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Abstract
This thesis focuses on securing some protection aspects of communication in different net-
work models. For the popular SINR model, different algorithms are presented for blocking
the wireless signal at some chosen fragments of space, called restricted areas, using the
protective jamming. This approach utilizes jamming stations, which generate interference
that floods the restricted areas, blocking the signal of the network being protected. The
algorithms are designed to maximize the coverage of the network - the value that allows
measuring the negative impact of jamming on the network reception zones outside of re-
stricted areas. Moreover, as the secondary goal, they target minimizing energy usage by the
jamming networks. The solutions for this problem are presented for 1D and 2D versions of
the network model.

In the 1D SINR part, the thesis presents multiple algorithms for the uniform network
model, wherein all stations transmit with the same power. Two basic algorithms apply
a positioning scheme for the restricted area represented by one or two barrier points but
with some limited guarantees about the coverage effectiveness of the solution. The precise
positioning algorithm is also described, which applies the procedure with a potentially high
number of iterations to place the jamming stations but guarantees almost perfect coverage
of the solution. For the 1D non-uniform model, there are two algorithms. One is based on
single-side jamming with a high-power jamming station. The second one utilizes the noisy-
dust strategy to position many jamming stations with relatively small power - effectively
flooding the restricted area with interference. This algorithm has the property that with
the decrease of jamming station power and increase of their number, the overall energy
utilization converges to zero. A variant of the noisy algorithm is presented, which simplifies
the positioning scheme but increases energy utilization.

The thesis defines particular types of restricted areas for the 2D SINR model, wherein
the problem complexity increases substantially. For the uniform 2D networks, an algorithm
is presented that allows for jamming the restricted areas surrounding the spaces shaped
as convex polygons. It presents how to utilize this algorithm for the areas surrounding
circular shapes and the experimental analysis of its effectiveness. The noisy-dust extension
is presented for the non-uniform model, wherein stations with small powers are positioned
inside the hexagonal grid, tiling the restricted areas. The algorithm shows its 1D version
property of reducing the overall energy usage of the jamming network with a decrease in
the jamming stations’ powers, arbitrarily close to zero. Coverage, measured experimentally,
also shows the high effectiveness of this algorithm.

The thesis investigates the problem of hiding the number of stations executing some
types of protocols for the single-hop networks in the beeping model. The size-hiding prop-
erty is defined, based on the popular differential privacy, along with the universal algorithm,
which can be used as a pre-processing step for chosen types of protocols. The limitations
of this universal algorithm are discussed and compared with the size-hiding properties of
an algorithm from the literature.

The aforementioned problem is generalized in the last part of the thesis, wherein pre-
liminary studies for hiding network details and executed algorithms facing an adversary
observing the execution in a multi-hop network are presented. We present an extensive
taxonomy of the considered model, including the capabilities of the adversary and network
configurations. We also presented two general algorithms for chosen model settings.
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Streszczenie
Rozprawa skupia się na zapewnianiu bezpieczeństwa pewnych aspektów komunikacji

dla różnych modeli sieci. Dla popularnego modelu SINR zaprezentowane są różne algo-
rytmy blokujące sygnał radiowy dla wybranych fragmentów przestrzeni, nazwanych ob-
szarem ograniczonym, z wykorzystaniem techniki nazwanej zagłuszaniem ochronnym. To
podejście wykorzystuje dodatkowe stacje, które generują zakłócenia, mające na celu pokryć
cały obszar ograniczony i zablokować sygnał chronionej sieci na tym obszarze. Algorytmy są
zaprojektowane tak, aby jednocześnie maksymalizować pokrycie sieci, czyli wartość, która
pozwala mierzyć negatywny wpływ zagłuszania na sieć poza obszarami ograniczonymi.
Ponadto, jako dodatkowy cel, algorytmy starają się minimalizować wykorzystanie energii
przez sieć zakłócającą. Rozwiązania dla tego problemu są przedstawione dla modelu jedno
oraz dwuwymiarowego sieci SINR.

Dla modelu SINR w 1D rozprawa prezentuje kilka algorytmów dla jednolitego modelu
sieci, gdzie wszystkie stacje transmitują z identyczną mocą. Dwa podstawowe algorytmy
wykorzystują specjalny schemat pozycjonowania stacji dla obszarów ograniczonych reprezen-
towanych przez jeden lub dwa punkty ograniczające, ale z pewną gwarancją dotyczącą
wpływu ich rozwiązań na pokrycie. Opisany jest również precyzyjny algorytm pozycjonu-
jący, który wykorzystując iteracyjną procedurę w celu ustawienia stacji zakłócających,
gwarantuje niemal idealną wartość pokrycia. Dla modelu 1D z niejednolitymi stacjami
przedstawione są dwa algorytmy. Jeden bazuje na wykorzystaniu jednej stacji o dużej mocy,
aby zapewnić jednostronne zagłuszanie. Drugi algorytm wykorzystuje strategię noisy-dust,
która zakłada wykorzystanie bardzo dużej liczby stacji zagłuszających o małej mocy —
poprzez poprawne ich ustawienie, mogą efektywnie pokryć zakłóceniami wybrane obszary.
Ten algorytm umożliwia również redukcję zużycia energii, która maleje razem z mocą poje-
dynczych stacji i wzrostem ich liczby w celu zagłuszania danego obszaru. Przedstawiony jest
również wariant algorytmu, który kosztem większego zużycia energii umożliwia łatwiejsze
pozycjonowanie stacji.

Dla modelu 2D zdefiniowane są specjalne typy obszarów ograniczonych, ze względu
skomplikowanie problemu dla dowolnych kształtów. Dla jednolitych sieci 2D przedstaw-
iony jest algorytm umożliwiający zagłuszanie obszarów ograniczonych zdefiniowanych jako
strefy otaczające różne wypukłe wielokąty. Przedstawiona jest metoda, jak wykorzystać
ten algorytm, gdy strefy bazują na kołach oraz przedstawiona jest eksperymentalna analiza
efektywności tego algorytmu. Dla modelu niejednolitego przedstawiony jest algorytm noisy
dust, który ponownie bazuje na stacjach o niewielkich mocach, ale tym razem układa je
wewnątrz sześciokątów, które tworzą siatkę wypełniającą obszary ograniczone. Ten algo-
rytm również dla modelu 2D wykazuje własność redukcji zużycia energii stacji zakłócających
razem z ich mocą i wzrostem ilości stacji, umożliwiając uzyskanie niemal zerowego zużycia
energii, oraz dużej efektywności względem wartości pokrycia.

W rozprawie analizowany jest również problem ukrywania liczby stacji dla sieci typu
single-hop z wykorzystującej tzw. beeping model. Zdefiniowana jest własność ukrywania
rozmiaru sieci (size-hiding) oparta o popularną koncepcję prywatności różnicowej. Przed-
stawiamy także uniwersalny algorytm, który może być wykorzystany jako wstępny krok dla
wybranych typów protokołów w celu zapewnienia własności ukrywania rozmiaru. Przed-
stawione są ograniczenia tego algorytmu oraz jego efektywność jest porównana z własnoś-
ciami ukrywania rozmiaru sieci wybranych, klasycznych algorytmów.

Podobny problem jest analizowany w kontekście sieci multi-hop. Przedstawiona jest
wstępna analiza tego bardziej skomplikowanego modelu, razem z taksonomią możliwych
modeli adwersarza i konfiguracji sieci. Przedstawione zostały dwa uniwersalne algorytmy
dla wybranych założeń modelu oraz przeprowadzona została analiza ich własności.
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Chapter 1

Introduction

In recent decades, network communication has been growing rapidly. Increasing demand
for more stable and flexible connectivity resulted in the global spread of distributed and
wireless communication systems. The Internet, which started as a project targeting the
military and research usage [1], has grown steadily over the last years. With 4.95 billion
users in 2022 (accounting for 62.5% of the world population), it more than doubled its
users’ number of 2.177 billion from 2012 [2]. Together with the Internet, the popularity
of wireless technologies was increasing. The widespread of mobile cellular networks and
Wi-Fi networks allows for convenient communication and access to the network even in
very remote localizations - the 4G technology global population coverage surpassed 85% at
the end of 2021 and is expected to reach 95% by 2028 [3].

Wireless communication impacts many industries [4]. For automotive, it allows for more
comfortable user interactions with the vehicle and infrastructure - by providing navigation
services, a possibility for better traffic management, automated toll collection systems,
and even better recreational services access, like music streaming from the smartphone to
the vehicle audio systems [5]. From the maintenance perspective, it allows easy access
to diagnostic data through wireless sensors. It provides enhanced security services, like
anti-theft systems or notifying emergency services about accidents. It is also crucial for
autonomous vehicle development [6] or other related technologies, like VANET [7, 8].

In healthcare, the wireless networks can be used for medical sensors to monitor the
patient’s well-being, support large-scale medical studies by efficiently collecting data in
non-laboratory environments, or enable communication with implants [9]. It might allow
for better emergency support by better communication with the patient and acquiring the
crucial data required for treatment earlier [10]. It can also give better access to telemedicine
or support the rehabilitation process by enabling VR and AR devices [11]. Easy access to
mobile technologies helped in the recent outbreak of COVID-19 to monitor the disease
spread and target the help efforts in the places needing it the most [12, 13].

It is also utilized in manufacturing [14], military [15], agriculture [16], and many other
fields. It impacts people in different life domains, like social life and recreation [17]. To
comply with the population needs, many new technologies and concepts emerged in recent
years, like Internet of Things (IoT) [18], 5G [19, 20] and even smart cities [21], among
others.

All these technologies and uses of wireless networks have high requirements regarding the
security and privacy of communication. Many threats exist, like intercepting the transferred
data or interfering with the transmissions [22]. In some scenarios, even the knowledge that
some wireless communication medium was used can expose the user to danger [23, 24]. It
is crucial to analyze such threats and design solutions to prevent the potential adversary
from overhearing the communication or manipulating its content.

This thesis presents a set of protocols for protecting some aspects of communication
safety and privacy in different network models with limited resources. The first part is
dedicated to the popular Signal to Interference & Noise Ratio model [25]. It imitates real
wireless networks by decreasing the signal with distance and incorporating interference and
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ambient noise to check if the signal reaches specific fragments of space. The protocols
presented in this part focus on positioning special jamming stations, which block the signal
in chosen fragments of space, preventing the adversary from receiving the signal. The model
is defined for a D-dimensional space, but the presented protocols are dedicated to 1D and 2D
spaces. Inside these two sub-groups, they are designed for uniform and non-uniform network
configurations and employ a range of different positioning schemes, which might be optimal
in different scenarios. One of the main requirements for designing these protocols was to
reduce the unnecessary impact on the space where transmission is allowed - as jamming
introduces additional interference, the inaccurately positioned and configured stations could
prevent critical communication where they should not. Additionally, as the secondary goal,
the energy required by the jamming network is analyzed and minimized. Notably, a group
of noisy dust algorithms, introduced in this thesis, allows for a very effective reduction of
energy usage by increasing the number of used jamming stations.

The second part of the thesis focuses on the single-hop radio networks and beeping
model. The protocols there are focused on hiding the size of the network under the size-
hiding property - defined in this thesis and based on popular differential privacy [26]. The
significant contribution from this part is the pre-processing algorithm, which allows hiding
the number of communicating stations by faking the existence of some additional, dummy
stations.

Finally, the extended problem of hiding the parameters of a network and the executed
algorithm is analyzed under the multi-hop radio network model. The hiding property is
defined for this type of network along with a preliminary listing of possible network com-
munication channel types, adversary types, and a taxonomy of other properties that can
be used for analyzing the hiding properties of multi-hop networks. Two general algorithms
with a formal analysis of their properties are also presented.

Thesis structure
This thesis is split into six chapters.

Chapter 1 (Introduction) introduces the motivation behind the analyzed topics, broadly
presents the main contributions from the thesis, and describes its structure.

Chapter 2 (SINR network model) describes the SINR model and related notation.
It defines the protective jamming problem in detail and presents the literature related to
SINR networks and jamming.

Chapter 3 (Jamming in 1D SINR) presents protocols for 1D network. It starts with
simple, uniform network positioning schemes, which do not have any extensive algorith-
mic requirements and provide protection without any considerable impact on protected
stations’ communication outside of restricted areas. Then, the precise jamming algorithm
for a uniform network, which places stations arbitrarily close to their optimal positions, is
presented. After that, two protocols dedicated to non-uniform networks are described. The
second introduces the noisy dust scheme. Chapter is based on our paper [27]. Positioning
schemes from this section are listed in the table below:

Section Uniformity # Jamm. stat. Restricted area Description

Sec. 3.1 uniform 1 (b,∞) Theorem 3
Sec. 3.2 uniform 2 (−∞, bl) ∪ (br,∞) Theorem 4
Sec. 3.3 uniform 2 (−∞, bl) ∪ (br,∞) Theorem 5
Sec. 3.4 non-uniform 1 (b,∞) Theorem 7

Sec. 3.5.2 non-uniform multi (b,∞) Theorem 9
Sec. 3.5.3 non-uniform multi (b0, b1) Theorem 10
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Chapter 4 (Jamming in 2D SINR) analyzes protocols in 2D space. The problem
is refined for specific 2D configurations, and the solutions for uniform and non-uniform
(using a noisy dust scheme) networks are presented. Chapter is based on our paper [28].
Positioning schemes from this section are listed in the table below:

Section Uniformity # Jamm. stat. Restricted area Description

Sec. 4.2.2 uniform 1 per polygon side complement of a polygon Theorem 12
Sec. 4.2.3 uniform multi complement of a disk Fact 2
Sec. 4.3 non-uniform multi arbitrary 2D shape Theorem 14

Chapter 5 (Size-hiding protocols in Beeping Model) introduces the formal model of
size-hiding execution for the single-hop radio networks beeping model. It presents the uni-
versal protocol for hiding a count of its participants, which can be used as a pre-processing
phase for other protocols. The Green Leader Election [29] is analyzed in relation to its
size-hiding capabilities. Chapter is based on our paper [30].

Chapter 6 (Information hiding in multi-hop networks) presents the preliminary re-
search of the hiding properties for multi-hop radio networks. Basic network configurations
and adversary models are presented. Moreover, two universal algorithms are analyzed for
their hiding properties. Chapter is based on our paper [31].

Chapter 7 (Conclusion) discusses the summary of presented algorithms and the possible
research paths extending the analyzed problems.

Author contribution
The content of the thesis is largely based on the following publications:

• [27] Exact and Efficient Protective Jamming in SINR-based Wireless Networks, D. Bo-
jko, M. Klonowski, D. R. Kowalski, M. Marciniak, 29th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2021.
Author contribution:

– design of 1D algorithms for one-side jamming in the uniform model,

– concept and design of the noisy dust algorithm in the non-uniform model,

– simulations, testing, and experimental analysis of the uniform model one-side
jamming, precise two-side jamming, and noisy dust algorithms.

• [28] Efficient Protective Jamming in 2D SINR Networks, D. Bojko, M. Klonowski,
D. R. Kowalski, M. Marciniak, 29th International European Conference on Parallel
and Distributed Computing (EuroPar), 2023.
Author contribution:

– defining the different 2D model configurations,

– design and analysis of the uniform model algorithm for jamming in a 2D uniform
network and simulations of this model for multiple configurations,

– design and analysis of noisy-dust algorithm extension into 2D, with algorithm
simulations and zero-energy property analysis.

• [30] On Size Hiding Protocols in Beeping Model, D. Bojko, M. Klonowski, M. Marciniak,
P. Syga, 29th International European Conference on Parallel and Distributed Com-
puting (EuroPar), 2023.
Author contribution:
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– analysis of different approaches to hiding the size of the beeping model network
under different algorithms,

– Experimental analysis of the Universal Algorithm and the Green Leader Election
algorithm.

• [31] Preliminary Report: On Information Hiding in Multi-Hop Radio Networks, M. Klonowski,
M. Marciniak, arXiv.org, 2023. Author contribution:

– literature research about different models, taxonomy, and algorithms for multi-
hop networks,

– construction of the first universal algorithm,

– construction of the second algorithm and its initial analysis.
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Chapter 2

SINR network model

The SINR (Signal to Interference & Noise Ratio) is a quantity that can be used to measure
the quality of wireless communication. It considers both the decay of the signal power with
an increase in distance from the transmitter and the interference of the other transmitters. It
is believed to model the radio network reception zones realistically [32]. It can be generalized
for any network dimension and allows configuring different parameters but still encapsulates
it into a single equation, allowing for a precise analysis of algorithms. Although it has a
simple form, the analysis can get very complicated even for a seemingly small number
of stations and basic configuration parameters, as will be presented in the following thesis
chapters. In this chapter, the basic geometric notation is introduced in Section 2.1, followed
by a formal model of a SINR network in Section 2.2. The major problem analyzed in this
thesis, concerning SINR, is presented in Section 2.3 and the SINR-related literature is
analyzed in Section 2.4.

2.1 Basic notation
Consider the D-dimensional Euclidean space. A point is denoted as:

p = (p1, . . . , pD) ∈ RD .

The point notation for D = 1 is simplified to just p = p1 for readability. A D-dimensional
Euclidean metric d is defined for points x = (x1, . . . , xD) and y = (y1, . . . , yD) as:

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xD − yD)2 .

A vector is denoted as:
−→v =

−−−−−−−−→
(v1, . . . , vD) .

A line segment between points p0 ∈ RD and p1 ∈ RD is denoted as:

(p0, p1) .

A D-ball is defined for a radius r and a point p ∈ RD as:

B(r, p) = {x ∈ RD : d(x, p) ⩽ r} .

Moreover, the following notation is used:

[n] = {1, . . . , n} .

2.2 Network model
The well-established definition of the SINR (Signal to Interference & Noise Ratio)
network from literature ([25, 33]) is used.
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(a) Single station’s reception zone. (b) Two stations.

Figure 2.1: Comparison between a single station reception zone and how other station’s
interference impacts it.

Definition 1.1. The SINR network is defined as a tuple A = ⟨D,S,N, β, P, α⟩, where:

• D ∈ N is the dimension of a network, in real-world scenarios limited to D ∈ {1, 2, 3},

• S = {s1, . . . , sn} is a set of stations’ positions in RD,

• N ⩾ 0 is a value of the ambient noise,1

• β ⩾ 1 is a value of the reception threshold,

• P : S → R is the stations’ power function; Pi = P (si) denotes the power of station si,

• α ⩾ 2 is the path-loss parameter.

Definition 1.2. For a SINR network A, the SINR function is defined for a station si ∈ S
and a point x ∈ (RD \ S) as:

SINRA(si, x) =
Pi · d(si, x)−α

N +
∑

sj∈S\{si}
Pj · d(sj , x)−α

,

where d is a D-dimensional Euclidean metric.

A point x ∈ RD is able to receive the transmission from a station s only if:

SINRA(s, x) ≥ β .

That is, the s station’s signal is received only if in position x it is equal to or exceeds the
reception threshold β.

Definition 1.3. The reception zone of a station s for a network A is defined as:

HA
s = {x ∈ RD : SINRA(s, x) ≥ β} .

The visual example of the reception zone is presented in Figure 2.1a. The energy of a
station si at a point x is expressed as:

EA(si, x) = Pi · d(si, x)−α .

1The case of N = 0 is considered in literature as SIR model.
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The cumulated interference (see Figure 2.1b for how stations interfere with each other)
of stations different from si, generated at a point x, is denoted as:

IA(si, x) =
∑

sj∈S\{si}

EA(sj , x) =
∑

sj∈S\{si}

Pj · d(sj , x)−α .

The corresponding definition of a SINR function can be rephrased as:

SINRA(si, x) =
EA(si, x)

N + IA(si, x)
.

Similarly, the noiseless counterpart is defined as SIR.

Definition 1.4. For a SINR network A, the SIR function for a station si ∈ S and a
point x ∈ (RD \ S) is defined as:

SIRA(si, x) =
EA(si, x)

IA(si, x)
.

For networks with a non-zero value of noise2, there is also the definition of a range, rep-
resenting the theoretical maximal distance from a station, where any point can receive its
signal after excluding interference from other stations.

Definition 1.5. The range of a station s for a network A with a positive noise value
(N > 0) is defined as:

rangeA(s) =

(
α

√
Nβ

P

)−1

.

Stations may transmit with different parameters. If all network stations use the same power
level P , then the network is called uniform.

(a) Uniform network example. All stations
transmit with identical power P .

(b) Non-uniform network example. Stations
have different power levels P0 < P1 < P2 < P3.

Figure 2.2: Different shapes of reception zones, depending on the uniformity of the network.

Definition 1.6. The network A = ⟨D,S,N, β, P, α⟩ is uniform, if the power of all stations
is identical, i.e. (∀si ∈ S)(P (si) = p), where p ∈ R is some constant value. Otherwise, the
network is non-uniform.

2With N = 0, the range definition would be ill-defined because infinite reception zones can appear.
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The important properties of uniform networks, like the convexity and the connectivity, were
analyzed in [25]. Avin et al. proved the Theorem 2, the basis for the 1D uniform network
results presented in this thesis.

Theorem 2. The reception zones in a SINR diagram of a uniform power network with
path-loss parameter α = 2 and reception threshold β > 1 are convex.

However, it is important that due to the details of analyzed scenarios and algorithms, the
restrictions related to path loss and reception threshold parameters do not apply to results
in this thesis unless mentioned otherwise.

It can be assumed that P = 1 for any uniform station, which simplifies the calculations.
Visualization of uniform and non-uniform networks are presented in Figure 2.2. One more
variant of a SINR function, utilizing a constant interference value, is defined as:

SIcNRA(s, x, Ic) =
EA(s, x)

N + Ic
.

The auxiliary Fact 1 comes from the transformation of the equation:

SIcNRA(s, w, Ic) = β .

and the monotonicity of the SIcNR function for one side of analyzed station.

Fact 1. For a network A, with S = {s}, for s ∈ RD and P (s) = p, where p ∈ R+; and
constant value of interference Ic ∈ R+, the distance w = d(s, x), for values of x such that
SIcNRA(s, x, Ic) = β, can be calculated as:

w = (β(N + Ic))
− 1

α p
1
α .

If a network A is apparent from the context, it will be omitted from the notation symbols
for the sake of readability (e.g., SINRA(si, x) will be replaced by SINR(si, x)).

2.3 Protective jamming
For a network A, there can be defined a restricted area R, being the subset of a space,
where no signal from any initial stations of A should be received. Assuming that this
restricted area intersects the initial network’s reception zone, the problem is how to modify
the network to prevent the initial network’s stations from being heard in these restricted
areas while keeping the communication capabilities outside of them. Some techniques that
can be used to achieve it might impact the reception zones outside of the restricted areas,
limiting the network’s capabilities, so part of the task is to limit this negative impact. The
problem is depicted in Figure 2.3 with a two-dimensional network configuration, a single
station, and a restricted area consisting of two rectangular fragments of space.

In Figure 2.3a, the reception zone intersects both restricted areas, exposing communi-
cation to a possible adversary. One action that can be taken is to reduce the power of a
station, limiting its possible reception range - this is presented in Figure 2.3b. The problem
with this approach is the impact, as mentioned earlier, on the communication range of a
station outside of the restricted area. In the presented example, it might be possible to
reduce the signal enough to remove the intersection with one of the restricted area patches.
However, reducing it further would break critical communication, so the second restricted
area patch still partially intersects with the reception zone. Another approach, presented
in Figure 2.3c, is to take advantage of a station interference and add a special jamming
station. Such a station does not have any requirements for its reception zone shape or
size but only produces interference for a fine-grained limitation of the reception zones of
the other stations. The problematic fragment of the restricted area was correctly protected
using this approach - though the second patch problem remains. Finally, both techniques
can be combined, as in Figure 2.3d, by positioning the jamming station and reducing the
power of an initial station - achieving the goal of removing any intersections between the
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(a) Initial configuration - the recep-
tion zone of a station intersects the re-
stricted areas.

(b) Reduced station power - the recep-
tion zone still intersects one of the re-
stricted areas.

(c) Added a jamming station - it fixes
the problem for one restricted area, but
the reception zone still intersects the
other one.

(d) The combined solution - reduced
power of an initial station and added a
jamming station - the reception area no
longer intersects any restricted areas.

Figure 2.3: Example of the problem for a single broadcasting station (a blue color visualizes
its reception zone) and multiple restricted areas (visualized by a red color).

restricted area and the reception zone of a station. In Figure 2.4, different scenarios are
presented for configurations with multiple stations requiring protection.

While the original station power modification is feasible, this thesis focuses on using
jamming stations to control the shapes and ranges of reception zones.

Definition 2.1. For a set of jamming stations S(J) and the their power assignment func-
tions P (J), the jamming network is defined as:

J =
(
S(J), P (J)

)
.

Jamming network can be combined with a network A, creating the network AJ =
⟨D,S ∪S(J), N, β, P ∪P (J), α⟩. The reception zones of stations from S should not intersect
with the restricted area for the network AJ , as described in Definition 2.2.

Definition 2.2. Jamming network J =
(
S(J), P (J)

)
correctly protects the restricted

area R ∈ RD for a network A = ⟨D,S,N, β, P, α⟩ if for a connected network AJ = ⟨D,S ∪
S(J), N, β, P ∪ P (J), α⟩:

(∀s ∈ S)(∀x ∈ R) SINRAJ (s, x) < β .
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(a) Restricted area enclosing multiple
stations.

(b) Jamming stations were added in a
restricted area.

(c) Vertical restricted area (street) with
stations surrounding it.

(d) Jamming stations were added to
protect the street.

Figure 2.4: Different examples of the protective jamming problem.

While this definition is enough to provide the correctness of the results for jamming
networks, more is needed to guarantee the quality of these results, namely, how significant
its impact is on a network outside of the restricted area. One could, for example, decide to
position numerous jamming stations with high power levels and just let their substantial
interference break all communication in close vicinity, solving the described problem in a
way that would not be accepted in a real-world scenario. Assuming a configuration similar
to the one presented in Figure 2.4a, it can be imagined that the rectangle enclosed by
the restricted area might be some military base or a research facility, where the wireless
communication is critical for its operability. Thus, while the reception zone has to be limited
to this rectangular area, the power and position of jamming stations must be carefully
configured to not introduce too much interference and break internal communication.

The measure of the coverage is defined in Definition 2.3 to evaluate if the proposed
algorithms are not producing too much interference. It is the fraction of a space covered by
the reception zone after jamming within the maximal such space, but without any jamming.

Definition 2.3. The coverage for some jamming network J and a network A is defined
as:

Cover(J ,A) =

∣∣∣∣∣ ⋃si∈S

(
HAJ

i ∩ (HA
i \ R)

)∣∣∣∣∣∣∣∣∣∣ ⋃si∈S

HA
i \ R

∣∣∣∣∣
.
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In this definition, the restricted area is removed from the analyzed space, as this is where
the original stations should not be operational. Note that the coverage is always correctly
defined for positive values of a noise N > 0 and is bounded by:

0 ≤ Cover(J ,A) ≤ 1 .

If the coverage value equals 1, the jamming does not impact the reception zones outside
the restricted area. Finally, both Definition 2.2 and Definition 2.3 can be combined and
formulate the problem analyzed in this thesis:

For a network A and a restricted area R, find the jamming net-
work J , such that, it correctly protects R and maximizes the value of
Cover(J ,A).

Coverage approximation The calculation of an exact value of coverage is a complex
problem for the general case, so for the sake of presenting its value for the analyzed al-
gorithms and scenarios, a simplified sampling approach is used. The space is split into a
grid of uniform fragments (intervals in 1D, squares in 2D), densely spanning over the whole
range of a station, for which the coverage will be calculated. Then, the center of each of
such fragments is checked to see if this fragment should be able to receive a station’s signal
and if it receives it. The ratio between the number of fragments receiving the signal and
fragments that should receive it is calculated as the approximation of the coverage. While
the small enough size of these fragments is used to limit the precision loss, there might be
some margin of error.

Because all stations consume energy, the secondary optimization goal is defined - the
energy cost of the jamming network. The target is to minimize this value for the networks
produced by different algorithms presented in this thesis.

Definition 2.4. The energy cost of a jamming network J =
(
S(J), P (J)

)
is defined as:

Cost(J ) =
∑

s∈S(J)

P (J)(s) .

2.4 Basic SINR literature and related work
The SINR is a well-established model in wireless networks research, including older and
newer technologies, such as mobile networks, where it is usually used as the measurement of
connection quality [34, 35], notably it is also used in relatively new 5G mobile networks [19].

SINR is also widely used in theoretical models of wireless communication. Its geometrical
properties were studied by Avin et al. [25], who analyzed the properties of reception zones
under a uniform SINR model, showing, among others, their convexity (the result heavily
utilized in this thesis).

Non-uniform network properties were analyzed in [36], along with a new point location
algorithm, and in [33], where non-uniform SINR network model, combined with Voronoi
Diagrams, proved to retain some of the valuable properties of the uniform setting.

There is also a large amount of work considering the fundamental problems under the
SINR model, such as broadcasting [37], link scheduling [38] or applying additional features
to improve performance, such as power control [39].

Quickly evolving and growing wireless communication technology is prone to many se-
curity threats (ex. [40, 20]) and more than ever requires effective and efficient solutions
to protect users’ privacy. Most such protective measures are based on cryptographic solu-
tions [41, 42]. The approach taken in this paper, using jamming stations as a part of the
security mechanism, has been considered in [43, 44, 45] in the context of other models (i.e.,
non-SINR). Some of these approaches were proved to be practically feasible [46].

Regarding the SINR model, in [47], the authors considered settings similar to the one
presented in this thesis but focusing on a specific 2D scenario, where the space is divided
into a storage, in which the legitimate communication is supposed to take place, a jamming
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space, where jammers can be placed, delimited by a fence, and the rest of the space, where
the adversary can eavesdrop. In such settings, the optimization problems of jammers’
positioning and power assignment were presented with approximation algorithms working
for continuous space. This work has been further extended in [48], where SIR model is used
as a connection quality measurement, and the solution is based on performing temporal
jamming. The channel quality is modeled by the bit-error probability.

While the SINR is frequently utilized for wireless radio networks, like beam selection
[49] or analysis of the network performance [50], it is worth mentioning that the general
idea behind it can be utilized in less apparent scenarios, e.g., in VLC (Visible Light Com-
munication) networks [51].
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Chapter 3

Jamming in 1D SINR

This chapter considers the sub-class of one-dimensional networks (D = 1). This scenario,
though seemingly over-simplified, can be used for modeling the networks on the streets,
e.g., for VANET ([7]), where the width of the street can be negligible for jamming and the
possible adversary is expected to be a part of the street traffic.

One of the advantages of the 1D networks is the relatively simple representation of
reception zones, which can be, in practice, reduced to sets of intervals positioned on the
line. It also highlights the first significant difference between uniform and non-uniform
networks, where for the former, the reception zone of a station will always consist of a single
interval due to the connectivity property of such networks [33]. The example is presented
in Figure 3.1a. For the non-uniform network, the reception zone can get split into several
components, like in Figure 3.1b, which makes their analysis much more involved.

sa sb
(a) Example of a uniform network.

sa sb
(b) Example of a non-uniform network.

Figure 3.1: Examples of 1D networks. The blue space is the reception zone of sa, and the
orange space is the reception zone of sb.

The analyzed problem can also be simplified in this model. As mentioned earlier, the
generic notation of the restricted area R can be reduced to sets of intervals. For example,
as presented in Figure 3.2a, the restricted area in the uniform model is a union of intervals
(−∞, bl) and (br,∞), when for non-uniform example in Figure 3.2b, it consists of

(
b0l , b

1
l

)
and (br,∞). It is also worth noting that under the uniform stations’ configuration, the
segment

(
b0l , b

1
l

)
in Figure 3.2b could be replaced by

(
−∞, b1l

)
, due to convexity of reception

zones.
In this chapter, unless mentioned otherwise, the following initial network is used:

A = ⟨D = 1, S = {s}, N, β, P ≡ 1, α⟩ .

Its single station is positioned at s = 0. The following restricted areas are defined for the
network A:

• Rb = (b,∞), where s < b < rangeA(s),
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sa sbbl br
(a) Example of a jamming problem in a uniform network.

sa sbb1lb0l br
(b) Example of a jamming problem in a non-uniform network.

Figure 3.2: Examples of a 1D jamming problem instances (restricted areas are red).

• Rbl,br = (−∞,−bl) ∪ (br,∞), where bl, br < rangeA(s),

• Rbl,br
= (bl, br), where s < bl < br < rangeA(s).

3.1 One side jamming in a uniform model
The uniform network model limits the power level of all stations to a single value. It can
simplify analysis for some of the problems. Indeed, these networks have some important
properties for chosen configurations, like connectivity or convexity of reception zones (see
Theorem 2). On the other hand, such a model is still close to real-world scenarios. The
single, fixed power level of all stations might be enforced by limited hardware capabilities
or related constraints, which allow stations only to be positioned somewhere in space but
not to change their power levels.

s b
(a) The original reception zone.

s sJb
(b) The reception zone with a one jamming station sJ .

Figure 3.3: Examples of a one-side jamming problem in 1D uniform model.

As mentioned before, all stations use the same power level P = 1 in uniform configurations.
That also includes the added jamming stations - so the power is entirely excluded from
calculations in this configuration. Without loss of generality, it can be assumed that a
single analyzed station is positioned at s = 0 and the first analyzed variant of a restricted
area is Rb (see Figure 3.3a). This problem can be solved by placing the jamming station
at position sJ = b + r for some r > 0, as presented in Figure 3.3b, forming the jamming
network:

J =
(
S(J) = {sJ}, P (J) ≡ 1

)
.

Nevertheless, the r must be carefully calculated to not unnecessarily decrease the coverage.
An initial network, combined with a jamming network, has a form:

AJ = ⟨D = 1, S = {s, sJ}, N, β, P ≡ 1, α⟩ .

Unless mentioned otherwise, this section uses this network for all SINR related functions.
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Theorem 3. The jamming network J correctly protects Rb for the initial network A, if:

sJ = b+ α

√
β

b−α − βN
.

Proof. The energy of a station s, generated at a point b, in this combined network is equal
to:

E(s, b) = P · d(s, b)−α = b−α .

To ensure that SINR(s, b) = β, the interference generated by a jamming station has to be
equal to:

I(s, b) =
E(s, b)

β
−N =

b−α

β
−N . (3.1)

Assuming, that a single jamming station sJ > b is used, the interference can be reduced to:

I(s, b) = P · d(sJ , b)α = (sJ − b)−α . (3.2)

From combining Equation 3.1 and Equation 3.2:

sJ = b+ α

√
β

b−α − βN
.

The SINR energy function for the station s is monotonously decreasing for points x > s,
particularly for x > b. Similarly, for the station sJ , its energy is monotonously increasing
in the interval (−∞, sJ) and decreasing for (sJ ,∞). Based on that, SINR(s, x) < β for
points x ∈ (b, sJ), as they get closer to sJ and the interference at that interval will be
higher than at the point b. For points x > sJ , because of the stations’ uniformity, the
E(s, x) < E(sJ , x), thus the protection will be upheld for them.

Lemma 1. The coverage of jamming network J protecting Rb for a network A is bounded:

Cover(J ,A) ∈

[
b+ (β(N +MaxI))−

1
α

rangeA(s) + b
,
b+ (β(N +MinI))−

1
α

rangeA(s) + b

]
,

where MinI := (sJ + rangeA(s))
−α and MaxI := (sJ + b)−α.

Proof. The reception zone of a station s, after jamming, is equal to Hs = [bl, b], for a point
bl < s. Based on the connectivity of uniform networks, it holds that SINR(s, bl) = β (see
Figure 3.4). Calculating the exact position of bl is challenging, so only an interval (xl, xr)
bounding it is analyzed, and the coverage boundaries are derived from this interval.

s sJbbl
xl xr

Figure 3.4: Boundaries of a reception zone.

Realize, that bl ∈ (−range(s),−b). If the bl < −range(s), it would be located outside
of the initial reception zone of the station s. If bl = −range(s), it would mean that no
interference was added during jamming, which is not true. For the upper position bound,
the bl < −b is based on the symmetrical properties of the SINR function. If bl > −b,
it would mean that the interference produced by sJ is greater for points x < s than for
x ∈ (s, b), which is not possible due to monotonicity of SINR energy function for x < sJ and
sJ positioned according to Theorem 3. For the interval (−range(s),−b), the interference
generated by sJ at its extreme points can be calculated:
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• MinI = I(s,−range(s)) = (sJ + range(s))−α ,

• MaxI = I(s,−b) = (sJ + b)−α .

The interference function is monotonic for x ∈ (−range(s),−b), so the interference at this
segment is also bounded by [MinI,MaxI] and this fact is used to bound the possible position
of bl further. By using the SIcNR function, such points would have the distance from s
matching the following equations (see Figure 3.4):

SIcNR(s, xl,MinI) = β , SIcNR(s, xr,MaxI) = β .

By applying Fact 1, the distance from these points to s can be calculated as:

d(s, xl) = (β(N +MinI))−
1
α , d(s, xr) = (β(N +MaxI))−

1
α .

By the construction, as both points xl, xr < s, it means that xl ≤ bl ≤ xr, so the possible
maximal reception zone can be [xl, b] and the minimal would be [xr, b]. Combining it with
the fact that the maximal initial reception zone of s before jamming, under the coverage
definition, would be [−range(s), b], it concludes the proof for the coverage boundaries.

Note that the station sJ can be placed at three different positions. The one from the
Theorem 3 is presented in Figure 3.3b and sJ > b in this scenario. Two other possible
positions are presented in Figure 3.5, with position s < sJ < b in Figure 3.5a and sJ < s
in Figure 3.5b. While both locations are theoretically feasible to solve the problem, they
are not optimal in terms of coverage as they generate the strongest interference outside the
restricted area.

s sJ b
(a) The jamming station positioned between s and b.

ssJ b
(b) The jamming station positioned on the opposite side of s than b.

Figure 3.5: Alternative positions of the jamming station.

In this scenario, the direct consequence of the coverage bounding proof is an extension of a
restricted area protected by a single jamming station.

Corollary 1. The jamming network J defined in Theorem 3, for xl = (β(N +MinI))−
1
α ,

correctly protects the interval (−∞, xl).

While the method has limited uses due to only one-side protection, it does not signif-
icantly impact the coverage. The experimental coverage measurements and its lower and
upper bound visualization are presented in Figure 3.6. The bounds for the coverage are
getting worse with the b point getting closer to the station s, but the overall coverage results
tend to be greater than 0.8 for most configurations.

3.2 Two sides jamming in a uniform model
The natural augmentation of the method presented in Section 3.1 is to allow for jamming the
station from two sides. While Corollary 1 presented how a one jamming station can achieve
it, this approach is severely limited and has a big, unwanted influence on the coverage value.
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(a) Network using N = 1, β = 1, α = 2.
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(b) Network using N = 1, β = 1, α = 4.
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(c) Network using N = 1, β = 3, α = 2.
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(d) Network using N = 5, β = 1, α = 2.

Figure 3.6: Measurement of a coverage for networks A = ⟨D = 1, S,N, β, P ≡ 1, α⟩ and the
jamming network J , created with the single station positioning scheme. Experimental is the
coverage measurement based on sampling, the Min/Max are the bounds from Theorem 3.

With two border points present, one can also use the one-side method on each border point
independently, but ignoring the other station’s interference might also harm the coverage. In
this section, the approach utilizing two jamming stations is presented. The initial network
A remains the same as in the previous section, but the Rbl,br restricted area is used. Two
jamming stations are denoted as slJ , srJ , and:

slJ < bl < s < br < srJ .

The jamming network is defined as:

J =
(
S(J) = {slJ , srJ}, P (J) ≡ 1

)
.

An initial network, combined with a jamming network, has a form:

AJ =
〈
D = 1, S = {s, slJ , srJ}, N, β, P ≡ 1, α

〉
.

This section uses this network for all SINR related functions unless mentioned otherwise.

Theorem 4. The jamming network J correctly protects the initial network A for Rbl,br ,
if:

slJ = −bl − β
1
α

(
b−α
l − βN − βMinIr

)− 1
α , srJ = br + β

1
α

(
b−α
r − βN

)− 1
α ,

where:
MinIr := (srJ + bl)

−α .
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Proof. The position of srJ comes directly from Theorem 3 by replacing b with br. Realize
that:

MinIr = E(srJ ,−bl) .
This is the smallest interference value generated by srJ at any point inside of the range
of station s. Because of that, it can be assumed that this interference is constant for the
whole interval (−bl, s) during the calculation of the second station position. Its position
can be acquired by solving the following equation for some x = d(bl, s

l
J) (slightly abusing

notation):

SIcNRA(s,−bl,MinIr + x−α) =
E(s,−bl)

N +MinIr + x−α
= β .

As E(s,−bl) = b−α
l , the equation can be transformed to:

x = β
1
α

(
b−α
l − βN − βMinIr

)− 1
α .

Because the second station should be positioned on the opposite side of s than srJ , it results
in slJ = −bl − x. Protection correctness is ensured by the monotonicity of srJ and slJ
energy functions for intervals (br, s

r
J) and (slJ ,−bl) accordingly. Other points from Rbl,br

are protected because of the convexity of uniform network reception zones.

Lemma 2. The coverage of the jamming network J protecting Rbl,br for a network A is
bounded from below:

Cover(J ,A) ≥ MaxL +MaxR

bl + br
,

where:

MaxL = (β(N +MaxILl +MaxILr ))
− 1

α , MaxR = (β(N +MaxIRl +MaxIRr ))
− 1

α ,

MaxILl = E(slJ ,−bl), MaxIRl = E(slJ , s), MaxILr = E(srJ , s), MaxIRr = E(srJ , br) .

Proof. The coverage lower bound is based on the interference approximation for both sides
of the station s. Station slJ attains the maximal interference:

• for x < s, at point −bl, denoted as MaxILl ,

• for x > s, at point s, denoted as MaxIRl .

Similarly, for station srJ , it attains the maximal interference:

• for x < s, at point s, denoted as MaxILr ,

• for x > s, at point br, denoted as MaxIRr .

Using these maximal interferences for both sides of the station, Fact 1 can be used to
calculate the maximal distance where station s can be heard under such interference from
both sides. These values are denoted as MaxL and MaxR for x < s and x > s accordingly. It
means that the final reception zone is limited to [−MaxL,MaxR]. Moreover, this scenario’s
maximal possible reception zone is enclosed by [−bl, br], which finalizes the proof.

The experimental coverage measurements are presented in Figure 3.7 and Figure 3.8.
The Experimental plot is the value of coverage acquired from the experimental sampling,
and the Min plot represents the lower bound on coverage from Lemma 2. In Figure 3.7, the
symmetrical change in b is checked, i.e. bl = br = b. The results are, perhaps surprisingly,
much better than presented in Section 3.1. It is because of uniform network properties,
where station s is sandwiched between two jamming stations, and in this example, the
distance between them and s is roughly similar. The asymmetrical configuration is presented
in Figure 3.8. In this example, bl = b and br = range(s)−b. These results are slightly worse,
especially for bl being closer to s than br. It shows that the order in which these points
are calculated matters, i.e., assigning to br closer border point is better for the coverage.
Overall, these results are quite close to the optimal coverage, but it is not guaranteed. In
the next section, a more sophisticated method is fixing this issue.
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Figure 3.7: Measurement of coverage for networks A = ⟨D = 1, S,N, β, P ≡ 1, α⟩ and jam-
ming network J , created according to Theorem 4. Experimental is the coverage mea-
surement based on sampling, the Min is the lower bound from Theorem 3. Bounds are
symmetrical, bl = br = b.
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N = 1, β = 1, α = 2.
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Figure 3.8: Measurement of coverage for networks A = ⟨D = 1, S,N, β, P ≡ 1, α⟩ and jam-
ming network J , created according to Theorem 4. Experimental is the coverage mea-
surement based on sampling, the Min is the lower bound from Theorem 3. Bounds are
asymmetrical, bl = b and br = range(s)− b.

3.3 Precise stations positioning in a uniform model
In previous sections, the jamming station positioning schemes were burdened with an un-
wanted impact on the coverage due to little control over the generated interference. This
nuisance can be rectified by the iterative method, which can control both the influence
of interference and the size of a reception zone. In this section, such an approach, which
should enlarge the coverage, is presented. The initial network has a form of:

A0 = ⟨D = 1, S = {s}, N, β, P, α⟩ .

Note that the value of P is not omitted from the calculations in this section. Moreover, the
Rbl,br restricted area type is analyzed (see Chapter 3 beginning). The primary goal is to

find the positions of jamming stations −x < −bl and y > br such that H
AJ

0
s ⊂ [−bl, br].

Definition 4.1. If a pair of positions of jamming stations sl = −x∗ and sr = y∗ is the
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setup of the network A (with S = {s, sl, sr}) that guarantees HA
s = [−bl, br], then this setup

of the network A is called optimal and be denoted as A∗.

The J ∗ = {−x∗, y∗} is called the optimal arrangement (minimizing the coverage). The
optimal positions of the jamming stations are denoted with an asterisk sign in the following
subsections. Note that the optimal arrangement does not have to be unique.

Definition 4.2. The network A is δ-precise if there exists an optimal arrangement A∗

such that |x− x∗| < δ and |y − y∗| < δ.

The goal is to maximize the coverage of the demanded reception zone. Hence, the
secondary goal is to arrange A in a finite number of steps so that it is δ-precise for a
δ parameter given a priori. In practice, the δ parameter should be chosen smaller than
the observational error of the distance measurement, so the admission of this kind of fault
would be acceptable.

3.3.1 Description of the algorithm
Apart from parameters that describe the SINR model and the restricted area Rbl,br , the
algorithm takes a precision parameter δ as an input. The following notation is used:

• Ci =
1
β −

N
P bαi , for i ∈ {l, r},

• for b > 0, let f(a, b;x) = 1 + a
(
1 + (b− x−α)

− 1
α

)
with a natural domain x ∈(

b−
1
α ,∞

)
,

• g(y) = f
(

br
bl
, Cr; f

(
bl
br
, Cl; y

))
with a domain inherited from dom(f),

• h(x) = f
(

bl
br
, Cl; f

(
br
bl
, Cr;x

))
with a domain inherited from dom(f).

It can be easily concluded that the reception zone is convex (see [25]) and the HAJ

s is some
interval included in (−x, y). If the optimal positions x∗, y∗ exist, then the optimal solution
satisfies −x∗ < −bl and y∗ > br. The following four intervals are defined:

• X = (bl,∞),

• Y = (br,∞),

• X̄ =
(
1 + bl

br
,∞
)
,

• Ŷ =
(
1 + br

bl
,∞
)
.

Note that natural ranges of functions f
(

bl
br
, Cl; y

)
and f

(
br
bl
, Cr;x

)
are in X̄ and Ŷ re-

spectively. Moreover, if the optimal arrangement exists, then x∗ ∈ X and y∗ ∈ Y . To
transfer calculations from X and Y to their dual equivalents: X̄ and Ŷ , the auxiliary linear
functionals are introduced that provide easy control over those transfers:

• an overbar, .̄ : X → X̄, defined as x̄ = 1 + x
br

,

• an underbar, . : X̄ → X, defined as x = br(x− 1),

• an overhat, .̂ : Y → Ŷ , defined as ŷ = 1 + y
bl

,

• an underhat, .̂ : Ŷ → Y , defined as ̂y = bl(y − 1).
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The notation of dual intervals is compatible with the symbols of the functionals. From
now on, the elements from the intervals will be paired with the notation of appropriate
functionals. For instance, points from X̄ are denoted with overbar, like e.g. z̄ ∈ X̄.
However, this notation simultaneously entails that there exists z ∈ X defined as z̄, which
naturally fulfills z̄ ∈ X̄ (since . and .̂ are inversions of .̄ and .̂ respectively, so x̄= x for x ∈ X

and ̂̂y = y for y ∈ Y ). At first glance, the double notation seems redundant. However, out
of the blue, it simplifies a brief description of reverse transformations without confusion.
The choice of the definitions of the above functionals will significantly simplify the notation
in the proof of Theorem 5.

The iterative algorithm that returns positions −x, y of jamming stations that guarantee
correct protection of the restricted area and are δ-close to optimal arrangement −x∗, y∗ (see
the Theorem 5 for precise formulation) is presented in Algorithm 1.

Algorithm 1: AssingJammingStations(δ)
Algorithm AssignJammingStations(δ)

x̄0 = 1 + bl
br

(
1 + C

− 1
α

l

)
x̄ =AlignPosition(x̄0, δ)

Df =

∣∣∣f ′
(

br
bl
, Cr; x̄

)∣∣∣ bl
br

if Df ⩾ 1 then
δ = δ

Df

x̄ =AlignPosition(x̄, δ)
y =

(
f
(

br
bl
, Cr; x̄

)
− 1
)
bl // defined as

̂̂
y(x̄)

x = (x̄− 1)br // defined as x̄
return (−x, y)

Procedure AlignPosition(x̄, δ)
ζ = h′(x̄)

k =

⌈
ln

(
δ
br

(1−ζ)

h(x̄)−x̄

)/
ln(ζ)

⌉
for i ∈ {1, . . . , k} do

x̄ = h(x̄)
return x̄

The method for extracting the ŷ (corresponding to the position of the right jamming sta-
tion) is presented in Section 3.3.2 and is based on the present value of x̄ (which corresponds
to the position of the left jamming station). With this information in mind, both positions
of the stations can be controlled by focusing solely on x̄. Therefore, the lion’s share of the
Algorithm 1 execution rectifies only x̄. The Algorithm 1 initializes the positions of two
jamming stations in such a way that they correctly protect Rbl,br , but allows the interfer-
ence inside [−bl, br] to be higher than needed, resulting in smaller reception zone. A crucial
idea of this algorithm is to adapt iteratively x̄ to improve the efficiency of the broadcasting
station at each step (without a loss of the protection of Rbl,br ). As the number of iterations
increases, the adaptations of x and y should tend to some optimal arrangement.

Now, to explain the run of the procedure in more detail - the Algorithm 1 consists of
the initialization and two adaptation phases. During the initialization, a dual equivalent of
the position of the left jamming station is established (note that x̄0 ∈ X̄):

x̄0 = 1 +
bl
br

(
1 + C

− 1
α

l

)
.

The first adapting phase iteratively sets the next dual equivalents of the left jamming station
by applying the function h, i.e., x̄n+1 = h(x̄n). This phase ends when the requirement is
met:

|xn − x∗| = |x̄n − x̄∗| ⩽ δ .
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Since the procedure stores values from X̄, it is easier to consider the equivalent condition
|x̄n− x̄∗| < δ

br
instead. One can check the requirement at each iteration step. Nevertheless,

the appropriate number k of iterations is alternatively established in advance, and these
steps are performed. As it was mentioned before, f

(
br
bl
, Cr; x̄

)
may be utilized to find

the respective ŷ equivalent of the right jamming station. However, the appropriate setup
of one jamming station does not imply the same for another one. Hence, if the condition
|ŷ− ŷ∗| < δ

bl
is not fulfilled after the first adaptation phase, the analogous adaptation phase

is needed for the second jamming station as well. Nevertheless, in order to reduce the
number of calculations during the execution of Algorithm 1, the δ-precision of the second
jamming station, transformed to X̄, is verified - with the help of ŷ = f

(
br
bl
, Cr; x̄

)
formula.

The rest of the adaptation method remains the same. The detailed description of this
mechanism is presented in proofs of Lemmas 10 and 11. Finally, the algorithm returns the
positions of the jamming stations −x̄ and ̂̂y.

3.3.2 Algorithm’s analysis
Theorem 5. Consider a uniform SINR network A0 with a single station s = 0 and param-
eters N > 0, α ⩾ 1 and a restricted area Rbl,br such that:

1. 0 < bl ⩽ br ⩽ range(s),

2. C
− 1

α
r < x̄0 = 1 + bl

br

(
1 + C

− 1
α

l

)
and C

− 1
α

l < 1 + br
bl

(
1 + C

− 1
α

r

)
.

Then:

1. there exists a unique optimal arrangement J ∗ = {−x∗, y∗} for A0,

2. AssignJammingStations(δ) returns J = {−x, y} for A0, such that:

• J correctly protects Rbl,br ,

• |x− x∗| ⩽ δ and |y − y∗| ⩽ δ (i.e. J is δ-precise).

Note that if bl = br, then the formulation of Theorem 5 simplifies a lot, as well, as its
proof (there is no need to define functions g and h). First, the method how to derive the
functions h(x̄) and g(ŷ) mentioned in Section 3.3.1 is presented in Lemma 3.

Lemma 3. If the optimal arrangement J ∗ for A0 exists, then x̄∗ and ŷ∗ are fixed points
of h and g respectively and

x̄∗(ŷ∗) := 1 +
bl
br

(
1 +

(
Cl − (ŷ∗)

−α
)− 1

α

)
= f

(
bl
br
, Cl; ŷ

∗
)

,

ŷ∗(x̄∗) := 1 +
br
bl

(
1 +

(
Cr − (x̄∗)

−α
)− 1

α

)
= f

(
br
bl
, Cr; x̄

∗
)

.

(3.3)

Proof. First, the method of deriving the function f(a, b; x̄) is presented. It utilizes simple
transformations of equations SINR(s, b) = β for b ∈ {−bl, br} (note that these conditions
guarantee the optimality of the solution). Starting with the case of −bl:

SINR(s,−bl) =
b−α
l

N
P + (x∗ − bl)−α + (y∗ + bl)−α

= β . (3.4)

The considered SINR network is uniform, so HA
s is convex (see [25]), so once SINR(s, b) = β

for both border points b ∈ {−bl, br}, then HAJ∗

s = [−bl, br]. By rearrangement of Equation
3.4:

1

β
− N

P
bαl =

1

(x
∗

bl
− 1)α

+
1

(y
∗

bl
+ 1)α

. (3.5)
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Realize that the left-hand side of the above formula is constant (defined in Section 3.3.1):

Cl =
1

β
− N

P
bαl .

Let:
x∗
l =

x∗

bl
, y∗l =

y∗

bl
.

The Equation 3.5 can be rewritten in two following forms:

Cl(x
∗
l − 1)α(y∗l + 1)α = (x∗

l − 1)α + (y∗l + 1)α,

x∗
l = 1 +

y∗l + 1

(Cl(y∗l + 1)α − 1)
1
α

= 1 + (Cl − (y∗l + 1)−α)−
1
α .

Analogically, the SINR equation for the latter border point br can be investigated:

y∗r = 1 +
x∗
r + 1

(Cr(x∗
r + 1)α − 1)

1
α

= 1 +
(
Cr − (x∗

r + 1)−α
)− 1

α .

To justify the usage of the overbar and the overhat functionals (defined in Section 3.3.1),
realize that:

x∗
r + 1 = 1 +

x∗

br
= x̄∗ , y∗l + 1 = 1 +

y∗

bl
= ŷ∗ .

Instantly, these remarks can be utilized in order to provide the relations between x̄∗ and ŷ∗

in terms of the function f , given by equations (3.3). Realize that the combination of two
equations (3.3) give either h(x̄∗) = x̄∗ or g(ŷ∗) = ŷ∗, what entails a fact that x̄∗ and ŷ∗ are
fixed points of h and g respectively.

Note that Lemma 3 shows that to obtain a δ-precise arrangement of the problem, it should
be assumed that h and g have some fixed points. This observation causes the existence of
some natural limits of such the setup (in fact — the constraint (2) from Theorem 5).

As mentioned before, both equations (3.3) allow calculating the position of the one
jamming station when the position of the second one is given in such a way that the
SINR value is equal to β in at least one of the border points. Nevertheless, rectifying the
interference at one of the border points also alters the interference for the second one. The
second SINR value may even be very far from β.

Next lemma shows that equations (3.3) are well defined:

Lemma 4. If there exists an optimal arrangement J ∗ for a network A0, then

Cl − (ŷ∗)
−α

> 0 and Cr − (x̄∗)
−α

> 0 . (3.6)

Proof. When the (x∗ − bl)
−α part is omitted in Equation 3.4, then it gives the inequality

similar to Equation 3.5:

Cl =
1

β
− N

P
bαl >

1

(y
∗

bl
+ 1)α

= (ŷ∗)
−α

.

An analogous calculation for SINR(s, br) gives the correct result for Cr, which ends the
proof.

Notice that the above conditions (3.6) means that x̄∗ is in the natural domain of ŷ(x̄) =

f
(

br
bl
, Cr; x̄

)
and ŷ∗ is in the natural domain of x̄(ŷ) = f

(
bl
br
, Cl; ŷ

)
. Then, the condition 2

from Theorem 5 can be fulfilled for some pair of points, which guarantees the existence of
the solution. The following two lemmas are presented here for the convenience of a reader
since they give an insight into the nature of transformations f, g, and h.

Lemma 5. For a, b > 0, f(a, b; z) is a descending and convex function in its whole domain.
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Proof. From the definition of f , its known that z > b−
1
α . The derivatives of f can be easily

calculated:

∂f(a, b; z)

∂z
= −a(b− z−α)−

1
α−1 · z−α−1 = −a(bzα − 1)−

1
α−1 , (3.7)

so f(a, b; z) is descending and:

∂2f(a, b; z)

∂z2
= a (1 + α) (bzα − 1)−

1
α−2zα−1 . (3.8)

Therefore, f(a, b; z) is convex.

Lemma 6. Functions h(x̄) and g(ŷ) are ascending and concave functions in their whole
domains.

Proof. The proof is presented only for h(x̄). The proof for g(ŷ) is analogous. From Lemma 5
comes:

h′(x̄) =
∂f

∂x̄

(
bl
br
, Cl; f

(
br
bl
, Cr; x̄

))
· ∂f
∂x̄

(
br
bl
, Cr; x̄

)
(3.7)
= − bl

br

(
Cl

(
f

(
br
bl
, Cr; x̄

))α

− 1

)− 1
α−1

·
(
−br
bl

)
(Crx̄

α − 1)
− 1

α−1 (3.9)

=

((
Cl

(
f

(
br
bl
, Cr; x̄

))α

− 1

)
(Crx̄

α − 1)

)− 1
α−1

,

so h(x̄) is ascending. Denote a natural, real domain of h by Dh. Realize that h′(x̄) > 0
for x̄ ∈ Dh. The maximum of h′(x̄) is to be found – or equivalently – a minimum of
H(x̄) =

(
Cl

(
f
(

br
bl
, Cr; x̄

))α
− 1
)
(Crx̄

α − 1), which is a way easier to investigate. By
Lemma 4 and equations (3.3), the formulas in both parentheses are non-negative. Two
auxiliary functions can be defined:

F(x̄) := ln

(
Cl

(
f

(
br
bl
, Cr; x̄

))α)
and:

X (x̄) := ln (Crx̄
α) .

Note that both are positive from Lemma 4. Thence the elegant equation can be provided:

H(x̄) = (eF(x̄) − 1)(eX (x̄) − 1) .

And consequently:

H ′(x̄) = F ′(x̄)eF(x̄)(eX (x̄) − 1) + X ′(x̄)eX (x̄)(eF(x̄) − 1)

= eX (x̄)+F(x̄)

(
X ′(x̄) + F ′(x̄)− X

′(x̄)

eF(x̄)
− F

′(x̄)

eX (x̄)

)
.

Realize that:

X ′(x̄) =
α

x̄
, F ′(x̄) =

α ∂
∂x̄f

(
br
bl
, Cr; x̄

)
f
(

br
bl
, Cr; x̄

) .

So from equations (3.3) and conditions (3.6) for x̄ and ŷ(x̄) (since x̄ is in the domain of h):

H ′(x̄)

αeX (x̄)+F(x̄)
=

1

x̄
+

∂
∂x̄f

(
br
bl
, Cr; x̄

)
f
(

br
bl
, Cr; x̄

) − 1

x̄Cl

(
f
(

br
bl
, Cr; x̄

))α − ∂
∂x̄f

(
br
bl
, Cr; x̄

)
Crx̄αf

(
br
bl
, Cr; x̄

)
>

1

x̄
+

∂
∂x̄f

(
br
bl
, Cr; x̄

)
f
(

br
bl
, Cr; x̄

) − 1

x̄
−

∂
∂x̄f

(
br
bl
, Cr; x̄

)
f
(

br
bl
, Cr; x̄

) = 0 .
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Hence H ′(x̄) > 0 – or equivalently – h′′(x̄) < 0, so h is concave in its whole domain.
Moreover, by Equation 3.9, it is also an increasing function.

The following lemmas justify the correctness of the procedure AlignPosition(δ).

Lemma 7. If bl ⩽ br and C
− 1

α

l < 1 + br
bl

(
1 + C

− 1
α

r

)
, then h′(x̄) < 1 for x̄ > C

− 1
α

r .

Proof. Note that C
− 1

α

l < 1 + br
bl

(
1 + C

− 1
α

r

)
guarantees that x̄ > C

− 1
α

r . In the proof of
Lemma 6 it was defined:

H(x̄) = (Crx̄
α − 1)

(
Cl

(
1 +

br
bl

(
1 +

(
Cr − x̄−α

)− 1
α

))α

− 1

)
= (Crx̄

α − 1)

(
c1 + Cl

(
br
bl

)α (
1 +

(
Cr − x̄−α

)− 1
α

)α)
= (Crx̄

α − 1)

(
c2 + Cl

(
br
bl

)α (
Cr − x̄−α

)−1
)

= (Crx̄
α − 1)

(
c2 + Cl

(
br
bl

)α

x̄α (Crx̄
α − 1)

−1

)
= Cl

(
br
bl

)α

x̄α + c2 (Crx̄
α − 1) ,

where c1 = O(1) and c2 = O(1) as x̄→
(
C

− 1
α

r

)+
. Therefore:

lim

x̄→
(
C

− 1
α

r

)+
H(x̄) =

Clb
α
r

Crbαl
,

which is at least 1 whenever Cl

bαl
⩾ Cr

bαr
. Realize that from the definition:

Ci

bαi
=

1

βbαi
− N

P

for i ∈ {l, r}, so Clb
α
r

Crbαl
⩾ 1 is equivalent to bl ⩽ br. From the proof of Lemma 6 it is known

that H ′(x̄) > 0, so H(x̄) > 1 for x̄ > C
− 1

α
r . Thence for x̄ > C

− 1
α

r :

h′(x̄) = H(x̄)−
α

α+1 < 1 .

Remark that if br < bl, then h′(x̄) ⩾ 1 for x̄ from some neighborhood of C− 1
α

r . However
br < bl does not forbid h′(x̄) to be smaller than 1 for some x̄. Notice that sometimes the
assumption C

− 1
α

l < 1 + br
bl

(
1 + C

− 1
α

r

)
in the formulation of Theorem 5 may be weakened.

In principle, it is only required to guarantee that the fixed point x̄∗ of h exists by:

C
− 1

α

l < 1 +
br
bl

(
1 +

(
Cr − (x̄∗)

−α
)− 1

α

)
.

However, in such a case, it may not be clear how to choose the initial configuration for the
algorithm, and it is needed to guarantee that x̄∗ exists.

The Banach fixed point theorem [52], presented in Theorem 6, is necessary for the
following lemmas and proofs.

Theorem 6 (Banach fixed point theorem). Let (X , d) be a non-empty complete metric
space with mapping T : X → X with a contraction constant

Λ := sup{λ ∈ R : (∀ x, y ∈ X ) d(T (x), T (y)) ⩽ λd(x, y)} .
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Then T admits a unique fixed-point x∗ ∈ X . Furthermore, x∗ = lim
n→∞

xn where x0 is an
arbitrary element of X and xn = T (xn−1) for n ⩾ 1. Then also:

d(x∗, xn) ⩽
Λn

1− Λ
d(x1, x0) .

Lemma 8. For n ∈ N, let:

• x̄0 = 1 + bl
br

(
1 + C

− 1
α

l

)
,

• x̄n = h(x̄n−1) .

Assume that:

• bl ⩽ br ,

• C
− 1

α
r < 1 + bl

br

(
1 + C

− 1
α

l

)
,

• x̄0 ⩽ h(x̄0) .

Then:

• (x̄n)n∈N is ascending and (h′(x̄n))n∈N is descending,

• there exists a fixed point of h function given as the limit x̄∗ = lim
n→∞

x̄n,

• there exists an optimal arrangement J ∗ for a network A0 and Rbl,br with jamming
stations placed in sl = x̄∗ and sr =

̂
ŷ∗(x̄∗).

Proof. By assumptions:

x̄0 > max

{
C

− 1
α

r , 1 +
bl
br
(= b̄l)

}
.

By Equation 3.9, h′(x̄) > 0, so x̄k ⩽ h(x̄k) for any k ∈ N0. Moreover, the same argument,
together with Lemma 7 and assumptions give:

lim

x̄→
(
C

− 1
α

r

)+
h(x̄) = 1 +

bl
br

(
1 + C

− 1
α

l

)
= x̄0 .

From Lemma 5, f
(

bl
br
, Cl; ŷ

)
and f

(
br
bl
, Cr; x̄

)
are decreasing, so:

h(x̄0) = f

(
bl
br
, Cl; f

(
br
bl
, Cr; x̄0

))
> lim

ŷ→∞
f

(
bl
br
, Cl; ŷ

)
= x̄0 .

Note that if x̄ < h(x̄), then also h(x̄) < h(h(x̄)), because h is ascending from Lemma 6.
From Lemma 7 and Lemma 6 once again it gets 0 < h′(x̄) < 1 and h′′(x̄) < 0, so:

h′(x̄1) = h′(h(x̄)) < h′(x̄0) < 1 .

Similarly, for any n ∈ N:
h′(x̄n) < h′(x̄n−1) < 1 .

From Banach Theorem 6 comes that h(x̄) is a contraction in (x̄0,∞), so lim
n→∞

x̄n = x̄∗ is a

fixed point of h(x̄) and ŷ∗ = f
(

br
bl
, Cr; x̄

∗
)

is then the fixed point of g(ŷ).

Remark that if the assumption:

C
− 1

α
r < 1 +

bl
br

(
1 + C

− 1
α

l

)
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is not met, then h(x̄) < x̄ for any x̄ > C
− 1

α
r , and hence there is no fixed point of h (compare

with condition 2. from Theorem 5). With the assumptions from Lemma 8 in mind, it may
give a sense to −x̄0 as the initial position of the left jamming station. Then −x̄n may be
interpreted as the n-th position of the left jamming station. According to equations (3.3),
define:

ŷn(x̄n) = f

(
br
bl
, Cr; x̄n

)
.

Then ̂̂yn may be treated as the appropriate position of the right jamming station. No-
tice that ŷn = g(ŷn−1). Each application of h and g functions recursively improves the
interference in border points.

Lemma 9. Let n ∈ N and N > 0. With the assumptions from Lemma 8, the network AJ
0

with J =
{
x̄n,̂̂yn

}
satisfies H

AJ
0

s ⊂ [−bl, br]. Moreover x̄n ⩽ h(x̄n) ⩽ x̄∗.

Proof. Let SINR(s, v; a, b) denotes the value of SINR in point v for the broadcasting station
s, with J = {a, b}. First of all, realize that from equations (3.3), if x̄ > max

{
1 + bl

br
, C

− 1
α

r

}
,

then:
SINR

(
0, br;−x̄,

̂̂
y(x̄)

)
= β .

Clearly, x̄0 fulfills this condition. Similarly, from Lemma 8 there exists a fixed point x̄∗ and
if x̄ ⩽ x̄∗, then:

β = SINR

(
0,−bl;−h(x̄),

̂̂
y(x̄)

)
⩾ SINR

(
0,−bl;−x̄,

̂̂
y(x̄)

)
,

since x̄∗ ⩾ h(x̄) ⩾ x̄. Similar reasoning gives:

SINR

(
0, br;−h(x̄),

̂̂
y(x̄)

)
⩾ β .

The convexity of the reception zone together with Lemma 8 gives the thesis.

According to Lemma 9, it is required to find such the point x̄′ < x̄∗ that x̄′ and
̂̂
y′(x̄′) satisfy

δ-precision property, or equivalently:

|x̄∗ − x̄′| < δ

br
=: ξ1 and

∣∣∣∣
̂̂
y′(x̄′)−

̂
ŷ∗(x̄∗)

∣∣∣∣ < δ

bl
. (3.10)

Lemma 10. If x̄∗ − x̄ < ξ1, x̄′ ∈ [x̄, x̄∗] and:

|x̄∗ − x̄′| ⩽ δ

bl

∣∣∣∂f∂x̄ ( br
bl
, Cr; x̄

)∣∣∣ =: ξ2 , (3.11)

then the conditions (3.10) are fulfilled.

Proof. From Lemma 5: ∣∣∣∣∂f∂x̄
(
br
bl
, Cr; x̄

)∣∣∣∣ > ∣∣∣∣∂f∂x̄
(
br
bl
, Cr; x̄

′
)∣∣∣∣ .

Moreover:
|ŷ(x̄)− ŷ∗(x̄∗)| ⩽

∣∣∣∣∂f∂x̄
(
br
bl
, Cr; x̄

)∣∣∣∣ · |x̄∗ − x̄| . (3.12)

If the right hand side of inequality (3.12) is smaller than δ
bl

, then inequality (3.11) entails
the second condition of (3.10) and the first one follows from x̄ < x̄′.
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h(xk) + h′(xk)ξ = xk + ξ

h(xk + ξ)

x∗

h(xk)

xk x∗ xk + ξ

h(xk) + h′(xk)(x− xk)

x

h(x)

Figure 3.9: Graphical representation of the inequality h(x̄k)+h′(x̄k)·ξ = x̄k+ξ > h(x̄k+ξ).

Remark that if the first part of (3.10) is satisfied and
∣∣∣∂f∂x̄ ( br

bl
, Cr; x̄

′
)∣∣∣ < br

bl
, then the second

inequality from (3.10) follows from inequality (3.12). Note that, according to Lemma 10,
the first adapting phase of Algorithm 1 should find such x̄ that the first part of (3.10) is
true for x̄ and in the second phase it should find such the x̄′ ∈ [x̄, x̄∗] that inequality (3.11)
is fulfilled as well. It is possible to utilize the result of Banach Theorem 6 to verify the
distance of the superpositions of h from the fixed point and the speed of convergence of the
procedure. Hence, numbers k(i) ∈ N, for i ∈ {1, 2} are searched, such that the appropriate
recursive superpositions of the function h applied to x̄0 guarantee that:∣∣∣x̄k(1) − x̄∗

∣∣∣ ⩽ δ and
∣∣∣̂ŷk(1)+k(2) − ̂̂y

∗
∣∣∣ ⩽ δ . (3.13)

The next lemma shows how to set both parameters k(i).

Lemma 11. Let ζ(n) = h′(x̄n) and:

k(i) ⩾

⌈
ln

(
ξi(1− ζ(n))

|h(x̄n)− x̄n|

)/
ln(ζ(n))

⌉
(3.14)

for i ∈ {1, 2}. Then, the conditions (3.13) are fulfilled.

Proof. From Lemma 7 and Lemma 8 comes h′(x̄k) < 1, so from Lemma 6, there exists:

ξ > (x̄∗ − x̄k) ,

such that (see Figure 3.9):

h(x̄k) + h′(x̄k) · ξ = x̄k + ξ > h(x̄k + ξ) .

Hence:
ξ =

h(x̄k)− x̄k

1− h′(x̄k)
.

According to Lemma 10, in order to satisfy conditions (3.13), the ξ < ξ1 and ξ < ξ2 (defined
in 3.10 and 3.11) respectively in the first and the second phase. Let ζ(n) := h′(x̄n). Then
from Banach Theorem 6:

|x̄∗ − x̄n+k| ⩽ ζ(n)k |x̄∗ − x̄n| ⩽ ζ(n)k
|h(x̄n)− x̄n|
1− ζ(n)

< ξ .

Note that ((x̄0,∞), |.|) is a complete metric space. The above can be transformed into
condition (3.14) for both i ∈ {1, 2}.
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Proof of Theorem 5 Note that Lemma 8 shows that the optimal arrangement J ∗ for
the network A0 exists. Lemma 9 shows that Algorithm 1 instantly achieves the correct
protection of Rbl,br . Recall that Lemma 7 and Lemma 8 give ζ(n) < 1 for any n ∈ N.
Note that these two lemmas utilize all the assumptions of Theorem 5 (the necessity of these
assumptions is given by lemmas 3, 4 and 7). However, it is worth noting that one of them
can be potentially weakened (for details, see a short discussion after the proof of Lemma 7).
Therefore, according to Lemmas 10 and 11, it is only required to apply an appropriate
k(1) superpositions of h with n = 0 in the 1-st adapting phase of Algorithm 1 and k(2)
with n = k(1) in the second one. Remark that Df from Algorithm 1 is, in fact a ratio ξ1

ξ2
,

so it properly changes during the execution. Hence, Algorithm 1 also satisfies δ-precision
property, what finishes the proof of Theorem 5.

Remark that Algorithm 1 terminates in finite time and establishes two points of ar-
rangement of jamming stations, so they do not need to be iteratively adjusted physically.
In fact, Algorithm 1 is fast, what is presented in the next section.

3.3.3 Experimental results
The algorithm’s two properties verified experimentally are the coverage and the number
of its iterations. Due to the character of the algorithm, rather than present them on a
plot for different configurations, minimal coverage and a maximal number of iterations are
presented for selected scenarios. The maximal iterations number in results is the number
of loop iterations in AlignPosition(δ) function. The experimental results were collected
for the following networks:

• N1 : α = 2, N = 1, β = 1 ,

• N2 : α = 4, N = 1, β = 1 ,

• N3 : α = 2, N = 1, β = 3 ,

• N4 : α = 2, N = 5, β = 1 ,

• N5 : α = 4, N = 3, β = 3 .

Symmetrical border points scenario: In this scenario, symmetrical border points of
the form bl = br = b are used. The simulation assumed b ∈ [0.1, 0.9], trimmed to the
actual maximal range of stations s in a chosen network configuration and the algorithm
restrictions.

Minimal coverage value
δ N1 N2 N3 N4 N5

10−1 0.985307 0.999152 0.97005 0.985297 0.998212
10−2 0.986307 0.999152 0.99892 0.985946 0.998212
10−3 0.999878 0.999213 0.999436 0.999819 0.998228
10−5 1 1 1 1 1
10−10 1 1 1 1 1

Figure 3.10: Experimental minimal coverage values for symmetrical border points scenario.

The coverage value in all scenarios is very high and usually close to the optimal one. For
a higher precision parameter δ, the sampling precision does not allow for capturing any
fragments where the reception zone is reduced, thence the 1s in the table.
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Maximal iterations number
δ N1 N2 N3 N4 N5

10−1 1 0 108 829 1
10−2 2 0 153 1103 2
10−3 2 1 199 1376 2
10−5 4 1 290 1924 4
10−10 7 2 517 3292 8

Figure 3.11: Experimental maximal iteration numbers for symmetrical border points sce-
nario.

For configurations N0, N1 and N5, the run time of algorithm is negligible. It gets worse in
N3 and is the worst in N4, which suggests that it might be sensitive to the changing value
of the noise and the reception threshold. It also tends to grow with parameter δ, which is
expected. It is noteworthy that most of these long-running configurations used extreme b
values - usually close to the range value. The iteration number was nominal for most of the
other b values.

Asymmetrical border points scenario: In this scenario, asymmetrical border points
of form: bl = b and br = range(s) − b, for bl ⩽ br are used. The simulation assumed
b ∈ [0.1, 0.9], trimmed to the actual maximal range of stations s in a chosen network
configuration and the algorithm restrictions.

Minimal coverage value
δ N1 N2 N3 N4 N5

10−1 0.9855 0.99922 0.972201 0.985622 0.998303
10−2 0.99582 0.99922 0.999342 0.991503 0.998303
10−3 0.99995 0.99953 0.999602 0.999955 0.999307
10−5 1 1 1 1 1
10−10 1 1 1 1 1

Figure 3.12: Experimental minimal coverage values for asymmetrical border points scenario.

There are no significant changes in coverage values in this scenario. Similarly to the sym-
metrical one, these values are close to the optimal and show missing sampling precision for
higher δ parameters.

Maximal iterations number
δ N1 N2 N3 N4 N5

10−1 0 0 1 0 0
10−2 1 0 1 1 0
10−3 1 1 2 1 1
10−5 2 1 3 2 1
10−10 4 2 7 4 2

Figure 3.13: Experimental maximal iteration numbers for asymmetrical border points sce-
nario.

Compared to the symmetrical scenario, there are no high numbers of iterations, and the
algorithm cost seems negligible. There is still the tendency to increase the number of
iterations with the δ parameter, but even with high precision, this value seems relatively
small.
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3.4 Jamming in non-uniform networks
Non-uniform networks present more challenges than uniform ones, but there are also more
opportunities to optimize the jamming network, especially regarding energy usage. The
main issue is the lack of reception zone connectivity, so some of the methods presented
in previous sections might give incorrect results when used directly in this model. For
example, suppose a jamming station sJ is positioned close to the protected station s, but
its power level is too low. In that case, it might result in correct protection for some
segment (sJ − x, sJ + y), but then the signal of s might be received at point sJ + y+ ϵ (see
Figure 3.1b). This section presents a method of jamming with a single station in a non-
uniform model, with the correct positioning of the station and an alignment of its power.
It can be treated as a non-uniform counterpart of Section 3.1. The restricted area Rb is
used and the jamming network is denoted for jamming station power PJ < P as:

J =
(
S(J) = {sJ}, P (J) ≡ PJ

)
.

An initial network A, combined with a jamming network, has a form:

AJ = ⟨D = 1, S = {s, sJ}, N, β, P, α⟩ ,

where P (s) = P and P (sJ) = PJ . Unless mentioned otherwise, this section uses this
network for all SINR related functions.

Theorem 7. The jamming network J correctly protects the initial network A with N > 0
for Rb and:

z(x) = α

√
β

x−α − βN
,

if:

sJ =

 β− 1
α z(b) + b

1 +

(
z(b)

β
1
α rangeA(s)

)
 , PJ =

(
rangeA(s)− sJ

rangeA(s)

)α

β−1 .

Proof. For a jamming station, to correctly protect the interval (b,∞), the following require-
ment must be fulfilled:

SINR(s, b) =
b−α

N + PJ(sJ − b)−α
= β .

After transforming this equation, it gets:

sJ = b+ α

√
PJβ

b−α − βN
= b+ P

1
α

J z(b) . (3.15)

This position of sJ ensures the correct protection of the interval (b, sJ) due to the mono-
tonicity of s and sJ energy functions. To ensure the same thing for x ∈ (sJ , range(s)], the
following inequality must hold:

SINR(s, x) ⩽ β .

Note that due to the requirement of N > 0:

SINR(s, x) < SIR(s, x) .

So, the problem can be solved by finding the following:

SIR(s, x) =
x−α

PJ(x− sJ)−α
⩽ β .
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After simple transformations, it results in:

PJ ⩾

(
x− sJ

x

)α

β−1 . (3.16)

Realize that:
lim
x→∞

(
x− sJ

x

)
= 1 .

But for the interval (sJ , range(s)], it attains maximum at the maximal range of s:

max
x∈(sJ ,rangeA(s)]

(
x− sJ

x

)
=

rangeA(s)− sJ
rangeA(s)

.

This means, that Equation 3.16 is fulfilled for this value, i.e.:

PJ =

(
range(s)− sJ

range(s)

)α

β−1 . (3.17)

Equation 3.15 and Equation 3.17 can be combined and solved for sJ and PJ . These solutions
are the same as in the theorem.

Lemma 12. The coverage of jamming network J protecting Rbl,br for a network A is
bounded from below:

Cover(J ,A) ⩾ (β(N +MaxIL))−
1
α + (β(N +MaxIR))−

1
α

rangeA(s) + b
,

for:
MaxIL = E(sJ , s) , MaxIR = E(sJ , b) .

Proof. The coverage bounds come from similar arguments as in previous sections. The
station sJ attains the maximal interference at s for x < s and b for x > s. Thus, these
points are used for calculating the constant interference and, later, the lower bound of the
coverage value.

Experimental results for this positioning scheme coverage are presented in Figure 3.14.
Comparing these results with this algorithm’s uniform counterpart (see Section 3.1), it is
clear that coverage is better with non-uniform networks. Also, this scheme saves energy, as
presented in Figure 3.15. Almost all results use PJ < 0.5, while the uniform model’s power
is fixed to 1.

3.5 Noisy dust method
Up to this point, most of the presented methods focused on configuring one or two jamming
stations, each with a power level equal to the protected station (uniform networks) or
relatively similar (non-uniform networks). This approach simplified the algorithms and was
usually based on a basic positioning scheme but with the caveat of having a high impact on
the coverage values and high energy consumption. This section presents the idea of noisy
dust . It utilizes a high number of small jamming stations, with relatively small power
levels, to drown out fragments of space for non-uniform networks. Limiting the power
level of a single jamming station decreases overall energy usage compared to the previously
analyzed algorithms, and the coverage value improves.

First, the description of what fragment of space a single station protects is presented
in Section 3.5.1. Afterward, the adaptive noisy dust scheme, having the energy-efficiency
related properties, is presented in Section 3.5.2, followed by a version of noisy dust scheme
adjusted for more generic use-cases, utilizing the stripes of stations, is presented in Sec-
tion 3.5.3. Finally, the coverage is analyzed for the generalized noisy dust in Section 3.5.4.
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(a) Network using N = 1, β = 1, α = 2.
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(b) Network using N = 1, β = 1, α = 4.

0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.8

1

b

C
ov
er
(J

,A
)

Min
Experimental

(c) Network using N = 1, β = 3, α = 2.
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(d) Network using N = 5, β = 1, α = 2.

Figure 3.14: Measurements of coverage for the network A and the jamming network J
defined in Theorem 7. Experimental is the coverage measurement based on sampling, the
Min is the lower bound.
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Figure 3.15: The value of PJ from Theorem 7, for different network configurations.

3.5.1 Effective jamming range
For a single station s with power P ≡ 1, without loss of generality, the effective jamming
range of a station sJ can be defined as the convex fragment of space, which is correctly
protected by this jamming station only. The construction of an effective jamming range is
presented in Figure 3.16. For an initial network A, some given point bl > s and power level
0 < p < P , define:
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• F (p) = (pβ)
1
α ,

• xl = F (p) · d(s, bl) ,

• xr = xl

(
1+F (p)
1−F (p)

)
,

• br = d(s, bl) + xl + xr .

s bl brsJ

xl xr

Figure 3.16: The effective jamming range of sJ is highlighted by a red color. The blue
space represents the reception zone of s.

Theorem 8. For an initial network A, point bl and power level p, construct a jamming
network:

J =
(
S(J) = {sJ}, P (J) ≡ p

)
.

The J correctly protects A for Rbl,br
if:

sJ = d(s, bl) + xl .

Proof. The position of the station sJ has to ensure that SINR(s, bl) = β. Because:

SINR(s, bl) ≤ SIR(s, bl) ,

it is enough to analyze this requirement under the SIR model:

SIR(s, bl) =
d(s, bl)

−α

p · x−α
l

= β .

From it, the value of xl = d(bl, sJ) can be acquired, so SIR(s, x) < β for all points
x ∈ (bl, sJ):

xl = (pβ)
1
α · d(s, bl) = F (p) · d(s, bl) .

With the knowledge about the position of sJ , the extreme border point br, on the opposite
side of the station sJ , can be calculated, a similar approach:

SIR(s, br) =
(d(s, bl) + xl + xr)

−α

p · x−α
r

= β .

From that, its distance from sJ is acquired:

xr =
F (p) · (d(s, bl) + xl)

1− F (p)
= F (p) · d(s, bl)

(
1 + F (p)

1− F (p)

)
= xl

(
1 + F (p)

1− F (p)

)
.

With SIR(s, bl) = SIR(s, br) = β and based on the monotonicity of the energy function in
domains (bl, s) and (s, br), all points x ∈ (bl, br) will attain SIR(s, x) < β. It will also be
true for SINR(s, x) < β because adding noise can only reduce the reception zone of s.

This result can be utilized for positioning multiple jamming stations with the intention
to fill the space with small effective jamming ranges. Other stations only add interference,
so the size of the effective jamming range presented in the theorem would still hold.
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3.5.2 Adaptive noisy dust
The first scheme, adaptive noisy dust, utilizing the idea of noisy dust, introduced in
Section 3.5, is based on the iterative positioning of stations with some chosen low power
level, one next to another - to tightly fill the restricted area with small effective jamming
ranges. One of the significant advantages of this approach is the reduced energy usage,
which converges to zero with the decrease of a single station’s power and an increased
number of stations for the fixed restricted area.

Algorithm 2: NoisyDust for A.
Function GetStationPosition (b, p, i)

return b · (1+F (p))i

(1−F (p))i−1

Algorithm NoisyDust (b, p)

n =


ln
(

range(s)
b

)
ln
(

1+F (p)
1−F (p)

)


S(J) ← {}
for i← {1, · · · , n} do

si ← GetStationPosition(b, p, i)
S(J) ← S(J) ∪ {si}

J ←
(
S(J), P (J) ≡ p

)
return J

The algorithm is pretty straightforward. It starts by selecting the required number of
jamming stations n, based on the network parameters, requested jamming station power
level p, and the position of a border point b. It is designed to cover the whole segment
(b, range(s)) with interference. Afterward, it iteratively positions each station si, assigning
them with power p. Note that the n selection formula can be easily modified, so it will cover
an arbitrary segment (b, b∗), for b < b∗ ≤ range(s), but this thesis focuses on the worst-case
scenario.

s b0 b1 b2 b3s1 s2 s3

xl
1 xr

1 xl
2 xr

2 x3
3 xr

3

Figure 3.17: The Algorithm 2 example.

Theorem 9. The jamming network J = NoisyDust(b, p) correctly protects A for Rb.

Proof. The procedure is depicted in Figure 3.17. The algorithm utilizes the properties from
the Theorem 8, where the single station effective jamming range is calculated. This proof
starts with extending it to positioning multiple stations, using the recursive dependency
between them. Later, it is replaced by an iterative method, along with analyzing a network’s
required size and energy usage characteristics.

The first positioned station is denoted as s1, and by following the theorem, its position
is set based on the anchor point b0 = b:

s1 = d(s, b0) + F (p) · d(s, b0) = d(s, b0)(1 + F (p)) .

This position allows for covering an interval (b0, b1) with interference, for:

d(s, b1) = d(s, b0) + xl
1 + xr

1 ,

where:
xl
1 = F (p) · d(s, b0) , xr

1 = xl
1

(
1 + F (p)

1− F (p)

)
.
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The value, being also the position, of the second border point b1 can be simplified using
these partial interval lengths:

d(s, b1) = d(s, b0) + F (p) · d(s, b0) + (F (p) · d(s, b0))
(
1 + F (p)

1− F (p)

)
= d(s, b0)

(
1 + F (p) + F (p)

(
1 + F (p)

1− F (p)

))
= d(s, b0)

(
1 + F (p)

1− F (p)

)
.

The process can be repeated for the station s2, which would take the b1 as a base for
positioning, which results in:

s2 = d(s, s2) = d(s, b1)(1 + F (p)) .

And a similar result for the next border point:

d(s, b2) = d(s, b1)

(
1 + F (p)

1− F (p)

)
.

Based on it, the recursive dependency between consecutive border points bi for i ≥ 0 can
be described as:

d(s, bi) = d(s, bi−1)

(
1 + F (p)

1− F (p)

)
= d(s, b0)

(
1 + F (p)

1− F (p)

)i

.

It uses the point b0 = b, provided as an input parameter to the whole algorithm. A similar
recursive dependency exists between station positions for i > 0:

si = d(s, si) = d(s, bi−1)(1+F (p)) = d(s, b0)(1+F (p))

(
1 + F (p)

1− F (p)

)i−1

= d(s, s1)

(
1 + F (p)

1− F (p)

)i−1

.

The modified version of this equation is used in the algorithm positioning scheme:

d(s, s1)

(
1 + F (p)

1− F (p)

)i−1

= d(s, b)
(1 + F (p))i

(1− F (p))i−1
.

Any interval starting from b is correctly protected because stations are tightly positioned,
one next to another, and they fill it in the whole range of a station s. To finalize the
correctness of the algorithm, the required number of stations has to be found. The final
border point in a chain should be outside of the maximal range of the station s, i.e.,
d(s, bn) > range(s):

d(s, b0)

(
1 + F (p)

1− F (p)

)n

> range(s) .

After transforming the inequality, the result is:

n =


ln
(

range(s)
d(s,b0)

)
ln
(

1+F (p)
1−F (p)

)
 .

It finalizes the proof of the algorithm’s correctness.

As mentioned earlier, the algorithm energy efficiency increases with the decrease of a single
station’s power usage and the increase of the number of stations.

Lemma 13. The cost of the jamming network J = NoisyDust(b, p) protecting A for Rb

converges:
lim

p→0+
Cost(J ) = 0 .
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Proof. By using the just calculated number of stations, the overall energy used by the
jamming stations is equal to:

Cost(J ) = np .

The original version of the n definition is numerically complex to analyze, so the version
with the ceiling function removed is considered:

ñ =
ln
(

range(s)
d(s,b0)

)
ln
(

1+F (p)
1−F (p)

) .

The aligned cost function:

Cost′(J ) = ñp =
p ln

(
range(s)
d(s,b0)

)
ln
(

1+F (p)
1−F (p)

) .

Lets split it into numerator, denoted as num(p) and denominator, denoted as den(p):

num(p) = p ln

(
range(s)

d(s, b0)

)
, den(p) = ln

(
1 + F (p)

1− F (p)

)
.

Realize that range(s) and position of b0 does not depend on p (i.e., both are constants in
this context), which means that the numerator of the Cost′ converges to zero:

lim
p→0+

num(p) = lim
p→0+

p ln

(
range(s)

d(s, b0)

)
= 0 .

As for F (p) = (pβ)
1
α , it converges to zero too:

lim
p→0+

F (p) = 0 .

It is also true for the denominator of the cost equation:

lim
p→0+

den(p) = lim
p→0+

ln

(
1 + F (p)

1− F (p)

)
= ln (1) = 0 .

Because the numerator and denominator converge to zero, the L’Hôpital’s rule can be used
to find the cost function limit for p converging to zero. First, the derivative of F (p) is
calculated:

∂ F (p)

∂ p
=

(βp)(
1
α−1)β

α
=

F (p)

αp
.

In the next steps, the derivatives of the numerator and denominator have to be found:

∂ num(p)

∂ p
= ln

(
range(s)

d(s, b0)

)
∂ den(p)

∂ p
=

(
1− F (p)

1 + F (p)

) ∂ F (p)
∂ p (1− F (p)) + ∂ F (p)

∂ p (1 + F (p))

(1− F (p))2

=
∂ F (p)

∂ p

2

(1− F (p))(1 + F (p))
=

2F (p)

αp(1− F (p)2)
.
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Finally, from L’Hôpital’s rule:

lim
p→0+

Cost′(J ) = lim
p→0+

num(p)

den(p)
= lim

p→0+

∂ num(p)
∂ p

∂ den(p)
∂ p

= lim
p→0+

ln

(
range(s)

d(s, b0)

)
αp(1− F (p)2)

2F (p)

= α ln

(
range(s)

d(s, b0)

)
lim

p→0+

p
(
1− (βp)

2
α

)
2 (βp)

1
α

= α ln

(
range(s)

d(s, b0)

)
lim

p→0+
p1−

1
α

(
1− (βp)

2
α

)
2 (β)

1
α

= 0 .

Therefore, also Cost(J ) tends to 0 as p→ 0+, because:

|Cost(J )− (Cost′(J ) + p)| < 2p ,

That concludes the proof.

The details of the algorithm can be adjusted to match more specific configurations, e.g.,
for restricted areas of form Rbl,br

. Nonetheless, the zero-energy property and correctness
should remain valid for such modifications. The coverage analysis of this algorithm will be
presented in Section 3.5.4.

3.5.3 Noisy dust stripes
The adaptive noisy dust, presented in Section 3.5.2, provides an exact and effective method
of jamming fragments of space with a small energy and coverage reduction footprint. The
possible problem with it might be related to the positioning scheme, which is rather precise
and, for some scenarios, might not be possible to achieve. To prevent it, the different flavor
of the noisy dust is presented - noisy dust stripes. This approach is also focused on using
many stations with low power levels. However, the positioning scheme will be simplified,
and the distances between stations will depend only on their power levels and the initial
border point, making them equal. It allows for deploying stations with less knowledge in
the form of stripes. The idea is depicted in Figure 3.18. Note that the segment (b0, b1)
represents the restricted area in this algorithm.

s b0 s1 s2 s3 b1

xs xs xs xs xs xs

Figure 3.18: The noisy dust stripe example.

Theorem 10. For initial network A and restricted area Rb0,b1
and some power level 0 <

p < 1, define:

n =

⌈
b1 − b0
2F (p)b0

⌉
, si = b0(1 + F (p) + 2(i− 1)F (p)) .

The jamming network Jp = ({si : i ∈ 1 . . . n}, {si 7→ p : i ∈ 1 . . . n}) correctly protects A
for Rb0,b1

.

Proof. Take a look at the jamming station closest to b0:

s1 = b0 + F (p)b0 .
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Based on Theorem 8, it correctly protects the interval (b0, s1) and:

xs = d(b0, s1) = F (p)b0 .

On the other hand, due to the energy function of s being monotonously decreasing for
x > s, it is known that any point x > s1 requires less interference than point b0 to be
jammed. However, we have already generated enough interference at the range of xs from
s1 to jam such points. Thus, the effective jamming interval of s1 is (b0, b0 +2xs). The next
jamming station, positioned at some point s2 > s1, is also correctly protecting segment
(s2 − xs, s2 + xs) because of the energy of s decrease with distance. Note, as described in
Theorem 8, these are not maximal possible protected intervals, but in this algorithm, the
point is to keep stations equally spaced. By doing it, for i > 1 the station is positioned at:

si = b0 + (2(i− 1) + 1)xs = b0 + (2(i− 1) + 1)F (p)b0.

As each of the stations covers the interval of width 2xs, and the whole interval covered by
all stations is of length d(b0, b1), the number of required stations is equal to:

n =

⌈
b1 − b0
2xs

⌉
.

The idea of Theorem 10 with single stripe set can be easily extended for jamming
arbitrary networks — it only requires finding the closest points to protect (border points
for each broadcasting station) and then configuring stripes accordingly. The coverage of
this algorithm is analyzed in Section 3.5.4.

3.5.4 Noisy dust coverage
The lower bound on the coverage for the general noisy dust algorithms is presented in
Theorem 11. It assumes that the analyzed restricted area is Rb and that a noisy dust
algorithm was correctly configured.

Theorem 11. For an initial network A and a jamming network J =
(
S(J), P (J) ≡ p

)
,

generated by a noisy dust algorithm for a restricted area Rb, the coverage is bounded from
below:

Cover(J ,A) ≥ (β(N +MaxIl))
− 1

α + (β(N +MaxIr))
− 1

α

range(s) + b
,

where:
MaxIl =

∑
sj∈SJ

p · d(sj , s)−α , MaxIr =
∑

sj∈SJ

p · d(sj , b)−α .

Proof. The approach is similar to the proof of Lemma 1. The interference is approximated
separately for the left and right sides of station s. On the right side, in the interval (s, b), the
maximal interference generated by the noisy dust stations is attained at point b. It comes
from the fact that stations are located in the interval (b,∞), and their energy functions are
monotonic for points in (s, b). Precisely, their energy decreases the closer it gets to station
s. This value is MaxIr. On the opposite side of station s, so for the interval (−range(s), s),
the maximal interference of the noisy dust is attained at point s. Using a similar approach,
this interference is denoted as MaxIl. Finally, the Fact 1 can be applied to both interference
limits:

SIcNRA(s, xl,MaxIl) = β , SIcNRA(s, xl,MaxIl) = β .

It gets:
xl = (β(N +MaxIl))

− 1
α , xr = (β(N +MaxIr))

− 1
α .

It means that the size of a reception zone of s is bounded from below by d(xl, xr). As the
maximal possible reception zone is limited by a segment (−s, b), it finalizes the proof.
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The coverage for both noisy dust algorithms was measured using the sampling method
mentioned in Section 2.3. The adaptive noisy dust was analyzed for different values of
p (see Figure 3.19) and b (see Figure 3.20) for a standard network configuration. The
characteristic steps visible in the plot show when the algorithm adds or removes the stations,
temporarily worsening or improving coverage. For the changing values of p, it is observable
that experimental results tend to 1. It also shows that the lower bound presented in this
subsection is not precise for all configurations. The results for changing values of b show
that algorithm coverage efficiency worsens when applied on the extreme configurations -
either too close to s or too far - it seems to work best for point b being positioned in the
middle of a station s range.
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Figure 3.19: Adaptive noisy dust coverage for a network with N = 1, β = 1, α = 2, for
different values of p.
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Figure 3.20: Adaptive noisy dust coverage for a network with N = 1, β = 1, α = 2, for
different values of b.

The noisy dust stripes algorithm was also analyzed for p (see Figure 3.21) and b (see
Figure 3.22). Its results are similar to the adaptive noisy dust, though much more frequent
steps are visible, showing that more stations are being used for similar configurations. Its
overall coverage also seems worse, but it is expected, given the gain in flexibility with fixed
distances between stations. Other characteristics, like coverage converging to 0 with power
level decrease and the better coverage results for points b focused in the range center, look
similar.
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Figure 3.21: Noisy dust stripes coverage for a network with N = 1, β = 1, α = 2, for
different values of p.
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Figure 3.22: Noisy dust stripes coverage for a network with N = 1, β = 1, α = 2, for
different values of b.
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Chapter 4

Jamming in 2D SINR

In this chapter, networks positioned on a two-dimensional plane are considered. Reception
zones are no longer reducible to sets of intervals, and more complex shapes are encountered
in a two-dimensional case, making the analysis more complicated.

Due to the high complexity of possible configurations for the problem, the set of chosen
restricted area models is defined in Section 4.1 - these are used for analyzing the effectiveness
of algorithms presented later. Methods related to the uniform network model are described
in Section 4.2, and for the non-uniform network, the noisy dust extension is presented in
Section 4.3. This chapter uses an initial network of the following form:

A = ⟨D = 2, S = {s}, N, β, P, α⟩ .

Similarly to the previous chapter, the single station is positioned at s = (0, 0) and has
a fixed power level, defined as P (s) = 1. The area of a 2D region is denoted by the |.|
operator, e.g. |P| is an area of polygon P.

4.1 Restricted area types
The generic restricted area can have distinctive, complex shapes, including some unrealistic
ones. For example, it can take a degenerated form of points scattered throughout the
plane. Designing algorithms and analyzing their effectiveness for such restricted areas can
be challenging. To prevent this issue, several restricted area types are selected and formally
defined in this section. They are based on simple geometric shapes, which should remain
close to the possible real-world scenarios and allow for effective algorithm creation and
analysis.

The first type is an enclosed restricted area - defined by some bounding shape, inside
which the communication is considered safe, but cannot leak outside of this shape. This
space has a connected character, with protected stations inside the chosen shape. Within
this type, two sub-types can be defined, based on the shape of enclosing figure - circular, as
defined in Definition 11.1; and polygonal area, defined in Definition 11.2. Both sub-types
are depicted in Figure 4.1 (red space is a restricted area, and black dots represent stations).

Definition 11.1. The enclosing circular area is defined for x, y, r ∈ R, as:

Ren
r (x, y) = R2 \ B(r, (x, y)) .

If the circular area central point is a point g = (gx, gy), the notation is simplified to:

Ren
r (gx, gy) = Ren

r (g) .

Definition 11.2. The enclosing polygonal area is defined for P being a convex polygon
as:

Ren
P = R2 \ P .
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(a) A circular enclosed area. (b) A polygonal enclosed area.

Figure 4.1: Examples of enclosing areas. Red space is a restricted area. Stations are denoted
as black dots.

The second major type is a detached area, in which the restricted area consists of a union of
polygons and balls scattered over the 2D plane and the protected stations in space between
them. It is formally defined in Definition 11.3 and presented in Figure 4.2.

Definition 11.3. The detached area Rd
G is defined as a union of 2-balls B(r, p) for points

p ∈ R2 and radii r > 0; and convex polygons P.

(a) A detached area with scattered figures. (b) A detached area with a complex shape
created from convex components.

Figure 4.2: Examples of detached areas. Red space is a restricted area. Stations are denoted
as black dots.

4.2 Jamming in a uniform network
Similarly to the 1D model, the uniformity of a network in 2D comes with some nice prop-
erties of the reception zones and allows for a generic approach for positioning jamming
stations. Interactions of two stations’ reception zones, if positioned next to each other, are
presented in Section 4.2.1. In Section 4.2.2, the generic algorithm is described for protect-
ing the polygonal enclosing areas. Its extension for circular enclosing areas is presented in
Section 4.2.3. Finally, the approach feasible for detached areas is discussed in Section 4.2.4.

48



4.2.1 Basic two stations model
This section describes the interaction between two reception zones when only two stations
with the same powers are positioned on the plane. The input configuration is a single
station s0, a border point b, and a line passing through that point. The line splits the plane
into two half-planes, presenting how to position the other station s1 so that the reception
zone of station s0 can be limited only to one of these half-planes. The positioning of the
second station also limits the impact on the s0 reception zone size, making it to stick to
the line (ignoring the trivial scenarios, when the s0 reception zone is already limited to the
one half-plane). This method is presented in Lemma 14, with construction details depicted
in Figure 4.3b.

Lemma 14. Let A = ⟨D = 2, S = {s0, s1}, N, β, P ≡ 1, α⟩ be a network and define a border
point b = (bx, 0). Position stations at:

s0 = (0, 0) , s1 =
(
bx

(
1 + β

1
α

)
, 0
)

.

For any point p ∈ {(a, b) ∈ R2 : a ⩾ bx}:

• SIR(s0, p) ⩽ β,

• SINR(s0, p) < β, for N > 0.

s0 b s1

bx x

(a) Two stations’ placing.

s0 b

b∗

s1

h

(b) A point on the line dividing two half-planes.

Figure 4.3: Positioning of the jamming station.

Proof. First step is to find the distance x = d(s1, b) (see Figure 4.3a), such that:

SIR(s0, b) =
d(s0, b)

−α

d(s1, b)−α
= b−α

x xα = β .

The equation can be transformed to:

x = bxβ
1
α .

Examine the point b∗ = (bx, h) for h = d(b, b∗), located on the line perpendicular to the
segment s0s1 and crossing the point b (see Figure 4.3b). Distances from b∗ to stations s0
and s1 are equal to:

d(s0, b
∗) =

√
b2x + h2 , d(s1, b

∗) =
√

x2 + h2 .

Value of SIR for s0 and such points take the form of:

SIR(s0, b
∗) =

d(s0, b
∗)−α

d(s1, b∗)−α
=

(
x2 + h2

b2x + h2

)α
2

=

(
b2xβ

2
α + h2

b2x + h2

)α
2

.
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For h = 0 it gets b∗ = b and SIR(s0, b
∗) = β. For h > 0:

SIR(s0, b
∗)

β
=

(
b2xβ

2
α + h2

b2xβ
2
α + h2β

2
α

)α
2

⩽ 1 ,

as β ⩾ 1; and strict inequality for β > 1. Replacing SIR with SINR, where N > 0, also
produces strict inequality. Realize, that any point (x∗, y∗), such that x∗ > bx, is closer to
s1 and further away from s0 than some point b∗ = (bx, y

∗). In consequence:

SINR(s0, (x
∗, y∗)) < SIR(s0, (x

∗, y∗)) < SIR(s0, (bx, y
∗)) ⩽ β .

From Lemma 14, it can be immediately concluded that one can configure the position
of a jamming station s1 for an arbitrary line and a given station s0 in such a way that
guarantees the limitation of s0’s reception zone to the one side of this line.

4.2.2 Algorithm for jamming enclosing polygonal areas
The enclosing polygonal areas jamming algorithm is based on a class of restricted areas
defined as complements of convex polygons P. Note that P can be represented as a set of
sides of the polygon, namely:

FP := {(x, y) : x, y ∈ R2 are consecutive vertices of P} .

This subsection focuses on the simplified version of the problem, where there is only a single
station s to protect, located inside a polygon. For the uniform model, Lemma 14 is utilized
to design Algorithm 3, which, for a given polygonal restricted area, places jamming stations
in a way that provides the protection for the station s at any point in Ren

P = R2 \ P. The
algorithm takes each segment from FP and assigns a single jamming station. More precisely,
for each such segment (xj , yj), Algorithm 3 initially provides two lines:

• ldj , which includes the segment (xj , yj),

• lpj , which is perpendicular to ldj and crosses the position of a station s.

The crossing point of these two lines is denoted as the border point b. Furthermore, for
each created pair of lines, Algorithm 3 positions the station sj somewhere on the line lpj in
a way that s and sj are on the opposite sides of the line ldj . Therefore, utilizing the distance
between b and s and Lemma 14, the algorithm calculates the distance between sj and b as:

x = d(s, b)β
1
α ,

for d(sj , s) = d(s, b) + x.
The correctness of the Algorithm 3 output is described in Theorem 12 and the internal
functions it uses are defined as:

• GetLine(x, y) creates a line, which includes the segment (x, y),

• GetPerpendicularLine(l, s) creates a line passing through the point s and being
perpendicular to the line l,

• GetLinesCrossingPoint(l0, l1) calculates the position of a crossing point for lines l0
and l1.

Theorem 12. For an initial network A, a restricted area Ren
P such that s ∈ P for a convex

polygon P, Algorithm 3 returns the jamming network J , which correctly protects restricted
area Ren

P .
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Algorithm 3: Create 2D uniform jamming network for a polygon
Algorithm AssignUniformJammingStations(P, s)

S(J) ← {}
for (xj , yj)← P do

ldj ← GetLine(xj , yj)
lpj ← GetPerpendicularLine(ldj , s)
b← GetLinesCrossingPoint(ldj , l

p
j)

sj ← s+
−−−−→
(b− s) ·

(
1 + β

1
α

)
S(J) ← S(J) ∪ {sj}

J ←
(
S(J), P (J) ≡ 1

)
return J

Proof. The algorithm constructs a straight line for each polygon side, splitting space into
two half-planes. Then, the station sj is positioned for such a segment, according to the
scheme presented in Lemma 14, which guarantees that all points on half-plane on the
opposite side of a line to station s, are outside its reception zone. Since the operation is
performed for all segments of a convex polygon, all of these half-planes could be united
into the restricted area Ren

P . Additional interference from other stations can only reduce a
reception zone, so the restricted area is correctly protected.

4.2.3 Jamming for circular enclosing areas
The problem of jamming in uniform networks gets complicated when restricted areas become
irregular shapes or contain some arcs or curves. The approach from Section 4.2.2 is no
longer directly applicable to protect the restricted areas. In this subsection, the focus is put
on enclosed circular restricted areas, which are of the form Ren

r (x) = R2 \ B(r, x), where
x ∈ R2. The idea behind the presented approach is to use regular polygons, approximating
the shape of the disk around a station. This way, the problem can be reduced to jamming
the polygonal restricted area.

Fact 2. For an initial network A and a restricted area Ren
r (s) for r ∈ (0, range(s)), Al-

gorithm 3 for a regular polygon P, inscribed into the disk B(r, s), as an input, returns a
jamming network J correctly protecting the restricted area Ren

r (s).

The reception zone of a single station can be restricted to any regular n-gon centered
in the position of this protected station. A practical question is what n is ideal for such an
arrangement of a task. Taking too small parameter n results in a smaller polygon (in terms
of a measure), hence Algorithm 3 applies more potent interference outside the polygon, but
still inside the original disk, which potentially can reduce the coverage. On the other hand,
when n is too big, then Algorithm 3 arranges many stations, so their total interference may
negatively affect the coverage, even when they are further from the center than in small
n case. Moreover, it increases the cost of the jamming network. In Figure 4.4, different
variants of polygons are presented, along with the experimental calculation of coverage for
the initial network A and an enclosing area having a radius of length r = 0.5.

Besides the experimental coverage calculation, its value can be bounded for the algorithm
using regular n-gons as presented in Lemma 15.

Lemma 15. Let s be a single broadcasting station and r ∈ (0, range(s)). The restricted
area is given by Ren

r (s), the jamming network J is created by Algorithm 3 for a regular
n-gon P and b is the length of the polygon’s apothem (the distance between s and sides of
the polygon P). The coverage of the combined network satisfies the following:

(b(βbαN + n)−
1
α )2

r2
⩽ Cover(J ,A) ⩽ |P|

πr2
.
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(c) Pentagon - coverage ≈
0.374.
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(d) Hexagon - coverage ≈
0.367.
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(f) Octagon - coverage ≈
0.327.

Figure 4.4: Different circular shapes approximations. A red space represents the initial
disk, a green space – the polygon – and blue space is the final reception zone. Black dots
indicate stations.

Proof. The upper bound is obvious from Fact 2 — the maximal reception zone is limited
by some polygon P. The lower bound can be calculated by approximating the maximal
range of station s in a direction to one of the jamming stations sj . It is realized by a
tricky modification of the resulting network, which assumes that all jamming stations are
placed in the same point sj (this trick effectively increases the power of sj n times). The
construction is presented in Figure 4.5. The radius of a disk inside the restricted area is
denoted as r, b is the length of an apothem of the inscribed polygon (square in the example,
given by the dotted lines), and x is the point placed at a maximal distance from s on the
segment connecting s and one of the jamming stations, for which s is heard at x.

The unified jamming stations configuration (for which the following calculations are
performed) is denoted as:

AJ
uni = ⟨D = 2, S = {s, sj}, N, β, P, α⟩ .

Station sj simulates multiple stations from the jamming network, so P (sj) = n. The point
x is located on the segment (s, sj), where SINR(s, x) = β and the interference at this point
equals to some value I(s, x). Realize that for the uniform algorithm example, with jamming
stations located at their original positions, no point on the circle centered at s with radius
d(s, x) receives more interference than point x in the unified stations’ scenario (due to the
exponential decrease of jamming stations powers with a distance). Because of it, the value
of d(s, x) can be used as the lower bound of the radius of a reception zone of the station s.
Represent this value in a form d(s, x) = ab, where a ∈ (0, 1] and the inequality to satisfy it
is of form:

SINRAJ
uni

(s, x) =
(ab)−α

N + n(d(sj , s)− ab)−α
⩾ β .
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Figure 4.5: A single broadcasting station s surrounded by multiple jamming stations.

Since d(sj , s) = b
(
1 + β

1
α

)
it can be transformed to:

(ab)
−α ⩾ βN + βn (d(sj , s)− ab)

−α
= βN + βnb−α

(
1 + α

√
β − a

)−α

.

Realize that the maximal possible value of a = 1 maximizes the right-hand side of the
inequality (with respect to a).Therefore, the component (1 + α

√
β − a)−α can be reduced,

and the following inequality remains valid:

(ab)−α ⩾ βN + βnb−α(1 + α
√

β − 1)−α = βN + nb−α .

Finally, the result is:
a ⩽ α

√
βNbα + n .

By using the maximal possible value of a, the size of the maximal disk inscribed into the s
reception zone can be calculated as π(ab)2, finalizing the proof.

4.2.4 Jamming for detached areas
Due to the complexity of the topic, it is only noted that methods presented in Section 4.2.1
can be adjusted for detached areas scenarios straightforwardly. For instance, for a circular
detached restricted area, one might find the point closest to the protected station and
tangent splitting the space into half-planes — one containing the whole restricted area
— and use it for calculating the position of a jamming station similarly to Algorithm 3.
A graphical example of this approach is presented in Figure 4.6, where points closest to
s are found for three different detached areas. The described construction is performed,
positioning one station per detached area. The detached areas jamming methods for non-
uniform networks are presented in Section 4.3.
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Figure 4.6: Detached model construction example with multiple restricted areas.

4.3 Extending noisy dust to 2D
This section analyzes non-uniform networks, wherein reception zones can be concave, in-
creasing the analytic complexity. The main focus is on the arrangement of a network with
a single station s with power P (s) = P for which the noisy dust approach will be applied
to protect the restricted area by flooding it, using numerous jamming stations with a small
power Pj ≪ P . The preliminary analysis of the space, where a single jamming station can
effectively block another station’s signal, is presented in Section 4.3.1. The approximation
of this space by a hexagon is shown in Section 4.3.2, and a complete noisy dust algorithm
is described in Section 4.3.3.

4.3.1 Effective jamming range of a single station
Consider a single station s = (0, 0) with a power P (s) = 1 and a border point b = (bx, 0)
such that 0 < bx < range(s). Define a function:

Fj = (Pjβ)
1
α .

For r = bxFj , place a jamming station:

sj = (bx(1 + Fj), 0) .

From now on, it is tacitly assumed that P (sj) = Pj . The present arrangement can be
compared with Section 3.5 and is depicted in Figure 4.7. Note that Fj < 1 is required,
so α ⩾ 2 and Pj < β−1. It also corresponds to the earlier mentioned property Pj ≪ P .
Clearly, like in the 1D case, the segment (bx, sj) is jammed. The disk B(sj , r) could be used
as an initial approximation of a space, where a single disturbing station can effectively jam
the signal emitted by s. However, it would be imprecise if compared with the real effective
jamming space (see Figure 4.8).

In the SIR model, the shape of a space, where sj blocks the signal of s, would be expected
to form an oval, irregular shape. Surprisingly, it forms a circle centered at:

cj =

(
bx +

d(s, b)

F−1
j − 1

, 0

)
.
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s sjb cj

r

Figure 4.7: The top half of an area where a single jamming station can effectively block
the signal of s (depicted as a half of a disk centered at cj , positioned with an offset from
sj ; the bottom half is symmetrical).

s sjb

r

Figure 4.8: A single station’s jamming range. A blue space denotes B(r, sj). A green curve
represents a boundary of the maximal region, where sj correctly jams s.

Theorem 13. For an initial network A, the jamming network J = (S(J) = {sj}, P (J) ≡ 1)
correctly protects Ren

r (cj), for:

r =
d(s, b)

F−1
j − 1

.

To the end of this subsection, the following combined network is assumed:

AJ = ⟨D = 2, S = {s, sj}, N, β, P, α⟩ .

Points x forming the border of an area where the signal is blocked fulfill the equality
SIR(s, x) = β (by continuity of SIR with respect to the tested position). The radial approach
is used, i.e. create a vector

−→
r∗γ (γ ∈ [0, π] is an angle between the segment ssj and the vector),

such that:
x∗
γ = sj +

−→
r∗γ , SIR(s, x∗

γ) = β .

Note that SIR is monotonous in the direction of the vector, so there is precisely one appropri-
ate x∗

γ . This method is presented in Lemma 16 with the construction depicted in Figure 4.9.
Only half of the reception zone requires analysis, as the other half is symmetrical.

Lemma 16. For a network AJ and γ ∈ [0, π], define a scalar:

r∗γ = d(s, sj)((F
−2
j − sin2 γ)

1
2 + cos γ)−1 ,
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r∗γ

−→
b∗γ

h

γσ

Figure 4.9: Construction of a radial based description of the B
(

d(s,b)

F−1
j −1

, cj

)
space.

a vector: −→
r∗γ =

−−−−−−−−−−−−−−→
(−r∗γ cos γ, r∗γ sin γ)

and a point:
x∗
γ = sj +

−→
r∗γ .

Then SIR(s, x∗
γ) = β and SINR(s, x∗

γ) ⩽ β. Moreover, SINR(s, x) ⩽ β for any point
x ∈ sjx∗

γ .

Proof. Define the base vector −→r =
−−−−−→
(b− sj). The vector

−→
r∗γ is acquired by rotating −→r by an

angle γ in a clockwise direction. Obviously, if r∗γ = ∥
−→
r∗γ∥, then:

−→
r∗γ =

−−−−−−−−−−−−−−→
(−r∗γ cos γ, r∗γ sin γ) .

Define a new vector
−→
b∗γ =

−−−−→
x∗
γ − s of a length b∗γ and the angle between

−→
b∗γ and −−−→sj − s as σ

(see Figure 4.9). Note that:

sin γ =
h

r∗γ
, sinσ =

h

b∗γ
,

r∗γ
b∗γ

=
sinσ

sin γ
.

The point x∗
γ has to keep the property SIR(s, x∗

γ) = β, hence:

r∗γ
b∗γ

= Fj =
sinσ

sin γ
. (4.1)

By using the Pythagorean identity (sin2 σ = 1− cos2 σ), it can be converted to:

cosσ =
√
1− F 2

j sin2 γ . (4.2)

It can be easily obtained:
d(s, sj) = b∗γ cosσ + r∗γ cos γ . (4.3)

By applying Equation 4.1 and Equation 4.2 to Equation 4.3:

d(s, sj) =
r∗γ

√
1− F 2

j sin2 γ

Fj
+ r∗γ cos γ = r∗γ

(√
F−2
j − sin2 γ + cos γ

)
. (4.4)

Finally, it results in the following:

r∗γ =
d(s, sj)√

F−2
j − sin2 γ + cos γ

.
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By properties of the construction it is guaranteed that SIR(s, x∗
γ) = β for any γ, so in

particular SINR(s, x∗
γ) ⩽ β. Since energy of sj is decreasing, starting from the point sj , in

the direction of
−→
r∗γ , for any point p ∈ x∗

γsj , it holds that SINR(s, x∗
δ) ⩾ SINR(s, p), making

all such p correctly jammed.

In the next step, the vector representation of
−→
r∗γ has to be converted to a parametric one.

In particular, the h component of
−→
r∗γ can be based on the xγ argument as

−→
r∗γ =

−−−−−−−→
(xγ , r

∗(x)),
via a function r∗(x) = h, where x = d(b, xγ) ∈ [0, d(b, xπ)]. This transformation is presented
in Lemma 17.

Lemma 17. For every point x∗
γ (γ ∈ [0, π]), there exists x, such that:

x∗
γ = (bx + x, r∗(x)) ,

where:

r∗(x) =

(
−x2 +

(
2d(s, b)

F−1
j − 1

)
x

) 1
2

and b = (bx, 0) . Moreover, {x∗
γ : γ ∈ [0, π]} forms a half of a circle.

Proof. Let x∗
γ = (bx + x, h), where x ∈ [0, d(b, xπ)]. The value of h from this formula

depends on the γ angle as follows:

r∗γ cos γ = d(sj , b)− x , r∗γ sin γ =

√(
r∗γ
)2 − (d(sj , b)− x)2 . (4.5)

From Equation 4.4 it is known that:

d(s, sj) = r∗γ

√
F−2
j − sin2 γ + r∗γ cos γ .

Combining it with Equation 4.5 brings:

r∗γ

√
F−2
j − sin2 γ = d(s, sj)− d(sj , b) + x = d(s, b) + x ,

(d(s, b) + x)2 =
(
r∗γ
)2

(F−2
j − 1) + (d(sj , b)− x)2 ,(

r∗γ
)2

=
(d(s, b) + x)2 − (d(sj , b)− x)2

F−2
j − 1

.

The last of the above equations might have two real solutions for
(
r∗γ
)2. However, only the

positive one should be considered. Under assumptions d(s, b) ⩾ d(sj , b) and F−2
j − 1 > 0,

it satisfies:

r∗γ =

√
(d(s, b) + x)2 − (d(sj , b)− x)2

F−2
j − 1

.

Finally, this result can be used to calculate the parametrization r∗(x) = r∗γ sin γ from the
definition of

−→
r∗γ :

r∗(x) = r∗γ sin γ

=

√(
r∗γ
)2 − (d(sj , b)− x)2

=

√√√√ (bx + x)2 − (bxF − x)2F−2
j

F−2
j − 1

=

√√√√b2x + 2xbx + x− (b2x − 2xbxF
−1
j + x2F−2

j )

F−2
j − 1

=

√√√√−x2 +

(
2bx

F−1
j − 1

)
x .
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The last formula is a geometric mean of x and
(

2bx
F−1

j −1
− x

)
, hence {x∗

γ : γ ∈ [0, π]} is a half

of a circle of diameter 2bx
F−1

j −1
. Therefore, the considered region is in fact B

(
d(s,b)

F−1
j −1

, cj

)
.

Lemmas 16 and 17 conclude the proof of Theorem 13. Assume that the point b and radius
of a circle r = d(s,b)

F−1
j −1

are known in advance. Then the power level of station sj can be

calculated as:

Pj = β−1

(
1 +

d(s, b)

r

)−α

= β−1rαd(s, cj)
−α . (4.6)

In the following subsections, the predefined value of r is used, and each station has a fixed
position, so Equation 4.6 can be utilized to assign power levels to these stations.

4.3.2 Space filling method
This part of the thesis is designated to fill the restricted area with small jammed regions.
Assume that all regions are identical. The first candidate for a shape of such regions that
comes to mind would be a disk. However, this idea does not allow the creation of an
efficient and dense space tiling, so some of its approximations should be used. Therefore,
a reasonable choice is a hexagonal tessellation. A regular hexagon is a neat approximation
of a disk’s shape. Theorem 13 reduces the jamming problem to filling the space with such
hexagons. It is only required to decide on their sizes and position them densely. Then, for
each cell formed by a hexagon, the position of a single jamming station has to be assigned,
along with its power level, to guarantee that every hexagon’s interior is correctly jammed.
This arrangement is described in the form of Fact 3:

Fact 3. Consider a network with a single station s and two points b, cj such that:

d(s, b) = (1− Fj)d(s, cj), Pj = β−1d(s, cj)
−αrα .

Let:
−→v =

−−−−−→
(s− cj)

∥−−−→s− cj∥
and assume, that H is a hexagon inscribed into a circle centered at cj with a circumradius r.
Then, one can place a station sj with a power Pj at the position:

sj = cj + (r − Fjd(s, b))
−→v .

For any point x ∈ H, the property SINR(s, x) ⩽ β is satisfied, and in particular, for N > 0,
SINR(s, x) < β.

Note that for Fj < 1:

d(s, cj) = d(s, b) +
d(s, b)

F−1
j − 1

=
d(s, b)

1− Fj
.

Fact 3 directly follows from Theorem 13 and Equation 4.6, because the stated positioning
and power assignment scheme of sj guarantee that any point within the disk centered at
cj with a radius r is correctly jammed, and so are points from H. Details, how to fill a
subset of space using hexagons heavily depends on the shape of such the set, so a generic
algorithm is not presented in detail.

4.3.3 Noisy dust 2D algorithm
In this subsection, for a restricted area R, the pre-constructed hexagonal grid H is present:

H = {h0, h1 . . . } .
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Its elements, hi, are central points of equally sized, regular hexagons. Let Hex(hi, r) be a
hexagon with a center hi and a circumradius r. For the sake of practicality, the grid H is
assumed to be constructed from densely packed hexagons, and it fills the analyzed restricted
area:

R ⊂
⋃
i

Hex(hi, r) .

Additionally, to reduce the complexity of the algorithm definition, it is assumed that all
hexagons have an intersection point with a jammed station maximal reception zone (so
there will be no hexagons without stations afterward). The main Algorithm 4 is defined for
such a constructed hexagonal grid.

Algorithm 4: Create the noisy dust for s = (0, 0), a restricted area R and a
hexagonal grid H with a circumradii equal to r.
Algorithm GenerateNoisyDust(s,H, r)

J ← {}
for h← H do

Pj ← β−1d(s, h)−αrα

Fj ← (Pjβ)
1/α

sj ← h+ (r − Fj(d(s, h)− r))
( −−→

s−h
d(s,h)

)
J ← J ∪ {sj , Pj}

return J

Theorem 14. For the network A, the jamming network J = GenerateNoisyDust(s,H, r)
correctly protects the restricted area R.

Proof. Constructions from Section 4.3.1 and Section 4.3.2 correctly protect each hexagon
from H, in particular, that whole grid correctly protects R.

A schematic execution of Algorithm 4 is depicted in Figure 4.10. Figure 4.10a shows the
initial problem — a single station with its range and a restricted area. In Figure 4.10b, a
dense hexagonal grid is added to fill the entire restricted area within the range of the broad-
casting station. Figure 4.10c presents a SINR range of the central station when jamming
stations are arranged inside hexagons, and their powers are calculated according to Fact 3.
The restricted area is correctly flooded with interference, and the impact on the original
reception zone is limited, even when hexagons’ radii are relatively big. Indeed, the coverage
should improve considerably for smaller ones, which can be observed in Figure 4.10d.

Finally, the cost of Algorithm 4 can be analyzed. Let A(r) = 3
√
3r2

2 be the area of a
hexagon with circumradius r.

Lemma 18. For the network A let the jamming network J = GenerateNoisyDust(s,H, r),
use n jamming stations, approximately equal to:

n ≈ |R ∩ B(range(s), s)|+ o(A(r))

A(r)
.

Then the cost of this jamming network for α = 2 is equal to:

Cost(J ) ≡ O(1) .

For α > 2:
Cost(J ) r→0+−−−−→ 0 .

Proof. Assume that parts of a restricted area located outside of the range of s are excluded,
and the required number of hexagons of circumradii r, required to fill a restricted area R,
is defined as:

n =
|R ∩ B(range(s), s)|+ o(A(r))

A(r)
.
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(a) An initial problem: the range of a
broadcasting station is given as a blue
disk, and the restricted area is depicted
as a red rectangle.

(b) A hexagon grid is filling the re-
stricted area.

(c) Jamming stations positioned with
an offset from hex cells’ centers.

(d) An example with reduced size of
hexagons’ cells. Notice, how reception
zone fits better, reducing coverage.

Figure 4.10: An illustration of the 2D noisy dust algorithm. Black dot in the center is an
initial station.

This assumption should be fulfilled in all realistic scenarios. The area of the restricted region
|R ∩ B(range(s), s)| is a constant (R and s are given a priori). It is naturally bounded by
the area of the initial disk around the broadcasting station in the SINR model:

|R ∩ B(range(s), s)| ⩽ |B(range(s), s)| ⩽ π · range(s)2 .

Cumulative energy required to set up jamming stations for an arbitrary R is given by:

n−1∑
i=0

β−1rαd(s, ci)
−α ,

where a circumradius of every single hexagon equals r, and each jamming station si is
positioned in a unique hexagonal cell and vice versa. Each cell contains only one jamming
station. Observe that one can limit the value of d(s, ci) by a distance between s and the
closest single hexagon within the hexagonal grid — denote it by ds = min{d(s, cj) : j =

60



1, 2, . . . , n}. Since d(s, ci) ⩾ ds for any hex cell:

n−1∑
i=0

β−1rαd(s, ci)
−α <

n−1∑
i=0

β−1rαd−α
s = nβ−1rαd−α

s ≈ |R ∩ B(range(s), s)|
A(r)

β−1rαd−α
s

=
2|R ∩ B(range(s), s)|

3
√
3βdαs

rα−2 ,

Remark that for α = 2, this upper bound is constant:

2|R ∩ B(range(s), s)|
3
√
3βdαs

.

Moreover, one can similarly find a lower bound of cumulative energy required to set up
jamming stations by substitution of ds by its antipodal counterpart max{d(s, cj) : j =
1, 2, . . . , n} (which is also bounded by range(s) + r) and realizing that:

n ⩾
|R ∩ B(range(s), s)|

A(r)
.

It shows that in this case (of α = 2), the cumulative energy is O(1) as r → 0+. On the other
hand, for α > 2, the upper bound converges to 0 as r → 0+, which upholds the zero-energy
property from the 1D version of the noisy dust algorithm. When α < 2, both upper and
lower bounds are O(r2−α), as r → 0+, so in this case, the total energy usually rises along
with the number of jamming stations.

The actual coverage is checked experimentally. Four different scenarios are considered
for the initial network configuration:

A = ⟨D = 2, S = {s}, N = 1.0, β = 1.0, P, α = 3.0⟩ .

Each experiment is conducted for hexagons with radii:

r ∈ { 0.125, 0.25, 0.5, 1 } .

The first case, presented in Figure 4.11, shows the detached restricted area as a disk (s is red
for distinction). In Figure 4.12, the detached restricted area forms a rectangle. In the third
scenario (see Figure 4.13), the restricted area is represented by a half-plane, and finally, in
Figure 4.14, we can find the enclosing restricted area with a disk shape. A summary of all
the scenarios is presented in the coverage plot with respect to r in Figure 4.15. One can
easily see that all cases hold the property that the coverage value increases as the sizes of
hexagons decrease. The method might not work very well for smaller sizes of hexagons in
some configurations (e.g., one presented in Figure 4.11), but generally, it is pretty efficient.
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Figure 4.11: Example 1: detached disk restricted area.
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Figure 4.12: Example 2: detached rectangle.
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Figure 4.13: Example 3: half-plane detached restricted area.
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Figure 4.14: Example 4: enclosing disk.
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Figure 4.15: The coverage obtained for four considered examples with respect to the cir-
cumradius r of each hexagon in the grid.
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Chapter 5

Size-hiding protocols in Beeping
Model

This chapter will focus on different network models, namely the single-hop radio networks
and the beeping model. The distinctive feature of the beeping model is its simplicity. It
distinguishes only two channel states - no station is transmitting (silence), or at least one
station is transmitting (beep). While it limits its capabilities in information sharing, it also
allows straightforward and efficient implementations of this model. In wireless communica-
tion, it can be realized by simple bursts of a signal or energy, and the whole communication
can be performed by carrier sensing [53, 54]. It can even be implemented by more primitive
techniques, e.g., blinking lights. Additionally, algorithms implemented in a beeping model
can usually be easily modified to work in more complex models, including ones with collision
detection. In this model, the problems of counting [55], network size approximation [56],
and minimal independent set [57] were analyzed, among others.

In Section 5.1, the formal model of the network will be presented, along with the defini-
tion of size-hiding property, which is based on the differential privacy and tries to formalize
the property of keeping the size of the network hidden during the execution of algorithms.
In Section 5.2, the universal algorithm will be presented, which allows hiding (to some ex-
tent) the size of the network of the underlying protocol. Finally, Section 5.3 demonstrates
that some classic protocols are size-hiding by design and do not reveal much information
about network size, even if a rigorous definition is used.

5.1 Formal Model
Consider a communication model with a single shared channel and n participating stations.
The parameter n is unknown in advance to stations, or, possibly, some limited knowledge
about n is available (e.g., a rough upper bound on n is given). Stations are anonymous, i.e.,
initially, they do not have any individual identifiers. Time is divided into separated and
synchronized rounds, and all stations can determine the round of communication. In every
round, stations can transmit or listen to the channel following the beeping model [54]. De-
pending on the number of transmitting stations in a given round, each station can recognize
a present state amongst these in the set:

S = {Beep, Silence} .

The state of the channel is as follows:

• Beep in a given round if and only if at least one station transmits,

• Silence otherwise.
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Figure 5.1: Beeping model example with three stations. Beep is denoted by B and Silence
by S.

5.1.1 Adversary and security model
The outer adversary will be assumed, capable of observing the channel while some protocol
P (e.g., initialization, leader election, or size approximation) is executed. Thus, its input
can be described as some s ∈ S∗, i.e., a finite sequence of states of the channel1. Even if
P is randomized, its distribution may depend on the number of participating stations n.
The adversary is passive and is limited to eavesdropping on the communication channel.
The adversary aims to gain additional knowledge about n, given the sequence of states s̄.
In other words, the adversary may have some a priori knowledge about n before executing
the protocol P. However, his goal is to extend it by analyzing the observed execution. In
contrast to previous work (e.g., [58, 59]), there is no assumption that the stations share any
secret information, nor cryptographic key unknown to the adversary, that could be used to
establish a secure communication channel inaccessible to the adversary. This assumption
makes even passive adversaries very powerful, as they have the same information as any
legitimate station. However, in the used model, the adversary has no access to local sources
of the randomness of stations.

5.1.2 Size-hiding definition
Informally, the size-hiding property requires the protocols in similar-sized networks to result
in (almost) indistinguishable channel states. Let XP

n ∈ S∗ be a random variable denoting
the states of the channel when executing the protocol P by exactly n stations. For the sake
of clarity, a simplified notation will be used:

pn,P(x) := Pr[XP
n = x] , pn,P(A) := Pr[XP

n ∈ A] .

Moreover, whenever it is clear from the context, the name of the protocol will be skipped,
using just pn(x).

Definition 14.1. A protocol P is (d, ε, δ)-size-hiding when for any possible set of channel
states A ⊂ S∗:

pn,P(A) ≤ exp(ε)pm,P(A) + δ , (5.1)

for n,m ∈ N+ such that |n−m| ≤ d.

This definition is extended by the auxiliary Lemma 19.

Lemma 19. If there exist parameters ε, δ and a set A of channel states of protocol P that,
for any n, m such that |n−m| ≤ d:

1. Pr[XP
n /∈ A] ≤ δ,

2. (∀ x ∈ A) Pr[XP
n = x] ≤ exp(ε) Pr[XP

m = x],

then P is (d, ε, δ)-size-hiding.
1Note that S can represent different sets of states. It is not limited to a two-state beeping model.
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The above lemma is analogous to the differential privacy property of probabilistic coun-
ters and can be found in [60]. Protocols with this property will yield similar results when
performed by networks having similar sizes, resulting in the probability of distinguishing
the network of size n from any network of size [n− d, n+ d] negligible if ε and δ are small.
Sometimes, the definition is fulfilled only for n greater than some n0. Informally, it can be
said that it is more difficult to mask the difference between executions when comparing 2
with 22 stations than when comparing 102 with 122 stations.

Note that Definition 14.1 can be seen as a counterpart of the very popular differential
privacy introduced in [26]. The main difference is that we use the parameter d instead
of ”neighboring” states. Also, one cannot directly apply methods for preserving privacy
in a distributed system (e.g., like the Laplace mechanism in [61]) since we cannot ”add”
negative values while mimicking the nodes. Finally, the Fact 4 is presented to argue that
only randomized protocols will be considered.

Fact 4. For any non-trivial protocol to be size-hiding, it must be randomized.

Clearly, if P is deterministic with respect to the size n, then pn,P(xn) = 1 for a unique
xn. The deterministic protocol for a fixed network size generates a fixed sequence of channel
states xn. One can easily see that for any ε ≥ 0, and any n > 0, the inequality 6.1 from
the Definition 14.1 can be fulfilled for two consecutive sizes of networks n and n + 1 only
if xn = xn+1. Inductively, this reasoning can be extended for all n > 0. Thus, the
Definition 14.1 can be fulfilled only if the algorithm returns trivially the same value for any
size n.

5.1.3 Related literature
The beeping model is usually considered for single-hop networks [53, 62] and multi-hop
networks [57, 54, 63, 64]. There is existing work on some common problems for different
variants of the beeping model, like finding a maximal independent set [57], leader election
[65] and broadcasting [66]. The problem related to this part of the thesis, approximating
the network size, was studied in [62].

The differential privacy, which inspired the definition of size-hiding property, was de-
scribed in [67]. Its application for the learning algorithms boosting method was analyzed
in [68]. It was also considered for the protecting privacy of distributed systems scenarios in
[69] and Internet of Things in [70, 71].

The problem of secure communication using the beeping model was studied in [72], along
with the algorithm preserving the security. The privacy of communication in the single-hop
MAC model for size approximating algorithms was analyzed in [73].

5.2 Universal Algorithm for Beeping Model
This section will present the universal algorithm, which can be used as a pre-processing
for a broad class of algorithms. In a typical case, this approach moderately extends the
execution time.

The presented approach is based on the following trick. Each station additionally mimics
some random number of ”virtual” stations (called dummies). This simple idea needs a
precise calibration of parameters to be efficient. A careful analysis of security is presented
below.

This approach is universal in that it can be applied to various algorithms as a separate
subroutine2. In particular, the stations do not need any extra knowledge about the system
and do not require any substantial changes in the executed code. A station ”virtually”
executes a code of a regular protocol for itself and in the name of dummies, so the number
of mimicked stations is never zero. This approach does not require global knowledge and
communication outside the shared channel.

2Note that it can be applied in many arrangements distinct from the beeping model as well.
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On the other hand, one may need to notice some limitations of this approach: it can be
applied only in the system, where a single station can imitate several stations. It can be
realized in the beeping model, as described in Section 5.1. The station transmits if a given
station or any dummy station is scheduled to be transmitted. Otherwise, it remains silent.
Moreover, this approach can be applied to some restricted classes of problems.

Definition 14.2. The randomized algorithm is size determined if its random output Ξ
has the same distribution while executed for any network of size given a priori.

Many fundamental problems considered in distributed systems are size determined, in-
cluding size approximation, leader election, waking-up, and initialization/naming [74]. How-
ever, note that some natural problems are not size determined. One example is summing
up all values kept by local stations.

Fact 5. Let A(n) be a size-determined protocol executed by n stations. Moreover, let T be
(d, ε, δ)-size-hiding protocol in values in N (independent of A). Then A(T ) is (d, ε, δ)-size-
hiding.

Proof. By the assumption about T , for any n,m ∈ N such that |n−m| ≤ d, there is:

Pr(T (n) ∈ N) ≤ exp(ε) Pr(T (m) ∈ N) + δ .

Thus, for any l ∈ N, one can find values δn,m,l ≥ 0, such that:

Pr(T (n) = l) ≤ exp(ε) Pr(T (m) = l) + δn,m,l

and: ∑
l∈N

δn,m,l = δ .

Observe that:

Pr[A(T )(n) ∈ S] =
∑
l∈N

Pr[A(l) ∈ S] Pr[T (n) = l]

≤
∑
l∈N

Pr[A(l) ∈ S] (exp(ε) Pr[T (m) = l] + δn,m,l)

≤ exp(ε)
∑
l∈N

Pr[A(l) ∈ S] Pr[T (m) = l] +
∑
l∈N

δn,m,l

= exp(ε) Pr[A(T )(m) ∈ S] + δ.

Note that this fact is a straightforward extension of the post-processing theorem for
differential privacy (e.g., [67]) changed in two aspects. Technically, randomized algorithms
A have to be considered, and the formulation has to be adapted to the modified definition.

How many dummy stations will a given real station mimic? As proved earlier, this
number has to be randomized. There are n real stations. The i-th station mimics Xi virtual
stations, wherein Xi, for all i ∈ {1, . . . , n}, are independently and identically distributed
according to some fixed distribution F . In result, the whole system mimics T (n) = n +∑n

i=1 Xi stations.
A crucial decision is to choose the distribution F . Intuitively, F with higher variance

should have better size-hiding properties; however, it may extend the expected time of
protocol execution compared to the original protocol and worsen the precision of size ap-
proximation.

Here, the binomial strategy BS is presented, depending on a parameter p ∈ [0, 1),
wherein each station chooses if it represents just itself (with probability 1−p) or also mimics
one extra station (plays two stations) with probability p3. In the case of BS Strategy, the
total number of dummy stations has binomial distribution Bin(n, p).

3Note that many other natural strategies can be considered. Several of the most natural approaches
have been considered, but surprisingly, they give similar results to BS, so the most elegant one has been
picked.
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5.2.1 Algorithm analysis
Before the main theorem presenting the algorithm size-hiding properties, the auxiliary Def-
inition 14.3 and Lemma 20 will be presented:

Definition 14.3. For x ∈ R, m ∈ N and h ∈ R, define a generalized shifted rising facto-
rial4:

[x](h)m :=

m∏
i=1

(x+ ih) .

One can define a generalized shifted falling factorial as (x)
(h)
m = [x]

(−h)
m . We omit the upper

index whenever h = 1.

Lemma 20. If |x− 1±mh| < 1, then:

m(x− 1) + h

(
m+ 1

2

)
− m(x− 1)2

2
− h(x− 1)

(
m+ 1

2

)
−

h2
(
2m+2

3

)
8

≤ ln
(
[x](h)m

)
≤ m(x− 1) + h

(
m+ 1

2

)
.

Proof. Note that:

ln
(
[x](h)m

)
=

m∑
i=1

ln(1 + (x− 1) + ih) .

Moreover, for |y| < 1, by the application of Maclaurin series:

y − y2

2
≤ ln(1 + y) ≤ y .

Therefore:
m∑
i=1

(x− 1) + ih− ((x− 1) + ih)2

2
≤ ln

(
[x](h)m

)
≤

m∑
i=1

(x− 1) + ih .

Now, the thesis follows from two classical facts:
m∑
i=1

i =

(
m+ 1

2

)
,

m∑
i=1

i2 =
m(m+ 1)(2m+ 1)

6
=

(
2m+2

3

)
4

.

Theorem 15. Let TBS(n) be the number of stations mimicked by n stations applying bi-
nomial strategy with parameter p. Let β(n) < 1

2 be such that:

[np(1− β(n)), np(1 + β(n))] ∩ N ̸= ∅

and:
d(n) ≤ min

{
(1− β(n))np− 1, (1− p(1 + β(n)))

n

2
− 1

2

}
for any considered size of the system n. Then TBS(n) is (ε(n), δ(n), d(n))-size hiding, where

• ε(n) =
d(n)(1 + p)β(n)

1− p
+ d(n)β(n)2 max

{
1

2
,

p2

(1− p)2

}
+

(
2d(n)+1

2

)
n(1− p)

(
1 +

pβ(n)

1− p

)
+

(
d(n)+1

2

)
np

(1− p+ β(n))

+
d(n)β(n)

n
max

{
1

p
,

2p

(1− p)2

}
+

(
4d(n)+2

3

)
+ 8d(n)

8n2p2(1− p)2
,

4An adjective ”shifted” is due to a fact that product starts with i = 1 instead of i = 0 as it is usually
defined (in both versions, the product has m factors). Also predominantly, h > 0, however we allow h ≤ 0.
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• δ(n) = 2e−2np2β(n)2 .

Proof. Assume that f(n) is a sequence in NN and f(n) ⩽ d(n). Further, f will be used
instead of f(n) for convenience. One can see that:

Pr(TBS(n) = n+ k) =

(
n

k

)
pk(1− p)n−k ,

so:
Pr(TBS(n± f) = n+ k) =

(
n± f

k ∓ f

)
pk∓f (1− p)n−k±2f .

The u± will be used as the following quotient of probabilities:

u± :=
Pr(TBS(n) = n+ k)

Pr(TBS(n± f) = n+ k)
=

n!(k ∓ f)!(n− k ± 2f)!p±f

k!(n− k)!(n± f)!(1− p)±2f
. (5.2)

Note that E (TBS(n)) = n + np. Therefore, the form of k of interest here is np(1 + b(n)),
where |b(n)| ≤ β(n) (roughly speaking, consider the quotient only for the points in the
vicinity of the mean). Analyze the ”plus sign” case of (5.2) first, using generalized shifted
factorials:

u+ =
[n− k]2fp

f

[n]f (k + 1)f (1− p)2f
=

[n− np(1 + b(n))]2fp
f

[n]f (np(1 + b(n)) + 1)f (1− p)2f

=
[1− p(1 + b(n))]

( 1
n )

2f

[1]
( 1
n )

f [1 + b(n) + 1
np ]

(− 1
np )

f (1− p)2f
=

[1− pb(n)
1−p ]

( 1
n(1−p)

)

2f

[1]
( 1
n )

f [1 + b(n) + 1
np ]

(− 1
np )

f

.

Dually, one can get similar:

u− =
(n+ 1)f [k]f (1− p)2f

(n− k + 1)2fpf
=

[1 + 1
n ]

(− 1
n )

f [1 + b(n)]
( 1
np )

f

[1− pb
1−p + 1

n(1−p) ]
(− 1

n(1−p)
)

2f

.

By Lemma 19, realize that ε parameter is related to the upper bounds of | ln(u±)|. Namely,
if:

(∀ n ∈ N)(∃ A(n) ∈ P(N))(∀ k ∈ A) | ln(u±(n, k))| ≤ ε(n) ,

then the 2nd condition of Lemma 19 is satisfied. Here is the discrete interval:

[np(1− β(n)), np(1 + β(n))] ∩ N

plays a role of the set A(n). At this point, realize that the need for constraint on d(n) in the
formulation of Theorem 15 is dictated by the assumptions of Lemma 20. The aforementioned
upper bounds will be carefully analyzed by utilizing Lemma 20 as follows:

ln(u+) ≤

(
−2fpb(n)

1− p
+

(
2f+1

2

)
n(1− p)

)
−
(
f+1
2

)
n
−

(
f

(
b(n) +

1

np

)
−
(
f+1
2

)
np

)

+

(
2f+2

3

)
8n2

+

f
(
b(n) + 1

np

)2
2

−

(
b(n) + 1

np

) (
f+1
2

)
np

+

(
2f+2

3

)
8n2p2


≤ d(n)(1 + p)β(n)

1− p
+

d(n)β(n)2

2
+

(
2d(n)+1

2

)
n(1− p)

+

(
d(n)+1

2

)
(1− p)

np

+

(
d(n)+1

2

)
β(n)

np
+

d(n)β(n)

np
+

(
2d(n)+2

3

)
(1 + p2) + 4d(n)

8n2p2
.
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Remark that the inequalities 0 ≤ f(n) ≤ d(n) and |b(n)| ≤ β(n) were tacitly used in the
latter transformation. Analogously, it can be attained:

ln(u−) ≤

(
f

n
−
(
f+1
2

)
n

)
+

(
fb(n) +

(
f+1
2

)
np

)

−

(
2f

(
−pb(n)
1− p

+
1

n(1− p)

)
−
(
2f+1

2

)
n(1− p)

)

+

f

(
−pb(n)
1− p

+
1

n(1− p)

)2

−

(
f+1
2

) (−pb(n)
1−p + 1

n(1−p)

)
n(1− p)

+

(
4f+2

3

)
8n2(1− p)2


≤ d(n)(1 + p)β(n)

1− p
+

d(n)p2β(n)2

(1− p)2
+

(
2d(n)+1

2

)
n(1− p)

+

(
d(n)+1

2

)
(1− p)

np

+

(
2d(n)+1

2

)
pβ(n)

n(1− p)2
+

d(n)

n
+

2d(n)pβ(n)

n(1− p)2
+

(
4d(n)+2

3

)
+ 8d(n)

8n2(1− p)2
,

with a similar upper bound. However, the lower bounds are also of interest here, so one
can carefully use the same tricks and obtain the following:

ln(u+) ≥

(
−2fpb(n)

1− p
+

(
2f+1

2

)
n(1− p)

)
−
(
f+1
2

)
n
−

(
f

(
b(n) +

1

np

)
−
(
f+1
2

)
np

)

−

(
fp2b(n)2

(1− p)2
−
(
2f+1

2

)
pb(n)

n(1− p)2
+

(
4f+2

3

)
8n2(1− p)2

)

≥ −d(n)(1 + p)β(n)

1− p
− d(n)p2β(n)2

(1− p)2
− d(n)

np
−
(
2d(n)+1

2

)
pβ(n)

n(1− p)2

−
(
4d(n)+2

3

)
8n2(1− p)2

,

ln(u−) ≥ −
d(n)(1 + p)β(n)

1− p
− d(n)β(n)2

2
− 2d(n)

n(1− p)

−
(
d(n)+1

2

)
β(n)

np
−
(
2d(n)+2

3

)
(1 + p2) + 4d(n)p2

8n2p2
.

In the end, by Hoeffding’s inequality:

Pr [|TBS(n)− n(1 + p)| ⩾ β(n)np] ≤ 2 exp
{
−2β(n)2np2

}
. (5.3)

By Lemma 19, inequality (5.3) and the bunch of inequalities for | ln(u±)|, it emerges that:

δ(n) = 2 exp
{
−2β(n)2np2

}
and:

ε(n) =
d(n)(1 + p)β(n)

1− p
+ d(n)β(n)max

{
1

2
,

p2

(1− p)2

}
+

(
2d(n)+1

2

)
n(1− p)

(
1 +

pβ(n)

1− p

)
+

(
d(n)+1

2

)
np

(1− p+ β(n))

+
d(n)β(n)

n
max

{
1

p
,

2p

(1− p)2

}
+

(
4d(n)+2

3

)
+ 8d(n)

8n2p2(1− p)2
,

in order to attain (ε(n), δ(n), d(n))-size-hiding property of the universal protocol.
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Figure 5.2: Examples of distributions for different stations with BS strategy. In the case
of a relatively small difference in the number of stations (parameter n), the behaviors of
networks are practically indistinguishable.

5.2.2 Algorithm applications
Theorem 15 is very general and can be used in various scenarios offering various trade-offs
between the hiding range d and security hiding quality parameters (ϵ, δ) . Three of them
are presented below.

Corollary 2. Fix p ∈ (0, 1). Let:

f1(p) :=
1 + p

1− p
+max

{
1

2
,

p2

(1− p)2

}
and:

f2(p) :=
2

1− p
+

1− p

2p
.

Then there exists n0(p) such that, for any n > n0(p), TBS(n) is:

1.
(
ε(n) = f1(p) +

f2(p)
(ln(n))2 +O

(
1√

n ln(n)

)
, δ(n) = 2

n2p2 ln(n)
, d(n) =

√
n

ln(n)

)
-size hiding,

2.
(
ε(n) = f1(p)

p
√

ln(n)
+ f2(p)

(ln(n))2 +O
(

1√
n ln(n)

)
, δ(n) = 2n−2, d(n) =

√
n

ln(n)

)
-size hiding,

3.
(
ε(n) = f1(p)

p 15
√
n
+ f2(p)

3
√
n

+O
(
n−2/3

)
, δ(n) = 2 exp(−2 5

√
n), d(n) = 3

√
n
)
-size hiding.

These results are obtained from Theorem 15 by substituting the pointed d(n) and β(n)

equal respectively ln(n)√
n

, 1
p

√
ln(n)
n and 1

pn2/5 . Note that the n0(p) should be chosen in such
a way that the assumptions of Theorem 15 are true, concerning the chosen parameter
p ∈ (0, 1) (for n ≤ n0(p) one can modify d(n) and β(n) to satisfy the assumptions in order
to apply the Theorem). Note that in the two latter cases of Corollary 2, both security
parameters tend to 0. On the other hand, the bound ε(n) = Θ(1) is acceptable and
commonly used in differential privacy literature. Therefore, the first mentioned system of
parameters is appropriate, especially when p is relatively small (however, choosing very
small p is not recommended because it occurs that then f2(p) may be uncomfortably big).
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Remark that ε(n) = Θ(1) may be obtained from Theorem 15 whenever d(n)β(n) = Θ(1).
Also, note that, if β(n) = O

(
n−1/2

)
, then we can only attain δ(n) = Ω(1) from Theorem 15.

The power of Theorem 15 is demonstrated under application for some classic results
in the beeping model. The Binomial Strategy is applied as a pre-processing step before
executing the algorithm.

Corollary 3. There exists an explicit algorithm that returns (1 + ε) approximation of the
network size in O(log log n+ log f/ε2) with probability at least 1− 1/f that is(

ε(n) = 1 + o(1), δ(n) = O(
1

n2
), d(n) =

√
n

log n

)
-size hiding .

This fact follows from [62] (Theorem 1). Note that in [56], the optimality for this class
of protocols has been proved.

Corollary 4. There exists an explicit algorithm that names n stations with running time
O(n log n) that is correct with probability 1− n−α and is(

ε(n) = o(1), δ(n) = o(1), d(n) = 3
√
n
)
-size hiding .

This fact follows from the analysis of the naming algorithm in [74]. From the energy-
preserving perspective, a similar result appeared in [75].

In particular, the results listed below describe explicit algorithms as long as they extend
explicit procedures. Note that the chosen decision about mimicking some extra station
can be kept for any number of executions of any algorithm. This approach protects from
information leakage and security decay when the adversary observes the system from a
longer perspective. As a result, there is no need to apply any composition-like theorems
(cf. [67]).

5.2.3 Limitations of the Universal Algorithm

The BS Strategy above can hide an exact number of stations with excellent security
parameters and negligible execution overhead. The adversary cannot distinguish between
n and n±

√
n stations. It is a counterintuitive result since one may think that adding, say,

a random number of virtual stations uniformly distributed from {1, 2, . . . , n} could improve
the hiding effect and extend the approach for an arbitrary range of mimicked stations.

Fact 6. Consider a strategy such that each station mimics independently X stations, where
X has an expectation µ and variance σ. No such strategy can hide the number of stations
for general n and d = ω(

√
n) .

The sketch of the proof would be as follows. Consider two cases for n and N real stations
(N > n). If, according to the algorithm, all stations mimic X other stations, the total
number of mimicked stations would be close to Tn ∼ N (nµ, nσ2) and TN ∼ N (Nµ,Nσ2)
(Berry-Esseen-type theorem). One can easily see that T (n) and T (N) can be distinguished
with probability greater than 0.97 if:

Nµ− 2
√
Nσ > 2nµ+

√
nσ .

The last relation is true even for n,N of moderate size.

5.3 Size Hiding in Regular Protocols
The approach presented in Section 5.2 has many merits - it is simple to implement and
does not require any complex changes in the algorithm to which it is applied. However, it
is limited with respect to the number of stations that can be hidden in networks of realistic
sizes. Moreover, as demonstrated in the previous section, this type of approach cannot be
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substantially improved when we insist on the assumption that the legitimate stations do
not share any knowledge and execute the same code. One may suspect, however, that there
are particular problems that can be solved using some size-hiding algorithm offering better
properties, in particular higher d.

In this section, it will be demonstrated that the GreenLeaderElection protocol intro-
duced in [29] by Jacquet et al. is size-hiding for parameter d = Θ(n) (comparing d = O(

√
n)

for the universal algorithm) keeping parameters δ and ε reasonably small. Explaining in
application terms, the adversary cannot distinguish between 1000 and 1300 stations, which
is a substantial improvement compared to the previous approach. Moreover, it will be pre-
sented that there is no need to modify the original algorithm by Jacquet et al. to get the
size-hiding property. Note that this is a similar case as noiseless privacy (cf. [76, 77]).

5.3.1 Green Leader Election algorithm description
The GreenLeaderElection algorithm consists of two phases. The aim of Phase I is to
reduce the size of competing stations. In Phase I, stations transmit in consecutive slots
with geometrically decreasing probability until there is silence on the channel. Only the
stations transmitting in the last slot with a beep (i.e., survivors) participate in Phase II.
Note that Phase II can be executed using any leader election protocol effectively since,
with high probability, the number of survivors is minimal. This fact is proved in [78, 29]).
Function Geo(p) in Algorithm 5 generates random variable from a geometric distribution
with parameter p.

Algorithm 5: Size-hiding leader election scheme for a single station.
Algorithm GreenLeaderElection(p)

Phase I
t← Geo(p)
for round← 1, . . . , t do

Transmit()
channel = GetChannelState()
if channel ≡ Silence then

status← Candidate
else
status← NotCandidate

Phase II
if status ≡ Candidate then

LeaderElection()

5.3.2 Algorithm analysis
One can see that the information revealed to the adversary consists of the time of the Phase
I execution T and the observable execution of the leader election for the limited subset of
stations. The latter, however, is entirely determined by S, the number of stations that
survived Phase I.

Let the pair (Tn, Sn) be the random variable observed by the adversary if the initial
number of stations is n . The conclusion is based on two observations.

1. The expected length of the Phase I, Tn for n stations, is logarithmic with respect to
the network size n, and it is difficult to distinguish even cases with n and 2n real
stations.

2. Number of survivors Sn promoted to Phase II is almost independent of n and constant
with a high probability.
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While the first observation is relatively intuitive, the second is based on a careful analysis
from [78, 29], wherein authors prove some other properties of this algorithm (mainly limited
energy expenditure). This fact is depicted in Figure 5.3.
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Figure 5.3: Distribution of the number of stations participating in Phase II for various
network sizes (parameter n). This distribution is almost independent of n (but depends on
p).

Using the exact formulas from [78, 29] for distribution of Sn and a very straightforward
analysis of Tn, it can be numerically checked that:

Fact 7. GreenLeaderElection with paramer p = 1/2 with n devices guarantees (ε, δ, d(n))-
size hiding for ε = 2, δ = 0.0002 and d(n) = 0.25n and for n > 10 .

This presentation is limited to proving that the original algorithm hides a significant num-
ber of stations according to a rigorous definition. Note that its analysis can be subject to
many extensions upon the needs of a particular scenario. In particular, accepting higher ε
can make δ completely negligible. Moreover, one can easily prove that the same observable
execution may occur for very different sizes exceeding 25% specified in Fact 7 with com-
parable probabilities. In effect, the adversary cannot be certain even about the order of
magnitude of the network size.
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(b) p = 1/10, ε = 3

Figure 5.4: Maximal parameter δ for n in the range [5, 320] when d = 0.25n. Two examples
with different parameters ε, p.
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Chapter 6

Information hiding in multi-hop
networks

In this chapter, similar to one presented in Chapter 5, the problem of hiding the properties
of the network is analyzed, but from the perspective of synchronous multi-hop networks.
The problem of a distributed algorithm execution is considered from the perspective of
hiding some (meta) information from the curious observer (an adversary) who has access to
some data sources related to the execution (feedback from the algorithm execution). The
idea is presented in possibly high-level/abstract form, covering a wide range of distributed
systems. The presentation will be focused on a multi-hop, synchronous ad hoc radio net-
work, where an adversary can observe some transmissions and possibly partially know the
network’s topology. The motivation behind the information hiding for this type of system is
straightforward: learning the details of the protocol execution may reveal some information
about inputs for the executed distributed algorithm (e.g., the number of packets processed
by individual stations), the type of algorithm that is executed or properties of the under-
lying network (e.g., number of stations in the network). Revealing such information can
be highly undesirable, e.g., a group of robots collectively exploring some terrain shall not
reveal too much about the algorithm they execute, e.g., in military applications.

We assume that the network is operating in a multi-hop model. There may be no direct
communication between some pairs of devices, and communication between some pairs
must be conducted by some relay. Such communication might also require some protection
against eavesdropping - potential adversaries may infer some pieces of information about
the topology of the network, having some details of protocol execution. For example, the
total number of transmissions or the length of the execution of a given algorithm may be
strongly correlated with the network’s diameter. Moreover, in some cases, the details of
the algorithm’s execution allow the adversary to recover the exact topology. In the broad
spectrum of considered adversarial-observer cases, we also consider the scenario wherein
the adversary aims to learn the details of the executed algorithm (e.g., local inputs, type of
algorithm) while the topology is known.

In contrast to previous work concentrated on single-hop radio networks, in multi-hop
settings, we need to consider various network models and different capabilities of the adver-
sary aiming at learning the details of the execution and the network itself. Moreover, the
adversary’s capabilities and possible countermeasures to hide some information strongly
depend on the communication model. That is, replacing the plain beeping model from
Chapter 6 with another communication channel (e.g. classic noCD) may result in dramat-
ically different analysis and results even in the single-hop case.

This chapter presents only preliminary research pointing out how complicated and ver-
satile are various cases of hiding information in multi-hop networks. Apart from the formal
model, we present a taxonomy of different models from the perspective of information hiding
and a few basic protocols for just a few models.

In the Section 6.1, some details of the formal model are presented. Section 6.2 is devoted

76



to the taxonomy of possible network settings and adversarial models. Section 6.3 presents
some chosen algorithms.

6.1 Model
Describing a formal model for our problem is complex since we want to consider all essential
details. First, the network needs to be described, including settings governing synchroniza-
tion and the capabilities of nodes. Then, the communication model has to be described -
how the information is transmitted using the communication channel. Finally, the security
model has to be specified, in particular, the capabilities of the adversary. In particular, we
need to specify the feedback function, i.e., what the adversary learns from the protocol’s
execution. Let us stress that the described systems can consider different feedback func-
tions motivated by different real-life scenarios depending on the distributed system and the
acting of the adversary.

6.1.1 Network model
The network is represented by undirected, connected graph G = (V,E), where V will be a
set of stations and |V | = n. Stations are connected by edges {v, u} ∈ E, where u, v ∈ V .
When there is an edge between two stations, they can bidirectionally communicate with
each other and receive/send some information through that links. Each station’s v ∈ V set
of neighbors is denoted as N(v) = {u : {u, v} ∈ E} and N+(v) = N(v)∪{v}. Let D be the
diameter of the network.

6.1.2 Communication channel
Communication between stations will be synchronized by a global clock accessible for all
stations and split into slots. In each slot, a station can transmit or listen. The transmission
emitted by a station v reaches all neighbors of v, i.e., N(v). The following communication
channels are considered:

Beeping model (e.g. [54, 79, 80, 81]) - the signal is received by a station v if and only if
at least one station from the set N(v) is transmitting and v is in the listening mode.
It is the simplest model, where each station v can recognize only two communication
states: Beep if any station from N+(v) transmitted a message in this round and
Silence when no station transmitted.

no-CD MAC (e.g. [82, 81]) In this model, each station v can detect two communication
states: Transmission when exactly one station from N+(v) transmitted and Noise in
any other case - including also the case when no station transmits - interfering signals
cannot be discerned from an ambient noise.

CD MAC (e.g. [81]) This model allows station v to detect one of three states: Transmis-
sion, when precisely one station from N+(v) transmits, Silence if no station transmits
and Noise in other cases. It is a model closer to modern wireless communication so-
lutions, which allows differentiating between these states.

Direct Messaging (e.g. [83])

In this model, each station v can send direct messages to any station u if link {u, v}
exists in E, and each such station u can detect the message coming distinctively from
node v. In particular, a station in a given round can receive a message from all its
neighbors. No collisions occur in this model.

In the Beeping Model, the signal is assumed to represent a single bit (present or absent
signal). In contrast, in the other models, one can assume that the messages are more
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complex and contain many bits. That is, during a single slot with "Transmission," many
bits can be transmitted 1.

Note that other, less popular models can also be possible and naturally motivated by
some real-life networks (e.g., systems where the collision occurs starting from some threshold
of the number of transmitting stations. Below this threshold, the channel capacity allows
the correct delivery of all messages.

The example of several transmission rounds is presented in Figure 6.1. There are six
rounds, and in each, different stations are transmitting. In Figure 6.2, the observable
channel states from the station v0 are presented for each of the described model types.

v0

v1
v2

v3

(a) Round I.

v0

v1
v2

v3

(b) Round II.

v0

v1
v2

v3

(c) Round III.

v0

v1
v2

v3

(d) Round IV.

v0

v1
v2

v3

(e) Round V.

v0

v1
v2

v3

(f) Round VI.

Figure 6.1: Example of an algorithm execution in multi-hop network. Dots marked by red
denote the transmitting stations, red lines mark active links, and the blue marked node v0
is the analyzed receiver.

Round: I II III IV V VI
Beeping model Beep Silence Beep Beep None Beep

no-CD MAC Noise Noise Transmission Noise None Transmission
CD MAC Collision Silence Transmission Collision None Transmission

Direct Messaging m2,0,m3,0 ∅ m2,0 m1,0,m2,0 None m1,0

Figure 6.2: Description of channel states observable by station v0 from Figure 6.1 at each
round, for different channel types.

6.1.3 Adversary model
It can be imagined as some spying entity located close to the wireless network, capable

of detecting limited information about the communication in the network. More precisely,
in each round, the adversary gains some feedback from the network’s communication. The

1Typically, it is assumed that the communication channel allows in a single slot to transmit at least a
unique identifier of a station with Θ(logn) bits, where n is the number of stations.
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feedback is the value of a feedback function for a given state (transmissions of all stations)
of the network in a given slot. A few types of adversaries will be analyzed, modeled as
feedback functions.

1. Beep detecting adversary - in each round, the adversary can detect if at least one
station is transmitting.

2. Transmission counting adversary - in each round, the adversary can detect how
many stations are transmitting.

3. Local adversary - states of the local channels of a subset of stations are presented
to the adversary.

4. Full information adversary - the adversary gains knowledge about all the commu-
nication (but does not know the content of the transmitted messages).

The information that the adversary received will be in the form of a stream s ∈ N∗,
e.g., stream (1, 0, 2, 0, 1) will mean that in the first round, only one station transmitted,
in second round none station transmitted, in third - two stations transmitted and so on.
Obviously, in adversary model 1, it will be limited to s ∈ {0, 1}∗.

We present what different adversaries can see in Figure 6.3, given the algorithm’s exe-
cution from Figure 6.1.

Round: I II III IV V VI
Beep detecting adversary Beep Silence Beep Beep Beep Beep

Transmission counting adversary 2 0 1 2 2 1

Figure 6.3: Different data acquired from rounds of execution presented in Figure 6.1 by
different types of adversaries.

The Full information adversary detects the following information per each round of
algorithm from Figure 6.1:

Round I: m2,0,m2,3,m3,0,m3,2.

Round II: ∅.

Round III: m2,0,m2,3.

Round IV: m1,0,m2,0,m2,3.

Round V: m0,1,m0,2,m0,3,m2,0,m2,3.

Round VI: m1,0.

The model will be presented in a possibly general form. Thus, it is assumed that the
adversary may have some prior knowledge about the executed protocol and the network
itself. It can be modeled as a probability distribution. The adversary aims to enrich its
knowledge using the feedback from the execution. Note the adversary may have no exact
information about the network; however, given the feedback from the execution, some
scenarios turned out to be significantly more probable. Indeed, the execution can make
some scenarios (e.g., about the number of stations) a posteriori more or less probable, even
without pointing to the exact one. This case can be a security threat and must be considered
in the formal model.
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6.1.4 Algorithm’s evaluation
In analyzing the problem of information hiding, many fundamental issues with measuring
the algorithm’s quality and cost were encountered (understood as additional time and energy
spent to obtain new properties). In some models, adding extra transmission rounds to hide
the accurate execution is indefensible. Thus, completing the same task is more expensive
in terms of communication as well as the total time of execution. Such an approach was
presented in Chapter 5, where the universal algorithm for hiding the network size was
introduced and was based on each station having a probability to simulate one additional
station in the single-hop model. It was presented under the regime of size-hiding regime,
which was based on the differential privacy, presented in [67].

Definition 15.1. (hiding property) Let fA be a feedback function with values in Y repre-
senting the knowledge of the adversary from all the slots of the algorithm’s A execution.
Let A be a set of possible algorithms (including their parameters), and let N be the set of
all possible network parameters. Let Ξ = A×N. Moreover, let (Ξ, d) be a metric space. We
say that A ∈ A is (d,Ξ, l, ε, δ)-hiding when for any S ⊂ Y:

Pr[fA(x) ∈ S] ≤ exp(ε) Pr[fA(y) ∈ S] + δ (6.1)

for all x, y ∈ Ξ such that d(x, y) ≤ l.

Note that in the assumed model, the feedback function (possibly randomized) depends
only on x ∈ Ξ . This definition is a generalized version of Definition 14.1, with fA being
the beeping function (1 if at least one station is transmitting, 0 otherwise), N being the set
of all fully connected networks that can be identified with natural numbers. Moreover, the
metric is d = |n−m| for all n,m ∈ N .

Except for the security (hiding) property, some other metrics need to be considered
while evaluating the hiding method. Similarly to the bulk of previous papers on informa-
tion hiding in distributed systems, in all suggested methods, our paper is somehow based
on the redundancy of communication (adding some surplus actions to obfuscate the adver-
sary’s view). In effect, the obfuscated algorithm is somehow more expensive concerning the
execution time and the energy necessary for completing the algorithm. The latter can be
measured as a value proportional to the maximal number of transmissions over all stations
participating in the protocol. This approach is motivated by two facts:

• listening is an order of magnitudes less energy consuming than transmitting;

• the system’s lifetime is equal to the shortest life over all stations.

Let E(A), T (A) be an energy and a time of execution of an algorithm A. By ST , let us
define all the algorithms completing a given task T . Moreover, let

eT = inf
A∈ST

E(A) .

tT = inf
A∈ST

T (A) ,

That is, eT and tT are optimal time and energy needed to complete a task T , respectively.
Let S∗,θ

T be the set of algorithms for task T hiding the execution with respect to some model
parameters θ (including δ, ε, d, l) . Analogously we define

e∗,θT = inf
A∈S∗,θ

T

E(A) ,

t∗,θT = inf
A∈S∗,θ

T

T (A) .

As the cost of hiding w.r.t the time of execution is defined as e∗,θT

eT
. Similarly e∗,θT

eT
is the

cost of hiding w.r.t energy.
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6.2 Taxonomy
Compared to the results from the paper Chapter 5, where a single-hop radio network was
considered, the case of a multi-hop radio network (and similar distributed systems) is dra-
matically more complex. There are many substantially different (yet still natural) assump-
tions about the topology of the network and the way the stations communicate. Even more
important is the power of the adversary modeled by the feedback function that describes
what the adversary may observe in the run of the protocol. A full description of the adver-
sary needs to cover the a priori knowledge of the adversary about the executed algorithm
and topology. Moreover, we need to specify what the ultimate aim of the adversary is - what
it wants to learn from the feedback function. In this section, we list the main categories for
which the varying configurations can impact the algorithm design and evaluation.

Network topology
We assume that a graph with nodes representing stations describes the network topology.
That is, the connection between any pair of nodes is symmetric. The signal transmitted by
station x reacheches station y if and only if {x, y} is an edge in the graph. Similarly, x gets
the signal if y transmits. We assume that the graph is connected.

• Single-hop - the network is represented by a complete graph.

• Multi-hop - at least two nodes are not connected in the graph. That is, there are at
least two non-connected stations x and y. In particular, to deliver a message between
them, one needs to use a path of relay stations. In this case, delivering a message
from x to y takes more than a single round.

Communication channel

• Beeping model.

• MAC with Collison Detection.

• MAC without Collison Detection.

• Direct messaging.

Local communication channels act as described in Section 6.1.2.

Station’s topology awareness

• Stations know the topology of the network.

• Stations do not know the topology. It can be collectively recovered in the course of
the algorithm.

Station’s algorithm awareness

• Algorithm aware - stations know only its code executed locally.

• Algorithm knowledge restricted - stations know the code of all stations (in particular
if it is the same for all stations). The local inputs, however, remain unknown.

Secret sharing

• Secret capable - from the beginning of the execution, all the stations share a secret
unknown to the adversary. In particular, they can use a secret to encrypt the com-
munication that the adversary cannot read.

• Open communication - at the beginning of the algorithm’s execution, the stations do
not share any secret.
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Adversary’s topology awareness

• Topology aware - the adversary knows the specified topology of the network.

• Topology knowledge restricted - the adversary has no or partial knowledge about the
network’s topology. In particular, the adversary may know that the network is a
regular graph or contains, at most, some N nodes. We also allow to represent the
knowledge of an adversary as a probability distribution over a set of graphs.

Adversary’s algorithm awareness

• Algorithm aware - the adversary knows the exact algorithm executed by all stations;
however, it does not know the inputs of the stations.

• The adversary has limited knowledge of the executed algorithm. In particular, the
knowledge can be a distribution over a set of potential algorithms.

Adversary’s feedback function
Different types of feedback functions are described in Section 6.1.3. We consider:

• beep detecting adversary,

• transmissions counting adversary,

• local adversary,

• full information adversary.

The preliminary research suggests that choosing the factors mentioned above leads to sig-
nificantly different adversary capabilities. We also observed that, consequently, for each
model, one needs to apply different defense strategies. One may consider some other fac-
tors influencing both the adversary’s capabilities as well as possible countermeasures. We
decided, however, to restrict our attention to the most important ones in order to keep the
taxonomy practical.

6.3 Algorithms
This section presents a few elementary algorithms offering information-hiding properties for
chosen models from the introduced taxonomy.

6.3.1 Naive Oblivious
This algorithm can be applied for a relatively weak beeping model of the feedback adver-
sary and the strongest direct messaging as a communication model. Other parameters
can be fixed arbitrarily. In particular, the algorithm does not assume any shared secret
(open communication model). Moreover, the stations do not have to know topology and
can have only local knowledge about the execution.

Description The Naive Oblivious algorithm N (A) is built on the top of any algorithm
A. We assume that messages sent by stations during the protocol are of equal size l, and
stations know the upper bound on the execution length N . Naive Oblivious N (A) works
as follows:

• If in the original protocol A, in a round 1 ≤ t ≤ N , station si sends a message mn
si,sj

to sj , in the modified protocol in the round t in the protocol N (A) the station si
sends to sj a message 1∥mt

si,sj . That is, the same message is sent, however, with a
prefix ′1′.
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• If in the round t the message is not sent in A, in the N (A) the station si sends to sj
the dummy message of the length l + 1 with zeros, only.

The original messages from A can be easily distinguished from dummies.

Analysis The analysis of security properties is obvious. One can see that the adversary
can observe only a sequence of N beeps. That is, the protocol is totally oblivious. In
effect, one gets ε = δ = 0 as the security basic parameters for any properly defined d and
Ξ. On the other hand, the stations taking advantage of the significantly more informative
communication model can execute the A.

Note that the assumption about the equal length of messages sent in the protocol can
be easily bypassed using, e.g., standard padding.

6.3.2 Binomial Boxes Algorithm
The simplicity of the Naive, Oblivious algorithm was based on the fact that the adversary,
having just beeping feedback, was much weaker compared to the regular stations in the
network that could communicate simultaneously with all their neighbors. This section
introduces the Binomial Boxes Algorithm (or BBA, for short) that can be applied to an
adversary still having beeping feedback with constrained regular stations (beeping model
or CD/no-CD MAC). The price of reducing the difference in capabilities of the adversary
and the regular stations is the requirement that the stations need to share a common secret
unknown to the adversary. Moreover, the execution of the algorithm is significantly larger
in terms of time and energy and depends on the parameter determining the security level.

Descripion Each time slot of execution of a regular protocol A is represented by a box
that consists of n + 1 consecutive regular slots. In each box, a single true slot is chosen
uniformly in a pseudo-random random manner. Other n slots are independently chosen
as beep dummy or silent dummy with probability 1/2. The position of the true slot and
decisions if the remaining slots are silent or beep dummies are to be determined by the
shared secret2. Thus, the position of the true slot in a box and the kind of dummies are
known for the stations sharing the secret but remain random for the adversary.

The execution of the protocol BBA(A) is as follows:

• In the true slot of the t-th box of BBA(A) all the stations execute the actions of the
t-th slot of A;

• In all beep dummy slots, all the stations transmit.

• In all silent dummy slots, all the stations remain silent.

Box Box I Box II Box III
Slot 0 1 2 0 1 2 0 1 2 Message

Station A S S S S B S S S B SSS
Station B S S S B B S S B B SBB
Station C S S B S B S S S B BSS
Station D S S B B B S S S B BBS

Figure 6.4: Example execution of BBA algorithm with three boxes and three slot each.
The true slot is marked in bold. Notice how stations in other slots are using the same
behavior.

2This can be done straightforwardly using a chain of one-way hash functions with the secret as a seed .
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Analysis The correctness BBA(A) of the protocol is obvious. Since the stations neglect
dummy slots, the execution of the true slots needs to give the same result3 as A.

More subtler analysis of information-hiding properties is needed. Let us observe that
the adversary can only distinguish the slot with and without any transmitting station.

Let us call the box representing the slot with the transmission in the true slot a beep box
and the remaining a silent box. Since the position of the true slot in each box is random
from the perspective of the adversary, the only information the adversary can learn is the
number of beep slots (including the true slot) in a given box. One can easily see that
statistically, there is one more beep in the beep slot. Intuitively, the difference between the
types of boxes vanishes with a growing parameter n. Formally, the number of beeping slots
in the silent box is binomially distributed TS ∼ Bionmial(n, 1/2), while in the case of beep
box, we got TB ∼ Bionmial(n, 1/2) + 1 . Let us recall the following version of the Chernoff
bound.

Fact 8. Let X be binomially distributed with parameters n and p. For any δ > 0 and
µ = np following holds:

Pr[|X − µ| ≥ δµ] ≤ 2 exp

(
−δ2µ

3

)
.

This version of the Chernoff inequality is obtained by a simple union bound to unify
cases with upper and lower bounds for binomial distribution (see, e.g., [84]). Let δ = 2ξ 1√

n

for some ξ > 1 being a security parameter. Applying directly δ to 8 to TS we get:

Pr
[
|TS −

n

2
| > ξ

√
n
]
≤ 2 exp

(
−4

6
ξ2
)

< exp

(
−ξ2

2

)
.

It directly implies that:

Pr
[
|TB(−1)−

n

2
| > ξ

√
n
]
< exp

(
−ξ2

2

)
.

In effect values of TB and TS are in the interval I =
[
n
2 − ξ

√
n, n

2 + ξ
√
n+ 1

]
with prob-

ability exceeding 1 − exp
(
− ξ2

2

)
. For extreme values, it can be easy to distinguish if the

result is from TB or TS . For example, having beeps in all n+ 1 slots, it is evident that we
deal with beep-box. We show, however, that all the values from I can appear in TB or TS

almost with the same probabilities. Note that for any 2 ≤ l ≤ n:

Pr(TS = l)

Pr(TB = l)
=

Pr(TS = l)

Pr(TS = l − 1)
=

(
n
l

)
1
2n(

n
l−1

)
1
2n

=
n− l + 1

l
:= f(n, l) .

One can see that for l ∈ I we have:

f(n, l) ≥
n−

(
n
2 + ξ

√
n+ 1

)
+ 1

n
2 + ξ

√
n+ 1

= 1− 2ξ
√
n+ 1

n
2 + ξ

√
n+ 1

≥ 1− 2ξ
√
n+ 1
n
2

≥ 1− 5ξ√
n

.

In the same way, one can show that for l ∈ I we have:

f(n, l) ≤ 1 +
7ξ√
n

.

Thus the ratio |f(n, l)| ≤ 1+x for some |x| = Θ
(

ξ√
n

)
for all l ∈ I. Since lnx = 1+x+∆

for some |∆| < x2 if x < 1, we easily get that:

f(n, l) ≤ exp(ε)

3We do not formalize explicitly the results of the protocol, but it can be seen, for example, as the states
of local memories of all stations.
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for:
ε = ln(|f(n, l)|) = Θ

(
ξ√
n

)
.

Finally we need to recall that we proved that l ∈ I with probability at least 1− exp
(

ξ2

2

)
.

As a consequence of the above considerations, one gets the following fact.

Fact 9. Let A(k) be a set of algorithms lasting exactly k rounds in the MAC communication
channel4. For any A ∈ A(k) the algorithm BBA(A) with parameters n > 0 and 0 < ξ < 1
is (Ξ, d, l, ε, δ)-hiding for

• ε = Θ
(
k · ξ√

n

)
,

• δ = Θ
(
k · exp

(
− ξ2

2

))
,

• Ξ = A(k) ×N for any N,

any metric d and any number l > 0 .

The parameters for k = 1 (a single-round algorithm) follow directly from the analysis
described above. The case for k > 1 is a direct consequence of the composition theorem (see
eg.[67]). Note that using ξ = lnnα for α > 1 gives a reasonable trade-off between security
parameters with δ, ε

n−→ 0, assuming that k is fixed. Let us also stress that BBA is a very
general algorithm. Therefore, in the Fact 9, we can use any metric d and a very general class
of cases Ξ. It means that the BBA algorithm hides all the details of the algorithm and the
network but the length of the execution. Note that the above theorem can be optimized,
and better results can be obtained (especially for limited types of A algorithm).

4with or without CD
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Chapter 7

Conclusion

The thesis presented several protocols that allow for protecting network communication
from adversaries. The work was focused on two distinct models, each of which will be
concluded in a separate section. The algorithms presented in Chapters 2-4 were focused on
the SINR model and entirely blocked the communication at fragments of space, where an
adversary could receive it otherwise. These chapters are concluded in Section 7.1. Chapter 5
analyzed the single-hop network model, focusing on keeping the communication private from
an adversary. This chapter is concluded in Section 7.2.

7.1 Jamming in SINR networks
The main objective of the SINR network-related algorithms was to entirely block the com-
munication at fragments of space called restricted areas. The approach was based on using
special jamming stations positioned in space and introducing enough interference that the
secure network was not heard in any restricted areas. Another goal was for the jamming
to be precise enough not to impact communication outside blocked areas. As a secondary
goal, protocols target the reduction of the overall energy required for jamming. The thesis
analyzed several scenarios - namely uniform and non-uniform networks considered under
1D and 2D environments.

The typical limitations of the uniformly powered networks regarding the analyzed task
were discussed. In 1D, the simple positioning schemes with one or two stations were pre-
sented - with basic configuration came a constant energy cost and a mediocre coverage
impact. The precise positioning scheme was also presented, which allows for configuring
the jamming station positions arbitrarily close to their optimal placing with small runtime
overhead. For the 2D model, the generic algorithms for protecting the enclosing restricted
areas were presented, with a sketch of how to implement it for detached areas. In this
model, the experimental calculation showed that the jamming network significantly im-
pacted coverage due to uniformity limitations.

More effective algorithms were analyzed for non-uniform networks. Starting with the
1D basic positioning scheme for one jamming station, which reduced its power to accommo-
date the non-uniformity, it allowed for optimizing the power and coverage impact. Then,
the noisy dust algorithm showed that the jamming network could decrease its energy foot-
print and coverage impact with many jamming stations with relatively small power levels.
Two variants of this algorithm were presented - one for the precise configuration and one
for simplified deployment of the jamming stations. In the 2D model, this algorithm was
extended with a pre-initialized hexagonal grid. The size of a single hexagon impacted the
jamming station’s power. With a fine enough grid, the algorithm showed energy and cov-
erage reduction properties similar to the 1D version in exchange for the increased number
of stations.

All these results allow for quick and efficient protection of stations in a SINR model in
a static environment. There are multiple directions in which these results can be extended.
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• Analyze dynamic model extensions. It can include the movement of restricted areas
and their dynamic shape and size changes, the movement of jamming stations, or
the movement of protected stations. The 1D model could simulate the roads for
vehicular network modeling, the 2D model could be used as a simulation for water
ships communication, and the 3D model is good for a drone network environment.

• Extend the SINR model with a more complex notion of stations’ signal reception
capabilities - some stations, either from the initial or jamming network, might have
different reception thresholds, or these thresholds might change with time (e.g., the
adversary could have more sensitive receivers than the initial network). Adjusting
and extending the algorithms to account for such scenarios seems challenging.

• Generalizing existing jamming algorithms to n dimensions. Currently, solutions are
dedicated to 1D or 2D. However, there are similarities between these variants, which
can be utilized to generalize these solutions or at least extend them to realistic di-
mensions, like 3D.

7.2 Privacy protection in single and multi-hop networks
In Chapter 5, the pre-processing algorithm for the beeping model was presented. It can
be used as an enhancement for other algorithms, which will hide the actual size of the
network from the adversary. It is simple to use and provides good hiding properties. Its
only problem is a limited maximal size difference between the two networks it can hide.
On the other hand, a green leader election algorithm was discussed, which provided much
better capabilities in this regard. Both these results point to the possible extensions of this
research. Similar schemes of mimicking dummy stations could be analyzed to search for
better size-hiding properties. One could verify the size-hiding properties of already existing
algorithms or combine them to get better parameters. The problem could be analyzed in
similar models, e.g., MAC with and without collision detection. Alternatively, the problem
could be considered under the multi-hop model, introducing an entirely different set of
issues and privacy-protection capabilities.

Chapter 6 concerns the multi-hop variant of ad-hoc radio networks. The analogical
model to Chapter 5 is presented in a generic form. Different types of communication chan-
nels and adversaries are described, and the high-level taxonomy of different configurations
to consider in such a problem is presented. Finally, the preliminary analysis of two simple
algorithms is described.
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