kluczowa dla osiągnięcia
dobrej jakości w zadaniach uczenia maszynowego, np. klasyfikacji węzłów czy predykcja
powiązań.

W ostatnich latach zaproponowano różne metody uczenia reprezentacji grafów.
Pomimo sukcesu tych metod, nadal nie rozwiązano wielu problemów i nie zapełniono luk
badawczych. Przede wszystkim większość proponowanych podejść jest transduktywna
(optymalizują macierz osadzeń o stałym rozmiarze), co nie pozwala na uzyskanie osadzeń
dla wcześniej niewidzianych przykładów. Co więcej, dla rzeczywistych, dużych grafów z
milionami, a nawet miliardami węzłów, to rozwiązanie wymaga ogromnej ilości pamięci
i jest niepraktyczne, ponieważ grafy mogą ewoluować w czasie. Kolejnym poważnym
wyzwaniem jest to, że ustawienie semi-nadzorowane wymaga danych oznaczonych,
których pozyskanie jest drogim i czasochłonnym zadaniem. Większość istniejących
podejść uczenia reprezentacji grafów zostało wprowadzonych w tym właśnie ustawieniu.
Model jest optymalizowany pod konkretne zadanie docelowe, co ogranicza ekspresywność
reprezentacji. Wykorzystanie alternatywnego podejścia uczenia nienadzorowanego i
samo-nadzorowanego pozwoliło uzyskać reprezentacje grafów wyłącznie ze struktury sieci
i atrybutów. Kolejnym wyzwaniem jest definicja negatywnych próbek w kontrastowych
funkcjach kosztu używanych w metodach uczenia reprezentacji grafów. Jakość osadzeń,



vi

a co za tym idzie, wydajność w zadaniach docelowych, w dużej mierze zależy od
tego, jak zdefiniowane są próbki negatywne. W porównaniu do innych typów danych
wybór odpowiednich próbek negatywnych jest szczególnie trudny w grafach. Podjęto
dlatego trud badawczy skupiony na metodach nie wykorzystujących próbek negatywnych
(negative-sample-free), np. w przetwarzaniu obrazów i przetwarzaniu języka naturalnego.
Jednakże grafy nie były przedmiotem takiego rozpoznania.

Rozprawa doktorska zakładała zrealizowanie następujących celów: (1) sprawdzenie,
czy wykorzystanie miary korelacji krzyżowej zastosowanej do zmodyfikowanych widoków
grafu atrybutowanego pozwala na trenowanie grafowej sieci neuronowej w sposób samo-
nadzorowany, tak aby sieć dostarczała lepsze wektory reprezentacji węzłów niż inne
istniejące podejścia samo-nadzorowane (pod względem jakości w zadaniach docelowych i
złożoności czasowej procesu uczenia), 2) opracowanie modelu głębokiej sieci neuronowej
do wyznaczania wektorów reprezentacji krawędzi, który jest trenowany przy użyciu
połączenia kontrastowej funkcji kosztu z funkcją rekonstrukcji cech, tak aby wektory
osadzenia tej metody były lepsze w zadaniach docelowych niż te uzyskane jako agregacje
reprezentacji węzła źródłowego i docelowego, 3) opracowanie przyrostowej metody
uczenia reprezentacji dla węzłów w grafach dynamicznych, która wykorzystuje dowolne
statyczne metody osadzania węzłów z kolejnych migawek grafu i wykazuje niższą
złożoność czasową i pamięciową niż istniejące metody uczenia reprezentacji na grafach
dynamicznych, zapewniając jednocześnie przyrosty miary jakości, oraz 4) opracowanie
metody łączenia strukturalnych osadzeń węzłów z informacjami o ich atrybutach w celu
otrzymania pojedynczego niskowymiarowego osadzenia, które działa lepiej w zadaniach
docelowych niż: strukturalne osadzenia, atrybuty węzłów czy inne metody uczenia
reprezentacji węzłów.

Rozprawa doktorska jest zbiorem powiązanych tematycznie prac w postaci pięciu
publikacji naukowych skupionych wokół tematu nienadzorowanych metod uczenia
reprezentacji grafów.

Pierwsza publikacja (Graph Barlow Twins: A self-supervised representation learning
framework for graphs) proponuje nowy framework do samo-nadzorowanego uczenia
reprezentacji węzłów w atrybutowanych grafach, który wykorzystuje empiryczną macierz
korelacji krzyżowej pomiędzy osadzeniami dwóch zmodyfikowanych widoków grafu. Za-
pewnia to prostą i ekspresywną symetryczną architekturę sieci neuronowej, która
nie wymaga negatywnych próbek w procesie uczenia. Eksperymentalna ewaluacja
uwidoczniła, że otrzymywane reprezentacje węzłów osiągały analogiczną jakość w porów-
naniu do najnowszych metod, wymagając znacznie mniejszej liczby hiperparametrów i
zbiegając szybciej, co prowadzi do ogólnego przyspieszenia do 42 razy w porównaniu do
najnowszych metod.
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W drugim artykule (AttrE2vec: Unsupervised attributed edge representation learning)
wprowadzono nową metodę uczenia wektorów reprezentacji krawędzi. Metoda ta bada
sąsiedztwo krawędzi za pomocą spaceru losowego i stosuje funkcję agregacji do uzyskania
podsumowań sąsiedztwa, które następnie są przekazywane razem z atrybutami krawędzi
do modułu kodera głębokiej sieci neuronowej. Model jest optymalizowany za pomocą
złożonej funkcji straty składającej się z kontrastowego uczenia (aby uchwycić strukturę
grafu) i funkcji rekonstrukcji cech (aby zapewnić, że atrybuty krawędzi są zakodowane
prawidłowo w wektorze reprezentacji). Eksperymenty wykazały, że proponowana
metoda tworzy reprezentacje, które osiągnęły lepszą jakość w zadaniach klasyfikacji i
grupowania krawędzi w porównaniu do innych podejść najnowszej generacji.

Trzecia publikacja (FILDNE: A Framework for Incremental Learning of Dynamic
Networks Embeddings) proponuje nowy framework do uczenia wektorów reprezentacji
węzłów w dynamicznych grafach za pomocą uczenia przyrostowego. Model wykorzystuje
dowolną podaną statyczną metodę uczenia reprezentacji węzłów i stosuje ją do dynam-
icznego grafu (modelowanego jako sekwencja migawek grafu). Następnie framework
agreguje wektory osadzeń z kolejnych migawek za pomocą funkcji liniowo-wypukłej,
której parametry są wyznaczane za pomocą modelu Dirichlet-Multinomial przy użyciu
nienadzorowanego zadania predykcji połączeń. Eksperymentalna ewaluacja wykazała,
że proponowany framework jest bardziej wydajny pod względem złożoności czasowej i
pamięciowej, a jednocześnie osiąga lepszą jakość w porównaniu do współczesnych metod
uczenia reprezentacji na dynamicznych grafach.

Czwarty artykuł (Retrofitting Structural Graph Embeddings with Node Attribute
Information) oraz piąty (A deeper look at Graph Embedding RetroFitting) zajęły się
problemem aktualizacji (retrofitowania) wstępnie obliczonych strukturalnych wektorów
reprezentacji węzłów za pomocą informacji o ich atrybutach. Najpierw wprowadzono
metodę opartą na złożonej funkcji celu, składającą się ze straty niezmienności (aby
zachować informacje o osadzeniu strukturalnym), straty sąsiedztwa grafu (aby zwiększyć
podobieństwo wektorów węzłów połączonych krawędziami) i straty sąsiedztwa atrybutów
(aby zwiększyć podobieństwo wektorów węzłów o podobnych atrybutach). Ewaluacja
eksperymentalna wykazała, że proponowana metoda osiągnęła lepsze wyniki w zadaniu
klasyfikacji węzłów niż inne metody uczenia reprezentacji węzłów z atrybutami. Jed-
nakże zaproponowana metoda posiadała wiele hiperparametrów, a funkcja celu była
nadmiarowa. W związku z tym w piątym artykule zaproponowano uproszenie metody
w zakresie funkcji celu i zaproponowano algorytm do automatycznego wyznaczania
hiperparametrów. Rozszerzona ewaluacja eksperymentalna wykazała, że nowa metoda
obliczała lepsze wektory reprezentacji niż istniejące podejścia do grafów z atrybutami.
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Podsumowując, wyniki badań przeprowadzonych w ramach rozprawy doktorskiej
wykazały, że zaproponowane metody i podejścia, jako nienadzorowane metody uczenia
reprezentacji, dostarczają bardziej generalizujące wektory reprezentacji podczas ewalu-
acji na zadaniach docelowych niż dotychczas istniejące metody nienadzorowane.
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Chapter 1

Introduction

In recent years, the amount of data produced by humans has been exponentially
growing. Handling such huge volumes, i.e., processing the data and extracting valuable
knowledge, is far beyond human reach. To effectively solve this problem, scientists built
a wide variety of so-called machine learning models that are able to learn from the
provided data and detect useful patterns. The complexity of the phenomena that is
reflected in the produced data makes the data unstructured or highly complex in its
structure. However, mathematical and statistical models require data in a given, specific
format, i.e., virtually all machine learning models operate on real-valued number vectors.
Such vector representations should reflect certain characteristics of the corresponding
data.

The majority of all developed classical machine learning models operate under the
assumption that the data is independent and identically distributed (iid). However,
data points are rarely independent of each other; in fact, many data types exhibit a
relational nature, i.e., there exist certain relations (dependencies) between samples.
For instance, social networks have multiple types of relations between people, such
as family relations, business ones, and friendships. In computational chemistry, when
analyzing molecules, there are relations between certain atoms due to chemical bonds.
Another example are citation networks, where scientific articles are not only connected
to their authors but also to venues and research areas. One could try to process each
data point independently, but harvesting the information from the relations could solve
the target problems more effectively.

Such relational types of data, as given in the examples above, are built of certain
entities connected to each other by relations. A mathematical way to formally
describe them is a graph. In particular, a graph 𝒢 is defined as a 2-tuple 𝒢 = (𝒱 , ℰ),
where 𝒱 is a set of nodes (entities) and ℰ ∈ 𝒱 × 𝒱 is the set of edges connecting
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pairs of nodes. The connections in a graph are often also presented as a binary
adjacency matrix 𝒜 ∈ {0, 1}|𝒱|×|𝒱|, where ones are present if and only if there is an
edge: 𝒜𝑖𝑗 = 1 ⇐⇒ (𝑖, 𝑗) ∈ ℰ , and zeros denote no relations between given nodes.

In order to provide better expressiveness of graphs, especially for real-world applica-
tions, they may be equipped with additional features (attributes). The graph becomes
an attributed graph when some features are associated with any of its entities, e.g.,
for attributes associated with each node graph 𝒢 = (𝒱 , ℰ , X), where 𝒱 are nodes, ℰ
are edges, and nodes’ attributes are described by an attribute matrix X ∈ R|𝒱|×𝑚.
Depending on the actual data, features might also be attached to edges, sub-graphs, or
whole graphs.

Originated from the combination of graph theory and deep learning intelligent pro-
cessing of such complex graphs, also known as graph machine learning (GraphML),
involves prediction over nodes, edges and graphs itself. For instance, in node classi-
fication, the goal is to predict the most likely node’s label. In a social network, this
might be an interest or preference of the user, or in a citation network, the research area
the paper belongs to [70]. In link prediction, the existence of a link between a pair of
nodes is modeled [61, 68, 45]. Predicted links in social networks may denote real-life
friends and in citation networks related but unmentioned references. In computational
chemistry [48, 100], prediction over whole graphs (graph classification) may be carried
out to decide whether a certain molecule will cause a specific chemical reaction, or if
we consider larger structures, such as proteins, will they cure a given disease.

As previously stated, machine learning models necessitate the use of numerical
vectors (features). There are two primary methods to obtain these. The traditional
technique involves creating unique, independent features manually, utilizing specialized
knowledge specific to the domain in question. Such a historical approach is called
manual feature engineering. In the case of graphs, the vector representations in
node classification or link prediction were obtained from some graph transformation and
just adopted some of the structural properties, e.g., node degrees, Laplacian matrices,
or neighborhood overlapping. However, this manual approach does not generalize well
across different prediction tasks and usually strongly depends on the domain. This
thesis is focused on the alternative approach – representation learning [10], where the
features (representations) are automatically extracted by specialized machine learning
models that solve some optimization problem.

Let’s now introduce some crucial concepts to understand better the thesis’s research
area, i.e., unsupervised representation learning for graphs.
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Representation learning. The main objective in representation learning [10] is to
learn the parameters 𝜃 of a so-called embedding function 𝑓𝜃 : 𝒳 → R𝑑 that maps
given set of objects 𝒳 to low-dimensional real-valued vectors (i.e., 𝑑 ≪ dim(𝒳 )), such
that these vectors encode certain characteristics of the corresponding objects. If two
objects are similar, their representation vectors should also be similar, e.g., if two
images contain cats, the vectors should be more similar than vectors of cat and dog
images.

Learning principles. In machine learning, there are two basic approaches for training
a model: supervised and unsupervised. The difference lies in the access to labeled data
used in model parameter estimation. For the supervised setting, the model is trained
using annotated data points, i.e., each sample is labeled. Note that humans execute
this annotation process, which is time-consuming, error-prone, and subject to personal
bias. In the unsupervised approach, there are no labels available, so the model only
has access to the data points. In the case of representation learning, vectors obtained
through the supervised paradigm are often specialized to the task they were trained on,
hence the generalization ability to other tasks is limited. As representations trained in
an unsupervised manner are focused on the data structure itself, they might exhibit a
better generalization ability to various downstream (application) tasks.

Unsupervised vs. self-supervised learning. In recent years, the self-supervised
learning (SSL) [27] term has gained attraction in the research community. While
unsupervised methods often utilize data reconstruction approaches, in the SSL setting,
the methods automatically create so-called soft labels during training and use them to
train a particular backbone model (in the case of representation learning, the backbone
model is the embedding function/feature extractor). Despite this difference, note that
as there is no external annotation process involved, so self-supervised learning still
resides within the area of unsupervised learning (i.e., SSL methods are a subset of
unsupervised methods).

Transductive and inductive approaches. An important aspect of representation
learning is the ability of the embedding model to provide representation vectors for
unseen data points. In the case where a model learns a fixed lookup table (or matrix),
with each row essentially being the embedding vector of an individual data point, it
is not feasible to generate a vector for a new, unseen instance without completely
retraining the model using a dataset that includes this new point. Such a model is
considered to be transductive. On the other hand, if the model learns a mapping
function that transforms some initial attributes into the embedding vector, it is possible
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to generalize to new data points – i.e., pass their attributes through the embedding
function to obtain its vector representations. Such a scenario is an example of an
inductive model. Inductive models are often more feasible in large-scale applications,
where keeping track of a huge lookup matrix might not be possible – inductive models
only store the function parameters in memory. Naturally, this entails a trade-off with
respect to the inference time – inductive setting requires a forward pass to obtain the
representation vector of a given data point.

1.1 Graph representation learning

The term graph representation learning (graph embedding) [8, 50] is quite
general and defines a whole hierarchy of representation learning methods. The aim
is to capture certain graph entities’ characteristics and encode them as real-valued
vectors. More formally, the embedding function 𝑓𝜃 : 𝒢 → R𝑑 transforms the high
dimensional graph data 𝒢 into a low dimensional vector representation R𝑑, where 𝑑

is the dimensionality of the vector representation and 𝜃 parameterizes the embedding
function. Note that we expect the embedding dimension to be much smaller than the
original data dimensionality: 𝑑 ≪ dim(𝒢).

There are different 4 entities in graphs that could be the target for representation
learning methods (see: Figure 1.1):

• nodes – Most of the published algorithms are designed for nodes. The embedding
function 𝑓𝜃 will return an embedding matrix with one vector for each node, i.e.,
R|𝒱|×𝑑, where |𝒱| is the number of nodes. Various groups of node embedding
methods will be briefly discussed in Section 1.3.

• edges – Although link (edge) prediction is one of the most popular applications for
graph embedding, the number of edge-oriented embedding methods is relatively
low. Special transformations are mostly used to obtain edge representations from
node embeddings. The embedding function 𝑓𝜃 is defined similarly as for nodes,
but the output matrix contains one vector for each edge, i.e., R|ℰ|×𝑑, where |ℰ|
denotes the number of edges.

• subgraphs – This group of embedding methods is often used when modeling social
networks. A quite popular application is detecting and representing communities
in networks, e.g., groups of students at a university or football fan clubs. The
output matrix will contain one vector for each community/subgraph, i.e., R|𝐶|×𝑑,
where |𝐶| is the number of communities/subgraphs.
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• whole graphs – Embedding whole graphs has many applications in chemistry,
biology, and medicine. The objective is to find a representation of chemical
structures, like molecules or other more advanced structures (proteins). The
embedding function is defined as mapping the whole graph to one vector.

Figure 1.1: Representation learning entities in graphs

1.2 Graph representation learning applications and
tasks

Although quite broad, the application areas can be classified into a finite set of
groups. Let’s briefly introduce the most essential downstream tasks and their respective
application areas. Figure 1.2 shows the downstream tasks with respect to the graph
entity they concern.

Link prediction Edges (links) are the main building block of graphs. They provide
information about the existence and/or type of relation between two entities (nodes).
The observed edge set might often be incomplete or inaccurate. The link prediction
task focuses on finding missing edges (for static graphs) or predicting which edges will
be observed in the future (dynamic, evolving graphs). It is one of the most popular
graph representation learning downstream tasks. Real-world applications can be found
in biology, where link prediction is used as a cost-effective alternative to traditional
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experiment-based verification of link existence in social networks, where it can be
used for friend and content recommendation, providing a better and personalized
user experience. Link prediction surveys [61, 68, 45] propose the following methods
taxonomy: similarity-based (with local and global network structure perspective) [51, 1],
maximum likelihood [103, 22] and probabilistic models [34, 111].

Node classification Nodes might have assigned labels and/or feature vectors, e.g.,
in social networks, these reflect peoples’ interests, social status, personal data, etc.; in
biological networks, node labels indicate their role in the whole graph. Often only a
fraction of all nodes is labeled (the rest is assumed to be unknown). Node classification
is a task that aims to infer the missing labels and is one of the two most popular
downstream tasks. Various methods can be found in Bhagat et al. [12] survey. Based
on their taxonomy, there are (1) feature extraction and (2) random walk-based methods.
In the first case [74, 66, 13], node features are aggregations of the neighbor nodes’
features, refined with some local network statistics. The new feature vectors are fed
into a classifier (popular ones include Logistic Regression and Naive Bayes), which
predicts the node labels. In the case of random walk-based approaches [6, 7], the labels
are propagated through the network using paths obtained by random walks.

Edge classification/regression This task is similar to node classification, but the
goal is to predict edge labels or continuous values in the case of edge regression. In
contrast to node classification, this application area is rather unexploited. Aggrawal et
al. [2] presents a survey of existing methods and real-world application use cases. These
include social networks with different kinds of relations/edges [5, 14] (e.g., friendship,
family relations) between people. Edge classification will be used to infer the types of
non-labeled edges based on already labeled ones. Further analysis of these relations
could also be used for making better, personalized recommendations [43, 58]. When edge
labels describe the strength of a relationship [24, 109] (e.g., number of likes, ratings),
edge regression can be applied to predict missing values or how they will change after
the network evolves.

Graph reconstruction When obtaining embedding vectors, the algorithms should
preserve distances from the original graph, i.e., if two nodes were close to each other in
the graph, the distance of their representation vectors should be small. To measure the
quality of an embedding (algorithm), one could define two factors: a local one, which
checks if neighbor nodes remain close to each other in the embedding space without
considering the actual distances, and a global one, which keeps track of these distances.
Two measures are often used: MAP (Mean Average Precision) to model the local factor
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and Distortion as the global one. Better embeddings allow easier training of so-called
graph decoders, which aim at reconstructing the graph’s adjacency/distance matrix
from the embeddings. These decoders can be used in network compression scenarios
(see below) or as generative models for creating new graphs (or predicting the state
of an evolving network). Graph reconstruction can also be considered only in terms
of measuring the quality of embedding (as defined above). Although it was not quite
popular in the past, recent development in hyperbolic graph embedding [56, 17, 82] has
focused on graph (tree) reconstruction.

Clustering Finding clusters in graphs can be based on their structure, node/edge
attributes, or hybrid methods. In the case of the first criterion (structure) [25, 84], one
could ask to find dense substructures with many edges connecting the nodes within a
given cluster and fewer edges connecting to other clusters (so-called community-based).
Another group of structure-aware methods is structurally equivalent clustering [107],
where the goal is to find nodes with similar roles in the graph, e.g., bridges, hubs,
outliers. The second major group of clustering methods is based on node/edge attributes
[114] and aims to find dense subgraphs based not only on observed edges but also on
similar node features (labels).

Network compression Network compression, also known as graph simplification,
was introduced by Feder et al. [28]. Based on a given input graph, the goal is to obtain
a graph with a smaller number of edges, allowing it to run other algorithms faster and
efficiently store the graph itself. Initially, aggregation methods [91, 92] (not embedding-
based) were proposed, which used the edge structure to group nodes. Other methods
were based on information theory, e.g., Navlakha et al. [73] using Minimum Description
Length [80]. The first papers that used an embedding in this application area [97, 77]
encoded the graph into embeddings, and then based on these, they reconstructed the
graph, measuring the reconstruction error. On the whole, network compression is rather
a less popular application area.

Visualization Visualization techniques are often used in scientific articles to empha-
size the predictive power of the proposed methods by showing 2-dimensional projections
of the representation vector spaces. Depending on the actual task, different kinds of
plots are being used, e.g., in node classification, scatter plots with different point colors
are a perfect fit. Authors claim that the better different classes are separated, the better
the embedding algorithm. Of course, this might not always be true, as the projections
may not reflect the separation in the original spaces. In most cases, either Principal
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Component Analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE)
[93] is applied. Other applications for graph visualizations can be found in electrical
circuits analysis [26], biology [90], sociology [30], and software engineering [31].

Figure 1.2: Graph representation learning applications and graph entities they concern.

1.3 Methods for learning node representations

Methods designed for node representation learning can be based on: matrix fac-
torization, random walks, deep learning and graph neural networks. Let’s now
provide some details about each method group.

1.3.1 Matrix factorization based methods

Factorization algorithms can be used to decompose a given input matrix into a group
of smaller matrices whose product should approximate the input matrix. For instance,
if the input matrix is positive semidefinite (e.g., Laplacian matrices), algorithms like
eigenvalue decomposition or SVD (Singular Value Decomposition) [65] are utilized.
Otherwise, one can use gradient descent methods. The input matrix is essential as
it determines what the final representation vector will encode (e.g., local or global
neighborhoods; first, second or higher-order proximities, etc.). Popular choices for graphs
are the adjacency matrix (LLE [81]), Laplacian matrices (Laplacian Eigenmaps [9],
Cauchy graph embedding [67], Structure Preserving Embedding [83]) or node
transition probability matrices (GraRep [15]). Methods, such as M-NMF [99], might
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also preserve both microscopic graph structures (1st and 2nd order node proximities) and
mesoscopic properties (i.e., communities). In general, factorization-based approaches
are computationally expensive, however, some methods address this limitation, e.g.,
Graph Factorization [4] (considers only observed edges), HOPE [77] (uses sparse
representations). Moreover, some methods extend existing approaches and reformulate
them into a matrix factorization setting, e.g., TADW (Text-attributed DeepWalk) [108]
enables the DeepWalk [78] to incorporate node text features; Yang et al. [47] converts
the results of dimensionality reductions algorithms, like Principal Component Analysis
[49], ISOMAP [88], Multi-Dimensional Scaling [57] into non-negative embeddings.

1.3.2 Random walk-based methods

Random walks are a good choice for dealing with extremely large graphs, where
factorization-based methods are not suitable (due to time or memory complexity). They
can approximate many graph measures, like node centralities [75] or similarities [29].
A random walk generates a sequence of nodes by iteratively choosing a single node
neighbor and moving to that node afterwards, until some stopping condition applies,
e.g., walk length or no other choice available. Both the neighbor selection algorithm and
the stopping condition are method-specific. DeepWalk [78] builds representations that
preserve higher-order node proximities by adopting the Skipgram [72] model (known
from natural language processing) into the graph domain. The node sequences generated
by the random walks are treated as sentences and are fed into the Skipgram algorithm.
Neighbor selection in the random walk uses a uniform distribution (unbiased random
walk). Node2Vec [41] extends the neighbor selection procedure so the random walks
can model both mesoscopic structures, such as communities (breadth-first search),
as well as preserve local structures (depth-first search). The random initialization of
the embedding matrix and the non-convex objective function may cause these two
algorithms to be stuck in local minima. HARP [18] uses graph coarsening [20] to
hierarchically compute embeddings using DeepWalk or Node2vec and use the computed
vectors as initialization for the next layer in the hierarchy. Walklets [79] preserve
higher-order proximities by combining a factorization-based approach with random
walks.

1.3.3 Deep learning-based methods

The successful applications of deep learning in various machine learning tasks, like
image recognition, segmentation, or text processing, motivated its usage in graph embed-
ding. Due to their architecture and known properties, deep neural networks are able to
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capture non-linearities in the graph structures. One of the most popular neural network
architectures – the autoencoder – was the foundation for models like SDNE (Structural
deep network embedding) [97], which preserves first and second-order proximities by
jointly optimizing these measures in both unsupervised (neighborhood reconstruction)
and supervised (Laplacian Eigenmaps) manner. DNGR (Deep neural networks for
learning graph representations) [16] uses random surfing and the positive pointwise
mutual information (PPMI) measure along with stacked denoising autoencoders to
build representation vectors. VAE (Variational Auto-Encoders) [52] were adopted
into the graph domain as the VGAE (Variational Graph Auto-Encoder) [54] model.
It combines the VAE network with a Graph Convolutional Network [55] and an
inner product decoder. There are also generative models, such as GraphGAN [98],
Adversarial Network Embedding [23] and ProGAN [32], which utilize the Genera-
tive Adversarial Networks architecture [37]. Other popular deep learning architectures,
like multilayer perceptrons (PALE [69]) and recurrent neural networks (DeepCas
[60]) are also used by graph representation learning models. Recent advancements
focus on utilizing Normalizing Flows (Graph Normalizing Flows [63], Equivariant
Normalizing Flows [33]) and Diffusion Models [62] architectures.

1.3.4 Graph neural networks

Although these are deep learning models, the recent exponential development of
new methods should be discussed separately. Graph neural networks (GNN) [113]
were designed to directly operate on graphs. They take as input the adjacency matrix
of the graph and an attribute matrix (depending on the actual method, these might be
node-, edge-, or graph-level attributes). One of the most popular architectures is the
so-called MPGNN (Message Passing Graph Neural Network), where nodes have the
ability to "pass" messages to their neighbors. Aggregating those messages in each layer,
combined with appropriate transformation and activation functions, allows for efficient
processing of even large graphs (assuming usage of sparse matrix implementations) and
obtaining robust embeddings. In particular, a single layer in a message passing GNN
performs the following three operations – message generation, feature aggregation, and
feature update:

m(𝑘−1)
𝑣 = MESSAGE(h(𝑘−1)

𝑣 ) (1.1)

h(𝑘−1)
𝒩 (𝑢) = AGGREGATE({m(𝑘−1)

𝑣 : 𝑣 ∈ 𝒩 (𝑢)}) (1.2)

h(𝑘)
𝑢 = UPDATE(h(𝑘−1)

𝑢 , h(𝑘−1)
𝒩 (𝑢) ) (1.3)
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where m(𝑘−1)
𝑣 is the message generated by node 𝑣 based on the input features h(𝑘−1)

𝑣 ,
h(𝑘−1)

𝒩 (𝑢) denote the aggregated features of 𝑢’s neighbors and h(𝑘)
𝑢 denote the output

features of node 𝑢. In a GNN model with multiple layers, the first one operates on the
attribute matrix, i.e., h(0) = X. A single layer models a 1-hop neighborhood, and by
adding additional layers to the model, one could also model k-hop neighborhoods (one
hop for every layer).

Graph convolutional networks (GCN) [55] implement the idea of message
passing by defining a convolution operator for graphs. For a given node, it is implemented
as a weighted summation of neighbors’ representations using a symmetrical degree-
normalized adjacency matrix. Graph Attention Networks (GAT) [96] also computes
a weighted sum over neighbor embeddings, but it uses the attention mechanism [94] to
compute the weight coefficients. Graph Isomorphism Networks (GIN) [106] use
an analogy to the Weisfeiler-Lehman isomorphism test to obtain the most expressive
GNN in the class of message-passing models. GraphSAGE [44] addresses the problem
of inductive learning of large-scale graphs by sampling only a part of the neighborhood.
There are numerous other GNN architectures [105, 50, 8], but the four above are the
most adopted.

Graph neural networks are often introduced either as standalone deep learning
model layers or are trained in an end-2-end manner using the supervised setting on
a particular classification task. Hence, the representation vectors are task-specific.
Although the Graph Autoencoder can be paired with any existing GNN layer, the
performed link prediction task does not provide the best overall generalization of the
embedding vectors.

Recently, the self-supervised paradigm allowed to obtain state-of-the-art performance
for graph neural networks without using labels [64]. Sometimes the performance was
even better than for the supervised case. Instead of relying on autoencoders, contrastive
methods produce multiple graph views, encode them and minimize embedding distances
of matching nodes as well as maximize (contrast) distances to other nodes (negative
samples), e.g., GraphCL [110], GCA [116], GRACE [115], or DGI [95]. Defining
negative samples is a hard task, but some methods eliminate the need for negative
samples, e.g., BGRL [89]. However, this particular method does require many epochs
to converge, and it relies on many training tricks to overcome a trivial embedding
collapse.
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1.4 Identified research gaps

Although graph representation learning research is already quite developed, some
problems and aspects have not been exploited sufficiently. Let’s now briefly describe
research gaps and problems present in unsupervised representation learning for graphs
that were identified during the development of this Ph.D. thesis.

• Self-supervised representation learning methods are computationally
expensive due to the utilization of negative samples

As discussed earlier, the self-supervised learning paradigm gathers current interest
in the GraphML research community, with methods prominently developed around
the contrastive learning approach (GCA [116], GraphCL [110], GRACE [115] or
DGI [95]). Despite the success of contrastive methods in areas such as computer
vision and natural language processing, their fundamental limitation is the need
for negative samples. Consequently, their sampling procedure highly affects the
overall quality of the representations. Regarding images or texts, the definition
of negative samples might not seem that problematic, but in the case of graphs,
there is no clear intuition. For instance, what is the negative counterpart for a
particular node in the graph – should it be a node that is not a direct neighbor
or a node that is in a different graph component? Multiple options are available,
but the right choice strictly depends on the downstream task.

A solution to this problem might be the application of so-called negative-sample-
free methods. In computer vision, they obtained successful results with methods
such as BYOL [40], SimSiam [19], or Barlow Twins [112]. Using siamese network
architectures with various techniques, like gradient stopping, asymmetry, or batch
and layer normalizations, they prevent collapsing to trivial solutions. Based
on BYOL, the Bootstrapped Representation Learning on Graphs (BGRL) [89]
framework was proposed. Its computed representation vectors achieved state-
of-the-art performance in node classification using various benchmark datasets.
Notwithstanding, assuming asymmetry between the network twins (such as the
predictor network, gradient stopping, and a moving average on the weight updates),
the method is conceptually complex. Moreover, as the paper shows, this method
requires many epochs to converge to state-of-the-art performance.

The question arises: how to build a self-supervised graph representation learning
model that does not require defining negative samples (i.e., negative-sample-free
method) and provides time efficiency without using any additional tricks in the
architecture and training procedure? The thesis addressed this question by means
of the Research objective 1.
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• Edge representation learning is underrepresented

Most graph representation learning methods are designed for learning embeddings
of nodes. However, one could be interested in prediction tasks involving pairs
of nodes instead of individual nodes, e.g., link prediction and edge classifica-
tion/regression.

The authors of Node2vec [41] defined a set of 4 independent binary operators
(see Table 1.1), which for given two nodes 𝑢 and 𝑣 transform the corresponding
feature vectors 𝑓(𝑢) and 𝑓(𝑣) into edge features 𝑔(𝑢, 𝑣), so that: 𝑔 : 𝒱 × 𝒱 → R𝑑,
where 𝑑 is the node/edge embedding dimension (these operators preserve the size
of the input embeddings). Such an approach is independent of the initial node
embedding algorithm, so the user can employ the most appropriate one in a given
case and use one of the operators to evaluate the produced embeddings against
edge-specific tasks.

Operator Symbol Definition

Average ⊕ [𝑓(𝑢) ⊕ 𝑓(𝑣)]𝑖 = 𝑓𝑖(𝑢)+𝑓𝑖(𝑣)
2

Hadamard ⊙ [𝑓(𝑢) ⊙ 𝑓(𝑣)]𝑖 = 𝑓𝑖(𝑢) * 𝑓𝑖(𝑣)
Weighted-L1 || · ||1 ||𝑓(𝑢) · 𝑓(𝑣)||1𝑖 = |𝑓𝑖(𝑢) − 𝑓𝑖(𝑣)|
Weighted-L2 || · ||2 ||𝑓(𝑢) · 𝑓(𝑣)||2𝑖 = |𝑓𝑖(𝑢) − 𝑓𝑖(𝑣)|2

Table 1.1: Proposed binary operators for transforming node feature vectors 𝑓(𝑢), 𝑓(𝑣)
into edge features. The 𝑖 subscript denotes that these operations are applied

element-wise to the feature vectors. Source: Node2vec paper [41]

Aggrawal et al. [2] proposed an algorithm for edge classification and regression
using a Jaccard-based node similarity measure. In the simplest case (binary
classification), there are separate measures for positive and negative edges, but
the authors also showed how to extend this idea to numerical labels. Eventually,
the predicted label is computed as an aggregation (maximum or average) over all
considered edges. In this variant (exact algorithm), the whole procedure could be
too time-consuming when dealing with a large-scale graph. The min-hash index
algorithm was used to estimate the Jaccard coefficient similarities to obtain a fast
probabilistic approximation. Importantly, these methods work in an end-2-end
manner, i.e., no edge features are being extracted.

Graphs might have initially defined edge features. In such a case, both approaches
are unsuitable, as they ignore these features, possibly missing discriminative
power for downstream models. There are many solutions to this problem. One of
them is to modify these algorithms to include initial edge features. In the case
of Node2vec’s binary operators, they should be generalized to ternary operators
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with two inputs for node features and one for the edge features. Of course, there
might be a problem with the different dimensionalities of node and edge features.
Handling such cases is not trivial and may require using additional dimensionality
reduction techniques or even the application of neural networks. In the case of
Aggrawal’s Jaccard-based method, the generalization is also not trivial. Still, one
could try to average the edge features instead of the target labels and feed them
into a downstream classifier/regression model.

Other solutions include using: (1) node embedding algorithms, which are capable
of incorporating edge features and then using those enriched node features to
obtain edge representations using the above-defined binary operators, or (2) edge
embedding algorithms, which directly learn these features (although, there are
only a few solutions available). GCNs could be employed for one-dimensional edge
features, which is, in most cases, impractical. GATs (Graph Attention Networks)
[96] may use multi-dimensional edge features when computing the attention scores.
The authors of NRIM [53] use special kinds of message-passing graph neural
networks that perform multiple node-to-edge and edge-to-node messages pass
rounds. After training, this model could even be used to directly infer edge
features by stopping the algorithm after a node-to-edge stage. The EGNN [36]
paper claims that other approaches do not properly use edge features, and it
proposes a modified attention layer, which includes and updates the whole edge
feature tensor. The [101]paper considers the case of point clouds, where edge
features are initially obtained using simple MLPs. Then these are aggregated using
the proposed EdgeConv operator (sum or maximum over feature vectors). The
authors of [85] introduce so-called edge-conditioned convolutional filters,
which computes a weighted average of node vectors with edge features as weights.
A survey of another edge-aware message passing architectures can be found in
[35].

In summary, obtaining edge representation vectors often involves computing node
embeddings beforehand and applying trainable or non-trainable binary operators.
Other approaches that are designed for edges are either trained in a supervised
manner or do not take edge attributes into account. The question arises: how to
build an edge representation learning method that is trained in an unsupervised
approach and utilizes existing attributes? This thesis addressed this question by
means of the Research objective 2.

• Learning representations of nodes in dynamic graphs is not fully bene-
fiting from incremental learning
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Many real-world networks are naturally dynamic, meaning they evolve, and
both nodes and edges may appear or disappear. Considering the temporal
(dynamic) network information allows their better understanding and modeling
[76, 102]. A dynamic graph is represented by a 2-tuple: 𝒢 = (𝒱(𝑡), ℰ(𝑡)),
where the node 𝒱 and edge ℰ sets depend on time 𝑡. A dynamic graph is often
modeled either as a event stream of (sender, receiver, timestamp) triplets (with
potentially additional features) or more commonly as a sequence of discrete
graph snapshots: 𝒢0,1, 𝒢1,2, . . . , 𝒢𝑇 −1,𝑇 , where 𝑇 is the number of timesteps and
𝒢𝑡−1,𝑡 = (𝒱𝑡−1,𝑡, ℰ𝑡−1,𝑡) is the 𝑡-th graph snapshot with node and edges present
between timestep 𝑡 − 1 and 𝑡.

One must provide an efficient and robust embedding algorithm when learning
representations for large-scale, disk-resident dynamic graphs [71, 3]. Due to
the nature of such graphs, a full re-computation of the embeddings at every
timestep is not feasible. Embeddings should be obtained in an incremental
manner. Note that in this approach, there is no need to keep previous graph
snapshots during consecutive iterations, as the information is already encoded
in the model parameters. Therefore, incremental learning helps to save both
time and memory during training. An illustration of training node representation
vectors in a dynamic graph using an incremental learning approach is presented
in Fig. 1.3.

There exist methods for learning node representations in dynamic networks, most
based on deep learning architectures. DynGEM [39] employs an autoencoder to
reconstruct the adjacency matrix. Weights learned in one timestep are used as
initialization in the next timestep. Dyngraph2vec [38] extends the DynGEM
model and defines a family of deep neural network models (autoencoder, LSTM,
and a hybrid approach) that are trained to predict the next snapshot based on
multiple previous snapshots.

Some methods adapt existing representation learning approaches to the domain
of dynamic graphs. n2v-dynlink [104] applies Node2vec on each snapshot and
concatenates the resulting vectors to obtain the final representation. Such a
method is hardly scalable, as the embedding dimension grows with each new
graph snapshot. tNodeEmbed [86] also applies Node2vec on each snapshot, but
then it uses an LSTM network to align them. The whole model is trained an end-2-
end, task-specific manner. The alignment procedure is motivated by the stochastic
nature of Node2vec and changes in the graph structure. OnlineCTDNE [59]
reuses the CTDNE algorithm and computes temporal random walks for each edge.
Similarly, Streamwalk [11] utilizes temporal random walks but only updates the
vectors for a subsample of nodes.
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Figure 1.3: The idea of incremental learning for dynamic graph embedding. At each
timestep 𝑡, the embedding F0,𝑡 represents the whole evolution history of the nodes

starting from the zeroth timestep. First, a representation learning model 𝑓 is trained
on the initial graph 𝒢0,1. In consecutive iterations, the model updates the embeddings

based on the current graph snapshot and the previous model parameters.

Instead of reusing only selected node representation learning methods, it would be
beneficial to let the user choose a method that is appropriate for the given use case.
The question arises: how to design a node representation learning method for
dynamic graphs which is trained in an unsupervised and incremental manner and
is able to utilize any given static node embedding method (applied to consecutive
graph snapshots)? This thesis addressed this question by means of the Research
objective 3.

• Existing precomputed structural embeddings can be fused together
with node attributes

While numerous graph representation learning methods exist, either designed to
reflect the graph structure or attributes in the context of the structure, there
has been no work done on fusing (node) attribute information into existing
precomputed structural (node) representation vectors. Such a situation might
be useful in industrial applications where production systems were built using
structural graph representation learning methods and, later on, additional node
features were introduced. Full retraining might not be feasible due to the dataset’s
scale or other systems dependent on the current embedding vectors. Another
scenario could be sensor networks, where the underlying graph’s structure is static,
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but the node attributes (sensor readings) are constantly changing. Recomputing
the representations from scratch each time a new reading appears is inefficient.
Embedding methods for dynamic graphs are also not applicable, as they often
consider node attributes to be static while the structure changes. Moreover, note
that the simplest solution of concatenating both structural and attribute vectors
is also not feasible as the resulting representation would be neither consistent nor
low-dimensional.

Henceforth, a method for computing representations in such a scenario requires
using existing structural node representation vectors and updating them such that
the resulting embeddings still resemble the original structural ones and contain
information about the node attributes. The question arises: how to design a
method that respects the above-mentioned assumption? This thesis addressed
this question by means of the Research objective 4.
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Chapter 2

Research goal

In this chapter, the main focus is given to stating the research hypothesis along with
four research objectives. Next, the list of scientific papers that constitute this thesis is
provided. Finally, for each research objective, it is shown how the particular research
articles within the thesis addressed the objective.

2.1 Research hypothesis and objectives

The research hypothesis of this dissertation is given as follows:

There exist unsupervised representation learning methods for graphs, whose embed-
dings can outperform those of state-of-the-art unsupervised approaches evaluated
by means of downstream tasks.

In order to validate the research hypothesis, it was substantiated into the following
research objectives RO1 - RO4.

RO1 Verify whether the usage of the cross-correlation measure applied to augmented
views of an attributed graph allows training a graph neural network in a self-
supervised setting, such that this GNN computes better node representation
vectors than existing self-supervised node representation learning methods, mea-
sured by the performance in downstream tasks and training time complexity.
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RO2 Develop a deep neural network model for calculating edge representation vectors
that is trained using a combination of a contrastive learning objective with a
feature reconstruction loss, such that this method’s embedding vectors are better
in downstream tasks than those obtained as aggregations of source and target
node representations.

RO3 Develop an incremental learning method for node representation vectors in dy-
namic graphs, which utilizes any kind of static node embeddings from consecutive
graph snapshots and exhibits a lower time and memory complexity than contem-
porary methods for representation learning on dynamic graphs while providing
competitive quality measure gains.

RO4 Develop a method for fusing together node attribute information with a given
precomputed structural node embedding, resulting in a single low-dimensional em-
bedding that performs better in downstream tasks than the structural embedding,
the node attributes or other attributed node representation learning methods.

All of the above-mentioned research objectives result from an in-depth literature
review that allowed to identify such research gaps in the current body of knowledge for
unsupervised representation learning methods for graphs.

2.2 List of publications

This thesis is a series of thematically related works in the form of the following five
scientific publications:

P1 Piotr Bielak, Tomasz Kajdanowicz, Nitesh V. Chawla, Graph Barlow Twins: A
self-supervised representation learning framework for graphs, Knowledge-Based
Systems, Volume 256, 2022, 109631, ISSN 0950-7051, https://doi.org/10.1016/
j.knosys.2022.109631.

IF 8.139, MEIN 200

P2 Piotr Bielak, Tomasz Kajdanowicz, Nitesh V. Chawla, AttrE2vec: Unsupervised
attributed edge representation learning, Information Sciences, Volume 592, 2022,
Pages 82-96, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2022.01.048.

IF 8.233, MEIN 200

https://doi.org/10.1016/j.knosys.2022.109631
https://doi.org/10.1016/j.knosys.2022.109631
https://doi.org/10.1016/j.ins.2022.01.048.
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P3 Piotr Bielak, Kamil Tagowski, Maciej Falkiewicz, Tomasz Kajdanowicz, Nitesh V.
Chawla, FILDNE: A Framework for Incremental Learning of Dynamic Networks
Embeddings, Knowledge-Based Systems, Volume 236, 2022, 107453, ISSN 0950-
7051, https://doi.org/10.1016/j.knosys.2021.107453.

IF 8.139, MEIN 200

P4 Piotr Bielak, Daria Puchalska, Tomasz Kajdanowicz, Retrofitting Structural Graph
Embeddings with Node Attribute Information. In: Groen, D., de Mulatier, C.,
Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Com-
putational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science,
vol 13350. Springer, Cham, https://doi.org/10.1007/978-3-031-08751-6_
13.

CORE A, MEIN 140

P5 Piotr Bielak, Jakub Binkowski, Albert Sawczyn, Katsiaryna Viarenich, Daria
Puchalska, Tomasz Kajdanowicz, A deeper look at Graph Embedding RetroFitting,
Journal of Computational Science, Volume 68, 2023, 101979, ISSN 1877-7503,
https://doi.org/10.1016/j.jocs.2023.101979.

IF 3.817, MEIN 100

2.3 Addressing the research objectives

Let’s now discuss how each scientific article addresses its corresponding research
objective.

2.3.1 Research objective 1

Objective: Verify whether the usage of the cross-correlation measure applied to
augmented views of an attributed graph allows training a graph neural network in a
self-supervised setting, such that this GNN computes better node representation vectors
than existing self-supervised node representation learning methods, measured by the
performance in downstream tasks and training time complexity.

Scientific article: [P1] – Graph Barlow Twins: A self-supervised representation
learning framework for graphs

https://doi.org/10.1016/j.knosys.2021.107453
https://doi.org/10.1007/978-3-031-08751-6_13
https://doi.org/10.1007/978-3-031-08751-6_13
https://doi.org/10.1016/j.jocs.2023.101979


2.3. Addressing the research objectives 23

Details: This article proposes a novel self-supervised graph representation learning
framework called Graph Barlow Twins. The loss function utilizes the embedding
cross-correlation matrix of two distorted graph views to optimize the representation
vectors. The framework neither requires using negative samples (as opposed to most
other self-supervised approaches) nor introduces any kind of asymmetry in the network
architecture (like state-of-the-art BGRL). Moreover, the model converges substantially
faster than all other state-of-the-art methods.

In particular, given an attributed graph 𝒢 = (𝒱 , ℰ , X) and an encoder graph neural
network 𝑓𝜃, the first step is to obtain two augmented views 𝒢(1), 𝒢(2) of the input graph.
Each of those views is generated by applying two functions: node feature masking
(which randomly selects a set of node attributes and puts zeros in those attributes
for all nodes) and edge dropping (which randomly removes edges from the graph),
both parametrized by hyperparameters 𝑝𝑋 and 𝑝𝐴 which denote the probability of
masking a single feature and dropping a single edge, respectively. Next, both views
are processed using the same instance of the encoder GNN 𝑓𝜃 to compute the node
representation vectors for each view, i.e., Z(1) = 𝑓𝜃(𝒢(1)) and Z(2) = 𝑓𝜃(𝒢(2)). Further,
those embedding matrices are used to compute the empirical cross-correlation matrix
𝒞, as it was assumed in the research objective. Using a stochastic gradient descent
optimizer – AdamW [42] – this cross-correlation matrix is optimized to approach the
identity matrix. The following loss function is applied:

ℒBT =
∑︁

𝑖

(1 − 𝒞𝑖𝑖)2 + 𝜆
∑︁

𝑖

∑︁
𝑗 ̸=𝑖

𝒞𝑖𝑗
2, (2.1)

where 𝜆 is a method hyperparameter. Such a learning objective enforces two effects:
(1) as the diagonal elements of the cross-correlation matrix approach a value of one, the
encoder model learns to ignore the applied augmentation functions, (2) by forcing the
off-diagonal element toward zero (with a trade-off defined by 𝜆) each pair of features in
the representation vector is being decorrelated, i.e., features become independent and
more knowledge about the graph structure, and node attributes can be stored in the
representation vectors.

The experimental evaluation included a variety of downstream task scenarios: (1)
transductive node classification for 5 smaller benchmark datasets, (2) transductive
node classification using the medium-sized ogb-arxiv dataset from the Open Graph
Benchmark [46], (3) inductive node classification for multiple graphs using the PPI
(Protein-Protein Interaction) dataset, and (4) inductive node classification for the large-
scale graph ogb-products dataset. Depending on the case, both GCN-based encoders
and a GAT-based one were evaluated. The proposed method achieved analogous
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results compared to state-of-the-art methods, however, it requires substantially fewer
hyperparameters and converges in an order of magnitude training steps earlier, leading
to an overall speedup of up to 42 times compared to state-of-the-art models.

Moreover, ablation studies revealed that using a projector network, which is often
used in other approaches, does not improve the embedding quality and can be omitted,
reducing the number of trainable model parameters. To obtain the augmented graph
views, other methods use a different set of augmentation function hyperparameters for
each augmentation branch (𝑝𝑋 , 𝑝𝐴 in this case). In contrast, the proposed Graph Barlow
Twins model computes robust embedding vectors even using the same augmentation
function hyperparameters for both branches. This also allowed to reduce the number of
model hyperparameters. Finally, choosing the 𝜆 hyperparameter in the loss function is
non-trivial. Experiments revealed that using 𝜆 = 1

𝑑
, where 𝑑 is the embedding vector

dimensionality, provides the best overall results regarding downstream task performance.

2.3.2 Research objective 2

Objective: Develop a deep neural network model for calculating edge representation
vectors that is trained using a combination of a contrastive learning objective with
a feature reconstruction loss, such that this method’s embedding vectors are better
in downstream tasks than those obtained as aggregations of source and target node
representations.

Scientific article: [P2] – AttrE2vec: Unsupervised attributed edge representation
learning

Details: This article proposes a novel inductive method, called AttrE2vec, for
learning representations of edges in attributed graphs in an unsupervised manner. Using
random walks and an aggregation function, it summarizes the neighborhoods of a given
edge and passes those along with the edge features into a deep neural network encoder
module that finally computes the edge representation vector. The loss function is
twofold, where one term is a contrastive learning objective (allowing to model structural
similarity), and the second term is a feature reconstruction loss (that, along with a
trainable decoder module, ensures that the initial edge attribute information is preserved
in the edge embedding vector). The model builds edge representation vectors without
using intermediate node representations. The experimental evaluation shows that
AttrE2vec builds representation vectors that achieve state-of-the-art performance on
edge-related downstream tasks.
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In particular, for a given attributed edge (𝑢, 𝑣), the first step is to decompose the
neighborhood of the edge into two smaller ones – one constituted by edges connected
to node 𝑢 and the other one by edges connected to node 𝑣. Next, the method performs
several uniform random walks starting from node 𝑢 and 𝑣, respectively. Such a procedure
allows to explore the neighborhoods and scale up to large graphs. A walk aggregation
function Aggw(·) is applied on each random walk to aggregate the attributes of visited
edges. Several options for this aggregation function are considered: average, weighted
average (with exponential decaying, where more distant edges get a lower weight),
aggregation using Gated Recurrent Units (GRU) [21] over the edge attribute vectors,
or aggregation using GRUs over the concatenated edge and node attributes. Having
now one feature vector per random walk, another aggregation function Aggn(·) is
applied. As the random walks have no particular ordering, this aggregation function is
a permutation-invariant function in the form of an average over the vectors. At this
point, each edge is described by three vectors: summary vector of the neighborhood
defined by node 𝑢, i.e., S𝑢, summary vector of 𝑣’s neighborhood, i.e., S𝑣, and the edge
features itself f𝑢𝑣. These three vectors are passed into a deep neural network encoder,
which is built as a multi-layer perceptron (MLP) with a self-attention mechanism. It
outputs the final edge representation vector h𝑢𝑣. As mentioned above, the model is
trained using a twofold loss function:

ℒ = 𝜆 * ℒcos + (1 − 𝜆) * ℒMSE, (2.2)

where ℒcos is a contrastive loss function, which utilizes the cosine similarity measure to
increase the similarity between anchor examples and positive samples while reducing
the similarity between anchor examples and negative samples. In the case of AttrE2vec,
for each edge, the positive samples are edges sampled from the set of edges visited
by random walks, while negative samples are edges from the graph that were not
visited by random walks. The term ℒMSE denotes a mean squared error computed
between the original edge features and the output of a decoder module that takes in
the edge representation vector h𝑢𝑣. To define a trade-off between both terms, the 𝜆

hyperparameter is introduced.

Compared to contemporary approaches, the experimental evaluation shows that
AttrE2vec builds more powerful edge vector representations, reflected both by low-
dimensional embedding projections and higher quality measures (AUC, accuracy)
in downstream tasks, such as edge classification and clustering. In particular, the
proposed method achieves better performance than approaches that first compute node
representations and then transform them into edge-level representation vectors.
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To sum up, the article proposed a novel unsupervised method (AttrE2vec) for
learning low-dimensional vector representation for attributed edges. The method is
inductive and allows getting the representation of edges not present in the training
phase. Various experiments show that AttrE2vec has superior performance over all of
the baseline methods on edge classification and clustering tasks.

2.3.3 Research objective 3

Objective: Develop an incremental learning method for node representation vectors
in dynamic graphs, which utilizes any kind of static node embeddings from consecutive
graph snapshots and exhibits a lower time and memory complexity than contemporary
methods for representation learning on dynamic graphs while providing competitive
quality measure gains.

Scientific article: [P3] – FILDNE: A Framework for Incremental Learning of Dy-
namic Networks Embeddings

Details: This article proposes a novel framework for learning node representations
in dynamic graphs using an incremental learning approach called FILDNE. It is
trained in an unsupervised manner and integrates representation vectors computed
using static node representation learning methods over different timesteps into a single
representation by developing a convex combination function and alignment mechanism.
The combination weights are learned using a Bayesian inference mechanism.

There are two proposed framework variants: FILDNE, which considers exactly
two graph snapshots (embedding matrices) at each iteration, and 𝑘-FILDNE, which
generalizes to 𝑘 graph snapshots at each iteration. The framework is incrementally
applied to the embeddings of the graph snapshot sequence so that the first embedding is
always an aggregation from the last iteration. In particular, given a dynamic graph 𝒢0,𝑇

which is modeled as a sequence of graph snapshots [𝒢0,1, 𝒢1,2, . . . , 𝒢𝑇 −1,𝑇 ], the first step is
to apply an existing node representation learning method, such as Node2vec [78] or LINE
[87], on each snapshot to obtain a sequence of embeddings [F0,1, F1,2, . . . , F𝑇 −1,𝑇 ]. Next,
due to the stochastic nature of some representation learning methods, an embedding
alignment method, based on the Orthogonal Procrustes method, is applied to the
embedding matrices. The aligned embedding vectors of a given node are combined
into a single representation using a convex linear combination function. For the basic
FILDNE model, this function is given as follows:
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F̃0,𝑡 = 𝛼F̃0,𝑡−1 + (1 − 𝛼)F*
𝑡−1,𝑡, (2.3)

where F̃0,𝑡−1 is the node embedding for the interval [0, 𝑡−1] (computed by the framework
in the previous iteration), F*

𝑡−1,𝑡 is the node embedding of the current graph snapshot
(after embedding alignment), and 𝛼 is the model’s hyperparameter, which can be found
either using a grid search or using expert knowledge.

In the case of the 𝑘-FILDNE model the combination function is given as follows:

F̃0,𝑡 = 𝛼1F̃0,𝑡−𝑘+1 + 𝛼2F*
𝑡−𝑘+1,𝑡−𝑘+2 + . . . + 𝛼𝑘F*

𝑡−1,𝑡, (2.4)

where F̃0,𝑡−𝑘+1 denotes the node embedding for the interval [0, 𝑡 − 𝑘 + 1] (computed
by the framework in the previous iteration), [F*

𝑡−𝑘+1,𝑡−𝑘+2, . . . , F*
𝑡−1,𝑡] are aligned node

embeddings for their respective time intervals, and [𝛼1, 𝛼2, ..., . . . , 𝛼𝑘] are the com-
bination parameters. For 𝑘-FILDNE, these parameters are computed automatically
based on the graph data. Namely, they are the Maximum A Posteriori estimate of the
Dirichlet-Multinomial model, where the likelihood is modeled using an unsupervised
link prediction task over the graph snapshots.

The experimental evaluation was performed on several downstream tasks (link
prediction, edge classification, graph reconstruction) over seven real-world datasets. The
results show that FILDNE is able to reduce memory (up to 6x) and computational time
(up to 50x) costs while providing competitive quality measure gains (e.g., improvements
up to 19 pp AUC on link prediction and up to 33 pp mAP on graph reconstruction)
with respect to the contemporary methods.

2.3.4 Research objective 4

Objective: Develop a method for fusing together node attribute information with a
given precomputed structural node embedding, resulting in a single low-dimensional
embedding that performs better in downstream tasks than the structural embedding, the
node attributes or other attributed node representation learning methods.

Scientific articles:

• [P4] – Retrofitting Structural Graph Embeddings with Node Attribute Information

• [P5] – A deeper look at Graph Embedding RetroFitting
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Details: The first article ([P4]) proposes a novel method, called GERF (Graph
Embedding RetroFitting), for updating existing structural node representation vec-
tors using node attribute information. Instead of utilizing naive approaches, such as
concatenation of the structural vectors with the node attribute vectors, which would
create a non-consistent vector space and also result in potentially high-dimensional
vectors, GERF learns a new node embedding Z* that is optimized using stochastic
gradient descent optimizers to preserve the information encoded in both the structural
embeddings and node attributes.

In particular, GERF randomly initializes the Z* ∈ R|𝒱|×𝑑 matrix, where 𝑑 is the
dimensionality of the structural representation vectors, and then optimizes the following
graph retrofitting objective:

ℒ(Z*) = (1 − 𝜆𝐺 − 𝜆𝑋)
𝑛∑︁

𝑖=1
‖z*

𝑖 − z𝑖‖2

+ 𝜆𝐺

𝑛∑︁
𝑖=1

∑︁
𝑗: 𝑣𝑗∈𝒩 (𝑣𝑖)

‖z*
𝑖 − z*

𝑗‖2

|𝒩 (𝑣𝑖)|
+ 𝜆𝑋

𝑛∑︁
𝑖=1

∑︁
𝑗: 𝑣𝑗∈𝒩X(𝑣𝑖)

‖z*
𝑖 − z*

𝑗‖2

|𝒩X(𝑣𝑖)|
,

(2.5)

where Z is the structural node embedding, 𝒩 (𝑢), is the neighborhood of node 𝑢 defined
by edges (the graph structure), 𝒩X(𝑢) is the so-called attribute neighborhood of node
𝑢 (it is defined as the 𝐾 nearest neighbors of 𝑢 in the node attribute space; 𝐾 is set
equal to the number of structural neighbors of this node in the graph), and 𝜆𝐺, 𝜆𝑋 are
method hyperparameters that define a trade-off between the three components of the
objective function.

The first component ∑︀𝑛
𝑖=1 ‖z*

𝑖 − z𝑖‖2 (invariance loss) ensures that the new rep-
resentation vectors are close to the structural ones (so the information is preserved).
The second term ∑︀𝑛

𝑖=1
∑︀

𝑗: 𝑣𝑗∈𝒩 (𝑣𝑖)
‖z*

𝑖 −z*
𝑗 ‖2

|𝒩 (𝑣𝑖)| (graph neighbor loss) ensures that nodes
connected by edges obtain similar representation vectors, whereas the third compo-
nent ∑︀𝑛

𝑖=1
∑︀

𝑗: 𝑣𝑗∈𝒩X(𝑣𝑖)
‖z*

𝑖 −z*
𝑗 ‖2

|𝒩X(𝑣𝑖)| (attribute neighbor loss) moves representation vectors
of nodes with similar attributes closer together.

Experiments on four real-world benchmark datasets show that the representation
vectors obtained using GERF achieve better results in a node classification task compared
to: (1) purely structural embeddings, (2) naive approaches to fusing structural and
attribute information, (3) node representation learning methods designed for attributed
graphs.
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However, as mentioned above the proposed GERF method requires two hyperpa-
rameters 𝜆𝐺, 𝜆𝑋 to be defined, either by a grid search (that depending on the dataset
size and grid resolution might be time-consuming) or by means of expert knowledge.
Moreover, by a closer inspection of the objective function, one might claim that the
graph neighbor loss is redundant, as the information about the graph structure (edges)
is already encoded in the structural representation vectors. In the second article ([P5])
these issues were addressed.

In particular, an updated version of the model was introduced – GERF++. Its
objective function was simplified by removing the graph neighbor loss:

ℒ(Z*) = (1 − 𝜆𝑋)
𝑛∑︁

𝑖=1
‖z*

𝑖 − z𝑖‖2 + 𝜆𝑋

𝑛∑︁
𝑖=1

∑︁
𝑗: 𝑣𝑗∈𝒩X(𝑣𝑖)

‖z*
𝑖 − z*

𝑗‖2

|𝒩X(𝑣𝑖)|
, (2.6)

where all symbols are the same as in the original GERF model. Note that now, there is
only one hyperparameter 𝜆𝑋 . To address the second issue of finding the best value for
that hyperparameter, an estimation algorithm that is based on the Dirichlet-Multinomial
model was proposed. The idea is similar to the one utilized in the FILDNE framework,
but in this case, the classifier models are applied to the structural node representation
vectors and the node attributes, respectively. Based on the number of successful
classification attempts and the Maximum A Posteriori of the Dirichlet-Multinomial
model, the 𝜆𝑋 hyperparameter is computed. Therefore, the GERF++ model can be
applied to any dataset without the need to define hyperparameters.

In the experimental evaluation, the proposed model was not only evaluated in
the node classification task but also in a link prediction task. Again, the GERF++
method achieved the best performance compared to structural node representation
learning methods, naive fusion approaches, and node representation learning methods
for attributed graphs.
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Chapter 3

Conclusions

The studies conducted within this dissertation explored the realm of unsupervised
methods for representation learning of graphs. An in-depth literature review allowed
to identify a total of four research problems and gaps. Based on those, four research
objectives were defined and executed. The results are presented in five scientific articles,
published in high-impact journals, and a highly ranked conference. In particular, they
showed that:

• the utilization of the cross-correlation measure between node representation
vectors of two augmented views of a graph allowed to train a graph neural network
in a self-supervised manner without requiring negative samples, such that the
embeddings achieved analogous quality to state-of-the-art methods but converging
in significantly fewer training iterations,

• training a deep neural networks model using a compound loss function, consisting
of a contrastive learning objective and a feature reconstruction loss, allowed
building edge representation vectors that achieved better results in edge-related
downstream tasks than state-of-the-art methods and did not require the calculation
of source and target node representations aggregations,

• node representation vectors for dynamic graphs can be obtained as a linear convex
combination of static embeddings with combination parameters estimated by a
Dirichlet-Multinomial model using the outcomes of an unsupervised link prediction
task; the resulting embeddings achieve competitive quality measure gains with
respect to the contemporary methods, and the method reduces memory and
computational time costs,
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• using a method based on a compound objective function, consisting of an invariance
loss and attribute neighbor loss, allows updating precomputed structural node
representation vectors with node attribute information, such that the resulting
embedding vectors achieve better results in downstream tasks than existing
attributed node representation learning methods.
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Chapter 4

Publications
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a b s t r a c t

The self-supervised learning (SSL) paradigm is an essential exploration area, which tries to eliminate
the need for expensive data labeling. Despite the great success of SSL methods in computer vision
and natural language processing, most of them employ contrastive learning objectives that require
negative samples, which are hard to define. This becomes even more challenging in the case of graphs
and is a bottleneck for achieving robust representations. To overcome such limitations, we propose a
framework for self-supervised graph representation learning — Graph Barlow Twins, which utilizes
a cross-correlation-based loss function instead of negative samples. Moreover, it does not rely on
non-symmetric neural network architectures — in contrast to state-of-the-art self-supervised graph
representation learning method BGRL. We show that our method achieves as competitive results as
the best self-supervised methods and fully supervised ones while requiring fewer hyperparameters
and substantially shorter computation time (ca. 30 times faster than BGRL).

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Graph representation learning has been intensively studied
for the last few years, having proposed various architectures and
layers, like GCN [1], GAT [2], GraphSAGE [3] etc. A substantial
part of these methods was introduced in the semi-supervised
learning paradigm, which requires the existence of expensive
labeled data (e.g. node labels or whole graph labels). To overcome
this, the research community has been exploring unsupervised
learning methods for graphs. This resulted in a variety of different
approaches including: shallow ones (DeepWalk [4], Node2vec [5],
LINE [6]) that ignore the feature attribute richness, focusing only
on the structural graph information; and graph neural network
methods (DGI [7], GAE, VGAE [8]) that build representations upon
node or graph features, achieving state-of-the-art performance in
those days.

Recently self-supervised paradigm is the most emerging
branch of unsupervised graph representation learning and gath-
ers current interest and strenuous research effort towards better
results. The most prominent methods were developed around
the contrastive learning approach, such as GCA [9], GraphCL [10],
GRACE [11] or DGI [7]. Although contrastive methods are popular
in many machine learning areas, including computer vision and
natural language processing, their fundamental limitation is the

∗ Corresponding author.
E-mail address: tomasz.kajdanowicz@pwr.edu.pl (T. Kajdanowicz).

need for negative samples. Consequently, the sampling procedure
for negative examples highly affects the overall quality of the
embeddings. In terms of images or texts, the definition of neg-
ative samples might seem not that problematic, but in the case
of graphs there is no clear intuition. For instance, what is the
negative counterpart for a particular node in the graph, should
it be a node that is not a direct neighbor, or a node that is in a
different graph component? There are multiple options available,
but the right choice strictly dependent on the downstream task.

Researchers have already tackled the problem of building so-
called negative-sample-free methods. In research being conducted
in computer vision they obtained successful results with methods
such as BYOL [12], SimSiam [13] or Barlow Twins [14]. These
models utilize siamese network architectures with various tech-
niques, like gradient stopping, asymmetry or batch and layer
normalizations, to prevent collapsing to trivial solutions. Based on
BYOL, [15] proposed the Bootstrapped Representation Learning
on Graphs (BGRL) framework. It utilizes two graph encoders:
an online and a target one. The former one passes the embed-
ding vectors to a predictor network, which tries to predict the
embeddings from the target encoder. The loss is measured as
the cosine similarity and the gradient is backpropagated only
through the online network (gradient stopping mechanism). The
target encoder is updated using an exponential moving aver-
age of the online encoder weights. Such setup has been shown
to produce graph representation vectors that achieve state-of-
the-art performance in node classification using various bench-
mark datasets. Notwithstanding, assuming asymmetry between

https://doi.org/10.1016/j.knosys.2022.109631
0950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the network twins (such as the predictor network, gradient stop-
ping, and a moving average on the weight updates) the method
is conceptually complex.

Employing a symmetric network architecture would seem
more intuitive and reasonable, hence in this paper, we propose
Graph Barlow Twins (G-BT), a self-supervised graph representa-
tion learning framework, which computes the embeddings cross-
correlation matrix of two distorted views of a single graph. The
approach was firstly introduced in image representation learning
as the Barlow Twins model [14] but was not able to handle
graphs. The utilized network architecture is fully symmetric and
does not need any special techniques to build non trivial em-
bedding vectors. The distorted graph views are passed through
the same encoder which is trained using the backpropagated
gradients (in a symmetrical manner).

Our approach differs from previous application of Barlow
Twins cost function in terms of: pivoting the Barlow Twins loss
on graph data and selection of appropriate encoder for such
case, data augmentation functions (and their hyperparameters),
simplified part of neural network structure that is not necessary
to apply in graph case, and provided experimental results for the
batched scenario.

Our main contributions can be summarized as follows:

1. We propose a self-supervised graph representation learn-
ing framework Graph Barlow Twins. It is built upon the
recently proposed Barlow Twins loss, which utilizes the
embedding cross-correlation matrix of two distorted views
of a graph to optimize the representation vectors. Our
framework neither requires using negative samples (op-
posed to most other self-supervised approaches) nor it
introduces any kind of asymmetry in the network ar-
chitecture (like state-of-the-art BGRL). Moreover, our ar-
chitecture is converges substantially faster than all other
state-of-the-art methods.

2. We evaluate our framework in node classification tasks:
(1) for 5 smaller benchmark datasets in a transductive
setting, (2) using the ogb-arxiv dataset from the Open
Graph Benchmark (also in the transductive setting), (3)
for multiple graphs in the inductive setting using the PPI
(Protein–Protein Interaction) dataset, and finally (4) for
the large-scale graph dataset ogb-products in the inductive
setting. We use both GCN-based encoders as well as a GAT-
based one. We observe that our method achieves analogous
results compared to state-of-the-art methods.

3. We ensure reproducibility by making the code of both our
models as well as experimental pipeline available: https:
//github.com/pbielak/graph-barlow-twins.

2. Related works

Self-supervised learning. The idea of self-supervised learning (SSL)
has a long history. Introduced in the early work of Schmidhu-
ber [16] has more than 30 years of exploration and research
now. Recently self-supervised learning was again rediscovered
and found a broad interest, especially in computer vision and
natural language processing. One of the most prominent SSL
methods for image representation learning, Bootstrap Your Own
Latent, BYOL [12], performs on par or better than the current state
of the art on both transfer and semi-supervised benchmarks. It
relies on two neural networks that interact and learn from each
other. From an augmented view of an image, it trains the first one
to predict the target network representation of the same image
under a different view. At the same time, it updates the second
network with a slow-moving average of the first network. An-
other approach to image representation SSL implements simple
siamese networks, namely SimSiam [13]. It achieves comparative

results while not demanding negative samples, large batches, nor
momentum encoders. Authors emphasize collapsing solutions for
the loss and structure but show how a stop-gradient operation
plays an essential role in preventing it. Recent method, Barlow
Twins [14], advances the SSL field with a new objective function
that naturally avoids collapses by measuring the cross-correlation
matrix between the outputs of two twin, identical networks
fed with distorted versions of a sample, and makes it as close
to the identity matrix as possible. Representations of distorted
versions of samples are then expected to be similar, reducing
the redundancy between them. What differentiates the method
is that it does not require large batches or asymmetry between
the network twins. It outperforms previous methods on ImageNet
for semi-supervised classification.

Graph representation learning. Learning the representation also
spreads to other domains. The graph embedding problem has also
attracted much attention from the research community world-
wide in recent years. Plenty of methods have been developed,
each focused on a different aspect of network embeddings, such
as proximity, structure, attributes, learning paradigm or scal-
ability. There exist plenty of shallow methods, among others
DeepWalk [4], Node2vec [5] or LINE [6], that use a simple notion
of graph coding through random walks or on encoder–decoder
objectives that optimize first and second-order node similarity.
More complex graph neural networks, such as GCN [1] or Graph-
SAGE [3] implements the basic encoder algorithm with various
neighborhood aggregation. Following the extension, graph atten-
tion network GAT [2] leverages masked self-attentional layers
to address the shortcomings of graph convolutions and their
troublesome approximations.

Self-supervised graph representation learning. Inspired by the suc-
cess of contrastive methods in vision and NLP, the procedures
were also adapted to graphs. Early DGI [7] employs GNN to
learn node embeddings and obtains the graph embedding via a
readout function and maximizes the mutual information between
node embeddings and the graph embedding by discriminating
nodes in the original graph from nodes in a corrupted graph.
GCA [9] studied various augmentation procedures. GRACE [11]
creates two augmented versions of a graph, pulls together the
representation of the same node in both graphs, and pushes apart
representations of every other node. Recent GraphCL [10] method
is another example of representative approach using contrastive
learning. All the previous methods use negative sampling ap-
proaches for the embedding optimization, yet such setting has
a high complexity. To overcome this, BGRL [15] proposed to
use an approach that does not rely on negative samples. It uses
two kinds of encoder networks (online and target), introducing
a non-intuitive asymmetric pipeline architecture, but provides
state-of-the-art SSL results. Moreover, it relies on several tech-
niques to prevent trivial solutions (gradient stopping, momentum
encoder). A concurrent approach to BGRL is DGB [17].

3. Proposed framework

Motivated by the emerging self-supervised learning paradigm
and its recent applications in graph representation learning (BGRL
[15]), we propose Graph Barlow Twins— a framework that builds
node embeddings using a symmetric network architecture and an
empirical cross-correlation based loss function.

We start with an attributed graph G. Using carefully selected
augmentation functions ApX ,pA (·), we compute two augmented
versions of this graph, i.e., G(1) and G(2). Each time the augmenta-
tion function is applied, it yields a different graph version. This
is due the fact that it is performed using parameters sampled
according to pA and pX . Next, we apply the same encoder network
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Fig. 1. Overview of our proposed Graph Barlow Twins framework. We transform an input graph G using an augmentation function and obtain two views: G(1) and
G(2) . We pass both of them through the same GNN encoder fθ to compute two embedding matrices Z (1) , Z (2) . We build a loss function such that the embeddings’
empirical cross-correlation matrix C is optimized into the identity matrix.

(which is being pretrained using our proposed framework) on
both created graphs and obtain two node embedding matrices —
Z (1) and Z (2). Finally, we compute the empirical cross-correlation
matrix C of these node embeddings and compute a loss func-
tion which forces the cross-correlation matrix to be as close
as possible to the identity matrix. The encoder is trained by
backpropagating the gradient of such loss function.

The overall pipeline of our framework is visually shown in
Fig. 1, and the precise algorithm is presented in Algorithm 1. Let
us now describe each framework step in detail:

Algorithm 1: Graph Barlow Twins training
Input: attributed graph G,
augmentation function ApX ,pA (·),
encoder network fθ (·),
number of epochs N ,
learning rate η

Output: trained encoder network fθ
1 for i← 1 to N do

// Generating graph views via augmentation
2 G(1)

← ApX ,pA (G) // Eq. (1)
3 G(2)

← ApX ,pA (G) // Eq. (1)
4

// Computing node embeddings
5 Z (1)

← fθ (G(1))
6 Z (2)

← fθ (G(2))
7

// Loss function
8 C← cross-correlation(Z (1), Z (2)) // Eq. (2)
9

// Optimizing encoder weights
10 θ ← θ − η ∂

∂θ
LBT (C) // Eq. (3)

11 end

Graph data. We represent a graph G with nodes V and edges E as
the tuple: (X, A), where X ∈ R|V|×k is the node feature matrix and
k is the feature dimensionality; A ∈ {0, 1}|V|×|V| is the adjacency
matrix, such that Ai,j = 1 iff (i, j) ∈ E . In the general case, a graph
could also have associated edge features or graph level features,
but for simplicity we omit those here. Nevertheless, these could

also be used in our framework, as long as the encoder can make
use of such features.

Generating graph views via augmentation. Following other works
[9–11,15], we select two kinds of augmentations – edge dropping
and node feature masking – and generate two views of the input
graph G(1) and G(2) (see Eq. (1)). In the edge dropping case ApA (A),
we remove edges according to a generated mask of size |E|
(number of edges in the graph) with elements sampled from
the Bernoulli distribution B(1 − pA), where pA is the probability
of dropping an edge. When it comes to masking node features
ApX (X), we employ a similar scheme and generate a mask of size
k also sampled from the Bernoulli distribution B(1 − pX ), where
pX is the probability of masking features at nodes. Note that we
mask node features at the scale of the whole graph, i.e. the same
features are masked for each node. Other works apply different
augmentation parameters pX , pA for each generated view, but as
our framework is fully symmetrical, we postulate that it is enough
to use the same parameters to generate both augmentations (see
Section 5.1).

ApX ,pA (G) := (ApX (X),ApA (A)) (1)

Encoder network for node embeddings. The main component of
the proposed framework is the encoder network fθ : G→ R|V|×d.
It takes an augmented graph as the input and computes (in our
case) a d-dimensional representation vector for each node in
the graph. Note that we do not specify any particular encoder
network and one may use even encoders that construct embed-
dings for edges or whole graphs. In our experiments, we will
show the application of GCN [1] and GAT [2] based encoder net-
works. Both augmented graph views G(1), G(2) are passed through
the same encoder, resulting in two embedding matrices Z (1) and
Z (2), respectively. The original Barlow Twins method specified
also a projector network (implemented as an MLP) to reduce
high embedding dimensionality (of the ResNet encoder). Our ap-
proach eliminates that step as it uses GNNs with low dimensional
embeddings.

Loss function. In our work, we propose to use a negative-sample-
free loss function to train the encoder network. We first normalize
the embedding matrices Z (1) and Z (2) along the batch dimension
(a mean of zero and a standard deviation equal to one), and then
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we compute the empirical cross-correlation matrix C ∈ Rd×d:

Cij =
∑

b Z
(1)
b,i Z

(2)
b,j√∑

b(Z
(1)
b,i )2

√∑
b(Z

(2)
b,j )2

, (2)

where b are the batch indexes and i, j are the indexes of em-
beddings. Such setting was originally proposed under the name
Barlow Twins. Neuroscientist H. Barlow’s redundancy-reduction
principle has motivated many methods both in supervised and
unsupervised learning [18–20]. Recently, [14] has employed this
principle to build a self-supervised image representation learning
algorithm (we bring this idea to the domain of graph-structured
data).

The cross-correlation matrix C is optimized by the Barlow
Twins loss function LBT (see Eq. (3)) to be equal to the identity
matrix. The loss is composed of two parts: (I) the invariance term
and (II) the redundancy reduction term. The first one forces the
on diagonal elements Cii to be equal to one, hence making the
embeddings invariant to the applied augmentations. The second
term optimizes the off-diagonal elements Cij to be equal to zero
— this results in decorrelated components of the embedding
vectors.

LBT =
∑

i

(1− Cii)2 + λ
∑

i

∑
j̸=i

Cij2 (3)

The λ > 0 parameter defines the trade-off between the
invariance and redundancy reduction terms when optimizing the
overall loss function. In [21], the authors proposed to use λ = 1

d ,
which we employ in our experimental setting (see Section 5.3).
Otherwise, one can perform a simple grid search to find the best
λ value in a particular experiment.

Please note, that in such setting the gradient is symmetrically
backpropagated through the encoder network. We do not rely on
any special techniques, like momentum encoders, gradient stop-
ping, or predictor networks. In preliminary experiments, we also
investigated the Hilbert–Schmidt Independence Criterion (due to
its relation to the Barlow Twins objective [21]), but we did not
observe any performance gain.

4. Experiments

We evaluate the performance of our model using a variety
of popular benchmark datasets, including smaller ones, such as
WikiCS, Amazon-Photo or Coauthor-CS, as well as larger ones,
such as ogb-arxiv, ogb-products, provided by the Open Graph
Benchmark [22]. In this section, we will provide an overview of
the utilized datasets and the experimental scenario details, as
well as the discussion of the results. Overall, we use a similar
experimental setup, as the state-of-the-art self-supervised graph
representation learning method BGRL [15], so we can perform a
fair comparison to this method. To track our experiments and
provide a simple way for reproduction, we employ the Data
Version Control tool (DVC [23]) - for details see Appendix D. We
perform all experiments on a TITAN RTX GPU with 24 GB RAM.

4.1. Datasets

Following, we provide brief descriptions for each dataset, in-
cluding the basic statistics (see Table 1) and the examined dataset
split type for the node classification downstream task:

• WikiCS [24] is a network of Computer Science related
Wikipedia articles with edges denoting references between
those articles. Each article belongs to one of 10 subfields
(classes) and has features computed as averaged GloVe
embeddings of the article content. We use the provided 20
train/val/test data splits without any modifications.

Table 1
Dataset statistics. We use small to medium sized standard datasets together
with the larger ogb-arxiv dataset in the transductive setting. We also evaluate
the inductive setting using the ogb-products and PPI (multiple graphs) dataset.
Name Nodes Edges Features Classes

WikiCS 11,701 216,123 300 10
Amazon Computers 13,752 245,861 767 10
Amazon Photos 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6805 15
Coauthor Physics 34,493 247,962 8415 5

ogb-arxiv 169,343 1,166,243 128 40

PPI (24 graphs) 56,944 818,716 50 121 (multilabel)
ogb-products 2,449,029 61,859,140 100 47

• Amazon Computers, Amazon Photos [25] are two net-
works extracted from Amazon’s co-purchase data. Nodes are
products and edges denote that these products were often
bought together. Each product is described using a Bag-of-
Words representation (node features) based on the reviews.
There are 10 and 8 product categories (node classes), respec-
tively. For these datasets there are no data splits available, so
similar to BGRL, we generate 20 random train/val/test splits
(10%/10%/80%).
• Coauthor CS, Coauthor Physics are two networks extracted

from the Microsoft Academic Graph [26]. Node are authors
and edges denote a collaboration of two authors. Each au-
thor is described by the keywords used in their articles
(Bag-of-Words representation; node features). There are 15
and 5 author research fields (node classes), respectively.
Similarly to the Amazon datasets there are no data splits
provided, so we generate 20 random train/val/test splits
(10%/10%/80%).
• ogb-arxiv is a larger graph from the Open Graph Bench-

mark [22] with about 170 thousand nodes and about 1.1
million edges. The graph was extracted from the Microsoft
Academic Graph [26], where nodes represents a Computer
Science article on the arXiv platform and edges denote cita-
tions across papers. The node features are build as word2vec
embeddings of the whole article content. There are 40 sub-
ject areas a node can be classified into (node label/class). The
ogb-arxiv dataset provides a single train/val/test split, so we
use it without any modifications, but we retrain the whole
framework 20 times.
• Protein–Protein Interaction (PPI) [27] consists of 24 sepa-

rate graphs. Each node in a single graph represents a protein,
described by 50 biological features, and edges denote inter-
actions among those proteins. There are 121 node labels,
but note that contrary to other cases, PPI uses multilabel
classification, i.e. a single protein can be assigned with mul-
tiple labels. Aligned with other methods, we provide results
in terms of the Micro-F1 score. For PPI, there exists a pre-
defined data split, where 20 graphs are used for training,
2 graphs for validation and 2 graphs for testing. Note that
the validation and test graphs are completely unobserved
during training time, hence the model is more challenged
during inference time.
• ogn-products is a large-scale graph from the Open Graph

Benchmark [22] with about 2.4 million nodes and 62 million
edges. The graph was extracted from the Amazon product
co-purchasing network. Nodes represent products from the
Amazon store and edges denote whether two products were
bought together. There are 100 node features, which are
obtained from bag-of-words products descriptions reduced
using PCA. Each product (node) can be classified into one
of 47 categories (node labels). This dataset comes with a
predefined data split, so we use as is.
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Table 2
Mean and std accuracy of transductive node classification over 20 data splits and initializations obtained in BGRL paper [15] and
our experiment (∗) within the same experimental setup. OOM denotes running out of memory on a 16GB V100 GPU.

WikiCS Am-CS Am-Photo Co-CS Co-Physics

Raw features 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
DeepWalk 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
DeepWalk + fts 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09

DGI 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
MVGRL 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03

GRACE (10k epochs) 80.14 ± 0.48 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM
BGRL (10k epochs) 79.36 ± 0.53 89.68 ± 0.31 92.87 ± 0.27 93.21 ± 0.18 95.56 ± 0.12

G-BT∗ (≤1k epochs) 76.65 ± 0.62 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17
BGRL∗ (1k epochs) 73.24 ± 0.62 87.37 ± 0.40 91.77 ± 0.57 92.07 ± 0.06 OOM∗

GCA 78.35 ± 0.05 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03
Supervised GCN 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

4.2. Evaluation protocol

Self-supervised framework training. We start the evaluation pro-
cedure by training the encoder networks using our proposed
Graph Barlow Twins framework. In all scenarios, we use the
AdamW optimizer [28] with weight decay equal to 10−5. The
learning rate is updated using a cosine annealing strategy with
a linear warmup period. Our framework uses a single set of aug-
mentation parameters for both graph views. Therefore we do not
use reported values of these parameters from other publications
that use two different sets. Instead we perform a grid search
over the range: pA, pX : {0, 0.1, . . . , 0.5} for 500 epochs with a
warmup time of 50 epochs. We implement our experiment using
the PyTorch Geometric [29] library. All datasets are available in
this library as well. The details about the used augmentation
hyperparameters, node embedding dimensions and the encoder
architecture are given in Appendices A and C.

Node embedding evaluation. We follow the linear evaluation pro-
tocol proposed by [7]. We use the trained encoder network, freeze
the weights and extract the node embeddings for the original
graph data without any augmentations. Next, we train a L2-
regularized logistic regression classifier from the Scikit learn [30]
library. We also perform a grid search over the regularization
strength using following values: {2−10, 2−9, . . . , 29, 210

}. In the
case of the larger ogb-arxiv, ogb-products and the PPI datasets,
the Scikit implementation takes too long to converge. Hence,
we implement the logistic regression classifier in PyTorch and
optimize it for 1000 steps using the AdamW optimizer. We
check various weight decay values using a smaller grid search:
{2−10, 2−8, . . . , 28, 210

}. We use these classifiers to compute the
classification accuracy and report mean and standard deviations
over 20 model initializations and splits, except for the ogb-arxiv,
ogb-products and PPI datasets, where we there is only one data
split provided — we only re-initialize the model weights 20 times
(5 times for ogb-products due to long training time).

4.3. Transductive experiments

We evaluate and compare our framework to other graph rep-
resentation learning approaches on 6 real-world datasets using
the transductive setting. The whole graph including all the node
features is observed during the encoder training. The node labels
(classes) are hidden at that moment (unsupervised learning).
Next, we use the frozen embeddings and labels of training nodes
to train the logistic regression classifier.

4.3.1. Small and medium sizes benchmark datasets
Our first experiment uses 5 small and medium sized pop-

ular benchmark datasets, namely: WikiCS, Amazon Computers,
Amazon Photos, Coauthor CS and Coauthor Physics.

Encoder model. Similarly to [15], we build our encoder fθ as a
2-layer GCN [1] network. After the first GCN layer we apply a
batch normalization layer (with momentum equal to 0.01) and
the PReLU activation function. Accordingly to the original Barlow
Twins method, we do not apply any normalization or activation to
the final layer. A graph convolution layer (GCN) uses the diagonal
degree matrix D to apply a symmetrical normalization to the
adjacency matrix with added self-loops Â = A + I. Hence the
propagation rule of such layer is defined as follows:

GCN(X, A) = D̂−
1
2 ÂD̂−

1
2 XW (4)

Note that we do not include the activation σ (·) in this definition,
as we first apply the batch normalization and then the activation
function.

Results and discussion. We train our framework for a total of 1000
epochs, but we observe that our model converges earlier at about
500–900 epochs (depending on the dataset; see Appendix B).
This is significantly faster than the state-of-the-art method BGRL,
which converges and reports results for 10 000 epochs. Addition-
ally, we reproduce the results of BGRL and provide values for
BGRL at 1000 epochs. In Table 2 we report the mean node classi-
fication accuracy along with the standard deviations. As our ex-
perimental scenario was aligned with BGRL one, we re-use their
reported scores and compare them to our results. We observe that
our proposed method outperforms other baselines and achieves
comparable results to state-of-the-art methods. Moreover, our
G-BT model outperforms BGRL at 1000 epochs.

4.3.2. ogb-arxiv dataset
In the next experiment, we use ogb-arxiv — a larger graph

from the Open Graph Benchmark [22] with about 170 thousand
nodes and about 1.1 million edges.

Encoder model. Due to the larger size of the graph, we extend the
encoder fθ to a 3-layer GCN model. We employ batch normaliza-
tion and PReLU activations after the first and second layer, leaving
the final layer as is (i.e. without any activation of normalization).
In the BGRL paper, the authors suggested to use layer normal-
ization together with weight standardization [31], yet we did not
observe any performance gain, but more importantly the training
procedure was unstable, with many peaks in the loss function.

Results and discussion. In Table 3 we report the mean classifica-
tion accuracy along with the standard deviations. Note that we
provide values for both validation and test splits, as the provided
data splits are build according to chronological order. Hence, any
model will be more affected with the out-of-distribution error
on further (in time) away data samples. We evaluate our model
for 500 epochs but it converges as fast as about 300–400 epochs
(further training did not give any improvements). The model
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Table 3
Mean and std accuracy of transductive node classification the ogb-arxiv dataset
over 20 data splits and initializations obtained in BGRL paper [15] and our
experiment (∗) within the same experimental setup.

Validation Test

MLP 57.65 ± 0.12 55.50 ± 0.23
node2vec 71.29 ± 0.13 70.07 ± 0.13

DGI 71.26 ± 0.11 70.34 ± 0.16
GRACE (10k epochs) 72.61 ± 0.15 71.51 ± 0.11
BGRL (10k epochs) 72.53 ± 0.09 71.64 ± 0.12

G-BT∗ (300 epochs) 71.16 ± 0.14 70.12 ± 0.18

Supervised GCN 73.00 ± 0.17 71.74 ± 0.29

achieves results which are only 1.5 pp off to the state-of-the-art
method BGRL, which in turn takes 10 000 epochs to converge to
such solution.

4.4. Inductive experiments

We evaluate our proposed G-BT framework in inductive tasks
over a single and multiple graphs.

4.4.1. PPI
For the inductive learning case with multiple graphs, we em-

ploy the Protein–Protein Interaction (PPI) dataset [27]. Aligned
with other methods, we provide results for multilabel node clas-
sification in terms of the Micro-F1 score.

Encoder model. We employ a Graph Attention (GAT) [2] based
encoder model, as previous works have shown better results of
such network compared to standard GCN layers on PPI. Specifi-
cally, we build our encoder fθ as a 3-layer GAT network with skip
connections. The first and second layer uses 4 attention heads
of size 256 which are concatenated, and the final layer uses 6
attention heads of size 512, whose outputs are averaged instead
of applying concatenation. In the GAT model, an attention mech-
anism learns the weights that are used to aggregate information
from neighboring nodes. The attention weights αij are computed
according to the following equation:

αij =
exp

(
LeakyReLU

(
aT

[
Whi ∥ Whj

]))∑
k∈Ni

exp
(
LeakyReLU

(
aT [Whi ∥ Whk]

)) (5)

where Ni are the neighbors of node i, W is a trainable matrix to
transform node attributes, a is the trainable attention matrix, and
∥ denotes the concatenation operation.

We use the ELU activation for the first and second layer,
leaving the last layer without any activation function. We do not
apply any normalization techniques in the model as preliminary
experiments showed no performance improvement.

Results and discussion. We train our framework using a batch size
of 1 graph for a total of 500 epochs, which turned out to be
enough for the model to converge (we conducted some prelimi-
nary experiments). In Table 4, we report the mean Micro-F1 score
along with the standard deviations over 20 model initialization,
as this dataset provided only one data split. Training for only 500
epochs provided results on par with SOTA method – BGRL – our
model achieves 70.49 using a GAT encoder.

4.4.2. ogb-products
We study the applicability of our proposed model in the case

of large-scale graphs. We select the ogb-products dataset, which
has about 2.5 million nodes and 61 million edges.

Table 4
Mean and std Micro-F1 of multilabel node classification the PPI dataset over
20 model initializations obtained in BGRL paper [15] and our experiment (∗)
within the same experimental setup.

PPI (test set)
Raw features 42.20

DGI 63.80 ± 0.20
GMI 65.00 ± 0.02
GRACE 66.20 ± 0.10

GRACE GAT encoder (1k epochs) 69.71 ± 0.17
BGRL GAT encoder (1k epochs) 70.49 ± 0.05

G-BT∗ (500 epochs) 70.49 ± 0.19

Supervised GAT 97.30 ± 0.20

Table 5
Mean and std accuracy of inductive node classification on the ogb-products
dataset over 5 model initializations obtained in the OGB leaderboard and our
experiment (∗) within the same experimental setup.

Validation Test

Features∗ 63.18 ± 0.01 50.93 ± 0.01
DeepWalk∗ 87.42 ± 0.09 73.11 ± 0.44
DeepWalk + fts∗ 87.84 ± 0.09 73.38 ± 0.11

BGRL∗ (100 epochs) 78.06 ± 2.12 63.97 ± 1.62

G-BT∗ (100 epochs) 85.04 ± 0.23 70.46 ± 0.38

Supervised GCN 92.00 ± 0.03 75.64 ± 0.21

Encoder model and setup. We utilize the same GAT-based encoder
as for PPI. Due to the size of this dataset and the resulting
training time, we decide to perform inductive node classification,
i.e., during training we use only the nodes from the training set
and edges among them. Moreover, as this graph does not fit
into GPU memory, we selected a batched setting with neighbor
sampling (as proposed in [3]) instead of the full-batch scenario.
We train our model with a batch size of 512 for 100 epochs.

Results and discussion. BGRL does not report results for this
dataset, so we modify the implementation of the BGRL method
to accept batches instead of whole graphs and evaluate it on
this dataset. We also include results from the OGB leaderboard,
but note that virtually all methods reported there are trained in
a semi-supervised setting, contrary to our approach in the self-
supervised setting. Therefore, we may expect worse results. We
summarize the mean and std node classification accuracy values
in Table 5. We observe that G-BT highly outperforms BGRL on
both validation and test sets.

4.5. Training time comparison

We compare the training time of all considered models by the
duration of single epoch (the evaluation phase is the same in all
models). We run each model for 10 training epochs and report the
mean and standard deviation of the time measurements (Table 6).
In virtually all cases our model takes the least time for a single
training iteration due to the simple symmetrical architecture.
Compared to BGRL our method speeds up computations about
17–42 times.

4.6. Batched processing

Our proposed method allows working in both full-batch and
mini-batch settings. For most considered datasets, splitting them
up into batches is not required as these fit completely into
the GPU’s memory. Nevertheless, we run additional experiments
where we train our G-BT model on these datasets in a batched
manner. Batches are created using neighbor sampling, i.e. for a
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Table 6
Single epoch running time (in seconds) averaged over 10 training epochs.

WikiCS Am-CS Am-Photo Co-CS Co-Phy

DeepWalk 0.83 ± 0.02 0.96 ± 0.02 0.62 ± 0.02 1.22 ± 0.03 2.25 ± 0.03
DGI 0.06 ± 0.03 0.09 ± 0.00 0.05 ± 0.00 0.19 ± 0.00 0.50 ± 0.21
MVGRL OOM OOM OOM OOM OOM
GRACE 0.33 ± 0.10 0.43 ± 0.03 0.15 ± 0.01 OOM OOM

BGRL 0.12 ± 0.01 0.18 ± 0.01 0.08 ± 0.00 0.35 ± 0.01 OOM
Epochs | training time [s]: 10 000 | 1200 10 000 | 1800 10 000 | 800 10 000 | 3500 10 000 | –

G-BT 0.05 ± 0.00 0.07 ± 0.00 0.04 ± 0.00 0.22 ± 0.05 0.44 ± 0.01
Epochs | training time [s]: 900 | 45 600 | 42 500 | 20 900 | 198 900 | 396
Speedup (vs. BGRL): 26x 42x 40x 17x –

Table 7
Evaluation of G-BT model in batched setting.
Batch size WikiCS Am-CS Am-Photo Co-CS Co-Phy

Full-batch 76.65 ± 0.62 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17

256 75.69 ± 1.02 87.93 ± 0.39 91.24 ± 0.46 91.82 ± 0.22 94.98 ± 0.14
512 75.83 ± 0.64 88.21 ± 0.44 91.21 ± 0.44 91.62 ± 0.22 94.95 ± 0.12
1024 75.79 ± 0.77 87.94 ± 0.50 91.24 ± 0.47 91.54 ± 0.31 94.91 ± 0.12
2048 75.58 ± 0.52 87.92 ± 0.29 91.21 ± 0.40 91.43 ± 0.28 94.84 ± 0.11

Fig. 2. Comparison of using the ‘‘Same’’ and ‘‘Different’’ augmentation hyperparameter sets.

k-layer encoder model, we sample the k-hop neighborhood of a
node. More specifically, we first subsample the direct neighbors,
then we sample neighbors of those, etc (as proposed in [3]). We
re-use the augmentation hyperparameter values and number of
epochs found in the full-batch case and retrain the G-BT model
for each batch size 5 times (Table 7). We observe an expected de-
crease in performance when using the batched scenario (subject
to further finetuning).

5. Ablation and hyperparameter sensitivity study

To gain a better understanding of our proposed method, we
conduct an ablation and hyperparameter sensitivity study. In
particular, we focus on the augmentation functions (types and
hyperparameters) and the encoder architectures.

5.1. Augmentation hyperparameter sets

In our model, we postulate to use the same augmentation
function hyperparameters to generate both graph views. This is
motivated by the symmetrical architecture of our model, and hy-
perparameter search complexity. Performing a simple grid search
over the value space yields in our case a total number of 62

= 36
evaluated combinations (values: {0, 0.1, . . . , 0.5}). In contrary,
usage of different parameter sets for both graph views, would
generate (62)2 = 1296 combinations, which can be further re-
duced by exploiting the symmetrical architecture, yielding a final
value of 630 =

(36
2

)
combinations to evaluate. To demonstrate

the impact of using both the same and different augmentation
hyperparameter value sets we provide the results in Fig. 2. There
is no substantial difference in terms of test accuracy.

5.2. Ablation study

For the ablation study, we examine the utilized augmenta-
tion functions and the encoder architectures. We considered four
literature-based configurations of augmentation functions [15]
and four encoders as following:

• for the augmentation functions:

– without any augmentation functions
– using only node feature masking
– using only edge dropping
– using both augmentation functions (node feature

masking and edge dropping) as in the original version
of our method

• for the encoder architectures:

– MLP-based encoder (in contrast to a graph neural net-
work) — a three-layer model with batch normaliza-
tion and PReLU activations after the first two layers,
whereas the output of the third linear layer is unmod-
ified (aligned with other models in our paper);

– one-layer GCN encoder — a single GCN layer without
any normalization or activation functions;

– two-layer GCN encoder — as in the original version of
our method;

– three-layer GCN encoder — the same architecture as
used for the ogb-arxiv dataset.

We conducted all the ablation study experiments with the WikiCS
dataset. We trained each model version for 1000 epochs (with

7
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Fig. 3. Visualization of the ablation study. We consider the two most important parts of our model: the augmentation functions and the encoder architecture. We
evaluate different settings and conclude that: (1) using both augmentation methods (node feature masking and edge dropping) at once, yields the best results, (2)
the two-layer GCN model works the best, whereas a deeper one (three layers) suffers from the oversmoothing issue.

100 warmup epochs). All the remaining hyperparameters were
borrowed from the best performing G-BT model on the WikiCS
dataset, as reported in our paper.

We visualize the influence of both the augmentation functions
and encoder architectures in Fig. 3. Let us notice that using both
augmentation functions provides the best results. However, using
only node feature masking already leads to decent results (1pp
difference; 75.9% acc). We conclude that node feature masking is
more expressive than edge dropping, as using only edge dropping
provides a smaller results boost (72% accuracy). Without any
augmentation functions, we observe a noticeably lower quality
(67% accuracy). In fact, no augmentation with large enough num-
ber of training epochs should result in very poor quality (the
representation collapses into a constant embedding).

For the encoder architectures, we notice that using the two-
layer GCNmodel (as evaluated in our main experimental pipeline)
leads to the best results. One might expect a larger model (three-
layer GCN) to work better, yet we observe a performance drop
when using such an encoder. This may be related to the over-
smoothing issue in Graph Neural Networks. The one-layer GCN is
also a reasonable choice in comparison to the two-layer model as
its accuracy is only 1.1pp worse than the baseline. Moreover, the
time and space complexity of deeper GNN models (two, three, . . . )
tend to explode in the case of highly dense graphs. Ignoring the
graph structure by using an MLP-based encoder leads to results
of about 68% accuracy.

5.3. Loss function trade-off parameter

The λ parameter in the loss function (see: Eq. (3)) controls
the trade-off between the invariance and redundancy reduction
term. We evaluate multiple choices for this parameter and report
the results in Fig. 4. We use a similar setup as in the ablation
study (see: Section 5.2) – i.e., we utilize the WikiCS dataset
and train a two-layer GCN encoder for 1000 epochs with 100
warmup epochs, whereas other hyperparameters (except the λ
parameter) are borrowed from the best performing G-BT model
on the WikiCS dataset. We evaluate the following values for
λ = {0, 0.001, 1

256 , 0.01, 0.1, 0.5, 1.0, 2.0}. Note that the value
λ = 1

d =
1

256 corresponds to the default choice used throughout
all our other experiments. Using this value was initially suggested
in [21]. Let us notice that the results in Fig. 4 show that our pro-
posed G-BT model achieves the best performance for exactly such
λ. Moreover, one can conclude that smaller values yield higher
performance than larger ones. In particular, when using λ = 1
(both invariance and redundancy reduction terms are equally
important) the performance deteriorates and settles at about 55%
accuracy, whereas using values smaller than 0.01 results in a
much better embeddings — about 75% accuracy.

5.4. Impact of projector network

In our proposed G-BT method, we omit the so-called projector
network, which was utilized in the original Barlow Twins method.
Its main purpose is to reduce high embedding dimensionality (of
the ResNet encoder), whereas in our approach that step is solved
by utilizing GNNs with low dimensional embeddings. We eval-
uate multiple choices of the projector network dimensionality
(including our base case with no projector network at all) and
report the results in Fig. 5. We use the same setup as previously,
namely in the ablation study (see: Section 5.2) and loss function
trade-off parameter study (see: Section 5.3) — i.e., we utilize
the WikiCS dataset and train a two-layer GCN encoder for 1000
epochs with 100 warmup epochs, whereas other hyperparame-
ters are borrowed from the best performing G-BT model on the
WikiCS dataset. We evaluate the following values for the pro-
jector dimensionality {128, 256, . . . , 8192, 16348}. We did not
observe any significant differences in the model performance,
regardless of whether we employ a projector network or we omit
it completely. We performed a Friedman test and the computed
p-value confirmed our observation.

6. Conclusions

In this work we presented Graph Barlow Twins, a
self-supervised graph representation learning framework, which
utilizes the embeddings’ cross-correlation matrix computed from
two distorted views of a particular graph. The framework is
fully symmetric and does not need any special techniques to
build non trivial embedding vectors. It builds representations
that are invariant to the applied augmentations and reduces the
redundancy in the representation vectors by enforcing the cross-
correlation matrix to be equal to the identity matrix (Barlow
Twins loss). Using 8 real-world datasets we evaluate our model
in node classification tasks, both transductive and inductive, and
achieve results that are on par or better than SOTA methods in
SSL graph representation learning. We also show that our model
converges an order of magnitude faster than other approaches.

Overall, our method allows to reduce the computation cost
(faster convergence) while keeping a decent performance in
downstream tasks. Consequently, it can be used to process larger
graph datasets and efficiently perform tasks such as node classi-
fication, link prediction or graph classification. These tasks have
crucial impact on various machine learning areas where graph
structured data is used, e.g. detection of bots or hate speech
in social networks, or building graph based recommendation
engines.
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Fig. 4. Evaluation of the impact of the loss function’s λ parameter on the overall model performance. The more the redundancy reduction term is present, the lower
the accuracy is. Empirically the best performing contribution is for λ = 1

d , where d is the dimensionality of the embedding vectors.

Fig. 5. Evaluation of the impact of the projector output dimensionality on the overall model performance. We performed a Friedman test and confirmed that the
results are not significantly different.

Further studies can address the utilization of other negative-
sample free approaches and applications of the proposed model
in further graph-related tasks, such as link prediction or graph
classification, and extensions to other types of data that are more
specific than graphs (e.g., texts, tabular data).
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Appendix A. Augmentation hyperparameters

Our proposed framework uses a single pair of augmentation
hyperparameters pA ∈ R, pX ∈ R compared to other methods
that use different values to generate both graph views. We show
that a single set is enough to achieve a decent performance in a
symmetrical network architecture like ours. Therefore, we cannot
use the reported values of other works. We instead perform a
grid search over these hyperparameters and use those where the
model performs the best (in terms of classification accuracy or
Micro-F1 score, for PPI). We do not evaluate the model during
training and just use the final version after training. We use the
following setting:

• the framework is trained for 500 epochs,
• we set the learning rate warmup time to 50 epochs,
• for both hyperparameters pA and pX we check following

values: {0, 0.1, . . . , 0.5}.

For values greater than 0.5 the augmentation removes too much
information from the graph. In the case of the ogb-products
dataset, due to its large size, we trained our model only for 10
epochs with a warmup period of 2 epochs, but we evaluated the
same augmentation hyperparameter values. We summarize the
augmentation hyperparameters of the best performing models in
Table A.8.

Appendix B. Training setup

For all datasets, we train our framework using the AdamW [28]
optimizer with a weight decay of 10−5. The learning rate is
adjusted using a cosine annealing strategy with a linear warmup
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Table A.8
Augmentation hyperparameters. Ogb-products was trained in the batched setting
with a batch size of 512.

G-BT

pA pX
WikiCS 0.2 0.1
Amazon-CS 0.4 0.1
Amazon-Photo 0.0 0.5
Coauthor-CS 0.5 0.1
Coauthor-Physics 0.1 0.4

ogb-arxiv 0.2 0.0

PPI 0.1 0.1
ogb-products∗ 0.2 0.1

period up to the base learning rate. During training we set a
total number of epochs and an evaluation interval, after which
the frozen embeddings are evaluated in downstream tasks (using
either the l2 regularized logistic regression from Scikit learn [30]
with liblinear solver, or the custom PyTorch version with AdamW
for ogb-arxiv and PPI). For instance, if we set the total number
of epochs to 1000 and the evaluation interval to 500, the model
will be evaluated at epochs: 0, 500 and 1000 (three times in
total). We report the values for the best performing model found
during those evaluations. We summarize these training statistics
in Table B.9.

Appendix C. Encoder architecture

We compare our framework against the state-of-the-art self-
supervised graph representation learning method BGRL [15]. To
provide a fair comparison, we use similar encoder architectures
to the ones presented in their paper. We do not use any predictor
networks in our framework, so we need to slightly modify the
encoders to be better suited for the loss function (as given in the
Barlow Twins paper [14]), i.e. we do not apply any normalization
(like batch or layer normalization) or activation function in the
final layers of the encoder. Note that the lack of predictor network
and batch normalization in the final layer, reduces the overall
number of trainable network parameters. In all cases, we use a
batch normalization with the momentum equal to 0.01 (as in
BGRL [15], where they use the equivalent weight decay equal to
0.99).

For the small up to medium sized datasets, i.e. WikiCS,
Amazon-CS, Amazon-Photo, Coauthor-CS, Coauthor-Physics, we
use a 2-layer GCN [1] based encoder with the following archi-
tecture:

• GCN(k, 2d),
• BatchNorm(2d),
• PReLU(),
• GCN(2d, d),

where k is the number of node features and d is the embedding
vector size.

For the ogb-arxiv dataset, we use a slightly larger model —
a 3-layer GCN [1] based encoder. We tried to utilize weight
standardization [31] and layer normalization, but our model did
not benefit from those techniques (as it helped in BGRL [15]).
The training procedure under this setting was unstable with
various fluctuations and peaking of the loss function. The final
architecture is summarized as follows:

• GCN(k, d),
• BatchNorm(d),
• PReLU(),
• GCN(d, d),
• BatchNorm(d),

• PReLU(),
• GCN(d, d).

In the inductive experiment with the PPI dataset, we use
a 3-layer GAT [2] based encoder. Graph Attention network are
known to perform better on this dataset compared to GCNs. This
was also showed in BGRL [15], where their approach with GAT
layers provided state-of-the-art performance in self-supervised
graph representation learning for PPI. Our architecture can be
summarized as follows:

• GAT(k, 256, heads = 4) + Linear(k, 4 ∗ 256)
• ELU(),
• GAT(4 ∗ 256, 256, heads = 4) + Linear(4 ∗ 256, 4 ∗ 256)
• ELU(),
• GAT(4 ∗ 256, d, heads = 6) + Linear(4 ∗ 256, d)

The outputs of the attention heads in the first and second layer
are concatenated and for the last GAT layer, the attention heads
outputs are averaged. In every layer, we utilize skip connec-
tions using linear layers to project the outputs of the previ-
ous layer (features in the case of the first layer) to the desired
dimensionality.

The exact values for the input feature dimension k and the
embedding dimension d are given in Table C.10.

Appendix D. Code and reproducibility

We implement all our models using the PyTorch-Geometric
library [29]. The experimental pipeline is built using the Data
Version Control tool (DVC [23]). It enables to run all experiments
in a single command and ensure better reproducibility. We attach
the code available at https://github.com/pbielak/graph-barlow-
twins. To reproduce the whole pipeline run: dvc repro and to
execute a single stage use: dvc repro <stage name>. There are
following stages:

• preprocess_dataset@<dataset_name> — downloads
the <dataset_name> dataset; if applicable, generates the
node splits for train/val/test,
• full_batch_hps@<dataset_name> — runs the augmen-

tation hyperparameter search for a given dataset in the
full-batch case,
• full_batch_train@<dataset_name>,
batched_train@<dataset_name> — trains and evaluates
the G-BT model for a given dataset in the full-batch case and
the batched scenario, respectively,
• batched_hps_ogbn_products — runs the augmentation

hyperparameter search for the ogb-products dataset in the
batched scenario,
• batched_train_ogbn_products — trains and evaluated

the G-BT model for the ogb-products dataset in the batched
scenario,
• compare_augmentation_hyperparameter_sets— loads

all full-batch augmentation hyperparameter results, com-
pares the case when using the same or different sets of
hyperparameters to generate both graph views (outputs
Fig. 2),
• compare_running_times — computes the average run-

ning time of a training epoch for the following methods:
DeepWalk, DGI, MVGRL, GRACE, BGRL and G-BT,
• train_bgrl_full_batch@<dataset_name>— trains and

evaluates the BGRL model in the full-batch case for WikiCS,
Amazon-CS, Amazon-Photo, and Coauthor-CS,
• bgrl_hps_batched@ogbn-products — runs the augmen-

tation hyperparameter search for BGRL using the
ogb-products dataset,
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Table B.9
Training hyperparameters.

G-BT

Total epochs Warmup Evaluation interval Base learning rate Best model found at

WikiCS 1000 100 100 5 ∗ 10−4 900
Amazon-CS 1000 100 100 5 ∗ 10−4 600
Amazon-Photo 1000 100 100 1 ∗ 10−4 500
Coauthor-CS 1000 100 100 1 ∗ 10−5 900
Coauthor-Physics 1000 100 100 1 ∗ 10−5 900

ogb-arxiv 500 100 100 1 ∗ 10−3 300

PPI 500 50 100 5 ∗ 10−3 500
ogb-products 100 10 10 1 ∗ 10−3 100

Table C.10
Encoder layer size parameters.

G-BT

Number of Embedding
node features dimensionality
k d

WikiCS 300 256
Amazon-CS 767 128
Amazon-Photo 745 256
Coauthor-CS 6805 256
Coauthor-Physics 8415 128

ogb-arxiv 128 256

PPI 50 512
ogb-products 100 128

• bgrl_batched_train@ogbn-products— trains and eval-
uates the BGRL model for the ogb-products dataset,
• evaluate_features_products — evaluates the perfor-

mance of ogb-products’ raw node features,
• evaluate_deepwalk_products — evaluates the perfor-

mance of DeepWalk on the ogb-products dataset; addition-
ally the case of DeepWalk features concatenated with raw
node features is also evaluated.

All hyperparameters described in this Appendix are stored in
configuration files in the experiments/configs/ directory,
whereas the experimental Python scripts are placed in the ex-
periments/scripts/ directory.
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a b s t r a c t

Representation learning has overcome the often arduous and manual featurization of net-
works through (unsupervised) feature learning as it results in embeddings that can apply
to a variety of downstream learning tasks. The focus of representation learning on graphs
has focused mainly on shallow (node-centric) or deep (graph-based) learning approaches.
While there have been approaches that work on homogeneous and heterogeneous net-
works with multi-typed nodes and edges, there is a gap in learning edge representations.
This paper proposes a novel unsupervised inductive method called AttrE2Vec, which
learns a low-dimensional vector representation for edges in attributed networks. It system-
atically captures the topological proximity, attributes affinity, and feature similarity of
edges. Contrary to current advances in edge embedding research, our proposal extends
the body of methods providing representations for edges, capturing graph attributes in an
inductive and unsupervised manner. Experimental results show that, compared to contem-
porary approaches, ourmethod builds more powerful edge vector representations, reflected
by higher quality measures (AUC, accuracy) in downstream tasks as edge classification and
edge clustering. It is also confirmed by analyzing low-dimensional embedding projections.

� 2022 Published by Elsevier Inc.

1. Introduction

Complex networks, included attributed and heterogeneous networks, are ubiquitous—from recommender systems to
citation networks and biological systems [1]. These networks present a multitude of machine learning problem statements,
including node classification, link prediction, and community detection. A fundamental aspect of any such machine learning
(ML) task, transductive or inductive, is the availability of featurized data. Traditionally, researchers have identified several
network characteristics suited to specific ML tasks and used them for the learning algorithm. This practice is arduous as
it often entails customizing to each specific ML task, and also is limited to the computable characteristics.

This has led to a surge in (unsupervised) algorithms and methods that learn embeddings from the networks, such that
these embeddings form the featurized representation of the network for the ML tasks [2–6]. This area of research is generally
notated as representation learning in networks. Generally, these embeddings generated by representation learning methods
are agnostic to the end use-case, as they are generated in an unsupervised fashion. Traditionally, the focus was on represen-
tation learning on homogeneous networks, i.e. the networks that have singular type of nodes and edges, and also do not have
attributes attached to the nodes and edges [4].

Existing representation learning models mainly focus on transductive learning, where a model can only be trained using
the entire input graph. It means that the model requires all the nodes and a fixed structure of the network in the training
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phase, e.g., Node2vec [7], DeepWalk [8] and GCN [9], to some extent. Besides, there have been methods focused on hetero-
geneous networks that incorporate different typed nodes and edges in a network, as well as content at each node [10,11].

On the other hand, a less explored and exploited approach is the inductive setting. In this approach, only a part of the
network is used to train the model to infer embeddings for new nodes. Several attempts have been made in the inductive
setting including EP-B [12], GraphSAGE [13], GAT [14], SDNE [15], TADW [16], AHNG[17] or PVECB [18]. There is also recent
progress on heterogeneous graph embedding, e.g., MIFHNE [19] or models based on graph neural networks [20].

State-of-the-art network embedding techniques are mostly unsupervised, i.e., aim at learning low-dimensional represen-
tations that preserve the structure of an input graph, e.g., GraphSAGE [13], DANE [21], line2vec [22], RCAN [23]. Nevertheless,
semi-supervised or supervised methods can learn vector representations but for a specific downstream prediction task, e.g.,
TADW [16] or FSCNMF [24]. Hence it has been shown in the literature that not much supervision is required to learn the
embeddings.

In recent years, proposed models mainly focus on the graphs that do not contain attributes related to nodes and edges [4].
It is especially noticeable for edge attributes. The majority of proposed approaches consider node attributes only, omitting
the richness of edge feature space while learning the representation. Nevertheless, there have been successfully introduced
such models as DANE [21], GraphSAGE [13], SDNE [15] or CAGE [25] which make use of node features and EGNN [26],
NEWEE [27], EGAT [28] that consume edge attributes.

Both node-based embedding methods and graph neural network inspired methods do not generalize effectively to both
transductive and inductive settings, especially when there are attributes associated with edges. This work is motivated by
the idea of unsupervised learning on networks with attributed edges such that the embeddings are generalizable across tasks
and are inductive.

To that end, we develop a novel AttrE2vec, an unsupervised learning model that adapts auto-encoder and self-attention
network with the use of feature reconstruction and graph structural loss. To learn edge representation, AttrE2vec splits
edge neighborhood into two parts, separately for each node endings of the edge, and then generates random edge walks
in both neighborhoods. All walks are then aggregated over the node and edge attributes using one of the proposed strategies
(Avg, Exp, GRU, ConcatGRU). These are accumulated with the original nodes and edge features and then fed to attention and
dense layer to encode the edge. The embeddings are subsequently inferred via a two-step loss function—for both feature
reconstruction and graph structural loss. As a consequence, AttrE2vec can explicitly incorporate feature information from
nodes and edges at many hops away to effectively produce the plausible edge embeddings for the inductive setting.

In summary, our main contributions are as follows:

� we propose a novel unsupervised AttrE2vec method, which learns a low-dimensional vector representation for edges
that are attributed

� we exploit the concept of a graph-topology-driven edge feature aggregation, from simple ones to learnable GRU based,
that captures edge topological proximity and similarity of edge features

� the proposed method is inductive and allows getting the representation for edges not present in the training phase
� we conduct various experiments and show that our AttrE2vecmethod has superior performance over all of the baseline
methods on edge classification and clustering tasks.

2. Related work and research gap

Embedding information networks has received significant interest from the research community. We refer the readers to
the survey articles for a comprehensive overview of network embedding [4,5,3,2] and cite only some of the most prominent
works that are relevant.

Unsupervised network embedding methods use only the network structure or original attributes of nodes and edges to
construct embeddings. The most common method is DeepWalk [8], which in two-phases constructs node neighborhoods by
performing fixed-length random walks and employs the skip-gram [7] model to preserve the co-occurrences between nodes
and their neighbors. This two-phase framework was later an inspiration for learning network embeddings by proposing dif-
ferent strategies for constructing node neighborhoods or modeling co-occurrences between nodes, e.g., node2vec [7], Struc2-
vec [35], GraphSAGE [13], line2vec [22] orNEWEE [27]. Another groupof unsupervisedmethods utilizes auto-encoder or graph
neural networks to obtain embedding. SDNE [15] uses auto-encoder architecture to preserve first and second-order proxim-
ities by jointly optimizing the loss in neighborhood reconstruction. Another auto-encoder based representatives are EP-B [12]
and DANE [21].

Supervised network embedding methods are constructed as an end-to-end methods for particular tasks like node clas-
sification or link prediction. These methods require network structure, attributes of nodes and edges (if method is capable of
using) and some annotated target like node class. The representatives are ECN [29], ECC [30], FSCNMF [24], GAT [14], plan-
etoid [31], EGNN [26], GCN [9], EdgeConv [32], EGAT [28], Attribute2vec [33].

Edge representation learning has been already tackled by several methods, i.e. ECN [29], EGNN [26], line2vec [22], Edge-
Conv [32], EGAT [28]. However, non of these methods was able to directly take into account attributes of edges as well as
perform the learning in an unsupervised manner.

All the characteristics of the representative node and edge representation learning methods are grouped in Table 1.

P. Bielak, T. Kajdanowicz and N.V. Chawla Information Sciences 592 (2022) 82–96

83

48



3. Method

3.1. Motivation

In the following paragraphs, we explain our threefold motivation to propose the AttrE2vec.
Edge embeddings For a decade, network processing approaches gather more and more attention as graph data is produced

in an increasing number of systems. Network embedding traditionally provided the notion of vectorizing nodes that was
used in node classification or clustering. However, the edge representation learning did not gather enough attention and
was accomplished through node embedding transformation [36]. Nevertheless, such an approach is problematic. For
instance, inferring edge type from neighboring nodes’ embeddings may not be the best choice for edge type classification
in heterogeneous social networks. We claim that efficient edge clustering, edge attribute regression, or link prediction tasks
require dedicated and specific edge representations. We expect that the representation learning approach devoted strictly to
edges provides more powerful vector representations than traditional methods that require node embeddings trained
upfront and transform nodes’ embedding to represent edges.

Inductive embedding methods A vast majority of contemporary network representation learning methods is transductive
(see Table 1). It means that any change to the graph requires the whole retraining of the method to provide predictions for
unseen cases-such property limits the applicability of methods due to high computational costs. Contrary, the inductive
approach builds a predictive ability that can be applied to unseen cases and does not need retraining – in general, inductive
methods have a lower computation cost. Considering these advantages, we expect modern edge embedding methods to be
inductive.

Encoding graph attributes in embeddings Much of the real-world data exhibits rich attribute sets or meta-data that contain
crucial information, e.g., about the similarity of nodes or edges. Traditionally, graph representation learning has been focused
on exploiting the network structure, omitting the related content. Thus, we may expect to consume attributes as a regular-
izer over the structure. It would allow overcoming the limitation when the only edge discriminating ability is encoded in the
edges’ attributes, not in the graph’s structure. Relying only on the network would produce inconclusive embeddings.

3.2. Attributed graph edge embedding

We denote an attributed graph as G ¼ ðV ; EÞ, where V is a set of nodes and E ¼ fðu;vÞ 2 V � Vg a set of edges. Every node u
and every edge e ¼ ðu;vÞ has associated features: mu 2 RdV and f uv 2 RdE , where M 2 RjV j�dV and F 2 RjEj�dE are node and
edge feature matrices, respectively. By dV we denote dimensionality of node feature space and dE dimensionality of edge fea-
ture space. The edge embedding task is defined as learning a function g : E ! Rd, which takes an edge and outputs its low-
dimensional vector representation. Note that the embedding dimension d should be much less than the original edge feature

Table 1
Comparison of most representative graph embedding methods with their abilities to learn the representation, with or without attributes, reasoning types and
short characteristics. The most prominent and appropriate methods selected to compare to AttrE2vec in experiments are marked with bold text.

Method Representation Attributed Reasoning Family

Nodes Edges Nodes Edges Transduct. Induct.

Supervised ECN [29] (2016) U U neigh. aggr.
GCN [9] (2017) U U U U GCN/GNN
ECC [30] (2017) U U U GCN, DL
FSCNMF [24] (2018) U U U GCN
GAT [14] (2018) U U U U AE, DL
Planetoid [31] (2018) U U U U GNN
EGNN [26] (2019) U U U U U U GNN
EdgeConv [32] (2019) U U GNN
EGAT [28] (2019) U U U U U U GNN
Attribute2vec [33] (2020) U U U GCN

Unsupervised DeepWalk [8] (2014) U U RW, skip-gram
TADW [16] (2015) U U U RW, MF
LINE [34] (2015) U U RW, skip-gram
Node2vec [7] (2016) U U RW, skip-gram
SDNE [15] (2016) U U U U AE
GraphSAGE [13] (2017) U U U U RW
EP-B [12] (2017) U U U U AE
Struc2vec [35] (2017) U U RW, skip-gram
DANE [21] (2018) U U U U AE
Line2vec [22] (2019) U U RW, skip-gram
NEWEE [27] (2019) U U U U RW, skip-gram
AttrE2vec (2020) U U U U U RW, AE, DL
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dimensionality dE, i.e.: d � dE. More specifically, we aim at using the topological structure of the graph and node and edge
attributes: f : ðE;F ;MÞ ! Rd.

3.3. AttrE2vec

In contrast to traditional node embedding methods, we shift the focus from nodes to edges and consider a graph from an
edge perspective. Given any edge e ¼ ðu;vÞ, we can observe three natural sources of knowledge: the edge attributes itself
and the two neighborhoods - Nu and Nv , located behind nodes u and v, respectively. In AttrE2vec, we exploit all three sources
jointly.

First, we obtain aggregations (summaries) Su; Sv of the both neighborhoods Nu;Nv . We want to capture the topological
structure of the neighborhood, so we perform k edge random walks of length L, which start from node u (or v, respectively)
and use a uniformly distributed neighbor sampling approach (DeepWalk-like) to obtain the next edge. Each ith walk wi

u

started from node u is hence a sequences of edges.

RWðG; k; L;uÞ ! fw1
u;w

2
u; . . . ;w

k
ug

wi
u � ðu;u2Þ; ðu3;u4Þ; . . . ; ðuL�1;uLÞ

Next, we take the attributes of the edges (and nodes, if applicable) in each random walk and aggregate them into a single
vector using the walk aggregation model Aggw.

Siu ¼ Aggwðwi
u;F ;MÞ

Later, aggregated walks are combined using the neighborhood aggregation model Aggn, which summarizes the neigh-
borhood Su (and Sv , respectively). The proposed implementations of these aggregation are given in Section 3.4.

Su ¼ AggnðfS1u; S2u; . . . ; SkugÞ
Finally, we obtain the low dimensional edge embedding huv using an encoder Enc module. It combines the edge attri-

butes f uv with the summarized neighborhood information Su; Sv . We employ a simple Multilayer Perceptron (MLP) with 3
inputs (each of size equal to the edge features dimensionality) and an attention mechanism over these inputs, to check
how much of the information of each input is used to create the embedding vector (see Fig. 3):

Fig. 1. Our proposed AttrE2vec model compared to other methods in the task of an attributed graph embedding. Colors denote edge features. On the left we
can see a graph, where the features are aligned to substructures of the graph. On the right, the features were shuffled (ca. 50%). Traditional approaches fail to
build robust representations, whereas our method includes features information to construct the embedding vectors.
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huv ¼ Encðf uv ; Su; SvÞ
The overall illustration of the method is contained in Fig. 2 and the inference algorithm is shown in Algorithm1.

Algorithm1: AttrE2vec inference algorithm

3.4. Aggregation models

For the purpose of the neighborhood aggregation model Aggn, we use an average over vectors Siu, as there is no particular
ordering of these vectors (each one was generated by an equally important random walk). In the case of walk aggregation,
we propose the following:

Fig. 2. Overview of the AttrE2vec model. The model first computes edge random walks on two neighborhoods of a given edge ðu;vÞ. Each neighbourhood
walks are aggregated into Su; Sv . Both are combined with the edge features f uv using an Encoder module, which results into the edge embedding vector huv .
The loss function consists of two parts: structural loss (Lcos) and feature reconstruction loss (LMSE).
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� average – that computes a simple average of the edge attribute vectors in the random walk;

Siu ¼ 1
L

XL

n¼1

f ununþ1

� exponential – that computes a weighted average, where the weights are exponents of the ‘‘minus” position in the random
walk so that further away edges are less important than the near ones;

Siu ¼ 1
L

XL

n¼1

e�nf ununþ1

� GRU – that uses a Gated Recurrent Unit [37] architecture, where hidden and input dimension is equal to the edge attri-
bute dimension; the aggregated representation is the output of the last hidden vector; the aggregation process starts here
at the end of the random walk and proceeds to the beginning;

Siu ¼ GRUðff ununþ1
; f un�1un

; . . . ; f u1u2gÞ
� ConcatGRU – that is similar to the GRU-based aggregator, but here we also use the node feature information by concate-
nating the node attributes with the edge attributes; hence the GRU input size is equal to the sum of the edge and node
dimensions; in case there are not any node features available, one could use network-specific features, like degree,
betweenness or more advanced techniques like Node2vec; the hidden dimension size and the aggregation direction is
unchanged;

Siu ¼ ConcatGRUðff ununþ1
�mun ; . . . ; f u1u2 �mu1gÞ

3.5. Learning AttrE2vec’s parameters

AttrE2vec is designed to make the most use of edge attributes and information about the structure of the network.
Therefore we propose a loss function, which consists of two main parts:

� structural loss Lcos – computes a cosine embedding loss; such function tries to minimize the cosine distance between a
given embedding h and embeddings of edges sampled from the random walks hþ (positive), and simultaneously to max-
imize a cosine distance between an embedding h and embeddings of edges sampled from a set of all edges in the graph h�

(negative), except for these in the random walks:

Lcos ¼ 1
jBj

X
huv2B

X
hþuv

ð1� cosðhuv;h
þ
uvÞÞ þ

X
h�uv

cosðhuv;h
�
uvÞ

0
@

1
A

where B denotes a minibatch of edges and jBj the minibatch size,
� feature reconstruction loss LMSE – computes a mean squared error of the actual edge features and the outputs of a de-
coder (implemented as a 3-layer MLP – see Fig. 4), that reconstruct the edge features based on the edge embeddings;

LMSE ¼ 1
jBj

X
ðhuv ;f uvÞ2B

DECðhuvÞ � f uvð Þ2

where B denotes a minibatch of edges and jBj the minibatch size.

Fig. 3. Encoder module architecture.
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We combine the values of the above loss functions using a mixing parameter k 2 ½0;1�. The higher the value of this param-
eter is, the more structural information is preserved and less focus is one the feature reconstruction. The total loss of AttrE2-
vec is given as follows:

L ¼ k 	 Lcos þ ð1� kÞ 	 LMSE

4. Experiments

To evaluate the proposed model’s performance, we perform three tasks: edge classification, edge clustering, and embed-
ding visualization on three real-world datasets. We first train our model on a small subset of edges (inductive setting). Then
we use the model to infer embeddings for edges from the test set. Finally, we evaluate them in all downstream tasks: by
predicting the class of edges in citation graphs (edge classification), by applying the K-means++ algorithm (edge clustering;
as defined in [22] ) and by the dimensionality reduction method T-SNE (embedding visualization). We compare our model
to several baselines and contemporary methods in all experiments, see Table 1. Eventually, we check the influence of AttrE2-
vec’s hyperparameters and perform an ablation study on artificially generated datasets. We implement our model in the
popular deep learning framework PyTorch. All experiments were performed on NVIDIA GTX1080Ti. We make our code avail-
able at https://github.com/attre2vec/attre2vec and include our DVC [38] pipeline so that all experiments can be
easily reproduced.

4.1. Datasets

In order to compare gathered evaluation evidence we focused on well known datasets, that appear in the literature,
namely: Cora [39], Citeseer [39] and Pubmed [40]. These are citation networks of scientific papers in several research areas,
where nodes are the papers and edges denote citations between papers. We summarize basic statistics about the datasets
before and after pre-processing steps in Table 2. Raw datasets contain node features only in the form of high dimensional
sparse bags of words. For Cora and Citeseer, these are binary vectors, showing which of the most popular words were used
in a given paper, and for Pubmed, the features are in the form of TF-IDF vectors. To adjust the datasets to our problem setting,
we apply the following pre-processing steps to obtain edge level features, which are used to train and evaluate our AttrE2-
vec model:

� we create dense vector representations of the nodes’ features by applying Doc2vec [41] in the PV-DBOW variant with a
target dimension size of 128;

� for each edge ðu; vÞ and its symmetrical version ðv ;uÞ (necessary to perform uniform, undirected random walks) we
extract the following features:
– 1 feature – cosine similarity of raw node features for nodes u and v (binary BoW; for Pubmed transformed from TF-IDF

to binary BoW),
– 2 features – the ratios of the number of used words (number of ones in the BoW) to all possible words in the document

(length of BoW vector) in each paper u and v,

Fig. 4. Decoder module architecture.

Table 2
Datasets used in the experiments.

Name Features Number of Training instances

initial pre-processed

node edge node edge nodes edges classes inductive transductive

Cora 1 433 0 32 260 2 485 5 069 7 + 1 160 5 069
Citeseer 3 703 0 32 260 2 110 3 668 6 + 1 140 3 668
Pubmed 500 0 32 260 19 717 44 324 3 + 1 80 44 324
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– 256 features – concatenation of Doc2vec features for nodes u and v,
– 1 feature – a binary indicator, which denotes whether this is an original edge (1) or its symmetrical counterpart (0),

� we apply standardization (StandardScaler in Scikit-Learn [42] ) of the edge feature matrix.

Moreover, we extracted new node features as 32-dimensional Node2vec embeddings to provide the evaluation possibility
for one of our model versions (AttrE2vec with ConcatGRU aggregator), which generalizes upon both edge and nodes
attributes.

Raw datasets provide each node labeled by the research area the paper comes from. To apply this knowledge in the edge
classification problem setting, we applied the following rule: if an edge has two nodes from the same class (research area),
the edge receives this class; if two nodes have different classes, the edge between these nodes is assigned with a cross-
domain citation class.

To ensure a fair comparison method, we follow the dataset preparation scheme from EP-B [12], i.e., for each dataset (Cora,
Citeseer, Pubmed) we sample 10 train/validation/test sets, where the train set consists of 20 edges per class and the valida-
tion and test sets to contain 1 000 randomly chosen edges each. While reporting the resulting metrics, we show the mean
values over these ten sampled sets (together with the standard deviation).

4.2. Baselines

We compare our method against several baseline methods. In the most simple case, we use the edge features obtained
during the pre-processing phase for all datasets (further referred to as Doc2vec).

Many standard approaches employ simple node embedding transformations to obtain edge embeddings. The authors of
Node2vec [36] proposed binary operators like averaging, Hadamard product, or L1 and L2 norms of vector differences. Here,
we will use following methods to obtain node embeddings: DeepWalk [8], Node2vec [36], SDNE [43] and Struc2vec [35]. In
preliminary experiments, we evaluated these methods and checked that the Average operator and an embedding size of 64
gives the best results. We will use these models in 2 setups: (a) Avg(M;M) – using only the averaged node features, (b) Avg
(M;M)�F – like previously but concatenated with the edge features from the dataset (in total 324-dim vectors).

We also checked a scheme to compute a 64-dim PCA reduction of the concatenated features to have comparable vector
sizes with the 64-dimensional embedding of our model, but these turned out to perform poorly. Note that SDNE has the
capability of inductive reasoning, but due to the non-availability of such implementation, we decided to evaluate this
method in the transductive scheme (which works in favor of the method).

We also extend our body of baselines by more sophisticated approaches – two dense autoencoder architectures. In the
first setting MLP(M;M), we train a model (see Fig. 5), which reconstructs concatenated embeddings of connected nodes.
In the second baseline MLP(M;M;F ), the autoencoder (see Fig. 6) is extended by edge attributes. In both settings, we
employ the mean squared error as the model loss function. The output of the encoders (embeddings) is used in the down-
stream tasks. The input node embeddings are obtained using the methods mentioned above, i.e., DeepWalk, Node2vec,
SDNE, and Struc2vec.

The last baseline is Line2vec [22], which is directly dedicated for edges - we use an embedding size of 64.

4.3. Edge classification

To evaluate our model in an inductive setting, we need to make sure that test edges are unseen during the model training
procedure – we remove them from the graph. Note that all baselines (except for GraphSage, see 1) require all edges during
the training phase (i.e., these are transductive methods).

After each training epoch of AttrE2vec, we evaluate the embeddings using L2-regularized Logistic Regression (LR) clas-
sifier and compute AUC. The regression model is trained on edge embeddings from the train set and evaluated on edge
embeddings from the validation set. We take the model with the highest AUC value on the validation set. Moreover, an early
stopping strategy is implemented– if the validation AUC metric does not improve for more than 15 epochs, the learning is
terminated. Our approach to model selection is aligned with the schema proposed in [44] because this approach is more

Fig. 5. Architecture of the MLP(M;M).

P. Bielak, T. Kajdanowicz and N.V. Chawla Information Sciences 592 (2022) 82–96

89

54



natural than relying on the loss function. This is repeated for all 10 data splits (see: Section 4.1 for details). We report a mean
and std AUC measures for 10 test sets (see Table 3).

We choose AdamW [45] with a learning rate of 0:001 to optimize our model’s parameters. We also set the size of positive
samples to jhþj ¼ 5 and negative samples to jh�j ¼ 10 in the cosine embedding loss. The mixing coefficient is set to k ¼ 0:5,
equally including the influence of features and topological graph structure. We choose an embedding size of 64 as a reason-
able value while dealing with edge features of size 260.

In Table 3, we summarize the AUC values for baseline methods and for our model. Even though vectors’ original dimen-
sionality is relatively high (260), good results are already yielded using only the edge features (Doc2vec). However, adding
structural information about the graph could further improve the results.

Using representations from node embedding methods, which are transformed to edge embeddings using the average
operator Avg(M;M), achieve poor results of about 50–60% AUC. However, if these are combined with the edge features from
the datasets Avg(M;M)�F , the AUC values increase significantly to about 86%, 88% and 79% for Citeseer, Cora, and Pubmed,
respectively. Unfortunately, this results in an even higher vector dimensionality (324).

The MLP-based approach results lead to similar conclusions. Using only node embeddings MLP(M;M) we achieve quite
poor results of about 50% (on Pubmed) up to 60% (on Cora). With MLP(M;M;F ) approach we observe that edge features
improve the classification results. The AUC values are still slightly worse than concatenation operator (Avg(M;M)�F ),
but we can reduce the edge embedding size to 64.

Fig. 6. Architecture of the MLP(M;M;F ).

Table 3
AUC values for edge classification. F denotes the edge attributes (also referred to as ‘‘Doc2vec”), M – node attributes (e.g., embeddings computed using
‘‘Node2vec”), � – concatenation operator, Avg(M;M) – average operator on node embeddings, MLP(
) – encoder output of MLP autoencoder trained on given
attributes. AUC in bold shows the highest value and AUC in italic – the second highest value.

Method group/name Vector AUC

size Citeseer Cora Pubmed

Transductive Edge features only; F (Doc2vec) 260 86.13 � 0.95 88.67 � 0.51 79.15 � 1.41
Line2vec 64 86.19 � 0.28 91.75 � 1.07 84.88 � 1.19
Avg(M;M) DeepWalk 64 58.40 � 1.08 59.98 � 1.32 51.04 � 1.23

Node2vec 64 58.26 � 0.89 59.59 � 1.11 51.03 � 1.01
SDNE 64 54.28 � 1.57 55.91 � 1.11 50.00 � 0.00
Struc2vec 64 61.29 � 0.86 61.30 � 1.58 54.67 � 1.46

MLP(M;M) DeepWalk 64 55.88 � 1.68 57.87 � 1.53 51.23 � 0.77
Node2vec 64 55.35 � 2.26 57.44 � 0.87 51.48 � 1.55
SDNE 64 55.56 � 0.93 56.02 � 1.22 50.00 � 0.00
Struc2vec 64 59.93 � 1.43 59.76 � 1.80 53.27 � 1.32

Avg(M;M)�F DeepWalk 324 86.13 � 0.95 88.67 � 0.51 79.15 � 1.41
Node2vec 324 86.13 � 0.95 88.67 � 0.51 79.15 � 1.41
SDNE 324 86.14 � 1.03 88.70 � 0.51 79.15 � 1.41
Struc2vec 324 86.21 � 0.97 88.73 � 0.48 79.24 � 1.36

MLP(M;M;F ) DeepWalk 64 84.58 � 1.11 86.47 � 0.87 78.60 � 1.84
Node2vec 64 84.65 � 1.05 86.71 � 0.68 78.84 � 1.71
SDNE 64 84.32 � 1.13 85.99 � 0.77 78.34 � 1.07
Struc2vec 64 83.95 � 1.16 85.54 � 0.96 77.19 � 1.42

Inductive Avg(M;M) GraphSage 64 54.84 � 1.90 55.16 � 1.36 51.14 � 1.64
MLP(M;M) GraphSage 64 55.19 � 1.04 55.47 � 1.66 50.36 � 1.54
Avg(M;M)�F GraphSage 324 86.14 � 0.95 88.68 � 0.51 79.16 � 1.41
MLP(M;M;F ) GraphSage 64 84.63 � 1.11 86.14 � 0.45 78.00 � 1.85
AttrE2vec (our) Avg 64 88:97� 0:82 93:43� 0:56 87:68� 1:25

Exp 64 88.91 � 1.10 92.80 � 0.38 86.18 � 1.41
GRU 64 88:92� 1:13 93:06� 0:63 86:39� 1:21
ConcatGRU 64 88.56 � 1.34 92.93 � 0.61 86.34 � 1.18
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The Line2vec [22] algorithm achieves very good results, without considering edge features information – we get about
86%, 92% and 85% AUC for Citeseer, Cora, and Pubmed, respectively. These values are higher than for any other baseline
approach.

Our model performs the best among all evaluated methods. For Citeseer, we gain about 3 percent points compared to the
best baselines: Line2vec, Struc2vec (Avg(M;M)�F ) or GraphSage (Avg(M;M)�F ). Note that the algorithm is trained only
on 140 edges in the inductive setting, whereas all transductive baselines require the whole graph for training. The gains on
Cora are 2 pp, and on Pubmed we achieve up to 4 pp (and up to 8 pp compared only to GraphSage (Avg(M;M)�F )). Our
model with the Average (Avg) aggregator works the best, whereas the Gated Recurrent Unit (GRU) aggregator achieves
the second-best results.

4.4. Edge clustering

Similarly to Line2vec [22], we apply the K-Means++ algorithm on the resulting embedding vectors and compute an unsu-
pervised clustering accuracy [46]. We summarize the results in Table 4. Our model performs the best in all but one case and
achieves significantly better results than other baseline methods. The only exception is for the Pubmed dataset, where Line2-
vec achieves the best clustering accuracy. Other baseline methods perform similarly as in the edge classification task. Hence,
we will not discuss the details, and we encourage the reader to go through the detailed results.

4.5. Embedding visualization

For all tested baseline methods and our proposed AttrE2vecmethod, we compute 2-dimensional projections of the pro-
duced embeddings using T-SNE [47] method. We visualize them in Fig. 7. In our subjective opinion, these plots correspond to
the AUC scores reported in Table 3-the higher the AUC, the better the group separation. In details, for Doc2vec raw edge fea-
tures seem to form groups, but unfortunately overlap to some degree. We cannot observe any pattern in the node
embedding-based settings (Avg(M;M) and MLP(M;M)), they tempt to be quasi-random. When concatenated with the
edge attributes (Avg(M;M)�F and MLP(M;M;F )) we observe a slightly better grouping, but yet non satisfying. AttrE2-
vecmodel produces much more formed groups, with only a little overlapping. To summarize, based on the observed groups’
separability and AUC metrics, our approach works the best among all methods.

Table 4
Accuracy on edge clustering. F denotes the edge attributes (also referred to as ‘‘Doc2vec”),M – node attributes (e.g., embeddings computed using ‘‘Node2vec”),
� – concatenation operator, Avg(M;M) – average operator on node embeddings,MLP(
) – encoder output of MLP autoencoder trained on given attributes. AUC
in bold shows the highest value and AUC in italic—the second highest value.

Method group/name Vector Accuracy

size Citeseer Cora Pubmed

Transductive Edge features only; F (Doc2vec) 260 54.13 � 2.73 54.64 � 5.86 46.33 � 1.53
Line2vec 64 54.73 � 2.56 63.50 � 1.92 55:26� 1:36
Avg(M;M) DeepWalk 64 28.89 � 1.06 21.93 � 0.86 27.24 � 0.50

Node2vec 64 26.82 � 0.67 21.32 � 0.62 27.17 � 0.74
SDNE 64 21.01 � 0.50 17.97 � 0.47 31.38 � 0.69
Struc2vec 64 25.21 � 1.33 20.15 � 0.64 32.02 � 1.49

MLP(M;M) DeepWalk 64 26.36 � 1.37 21.06 � 0.57 27.40 � 0.93
Node2vec 64 26.37 � 1.64 21.31 � 0.98 27.67 � 0.78
SDNE 64 22.27 � 0.76 17.15 � 0.36 28.44 � 1.21
Struc2vec 64 24.22 � 0.83 19.56 � 0.49 31.31 � 1.70

Avg(M;M)�F DeepWalk 324 54.13 � 2.73 54.70 � 5.85 46.33 � 1.53
Node2vec 324 54.13 � 2.73 54.70 � 5.85 46.33 � 1.53
SDNE 324 55.29 � 2.06 55.43 � 4.63 46.33 � 1.53
Struc2vec 324 55.59 � 1.51 52.47 � 6.52 46.32 � 1.29

MLP(M;M;F ) DeepWalk 64 48.74 � 4.03 47.38 � 4.72 46.49 � 1.20
Node2vec 64 50.80 � 2.30 48.48 � 3.38 46.15 � 1.43
SDNE 64 46.17 � 3.15 44.87 � 3.54 45.74 � 1.89
Struc2vec 64 47.35 � 3.73 44.38 � 3.04 45.40 � 1.72

Inductive Avg(M;M) GraphSage 64 18.79 � 0.62 17.70 � 1.05 27.04 � 0.71
MLP(M;M) GraphSage 64 18.92 � 0.98 17.89 � 0.85 27.09 � 0.81
Avg(M;M)�F GraphSage 324 54.06 � 2.54 54.82 � 6.86 46.49 � 1.64
MLP(M;M;F ) GraphSage 64 48.79 � 4.04 47.49 � 5.41 45.15 � 1.54
AttrE2vec (our) Avg 64 59.82 � 3.30 65.42 � 1.71 48.86 � 2.46

Exp 64 59.07 � 4.65 66:36� 3:62 48.02 � 2.55
GRU 64 60:16� 2:25 66:15� 3:71 49.41 � 1.49
ConcatGRU 64 60:71� 2:75 66.00 � 2.21 50:27� 3:75
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5. Hyperparameter Sensitivity of AttrE2vec

We investigate hyperparameters’ effect considering each of them independently, i.e., setting a given parameter and pre-
serving default values for all other parameters. The evaluation is applied for our model’s two inductive variants: with the
Average aggregator and with the GRU aggregator. We use all three datasets (Cora, Citeseer, Pubmed) and report the AUC val-
ues. We choose following hyperparameter value sets (values with an asterisk denote the default value for that parameter):

� length of random walk: L ¼ f4;8	;16g,

Fig. 7. 2-D T-SNE projections of embedding vectors for all evaluated methods. Columns denotes aggregation approach, beside F that denotes the edge
attributes and gðEÞ that is an edge embedding obtained with graph structure only. Rows gather particular methods.
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� number of random walks: k ¼ f4;8;16	g,
� embedding size: d ¼ f16;32;64	g,
� mixing parameter: k ¼ f0;0:25;0:5	;0:75;1g.

The results of all experiments are summarized in Fig. 8. We observe that for both aggregation variants, Avg and GRU, the
trends are similar, so we will include and discuss them based only on the Average aggregator.

In general, the higher the number of random walks k and the length of a single random walk L, the better results are
achieved. One may require higher values of these parameters, but it significantly increases the random walk computation
time and the model training itself.

Unsurprisingly, the embedding size (embedding dimension) also follows the same trend. With more dimensions, we can
fit more information into the created representations. However, as an embedding goal is to find low-dimensional vector
representations, we should keep reasonable dimensionality. Our chosen values (16, 32, 64) seem plausible while working
with 260-dimensional edge features.

As for loss mixing parameter k, we observe that too high values negatively influence the model performance. The greater
the value, the more critical the structural loss becomes. Simultaneously the feature loss becomes less relevant. Choosing
k ¼ 0 causes the loss function to consider feature reconstruction only and completely ignores the embedding loss. This yields
significantly worse results and confirms that our approach of combining both feature reconstruction and structural embed-
ding loss is justified. In general, the best values are achieved for setting an equal influence of both loss factors (k ¼ 0:5).

6. Ablation study

We performed an ablation study to check whether our method AttrE2vec is invariant to introduced noise in an artifi-
cially generated network. We use a barbell graph, which consists of two fully connected graphs and a path which connects
them (see: Fig. 1). The graph has seven nodes in each full graph and seven nodes in the path – a total of 50 edges. Next, we
generate features from 3 clusters in a 200-dimensional space using isotropic Gaussian blobs. We assign the features to 3
parts of the graph: the first to the edges in one of the full graphs, the second to the edges in the path and the third to the
edges in the other full graph. The edge classes are matching the feature clusters (i.e., three classes). Therefore, the structure
is aligned with the features, so any good structure based embedding method can fit this data very well (see: Fig. 1). A prob-
lem occurs when the features (and hence the classes) are shuffled within the graph structure. Methods that employ only a
structural loss function will fail. We want to check how our model AttrE2vec, which includes both structural and feature-
based loss, performs with different amount of such noise.

We will use the graph mentioned above and introduce noise by shuffling p% of all edge pairs, which are from different
classes, i.e., an edge with class 2 (originally located in the path) may be swapped with one from the full graphs (classes 1 or

Fig. 8. Effects of hyperparameters on Cora, Citeseer and Pubmed datasets.
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3). We use our AttrE2vec model with an Average aggregator in the transductive setting (due to the graph size) and report the
edge classification AUC for different values of p 2 f0;0:1; . . . ;0:5; . . . ;0:9;1g and k 2 f0;0:5;1g. The values of the mixing
parameter k allow us to check how the model behaves when working only with a feature-based loss (k ¼ 0), only with a
structural loss (k ¼ 1), and with both losses at equal importance (k ¼ 0:5). We train our model for five epochs and repeat
the computations ten times for every ðp; kÞ pair, due to the shuffling procedure’s randomness. We report the mean and stan-
dard deviation of the AUC value in Fig. 9.

Using only the feature loss or a combination of both losses allows us to achieve nearly 100% AUC in the classification task.
The fluctuations appear due to the low number of training epochs and the local optima problem. The performance of the
model that uses only structural loss (k ¼ 1) decreases with higher shuffling probabilities, and from a certain point, it starts
improving slightly because shuffling results in a complete swap of two classes, i.e., all features and classes from one graph
part are exchanged with all features and classes from another part of the graph.

We also demonstrate how our method reacts on noisy data with various k 2 f0;0:5;1g. There are two graphs: one where
the features are aligned to substructures of the graph and the second with shuffled features (ca. 50%), see Fig. 10. Keeping
AttrE2vec with k ¼ 0:5 allows to represent noisy graphs fairly.

7. Conclusions and future work

We introduce AttrE2vec – the novel unsupervised and inductive embedding model to learn attributed edge embeddings
by leveraging on the self-attention network with auto-encoder over attribute space and structural loss on aggregated ran-
dom walks. Attre2vec can directly aggregate feature information from edges and nodes at many hops away to infer embed-
dings not only for present nodes, but also for new nodes. Extensive experimental results show that AttrE2vec obtains the
state-of-the-art results in edge classification and clustering on CORA, PUBMED and CITESEER.
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a b s t r a c t

Representation learning on graphs has emerged as a powerful mechanism to automate feature vector
generation for downstream machine learning tasks. The advances in representation on graphs have
centered on both homogeneous and heterogeneous graphs, where the latter presenting the challenges
associated with multi-typed nodes and/or edges. In this paper, we consider the additional challenge of
evolving graphs. We ask the question of whether the advances in representation learning for static
graphs can be leveraged for dynamic graphs and how? It is important to be able to incorporate
those advances to maximize the utility and generalization of methods. To that end, we propose the
Framework for Incremental Learning of Dynamic Networks Embedding (FILDNE), which can utilize
any existing static representation learning method for learning node embeddings while keeping the
computational costs low. FILDNE integrates the feature vectors computed using the standard methods
over different timesteps into a single representation by developing a convex combination function
and alignment mechanism. Experimental results on several downstream tasks, over seven real-world
datasets, show that FILDNE is able to reduce memory (up to 6x) and computational time (up to 50x)
costs while providing competitive quality measure gains (e.g., improvements up to 19 pp AUC on link
prediction and up to 33 pp mAP on graph reconstruction) with respect to the contemporary methods
for representation learning on dynamic graphs.

© 2021 Published by Elsevier B.V.

1. Introduction

Learning embeddings from networks or graphs is pervasive
with a sundry of applications across various fields, including
social networks [1–4], biological networks [5,6], molecular net-
works [7,8], spatial networks [9,10], citation networks [1,11,12],
transportation networks [13] and many others. These embed-
dings are generally learned in an unsupervised fashion, providing
an automated way of discovering dynamic features and enabling
several downstream inductive learning tasks (and in some cases
transductive learning tasks as well).

The vast majority of graph embedding methods are devoted
to so-called static networks, whose structure does not evolve
over time [14–16]. However, in most real-world scenarios, one
has to deal with changes in the data, e.g., updates of node at-
tributes and structural adjustments, like addition or removal of

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.

∗ Corresponding author.
E-mail address: tomasz.kajdanowicz@pwr.edu.pl (T. Kajdanowicz).

edges (links) and nodes [17–19]. On the one hand, dynamics can
occur infrequently, which can be easily addressed with static
approaches. On the other hand, there are streams of temporal
events that constitute constantly evolving networks. The latter
case requires dedicated, computationally, and memory-wise effi-
cient solutions. Thus, a key challenge remains: how to effectively
learn network embeddings on dynamic networks? While recent
works have addressed incremental learning of embeddings on
dynamic graphs [20,21], in this paper, we consider a framework
that encompasses existing methods for learning embeddings and
enables them for a dynamic environment.

Let us consider two conceptually different aspects of Dynamic
Graph Embedding. The first is a naive one, where each new data
batch triggers the computation of a new representation for his-
torical data, completely disregarding previous feature vectors.
The second one is an incremental learning paradigm, where both
the time and storage costs are reduced by updating embeddings
based on new temporal events. Incremental learning algorithms
might specify a new objective function and be constrained to the
types of problems they could apply to [14]. However, there is also
a need for a framework that is able to incorporate the existing
works for embeddings and implement them in an incremental

https://doi.org/10.1016/j.knosys.2021.107453
0950-7051/© 2021 Published by Elsevier B.V.
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List of abbreviations and acronyms

auc Area under the ROC Curve
ctdne Continuous-Time Dynamic Network

Embedding
dgi Deep Graph Infomax
ec Edge Classification
fildne Framework for Incremental Learning of

Dynamic Networks Embedding
gan Generative Adversarial networks
gcn Graph Convolutional Network
gr Graph Reconstruction
glodyne Global Topology Preserving Dynamic

Network Embedding
hope High Order Proximity preserved Embed-

ding
le Laplacian Eigenmaps
line Large-scale Information Network Em-

bedding
lle Locally Linear Embedding
lp Link Prediction
lr Logistic Regression
mAP mean Average Precision
MF Matrix Factorization
n2v Node2vec
Online-n2v Online-Node2vec
RNN Recurrent Neural Network
svdx Singular Value Decomposition

manner, allowing for time and space costs to be reduced while
retaining the quality of the base method.

This work. In this paper, we propose FILDNE, for incremental
learning of embeddings of a dynamic network. Our contribution
can be summarized as follows:

1. We provide a method that utilizes historical embeddings
and incrementally enhances them based on batched event
stream (non-overlapping snapshots for keeping the embed-
dings current; see Fig. 2). We consider two variants: (a)
the first one, FILDNE, recursively combines a pair of em-
beddings at each step using a hyper-parameter to steer the
importance weighting (see Fig. 1; (b) the second one, k-
FILDNE, combines a vector of k embeddings at once using
an automatic estimation method for importance weighting
parameters.

2. The proposed method can work with any graph embedding
method, including static and temporal graph embedding
methods. Using a novel reference nodes selection scheme,
our method performs an embedding alignment step that al-
lows us to apply convex combination despite rotations and
translations of embedding spaces. Moreover, our frame-
work is designed to work in an unsupervised manner that
does not require obtaining any additional class labels.

3. Through comprehensive empirical analyses that include
link prediction, edge classification, and graph reconstruc-
tion tasks, we demonstrate that FILDNE allows reducing
memory and computational time costs while being com-
petitive when compared to other streaming methods in
terms of embedding quality. Our hyper-parameter sensitiv-
ity study (see Fig. 10) shows how the balance of importance
of past and recent events (data batches) influences the
performance of the representation.

Fig. 1. The FILDNE method applied on graph stream. At the beginning, FILDNE
composes of two embeddings computed by the Base embedding method. Next,
with each new snapshot, FILDNE composes the aligned version of the current
embedding F∗

t−1,t with the output of the previous iteration F̃0,t .

The paper is organized as follows: in Section 2, we present an
overview of the related work in the domain, whereas in Section 3,
we introduce several formal definitions and notation. Next, in
Section 4, we propose our Framework for Incremental Learn-
ing of Dynamic Networks Embeddings and provide its detailed
description. Further, in Section 5 we report the results of our
extensive experiments. Section 6 concludes our work and outlines
the directions for future work.

2. Related work

The network embedding problem has attracted much atten-
tion from the research community worldwide in recent years.
Plenty of methods have been developed, each focused on a dif-
ferent aspect of network embedding, such as proximity, structure,
attributes, learning paradigm, scalability, to name only a few [14,
15,22]. In this section, we discuss several methods that are rele-
vant to the scope of our paper. We summarize these in Table 1,
where we adapt the taxonomy introduced in [15].

2.1. Static network embedding

The topic is covered in various embedding method families,
among which we first discuss matrix factorization based methods.
Locally Linear Embedding (LLE) [23] and Laplacian Eigenmaps
(LE) [24] both aim to map a high-dimensional data point space to
low-dimensional one based on the neighborhood of points (first-
order proximity). LLE reconstructs a linear weight matrix, and in
LE eigenvectors over graph Laplacian are computed. Large-scale
Information Network Embedding (LINE) [1] extended these
approaches by additionally preserving second-order proximities
in the graph. Nodes with similar neighborhoods end up lying
closer in the embedding space. High Order Proximity preserved
Embedding (HOPE) [25] aims to sustain asymmetric proximities
of nodes in the graph, in contrast to LINE, where proximities were
symmetric.

The next group is methods which are based on random-walks.
In DeepWalk [26] random-walks sampled over the graph are fed
to the skip-gram model adapted from Word2vec [27]. Node2vec
(n2v) [2] was an improvement over DeepWalk, where authors
introduced parameters p and q control both depth-first search
and breadth-first search like behavior.

Another approach utilizes Graph Convolutional Networks ar-
chitecture. Deep Graph Infomax (DGI) [28] is an unsupervised
method, which relies on maximizing mutual information between
patch representations (obtained by GCN-based encoder layer)
and corresponding high-level summaries of graphs (obtained by
readout function). All of the approaches mentioned above are
capable of processing static networks only.
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Fig. 2. Comparison of applications of traditional static network embedding methods and incremental methods in dynamic network embedding task.

2.2. Temporal and dynamic network embedding

In Temporal Network Embedding methods, we aim to preserve
the network’s temporal properties. On the other hand, Dynamic
Network Embedding focuses on providing up-to-date embedding
for evolving graphs. We can distinguish online approaches that
update embedding with every new edge arrival and incremental
approaches that process events in batches. The majority of the
methods satisfy both of these objectives — temporal and dynamic.
Here we give a brief overview of the most prominent ones. A pop-
ular trend found in the literature is to build upon the framework
of random walks with the skip-gram model.

Continuous-Time Dynamic Network Embedding (CTDNE)
[29] introduced temporal walks that traverse edges according to
their timestamps instead of performing random-walks statically.
The original version of the method focused on the temporal
aspect of embedding, while in the follow-up work, the authors
introduce an online version of the algorithm [30] that produces a
new portion of temporal random walk for upcoming events and
then updates the model.

This direction is further extended in Dynnode2vec [20] archi-
tecture, where for each timestamp, a random-walk is sampled,
only for nodes marked as evolving in terms of new edges. Global
Topology Preserving Dynamic Network Embedding (GloDyNE)
[31] also follows a similar schema with incrementally updating
skip-gram model, but they differ in the method of selecting nodes
to perform new random-walks. They partition the graph into k
sub-networks for each timestamp, and for each sub-network, they
randomly select one node based on calculated probability distri-
bution within the sub-network. After obtaining the representative
nodes list, they perform new random-walks over a new snapshot
for representative nodes and update the skip-gram model.

An interesting approach was introduced in Online-Node2vec
models [32]: StreamWalk and SecondOrder. StreamWalk follows
a temporal random walk procedure like CTDNE but differs in the
edge sampling scheme. In their second model SecondOrder, they
use MinHash fingerprinting to approximate Jaccard node similar-
ity instead of performing temporal random-walks that reduce the
method’s complexity.

In Weg2vec [33], instead of embedding nodes, representations
of events are learned by introducing a weighted neighborhood
edge sampling strategy.

Finally, in tNodeEmbed [34] for each timestamp a new em-
bedding is calculated using the Node2vec method. Embeddings
are aligned between timestamps before they are fed as an input

to the Long Short Term Memory (LSTM) model, which performs
an end-to-end task.

In contrary to random-walk-based methods Dyngraph2vec
[35] extends Autoencoder (AE) architecture to capture to the
evolving structure of temporal networks providing a purely
neural-network-based approach. They present three variants of
the model: dyngraphAE, dyngraphRNN, and dyngraphAERNN,
which differ in how they represent input neighbor vector —
dyngraphAE uses fully connected layers, dyngraphRNN uses LSTM
layers, and DyngraphAERNN uses fully connected layers followed
by LSTM layers.

The EvolveGCN [36] paper utilizes Graph Convolutional Net-
works applied on each timestamp in the graph. The GCN layer
weights from one timestamp are passed through a Recurrent
Neural Network (GRU, LSTM) to obtain new weights in the next
timestamp.

A completely different approach is proposed in the DGNN [37]
paper. The authors consider single additions of edges, marking
the nodes of this edge as interacting and their neighbors as in-
volved. Using modified LSTM networks, the method updates node
embeddings.

The authors of [38] propose a framework (further referred to
as LCF) that is based on the linear combination of embeddings
from consecutive snapshots. Building upon a similar paradigm,
we provide an insightful framework with differences discussed
in Section 4.5.

2.3. Network embedding alignment

Network embedding alignment problem arises when combin-
ing embeddings from subsequent runs or comparing represen-
tations from different graphs. [39,40] identify cross-graph node
similarities by jointly solving two optimization problems: they
use the Sinkhorn algorithm to match node correspondence and
find a linear transformation of one of the embeddings by solv-
ing Orthogonal Procrustes. [34] uses Orthogonal Procrustes to
see a transformation matrix between embeddings of two con-
secutive timestamps (as we do). They use all common nodes
between timestamps to form the matrix (which differs from our
method). [41] uses alignment as an integral part of the model,
improving the learning process of embeddings. Embeddings are
aligned at anchor nodes (that indicate the same users across two
networks) and introduce soft-constraint for non-anchor nodes.
Other approaches utilize generative adversarial networks [42,43]
to align embeddings. [43] solution is based on Wasserstein GAN
to produce cross-lingual embedding mapping. [42] utilized GAN
architecture in which they aim to obtain both sides’ transforma-
tion using cycle consistency loss.
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Table 1
Graph node embedding methods comparison. Methods marked in bold are the ones evaluated in our experiments.
Method Static Temporal Dynamic Network alignment Taxonomy

LLE’00 [23]
√

× × × MF
LE’03 [24]

√
× × × MF

LINE’15 [1]
√

× × × Edge reconstruction
HOPE’16 [25]

√
× × × MF

DGI’19 [34]
√

× × × GCN
DeepWalk’14 [26]

√
× × × Random walk, Skip-gram

Node2vec’16 [2]
√

× × × Random walk, Skip-gram
GraphSAGE’17 [44]

√
× × × Neighborhood sampling, Aggregation

CTDNE’18, 19 [29,30] ×
√ √

× Temporal Random walk, Skip-gram
tNodeEmbed’19 [34] ×

√ √ √
RNN, Random walk, Skip-gram

StreamWalk’19 [30] ×
√ √

× Temporal random walk
SecondOrder’19 [30] ×

√ √
× Temporal random walk

DynGraph2vec’20 [35] ×
√ √

× Neural networks
Dynnode2vec’18 [20] ×

√ √
× Random walk, Skip-gram

Weg2vec’20 [33] ×
√

× × Temporal random walk, Skip-gram
GloDyNe’20 [31] ×

√ √
× Random walk, Skip-gram

LCF’20 [38] ×
√ √ √

Dependent on base method
EvolveGCN’20 [36] ×

√ √
× GCN, RNN

DGNN’20 [37] ×
√ √

× RNN

FILDNE’20 (Our) ×
√ √ √

Dependent on base method

Fig. 3. Event streams can be saved as a series of cumulative or non-overlapping
graph snapshots. The first hold the full history from the very beginning, but
at the cost of a relatively high memory footprint. Contrary, the latter ones are
restricted to a given time interval, hence requiring less memory.

3. Notation and problem definition

The notation introduced in these and all the following is
summarized in Table 2.

Definition 1 (Static Network). A Network (Graph) is a pair G =

(V , E), where V is a set of vertices and E = {(u, v) : (u, v) ∈ V×V },
is a set of edges connecting vertices. Both, the nodes and edges can
possess assigned attributes. A special kind of vertices’ attributes
are timestamps, which lead to the next definition.

Definition 2 (Dynamic Network). A Dynamic Network (Graph) is a
triple G = (V , E, ts) where V and E are sets of vertices and edges
respectively and ts : E → R is a function assigning timestamp to
each edge.

Working with such a network is inconvenient — whenever
we want to check the state of the graph at a given time t we
have to iterate over E. The solution would be to store it as
a snapshot G0,t = (V0,t , E0,t , ts), where E0,t is a set of edges
with timestamps up to time t , while V0,t is the set of vertices
associated with them. Further we arrange them in a sequence
[G0,1,G0,2, . . . ,G0,T ] of cumulative graphs, each associated with
a time-index in the range [1; T ], where T denotes the maximal
time-index. One might be interested in non-overlapping batches
[G0,1,G1,2, . . . ,GT−1,T ], where Gt,t+1 consists only of edges from
Et,t+1, created between t and t + 1.

For simplicity, we will mark snapshots with the end of interval
whenever they cover a single time window, that is Gt−1,t ≡ Gt .

Dynamic Networks can be attributed in the same way as Static
Networks are.

Definition 3 (Graph Stream). A Dynamic Network is defined for a
limited time interval [0; T ] specified by the youngest snapshot’s
time-index. A Graph Stream expands this definition for a poten-
tially infinite stream of events (each connecting two nodes and
represented as an edge) forming an infinite sequence of cumula-
tive graphs [G0,1, G0,2, . . .] or equivalently non-overlapping ones
[G0,1, G1,2, . . .] (see Fig. 3). The real-world applications of Graph
Streams have to take resources limitation into account. Therefore
the oldest history has to be forgotten or compressed.

A graph stream can be observed in an online (one edge at a
time) or batched manner. In this paper, we would like to focus
on the batched setting, remembering that the online setting can
be interpreted as single-event batches.

Definition 4 (Static Network Embedding). The aim is to find a
mapping fG : V → Rd, d ≪ |V | such that the topological
(proximity or structural) similarity of vertices in a static G is
preserved. The resulting embedding is marked as F = fG(V ) and
can be arranged as a |V | × d matrix, where each row denotes
vector representation of a single node.

Definition 5 (Temporal Network Embedding). The aim is to find
a mapping fG0,T : V0,T → Rd, d ≪ |V | such that the temporal
topological [45] (proximity or structural) similarity of vertices in
a dynamic G0,T is preserved. The resulting embedding is marked
as F0,T = fG0,T (V0,T ) and can be arranged as a |V0,T | × d matrix,
where each row denotes vector representation of a single node.

Definition 6 (Dynamic Network Embedding). As the network
evolves one may be interested in evolving network embedding.
We can distinguish two approaches — naive and incremental one
(see Fig. 2). In the latter setting, we reuse previously computed
embeddings (Ft−1, f t−1, . . ., F1, f 1) to obtain a representation F0,t
updated with the most recent snapshot Gt , i.e. F0,t = f t (Gt , Gt−1,
Ft−1, f t−1, . . ., F1, f 1). The motivation for incremental paradigm
is to reduce computational cost of naive approach by updating
nodes’ embeddings. The training objective is preservation of the
topological properties in G0,t .
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Table 2
Symbols and notations.
Symbol Object

G Network/graph
Gt Snapshot of dynamic graph with nodes and edges

occurring between t − 1 and t
Gt1,t2 Snapshot of dynamic graph with nodes and edges

occurring between t1 and t2
V Set of nodes
Vt1,t2 Set of nodes in dynamic graph Gt1,t2
Vt−1∩t Set of common nodes between Gt−1 and Gt
Vref Set of reference nodes
E Set of edges
Et1,t2 Set of edges in dynamic graph Gt1,t2
T Maximal time-index in Dynamic Network
F Embedding matrix
F (V ′) Embedding matrix of a subset of nodes V ′

⊆ V
Ft Embedding matrix for graph Gt−1,t

Ft1,t2 Embedding matrix for graph Gt1,t2

F∗
t1,t2 Aligned embedding for graph Gt1,t2

F ∗

k|t Vector of k aligned embeddings up to time t

F̃0,t Embedding matrix generated by FILDNE
α Convex combination weight in FILDNE
α Vector of k convex combinations weights in k-FILDNE
a(·) Activity function

a(v)t v’s activity in Gt

s(·, ·) Scoring function
S Scores of common nodes Vt−1∩t

Definition 7 (Matrix Alignment). This can be seen as an instance
of the orthogonal Procrustes problem [40]. Given matrices A ∈

Rn×d and B ∈ Rn×d with matching rows, we are interested in
finding transformation matrix Q that satisfies

argmin
Q :Q ⊺Q=I

∥BQ − A∥
2
2. (1)

The solution is easily found as Q ∗
= UW ⊺, where UΣW ⊺ is the

Singular Value Decomposition (SVD) of B⊺A.

Remark. For the completeness of the discussion on evolving net-
works, one should also consider such aspects as time attributes in
the form of intervals, non-time attributes changing in time, and
nodes appearing without an edge. However, these considerations
go beyond the proposed method’s scope, and we leave them as
challenges for subsequent research.

4. Proposed framework for incremental learning of dynamic
networks embeddings

The goal of Framework for Incremental Learning of Dynamic
Networks Embeddings (FILDNE) is to find the embedding F0,t of
the full graph G0,t , without calculating it from all source data
from period [0, t], but based on already computed embeddings
on historical data, i.e. (Ft−1, . . ., F1) and the most recent snapshots
Gt−1 and Gt . Let us note that our method does not require the
mapping functions (f t−1, . . ., f 1). FILDNE consists of 3 consecu-
tive steps that are repeated with each new data portion arrival
Gt−1,t . The methods come in two versions – FILDNE and k-FILDNE
– therefore, step 3. has two variants. The difference between
FILDNE and k-FILDNE method is that the former works in a
pairwise manner F0,t = FILDNE(Gt , Gt−1, Ft−1), while the latter
operates on a vector of past embeddings F0,t = k-FILDNE(Gt , Gt−1,
Ft−1, . . ., Ft−k), where k is a parameter of the method.

Step 1. Batch embedding. For each new snapshot Gt−1,t ≡ Gt , we
apply some network embedding technique – called Base Method –
and obtain Ft−1,t ≡ Ft (see Fig. 4a). The choice of the Base Method
is entirely up to the user. It can be an instance of Static Network

Embedding (e.g. node2vec, LINE, DGI) and Temporal Network
Embedding (e.g. CTDNE), both handling additional node/edge at-
tributes if such are observed.

We focus on transductive Base methods, for which inferring
representation for unseen examples is not possible in any other
way than full retraining of the model. One could also use in-
ductive graph embedding methods (such as GraphSAGE or GCN-
based approaches), but these do not suit our problem setting (in
fact, our framework provides a way to inductive learning itself).

Step 2. Alignment. The random initialization and stochastic opti-
mization adopted in embedding methods result in
non-comparable realizations of representation vectors even for
the same input data. The same applies when matching em-
beddings between two timesteps, forcing us to run network
embedding alignment before we go to the next step. The prob-
lem appears to be straightforward — arranging embeddings in
matrices with matching rows lets us apply matrix alignment tech-
niques. However, the problem’s nature to be solved should not be
forgotten. Network evolution is not only about the appearance
of new nodes but also about the change in neighborhoods of
existing ones. We are not interested in vertices whose structural
neighborhood topology was completely altered. Therefore, not all
vectors should be considered when aligning embedding matrices.
We introduce the concept of reference nodes (later discussed
in Section 4.1) or anchor nodes [41] marked as Vref. They are
supposed to be (relatively) static over two neighboring batches.
Having such a reference we can calculate the transformation ma-
trix Q (as described in Definition 7) only on vectors representing
those nodes and then apply in on the entire embedding matrix Ft
what results in F∗

t (see Algorithm 1 and Fig. 4c).
In case of the k-FILDNE method Ft is aligned to the previous

embedding F∗

t−1 which has been aligned in the former iteration.
We store a vector of k aligned embeddings F ∗

k|t .

Algorithm 1: Embedding Alignment

Input: Ft−1, Ft , {(a
(v)
t−1, a

(v)
t ) : v ∈ Vt−1∩t}, select(·, ·)

1 S = {s(a(v)t−1, a
(v)
t ) : v ∈ Vt−1∩t} ▷ Calculate node scores

2 Vref = select(S, Vt−1∩t ) ▷ Obtain reference nodes
3 UΣW ⊺

= SVD(Ft−1(Vref)⊺Ft (Vref))
4 Q = UW ⊺

▷ Compute transformation matrix
5 return FtQ

Step 3. Embedding composition. In the FILDNE method (see Algo-
rithm 2 and Fig. 4d), at each iteration, we combine the previously
composed embedding F̃0,t−1 with its aligned embedding of the
current snapshot F∗

t−1,t using following convex combination:

F̃0,t = αF̃0,t−1 + (1 − α)F∗

t−1,t (2)

At the beginning (t = 2) we use F̃0,t−1 = F0,1. The α parameter
can be selected using search methods or experts’ knowledge.
Whenever α > 0.5, it means that the past embedding is more
important than the recent data increment in the Graph Stream.

Algorithm 2: FILDNE

Input: F̃0,t−1, Ft , {(a
(v)
t−1, a

(v)
t ) : v ∈ Vt−1∩t}, select(·, ·), α

1 F∗
t = Embedding Alignment(F̃0,t−1, Ft , at−1, at , select)

2 F̃0,t = αF̃0,t−1 + (1 − α)F∗
t

3 return F̃0,t

5
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Fig. 4. Overview of the proposed FILDNE algorithm in both variants.

The k-FILDNE version (see Algorithm 3 and Fig. 4e) builds
upon two parameters, that is k ∈ N, the number of last embed-
dings combined by the algorithm, and α ∈ Rk, a k-dimensional
real-valued vector:

α = [α1, . . . , αk]
⊺ (3)

which is constrained to {α : 0 ≤ αi ≤ 1,
∑k

i=1 αi = 1} namely the
k − 1-dimensional simplex. We propose a method to estimate α

what is described in Section 4.2. Such construction enables us
to combine more than two embeddings at once, in opposite to
FILDNE scenario where we always combine 2 embeddings.

Let F ∗

k|t denote the vector of k embeddings up to time t:

F ∗

k|t = [F̃0,t−k+1, F∗

t−k+2, . . . , F
∗

t ]
⊺. (4)

The embedding rule is defined as follows:

F̃0,t = α⊤
· F ∗

k|t (5)

which is the dot product of α and the sequence of aligned em-
beddings F ∗

k|t .

4.1. Reference nodes selection

To select appropriate reference nodes (see Fig. 4b) we first
introduce an activity function

a : V → R (6)

Algorithm 3: k-FILDNE

Input: F ∗

k−1|t−1, Ft , {(a
(v)
t−1, a

(v)
t ) : v ∈ Vt−1∩t}, select(·, ·), Gt ,

prior
1 F∗

t = Embedding Alignment(F∗

t−1, Ft , at−1, at , select)
2 F ∗

k|t = [F ∗

k−1|t−1; F
∗
t ]

3 α = Alpha Estimation(F ∗

k|t ,Gt , prior)
4 F̃0,t = α⊤

· F ∗

k|t

5 return F̃0,t

that for each node in the graph G assigns a scalar describing
its behavior. In our experiments we use multi-degree as the ac-
tivity function. Activity is measured for common vertices Vt−1∩t
between two neighboring snapshots.

The next step is to obtain a ranking of nodes best suited as a
reference. To do so we apply a scoring function — in our case:

s(a(v)t−1, a
(v)
t ) = |a(v)t−1 − a(v)t |

(π

2
− arctan(max{a(v)t−1, a

(v)
t })

)
, (7)

where a(v)t−1 and a(v)t are v’s activities from neighboring snapshots.
The resulting scores are sorted in ascending order. Finally, we
are able to select a number of reference nodes based on the
ranking. We propose the following schemes:

• Percent — based on the lowest score the top p percent of
nodes is selected:

select(S, V ) = Vref ⊆ sortS(V ), s.t. |Vref | = p|V |

6
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• Multiplier — based on the lowest score the number of nodes
is determined as Md (multiplier times the embedding size),
but no more than pmax (maximum percent) of common
vertices:

select(S, V ) =Vref ⊆ sortS(V ), s.t.
|Vref | = min(Md, pmax|V |)

• Threshold — all nodes with score lower than a given thresh-
old th are selected as reference:

select(S, V ) = Vref ⊆ V , s.t. ∀v∈Vref S
(v)

≤ th

The methodology of determining reference nodes presented
in this section is a generic solution. Other possible approaches
include using nodes’ attributes or experts’ knowledge.

4.2. Alpha estimation

A significant problem arises while using the k-FILDNE model
with k parameters. Assuming that each parameter has the same
number of considered values |Λ|, the model has a search space of
size O(|Λ|

k), i.e., it grows exponentially with each new dimension.
Hence, we need to find a way to estimate the model parameters
using an algorithm that is cheaper than a full search over the en-
tire parameter space. We propose an algorithm that uses Bayesian
inference with assumption of Dirichlet-Multinomial distribution
(see Algorithm 4 and Fig. 5). We want to estimate the parameters
α̂ = {α̂1, . . . , α̂k}. For the prior we use the Dirichlet distribution:

Dir(α|β) =
1

B(β)

k∏
i=1

α
βi−1
i 1{Sk−1}(α), (8)

where B(·) is the beta function used for normalization purposes.
β reflects the prior knowledge about the distribution and Sk−1
denotes the k − 1-dimensional simplex. We define two settings
— uniform: β1 = β2 = · · · = βk = 1, where representations are
equally important, and increasing: β1 < β2 < · · · < βk, where
more recent embeddings are assumed to be more significant.

The likelihood function has the form:

p(D|α) =

k∏
i=1

α
Ni
i (9)

where D = [N1,N2, . . . ,Nk] is the vector of class occurrences
from the link prediction experiment described below. Note that
N =

∑k
i=1 Ni is the total size of the sample.

Each of the embeddings F̃0,t−k+1, F∗

t−k+2, . . ., F
∗
t (see Eq. (4)) is

a separate class in the Multinomial distribution. We take edges
from the most recent snapshot Gt and split them into the train
and test sets. Negative edges are sampled in both groups in
numbers enabling class balance. We fit a set of Logistic Regression
classifiers with input vectors for each edge, built as Hadamard
product of node embeddings, and the outputs denoting edge ex-
istence. If a link was correctly predicted with several embeddings,
we randomly choose only a single representation. If none of them
can provide the correct classification of the link, such an edge is
removed from the sample. The class counts (correct predictions)
[N1,N2, . . . ,Nk] are measured on the test set.

Using the above assumptions we estimate the parameters
α̂ as the maximum a posteriori probability of the Dirichlet-
Multinomial model [46]:

α̂j =
Nj + βj − 1

N +
∑k

i=1 βi − k
(10)

Algorithm 4: Alpha Estimation
Input: F ∗

k|t ,Gt , prior
1 Generate link prediction dataset over graph Gt
2 Fit Logistic Regression classifiers on train set
3 Evaluate link prediction on test set and report correct
predictions [N1,N2, . . . ,Nk]

4 Set β according to prior distribution

5 α̂ =

[
N1 + β1 − 1

N +
∑k

i=1 βi − k
, . . . ,

Nk + βk − 1

N +
∑k

i=1 βi − k

]
6 return α̂

Fig. 5. Alpha estimation. The newly arrived snapshot Gt−1,t is prepared as train
and test sets for link prediction. For each embedding in the vector F ∗

k|t a logistic
regression (LR) classifier is fitted on the train set and further evaluated on
the test set. A poorly performing embedding should yield α̂i value that barely
influence the final representation. This is achieved by Maximum A Posteriori
estimation for the Dirichlet-Multinomial model fed with the classification results
as described in Section 4.2.

4.3. Missing embeddings: new and inactive nodes

In the FILDNE algorithm, the way we establish the embedding
for new or disappearing nodes is trivial. In such a case at time
t , we only have one out of two embeddings, and Eq. (2) cannot
be applied. For new (previously unseen) nodes v, we use the
its embedding from the most recent snapshot as the estimated
embedding, i.e. F̃0,t (v) = F∗

t−1,t (v). Contrary, if a node does not
appear in most recent graph snapshot, we use its previously
estimated embedding, i.e. F̃0,t (v) = F∗

0,t−1(v).
For the k-FILDNE method, the problem is more complex. The

number of input embeddings k′ varies between 1 and k. If there
are all embeddings available, we simply apply Eq. (5), and if
k′

= 1, then we proceed with the same idea as for the FILDNE
approach. Otherwise, we take the estimated α̂ coefficients (see
Section 4.2) corresponding to all k′ available embeddings for a
given node. Next, we normalize those values, so that they sum
up to 1. Then, we apply Eq. (5) assuming that we only have k′

components.

7
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4.4. Complexity analysis

To estimate the time and space complexity of our algorithm,
we consider the scenario of a single incremental step, i.e.
the moment when we have k − 1 past embeddings
[F̃0,t−k+1, F∗

t−k+2, . . . , F
∗

t−1]
⊺ and a new graph snapshot Gt appears.

We use a random walk based embedding algorithm (Node2vec)
and the k-FILDNE version. We denote OT (·) and OS(·) as the time
and space complexities, respectively. Considering each algorithm
step separately, we get:

(1) First, we run Node2vec:

OT (Node2vec) = O(d|Vt−1,t |)

OS(Node2vec) = O(γω|Et−1,t |),
where γ , ω are the number and length of random walks
respectively.

(2) We obtain reference nodes by sorting all vertices Vt−1∩t by
their activity score; it takes:

OT (sort) = O(|Vt−1∩t |log|Vt−1∩t |)

OS(sort) = O(|Vt−1∩t |)
Next, we solve the Orthogonal Procrustes (OP) problem
during embedding alignment:

OT (OP) = O(d3),

OS(OP) = O(d2).
(3a) Link prediction requires sampling of non-existing edges

(in the same number as existing edges; Negative Sampling
(NS)) takes:

OT (NS) = OS(NS) = O(|Et−1,t |)

We train k Logistic Regressions using all embeddings:

OT (LR) = O(kd2|Et−1,t |)

OS(LR) = O(kd|Et−1,t |)
Finally, we apply LR and aggregate the Class Counts (CC),
which takes:

OT (CC) = O(k ∗ |Et−1,t |)

OS(CC) = O(k)
(3b) The estimation of α using Dirichlet-Multinomial model is

done by simple division of k numbers, so it takes:

OT (dirichlet) = OS(dirichlet) = O(k)

(4) for the composition of all embeddings, we perform a
Weighted Matrix Addition (WMA), which takes:

OT (WMA) = OS(WMA)
= O(d|V0,t−k+1| + · · · + d|Vt−1,t |) = O(kd|V |)

where |V | is the number of vertices in the whole graph.

Therefore, the time and memory complexities of FILDNE
equals the sum of all above steps’ complexities. The size of the last
snapshot Vt−1,t , Et−1,t is smaller than of the whole graph V0,t , E0,t :
|Vt−1,t | < |V0,t | = |V |, |Et−1,t | < |E0,t | = |E|. The total complexity
can be approximated as: OT (k-FILDNE) ≈ O(|V |(log |V |+k)+|E|k)
and OS(k-FILDNE) ≈ O(k(|V | + |E|)). Let us note that the d and
k hyper-parameters do not scale with the size of the network.
Hence, we can simplify FILDNE’s complexity to: OT (k-FILDNE) ≈

O(|V | log |V | + |E|) and OS(k-FILDNE) ≈ O(|V | + |E|).
When considering an iterative application of FILDNE on k

snapshots, we can obtain an upper bound by multiplying the
estimated complexities by k, i.e., OT (k × k-FILDNE) ≈ O(k2(|V | +

|E|) + k|V |log|V |) and OS(k × k-FILDNE) ≈ O(k2(|V | + |E|)).

4.5. FILDNE versus other dynamic graph embedding methods

Let us now consider the differences between different ap-
proaches of dynamic embedding presented in the literature. First
off, we aim at highlighting the differences in data requirements
of each approach while computing embedding for new snap-
shot. The most unfavorable group of methods requires to store
whole graph information from the very beginning to time t ,
i.e. G0,t . These are CTDNE, Online-Node2vec, tNodeEmbed, dyn-
graph2vec, Dynnode2vec. Additionally, tNodeEmbed method re-
quires all intermediate embeddings F0,1, . . ., F0,t−1. Another group
of methods necessitate only the most recent graph snapshots,
i.e. Gt−1,Gt (GloDyne). Our approach, in opposite to all previous,
requires only one embedding F̃0,t−1 (FILDNE) or k embeddings
F̃0,t−k+1, . . ., F∗

t−2, F
∗

t−1,t (k-FILDNE) and the activity of nodes from
Gt−1, i.e. a

(v)
t−1∀v ∈ Gt−1.

Second off, we want to emphasize the difference in the easi-
ness of methods’ hyperparameters tuning. Such dynamic network
embedding methods as dyngraph2vec, tNodeEmbed strongly
rely on deep network architecture and all related optimization
problems. Online-Node2vec requires to specify time-dependent
hyperparameters that are not very intuitive: time-decay and half-
life, which must be set by an expert or through extensive search-
ing. Our approach limits the number of hyperparameters to only
two simple and intuitive: the number of reference nodes, combi-
nation weight α (FILDNE), or prior (k-FILDNE).

Most importantly, third off, our approach allows utilizing em-
beddings of choice (methods or already calculated vectors) in
contrast to all other methods, which rely on specific embedding
objectives. It enables our method to use additional network-
related data, e.g., nodes’ attributes (using, e.g., DGI).

The LCF method proposed in [38] does not fit to any of the
above-mentioned criteria. The authors propose a similar frame-
work to our FILDNE method. However, there are some non-
negligible differences. In contrast to them, we employ a convex
combination, a special case of the linear combination. Such an
approach allows us to keep a nearly constant order of magnitude
of embeddings vectors, whereas, for a linear combination with
all coefficients equal to one (as proposed in [38]), the magni-
tude depends on the number of combined embeddings. Further,
they introduce an exponential decay based approach where the
most recent representation prevails the final embedding. Such
an assumption is not flexible, whereas, in our proposed FILDNE
methods, the combination parameters α are dynamically esti-
mated from the data. Moreover, our experiments show that the
assumption of exponential decay is not satisfied in the real world
temporal networks (See Fig. 10). The authors do not neglect that
proximity-based embeddings are not comparable across times-
tamps and therefore apply embedding alignment. However, they
do it naively by taking all the available reference nodes between
snapshots. Our approach measures nodes’ activities’ stability to
select the most appropriate ones. Finally, the reported results
are not compared to the other state-of-the-art Dynamic Graph
Embedding methods. Furthermore, not commonly used accuracy
metrics makes it impossible to compare with them directly.

5. Experiments

We evaluate the performance of our proposed algorithm in
several experiments and compare the results against commonly
used baseline methods as well as the Base methods in naive
Dynamic Graph Embedding setting. Firstly, we train all methods
and use the computed embeddings in a link prediction experi-
ment, which should check whether these vector representations
encode structural graph information, which can be used to dis-
tinguish connected nodes from non-connected ones. Next, for
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Table 3
Statistics of graph datasets. |V| — no. of nodes, |E| — no. of temporal edges (events), D — density of the graph, Directed — is the graph directed or not. LP, EC, GR
— dataset was used in Link Prediction, Edge Classification, Graph Reconstruction tasks, respectively. Avg. Jaccard Index of nodes and edges computed as the mean
of respective Jaccard Indexes across all consecutive snapshot pairs.
Dataset |V | |E| D Timespan (days) Directed Tasks Embedding size Avg. Jaccard

Index

Nodes Edges

Enron-employees 151 50572 4.466 1138 × LP, GR 32 0.864 0.361
Hypertext09 113 20818 3.290 2 × LP, GR 32 0.816 0.142
Radoslaw-email 167 82927 2.991 271

√
LP, GR 32 0.903 0.430

fb-forum 899 33720 0.084 164 × LP, GR 128 0.692 0.253
fb-messages 1899 61734 0.034 216 × LP, GR 128 0.516 0.093
Bitcoin-alpha 3783 24186 0.002 1901

√
EC, LP, GR 32 0.217 0

Bitcoin-otc 5881 35592 0.001 1903
√

EC, LP, GR 128 0.213 0

two datasets with edge labels, we use the same embeddings
to perform edge classification — we measure the classification
quality. We would like to preserve the distances between nodes
in the resulting embedding space when learning representations
on graphs. Hence, we compute metrics used in graph recon-
struction (distortion, mAP). Finally, we perform a hyperparam-
eter sensitivity study to show how they influence the model’s
performance.

5.1. Datasets

We conduct experiments on seven popular dynamic graph
datasets downloaded from the Network Repository [47] — we
summarize their statistics in Table 3. Selected datasets vary in
the total time span between the first and last event (edges):
from 2 days (hypertext09) up to about 5 years (bitcoin-otc). Three
of them contain directed edges. Each dataset is used in link
prediction and graph reconstruction tasks. Availability of edge
labels in bitcoin-alpha and bitcoin-otc datasets allows us to per-
form edge classification. In preliminary experiments, we have
checked several sizes of node embeddings for all networks and
selected the best ones for each one (see Table 3). We note the
differences in the characteristics of selected datasets. The two
bitcoin networks exhibit a meager amount of intersecting nodes
and edges across pairs of consecutive snapshots when compared
to the others. The fb-forum, fb-messages, and hypertext09 graphs
stay at a moderate level of variability, while enron-employees and
radoslaw-email seem stable.

5.2. Experimental setup

In the following paragraphs, we explain how we have config-
ured the experimental environment.

Base methods. We evaluate several state-of-the-art and represen-
tative node embedding algorithms from different method fam-
ilies, i.e. based on: random walks (Node2vec [2], CTDNE [29]),
matrix factorization (HOPE [25], LLE [23], LE [24]), graph neural
networks (DGI [28]) and general function optimization (LINE [1]).

These methods do not provide the ability to perform training
incrementally. We use these methods to compute two kinds of
embeddings:

• baseline embeddings to compare our proposed FILDNE
method and other streaming/incremental ones against, i.e.,
the node representations are computed on the cumulative
snapshots G0,t at a given time t;

• embeddings for non-overlapping graphs Gt,t+1, which are
further consumed by our proposed FILDNE method.

Streaming methods. In terms of other incremental methods de-
signed for graph streams embedding, we compare our method
to: tNodeEmbed [34], two variants of Online-Node2vec [30]
(StreamWalk, SecondOrder) and dyngraph2vec [35] (in the AE-
RNN version).

Convergence issues. During the experiments, we found out that
the LLE [23] method did not converge on three datasets (fb-
messages, bitcoin-alpha, bitcoin-otc). We checked several hyper-
parameter settings of the underlying optimizer, but none of them
fixed this issue. We decided not to report the results of this
method for these datasets.

Data preprocessing. For each dataset, we apply the following
preprocessing steps: (1) we take all edges and sort them by
time in an ascending manner, (2) we split these edges into
ten equally sized parts according to time, (3) we convert each
edges chunk into a graph snapshot and call it Gt,t+1, where t ∈

{0, . . . , 9}. In total, we obtain 10 non-overlapping graph snapshots.
We also save cumulative graphs which accumulate all edges from
the beginning, i.e. G0,t , which contain all edges from snapshots
G0,1,G1,2, . . . ,Gt−1,t .

Note that tNodeEmbed updates its internal model for every
single timestamp. For the method to be comparable in our ex-
perimental scenario, we assume that each of the ten snapshots,
as mentioned earlier, is equivalent to a single timestamp that is
processed by tNodeEmbed. For this method, we also reuse already
calculated Node2vec embeddings.

Embedding calculation. We train all of the above-mentioned
methods and obtain two groups of embeddings: (1) cumulative
F0,t for t ∈ {0, . . . , 9}, which are computed in all G0,t using the
Base and Streaming methods; (2) non-overlapping Ft,t+1 using the
Base methods and further combined by our proposed FILDNE
methods to obtain cumulative embeddings F̃0,t . Unsupervised
embeddings (all but tNodeEmbed) are trained once and used in all
downstream tasks. tNodeEmbed is a supervised method, and the
embeddings are trained for link prediction and edge classification
individually. We repeat the training and evaluation procedure
30 times, reporting averaged statistics, to address the random
initialization and stochastic optimization used in the methods
(e.g., random walk generation in Node2vec and CTDNE).

Mean ranks. For each snapshot and dataset, we establish a rank-
ing of methods based on the average of 30 runs. We summarize it
as mean rank, which is the average ranking of methods. We report
this score in each results table in a separate column. Based on this
score, we mark the three best methods in bold.

Fine-tuning. To provide a fair comparison of all methods, we de-
cided to perform a hyperparameter search, with an equal number
of 100 iterations, overall methods. We use Tree of Parzen Esti-
mators (TPE) [48] (implemented in the HyperOPT [49] package)
choosing most appropriate hyperparameters.

Reproducibility. To allow other researchers and developers to try
out our proposed FILDNE model, we make our code available at
https://gitlab.com/fildne/fildne. We also publish all experiments
in the form of a Data Version Control (DVC) pipeline [50], so they
can be easily reproduced.
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Table 4
Comparison of link prediction (AUC [%]) on cumulative graph embeddings F0,t , t ∈ {1, . . . , 9} across all Base methods. The presented values are the mean AUC over
8 snapshots (G2,3, . . . ,G9,10) and 30 methods’ retrains. We select the 3 best methods (LINE, Node2vec, CTDNE) based on the mean ranks and use those methods in
further experiments. Underlined values show the highest AUC score for each dataset individually. Methods that did not converged are marked as ‘‘×’’.

Bitcoin Bitcoin fb fb Enron Hypertext09 Radoslaw Mean rank
alpha otc forum messages employees email

line 66.08 54.69 79.03 70.75 90.59 72.71 86.74 1.89
n2v 65.60 52.82 75.84 65.43 92.28 73.76 90.15 1.91
ctdne 55.58 51.23 65.24 54.35 87.30 67.31 83.32 3.46
hope 59.16 49.71 53.72 51.16 58.79 53.89 88.71 4.64
dgi 55.53 50.26 54.34 53.09 59.76 57.23 70.88 4.91
le 47.46 49.73 54.17 51.81 58.23 55.01 77.99 5.07
lle × × 55.69 × 59.96 58.13 54.87 5.44

Table 5
Comparison of FILDNE and other methods in link prediction task (AUC [%]). The presented values are the mean AUC scores over 8 graph snapshots and 30 methods’
retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank. Underlined
values show the highest AUC score for each dataset individually.

Bitcoin Bitcoin fb fb Enron Hypertext09 Radoslaw Mean rank
alpha otc forum messages employees email

n2v 65.60 52.82 75.84 65.43 92.28 73.76 90.15 5.43
line 66.08 54.69 79.03 70.75 90.59 72.71 86.74 5.77
ctdne 55.58 51.23 65.24 54.35 87.30 67.31 83.32 9.61

fildne(n2v) 59.25 53.36 73.94 64.27 92.43 71.35 91.67 5.75
fildne(line) 58.28 62.39 74.11 76.11 92.00 73.87 93.42 4.21
fildne(ctdne) 55.39 55.97 66.10 55.86 88.33 65.51 85.64 9.30

k-fildne(n2v) 62.22 53.93 75.95 65.09 91.43 71.71 91.66 5.55
k-fildne(line) 59.41 59.66 75.06 74.83 91.92 73.27 93.62 4.48
k-fildne(ctdne) 53.52 53.38 61.24 57.01 87.85 64.44 85.54 10.00

DynGraph2vec(aernn) 67.88 58.67 70.50 66.93 74.66 66.40 85.72 8.38
tNodeEmbed 68.68 48.40 55.96 60.97 83.57 55.79 76.87 9.61
Online-n2v(streamwalk) 69.59 59.66 73.21 69.55 84.84 68.36 91.13 6.68
Online-n2v(secondorder) 68.70 58.33 69.34 75.31 87.59 72.44 89.41 6.23

Fig. 6. Evaluation protocol. Link prediction (LP) and edge classification (EC) tasks
are evaluated on the next snapshot Gt,t+1 , whereas graph reconstruction (GR)
task is evaluated on the corresponding graph snapshot G0,t .

5.3. Link prediction

Setup. For each graph snapshot Gt,t+1, we generate a link pre-
diction dataset. We split existing edges into a train (75%) and
test (25%) dataset and mark as class 1. Then we sample the same
number of non-existing edges from the graph (negative samples
— class 0).

We implement next snapshot prediction evaluation scheme.
The embedding methods are trained on cumulative snapshots,
i.e. G0,1,G0,2, . . . ,G0,t and on non-overlapping ones,
i.e. G0,1,G1,2, . . . ,Gt−1,t . The latter embeddings are further com-
bined by our proposed FILDNE method to obtain F̃0,t ). For each
embedding F0,t , we evaluate it on the next snapshot Gt,t+1 (see
Fig. 6). We follow well established protocol to provide link-
prediction by means of classification if an edge exists [2]. Thus,
we combine pair of node embeddings into edge features using
Hadamard operator and feed logistic regression classifier.

Note that the Base methods do not provide any mechanism for
obtaining embeddings for previously unseen nodes. We modify

the sampling procedures mentioned above to consider edges (and
negative edges) with nodes present in the appropriate embedding
matrix.

Results. Experiments on the cumulative snapshots with Base
methods are presented in Table 4. We see that LINE and Node2vec
achieve the best results on all datasets. Based on the mean rank,
we observe that the 3 best methods (LINE, Node2vec, CTDNE)
outperform other methods. Hence, in the other part of this article,
we will focus only on these — using them as Base methods for our
proposed FILDNE algorithm. Although, if the reader is interested
in full results, we provide those in Appendix B.

Based on the mean rank, we see in Table 5 that among
the three best methods, there are two embeddings composed
with FILDNE. The results clearly show that our method beats
other streaming approaches in all cases besides the bitcoin-alpha
dataset. Considering the three best methods, we observe that
for fb-messages, enron-employees, and hypertext09, there are
two FILDNE-based representations, whereas for bitcoin-otc and
radoslaw-email, our proposed method is placed in all three of
them.

We notice that in the LINE Base method on bitcoin-otc and
radoslaw-email, both our FILDNE methods result in
high-performance gain compared to the vanilla Base algorithm.
For other methods and datasets, we see comparable results. In
general, we see that the gap between k-FILDNE and FILDNE is
small.

5.4. Edge classification

Setup. This downstream task is defined similarly to the link
prediction setup (see Fig. 6); however, the dataset is built dif-
ferently. We do not need to sample negative instances. We use
the bitcoin-alpha and bitcoin-otc graphs, where each edge has a
label assigned (besides the timestamp) — it represents the trust
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Table 6
Comparison of FILDNE and other methods in edge classification task (AUC [%]).
The presented values are the mean AUC scores over 8 graph snapshots and
30 methods’ retrains. We also report the mean ranks of all methods in this
experiment. Methods marked in bold are the 3 best methods based on the
mean rank. Underlined values show the highest AUC score for each dataset
individually.

Bitcoin alpha Bitcoin otc Mean rank

n2v 65.11 60.92 7.25
line 63.09 64.39 6.44
ctdne 63.81 55.92 8.56

fildne(n2v) 61.57 65.47 6.56
fildne(line) 63.91 66.56 5.00
fildne(ctdne) 59.28 57.85 8.56

k-fildne(n2v) 64.10 66.23 5.25
k-fildne(line) 63.92 66.57 4.94
k-fildne(ctdne) 58.25 59.84 8.06

DynGraph2vec(aernn) 56.40 56.14 10.12
tNodeEmbed 71.88 69.32 3.12
Online-n2v(streamwalk) 56.73 56.70 9.25
Online-n2v(secondorder) 63.39 53.93 7.88

value of a transaction (values range from −10 to 10). We choose
a threshold of 0 to define two classes (values below 0 — class
0, negative trust, untrusted; values equal or higher than 0 —
class 1, positive trust). We use the same edge embeddings as in
the link prediction task (all methods but tNodeEmbed, which is
retrained in a supervised way for this problem explicitly) to train
a logistic regression classifier. As the resulting datasets are mostly
imbalanced, we set the ‘‘class_weight’’ argument to ‘‘balanced’’
to let the algorithm automatically determine appropriate class
weights (we use the Scikit-learn implementation).

Results. We report results of edge classification in Table 6. The
tNodeEmbed method outperforms others, but it is re-fitted in the
same task, while the others reuse previously trained embeddings.
Nevertheless, among the three best results based on the mean
rank, two are obtained by FILDNE. For the bitcoin-otc dataset, we
see that FILDNE improves the AUC of edge classification for all
Base methods. Analogously to link prediction (see Section 5.3),
we see that FILDNE and k-FILDNE perform similarly as well as our
method beats other streaming approaches (except tNodeEmbed).

5.5. Graph reconstruction

Setup. Contrary to link prediction and edge classification tasks,
we do not use here the next snapshot prediction (see Fig. 6).
The main goal in graph reconstruction problems is to tell how
well the embedding represents the graph it was trained on, i.e. a
given embedding F0,t is evaluated on its corresponding graph
snapshot G0,t (in case of FILDNE we check how well the composed
Base method embeddings reflect the original cumulative graph).
Graphs are transformed to static ones in order to fulfill the graph
reconstruction framework. We use the two metrics [51]:

• a local one — mAP (mean Average Precision), which cap-
tures local graph properties; for any node and its embed-
ding vector it checks how many of the nearest vectors (in
the sense of euclidean norm) in the embedding space are
actually first-order neighbors of this node:

mAP =
1

|V |

∑
v∈V

1
deg(v)

|Nv |∑
i=1

|Nv ∩ Rv,wi |

|Rv,wi |
, (11)

where deg(v) denotes the degree of v, Nv = {w1, w2, . . .,
wdeg(v)} — neighborhood of v, Rv,wi — is the smallest set of
such points that contains wi (that is, Rv,wi is the smallest
set of nearest points in the embedding space required to
retrieve the ith neighbor of v).

• a global one — distortion, which compares the distances in
the embedding space (euclidean norm) with the distances in
the graph (shortest path lengths), the embedding distances
are normalized to be within the range [1; n], where n is
the longest shortest path length (also called diameter of the
graph).

D =
1(n
2

)
⎛⎝ ∑

u,v∈U :u̸=v

|dE(u, v) − dG(u, v)|
dG(u, v)

⎞⎠ , (12)

where n is the number of nodes, dG are the graph distances
and dE are the embedding distances.

Note that we are interested in higher mAP values and lower
distortion values (with 100% and 0 as the ideal values, respec-
tively). We also do not need an auxiliary classifier, like logistic re-
gression for link prediction and edge classification. Using a given
graph and its respective embedding, we compute the metrics.

Results. Table 7 summarizes the graph reconstruction task results
as the mean Average Precision. Considering the mean ranks, we
see both FILDNE and k-FILDNE models in the top three methods.
One of them (k-FILDNE with Node2vec embeddings) achieves
the best results for fb-forum, improving the pure Node2vec by
approximately 10% percentage points. Overall, Node2vec signifi-
cantly outperforms other methods on all the remaining datasets.
We observe that the other streaming approaches perform poorly
— they allocate themselves at the three last positions in the mean
ranks.

We also examine distortion as a graph reconstruction mea-
sure (see Table 8) for which our proposed method improves the
results of Base methods in most cases, or it stays at a compara-
ble level. Contrary to mAP, the competitive streaming methods
occupy two of the top three positions alongside FILDNE. More-
over, our method achieves the best performance on fb-forum and
hypertext09 datasets.

5.6. Time and memory costs

Setup. In this experiment, we measured the time of computing
embeddings using all of the considered methods, i.e.:

• for Base and streaming methods it is only the time needed to
compute the embedding of the graph G0,t (either in batched
or streaming manner);

• for both FILDNE and k-FILDNE we sum up the time of
computing: node activities in graph Gt−1,t , embedding Ft−1,t
using a given Base method, the calibration procedure of this
new embedding to previous ones, alpha estimation (for the
k-FILDNE) and the time of applying the FILDNE composition
equation.

We also measure the peak (highest) memory consumption of the
procedures mentioned above. Note that this also includes the
reading of the graphs into memory, as well as previously saved
models (for streaming methods) or calibrated embeddings and
node activities (for both FILDNE methods).

The time measurements are performed while computing em-
bedding in the main pipeline, so we have 30 measurements for
each scenario. Meanwhile, the memory measurements are done
in a separate branch of the pipeline, as it requires probing the
current memory usage with a relatively high frequency to obtain
accurate results. It leads to a massive slowdown of the embedding
algorithms, so eventually, we decided to perform five repetitions
of these measurements.

For the tNodeEmbed method, we report calculation time and
memory utilization measured on the link prediction task.
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Table 7
Comparison of FILDNE and other methods in graph reconstruction task (mAP [%]). The presented values are the mean mAP scores over 8 graph snapshots and 30
methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank.
Underlined values show the highest mAP score for each dataset individually.

Bitcoin alpha Bitcoin otc fb forum fb messages Enron employees hypertext09 Radoslaw email Mean rank

n2v 65.99 70.18 23.16 67.44 70.46 55.95 42.12 1.36
line 10.83 10.81 6.42 9.90 45.35 41.90 39.75 7.52
ctdne 35.65 47.24 7.85 22.84 55.15 54.80 31.42 4.61

fildne(n2v) 28.73 26.40 30.98 30.00 63.90 49.45 40.55 3.55
fildne(line) 14.70 18.02 12.16 7.12 41.71 38.24 38.38 7.61
fildne(ctdne) 18.20 24.27 9.53 11.59 49.39 45.92 36.84 6.30

k-fildne(n2v) 33.46 29.30 33.17 34.66 64.21 53.05 40.92 2.41
k-fildne(line) 15.39 25.02 15.58 8.92 44.43 38.82 38.08 6.66
k-fildne(ctdne) 16.85 27.46 13.93 20.39 55.10 48.48 37.26 4.98

DynGraph2vec(aernn) 0.60 0.66 2.22 1.84 20.46 27.75 26.51 11.32
Online-n2v(streamwalk) 1.08 1.83 2.22 1.25 25.85 28.03 29.60 10.70
Online-n2v(secondorder) 1.38 1.54 1.46 1.28 29.09 27.88 27.11 10.98

Table 8
Comparison of FILDNE and other methods in graph reconstruction task (distortion). The presented values are the mean distortion scores over 8 graph snapshots and
30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank.
Underlined values show the lowest (best) distortion score for each dataset individually.

Bitcoin alpha Bitcoin otc fb forum fb messages Enron employees Hypertext09 Radoslaw email Mean rank

n2v 0.81 1.29 0.61 0.93 0.66 0.38 0.57 8.41
line 0.87 0.94 0.50 0.59 0.65 0.33 0.80 7.52
ctdne 0.93 1.70 0.76 0.89 0.81 0.36 0.65 10.12

fildne(n2v) 0.70 1.05 0.47 0.74 0.69 0.30 0.54 6.21
fildne(line) 0.65 0.65 0.41 0.54 0.67 0.31 0.70 5.43
fildne(ctdne) 0.85 1.70 0.65 0.93 0.84 0.32 0.66 9.45

k-fildne(n2v) 0.64 1.04 0.44 0.72 0.63 0.30 0.67 5.59
k-fildne(line) 0.65 0.73 0.33 0.50 0.66 0.31 0.74 5.05
k-fildne(ctdne) 0.83 1.65 0.46 0.75 0.68 0.30 0.66 6.84

DynGraph2vec(aernn) 0.52 0.53 0.44 0.50 0.62 0.40 0.45 4.20
Online-n2v(streamwalk) 0.64 0.80 0.52 0.53 0.47 0.39 0.56 5.39
Online − n2v(secondorder) 0.54 0.57 0.48 0.49 0.49 0.40 0.45 3.79

Results. From the time measurements reported in Table 9, it is
visible that our proposed FILDNE method is the fastest for all
datasets. The speedup ratio between the fastest FILDNE config-
uration and the next fastest competitive method ranges from
approximately two to three times. Moreover, k-FILDNE is slower
than the Basic version, due to the alpha estimation procedure,
described in Section 4.2. However, the actual time difference
is not significant — in most cases, k-FILDNE is about 1 second
slower, what corresponds to a slowdown of 1%−10%. In the case
of memory utilization (see Table 10), two FILDNE configurations
are on average in the top three best-performing methods. It does
not mean that our method always improves the Base method. Es-
pecially on LINE, we can see no progress nor degradation. The rise
of memory consumption is present for the hypertext09 dataset
due to the small size of the network. We see that the Online-
Node2vec methods are well optimized for memory, contrary to
other streaming methods.

5.7. Gain results

5.7.1. Comparison to base methods
For all of the experiments, we compare FILDNE results to the

corresponding Base method, computing gain scores interpreted
as a gain whenever above 1, and as a loss whenever below. To
calculate these scores first, we average all 30 retrains of each
method for each snapshot. Next, we divide the results of FILDNE
by the ones obtained with the corresponding Base method. We
compute the mean of those ratios and report it as the gain
score (see Fig. 7). Note that we are interested in lower values
for distortion, time, and memory consumption, so we take the
fraction’s reciprocal. Each pair (dataset, Base method) can be
viewed from the perspective of link prediction performance, edge

classification performance, graph reconstruction quality, memory
consumption, and time required for computation. Such a perspec-
tive allows for a thorough inspection of our method’s properties
evaluated on real-world datasets.

In the case of link prediction, edge classification, and dis-
tortion, we either achieve comparable results (least gain score
of 0.85) or improve the performance by a margin of 75%. We
observe the most notable improvements for the calculation time,
where we can speed up the computations by a factor of 8 for
FILDNE (node2vec) and 7 for k-FILDNE (node2vec). Only for one
of the considered cases, the speedup is below 1, i.e., 0.98 for
k-FILDNE(ctdne) on radoslaw-email dataset. Memory measure-
ments exhibit similar characteristics to other indicators — FILDNE
performs in most cases no worse than Base methods. In the best
case, FILDNE allows reducing memory consumption up to 4 times.
The maximum loss of about 30%, compared to vanilla ctdne,
is encountered with enron-employees, radoslaw-email, and fb-
messages, which are small to medium-sized networks.

Results in mean Average Precision exhibit a slightly different
nature of the FILDNE method. We see a drop in the performance
for some datasets (bitcoin-otc, fb-messages). At the same time,
distortion in these cases remains at a decent level. We associate
such behavior with applying the embedding alignment step, pre-
cisely how we choose reference nodes. As explored by us, the
multi-degree activity function promotes choosing nodes with a
similar degree but does not consider their neighborhood. Im-
plementing dataset-specific activity and scoring functions could
improve the results. However, one has to take into account the
complexity of the function (see Fig. 8).

5.7.2. Comparison to streaming methods
We selected Node2vec embeddings as the ones composed

by our FILDNE method because three out of four competitive
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Table 9
Comparison of FILDNE and other methods in embeddings calculation time [s]. The presented values are the mean calculation time over 8 graph snapshots and 30
methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank.
Underlined values show the lowest calculation time for each dataset individually.

Bitcoin alpha Bitcoin otc fb forum fb messages Enron employees Hypertext09 Radoslaw email Mean rank

n2v 46.71 133.83 24.94 75.72 4.40 9.52 11.90 7.20
line 70.78 63.10 103.97 114.16 114.84 105.17 58.56 11.79
ctdne 16.25 61.41 3.98 77.44 16.82 4.39 2.65 5.27

fildne(n2v) 7.87 22.26 8.44 27.62 2.35 4.79 4.65 2.75
fildne(line) 42.34 41.66 80.53 82.18 84.43 83.29 43.50 9.07
fildne(ctdne) 7.84 18.11 1.91 33.67 8.69 2.63 0.68 1.98
k-fildne(n2v) 8.61 24.04 9.90 30.69 3.71 5.31 6.40 3.93
k-fildne(line) 43.10 43.20 81.74 85.02 85.67 83.81 45.09 10.11
k-fildne(ctdne) 8.59 19.88 3.33 36.37 9.96 3.15 2.71 3.20
DynGraph2vec(aernn) 144.71 341.14 25.54 84.10 15.89 13.35 15.47 7.82
tNodeEmbed 52.46 143.07 31.32 84.88 24.96 16.90 24.85 9.48
Online-n2v(streamwalk) 67.76 112.97 27.44 52.09 130.27 12.50 212.59 9.43
Online-n2v(secondorder) 20.78 72.98 70.51 74.15 76.83 20.92 86.89 8.98

Table 10
Comparison of FILDNE and other methods in max. memory utilization [MB]. The presented values are the mean max. memory utilization during embeddings calculation
over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods
based on the mean rank. Underlined values show the lowest memory utilization for each dataset individually.

Bitcoin alpha Bitcoin otc fb forum fb messages Enron employees Hypertext09 Radoslaw email Mean rank

n2v 580.09 317.12 552.29 360.35 212.27 218.45 227.75 3.71
line 917.17 947.08 1291.09 1309.96 1286.30 1277.53 920.00 12.16
ctdne 1751.63 1262.22 1327.77 1113.66 344.43 320.13 361.23 9.07

fildne(n2v) 233.96 344.62 207.13 385.37 206.60 241.49 203.49 2.23
fildne(line) 888.59 899.76 1275.47 1279.96 1271.36 1269.56 889.90 10.45
fildne(ctdne) 436.55 849.80 338.78 1270.43 514.53 384.26 300.85 6.80

k-fildne(n2v) 224.82 344.28 225.41 387.52 213.02 241.50 218.23 2.62
k-fildne(line) 888.82 901.10 1276.48 1281.39 1271.71 1269.49 889.21 10.66
k-fildne(ctdne) 437.24 848.13 340.99 1272.02 514.99 385.14 300.77 7.09

DynGraph2vec(aernn) 1373.12 1934.64 899.86 1023.55 793.38 774.93 816.70 10.20
tNodeEmbed 643.19 1225.00 774.82 827.67 624.12 598.00 618.93 8.54
Online-n2v(streamwalk) 321.29 381.68 269.47 307.71 347.81 249.34 390.14 4.70
Online − n2v(secondorder) 260.86 284.38 258.63 265.96 253.60 246.26 259.93 2.77

Fig. 7. Mean gain scores for FILDNE and k-FILDNE compared to corresponding Base methods. Points above the dashed line (score equal to 1) indicate a performance
gain, whereas points below indicate loss.

streaming approaches are built upon random walks. We compute

the gain scores in an analogous way to Section 5.7.1. In terms of

link prediction, our proposed FILDNE models achieve comparable

results as the other streaming approaches. For edge classifica-

tion, the tNodeEmbed presents slightly better results than other

methods as it is a fine-tuned end-to-end edge classifier. Graph
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Fig. 8. Mean gain scores for FILDNE and k-FILDNE (with node2vec as the Base method) compared to other streaming methods. Points above the dashed line (score
equal to 1) indicate a performance gain, whereas points below indicate loss. Graph reconstruction results are not reported for tNodeEmbed, because the method
performs an end-to-end task. We denote tNodeEmbed as tne, DynGraph2vec(AERNN) as aernn and both Online-Node2vec models as stwlk and sor.

Fig. 9. Link prediction task results (AUC [%]) for different amounts of reference nodes (given as the mean fraction of common nodes between snapshots) The dashed
line indicates the trend of these values (fitted using a 2nd order polynomial) and the red dot marks the highest AUC value. Each subtitle presents the name of the
dataset and the coordinates of the highest value (percent, AUC).

Fig. 10. Link prediction task results (AUC [%]) for different values of α. The dashed line indicates the trend of these values (fitted using a 2nd order polynomial)
and the red dot marks the highest AUC value. Each subtitle presents the name of the dataset and the coordinates of the highest value (α, AUC).

reconstruction measured by mean Average Precision shows the
superiority of FILDNE by a factor of up to 50. Distortion gain
scores vary between 0.55 and 1.3, what confirms FILDNE per-
formance acceptable. We observe that other streaming methods
tend to be slow compared to FILDNE method, which is reflected
on the time gain scores — embeddings can be computed up to

30 (k-FILDNE) or 50 (FILDNE) times faster. The memory measure-
ments are not surprising — we provide a comparable utilization
to both Online-Node2vec models (StreamWalk and SecondOrder).
Note that these were explicitly designed to reduce the memory
footprint. At the same time, FILDNE significantly outperforms
other streaming methods.
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Table 11
Comparison of FILDNE and other methods in link prediction task (AUC). The presented values are the mean AUC scores over 8 graph snapshots and 30 methods’
retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank. Underlined
values show the highest AUC score for each dataset individually.

Bitcoin alpha Bitcoin otc fb forum fb messages Enron employees Hypertext09 Radoslaw email Mean rank

n2v 65.60 52.82 75.84 65.43 92.28 73.76 90.15 6.29
line 66.08 54.69 79.03 70.75 90.59 72.71 86.74 6.48
ctdne 55.58 51.23 65.24 54.35 87.30 67.31 83.32 11.79
hope 59.16 49.71 53.72 51.16 58.79 53.89 88.71 16.32
dgi 55.53 50.26 54.34 53.09 59.76 57.23 70.88 17.36
le 47.46 49.73 54.17 51.81 58.23 55.01 77.99 18.02
lle × × 55.69 × 59.96 58.13 54.87 19.69

fildne(n2v) 59.25 53.36 73.94 64.27 92.43 71.35 91.67 6.98
fildne(line) 58.28 62.39 74.11 76.11 92.00 73.87 93.42 4.79
fildne(ctdne) 55.39 55.97 66.10 55.86 88.33 65.51 85.64 11.00
fildne(hope) 49.83 50.21 53.57 55.20 59.08 59.37 88.16 15.57
fildne(dgi) 53.98 51.48 55.57 53.32 63.56 59.89 68.78 15.77
fildne(le) 49.39 50.59 55.27 49.15 62.12 58.03 80.72 16.79
fildne(lle) × × 56.19 × 62.74 58.99 55.53 18.38

k-fildne(n2v) 62.22 53.93 75.95 65.09 91.43 71.71 91.66 6.52
k-fildne(line) 59.41 59.66 75.06 74.83 91.92 73.27 93.62 5.21
k-fildne(ctdne) 53.52 53.38 61.24 57.01 87.85 64.44 85.54 12.25
k-fildne(hope) 53.60 49.50 53.35 54.08 53.30 58.36 78.47 17.39
k-fildne(dgi) 51.32 47.97 55.71 53.86 61.75 58.83 66.27 17.23
k-fildne(le) 51.60 50.59 54.12 49.41 61.40 57.98 60.27 17.93
k-fildne(lle) × × 55.84 × 61.33 57.73 56.53 19.44

DynGraph2vec(aernn) 67.88 58.67 70.50 66.93 74.66 66.40 85.72 9.41
tNodeEmbed 68.68 48.40 55.96 60.97 83.57 55.79 76.87 13.93
Online-n2v(streamwalk) 69.59 59.66 73.21 69.55 84.84 68.36 91.13 7.50
Online-n2v(secondorder) 68.70 58.33 69.34 75.31 87.59 72.44 89.41 6.77

Table 12
Comparison of FILDNE and other methods in edge classification task (AUC).
The presented values are the mean AUC scores over 8 graph snapshots and
30 methods’ retrains. We also report the mean ranks of all methods in this
experiment. Methods marked in bold are the 3 best methods based on the
mean rank. Underlined values show the highest AUC score for each dataset
individually.

Bitcoin Bitcoin Mean rank
alpha otc

n2v 65.11 60.92 8.69
line 63.09 64.39 7.81
ctdne 63.81 55.92 10.56
hope 57.76 43.04 17.25
dgi 57.58 59.39 12.00
le 53.60 44.60 16.41
lle × × ×

fildne(n2v) 61.57 65.47 7.75
fildne(line) 63.91 66.56 6.19
fildne(ctdne) 59.28 57.85 10.94
fildne(hope) 58.89 50.77 15.03
fildne(dgi) 58.26 52.81 14.38
fildne(le) 52.31 54.63 16.25
fildne(lle) × × ×

k-fildne(n2v) 64.10 66.23 6.25
k-fildne(line) 63.92 66.57 6.12
k-fildne(ctdne) 58.25 59.84 10.19
k-fildne(hope) 57.87 49.84 15.00
k-fildne(dgi) 58.29 54.61 12.94
k-fildne(le) 47.80 49.87 18.50
k-fildne(lle) × × ×

DynGraph2vec(aernn) 56.40 56.14 13.62
tNodeEmbed 71.88 69.32 3.62
Online-n2v(streamwalk) 56.73 56.70 12.81
Online-n2v(secondorder) 63.39 53.93 10.69

5.8. Hyperparameter sensitivity

In this experiment, we will demonstrate the influence of
FILDNE ’s hyperparameters on downstream link prediction tasks
in the last snapshot G10. We use Node2vec as the Base method in
all of the following experiments.

Reference node percentage. The first hyperparameter we evalu-
ate is the percentage of reference nodes used in the alignment
step. We proposed in Section 4.1 three selection schemes. Here
we focus on the percentage scenario (with values: 1%, 5%, 10%,

. . . , 95%, 100%). We examine if each dataset has an individual
percentage that yields the best results in downstream tasks. We
plot the mean AUC values and standard deviations in link pre-
diction tasks for each dataset (see Fig. 9) with k-FILDNE (uniform
prior) applied. A single AUC score for a given percentage value is
computed as the mean over 30 experiment realizations. Finally,
we fit a second-order polynomial (least sq. error) for visualizing
the trend on a given dataset and mark in red the point with the
highest AUC value.

There is an optimal reference nodes proportion within the
exclusive range (0%, 100%) if we observe a concave polynomial
approximation. For more complex datasets, e.g., bitcoin-otc, that
have a low node and edge Jaccard Index (see Table 3) – repre-
senting high dynamics of the network and few common nodes in
consecutive windows – it turns out that the best results are for
100% ratio.

FILDNE alpha parameter. Next, we examine the impact of α pa-
rameter in FILDNE on AUC, exploring a range from 0 to 1 with a
step size of 0.05. The results presented in Fig. 10 for obtained for
30 experiment repetitions. We utilize the best ratio of reference
nodes found in the previous experiment.

We hypothesized that we should consider both the histori-
cal and recent embedding information while constructing node
vector representation. Our intuition is confirmed as we can ob-
serve different α for distinct datasets. In fb-forum, fb-messages,
enron-employees, hypertext09, radoslaw-email, and bitcoin-otc,
the past events are critical for performance. We see that greater α

values indicate an increase in the embedding quality to a certain
level, above which the performance decreases again. For bitcoin-
alpha, we have to keep a subtle balance between the present and
the past.
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Table 13
Comparison of FILDNE and other methods in graph reconstruction task (mAP). The presented values are the mean mAP scores over 8 graph snapshots and 30
methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank.
Underlined values show the highest mAP score for each dataset individually.

Bitcoin Bitcoin fb fb Enron Hypertext09 Radoslaw Mean rank
alpha otc forum messages employees email

n2v 65.99 70.18 23.16 67.44 70.46 55.95 42.12 1.84
line 10.83 10.81 6.42 9.90 45.35 41.90 39.75 8.05
ctdne 35.65 47.24 7.85 22.84 55.15 54.80 31.42 5.25
hope 0.51 0.64 2.43 1.39 13.20 28.10 27.06 18.32
dgi 0.66 0.66 2.55 1.45 12.44 27.11 26.91 18.48
le 0.81 1.12 2.71 1.22 11.89 28.04 76.53 14.00
lle × × 2.65 × 11.98 27.16 48.62 15.38

fildne(n2v) 28.73 26.40 30.98 30.00 63.90 49.45 40.55 4.04
fildne(line) 14.70 18.02 12.16 7.12 41.71 38.24 38.38 8.18
fildne(ctdne) 18.20 24.27 9.53 11.59 49.39 45.92 36.84 6.86
fildne(hope) 0.59 0.67 2.50 1.46 12.90 27.42 27.55 18.27
fildne(dgi) 0.77 0.80 2.88 1.68 12.69 27.20 29.66 15.50
fildne(le) 0.76 0.94 2.71 1.29 13.08 27.64 60.00 14.09
fildne(lle) × × 2.58 × 11.21 28.12 26.34 19.34

k-fildne(n2v) 33.46 29.30 33.17 34.66 64.21 53.05 40.92 2.89
k-fildne(line) 15.39 25.02 15.58 8.92 44.43 38.82 38.08 7.23
k-fildne(ctdne) 16.85 27.46 13.93 20.39 55.10 48.48 37.26 5.52
k-fildne(hope) 0.59 0.70 2.42 1.48 13.28 29.80 23.92 17.43
k-fildne(dgi) 0.93 0.94 3.24 2.06 12.72 27.76 29.04 14.04
k-fildne(le) 0.73 0.90 2.81 1.40 12.84 29.05 41.80 13.79
k-fildne(lle) × × 2.98 × 12.58 28.63 31.78 14.91

DynGraph2vec(aernn) 0.60 0.66 2.22 1.84 20.46 27.75 26.51 17.07
Online-n2v(streamwalk) 1.08 1.83 2.22 1.25 25.85 28.03 29.60 15.20
Online-n2v(secondorder) 1.38 1.54 1.46 1.28 29.09 27.88 27.11 16.04

Table 14
Comparison of FILDNE and other methods in graph reconstruction task (distortion). The presented values are the mean distortion scores over 8 graph snapshots and
30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean rank.
Underlined values show the highest distortion score for each dataset individually.

Bitcoin Bitcoin fb fb Enron Hypertext09 Radoslaw Mean rank
alpha otc forum messages employees email

n2v 0.81 1.29 0.61 0.93 0.66 0.38 0.57 17.66
line 0.87 0.94 0.50 0.59 0.65 0.33 0.80 15.93
ctdne 0.93 1.70 0.76 0.89 0.81 0.36 0.65 19.41
hope 0.58 0.60 0.36 0.48 0.48 0.34 0.44 8.93
dgi 0.51 0.55 0.36 0.61 0.49 0.34 0.38 7.38
le 0.58 0.58 0.33 0.45 0.47 0.33 0.48 8.43
lle × × 0.54 × 0.77 0.35 0.77 18.91

fildne(n2v) 0.70 1.05 0.47 0.74 0.69 0.30 0.54 14.29
fildne(line) 0.65 0.65 0.41 0.54 0.67 0.31 0.70 12.70
fildne(ctdne) 0.85 1.70 0.65 0.93 0.84 0.32 0.66 18.54
fildne(hope) 0.56 0.60 0.40 0.48 0.48 0.34 0.42 8.89
fildne(dgi) 0.53 0.72 0.30 0.55 0.47 0.33 0.38 7.68
fildne(le) 0.55 0.65 0.28 0.38 0.41 0.34 0.47 6.96
fildne(lle) × × 0.46 × 0.88 0.35 0.81 19.00

k-fildne(n2v) 0.64 1.04 0.44 0.72 0.63 0.30 0.67 12.91
k-fildne(line) 0.65 0.73 0.33 0.50 0.66 0.31 0.74 11.61
k-fildne(ctdne) 0.83 1.65 0.46 0.75 0.68 0.30 0.66 14.73
k-fildne(hope) 0.57 0.60 0.43 0.48 0.48 0.32 0.40 8.50
k-fildne(dgi) 0.52 0.72 0.30 0.51 0.49 0.33 0.42 7.30
k-fildne(le) 0.55 0.61 0.28 0.38 0.43 0.32 0.43 5.52
k-fildne(lle) × × 0.40 × 0.60 0.33 0.60 11.78

DynGraph2vec(aernn) 0.52 0.53 0.44 0.50 0.62 0.40 0.45 10.54
Online-n2v(streamwalk) 0.64 0.80 0.52 0.53 0.47 0.39 0.56 13.95
Online-n2v(secondorder) 0.54 0.57 0.48 0.49 0.49 0.40 0.45 10.20

k-FILDNE Prior. For k-FILDNE, we change the prior parameter and

evaluate both possible values (uniform, increase). We noticed that

the downstream task performance’s change is not significant –

both settings yield similar results. This shows that, after a certain

number of observations (internal link prediction), the prior values

become irrelevant – the likelihood computed from the actual data

becomes more critical (the property that Maximum Likelihood

Estimate is equal to Maximum A Posteriori in the limit).

5.9. Summary of the results

We provided an extensive experimental protocol that incorpo-
rated various network-related learning tasks, namely link predic-
tion, edge classification, and graph reconstruction. We measured
quality in each of those tasks and time/memory consumption
on seven benchmark datasets. We can conclude that the exper-
iments’ results proved FILDNE superiority by reducing compu-
tation time (up to 50x) and memory consumption (up to 6x),
achieving the same quality.
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Table 15
Comparison of FILDNE and other methods in embeddings calculation time (in seconds). The presented values are the mean calculation time over 8 graph snapshots
and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3 best methods based on the mean
rank. Underlined values show the lowest calculation time for each dataset individually.

Bitcoin Bitcoin fb fb Enron Hypertext09 Radoslaw Mean rank
alpha otc forum messages employees email

n2v 46.71 133.83 24.94 75.72 4.40 9.52 11.90 17.91
line 70.78 63.10 103.97 114.16 114.84 105.17 58.56 22.50
ctdne 16.25 61.41 3.98 77.44 16.82 4.39 2.65 15.86
hope 3.12 4.93 1.51 2.29 0.81 0.48 1.39 6.09
dgi 3.57 15.83 2.95 5.10 0.43 0.58 0.53 8.46
le 5.34 13.81 1.71 2.64 0.29 0.25 0.38 5.52
lle × × 4.22 × 0.28 0.25 0.66 7.09

fildne(n2v) 7.87 22.26 8.44 27.62 2.35 4.79 4.65 13.29
fildne(line) 42.34 41.66 80.53 82.18 84.43 83.29 43.50 19.79
fildne(ctdne) 7.84 18.11 1.91 33.67 8.69 2.63 0.68 10.84
fildne(hope) 1.09 1.52 1.02 1.35 0.34 0.25 0.46 2.71
fildne(dgi) 0.86 4.59 2.10 2.91 0.34 0.51 0.38 5.09
fildne(le) 1.24 2.01 1.45 1.68 0.25 0.19 0.28 2.38
fildne(lle) × × 1.81 × 0.16 0.11 0.33 2.34
k-fildne(n2v) 8.61 24.04 9.90 30.69 3.71 5.31 6.40 14.50
k-fildne(line) 43.10 43.20 81.74 85.02 85.67 83.81 45.09 20.82
k-fildne(ctdne) 8.59 19.88 3.33 36.37 9.96 3.15 2.71 13.61
k-fildne(hope) 1.78 3.50 2.24 4.14 1.42 0.75 1.91 8.21
k-fildne(dgi) 1.56 5.99 3.15 5.18 1.44 0.98 1.80 9.57
k-fildne(le) 1.94 3.42 2.48 3.96 1.31 0.65 1.67 7.70
k-fildne(lle) × × 2.80 × 1.29 0.63 1.74 9.34

DynGraph2vec(aernn) 144.71 341.14 25.54 84.10 15.89 13.35 15.47 18.54
tNodeEmbed 52.46 143.07 31.32 84.88 24.96 16.90 24.85 20.20
Online-n2v(streamwalk) 67.76 112.97 27.44 52.09 130.27 12.50 212.59 20.14
Online-n2v(secondorder) 20.78 72.98 70.51 74.15 76.83 20.92 86.89 19.70

Table 16
Comparison of FILDNE and other methods in max. memory utilization (in MB). The presented values are the mean max. memory utilization during embeddings
calculation over 8 graph snapshots and 30 methods’ retrains. We also report the mean ranks of all methods in this experiment. Methods marked in bold are the 3
best methods based on the mean rank. Underlined values show the lowest memory utilization for each dataset individually.

Bitcoin Bitcoin fb fb Enron Hypertext09 Radoslaw Mean rank
alpha otc forum messages employees email

n2v 580.09 317.12 552.29 360.35 212.27 218.45 227.75 8.70
line 917.17 947.08 1291.09 1309.96 1286.30 1277.53 920.00 22.75
ctdne 1751.63 1262.22 1327.77 1113.66 344.43 320.13 361.23 19.18
hope 669.68 938.47 300.07 384.13 258.63 253.09 257.59 13.05
dgi 501.36 776.38 418.67 504.65 344.67 338.79 352.69 16.16
le 538.78 728.63 283.31 329.16 260.49 254.95 273.09 11.89
lle × × 259.21 × 235.45 217.13 258.49 7.56

fildne(n2v) 233.96 344.62 207.13 385.37 206.60 241.49 203.49 4.75
fildne(line) 888.59 899.76 1275.47 1279.96 1271.36 1269.56 889.90 20.96
fildne(ctdne) 436.55 849.80 338.78 1270.43 514.53 384.26 300.85 16.14
fildne(hope) 268.60 298.96 247.20 268.57 218.52 219.81 220.97 4.73
fildne(dgi) 342.13 437.32 381.80 401.09 323.55 323.18 328.49 13.36
fildne(le) 247.31 266.87 242.43 247.96 220.95 219.35 220.60 3.43
fildne(lle) × × 228.67 × 215.67 213.14 216.45 2.62
k-fildne(n2v) 224.82 344.28 225.41 387.52 213.02 241.50 218.23 5.38
k-fildne(line) 888.82 901.10 1276.48 1281.39 1271.71 1269.49 889.21 21.18
k-fildne(ctdne) 437.24 848.13 340.99 1272.02 514.99 385.14 300.77 16.43
k-fildne(hope) 265.25 300.65 260.65 290.92 232.45 228.96 241.79 6.79
k-fildne(dgi) 344.94 442.24 392.31 405.24 333.50 329.50 343.56 14.32
k-fildne(le) 252.32 267.62 261.33 265.87 233.62 224.25 238.77 5.61
k-fildne(lle) × × 255.57 × 237.24 225.54 239.13 7.47

DynGraph2vec(aernn) 1373.12 1934.64 899.86 1023.55 793.38 774.93 816.70 20.91
tNodeEmbed 643.19 1225.00 774.82 827.67 624.12 598.00 618.93 19.14
Online-n2v(streamwalk) 321.29 381.68 269.47 307.71 347.81 249.34 390.14 11.59
Online-n2v(secondorder) 260.86 284.38 258.63 265.96 253.60 246.26 259.93 7.61

6. Conclusion and future work

In this paper, we proposed a Framework for Incremental
Learning of Dynamic Networks Embedding (FILDNE). It utilizes
timestep vectors obtained from any existing node embedding
method and produces dynamic representation reducing the com-
putational costs by working on batched data (non-overlapping
graph snapshots). We showed experimentally in link prediction,

edge classification, and graph reconstruction tasks on seven real-
world datasets that FILNDE compared to static, dynamic, and
temporal node embedding approaches reduces memory and com-
putational time costs while providing competitive accuracy gains.
Moreover, we conducted a hyperparameter sensitivity study and
provided insights into how FILDNE’s hyperparameters influence
the vector representation quality. In terms of future work, we
plan to address FILDNE’s limitations, namely: (1) it does not
provide a mechanism for online learning (update after the single
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event) as our method requires batches (graph snapshots); (2)
the calibration step requires an overlapping between consecutive
snapshots in terms of nodes (there must exist common nodes)
— one can expect a new way to calibrate such snapshots using
nodes’ structural similarity only; (3) we did not explore how
our method works in an attributed environment (i.e., using both
attributed graphs and embedding method suitable for such data);
(4) in our experimental setup we decided to use snapshots of
equal size (in terms of time intervals), but it might be required
to extend that scenario.
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Appendix A. Source code of used methods

We base our experiments on following methods implementa-
tions:

DynGraph2vec — https://github.com/palash1992/DynamicGE
M

DGI — https://github.com/PetarV-/DGI
Node2vec — https://github.com/eliorc/node2vec/
HOPE — https://github.com/palash1992/GEM
LLE — https://github.com/palash1992/GEM
LE — https://scikit-learn.org/
Online-Node2vec — https://github.com/ferencberes/online-no

de2vec
tNodeEmbed — https://github.com/urielsinger/tNodeEmbed
FILDNE — https://gitlab.com/fildne/fildne

Appendix B. All methods results (mean)

We provide comprehensive experimental results for all ex-
amined streaming approaches, Base methods and both FILDNE
variants applied on these Base methods (see Tables 11–16).
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Abstract. Representation learning for graphs has attracted increasing
attention in recent years. In this paper, we define and study a new prob-
lem of learning attributed graph embeddings. Our setting considers how
to update existing node representations from structural graph embedding
methods when some additional node attributes are given. To this end, we
propose Graph Embedding RetroFitting (GERF), a method that deliv-
ers a compound node embedding that follows both the graph structure
and attribute space similarity. Unlike other attributed graph embedding
methods, GERF is a novel representation learning method that does
not require recalculation of the embedding from scratch but rather uses
existing ones and retrofits the embedding according to neighborhoods
defined by the graph structure and the node attributes space. Moreover,
our approach keeps the same embedding space all the time and allows
comparing the positions of embedding vectors and quantifying the impact
of attributes on the representation update. Our GERF method updates
embedding vectors by optimizing the invariance loss, graph neighbor loss,
and attribute the neighbor loss to obtain high-quality embeddings. Ex-
periments on WikiCS, Amazon-CS, Amazon-Photo, and Coauthor-CS
datasets demonstrate that our proposed algorithm receives similar results
compared to other state-of-the-art attributed graph embedding models
despite working in retrofitting manner.

Keywords: graph embedding · attributed graphs · graph embedding
retrofitting.

1 Introduction

Machine learning methods have been studied in a variety of applications and
data types, including images and video (computer vision), text (natural lan-
guage processing), audio or time-series data, among many others. Since most
downstream ML models expect a vector from a continuous space as input, rep-
resentation learning methods have been developed to create those representation
vectors (embeddings) automatically. While there are many embedding methods
traditional data types, such as word2vec [11] and FastText [4] for text, or ResNet
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[7] and EfficientNet [14] for images, this task is much more difficult for graph-
structured data. A simple concatenation of unimodal representations (graph
structure and node attributes) is often not sufficient, as it does not consider
the mutual relationships between modalities. Therefore, the main challenge for
such methods is discovering the interrelationship between multiple modalities to
create a coherent representation that will integrate the multimodal information.

Problem statement Consider a situation in which data changing over time
is analyzed on an ongoing basis. In the first case, the structure of the network
remains unchanged, but the attributes of the nodes are constantly changing – an
example may be a network of connected weather sensors. Conversely, the values
of the node attributes can be constant, but the structure of the graph changes,
e.g., in a telephone network, where the edge denotes the currently ongoing call.
In both situations, graph embedding models that consider both the network
structure and node attributes can be used, however, if one of these modalities
does not change over time, this may not be the best solution. Especially, in the
first of the above-mentioned situations, it may be more advantageous to generate
the structural graph embeddings once, and then use a method that would modify
them depending on the current values of the attributes, somehow incorporating
information from the attribute space into the structural embedding space. The
simplest solution would be to simply concatenate both vectors, but the resulting
representation would be neither consistent nor low-dimensional.

Goal The aim of this work is to develop an algorithm that will enhance (retrofit)
existing structural node embeddings by incorporating information from the at-
tribute space. That is, based on the node attributes, it will appropriately modify
the embedding vectors derived from the structural graph representation learning
methods. The new embedding vectors returned by such method should provide
better performance in downstream tasks than by using naive approaches (like
concatenation of structural embeddings with node attribute vectors).

Contributions We summarize our contributions as follows: (1) we introduce
a new problem in the area of graph representation learning, in which a struc-
tural network embedding is updated (retrofitted) according to node attributes,
(2) we propose a novel method (GERF) for unsupervised representation learn-
ing on graphs which combines information from the space of structural embed-
dings and node attributes while maintaining low dimensionality of the represen-
tation vectors, (3) we perform experiments demonstrating competitive quality
of the proposed GERF method compared to other approaches, (4) we make
our code and experimental pipeline publicly available to ensure reproducibility:
https://github.com/pbielak/gerf/.

2 Related Work

The problem of graph representation learning (GRL) has received a lot of atten-
tion in recent years in the machine learning community. The main goal is to learn
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low-dimensional continuous vector representations (embeddings), which can be
later used for specific downstream prediction tasks such as node classification
or link prediction. We can distinguish two groups of embeddings in GRL meth-
ods: (i) structural embeddings that take into account information extracted from
the network structure only, such as the neighborhood of nodes proximities, and
(ii) attributed embeddings which, apart from the relationships in the network
structure, also reflect the similarity in the node feature space.

2.1 Structural representation learning methods

Early GRL methods built low-dimensional node embeddings that reflect the
structure of the network. Among them, the most frequently referenced and used
are: DeepWalk [12], Node2vec [6], LINE [15] and SDNE [16]. DeepWalk [12]
samples node sequences using random walks and passes them into the Skip-gram
model [11] (a word embedding method). Node2vec [6] extends DeepWalk by
developing a biased random walk procedure to explore diverse neighborhoods
by interpolating between a breadth-first (BFS) and depth-first (DFS) graph
search algorithms. LINE [15] is a scalable method that learns node representa-
tions by preserving the first-order (similar embeddings of neighbor nodes) and
second-order graph proximities (similar embeddings of nodes sharing the same
neighborhood). SDNE [16] also focuses on preserving the first-order and second-
order proximities. However, it uses an autoencoder approach to map the highly
non-linear underlying network structure to latent space.

2.2 Attributed graph embedding methods

The structure of the network is given by connections between objects. However,
there are many other possible sources of information. Additional node attributes
can be given in the form of a vector representation of their content, which in
the case of classic methods such as bag-of-words model or tf-idf is an additional
challenge because these vectors are usually sparse. Methods designed to learn
representations in attributed networks include TADW [17], FSCNMF [3], DANE
[5] and ANRL [18].TADW [17] (Text-AssociatedDeepWalk) shows that Deep-
Walk is equivalent to matrix factorization and proposes its text-associated ver-
sion. FSCNMF [3] is based on non-negative matrix factorization and produces
node embeddings that are consistent with the graph structure and nodes’ at-
tributes. The structure-based embedding matrix serves as a regularizer when
optimizing the attribute-based embedding matrix and vice-versa.

3 Notations and problem definition

Graph A graph G is a pair G = (V,E), where V = {v1, . . . , v|V |} is a set of
nodes and E ⊆ V ×V is the set of edges that connect node pairs, i.e., each edge
eij is a pair (vi, vj). The graph connectivity can be represented as an adjacency
matrix A ∈ {0, 1}|V |×|V | with element Aij indicating the existence of an edge
(vi, vj).
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Attributed graph Apart from the structure of connections between objects, this
kind of graph has additional information about each of the nodes, i.e., each node
has an assigned feature vector (also called the attribute vector). An attributed
graph is a 3-tuple G = (V,E,X), where V and E follow the previous definition.
X ∈ R|V |×dX is a matrix that encodes all node attributes information, and xi

describes the attributes associated with node vi.

Attribute proximity We can analyze the similarity between nodes not only
based on the network structure but also in the attribute space. Given a network
G = {V, E, X}, the attribute proximity of two nodes vi and vj is determined by
the similarity of xi and xj . Note that these are two separate spaces to analyze.
The similarity of two nodes in the graph structure does not imply their similarity
in the attribute space and vice versa. Thus, the representation learning methods
for attributed graphs should take into account dependencies in both spaces and
coherently combine them.

Node representation learning Given a networkG = (V, E) (orG = (V, E, X)
in the case of an attributed network), the goal is to represent every graph node
vi ∈ V as a low-dimensional vector zi (called node embedding) by learning a
mapping function f : vi → zi ∈ RdZ , where dZ << |V |, such that important
network properties are preserved in the embedding space (e.g. structural and
semantic graph information). Overall, the node embeddings are stored as a node
embedding matrix Z ∈ RV×dZ . If two nodes are similar in the graph structure
(they are connected or share neighbors), or have similar attribute values, their
learned embeddings should also be similar.

Attribute-based neighborhood We can easily define the neighborhood of a
node in the network as the set of other nodes that are connected to it by an edge.
However, there are no clear relationships between objects within the attribute
space itself. To combine information from the attribute space (which objects are
closer to each other in this space and which are further) with structural rela-
tionships, it is necessary to first define the so-called attribute-based neighborhood.
Based on the attribute matrix X, for each node in the network G, its k nearest
neighbors in this space were found based on the Euclidean distance metric, with
k being equal to the number of neighbors of this node in the network G. The
neighborhood of the node vi in the attribute space, defined in this way, will be
denoted by NX(vi). Therefore, ∀i |N (vi)| = |NX(vi)|.

4 Graph Embedding RetroFitting (GERF)

In this section, we describe our proposed Graph Embedding RetroFitting model
that allows to update existing structural node embeddings Z with the node
attribute information X, resulting in the retrofitted node embeddings Z∗. Figure
1 shows the overall processing pipeline of our method.
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Fig. 1. Our proposed graph embedding retrofitting (GERF) method uses information
about the structure of the graph (graph neighbors) and the node attribute space (at-
tribute neighbors) to retrofit a structural embedding Z into one that incorporates node
attribute information Z∗.

4.1 Objective function

Our model is based on the optimization of the Z∗ ∈ RV×d matrix. The objective
function of our proposed GERF model takes the following form:

L(Z∗) = (1− λG − λX)
n∑

i=1

∥z∗i − zi∥2

+ λG

n∑

i=1

∑

j: vj∈N (vi)

∥z∗i − z∗j∥2
|N (vi)|

+ λX

n∑

i=1

∑

j: vj∈NX(vi)

∥z∗i − z∗j∥2
|NX(vi)|

,

(1)

where Z = (z1, . . . , zn) are the pre-trained structural embeddings for each node,
Z∗ = (z∗1, . . . , z

∗
n) are the new embeddings combining multimodal information

(from both spaces), and λG > 0 and λX > 0 are non-negative method hyperpa-
rameters that control the importance of the structural and attribute similarity,
respectively.

With the purpose of the work in mind, one can easily explain the intuition
behind each component in the objective function and why it should be included
there. Since the method is intended to enhance the space of structural embed-
dings by incorporating information from the attribute space, it is necessary to
include an a component in the objective function that will ”keep the embeddings
in place”. That is, make sure that the new embeddings do not deviate signifi-
cantly from their original values because this would lead to a complete loss of
information from this space. Hence, what is needed is a component which is later
referred to as invariance loss:

LI(Z
∗) =

n∑

i=1

∥z∗i − zi∥2. (2)

Further, in order to combine information from the network structure and
node attributes, for each node its neighborhood in both of these spaces is con-
sidered, as defined earlier. In order for the representation of each node to be
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similar to the representation of objects close to it in both spaces, it is necessary
to define the loss related to the distance between the embeddings in the network,
called graph neighbor loss:

LG(Z
∗) =

n∑

i=1

∑

j: vj∈N (vi)

1

|N (vi)|
∥z∗i − z∗j∥2, (3)

as well as an analogous component that controls the distances between node
embeddings based on their attributes, called attribute neighbor loss:

LX(Z∗) =
n∑

i=1

∑

j: vj∈NX(vi)

1

|N (vi)|
∥z∗i − z∗j∥2. (4)

By combining equations 2-4, it is possible to write the formula in Equation 1
in a different, simpler form:

L(Z∗) = (1− λG − λX)LI(Z
∗) + λG LG(Z

∗) + λX LX(Z∗). (5)

4.2 Optimization

The Adam optimizer [8] was used to minimize the objective function from Equa-
tion 1. One can easily derive the formula for the first derivative of the function
L with respect to one vector z∗i as follows:

∂L
∂z∗i

= 2 (1− λG − λX) (z∗i − zi)

+ 2λG

∑

j: vj∈N (vi)

z∗i − z∗j
|N (vi)|

− 2λG

∑

j: vi∈N (vj)

z∗j − z∗i
|N (vj)|

+ 2λX

∑

j: vj∈NX(vi)

z∗i − z∗j
|NX(vi)|

− 2λX

∑

j: vi∈NX(vj)

z∗j − z∗i
|NX(vj)|

.

The matrix Z∗ is initialized with the values of Z. Currently, the values of λG

and λX hyperparameters are determined based on grid search and simultaneous
analysis of the model results in downstream tasks. However, more advanced
techniques could be proposed for this purpose, e.g. based on the properties of
the network structure and attribute space, which is planned for future work.

4.3 Summary

The proposed method allows the creation of a coherent representation for nodes
in the network based on their attribute values and pre-trained structural embed-
dings. It assumes that there are dependencies between objects in the attribute
space. Objects are considered adjacent if the distance between their attribute
vectors is sufficiently small compared to others. The main advantages of this
method are intuitive assumptions and simplicity of operation, as it allows for
easy integration of multimodal information from the network structure and node
attributes in the form of a low-dimensional representation vector.
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5 Experimental setup

We perform an analysis of selected graph representation learning methods in
the node classification downstream task. We compare attributed graph embed-
ding models (TADW, FSCNMF, DGI), structural embeddings (node2vec, LINE,
SDNE), and the ones modified by the proposed GERF method and a few other
baselines with each other. Additionally, a simple approach is tested that com-
pletely ignores the network structure and uses only node attributes for the pre-
diction. Four real-world benchmark datasets are employed.

5.1 Datasets

We employ four real-wold benchmark datasets from the PyTorch-Geometric [2]
library. The statistics are provided in Table 1.

– WikiCS [10] is a network of Computer Science-related Wikipedia articles
with edges denoting references between those articles. Each article belongs
to one of 10 subfields (classes) and has features computed as averaged GloVe
embeddings of the article content. We use the first provided train/val/test
data splits without any modifications (we recompute the embeddings 10
times).

– Amazon Computers (Amazon-CS), Amazon Photos [9] are two net-
works extracted from Amazon’s co-purchase data. Nodes are products and
edges denote that these products were often bought together. Based on the
reviews, each product is described using a Bag-of-Words representation (node
features). There are 10 and 8 product categories (node classes), respectively.
There are no data splits available for those datasets, so we generate a random
train/val/test split (10%/10%/80%) for each one.

– Coauthor-CS is a network extracted from the Microsoft Academic Graph
[13]. Nodes are authors, and edges denote a collaboration of two authors.
Each author is described by the keywords used in their articles (Bag-of-
Words representation; node features). There are 15 author research fields
(node classes). Similar to the Amazon datasets, there is no data split pro-
vided, so we generate a random train/val/test split (10%/10%/80%).

Table 1. Datasets statistics.

Name Nodes Edges Features Classes

WikiCS 11,701 216,123 300 10
Amazon Computers 13,752 245,861 767 10
Amazon Photos 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15
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5.2 Embedding methods

To be able to make a qualitative comparison of embedding methods and their
ability to compress highly non-linear dependencies in a low-dimensional space,
it was concluded that the same size of embedding would be assumed for each
of the methods. Thus, each of the algorithms produces 128-dimensional repre-
sentation vectors. The exact settings for the structural embedding methods are
listed below:

– node2vec – the same default parameters were adopted for each of the
datasets because the quality of the representation vectors obtained in this
way was satisfactory (note that the priority of the work is not to achieve
the highest possible results of the compared algorithms, but to show that
the method proposed in Section 4 is able to improve them, therefore little
importance was given to the search for the best set of hyperparameters).
We use the following settings: batch size – 128, learning rate – 0.01, walk
length – 20, number of walks per node – 10, context size – 10, and number of
negative samples – 1. Besides, the algorithm parameters p and q have been
set to 1, which means that it is effectively DeepWalk.

– LINE – the number of epochs was set to 10 for all datasets, and the mini-
batch size was set to 128 (WikiCS, Coauthor-CS), 4096 (Amazon-CS), 256
(Amazon-Photos). Such settings were required as otherwise, the training
resulted in collapsed embeddings or NaN values in the embedding vectors.
The number of samples in the negative sampling procedure was set to 1 for
all datasets.

– SDNE – these embeddings showed the worst quality in the downstream
task, therefore a hyperparameter grid search was performed, searching for
the optimal values of the α, β, ν parameters, as well as the number of
epochs and the size of the autoencoder hidden layer. Based on preliminary
experiments, the number of epochs was set to 50 and the hidden layer size
to 256 for all datasets. The values of method parameters α was chosen to be
10−4, β was left at default 5 and ν1, ν2 were set to 10−5, 10−4, respectively.

As the proposed GERF method combines information from the network
structure and the attribute space, it can be compared with attributed repre-
sentation learning methods for graphs. We choose the following:

– TADW – the learning rate was set to 0.01 and the number of epochs to
20, the other parameters were taken as defaults from the Karate Club im-
plementation [1].

– FSCNMF – the number of epochs was set to 500, other settings are also
default from the Karate Club implementation.

– DGI – we use a single layer Graph Convolutional (GCN) encoder network
with PReLU activation and train it using the Adam optimizer with a learning
rate of 0.001.

In addition to the above-mentioned representation learning methods, an ap-
proach in which the graph structure is completely ignored and only node at-
tributes are used for prediction is additionally tested. Such a representation of

90



Retrofitting structural graph embeddings with node attribute information 9

nodes is high-dimensional and extremely sparse, and in experiments, it will be
referred to as features.

5.3 Baselines

To check the quality of the proposed method, which allows for modifying the
existing structural embeddings based on node attributes, it is compared with
several baseline methods:

– Concat – concatenation of the structural embedding and the attribute vec-
tor for each node (note the large dimension size of such a representation),

– ConcatPCA – in this method, the dimensionality of the concatenated struc-
tural embedding and the feature vector is reduced to the size of the embed-
ding only, using Principal Component Analysis,

– MLP – a simple autoencoder architecture, with an encoder consisting of
three linear layers: the first one with the size of dX + dZ neurons with the
ReLU activation function, another with the size of (dX + dZ)//2 also with
the ReLU activation function, and the last one with the size of dZ with the
Tanh activation. The decoder is a single linear layer that takes a vector from
a hidden space with dimension dZ and returns a vector of size dX + dZ ,
which should be the best reconstruction of the input vector to the encoder.
The autoencoder was trained for 20 epochs with the mini-batch size of 128,
and Adam with learning rate of 0.001 was used as the optimizer.

5.4 GERF hyperparameters

The hyperparameter values (λG, λX) of the proposed GERF method were deter-
mined by performing a grid search (see Table 2). For each of the hyperparame-
ters, we checked the following values: 0, 0.1, . . . , 1.0, while preserving the overall
hyperparameter constraints (λG + λX ≤ 1). Moreover, the learning rate was set
to 10−1, while the number of epochs was set to 100.

Table 2. Best found GERF hyperparameter values (λG, λX) for all datasets.

Dataset node2vec LINE SDNE
(λG, λX) (λG, λX) (λG, λX)

WikiCS (0.1, 0.4) (0.4, 0.4) (0.3, 0.4)
Amazon-CS (0.2, 0.3) (0.3, 0.2) (0.8, 0.0)
Amazon-Photo (0.2, 0.4) (0.3, 0.3) (0.5, 0.2)
Coauthor-CS (0.2, 0.5) (0.6, 0.3) (0.9, 0.0)

While performing the grid search, we collected the node classification per-
formance for each hyperparameter setting (not only the best one). We present
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the influence of each hyperparameter on the overall node classification perfor-
mance in Figure 2 (for the WikiCS dataset). We notice that the results for both
hyperparameters form a convex function with a single value that maximizes the
downstream task performance. We also note that the proposed GERF method
is robust in terms of hyperparameters. However, it is worth optimizing them as
we observed up to 5 pp dispersion in the hyperparameter combinations impact
on AUC (depending on the structural embeddings – LINE, node2vec, SDNE).

Fig. 2. Evaluation of different hyperparameter (λG, λX) values of the proposed GERF
method in the node classification task on the WikiCS dataset. We present the mean and
standard deviation of AUC (validation split) for each of the hyperparameter values.
Note that while keeping one parameter fixed, we compute the AUC statistics over all
possible values of the other hyperparameter.

6 Node classification

Setup The embeddings returned by the attributed representation learning meth-
ods, structural embeddings (themselves and enhanced by the proposed GERF
method and baselines), as well as node attribute vectors, were compared in the
node classification task. We compute the embeddings of both datasets 10 times
to mitigate the random nature of the methods and their optimization procedure
for both the structural and attributed graph representation learning methods.
Each of those 10 embeddings is processed by the baselines and the proposed
GERF model. We use a L2 regularized logistic regression (from the scikit-learn
package) trained on the embedding vectors (input) and the class information
(output). The maximum number of iterations was set to 250, other parameters
were left with their default values.

The classification results in terms of the AUC metric are shown in Table 3
For each of the three structural node embedding methods – node2vec, LINE and
SDNE – as well as the embeddings updated by the baselines and our proposed
GERF method – the best result is marked in bold. We report both the mean
and standard deviation over 10 embedding recalculations.

92



Retrofitting structural graph embeddings with node attribute information 11

Table 3. Node classification results in terms of the mean and standard deviation of
the AUC metric over 10 recomputations of embeddings. For each structural embedding
method (node2vec, LINE and SDNE) and their updated versions (by baselines and our
proposed GERF method) we mark the best result in bold.

Method WikiCS Amazon-CS Amazon-Photo Coauthor-CS

features 94.79 ± 0.00 90.10 ± 0.00 94.58 ± 0.00 98.16 ± 0.00

node2vec 93.97 ± 0.15 98.22 ± 0.04 98.64 ± 0.04 98.33 ± 0.04
Concat (node2vec) 96.25 ± 0.10 98.23 ± 0.04 98.65 ± 0.04 98.38 ± 0.04
ConcatPCA (node2vec) 96.01 ± 0.11 98.22 ± 0.04 98.64 ± 0.04 98.34 ± 0.04
MLP (node2vec) 96.03 ± 0.08 98.29 ± 0.04 98.66 ± 0.04 98.41 ± 0.04
GERF (node2vec) 96.28± 0.09 98.65± 0.04 99.18± 0.03 99.23± 0.02

LINE 91.74 ± 0.20 97.63 ± 0.06 98.44 ± 0.08 93.13 ± 0.28
Concat (LINE) 95.02 ± 0.15 97.65 ± 0.06 98.45 ± 0.08 93.69 ± 0.26
ConcatPCA (LINE) 94.68 ± 0.14 97.64 ± 0.06 98.44 ± 0.08 93.16 ± 0.28
MLP (LINE) 94.90 ± 0.12 97.55 ± 0.07 98.45 ± 0.06 93.39 ± 0.24
GERF (LINE) 96.18± 0.05 98.28± 0.05 99.06± 0.03 98.39± 0.05

SDNE 74.94 ± 0.71 88.24 ± 0.41 90.89 ± 0.34 67.05 ± 1.05
Concat (SDNE) 94.14± 0.27 88.81 ± 0.41 91.34 ± 0.33 93.86± 0.68
ConcatPCA (SDNE) 93.63 ± 0.31 88.46 ± 0.43 91.16 ± 0.33 92.44 ± 0.73
MLP (SDNE) 93.75 ± 0.27 87.84 ± 0.42 90.55 ± 0.30 68.13 ± 0.86
GERF (SDNE) 92.97 ± 0.74 97.49± 0.07 98.43± 0.08 87.37 ± 2.86

TADW 90.65 ± 0.00 58.71 ± 0.00 55.91 ± 0.00 81.33 ± 0.00
FSCNMF 84.24 ± 0.00 49.93 ± 0.00 49.56 ± 0.00 50.14 ± 0.00
DGI 93.54 ± 0.17 78.20 ± 0.55 90.02 ± 0.54 98.48 ± 0.06

Discussion The first thing to note is the high score of the model that only
uses node attributes to predict the class label and completely ignores informa-
tion from the network structure despite the extremely large dimensionality of
such a representation. In all cases, using only node attributes (features) for their
classification gave better or similar results than the attributed representation
learning methods. However, it should be noted that due to the long time of op-
eration of these algorithms, the hyperparameter grid search was not performed,
and their default values were adopted, which could have an impact on the results
obtained.

Structural embedding vectors for WikiCS performed even worse than the
attributed ones, particularly those learned using SDNE. However, the quality
of the predictions increased significantly (in the case of SDNE, one could even
say drastically) as they were processed by the baselines or the proposed GERF
method, which can be seen in the increase of the AUC measure even by almost
18 percentage points (comparing SDNE and GERF (SDNE) embeddings for
WikiCS)!

In general, in each case, the proposed GERF method allowed the incorpo-
ration of information from the attribute space into the structural embedding
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space, improving the quality of prediction in this downstream task. Surprisingly
good results were achieved with the use of this method on the node2vec and
LINE embeddings, where it turned out to be not only better than the dedicated
attributed methods, but also than all the proposed baselines, and in a significant
way.

In the case of the SDNE embeddings group and the WikiCS and Coauthor-CS
datasets, the baselines (Concat, ConcatPCA andMLP) methods turned out to be
better than the proposed GERF method, but it is worth noting that both have
some disadvantages. The concatenation of the attribute vector and structural
embedding, which has proven to be best is highly dimensional and inconsistent
with the structural embedding part. On the other hand, the MLP refiner, based
on a simple autoencoder architecture, can exhibit problems when reconstruct-
ing sparse attribute vectors. All things considered, the results obtained by the
proposed GERF method are satisfactory. While maintaining a low-dimensional
representation, which allows saving memory, it achieves results similar or better
to other methods, which depends on the quality of the underlying structural
embeddings.

7 Conclusions

In this paper, we introduced a new graph representation learning problem set-
ting, where given already precomputed structural node embeddings, we want to
update them accordingly to node attributes, in such a way that the resulting em-
bedding will preserve the information from both the structure and attributes. We
proposed a novel graph embedding retrofitting model (GERF), which solves this
problem by optimizing a compound loss function, which includes an invariance
loss (keeping the new embedding close to the structural one), a graph neigh-
borhood loss (which pushes embedding of neighboring nodes closer together)
and a attribute neighborhood loss (which decreases the distance of embeddings
of nodes with similar attributes). We evaluate this method on four real-world
benchmark datasets (WikiCS, Amazon-CS, Amazon-Photo and Coauthor-CS),
comparing it to attributed graph representation learning methods and other
baselines and find that our method allows to enhance structural embeddings
and results in better downstream node classification performance. In all cases,
our method achieves the best results compared to other attribute aware em-
bedding methods as well as for all datasets. In future, we want to find a way to
automatically determine the hyperparameters (λG and λX) of our method based
on the available graph data.
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A B S T R A C T

Representation learning for graphs has attracted increasing attention in recent years. In particular, this work is
focused on a new problem in this realm which is learning attributed graph embeddings. The setting considers
how to update existing node representations from structural graph embedding methods when some additional
node attributes are given. Recently, Graph Embedding RetroFitting (GERF) Bielak et al. was proposed to this
end – a method that delivers a compound node embedding that follows both the graph structure and attribute
space similarity. It uses existing structural node embeddings and retrofits them according to the neighborhood
defined by the node attributes space (by optimizing the invariance loss and the attribute neighbor loss). In
order to refine GERF method, we aim to include the simplification of the objective function and provide an
algorithm for automatic hyperparameter estimation, whereas the experimental scenario is extended by a more
robust hyperparameter search for all considered methods and a link prediction problem for evaluation of node
embeddings.

1. Introduction

Machine learning methods have been studied in a variety of appli-
cations and data types, including images and video (computer vision),
text (natural language processing), audio or time-series data, among
many others. Since most downstream ML models expect a vector from a
continuous space as input, representation learning methods have been
developed to create those representation vectors (embeddings) auto-
matically. While there are many embedding methods traditional data
types, such as word2vec [1] and FastText [2] for text, or ResNet [3] and
EfficientNet [4] for images, this task is much more difficult for graph-
structured data. A simple concatenation of unimodal representations
(graph structure and node attributes) is often not sufficient, as it does
not consider the mutual relationships between modalities. Therefore,
the main challenge for such methods is discovering the interrelation-
ship between multiple modalities to create a coherent representation
that will integrate the multimodal information.

Problem statement . Consider a situation in which data changing over
time is analyzed on an ongoing basis. In the first case, the structure of
the network remains unchanged, but the attributes of the nodes are
constantly changing — an example may be a network of connected
weather sensors. Conversely, the values of the node attributes can be
constant, but the structure of the graph changes, e.g., in a telephone
network, where the edge denotes the currently ongoing call. In both
situations, graph embedding models that consider both the network

∗ Corresponding author.
E-mail address: tomasz.kajdanowicz@pwr.edu.pl (T. Kajdanowicz).

structure and node attributes can be used, however, if one of these
modalities does not change over time, this may not be the best solution.
Especially, in the first of the above-mentioned situations, it may be
more advantageous to generate the structural graph embeddings once,
and then use a method that would modify them depending on the cur-
rent values of the attributes, somehow incorporating information from
the attribute space into the structural embedding space. The simplest
solution would be to simply concatenate both vectors, but the resulting
representation would be neither consistent nor low-dimensional.

GERF . The previously proposed Graph Embedding Retrofitting [5]
algorithm enhances (retrofit) existing structural node embeddings by
incorporating information from the attribute space. That is, based on
the node attributes, it will appropriately modify the embedding vectors
derived from the structural graph representation learning methods. It
uses a threefold loss function, consisting of an invariance loss, a graph-
neighbor loss and an attribute-neighbor loss, to update the structural
node embedding vectors. The new vectors returned by such method
showed better performance in downstream tasks than by using naive
approaches (like concatenation of structural embeddings with node
attribute vectors).

Goal. GERF showed promising performance in the problem of
retrofitting graph embeddings we consider. However, we identified sev-
eral areas in the original method which could be further refined. First,

https://doi.org/10.1016/j.jocs.2023.101979
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we propose to automate hyperparameter estimation with Dirichlet-
Multinomial model, which helps to avoid expensive grid search. Sec-
ond, we simplify the loss function by removing graph neighbor loss
term, having no effect on training. Furthermore, to cover a broader
range of tasks in the experimental study, we extended it with an
evaluation of GERF on link prediction.

Contributions. We summarize our contributions as follows:

• we improve the previously proposed GERF [5] (Graph Embedding
Retrofitting) model by simplifying the objective function,

• we propose a method for automatic estimation of GERF’s hyper-
parameters,

• we perform additional experiments (in form of a link prediction
study) demonstrating competitive quality of the proposed GERF
method compared to other approaches,

• we make our code and experimental pipeline publicly available
to ensure reproducibility: https://github.com/graphml-lab-pwr/
gerf/.

2. Related work

The problem of graph representation learning (GRL) has received
a lot of attention in recent years in the machine learning community.
The main goal is to learn low-dimensional continuous vector represen-
tations (embeddings), which can be later used for specific downstream
prediction tasks such as node classification or link prediction. We can
distinguish two groups of embeddings in GRL methods: (i) structural
embeddings that take into account information extracted from the
network structure only, such as the neighborhood of nodes proximities,
and (ii) attributed embeddings which, apart from the relationships in
the network structure, also reflect the similarity in the node feature
space.

2.1. Structural representation learning methods

Early GRL methods built low-dimensional node embeddings that
reflect the structure of the network. Among them, the most frequently
referenced and used are: DeepWalk [6], Node2vec [7], LINE [8] and
SDNE [9]. DeepWalk [6] samples node sequences using random walks
and passes them into the Skip-gram model [1] (a word embedding
method). Node2vec [7] extends DeepWalk by developing a biased
random walk procedure to explore diverse neighborhoods by inter-
polating between a breadth-first (BFS) and depth-first (DFS) graph
search algorithms. LINE [8] is a scalable method that learns node
representations by preserving the first-order (similar embeddings of
neighbor nodes) and second-order graph proximities (similar embed-
dings of nodes sharing the same neighborhood). SDNE [9] also focuses
on preserving the first-order and second-order proximities. However, it
uses an autoencoder approach to map the highly non-linear underlying
network structure to latent space.

2.2. Attributed graph embedding methods

The structure of the network is given by connections between
objects. However, there are many other possible sources of informa-
tion. Additional node attributes can be given in the form of a vector
representation of their content, which in the case of classic methods
such as bag-of-words model or tf-idf is an additional challenge because
these vectors are usually sparse. Methods designed to learn repre-
sentations in attributed networks include TADW [10], FSCNMF [11],
DANE [12], ANRL [13], CNR [14] and Attrib2vec [15]. TADW [10]
(Text-Associated DeepWalk) shows that DeepWalk is equivalent to
matrix factorization and proposes its text-associated version. FSC-
NMF [11] is based on non-negative matrix factorization and produces
node embeddings that are consistent with the graph structure and
nodes’ attributes. The structure-based embedding matrix serves as a

regularizer when optimizing the attribute-based embedding matrix and
vice-versa.

Moreover, there exists another class of attributed graph embedding
methods — Graph Neural Networks. These are mainly based on the
so-called message-passing mechanism, where nodes generate messages
(based on their attributes) and pass them, along the graph edges, to
their neighboring nodes. Next, each node aggregates all received mes-
sages into a single summary vector, which is eventually used as the new
node representation vector. Popular GNN architectures include: Graph
Convolutional Networks (GCNs) [16], GraphSAGE [17], GAT [18],
GIN [19]. However, these models are defined only as neural network
layers and are mostly trained in a supervised setting, which we do not
consider in our paper.

3. Notations and problem definition

Graph. A graph 𝐺 is a pair 𝐺 = (𝑉 ,𝐸), where 𝑉 = {𝑣1, … , 𝑣|𝑉 |} is a set
of nodes and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges that connect node pairs,
i.e., each edge 𝑒𝑖𝑗 is a pair (𝑣𝑖, 𝑣𝑗 ) where 𝑣𝑖 ∈ 𝑉 and 𝑣𝑗 ∈ 𝑉 . The graph
connectivity can be represented as an adjacency matrix 𝐀 ∈ {0, 1}|𝑉 |×|𝑉 |
with element 𝐴𝑖𝑗 indicating the existence of an edge (𝑣𝑖, 𝑣𝑗 ).

Attributed graph. Apart from the structure of connections between
objects, this kind of graph has additional information about each of
the nodes, i.e., each node has an assigned feature vector (also called the
attribute vector). An attributed graph is a 3-tuple 𝐺 = (𝑉 ,𝐸,𝐗), where
𝑉 and 𝐸 follow the previous definition. 𝐗 ∈ R|𝑉 |×𝑑𝑋 is a matrix that
encodes all node attributes information where 𝑑𝑋 is the dimensionality
of the node attributes, and 𝐱𝑖 describes the attributes associated with
node 𝑣𝑖.

Attribute proximity . We can analyze the similarity between nodes not
only based on the network structure but also in the attribute space.
Given a network 𝐺 = {𝑉 , 𝐸, 𝐗}, the attribute proximity of two nodes
𝑣𝑖 and 𝑣𝑗 is determined by the similarity of 𝐱𝑖 and 𝐱𝑗 . Note that these are
two separate spaces to analyze. The similarity of two nodes in the graph
structure does not imply their similarity in the attribute space and vice
versa. Thus, the representation learning methods for attributed graphs
should take into account dependencies in both spaces and coherently
combine them.

Node representation learning . Given a network 𝐺 = (𝑉 , 𝐸) (or 𝐺 =
(𝑉 , 𝐸, 𝐗) in the case of an attributed network), the goal is to represent
every graph node 𝑣𝑖 ∈ 𝑉 as a low-dimensional vector 𝐳𝑖 (called node
embedding) by learning a mapping function 𝑓 ∶ 𝑣𝑖 → 𝐳𝑖 ∈ R𝑑𝑍 , where
𝑑𝑍 ≪ |𝑉 |, such that important network properties are preserved in
the embedding space (e.g. structural and semantic graph information).
Overall, the node embeddings are stored as a node embedding matrix
𝐙 ∈ R𝑉 ×𝑑𝑍 . If two nodes are similar in the graph structure (they are
connected or share neighbors), or have similar attribute values, their
learned embeddings should also be similar.

Attribute-based neighborhood. We can easily define the neighborhood
of a node 𝑖 in the network  (𝑖) ∶ {𝑣 ∈ 𝑉 ∶ (𝑣, 𝑖) ∈ 𝐸 or (𝑖, 𝑣) ∈ 𝐸}
as the set of other nodes that are connected to it by an edge – this
is known as a direct or 1-hop neighborhood. However, there are no
clear relationships between objects within the attribute space itself.
To combine information from the attribute space (which objects are
closer to each other in this space and which are further) with structural
relationships, it is necessary to first define the so-called attribute-based
neighborhood. Based on the attribute matrix 𝐗, for each node in the
network we find 𝑘 nearest neighbors in this space using the Euclidean
distance metric, with 𝑘 being equal to the number of neighbors of this
node in the network 𝐺. The neighborhood of the node 𝑣𝑖 in the attribute
space, defined in this way, will be denoted by 𝐗(𝑣𝑖). Therefore,
∀𝑖 | (𝑣𝑖)| = |𝐗(𝑣𝑖)|.
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Fig. 1. The improved graph embedding retrofitting (GERF) pipeline removes the graph neighbor terms and proposes a method for automatic estimation of 𝜆 hyperparameters.
Overall, the model uses the node attribute space to retrofit a structural embedding 𝑍 into one that incorporates both information sources 𝑍∗.

4. Graph Embedding RetroFitting (GERF)

In this section, we introduce our modifications to the Graph Em-
bedding RetroFitting model. Let us recall that GERF allows to update
existing structural node embeddings 𝐙 with the node attribute informa-
tion 𝐗, resulting in the retrofitted node embeddings 𝐙∗. Fig. 1 shows
the updated processing pipeline of our method.

4.1. Objective function

The original GERF model uses a threefold loss function, i.e. invari-
ance loss, graph neighbor loss and attribute neighbor loss. Due to a
more detailed experimental evaluation, we concluded that the graph
neighbor loss can be omitted as the information is already present in
the structural node embedding. Hence, the new objective function is
defined as follows:

(𝐙∗) = (1 − 𝜆𝑋 )
𝑛∑
𝑖=1

‖𝐳∗𝑖 − 𝐳𝑖‖2 + 𝜆𝑋
𝑛∑
𝑖=1

∑
𝑗∶ 𝑣𝑗∈𝐗(𝑣𝑖)

‖𝐳∗𝑖 − 𝐳∗𝑗 ‖2
|𝐗(𝑣𝑖)|

, (1)

where 𝐙 = (𝐳1,… , 𝐳𝑛) are the pre-trained structural embeddings for
each node, 𝐙∗ = (𝐳∗1 ,… , 𝐳∗𝑛 ) are the new embeddings combining mul-
timodal information (from both spaces), and 𝜆𝑋 ∈ [0, 1] is a method
hyperparameter that control the tradeoff between the structural and
attribute similarity. Moreover, we define 𝜆𝑍 = 1 − 𝜆𝑋 .

With the purpose of the work in mind, one can easily explain the
intuition behind each component in the objective function and why
it should be included there. Since the method is intended to enhance
the space of structural embeddings by incorporating information from
the attribute space, it is necessary to include a component in the
objective function that will ‘‘keep the embeddings in place’’. That is,
make sure that the new embeddings do not deviate significantly from
their original values because this would lead to a complete loss of
information from this space. Hence, what is needed is a component
which is later referred to as invariance loss:

𝐼 (𝐙∗) =
𝑛∑
𝑖=1

‖𝐳∗𝑖 − 𝐳𝑖‖2. (2)

Further, in order to incorporate the information from the node
attributes, for each node its attribute neighborhood is considered (as
defined earlier). The component that controls the distances between
node embeddings based on their attributes is called the attribute
neighbor loss:

𝑋 (𝐙∗) =
𝑛∑
𝑖=1

∑
𝑗∶ 𝑣𝑗∈𝐗(𝑣𝑖)

1
| (𝑣𝑖)|

‖𝐳∗𝑖 − 𝐳∗𝑗 ‖2. (3)

By combining Eqs. (2) and (3), it is possible to write the formula
in Eq. (1) in a different, simpler form:

(𝐙∗) = 𝜆𝑍 𝐼 (𝐙∗) + 𝜆𝑋 𝑋 (𝐙∗). (4)

4.2. Optimization

We use the Adam optimizer [20] to minimize the objective function
from Eq. (1). One can easily derive the formula for the first derivative
of the function  with respect to one vector 𝐳∗𝑖 as follows:

𝜕
𝜕𝐳𝑖

∗
= 2 𝜆𝑍 (𝐳∗𝑖 − 𝐳𝑖) + 2 𝜆𝑋

∑
𝑗∶ 𝑣𝑗∈𝐗(𝑣𝑖)

𝐳∗𝑖 − 𝐳∗𝑗
|𝐗(𝑣𝑖)|

− 2 𝜆𝑋
∑

𝑗∶ 𝑣𝑖∈𝐗(𝑣𝑗 )

𝐳∗𝑗 − 𝐳∗𝑖
|𝐗(𝑣𝑗 )|

.

The matrix 𝐙∗ is initialized with the values of 𝐙. Such an approach
reduces the number of optimization steps till convergence.

4.3. Hyperparameter estimation

To find the retrofitted embedding, we need to specify the 𝜆𝑋 hyper-
parameter (we defined the other hyperparameter as 𝜆𝑍 = 1− 𝜆𝑋). This
can be done in various ways, including the usage of expert knowledge
or just a naive grid search (as presented in Section 5). However, a better
approach would be to estimate these hyperparameters automatically.
We propose to utilize the approach based on the Dirichlet-Multinomial
model, as proposed in [21]. The estimation method is depicted in
Fig. 2. In particular, we evaluate the structural embedding in a node
classification task (or link prediction task) and count the number of
successful classification attempts 𝑆𝑍 . Next, we repeat the same task
on the node attributes to obtain the number of successes 𝑆𝑋 . For
evaluation, we leverage logistic regression fitted on the training set
and obtain a number of successes from the validation set. Then, we
use these numbers as the evidence for the Multinomial distribution. To
include prior knowledge about the distribution, we use the conjugate
Dirichlet prior distribution with initial parameters denoted by 𝜶 ={
𝛼𝑍 , 𝛼𝑋

}
. We test two strategies for the prior. First, we use a uniform

setting: 𝛼𝑍 = 𝛼𝑋 = 1, where the representations are equally important.
Second, we compute 𝛼𝑍 and 𝛼𝑋 based on our approximate measure of
the network homophily, which is defined as follows, where 𝐸𝑋 is the set
of edges induced by attribute nearest neighbors (such as defined in the
cost function), 𝐸𝑍 is the set of edges induced by structural embedding
nearest neighbors, and 𝐸 is the original set of network’s edges:

𝛼𝑋 =
|𝐸𝑋 ∩ 𝐸|

|𝐸| ; 𝛼𝑍 =
|𝐸𝑍 ∩ 𝐸|

|𝐸|
Since the 𝜶 parameters for the Dirichlet prior serve as an initial belief
about correct classification count, 𝛼𝑋 and 𝛼𝑍 are further scaled by a
fraction of the number of nodes to obtain the right units. The fraction
was set to 0.05 to reflect the scenario of a preliminary trial, before
the entire data to compute likelihood is available. It is worth noting
that one can use more robust prior probabilities for 𝜶, e.g., priors
based on a different definition of homophily or better scaling to the
count units. Using the above assumptions, we estimate the parameters
𝜆𝑍 and 𝜆𝑋 as the maximum a posteriori probability (MAP) of the
Dirichlet-Multinomial model [22] :

�̂�𝑍 =
𝑆𝑍 + 𝛼𝑍 − 1

𝑆𝑍 + 𝑆𝑋 + 𝛼𝑍 + 𝛼𝑋 − 2
; �̂�𝑋 =

𝑆𝑋 + 𝛼𝑋 − 1
𝑆𝑍 + 𝑆𝑋 + 𝛼𝑍 + 𝛼𝑋 − 2
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Fig. 2. Hyperparameter estimation algorithm. First, we use the structural node embedding 𝐙 to train a logistic regression classifier (LR) and count the number of successful
predictions 𝑆𝑍 . We do the same for the node attributes and obtain 𝑆𝑋 . These values are combined with prior distribution parameters to compute the MAP estimate of the
Dirichlet-Multinomial model, which we use as estimates for GERF’s hyperparameters, i.e., 𝜆𝑍 and 𝜆𝑋 .

5. Experimental setup

We perform an analysis of selected graph representation learning
methods in the node classification and link prediction downstream
tasks. We compare attributed graph embedding models (TADW, FSC-
NMF, DGI), structural embeddings (node2vec, LINE, SDNE), and the
ones modified by the improved GERF method and a few other base-
lines with each other. Additionally, a simple approach is tested that
completely ignores the network structure and uses only node attributes
for the prediction (called features from now on). Four real-world bench-
mark datasets are employed.

5.1. Datasets

We employ four real-wold benchmark datasets from the PyTorch-
Geometric [23] library. The statistics are provided in Table 1.

• WikiCS [24] is a network of Computer Science-related Wikipedia
articles with edges denoting references between those articles.
Each article belongs to one of 10 subfields (classes) and has
features computed as averaged GloVe embeddings of the arti-
cle content. We use the first provided train/val/test data splits
without any modifications (we recompute the embeddings 10
times).

• Amazon Computers (Amazon-CS), Amazon Photos [25] are
two networks extracted from Amazon’s co-purchase data. Nodes
are products and edges denote that these products were often
bought together. Based on the reviews, each product is described
using a Bag-of-Words representation (node features). There are
10 and 8 product categories (node classes), respectively.No data
splits are available for those datasets, so we generate a random
train/val/test split (10%/10%/80%) for each one.

Table 1
The datasets statistics.

Name Nodes Edges Features Classes

WikiCS 11,701 216,123 300 10
Amazon Computers 13,752 245,861 767 10
Amazon Photos 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

• Coauthor-CS is a network extracted from the Microsoft Academic
Graph [26]. Nodes are authors, and edges denote a collaboration
of two authors. Each author is described by the keywords used
in their articles (Bag-of-Words representation; node features).
There are 15 author research fields (node classes). Similar to
the Amazon datasets, no data split is provided, so we generate
a random train/val/test split (10%/10%/80%).

5.2. Embedding methods

To be able to make a qualitative comparison of embedding methods
and their ability to compress highly non-linear dependencies in a
low-dimensional space, we use the same embedding size (equal to
128) for each of the methods. Moreover, to ensure a fair compari-
son, we optimize the hyperparameters of all the node representation
learning methods using the Optuna library [27]. For each method,
we take 100 optimization steps and tune the following parameters.
Continuous parameters (marked by [ ]) are sampled from the uniform
distribution in the linear domain (*) or in the log-scaled domain (**).
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Discrete parameters (marked by { }) are sampled from the categorical
distribution.

• node2vec:

– learning rate**: [0.001, 0.1]
– batch size: {32, 64, 128, 256}
– walk length*: [10, 30]
– walks per node*: [2, 20]
– context size*: [2, 20]
– num negative samples*: [1, 3]
– p*: [0.5, 1.5]
– q*: [0.5, 1.5]

• LINE:

– negative ratio*: {0, 1, 2, 3}
– order: {’first’, ‘second’, ‘all’}
– batch size: {32, 64, 128, 256} (for Wiki-CS and Coauthor-

CS), {1024, 2048, 4096, 8192} (for Amazon-CS), {64, 128,
256, 512} (for Amazon-Photo)

• SDNE:

– hidden size: {128, 256, 512, 1024}
– nu1*: [1.e-6, 1.e-4]
– nu2*: [1.e-5, 1.e-3]
– alpha*: [1.e-5, 1.e-3]
– beta*: [3, 7]
– batch size: {32, 64, 128, 256}

• TADW:

– learning rate**: [0.001, 0.1]
– reduction dimensions: {16, 32, 64, 128}
– svd iterations*: [10, 50]
– lambda*: [1, 15]

• FSCNMF:

– alpha1*: [100, 1500]
– alpha2*: [0.1, 1.5]
– alpha3*: [0.1, 1.5]
– beta1*: [100, 1500]
– beta2*: [0.1, 1.5]
– beta3*: [0.1, 1.5]

• DGI – we use a single layer Graph Convolutional (GCN) encoder
network with PReLU activation and train it using the Adam
optimizer; we use the default augmentation functions as given in
the PyTorch-Geometric library [23]

– learning rate**: [0.0001, 0.01]

We evaluate each embedding in the node classification task (as de-
scribed below) and use the AUC on the validation set to select the best
hyperparameter configuration. We attach the best hyperparameters for
all datasets and methods in the code repository.

5.3. Baselines

To check the quality of the proposed method, which allows for
modifying the existing structural embeddings based on node attributes,
we compare it with several baseline methods:

• Concat – concatenation of the structural embedding and the
attribute vector for each node (note the large dimension size of
such a representation),

• ConcatPCA – in this method, the dimensionality of the concate-
nated structural embedding and the feature vector is reduced

to the size of the embedding only, using Principal Component
Analysis,

• MLP – a simple autoencoder architecture, with an encoder con-
sisting of three linear layers: the first one with the size of 𝑑𝑋 +𝑑𝑍
neurons with the ReLU activation function, another with the size
of (𝑑𝑋 + 𝑑𝑍 )∕∕2 also with the ReLU activation function, and
the last one with the size of 𝑑𝑍 with the Tanh activation. The
decoder is a single linear layer that takes a vector from a hidden
space with dimension 𝑑𝑍 and returns a vector of size 𝑑𝑋 + 𝑑𝑍 ,
which should be the best reconstruction of the input vector to the
encoder. We train the autoencoder for 20 epochs with the mini-
batch size of 128 using Adam with the learning rate of 0.001 as
the optimizer.

5.4. GERF hyperparameters

Three strategies of hyperparameter values (𝜆𝑍 , 𝜆𝑋) were proposed
and tested: a grid search and the estimation based on the Multinomial-
Dirichlet model, the best found combinations of hyperparameters are
presented in Table 2. For each of the hyperparameters, we checked
the following values: 0, 0.05, 0.1,… , 1.0, while preserving the overall
hyperparameter constraints (𝜆𝑍 + 𝜆𝑋 ≤ 1). For the Multinomial-
Dirichlet model, the parameters are by default constrained to sum up
to 1, and we tested two strategies for the prior parameters of Dirichlet
distribution. Moreover, the learning rate was set to 10−1, while the
number of epochs was set to 100.

While performing the grid search, we collected the node classifica-
tion performance for each hyperparameter setting (not only the best
one). We present the influence of each hyperparameter on the overall
node classification performance in Fig. 3. We notice that the results for
both hyperparameters form a convex function with a single value that
maximizes the downstream task performance. We also note that the
proposed GERF method is robust in terms of hyperparameters (we do
not consider the edge cases). However, it is worth optimizing them as
we observed up to 5 pp dispersion in the hyperparameter combinations
impact on AUC (depending on the structural embeddings — LINE,
node2vec, SDNE).

6. Node classification

We evaluate node embedding vectors in a node classification task,
following the setup from the original GERF paper [5]. Let us recall the
details.

Setup. The embeddings returned by the attributed representation
learning methods, the structural embeddings (themselves and enhanced
by the GERF method and baselines), as well as node attribute vectors
(features), were compared in the node classification task. We compute
the embeddings of both datasets 10 times to mitigate the random nature
of the methods and their optimization procedure for both the structural
and attributed graph representation learning methods. Each of those
10 embeddings is processed by the baselines and the proposed GERF
model. We use a 𝐿2 regularized logistic regression (from the scikit-learn
package [28]) trained on the embedding vectors (input) and the class
information (output). The maximum number of iterations was set to
250, other parameters were left with their default values.

The classification results in terms of the AUC metric are shown in
Table 3. For each of the three structural node embedding methods –
node2vec, LINE and SDNE – as well as the embeddings updated by the
baselines and the GERF method – the best result is marked in bold.
We report both the mean and standard deviation over 10 embedding
recalculations.

Discussion. The first thing to note is the high score of the model that
uses only node attributes to predict the class label and completely
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Fig. 3. The evaluation of different hyperparameters (𝜆𝑋 ) values of the proposed GERF method in the node classification task on the WikiCS (top) and Coauthor-CS (bottom)
datasets. We present the AUC on the validation split.

Table 2
The best found GERF hyperparameter values. Each entry contains pair of values corresponding to (𝜆𝑍 , 𝜆𝑋 ) hyperparameters for all datasets and two considered tasks (node
classification and link prediction). The table contains values for three methods of hyperparameter estimation: the grid search (grid), the Multinomial-Dirichlet model with uniform
prior (uniform), and the Multinomial-Dirichlet model with the homophily-based prior (homophily).

Dataset Task node2vec LINE SDNE

grid uniform homophily grid uniform homophily grid uniform homophily

WikiCS node cls. (0.6, 0.4) (0.53, 0.47) (0.56, 0.44) (0.5, 0.5) (0.51, 0.49) (0.55, 0.45) (0.35, 0.65) (0.39, 0.61) (0.41, 0.59)
link pred. (0.95, 0.5) (0.54, 0.46) (0.55, 0.45) (0.95, 0.5) (0.55, 0.45) (0.55, 0.45) (0.6, 0.4) (0.51, 0.49) (0.51, 0.49)

Amazon-CS node cls. (0.65, 0.35) (0.69, 0.31) (0.72, 0.28) (0.69, 0.31) (0.7, 0.3) (0.71, 0.29) (0.25, 0.75) (0.61, 0.8) (0.62, 0.38)
link pred. (1.0, 0.0) (0.60, 0.40) (0.60, 0.40) (1.0, 0.0) (0.59, 0.41) (0.59, 0.41) (0.9, 0.1) (0.55, 0.45) (0.55 0.45)

Amazon-Photo node cls. (0.70, 0.30) (0.77, 0.23) (0.78, 0.22) (0.75, 0.25) (0.77, 0.23) (0.79, 0.21) (0.40, 0.60) (0.73, 0.27) (0.73, 0.27)
link pred. (1.0, 0.0) (0.58, 0.42) (0.58, 0.42) (1.0, 0.0) (0.58, 0.42) (0.58, 0.42) (0.9, 0.1) (0.53, 0.47) (0.53, 0.47)

Coauthor-CS node cls. (0.45, 0.55) (0.78, 0.22) (0.77, 0.23) (0.25, 0.75) (0.76, 0.24) (0.76, 0.24) (0.2, 0.8) (0.57, 0.43) (0.53, 0.47)
link pred. (1.0, 0.0) (0.57, 0.43) (0.57, 0.43) (1.0, 0.0) (0.57, 0.43) (0.57, 0.43) (1.0, 0.0) (0.46, 0.54) (0.46, 0.55)

ignores information from the network structure despite the extremely
large dimensionality of such a representation. In all cases, using only
node attributes (features) for their classification gave better or similar
results than the attributed representation learning methods.

The structural embedding vectors for WikiCS performed even worse
than the attributed ones, particularly those learned using SDNE. How-
ever, the quality of the predictions increased significantly (in the case
of SDNE, one could even say drastically) as they were processed by the
baselines or the GERF method, which can be seen in the increase of
the AUC measure even by almost 16 percentage points (comparing the
SDNE and GERF embeddings for WikiCS)!

In general, in each case, the proposed GERF method allows the
incorporation of information from the attribute space into the structural
embedding space, improving prediction quality in this downstream
task.

In the case of the node2vec and SDNE embeddings groups and the
WikiCS dataset, the baselines (Concat, ConcatPCA and MLP) methods
turn out to be better than the proposed GERF method. Still, it is worth

noting that both have some disadvantages. The concatenation of the
attribute vector and structural embedding, which has proven to be the
best is highly dimensional and inconsistent with the structural embed-
ding part. On the other hand, the MLP refiner, based on the simple
autoencoder architecture, can exhibit problems when reconstructing
sparse attribute vectors. All things considered, the results obtained by
the proposed GERF method are satisfactory. While maintaining a low-
dimensional representation, which allows saving memory, it achieves
results similar or better to other methods, which depends on the quality
of the underlying structural embeddings.

When comparing different hyperparameter estimation methods for
GERF, i.e., grid, uniform, homophily, we can observe that although the
grid variant often receives the highest AUC values, it is a much more
time-consuming process. We need to examine multiple values to find
the best one. Nevertheless, the uniform and homophily approaches are
more suitable for real-world applications as they are (1) only slightly
worse than the grid approach and (2) they are more time-efficient (only
a single evaluation to find the hyperparameters).
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Table 3
Node classification results in terms of the mean and standard deviation of the AUC
metric over 10 recomputations of embeddings. For each structural embedding method
(node2vec, LINE and SDNE) and their updated versions (by baselines and the GERF
method) we mark the best result in bold.

Method WikiCS Amazon Amazon Coauthor
CS Photo CS

features 94.79 ± 0.00 89.62 ± 0.00 94.17 ± 0.00 98.17 ± 0.00

node2vec 94.88 ± 0.11 98.15 ± 0.06 98.71 ± 0.04 98.62 ± 0.04
+ Concat 𝟗𝟔.𝟕𝟓 ± 𝟎.𝟎𝟔 98.16 ± 0.06 98.71 ± 0.04 98.66 ± 0.04
+ ConcatPCA 96.64 ± 0.07 98.16 ± 0.06 98.71 ± 0.04 98.63 ± 0.04
+ MLP 96.61 ± 0.07 98.23 ± 0.06 98.68 ± 0.04 98.63 ± 0.03
+ GERF(grid) 96.40 ± 0.07 𝟗𝟖.𝟓𝟔 ± 𝟎.𝟎𝟑 𝟗𝟗.𝟎𝟕 ± 𝟎.𝟎𝟑 𝟗𝟗.𝟑𝟎 ± 𝟎.𝟎𝟐
+ GERF(uniform) 96.41 ± 0.06 98.55 ± 0.03 99.04 ± 0.03 99.09 ± 0.03
+ GERF(homophily) 96.41 ± 0.06 98.54 ± 0.03 99.03 ± 0.03 99.09 ± 0.03

LINE 93.02 ± 0.14 97.86 ± 0.10 98.62 ± 0.06 96.43 ± 0.22
+ Concat 95.77 ± 0.11 97.87 ± 0.10 98.63 ± 0.06 96.58 ± 0.21
+ ConcatPCA 95.62 ± 0.10 97.86 ± 0.10 98.62 ± 0.06 96.45 ± 0.22
+ MLP 95.63 ± 0.10 97.80 ± 0.12 98.62 ± 0.06 96.62 ± 0.20
+ GERF(grid) 𝟗𝟓.𝟕𝟖 ± 𝟎.𝟏𝟏 98.22 ± 0.05 𝟗𝟖.𝟖𝟒 ± 𝟎.𝟎𝟓 𝟗𝟖.𝟖𝟏 ± 𝟎.𝟎𝟒
+ GERF(uniform) 95.77 ± 0.12 𝟗𝟖.𝟐𝟑 ± 𝟎.𝟎𝟓 98.83 ± 0.05 97.81 ± 0.14
+ GERF(homophily) 95.74 ± 0.12 98.23 ± 0.05 98.82 ± 0.05 97.79 ± 0.14

SDNE 75.99 ± 0.70 89.65 ± 0.32 92.19 ± 0.21 71.46 ± 0.78
+ Concat 𝟗𝟒.𝟗𝟐 ± 𝟎.𝟎𝟖 90.16 ± 0.32 92.67 ± 0.21 90.03 ± 0.25
+ ConcatPCA 94.72 ± 0.09 89.93 ± 0.33 92.55 ± 0.20 86.56 ± 0.65
+ MLP 94.50 ± 0.10 89.10 ± 0.26 91.43 ± 0.22 69.60 ± 1.04
+ GERF(grid) 92.08 ± 0.21 𝟗𝟓.𝟕𝟓 ± 𝟎.𝟏𝟑 𝟗𝟔.𝟗𝟒 ± 𝟎.𝟏𝟎 𝟗𝟎.𝟓𝟔 ± 𝟎.𝟒𝟒
+ GERF(uniform) 92.03 ± 0.21 94.65 ± 0.23 96.18 ± 0.11 86.76 ± 0.68
+ GERF(homophily) 91.98 ± 0.21 94.60 ± 0.23 96.19 ± 0.11 87.38 ± 0.66

TADW 91.45 ± 0.00 60.88 ± 0.00 54.88 ± 0.00 83.21 ± 0.00
FSCNMF 86.60 ± 0.00 92.10 ± 0.00 92.45 ± 0.00 98.77 ± 0.00
DGI 93.42 ± 0.18 73.24 ± 0.59 88.21 ± 0.54 93.95 ± 0.50

7. Link prediction

Setup. We employ a similar setup as in the node classification case. We
evaluate embedding vectors returned by the attributed representation
learning methods, structural embeddings (themselves and enhanced
by the GERF method and baselines), as well as the node attribute
vectors (features). We take all edges in a graph and assign a positive
label to them (class 1). Next, we sample a negative edge for each
existing edge and assign a negative label to them (class 0). Such a
dataset is split into a train, validation and test split using a stratified
10%/10%/80% ratio. To obtain edge-level embedding vectors from
the existing node representations, we use the Hadamard operator (as
proposed in [7]). We train a 𝐿2 regularized logistic regression (from the
scikit-learn package [28]) on the edge embedding vectors (input) and
the class information (output) – binary classification. The maximum
number of iterations was set to 250, other parameters were left with
their default values.

The classification results in terms of the AUC metric are shown in
Table 4. For each of the three structural node embedding methods –
node2vec, LINE and SDNE – as well as the embeddings updated by the
baselines and the GERF method – the best result is marked in bold. We
report both the mean and standard deviation over the 10 embedding
recalculations.

Please note that as the hyperparmeter estimation is a crucial part
of the improved GERF method, we perform this estimation on the link
prediction task.

Discussion. Similarly to the node classification experiment, the node
attributes itself (features) already provide satisfactory performance.
However, the structural node embeddings (node2vec, LINE, SDNE) are
significantly better (or on par — in the case of SDNE). Let us note that
the main objective of structural node embedding methods is to reflect
the structure of the graph, i.e. encode the edges. Hence, the results are
not surprising. In each group, the structural embeddings yield the best
performance, whereas adding node attributes does not result in any

Table 4
Link prediction results in terms of the mean and standard deviation of the AUC
metric over 10 recomputations of embeddings. For each structural embedding method
(node2vec, LINE and SDNE) and their updated versions (by the baselines and GERF
method), we mark the best result in bold.

Method WikiCS Amazon Amazon Coauthor
CS Photo CS

features 88.68 ± 0.00 71.66 ± 0.00 74.43 ± 0.00 85.47 ± 0.00

node2vec 98.66 ± 0.04 𝟗𝟗.𝟒𝟓 ± 𝟎.𝟎𝟏 𝟗𝟗.𝟑𝟒 ± 𝟎.𝟎𝟏 𝟗𝟗.𝟖𝟑 ± 𝟎.𝟎𝟎
+ Concat 𝟗𝟖.𝟖𝟖 ± 𝟎.𝟎𝟑 99.45 ± 0.01 99.34 ± 0.01 99.83 ± 0.00
+ ConcatPCA 98.40 ± 0.02 99.45 ± 0.01 99.35 ± 0.01 99.84 ± 0.00
+ MLP 98.59 ± 0.09 99.45 ± 0.02 99.40 ± 0.02 99.77 ± 0.02
+ GERF(grid) 98.71 ± 0.03 99.45 ± 0.01 99.34 ± 0.01 99.83 ± 0.00
+ GERF(uniform) 97.82 ± 0.02 97.66 ± 0.01 97.22 ± 0.02 98.89 ± 0.01
+ GERF(homophily) 97.82 ± 0.02 97.66 ± 0.01 97.23 ± 0.02 98.90 ± 0.01

LINE 98.50 ± 0.03 𝟗𝟗.𝟎𝟓 ± 𝟎.𝟎𝟓 𝟗𝟗.𝟑𝟑 ± 𝟎.𝟎𝟐 𝟗𝟗.𝟗𝟓 ± 𝟎.𝟎𝟎
+ Concat 𝟗𝟖.𝟔𝟓 ± 𝟎.𝟎𝟑 99.05 ± 0.05 99.33 ± 0.02 99.95 ± 0.00
+ ConcatPCA 97.50 ± 0.05 98.22 ± 0.12 98.98 ± 0.06 99.97 ± 0.00
+ MLP 98.64 ± 0.03 98.97 ± 0.06 99.31 ± 0.03 99.97 ± 0.00
+ GERF(grid) 98.56 ± 0.03 99.05 ± 0.05 99.33 ± 0.02 99.95 ± 0.00
+ GERF(uniform) 97.68 ± 0.07 96.12 ± 0.17 96.41 ± 0.14 99.02 ± 0.03
+ GERF(homophily) 97.68 ± 0.07 96.13 ± 0.17 96.41 ± 0.14 99.03 ± 0.03

SDNE 88.65 ± 0.80 86.19 ± 0.36 85.29 ± 0.59 68.50 ± 0.61
+ Concat 𝟗𝟒.𝟓𝟗 ± 𝟎.𝟑𝟑 86.19 ± 0.36 85.29 ± 0.59 68.60 ± 0.61
+ ConcatPCA 88.74 ± 0.48 84.06 ± 0.49 84.82 ± 0.53 𝟕𝟐.𝟏𝟏 ± 𝟎.𝟑𝟓
+ MLP 91.75 ± 0.47 𝟖𝟕.𝟑𝟕 ± 𝟎.𝟑𝟕 85.73 ± 0.47 67.68 ± 1.15
+ GERF(grid) 90.90 ± 0.44 86.43 ± 0.35 𝟖𝟓.𝟖𝟎 ± 𝟎.𝟕𝟏 68.50 ± 0.61
+ GERF(uniform) 90.79 ± 0.43 85.68 ± 0.37 84.57 ± 0.93 63.17 ± 0.89
+ GERF(homophily) 90.79 ± 0.43 85.68 ± 0.37 84.58 ± 0.93 63.17 ± 0.89

TADW 80.17 ± 0.00 56.24 ± 0.00 54.79 ± 0.00 67.81 ± 0.00
FSCNMF 72.69 ± 0.00 81.69 ± 0.00 72.29 ± 0.00 92.91 ± 0.00
DGI 94.08 ± 0.15 79.32 ± 3.89 87.88 ± 1.29 88.09 ± 1.02

performance boost. From the perspective of the link prediction task,
the node attributes do not provide any useful information — which
is confirmed by the Concat baseline. Consequently, the GERF method
has no chance to improve the embedding vectors. These conclusions
are true for the node2vec and LINE methods. However, for SDNE, the
addition of node attributes exhibits a performance boost. For Amazon-
Photo, the GERF method yields the best results. We can conclude
that for already good-performing structural embeddings (in the link
prediction task), we should not expect any improvement when adding
node attributes, but if the embeddings are not performing that well, it
might be worth trying to add additional information to the embedding
vectors.

8. Conclusions

In this paper, we take a deeper perspective at the Graph Em-
bedding Retrofitting method. Its main objective is to update already
precomputed structural node embeddings according to node attributes
so that the resulting embedding will preserve the information from
both the structure and attributes. We propose two improvements to the
GERF method, i.e., (1) we simplify the objective function, and (2) we
propose a method for automatic hyperparameter estimation. Moreover,
we extend the experimental evaluation and add: (1) a comparison of
GERF’s hyperparameter estimation methods, (2) a link prediction study.
We find that the improved GERF method allows for the enhancement
of structural embeddings and results in better downstream node clas-
sification performance. In the case of link prediction, the method is
limited by the initial performance of the structural embeddings. In the
future, we want to extend the GERF method to enable it to handle
dynamic graphs as well as provide the notion of density-based attribute
neighborhood handling.
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