
WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Non-stationary data stream processing
with metafeature analysis

by

Joanna Komorniczak

A dissertation submitted in partial fulfillment
for the degree of Doctor of Philosophy

in the
Faculty of Information and Communication Technology

Department of Systems and Computer Networks

April 2025

http://pwr.edu.pl/)
joanna.kmorniczak@pwr.edu.pl
Faculty Web Site URL Here (include http://)
http://www.kssk.pwr.edu.pl/?lang=en




Streszczenie

Rozprawa doktorska koncentruje się na zagadnieniach związanych z przetwarzaniem nies-
tacjonarnych strumieni danych. Proponowane w rozprawie metody uczenia maszynowego
pozwalają na rozwiazywanie dwóch kluczowych dla tej dziedziny zadań: detekcji dryfów
koncepcji oraz klasyfikacji niestacjonarnych strumieni danych w oparciu o metody hy-
brydowe. Zaproponowane oraz zbadane w rozprawie rozwiązania opierały się na analizie
metacech obliczanych dla rozłącznych wsadów napływających w formie strumieni danych.
Celem rozprawy była weryfikacja hipotezy:

Możliwa jest propozycja metod wykorzystujących analizę metacech na potrzeby
detekcji dryfów koncepcji oraz klasyfikacji niestacjonarnych strumieni danych,
które wykazują jakość rozpoznawania istotnie lepszą lub statystycznie zależną
od podejść znanych z literatury.

W oparciu o przeprowadzone badania hipoteza została uprawdopodobniona poprzez os-
iągnięcie następujących celów:

Cel 1: Propozycja niejawnego detektora dryfu koncepcji analizującego zmien-
ność w czasie miar złożoności zadania klasyfikacji obliczonych dla rozłącznych
wsadów danych. Cel został zrealizowany poprzez propozycję metody Complexity-
based Drift Detector, która analizuje metacechy opisujące złożoność zadania klasyfikacji.
Działanie mechanizmu detekcji jest niezależne od wyników osiąganych przez model klasy-
fikacji, co pozwala na niejawną detekcję dryfu koncepcji. Zaproponowane podejście wyko-
rzystuje zespół klasyfikatorów jednoklasowych szkolonych za pomocą metacech w celu
rozróżnienia reprezentacji wsadów pochodzących z różnych koncepcji, co pozwala na efek-
tywne rozpoznawanie istotnych zmian zachodzących w strumieniach danych.

Cel 2: Propozycja niejawnego detektora dryfu koncepcji analizującego miary
magnitudy dryfu zintegrowane zgodnie z paradygmatem uczenia zespołowego.
Cel został zrealizowany poprzez propozycję metody Statistical Drift Detection En-

semble, wykorzystującej miary drift magnitude oraz conditioned marginal covariate drift
obliczane dla rozłącznych wsadów danych. Metoda detekcji dryfu wykorzystuje podejście
zespołowe do integracji składowych decyzji o rozpoznaniu zmiany koncepcji.

Metacechy wykorzystane w tej metodzie dedykowane są analizie zmian koncepcji w stru-
mieniach danych, jawnie opisując zmiany w rozkładzie prawdopodobieństwa. Bezpośred-
nie wykorzystanie tych miar wykazało ich niską informatywność w przypadku analizy
danych wielowymiarowych. Zaproponowane w detektorze podejście zespołowe pozwala
na efektywne rozpoznawanie dryfów dzięki analizie podprzestrzeni o niskiej wymiarowości
i następnie integrację składowych detekcji w obrębie podprzestrzeni wykorzystując para-
dygmat uczenia zespołowego.



Cel 3: Propozycja nienadzorowanego detektora dryfu koncepcji analizującego
rozkład aktywacji pochodzących z ostatniej warstwy deterministycznej sieci
neuronowej. Cel został zrealizowany poprzez propozycję metody Parallel Activations
Drift Detector pozwalającej na nienadzorowaną detekcję dryfów koncepcji w oparciu
o wyjścia z deterministycznej sieci neuronowej. Wykorzystane w zaproponowanym pode-
jściu metacechy zdefiniowane są jako losowe projekcje realizowane przez sieć neuronową
zainicjalizowaną losowymi wagami, niezmiennymi w trakcie przetwarzania. Metacechy
określone w ten sposób niejawnie opisują położenie próbek w wielowymiarowej przestrzeni.
Analiza ich zmienności za pomocą wielokrotnie powtórzonych parowych testów statysty-
cznych pozwala na identyfikację istotnych zmian w rozkładzie danych wskazujących
na dryfy koncepcji.

Ze względu na brak wiarygodnego kryterium oceny jakości zadania detekcji dryfów kon-
cepcji w literaturze, które pozwoliłoby na zbadanie jakości rozwiązania w przypadku stru-
mieni danych z dryfami inkrementalnymi i gradualnymi, w rozprawie doktorskiej zostały
zaproponowane trzy miary oceny jakości błędu detekcji dryfu bazujące na odległości oraz
liczności dryfów i detekcji. Dodatkowo ocena jakości wspomagana była wizualną analizą
momentów sygnalizacji zmian koncepcji.

Porównanie wszystkich zaproponowanych metod detekcji dryfów koncepcji z innymi de-
tektorami znanymi z literatury na szerokiej puli syntetycznych strumieni danych poz-
woliło na wykazanie, w zależności od badanego kryterium, istotnie lepszej lub statysty-
cznie zależnej jakości detekcji w porównaniu do metod znanych z literatury.

Cel 4: Propozycja metody zespołowej do klasyfikacji strumieni danych anal-
izującej rozkład statystycznych metacech obliczonych dla kolejnych wsadów
danych w celu identyfikacji nawracającego konceptu. Cel został zrealizowany
poprzez propozycję metody Metafeature Concept Selector, która wykorzystuje zestaw
statystycznych metacech do detekcji dryfów koncepcji oraz ponownej identyfikacji kon-
cepcji występującej w przeszłości, w przypadku koncepcji nawracających. Zaproponowany
algorytm wykorzystuje pulę klasyfikatorów jednoklasowych do identyfikacji koncepcji na
podstawie obliczonych metacech oraz, równolegle, pulę klasyfikatorów odpowiedzialnych
za efektywne rozwiązywanie realizowanego zadania rozpoznawania.

W eksperymentach badających działanie metody wykorzystano ocenę jakości identy-
fikacji koncepcji nawracającej za pomocą metryki Rand dedykowanej ocenie zadań kla-
steryzacji. Metryka pozwoliła na jednoznaczną ocenę realizowanego zadania niezależnie
od mechanizmu klasyfikacji zintegrowanego klasyfikatora. W dalszych eksperymentach
porównano działanie zaproponowanego rozwiązania z działaniem niezależnych klasyfika-
torów, co wykazało statystycznie znaczącą poprawę jakości klasyfikacji przy użyciu za-
proponowanego mechanizmu.



Cel 5: Propozycja metody klasyfikacji pozwalającej na kompensację stronnic-
zości klasyfikatorów podczas przetwarzania strumieni danych z dynamicznymi
zmianami stopnia niezbalansowania wykorzystujących estymację prawdopo-
dobieństwa a priori w oparciu o metacechy przetwarzanych porcji danych.
Cel został zrealizowany poprzez propozycję Prior Probability Assisted Classifier, wyko-
rzystujący estymowane prawdopodobieństwo a priori w celu kompensacji stronniczości
klasyfikatorów w kierunku klasy większościowej. Estymacja prawdopodobieństwa a pri-
ori odbywa się w oparciu o metacechy obliczane dla kolejnych wsadów strumieni danych.
W oparciu o estymowany stopień niezbalansowania w danym wsadzie, zaproponowana
metoda koryguje predykcje klasyfikatora zapewniając określoną liczność obiektów danej
klasy.

W eksperymentach porównano różne strategie estymacji prawdopodobieństwa a pri-
ori, z których najbardziej uniwersalną stanowiła Dynamic Statistical Concept Analysis,
będąca autorską metodą określającą aktualne prawdopodobieństwo a priori problemu
w oparciu o parę regresorów analizujących wartości średnie i odchylenie standardowe
próbek w obrębie przetwarzanych klas. Wyniki badań wykazały statystycznie znaczącą
poprawę jakości klasyfikacji przy zastosowaniu zaproponowanego podejścia.

Cel 6: Propozycja struktury przetwarzania strumieni danych ze zmiennym
w czasie stopniem trudności, pozwalającej na wybór odpowiedniej architek-
tury sieci neuronowej na postawie analizy pewności modelu. Cel został
zrealizowany poprzez propozycję Certainty-based Architecture Selection Framework –
struktury przetwarzania wykorzystującej stopień pewności modelu klasyfikacji w zada-
niu klasyfikacji strumieni danych o zmiennej w czasie trudności. Wykorzystanie pewności
klasyfikatora jako metacechy pozwoliło na redukcję narzutu obliczeniowego związanego
z określeniem dodatkowych wskaźników opisujących przetwarzane dane. Na podstawie
wartości funkcji wsparcia pochodzących z sieci neuronowej obliczane były metacechy,
a następnie predykcje dla przetwarzanych obiektów.

W przeprowadzonych eksperymentach realizowane było zadanie klasyfikacji półsynte-
tycznych strumieni danych wizji komputerowej. Zaproponowany schemat przetwarzania
pozwala na przełączanie architektur konwolucyjnych sieci neuronowych o różnym stopniu
złożoności, wyszkolonych dla zadanego problemu. Wyniki przeprowadzonych ekspery-
mentów pokazały, że zaproponowane rozwiązanie pozwala na znaczące zredukowanie
czasu przetwarzania oraz liczby operacji przy niewielkiej redukcji jakości rozpoznawa-
nia.

Słowa kluczowe uczenie maszyn, strumienie danych, dryf koncepcji, detekcja dryfu
koncepcji, klasyfikacja, zespoły klasyfikatorów, metacechy, dane niezbalansowane





Abstract

The doctoral dissertation focuses on topics related to non-stationary data stream pro-
cessing. The machine learning methods proposed in the dissertation allow for solving
two key tasks in the considered field: concept drift detection and classification of non-
stationary data streams using hybrid approaches. The solutions proposed and examined
in the dissertation are based on the analysis of metafeatures calculated for disjoint data
batches arriving in the form of a stream. The dissertation aimed to verify the following
hypothesis:

It is possible to propose methods employing metafeature analysis for con-
cept drift detection and classification of the non-stationary data streams that
demonstrate significantly better or statistically dependent recognition quality
compared to state-of-the-art approaches.

Based on the conducted research, the hypothesis was substantiated by achieving the fol-
lowing objectives:

Objective 1: Proposal of an implicit concept drift detector analyzing the time
variability of the classification task complexity measures calculated for dis-
joint data chunks. The objective was achieved by proposing the Complexity-based
Drift Detector, which analyzes metafeatures describing the complexity of the classifica-
tion task. The detection mechanism operates independently of the classification quality,
allowing for implicit concept drift detection. The proposed approach uses an ensemble
of one-class classifiers trained with data metafeatures to distinguish between represen-
tations of batches from different concepts, allowing for effective recognition of changes
occurring in the data streams.

Objective 2: Proposal of an implicit concept drift detector analyzing drift
magnitude measures integrated using the ensemble learning paradigm.
The objective was achieved by proposing the Statistical Drift Detection Ensemble, which
uses drift magnitude and conditioned marginal covariate drift measures calculated for
disjoint data batches of a data stream. The drift detection method uses an ensemble
approach to integrate constituent decisions of the concept change recognition.

The metafeatures used in this method are dedicated to analyzing concept changes in data
streams, directly indicating probability distribution shifts. The original measures showed
low informativeness in the case of processing high-dimensional data. The ensemble ap-
proach proposed in the detector allows for effective drift recognition by analyzing low-
dimensional subspaces and the integration of constituent detections within the subspaces
using the ensemble learning paradigm.



Objective 3: Proposal of an unsupervised drift detection method analyzing
the distribution of activations from the last layer of a deterministic neural net-
work. The objective was achieved by proposing the Parallel Activations Drift Detector
method, which allows for unsupervised detection of concept drifts based on the outputs
of a deterministic neural network. The metafeatures used in the proposed approach are
defined as random projections generated using the neural network initialized with ran-
dom weights, invariant during the processing. The metafeatures defined in such a way
implicitly describe the location of samples in multidimensional feature space. Analysis
of their variability using replicated paired statistical tests allows for identifying significant
changes in the data distribution that indicate concept drifts.

Due to the lack of a reliable criterion for assessing the quality of the concept drift de-
tection task in the literature, which would allow for examining the quality of methods
in the case of data streams with incremental and gradual drifts, three drift detection
error measures were proposed in the dissertation. The proposed evaluation criteria em-
ploy the analysis of distance and the cardinality of drifts and detections. Additionally,
the quality assessment was supported by a visual analysis of the moments of concept
change signaling.

Comparison of all proposed concept drift detection methods with other state-of-the-art
approaches on an extensive pool of synthetic data streams allowed for demonstrating,
depending on the examined criterion, significantly better or statistically dependent de-
tection quality compared to the methods known from the literature.

Objective 4: Proposal of an ensemble method for classification of data streams
analyzing the distributions of statistical metafeatures calculated for subse-
quent data chunks to identify recurring concepts. The objective was achieved
by proposing the Metafeature Concept Selector method, which uses a set of statistical
metafeatures to detect concept drifts and to re-identify concepts that occurred in the past
in the case of their recurrence. The proposed algorithm uses a pool of one-class classi-
fiers to distinguish concepts based on the calculated metafeatures and, in parallel, a pool
of classifiers responsible for performing the recognition task.

In the experiments examining the method’s operation, the quality of concept identi-
fication was assessed using the Rand metric dedicated to the evaluation of clustering
tasks. The metric allowed for an unambiguous and reliable assessment of the concept
recognition quality, regardless of the classification mechanism of the baseline classifier.
In further experiments, the performance of the proposed solution was compared with
independent classifiers, which showed a statistically significant improvement in the clas-
sification quality when using the proposed approach.



Objective 5: Proposal of a classification method for compensating the bias
of baseline classifiers when processing the data streams with dynamic changes
in imbalance ratio, using the prior probability estimated based on the metafea-
tures of the processed data chunk. The objective was achieved by proposing Prior
Probability Assisted Classifier, which uses an estimated prior probability to compensate
for the classifier’s bias towards the majority class. The estimation of prior probabil-
ity is based on metafeatures calculated for subsequent batches of data streams. Based
on the estimated level of imbalance in a given data batch, the proposed method corrects
the predictions of the baseline classifier, ensuring a specific number of objects of a given
class.

In the experiments, different strategies for estimating the prior probability were com-
pared. The most universal approach was the Dynamic Statistical Concept Analysis,
an original method estimating the current prior probability based on a pair of regressors
analyzing the mean values and the standard deviation of samples within the processed
classes. The results showed a statistically significant improvement in the classification
quality when using the proposed method.

Objective 6: Proposal of a framework for processing data streams with a time-
varying level of difficulty, allowing for the selection of an appropriate neural
network architecture based on the analysis of the model’s certainty. The ob-
jective was achieved by proposing a Certainty-based Architecture Selection Framework –
a processing scheme that uses the classification model’s certainty level in the classifica-
tion task of data streams characterized by time-varying difficulty. Using the certainty
of the classifier as a metafeature allows for avoiding the computational overhead as-
sociated with defining additional indicators describing the data. The support function
values provided by the neural network were used to calculate the metafeatures and then
to determine the predictions for the processed objects.

The performed experiments focused on the classification of semi-synthetic computer vi-
sion data streams. The proposed processing scheme showed the ability to dynamically
switch architectures of convolutional neural networks of different complexities, trained
for the given problem. The results of the experiments showed that the proposed solu-
tion allows for a significant reduction in processing time complexity and the number of
operations of the system with a subtle reduction in recognition quality.

Keywords machine learning, data streams, concept drift, concept drift detection,
classification, ensemble classifiers, metafeatures, imbalanced data
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Methods

GNB Gaussian Naive Bayes Classifier

KNN k-Nearest Neighbors Classifier

DT Decision Tree Classifier

MLP Multilayer Perceptron

SVM Support Vector Machine

C2D Complexity-based Drift Detector

SDDE Statistical Drift Detection Ensemble

PADD Parallel Activations Drift Detector

MCS Metafeature Concept Selector

2PAC Prior Probability Assisted Classifier

CAS Certainty-based Architecture Selection

Metrics

ACC Accuracy

BAC Balanced Accuracy

RI Rand Index

DM Drift Magnitude

CMCD Conditioned Marginal Covariate Drift

PD Posterior Drift

xi



D1 Average Distance from each Detection to the Nearest Drift

D2 Average Distance of each Drift to the Nearest Detection

R Adjusted Ratio of the Number of Drifts to the Number of Detections

TTAL Time to Accuracy Loss



Symbols

x sample

d dimensionality

xk kth sample

xk kth feature

X feature space

Y set of labels

M number of labels

yk kth class label

D dataset

n number of samples

Ψ classification function

Xk decision area of kth class

Π ensemble of classifiers

f metafeature

p dimensionality of a metafeature

m characterization measure

p′ dimensionality of a characterization measure

σ summarization function

xiii



DS data stream

DSk kth data chunk

P (X ,Y) joint probability

P (Y|X ) posterior probability

P (X ) covariate probability

P (Y) prior probability

P (X|Y) covariate conditional probability

nr number of drifts

nr′ number of signaled detections

r set of drift locations

r′ set of detection locations

MF metafeature values for data chunks

e limit of the classifiers in ensemble

S problem subspaces

ns size of the subspace

θ threshold for drift detection

δ sensitivity of drift detector

λ minimal concept length in chunks

PE prior probability estimation method
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Chapter 1

Introduction

The recent years have been referred to as the third summer of Artificial Intelligence

(ai) [107, 109]. This field, identified earlier with cybernetics and connectionism [83],

from its emergence in the 1940s, considered the data analysis, including the synthesis

of knowledge on its basis [164].

Machine learning, one of the pillars of artificial intelligence, focuses on the construc-

tion of intelligent systems, capable of generalizing an abstract knowledge from provided

data samples [9]. Machine learning systems can apply a knowledge model optimized

for the considered task as a substitute for a manual algorithm definition.

The beginning of the first wave of artificial intelligence can be associated with the ef-

fects of theoretical work by McCulloch and Pitts [162], and later with the application and

implementation of such system [194]. The research at that time was closely related to cy-

bernetics – the study field aiming to understand the intelligence of animals and machines

using control theory [234]. Much attention was committed to studying the feedback loop

between the real-world environment and the system, allowing for the system’s learning.

At such an early stage of ai, the response to any modification of the intelligent model

was delayed in time [109], since the selection of its parameters, in search for intelligent

behavior, simulated the evolution process [67].

The suspension of work on artificial intelligence methods is referred to as the winter

of ai. One can suppose that the cessation of funds preceding the first winter resulted

in too high expectations from the premature field, also limited by the low computa-

tional resources [109]. Others may identify the publication of Perceptrons: An Introduc-

tion to Computational Geometry [168], revealing the limitations of intelligent machines

as a direct cause of a paradigm shift for public opinion.

3



4 Chapter 1. Introduction

The second wave of artificial intelligence is associated, among others, with the develop-

ment of expert systems. The first solution of this kind was presented in 1968 [59], but

it was not until 1980 that they gained significant interest and funding [109]. Unlike in the

first wave, financing expert systems was mainly driven by commercial solutions, hence,

by a real market needs.

In parallel with expert systems based on logical rules, the connectionism movement was

developing [197], in which researchers again focused their aims on studying human cogni-

tion. The breakthrough was associated with assembling individual units called neurons

into layered networks, which allowed for witnessing intelligent behavior when such units

cooperate [83]. The neurons assembled into hidden layers were believed to describe

complex characteristics resulting from the interaction of simple elements visible in the

system’s input [197]. During the second wave of ai, another critical aspect of today’s deep

learning was proposed – the backpropagation [198]. It allowed for optimizing the intelli-

gent system’s parameters using a stochastic gradient descent, calculated based on errors

made by the method, replacing the evolutionary approach to learning seen in the first

wave of artificial intelligence. The groundbreaking works published at that time include

Neocognitron [68], introducing the foundations of today’s convolutional neural networks

(cnn).

Many concepts critical for today’s ai directly resulted from the connectionism research

in the second wave. Meanwhile, the development related to connectionism and expert

systems also slowed down. Similarly to the first winter of artificial intelligence, investor

expectations were not met, leading to reduced funding [83]. From today’s perspective,

a significant limitation was the computational costs of processing large datasets, needed

to optimize intelligent systems. Expert systems, meanwhile, proved to be expensive

to maintain and often suffered from the lack of trust among human experts [109].

Currently, we are witnessing a third wave of ai rising since around 2006 [83]. The de-

velopment of the field is fueled by large amounts of generated, stored, and processed

data, as well as access to computing power that enables the training of deep learning

methods [9].

The circumstance that significantly drove the development of deep learning in the third

wave was the ImageNet challenge [199], describing the classification task of over 1.2 mil-

lion images from a thousand classes. This challenge showed how quickly deep learning,

particularly computer vision, can develop. The groundbreaking work was the proposal

of the AlexNet model in 2012 [130], using the implementation of convolutional neu-

ral networks on Graphic Processing Units, which allowed for efficient computations.

In later years, the challenge resulted in the proposition of cnns with an increasing

number of parameters and increasingly complex designs of connections between units.
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In 2015, the ResNet model [93] achieved the lowest error rate, surpassing the human-level

performance [92].

In recent years, the attention of society and scientists has shifted partially away from

computer vision tasks, which were already being solved by machine learning algorithms

with high quality, and focused on Natural Language Processing (nlp), and in particular,

on studying Large Language Models (llm) [247].

When writing this dissertation, one can suppose that the third wave of artificial in-

telligence development has been significantly impacted by the works on llm, expanding

the interest in the research. While some scientists claim that llms are capable ofmetacog-

nition – understanding the reasoning process [52] – society is seeking the signs of the

genuine intelligence in these systems [37]. The rapid development in nlp fuels discus-

sions about trustworthy artificial intelligence, its ethics and responsibility, as well as their

impact on the environment [13]. Those aspects do not go unnoticed by corporations and

the world’s media [77], which further fuels the interest in artificial intelligence, often

preying on society’s fears [16, 220].

In the face of the perceived vulnerabilities of deep learning, canonical machine learning

methods and solutions returning to the paradigms of symbolic artificial intelligence are

being developed in parallel [96], focusing on explainability [245] and responsibility of ai.

Despite the persistent grand promises of ai solutions and a vibrant stream of funding

similar to those preceding the beginning of the first and second winters of artificial intelli-

gence, some researchers suppose that the next one will not arrive [109]. Still, considering

the previous rises and falls of research in this field, the probable winter may eventually

shift the research direction to a yet undiscovered path. Regardless of what the future

holds, the research community can work on increasing the chances of continuous and

gradual development of the machine learning research.

1.1 Machine learning

Since the very beginning of the research in machine learning, the solutions were designed

to learn specific tasks based on provided data examples – first by applying the evolution-

like feedback loop, and later, through complex mechanisms such as backpropagation [198].

In all of the developed approaches, the learning process was possible due to the knowl-

edge generalization – searching for specific regularities present in the available data ex-

amples [169] – with the knowledge stating an effect of data analysis by the dedicated

model.
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1.1.1 Task taxonomy

Machine learning algorithms are abstractions that can be applied to various types of data

to perform various tasks. Computer implementations of methods impose certain con-

straints related to, for example, the numerical representation of data and the specified

precision of described characteristics. However, the domain described by the available

dataset remains arbitrary. As the field was developing, many solutions were proposed

that can be applied to the specific task under consideration.

The primary taxonomic axis of machine learning is the division into supervised and unsu-

pervised learning [136], as shown in Figure 1.1. In supervised tasks, the goal of the pro-

cedure is to imitate the knowledge of a human expert, provided in the form of labels for

available data samples. The method aims to discover the regularities to match the pro-

vided labels.

Machine Learning

Supervised learning Unsupervised learning

Classification Regression Clustering Density estimation

Figure 1.1: The taxonomy of machine learning tasks. The primary axis of the field is the division into
supervised and unsupervised learning. The most important tasks of supervised learning are classification
and regression, while for unsupervised learning – the clustering and density estimation tasks.

Following many real-world applications of machine learning systems in medicine, an ex-

ample of label, describing the samples in a supervised scenario, could be a binary identifier

describing if the person (sample) requires medical support. Applying a recognition sys-

tem that solves this task could lower the facility’s expenses by not relying on the time

of qualified medical doctors. A trained machine learning system could automatically refer

the patient to seek medical help based on already available labeled historical samples.

The described system performs an example of classification, i.e., a supervised learning

task in which the label is of a discrete category, and is denoted as class. The classes,

therefore, in the specific task described above, could be semantically understood as re-

quires medical support (a positive case) and does not require medical support (a negative

case). All data describing patient characteristics other than a label are denoted as features

or attributes.

The second important task of supervised learning is regression, where the label describ-

ing a sample is of continuous type. Based on the available historical data, the system
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performing regression task could determine how long the person will spend in the facility

from the moment of arrival to the moment of discharge. Hence, the particular difference

between classification and regression is the type of label describing the data samples and,

therefore, the type of the output of the recognition system.

Supervised tasks have gained significant interest from companies in commercial applica-

tions, as well as from researchers proposing the methods [207]. Machine learning systems

solving supervised tasks allow a reduction in the working time of qualified employees,

such as medical doctors [76], which possibly fuels the research on supervised approaches.

However, it is worth remembering that the costs of expert support in supervised tasks are

not entirely eliminated. The applications of such recognition systems, especially in com-

plex domains [218], require a vast pool of valuable labeled examples provided by qualified

experts [63]. It should also be remembered that algorithms generalizing knowledge based

on labeled samples try to imitate the regularities concealed in labels. For this reason,

any biases and errors visible in the labeled data are propagated to the recognition model.

Such biases have been noticed in many solutions, highlighting the discrimination, bias,

and errors of human annotators [61].

Unsupervised tasks form the second major branch of machine learning. In these tasks,

the data examples are described only by the attributes, such as patient characteristics

and illness symptoms – without the label describing the target of a recognition system.

In unsupervised learning, the two largest groups of performed tasks are clustering and

density estimation [47].

Clustering allows the grouping of examples into similar clusters. Like in classification

tasks, the output of the algorithm is of discrete type – presenting, for example, an index

or an identifier of the group. The clustering algorithm could group patients with similar

symptoms into specific wards. Meanwhile, the task of density estimation aims to approx-

imate the distribution density of the provided data samples. Such a task could allow for

estimating the probability of a single symptom occurring in a given group of patients

or – analogously to the regression task – allow for estimating the probability distribution

of the time spent in the medical facility, assuming such data attribute is already avail-

able in the database. While clustering returns the discrete value, the density estimation

method results in a continuous one, describing the probability of a studied event.

The mentioned task is related to the particular type of classification – one-class classi-

fication – where the objects of a single class are used to train the model. The model

then assigns the particular area of problem space to the available category of events.

Despite the classification problem being solved, such a task can be viewed as an unsu-

pervised task of density estimation, where a model returns a value describing the support



8 Chapter 1. Introduction

of class assignment to each input sample in the inference process. Both density estima-

tors and one-class classifiers often use Radial Basis Function (rbf) kernel to approximate

the probability distribution of data examples by analyzing their distances.

Unsupervised tasks do not require labels, meaning their employment often generates

lower costs than supervised tasks. The effect provided by the model – for example, a clus-

tering algorithm – may, however, deviate from the assumptions of the system creators,

taking into account different features than anticipated or weighting them not according

to the presumptions [101]. In extreme cases, if the patient’s features include information

about gender, ethnicity, and auxiliary factors like weight and height, the clustering sys-

tem could potentially utilize such features in the generalization process, treating them

as equivalent to the illness symptoms or case severity. As an effect – similarly to the su-

pervised learning, where the labels required particular attention – the recognition system

creator should be aware of the dependencies between the input and output of the par-

ticular solution and pay special attention to the data supplied to the system, in order

to prevent abuse and errors resulting from its usage.

Finally, as a fusion of unsupervised and supervised learning, one can also observe the de-

velopment of semi-supervised methods and active learning, in which the goal of the

recognition system is to mimic the recognition of a human expert, but only some objects

are marked with labels [204]. In such systems, the machine learning algorithm can inter-

act with an outside world – for example, with a medical professional – to obtain labels for

uncertain cases. The applications of semi-supervised and active solutions allow for sig-

nificant reductions in the cost of obtaining labels [248] while maintaining the advantages

of supervised tasks.

1.1.2 Classification

Classification task remains the most frequently considered one in machine learning re-

search [127]. As initially stated in Section 1.1.1, the goal of the classification task is

to assign a given sample to predefined discrete categories, denoted as classes, based

on regularities found in examples labeled by a human expert [240], or analogously, to as-

sign a discrete class label to a specific sample.

Equation (1.1) formally defines the sample x.

x = {x1, x2, . . . , xd} (1.1)
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Each sample x is a d dimensional feature vector, where the consecutive features xk come

from feature space X , as denoted by Equation (1.2). The k indicates a kth feature, and

the dimensionality d, the number of features describing each sample.

x ∈ X = {X 1,X 2, . . . ,X d} (1.2)

A sample, also denoted as a pattern, is an abstract representing any object in the recog-

nition domain. Such an object is described by a set of features or attributes, which take

the form of a vector.

A sample in the medical context can be viewed as a person or, more specifically, in the dig-

ital environment, as data describing the characteristics of a person. The features must

be specified in a structured order, common for all available examples. This constraint in-

dicates that the kth feature for all available samples must describe specific characteristics

of a person. The uniform structure of a processed dataset is necessary for the recognition

algorithm to search for regularities in the provided data.

There are some applications where samples may be defined as data structures other than

a simple vector [82]. The representation in the form of a graph may be utilized in nlp

tasks. In the case of such applications, the text or acoustic data that is naturally under-

stood by humans needs to be structured to allow for processing in a digital environment.

Pre-processing such modalities may require, for example, identifying parts of a sentence

to present a text in a graph form [165]. It is worth emphasizing, however, that the de-

fault representation for most machine learning tasks is a vector. For the presented nlp

example, vectorization techniques are often utilized, which construct a sample represen-

tation by analyzing the word frequencies and their order or semantics [131]. In the case

of another structured data format – like images in computer vision tasks – the vari-

ous feature extraction methods are used to generate vector representation of samples,

typically by analyzing the affinity and the neighborhood of image pixels [157].

The significant benefit of supervised machine learning approaches is the possibility of ap-

plying the available knowledge for new data samples instead of relying on manual recog-

nition. First, the classification method acquires abstract knowledge in the training

or learning process to later infer for a sample without a given label. The generalization

is performed based on the training set. The new samples (not present in the training

set) come from the real-world environment, where the system is applied, or, in the case

of evaluation of machine learning methods, from the test set.
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Equation (1.3) formally describes the classification function Ψ performed by a classi-

fication algorithm. The classes semantically indicate the discrete categories present

in the recognition task and are identified by labels Y = {y1, y2, . . . , yM} [240].

Ψ : X → Y (1.3)

A classification function assigns one of the labels y coming from a set of labels Y based on

the sample’s features x from feature space X . This process is described by Equation (1.4).

Ψ(x) = yk if x ∈ Xk (1.4)

The label yk is assigned if the sample x belongs to a decision area Xk (a component

of X ). This process is described in Equation (1.5).

X =

M⋃
k=1

Xk where (∀ y1, y2 ∈ Y)(y1 6= y2 =⇒ Xy1 ∩Xy2 = ∅) (1.5)

The equation describes the feature space X as a union of decision areas Xk, where

the regions are associated with labels. As presented in the equation, the decision areas

are disjoint – hence, the mapping X → Y is unequivocal.

The large number of features describing a given task makes the recognition task more

complex – since the generalization in many dimensions becomes increasingly difficult.

This is referred to as the curse of dimensionality [227]. Canonically, dimensionality

reduction techniques are used to counteract such increasing complexity of generaliza-

tion. These include feature selection and feature extraction [111]. In feature selection,

the characteristics seen as the most informative are selected, for example using statistical

tests. Meanwhile, in the extraction, the complete set of features is transformed to gen-

erate a reduced number of new attributes, resulting from the projection of the original

feature space. One of the methods performing a feature extraction is Principal Compo-

nent Analysis (pca) [34, 221] – which returns the requested number of most informative

components of the data.

The decision areas Xk are determined and defined based on the samples used to train

the classification model. Depending on the specific algorithm, there are various ap-

proaches to defining the decision areas embedded into the classification function. A sim-

ple example may be k-Nearest Neighbors Classifier (knn), where the decision area is

defined based on the label of k nearest instances. A different way of generalization
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can be seen in the Decision Tree Classifier (dt), which uses splitting criteria to slice

the available feature space into specific class regions.

The example of the decision areas defined by knn and dt classifiers for the two-dimensional

feature space and synthetically generated training samples are presented in Figure 1.2.
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Figure 1.2: The decision areas of k-Nearest Neighbor Classifier (with k=5) and Decision Tree Classifier,
fitted to the available synthetic data samples. The colors indicate the specific decision areas, while
the points indicate the available training examples.

Formally, the figure presents a binary classification problem, where Y = {0, 1} and

the dimensionality of a feature space X is d = 2. The class samples identified with

label y = 0 are denoted as blue points, while samples of the class whose label y =

1 are shown in red. The decision areas were identified using the specific algorithms.

The regions identified by different colors indicate the decision areas for given classes.

When a new sample (for example, coming from a testing set) belongs to a specific area,

the classification algorithm Ψ assigns a relevant label to such sample. The abstract line,

or in more general, high-dimensional feature spaces, a hyperplane, separating the decision

areas, is denoted as a decision boundary [240].

This figure allows to observe the effects of the model’s generalization of the available evi-

dence. The definition of class regions depends on the underlying algorithm, and therefore,

various classifiers can be more or less suitable for a specific application of a machine learn-

ing system. This idea is related to as no free lunch – a theorem first described by Wolpert

for optimization tasks [236]. It is also often applied to supervised machine learning [2],

where it states that there is no universal solution to the possible problems [240]. What

follows is that various classification methods perform differently for various tasks, which

makes the correct and detailed evaluation of machine learning problems of critical value.
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Even if the model is perfectly fitted to the available training data samples – meaning

that all available training examples are correctly classified – it may produce errors for

data unseen in the training process. An extreme example of such a phenomenon is

known as overfitting. It is especially visible in methods capable of defining complex

decision boundaries and trained over many iterations, such as neural networks (nn) [18].

Overfitting results in the loss of the generalization ability of the model. When such

a phenomenon occurs, the complex model memorizes the training examples – creating

complex decision boundaries, where the mislabeled examples (or examples characterized

by noise) often excessively distort the decision areas. The example of overfitting for

more complex training data has been presented in Figure 1.3 for a Multilayer Perceptron

(mlp) [197] – a neural network implementation with fully connected hidden layers.
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Figure 1.3: The decision areas defined by the Multilayer Perceptron model with different hyperparam-
eters – on the left with a single hidden layer and 100 training iterations, while on the right with five
hidden layers and 1000 training iterations. The example shows the overfitting phenomena, typical for
models capable of producing complex decision boundaries.

The left side of the figure presents the decision areas defined using a model with a single

hidden layer, trained over a hundred iterations. The right side of the figure presents

an output of the classifier with five hidden layers, trained over a thousand iterations fitted

to the exact data. Those variables describe the hyperparameters of the model – the values

specified by the user that determine the internal operation of the learning algorithm –

how the algorithm selects its parameters. In the case of mlp, hyperparameters describe

the sizes of hidden layers and the loss function, meanwhile parameters – the values

of weights and bias of individual units, optimized during a learning process.

To mimic the real-world scenarios, the synthetic data presented in Figure 1.3 was addi-

tionally characterized by a label noise [246]. As a result of overfitting, the model opti-

mized the decision areas to correctly classify the mislabeled examples, resulting in a very
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complex decision boundary, precisely fitted to the training data – but not necessarily for

the data used to test the method’s performance or to samples describing the real-world

application, for which the model was optimized. The fact that using the same under-

lying algorithm (mlp) with different hyperparametrization and different training times

resulted in such different decision areas for the same training data shows that algorithm

selection in machine learning problems is a complex task.

It is worth mentioning here that most of the classifiers, apart from a discrete decision, pro-

vide some form of a probabilistic support function, describing the certainty of a decision.

In the case of the k-Nearest Neighbors classifier, this support is defined according to the

number of neighbors of each class – the more neighbors of a specific class, the higher

the probability of a sample belonging to this class. In the case of Multilayer Percep-

tron, and neural networks in general, those supports are calculated based on the output

from the last layer of a network structure. The outputs of neural network nodes are

also denoted as activations. After passing through each hidden layer, those are sub-

jected to the activation function, which determines the values of weights in a model.

At a final layer, in the case of classification tasks, those activations are typically followed

by the softmax function, defining a probability of a sample belonging to each class present

in the recognition task. Figure 1.4 presents the example of support function values for

two mentioned classification algorithms – knn and mlp.
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Figure 1.4: The feature space of a synthetic classification problem, marked according to the classifier’s
probability support functions for a binary classification task. The left side of the figure presents the support
function of the knn model with k = 5, and the right side – the support function of the mlp model with
a single hidden layer.

The regions of feature space described with saturated red color correspond to a high

support towards a positive class (y = 1) – interpreted as a high probability of a sample

belonging to a positive class – while saturated blue color describes the high support
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towards the negative class (y = 0). The less saturated colors describe uncertain regions

– that lack a clear and distinct identification of a given class. As can be seen in the figure,

the regions close to the possibly mislabeled samples – outliers of a specific class – are

often characterized with lower certainty. The same applies to the regions between clusters

of different classes, close to the decision boundary. The final decision of a classifier is

calculated according to the support of a classifier – meaning choosing a more probable

label for uncertain samples.

Besides the canonical classification, the uncertainty in general can be used in the tasks

of semi-supervised and active learning, where – as mentioned in the Subsection 1.1.1 –

the system can request labels for the ambiguous samples whose supports towards more

than one class are high. The lack of explainability of neural network predictions is often

visible when examining the activations of a model. Especially in the cases of high-

dimensional data and unsupervised feature extraction typical for deep learning methods,

neural networks tend to classify potentially uncertain or even unknown [201] samples

with high support – what was noticed as a relevant vulnerability of such models [219].

1.1.3 Metafeatures and metalearning

Generalization as a mechanism of a classification algorithm becomes an essential factor

of a learning process [9]. As shown in Section 1.1.2, available algorithms (or even the same

algorithm with different configuration) can generalize available evidence in various ways,

ultimately presenting different decision boundaries and dividing the decision space into

abstract categories. Often, the main objective of machine learning is to select an appro-

priate processing pipeline, along with an appropriate classification algorithm [240].

The promising direction allowing for the appropriate classifier selection may be met-

alearning [30] – a branch of machine learning whose main objective is to aid the appro-

priate processing pipeline definition. Metalearning, at a general level, can be understood

as learning about learning. The solutions try to generalize how certain characteristics

of the available data influence the learning process. Such characteristics are defined

as metafeatures – informally understood as features of the features – describing the sam-

ple’s attributes at a more general, dataset- or batch-level. One can say that features are

the characteristics describing the sample, while metafeatures are the characteristics that

describe the dataset.

Metafeatures are critical to metalearning, as based on their values, the promising solu-

tions are selected [192]. They are then most often used to predict the quality of classifi-

cation for a given algorithm [192] but can also be used for other tasks, including the de-

scription of datasets for evaluation [28] or the construction of benchmark datasets [171].
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One can present an imbalance ratio as a highly critical characteristic of the dataset

considered in the classification task. As described in the Subsection 1.1.2, the discrete

categories of instances in the mentioned tasks are denoted as classes. Some problems

are characterized by a disproportion in the cardinality of specific class instances. This

is denoted as imbalance and causes difficulties at the level of recognition model opti-

mization and proper method evaluation. Most classification methods are characterized

by bias, directly resulting from the underlying generalization process. As a consequence,

models tend to present a preference towards the majority class – the more numerous one.

The problem of class imbalance is typical for medical diagnostics. Often, in such scenar-

ios, the task of the algorithm is to classify samples into categories describing a healthy

individual (negative class) or an individual with a specific disease (positive class) – with

the disease being relatively rarely observed in the general population and therefore,

in the available data used to train the model [62, 112].

A basic example of the k-Nearest Neighbors classifier can be given here. In the case

of significant imbalance, the required number of k samples of a specific class may not

be present in the training set, which could result in assigning an entire feature space

to a majority class. An imbalance ratio treated as a metafeature can be used to se-

lect the appropriate k hyperparameter of the classifier, or, what is more typically done

in case of imbalanced data, to use a pre-processing of the available samples in the form

of resampling techniques [112]. Such a pre-computation of the dataset’s metafeature can

significantly impact the development of the processing pipeline in the recognition system,

benefiting the overall model recognition quality.

Formally class imbalance as a metafeature – denoted as C2 [154] – is one of the measures

describing the complexity of the classification problem. The direct imbalance ratio (IR)

can be calculated based on the proportion of each class cardinality nk divided by a car-

dinality of opposite class samples n− nk, as presented in Equation (1.6). Then, the IR

is used to calculate C2, as shown in Equation (1.7).

IR =
M − 1

M

M∑
k=1

nk
n− nk

(1.6)

C2 = 1− 1

IR
(1.7)

The C2 has been defined in such a way that its values are limited to the range from 0 to 1.

The balanced problems provide a low complexity of 0, while problems with a high class

imbalance – the values close to 1.
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The example of balanced data and data characterized by a class imbalance is presented

in Figure 1.5. The example on the left side of the figure presents a balanced 2-dimensional

binary classification problem. In contrast, the example on the right presents a problem

where the positive class samples (red points) are less frequent than the negative class

samples (blue points).
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Figure 1.5: The examples of datasets characterized by different class proportions: the balanced problem
(left) and the imbalanced one (right). Red points indicate positive class samples, while blue points –
a negative class. The measure of C2 presented in the subfigure titles aims to describe the complexity
of the data.

In the description of the examples in the figure, the value of C2 metafeature is pre-

sented. According to the semantics of complexity measures, the imbalanced dataset

presented on the right states a more complex challenge regarding the classification task.

It is worth noting that class imbalance is among the simple metafeatures that could be

easily assessed visually by examining the sample distribution or by simply calculating

the class frequencies. However, the range of metafeatures that are possible to compute

is relatively wide – ranging from simple ones, such as dimensionality or imbalance ratio,

to significantly more complex that require the use of heuristic solutions [97] or the use

of classifiers like k-Nearest Neighbors [154] or Decision Trees [208].

A vast number of complexity measures that aim to assess the difficulty of the super-

vised recognition tasks has been proposed by many researchers [97] and aggregated

in the works by Lorena et al. [154, 155]. Such measures for classification tasks describe,

for example, the separability of the problem classes, the neighborhood of samples, and

the area of class overlap in the feature space. The complexity measures form a taxonomic

branch of metafeatures and have been successfully used to describe the characteristics

of the datasets that translate to the performance of the recognition models [117].
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Metafeatures of a dataset are formally defined as the function that returns values char-

acterizing the set of samples. The metafeature for supervised machine learning tasks was

formally defined by Rivolli et al. [192]. Each sample in the training set, apart from fea-

ture vector x, is additionally described by a label y. The available dataset D consisting

of n instances is therefore described by Equation (1.8).

D = {(x1, y1), (x2, y2), . . . (xn, yn)} (1.8)

The metafeature f is defined as a function f : D → Rp, such that when applied to the

dataset D, it returns p values describing the given set. The definition of a metafeature

is presented by Equation (1.9).

f(D) = σ(m(D)) (1.9)

The following components were used to define a metafeature:

• m : D → Rp′ – a characterization measure,

• σ : Rp′ → Rp – a summarization function.

A summarization function is used when a specific cardinality of p is required, and

the number of p′ differs from the expected one. If the p = p′, the functions m (character-

ization measure) and f (metafeature) may be consistent, and σ is the identity function.

The σ function is used when m returns more values than the application expects (p′).

This may happen when analyzing pairs of attributes of the original dataset or calculat-

ing values for individual features, while the single value p = 1 characterizing the dataset

is required. Then, the σ often returns the mean value of the computed p′ metafea-

tures. Alternatively, other statistical determinants can be used to extend the context

of the processed data [190].

1.1.4 Data stream processing

The complexity measures, briefly described in Subsection 1.1.3, aim to assess the dif-

ficulty of processed tasks. Such measures, along with many other metafeatures, are

primarily used to describe static datasets that do not arrive over time. There exists,

however, another data structure and, therefore, another category of machine learning

problems characterized by different types of difficulties. The potentially infinite data
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inflows in the form of streaming data – stationary or non-stationary – arriving over

an extended time. The non-stationary data states a particular challenge, as the data

distribution evolves over the processing time [3].

Data streams are typically utilized when processing large volumes of data [74], espe-

cially in applications where they are generated and delivered in real-time and an almost

immediate response or the recognition system is required [69]. Such applications are

highly characteristic of a modern digital world, driven by real-time data generation and

processing.

The data stream DS is formally described as a set of samples x, as shown in Equa-

tion (1.10). One of the difficulties related to this type of data is the possibility of infinite

data arrival. Therefore, machine learning systems must be prepared for continuous data

processing without increasing their computational complexity.

DS = {x1, x2, x3, . . .} (1.10)

In the case of supervised tasks, in addition to the feature vector x, the data stream

contains labels as shown in Equation (1.11).

DS = {(x1, y1), (x2, y2), (x3, y3), . . .} (1.11)

With the above assumption, however, it should be remembered that the label may not be

available immediately but can be delivered after some time. This problem is reflected,

for example, in the Test-then-train experimental protocol, in which first the features

x of processed instances arrive, and inference is performed using the evaluated recognition

method. Labels y for processed samples arrive in the next iteration, and only then are

used to iteratively train the recognition model [23].

The continuous training of the machine learning algorithm is not always possible by de-

sign. For example, in the case of the k-Nearest Neighbors classifier, which stores the train-

ing dataset in the model memory, storing an increasing number of samples is theoretically

possible. However, with the assumption of infinite sample arrival – the underlying algo-

rithm requires certain modifications to allow for effective data stream processing. Such

an example aims to show that incremental learning of machine learning methods, nec-

essary for non-static data, forms a challenge and often requires adaptations of original

approaches suitable for static data.

The response to the inability of canonical recognition methods to effectively process data

streams has fueled the evolution of ensemble approaches applied to this type of data [128].
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Ensemble methods, integrating multiple classifiers (or other recognition methods), each

adapted to the specific sub-task, are often used to process data streams thanks to the pos-

sibility of dynamic adjustments of the ensemble structure or its parameters.

The definitions of data stream presented so far describe the case of stream processing

in an online form – when the stream consists of individually arriving samples. A slightly

different approach to processing data streams is offline or batch processing – analyzing

data portions (denoted as batches or chunks). Such a data stream is described in Equa-

tion (1.12).

DS = {DS1,DS2,DS3 . . .} (1.12)

The stream that arrives in batches consists of data chunks DSk of given size n. Each

chunk contains n problem instances, as shown in Equation (1.13). The data stream itself

still, by definition, remains infinite, but the samples are aggregated into uniform-size

subsets. In such a scenario, the batches of data can arrive infinitely.

DSk = {(x1, y1), (x2, y2), . . . (xn, yn)} (1.13)

It is worth mentioning here that any data stream in an online form can also be processed

in batches when there is a possibility of storing the data in a buffer of size n. Therefore,

the subsequent data batches may constitute separate subsets within which the metafea-

tures can be calculated. Monitoring the values of metafeatures over the data stream

processing can extend the benefits of using them in static datasets.

One can describe a data stream processing scenario where the objective is to estimate

the time spent in the medical facility based on the patient’s characteristics – which,

as mentioned in Subsection 1.1.1, is a canonical regression task. As typical for real-world

applications, the system is first trained on a batch of labeled examples and later induces

knowledge for new examples over the system’s operating time. If the method stores

the features describing new patients, after some time, system owners acquire the actual

labels, describing the real time spent in the facility. Such valuable data can form a new

data batch and be later used to incrementally train the recognition system.

By optimistically assuming that the described phenomenon is stationary, there may be

a specific point in time when the system does not require further training. However,

the dynamic and non-stationary real-world applications are characterized by ubiquitous

changes. For instance, a particular disease may require less treatment time due to a new

drug proposal. Therefore, the recognition system processing the data stream should
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exhibit the ability to adapt to changes in the processed data according to the provided

labels.

The described variability in the context of data streams is denoted as concept drifts,

and data streams characterized with concept changes – as non-stationary. The non-

stationarity of the data forms a final challenge related to data stream processing.

1.1.5 Concept drift

The concept has been referred to since the early works in the area of artificial intel-

ligence [169]. The term concept was then used to describe a given class or category

of instances [164]. The objective of machine learning was described as concept learning

and viewed as a search problem. As Mitchell stated in his dissertation: the ability to

generalize from specific instances of a class to a general model or description of a class,

[is] often referred to as concept learning [169].

In modern machine learning, the idea of a concept has gained a probabilistic interpreta-

tion. It has been formally defined in the literature as the joint probability P (X ,Y), depen-

dent on the posterior probability P (Y|X ), and the covariate probability P (X ) [71, 110].

Equation (1.14) gives the relation between these two components and the joint proba-

bility.

P (X ,Y) = P (Y|X )× P (X ) (1.14)

The posterior probability is further defined based on covariate probability P (X ), prior

probability P (Y) and covariate conditional probability P (X|Y) [128], as indicated in Equa-

tion (1.15)

P (Y|X ) =
P (Y)× P (X|Y)

P (X )
(1.15)

Specifically in the case of data streams, where there is a time factor, probabilities are

defined for time instants Pt(X ,Y) [74]. This time factor becomes crucial when formally

describing the changes happening over time. Concept drift occurs if the joint prob-

abilities P (X ,Y) at two time instants t and u differ. This relationship is described

by Equation (1.16).

Pt(X ,Y) 6= Pu(X ,Y) (1.16)
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An extreme example of a concept drift, described as pure class drift, could be seen if the co-

variate probability P (X ) remained static, while only posterior probability P (Y|X ) changed

over time, affecting the decision areas of the recognized problem. Such a change is not

possible to detect in the case of unsupervised data processing – when only covariate

probability P (X ) is observed. In most of the real-world scenarios, however, it is both

the covariate probability P (X ) and the posterior probability P (Y|X ) that are impacted

due to a concept change [128].

The probabilistic definition of concept drift is aligned with the original understanding

of the concept as a generalization of a class, presented by Mitchell [169] – in the face

of a concept change, the definition of a category in the machine learning task changes,

hence, the abstract knowledge describing a given problem evolves over time.

In the area of data stream processing, the concept does informally describe the data

distribution and the semantics of classes. Concept drift occurs when data distribution

or the definition of classes changes over time. The traditional static datasets can be

viewed as describing a single, stationary concept, while, in the case of incremental pro-

cessing of data stream, the data can change over time [50] – forming a non-stationary data

stream. From the perspective of machine learning systems, concept drift is an impor-

tant phenomenon, as it usually leads to a loss of recognition quality in the implemented

system [180].

The example of a concept drift and its impact on the recognition quality is presented

in Figure 1.6. The top row presents the chunks of data at different time intervals, de-

noted as chunks. The visualization utilized a synthetically generated stream where, over
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Figure 1.6: An example of a concept drift in the synthetically generated data stream, processed
in the form of batches. The distribution of data samples in specific chunks is shown in the top row,
while the classification accuracy of a non-adapted classifier – in the bottom row. The colors of points
indicate the class of an instance.



22 Chapter 1. Introduction

a hundred chunks, a single concept drift occurred. The bottom row shows the classifica-

tion accuracy of a k-Nearest Neighbor Classifier, fitted on the first data chunk and not

updated throughout the data flow.

It can be first noticed that the sample distribution, presented in the top row, changes over

the processing time – which is especially visible when comparing the data distribution

from the 10th and 90th data chunks. The accuracy curve over the processing time shows

that, if the system does not respond to changes in the data distribution, the recognition

quality continues to decline or even, as presented in the example scenario, the classi-

fier entirely loses the recognition ability by achieving the accuracy of 50% – which is

equivalent of a random prediction in the binary classification problem.

By following the example presented in Subsection 1.1.4, the system that estimates the pa-

tient recovery time will present poor recognition quality if, for example, new treatment

options are invented, new infection outbreaks or any real-world event impacts the oper-

ation of a medical facility. More generally, concept drift may occur as a result of any

seasonal and daily cycles [98], the emergence and disappearance of trends [183], out-

breaks of the spread of infectious diseases [222] or any dynamic evolution of recognized

task, extremely characteristic of real-world applications [231].

A typical occurrence for applications where seasonal cycles are observed is the concept

recurrence. In such applications, the specific concepts interchange over the processing

time. This scenario offers a possibility not only to respond to the concept changes and

incrementally train the model – typical for non-recurring changes – but also to pro-

pose solutions that do not require a complete learning of a concept already known from

the past.

While metafeatures are usually used to describe a static dataset [30], they can also be

used in the data stream setting, even though the entire dataset never arrives. Such a pos-

sibility is offered by processing the data stream in the form of batches. While the metafea-

tures designed for static data can also benefit methods for data stream processing [87],

Webb et al. proposed quantitive measures specifically for the data streams [230, 231].

Those measures, directly dedicated to describing a concept drift, can be used as metafea-

tures calculated over subsequent batches or moving windows accumulating the arriving

samples over a specific time.

The motivation behind those quantitive measures was to objectively describe the changes

visible in the data [231], allowing for the detection of a concept change that does not rely

on the consequences of concept drift (i.e., the drop of recognition quality) – but examines

the data distribution itself [230]. The task of concept drift detection, stating a vital area
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of research, places nowadays a significant impact on the implicit drift detection, whose

mechanism does not rely on monitoring the quality of underlying classification model [85].

Webb et al. [230, 231] proposed three measures used to describe the concept drift phe-

nomena for the classification task. The measures compare the sample distributions from

two time instants t and u and are defined as follows:

• Drift Magnitude (dm) measures the distance between two concepts Pt(X ) and

Pu(X ). The original measure uses the Hellinger distance [20] and is described as:

DM(t,u) =
1√
2

√∑
x∈X

(Pt(x)− Pu(x))2. (1.17)

• Conditioned Cardinal Covariate Drift (cmcd) is defined as the weighted sum

of the distances between conditioned covariate distribution P (X|Y) for each prob-

lem class. The weights are the average prior probability of occurrence of a given

class P (Y) at both points in time. The measure is using the Total Variation Dis-

tance [145] and is described as:

CMCD(t,u) =
∑
y∈Y

[
Pt(y) + Pu(y)

2
· 1

2

∑
x∈X
|Pt(x|y)− Pu(x|y)|

]
. (1.18)

• Posterior Drift (pd) is defined similarly to cmcd as a weighted sum of distances but

uses covariate distributions P (X ) and posterior distribution P (Y|X ). The measure

is using the Total Variation Distance and is described as:

PD(t,u) =
∑
x∈X

Pt(x) + Pu(x)

2
· 1

2

∑
y∈Y
|Pt(y|x)− Pu(y|x)|

 . (1.19)

In the case of using these measures, batch processing of data is necessary to aggregate

a set of samples that reliably describes the processed data distribution. Later, the esti-

mation of the probability density is performed.

The dm measure describes total drift magnitude, while cmcd and pd the marginal drift

magnitude. The measure of dm examines the covariate probability P (X ), whereas the fol-

lowing measures also utilize prior class probability P (Y), posterior probability P (Y|X )

and the conditioned covariate probability P (X|Y), offering a more complex understanding

of processed data.

The concept drift detection and the non-stationary data classification play a significant

role in this dissertation. As an inherent characteristic of dynamic real-world applications,

concept drifts should be considered in any data stream processing system [158].
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1.2 Research hypothesis

The following dissertation addresses the issues related to the processing of non-stationary

data streams, proposing solutions for the tasks of concept drift detection and data stream

classification. The proposed solutions analyze the metafeatures calculated in disjoint

data batches of a potentially infinitely incoming data stream. The research hypothesis

is as follows:

It is possible to propose methods employing metafeature analysis for con-

cept drift detection and classification of the non-stationary data streams that

demonstrate significantly better or statistically dependent recognition quality

compared to state-of-the-art approaches.

Aims and goals In order to substantiate the above hypothesis, the following objec-

tives were formulated, dedicated to the tasks of concept drift detection and classification

of non-stationary data streams:

1. Proposal of an implicit concept drift detector analyzing the time variability of the

classification task complexity measures calculated for disjoint data chunks. The com-

pletion of this objective is described in Section 3.1.

2. Proposal of an implicit concept drift detector analyzing drift magnitude measures

integrated using the ensemble learning paradigm. The completion of this objective

is described in Section 3.2.

3. Proposal of an unsupervised drift detection method analyzing the distribution of ac-

tivations from the last layer of a deterministic neural network. The completion

of this objective is described in Section 3.3.

4. Proposal of an ensemble method for classification of data streams analyzing the dis-

tributions of statistical metafeatures calculated for subsequent data chunks to iden-

tify recurring concepts. The completion of this objective is described in Section 4.1.

5. Proposal of a classification method for compensating the bias of baseline classifiers

when processing the data streams with dynamic changes in imbalance ratio, using

the prior probability estimated based on the metafeatures of the processed data

chunk. The completion of this objective is described in Section 4.2.

6. Proposal of a framework for processing data streams with a time-varying level

of difficulty, allowing for the selection of an appropriate neural network architecture

based on the analysis of the model’s certainty. The completion of this objective

is described in Section 4.3.
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1.3 Structure of the dissertation

The dissertation has been divided into five chapters.

Chapter 1 discussed the fundamental subjects related to the field of machine learn-

ing and the undertaken research topics, including data stream processing, classification,

and metafeature analysis. The introduction of these concepts allowed to determine

the motivation, research hypothesis, and detailed goals of the planned research, pre-

sented at the end of the first chapter.

Chapter 2 presents the related works and background essential to this dissertation in more

detail. It describes the motivation of metalearning and key aspects of the data stream

processing. Subsequently, it introduces the state-of-the-art approaches to the concept

drift detection and data stream classification, expanding on the correct and reliable ex-

perimental evaluation of data stream processing methods solving these two tasks.

Chapters 3 and 4 present the developed methods for the tasks of concept drift detec-

tion and data stream classification, respectively. Each of these chapters presents three

methods employing the analysis of metafeatures calculated over batches of a data stream

to solve the undertaken machine learning task. A definition and presentation of each

proposed method are followed by a description of the experimental environment and

an analysis of the obtained results.

Chapter 5 summarizes the work presented in this dissertation and highlights potential

future directions of the research.





Chapter 2

Related works and background

This chapter expands on the fundamental topics of machine learning introduced in the first

chapter that are critical to the research presented in this dissertation. The existing pro-

cessing strategies, methods, and related works are discussed in more detail following

the current literature of the subject.

To comprehensibly supplement the basic concepts presented in the Chapter 1, each sec-

tion begins with a reference to topics already discussed in the Introduction and includes

information about the extensions contained in a particular section.

The second chapter has been divided into four sections. The first one aims to describe

the taxonomy of metafeatures, primarily describing the two groups significant for the pre-

sented research. The second section focuses on general aspects of data stream processing

– expanding on the limitations of such systems and presenting the data stream sources.

The next section describes the concept drift detection task – focusing on the taxon-

omy of concept changes and presenting the state-of-the-art techniques of concept drift

detection. The last section presents the area of data stream classification, describing

the existing approaches.

The last two sections were supplemented with a description of topics related to the evalua-

tion of data stream processing methods, including the processing modules and evaluation

criteria specific to the considered tasks.

27
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2.1 Metalearning and metafeatures

The intuitive understanding of metafeatures and their formal definition has already

been presented in the Subsection 1.1.3. So far, the primary goals of metalearning

were presented, along with an example of employing a simple metafeature describing

the imbalance ratio of a classification problem. Moreover, the complexity measures

– a family of metafeatures important for the research presented in this dissertation

– were briefly described.

This section expands on the goals of metalearning, presenting its target development

paths and identified constraints. Later, the section describes the current taxonomy

of metafeatures, presenting its categories and characterizing the two most important

ones for the research presented in this dissertation.

Metalearning studies the learning process of the machine learning methods [144]. The main

goal of this research area is to determine what data characteristics affect the recognition

quality and to describe such impact [226]. Most metalearning systems are nowadays used

for algorithm recommendation, which allows for quick and automatic selection of meth-

ods based on their performance in similar scenarios [192].

A first metalearning system described by Rice studied a similar problem of algorithm

selection [191]. In the mentioned work, author defined the problem space and algorithm

space. The former contains many independent determinants (characteristics) of the prob-

lem that are important for the algorithm selection – from a modern perspective, those

could be viewed as metafeatures. The latter defines a set of algorithms and their con-

figurations that are considered for the problem. Therefore, the problem space could be

interpreted as metafeature space, and algorithm space as the possible set of targets, with

each class describing the particular algorithm best suited for a specific problem.

2.1.1 The fundamentals of metalearning

Formally, metalearning considers the metaproblem, in which metafeatures describe the

metatarget [60]. The metafeatures are the properties describing the given dataset, and

the metatarget can be any value that the system aims to learn. In recommendation

systems, metatarget can be defined as the recognition quality using a given algorithm

or a discrete label indicating the suitable algorithm or its parameters [30]. The scheme

of such abstraction is presented in Figure 2.1 – showing how, based on dataset D,
the metafeature and metatarget spaces are defined.



Metalearning and metafeatures 29

D = {X ,Y}

Dataset

f1(D), f2(D), . . . ACC(Ψ(X ),Y)

Metafeature space Metatarget space

Figure 2.1: The scheme showing the metafeatures and metatarget derived from the dataset.
The metafeature space shown of the right consists of various measures describing the dataset D.
The metatarget space shown on the right consists of a continuous classification accuracy value with
a given model Ψ applied to the dataset D.

From the perspective of canonical machine learning, a recommendation system can per-

form a regression task – where the target variable is of continuous type and describes

the classification quality of a specific algorithm measured with the selected metric.

The features of such a new metalearning problem are characteristics of a dataset – defined

as metafeatures f1(D), f2(D), . . . describing the data on a general level. To prepare such

a metalearning recommendation system, it is necessary to collect a dataset describing

the metaproblem. Such a superimposed dataset consists of factors describing the original

data – e.g. imbalance ratio, problem dimensionality, or the measures describing the data

sparsity – and the continuous label describing a recognition quality using a given method

– in the presented example ACC(Ψ(X ),Y).

When the acquired dataset describing a metaproblem is large enough, one can train

a canonical regression model to predict the recognition quality depending on the dataset

characteristics. Such a process has been illustrated in Figure 2.2, where the metafeatures

of numerous datasets D1, D2, . . . along with their corresponding recognition accuracy

with a specific classifier Ψ have been used to train a metalearning model ΨM .

Such a solution, or comparable solutions that directly recommend an algorithm as a dis-

crete label, can facilitate and speed up the development of a recognition system. The tech-

niques originating from metalearning are successfully used in AutoML [94], where the ob-

jective is to automatically select a method and its hyperparameters for a given problem.

The use of metalearning could allow for obtaining the appropriate algorithm and its con-

figuration without thoroughly evaluating a vast pool of available algorithms and their

hyperparameters.

It is worth remembering that the metafeatures describing a new metalearning prob-

lem provide some generalized data characteristics [45]. Meanwhile, the relation between

the problem and the recognition quality can be very complex. The selected metafeatures
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Metafeature space Metatarget space

f1(D1), f2(D1), . . .

f1(D2), f2(D2), . . .

f1(D3), f2(D3), . . .

. . .

ACC(Ψ(X1),Y1)

ACC(Ψ(X2),Y2)

ACC(Ψ(X3),Y3)

. . .

ΨM

Metalearning model

Figure 2.2: The scheme showing the construction of a metalearning model ΨM , which is trained using
the set of metafeatures for a large number of datasets and the corresponding metatargets.

may not provide enough information about the dataset, or the provided characteristics

can be of little significance concerning the algorithm’s performance. Moreover, a wide

range of problems is required to enable metaknowledge generalization by a metalearn-

ing system. A considered case of supervised learning enforces not only the calculation

of metafeatures for such problems but also the acquisition of metatarget, which, in recom-

mendation systems, often requires the complete training (to the point of model conver-

gence) of many machine learning solutions only to examine their quality. These aspects

are viewed as current limitations of metalearning and AutoML [108].

While one of machine learning objectives is choosing the best processing pipeline for

the particular problem, or even the development of a principal, master recognition algo-

rithm [53], scientists are placing their hopes on metalearning techniques despite the cur-

rently identified challenges [228].

2.1.2 Metafeature taxonomy

Over the years, a range of measures and metafeature taxonomies have been consid-

ered, aiming to adequately describe the input data for thorough problem understanding.
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The most extensive description and analysis of available metafeatures are currently avail-

able in work by Rivolli et al. [192]. The authors systematized the available measures and

assigned them to six main categories:

Simple describe the basic properties of a dataset and are the simplest in terms of both

definition and computational complexity.

Statistical designed for numerical attributes, intended to describe the statistical prop-

erties of a data distribution.

Information theoretic operate on categorical attributes. They are intended to de-

scribe the amount of information contained in the data based on entropy.

Model based describe the properties of a decision tree fitted to the available data.

Landmarking describe a dataset based on the quality obtained for fast and simple

learning models.

Others include measures with higher computational cost or domain bias, divided into

four additional categories [7]:

Clustering examine data after subjecting it to clustering with a selected algo-

rithm or use class labels as cluster identifiers.

Complexity aim to describe the difficulty of the classification task.

Concept describe the irregularity and consistency of the data.

Itemset analyze the binary categorical attributes. They provide information

about the frequency of an attribute and about the correlations between their pairs.

The following paragraphs focus on two metafeature categories most critical for the pre-

sented research – statistical and complexity groups.

Statistical metafeatures Metafeatures from the statistical category describe the wide

range of statistical properties of data. The examples include the maximum, minimum,

average, or correlation values of problem features. This section presents the formal

example of metafeature calculation, following the definition provided in Chapter 1.

Among these metafeatures, values are often calculated within individual features of a d-

dimensional dataset (such as the mean or maximum) or within pairs – each feature with

the target value (such as the correlation). In the example of the maximum, the charac-

terization measure m is a function calculating the maximum value within each attribute

of the dataset D consisting of n samples, which results in obtaining p′ = d metafeatures.
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The function characterizing each feature j = 1, 2, . . . , d is described by Equation (2.1),

presenting the calculation of a maximum statistical metafeature. The described dimen-

sionality relation is described by Equation (2.2).

mj(D) = max(xj) (2.1)

m : D → Rd (2.2)

If the goal is to obtain a single value characterizing the given dataset p = 1, using

the summarization function σ is necessary. Such a function can be described, for ex-

ample, as the mean value of the obtained characterization measures. Equation (2.3)

describes the summarization function calculating the mean value of initial metafeatures.

The dimensionality of the metafeature after applying this summarization function is

equal to p = 1, as shown in Equation (2.4).

σ(m1,m2, . . . ,mp′) =
Σp′

j=1(mj)

p′
(2.3)

σ : Rp
′ → R1 (2.4)

The category of statistical metafeatures also includes complex measures, such as the num-

ber of normally distributed attributes, the number of outliers, and measures based

on the results of Multivariate Analysis of Variance – for example, Pillai’s Trace or Wilks’

Lambda [29].

Complexity measures The complexity measures category is of particular impor-

tance in this dissertation. The measures were described and systematized in detail

by Lorena et al. [154]. They differ in definition from those described in the publica-

tion by Rivolli et al. [192] due to the inclusion of a summarization function by design,

which means that each of the described measures results in a single metafeature value

(p = 1). The list of metafeatures describing the complexity and their importance within

the categories is presented in Table 2.1.

According to the available literature, the scope of data complexity measures as problem

metafeatures is relatively wide, ranging from applications in signal data [147], through

the dominant application in metalearning [192], extending the context of difficult data
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Table 2.1: The description of complexity measures groups – the name of a category, their description
and the list of measures that belong to the specific category.

Measure category Semantics of measures List of measures

Feature-based The measures describe the ability of features to separate
classes in the classification problem. They analyze features
separately or evaluate how attributes work together.

F1, F1v, F2, F3, F4

Linearity The measures evaluate the level of problem class linear sep-
aration. They use the Linear Support Vector Machines
(svm) classifier to define linear decision boundary between
the classes.

L1, L2, L3

Neighborhood The measures analyze the neighborhood of instances in a fea-
ture space. Neighbors of each sample are established based
on the distance between problem instances.

N1, N2, N3, N4, T1,
LSC

Network The measures consider the instances as the vertices of the
graph. All measures of this category utilize an epsilon-Nearest
Neighbors graph, where the edge is placed between the points
if a normalized Gower distance is smaller than 0.15. Edges
between instances of distinct classes are removed.

Density, ClsCoef, Hubs

Dimensionality The measures analyze the relation between the number of fea-
tures and the number of instances in the dataset.

T2, T3, T4

Class imbalance The measures evaluate the dataset based on the class cardi-
nality proportions.

C1, C2

analysis [78], or applications in supporting the classification models of imbalanced data

classification [14].

In imbalanced problems, they allow estimating the difficulty of data, which was confirmed

by experiments on synthetic data [15]. There is also a noticeable correlation between

the classification quality and the problem complexity measures when using the oversam-

pling algorithms [117].

2.2 Data streams

The data stream was formally defined in the Subsection 1.1.4. The data streams

are considered difficult data, as the methods for their processing are restricted with

certain limitations. An important factor in data stream processing is the concept

drift. The informal understanding of a concept and its formal probabilistic defini-

tion was already presented in the Subsection 1.1.5, additionally showing an example

of concept drift effects on the data distribution and classification quality.

This section describes the fundamental guidelines of data stream processing sys-

tems in more detail, considering the restrictions of physical computer systems and

the widespread occurrence of concept drift. The description of such changes is

expanded according to the current taxonomy of the phenomena. Further, this sec-

tion describes the sources of data streams used in computer experiments, discussing

the benefits and drawbacks of their selection.
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Data streams are increasingly often employed in many machine learning applications [71],

often aiding the topical tasks of big data analysis. Big data is characterized by large va-

riety, velocity and volume [41, 200]. When considering those three characteristics, data

streams are especially beneficial in conquering the challenges related to its volume and

velocity. The data volume does not allow storing the samples in physical memory and

makes incremental processing necessary [3]. Moreover, almost all real-world applications

with a high velocity of data inflow require an immediate system response and appropriate

adaptation to changing environments. Examples of such applications include network

traffic monitoring systems [115], text message processing [172] and web click analyt-

ics [106], as well as internet of things applications [181].

2.2.1 Processing requirements and limitations

The keys to effective data stream processing are real-time analysis and the lack of histor-

ical data accumulation. Algorithms should be capable of continuous processing without

consuming excessive memory resources. These limitations were thoroughly described

by Domingos et al. [55], forming a set of criteria that should be met in order to process

data streams efficiently:

• A little processing time per sample is required.

As the data streams are usually utilized in applications with a high data veloc-

ity, the system response should be almost immediate. The lack of such behavior

can cause a system to respond when the particular response is no longer needed.

An example could be the positive signaling of a fraud detection system, processing

the payment information as a data stream – responding to a particular query with

a time delay – once a transaction has already been accepted. From a user’s point

of view, such a delayed response is of little value.

• The consumed memory resources need to be independent of the number of previously

processed samples.

The data streams are defined as potentially infinite, meaning the entire dataset

never arrives. Keeping in mind that some recognition methods suitable for pro-

cessing static data store the artifacts of training samples in the method’s memory

(an extreme example is the k-Nearest Neighbors classifier, which stores the en-

tire training set), certain modifications should be made to allow for infinite pro-

cessing of data. One of the approaches is to limit the number of data samples

or the method’s components stored in the process memory. The use of non-adapted

methods increases the computational complexity of the system with a processing
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time, which, in turn, impairs the first constraint or entirely violates the recognition

system.

• The need for a single-time processing of each sample.

This constraint expands the previous limitation. It enforces that the samples are

not excessively stored in the model’s memory. In the case of online processing,

the samples should be discarded once they have been used to train the model.

In the case of batch processing, the same requirement is applied to a data chunk.

However, some generalized knowledge can be stored in the form of the algorithm’s

components – such as the location of class centroids or probability parameters

describing the distribution of available classes – which is done by the Gaussian

Naive Bayes (gnb) classifier, naturally adapted to incremental training.

• The algorithm should be able to process data at any moment.

This restriction touches upon the system’s reliability and is of significant value

when considering the concept drifts. Given that such a concept change is detected,

some steps are usually performed to prevent the recognition quality drop – e.g.

the classifier is rebuilt. Such steps should remain transparent from the user’s

perspective and not cause a time delay in a system response. This restriction

also enforces the system’s reliability, which is consistent with previous guidelines.

A system not well adapted to incremental data processing could stop its operation

due to an internal failure.

• Any limitations resulting from the processing of the data stream should not affect

the recognition quality.

As mentioned, the solutions dedicated to data stream processing often require

certain modifications and compromises. Any such adjustment should not cause

the method to perform worse than static data processing. Since the data streams

form a difficult problem, this constrained may not be always possible to fulfill.

However, the researchers should aim to bring the recognition quality as close to

the static baseline as possible, taking to account other limitations of data stream

processing environment.

• In the case of varying data characteristics, the model should always be up-to-date

and contain relevant past information.

This guideline directly relates to concept drifts occurring in the data stream.

The methods should adapt to a newly appearing data distribution. At the same

time, in the case of recurring concepts, the model should be able to restore past

knowledge. As the data stream is potentially infinite and the consecutive concepts
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may not be possible to predict, storing past knowledge for a long time is usually

only possible with certain assumptions – such as setting a time limit after the old

knowledge is discarded.

Data streams pose a challenge to canonical methods of machine learning, not adapted

to the velocity of incoming data samples and time-changing domains [128]. The re-

strictions mentioned above enforce the specific mechanisms of data stream processing

methods, such as forgetting the old data distributions. This supports the fact that

the data streams constitute a challenging processing environment.

2.2.2 Concept drift taxonomy

As noted, some of the data stream processing guidelines directly refer to a concept drift.

In real-world, open environments, there is an almost infinite number of types of changes

that can occur in a data stream. In available sources, over the years, the concept drift

has been described from various angles, depending on its source, dynamics, and effects

of an occurring change [71, 166, 231].

As described in Section 1.1.5, the phenomenon of a concept drift is an effect of a change

in the joint probability P (X ,Y), which can translate into a change in its components:

covariate probability P (X ), prior probability P (Y) and covariate conditional probability

P (X|Y). The taxonomy presented below first discusses the changes in joint probability

and later describes the specific case of changes in the prior probability.
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Figure 2.3: Examples of real (top) and virtual (bottom) drifts. The distribution from the 10th chunk
shows the initial concept, while the distribution from the 90th chunk – the subsequent one. The black
dashed line indicates the linear decision boundary of a logistic regression model fitted to the data from
the first concept. Compared to the real one, the virtual concept drift does not affect the decision boundary.



Data streams 37

Drifts in joint probability Following the currently established taxonomy [5], concept

drift can be taxonomically divided according to three main axes:

• Influence of the decision boundaries

The drifts can be categorized into real and virtual ones [4]. Those two types

of drifts are presented in Figure 2.3. Despite the distribution shift in both real

and virtual drift scenarios – the decision boundary defined for the initial concept

allows for accurate classification of the following concept in the case of virtual

change. Virtual drifts, therefore, are associated with changing data distribution

without affecting the decision boundaries. Thus, they are not visible when assessing

the classification quality of models. In contrast, the real drifts change the decision

boundary and directly impact the recognition quality.

It is worth noting, however, that virtual drifts can indicate the initial phase of real

drifts with a concept change stretched over time. Early detection of such changes

can positively impact recognition quality if appropriate steps are taken.

• Drift Dynamics

Concept changes may occur at a single point in time or can be stretched over

a more extended period [217]. The examples of each type of drift in this context

are presented in Figure 2.4. In the case of sudden drifts, the concept change

occurs over a shorter period than the data sampling. This results in a change
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Figure 2.4: Examples of sudden (top), gradual (center), and incremental (bottom) concept changes over
the single concept transition. Sudden concept drift occurs at a single point in time, while gradual and
incremental ones are stretched over time, with a distribution in a transitional phase depending on the
type of drift.
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viewed as occurring at a single point in time. In the case of incremental and

gradual drifts, the changes are smoother – occurring over a longer interval than

data sampling, and therefore can be viewed as a smooth change from one concept

to another. In the case of gradual drifts, samples from successive concepts appear

in batches with varying probabilities. In contrast, in incremental drifts, there

is a progressive transition in which samples belong to a temporary concept that

depends on successive stationary concepts.

The temporary concept visible in the transition period of the gradual and incremen-

tal changes can sometimes be interpreted as an accessory one – containing either

an overlap of samples from consecutive concepts (gradual drift) or the weighted

average of features (incremental drift).

• Concept recurrence

A concept observed in the past may reappear after some time. While this char-

acteristic describes the consecutive concepts, not the drifts themselves, it is often

identified as an additional taxonomic category – represented as recurring concept

drifts [217]. This type of drift can be characteristic of cyclic phenomena, such

as seasons and daily cycles. Methods designed for recurring concepts often retain

the classifiers used in previous concepts to re-utilize them when the concept reoc-

curs [89]. Figure 2.5 presents examples of non-recurring and recurring concepts.

In the case of the recurring concept, one of the data stream processing require-

ments presented by Domingos et al. [55] becomes critical. As mentioned, the data

stream processing methods should adapt to a new concept but, at the same time,

store the valuable information that could be used in the future when the concept

reappears. The methods dedicated to recurring concept changes should, therefore,
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Figure 2.5: Examples of non-recurring (top) and recurring (bottom) concepts over the data stream with
five concept drifts in 100 data chunks. In the case of a non-recurring concept, after each drift, the new
concept appears, whereas, in the case of a recurring one, the concepts alternate.



Data streams 39

retain some of the previous knowledge and be ready to use it when the concept reap-

pears after some time. However, it is worth to note that there are other constraints

related to the data stream processing – e.g. the maintenance of stable memory

and computational complexity. This enforces the researchers to seek a compromise

between the past knowledge accumulation and the efficiency of the methods, re-

sulting in the upper bounds of the number of classifiers stored in many ensemble

methods [128].

Drifts in prior probability Drifts in the prior probability constitute a specific type

of concept drift that occurs in data streams related to the P (Y) component of the joint

probability P (X ,Y). Such changes are related to the time-varying problem imbalance

ratio [124].

The impact of varying prior probabilities, like varying joint probability distribution, can

substantially impact classification quality [110]. Meanwhile, the strategies that can be ap-

plied due to significant class imbalance differ from those typical for changes in conditional

probabilities, most often addressed in the research area of handling concept drift [195].

The concept drift that alters only the prior probability can be viewed as a unique case

of virtual concept drift, in which the data distribution changes while the decision bound-

ary remains constant. What is non-trivial about this type of change is the effect on

the classification quality – as highly imbalanced problems usually constitute a challenge

to canonical classifiers [5]. Therefore, one can view a virtual concept drift as a paradox,

where the recognition quality can be affected [110], despite the lack of direct decision

boundary shift. The selection of evaluation metrics for varying problem imbalance also
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Figure 2.6: A data distribution (top row) in a statistically imbalanced data stream. The bottom row
shows the local prior probability of positive class y = 1, calculated for each data chunk. The prior
probability remains at around 95% throughout the entire data stream processing time.
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affects how the assessed classification quality changes. The simple accuracy metric may

not show the degeneration of the model’s ability to recognize minority class instances,

revealing the accuracy paradox [215]. Meanwhile, the metrics suited for imbalanced data

evaluation most often degenerate over time in case of increasing class imbalance [105].

The literature on the subject highlights the problem of imbalanced streams [70] – often

referred to as skewed data streams – and imbalanced streams in which additional, condi-

tional probability drifts occur [75, 250]. The research in this dissertation touches upon

the rarely addressed issue of data streams with time-varying prior probability, without

the drift in covariate conditional probability. Taking the class imbalance into account,

the data streams can be categorized into the following categories [124]:

• Statically imbalanced streams (sis) – where the global prior and each of the local

priors are characterized by a disproportionate but constant and dependent value.

Figure 2.6 presents an example of such a data stream. In this taxonomic type,

the level of imbalance is maintained at a similar level during processing.

• Dynamically imbalanced streams (dis) – among which there are two subcategories:

– Continuous dynamically imbalanced streams (cdis) – where the global prior

may differ from local priors, whose value is independent but changes continu-

ously, allowing for the observation of trends in its changes. Figure 2.7 presents

an example of such a data stream. In this data stream type, the imbalance

ratio changes gradually over a stretched period.

– Discrete dynamically imbalanced streams (ddis) – where the global prior may

differ from local priors, whose values are independent and change in a discrete
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Figure 2.7: A data distribution (top row) in a continuous dynamically imbalanced data stream.
The bottom row shows the local prior probability of positive class y = 1, calculated for each data chunk.
The prior probability changes from around 5% at the initial processing period to around 95% at chunk 50.
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Figure 2.8: A data distribution (top row) in a discrete dynamically imbalanced data stream. The bot-
tom row shows the local prior probability of positive class y = 1, calculated for each data chunk. The prior
probability changes discretely, with large deviations in consecutive data chunks.

manner, making it impossible to observe trends in its changes. Figure 2.8

presents an example of such a stream. In the case of discrete changes, the local

priors differ significantly from one chunk to another.

The balanced streams (bs) and data streams with a constant level of imbalance (sis) have

already received significant attention in the data stream classification research. Similarly,

in the area of concept drift, much more attention is given to the drifts in the joint probabil-

ity, and especially covariate conditional probability P (X|Y), rarely focusing on the drifts

in prior probability P (Y). The research presented in this dissertation fills this gap by con-

sidering various sources of concept drift – including both covariate conditional and prior

probability – as well as studying only the changes in prior, without the drift in covariate

conditional probability.

2.2.3 Data stream sources for computer experiments

The research related to data streams is usually carried out based on two types of data

streams: synthetic or real-world [158]. Each of these types has its advantages and dis-

advantages that should be considered when performing a reliable experimental analysis.

Often, the emphasis is placed on analyzing real-world data [214], as it describes the au-

thentic applications where machine learning systems are implemented and deployed.

However, real-world data stream analysis has significant limitations in the context of the

drift detection task. The main problem is the lack of accurate determinants of drift mo-

ments – denoted as concept drift ground-truth – which makes it impossible to compare
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methods based on metrics other than classification quality [153, 158]. What is more,

the availability of real-world data streams is low [212]. The available streams can be too

simple in terms of classification tasks, contain a small number of samples, or describe

problems of low dimensionality.

For the above reasons, researchers often use synthetic data streams to properly assess

recognition’s effectiveness in changing environments. A significant advantage of this

type of stream acquisition is the ability to specify stream parameters to obtain data

with specific characteristics, such as the number of features, the number of drifts, and

the length of the stream. Moreover, synthetically generated data can be replicated

using various random seeds, allowing for extensive experimental evaluation and enabling

statistical analysis of the results. Finally, synthetic data is easy to reproduce and can be

explicitly regenerated instead of stored [23, 26].

One of the most significant benefits of using generators for non-stationary data stream

acquisition is that they store precise markings of places where synthetically injected

drifts occur. In sudden drifts, the exact moment of change is indicated, while in gradual

or incremental changes – the precise function of a drift dynamics [133].

A third source of data streams combines the advantages of real-world and synthetic

data streams. Based on widely available static datasets, it is possible to generate semi-

synthetic streams, modifying the distributions of available data in order to simulate

concept drifts [117] or sampling the available data in a specific way so that the data

arriving over time are characterized by time-varying factors [123].

As in the case of any stream source, there are some disadvantages to using semi-synthetic

data generators, which vary depending on the synthesis approach. Suppose the gener-

ator modifies the distributions of static datasets. In that case, the original semantics

Table 2.2: The advantages and disadvantages of the specific data stream sources. The first two columns
describe specific characteristics, while the final three columns indicate the category of data streams for
which the characteristic is valid.

Category Characteristics real semi-syn syn

Advantage

Describe real-world applications of machine
learning systems

x

Describe concept drift ground truth x x
Describe type of drift x x
Possibility of replication x x
Specify data stream characteristics (dimen-
sionality, informativeness, number of classes)

x

Disadvantage
Low availability x
Requires the data storage x
The repeatability of sampled instances x
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of the features is altered, for example, by using feature projections to enable the synthe-

sis of concept drifts or to modify the dimensionality of the stream. In the other generation

strategy – when the generators do not modify the original data from the static dataset

but only sample them depending on specific criteria, multiple sampling of the same ob-

ject is possible. The effect of such a procedure may be the execution of inference for

samples that were previously used to train the model, which can happen if the classifier

is incrementally training throughout the data stream processing.

Table 2.2 presents the considered characteristics of individual data stream sources, di-

vided into advantageous and adverse ones in relation to the experimental analysis.

The real-world data streams have a significant advantage of describing an actual ap-

plication of a machine learning system. Meanwhile, as mentioned, they are of low avail-

ability and require data storage. Both semi-synthetic and synthetic data streams allow

for the replication of a generation process and offer the concept drift ground truth, along

with the description of the type of drift. Fully synthetic data streams, however, allow for

more precise data specification compared to semi-synthetic data streams, which partially

rely on static data.

Examples of data streams from each source have been presented in Figure 2.9. The rows
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Figure 2.9: Examples of data streams from each source. The first row presents a synthetic 2-dimensional
balanced data stream. The second row presents a semi-synthetic data stream generated based on breast
cancer wisconsin dataset with feature projections to two dimensions. The final row shows a real-world
covertype data stream, with features transformed to two dimensions using pca fitted to the first data
chunk.
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present synthetic, semi-synthetic, and real-world data streams, respectively. The syn-

thetic data stream was generated using stream-learn library [133], semi-synthetic modi-

fied a breast cancer wisconsin dataset with random feature projections [117], and the real-

world example presents a covertype dataset that has been binarized and transformed

to two-dimensional feature space using pca. Each stream consisted of 500 chunks, each

aggregating 200 data samples.

The synthetic and semi-synthetic data streams presented in the figure are described with

five artificially induced concept drifts. Hence, each column presents a different concept.

In the real-world example, the concept drift ground truth is not available. However,

the differences in the data distribution are clearly visible.

In this dissertation, the largest number of experiments is conducted on synthetic data

streams, considering the possibility of their vast adaptation for specific problems con-

sidered in the research. The specification of generators’ hyperparameters allows, among

others, the evaluation of streams with a given number of features, with the indication

of their informativeness, as well as testing methods on streams with various frequencies

and types of occurring drifts [23]. Some of the presented studies were also conducted for

real-world streams. However, the lack of possibility of unambiguous evaluation of meth-

ods based on data without the concept drift ground-truth drifts is only illustrative and

presents prospects related to the explainability of detection. The studies also partially

use semi-synthetic streams, in which instances from static computer vision datasets are

synthetically sampled in order to simulate the time-varying level of difficulty of the data

stream.

2.3 Concept drift detection

The phenomenon of concept drift has already been formally defined in Subsec-

tion 1.1.5 and described in detail in Subsection 2.2.2. Subsection 1.1.5 also de-

scribed the quantitative measures proposed by Webb et al. [230], whose primary

motivation was to enable the objective detection of a concept change.

This section focuses on the critical task of concept drift detection, presenting the state-

of-the-art solutions developed for this purpose. The available solutions are divided

into the two main taxonomic groups – performing explicit or implicit drift detec-

tion. Additionally, the unsupervised methods are described in detail as an impor-

tant subset of implicit approaches. The final subsections present the aspects critical

to the drift detection task evaluation, describing the metaestimator necessary for

explicit drift detection and the strategies of detection quality assessment.
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Concept drift detectors are modules that aim to minimize the adverse effects of concept

change. They incrementally monitor the data distribution to present a binary informa-

tion (or sometimes a three-state information [70]) about the occurrence of a drift or its

absence.

Concept drift detectors may operate as an independent module, or since concept changes

may directly impact the recognition quality, they may be integrated with other meth-

ods as a part of a hybrid system [39, 128, 189]. Their integration with classifiers allows

detectors to directly monitor the error rate of a system, which may reveal the real con-

cept drift. Additionally, such integration allows the recovery of recognition quality after

the drift occurrence – where the usual procedure used in the case of detection is to replace

the classifier with a new one [17].

2.3.1 Methods

Drift detectors can be divided into two main families: (a) explicit drift detectors, mon-

itoring errors made by the classifier and detecting drift directly based on the baseline

classification quality, and (b) implicit ones, detecting a concept change based on other

data properties. The specific category of implicit drift detectors are the unsupervised

ones, recognizing changes in the scenario of label absence, common in the case of high

velocity of data streams.

Figure 2.10 presents the taxonomy of drift detection methods, dividing them first into

explicit and implicit approaches and then into supervised and unsupervised. The diagram

presents as well three categories of monitored factors used to detect the concept drift:

(a) performance measures, (b) properties of the classifier, and (c) properties of data [114].

All explicit drift detection methods require labels to assess the performance of the classi-

fication model, which assigns them to the supervised category. Some implicit approaches

monitor the properties of the classification method, while others monitor the proper-

ties of data related to the distribution of samples. Both of those factor families can be

used in supervised or unsupervised drift detection methods. Monitoring the classification

model during the inference process is possible with or without label access. Some un-

supervised approaches may, however, still require training the recognition model [202].

Finally, monitoring data distribution can rely on labeled or unlabeled examples depend-

ing on the used measures.

The monitored factors can be viewed as the metafeatures of the analyzed data stream.

In the case of the simplest, explicit detectors, this factor is directly related to the current

quality of the recognition model. Therefore, it is not a direct measurement of changes
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Drift detection methods
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Figure 2.10: Concept drift detection method’s taxonomy and the factor families monitored during
the data stream processing. The methods can be divided on two levels: ( a) into explicit and implicit
ones and (b) into supervised and unsupervised ones. The drift detection methods use three main factor
families.

in the concept but an indirect verification of their impact on the model, measured with

the necessity of class labels. In the case of implicit drift detectors, those metafeatures rely

on properties other than the classification quality of the underlying recognition method.

So far, most of the solutions available in the literature select a single implicit metafeature

or a small group of them depending on a given processing context [40, 87].

The research presented in this dissertation focuses on the methods that utilize a range

of metafeatures for concept drift detection, showing that a combination of various dataset

characteristics can effectively describe the currently processed concept – allowing for

implicit concept drift detection.

Explicit drift detection Explicit or performance-based methods rely on monitoring

the recognition quality of the classification method. They utilize the fact that real con-

cept drifts affect the decision boundaries of the problem, and therefore, the classifier’s

ability to recognize samples from the new concept is reduced. Some of the first and still

frequently used drift detection methods belong to this category. According to the defini-

tion by Kuncheva [135], explicit methods directly act upon the drift in case of detection.

Hence, there is a particularly close connection between the drift detection method and

the classifier on the implementation and conceptual level.

Figure 2.11 shows the general scheme of the explicit detector’s operation. With a stable

concept visible at the beginning of the processing time, the classification quality remains
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similar. As a result of changes occurring in the data, the classification quality gradually

decreases. An explicit detection method operating in a three-stage mode first signals

a warning, and if – as in the presented example – the quality continues to deteriorate,

it signals a drift. Explicit methods are usually based on a mechanism that compares

the distributions of results obtained by the classifier which is combined with the detection

method.

The close relationship between the detector and the classifier typical of explicit solutions

allows for an almost immediate reaction in the form of a reconstruction of the classifica-

tion method when a drift occurs. Depending on the implemented approach, some meth-

ods may start preparing to replace the old classifier with a new one already at the warning

stage [56]. The dotted black line visible in the figure shows how the classifier would per-

form in the case of no detection or the case of no reaction by the recognition method.

The classification quality remaining at a low level in such a scenario emphasizes the im-

portance of monitoring and reacting to concept drifts.

As mentioned, the precise mechanism of explicit drift detection depends on the method.

The most direct approach was used in Drift Detection Method (ddm) [70] and Early

Drift Detection Method (eddm) [12]. The first solution detects drifts based on the error

probability of the underlying classifier. It utilizes the assumption that the classification

quality should increase or remain constant with the stream processing time. If otherwise,

the method detects a change of concept. A similar strategy was used in eddm, where

the distances between errors are monitored, assuming that these distances should increase
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Figure 2.11: The scheme showing the moments of drift warning (vertical dotted line) and drift detection
(vertical solid line) of explicit drift detection method. After the detection, the classification model can
be rebuilt to adapt to the changing data distribution. When no action is performed, the classification
accuracy continues to decrease, as shown by the dotted black line.
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with processing time. As in the case of ddm — if distances between errors decrease —

a concept change is signaled.

A more complex approach to drift detection was used inAdaptive Windowing (adwin) [24]

– a detector using sliding windows of varying width. The principle of sliding windows

operation is based on comparing specific values for two windows — one describing his-

torical data, the other – recent data. Drift is signaled when a difference between the two

windows is observed. This drift detector finds many applications in modern ensemble

approaches [25, 26, 39].

The windowing approach was also used in the Paired Learners (pl) [11] method. The pl

algorithm uses two recognition models — the static one, trained with all incoming pat-

terns, and the reactive one, trained only with patterns from the recent past. If the

classification quality of the static model falls below the classification quality of the reac-

tive classifier, a concept change is marked.

The performance-based detectors also include methods that analyze the statistical prop-

erties of errors made by the classifier, such as the Hoeffding Drift Detection Method

(hddm) [66], which uses Hoeffding inequality to detect significant changes in the sliding

average classification quality. The method can use two strategies: (a) moving averages

(hddmA), which is more suitable for sudden changes in concept, and (b) weighted moving

averages (hddmW ), dedicated to gradual concept drift detection.

Some ensemble approaches to drift detection have also been proposed, utilizing more

than one mechanism for improved detection quality [48]. A simple and lightweight so-

lution was presented in Drift Detection Ensemble (dde) [159], which integrates three

explicit drift detection methods, selecting the set of base methods depending on the sen-

sitivity specified by the hyperparameter. A similar approach was used on e-Detector [56],

which, however, does not limit the number of ensemble members to three and addition-

ally performs clustering to select a single method from the similarly performing group.

The assumption of e-Detector is to select the best-performing approach for a given data

stream using a static selection. Both mentioned ensemble solutions utilize the output

from the shared classifier to monitor the errors made by the classifier. This strategy al-

lows to limit the computational complexity of the ensemble method. On the other hand,

the members differ only on the level of the detection mechanism, which significantly

limits the diversity of a detector’s pool.

The particular drawback of explicit drift detectors is their classifier dependence. Such

methods do not allow for the detection of virtual drifts, initial phases of real drift (which

do not yet harm classification quality), and some changes in prior probability, especially

when the errors are measured on a general level instead of a class-specific level [215].
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Moreover, the operation of explicit drift detectors strongly depends on the classifier

used in the processing task. Using different baseline algorithms may result in different

detections, as the bias of the classifier is dependent on the algorithm and – in the case

of non-deterministic learners – also on the initial state of the model.

Implicit drift detection Implicit methods, sometimes denoted as distribution-based,

monitor factors other than the classification quality of the underlying recognition method

to detect concept changes [100]. This group includes supervised methods that analyze

the statistical properties of the data, taking into account the sample’s labels [85] as well as

unsupervised methods, with a significant predominance of the second category. There-

fore, according to the factor family taxonomy, as presented in Figure 2.10, two types

of factors are monitored: (a) those dependent on the classification model and (b) those

dependent on the data distribution itself.

Among the implicit drift detectors, the Centroid Distance Drift Detector (cddd) [113]

method can be mentioned. The approach analyses the distance between the centroids

of subsequent batches, directly utilizing the metafeatures of the data batches. This

method can operate in supervised or unsupervised mode, depending on whether the cen-

troids are calculated for separate categories of objects or the entire data regardless of their

label.

A different supervised strategy was proposed in the Statistical Drift Detection Method

(sddm) [163]. This detector provides, in addition to the detection itself, information

about the source of the drift and its nature. The method uses a series of functions

to determine the drift characteristics based on concept drift magnitude [231] – measures

proposed by Webb et al., described in detail in Chapter 1, that aim to assess the distance

between two concepts based on their probability distribution. The work introducing

the method showed that such measures become uninformative in feature spaces of high

dimensionality.

Among the methods based on the properties of classifiers, one should mention the Margin

Density Drift Detection (md3) [202], in which the density of samples near the decision

boundary of the svm classifier is examined. Similarly, in the Confidence Distribution

Batch Detection (cdbd) [150] algorithm, the confidence of a classifier is monitored.

Meanwhile, the ExStream algorithm [50] monitors yet another classifier-related factor

– the variability of its explainability.

All mentioned approaches that monitor the classification model, despite their unsuper-

vised detection, require access to labels in order to rebuild the monitored classifier
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in the initial phase of the processing and in the case of recognizing a concept drift,

to further carry out the detection task.

Unsupervised drift detection The particular disadvantage of supervised methods,

both from the explicit and implicit categories, is the requirement of almost immediate

access to labels. Regardless of how labels are used (whether to monitor the error rate

of the classifier or to calculate specific metafeatures of data), the assumption of their

almost immediate availability is not realistic due to their general limited access [202],

their cost [152], and the possible time delay [86].

Some algorithms use statistical tests, which do not examine the distribution of classi-

fication errors (performed, for example, by hddm) but only the statistical distribution

of available data. For instance, detectors may use the Kolmogorov-Smirnov test [210],

Kernel Density estimation [211], and correlation of feature distribution in data win-

dows [142] to detect changes in the distribution of unlabeled data.

The data distribution is monitored in the Nearest Neighbor-based Density Variation Iden-

tification (nn-dvi) [151] detector using the k-Nearest Neighbors algorithm. Similarly,

a grid-based approach was proposed in the Grid Density-based Clustering (gc3) [203].

Other methods study the variability of the data density, for example, using clustering

algorithms. The OnLIne Novelty and Drift Detection Algorithm (olindda) [213] uses

the k-means algorithm. Concept drift is signaled if newly incoming data samples do not

belong to predetermined clusters.

There are also methods based on the analysis of outlier observations, such as Fast and

Accurate Anomaly Detection (faad) [146], proposed mainly for the purpose of anomaly

detection. In One-Class Drift Detector (ocdd) [85], a one-class classifier is used to ex-

amine the percentage of objects recognized as not belonging to the recognized concept.

A similar strategy was used in Discriminative Drift Detector (d3) [84], where a discrim-

inative classifier is used instead of a one-class classifier to explicitly recognize objects

of the new concept from those from the previous one in variable-width windows.

Despite the benefits of using unsupervised detectors, it should be remembered that these

methods do not allow to detect changes in which the drift occurs only in the conditional

probability of labels P (X|Y) without affecting the underlying covariate probability of the

data P (X ).
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2.3.2 Metaestimator for concept drift detection

Since explicit drift detectors operate based on errors made by the classification method,

it is necessary to integrate the detection method with the underlying classification al-

gorithm. While in the implicit approaches, the classifier is not a necessary component

to detect the changes, the detection can be directly used to rebuild the classification

model to counteract the loss of recognition ability regardless of the mechanism used

to detect the concept changes.

A metaestimator is a simple method combining the work of classification and detection

modules, allowing for the state exchange between the classifier and the drift detector.

On the implementation level, the metaestimator consists of two components: (a) clas-

sifier and (b) concept drift detector. The detection method uses the classifier responses

to analyze its errors and to perform drift detection. When a concept change is de-

tected, the underlying classifier is rebuilt to prevent degradation of classification quality.

The operation principle of the metaestimator is presented in Figure 2.12.
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Figure 2.12: The scheme presenting the operation strategy of metaestimator. The method combines
the classification and drift detection modules. After the drift detection, which is performed according
to the predicted and real labels of samples, the classifier can be rebuilt, allowing the adaptation to a new
concept.

For each portion of data containing labels, the first step is to perform a prediction using

the classifier. The labeled samples are transferred with the actual labels to the detection

method, which compares the classifier’s predictions with the ground-truth and, based

on various criteria embedded in the detection method, decides whether the drift oc-

curred. In the absence of detection, no actions are taken. On the contrary, in the case

of drift detection, a complete reconstruction of the classifier is enforced, which allows

for the adaptation to the currently processed concept and provides the forgetting of the

previous knowledge.
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Considering the fact that, in most cases, the real concept drift negatively impacts

the recognition quality, this approach could potentially allow for the evaluation of drift

detectors based on the classification quality. However, such strategy performs the detec-

tion assessment indirectly, which makes it sensitive to many other factors.

2.3.3 Assessment of drift detection task

Measuring the effectiveness of the drift detection methods with the classification quality

during stream processing is derived from the most common and straightforward type

of action performed in the case of the concept change, aimed at maintaining the quality

of the classification – retraining the classifier or replacing the current one with a new

instance of the trained model [158]. This typical reaction to a concept change is also

embedded in the metaestimator presented in Subsection 2.3.2.

However, available works [22] sensibly advise not to evaluate drift detection methods us-

ing the overall classification quality. The research has shown that the reference method

that does not detect changes but artificially simulates the detection – by signaling

the drift every fixed number of instances – can achieve better results than all of the ex-

amined state-of-the-art drift detectors.

These observations were confirmed in the other research [126], where the detector sig-

naling the drift in each data chunk achieved the best results of the average classification

quality. Therefore, evaluating the detection quality based on the stream’s average classi-

fication quality rewards hyperactive detectors, making frequent and redundant detections

desirable. It should be emphasized that re-initializing the classifier or retraining it may

be a computationally expensive procedure. Valuable detectors should, therefore, have

a low number of false, redundant detections and accurately recognize the exact mo-

ment of change. As a result of such observation, the work states that other indicators,

independent of the classification accuracy, are needed to assess the detection quality.

The mentioned publication proposes three basic measures for assessing drift detectors:

Mean Time between False Alarms, Mean Time to Detection, Missed Detection Rate, and

two aggregated measures: Average Run Length and Mean Time Ratio.

Before the drift occurs, all detections are treated as a false alarm, and after the drift

– the first detection is considered a true alarm. Those assumptions may raise some

concerns in the case of gradual and incremental drifts, where the unequivocal moment

of the concept change is indistinct. Additionally, according to the mentioned publica-

tion, the ideal detector’s average time between false alarms should be high. In the case

of several detections signaling one non-sudden drift of long duration, the value of this

measure is low. However, one can consider such behavior of the detector as desirable,
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as adapting the classifier to a temporal concept can improve the operation of a system

during the changes of low dynamics.

Drift Detection Errors Since the metrics available in the literature are not well-

suited for evaluating non-sudden concept changes, a new set of measures was designed for

the reliable experimental evaluation of a broad range of existing concept drift dynamics.

In the experiments conducted for this dissertation, the drift detection quality is assessed

according to three novel measures analyzing the distances between the detection and

the actual drift, as well as the number of signaled concept drifts. Those measures are

better suited for gradual and incremental changes, where, according to the method’s

sensitivity, the drift can be signaled in the initial or later stage of concept transition.

Moreover, the drift with low dynamics can be signaled in many stages, marking the tran-

sition phase as an independent concept.

The proposed drift detection error measures, designed to evaluate concept drift detec-

tors regardless of the dynamics of changes, assess detectors based on three fundamental,

non-aggregated criteria, offering an extended interpretability of the method’s operation.

While the integrated measures may be easier to interpret, they will provide less informa-

tion about the quality of considered task, compared to the individual analysis of valuable

criteria [232].

The drift detection error measures are defined as follows:

D1 – The average distance from each detection to the nearest drift, described as:

D1 =

∑nr′
k=1 |rc − r

′
k|

nr′
, (2.5)

where nr′ is the number of signaled detections, r′ is the set of detection moments,

r is the set of drift moments. Value |rc − r′k| describes the distance from detection

r′k to the closes drift rc. Hence, c is the index of the nearest actual drift occurring

in the stream.

This measure penalizes the methods with numerous redundant drift detections,

occurring far from the moments of actual concept changes. The average distance

from detection to drift increases in the case of hypersensitive methods. However,

this measure does not consider the unrecognized concept changes – hence, methods

of low sensitivity are not penalized for lack of specific drift detection.



54 Chapter 2. Related works and background

D2 – The average distance of each drift to the nearest detection, described as:

D2 =

∑nr
k=1 |r′c − rk|

nr
, (2.6)

where nr is the number of drifts occurring in the data stream and the value |r′c−rk|
describes the distance from the actual drift rk to the closest detection r′c.

This measure considers the closest detection of each actually occurring drift. In this

measure, in contrast toD1, the methods are penalized for lack of drift signalization.

However, the hypersensitivity of drift detectors has no impact on this error measure

– as only the single detection closest to drift is considered.

R – The adjusted ratio of the number of drifts to the number of detections, de-

scribed as:

R =
∣∣∣ nr
nr′
− 1

∣∣∣, (2.7)

where nr′ is the number of detections signaled by the method and nr is the number

of drifts occurring in the data stream.

This error measure considers the number of drifts that actually occur in the stream

and the number of detections signaled by the method. The lowest possible er-

ror value of zero is achieved for a method signaling the exact number of changes

as a number of drifts. If the method signals multiple redundant detections, the er-

ror rises towards the value of one. If the method signals fewer detections due to low

sensitivity, the error can rise to values exceeding one. This measure, therefore, pe-

nalizes both too many and too few detections. Nevertheless, too few detections

raise the error value, assuming that the lack of drift recognition is of greater sig-

nificance when processing the non-stationary data stream.

It is essential to note that measures can only be defined if the evaluated method sig-

nals any detection. By definition, the errors for a scenario of no detections are infinite.

In the presented research, to enable the comparison with methods that did not signal any

concept changes, the case of no detections is treated equivalently to the case of signaling

concept drift in each of the processed chunks. This approach to evaluation has been mo-

tivated by the supposition that a method not signaling drift carries as little information

about the data as a method signaling drift in each data chunk.

Both sets of measures, proposed by Bifet [22] and the presented drift detection error

measures, require access to concept drift ground truth, describing the moments of ac-

tual concept changes occurring in the data stream. As described in Subsection 2.2.3,

this restriction limits the possibility of the concept drift evaluation for real-world data
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streams. The lack of unequivocal markings of types and moments of drifts makes experi-

mental evaluation on this type of data complex and highly inconclusive [158]. Meanwhile,

the synthetic and semi-synthetic data streams allow for easy access to the moments and

types of drifts.

As the presented measures evaluate the distances between detections and concept drifts,

a single marking for each concept change is needed. The sudden changes offer such an

opportunity by default – the ground truth indicates the point after which the following

data samples belong to a new concept. In the case of incremental and gradual changes,

however, the drift is stretched over many samples and even for many data chunks. In this

scenario, it was decided to mark the concept drift point at the central moment of the

concept transition period. Any detection not directly overlapping with the central mo-

ment of drift causes an increase in the overall drift detection errors based on distances

(D1 and D2 measures), even though the concept change is in progress. The multiple

markings of the exact concept change – for example, the recognition of temporal concept

by marking detection in the initial and final moments of concept transition – on the other

hand, influences the error responsible for the ratio of drifts to detections (R).

The mentioned example of non-sudden concept drifts shows that the evaluation of concept

drift detection using a quantitative measure is a complex task. The proposed measures

for assessing the detection quality stand an imperfect but valuable compromise intended

to allow for such assessment regardless of the type of drift occurring in the streams.

Visual assessment of drift detection The quantitative quality assessment using

drift detection error measures can be supplemented with the visual assessment of the

drift detection, aiming to provide a better understanding of the method’s operation –

by analyzing the moments of detection in relation to actual drifts – over the entire stream

course and the performed replications.

Such a visual assessment does not provide an objective measurement of detection quality.

However, as an addition to the already presented quantitative measures, it may allow for

noticing the flaws of some methods and – in particular – show moments when the assessed

method is hyperactive or fails to recognize the concept change correctly.

Figure 2.13 presents the scheme showing the visual assessment methodology. The plot

shows the detection of an abstract method over ten replications. The consecutive chunks

are presented on the horizontal axis of the plot, with the moments of actual con-

cept changes (known from the stream ground-truth) marked with vertical dashed lines.

The example shows the fragment of a data stream with four concept drifts. In such

a scheme, the detections of a method are marked with circles stacked vertically following
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Figure 2.13: The scheme showing the adopted way of the drift detection quality visual assessment.
The strategy is built upon comparing the moments of drift and the moments of detections across the ex-
periment replications.

the experiment replications. For a better distinction, the redundant or late detections are

marked with red color. The ideal method’s performance would be indicated by the circles

overlapping with the vertical dashed lines across all replications.

As stated in the description of the drift detection error measures, the evaluation of grad-

ual and incremental concept changes needs a more complex interpretation. The vertical

line indicates the central moment of drift transition, and – depending on the sensitivity

of the method – the concept change can be recognized before or after the drift equilibrium

point.

The visual interpretation of detection moments in relation to the concept drift ground

truth and the possibility of assessing the method’s sensitivity to gradual and incremental

changes is of essential value for a reliable and thorough evaluation of the method. This

motivates the use of such an analysis in the presented research, in addition to a quanti-

tative and direct evaluation using drift detection error measures.

2.4 Data stream classification

Subsection 1.1.2 formally defined the classification task and Subsection 1.1.4 –

the data streams as a specific data structure. As mentioned, among the require-

ments of effective data stream processing, the continuous adaptation of the model is

necessary. The classifier ensemble was presented as an exemplary solution to such

a requirement.

This subsection describes methods widely used for data stream classification. The

available solutions were divided into two main groups: the built-in mechanisms and

the hybrid mechanisms. The second group follows the ensemble approach to classi-

fication, which is discussed in more detail in this section. Additionally, the section
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has been supplemented with a description of classification quality metrics and pro-

cessing protocols for data stream classification, allowing for the reliable evaluation

of the methods.

As previously noted, classification remains one of the most frequently performed ma-

chine learning tasks, exhibited by various solutions proposed over the years of artificial

intelligence development [164]. It becomes natural that considering the classification

task in a data stream setting, which enforces specific requirements on the processing

methods [55], does increase the number of possible approaches due to (a) the variety

of adaptation techniques to the difficulties coming from processing of this type of data,

and (b) to a range of possible scenarios related to time variability of the data, that affect

the classification quality. Those include concept drifts, including the changes in prior

probability, the possible emergence of new classes, and varying costs of feature acquisi-

tion.

There are two main categories of classification approaches used in data stream processing:

(a) utilizing the built-in mechanisms of adaptation and (b) hybrid approaches, using

the classifier ensembles to allow the model’s adaptation to incremental learning and

time-evolving data streams [132].

2.4.1 Built-in adaptation mechanisms

The first group of solutions have a natural ability of incremental learning or have been

modified so that a single model can accumulate knowledge over a processing time.

The key in this context is the ability of the classifier to forget the outdated knowledge and

synthesize the current one by incremental processing of the new instances [185]. Among

those approaches, there is a range of state-of-the-art classifiers, sometimes extended by

sophisticated adaptations to allow for their incremental learning.

Gaussian Naive Bayes (gnb) classifier is a method that has a natural ability to pro-

cess samples incrementally. This method updates the class-conditional probabilities

throughout the processing [134]. The modeling of class probabilities embedded into gnb

classifier offers a great benefit when processing data of infinite volume – as the number

of processed samples does not influence the number of parameters stored in the model.

However, by default, each data batch used to fit probability distribution is of equal

weight. This means that in the case of a concept drift, the historical data distribution

influences the decision for the currently processed concept proportionately to the num-

ber of samples from a given concept used to fit the model [140]. To solve this problem,

Krawczyk and Woźniak proposed a weighted version of a method [129], where the level
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of importance of old samples is decreasing, to the point of discarding their impact and

removing old samples from the model memory.

k-Nearest Neighbors Classifier (knn) is another commonly used approach, valued

for its intuitiveness and accuracy. Its operation principle in a canonical form is to preserve

the original training set in the model’s memory. During inference for a given test sample,

labels belonging to the k nearest instances of the training set are taken into account [139].

However, such a principle of operation does not work well in the case of incremental

learning due to limited memory resources. It should be recalled that according to the data

stream processing guidelines presented by Domingos, presented in Subsection 2.2.1, it is

forbidden to allow the accumulation of processed samples in the memory due to the need

to maintain a constant and short inference time for each sample [55].

In adaptation to that constraint, the extensions of the k-Nearest Neighbors algorithm

were proposed, which are more suitable for incremental learning. The approaches first

modified the set of samples stored in the model memory [91]. Later, Aha et al. [6]

proposed an instance-based learning framework. Those extensions achieved satisfactory

recognition results, allowing for a significant reduction in the memory needed to store

samples.

Decision Tree Classifier (dt) is a popular classification algorithm [187], especially

appreciated for its simplicity and explainability [245]. Among the most popular imple-

mentations of decision trees one can name the c4.5 algorithm [188]. It uses the greedy

approach to maximize information gain or gain ratio when building the tree structure

and then later prunes it with a single-pass algorithm to avoid overfitting. This canonical

implementation of a decision tree requires recursive scanning of the available dataset

to determine the tree structure and splitting criteria [103, 175].

To adapt a decision tree to incremental learning, the Hoeffding Tree Classifier, embedded

in the Very Fast Decision Tree (vfdt) algorithm, was proposed [54]. This algorithm uses

the Hoeffding inequality to calculate the sample size needed to determine the splitting

criterion, which allows building the tree structure after a single pass of the available data,

which is crucial for systems dedicated to data streams [55]. However, this algorithm was

not adapted to a varying concept, as the tree nodes could not be modified after their

creation. Therefore, an extension of the algorithm in the form of a Concept-adapting Very

Fast Decision Tree (cvfdt) [103] was proposed, allowing for detection and adaptation

to changes in the concept by using sliding windows. When the optimal division criterion

in the existing branch of a tree changes, an alternative sub-tree is created, which classifies

instances from the new concept. Outdated sub-trees are later being removed.

Artificial Neural Networks (ann) is yet another classifier with natural forgetting

abilities [27, 168]. As already briefly described in Chapter 1, such a model consists
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of a layered arrangement of individual units, denoted as neurons. Each unit has a specific

weight, and their connections have a specific bias. As a result of sample propagation

through such a system of neurons, the network output presents weights corresponding

to the probability of class membership. During classical network training, as a result

of many propagation and backpropagation sequences, the optimal weights and biases are

sought.

In the case of data streams, the traditional approach of epoch-based neural network

training – where the entire training dataset is divided into batches and used multiple

times to optimize the model’s weights – is abandoned in favor of using individual sam-

ples (in online processing) or data chunks (in batch processing) of the data stream [134].

During continuous training, a natural adaptation of the algorithm to the current con-

cept occurs in the form of weight modification based on the current learning rate [71].

This default strategy of weight optimization indicates that the newest data describing

the current concept, once used to fit the model, has the most significant impact on its

parameters.

Such behavior of neural networks is described as catastrophic interference phenomenon

[64]. It causes the model to forget of tasks effectively learned in the past once up-

dated with new knowledge. Once assuming that the concepts visible in the data stream

are non-recurring and the complete knowledge about the processed task is available

in the currently processed data, the catastrophic inference becomes a desired feature

of neural networks, allowing for an automatic adaptation. However, in some incremen-

tal learning scenarios [224], where the objective is to learn new tasks while maintaining

the ability to solve the previously mastered ones, the catastrophic inference becomes

an impediment.

2.4.2 The fundaments of ensemble learning

While the data stream processing is the main objective considered in this dissertation,

the classifier ensembles are not limited to this learning environment. Such solutions,

also denoted as Multiple Classifier Systems [10, 241], are also commonly used for static

data [1, 179], offering improvements in the classification quality and a possibility of com-

bining simple models to solve complex tasks [46]. The particular benefit of combining

decisions made by a group of independent voters is described by Condorcet Jury Theorem

– saying that if each voter has an above 50% probability of making a correct decision

in a binary problem, the combined decision is liminal to 100% with an increasing number

of voters [205]. Such strength of combined decisions is intuitive to humans, having their

origins in the wisdom of crowds, prominent for centuries in judiciary and law [99], and

nowadays also utilized to annotate the large quantities of data by crowdsourcing [233].
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Figure 2.14: A scheme of an exemplary ensemble classifier with a parallel topology. The data sample is
provided to each of the models in the pool, and their predictions are integrated by a fuser to form a final
decision.

In the context of the classification task, the voters or experts are the classifier instances

combined into an ensemble. The scheme of such a system is presented in Figure 2.14.

In the canonical ensemble system, each classifier Ψk in a pool Π = {Ψ1,Ψ2, . . . ,Ψe}
makes the decision for each input sample. The individual decisions are integrated using

an integration rule specific to a designed system [240]. It is worth mentioning here that

classifier ensembles can have complex topologies – of which parallel topology, presented

in the figure, is the most intuitive and common [244] – as well as various strategies

of input data modifications and a wide range of decision integration mechanisms.

From the machine learning perspective, the classifier ensembles can be described as hybrid

systems – meaning, they combine different mechanisms to improve the overall recogni-

tion quality. The word hybrid originates from biology but has been adapted to a general

context, where it describes a mixture of multiple different components [206]. The use

of a classifier ensemble offers, therefore, a possibility of hybridization of multiple indi-

vidual systems, each having its strengths, so that after the integration of their deci-

sion, the overall classification quality outperforms the individual components of a sys-

tem [179, 240].

One of the first works using such a hybrid classifier was presented by Dasarathy and

Sheela [46]. The authors combined linear classifier with k-Nearest Neighbors and showed

that the hybrid system – selecting the appropriate component depending on the region

of the feature space – offers better classification quality than the recognition using indi-

vidual, baseline classifiers used in the system, as well as limits its computational cost.

The classifier designed by Dasarathy and Sheela used a static model selection – the area

of the feature space directly indicated the selected classifier. As mentioned, the modern

approaches can utilize various mechanisms, not only on the level of decision integration
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but also when constructing the ensemble. The following paragraphs describe the most

critical processing stages of currently used methods: (a) ensuring the ensemble’s diversity,

(b) integration of decision, and (c) pruning of a classifier pool. As those stages are

fundamental for both static and streaming data processing, the aspects in the context

of static data are first described, followed by data-stream-specific comments.

Ensuring Diversity To use the benefits of Condorcet Jury Theorem in classifier en-

sembles, the independence of individual models is required. Such independence means

that the output of an agent is not influenced by other agents around [193] and manifests

itself in high diversity of decisions.

One can imagine a system where all classifiers return an identical verdict for a given

sample. In such a case, regardless of the integration method, the output of the hybrid

system is equivalent to a label returned by any embedded model [80]. The only conse-

quence of using such an ensemble is an increase in the system’s computational complexity.

Therefore, the system designers need to ensure that each classifier in a pool has its re-

gion of competence. When the classifiers return correct decisions in their competence

area, and outside – a random decision – an appropriate integration rule and correctly

distributed areas of competence allow the use of Condorcet’s proofs and increase the clas-

sification quality relative to the base systems.

Several measures have been proposed to assess the diversity of a classifier ensemble [138].

Those measures analyze the outputs of pool members for given samples. The lowest

possible diversity is typical for an extreme case where all classifiers return identical

output for the given sample.

Ensuring the diversity of ensemble members is performed at the stage of classifier train-

ing. There are two main strategies on the most general level – depending on the compo-

nents of a hybrid system, the pool can be:

• Homogenous – when the pool consists of the models working according to the same

algorithm, and, therefore, the diversity must be assured by modifying the original

dataset. If the exact models were trained using the same data, their outputs would

be identical for any sample – in the case of a deterministic learner – or very similar

– otherwise.

• Heterogenous – when the pool comprises various algorithms or their different ver-

sions. The first classifier ensemble designed by Dasarathy and Sheela was a hetero-

geneous system consisting of a linear classifier and knn. Similarly, a heterogenous

ensemble system was presented in Subsection 1.1.5. The described Drift Detec-

tion Ensemble [159] used a pool of three different drift detection methods, selected
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depending on the defined sensitivity of the method. This example prompts that

ensemble methods are not limited to classification tasks.

Combining various classification algorithms already offers diversity due to their internal

bias [179], so additional modifications on the dataset level may not be needed. In the case

of using the same base learner, dataset manipulation is necessary to enforce diversity.

There are two main categories of the data manipulation techniques:

• Training classifiers with different data partitions. Solutions include bagging and

boosting. This approach is presented in the top right of Figure 2.15.

Bagging generates several subsets of data using sampling with replacement. The sam-

ples are randomly drawn from the original dataset and are used to train a single

classifier. The procedure is repeated for the other classifiers in the pool, generating

a different set of training samples.

In contrast, boosting generates several subsets iteratively. In this technique, the sam-

ple that was incorrectly classified in the previous iteration has a higher probability

of being selected. In such a way of partition generation, the most attention is given

to complex samples – possibly improving the classification quality in the difficult

feature space region, e.g., near the decision boundary. Boosting is a technique suit-

able for iterative training – when the samples are chosen from the original dataset,

similar to bagging – but their selection is not entirely random. The most popular

method from this category is AdaBoost [65] algorithm.
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Figure 2.15: Data manipulation techniques used in ensemble learning. The original dataset shown
on the left side is modified following the bagging and boosting strategy – shown on the top of the right
side of the figure – and the feature bagging – shown at the bottom of the right side.
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• Training classifiers with different subsets of features. One of the techniques is fea-

ture bagging, sometimes denoted as random subspace. Such a solution is presented

in the bottom right of Figure 2.15. In the presented example, the single classifier is

fitted using four randomly selected features from the original dataset. Analogously

to bagging, the following classifiers in an ensemble are fitted with different ran-

domly selected features. This approach is used in a Random Forest classifier [32]

– a popular algorithm that uses an ensemble of Decision Tree models.

Alternatively, the ensemble can follow a Random Patches strategy of data manipula-

tion [156]. This technique combines traditional bagging with feature bagging, allowing

for a generation of diverse data partitions used to train the classifiers in a pool. In this

approach, not only the data samples are randomly selected, but also, the random sub-

space is selected for each subset of samples. The lower memory needs of this approach

make it suitable for big data and data stream processing [81].

The ensemble’s diversity is equally important in the context of data streams. Similarly

to static data, heterogenous [225] or homogenous [243] ensembles are proposed, with

the vast majority of solutions from the second category [128], which highlights the neces-

sity of data manipulation techniques at the level of classifier training. Additionally, which

is a critical problem for data streams, the entire training set never arrives. This indicates

that baseline solutions manipulating the dataset must be adapted to an environment with

infinitely incoming samples [71]. It is worth pointing out here that storing the arriving

samples for future use is not aligned with the guidelines of data stream processing [55].

To solve this issue, Oza et al. [178] proposed online bagging and boosting algorithms.

0 2 4 6 8 10 12 14
drawn value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ilit

y

 = 1
 = 3
 = 5
 = 7

Figure 2.16: The probability of drawing random values from Poisson(λ) distribution, depending
on the λ parameter. The probability was calculated after drawing 100,000 random values from each
distribution.
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In the proposed solutions, the authors considered the potentially infinite inflow of sam-

ples in the stream and the lack of possibility to accumulate incoming samples for the need

of selection with replacement, used in traditional bagging [31]. The proposed solutions

utilize the sampling from Poisson distribution, which became a standard in methods

dedicated to online processing of data streams. The probability of selecting values from

Poisson(λ) for five different parameter values has been presented in Figure 2.16.

The Poisson(λ) allows to randomly sample discrete values, which determine the number

of classifiers that are trained using a newly incoming sample. At default, in the online

bagging proposed by Oza et al., Poisson(1) distribution is used to determine k copies

of each incoming sample used to train the models. In online boosting, the weights

depending on the correct and incorrect responses of individual models for such samples

are calculated and used to select the appropriate λ parameter to sample the number

of copies from the distribution [178]. The larger the λ, the more classifiers are fitted with

the given sample.

Integration At the inference stage, integrating responses from individual classifiers

from the ensemble is necessary – it is done using a module often denoted as fuser [240].

This module combines the outputs of ensemble members using a weighting mechanism.

The integration might be handled on two primary levels:

• based on classifier’s output [244] – the decision of a classifier can be delivered

to the integration module in the form of discrete vote or a continuous support

function – describing the probability of a decision and additionally information

about the classifier’s certainty towards specific class.

• based on weighted factors [242] – the weights of the classifier’s outputs can have four

different dependencies. They can depend on (a) the classifier, (b) the classifier and

the class label, (c) the classifier and the feature vector, (d) the classifier, the class

label, and the feature vector.

At the simplest and most intuitive approach to ensemble integration, called the majority

voting, each member returns a discrete decision, and weights of each classifier are equal –

hence, the most frequent label among the classifier’s outputs is selected. The discrete out-

puts are also considered in Stacking [235]. In this approach, the training stage is divided

into two phases: first, fitting the individual classifiers in an ensemble, and second, fitting

the method responsible for integrating the classifier’s discrete decisions. The stacking

approach uses a heterogenous ensemble, which additionally motivates the use of discrete
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outputs, as the combination of support functions from different algorithms may require

their normalization [240].

The continuous outputs expressing the classifier’s support towards specific classes can

be used in more sophisticated solutions [241]. Only combining discrete outputs can al-

low for outperforming the oracle – an abstract ensemble solution in which the correct

decision of a single classifier is explicitly enforced [237]. The integration based on con-

tinuous support function was used in Mixture of Experts [104], where the answer of the

most competent models from the classifier pool was combined to provide the final answer

using a gating network. Some solutions measure the similarity of the classifier support

and the Decision Templates – describing the most typical structures of the classifier’s

outputs for each class [137]. Some strategies of fuser design, especially when estab-

lishing the classifier weights considering feature vectors, use the trainable module [238].

A trained weight optimization module can improve the chances of noticing complex traits

when weighing the responses of individual classifiers.

Suppose the weights of a fuser are all equal to zero, except for a single classification model

– i.e. the weights are defined using the indicator function. Such a scenario describes

a classifier selection – a process in which a reduced number of classifiers is responsible

for a final decision [44].

The selection is frequently mentioned when describing the training phase, where ensemble

methods aim to enforce the classifier’s local specialization [240, 241]. The training data

can be divided into partitions on the level of samples or feature subspaces to explicitly

define the competence region of an individual classifier [250].

After the classifier is fitted, at the point of decision integration, the selection can be static

or dynamic. In the case of static selection – the relation between the competence region

and a classifier is fixed. In contrast, in the case of dynamic selection, the competence

of individual ensemble members is estimated for a given input sample in the inference

process, and then – based on evaluated model competence – the single classifier is se-

lected. It is worth noting here that some solutions select a subset of classifiers and then,

based on their responses, provide an integrated decision [33]. This case may present

a classifier selection as an additional stage between generating the classifier’s pool and

integrating their decisions.

The data stream processing scenario does not impose any specific challenges related

to the decision integration phase. While, as mentioned, on the level of model training,

the requirement of continuous adaptation was assured during the incremental training

of individual classifiers [178], at the stage of decision integration, the adaptation can be

enforced as a result of a re-calculation of classifier’s weights [38]. This is especially evident
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when noticing a slow-pace gradual or incremental drift. Assuming that the new data sam-

ples are used to incrementally train available models, at the integration stage, the fuser

can first measure the classifier’s competence to provide an accurate decision, and later,

as a result of weight modifications, the classifiers that are well adapted to the current

concept are given the higher weight.

Overall, the dynamic weight modification (and hence, the classifier selection) provides

many benefits in the data stream environment, especially when faced with concept drift.

The classifier selection can be performed on different levels – for each incoming in-

stance [209, 249], or the entire data batch depending on the identified concept [210].

The dynamic weight modification on an instance level becomes especially beneficial in the

case of gradual drift when the instances in the time of a concept transition period belong

to one of the two consecutive data distributions. The dynamic weight setup could offer

the possibility of using old knowledge for a sample from a disappearing concept and new

knowledge for a sample from an emerging one.

Pruning During the classifier selection, the outputs from some classifiers that were

assessed as incompetent in a given region or for a given sample are not considered

in the decision integration. While excluding a classifier during the selection phase is

temporary and can be performed in each inference process, the pruning operation offers

a possibility of a withdrawal of an incompetent classifier from the pool.

Pruning aims to reduce the number of classifiers, which can positively impact the diver-

sity, and reduce the computational cost of using a hybrid system. For ensemble pruning,

various strategies can be used:

• Ranking-based methods [161] – in this approach, classifiers are ranked based on their

benefit to the overall ensemble. Often, measures of diversity or classification quality

are used.

• Clustering-based methods [251] – first, classifiers are divided into groups, then prun-

ing is performed in each created cluster. Keeping similar classifiers in a pool (those

clustered into the same group) does not only increase the computational complex-

ity of a method while not bringing benefits in terms of classification quality but

can also decrease the method performance when the diversity of an ensemble is

poor [38].

• Optimization-based pruning [177] – in this strategy, heuristic and evolutionary al-

gorithms can be used to optimize measures of diversity and quality [21], computa-

tional complexity [186] or cost of feature acquisition [173].
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In the case of data streams, pruning becomes highly beneficial when considering continu-

ous adaptation to changing environments [128]. While dynamic selection could minimize

the impact of incompetent classifiers, pruning can irrevocably remove them from the set.

Pruning does not only improve the ensemble’s diversity and accuracy but – what becomes

essential in case of data streams – it allows for the maintenance of a low processing time.

A common mechanism used in hybrid methods for data stream classification is to limit

the number of allowed ensemble members [128]. To allow for continuous training, the pro-

posed solutions often incrementally update the pool of classifiers with the ones fitted

on the new data [176]. Assuming an infinite volume of data stream, such solutions with-

out a bounded ensemble size increase their computational complexity, compromising

the first guideline of effective data stream processing, saying that the low and constant

processing time is required from the method [55]. Pruning is the most straightforward

method of maintaining a limited number of ensemble members.

2.4.3 Classifier ensembles for data stream processing

The use of hybrid classifiers for processing the data streams results directly from the possi-

bilities of their incremental modifications [128]. From the point of ensemble construction

– where the pool members can be iteratively trained with incoming samples or the new

classifier instances can be added to the pool – to the possibilities of dynamic integration

and adaptation of ensemble structure by classifier pruning, where hybrid methods offer

many benefits when employed in data streams.

There are many criteria by which ensemble methods dedicated to data stream process-

ing can be taxonomically categorized. The main criteria for taxonomically categorizing

methods are:

• Methods dedicated to chunk-based or online processing [128].

The scheme of sample arrival in the context of processing methods often affects

the method architecture – especially in the context of single-time access to each

input [55]. Therefore, the methods adapted to batch processing perform different

actions than those suitable for online processing. However, it is worth keeping

in mind that any solution dedicated to chunk-based processing can process an on-

line stream when using a buffer, or, vice-versa, a data chunk can be divided into

individual samples, later processed by a method for online data stream processing.

• Methods for processing stationary or non-stationary data streams [128].
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Ensemble approaches suited for non-stationary data streams usually involve some

dedicated solution for detecting concept drift and reacting to such change. Mean-

while, the solutions for stationary data streams only focus on incremental general-

ization of knowledge.

• Adaptation strategy – where methods can follow active or passive approach [4, 80,

128, 150].

This is the most frequently mentioned division axes of currently used ensemble

classification methods. According to work by Lindstrom et al. [150], methods

can use continuous rebuild or triggered rebuild approaches. According to work by

Krawczyk et al. [128] and by Agrahari and Singh [4], the methods are divided into

active and passive. Gomes et al. [80] divided methods into proactive and reactive

(or blind and informed, following the nomenclature from Gama et al. [71]).

• Strategies for modifying the ensemble structure and integration rules, described

in more detail by Kuncheva [134].

Within this criterion, methods were divided into five categories, which consider

(a) knowledge updating methods (by adding members to the pool or by training

individual experts), (b) structure modification methods (e.g., pruning), and (c) the

methods of combining responses of individual team members. Kuncheva also con-

siders the possibility of changing the significance of features during processing,

which may result in a need to analyze new features without rebuilding the entire

ensemble.

As mentioned, adaptation strategy is the most critical axis in terms of how methods

adapt to concept drift. Passive methods update the classifiers incrementally, regardless

of processing conditions, while active methods are those integrated with the mechanism

of drift detection that update the ensemble in response to the recognized concept change

or a drop in recognition quality [4]. The most important ensemble methods from these

two categories are discussed below.

Passive adaptation Passive adaptation involves the continuous modification of en-

semble members or the structure of an ensemble to passively adjust to changes visible

in the data streams. The first ensemble classifiers for data streams followed the pas-

sive adaptation approach. Still, the majority of proposed methods belong to this cate-

gory [128].

One of the earliest examples of ensemble methods adapted to data stream processing

was the Streaming Ensemble Algorithm (sea) [216], where successive classifiers were
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built on consecutive, disjoint data chunks, and later, incrementally joined the pool.

In this approach, once the limit of classifiers in the pool was reached, the one with

the lowest recognition quality measured on the current data was removed. Subsequent

methods mainly focused on modifying the pruning criterion – removing a classifier from

the ensemble – and proposed new integration mechanisms. Accuracy Weighted Ensem-

ble (awe) [229] additionally introduces the weighting of ensemble members’ decisions

based on their recognition quality. Therefore, the classifiers operating with poor quality

have less influence on the final decision. The downside of awe is the need for cross-

validation to determine the weights of individual classifiers, which increases computa-

tional complexity. The only diversification approach in the above-mentioned methods is

based on the assumption that subsequent data chunks in the stream are diverse. It is de-

noted as chunk-based approach [128].

The Learn++.NSE [58] algorithm extended the canonical online boosting [178] for non-

stationary data streams. The ensemble method determined the weights of individual

instances based on the errors made by the classifiers on the data input. The weights also

determine the impact of individual classifiers. If a particular classifier performs poorly

for the current data, its weight is reduced. In the case of recurring drifts, such a classifier

can perform well again, and its weight can be restored as long as the classifier was not

previously removed from the ensemble as a result of pruning.

In later works, the classifiers in the ensemble could be updated using new data with-

out the need to build a new classifier from scratch. In Dynamic Weighted Majority

(dwm) [116], classifiers are updated using newly incoming data, but adding new clas-

sifiers to the pool is possible. Ensemble pruning, adding new classifiers, and updating

weights occur for every specific number of instances specified by the parameter. Accuracy

Updated Ensemble (aue) [35] used a similar scheme, but modified the method of deter-

mining weights for individual classifiers. In the Weighted Aging Ensemble (wae) [239]

method, the weight additionally depends on the estimated age of the classifier, calculated

using the time spent in the ensemble and the performance of the particular model.

Since passive methods update the model regardless of the changes occurring in the stream,

some operations may be redundant. On the other hand, relying on a specific module

to detect concept changes may cause a lack of adaptation in case of non-recognized drift.

The selection of a passive method may depend, therefore, on the ease of change detection

(i.e., the frequency of system evaluation and the possibility of its manual monitoring),

as well as on the consequences of the non-recognized change and possible implications

of model adaptation at a slower-pace [176].
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Active adaptation Active methods use an embedded drift detection mechanism [4].

In response to the detection, the method takes a series of actions to prevent the classifi-

cation quality from dropping due to concept drift. These actions depend on the specific

method but usually involve the initialization of a new classifier or a classifier pool [128].

A significant advantage of such methods is that they respond directly to changes and

can maintain lower computational complexity. The potential weakness of this approach

is the dependence on a drift detection quality of an external module. However, methods

operating in this mode should ideally be resistant to incorrect, redundant signaling of the

drift [128].

Diversity for Dealing with Drifts (ddd) [167] is an interesting approach using two sets

of classifiers – the low-diversity and high-diversity ones. The low-diversity ensemble is

used for recognition in a classification task. Meanwhile, the high-diversity one is only

used during concept drift detection. Once the drift is detected, new sets of low-diversity

and high-diversity classifiers are created to learn a new concept.

The Aboost [42] algorithm, inspired by the boosting approach, uses a statistical module

responsible for detecting drifts. Identification of a drift leads to removing the clas-

sifiers included in the ensemble. Meanwhile, online bagging was extended to adwin

Bagging and Adaptive-Size Hoeffding Tree Bagging [26] methods, using the adwin drift

detector [24]. The same drift detector was also integrated with the Leveraging Bagging

Classifier (lbc) [25]. This last approach modified the original online bagging by increas-

ing resampling (sampling from Poisson(λ) instead of Poisson(1), where λ is a method

hyperparameter) and using output detection codes to add randomization to the output

of the ensemble.

The Poisson Distribution sampling is also used in modern methods, like Kappa Updated

Ensemble (kue) [38]. In kue, classifiers are added to the pool only if they bring an over-

all benefit. Moreover, the decision of individual classifiers in the pool can be ignored

in the integration procedure. Ensemble pruning is based on the Kappa measure, which

provides an advantage in variable environments with drifting data streams and class

imbalance.

As mentioned, active streaming ensemble algorithms employ some drift detection mech-

anisms. In this dissertation, the proposed methods for data stream classification belong

to an active taxonomy branch and use metafeatures not only to detect the concept

changes but also to extend the knowledge about the currently processed data.
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2.4.4 Measuring classification quality

Almost every experiment requires an assessment of the quality of the proposed solution.

In the case of classification, the quality of recognition can be assessed by various simple

and aggregated measures, defined based on the confusion matrix for the binary classifi-

cation case [240]. The choice of the quality assessment measure should take into account

the imbalance ratio of the considered task.

Figure 2.17 presents the confusion matrix scheme. Specific cases are counted in the fields

identified as: (a) True Positive (TP ) – correctly recognized objects of the positive class,

(b) False Negative (FN) – objects of the positive class incorrectly recognized as negative,

(c) False Positive (FP ) – objects of the negative class incorrectly recognized as positive,

and finally (d) True Negative (TN) – correctly recognized objects of the negative class.

Additionally, the sum of positive and negative objects is denoted as P = TP + FN and

N = FP +TN , and the sum of objects marked by the classification algorithm as positive

and negative: P ′ = TP + FP and N ′ = FN + TN , respectively.

Based on the counted cases, four simple metrics are calculated: (a) recall, (b) sensitivity,

(c) precision, and (d) specificity, described by Equations (2.8 - 2.11).

True Positive
TP

False Negative
FN

False Positive
FP

True Negative
TN

Positive
Σ = P ′

Negative
Σ = N ′

Predicted class

P
os

it
iv

e
Σ

=
P

N
eg

at
iv

e
Σ

=
N

Tr
ue

cl
as
s

Figure 2.17: The diagram presenting a confusion matrix for binary classification problem. Red fields
indicate the sets of incorrect predictions – False Negatives and False Positives. The remaining two
categories – True Positives and True Negatives – aggregate correct predictions.
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recall =
TP

P
(2.8)

sensitivity =
FP

N
(2.9)

precision =
TP

P ′
(2.10)

specificity =
TN

N
= 1− sensitivity (2.11)

Each of the presented simple metrics describes one specific criterion related to the recog-

nition task, e.g., recall describes what share of positive objects was recognized correctly,

while specificity – what share of negative objects was recognized correctly.

These basic metrics, in particular precision and recall, are essential for quality assessment

in tasks with strong class imbalance, in which positive class objects constitute a minority

class. Such a case is typical in medical diagnostics when there are usually fewer people

with a positive diagnosis (sick) than with a negative diagnosis (healthy) [62].

For the balanced tasks, a frequently used metric is accuracy (ACC), described by Equa-

tion (2.12).

ACC =
TP + TN

P +N
(2.12)

The accuracy measure describes the proportion of objects that were correctly recognized

by the algorithm. However, this measure is not suitable for imbalanced problems due

to the accuracy paradox [223]. As a result of evaluating a strongly imbalanced problem

using the accuracy measure, in case of recall equal to zero (i.e., no correct recognition

of any object of the minority class), the accuracy result may be equal to the percentage

share of the majority class. Therefore, it is possible to achieve almost 100% accuracy,

marking all objects as instances of the majority class.

In order to reliably evaluate imbalanced problems, among others, the Fβ measure has

been proposed, the most commonly used version of which is F1 for the parameter β = 1.

This measure is defined in Equation (2.13). Methods that achieve high results in precision

and recall also achieve high results expressed by the Fβ measure – hence, it is a measure

seeking a compromise between these two simple metrics.
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Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(2.13)

In imbalanced data classification tasks, the Balanced Accuracy (BAC) metric is also

often used, described by Equation (2.14).

BAC =
recall + specificity

2
(2.14)

Balanced accuracy is defined as the average of recall and specificity for binary cases.

In multi-class classification, it weights the accuracy according to the specific class share

in the overall problem [88]. Unlike Fβ , BAC is a symmetric measure [36] – that is, it is

not directly dedicated to cases where the positive class is the minority. Hence, this metric

is suitable for problems with time-varying levels of class imbalance, typical in dynamically

imbalanced streams – when the initial minority class can become the majority class and

vice versa.

2.4.5 Evaluation protocols for data stream classification

Data streams are characterized by potentially infinite volume, where samples inflow

in the form of individual patterns – in online processing [106] – or in the form of data

chunks – in offline or batch processing [128, 160]. The assumption that a complete set

of processed data samples is available in the static form does not allow for a reliable as-

sessment of the methods in the streaming environment [72]. Therefore, specific protocols

are used to describe the real-world, incremental inflow of data and allow the assessment

of classification tasks. Currently, there are four processing protocols for data streams [86].

Periodic holdout evaluation [72], presented in Figure 2.18, interleaves a portion of data

and uses it to train the model. Then, the continuously incoming data samples from

the stream are used for model evaluation at regular time intervals [73].

time

train

evaluate

Figure 2.18: The scheme showing the Periodic holdout evaluation protocol. The model is first trained
on the interleaved set of samples and later evaluated at regular intervals.
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Prequential evaluation [73], presented in Figure 2.19, is an approach frequently used

in online data stream processing, where the samples arrive individually, hence, there is

no possibility to reliably evaluate the model based on a decision for a single sample.

The Prequential approach uses a sliding window containing the most recent samples.

In the case of the prequential error estimation, the window size or fading factor is of great

importance in terms of model quality estimation.

time

train

evaluate

Figure 2.19: The scheme showing the Prequential evaluation protocol. The model is evaluated with
data contained in a sliding window of the most recent samples.

Test-then-train evaluation [79], presented in Figure 2.20, is best suited for the data

streams processed in the form of batches. Each incoming data chunk is first used to test

the classification quality and later to train the model – except for the initial one, which

is only used to fit the classifier. The reliable estimation of the method’s quality can be

possible due to the significant size of the data batch, playing a similar role to the window

used in the prequential evaluation. An important difference between the prequential

evaluation and Test-then-train is that the windows in the latter do not overlap.

time

train

evaluate

Figure 2.20: The scheme showing the Test-then-train evaluation protocol. Each data chunk, apart from
the first one, is used to evaluate the model and later to train it.

Cross-validated Prequential evaluation [23], presented in Figure 2.21 for an illus-

trative scenario of three classifiers. This approach uses a set of k classifiers trained

in parallel. For each incoming data sample, one classifier is randomly picked to test its

performance, while all others are trained with the exact sample. To allow the evaluation

of model quality, similarly to Test-then-train protocol, they need to first be partially

fitted to the data. As typical in the online processing scenario, the prequential error is

later computed for the sliding windows of recent samples or using a fading factor [49].
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timeΨ1
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timeΨ3
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Figure 2.21: The scheme showing the k-fold distributed Cross-validated Prequential evaluation protocol
for an example of k = 3 classifiers. A set of models is trained and evaluated in parallel with available
data samples. The errors are computed over a sliding window.

There exist protocol modifications considering various strategies for selecting the trained

and evaluated classifiers. In split-validation, only one classifier from the pool is trained

using a newly appearing sample, contrary to cross-validated approach doing the oppo-

site. In bootstrap validation, trained classifiers are selected based on the Poisson(1)

distribution. The presented cross-validation protocol makes maximum use of available

samples.

In the presented research, all streams are processed as batches. Hence, the default

experimental protocol used in most experiments is Test-then-train, where each batch

is first used to test the model and estimate the recognition quality and later to train

the solution.





Chapter 3

Concept drift detection

This chapter focuses on the concept drift detection task in the non-stationary data

streams. The three included subsections introduce and describe the design of three

novel methods for solving this task. The thorough description of each method is followed

by the design of experiments and the critical analysis of their results.

The first method – Complexity-based Drift Detector [118] – uses the set of metafeatures

describing the complexity of the classification problem [154] to study the changes visible

in the data stream. While the original measures were proposed for the static datasets

to assess the difficulty of the solved task, their usage in the data stream provides insight

into the changes occurring in the processed concepts.

The following drift detector – Statistical Drift Detection Ensemble [126] – expands the Sta-

tistical Drift Detection Method, proposed by Micevska et al. [163], which analyzed the sta-

tistical metafeatures described byWebb et al. [230, 231]. The utilized measures, originally

dedicated to the data streams, analyzed the probability distributions of the data, which,

according to the definition of concept drift, should reveal those changes. The original

method suffered from the curse of dimensionality, hence, the proposed approach used

the ensemble learning paradigm to improve the quality of drift detection of the high-

dimensional data.

The final method presented in this chapter – Parallel Activations Drift Detector [122] –

addresses the problem of label availability in the data streams. The proposed approach

synthesized the metafeatures of the data using the deterministic neural network, which

allows for the unsupervised analysis of the data projections. The neural network out-

puts exhibit some dependence on the currently processed data distribution, allowing for

the concept drift detection.

77
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3.1 Complexity-based Drift Detector

This section describes the approach to concept drift detection using the classification

complexity measures [154]. These measures, according to the current metafeature tax-

onomy [192], constitute a separate category intended to describe the difficulty of the

classification task from various perspectives – from linear separability of classes and

the sparsity of samples to the problem’s imbalance ratio.

The Complexity-based Drift Detector (c2d) proposed in this section is a supervised en-

semble method for concept drift detection. The operation of c2d is based on changes in the

problem complexity measures over the stream processing flow. The proposed method be-

longs to the implicit drift detectors category – labels are required to calculate measures

describing the problem complexity. Still, the detection itself is not based on the quality

of recognition obtained by the underlying classification model, which, on the contrary,

is typical for explicit methods. Figure 3.1 presents the motivation for using the problem

complexity measures as a tool for concept drift detection.
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Figure 3.1: Selected problem complexity measures calculated for the individual incoming chunks dur-
ing the data stream processing. The black line shows the values of complexity measures smoothed with
the Gaussian filter. The red vertical lines indicate the exact drift moments or the central points of its
dynamics.
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The plots show the sampling of seven selected problem complexity measures in synthetic

data streams consisting of 500 chunks, each containing 200 objects. The presented ex-

emplary flows were described by sudden (left column), gradual (center column), and

incremental drift (right column). The measures were determined individually for each

data chunk.

Analysis of calculated measures shows that the measure values vary similarly to the con-

cept changes’ dynamic, depending on the drift type. The change occurs abruptly with

sudden drift, while gradual and incremental drifts lead to smoother, slower changes. It is

worth noting that not every concept drift is associated with a marked change in met-

ric values. Depending on the nature of a given concept, drift may have a different

impact on different measures. Therefore, the proposed approach uses a more sophisti-

cated mechanism of distribution change detection – compared to the three-sigma rule

in the baselines [24] – utilizing a pool of the one-class svm classifiers. The final procedure

of the proposed drift detection approach is presented in Algorithm 1.

Algorithm 1 Pseudocode of the Complexity-based Drift Detector

Input:
DS = {DS1,DS2, . . . ,DSk} – data stream,

. Hyperparameters
measures – set of complexity measures
θ – threshold
bf – bagging factor
e – limit of the classifiers in ensemble
Ψ – base one-class classifier
Π – ensemble of classifiers

. Parameters
v – values of complexity metafeatures for current chunk
MF – stored values of measures for past chunks

1: for all DSk ∈ DS do . Calculate complexity measures for current chunk
2: for all mk ∈ measures do
3: v ← mk for DSk
4: end for . Select measure values from current concept
5: l← number of chunks since last drift
6: XM ← last l values ofMF . Initialize the pool of classifiers with classifier fitted with all metasamples
7: if Π is empty then
8: fit Ψ with XM
9: end if . Randomly select metasamples according to bagging factor
10: if Π is not empty then
11: X′

M ← bf · |XM | random values from XM
12: fit Ψ with X′

M
13: end if . Extend the pool of classifiers
14: add Ψ to Π . Calculate decision functions for detection
15: ms← mean decision function of Π for v . Drift detection
16: if ms < −θ then
17: signalize drift
18: ensemble← ∅
19: end if . Ensemble prunning
20: if |Π| > e then
21: remove oldest classifier from Π
22: end if . Store metafeatures from current chunk
23: store v inMF
24: end for
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At the algorithm initialization, a set of problem complexity measures, described in Sub-

section 2.1.2, is specified as a hyperparameter of the method. Those measures are used

for the purpose of the drift detection procedure. The measures taken into account during

the processing may be adapted to the expected behavior – for example – to focus only

on measures relating to the samples’ neighborhood, sensitizing the method to the changes

in the specific context.

For each data chunk, the values of the specified measures are calculated and saved

to a vector v (line 3). Only the measurement values established since the last drift signal-

ing are considered in the detection process (lines 5:6). Identification of atypical changes

in the stream employs an auxiliary pool of one-class classifiers Π = {Ψ1,Ψ2, . . . ,Ψe}.
Those models are trained in a new metaproblem space defined by the considered metafea-

tures calculated for successive data stream batches.

Indication of positive class by a one-class classifier Ψk means that the chunk is recognized

as dominated by objects from a concept significantly different from the one currently pro-

cessed by the primary recognition model. The drift occurrence is signaled with a low

decision function value, meaning a strong indication of an outlier batch. It should be em-

phasized that the one-class classifiers are trained with the values of problem complexity

measures – i.e., the problem metafeatures. Their purpose is only to identify the concept

unknown to the primary classification model – to solve ametaproblem, where themetatar-

get is the recognition of a current or a new concept.

The pool of one-class classifiers (Π) is an empty set during initialization and cleared after

the drift signaling. The first classifier that enters the Π is trained using measures from all

considered past chunks (lines 7:9). In subsequent iterations, the classifier to be included

in the ensemble is trained using a subset of instances – randomly selected bf · |XM | where
|XM | indicates the number of available instances equal to the number of chunks since

the last drift signaling (lines 10:13). The set XM aggregates the metafeatures calculated

for batches after the last concept drift.

The bagging factor (bf) is a hyperparameter determining the number of instances used

to train one-class classifiers. Directly after detecting a drift, all classifiers from the ensem-

ble are removed. For each chunk in the new concept, 100% · bf of all available instances

are randomly selected and then used to train the classifier. Bagging is intended to in-

crease the diversity of the classifiers in the pool. It can also reduce the training time due

to the smaller number of samples used to train the classifiers in the pool. For illustra-

tion – for bf = 1, representations of all chunks from the current concept are used; for

a hyperparameter of 0.5, representations of 50% of the chunks from the current concept

are randomly selected to train the classifier added to the ensemble.
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After extending the Π with an additional classifier, the method determines whether

the current chunk belongs to a known concept. According to the measures calculated for

the current chunk, decision function is collected from all ensemble members. A drift is

signaled if their average decision function value falls below the negative θ hyperparameter

(lines 15:19). The negative threshold is used due to the characteristic of the one-class

svm using the rbf kernel, which assigns negative decision function values to instances

not belonging to the class under consideration. The drift signaling is associated with

removing all classifiers from the pool (lines 17:18). If the maximum number of classifiers

in the pool set by the input hyperparameter e has been exceeded, the oldest classifier

is removed from Π (lines 20:21). After the detection procedure, the measure values for

the current chunk v are saved to historical valuesMF .

It should be noted that even if the limit of the classifier pool is 1, at least two one-class

classifiers are in the pool – the model remaining from the previous batch and the new

one – added for the considered chunk.

3.1.1 The design of experiments

This subsection describes the setup of experiments prepared to evaluate the c2d ap-

proach. The subsection describes the generated and selected data streams, the experi-

mental environment, and the goals of specific experiments.

Data streams The two main experiments were conducted on synthetic data streams

generated with a stream-learn library [133]. In order to stabilize the results, each se-

lected stream configuration was replicated ten times with varying base concepts. Both

prior probability and conditional probability concept drifts were considered with sudden

dynamics of change or stretched over time (incremental and gradual drifts). The types

of concept drifts have been divided into six different categories, presented in Table 3.1.

The abbreviation of a stream visible in the first column describes them in the contexts

Table 3.1: The configuration of concept drift types in evaluated streams. Six types of concept changes
were defined, exhibiting changes in both prior probability (first aggregated column) and covariate condi-
tional probability (second aggregated column).

prior probability covariate conditional probability

abbreviation none abrubt smooth sudden incremental gradual

bal-sudd x x

bal-incr x x

bal-grad x x

imb-sudd x x

imb-incr x x

imb-grad x x
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of prior probability changes, with bal indicating a balanced data stream without the

drift affecting the prior probability distribution and imb an imbalanced data stream with

varying prior probability distribution. The second part of an abbreviation describes the

drift dynamic.

Table 3.2: Generator configuration for synthetic data
streams used for the experiments on c2d method.
The first column describes the data characteristics or hy-
perparameters of the data stream generator, and the sec-
ond column is their specified values.

characteristics configuration

Number of chunks 2000

Chunk size 500

Number of features 8, 16, 32 (100% informative)

Drift frequency 7 drifts

Drift dynamics sudden, incremental, gradual

Replications 10

In streams where both prior prob-

ability and conditional distribution

drifts were present, the central points

of these two drifts lie at the same time

point to preserve their synchronous

occurrence. Each generated stream

comprised 2,000 chunks, each with

500 instances, leading to processing

scenarios with one million examples.

Each scenario contained the binary

classification problem, described by

2 clusters per class and successively 8,

16, and 32 features. Over each stream, seven evenly spaced concept drifts were injected.

The configuration of generated data was additionally presented in Table 3.2.

After the preliminary studies, it was determined to take into account all of the classifi-

cation complexity measures, except for the Collective Feature Efficiency measure (F4).

The description of the complete set of those measures, along with the motivation for

their usage, was presented in Section 2.1.2. The F4 measure excluded from the pool was

characterized by large deviations regardless of the occurring drifts and caused redundant

detection signaling. Ultimately, 21 complexity measures were used. The measures were

calculated using the implementation from the problexity package, designed and developed

for the purpose of the research presented in this dissertation [119].

Table 3.3: The characteristics of selected real-world
data streams. The first column presents the name
of a dataset, and the following columns describe its char-
acteristics.

data stream features chunks pfmin pfmax

covtype-1-2vsAll 54 453 0.004 0.976

electricity 8 182 0.132 0.708

poker-lsn-1-2vsAll 10 1217 0.004 0.940

INSECTS-abrupt 33 284 0.084 0.280

INSECTS-gradual 33 284 0.032 0.548

INSECTS-incremental 33 284 0.036 0.684

For the final experiment, six real-

world data streams were selected.

Streams were processed in batch sizes

of 250 instances. Some of the eval-

uated data streams were character-

ized by a significant class imbal-

ance. In order to minimize the pre-

processing of the data, the portions

where only single-class instances were

present were skipped during the pro-

cessing. For those data batches,
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the utilized classification complexity

measures intended for drift detection were not possible to compute according to their

definition [154].

The detailed description of selected real-world data streams is presented in Table 3.3.

The columns describe the number of features, the number of chunks in the final data

stream, and the range of problem imbalance ratio calculated within the chunks. The pre-

sented imbalance ratio is described by a fraction of positive samples (pf) in a given

chunk, compared to the number of samples in a chunk, which as well can be interpreted

as the prior probability of a positive class.

Hyperparameter optimization The first experiment aimed to select appropriate

hyperparameters of the method. The evaluation searched for three values specifying

the method operation:

• limit of the classifiers (e) – five examined values ranging from 1 to 20,

• bagging factor (bf) – values 0.25, 0.5, 0.75,

• threshold of detection signaling (θ) – 10 uniformly sampled values from 0.2 to 4.

Increasing the classifier limit (e) may become a factor in increasing the method’s sta-

bility and making it resistant to noise in supporting the responses of individual classi-

fiers, which, however, may also harm the time and memory complexity of the method.

The bagging factor (bf) hyperparameter influences the ensemble diversity. At low values

of bf , the classifiers have too little information about the current concept (they may be

underfitted), which may as well harm the operation of the method. The drift signal-

ing threshold (θ) should most significantly impact the method’s performance. Setting

the threshold too low can cause too frequent detections. On the other hand, setting it too

high might lead to detections resulting only from accumulating patterns since decision

function variance in one-class svm often depends on the overall size of its training set,

which was observed in the preliminary experiments.

Comparison with reference methods In the second experiment, after selecting

the appropriate hyperparameters of the method for the tested processing scenarios,

the operation of the proposed approach was evaluated in comparison with the state-of-

the-art detectors. The c2d detector was compared with five reference methods, whose

parametrization is described in detail in Table 3.4.
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Table 3.4: The configuration of reference drift detectors for comparison experiment with c2d approach.
The first two columns specify the method acronym and its name, and the final column – its configuration.

method configuration

ddm Drift Detection Method [70] default detection threshold of 3, the base classi-
fier used for error monitoring was Gaussian Naive
Bayes; the skip hyperparameter was set to 30

eddm Early Drift Detection Method [12] default beta of 0.9, the base classifier used for error
monitoring was Gaussian Naive Bayes

adwin Adaptive Windowing [24] default delta of 0.002, the base classifier used for
error monitoring was Gaussian Naive Bayes

hddmA Hoeffding Drift Detection Method
with Bounding Moving Aver-
ages [66]

the default drift level of 0.001, the base classi-
fier used for error monitoring was Gaussian Naive
Bayes

hddmW Hoeffding Drift Detection Method
with Bounding Weighted Mov-
ing Averages [66]

the default drift level of 0.001 and λ of 0.05,
the base classifier used for error monitoring was
Gaussian Naive Bayes

Two first reference approaches – ddm [70] and eddm [12] signal detections based on the fre-

quency of errors or the distance between errors made by the underlying classification

method, respectively. The adwin [24] detector’s operation is based on sliding windows

of variable width. The final two reference methods, hddmA and hddmW [66], use Hoeffd-

ing inequality and moving averages or weighted moving averages. The hyperparameters

of reference methods were set according to their default values in the scikit-multiflow

library [170]. Even though those methods can signal a concept drift warning, only the ac-

tual detections were considered in this experiment. The use of Gaussian Naive Bayes

(gnb) as the base classifier was motivated by its natural incremental learning ability

while maintaining low processing time, as well as its sensitivity to concept changes –

especially valuable for explicit drift detectors.

The three drift detection error measures, described in Section 2.3.3, were used to evaluate

the detection quality in the first and second experiments.

Real-world data stream processing The final experiment was intended to present

the operation of the method on real-world data streams. Since the exact timing of the con-

cept change in the stream remains unknown, it is not possible to evaluate the method

using the measures of drift detection errors. Therefore, only the moments of detection

and the classification complexity measures variability are presented in this experiment.

Such an analysis does not allow the complete evaluation of method performance in terms

of specific measures. However, it can be used for an interpretation of a detection – show-

ing the impact of changes occurring in the data on the selected classification complexity

measures.
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3.1.2 Experimental evaluation

This subsection presents and discusses the results of the experiments performed on the pro-

posed c2d method. The analysis highlights the dependencies of the method’s hyper-

parameters on the detection quality, offering the proper configuration of the method.

After the hyperparameter selection, the method was compared with the reference drift

detectors, presenting the visual analysis of the detection moments, the drift detection

error measures, and statistical analysis of the results. Finally, c2d was used to analyze

the real-world data streams, allowing to interpret the detection moments.

Hyperparameter selection The first experiment aimed to select appropriate hy-

perparameters of the method. The detection quality was examined in terms of three

measures of drift detection error. The average results for these three criteria and a single

stream are shown in Figure 3.2. It presents results for an 8-dimensional balanced stream

with sudden concept drifts.
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Figure 3.2: Hyperparameter impact on specific drift detection error measures and combined criteria.
The presented figures show average results for 8-dimensional balanced data streams with sudden concept
drifts.

The first three heatmaps present individual criteria in various color-maps, where the in-

tensity depends on the average results – a light color indicates a high value of a given

error, and the dark, saturated color – a low error. The figure presents, respectively, D1

– the average distance from each detection to the nearest drift in reds, D2 – the average

distance of each drift to the nearest detection in greens, and R – the adjusted ratio of the

number of drifts to the number of detections in blues. Since the measures describe the

distance between drifts and detections and the ratio of their cardinality, the raw values

of measures can extend to infinity and are bounded to zero in case of an ideal detection.

The axes of the heatmaps present two out of the three tested hyperparameters. Only

the analysis for the bagging factor (bf) and threshold (θ) hyperparameters, since for
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the last one (limit of the classifiers in an ensemble e), no statistically significant differ-

ences in the method’s effectiveness were observed. The last cell shows the combination

of the three tested criteria as an rgb image, where the subsequent color channels corre-

spond to the specific errors: D1 as a red color channel, D2 as the green color channel,

and R as the blue. The specific cells express the mean value of normalized error mea-

sures. The value of 0.0 could be interpreted as the lowest score across all error measures

for the specified hyperparameters. The darkest parts of the heatmap mean the lowest

error values (across all three measures), while saturated colors describe a high devia-

tion between errors. The analysis of individual measures shows that individual criteria

complement each other – minimizing a single error measure is not enough to indicate

the correct operation of the method.

The far left side of each heatmap is associated with a low θ value and frequent redundant

detections – small changes in metafeature values are enough for the method to signal

a change of concept. This behavior is associated with high values of the D1 error mea-

sure, in which the distance to the nearest drift is calculated for each signaled detection.

The error value is significant after averaging the values for all (including redundant) de-

tections. Redundant detections do not have such a negative impact on the values of the

D2 measure, in which only one – the closest detection – is taken into account for each

drift that truly occurs. In the context of the R measure, which looks at the number

of drifts in relation to the number of detections, redundant detections have some impact

on the error values – hence the slight increase seen at a θ of 0.2.

On the contrary, the far right side of the graph, associated with a high θ, indicates few

or no detections. The case of no detection makes it impossible to calculate the D1 and

D2 measures, as the detection distances are undefined. The R measure cannot be calcu-

lated due to the presence of the number of detections in the denominator. In this extreme

case, the drift detection error measures are calculated analogously for the detection sig-

nals in each data chunk. The case of few detections – e.g., the method signaling only

one drift in the presence of seven, as in the streams analyzed in the experiment – results

in a high D2 value, in which the distance to the nearest detection is calculated for each

drift. Too few detections do not affect D1, as only the distance to the nearest drift is

calculated for this exemplary single detection. In the case of the R measure, a significant

increase in the metric value is observed, resulting from a larger value in the fraction nu-

merator (the number of drifts is greater than the number of detections) when calculating

the metric value.

Once these three measures are combined, all criteria can be considered when selecting

the best hyperparameters. In the case presented in the figure, high values of the D2

and R measures translate into a cyan shade in the upper right corner of the heatmap –



Complexity-based Drift Detector 87

for high values of the θ and low bf . The red area in the lower left corner is associated

with a high D1 error for low values of the θ and high bf .

The results for all studied streams – for various dimensionality and drift types – are pre-

sented in Figure 3.3. Similarly, successive values of the θ are presented on the horizontal

axis of heatmaps, while the bf values are represented on the vertical axis. The respective

columns show the stream dimensionality, and the respective rows show various types

of drift. The first three rows show the analysis for streams with a constant prior proba-

bility, while the last three – results in streams with additionally injected prior probability

drift.
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Figure 3.3: The complete results of a first experiment of c2d method, showing the normalized mean drift
detection error measures for tested hyperparameters. The darkest areas of heatmaps describe the lowest
errors across all three measures.

The hyperparameter’s influence on the drift detection quality depends highly on the in-

jected drift types. For each tested bf , it can be observed that the suboptimal value

of the θ is different. Figure 3.3 shows that the broadest range of the threshold hy-

perparameter, which brings satisfactory results, usually occurs for the highest tested

bf = 0.75. Therefore, this value has been selected as a default hyperparametrization

of c2d. For the threshold hyperparameter, the default value of θ = 1.5 has been se-

lected.

Figure 3.4 shows precise stream flows for selected hyperparameters. Again, the columns

represent the streams with various numbers of features, while the rows are associated
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Figure 3.4: Visualization of detection moments and decision function values for selected hyperparame-
ters. The red plot indicates the decision function across replications, and the black points – the detection
moments, signaled when the function falls below −θ.

with the drift types. Each drift detection in each of the ten replications is represented

as a black point. The average values of the decision function of the one-class classifiers

during processing are shown in red. Observation of the figure shows an unequivocal

negative decision function spike during each drift detection, especially noticeable for

sudden drifts.

It is worth noticing the dual signaling of each drift in the case of the last two types

of streams with a smooth prior probability change. In these scenarios, the stream was

balanced at the central drift points, as there was a transition from the previously minor-

ity class to the majority class and vice versa. For binary streams, this meant a gradual

increase in the number of minority class samples up to the point of balance in the cen-

tral moment of the drift. Then, the instances of the class that constitute the majority

occurred less frequently. This behavior had a dynamic impact on the difficulty measures

correlated with the imbalance ratio, particularly the measures C1 and C2. The first drift

was signaled by the method when the number of samples of the minority class began
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to increase. The algorithm was so sensitive to these changes that it reacted with detec-

tion before the problem became balanced. The second detection appeared when, from

chunks with a slight disproportion between classes, the problem became gradually more

imbalanced. This behavior is not observable when the prior probability drift is sudden.

In processing dynamically imbalanced data streams, signaling each concept drift twice

negatively impacts all the detection error measures, particularly the R measure, which is

the adjusted drifts-to-detections ratio. However, in the case of a classification task, this

method’s behavior should not be considered unfavorable, as the algorithm sees a short-

lived transitional concept that occurs at the moment of transition from one concept

to another. In real applications, the method would detect more subtle changes in the con-

cept. It is worth mentioning again the work by Bifet [22], showing that frequent, naive

rebuilding of the model as a consequence of simulated detection can bring the highest

classification quality. Therefore, resorting to frequent detections increases the benefits

in terms of recognition quality but significantly increases the processing time, taking

into account retraining the classification model. Thus, dual signaling of incremental and

gradual drift by the c2d method is a mistake in the context of precise drift placement,

which, however, may bring the desired effect of recognizing the transient concept and

specializing the classifier for processing in the transition from one concept to another.

For streams described by a higher number of features, drift detection becomes more

challenging, especially for balanced problems. Therefore, as typical for high-dimensional

data [19], processing streams with more features become more complex and produce

more significant errors.
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Figure 3.5: Sample plot presenting the detection moments for a balanced stream with eight features and
sudden concept drifts indicated on x-axis. The proposed approach is shown in red. Each point indicates
a single concept change detection across ten experiment replications. The concept change dynamics is
illustrated in the bottom with a dotted line.
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Comparison with reference methods The second experiment aimed to compare

the method with state-of-the-art concept drift detectors. Figure 3.5 shows the experi-

ment results for a single balanced stream with eight features with sudden concept drifts,

following the visual assessment strategy presented in Subsection 2.3.3.

Individual methods are presented in rows, sequentially presenting detections performed

by the c2d method, followed by the hddm, adwin, eddm, and ddm methods. In the last

row, the dynamics of concept changes are marked with a dotted line, and the moments

of drift on the horizontal axis are additionally marked with ticks. To emphasize the pre-

sented approach, the detections of c2d are shown in red. Each point in the figure

represents a single detection made by the method in a single stream replication. Detec-

tions within the replication were placed one below the other so that the ideal operation

of a given method would be equivalent to the presentation of single vertical lines coin-

ciding with the moments of drift occurrence. Any individual points indicate redundant

or delayed detections.

Figure 3.6 shows the results for the entire experiment configuration similarly. As in the

first experiment, the columns show stream dimensionality, while rows indicate different

concept shift scenarios. Compared to the reference methods, the c2d approach reports

drift less frequently. The hddmW and adwin methods are characterized by a large

number of redundant detections, especially in streams with incremental and gradual drift,

both in the case of balanced and imbalanced drift streams. In most hybrid approaches,

drift detection is associated with rebuilding the classifier using samples from the new

concept. Thus, redundant signaling may cause unnecessary retraining of the classifier and

negatively impact the time efficiency, which is an important factor when evaluating data

stream processing. The presented evaluation strategy allows for an indirect estimation

of time complexity of a recognition system by evaluating the R quality measure – with

many redundant detections impacting both the processing time and the drift detection

error measure.

The most outright detections appeared for streams with sudden drift, mainly when the co-

variate conditional distribution drift was connected with the same changes in the prior

distribution. In the case of the last two types of drift (imbalanced gradual and imbal-

anced incremental), it can be seen that the detectors adwin and hddmW signal a change

throughout the drift. In contrast, hddmA usually signals the final drift phase, while ddm

and eddm – the beginning of concept change. All reference methods repeatedly signal

a shift during the transition. The c2d method behaves differently, signaling the be-

ginning and end of the concept change for almost every transition. This behavior can

be understood as recognizing a transient, temporary concept at the time of drift. Such
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Figure 3.6: Comparison with reference drift detectors. The columns present the results for various
dimensionalities of the stream and the rows for various drift dynamics. Each detection is indicated with
a single point, with the proposed c2d shown in red.

desired behavior allows the classifier’s adaptation to the processing of the transitional

concept, reducing recognition errors in the transition period between concepts.

The drifts combining both prior and conditional changes are easier to recognize. In im-

plicit methods, like the proposed c2d, this comes from the correlation between the prob-

lem complexity measures and the imbalance ratio. For the explicit methods, the change

in the imbalance ratio only indirectly affects the frequency of errors made by the clas-

sifier. It may extend the timespan to propagate the information about changes in prior

probability distribution.
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Table 3.5: Results of comparison experiment showing the mean D1 drift detection error measure.
The columns present the results obtained by a specific drift detection method, while the rows represent
the specific configuration of the generated stream.

detection from nearest drift (D1)

DDM EDDM ADWIN HDDMA HDDMW C2D

(1) (2) (3) (4) (5) (6)

8
fe

at
u
r
es

bal-sudd 48.246 70.720 2.578 35.615 62.205 5.140
2 — 1 2 4 5 2 5 — 1 2 4 5

bal-grad 61.986 53.575 51.808 88.074 51.361 50.429
4 4 4 — 4 1 4

bal-inc 59.010 55.509 38.217 86.836 64.776 30.727
4 4 1 2 4 5 — 4 all

imb-sudd 29.198 64.990 2.826 14.446 11.063 21.094
2 — all 1 2 6 1 2 6 2

imb-grad 50.882 45.624 54.779 76.420 25.696 57.880
4 4 6 4 6 — all 4

imb-inc 45.725 43.102 50.921 78.614 26.859 56.294
4 6 4 6 4 6 — all 4

1
6

fe
at

u
r
es

bal-sudd 32.321 64.173 2.012 29.010 61.095 17.332
2 5 — all 2 5 — 2 4 5

bal-grad 44.218 59.476 55.689 84.155 50.321 55.848
4 4 4 — 3 4 4

bal-inc 45.722 70.092 37.986 94.507 63.937 31.139
2 4 5 4 2 4 5 — 4 2 4 5

imb-sudd 32.359 65.821 2.815 12.033 10.373 9.986
2 — all 1 2 1 2 1 2

imb-grad 53.477 38.508 55.668 72.185 25.656 57.650
4 3 4 6 4 — all 4

imb-inc 46.149 39.380 54.555 81.313 26.664 56.300
4 3 4 6 4 6 — all 4

3
2

fe
at

u
r
es

bal-sudd 31.934 72.097 2.042 31.118 58.303 19.990
2 5 — all 2 5 2 2 4 5

bal-grad 46.754 54.382 56.862 85.123 46.822 43.998
3 4 4 4 — 3 4 3 4

bal-inc 34.288 66.909 37.997 105.545 65.033 55.550
2 4 5 6 4 2 4 5 6 — 4 2 4

imb-sudd 27.338 67.478 2.889 9.936 5.623 2.146
2 — 1 2 4 5 1 2 1 2 4 1 2 4 5

imb-grad 47.783 35.292 54.989 74.890 24.524 56.000
4 3 4 6 4 — all 4

imb-inc 45.843 38.632 52.612 87.449 27.172 56.021
4 3 4 6 4 6 — all 4

The proposed method for the selected threshold does not present ideal results for streams

of large dimensionality. Reducing its value could improve the detection quality for bal-

anced streams with incremental and gradual drift but would result in redundant drift

signaling for streams with lower dimensions.

Tables 3.5–3.7 show the results measured with drift detection errors for the tested meth-

ods and streams. The table includes the paired Student’s T-test results with the signif-

icance level α = 5%. The table cells present the mean result across experiment replica-

tions, and below the mean metric values, the indexes of the methods that the given one

is statistically significantly outperforming. The results with a statistically significant ad-

vantage over most methods are emphasized in bold. Additionally, the column presenting

the results for c2d is highlighted in red.

In the D1 criterion, describing the average distance from each detection to the nearest
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Table 3.6: Results of comparison experiment showing the mean D2 drift detection error measure.
The columns present the results obtained by a specific drift detection method, while the rows represent
the specific configuration of the generated stream.

drift from nearest detection (D2)

DDM EDDM ADWIN HDDMA HDDMW C2D

(1) (2) (3) (4) (5) (6)
8

fe
at

u
r
es

bal-sudd 94.829 68.686 1.000 37.957 1.557 14.343
— — 1 2 4 1 2 1 2 4 1 2 4

bal-grad 132.614 62.529 15.743 103.129 3.057 41.900
— 4 1 2 4 6 — all 4

bal-inc 163.957 72.714 10.771 110.157 9.700 27.200
— 4 1 2 4 6 — 1 2 4 6 1 2 4

imb-sudd 10.857 35.171 0.129 13.700 4.786 1.686
2 — 2 4 5 2 2 4 2 4 5

imb-grad 87.357 10.414 11.714 67.257 3.171 49.343
— 1 4 6 1 4 6 — all 4

imb-inc 34.200 20.029 11.471 74.743 6.786 47.629
4 4 6 4 6 — all 4

1
6

fe
at

u
r
es

bal-sudd 56.971 40.871 0.271 29.357 1.357 77.857
— 6 all 2 6 1 2 4 6 —

bal-grad 213.929 34.457 17.557 89.900 2.743 77.000
— 1 4 6 1 2 4 6 — all —

bal-inc 221.657 53.343 12.500 103.386 9.671 67.657
— 4 1 2 4 6 — 1 2 4 6 4

imb-sudd 13.171 39.043 0.071 11.471 5.157 3.629
2 — 1 2 4 5 2 2 4 2 4

imb-grad 60.214 13.000 12.100 61.257 2.329 54.714
— 4 6 4 6 — 2 3 4 6 4

imb-inc 37.486 20.743 13.914 79.729 7.257 53.543
4 4 6 1 2 4 6 — all 4

3
2

fe
at

u
r
es

bal-sudd 26.729 45.343 0.429 30.143 0.957 129.571
6 6 all 2 6 1 2 4 6 —

bal-grad 84.386 34.586 16.471 86.357 2.486 98.914
— 4 6 1 2 4 6 — all —

bal-inc 45.357 49.257 11.214 109.629 8.671 164.814
4 6 4 6 1 2 4 6 6 1 2 4 6 —

imb-sudd 8.214 41.086 0.029 9.343 3.757 1.529
2 — 1 2 4 5 2 2 4 1 2 4

imb-grad 83.029 12.271 11.900 60.471 2.886 52.714
— 4 6 4 6 — 2 3 4 6 4

imb-inc 56.286 20.129 12.157 86.914 7.886 51.371
— 4 6 1 2 4 6 — all 4

drift (Table 3.5), the best results are achieved by the adwin method for sudden drifts,

hddmW for incremental and gradual drifts, and c2d for low-dimensional and balanced

streams. Since c2d signals drifts in streams with varying imbalance ratios only at the be-

ginning and end of the concept change period, as can be seen in Figure 3.6, the detections

may be distant from the drift center point. hddmW and adwin achieve better values

for this error measure, as they remain active for almost the entire duration of the concept

change with incremental and gradual drift.

In the D2 criterion, describing the average distance of each drift to the nearest detection

(Table 3.6), similarly, the c2d and hddmW methods achieve the best results. With

the very high activity of these methods during the concept transition, the average dis-

tances from each detection to the nearest drift (analyzed in D1) and from each drift

to the nearest detection (analyzed in D2) are small, translating into low error values.



94 Chapter 3. Concept drift detection

Table 3.7: Results of comparison experiment showing the mean R drift detection error measure.
The columns present the results obtained by a specific drift detection method, while the rows represent
the specific configuration of the generated stream.

ratio of drifts to detections (R)

DDM EDDM ADWIN HDDMA HDDMW C2D

(1) (2) (3) (4) (5) (6)

8
fe

at
u
r
es

bal-sudd 0.786 0.914 0.696 0.458 0.912 0.033
2 5 — 1 2 5 1 2 3 5 — all

bal-grad 0.760 0.900 0.802 0.392 0.955 0.264
2 5 5 2 5 1 2 3 5 — all

bal-inc 0.776 0.903 0.692 0.308 0.913 0.072
— — 2 5 1 2 3 5 — all

imb-sudd 0.889 0.936 0.853 0.488 0.543 0.236
2 — 1 2 1 2 3 5 1 2 3 all

imb-grad 0.895 0.899 0.884 0.600 0.909 0.529
— — 5 1 2 3 5 — all

imb-inc 0.912 0.930 0.834 0.527 0.794 0.530
— — 1 2 1 2 3 5 1 2 1 2 3 5

1
6

fe
at

u
r
es

bal-sudd 0.825 0.899 0.725 0.476 0.905 0.337
— — 1 2 5 1 2 3 5 — all

bal-grad 0.674 0.895 0.797 0.437 0.952 0.160
2 5 5 2 5 1 2 3 5 — all

bal-inc 0.699 0.883 0.657 0.361 0.906 0.238
5 — 2 5 1 2 3 5 — 1 2 3 5

imb-sudd 0.888 0.922 0.862 0.476 0.511 0.097
2 — 2 1 2 3 1 2 3 all

imb-grad 0.895 0.890 0.881 0.613 0.916 0.500
— 5 5 1 2 3 5 — all

imb-inc 0.906 0.903 0.823 0.505 0.792 0.500
— — 1 2 1 2 3 5 1 2 3 1 2 3 5

3
2

fe
at

u
r
es

bal-sudd 0.841 0.899 0.693 0.473 0.896 0.820
5 — 1 2 5 all — —

bal-grad 0.705 0.879 0.793 0.444 0.953 0.442
2 5 5 2 5 1 2 3 5 — 1 2 3 5

bal-inc 0.837 0.909 0.560 0.345 0.888 1.042
2 — 1 2 5 6 all — —

imb-sudd 0.887 0.924 0.862 0.500 0.515 0.013
2 — 1 2 1 2 3 1 2 3 all

imb-grad 0.800 0.894 0.879 0.640 0.918 0.500
5 — 5 1 2 3 5 — all

imb-inc 0.867 0.893 0.822 0.502 0.744 0.500
— — 1 2 1 2 3 5 1 2 3 1 2 3 5

The last criterion R describing the adjusted ratio of the number of drifts to the number

of detections is shown in Table 3.7. Too many detections result in error values converging

to 1, and too few – in a measure exceeding the value of 1 and extending to infinity

in case of very few detections compared to the number of actual drifts. In the case

of the comparative experiment, the R error values exceeding 1 appeared only for the c2d

method and incremental drift in the balanced stream described by 32 features. As noted

earlier, the c2d method for this type of stream signaled less drift than actually occurred

in the stream. For the adwin and hddm methods, which detected significantly more

drifts than were present in the stream, the error values are significant but not exceeding 1.

Except for the two cases, the lowest error values are achieved by the c2d method.

The presented measures of detection errors should never be considered individually,

as they constitute a complementary whole that describes the quality of the detector’s

operation. In measure D2, the method reporting drift for each data chunk would achieve
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zero error values. Respectively, redundant detections near the drift do not harm the D1

measure. The detection density near the drift reduces the impact of outlier detections

on the error’s value. The optimal values in the R criterion are achieved by a method

that signals exactly as many detections as there are drifts, regardless of the moment

of their signaling. The evaluation of drift detection methods should consider the bias

of all detection error measures and as well use visual analysis.

The visual presentation of detection moments in Figure 3.6 is particularly beneficial when

trying to understand the operation of the detection mechanism and its impact on the

drift detection error measures. The figure reveals the indication of the temporary concept

by c2d in the case of drifts including prior probability change. This particular behavior

of the method harms the analyzed drift detection errors measures. However, it may

become useful in real-world applications, when reacting to any changes in the stream

may be of great importance for the data recognition quality.

Real-world data stream processing Figure 3.7 shows the result of processing real-

world data streams. The chunk numbers are shown on the horizontal axis of each subplot.

The red plot represents the mean decision function values of the one-class classifiers

responsible for the detection process. Black vertical lines mark the moments of drift

signalization – when the value of the decision function exceeds the negative value of the θ.

For the poker-lsn stream, it was set to 1.5, while for the other streams – to 0.75.

In this experiment, the operation of the drift detector cannot be unequivocally assessed

because of the lack of the unambiguous ground truth of the drift occurrence moments
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Figure 3.7: The detections identified by c2d method for evaluated real-world data streams. The red
line shows the mean value of the decision function used in the detection process, while the black vertical
lines show the moments of detected concept change.
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The black lines indicate the metafeature values and the red vertical lines show the recognized detec-
tion moments.

in real-world data streams. However, based on the average value of the decision function

of a one-class classifier, it is possible to subjectively assess the stream variability and

the validity of the detection. It can be seen that the deviations in the decision function

vary during the flow. This phenomenon can be noticed in the covtype stream, where

the penultimate drift signaling was recognized with an extreme deviation in the value

of the decision function, while the intensity of changes was not so evident in the other

detections. Controlling the algorithm’s threshold hyperparameter may allow the model

to become resistant to minor deviations or to be more sensitive to changes in problem

difficulty.

A more detailed analysis of the variability of the classification problem complexity metrics

is presented in Figure 3.8. Presented are the values of all problem complexity measures

taken into account during the analysis of the INSECTS-incremental stream. Red lines

mark the moments of concept change detection by the proposed method.

It can be seen that the metrics vary widely during stream processing. The most reactive

metrics include F1, F3, N2, T1, ClsCoef , and C2 imbalance metrics. It is worth noting

that the criteria considered during detection are characterized by diversity – drifts can

be signaled by an incomplete and varying set of complexity measures.
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The overall results show that the proposed c2d method can effectively detect concept

changes in the processing of both synthetic and real-world data streams. The experiments

on the synthetic data showed plausible results expressed in drift detection error measures.

The real-world data analysis exhibited that the proposed method can detect drifts in the

data streams with large dimensionality, such as covtype described by 54 features, addi-

tionally providing the possibility of their explanation.

3.2 Statistical Drift Detection Ensemble

This section presents the Statistical Drift Detection Ensemble (sdde) method. This drift

detection approach expands the work by Micevska et al. [163], in which authors proposed

the Statistical Drift Detection Method (sddm).

The proposed extension uses an ensemble approach to calculate the statistical metafea-

tures on the problem subspace level. This is a response to an original approach suffering

from the curse of dimensionality – as the probability density estimation became less ac-

curate in high dimensional spaces [227]. Similarly to sddm, the proposed drift detector

uses the metafeatures dedicated to the quantitative analysis of concept drift in the data

stream proposed and described by Webb et al. [230, 231], described in detail in Sec-

tion 1.1.5 – namely drift magnitude (dm), conditioned cardinal covariate drift (cmcd)

and posterior drift (pd).

The first version of the sdde, similarly to sddm [163], used the posterior drift (pd)

measure. However, after conducting preliminary experiments, posterior drift metafeature
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Figure 3.9: The metafeatures describing drift magnitude (top row) and conditioned cardinal covariate
drift (bottom row) calculated for the data stream with a sudden concept change present at 100th data
chunk. The colors of plots describe the dimensionality of the data used to estimate the probability distri-
bution. Obtained metafeature values were filtered with a Gaussian filter.
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was dropped from the pool of used measures due to the significant number of unjustified

concept drift detections. Therefore, two measures are ultimately used in the proposed

drift detector.

All the above-mentioned statistical measures are calculated based on the probability den-

sity distributions estimated using Kernel Density Estimation (kde). Kernel Density Es-

timation is sensitive to the number of problem dimensions, as a large number of features

can lead to performance degradation due to the curse of dimensionality. This phenom-

ena was illustrated in Figure 3.9, showing the drift magnitude and conditioned cardinal

covariate drift measures calculated for various dimensionalities of the data stream, where

the sudden concept drift was injected in the central point of the examined data stream.

The figure additionally shows the potential of those metafeatures in the drift detection

task, as the moment of concept change can be easily identified.

Since the measures best describe the changes in low dimensionalities, sdde estimates

the densities of the probability distributions in the problem subspace set S = {s1, . . . , se},
where e denotes the subspace number, and, at the same time, the size of the estimator

pool. As shown in the Algorithm 2, presenting the operation of sdde method, the set

of subspaces is initialized at the beginning of the data stream processing procedure

(line 1). Each problem subspace is created using sampling with replacement, and the ns
hyperparameter defines their size.

The method keeps two sets of kde models for each subspace. One model is trained on the

current, k-th data chunk, denoted by kdek, and the second one is built based on the chunk

in which the concept drift was last detected (or on the first chunk of the stream), de-

noted by kdeb. The initialization of kdek is presented in line 4 of the pseudocode and

kdeb – in line 7. Those models are later used to estimate the probability of the data

density (lines 9:10), which allows for the calculation of monitored metafeatures (line 11).

The hyperparameter λ specifies the number of chunks that need to be processed since

the beginning of the stream to begin the detection task. If the required number of chunks

has been processed, the number of detections is calculated according to the threshold

θ and previously calculated metafeatures for specific subspaces (line 13). The drift is sig-

naled by comparing such number with the value calculated according to the sensitivity

δ of an ensemble (lines 14:15). If a drift is detected, base models kdeb are replaced with

current ones kdek (line 16).

The pseudocode was simplified to use the abstract functions, which are described as fol-

lows:

• prepare_subspaces(DSk, ns, e) – sampling (with replacement) a set of e subspaces,

where each subspace contains a fixed number of problem features equal to the value
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Algorithm 2 Pseudocode of the Statistical Drift Detection Ensemble
Input:
DS = {DS1,DS2, . . . ,DSk} – data stream

. Hyperparmeters
θ – detection threshold
δ – sensitivity of the ensemble
e – number of subspaces and size of the pool
ns – subspace size
λ – number of chunks skipped before the first detection

. Parmeters and functions
S – set of feature subspaces
DM – calculate dm measure
CMCD – calculate cmcd measure
prepare_subspaces – prepare problem subspaces
fit_kernel_density – fit kde
estimate_density – estimate density with kde
get_detections – determine number of detections

. Prepare a set of feature subspaces
1: S = prepare_subspaces(DS1, n, e)
2: for each DSk ∈ DS do . Fit a set of KDE models for k-th data chunk
3: for each si in S do
4: kdek ← fit_kernel_density(DSk, si)
5: end for . Initialize a set of base KDE models
6: if k = 1 then
7: kdeb ← kdek
8: end if . Estimate probability density
9: pk ← estimate_density(DSk, kdek)
10: pb ← estimate_density(DSk, kdeb)

. Calculate statistical metrics
11: dmk, cmcdk ← DM(pk, pb), CMCD(pk, pb)
12: if k > λ then . Determine number of detections in ensemble
13: c← get_detections(dmk, cmcdk, θ)
14: if c ≥ 2× e× δ then . Drift detection
15: signalize drift
16: kdeb ← kdek
17: end if
18: end if
19: end for

of the ns hyperparameter. The data chunk DSk is used to get the dimensionality

of the data.

• fit_kernel_density(DSk, si) – builds a set of kde models on subspace si.

• estimate_density(DSk, kde) – estimates the density of the probability distributions

in the DSk data chunk for each si subspace, using a set of previously trained kde.

• get_detections(dm, cmcd, θ) – determines, based on the historical values of the

statistical metrics, the number of base detectors that identified a concept drift

in the k-th data chunk. The final decision to detect the drift occurrence is based

on the current dm and cmcd values and the harmonic mean of the historical

values over the base detectors. The θ defines the threshold of the harmonic mean

differences to indicate a concept drift.

Breaking down the problem into subspaces allows sdde to avoid issues related to the large

dimensionality and allows obtaining an ensemble of detectors instead of a single one.
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In this case, the actual number of detectors in a pool corresponds to the number of sub-

spaces e multiplied by the number of statistical measures used, which for the proposed

sdde algorithm is equal to 2.

Since the method is following an ensemble approach to concept drift detection, the de-

cision about drift occurrence must be considered on two levels: (a) each base detector

and (b) the entire ensemble. In the case of base detectors, the decision is made based on

the distance between the values of the dmk and cmcdk statistical measures for the k-th

data chunk and the mean of the historical values harmonic mean – calculated over each

of the base detectors for all previous data chunks – to the standard deviation of the

harmonic mean, based on the three-sigma rule. At the level of the entire ensemble,

the simple comparison is made between the number of base detections and a value calcu-

lated according to the number of metafeatures, number of detectors e, and a sensitivity

of the method δ.

In summary, the sdde method builds a fixed-size pool of detectors, basing the recogni-

tion on the distribution density function of consecutive processing chunks. When the de-

tection threshold is exceeded, i.e., a significant change between reference (kdeb) and

current distribution (kdek) is recognized by the ensemble, the estimated reference dis-

tributions are exchanged in each of its members, which allows updating the knowledge

about the current concept. The critical element here is the batch exchange of base detec-

tors, which are not updated at the time of individual recognition of a concept change but

only after reaching a consensus within the ensemble – i.e., the drift detection by an entire

system.

A simplified example of the sdde operation is presented in Figure 3.10. It shows pro-

cessing on a flow of thirteen chunks (DS1–DS13), where the ensemble is built on e = 6

DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 DS13

s6

s5

s4

s3

s2

s1

dc = .83 .08 .33 .17 .33 .75 .08 .17 .17 .17 .00 .25 .08

Figure 3.10: The example of sdde processing in the first 13 data chunks of the data stream. The detec-
tion is skipped in the first two chunks, according to the λ hyperparameter, which is indicated by the blue
area. The chunk shown in red is the only one in which the drift detection was signaled.
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random subspaces (s1–s6), assuming a λ hyperparameter of 2 and a sensitivity δ = 50%.

Each illustration cell represents the response of a pair of detectors – dm and cmcd

metafeatures – built on the same subspace (sk).

Ten partial detections (dots) can be observed in the first chunk of processing, which is

83% of all detectors. However, this does not lead to drift detection as the model is not

in the detection mode (blue area) – since the required number of λ chunks was not yet

processed. In chunks k = 3 and k = 5, the drift is signaled by four detectors. However,

it is only 33% of the available pool, so the ensemble is not yet reporting the drift, and

each detector remains in its original state. In the k = 6 chunk, the 9 detections are

signaled, constituting 75% of a possible number of detections and exceeding the delta.

This leads to the recognition of a concept drift, marked in red.

3.2.1 The design of experiments

This subsection describes the data streams used during experiments, the setup of the con-

ducted research, and the goals of the specific experiments performed on the sdde method.

Two main experiments were conducted – focusing on analyzing the method hyperparam-

eters and the comparison with state-of-the-art drift detectors.

Table 3.8: Generator configuration for synthetic
data streams used in the experiments for the sdde
method. The first column describes the data char-
acteristics, and the second one their specified val-
ues.

characteristics configuration

Number of chunks 200

Chunk size 250

Number of features 10, 15, 20 (100% informative)

Drift frequency 3, 5, 7 drifts

Drift dynamics sudden, incremental, gradual

Replications 10

Data streams Experiments were carried

out on synthetic data streams with vari-

ous characteristics. To compare the pro-

posed approach with reference methods,

a vast range of data streams were gener-

ated, characterized by three types of drifts

in the context of dynamics (sudden, incre-

mental, and gradual), and with a differ-

ent number of drifts (three, five, and seven

drifts).

Additionally, various dimensionalities were

considered – 10, 15, and 20 informative features. Each of the generated streams consisted

of 200 chunks of 250 objects. Finally, each stream with the given configuration was

generated ten times to enable reliable experimental evaluation. The full description

of generated data streams is presented in Table 3.8.

A reduced number of data streams was evaluated in the first experiment, which concerned

the selection of the method’s hyperparameters. Optimization was performed for streams
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consisting of 100 chunks of 200 objects, each described by 15 features. Three types

of drift dynamics were examined. Ten streams were generated for each configuration.

Both experiments used the three drift detection error measures as the primary evaluation

criteria.

Hyperparameter optimization The first experiment aimed to optimize the sdde

method’s hyperparameters, such as sensitivity, subspace size, and the number of detectors.

The following hyperparameter values were considered:

• subspace size (ns) – 1, 2, or 3 random features from the initial feature space.

Research in [163] has shown that drift magnitude measures provide the most in-

formation for low dimensional spaces. Moreover, the underlying Kernel Density

Estimators are prone to the curse of dimensionality. This motivated the selection

of low subspace size values for evaluation.

• detector’s sensitivity (δ) – 20 values uniformly sampled form 0% to 100%.

The sensitivity hyperparameter specifies the fraction of detectors in the ensem-

ble that must detect drift for it to be considered as an integrated, final decision.

The hyperparameter set to zero is the equivalent of stable, deterministic drift de-

tection on every data chunk, even when none of the detectors indicates it. Likewise,

a 100% value requires all detectors to be acclaimed, making the most strict integra-

tion rule. Examining the full range of hyperparameter values allows for a detailed

analysis of its effect on an algorithm.

• number of detectors (e) – 20 evaluated values ranging from 1 detector to 100,

sampled from quadratic function.

Increasing the number of detectors may potentially increase detection quality but

may also increase memory and computational complexity. For the evaluated streams

containing 15 features, increasing the number of detectors increases the chance

of analyzing all features during processing.

Comparison with the reference methods The second experiment aimed to com-

pare the proposed sdde method with reference drift detection algorithms. For this

purpose, five methods presented in Table 3.9 were considered. The selected reference

approaches are among the canonical, state-of-the-art drift detectors. Their hyperparam-

eters were selected according to the default values from scikit-multiflow [170] library.



Statistical Drift Detection Ensemble 103

Table 3.9: The configuration of reference drift detectors for comparison experiment with sdde approach.
The first two columns specify the method acronym and its name, and the final column – its configuration.

method configuration

ddm Drift Detection Method [70] default detection threshold of 3, the base classi-
fier used for error monitoring was Gaussian Naive
Bayes; the skip hyperparameter was set to 30

eddm Early Drift Detection Method [12] default beta of 0.9, the base classifier used for error
monitoring was Gaussian Naive Bayes

adwin Adaptive Windowing [24] default delta of 0.002, the base classifier used for
error monitoring was Gaussian Naive Bayes

hddmA Hoeffding Drift Detection Method
with Bounding Moving Aver-
ages [66]

the default drift level of 0.001, the base classi-
fier used for error monitoring was Gaussian Naive
Bayes

hddmW Hoeffding Drift Detection Method
with Bounding Weighted Mov-
ing Averages [66]

the default drift level of 0.001 and λ of 0.05,
the base classifier used for error monitoring was
Gaussian Naive Bayes

The proposed sdde method was hyperparameterized by sensitivity, number of detectors,

and subspace size selected during the analysis of the first experiment. The sensitivity

hyperparameter was calibrated for each type of drift dynamics.

3.2.2 Experimental evaluation

This section presents the results and critical analysis of the conducted experimental eval-

uation, which consisted of experiments searching for the optimal hyperparameterization

of the sdde method and reviewing its effectiveness compared to state-of-the-art methods.

Hyperparameter optimization The first experiment aimed to select the values of the

sdde hyperparameters for further processing. Figure 3.11 shows the results for a single

data stream type and subspace size ns = 1 to present the specific criteria and their

combination. For the selected subspace size, it presents the heatmaps describing the de-

pendence of the three assessment criteria (D1, D2, and R) in the space of the ensemble

size e, and the sensitivity δ of ensemble’s decision integration.

The figure shows three drift detection error measures: D1 – the average distance from

each detection to the nearest drift, D2 – the average distance of each drift to the nearest

detection, and R – the adjusted ratio of the number of drifts to the number of detections.

It is worth mentioning again that the single criterion does not allow for reliable drift

detection evaluation. Hence, a combination of all three errors is necessary to correctly

assess the method operation.

These factors are normalized and aggregated in the final subplot in Figure 3.11. The im-

age presents a color combination of rgb channels defined by the base metrics – D1
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Figure 3.11: The illustrative result of the first experiment for a single data stream configuration –
for sudden concept drift and subspace size of ns = 1. The results show drift detection errors dependent
on the number of detectors in ensemble e (horizontal axis) and sensitivity δ (vertical axis).

in the red color channel, D2 in the green color channel, and R in blue. Bright cells rep-

resent the configuration with the globally highest errors, while the most saturated colors

of magenta and cyan show the worst configurations according to the D1 and D2 criteria,

respectively. The dark area in the illustration represents the region of the most promising

configurations. Responses from the drift detection error measures confirm the observa-

tions about the detection stability after reaching a certain number of detectors e.

Figure 3.12 shows the color combination for drift detection error measures for three exam-

ined drift dynamics (in rows) and for the three subspace size values (in columns). Simi-

larly, the darkest areas describe the best hyperparametrization of the method. In gradual

and incremental drifts, the darkest area is less visible, indicating that the errors for this

type of change are characterized by a more significant deviation. There is a small range

of hyperparameters for which all three drift detection error measures are low.

After reaching a sufficiently large number of detectors, the stabilization of measurements

is clearly noticeable for all drift types. The most stable in this context, as previously no-

ticed in work presenting sddm [163], seems to be an independent analysis of the features.

The default number of detectors e in an ensemble was set to 20 – which is a compro-

mise between the quality of method operation and the computational complexity related
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Figure 3.12: The complete results for the second experiment – for types of drift dynamics presented
in rows of the figure, and the subspace size (ns) hyperparameter in columns. The heatmaps present
the normalized and combined drift detection error measures.

to the need for numerous parallel drift detections. The sensitivity δ of the method was

selected depending on the drift dynamics – 45% for sudden drifts, 40% for gradual, and

35% for incremental changes.

Comparison with the reference methods The second experiment aimed to com-

pare the operation of the proposed approach to the state-of-the-art drift detection meth-

ods. Figures 3.13–3.15 show the drift detection moments for streams with sudden, grad-

ual, and incremental drift dynamics, respectively. The rows present the detections made

by evaluated methods in ten stream replications. The detections made by the proposed

approach are marked in red, and the last row presents the drift dynamics. In each fig-

ure, the columns present the results for different stream dimensionalities, and the rows

for different numbers of concept changes present over the stream course.

The first visible observation in the case of this analysis is the apparent hyperactivity

of the eddm detector, leading to redundant alerts on the entire course of the streams.

There is a decrease in their density at the moments of stable concepts (evident with

sudden drift), but it is still a method that indicates a change of concept extremely often.

The ddm method behaves similarly, especially in the initial phase of streams. In many
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Figure 3.13: The results of the comparison experiment for sdde evaluation for streams with sudden
concept change. The points indicate the moments of concept drift detection, with the proposed method
highlighted in red.

cases, it either quickly becomes desensitized to changes, ceasing to be useful for concept

drift recognition, or leads to continuous alerts that begin with the emergence of a new

concept and continue throughout its processing.

The results for the adwin and sdde methods present much better – in the case of sud-

den drifts, the detections often cover the line of occurrence of the drift almost perfectly.

In the case of gradual drifts, they also behave quite similarly – however – they spread

the detection points wider over the entire course of the ongoing change. It is sometimes

alerting several times throughout a single change, highlighting the transition phases

of the drift and, at the same time, allowing for detection adequately earlier than the cen-

tral drift point.

Apparent differences between sdde and adwin appear only in the case of incremental

drifts, where the standard deviation of the detection distance from the drift is more

significant for sdde while maintaining a uniform distribution around the central drift

point, which can be interpreted as a higher ability of the proposition presented in this

work to signal a drift early.
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Figure 3.14: The results of the comparison experiment for sdde evaluation for streams with gradual
concept change. The points indicate the moments of concept drift detection, with the proposed method
highlighted in red.

The hddmA method recognizes drifts only in a few replications, especially in the case

of streams characterized by rare drifts. Generally, the method presents low sensitivity

to concept drifts. However, the hddmW detector shows frequent detections, which rarely

lay in the exact moment of drift but are instead signaled after a certain number of chunks

describing a new concept.

Tables 3.10 – 3.12 present the exact results expressed in three drift detection error mea-

sures for the performed comparison experiment. The column presenting the proposed

sdde method is marked in red. The table also contains the statistical Student’s T-test

results performed for a significance level of alpha = 5%. Below each average error value

presented in the table, the indexes of the methods from which the given one is statistically

significantly better are presented. For each stream type presented in rows, the method

that was statistically significantly better than the largest number of reference methods

is emphasized in bold.

Table 3.10 shows the results for the D1 measure examining the average distance from

each detection to the nearest drift. It can be seen that the worst results in this metric
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Figure 3.15: The results of the comparison experiment for sdde evaluation for streams with incremental
concept change. The points indicate the moments of concept drift detection, with the proposed method
highlighted in red.

are obtained by the ddm and eddm methods, which are characterized by numerous

redundant detections, causing an increase in the average distance from detection to drift.

The hddmW method obtained low results due to the large spread of drift signaling, while

the hddmA method does not perform well in this measure due to the lack of detection

signaling for part of the stream replication, which meant calculating the metric according

to the assumption of detection signaling for all chunks of the stream. The adwin and

sdde methods perform best within this error measure.

Table 3.11 shows the results for the D2 measure examining the average distance from

each drift to the nearest detection. In this criterion, the worst results are obtained

by the hddmA method, in which very rarely reported detections were distant from

the drifts actually occurring in the stream. Similarly, for the tested streams, poor re-

sults are obtained by the ddm and hddmW methods, which statistically outperform only

the worst results of hddmA. Frequent reports of drift in the eddm method translate into

its high quality within this metric, which is evident in gradual and incremental drifts.

Redundant detections made by the method do not harm the values of this metric, as only
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Table 3.10: Results of comparison experiment in the D1 drift detection error measure. The columns
present the evaluated methods, with the proposed method highlighted in red, and the rows show the type
of data stream in the evaluation.

detection from nearest drift (D1)
DDM EDDM ADWIN SDDE HDDMW HDDMA
(1) (2) (3) (4) (5) (6)

su
d
d
en

3
d
r
if
ts

10F 14.346 16.130 1.958 4.443 10.604 5.175
— — 1 2 5 1 2 5 2 1 2 5

15F 18.602 16.919 2.352 4.320 12.282 4.633
— — 1 2 5 1 2 5 1 2 1 2 5

20F 113.684 17.106 2.473 4.905 9.674 11.925
2 — all 1 2 5 6 1 2 —

5
d
r
if
ts

10F 8.962 9.942 2.003 0.357 7.576 4.875
— — 1 2 5 all 2 1 2

15F 8.333 9.513 1.487 0.858 6.895 6.367
— — 1 2 5 6 1 2 5 6 1 2 —

20F 8.998 10.641 2.179 0.897 7.268 7.310
2 — 1 2 5 6 1 2 5 6 1 2 —

7
d
r
if
ts

10F 5.860 6.649 1.623 1.020 4.990 2.897
— — 1 2 5 all 2 1 2 5

15F 4.965 6.850 2.084 1.337 5.186 2.693
2 — 1 2 5 1 2 3 5 2 1 2 5

20F 5.793 6.925 1.697 2.164 5.984 5.741
2 — 1 2 5 6 1 2 5 6 2 —

g
r
a
d
u
a
l

3
d
r
if
ts

10F 13.552 14.304 10.074 11.871 13.076 9.933
— — 2 2 — —

15F 18.354 14.319 8.367 11.500 14.328 16.200
— — 1 2 5 1 5 — —

20F 15.285 14.037 7.832 13.460 13.461 15.266
— — all — — —

5
d
r
if
ts

10F 7.994 8.872 5.789 4.974 9.094 8.467
— — 2 5 6 2 5 6 — —

15F 8.480 8.743 6.051 5.353 9.139 6.800
— — 1 2 5 1 2 5 — —

20F 9.070 8.726 6.245 7.896 8.748 6.887
— — 1 2 5 — — —

7
d
r
if
ts

10f 5.792 6.250 3.718 4.033 6.582 4.688
— — 1 2 5 1 2 5 — —

15F 6.604 6.275 4.048 3.769 6.926 3.592
— — 1 2 5 1 2 5 — 1 2 5

20F 6.589 6.488 4.148 4.945 6.378 6.400
— — 1 2 5 6 1 2 5 — —

in
cr

em
en

ta
l

3
d
r
if
ts

10F 15.591 15.655 9.718 9.703 14.315 11.425
— — 1 2 5 1 2 5 — —

15F 18.384 15.826 8.621 10.228 15.499 10.250
— — 1 2 5 1 2 5 — —

20F 16.592 17.698 9.224 9.837 15.285 18.075
— — 1 2 5 6 1 2 5 6 — —

5
d
r
if
ts

10F 9.193 8.627 5.380 5.507 9.974 4.880
— 5 1 2 5 1 2 5 — 1 2 5

15F 9.027 9.694 4.669 5.789 9.302 7.283
— — 1 2 4 5 1 2 5 — —

20F 9.206 9.336 5.327 5.280 10.047 9.062
— — 1 2 5 6 1 2 5 6 — —

7
d
r
if
ts

10F 6.376 6.376 3.903 4.223 7.284 3.824
— — 1 2 5 1 2 5 — 1 5

15F 5.894 6.546 3.691 3.663 7.425 4.700
— 5 1 2 5 1 2 5 — 5

20F 66.442 6.742 3.540 4.093 7.230 6.833
— — 1 2 5 6 1 2 5 6 — —

the single detection closest to the drift is considered during evaluation. For streams with

sudden drifts or only a few changes (three concept drifts), adwin and sdde detectors

perform best. It is worth highlighting the case of streams with five sudden drifts in 10-

dimensional stream, in which the sdde method signaled the drift precisely at the moment

of its occurrence for all stream replications, which resulted in an error measure D2 of 0.

Again, in the R measure, shown in Table 3.12, as in the case of the D1 measure, ddm

and eddm methods are penalized for too many detections. This is evidenced by high
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Table 3.11: Results of comparison experiment in the D2 drift detection error measure. The columns
present the evaluated methods, with the proposed method highlighted in red, and the rows show the type
of data stream in the evaluation.

drift from nearest detection (D2)
DDM EDDM ADWIN SDDE HDDMW HDDMA
(1) (2) (3) (4) (5) (6)

su
d
d
en

3
d
r
if
ts

10F 16.333 6.000 0.667 0.067 4.633 43.967
6 6 1 2 5 6 all 6 —

15F 20.100 5.267 0.367 0.200 5.433 51.500
6 6 2 5 6 2 5 6 6 —

20F 8.133 4.867 0.400 0.267 4.900 36.333
6 6 1 2 5 6 1 2 5 6 6 —

5
d
r
if
ts

10F 6.880 3.280 0.400 0.000 4.520 39.340
6 6 1 2 5 6 all 6 —

15F 6.600 2.260 0.140 0.020 4.680 35.500
6 5 6 2 5 6 2 3 5 6 6 —

20F 8.500 2.460 0.220 5.780 4.780 35.360
6 5 6 1 2 5 6 6 6 —

7
d
r
if
ts

10F 5.186 11.700 1.786 0.929 4.000 27.400
6 — 5 6 5 6 6 —

15F 5.586 1.114 1.586 2.543 5.143 24.443
6 5 6 5 6 6 6 —

20F 12.786 1.971 1.029 17.057 4.314 20.271
— 5 6 5 6 — 6 —

g
r
a
d
u
a
l

3
d
r
if
ts

10F 11.567 6.633 8.467 3.033 5.033 37.300
6 6 6 1 6 6 —

15F 38.167 5.967 3.367 2.933 7.167 55.233
— 1 6 1 6 1 6 1 6 —

20F 10.467 3.467 3.767 4.533 5.633 30.600
— 1 6 1 6 6 6 —

5
d
r
if
ts

10F 21.740 2.480 3.960 1.580 5.900 41.280
— 5 6 6 1 5 6 6 —

15F 16.720 1.400 2.400 1.940 6.300 38.140
— 3 5 6 5 6 5 6 6 —

20F 21.360 1.420 1.860 11.000 4.680 30.560
— 4 5 6 5 6 6 6 —

7
d
r
if
ts

10f 6.657 1.486 2.686 3.857 5.671 30.271
6 5 6 5 6 6 6 —

15F 11.386 2.529 2.171 5.343 5.914 33.986
6 1 5 6 5 6 6 6 —

20F 28.200 1.557 1.843 11.886 4.986 28.571
— 1 4 5 6 1 4 5 6 6 1 6 —

in
cr

em
en

ta
l

3
d
r
if
ts

10F 12.467 7.467 3.500 1.767 9.133 37.667
6 1 6 1 2 5 6 all 6 —

15F 20.133 4.033 2.733 2.600 8.833 59.000
6 5 6 5 6 5 6 6 —

20F 19.967 5.467 4.267 3.000 8.933 49.067
6 1 5 6 1 5 6 1 5 6 6 —

5
d
r
if
ts

10F 7.800 3.120 3.960 2.080 7.560 43.700
6 1 5 6 5 6 1 5 6 6 —

15F 19.500 2.100 2.320 2.760 6.800 42.180
6 1 5 6 5 6 5 6 6 —

20F 7.820 1.640 2.540 8.300 7.800 40.500
6 1 3 5 6 1 5 6 6 6 —

7
d
r
if
ts

10F 6.214 1.386 1.871 4.414 6.157 25.671
6 1 4 5 6 1 4 5 6 6 6 —

15F 6.557 1.543 1.943 2.500 7.500 30.186
6 1 5 6 1 5 6 5 6 6 —

20F 4.129 0.886 1.929 17.200 6.857 28.700
5 6 1 3 5 6 1 5 6 — 6 —

error values close to (but not reaching) the value of one. On the other hand, the hddmA

method obtains error values exceeding one, which indicates that the number of detections

is too small in relation to the drifts occurring in the stream. In the case of sudden drifts,

the sdde method achieves the best results, often statistically significantly better than

all other approaches. Regarding gradual and incremental changes, the adwin detector

achieves equally high results, particularly for incremental streams, being statistically sig-

nificantly better than the proposed solution in six out of nine cases. This results from
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Table 3.12: Results of comparison experiment in the R drift detection error measure. The columns
present the evaluated methods, with the proposed method highlighted in red, and the rows show the type
of data stream in the evaluation.

ratio of drifts to detections (R)
DDM EDDM ADWIN SDDE HDDMW HDDMA
(1) (2) (3) (4) (5) (6)

su
d
d
en

3
d
r
if
ts

10F 0.833 0.895 0.495 0.302 0.662 0.948
— — 1 2 5 all 1 2 —

15F 0.965 0.927 0.507 0.280 0.695 0.800
— — 1 2 5 1 2 5 2 —

20F 0.768 0.941 0.494 0.310 0.651 1.095
2 — 1 2 5 6 1 2 5 6 2 —

5
d
r
if
ts

10F 0.827 0.908 0.513 0.066 0.601 1.083
2 — 1 2 all 1 2 —

15F 0.822 0.921 0.490 0.062 0.578 0.750
2 — 1 2 all 1 2 —

20F 0.816 0.924 0.513 0.183 0.601 0.831
2 — 1 2 5 all 1 2 —

7
d
r
if
ts

10F 0.832 0.839 0.523 0.037 0.547 0.972
— — 1 2 all 1 2 —

15F 0.754 0.909 0.486 0.052 0.504 0.762
2 — 1 2 all 1 2 —

20F 0.766 0.903 0.497 0.787 0.556 0.674
2 — 1 2 — 1 2 —

g
r
a
d
u
a
l

3
d
r
if
ts

10F 0.782 0.928 0.523 0.716 0.702 1.147
2 — all 2 2 —

15F 0.911 0.906 0.496 0.647 0.707 0.350
— — 1 2 4 5 2 2 1 2 4 5

20F 0.781 0.910 0.440 0.576 0.719 0.769
2 — 1 2 5 1 2 5 2 —

5
d
r
if
ts

10F 0.667 0.920 0.525 0.468 0.595 1.000
2 — 2 6 2 5 6 2 —

15F 0.755 0.917 0.457 0.439 0.613 1.208
2 — 1 2 5 1 2 5 1 2 —

20F 0.761 0.917 0.444 0.390 0.630 0.814
2 — 1 2 5 1 2 5 1 2 —

7
d
r
if
ts

10f 0.776 0.898 0.409 0.344 0.530 1.357
2 — 1 2 6 1 2 5 6 1 2 6 —

15F 0.718 0.871 0.395 0.257 0.510 1.765
2 — 1 2 5 6 1 2 5 6 1 2 6 —

20F 0.588 0.892 0.421 0.529 0.560 0.935
2 — 2 5 2 2 —

in
cr

em
en

ta
l

3
d
r
if
ts

10F 0.847 0.917 0.536 0.775 0.620 0.620
— — 1 2 4 2 1 2 4 1 2

15F 0.950 0.941 0.489 0.797 0.678 1.550
6 6 all 2 6 2 4 6 —

20F 0.781 0.934 0.439 0.691 0.615 0.648
2 — 1 2 4 5 2 2 —

5
d
r
if
ts

10F 0.820 0.909 0.422 0.632 0.569 1.267
2 — all 1 2 1 2 —

15F 0.835 0.919 0.393 0.610 0.570 1.625
— — all 1 2 1 2 —

20F 0.813 0.927 0.404 0.905 0.577 0.989
2 — 1 2 5 6 — 1 2 6 —

7
d
r
if
ts

10F 0.821 0.907 0.449 0.381 0.502 1.398
2 — 1 2 1 2 1 2 —

15F 0.753 0.904 0.368 0.502 0.500 1.333
2 6 — all 1 2 6 1 2 6 —

20F 0.833 0.918 0.361 1.152 0.491 0.867
2 — 1 2 5 — 1 2 —

the repeated signaling of each drift when it is stretched over a longer period (gradual and

incremental changes) by the sdde method. As already noted in the case of the c2d detec-

tor, described in Section 3.1, multiple signaling of a long-term change may bring benefits

resulting from repeated adaptation of the underlying recognition method to changes ex-

tended over time. This behavior of the method can be used as a benefit, however, it

negatively affects the value of the R measure, according to which each concept drift

should be marked once.
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Considering all of the obtained results, the proposed sdde detector achieves satisfac-

tory drift detection error values for the evaluated data streams. The proposed ensemble

approach allowed for the analysis of the monitored measures over the extended dimen-

sionality of the processed data. The detector is particularly effective in detecting sudden

drifts and is highly sensitive to gradual and incremental changes.

3.3 Parallel Activations Drift Detector

This section presents an unsupervised Parallel Activations Drift Detector (padd). A pro-

posed method monitors the activations of a randomly initialized neural network (nn),

addressing an important issue of label availability in the data streams – where the pro-

vided label can arrive with a time delay or – taking into account the cost of object

annotation [86, 152] – may entirely not be possible to obtain.

The proposed drift detector uses a neural network whose weights are not updated during

the stream processing. The outputs of such nn describe a set of random projections

connected to a set of activation functions between individual layers. Such an order

of transformations is deterministic, assuming no weight optimization. After aggregating

the outputs of nn for samples within a data batch – for example, using an averaging

function – an obtained value can be considered a metafeature of a given data chunk.

However, such a metafeature does not have any straightforward semantics.

Depending on the number of random projections or the number of outputs from the neu-

ral network, a set of metafeatures describing a particular data portion can be obtained.

As mentioned, those values have no semantic meaning, however, monitoring them could

allow for noticing changes occurring in the data distribution without the use of sam-

ple’s labels. The great advantage of such a set of metafeatures is the lack of the need

to acquire labels to describe the data. Additionally, which is aligned with the research

on neural network behavior [90], the approach should allow for the effective analysis

of high-dimensional problem spaces. The complete procedure of the proposed padd

approach is described in the Algorithm 3.

The method processes data streams divided into non-interlacing batches (DSk ∈ DS).
Drift detection is marked based on t replications of statistical tests – aiming to validate

the null hypothesis stating the lack of significant difference between two groups of inde-

pendent measurements – comparing (a) a sample of size s from the distribution of past

and (b) current activations at the all e outputs of the nn. The initial – and constant

during the full processing – random weights of nn are drawn from a normal distribution.

As default settings, the normal distribution has an expected value of zero and a standard
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Algorithm 3 Pseudocode of the Parallel Activations Drift Detection
Input:
DS = {DS1,DS2, . . . ,DSk} – data stream

. Hyperparameters
α – significance level for statistical test
θ – threshold for drift detection
t – number of statistical test replications performed for each nn output
s – number of samples drawn for statistical test
e – number of outputs from the nn

. Parameters
C – stored activation values for all nn outputs since last drift
NN () – forward pass from nn model with random weights and e outputs
T – statistical test for sample subset comparison
a – counter of tests signaling statistically significant difference

1: for all DSk ∈ DS do
2: c← NN (DSk) . Get ultimate network activations for current data chunk
3: if C is not empty then
4: a← 0 . Initialize counter as zero
5: for all ei ∈ e do
6: for all ti ∈ t do
7: cc← random s from c[ei] . Randomly select samples from current and past certainty
8: pc← random s from C[ei]
9: p← T (pc, cc) . Compute p-value of statistical test
10: if p < α then
11: increment a
12: end if
13: end for
14: end for
15: if a > θ × e× t then . Drift detected
16: C ← ∅
17: signalize drift
18: end if
19: end if
20: store c in C . Store current activations for future comparison
21: end for

deviation of 0.1. The statistical test used for distribution comparison is the unpaired

Student’s T-test, following the default selection of statistical comparison strategy for two

independent, normally distributed groups describing a continuous variable [182].

The two most critical hyperparameters of the method are the significance level alpha

(α) and the threshold hyperparameter (θ), indicating the fraction of all tests that need

to signal statistical independence of distributions to raise a drift detection signal.

At the beginning of each batch processing, c activations are calculated for samples from

a given batch at all nn outputs (line 2). In the first chunk, the historical activations

C are yet unknown, so the detection step is skipped due to the lack of reference data.

The current activations c are stored in the pool of historical outputs C. Otherwise, statis-

tical tests are performed for individual network outputs. In lines 5:14 of the pseudocode,

t replications of the statistical test are performed for each ei output of the network. Sam-

ples of size s are drawn with replacement from historical activations for a given output

C and for the current distribution c. If the statistical test shows a significant difference

between the past and current distribution, the counter a is incremented. The detec-

tion criterion is described in lines 15:18 of the pseudocode. If the counter a exceeds

the required number of tests showing statistically significant (difference defined using θ,
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the number of outputs e, and the number of test replications t), a concept drift in the

current chunk is signaled. Such a signal triggers clearing the buffer of past supports (C).
For each batch, the current activations c are saved to the historical data at the end

of processing (line 20).

The Student’s T-test shows a noticeably high sensitivity to the sample selection from

the random variable provided to it. Therefore, the padd method stabilizes its ver-

dict with replication of the measurement, which is possible thanks to a reliable buffer

of historical activations. The invariance of the model weights, in turn, preserves the re-

peatability of the transformations performed by the nn, which should lead to results

of low-dimensional embeddings to be statistically dependent in the absence of changes

in the conditional class probabilities of the stream – which can be associated with both

real and virtual drift phenomenon. Consequently, the proposed method is not built

around the observation of the decision boundary – as is the case with solutions bas-

ing detection on the evaluation of significant changes in the quality of processing – but

presents the potential to register general changes in the distribution occurring regardless

of a given label bias.

Figure 3.16 shows the intuition behind the method operation on the exemplary stream

with 250 data chunks and a final nn layer with four outputs. The first line presents

the image (probing of a model with a mesh grid covering two-dimensional feature space)

of the nn output in the area sampled by data distribution. Red regions correspond

output 0 output 1 output 2 output 3
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0.248
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Figure 3.16: An example of 2-dimensional data (black markers) presented in a context of ultimate
layer activations of randomly initialized nn (top charts) and their mean activation (bottom chart) of four
examined nn outputs during stream processing. Vibrant red areas in the top charts correspond to the high
activation of a model, and vibrant blue to its low activation. The ticks on the horizontal axis of the bottom
chart signal the moments of an abrupt concept change.
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to high activations, and blue to low activations. Random initialization of the weights

causes diversified local landscapes in every dimension of the output space. In these areas,

samples from one batch are marked with black markers. If drift occurs and the condi-

tional distribution of a sampled data chunk changes, the structure of pseudo-supports

in the recognized set maps this change within all or a part of the nn outputs. The second

row of the figure presents the average activation values for batches in the data stream

across all four outputs. The moments when drifts occur are clearly visible, additionally

marked with chunk indices on the horizontal axis of the chart. In relation to the state

of the network, some drifts are easier to identify than others – for example, the difference

between the average output for the first drift (d1 on the horizontal axis) is less visible

than for the next drift (d2).

3.3.1 The design of experiments

This subsection describes the experimental setup, the used data streams, and the goals

of the specific experiments performed to thoroughly evaluate the proposed padd ap-

proach. The evaluation first focused on analyzing the method’s hyperparameters, to later

compare the optimized method with state-of-the-art drift detectors.

Data streams The experimental evaluation was performed on synthetic data streams,

where samples were characterized with various numbers of features, and the streams with

a various number and types of drifts. The streams were processed in 250 batches, each

comprising 200 samples. The method was designed for datasets with high dimensionality.

Hence – the minimum value of 30 and the maximum of 90 features were selected for

the experiments. Out of all features, 30% of them were informative. The streams were

characterized by two types of concept drift dynamics – sudden and gradual changes, and

from 3 to 15 concept drifts over the course of the stream.

Table 3.13: The configuration for generating
synthetic data streams used for the experiments
on padd approach. The first column specified
the data stream characteristics, and the second
one the selected values.

characteristics configuration

Number of chunks 250

Drift frequency 3, 5, 10, 15 drifts

Chunk size 200

Number of features 30, 60, 90 (30% informative)

Drift dynamics sudden, gradual

Replications 10

Additionally, each stream with a spe-

cific configuration was generated ten times

with varying random states of a generator.

The complete configuration of data streams

is presented in Table 3.13. For the first

experiment a reduced pool of streams was

used, where ten concept drifts were present.

Three drift detection error measures were

used to assess method operation in all ex-

periments.
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Hyperparameter optimization The first experiment aimed to select appropriate

hyperparameters of the proposed method. Out of the five available hyperparameters,

only the two most critical were optimized: alpha and threshold. The remaining ones

were fixed to values: number of network outputs e = 12, number of statistical test

replications t = 12, and the sample size s = 50.

A neural network with a single hidden layer containing ten neurons and a ReLU activa-

tion function was used. For the alpha hyperparameter, 15 evenly sampled values from

the range 0.03 to 0.2 were tested, and for the threshold, ten evenly sampled values from

the range 0.1 to 0.3. The operation of the method with the indicated configurations

was tested for the streams with ten drifts. The result of this experiment should indi-

cate the range of values of these two hyperparameters for which the method effectively

recognizes drifts. Since both examined hyperparameters indicate sensitivity to concept

changes, their relationship should be visible.

Comparison with the reference methods The second experiment aimed to com-

pare the proposed approach with reference methods. State-of-the-art supervised and

unsupervised detectors were selected. If possible, the implementation of methods pro-

vided by the authors was used, or it was modified to allow processing streams in the form

of data batches.

Table 3.14 presents all methods considered in the experiment. The first column shows

the acronym of the method, the second presents the full name of the method and a refer-

ence to the article introducing this approach, and the third one – the category in the con-

text of label access. The last column describes the hyperparameterization of the method

used in the experiment.

Table 3.14: The configuration of reference drift detectors for comparison experiment with padd ap-
proach. The first two columns specify the method acronym and its name, the third one specifies supervised
or unsupervised category, and the final column describes the selected hyperparameters.

method category configuration

md3 Margin Density Drift De-
tection [202]

Unsupervised
with label re-
quest

threshold set depending on number of features:
0.15 for 30 features, 0.1 for 60 features and 0.08
for 90 features

ocdd One-Class Drift Detec-
tor [85]

Unsupervised percentage hyperparameter set depending on prob-
lem dimensionality: 0.75 for streams with 30 fea-
tures, 0.9 for 60 features and 0.999 in case of 90
features

adwin Adaptive Windowing [24] Supervised default delta of 0.002, the base classifier used for
error monitoring was Gaussian Naive Bayes

ddm Drift Detection
Method [70]

Supervised default detection threshold of 3, the base classi-
fier used for error monitoring was Gaussian Naive
Bayes

eddm Early Drift Detection
Method [12]

Supervised default beta of 0.9, the base classifier used for error
monitoring was Gaussian Naive Bayes
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The default hyperparameters were selected for supervised methods, consistent with

the implementation in the scikit-multiflow library [170]. For the remaining ones, the hy-

perparameters were manually selected according to the works introducing the methods

or altered to effectively process the evaluated types of streams [85, 202].

3.3.2 Experimental evaluation

This subsection describes and analyzes the results of the experiments conducted to eval-

uate the proposed padd method. The quality of drift detection was evaluated according

to the drift detection error measures and the visual analysis of the detection moments.

Hyperparameter optimization The first experiment aimed to select the appropriate

method hyperparameters. The analysis focused on two describing the method sensitivity

– alpha value for statistical test significance and threshold value for method integration.

The results for three drift detection error measures and a single stream described by 30 fea-

tures and characterized by sudden concept drifts are presented in Figure 3.17. The pre-

sented heatmaps indicate the D1, D2 and R errors, respectively. Saturated and dark

cells describe low error values, while bright ones – a high error. Each heatmap’s vertical

axis describes the alpha (α) values, and the horizontal axis describes the threshold (θ).

The lower left area of each heatmap – for the low θ values and high α – describes

a high sensitivity to changes present in the stream and is related to numerous redundant

0.10 0.14 0.19 0.23 0.28
threshold

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

al
ph

a

D1

0.10 0.14 0.19 0.23 0.28
threshold

D2

0.10 0.14 0.19 0.23 0.28
threshold

R

Figure 3.17: Drift detection error measures for a single 30-dimensional data stream with sudden con-
cept drifts, depending on the values of two critical hyperparameters – alpha and threshold, describing
the method sensitivity.
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detections, visible in high D1 error and significant R error. The upper right area, in turn,

describes the low sensitivity of a method – where all error values, including D2, are high.

The best configuration of the method is lying between these two extremes.

Experiment results for all streams analyzed in the first experiment are presented in Fig-

ure 3.18. The rgb heatmaps show the combination of three drift detection error mea-

sures after their normalization. The results for streams with sudden drifts are pre-

sented in the first row, and for gradual concept change – in the second. The columns

present various dimensionalities of the data – 30, 60, and 90 features, respectively.

After such a color combination of error values, the lowest errors in all three criteria is

marked by dark colors. Similarly to the previously presented drift detection experiments,

the measures for cases where the method did not provide any detections were calculated

as for the detection in each data chunk.
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Figure 3.18: The combination of drift detection error measures, normalized to a range 0-1 in each
of three measures, presented as an rgb image. Black cells indicate the lowest error across all three
measures, while bright ones – the highest errors.
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It is worth noting that the method’s effectiveness is highly dependent on the selection

of these two hyperparameters, and the lack of precise selection may result in excessive

detection or failure to recognize drifts. Ultimately, the following hyperparameter com-

binations were selected for the comparison experiment: for gradual drifts α = 0.13 and

θ = 0.26, while for sudden drifts α = 0.07 and θ = 0.19.

Comparison with the reference methods The second experiment compared the per-

formance of the proposed approach with reference methods. The results for streams with

sudden drifts are shown in Figure 3.19 and for gradual drifts in Figure 3.20.

D1 D2 D3

concept
MD3

OCDD
PADD

ADWIN
DDM

EDDM

3 
dr

ift
s

30 features

D1 D2 D3

60 features

D1 D2 D3

90 features

D1 D2 D3 D4 D5

concept
MD3

OCDD
PADD

ADWIN
DDM

EDDM

5 
dr

ift
s

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

D1 D2 D3 D4 D5 D6 D7 D8 D9 D1
0

concept
MD3

OCDD
PADD

ADWIN
DDM

EDDM

10
 d

rif
ts

D1 D2 D3 D4 D5 D6 D7 D8 D9 D1
0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D1
0

D0
1

D0
2

D0
3

D0
4

D0
5

D0
6

D0
7

D0
8

D0
9

D1
0

D1
1

D1
2

D1
3

D1
4

D1
5

concept
MD3

OCDD
PADD

ADWIN
DDM

EDDM

15
 d

rif
ts

D0
1

D0
2

D0
3

D0
4

D0
5

D0
6

D0
7

D0
8

D0
9

D1
0

D1
1

D1
2

D1
3

D1
4

D1
5

D0
1

D0
2

D0
3

D0
4

D0
5

D0
6

D0
7

D0
8

D0
9

D1
0

D1
1

D1
2

D1
3

D1
4

D1
5

Figure 3.19: The results of a second experiment comparing the padd with reference approaches for all
evaluated streams with sudden concept drift. The points indicate the detection moments of all evaluated
methods across ten replications. The proposed approach is highlighted in red.

The columns indicate the results for different numbers of features – from 30 to 90 –

and the rows for different numbers of drifts present in the stream – from 3 drifts in the

first row to 15 drifts in the last. On the horizontal axis of each plot, successive chunks

of the data stream are visible, while the central moments of the actual drift are marked
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Figure 3.20: The results of a second experiment comparing the padd with reference approaches for all
evaluated streams with gradual concept drift. The points indicate the detection moments of all evaluated
methods across ten replications. The proposed approach is highlighted in red.

with ticks and a grid. Each detection is marked with a single point. For emphasis,

the proposed approach is shown in red. The consecutive lines show the results from sub-

sequent replications for a given detector. The last row shows the concept drift dynamics.

The figures allow to notice frequent and redundant detections of ddm and eddm meth-

ods, when drift is signaled in many consecutive data chunks, especially in the initial phase

of a stream. This is consistent with the observations for the sdde method, presented

in Section 3.2. The last of the supervised detectors – adwin – also tends to repeat-

edly signal a single concept drift, but redundant detections occur sporadically, in single

chunks. In the case of frequent changes, these redundant detections do not fade through-

out the concept, which is typical for the high dynamics of changes. This may result

from the emergence of a new concept before the classification quality within the current

one has stabilized. The experiment did not reveal any changes in the quality of detec-

tion depending on the dimensionality of the problem in the case of supervised methods.



Parallel Activations Drift Detector 121

This may result from the mechanism of explicit drift detectors, not relying on the data

distribution but on the classification quality of a baseline classifier – which must not have

been significantly impacted by the problem dimensionality.

Among the reference unsupervised methods, the interesting behavior of the ocdd detec-

tor is visible, which signals a single redundant detection almost always in the initial pro-

cessing phase. After some time, however, the detections reported by the method coincide

with the drifts actually occurring in the stream. As the dimensionality of the problems

increases, the method loses the ability to effectively recognize drifts, reporting many

detections within stable concepts. The md3 method also seems to lose the ability to rec-

ognize concept drifts effectively as the problem dimension increases, signaling more and

more unnecessary, redundant alerts.

Table 3.15: The results of comparison experiment expressing the D1 drift detection error measure.
The columns present the evaluated methods, with the proposed padd shown in red, and the rows –
the type of data stream used in the experiment.

detection from nearest drift (D1)
MD3 OCDD PADD ADWIN DDM EDDM
(1) (2) (3) (4) (5) (6)

su
d
d
en

3
d
r
if

ts

30F 14.272 14.458 2.333 3.506 15.865 21.002
6 6 1 2 5 6 1 2 5 6 — —

60F 18.718 15.645 2.958 5.292 13.607 22.879
— 1 6 1 2 5 6 1 2 5 6 — —

90F 20.025 17.159 5.467 4.716 10.780 23.029
— 6 1 2 6 1 2 5 6 1 2 6 —

5
d
r
if

ts

30F 5.814 7.907 2.842 2.852 7.410 14.417
6 6 2 5 6 1 2 5 6 6 —

60F 11.621 7.816 2.034 3.665 6.999 12.983
— 1 6 all 1 2 5 6 1 6 —

90F 11.628 9.676 3.045 4.402 7.449 13.517
— 1 6 1 2 5 6 1 2 6 1 6 —

1
0

d
r
if

ts 30F 3.781 3.458 1.687 2.991 5.055 6.348
5 6 5 6 all 5 6 6 —

60F 5.386 3.795 2.010 3.693 4.363 6.448
6 1 6 all 1 6 6 —

90F 5.590 5.320 2.375 3.832 4.363 6.743
6 6 all 1 2 6 1 6 —

1
5

d
r
if

ts 30F 2.094 2.669 1.146 2.289 3.244 4.102
5 6 5 6 all 2 5 6 6 —

60F 3.565 2.421 1.464 2.651 3.022 4.283
6 1 5 6 all 1 6 6 —

60F 3.525 3.673 2.062 2.756 3.104 4.126
6 6 all 1 2 6 2 6 —

g
r
a
d
u
a
l

3
d
r
if

ts

30F 15.676 21.578 14.650 15.177 13.068 21.293
2 — 2 2 6 2 6 —

60F 18.768 16.815 14.748 15.411 15.498 19.758
— — — — — —

90F 21.223 17.427 16.322 15.273 13.302 21.285
— 1 — 1 6 1 6 —

5
d
r
if

ts

30F 9.183 11.800 7.564 8.576 7.052 9.938
— — 2 2 2 —

60F 11.656 8.950 7.860 9.401 9.340 12.399
— 1 6 1 6 1 6 — —

90F 11.940 11.511 8.390 8.836 6.233 11.839
— — 1 2 1 2 1 2 6 —

1
0

d
r
if

ts 30F 4.861 5.648 4.242 5.304 5.462 5.728
— — 2 4 5 6 — — —

60F 6.636 4.459 4.640 5.681 4.487 5.731
— 1 4 6 1 4 1 1 4 6 1

90F 5.699 6.284 5.888 6.420 4.315 5.753
4 — — — all —

1
5

d
r
if

ts 30F 2.898 3.909 2.854 4.102 3.223 3.813
2 4 6 — 2 4 6 — 2 4 —

60F 4.067 3.073 2.955 4.599 4.181 3.915
— 1 4 5 6 1 4 5 6 — — 4

90F 3.725 4.336 3.705 4.542 3.844 4.070
4 — 4 — 4 —
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Table 3.16: The results of comparison experiment expressing the D2 drift detection error measure.
The columns present the evaluated methods, with the proposed padd shown in red, and the rows –
the type of data stream used in the experiment.

drift from nearest detection (D2)
MD3 OCDD PADD ADWIN DDM EDDM
(1) (2) (3) (4) (5) (6)

su
d
d
en

3
d
r
if

ts

30F 12.333 1.600 7.600 0.433 9.033 9.700
— 6 — 2 5 6 — —

60F 10.033 1.300 2.000 0.700 19.533 27.700
6 1 6 1 6 1 2 6 — —

90F 3.033 4.033 8.200 0.533 3.733 15.133
6 6 — 1 2 3 6 6 —

5
d
r
if

ts

30F 11.220 3.500 5.900 0.680 6.720 11.920
— 6 — all — —

60F 9.240 1.100 2.560 0.900 12.360 18.000
— 1 6 1 6 1 6 — —

90F 3.160 3.640 8.460 0.220 16.620 13.860
3 6 6 — 1 2 3 6 — —

1
0

d
r
if

ts

30F 9.540 2.980 3.880 1.290 12.290 6.140
— 1 1 1 2 3 — —

60F 10.130 1.530 4.190 1.720 33.860 5.580
5 1 3 5 6 1 5 1 3 5 6 — 1 5

90F 4.620 3.370 7.040 1.150 20.390 6.230
— 3 6 — 1 2 3 6 — —

1
5

d
r
if

ts

30F 13.580 3.060 2.900 1.693 8.660 3.727
— 1 1 1 5 6 — 1

60F 10.840 1.407 3.800 1.720 17.760 3.733
— 1 3 5 6 1 5 1 3 5 6 — 1 5

90F 4.420 3.333 6.773 1.107 18.260 3.747
3 5 3 5 5 all — 3 5

g
r
a
d
u
a
l

3
d
r
if

ts

30F 15.400 17.033 19.333 8.667 11.833 13.500
— — — — — —

60F 9.800 4.333 12.233 20.367 22.133 26.500
4 1 3 4 6 — — — —

90F 6.033 5.400 22.600 13.267 12.300 13.133
3 6 3 6 — — — —

5
d
r
if

ts

30F 19.720 9.960 11.260 7.100 16.560 6.540
— — — — — —

60F 13.840 2.580 9.860 12.680 21.220 15.980
— all — — — —

90F 5.360 5.760 14.780 15.140 15.580 20.840
3 4 6 3 4 6 — — — —

1
0

d
r
if

ts 30F 19.200 5.670 5.690 7.170 20.780 6.220
— 1 1 1 — 1

60F 11.880 2.140 6.570 10.620 18.940 9.770
— all 1 — — —

90F 5.450 4.980 12.250 9.050 10.820 7.580
3 4 3 4 — — — —

1
5

d
r
if

ts 30F 18.393 4.713 5.880 6.360 19.007 3.640
— 1 3 1 1 — 1 3 4

60F 16.053 1.940 4.913 8.960 20.660 6.520
— all 1 4 5 — — 1

90F 6.307 4.427 7.667 8.380 19.020 5.373
4 3 4 — — — 3 4

The proposed padd method signals concept changes even in the case of frequent drifts,

as can be seen in the last row for the case of 15 concept drifts. However, it can be

observed that not all drifts are signaled, or their marking is delayed, in the case of high-

dimensional streams visible in the last column. The results for streams with gradual drifts

are similar. It can be seen that detections for all methods are more dispersed in the case

of gradual drifts – this is either due to the detection in an early or later phase of drift

or due to multiple signaling of the same change in the case of high sensitivity of the

method, also noticed before and typical for the recognition of non-sudden concept drifts.

Tables 3.15 – 3.17 present the results of drift detection error measures for the conducted
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Table 3.17: The results of comparison experiment expressing the R drift detection error measure.
The columns present the evaluated methods, with the proposed padd shown in red, and the rows –
the type of data stream used in the experiment.

ratio of drifts to detections (R)
MD3 OCDD PADD ADWIN DDM EDDM
(1) (2) (3) (4) (5) (6)

su
d
d
en

3
d
r
if

ts

30F 0.431 0.382 0.100 0.506 0.788 0.897
5 6 5 6 all 5 6 6 —

60F 0.602 0.636 0.025 0.521 0.947 0.838
5 6 5 6 all 5 6 — —

90F 0.817 0.680 0.050 0.593 0.799 0.833
— 1 5 6 all 1 2 5 6 — —

5
d
r
if

ts

30F 0.269 0.295 0.190 0.494 0.752 0.861
4 5 6 4 5 6 4 5 6 5 6 6 —

60F 0.376 0.517 0.062 0.505 0.652 0.797
5 6 6 all 6 — —

90F 0.704 0.588 0.158 0.545 0.729 0.836
6 1 6 all 1 2 6 — —

1
0

d
r
if

ts 30F 0.259 0.183 0.116 0.507 0.742 0.840
4 5 6 4 5 6 4 5 6 5 6 — —

60F 0.144 0.390 0.104 0.492 0.494 0.813
2 4 5 6 4 6 2 4 5 6 6 6 —

90F 0.424 0.401 0.285 0.519 0.592 0.803
5 6 4 5 6 4 5 6 6 6 —

1
5

d
r
if

ts 30F 1.047 0.116 0.084 0.451 0.625 0.804
— 1 4 5 6 1 4 5 6 1 5 6 6 —

60F 0.453 0.344 0.130 0.409 0.502 0.771
6 4 5 6 all 6 6 —

90F 0.205 0.304 0.403 0.453 0.478 0.789
all 4 5 6 6 6 6 —

g
r
a
d
u
a
l

3
d
r
if

ts

30F 0.329 0.350 0.355 0.456 0.762 0.908
5 6 5 6 5 6 5 6 6 —

60F 0.576 0.656 0.140 0.332 0.744 0.788
6 6 all 1 2 5 6 — —

90F 0.807 0.695 0.240 0.427 0.640 0.808
— 1 1 2 5 6 1 2 5 6 1 6 —

5
d
r
if

ts

30F 0.395 0.241 0.215 0.375 0.669 0.871
6 4 5 6 4 5 6 5 6 6 —

60F 0.468 0.590 0.067 0.227 0.627 0.791
2 5 6 6 all 1 2 5 6 6 —

90F 0.679 0.566 0.237 0.351 0.948 0.783
6 1 6 1 2 4 6 1 2 6 — —

1
0

d
r
if

ts 30F 0.861 0.142 0.185 0.227 0.650 0.825
— 5 6 5 6 5 6 6 —

60F 0.244 0.457 0.094 0.155 0.582 0.708
2 5 6 6 2 5 6 2 5 6 — —

90F 0.330 0.389 0.383 0.098 0.560 0.762
5 6 5 6 6 1 2 5 6 6 —

1
5

d
r
if

ts 30F 1.574 0.083 0.165 0.101 0.513 0.764
— 1 5 6 1 5 6 1 5 6 6 —

60F 0.610 0.371 0.109 0.319 0.574 0.702
— 6 1 2 4 6 6 — —

90F 0.188 0.285 0.413 0.239 0.510 0.727
3 5 6 5 6 6 5 6 6 —

comparative experiment. The heading of the proposed method is marked in red for em-

phasis. Table 3.15 presents the results of the D1 measure, which describes the average

distance from each signaled detection to the closest actually occurring drift. Within

this measure, the proposed approach achieves the best results for streams with sudden

drift, being statistically dependent on the adwin detector for streams with three con-

cept drifts. In the case of gradual drifts, it is difficult to clearly identify the method with

the best performance – only eddm is not among the statistically best methods in any

stream type, which results from numerous redundant detections.

Table 3.16 shows the results for the D2 error measure, which describes the average dis-

tance from each actually occurring drift to the nearest detection. Here, within the sudden

drifts, the dominance of the adwin detector is clearly visible, which achieved an error
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value below two for all cases, which means that drift was recognized on average after

less than two chunks of the new concept. The proposed padd method achieves higher

average error values, which results from an individual, significantly delayed detections

or lack of recognition of some drifts. Failure to recognize drift results in a significant in-

crease in the average drift distance from detection. In the case of gradual drifts, the best

results are achieved almost unambiguously by the ocdd method, which, as can be seen

in Figure 3.20, is characterized by a high activity within the period of concept changes

occurring in the stream.

Table 3.17 shows the results of the last measure of drift detection error – R, which

describes the adjusted ratio of the number of drifts to the number of detections. Within

this metric, the proposed padd method achieves the best results for both sudden and

gradual drifts. There are cases in which the md3 and ocdd methods perform equally

well in the case of sudden drifts. In the case of gradual drifts, the adwin method also

presents low error values. The high quality of padd expressed in the R error measure

is due to the small number of redundant detections reported by the proposed approach

compared to the reference methods.

It is again worth emphasizing that those three criteria should not be used independently

to evaluate methods, and the juxtaposition of all three describes the proper and effective

method operation.

The final results of the second experiment across all three drift detection error measures

show that the proposed padd method achieves results that are competitive with the eval-

uated reference methods – both supervised ones, such as ddm, eddm and adwin, and

unsupervised ones, such as md3 and ocdd. An important strength of the proposed

method is the independence of the label access, which may be limited in the data streams

with high-velocity.



Chapter 4

Data stream classification

This chapter focuses on the task of non-stationary data stream classification. Since

the concept drift remains an important and vivid topic in the area of data stream clas-

sification, the proposed methods utilize various metafeatures to improve the recognition

quality of the non-stationary data by characterizing the processed concepts. The pre-

sented methods address the concept variability in the specific streaming conditions. Sim-

ilarly to Chapter 3, the description of the three proposed methods is followed by the pre-

sentation of the experimental setup and the critical analysis of the obtained results.

The first of the presented approaches – Metafeature Concept Selector [120] – is dedicated

to the data streams with recurring concepts. It utilizes the statistical metafeatures calcu-

lated on the disjoint data batches similarly to the scheme visible in the Complexity-based

Drift Detector, presented in Section 3.1. The proposed method uses an ensemble with

a pool of concept-specific classifiers.

The following method – Prior Probability Assisted Classifier [125] – was designed for

the specific type of concept drifts, which affect the prior probability distribution of the data.

The statistical metafeatures allowed for the prior probability estimation using the Dy-

namic Statistical Concept Analysis [124], which was integrated with a classifier to com-

pensate the bias towards the majority class in the case of a significant temporal imbal-

ance.

The final method introduced in this dissertation – Certainty-based Architecture Selec-

tion Framework [123] – addresses the classification task in the computer vision data

streams, where the difficulty of the concept changes. The difficulty is being assessed us-

ing the output of a neural network, similar to the scheme followed by Parallel Activations

Drift Detector described in Section 3.3. The proposed approach selects an appropriate

neural network architecture based on the estimated difficulty of the data stream.

125
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4.1 Metafeature Concept Selector

This section presents the Metafeature Concept Selector (mcs) method for non-stationary

data stream classification. The proposed approach uses a pool of classifiers for the recog-

nition task and a pool of one-class classifiers, denoted as metaclassifiers, for concept

identification based on the data chunk metafeatures. The method was designed for data

streams with recurring concepts, where re-identifying a concept known in the past could

restore previous knowledge.

There are two primary components of the proposed method – the procedure itself and

the factors used as the analyzed metafeatures. Both components are discussed below.

Procedure The method’s operation is presented in the Algorithm 4. Three main

hyperparameters are controlling the operation of the method:

• threshold (θ) – a threshold of meta-classifier decision function that needs to be

reached to indicate a concept change;

• minimal concept length (λ) – a number of chunks since the last drift in which

change of concept is not considered;

• maximum training samples of one-class classifier (Λ) – a number of meta-samples

(chunk metafeatures) used to fit meta-classifier.

When the method is initialized, both the pool of classifiers and one-class meta-classifiers

contain a single, unfitted model responsible for the recognition in the initial concept.

The block dedicated to the concept change detection (lines 5:18) is skipped at the first

chunk. However, the batch metafeatures are still calculated (line 3). These values are

used to train the single meta-classifier (Ψo) in the pool. Training of the classifier dedi-

cated to the recognition task (Ψ) is also performed.

At subsequent chunks, if the lower limit of the chunks (λ) in the concept has been reached,

drift detection is additionally performed (line 7). First, after calculating the metafea-

tures, a check is performed to see if the meta-classifier Ψo corresponding to the current

concept j recognizes the batch metafeatures as instances of a known class. The detec-

tion of the new concept is determined by the decision function value of the meta-class

classifier. The method then verifies whether the batch is from a new concept that has

not been recognized previously or whether the concept has already occurred in the past.

A new concept is recognized if the batch support of no meta-classifier exceeds the thresh-

old value (line 10). Otherwise, the meta-classifier with the maximum decision function

is recognized as dedicated to the current concept (line 14).
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Algorithm 4 Pseudocode of the Metafeature Concept Selector
Input:
DS = {DS1,DS2, . . . ,DSk} – data stream

. Hyperparameters
m – set of metafeatures
θ – threshold
λ – minimal concept length
Λ – maximum training samples of one-class classifier

. Base classifiers and ensembles
Ψ – base classifier
Ψo – base one-class classifier
Π – ensemble of classifiers
Πo – ensemble of one-class classifiers

. Parameters
j – current concept identifier
kδ – index of the most recent concept change
MF – metafeature values for successive chunks

1: for all DSk ∈ DS do . Calculate metafeatures for current data batch
2: for all mn ∈ m do
3: MFn ← mn(DSk)
4: end for
5: if k 6= 1 then . Calculate decision function values of one-class classifiers
6: s← Πo(MF) . Concept recognition
7: if sj < −θ and k − kδ > λ then
8: signal concept drift
9: kδ ← k . Recognition of a new concept
10: if max(s) < −θ then
11: Πo ← Πo ∪ {Ψo}
12: Π← Π ∪ {Ψ}
13: j ← |Π|
14: else . Recognition of a past concept
15: j ← argmax(s)
16: end if
17: end if
18: end if . Classifier fitting
19: Ψj ← Ψj(DSk)
20: Ψoj ← Ψoj (Λ random values fromMF since kδ)
21: end for

As the final processing step, the classifiers corresponding to the current concepts in the

Ψ and Ψo pools are fitted with the current data chunk and its metafeatures, respectively

(lines 19:20).

The method is designed to detect new concepts based on the chunk metafeatures, and

to restore the knowledge accumulated in the past in the case of recurring concepts.

If the concept recurs, the particular classifier is also incrementally updated with the

new, labeled data samples.

Factors Table 4.1 presents the default set of metafeatures, identified as promising

in the task of concept recognition and used in the presented research. The method

was designed for the statistical category of metafeatures, as the preliminary research

showed their potential in concept identification task [121]. Moreover, the selected set

of metafeatures allows for fast computation, making it suitable for data stream pro-

cessing. It is worth mentioning that a presented method can be adapted to any set
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Table 4.1: A set of statistical metafeatures considered as default and used for the experiments on the mcs
method. The first column presents the name of a metafeature, while the second one describes its seman-
tics.

metafeature description

mean Mean of each feature’s values
median Median of each feature’s values
truncated mean Truncated mean (discards outlier observations) of values among features
gravity Distance between minority and majority classes center of mass – the average

value of each feature between instances of the same class [8]
covariance Absolute value of the covariance of feature pairs
correlation Absolute value of the correlation of feature pairs
canonical correlations Canonical correlations calculated between the features and the labels
wilks lambda Wilks’ Lambda value, calculated based on the eigenvalues related

to the canonical correlations between the features and the labels [149]
pillai’s trace Pillai’s trace – sum of the squared canonical correlations [184]
lawley-hotelling trace Lawley-Hoteling trace, calculated from the eigenvalues related to each canon-

ical correlation [141]
roy’s largest root Roy’s largest root, formulated using the largest eigenvalue associated with

the canonical correlations [196]

of measures, allowing it to be used for unsupervised detection if the specified measures

do not require labels.

All metafeatures were integrated by the mean summarization function [192], which re-

sulted in exactly one value describing the data batch for each used metafeature. Consid-

ering all measures described in the table, the method calculated and analyzed the total
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Figure 4.1: The values of selected metafeatures calculated for consecutive data chunks with color iden-
tification of concept membership returned by the proposed approach. Each point indicates metafeatures
for a single batch, and their colors identify the concept from which the sample originates.
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of 11 metafeatures for each data batch. The selected measures do not require the ini-

tialization and utilization of underlying recognition methods (which was necessary, for

example, for problem complexity measures [154]), which makes them suitable for the pro-

cessing of data streams, where the low computational complexity is of critical value.

Figure 4.1 shows how the selected metafeatures allow concept description. Five out

of the total number of 11 metafeatures presented in Table 4.1 were selected to allow for

clear presentation. Each point describes the metafeature values for a single chunk of the

data stream.

For this preliminary visualization, a 20-dimensional data stream with seven recurring

sudden concept drifts was used. The colors indicate the two recurring concepts recognized

by the proposed method. The points presented in the Figure show how the metafeatures

describing the two recurring concepts cluster into two groups, allowing for the detection

of a concept change and its identification.

4.1.1 The design of experiments

This subsection describes the used data streams and the goals of specific experiments de-

signed to analyze the operation of the proposed mcs method and to compare the approach

with baselines. Since the proposed method solves the specific metaproblem of concept

identification, the evaluation partially relies on the use of clustering metrics to support

the employment of traditional accuracy-based evaluation.

Table 4.2: The configuration of a generation
function for the data streams analyzed in mcs ex-
periments. The first column specifies the charac-
teristics of a generator, and the second one speci-
fies the selected values.

characteristics configuration

Number of chunks 500

Chunk size 250

Drift frequency 5, 7, 9, 11 drifts

Drift recurrence True

Number of features 10, 20, 30 (30% informative)

Drift dynamics sudden

Replications 10

Data streams Due to the low availability

of data streams with recurring concepts and

the general advantages of performing evalu-

ations on synthetic data, experiments were

performed on fully synthetic data streams

generated with stream-learn library [133].

Table 4.2 presents the details of the data

generator configuration. Each stream con-

sisted of 500 data chunks, and each data

chunk aggregated 250 samples. The samples

were described by various number of features

– from 10 to 30, of which 30% were informative. The data streams were characterized

by various numbers of drifts – from 5 to 11 drifts of sudden type. The recurring drifts

were considered to thoroughly evaluate the method’s ability of concept identification.
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Finally, ten replications of each stream with described characteristics were generated,

allowing for a reliable analysis of the results.

In the first part of the study, which focused on selecting the method’s hyperparameters,

a reduced number of streams were analyzed, considering only streams with seven concept

changes.

Considering only sudden drifts was justified by the clear strategy of evaluating the method,

in particular the moments of detection of concept changes and the matching of the rec-

ognized distribution (concept) to the one present in the past. As already noted during

the evaluation of concept drift detectors, the methods tend to recognize the transition

period between concepts as an independent one. Depending on the sensitivity of a given

drift detection method, the onset of changes was noticed in an earlier or later phase

of changes – or even multiple stages of gradual and incremental changes were recognized.

In the case of the proposed method, it is not the detection itself that is taken into

account during the evaluation but the identification of the concept. In order to compare

the concepts identified by the method with those actually occurring in the stream, it is

worth eliminating the possibility of recognizing a transitional concept. Such behavior

of the method would not indicate its incorrect operation but could make the results

of the experiments inconclusive.

Hyperparameter optimization The first experiment aimed to optimize the most sig-

nificant hyperparameter of the proposed method (θ), indicating the method’s sensitivity

to changes occurring in the monitored metafeatures. The remaining hyperparameters

remained constant at maximum training samples of one-class classifier Λ = 25 and

minimal concept length λ = 5.

The experiment focused on selecting the θ hyperparameter, since the other did not appear

to be critical for the method’s operation in the preliminary research. The evaluation

concerned a hundred values uniformly sampled in the range from 0.5 to 4. The one-class

svm algorithm with rbf kernel was used as the default metaclassifier in the proposed

method. In the first experiment, the Gaussian Naive Bayes (gnb) classifier was used

as the default recognition method.

In the first experiment, two metrics were analyzed: Rand index (ri) [102] of the concept

identification task and accuracy of the classification task. The first metric is originally

dedicated to the assessment in the clustering task. Its selection was motivated by the pos-

sibility of comparing concept identifiers recognized by the method with those actually

occurring in the stream. The metric is described by Equation (4.1), where a is the number
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of pairs of objects belonging to the same cluster as in ground truth, and b is the number

of such pairs belonging to different clusters than specified by ground truth.

RI =
a+ b(
n
2

) (4.1)

The binomial coefficient in the fraction’s denominator indicates the number of pairs

analyzed during the evaluation. The value of this metric in case of an ideal matching

of labels and cluster ground truth results in a value of 1. In case of a complete discrepancy

between indicated clusters and a ground truth – the Rand index value equals 0.

In this case, the Rand index compares the recurring concept identifiers determined

by the method to those calculated for the synthetic stream as a ground truth. This strat-

egy of evaluation has been illustrated in Figure 4.2, where the indexes 0 and 1 on the ver-

tical axis indicate concepts present in the stream, and the plots – the actual concept

present in the stream (black dotted line) or the concept identified by the method (red

solid line). The comparison of actual and recognized concept identifiers using Rand index

allows for the evaluation of the method’s ability of concept identification, limiting bias

related to the selection of a base classifier.

36 107 178 249 320 391 462
chunk

0

1

tru
e/

id
en

tif
ie

d 
co

nc
ep

t

ground truth
identified concept

Figure 4.2: The figure presenting the motivation of using clustering metrics for concept identification
assessment. The horizontal axis shows the chunks of the data stream, with the concept drifts marked with
ticks. The vertical axis indicates the recurring concept described by the data in specific chunks. The plots
present the actual concept (black dotted line) and the identified one (red solid line).

The classification quality measure should confirm the assumption that effective con-

cept recognition brings high recognition quality. Intuitively, for a method to correctly

recognize concepts, each classifier should be specialized to the task considered in each

of the following concepts. However, in case of incorrect recognition, e.g., resulting from

too late recognition of a change, the classifiers are trained using patterns originating

from the concept for which they were not adapted – resulting in a decrease in the classi-

fication quality. Recognizing a concept change but failing to correctly identify it as seen

in the past results in a new, redundant classifier being added to the pool. This behavior

should also decrease the recognition quality compared to a perfect recognition of the past,
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Table 4.3: Table presenting the baseline approaches taken into account in the comparative experiment
of mcs method. Each listed method was evaluated alone and compared with the version embedded into
mcs. The first columns present the method acronym and its name, and the final column describes its
configuration.

method configuration

gnb Gaussian Naive Bayes the default variance smoothing of 1e-9
mlp Multilayer Perceptron a single hidden layer consisting of 10 neurons, the de-

fault ReLU activation function, Adam solver; the in-
cremental learning scenario applied a single iteration
(epoch) per data batch

htc Hoeffding Tree Classifier [103] the default Information Gain split criterion, the de-
fault number of instances a leaf should observe be-
tween split attempts equal to 200

recurring concept, as an adaptation of the classifier is required instead of applying pre-

vious knowledge.

Comparison with reference methods The second experiment compared the method

performance with the baseline algorithms that allow incremental training. All reference

methods considered in the evaluation are described in Table 4.3.

All those reference approaches were evaluated as a single classifier, as well as used

as a base classifier embedded into the proposed mcs approach. In the second experi-

ment, only the classification accuracy of all methods was collected and compared.

In case of a correct concept identification, the benefits of using mcs should be especially

visible for mlp and htc, as those methods are dedicated to incremental learning and

require multiple training iterations until convergence – hence, the adaptation to con-

secutive concepts without a dedicated mechanism could potentially hinder the training

process.

4.1.2 Experimental evaluation

This section presents the outcomes of the experiments and analyzes their results. The ex-

periments aimed to analyze the sensitivity of mcs method to the concept change and

concept re-identification and to compare the proposed method with baselines. The sec-

ond experiment allows for the general evaluation of the proposed mechanism, regardless

of the method-specific strategies employed in the wide range of sophisticated ensemble

classifiers.
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Figure 4.3: Results of the threshold hyperparameter selection experiment. The average Rand index
of the concept identification task is presented on the left side, while the average classification accuracy is
on the right. The results were filtered with a Gaussian filter.

Hyperparameter optimization The first experiment aimed to select the appropriate

threshold (θ) hyperparameter of the method. The results presenting the average metrics

for each threshold value are presented in Figure 4.3.

The three plots present results for three different dimensionalities of the data – from

10 to 30 features. The left side of the figure presents the results of a concept identi-

fication task, measures with Rand index, where the objective was to correctly identify

the concept based on the calculated statistical metafeatures. The right side of the fig-

ure presents the classification accuracy results, used to evaluate how the correct concept

identification impacts the average recognition quality. The horizontal axis of each subplot

shows the values of the threshold hyperparameter used in the method configuration.

The results presenting the quality of concept identification show that for each dimen-

sionality of the stream, there is an area with an increased Rand index. As the number

of features increases, the suboptimal value of the hyperparameter slightly decreases –

from about θ = 2.2 for streams with ten features to about θ = 1.6 for streams with

30 features.

The best classification quality is usually achieved for threshold values lower than those

for which the Rand index is the highest. This is because the gnb classifier adapts

to a new concept almost immediately, and the frequent addition of a new classifier (typi-

cal of a highly reactive method at a low threshold) results in a high average classification

quality. However, this behavior of the method affects the size of the pool of stored clas-

sifiers, causing memory overhead. Moreover, when using other classifiers, such as mlp,
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Figure 4.4: Results of the threshold hyperparameter selection experiment – the visual representation
of identified concepts. The columns present the results for different data stream dimensionalities – from
10 to 30 features. The color describes the index of the recognized concept – with the deep blue describing
the index of 0 and saturated red describing the concepts with high index.

which requires many iterations to converge, frequently adding a classifier to the pool

results in a decrease in average classification quality – as none of the newly added classi-

fiers are fully adapted to the problem being processed. For the above reasons, the main

criterion considered when selecting the threshold hyperparameter was the Rand index

describing the correctness of concept identification.

Additionally, Figure 4.4 visually presents the concept identification results for different

dimensions of data streams. The horizontal axis of each subplot describes the moments

of concept drift, while the vertical axis describes the values of the threshold hyperparam-

eter. The stream replications were stacked in rows so that for each threshold value, ten

repetitions were presented. In the chart, the color of an area is connected with the iden-

tification of the selected concept. In the case of the streams studied, only two concepts

occurred interchangeably. A method that works correctly should, therefore, identify only

two concepts described in shades of blue, in which the moments of transition coincide

with the moment of drift occurrence visible on the horizontal axis.

The figure shows that low values of the threshold result in a high frequency of signaling

concept changes and the inability of the methods to correctly recognize their recurrence

– hence the red area at the top of each heatmap. High hyperparameter values result

in an inability to recognize changes or recognition of subsequent concepts only in some

stream replications – which is especially visible for streams with 30 features.
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For further experiments, the following default values of the hyperparameter were selected:

θ = 2.2 for streams with ten features, θ = 2.0 for streams with twenty features, and

θ = 1.6 for the highest dimensionality tested. The other hyperparameters remained

unchanged.

Comparison with reference methods The second experiment compared the recog-

nition quality using the baseline methods with the recognition quality using the proposed

classifier selection approach.

Figure 4.5 shows the results of the comparison experiment. The classification qualities

were averaged over ten stream generation iterations and smoothed using a Gaussian filter.

The columns show streams with three different dimensionality – from 10 features in the

left to 30 features in the right column. The rows show the results for different numbers

of drifts – from 5 drifts in the first row to 11 in the last one. The methods are presented

using different colors. For each tested baseline method, the classification quality using
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Figure 4.5: The results of a comparative experiment. The accuracies of baseline methods are shown
with dotted lines, and methods embedded into the proposed mcs approach with solid lines. The columns
present different data dimensionalities, and the rows – the different number of drifts occurring in the
stream.
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the baseline alone is shown using a dotted line, and for the baseline integrated with

the proposed mcs approach, with a solid line.

When concept drift occurs, a clear drop in recognition quality is visible for all methods.

It is also easy to notice the degeneration of recognition quality using the gnb algorithm

in the case of recurring concept drifts. This method, not equipped with a forgetting mech-

anism, which is natural for solutions such as mlp, is not able to fully adapt to the current

concept even with multiple training iterations. For this reason, the proposed approach

brings the best benefits compared to gnb as a base method. However, the runs marked

with a solid red line show individual moments of a drop in classification quality, resulting

from individual, incorrect recognitions of a concept change within the replication or its

incorrect identification.

Both mlp and htc as base methods achieve good classification quality on their own,

however, returning to a high recognition quality after drift occurs takes up to several

dozen chunks of data using this method. The results show that the proposed mcs

approach integrated with these methods can allow for faster switching of the classifier
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Figure 4.6: The results of a comparative experiment with the accumulated classification accuracy.
The results of baseline methods are shown with dotted lines and for methods embedded into the proposed
mcs approach with solid lines.
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to one previously adapted to the current concept. Hence, the most significant benefit

of the proposed approach is usually observed immediately after the concept drift occurs.

There are occasional periods during processing for which the baseline mlp achieves better

quality than the mcs-integrated mlp. Similar to the case of gnb, this is due to incorrect

identification of the occurring concept.

Additionally, the accumulated results are presented in Figure 4.6 to facilitate the inter-

pretation of the average recognition quality. The value on the plot in a given chunk

corresponds to the average value of the average results obtained up to that point in the

stream.

The figure shows that, ultimately, after the entire stream processing period, the aver-

age quality achieved by the mcs-integrated method is better than the base method for

the gnb and htc algorithms. For the mlp algorithm, this is visible for data with 10

and 20 dimensions. In the case of 30 dimensions, after averaging, there are cases when

mlp alone achieves better average results than the mcs-integrated method. However,

with very frequent drifts (11 drifts over 500 chunks in the presented case), the mcs-

mlp method is equal in quality to the base mlp method, which may result from quality

drops immediately after concept changes and predict that with an even greater frequency

of changes, the proposed approach brings greater benefits.

The averaged results are also presented in Table 4.4. The table contains the results

of the Student’s T-test with a significance level of alpha = 5%. Below the average result

for each method and each stream type, the identifiers of the methods from which the data

is statistically significantly better are presented. The columns presenting the methods

integrated with the proposed approach are highlighted in red. Additionally, if there

was a statistically significant difference between the pair (baseline compared to mcs),

the x marker is shown for the leading approach.

As expected, the gnb algorithm, which is not adapted to incremental learning in data

streams, performs the worst in the classification task. Integrating the base gnb with

the mcs method brings statistically significantly better results in each stream type,

even dependent on mlp in the case of low-dimensional streams. The baseline of mlp

method achieves statistically significantly the best results, or the results are statistically

dependent on mcs-mlp in the case of streams with the highest dimensionality. Since

the largest drops of recognition quality were visible shortly after the concept drifts,

combined with the relatively long time of mlp convergence to a new concept, the use

of mcs brings the largest benefits for the streams with frequent concept drifts. The htc

method integrated with mcs (mcs-htc) brings the best recognition quality in 10- and

20-dimensional streams, almost always statistically significantly better than the baseline

htc algorithm.



138 Chapter 4. Data stream classification

Table 4.4: A table presenting the results of comparison experiment for the mcs approach. The columns
indicate the methods – with the ones integrated with mcs highlighted in red – and the rows the types
of data streams.

GNB MCS-GNB MLP MCS-MLP HTC MCS-HTC

(0) (1) (2) (3) (4) (5)

1
0

fe
at

u
r
es

D: 5 0.719 0.757 0.793 0.800 0.805 0.839
— 0 0 0 1 0 1 2 all
— x — — — x

D: 7 0.719 0.756 0.781 0.799 0.802 0.833
— 0 0 0 1 2 0 1 2 all
— x — x — x

D: 9 0.719 0.756 0.774 0.785 0.801 0.823
— 0 0 0 0 1 2 0 1 2 3
— x — — — —

D: 11 0.719 0.749 0.769 0.781 0.795 0.833
— 0 0 0 0 1 2 all
— — — — — x

2
0

fe
at

u
r
es

D: 5 0.738 0.788 0.834 0.850 0.817 0.851
— 0 0 1 4 0 1 2 4 0 1 0 1 2 4
— x — x — x

D: 7 0.739 0.786 0.825 0.840 0.813 0.845
— 0 0 1 0 1 4 0 1 0 1 4
— x — — — x

D: 9 0.739 0.788 0.820 0.835 0.811 0.851
— 0 0 1 0 1 4 0 1 all
— x — — — x

D: 11 0.739 0.778 0.817 0.819 0.809 0.831
— 0 0 1 0 1 0 1 0 1
— x — — — —

3
0

fe
at

u
r
es

D: 5 0.746 0.777 0.849 0.834 0.808 0.827
— 0 all 0 1 4 0 1 0 1 4
— x x — — x

D: 7 0.746 0.782 0.844 0.832 0.804 0.830
— 0 0 1 4 0 1 4 0 0 1 4
— x — — — x

D: 9 0.745 0.775 0.840 0.830 0.802 0.820
— 0 0 1 4 5 0 1 4 0 1 0 1 4
— x — — — x

D: 11 0.745 0.778 0.837 0.837 0.801 0.826
— 0 0 1 4 0 1 4 5 0 1 0 1 4
— x — — — x

Considering the obtained results, the proposed mcs approach of selecting classifiers based

on statistical metafeatures of data batches brings benefits in the case of processing data

streams compared to using the baseline classifiers. The degree of such an improvement

depends on the mechanism embedded into the baseline learner – where the methods with-

out the direct adaptation for non-stationary data benefit the most (like gnb), as well

as the data stream dimensionality and the frequency of concept changes.

4.2 Prior Probability Assisted Classifier

This section describes the Prior Probability Assisted Classifier (2pac) method that em-

ploys the estimated prior probability information to improve the classification quality

in the statically and dynamically imbalanced data stream classification task. The prior
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probability estimation utilized by the proposed method is based on the metafeatures

of the processed data stream.

The processing procedure of 2pac integrates the operation of two components: (a) prior

probability estimator and (b) selected base classifier that supports incremental learn-

ing. The method transfers all available objects to both those components. The prior

probability for the current data batch is first estimated, then, based on the estimated

value and the support of the classifier towards specific classes, the method compensates

the predictions by adjusting the predictions in favor of the minority class.

The operation of the method is presented in Algorithm 5. Its processing scheme depends

on the three main hyperparameters:

• base classifier (Ψ) – the specified classifier will be incrementally trained and used

to provide the probability of class predictions. The method should, therefore, allow

for incremental training and as well provide the support function of classification

task. The final decisions returned by 2pac will base on the support function

of the trained classifier.

• prior probability estimation method (PE) – this module is used to calculate the es-

timated number of specific class occurrences and later combined with the decisions

of the embedded classifier to compensate its bias toward majority class. Any mod-

ule that estimates the prior probability of the data batch can be used.

• threshold (θ) – this parameter describes a value of estimated prior probability

for a minority class to perform a prediction correction. With a maximal possible

Algorithm 5 Pseudocode of the Prior Probability Assisted Classifier method
Input:
DS = {DS1,DS2, . . . ,DSk} – data stream

. Hyperparameters
Ψ – base classifier
PE – prior probability estimator
θ – threshold

. Parameters
pmin – estimated prior probability of minority class
Fmin – support of Ψ towards minority class

1: for all DSk ∈ DS do
2: if k > 1 then . Estimate prior probability and supports towards minority class
3: pmin ← PE(DSk)
4: Fmin ← Ψ(DSk) . Correction towards minority class
5: if pmin < θ then . Calculate number of correction samples
6: cc← |DSk| × pmin . Conduct prediction correction
7: sort DSk by Fmin
8: label last cc samples of DSk as minority class
9: end if
10: end if . Update classifier and prior probability estimator with current data chunk
11: update Ψ with DSk
12: update PE with DSk
13: end for
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value of θ = 50%, a correction is made for each data chunk, regardless of the es-

timated prior probability. Manipulating the hyperparameter allows the prediction

to be corrected only in the event of a substantial imbalance being detected, leaving

the original predictions otherwise.

For the first chunk of the data stream, only the update of the classifier and the prior

probability estimator are performed (lines 11:12 in the pseudocode). In all other data

chunks, the following steps are performed:

1. The estimation of prior probability for minority class is calculated based on samples

from the current data chunk (line 3).

2. The classifier’s supports towards minority class are calculated (line 4).

3. If the estimated prior probability pmin is lower than threshold θ, the value of the de-

sired number of minority class samples is calculated (lines 5:6), followed by the com-

pensation of classifiers predictions for the desired number of the minority class

samples (lines 7:8).

4. After each chunk processing, the classifier and prior probability estimator are up-

dated (lines 11:12).

4.2.1 The design of experiments

This subsection describes the data streams used in the research, the experimental setup,

and the goals of specific experiments, aiming to thoroughly investigate the benefits and

limitations of 2pac approach. Since the method is directly dedicated to the data char-

acterized with prior probability changes, the evaluation focuses on this type of data

stream non-stationarity. In all experiments, the metric of balanced accuracy score was

considered.

Data streams In order to reliably evaluate the proposed approach, three main types

of imbalanced synthetic data streams were analyzed in the context of the data imbalance

ratio:

• Statically imbalanced streams (sis) – containing 10, 5 and 2.5% of minority class

instances,

• Continuous dynamically imbalanced streams (cdis) – with four drifts of prior prob-

ability, each described by a change amplitude of 75, 90, or 100%,
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• Discrete dynamically imbalanced streams (ddis) – with a standard deviation of 10%

and the presence of minority instances at the level of 10, 5, and 2.5%.

Table 4.5: The configuration of data stream
generator in the experiments performed for 2pac
method. The first column presents the character-
istics of the data, and the following one – the spec-
ified configuration.

characteristics configuration

Dynamics of class imbalance sis, cdis, ddis

– Imbalance ratio in sis 10, 5, and 2.5%

– Number of drifts in cdis 4

– Imbalance amplitude in cdis 75, 90, and 100%

– Imbalance ratio in ddis 10, 5, and 2.5%

Number of chunks 500

Chunk size 200

Number of features 8 (100% informative)

Replications 10

In total, nine configurations describing

a data imbalance were considered in those

three taxonomic categories. The complete

description of the data stream generator

configuration is presented in Table 4.5, in-

cluding the precise description of changes

visible in prior probability.

All streams consisted of 500 data chunks,

each containing 200 instances described by

eight informative features. For the purpose

of reliable experimental evaluation, each

stream was replicated ten times with vari-

ous random seeds.

Hyperparameter optimization The first experiment aimed to optimize the method’s

hyperparameters for five baseline classification approaches. The experiments used inde-

pendent classifiers capable of incremental learning and classifiers integrated into a sim-

ple ensemble, making them suitable for an incremental learning environment. Table 4.6

presents the evaluated classifiers and their configuration.

Table 4.6: The table presenting the classification approaches taken into account in the comparative ex-
periment. The first columns present the method’s acronym and its name, and the final one – the specified
configuration of a method.

method configuration

mlp Multilayer Perceptron a single hidden layer consisting of 10 neurons, the de-
fault ReLU activation function, Adam solver; the in-
cremental learning scenario applied a single iteration
(epoch) per data batch

gnb Gaussian Naive Bayes the default variance smoothing of 1e-9
knn k-Nearest Neighbors sea with knn as the base classifier; 10 estimators

in an ensemble; number of neighbors set to 5; uni-
form weights of neighbors

svm Support Vector Machine [43] sea with svm as the base classifier; 10 estimators in an
ensemble; svm with RBF kernel and the regularization
of C = 1

htc Hoeffding Tree Classifier [103] the default Information Gain split criterion, the de-
fault number of instances a leaf should observe be-
tween split attempts equal to 200

Three of the evaluated classifiers (namely mlp, gnb and htc) allowed for the incremental

training by default. For the remaining two methods – knn and svm classifiers –Streaming



142 Chapter 4. Data stream classification

Ensemble Algorithm (sea) [216] was used in order to allow the incremental processing

of data. The implementation of the original sea ensemble approach has been slightly

modified in order to process highly imbalanced data streams, characterized by the absence

of minority class objects in the first chunk of the stream. In such a case, additional label

noise is introduced, forcing the presence of at least one representative of the minority

class.

In this experiment, three strategies of prior probability estimation PE were evaluated:

• the baseline approach, which assigns the current data chunk the same prior prob-

ability as in the previous data batch (prev),

• the estimated prior probability calculated as a mean prior probability from all

previously processed data batches (mean),

• Dynamic Statistical Concept Analysis (dsca) [124] – the original approach which

estimates the current prior probability based on statistical metafeatures of a data

chunks, integrated using the regression mechanism.

All prior probability estimation methods utilize the metafeatures computed for the data

chunks. The simple approaches – prev and mean – directly use the prior probability

from the past chunks. Meanwhile, the dsca approach uses the mean values of features

and their standard deviation as metafeatures, and the number of class representatives

as metatargets, later integrated to estimate the prior probability. This mechanism makes

it the most complex out of all the evaluated approaches.

The experiments considered a range of values from 1% to 50% for the threshold. In the case

of a value of 50%, the correction of the predictions returned by the classifier is made

for each data batch, even when the estimation method does not indicate any imbalance.

A low value of the threshold allows the correction of the classifier’s prediction only when

a substantial imbalance is detected.

A significant improvement in the classification quality is expected with low values of the θ,

which remains at the static level as the value of this hyperparameter increases. In the case

of significant estimation errors, which may result from the method not adapted to the type

of stream, with high values of this hyperparameter, the classification quality may decline.

This will be a result of unnecessary changes in the classifier’s initially correct decisions.

Comparison of evaluated methods The second experiment aimed to compare the

proposed 2pac method with the recognition quality of the classifiers without the support

offered by prior probability estimates and the compensation mechanism.
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The estimation quality may significantly impact the possibility of correcting the clas-

sifier’s output. When determining the level of class imbalance with a significant error,

the 2pac method would be degenerating the classifier’s performance. The preliminary

studies suggest that various prior probability estimation methods could achieve the most

accurate prior probability estimates, depending on the stream type. Assuming the sub-

optimal selection of such a method and effective prior probability estimation, the appli-

cation of the 2pac method should positively impact the classification quality compared

to the base classifier, especially in the case of a significant imbalance.

4.2.2 Experimental evaluation

This subsection presents the effects of the experiments performed on 2pac method, along

with the analysis of their results. After selecting the method’s hyperparameters and

configuration in the first experiment, the following one evaluated the proposed solution

compared to the baselines.

Hyperparameter optimization The first experiment aimed to analyze the method’s

hyperparameters and find their suboptimal values. As a supplement, the errors in prior

probability estimation of all tested methods were evaluated. They are presented in Fig-

ure 4.7 as the accumulated average error values for the assessed prior probability esti-

mation methods. The results for sis are shown in the first row, followed by the results

for cdis and ddis. The specific colors indicate the accumulated error values of various

prior probability estimation methods.

In statically imbalanced streams (sis), it is noticeable that all tested methods have a simi-

lar error level. At the beginning of the stream processing time, the dsca method obtains

the largest estimation errors, which later decrease over time. The lower the proportion

of the minority class, the lower the error values.

The second row shows the errors of continuous dynamically imbalanced streams. It can be

noticed that the mean method shows significant estimation errors for this type of stream.

Such errors result from the type of imbalance changes in these streams. When the minor-

ity class transitions to the majority class, the mean value fluctuates around 50%, giving

almost no information about the actual prior probability. The moments of a significant

decrease in estimation error occur for short periods when the problem becomes bal-

anced. It can also be seen that the error values of the prev method increase on intervals

of greater dynamics of changes in the class proportions in the stream.

The last row presents the errors for processing discrete dynamically imbalanced streams.

The prev method achieves the highest error values, as these streams are characterized
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Figure 4.7: The accumulated mean error of prior probability estimation for evaluated streams. The rows
show different types of changes in prior probability in the data stream, and the columns the degree of such
changes. The colors indicate the errors obtained by the specific estimation methods.

by significant differences in prior probability in adjacent data chunks. As with statically

imbalanced data streams, the error of dsca is more significant at the beginning of pro-

cessing and decreases over time. The dsca method achieves the most promising results

for dynamically imbalanced streams.

Figure 4.8 shows the results of the threshold hyperparameter selection performed in the

first experiment for all base classifiers and all prior probability estimation methods.

As the observations for different prior probability dynamics were consistent, the results

were averaged for all replications, and the levels of imbalance change (imbalance ratio for

sis and ddis or change amplitude for cdis). The columns of the figure show the results

for different types of imbalance change, and the rows – for different base classifiers. Each

color of the plot represents a specific prior probability estimation method.

As expected, in some cases, the classification quality increases with a low θ, and the value

remains at a high level with the further increase of hyperparameter values. This occur-

rence can be seen especially in the case of sis and ddis.

The exceptions are observed in cdis streams where, in the case of the mean estimation

method, the results either decrease or increase with a significant value of the θ. The de-

crease in the results is related to the significant errors in the prior probability estimation,

also visible in Figure 4.7 for this stream type.
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Figure 4.8: The results of hyperparameter selection experiment. The balanced accuracy score was
averaged for the prior probability change type, presented in columns. The rows present the classification
quality for evaluated baseline classification methods. The colors of the plots indicate the prior probability
estimation method.

In the streams, where the initial minority class at some point in time becomes the ma-

jority of observed instances, considering the periods of imbalance are constant, the prior

estimate oscillates around 50%. Setting a high threshold, i.e., always taking into account

the estimation value during prediction, forces a balanced prediction of an imbalanced data

stream, which in most cases hurts the classification quality. For some base classifiers,

in streams characterized by a large amplitude of changes, the improvement of the results

with high values of the θ results from the correction of the classifier’s prediction at the mo-

ments when the actual prior probability leans towards the value determined by the PE ,
which in the case of the mean method for the presented streams is around 50%.

The prev and dsca methods, with the increase in the value of the θ, achieve better

results. Thus, it can be concluded that the correction of the classifier prediction is ben-

eficial even in the case of chunks with slight differences in the number of class instances.

In sis, the results for each of the evaluated base classifiers were similar and satisfactory for

each of the prior probability estimation methods. In cdis, the prev and dsca methods
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perform best, with a slight advantage of the prev method for streams with a large

amplitude of imbalance changes. For ddis, the most promising estimation method is

dsca, and the least improvement is provided by the prev method.

For the analyzed types of streams, it was decided to choose different values of θ hy-

perparameter, depending on the method of prior probability prediction, for the mean

θ = 28%, for prev and dsca θ = 50%.

Comparison of evaluated methods The second experiment analyzed the impact

of the proposed 2pac method on the classification quality. The operation of the method,

optimized for each type of imbalance dynamics, was compared with the operation of the

baseline classification approach without prediction corrections.

Figure 4.9 shows the averaged balanced accuracy score values for streams characterized

by the highest imbalance ratio or the highest amplitude of changes in the prior proba-

bility of each of the analyzed stream types. The subsequent rows show different types

of streams, respectively sis, cdis and ddis. All considered prior probability estimators

were integrated with each of the tested base classifiers – presented in the columns –

using the 2pac method. Additionally, the black line marks the balanced accuracy score

of the baseline classification method.

Additionally, Figure 4.10 shows the cumulative results to enhance the interpretation

of the results. The value presented in the plots is equal to the average result from all
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Figure 4.9: The results of a comparison experiment for 2pac method. The plots show the average
balanced accuracy score for evaluated classifiers (shown in columns) and the types of streams (shown
in rows). The prior probability estimation method integrated with 2pac is identified with the specific
colors of plots.



Prior Probability Assisted Classifier 147

chunks processed so far. This allows for immediate identification of the method with

the highest average classification quality – the one with the highest value for the last

chunk of the processed stream.
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Figure 4.10: The results of a comparison experiment for 2pac method. The plots show the cumulative
balanced accuracy score for evaluated classifiers (shown in columns) and the types of streams (shown
in rows).

The results of all evaluated imbalanced streams show an improvement in the classification

quality when using 2pac. The extent of improvement of using the method compared

to the baseline depends on the combination of classification and estimation methods

employed.

The most significant benefits of using the method can be seen in the case of the knn and

svm classifiers. For sis, in the case of the two methods mentioned above, slight differences

in balanced accuracy can be seen in employed estimation methods, favoring the mean

and prev methods, especially in the initial stage of stream processing. In the case

of the other classifiers, the differences between prior probability estimation methods are

not clearly noticeable.

In cdis streams, it is possible to observe how a given base method reacts to changes

in the problem imbalance ratio by the quality of the baseline classifier itself. Those

continuous changes have a particularly negative impact on the knn and svm classifiers

– the value of the accumulative average quality of the classification decreases rapidly

in moments of significant imbalance. For the mean estimation method, benefits are

visible in the initial processing stage. However, the classification quality becomes almost

equivalent to the baseline classifier over time. In the case of the gnb, knn, and svm

classifiers, the most promising results are obtained by the prev estimation method.
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The difference is not noticeable in the case of mlp and htc classifiers. Still, prev

estimation method seems to be best suited for this type of imbalance dynamics.

For the ddis streams, presented in the last row of figures, the most promising classifica-

tion results are achieved by the base method integrated with the dsca prior probability

estimator. The quality improvement is least noticeable in the case of the htc classifier.

As an effect of previous analyses, the 2pac method was integrated with the prior prob-

ability estimation method, showing the best classification quality and the smallest esti-

mation errors. For sis streams, the mean method was selected, while for cdis streams

with smooth changes in the imbalance ratio, the prev method was selected. For ddis

streams, the dsca method was characterized by the smallest errors and was selected

as the default approach.

The results of classification quality for all examined streams are presented in Table 4.7,

supplemented with the Student’s T-test results for the significance level alpha = 5%.

The first column of the table describes the type of imbalance and its dynamics in the con-

sidered streams. The subsequent columns describe the results for the five basic methods

and for the methods with prediction compensation using the proposed 2pac approach.

Table 4.7: The results of the experiments conducted to evaluate 2pac approach. The columns present
the evaluated methods – with the ones integrated with 2pac highlighted in red – and the rows show
the types of data streams regarding class imbalance.

stream MLP 2PAC-MLP GNB 2PAC-GNB KNN 2PAC-KNN SVM 2PAC-SVM HTC 2PAC-HTC
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

SIS .1 0.744 0.809 0.665 0.746 0.708 0.876 0.822 0.871 0.777 0.817
2 4 0 2-4 8 — 2 4 — 0-4 6 8 9 0 2-4 8 0-4 6 8 9 0 2-4 0 2-4 8
— x — x — x — x — x

SIS .05 0.650 0.746 0.601 0.695 0.567 0.823 0.696 0.827 0.705 0.758
2 4 0 2-4 6 8 — 0 2 4 — 0-4 6 8 9 0 2 4 0-4 6 8 9 0 2 4 0 2-4 6 8
— x — x — x — x — x

SIS .025 0.578 0.676 0.552 0.641 0.501 0.743 0.544 0.759 0.636 0.690
4 6 0 2-4 6 8 4 0 2 4 6 — 0-4 6 8 9 4 all 0 2 4 6 0 2-4 6 8
— x — x — x — x — x

CDIS .75 0.842 0.868 0.804 0.811 0.853 0.904 0.892 0.905 0.856 0.861
2 3 0 2 3 — 2 2 3 0-4 6 8 9 0-4 8 9 0-4 6 8 9 0 2 3 0 2 3 8
— x — x — x — x — x

CDIS .9 0.792 0.829 0.785 0.796 0.779 0.878 0.851 0.882 0.831 0.839
— 0 2-4 — 2 — 0-4 6 8 9 0-4 8 0-4 6 8 9 0 2-4 0 2-4 8
— x — x — x — x — x

CDIS 1. 0.736 0.769 0.745 0.757 0.689 0.81 0.745 0.821 0.785 0.792
4 0 2 4 6 4 0 2 4 — 0-4 6 8 9 4 all 0-4 6 0-4 6 8
— x — x — x — x — x

DDIS .1/.1 0.720 0.768 0.656 0.719 0.710 0.819 0.783 0.820 0.746 0.774
2 0 2-4 8 — 2 2 0-4 6 8 9 0 2-4 8 0-4 6 8 9 0 2-4 0 2-4 8
— x — x — x — x — x

DDIS .05/.1 0.650 0.708 0.610 0.673 0.593 0.747 0.663 0.755 0.683 0.714
2 4 0 2-4 6 8 — 0 2 4 0-4 6 8 9 2 4 all 0 2 4 6 0 2-4 6 8
— x — x — x — x — x

DDIS .025/.1 0.619 0.674 0.591 0.650 0.548 0.700 0.589 0.714 0.655 0.685
2 4 6 0 2-4 6 8 4 0 2 4 6 — 0-4 6 8 9 4 all 0 2 4 6 0 2-4 6 8
— x — x — x — x — x
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The methods integrated with 2pac are highlighted in red. The table presents the aver-

aged balanced accuracy score within the replications and the results of statistical tests.

The indexes below the average classification quality indicate the references from which

the method is statistically significantly better. Additionally, the markers indicate the sta-

tistically significantly better method within a pair: baseline compared to the method

integrated with 2pac. The best results for each stream type are marked in bold.

The results show that globally – across all the studied methods – the best quality, re-

gardless of the prior probability dynamics, is achieved by the knn and svm methods in-

tegrated with 2pac, as the baseline classifiers, knn and svm are the only ones embedded

in the sea ensemble classification method. Such results show the advantage of the en-

semble approaches in the classification of data streams in relation to the use of single

baseline classifiers, which was already noticed in the literature [80]. The table also shows

that for each of the studied stream types, the classifier integrated with the 2pac method

achieves statistically significantly better results than the baseline method alone.

The overall results show that the use of prior probability-based correction allows for achiev-

ing statistically significantly better classification quality in data streams of various types

and degrees of change in the level of a class imbalance. The employed prior probabil-

ity estimation methods used basic metafeatures related directly to the class imbalance

from the past data chunks (prev and mean approaches), as well as a complex method

of Dynamic Statistical Concept Analysis (dsca), analyzing and integrating the statistical

metafeatures of data chunks.

4.3 Certainty-based Architecture Selection Framework

This section describes the Certainty-based Architecture Selection Framework (cas) de-

signed for processing data streams with time-varying concept difficulty. Such a specific

concept drift can be defined as a change in the domain of processing [224], where the con-

sidered classification problem, including the definition and semantics of the recognized

classes, remains constant. At the same time, the instances are characterized by varying

difficulty over time.

This particular method was designed with a real-life TinyML use case in mind. In this

vivid research area the low processing time and, therefore, low complexity of meth-

ods become especially important due to limited computational resources of embedded

systems [57]. The dynamic selection of appropriate neural network architecture with

the proposed cas framework can allow the modulation of a trade-off between the com-

putational complexity of methods and the classification accuracy of a system. Keeping
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Figure 4.11: The plots describing the F1 and N1 complexity measures averaged over results from
the one-versus-all strategy for examined data streams after feature extraction. The left side presents
the measures for mnist dataset and the right for svhn [174]. The five cycles of difficulty variability are
visible over the stream course for both streams, more significantly exhibited in the F1 measure.

this real-world application in mind, the research uses the metrics dedicated to TinyML,

measured on a hardware device, to estimate the described trade-off.

Figure 4.11 aims to present the type of data variability considered in this processing

scenario. It shows the difficulty of data streams created from mnist [51] and svhn static

computer vision datasets. In the figure, the complexity of the classification task [154] is

calculated according to averaged measures of F1 and N1 from the complexity metafea-

ture category, described in Subsection 2.1.2. The measures were calculated within data

chunks on the samples transformed to 10 features with pca. The generated streams

were subjected to feature reduction and binarization with a one-versus-all (ova) strat-

egy to allow the calculation of the complexity measures. Such measures are supposed

to highlight the objective measures (unbiased in terms of the employed classification

model), showing the time-varying difficulty of the solved task.

The plots presented in the figure highlight the changes in problem complexity occurring

in the stream. By adapting to those changes on an architecture selection level – by se-

lecting simpler architecture for a simpler problem and a more complex one for a difficult

concept – a classification accuracy should potentially be able to remain constant while

altering the computational or time complexity of the solution.

The presented framework aims to allow for such selection of the cnn architecture. The es-

timation of problem difficulty – and thus the selection of the architecture – is based

on the analysis of the classifier certainty. The integrated outputs from the static models

are used as data stream metafeatures, where each data chunk is described by a determin-

istic mean predictive support value – a metafeature that estimates the certainty of the

classifier. The complete operation of the framework is described in Algorithm 6.
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Algorithm 6 Pseudocode of the Certainty-based Architecture Selection Framework
Input:
DS = {DS1,DS2, . . . ,DSk} – data stream

. Hyperparameters
Π = {Ψ1,Ψ2, . . . ,Ψe} – pool of nn architectures
Θ = {θ1, θ2, . . . , θe} – list of support thresholds
s – number of chunks in given range to switch
sc – counter of chunks in given range to switch

. Parameters and functions
c – index of selected architecture
S – calculate softmax
MPS – calculate mean predictive support

1: Initialize c as floor( e
2

)
2: for all DSk ∈ DS do . Forward pass of currently selected architecture
3: p← S(forward Ψc(DSk)))
4: ρ← MPS(p)
5: ctemp ← index of minimum θ from Θ exceeding ρ
6: if ctemp 6= c then
7: if sc = s then
8: if ctemp > c then . Select more complex architecture
9: c← c+ 1
10: else . Select less complex architecture
11: c← c− 1
12: end if
13: sc ← 0
14: else . Increment the switch counter
15: sc ← sc + 1
16: end if
17: else
18: sc ← 0
19: end if . Utilize prediction probabilities p
20: return predictions for DSk as argmax(p)
21: end for

The framework selects a single nn model to be used in the current data chunk from a pool

of architectures already optimized for the problem under consideration. All architectures

should be trained until they reach a specified mean predictive support (mps), denoted

by ρ so that this measure can serve as a proxy in estimating the difficulty of a chunk

of data in the stream. The mps is calculated based on the output from the last layer

of the considered network architecture – as presented in lines 3:4 of the pseudocode.

Only the network outputs for the one-hot-encoded labels that would lead to a predic-

tion in favor of a predicted class (i.e., the one with the highest prediction probability)

are considered. Then, the average support value within the data chunk is calculated.

The difficulty of the classification task being solved (related to the number of errors) is

intuitively dependent on the certainty of prediction – the higher the model certainty is,

the more a considered instance should fit into the distribution of a given class.

During preliminary research, it was also observed that despite optimizing the weights

of neural networks to a specific mps level, the number of errors made by the classifier,

and thus the classification accuracy, varies. Therefore, these observations allow proposing

a solution in which more computationally expensive network architectures are reserved

for the stream domain, where models show lower certainty. While predictions are made

with high certainty, a less computationally expensive architecture is used for inference.
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In addition to the pool of e trained architectures Π = {Ψ1,Ψ2, . . . ,Ψe} (sorted from

the least to the most complex), the method adopts a list of thresholds Θ = {θ1, θ2, . . . , θe}
(from the largest to the smallest) determining the mps value from which individual

architectures are used. Since switching the model on hardware may involve a time delay

or cause temporal instability of the system, the s hyperparameter has been implemented,

specifying how many data chunks of a processed stream must be outside the current mps

range in order to switch to a more or less complex architecture. Such switching exchanges

the model by no more than one step for detected change in certainty. At the beginning

of processing, the architecture in the middle of the pool Π is selected, as presented

in line 1 of the pseudocode.

For each data chunk, the following steps are performed:

1. The softmax function is calculated with the forward pass of the currently selected

architecture (line 3).

2. mps ρ is calculated based on the supports for all classes and all objects in the batch

(line 4).

3. The value of ctemp is then determined – the smallest threshold index from the list

Θ that exceeds ρ (line 5).

4. Before switching to the architecture with index ctemp, the method checks whether

a sufficient number of s chunks have passed since the first threshold crossing

for the current c architecture (line 7).

5. If the last s of chunks indicated the need to change the architecture, it is switched

(lines 8-11).

6. If the number of sc was not achieved, the counter is incremented (line 15), or if

the switch was not requested, the counter is set to zero (line 18).

7. At the final stage, the predictions are obtained from the raw output from softmax

function, determined at the beginning of processing (line 20).

The choice of certainty as the architecture switching criterion results from the low com-

putational overhead associated with estimating the difficulty of the recognized concept.

After determining the mps based on the softmax output, it is possible to calculate the pre-

dictions themselves. The proposed framework, therefore, allows for smooth trade-off

modulation between the inference time and the accuracy without significantly increas-

ing the computational complexity of the classification task, which was seen for using

the classic complexity metafeatures.
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4.3.1 The design of experiments

This subsection presents the generated data streams, describes the research environment

and the planned experiments along with their goals. Since the cas approach is the only

one presented in this dissertation that aims to directly minimize the processing time and

computational complexity with minimal effect on the classification accuracy, this subsec-

tion describes the Time to Accuracy Loss metric, introduced to support the evaluation

of the proposed solution.

Table 4.8: The table describing the data con-
figuration for the generated semi-synthetic data
streams. The first column describes the charac-
teristics of the data streams, and the second one
their selected values.

characteristics configuration

Origin dataset mnist, svhn

Original samples 60 000 (mnist), 73 000 (svhn)

Number of chunks 1000

Chunk size 50, 150, 300, 500

Complexity cycles 3, 5, 10, 25

Difficulty change type incremental

Replications 5

Data Streams The research was per-

formed on semi-synthetic data streams,

where two popular computer vision datasets

were arranged into an ordered data stream

characterizing the non-stationary problem

difficulty.

Two real-world datasets used for this pur-

pose were (a) the simpler mnist, which

shows monochromatic handwritten digits,

and (b) the more challenging svhn, which

shows color images of digits describing house

numbers. Both datasets describe a balanced, multiclass classification of 10 object cate-

gories. The streams were synthesized from the static datasets using an original generation

method. The characteristics of this data are described in Table 4.8.

The stream for the mnist set was developed using 60 thousand original objects and

for the svhn set using 73 thousand original objects. Each of the considered data streams

consisted of one thousand data chunks. Various chunk sizes – from 50 to 500 – and num-

bers of difficulty change cycles – from 3 to 25 cycles – were considered in the experiments.

All concept changes were of incremental type, presenting a smooth dynamics of change.

The generation was replicated five times for all data stream configurations.

Evaluation metrics The research was carried out on 10-class balanced data streams.

Therefore, classification quality was assessed using an accuracy metric. In addition

to assessing the classification quality, individual architectures’ inference time measured

in Multiplier ACCumulator macc and latency was examined [95]. The macc is an aux-

iliary measure typical for TinyML applications, that describes the number of operations

of multiplying two values and adding a third one, while latency is a direct measure

describing the inference time.
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Additionally, to facilitate the assessment of the trade-off between classification quality

and operation time, the Time to Accuracy Loss (ttal) measure was proposed, which is

described in Equation (4.2).

TTAL =
Rmacc ·Rlatency

Racc
(4.2)

This is a relative criterion intended to compare the result of the proposed solution with

the reference method, which is assumed to have a higher classification quality and a higher

inference time expressed in macc and latency. Calculating ttal measure requires cal-

culating the relative loss measures Rm, described in Equation (4.3), where m stands

for the base metrics, i.e., the macc, latency, and accuracy.

Rm =
mreference −mconsidered

mreference
(4.3)

Therefore, to calculate the value of ttal, first the relative values of Rmacc, Rlatency, and

Racc are required, calculated according to reference and obtained macc, latency, and

accuracy, respectively. The ttal measure returns high values for the low accuracy loss

in relation to the time loss. Therefore, the goal is to maximize this criterion.

Neural Architecture Selection The first experiment was intended to select a pool

of nn architectures considered for further processing using the cas framework. A total

number of 14 architectures were examined, from the simplest – containing only fully

connected layers – to the more complex – containing multiple convolutional layers.

For the proposed framework, a specific set of considered architectures should be pre-

defined, where the more time-demanding solution achieves a better classification quality.

A two-criteria optimization task can be formulated, where one criterion is the inference

time and the other is the recognition quality.

The selected nn architectures, suitable for the cas framework, belong to a Pareto set

of this two-criteria optimization task [143]. Such a set describes the non-dominated solu-

tions – where the results of specific approaches describe the different optimal trade-offs

among the objectives considered in the multi-criteria optimization task [148]. This ex-

periment seeks for the nn architectures that offer the best classification quality in a given

processing time – and conversely – that offer the shortest processing time for a specific

classification accuracy.

The experiment was carried out on static data, which was used for the training in the fol-

lowing experiments. The dataset was divided into five folds in stratified cross-validation.
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Architecture training was stopped at epoch 250 or when the mps for the training set ex-

ceeded a given threshold. The average results of inference time and classification quality

were analyzed. The experiment aimed to select five ordered architectures from the Pareto

set that meet the assumption that a higher-accuracy model is more computationally ex-

pensive.

The operation of 14 neural network architectures was tested, which were divided into

four families:

• Fully Connected (fc) – three architectures without convolutional layers with 2, 3,

and 4 fully connected linear layers.

• One Convolutional Layer (cnn1) – four architectures with one convolutional layer,

with depths of 5, 10, 15, and 20, respectively.

• Two Convolutional Layers (cnn2) – five architectures with two convolutional layers

with increasing filter depth.

• Three Convolutional Layers (cnn3) – two architectures with three convolutional

layers and increasing filter depth.

In each neural network architecture, a ReLU activation function was used, along with

max-pooling layers of size 2x2 and a kernel size of five in the case of cnn. In the first

experiment, the inference time of a specific architecture was measured in seconds on

a desktop computer for the entire testing set of samples.

Advantage Estimation Experiment The second experiment aimed to verify whether

the varying difficulty of the data affects the certainty of the classifier in the decision pro-

cess and whether changing the classifier to a more complex one in the case of greater

difficulty leads to an increase in classification quality. Based on this experiment’s re-

sults, it was possible to estimate the decrease in average classification quality compared

to the most complex architecture.

All considered network architectures were trained on an extracted static set to a specified

level of mps of 0.95 for the mnist set and 0.9 for the svhn set, or if such a value was

not achieved, to a maximum of 250 epochs in the case of the mnist set and 750 epochs

in the case of the svhn set. Those mps thresholds were selected based on preliminary

research according to the possibility of architectures to achieve a specified support level.

Stochastic Gradient Descend and the Cross Entropy loss function were used for opti-

mization.
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A total of ten thousand objects were used to train architectures for mnist, while for svhn,

there were 26 thousand objects in the training set. The weights were not fine-tuned dur-

ing the stream processing – following the Periodic holdout processing protocol. This was

motivated by two factors: (a) the decision to use the model’s outputs as a determinis-

tic metafeature that allows estimating the difficulty of the data, and (b) the operation

of a semi-synthetic generator, that samples the data with replacement – and there-

fore, there is a possibility of sample duplicates in the stream. The model evaluation

on samples already used to train the model would not allow for a reliable assessment

of the recognition quality. While the incremental update of the model’s parameters is

skipped, the method offers the flexibility necessary for the non-stationary data stream

processing by dynamic architecture switching.

As the application of hardware solutions is not among the main objectives of this disser-

tation, the detailed setup of the device used to estimate the time metrics was skipped.

The metrics values obtained on the device experiment were used to estimate the benefits

of employing the proposed framework in a real-life setting.

4.3.2 Experimental evaluation

This section presents and analyses the results of experiments performed on the proposed

cas approach. The first experiment aimed to select the appropriate components of the

framework. The second one evaluated the outcomes of the solution by using the proposed

ttal measure – highlighting the benefits in processing time while marginally limiting

the classification accuracy.

Neural Architecture Selection The first experiment evaluated 14 neural network

architectures in the environment of two baseline datasets used in the research. The two

considered components were the quality of classification and the inference time of a spe-

cific architecture.

Figure 4.12 shows the experiment’s results for the mnist and svhn datasets. The points

indicate the average results for the considered architectures. The solutions selected

for the pool used in the framework – belonging to the Pareto set – are marked in color.

The average classification quality is marked on the horizontal axis, and the inference time

for the entire test set in seconds is marked on the vertical axis. The type of a marker

indicates the model family – fc with circles, cnn1 with crosses, cnn2 with diamonds,

and cnn3 with squares.
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Figure 4.12: The results of the first experiment, presenting the accuracy of the evaluated models (hori-
zontal axis) and their inference time (vertical axis). The left side presents results for mnist dataset and
the right side for svhn. The solutions selected as suitable for the presented framework are marked with
colors and described in the legend.

It can be easily noticed that the simplest architectures without convolutional layers (fc)

are characterized by the lowest inference time but achieve very low classification quality.

Therefore, they were not considered when selecting architectures for further experiments.

Architectures with one convolutional layer have performed relatively well in the mnist

problem, achieving satisfactory recognition quality with low inference time. Architectures

with two convolutional layers performed best in terms of quality, but their inference time

was the highest. Architectures with three layers did not perform well in this problem,

which may be related to the relative simplicity of the task being solved. In the svhn

problem, cnn1 architectures achieved significantly lower quality results than cnn2 and

cnn3. Architectures with two convolutional layers dominate the Pareto set for this

dataset.

Advantage Estimation Experiment The following experiment was performed di-

rectly for the type of data under consideration – the streams with time-varying difficulty.

The main goal of this experiment was to determine the quality of classification of individ-

ual architectures and the proposed solution, as well as to verify the ability to determine

difficulty based on the designed mps metafeature, describing the classifiers’ certainty.

Figure 4.13 shows the averaged classification quality over time for selected streams gen-

erated from the mnist and svhn datasets. The rows of each figure represent a different

number of cycles of difficulty changes – from three in the first row to 25 in the last one.

The presented figures describe streams with a chunk size of 300 samples. The quality

achieved by subsequent architectures is marked in blue. Light color indicates the least
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Figure 4.13: The accuracy of classification with considered architectures (blue) and proposed cas
framework (red) for the data streams with the chunk size of 300. The results for mnist are shown on
the left and on the right for svhn. The darkest blue indicates the most complex cnn, and the lightest
blue – the one with lowest time complexity. The rows indicate the number of difficulty changes in the data
stream. The results were smoothed using a Gaussian filter.

complex, and dark color – the most complex architecture. The red color shows the quality

obtained by the cas framework.

In the case of both used datasets, it can be seen that changing the difficulty in the stream

affects the quality of the classification. In the case of the mnist set, all studied archi-

tectures achieve similar classification quality, and the difficulty of the recognition task

significantly impacts all of them. For streams generated based on svhn, there is greater

variability in the quality achieved by individual architectures, and the changes in accu-

racy are smoother.

Especially in the case of streams generated from mnist, it can be seen that the most

complex model was used at the moments of the most significant declines in quality.

For the second source dataset, the same relationship between stream difficulty and cas

quality is more challenging to observe – however, some adjustments of the selected model

dependent on the difficulty are visible.
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Figure 4.14: The selected architecture index over stream processing. The results for mnist are shown
on the left and for svhn on the right side. The solid red lines indicate the mean index of the selected
model, and the bright red area shows the range of one standard deviation from the mean. The black
markers show the median value of architecture selected in a given processing point. The rows indicate
the number of difficulty changes in the data stream.

The direct evaluation of the selected architectures is presented in Figure 4.14, showing

the indexes of selected architecture at a given processing point, averaged over the rep-

etitions. The value of zero on the vertical axis corresponds to selecting the simplest

architecture and the value of four – the most complex one.

In the case of the stream generated based on the mnist set – especially in the case

of the stream with three and five cycles of difficulty change – smooth transitions between

subsequent architectures can be seen, which are consistent with the dynamics of changes

in the stream. In the case of 10 and 25 cycles, the changes occurred with a high frequency,

so that the s hyperparameter, denoting the number of observations out of range before

an architecture change occurs, did not allow for a fast enough switching of architec-

tures. As a result, the full spectrum of available architectures was not used. In the case

of streams generated based on the svhn set, smooth transitions strongly correlated with

the variability of stream difficulty are no longer observed.

In this experiment, it was possible to observe that changing the difficulty of the processed

domain affects the quality of classification. Moreover, the results show that the difficulty



160 Chapter 4. Data stream classification

of the domain can be assessed using the metafeatures employing the certainty of the con-

sidered neural networks. Therefore, the observations motivate the choice of architecture

in the proposed framework based on mps.

Table 4.9: The results of the metrics express-
ing the time complexity of the selected neural net-
work architectures. The table presents results
for mnist and svhn datasets and all models se-
lected for those problems.

model macc latency [ms]

m
n
is
t

CNN1_5 83 175 10.821

CNN1_10 166 340 15.230

CNN2_10_15 394 955 25.240

CNN1_20 332 670 25.031

CNN2_25_40 1 987 995 83.646
sv

h
n

CNN1_5 310 741 25.012

CNN2_5_10 429 336 29.783

CNN2_10_15 980 183 49.257

CNN2_20_30 2 708 821 98.771

CNN2_25_40 4 011 611 146.475

The next step of the experimental evaluation

was to estimate the benefits of using the pro-

posed approach in terms of the time and

computational complexity of the final solu-

tion. Table 4.9 presents results of time com-

plexity for mnist and svhn datasets and

specific architectures selected for those prob-

lems. The processing times were measured

for a single instance of a dataset.

It was expected that for all considered archi-

tectures within a base dataset (mnist and

svhn), the measures describing the model

operation would be in ascending order. Such

an observation would confirm the general as-

sumption that a higher accuracy model is more computationally expensive – a more

complex architecture should show a longer inference time. Such a phenomenon was not

observed in the case of two architectures – CNN2_10_15 and CNN1_20 for mnist in latency

metric. Such inconsistency may result from the specifics of model operation on a hard-

ware device, as the ordering of architectures was done using the time measurement on

the desktop computer. This could be avoided by conducting an architecture selection

experiment on the hardware device.

The final results presenting classification quality, processing time, and ttal measure are

presented in Table 4.10 for all generated data streams.

The first columns describe the data stream – a combination of the original dataset,

chunk size (cs), and number of cycles of difficulty variation. The following columns

show the mean results of accuracy, macc, and latency for the proposed cas approach.

The latency in the presented table describes the processing of the entire data chunk.

The results include the difference between the metric value for the reference method

in parentheses, with the reference indicating the most complex of the considered archi-

tectures (CNN2_25_40 for both base datasets). The last column shows the ttal measure.

The variability in the ttal measure of two types of data streams based on two signifi-

cantly different datasets results mainly from the relative accuracy loss for these two prob-

lems. In the case of mnist-based streams, the architecture selection with cas framework
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Table 4.10: The table showing the average result from a second experiment for the streams generated
based on mnist and svhn datasets. The columns describe the metrics for cas with a difference from
the reference architecture – the best one in a considered pool – in parenthesis. The final column presents
the ttal measure.

data stream acc latency [s] macc (109) ttal

m
n
is
t

C
S
50

3 cycles 0.938 (-0.002) 1.497 (-2.685) 0.027 (-0.072) 203.507
5 cycles 0.938 (-0.002) 1.470 (-2.713) 0.026 (-0.073) 189.081

10 cycles 0.938 (-0.002) 1.241 (-2.941) 0.020 (-0.080) 258.983
25 cycles 0.936 (-0.003) 1.164 (-3.018) 0.018 (-0.082) 183.636

C
S
15
0 3 cycles 0.938 (-0.002) 4.481 (-8.066) 0.083 (-0.215) 220.977

5 cycles 0.941 (-0.002) 3.639 (-8.908) 0.059 (-0.239) 255.219
10 cycles 0.938 (-0.003) 3.074 (-9.473) 0.042 (-0.256) 234.464
25 cycles 0.936 (-0.003) 3.120 (-9.427) 0.044 (-0.255) 174.711

C
S
30
0 3 cycles 0.938 (-0.002) 8.467 (-16.627) 0.154 (-0.443) 200.468

5 cycles 0.940 (-0.002) 7.963 (-17.131) 0.139 (-0.457) 234.060
10 cycles 0.940 (-0.003) 5.441 (-19.653) 0.070 (-0.527) 221.728
25 cycles 0.936 (-0.004) 5.901 (-19.193) 0.080 (-0.516) 163.837

C
S
50
0 3 cycles 0.936 (-0.002) 15.007 (-26.816) 0.280 (-0.714) 193.112

5 cycles 0.938 (-0.002) 14.264 (-27.559) 0.258 (-0.736) 199.600
10 cycles 0.937 (-0.003) 9.567 (-32.256) 0.127 (-0.867) 211.779
25 cycles 0.934 (-0.004) 9.821 (-32.002) 0.133 (-0.861) 152.490

sv
h
n

C
S
50

3 cycles 0.806 (-0.018) 3.665 (-3.659) 0.089 (-0.111) 12.714
5 cycles 0.805 (-0.018) 3.635 (-3.688) 0.088 (-0.112) 12.926

10 cycles 0.802 (-0.020) 3.443 (-3.881) 0.082 (-0.118) 12.944
25 cycles 0.802 (-0.020) 3.346 (-3.978) 0.079 (-0.121) 13.221

C
S
15
0 3 cycles 0.801 (-0.023) 8.878 (-13.093) 0.201 (-0.401) 14.316

5 cycles 0.800 (-0.023) 8.951 (-13.020) 0.204 (-0.398) 14.265
10 cycles 0.800 (-0.022) 9.251 (-12.720) 0.213 (-0.389) 13.793
25 cycles 0.801 (-0.022) 9.108 (-12.863) 0.209 (-0.393) 14.232

C
S
30
0 3 cycles 0.807 (-0.017) 23.360 (-20.582) 0.579 (-0.625) 11.477

5 cycles 0.806 (-0.018) 23.148 (-20.795) 0.572 (-0.632) 11.518
10 cycles 0.805 (-0.018) 22.970 (-20.972) 0.566 (-0.637) 11.862
25 cycles 0.807 (-0.016) 25.706 (-18.236) 0.652 (-0.551) 10.024

C
S
50
0 3 cycles 0.803 (-0.021) 33.836 (-39.402) 0.804 (-1.201) 12.605

5 cycles 0.806 (-0.019) 37.800 (-35.438) 0.929 (-1.077) 11.354
10 cycles 0.807 (-0.017) 40.576 (-32.661) 1.017 (-0.989) 10.701
25 cycles 0.803 (-0.019) 36.881 (-36.357) 0.900 (-1.106) 11.631

resulted in a drop in accuracy of only fractions of a percent, while in the case of svhn

– this difference was about two percent. Meanwhile, the difference in processing time

expressed in latency and macc remains similar across those two problems.

The results showed that based on a model’s certainty measure and switching architectures

in the proposed cas framework, it is possible to minimize the processing time by appropri-

ate architecture selection without a meaningful drop in classification quality. This benefit

was especially visible for the simpler mnist-based data streams, where the drop in clas-

sification accuracy at a level of fractions of a percent was associated with the decrease

in estimated latency by almost 200% and in estimated macc by over 280%.
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Conclusions and future works

This dissertation addresses the employment of metafeature analysis in non-stationary

data stream processing, focusing on the prominent tasks of concept drift detection and

data stream classification. The conducted research revealed the significance of consider-

ing the data distribution non-stationarity when processing data streams and highlighted

the potential utility of metafeatures in this research area. As a result of the performed

studies, three methods of concept drift detection and three methods for data stream

classification were proposed. The methods were evaluated under a wide range of possible

conditions impacting the changes observed in a data stream and the difficulty of the recog-

nition task.

The results of the work presented in this dissertation allow to substantiate the research

hypothesis:

It is possible to propose methods employing metafeature analysis for con-

cept drift detection and classification of the non-stationary data streams that

demonstrate significantly better or statistically dependent recognition quality

compared to state-of-the-art approaches.

All proposed approaches showed the recognition quality statistically significantly better

or equivalent to identified reference methods or offered additional benefits in data stream

processing tasks. The effects of the individual research objectives are discussed below.
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1. Proposal of an implicit concept drift detector analyzing the time vari-
ability of the classification task complexity measures calculated for dis-
joint data chunks.

This objective was achieved by proposing the Complexity-based Drift Detector (c2d)

method, which uses complexity measures to identify concepts. This method uses an

ensemble of one-class classifiers to recognize concepts based on metafeatures calculated

for separate chunks in the data stream. The research was performed on synthetic streams,

allowing for a comparison of the proposed approach with a wide range of reference drift

detectors using three drift detection error measures. A proposed method was also utilized

for concept drift detection in real-world data streams. Although the qualitative assess-

ment of its performance was not possible, a visualization of the variability of individual

problem complexity measures allowed for explanation of the detections. Section 3.1 de-

scribed the proposed approach and the conducted experiments.

The results of the work on the Complexity-based Drift Detector were published in the Neu-

rocomputing journal [118].

2. Proposal of an implicit concept drift detector analyzing drift magni-
tude measures integrated using the ensemble learning paradigm.

The motivation for defining this objective was the work by Micevska et al. [163], show-

ing the potential of concept drift magnitude measures identifying changes in individual

features. The goal was met by the proposition of Statistical Drift Detection Ensem-

ble (sdde), a method using drift magnitude and conditioned marginal covariate drift

metafeatures calculated on problem subspaces. The measures for specific features were

integrated using an ensemble mechanism, allowing for effective drift detection. In the ex-

tensive research on synthetic data streams, the method showed a high detection quality

compared to state-of-the-art methods. Section 3.2 described the proposed approach and

the conducted experiments.

The results of the work on the Statistical Drift Detection Ensemble were published

in the Knowledge-Based Systems journal [126].
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3. Proposal of an unsupervised drift detection method analyzing the dis-
tribution of activations from the last layer of a deterministic neural
network.

The objective was achieved by the proposition of Parallel Activations Drift Detector

(padd). The proposed approach used a series of transformations offered by a de-

terministic and untrained neural network and used its output as metafeatures, allow-

ing effective detection in an unsupervised setting. This approach was tested on high-

dimensional streams, where the prospect for effective use of the neural networks was

identified. The proposed approach was compared with supervised and unsupervised

methods. The results showed the high quality of concept drift recognition and con-

firmed that it states a valuable addition to the pool of existing state-of-the-art methods.

Section 3.3 described the proposed approach and the conducted experiments.

The research results were presented at the Discovering Drift Phenomena in Evolving

Landscape workshop, held as part of the International Conference on Knowledge Discov-

ery and Data Mining (kdd 2024) [122].

4. Proposal of an ensemble method for classification of data streams an-
alyzing the distributions of statistical metafeatures calculated for sub-
sequent data chunks to identify recurring concepts.

This objective was achieved by proposing theMetafeature Concept Selector (mcs) method.

The method used a set of statistical metafeatures calculated on disjoint chunks of data

streams. These metafeatures described a new metaproblem, in which the goal is to assign

an identifier to a recurring concept using one-class classifiers based on the metafeatures

of a given chunk. The proposed solution was evaluated on a wide pool of streams with

a recurring concept. The method has been integrated with three commonly used meth-

ods of classifying data streams, showing its ability to increase recognition quality in most

studied cases. Section 4.1 described the proposed approach and the conducted experi-

ments.

A review study conducted to select appropriate statistical measures and investigate

the potential of metafeatures in the concept identification task has been published

in the Machine Learning journal [121]. The Metafeature Concept Selector method was

presented at an IncrLearn 2024 workshop, held as part of the IEEE International Con-

ference on Data Mining (icdm 2024) [120].
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5. Proposal of a classification method for compensating the bias of base-
line classifiers when processing the data streams with dynamic changes
in imbalance ratio, using the prior probability estimated based on the
metafeatures of the processed data chunk.

The objective was achieved by developing Prior Probability Assisted Classifier (2pac)

method, which uses prior probability estimation to compensate the classifier’s original

predictions in dynamically imbalanced data streams. The research used three approaches

to estimating the prior probability based on metafeatures calculated for previous chunks

of data. Dynamic Statistical Concept Analysis (dsca) method was identified as a valu-

able estimation method, which works particularly well in the case of discrete dynamically

imbalanced data streams. The research to validate the effectiveness of the 2pac method

used data streams with various characteristics of changes in the imbalance ratio. In all

evaluated streaming environments, the proposed 2pac approach resulted in a statistically

significant increase in the average recognition quality compared to the baseline classifier.

Section 4.2 described the proposed approach and the conducted experiments.

The results of the work carried out to achieve the above objective were published

in the proceedings of the International Joint Conference on Neural Networks in 2021

(ijcnn 2021), presenting the Dynamic Statistical Concept Analysis [124] method for prior

probability estimation, and in 2022 (ijcnn 2022), presenting the Prior Probability As-

sisted Classifier [125].

6. Proposal of a framework for processing data streams with a time-
varying level of difficulty, allowing for the selection of an appropriate
neural network architecture based on the analysis of the model’s cer-
tainty.

The objective was achieved by the proposal of the Certainty-based Architecture Selec-

tion Framework (cas). In the environment of the time-varying level of problem dif-

ficulty, the proposed method searches for the appropriate architecture from the pool

of pre-trained models, bringing benefits in processing time without a significant decrease

in classification quality. The presented solution did not directly intend to improve the

classification quality obtained by the model but shifted the focus to a trade-off between

the usage of computational resources and the recognition quality. The objective ex-

tended the scope of the research, aiming to broaden the scope of metafeature’s usage

in non-stationary data streams.
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The metafeatures used in the approach are defined based on the deterministic output

of a pretrained neural networks, minimizing the computational overhead associated with

estimating the problem’s difficulty. The research used semi-synthetic computer vision

data streams, where the original images were sampled according to their estimated dif-

ficulty. Section 4.3 described the proposed approach and the conducted experiments.

The results of the work on the Certainty-based Architecture Selection Framework were

published in the IEEE Access journal [123].

Future directions

The methods developed in this dissertation can potentially be extended, increasing their

reliability and utility. Each of the proposed concept drift detection methods, a necessary

element for the proper operation of the method was the selection of hyperparameters

indicating its sensitivity to data stream changes. A beneficial direction for future research

would be the automatic selection of method configuration, allowing to avoid the need

for its tuning for the considered problem.

A similar improvement can be implemented in the mcs method, in which the detec-

tion of concept drifts is used indirectly. The operation of the method also depends

on the hyperparameters indicating the sensitivity to changes. The mcs method can be

further developed with a more complex mechanism of integrating the responses of classi-

fier ensemble members, allowing the method to be used in gradual drifts – when the mo-

ment of co-occurrence of objects from two consecutive concepts is visible. The 2pac

method can be extended with a mechanism for identifying the types of prior probability

changes in the data stream – so that the best estimation method is dynamically selected.

In the cas method, it is worth considering the automatic adjustment of the switching

thresholds of individual models. A valuable extension of the method would be to investi-

gate other functions for assessing the difficulty of the problem that would cause minimal

computational overhead.

Finally, the future works, after the thorough examination of the existing vulnerabilities

observed in the data streams, can focus on other types of data non-stationarity – such

as anomaly detection, novel class discovery, and open set recognition. All those potential

future research areas extend the vulnerabilities of processing methods further beyond

the canonical concept drift.
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Publications

The selected parts of the methods presented in this dissertation have already been pub-

lished in:

• Komorniczak, J., Zyblewski, P., Ksieniewicz, P. (2021, July). Prior probability

estimation in dynamically imbalanced data streams. In 2021 International Joint

Conference on Neural Networks (ijcnn) (pp. 1-7). ieee. (core B, mnisw 140)

• Komorniczak, J., Zyblewski, P., Ksieniewicz, P. (2022, July). Imbalanced data

stream classification assisted by prior probability estimation. In 2022 Interna-

tional Joint Conference on Neural Networks (ijcnn) (pp. 1-8). ieee. (core B,

mnisw 140)

• Komorniczak, J., Zyblewski, P., Ksieniewicz, P. (2022). Statistical drift detection

ensemble for batch processing of data streams. Knowledge-Based Systems, 252,
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• Komorniczak, J., Ksieniewicz, P. (2024). On metafeatures’ ability of implicit con-

cept identification. Machine Learning, 113(10), 7931-7966. (if 4.3, mnisw 140)

• Komorniczak, J., Puślecki, T., Ksieniewicz, P., Walkowiak, K. (2024). Certainty-

based Neural Network Architecture Selection Framework for TinyML Systems.

ieee Access. (if 3.4, mnisw 100).
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Parallel Activations of Neural Network. Presented on delta Workshop, kdd 2024.

(core A*, mnisw 200)

• Komorniczak, J., Ksieniewicz, P. (2024, December). Classification of Recurrent

Concepts with Metafeature-based Model Selection. In 2024 IEEE International

Conference on Data MiningWorkshops (ICDMW) (pp. 213-220). IEEE. (core A*,

mnisw 200)

Moreover, for the conducted research, the problexity Python programming library was

developed, allowing for evaluation of the complexity metafeatures of supervised machine

learning tasks. The package was published as:

• Komorniczak, J., Ksieniewicz, P. (2023). problexity—An open-source Python li-

brary for supervised learning problem complexity assessment. Neurocomputing,

521, 126-136. (if 5.5, mnisw 140)
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Besides its usage in the research presented in this dissertation, the developed package

allowed to investigate the relations between problem complexity and classification accu-

racy. The effects of such work have been published in:

• Komorniczak, J., Ksieniewicz, P., Woźniak, M. (2022, October). Data complex-

ity and classification accuracy correlation in oversampling algorithms. In Fourth

International Workshop on Learning with Imbalanced Domains: Theory and Ap-

plications (pp. 175-186). pmlr. (core A, mnisw 140)

• Komorniczak, J., Ksieniewicz, P., Woźniak, M. (2023, June). Analysis of the Pos-

sibility to Employ Relationship Between the Problem Complexity and the Clas-

sification Quality as Model Optimization Proxy. In International Conference on

Computer Recognition Systems (pp. 71-82). Cham: Springer Nature Switzerland.

(mnisw 20)

For reliable method evaluation, the semi-synthetic data stream generation method was

developed, which was published in:

• Komorniczak, J., Ksieniewicz, P. (2022). Data stream generation through real

concept’s interpolation. In esann. (core B, mnisw 70)

The generator is now part of a stream-learn package [133], which was extended and

maintained during the preparation of this dissertation.

During the research considering non-stationary data stream processing additional works

in the area of open set recognition were conducted. The mentioned field shares simi-

larities with non-stationary data streams in terms of the non-predictability of the open

environment. This interest and investigation of possible solutions resulted in the follow-

ing publications:

• Komorniczak, J., Ksieniewicz, P. (2024). torchosr—A PyTorch extension package

for Open Set Recognition models evaluation in Python. Neurocomputing, 566,

127047. (if 5.5, mnisw 140)

• Komorniczak, J., Ksieniewicz, P. (2024). Distance profile layer for binary classifi-

cation and density estimation. Neurocomputing, 579, 127436. (if 5.5, mnisw 140)

• Komorniczak, J., Ksieniewicz, P. (2025). Taking class imbalance into account

in open set recognition evaluation. Neural Computing and Applications, 1-15.

(if 4.5, mnisw 100)
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During the research for this dissertation, other works regarding text analysis, fake news

detection, and data stream processing have been conducted, resulting in the following

co-authored publications:

• Komorniczak, J., Wojciechowski, S., Klikowski, J., Kozik, R., Choraś, M. (2023,
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• Kątek, G., Gackowska, M., Komorniczak, J., Ksieniewicz, P., Kozik, R., Pawlicki,

M., Choraś, M. (2024, April). Involving Society to Protect Society from Fake

News and Disinformation: Crowdsourced Datasets and Text Reliability Assess-

ment. In Asian Conference on Intelligent Information and Database Systems (pp.

384-395). Singapore: Springer Nature Singapore. (core B, mnisw 70)

• Kozik, R., Kątek, G., Gackowska, M., Kula, S., Komorniczak, J., Ksieniewicz,

P., Choraś, M. (2024). Towards explainable fake news detection and automated

content credibility assessment: Polish internet and digital media use-case. Neuro-

computing, 608, 128450. (if 5.5, mnisw 140)

• Wojtachnia, K., Komorniczak, J., Ksieniewicz, P. (2023, June). Incremental Ex-

treme Learning Machine for Binary Data Stream Classification. In International

Conference on Computer Recognition Systems (pp. 35-44). Cham: Springer Na-

ture Switzerland. (mnisw 20)

Finally, at the time of finalizing this dissertation, there are two publications ongoing

the review process:

• Komorniczak, J., Zyblewski, P., Ksieniewicz, P., Structuring the Processing Frame-

works for Data Stream Evaluation and Application, submitted to Pattern Recogni-

tion Journal in November 2024.

• Komorniczak, J. Describing Nonstationary Data Streams in Frequency Domain,

submitted to Knowledge and Information Systems Journal in February 2025.
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