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Abstract

The main purpose of the thesis is to present the original solution to the scientific
problem of exploring the applications of simplified brain-computer interfaces in cyber-
security and emotion recognition, especially in terms of evaluating the potential of such
interfaces within the field of stress detection and subject recognition. It has been done by
building stress detection and subject recognition classifiers based on the data provided
by the Neurosky MindWave Mobile 2 interface and evaluating the results, with cyberse-
curity applications in mind, and what the metrics of such classifiers are. Considering the
participation of human participants, the research has been approved by the Committee
for Research Ethics.

Two classifiers have been built to evaluate the possibilities of using a simplified EEG
interface for stress detection in a reproducible manner, by fine-tuning the parameters of
the model, exploring the preprocessing approaches, and evaluating the classifier by its
metrics and the improvement ratios for all available EEG bands, along with the Attention
and Meditation features, to define the impact of a specific feature on the performance of
the model.

The classifier built upon the "Stress" dataset achieved the F1 score of 0.921606 with
precision of 0.857198 and recall of 0.996541, while the classifier built upon the "Login"
dataset achieved the F1 score of 0.945356 with precision of 0.901603 and recall of 0.993748.
The analysis of the confusion matrices produced by both models indicates that it is
possible to use simplified EEG interfaces in stress detection, as both models tend to
skew the results into false-positive area, which in terms of cybersecurity makes it more
desirable than skewing into false-negative predictions.

Two other classifiers have been built to evaluate the possibilities of using the simplified
EEG interface for subject recognition. Contrary to the stress detection recognition study,
these two classifiers were, respectively, binary model calculated for every subject based
on the Fast Tree classifier, compared to the one-for-all multi-class model based on the
LightGBM classifier. The methodology used to develop these classifiers was similar to
that in the stress detection study.

Both classifiers have been evaluated by calculating their metrics and improvement
ratios for all included features. The binary classifier achieved the F1 score of 0.927333
with accuracy of 0.984822, while the multi-class model achieved the macro accuracy of
0.929150 and micro accuracy of 0.929454. Such measure values indicate that it may be
more viable to create a model per subject in commercial setup, as the system would not
have to relearn every subject when there is a new subject joining the group of users.

6



Streszczenie

Głównym celem rozprawy jest zaprezentowanie oryginalnego rozwiązania problem
naukowego, jakim jest zbadanie zastosowań uproszczonych interfejsów mózg-komputer w
cyberbezpieczeństwie i rozpoznawaniu emocji, a w szczególności ewaluacja wspomnianych
interfejsów w zakresie detekcji stresu i rozpoznawania osób. Zostało to osiągnięte poprzez
zbudowanie klasyfikatorów do detekcji stresu i rozpoznawania emocji bazując na danych
pochodzących z interfejsu Neurosky MindWave Mobile 2 oraz ewaluację wyników, mając
na celu cyberbezpieczeństwo. Ze względu na uczestnictwo ludzi, wszystkie przeprowad-
zone badania uzyskały pozytywną opinię Komisji ds. Etyki Badań Naukowych.

W celu zbadania możliwości detekcji stresu dwa klasyfikatory zostały zbudowane
w sposób pozwalający na odtworzenie tego procesu, poprzez dobranie optymalnych
parametrów modelu, eksplorację dostępnych metod przetwarzania wstępnego oraz ewalu-
ację metryk klasyfikatora oraz współczynników poprawy dla wszystkich dostępnych pasm
EEG, wraz z metrykami Uwagi oraz Rozluźnienia, mając na celu określenie wpływu
każdego elementu wejściowego na wyniki opracowanego modelu.

Klasyfikator zbudowany na danych ze zbioru "Stres" osiągnął wartość F1 na poziomie
0.921606 z precyzją 0.857198 i kompletnością 0.996541, natomiast klasyfikator zbudowany
na danych ze zbioru "Login" osiągnął wartość F1 na poziomie 0.945356 z precyzją
0.901603 i kompletnością 0.993748. Analiza macierzy błędów obu modeli wskazuje na
możliwość wykorzystania uproszczonych interfejsów EEG w detekcji stresu ze względu
na tendencję obu modeli do przekłamania w stronę wyników fałszywie dodatnich, co w
temacie cyberbezpieczeństwa jest bardziej pożądane niż przekłamanie w stronę wyników
fałszywie ujemnych.

Dodatkowe dwa klasyfikatory zostały zbudowane w celu zbadania możliwości rozpoz-
nawania osób. W przeciwieństwie do badań rozpoznawania stresu, wspomniane dwa
klasyfikatory bazowały odpowiednio na binarnym modelu Fast Tree oraz wieloklasowym
modelu jeden-na-wszystkich LightGBM. Metodologia wykorzystana do budowy tych
klasyfikatorów była podobna do badań rozpoznawania stresu.

Obydwa klasyfikatory zostały zbadane za pomocą obliczenia ich metryk oraz
współczynników poprawy dla wszystkich dostępnych wartości wejściowych. Klasyfikator
binarny osiągnął wartość F1 na poziomie 0.927333 z precyzją 0.984822, natomiast klasy-
fikator wieloklasowy osiągnął dokładność makro 0.929150 oraz mikro 0.929454. Wartości
te wskazują na model binarny jako bardziej praktyczny w rozwiązaniu komercyjny, z
racji braku konieczności ponownego uczenia klasyfikatora za każdym dołączeniem nowego
użytkownika.
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1. Introduction

This chapter is a comprehensive overview of the subject of the thesis, along with
the scope, goal, and structure of the thesis. The main goal is to explore the feasibility
of simplified and commercially available EEG interfaces in terms of cybersecurity and
emotion recognition. The main benefit of this approach is to fill the gap between the
existing state-of-the-art research on medical-grade EEG interfaces and practical, accessible
applications of the EEG interfaces available on the market.

1.1. Subject Overview

The human brain is one of the most complex parts of our bodies, responsible for
congitive function, sensory processing, motor control, memory, and much more[35]. For
decades, it has been the subject of various research. One of the groundbreaking tools that
gives us insight into the human brain and its activity is electroencephalography (EEG)[51],
a technique that records electrical fluctuations along the scalp of the subject that are an
effect of neurons firing within the brain[25]. The history of EEG goes back to the early
20th century; a German psychiatrist, Hans Berger, first recorded the electrical activity of
the human brain in 1924[47]. His work has become the foundation for EEG development
as the useful tool it is today, both in clinical and scientific fields. The traditional EEG
interface is a non-invasive device that allows one to measure brain activity through a range
of electrodes placed on the scalp of the patient, covering various areas of the brain[49].
Within preset frequency, the device captures the ongoing electrical activity, providing the
software with the raw signal data that can be later analyzed, providing valuable insight
into our brains. Although currently the use cases of EEG are much more diverse, they
evolved over the decades from the very first recording by Berger. In a clinical setting, EEG
is a valuable tool in the diagnosis and monitoring of a variety of neurological disorders,
such as epilepsy[32], sleep disorders[63], and brain injuries, helping to detect abnormalities
in electrical patterns that may indicate seizures. Outside of clinical applications, EEG
is researched in cognitive neuroscience[16] to study brain functions related to perception,
attention, motor skills, and memory. In addition, advances in EEG technology have been
made for it to be used in brain-computer interfaces (BCI)[38], enhancing communication
between humans and computers, which could especially help people with severe motor or
mental disabilities. The versatility of EEG is also presented in other use cases, including
understanding the stages and disorders of sleep, or neurofeedback therapy[43]. As more
extensive research is performed, the applications may expand as well, possibly introducing
EEG to fields that have never been before.

EEG is already used in a variety of use cases, as described above. However, traditional
full-scale EEG interfaces are usually prohibitively expensive and complex, significantly
limiting their adoption in commercial applications beyond the medical and scientific field.
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It is difficult to use such a device in a daily routine as a smartphone when it requires
extensive setup, specialized personnel, and environment, which makes it horrendously
impractical. However, the technological advancements since day one of EEG research
have led to the development of simplified, wearable EEG devices. Although they cannot
be compared with traditional medical interfaces in terms of data quality and number of
channels, they address the limitations associated with their traditional counterparts.

The simplified interfaces are designed from scratch to be more user-friendly and afford-
able at the cost of medical-grade quality data, however, innovations such as dry electrodes,
wireless connectivity, and compact form factors make them a more viable solution for daily
usage in any commercial applications, such as BCI devices, security measures, or contin-
uous and unobtrusive monitoring of brain activity. The sole factors of affordability and
simplicity have the potential to extend the use of EEG devices far beyond traditional med-
ical applications. The simplified interfaces could easily be used to continuously monitor
stress, anxiety, and other psychological states, providing useful information to individ-
uals, doctors, and healthcare providers. The aforementioned brain-computer interfaces
could also be deployed more universally, as devices are simpler and cheaper, allowing
people, especially those in special need, to explore the new possibilities of controlling
computers, smartphones, and other devices that could significantly improve their comfort
of life. Beyond the domain of clinical-like application and quality of life, the possibilities of
simplified EEG devices extend to other areas, such as education, allowing one to monitor
cognitive load and attention, optimizing the learning process and experience. In the fitness
area, those interfaces could be used to track mental states to improve performance during
training and recovery afterwards. Lastly, within the entertainment area, such devices look
promising in immersive and interactive movies, games, and other activities, by possibly
adapting the content to the current state of the one’s brain activity.

The extensive research on EEG has outstandingly advanced humanity’s understanding
of brain activity and gave us incredible insight on how our brains work. However, following
the recent enrollment of simplified EEG interfaces, there is a significant gap in the
literature. The traditional interfaces, given their history, although complex and expensive,
have been a main focus of numerous experiments performed within the last century. The
fact that simplified interfaces are becoming more popular suggests a need for revisiting the
already performed research and re-evaluate it, now with the simplified devices. This could
bring a significant insight to the field, either reassuring the position of the new interfaces
or discarding them as not viable. Although existing research could be repeated, the
idea that some of the research topics may have been declined due to the impracticality of
traditional EEG interfaces seems to be justified. In addition to evaluating newer interfaces
with older research, there is a domain of research that probably has not yet been explored
at all or a fraction of it has. One of those areas is cybersecurity - given the traditional
interfaces would be irrationally impractical to, for example, confirm someone’s identity,
it seems natural to evaluate the new simplified devices within the prospect of deploying
them to a wider audience, potentially allowing people to authenticate and log into the
popular services in a practical, possibly more secure way.
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1.2. Goal and Scope of the Thesis

The main goal of the thesis is to explore the applications of simplified EEG interfaces
within the field of cybersecurity and emotion recognition. This thesis addresses the
research question of whether it is feasible to develop classifiers for stress detection and
subject recognition using data from simplified EEG interfaces and what performance
metrics can be achieved. The real-world goal is to make it possible to integrate such
classifiers into already existing security protocols and biometric identification systems,
thus improving their security. By meticulously examining the performance metrics of
these classifiers, this study seeks to evaluate the practicality and reliability of simplified
EEG interfaces in the scenarios mentioned above. The thesis not only addresses the
technical challenges posed by the development of such classifiers but also covers the
development of two proprietary datasets to make the development of those classifiers
possible, as no viable dataset of required data is publicly accessible at the moment. The
research employs a rigorous and deterministic approach within its experimental procedures
to ensure that the results achieved are fully reproducible. In the end, every developed
classifier is validated through the metrics described later within the thesis. Ultimately,
the goal of this thesis is to contribute to the expanding body of knowledge about EEG
technology, demonstrating how these simplified interfaces can be used effectively beyond
traditional medical settings. This work aims to revolutionize various aspects of daily life
by extending the utility of simplified EEG interfaces, thereby enhancing their accessibility
and applicability in diverse real-world contexts, where no EEG device could be considered
before due to the impracticality and high cost of older traditional versions.

1.3. Structure of the Thesis

The rest of the thesis is organized into eight chapters. Chapter 2 contains the
theoretical framework describing topics related to the research conducted, such as EEG
technology, machine learning, algorithms, and metrics, establishing a robust basis for the
subsequent practical work. Chapter 3 provides the review of the current state of the art,
datasets, highlighting key advances, and gaps in the existing literature. This chapter
sets the stage for the research by offering a thorough understanding of the fundamental
concepts and the context in which this study is situated. Chapter 4 describes the
methodology and details the approach taken in planning the research process, including
data collection from subjects, experimental design, and execution. This chapter also
describes the specific techniques and tools used for data acquisition and pre-processing,
ensuring that the experimental setup is both rigorous and replicable. Chapters 5 to 8
focus on developing models to address the research questions using the ML.NET library.
They involve the implementation of various machine learning algorithms, the tuning of the
parameters, and the evaluation of the performance of the model. These chapters provide
a step-by-step account of the model-building process, from initial data exploration to final
validation of results. Chapter 9 synthesizes the conclusions drawn from each experiment,
extracting meaningful insights and discussing their significance in the broader context of
EEG research.
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This chapter also suggests potential directions for future research, proposes new
avenues for further exploration, and highlights areas where further investigation is needed.
By offering a comprehensive summary of the research results and their implications, this
chapter aims to contribute to the ongoing discourse in the field.
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2. Theoretical Framework

The following chapter explains the theoretical aspects used to perform the research
required in this dissertation. First, the area of electroencephalography (EEG) is covered,
along with traditional medical-grade interfaces, as well as simplified, more affordable
counterparts. Afterwards, the technical aspects are explained, starting with the Simple
Moving Average algorithm used to smooth out the noises present within signal, the
ML.NET library and the classifiers it offers, as well as the metrics that can be used
to assess the created models and compare them with each other.

2.1. EEG and Interfaces

Electroencephalography (EEG) is a method of recording voltage fluctuations between
neurons in the subject’s brain (shown in Figure 2.1) by utilizing the metal electrodes
distributed over the subject’s scalp (shown in Figure 2.2). Despite the fact that EEG is a
fairly safe imaging technique due to not requiring any invasive action, its cost, complexity,
and availability may be a considerable impediment in the way of successfully using them
in commercial solutions.

Figure 2.1: Neuron structure

Source: commons.wikimedia.org
(BruceBlaus - access date: 16 Jul 2024)

Figure 2.2: Traditional EEG interface

Source: mayoclinic.org
(access date: 16 Jul 2024)

The state of the art research shows that each part of the brain seems to be responsible
for specific functions[14]. The traditional interface utilizes electrodes placed on the scalp
of the subject, recording data from specific local channels presented in Table 2.1 and
Figure 2.3.
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Table 2.1: Brain Regions, Channels, and Functions

Region Channels Functions
Frontal Lobe F* Memory, concentration, emotions
Parietal Lobe P* Problem Solving, attention, grammar, sense of touch
Temporal Lobe T* Memory, face recognition, hearing, word recognition
Occipital Lobe O* Reading, vision
Cerebellum - Motor control, balance
Sensorimotor Cortex C* Attention, mental processing, fine motor control

Source: [14]

Figure 2.3: EEG Local Channels

Source: [14]

EEG output can be divided into bands defined by their frequency, location, and
characteristic behavior. Table 2.2 presents the EEG bands along with the characteristic
frequencies. Delta waves are dominant especially in the deep sleep state. They are useful
for the detection of diseases and disorders, such as Parkinson’s disease, diabetes, and
insulin resistance. Theta waves are commonly observed in the front part of the brain.
Their activity can be especially observed in idle states, such as hypnosis or light dream
phase. They can also be observed within the inhibition of elicited responses, where the
subject tries to suppress the reaction to some stimuli.
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Alpha waves are mostly associated when the subject is not exposed to visual stimuli
(for example, has closed eyes), relaxation state, and suppressed cognitive function[55].
Beta waves are observed to be correlated with one’s cognitive activity, especially prominent
in the deep concentration state. They can be used to determine whether the subject is
calm, intense, or stressed[56]. Gamma waves are especially prominent in cross-modal
sensory processing, i.e. when the stimuli are affecting more than one of the subject’s
senses (e.g. audiovisual stimulation). [39][41]. They are also associated with short-term
memory usage, such as matching objects, sounds, or sensations.

Table 2.2: EEG bands and frequencies

Band Frequency
Delta 1 - 4 Hz
Theta 4 - 8 Hz
Alpha 8 Hz - 12 Hz
Beta 12 - 25 Hz

Gamma 25 - 40 Hz

For some time now, an increasing number of simplified and wearable EEG devices
have been available on the market. The main factors of affordability and simplicity, at
least compared to the full-scale, medical-grade counterparts, make them an interesting
choice to conduct research and expand the current state of the art by both revisiting
already published research with such simplified interfaces to evaluate their viability and
conducting research topics that have been discarded in the past due to impracticality of
traditional EEG interfaces. An example of such a simplified EEG interface is MindWave
Mobile 2, produced by the NeuroSky company, which features only one electrode placed
above the left eyebrow[7]. The device picture is presented in Figure 2.4. This is the
device that will be used throughout this thesis. For the latter purpose, cybersecurity and
biometrics are a plausible choice to experiment with newly available hardware.

Figure 2.4: NeuroSky Mindwave Mobile 2

Source: researchgate.net
(access date: 16 Jul 2024) Figure 2.5: Emotiv MN8

Source: emotiv.com
(access date: 16 Jul 2024)
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2.2. Simple Moving Average Algorithm

In cases where the input signal is considered to be noisy, it may be useful to introduce
some technique to smooth out the signal and remove the noise that could negatively
impact the classifier. One way of performing such a transformation is the Simple Moving
Average algorithm[24] - a statistical tool widely employed in time series analysis to smooth
out the short-term fluctuations in favor of long-term trends. The core idea is to apply the
moving window throughout the signal and calculate the average value of the signal. To
achieve it, two parameters must be defined for the algorithm: windowsize, which defines
how many samples will consitute to one averaged one, and stepsize, which will define
how many original samples the moving window need to skip to calculate new value. The
intuitive visualization of the algorithm is presented in Figure 2.6.

Figure 2.6: Visualization of Simple Moving Average algorithm

Source: optionalpha.com (access date: 29 Aug 2024)

Due to its simplicity and ease of implementation, the Simple Moving Average algorithm
is widely used in a variety of domains, such as finance and economics, e.g. for stock price
analysis, providing insights into the trends on the market by averaging past prices within
a predefined window, thus focusing on the long-term trends instead of the short-term price
fluctuations. Within the scientific context, one of the prime goals the algorithm is used
for is to filter out the noise from the datasets, improving the quality of the samples and
reducing the amount of random variations within the samples. Despite its advantages, the
choice of its parameters (window and step size) is critical, as too small window size may
not sufficiently filter the noise, while too large window may obscure the trends that were
smaller than it. Fine-tuning the parameters of the Simple Moving Algorithm is crucial in
this matter.
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For example, let us consider the original signal presented in Figure 2.7. After applying
the Simple Moving Average algorithm with window size of 4 and step size of 2, the signal
will be smoothed out as presented in Figure 2.8.

λ = [4, 9, 6, 5, 2, 1, 3, 10, 8, 7] (2.1)

λ− example signal vector

Figure 2.7: Signal before applying Simple Moving Average algorithm

λ′ = [

∑w
1 λn

w
,

∑s+1+w
s+1 λn

w
,

∑2s+1+w
2s+1 λn

w
, ...]

= [
4 + 9 + 6 + 5

4
,
6 + 5 + 2 + 1

4
,
2 + 1 + 3 + 10

4
,
3 + 10 + 8 + 7

4
]

= [6, 3.5, 4, 7]

(2.2)

λ′ − signal vector after SMAalgorithm

λn − n− th element of the original signal vector

w − window size

s− step size

Figure 2.8: Signal after applying Simple Moving Average algorithm

2.3. ML.NET Library

ML.NET is a free, open source, and cross-platform machine learning framework[4]
for the building of ML models that allows one to effortlessly construct, evaluate, and use
machine learning models in .NET projects. AutoML is the set of tools within the ML.NET
library[3] that allows one to quickly and practically discover the models that perform the
best for any given dataset by automatically detecting the input data schema, selecting
model parameters, and running each model in a time box window to quickly assert which
model would suit the dataset the best. ML.NET also provides the user with a handy
"wizard" tool that allows setting up the session via an intuitive user interface, as shown
in Figure 2.9. For the datasets that were created within this thesis, AutoML recommended
FastTree classifier for binary model[18], and LightGBM classifier for multi-class model.
Those are the models that will be explored later on.
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Figure 2.9: AutoML wizard tool

Source: own

Fast Tree Binary Trainer (which for the sake of brevity will be referred to as "Fast
Tree" classifier later on) uses the optimized implementation of MART (Multiple Additive
Regression Trees) gradient-boosting algorithm. In the learning phase, every decision tree
is built via a step-by-step approach, using a predefined loss function to measure the
error in every step. The core idea of the MART algorithm is to combine a set of weak
models with a stronger model rather than to build a simple optimized one. The algorithm
produces new decision trees sequentially by reducing existing residuals. This sequential
approach is a type of functional gradient descent[30]. The most important parameters of
this classifier from the perspective of this thesis are the number of trees and the learning
rate; these are the parameters that will be explored and optimized later on.

Light GBM Multiclass Trainer (which for the sake of brevity will be referred to as
"LightGBM" classifier later on) is an implementation of the gradient boosting framework
utilizing tree-based learning algorithms [2]. The major advantages of this trainer are faster
training and higher efficiency, lower memory usage, better accuracy, support of parallel
and distributed learning (even on GPU), and capacity of handling large datasets. The
most important parameters of this classifier from the perspective of this thesis are the
number of iterations of the algorithm and the learning rate; these are the parameters that
will be explored and optimized later on.

Cross-validation is a technique to assess how the classifier results would scale to
the independent data set. Although cross-validation can refer to numerous approaches,
such as the "leave-p-out" or "k-fold" methods, the experiments within this thesis will
utilize the "leave-one-out" variant. Leave-one-out cross-validation is a specific case of
the "leave-p-out" method, where the dataset is split into N folds. Then, in each of N
iterations, the nth fold takes the role of the test data set, while the rest of the folds act as
the training dataset. The validation results are then combined in the end. This method is
the acceptable way of reusing data for training and testing purposes without maximizing
the chances of a classifier overfitting[53]. The general flow of cross-validation is presented
in Figure 2.10.
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Figure 2.10: Leave-One-Out Cross-Validation

Source: dataaspirant.com (access date: 28 Aug 2024)

2.4. Metrics Used for Classifier Evaluation

A confusion matrix is a useful tool in the evaluation of classification models within the
domain of machine learning and statistical classification. Using a specific table layout,
it gives insight into the performance of an algorithm, typically a supervised learning
one. The matrix is structured with rows representing the true labels and columns
representing the predicted labels - each cell in the matrix contains the count of instances
that correspond to the actual and predicted labels. The primary diagonal of the matrix,
where the actual and predicted labels are the same, presents the number of samples
classified correctly; these values are called, respectively, true positives (TP) and true
negatives (TN). The off-diagonal represents the samples classified incorrectly, named
false positives (FP) and false negatives (FN), displaying the divergence from the true
labels. The confusion matrix is essential for deriving many more metrics described in the
following, such as precision, recall, F1 score, and accuracy. The analysis of the matrix can
be particularly useful in unbalanced datasets, where the sole analysis of singular metrics
may be misleading. Examples of binary and multiclass confusion matrices are presented,
respectively, in Tables 2.3 and 2.4.

Table 2.3: Example confusion matrix for binary model

Predicted
Positive Negative Recall

Truth Positive 98 74 0.5698
Negative 9 85 0.9043
Precision 0.9159 0.5346
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Table 2.4: Example confusion matrix for multi-class model

Predicted
A B C Recall

Truth A 62 3 55 0.5167
B 2 89 34 0.7120
C 4 68 66 0.4783
Precision 0.9112 0.5563 0.4258

Precision is defined as the ratio of true positive predictions to the sum of true positive
and false positive predictions. It indicates the proportion of correctly identified positive
instances out of all predicted positive instances. A high precision value is usually an
indicator of the lower rate of samples classified as false positives, which may be crucial
in use cases such as medical diagnostics or fraud detection. In an unbalanced dataset
where there are only few positive samples, a classifier may easily achieve a high precision
value. Intuitively, when the dataset is unbalanced in the other way, a low precision value
may prevail. Recall, also known as sensitivity, is one of the other fundamental metrics
that indicates the ratio of correctly identified positive samples to all factually positive
instances. A recall value of 1 means that all positive samples within the dataset have
been correctly classified by the model, while a value of 0 indicates that none of them
have been correctly identified. In an unbalanced dataset where there are only few positive
samples, a classifier may easily achieve a high recall value by overpredicting the positive
label, thus increasing the chance of false positive result. Intuitively, when the dataset is
unbalanced in another way, a low precision value may prevail, indicating that the model
is underpredicting the positive label. Both metrics are calculated as presented in Figure
2.11. Those two metrics and the correlation between them are intuitively described in
Figure 2.12.

p =
tp

tp+ fp
(2.3)

p− precision

tp− number of true positives

fp− number of false positives

(a) Precision formula in binary model

r =
tp

tp+ fn
(2.4)

r − recall

tp− number of true positives

fn− number of false negatives

(b) Recall formula in binary model

Figure 2.11: Precision and recall formulas
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Figure 2.12: Precision and recall

Source: commons.wikimedia.org (Walber - access date: 28 Aug 2024)

Accuracy is defined as the ratio of correctly classified items to the overall number of
samples. While it is a straightforward measure tempting to be used as a sole metric for
comparison with other classifiers due to the dependency on all values from the confusion
metrix, its reliability can be severely compromised in imbalanced datasets. For example,
when the dataset contains one dominant label, a model can achieve high accuracy by
focusing on this label and neglecting the rest, misleadingly indicating good classifier
performance[22]. In addition, noisy data and outliers can skew the metrics, lowering the
efficiency of the classifier. While accuracy is a useful metric, it cannot be used for model
comparison on its own - a better idea is to compare other metrics as well. The accuracy
value is calculated as presented in Figure 2.13. For multi-class models evaluation, the
ML.NET library uses macro- and micro-accuracy measures. Micro accuracy is an average
metric of the input that all classes have, defined as the fraction of correctly predicted
items. This measure does not account for the membership of the class, which means that
every tuple of the item and class has the same weight to the metric[5].
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a =
tp+ tn

tp+ fp+ tn+ fn
(2.5)

a− accuracy

tp− number of true positives

fp− number of false positives

tn− number of true negatives

fn− number of false negatives

Figure 2.13: Accuracy formula in binary model

Macro accuracy, on the other hand, is defined as the average of accuracy for each
predicted class. Similarly to micro accuracy, every class has the equal weight to the
metric, regardless of balance (i.e. how many items each class contains) of the dataset[5].
F1 score is one of the F-measures, specifically the harmonic mean of precision and recall
of the classifier[62]. It is calculated as presented in Figure 2.14. Combining both precision
and recall of the classifier makes it possible to compare models by using only one metric.
The value of the metric ranges from 0 to 1, where the value of 1 indicates perfect precision
and recall, while 0 indicates the worst possible performance. Within unbalanced datasets,
the F1 score can experience some instability and unintuitive behavior; if one of the labels
outnumbers another, the classifier may achieve high accuracy by predicting mainly the
dominating label, yet the F1 score can be significantly lower due to poor recall of the
other label.

F1 =
2

p−1 + r−1
= 2

pr

p+ r
(2.6)

F1 − F1 score

p− precision

r − recall

Figure 2.14: F1 score formula

In the ML.NET library, the entropy measure is provided for the test-set in binary
classifier, based on the ratio of positive and negative instances in the test set[5]. It is
calculated as presented in Figure 2.15. It measures the unpredictability of the distribution
of the dataset. The ML.NET library uses the entropy measure to evaluate the purity of
splits in decision tree classifiers, where a lower value indicates a more homogeneous set of
samples, thus improving the accuracy of the predictions. Within the unbalanced datasets,
entropy can vary significantly - its value will be low if there is a dominant label, indicating
the high predictability of the dataset. Intuitively, if the distribution of data sets labels
is more or less equal, the entropy value will be higher, indicating more uncertainty in
making a prediction.
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e = −plog2(p)− (1− p)log2(1− p) (2.7)

e− entropy

p− proportion of the positive class in test set

Figure 2.15: Entropy formula

Logarithmic loss in the ML.NET library measures the model’s performance while
taking into account the divergence of predicted probabilities from the true class label.
Contrary to other metrics, the lower log-loss value, the better the classifier - the perfect
model predicting a probability of 1 for the true class would have the log-loss value of 0. It
is calculated as presented in Figure 2.16. When the probabilities of classifier predictions
are close to boundary values of 0 and 1, the metric can achieve an outstanding value
due to the nature of logarithmic function near those boundaries. For example, a model
predicting the probability of 0.01 will be marked with a higher penalty than the model
predicting the probability of 0.99. The focus on probability instead of raw predictions
makes the logarithmic loss a measure that ensures that the evaluated classifiers not only
predict the correct labels, but also focuses on the probabilities.

l = − 1

m

∑
i = 1mln(pi) (2.8)

l − log loss

m− number of items in test set

pi − probability returned by classifier

Figure 2.16: Logarithmic loss formula

Qλ =
µλ

µ¬λ
=

∑M λm

M∑N ¬λn

N

(2.9)

Qλ − improvement ratio

µλ − average of metric in classifiers containing the feature

µ¬λ − average of metric in classifiers not containing the feature

λm : metric of the classifier containing the feature

λn : metric of the classifier not containing the feature

Figure 2.17: Improvement ratio formula
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To designate the importance of each tested feature, it is possible to calculate the
improvement ratio for the metric by calculating the ratio of the average metric in classifiers
containing the feature to the average metric in classifiers not containing the feature.
This value can be calculated for every metric of the classifier, although it may be
counterintuitive with the "the lower, the better" metrics. The improvement ratio is
calculated as presented in Figure 2.17.
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3. Related Works

Electroencephalography (EEG) is a method of recording electrical activity between
neurons in the subject’s brain. The procedure itself is quite safe, considering that it does
not require any invasive action, just placing the electrodes on the scalp of the subject.
Recently, an increasing number of simplified and wearable EEG devices are available
on the market. Top companies, such as NeuroSky[1] or Emotiv[50], are developing and
researching EEG interfaces that are more suitable for everyday commercial use. Given
such a fact, along with the interesting characteristics of the EEG, it is an interesting topic
to research the possible gains in terms of cybersecurity and biometrics. There is an im-
portant distinction between the identification and authentication processes. Identification
means that one subject is recognized from the others, that is, their identity is claimed.
Authentication means confirming that this identity claim is indeed real and true. Given
that there is a system that can successfully authenticate the subject based on EEG read-
ings, it could either replace the traditional username/password authentication approach
or support it by being the second authentication factor. Multifactor authentication is
an already established and widely adopted process where the user is authenticated via
at least two of the factors: something that the user knows (e.g., username/password),
something that the user has (e.g., a hardware token or dedicated smartphone app), or
something that the user is (biometrics: fingerprint, retinal scan, etc.). Given that, it is
worth exploring related works on the subject to extract the valuable information available
and to avoid committing the mistakes that already have been done.

Numerous EEG datasets are available to create and train classifiers. They have been
summarized in the following. It is worth mentioning that building classifiers on these
datasets will be sufficient as long as the experiment does not require recording the EEG
signals manually, e.g. while testing a particular EEG device. Goldberger et al.[33] in
their work have created one of the most popular datasets that is available publicly, the
Physionet motor movement/imagery dataset. It includes records from over 100 volunteers
performing various tasks involving motor movement and imagery. The EEG records were
recorded from 64 channels sampled at 160Hz. As the dataset provides both baselines of
the subjects (e.g., EEG recordings without doing anything), along with having a lot of
subjects and sampling channels, it gained the attention of many researchers. The BCI
competition datasets were collected by the cooperation of universities and laboratories
(Graz University of Technology, University of Tübingen, and Berlin BCI Group, to name a
few). Dataset IIIa consists of the records coming from 62 channels sampled at 250Hz while
the subjects imagined the movement of body parts (hands, feet, and tongue) according to
a cue. It was used by various researches, including Bao et al.[12] among others. Dataset
IIa, on the other hand, consists of recordings from 9 subjects, 22 EEG channels, and 3
EOG channels sampled at 250Hz.
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Figure 3.1: Distribution of different EEG acquisition protocols in the EEG authentication.

Source: [15]

Subjects similarly imagined the movement of both hands, legs, and tongue. It has
also been used in numerous papers, e.g., by Lawhern et al.[45]. The Australian EEG
database dataset is a result of an 11-year study on EEG recordings of 40 patients at John
Hunter Hospital in Australia[37]. The recording was made on a subject who had open,
then closed eyes for about 20 minutes. 23 electrodes were used, sampled at 167 Hz. The
DEAP dataset[42] is probably the most famous dataset in emotion detection research.
However, it was also used in authentication studies[26]. The samples were collected from
32 subjects, using 32 channels sampled at 512Hz. Each subject was presented with 40
one-minute videos that were supposed to invoke emotions such as pride, joy, satisfaction,
hope, sadness, and fear.

There are numerous EEG data acquisition protocols; most of them are different from
each other due to the stimuli used. They are summarized in the following sections. The
distribution of these protocols in the related works is presented in Figure 3.1. Recording
resting states is the most popular protocol[15]. The subject is asked to relax, sit in
a chair in a quiet, non-disturbing environment for the recording to begin. There are
two variants: both eyes open (named "REO") and both eyes closed (named "REC").
Depending on whether the eyes are open or closed, the most efficient EEG channels are
those placed in the central region for REO and the parietal region for REC. Moreover, such
a protocol is the easiest to implement because the subject does not have any sophisticated
instructions to follow. However, it is crucial to have an environment that does not disturb
the subject. Visual stimuli, also known as the "Visual Evoked Potential" (VEP), are
another acquisition protocol. As the name suggests, they cover a wide range of visual
stimuli, such as reading unconnected texts[34], a sequence of pictures that is displayed for
a few seconds, or responding to a picture by concentrating or pressing a button. "Rapid
Serial Visual Presentation" (RSVP) is yet another protocol in which the sequence of
pictures is shown with a high rate (2-10Hz) to minimize the training duration.
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Acoustic stimulus is a protocol in which the subject is listening to music or a special
tone, however, it is not as common as VEP[15]. Kaur et al.[40] played four different genres
of music to subjects that induce different emotions in response. Subjects were asked to
provide their preferences for music to use it as a personal identification mechanism. Mental
tasks are the protocol in which subjects are asked to imagine some body movements or
perform some mental activities. Some studies show that the process of imagining the
body movement leads to better results than the similar physical one[15], since physical
movement does not interfere with EEG recording. Chuang et al.[23] asked subjects
to silently sing a favorite song, count numbers in mind, or concentrate on a desired
thought. Compared to visual stimuli, mental task protocols may not need special devices
for stimulation, but they still need some simple equipment to initialize the task. There
are also works that combine the aforementioned protocols. For example, the subjects
are watching short music videos that induce different emotional states. Of course, more
combinations are allowed both in count and complexity.

As in various other classifiers, the input EEG signal may be preprocessed prior to
feature extraction to enhance the quality of the signal and reduce the noise present.
Pre-processing is commonly performed within the three domains: frequency, spatial, and
time. As mentioned in the "Theoretical Framework" chapter, the EEG signal frequencies
range from 1 to 40 Hz. The band filter is commonly used to split the raw signal from
the interface into lower and higher frequencies, classified into the aforementioned bands.
To achieve that, a variety of filters may be used, such as the "Butterworth" anti-aliasing
filter[10], "Chebyshev" filter with the sharper cut-off frequency[20], and the "Notch" filter
that keeps the higher frequency below 50 to 60 Hz to remove artifacts from the power
line [27]. Along with categorization of the data, some of them may be dropped before
feature extraction; for example, some of the bands may be excluded from the classifier
after all. In terms of spatial domain filtering, which is especially applicable when an
interface with a large number of electrodes is used[14], the commonly used filters are the
Common Average Referencing filter subjecting the signal from each electrode to the mean
of all[46], the Independent Component Analysis filter intended to remove artifacts caused
by stimuli such as eye and muscle movement[11], and the Laplacian filter that enhances
local activities compared to diffused ones[44]. Finally, in the time domain, commonly
used filters are Ensemble Averaging that requires multiple recordings in the same setup to
reduce noise[31] and Baseline Removal that requires the recording of the rest state before
presenting the stimuli [19].

Walaa et al. [9] developed the classifier for EEG-based identification and authentica-
tion and demonstrated its potential for high-security applications. Traditional biometric
modalities, such as fingerprints and facial recognition, are susceptible to spoofing, whereas
EEG signals offer a more secure alternative due to their complexity and sensitivity to
mental states1. Existing EEG-based recognition methods often rely on extensive channels
and long recording durations, which limit their practicality. However, recent studies have
introduced lightweight convolutional neural network (CNN) models that address these
limitations. A notable contribution is the development of a robust EEG-based recog-
nition system utilizing a lightweight CNN model with a minimal number of learnable
parameters.
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This system achieves high accuracy with only two EEG channels and a recording
length of 5 seconds, making it feasible for real-life security applications. The system
was validated using benchmark datasets from the public domain, achieving a rank-1
identification accuracy of 99% and an equal error rate (EER) of 0.187%. These results
underscore the efficacy of EEG signals for both identification and authentication tasks,
highlighting their potential for integration into high-level security systems. While their
work is promising, achieving more than satisfying results and overall indicating the
possibility of using EEG in authentication processes, it uses already-existing datasets
created by using the traditional interfaces.

Cheng et al. [21] explore a biometric authentication system that integrates elec-
troencephalography (EEG) along with eye movement data to improve security against
shoulder-surfing attacks. The interface employs 64 electrodes to capture brain activity,
providing a high-resolution signal that is crucial for accurate user identification. The
study demonstrates that combining EEG data with eye movement patterns significantly
improves the robustness and reliability of the authentication process. The results indicate
that the hybrid approach not only enhances security, but also maintains user conve-
nience. The system’s accuracy in distinguishing between legitimate users and impostors
is markedly higher compared to traditional methods, reaching the average accuracy of
84.36%. This is attributed to the unique and complex nature of EEG signals, which
are difficult to replicate or spoof. The research highlights the potential of hybrid BCI
systems in developing secure and user-friendly authentication mechanisms, paving the
way for future advancements in biometric security technologies. While this research is
promising, it uses the interface with 64 electrodes, along with additional eye tracking.

Hernández et al. [36] investigated the use of biometric authentication systems based
on EEG, emphasizing the development of a proprietary dataset using the Emotiv Epoc+
headset with 18 electrodes. The dataset comprises EEG signals from 39 volunteers, col-
lected under controlled conditions. The study explores both one-class and multi-class
classifiers for user authentication, introducing Isolation Forest and Local Outlier Factor
models as new tools for this purpose. The authors compare these models with tradi-
tional multi-class models like Support Vector Machines, Random Forest, and k-Nearest
Neighbors. The results indicate that while the multi-class models generally achieve higher
accuracy, one-class models like IF and LOF are more practical in scenarios where data
from impostors are unavailable. The study highlights the importance of high-frequency
EEG components, particularly gamma waves, in achieving effective authentication. The
authors also propose a hybrid system that combines one-class and multi-class models,
which improves the performance of one-class models by leveraging multi-class algorithms.
The metrics used to evaluate the models include precision, recall, F1 score, accuracy, and
false positive rate (FPR). The study finds that the hybrid system achieves a precision of
91.1%, a recall of 75.3%, and an accuracy of 82.3%, demonstrating a balanced trade-off
between security and usability. The research underscores the potential of EEG-based
biometric systems for secure and user-friendly authentication, paving the way for future
studies to incorporate additional biometric features and deep learning techniques. Al-
though the authors developed their own dataset on somehow simplified interface and the
results indicate that EEG could definitely be used for authentication purposes, it is still
worth considering evaluating the 1 electrode interface.
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Stergiadis et al. [61] present the EEG-based user authentication system that addresses
the limitations of conventional biometric methods. The authors developed their own
dataset using the EGI Geodesic EEG System (GES) 300 interface, which includes 128
electrodes distributed across the scalp. This setup ensures high-quality EEG recordings,
essential for accurate biometric authentication. The study focuses on extracting power
spectral features from three central electrodes (Fz, Cz, Pz) across all EEG bands. The
authors highlight the advantages of EEG-based authentication, such as its resistance to
spoofing. The mean accuracy of the system of 95. 6% demonstrates its potential for
real-time applications and the general possibility of using EEG within authentication
models. The study also compares various classification algorithms and emphasizes the
importance of selecting the optimal algorithm for each individual user. This personalized
approach improves the reliability and efficiency of the system.
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4. Methodology

The following chapter explains the methodology used to perform the research required
in this thesis. First, the interface is described in a more technical manner, such as the
frequency of sampling, the interpretation of provided data units, and the structure of
the software responsible for retrieving raw data from the interface and storing it securely
in a local file. Next, two datasets have been described that have been created for the
purpose of this thesis. Each of them describes the statistics of the research group, the
setup of the data gathering station, along with the descriptions of the steps a subject
had to follow throughout the procedure. Afterwards, the general flow of the experiment
has been presented, with the high-level steps required to properly train and evaluate the
classifier. Lastly, it is strictly correlated with the proposed testing framework, allowing
quick algorithm implementation swaps without the need to adjust the existing codebase.

4.1. Working with the Interface

To collect the EEG data from the subject and save them in a file, software was needed
to connect to the ThinkGear firmware provided by the vendor, transform the data into the
desired format, and then write it out to the file that can later be included in the dataset.
NeuroSky ThinkGear software is responsible for maintaining the Bluetooth connection
between the device and the machine running the software, while exposing the technology-
and device-agnostic API for developers to consume the data. The simplified flow of the
data collection application is presented in Figure 4.1.

EEG
interface

ThinkGear
software

Data gathering
software Save to file

Bluetooth

Local network

Figure 4.1: Data gathering connection diagram

The core of the MindWave Mobile 2 interface is the application-specific integrated
circuit (ASIC) chip, specially designed for the purpose of EEG data processing. The
ThinkGear AM (TGAM) chip collects the data from the sensor placed right above the
left eyebrow, while using the ear clip as a reference to filter out any noise generated by
either the environment (like electrical/electronic devices, background noise, etc.)[8] or the
subject’s own body.
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While the TGAM chip produces the raw output EEG data at the measurement
frequency of 512 Hz, the developer is presented with the already processed information
at 1 Hz, such as:

• divide the raw data by frequency into well-known bands (alpha, beta, gamma, delta,
and theta),

• define signal strength and quality,
• provide three eSense measures developed by NeuroSky: Attention, Meditation and

EyeBlink detection.

ThinkGear software, which allows the developer to access data from the NeuroSky
MindWave Mobile 2 device, provides the data using its own proprietary units[6] that
indicate the relative amplitudes of the individual EEG bands. The TGAM chip applies
the set of transforming and rescaling operations to the original voltage measurements,
which are volts squared per Hz - see Figure 4.2. According to the vendor, there is no
simple linear correlation between raw and processed units, and therefore they encourage
the unit to be labeled ASIC_EEG_POWER.

ASIC_EEG_POWER =
V 2

Hz
(4.1)

Figure 4.2: TGAM proprietary measurement unit

The EEG data collected from the TGAM chip consists of eight measures[13]:

• Delta (1 - 4 Hz)
• Theta (4 - 8 Hz)
• Low alpha (8 - 10 Hz)
• High Alpha (10 - 12 Hz)
• Low beta (12 - 17 Hz)
• High Beta (17 - 25 Hz)
• Low gamma (25 - 40 Hz)
• High gamma (40 - 50 Hz)

Both datasets described in the following sections consist of the same set of the following
features, sampled at 1 Hz from the vendor interface.

• EEG bands:
— Alpha (low + high)
— Beta (low + high)
— Gamma (low + high)
— Delta
— Theta

• eSense data:
— Attention
— Meditation
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4.2. Datasets Developed for Experiments

Given the relatively young age of the simplified EEG interfaces, no viable public
datasets could be found that would fit the experiment; thus the need for data gathering.
To collect the required data, a station was assembled that would consist of specific
stress-inducing stimuli required for the experiment, the monitor screen to expose the
subject to audiovisual stimuli, and the Neurosky Mindwave Mobile 2 EEG interface to
record the EEG data. The flow of the data gathering session is presented in Figure 4.3.

1 minute of
background recording Stroop test Math tasks Building house

of cards

Figure 4.3: "Stress" dataset data gathering flow

The experiment begins with a 1-minute recording of the subject in the resting state,
without prior exposure to stress stimuli. After that, three sessions are begun that were
designed to induce stress in the subject in a humane way. In the first session, the subject
was asked to perform the "Stroop test"[52], which presents the subject with a word
representing some color, displayed in a different color. The subject is required to pick
the "meant" color, not the displayed one, from the set of colors underneath. Figure 4.4
presents the application used. To increase the likelihood of stressing the subject, everyone
was told to achieve the highest possible score.

Figure 4.4: Stroop test

Source: memorize.link (access date: 30 Aug 2024)

In the second session, the subject was presented with a series of 10 math equations to
solve, ranging from the most basic ones (involving addition and subtraction), to more
complex ones (several multiplication, division, and expontentation operations). The
difficulty of the tasks has been kept within the scope presented, to not exclude any of
the subjects due to their mathematical skills. This approach seems warranted, as the
dataset have been built with the stress data in mind, not correctly solving the tasks. In
the third session, to expand the research on stress detection to movement as well, subjects
were asked to stack the highest possible stack of cards. Given that this is the exercise
that requires focus and fine motor skills, it should be a relevant addition to the "Stress"
dataset. The dataset is based on data collected in 2023 from 23 subjects (5 women, 18
men), aged 18 to 49 years. The data set is collectively 100,000 seconds long in terms of
recording and consists of the features described above.
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To collect the data required for the "Login" dataset, a station was assembled that
would present the subject with the set of specific scenarios required for the particular
experiment, the monitor screen and headphones to expose the subject to audio stimuli,
and the Neurosky Mindwave Mobile 2 EEG interface to record the EEG data. The flow
of the data gathering session is presented in Figure 4.5.

Pre-experiment
survey Account setup Normal login

3x

Stressful login
3x

Break
10 seconds

Break-in
3 attempts

Figure 4.5: "Login" dataset data gathering flow

In the beginning, the subject is presented with the pre-experiment survey collecting
the data such as age and sex. No data that could possibly identify the subject later in
the dataset has been collected. Figure 4.6 presents the survey phase of the application.
After that, the EEG recording begins.

Figure 4.6: "Login" dataset - survey

Source: own

In the next phase, the subject is presented with the screen requiring them to set up an
account within the test system. They are asked to do it as it would be any normal service
they log into every day. Afterwards, the subject is asked to perform the normal log-on
action three times in a row. The registration and log-in screens are presented respectively
by Figures 4.7 and 4.8.
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Figure 4.7: "Login" dataset - account setup

Source: own

Figure 4.8: "Login" dataset - account setup

Source: own

After successful log-on actions, another three are required from the subject. This time,
they are meant to induce stress within the subject. The first one is performed with the
presence of audio stimuli, which is playing two tones simultaneously, respectively, at 853
Hz and 960 Hz[48]. These frequencies are not chosen at random, but chosen on purpose -
the original idea has been borrowed from the Emergency Alert System in the USA, where
the sound of the "attention signal" has been defined as exactly those two frequencies due
to their unpleasantness. The next stress-inducing log-on action is accompanied by three
quickly disappearing popups displayed after 500 milliseconds after loading the page, in
intervals of 250 milliseconds. The last log-on action is meant to be a placebo stimulus,
because the subject now expects some stress-inducing situation, while nothing actually
happens. Afterwards, the subject is allowed to rest for 10 seconds. As for the last phase
of data collection, the subject is asked to perform a break-in to someone else’s account.
It is important to keep in mind that this is a test setup, so no illegal action is performed
here - the subject is not actually breaking in anywhere. There are three attempts here,
with two first being rejected, and the last one accepted, regardless of the input data. The
"Login" dataset" is based on data collected in 2024 from 27 subjects (9 women, 18 men),
aged 22 to 49 years. The data set is collectively 4,000 seconds long in terms of recording
and consists of the same features as the "Stress" dataset.

The development of the aforementioned datasets required the participation of human
subjects willingly and knowingly attending the experimental procedure. To underscore
the ethical manners and compliance of the methodology with established standards, the
research has received the approval of the Committee for Research Ethics, thus validating
the integrity and ethical principles of data collection processes, minimizing the potential
risks to the subjects, and guaranteeing the privacy of the data for all stakeholders. The
opinion of the Committee for Research Ethics has been attached as Appendix A. Sub-
mitting such a request for opinion requires a number of attachments, such as the request
itself, containing the details necessary for the Committee to reach a decision (Appendix
B); the description of the research, including the legal and ethical aspects (Appendix C);
consent form presented to the subject outlining the details of the experiment, along with
notices of data privacy and the possibility to exit the study at all times (Appendix D);
the safety and regulations certificate from the interface vendor (Appendix E).
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4.3. General Experiment Flow and Testing Framwork

Although different experiments may differ from each other, the common part between
them is the flow of the experiment, as presented in Figure 4.9. Every experiment needs
to be based on some dataset; in this instance, the "Stress" and "Login" datasets will be
used. After that, pre-processing will be applied, as a method of input filtering or data
transformation, such as frequency filters, signal smoothers, etc. Afterwards, the feature
extraction begins, with the purpose of transforming the samples into feature vectors with
labels. This set of feature-label tuples will later be used to train the chosen classifier
model. In the end, the classifier results will need to be validated. The classifier metrics,
such as F1 score, accuracy, precision, recall, log loss, confusion matrices, etc, will be used
to assess the classifier, along with the comparison between the developed models.

Preprocessing Feature extraction Classification Validation

Figure 4.9: General experiment flow

To make it easier to test the variations of the classifier, a custom testing framework
has been developed. The general flow explained above has already been implemented
in a reusable way, leaving only to the user the possibility to specify fragments to test,
which consists of preprocessors - fragments of code that transform the input data before
it has the features extracted; feature extractors - fragments of code that transform data
into classifier-acceptable data points; and classifiers - fragments of code that represent
ML.NET classifier models to explore. To describe it formally, the singular experiment
consists is a tuple of sets and the framework will run all possible combinations of the
fragments specified above and collect the results, as presented in Figure 4.10.

E = {P, F, C} (4.2)

E − experiment

P − set of preprocessors

F − set of feature extractors

C − set of classifiers

(a) Experiment formula

R = ∀p ∈ P, ∀f ∈ F, ∀c ∈ C, e(p, f, c)
(4.3)

R− experiment run

P − set of preprocessors

F − set of feature extractors

C − set of classifiers

e− experiment execution function

(b) Experiment run formula

Figure 4.10: Experiment formulas
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5. Stress Detection Classifier Based on
"Stress" Dataset

The classifier built in this chapter uses the "Stress" dataset described above. Given
that a full brute-force approach would take a long time without guaranteeing error-proof
code, this chapter describes the step-by-step approach taken to fine-tune the parameters of
the classifier. First, the impact of number of trees is explored within the Fast Tree classifier
to locate the optimal value. A similar approach is used for the learning rate. Afterwards,
within the parameters defined in the previous steps, the improvement ratio is calculated
for all EEG bands, along with the Attention and Meditation measures, to determine the
importance of the features used to build the classifier. Next, the preprocessing approach is
defined. Firstly, the poor signal level preprocessor is evaluated to determine how dismissal
of samples with this metric being less than or equal to the predetermined value will impact
the performance of the classifier. It is followed by applying the Simple Moving Average
algorithm preprocessor and evaluating its impact on the classifier relative to the size of
the window and the step of the algorithm. Finally, the classifier is evaluated with the
metrics provided by the ML.NET library, as well as the improvement ratios of the features
used to build it. At the end of the chapter, conclusions are drawn from the final results.
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Figure 5.1: Finding optimal number of trees
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5.1. Finding Optimal Parameters of Fast Tree Classifier

To find the optimal number of trees, 10 tests have been run, respectively, from 100 to
1000 trees with a step of 100. The results have been presented in Table 5.1 and Figure
5.1. Log loss seems to be linearly correlated with the number of trees, throughout values
from 0.623914 to 0.944914, so it is not suitable to determine which number of trees is
the best for this problem. However, the F1 score metric seems to be helpful here. The
smallest tested number of trees of 100 seems to be the best suited value for the classifier,
however, not by a high margin, having the lowest value of 0.913580 and the highest value
of 0.916745. Given that this is the best result achieved within this experiment run, it will
be used throughout the rest of the steps within this experiment.

Table 5.1: Finding optimal number of trees

# Trees F1 score Log loss
100 0.916745 0.623914
200 0.914378 0.652181
300 0.913580 0.683166
400 0.912712 0.714742
500 0.913411 0.748701
600 0.913285 0.784658
700 0.913322 0.823859
800 0.913248 0.864724
900 0.913478 0.905565
1000 0.913006 0.944914

To find the optimal learning rate, 10 tests have been run, respectively, from a learning
rate of 0.01 to 0.1 with a step of 0.01. The results have been presented in Table 5.2 and
Figure 5.2. Log loss strongly indicates that the learning rate of 0.01 is the worst possible
within the tested range, throughout values from 0.592529 to 0.663249. However, the F1
score metric, together with the log loss score, indicates that the best suited learning rate
value for the classifier lies between 0.02 and 0.04, but again not by a high margin, having
the lowest value of 0.919464 and the highest value of 0.920493. Given that these are the
best results achieved within this experiment run, the learning rate of 0.02 will be used
throughout the rest of the steps within this experiment.

Table 5.2: Finding optimal learning rate

Learning rate F1 score Log loss
0.01 0.920102 0.663249
0.02 0.920445 0.602610
0.03 0.920404 0.593121
0.04 0.920370 0.592529
0.05 0.920402 0.592965
0.06 0.920371 0.593543
0.07 0.920493 0.594525
0.08 0.919464 0.597160
0.09 0.919748 0.597231
0.10 0.919845 0.596852
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Figure 5.2: Finding optimal learning rate

5.2. Finding Improvement Ratios of EEG Bands, Attention, and
Meditation Measures

To calculate the improvement ratio of Attention and Meditation measures, as described
above, ratios of respectively F1 scores and log losses have been calculated. The results
have been presented in Table 5.3 and Figure 5.3. The results for both F1 score and
log loss metrics seem to indicate that the Attention and Meditation measures do not
have measurable impact on the classifier - while the F1 score indicates that the classifier
might perform worse with those features included, ranging from 0.919989 to 0.920607, the
log loss metric indicates otherwise, ranging from 0.603092 to 0.610997. Given that the
Attention and Meditation measures seem to be virtually ineffective within this experiment
run, they will not be used throughout the rest of the steps within this experiment.
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Figure 5.3: Finding Attention/Meditation improvement ratios
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Table 5.3: Finding Attention/Meditation improvement ratios

Attention included Meditation included F1 score Log loss
No No 0.920607 0.610997
No Yes 0.919989 0.604434
Yes No 0.920016 0.608001
Yes Yes 0.920160 0.603092

To calculate the improvement ratio of EEG bands, as described above, ratios of
respectively F1 scores and log losses have been calculated. To simplify the experiment,
five whole bands have been used (alpha, beta, gamma, delta, theta), without distinction
to the high/low classification that are specific to MindWave interface. The results have
been presented in Table 5.4 and Figure 5.4. The results for both F1 score and log loss
metrics seem to indicate that within a margin of error, there are no dominating EEG
bands in this experiment run - while the F1 score, ranging from 0.999975 to 1.000014,
may indicate the gamma band as the most important one and the delta band as the
least important, the log loss metric, ranging from 0.997002 to 1.000257, seems to agree
regarding the gamma band being the best one, but indicates alpha as the worst one.
Given that none of the EEG bands seem to be significantly more important than the
others within this experiment run, none of them will be dropped throughout the rest of
the steps within this experiment.

Table 5.4: Finding EEG bands improvement ratios

Band F1 score improvement Log loss improvement
Alpha 1.000005 1.000257
Beta 0.999998 0.998933

Gamma 1.000014 0.997022
Delta 0.999975 0.999389
Theta 0.999998 0.999159
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Figure 5.4: Finding EEG bands improvement ratios
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5.3. Finding Optimal Preprocessors Parameters

To find the optimal poor signal level filter threshold, 21 tests have been run, respec-
tively, from a value of 0 to 200 with a step of 100. The results have been presented in
Table 5.5 and Figure 5.5. The results for both the F1 score and the log loss metrics seem
to consistingly indicate the threshold of the poor signal level filter of 20 is the best suited
for this classifier while retaining most of the samples. While both of the measures seem
not to be linearly correlated with the filter value, both classifiers seem to perform the
best with the filter value of 200, with the F1 score and log loss respectively of 0.920566
and 0.602023, thus accepting all samples, these measures are not significantly lower for
the filter value of 20, with the same metrics being the value respectively of 0.920315 and
0.602952. Given that the best filter value, while retaining most samples, is the value of
20, it will be used throughout the rest of the steps within this experiment.

Table 5.5: Finding optimal poor signal level filter

Worst acceptable level F1 score Log loss
0..20 0.920315 0.602952
30..50 0.918951 0.608027
60..190 0.919779 0.603810

200 0.920566 0.602023
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Figure 5.5: Finding optimal poor signal level filter

To find the optimal window size for the Simple Moving Average algorithm, 19 tests
have been run, respectively, from a value of 2 to 20 with a step of 1. The results have
been presented in Table 5.6 and Figure 5.7. The results for both the F1 score and the log
loss metrics seem to improve linearly in relation to the window size of the algorithm, the
F1 score metric ranging from 0.920835 to 0.934331 and the log loss metric ranging from
0.480417 to 0.590632. While higher values of window size may benefit the performance
of the classifier, practical reason dictates that there should be a reasonable limit for the
window size. Given that reasoning, the window size of 5 will be used throughout the rest
of the steps within this experiment.
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Window size F1 score Log loss
2 0.920835 0.590632
3 0.921156 0.583311
4 0.921685 0.578372
5 0.921606 0.571823
6 0.922349 0.562396
7 0.923465 0.555819
8 0.924491 0.548891
9 0.925905 0.540694
10 0.926308 0.536013

Window size F1 score Log loss
11 0.927584 0.527309
12 0.928255 0.523116
13 0.929530 0.517665
14 0.930253 0.512938
15 0.931057 0.506151
16 0.931669 0.501174
17 0.932986 0.494834
18 0.932356 0.490890
19 0.933527 0.485972
20 0.934331 0.480417

Figure 5.6: Finding optimal Simple Moving Average window size
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Figure 5.7: Finding optimal Simple Moving Average window size

To find the optimal step size for the Simple Moving Average algorithm, 5 tests have
been run, respectively, from a value of 1 to 5 with a step of 1. The results have been
presented in Table 5.6 and Figure 5.8. The results for both the F1 score and the log loss
metrics seem to indicate an inverse linear correlation between the efficiency of the classifier
and the step size of the Simple Moving Average algorithm. This is not unexpected, as
the larger step size effectively limits the number of samples which the classifier can use.
In this case, both the F1 score metric ranging from 0.918838 to 0.921606 and the log
loss metric ranging from 0.571823 to 0.600131 suggest that the step value of 1 is the best
suited in this classifier. Given that the step value of 1 seems to have the best outcome
for the classifier, it will be used throughout the rest of the steps within this experiment.
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Table 5.6: Finding optimal Simple Moving Average step size

Step size F1 score Log loss
1 0.921606 0.571823
2 0.920180 0.588288
3 0.918952 0.594984
4 0.919010 0.597011
5 0.918838 0.600131
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Figure 5.8: Finding optimal Simple Moving Average step size

5.4. Evaluating the Classifier

To finally evaluate the classifier, the ratios of, respectively, F1 scores and log losses have
been calculated. The results have been presented in Table 5.7 and Figure 5.9. It seems
that introducing the used preprocessing steps made the Attention and Meditation features
more important within the classifier, while the delta band is still the least improving
feature. The improvement of F1 score metric ranges between 0.999889 and 1.000535, while
the improvement of log loss metric ranges between 0.975825 and 0.994802. Although the
differences are not by a large margin, they still bring important insights to the classifier.

Table 5.7: Finding features improvement ratios

Feature F1 score Log loss
Alpha 1.000118 0.994089
Beta 1.000263 0.988497

Gamma 1.000360 0.986231
Delta 0.999889 0.994802
Theta 1.000360 0.994678

Attention 1.000505 0.992669
Meditation 1.000535 0.975825
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Figure 5.9: Finding features improvement ratios

The final classifier metrics are presented in Table 5.8. The confusion matrix is
presented by Table 5.9. Reaching the F1 score of 0.921606 is a satisfactory result of
this classifier. While the classification is not perfect, the brief analysis of confusion
matrix indicates that while taking wrong predictions, the classifier tends towards the false
positive error rather than the false negative one, having precision and recall respectively
of 0.857198 and 0.996541. Taking into account the topic of this thesis and potential
cybersecurity applications, it is better for the classifier to falsely mark the subject as
stressed and potentially deny access to sensitive data or systems than to grant such access
by mistake.

Table 5.8: Stress detection classifier metrics

Metric Value
F1 Score 0.921606
Log loss 0.571824
Entropy 0.602991

Table 5.9: Stress detection classifier confusion matrix

Predicted
Positive Negative Recall

Truth Positive 8932 31 0.996541
Negative 1488 62 0.040000
Precision 0.857198 0.666667
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The classifier built in this chapter has been using the "Stress" dataset described above
and has been fine-tuned to evaluate the best possible performance. First, the model
parameters have been evaluated and it has been determined that the best parameters
are 100 trees and the learning rate of 0.02. Subsequently, the improvement ratios of
the EEG bands and the Attention and Meditation features were calculated. It has been
made clear that no feature has significantly improved the classifier. For the preprocessing
part, the poor signal level filter value has been set to 20. Applying the Simple Moving
Average algorithm preprocessor to the data revealed intuitive insight of the changes in
the parameters. While increasing the window size almost linearly improves the classifier
performance, having more data in the domain of time within one sample and removing
potential noise, increasing the step size linearly decreases the classifier performance,
having fewer samples to train and validate the classifier on. The results of the classifier
evaluation, with an F1 score of 0.921606, are satisfactory. The brief analysis of confusion
matrix indicates that the classifier tends towards the false-positive error rather than the
false-negative one, having precision and recall, respectively, of 0.857198 and 0.996541.
Given the topic of this thesis and potential cybersecurity applications, it is better for the
classifier to return the false positive prediction rather than the false negative one.
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6. Stress Detection Classifier Based on
"Login" Dataset

The classifier built in this chapter uses the "Login" dataset described above. Similarly
to the stress detection research, the full brute-force approach would take a long time
without guaranteeing error-proof code, so this chapter describes the step-by-step approach
taken to fine-tune the parameters of the classifier. First, the impact of number of trees is
explored within the Fast Tree classifier to locate the optimal value. A similar approach
is used for the learning rate. Afterwards, within the parameters defined in the previous
steps, the improvement ratio is calculated for all EEG bands, along with the Attention
and Meditation measures, to determine the importance of the features used to build
the classifier. Next, the preprocessing approach is defined. Firstly, the poor signal level
preprocessor is evaluated to determine how dismissal of samples with this metric being less
than or equal to the predetermined value will impact the performance of the classifier. It
is followed by applying the Simple Moving Average algorithm preprocessor and evaluating
its impact on the classifier relative to the size of the window and the step of the algorithm.
Finally, the classifier is evaluated with the metrics provided by the ML.NET library, as
well as the improvement ratios of the features used to build it. At the end of the chapter,
conclusions are drawn from the final results.
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Figure 6.1: Finding optimal number of trees
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6.1. Finding Optimal Parameters of Fast Tree Classifier

To find the optimal number of trees, 10 tests have been run, respectively, from 100 to
1000 trees with a step of 100. The results have been presented in Table 6.1 and Figure
6.1. Log loss seems to be linearly correlated with the number of trees, throughout values
from 0.564788 to ∞, so it is not suitable to determine which number of trees is the best
for this problem. However, the F1 score metric seems to be helpful here. The number of
trees of 600 seems to be the best suited value for the classifier, however, not by a high
margin, having the lowest value of 0.925985 and the highest value of 0.927826. Given that
this is the best result achieved within this experiment run, it will be used throughout the
rest of the steps within this experiment.

Table 6.1: Finding optimal number of trees

# Trees F1 score Log loss
100 0.925985 0.564788
200 0.926590 0.640544
300 0.926616 0.726638
400 0.926573 0.821302
500 0.926919 0.914894
600 0.927826 1.016553
700 0.926498 1.117044
800 0.926511 1.218775
900 0.926978 1.319055
1000 0.926183 ∞

To find the optimal number of trees, 10 tests have been run, respectively, from a
learning rate of 0.01 to 0.1 with a step of 0.01. The results have been presented in Table
6.2 and Figure 6.2. Log loss still seems to be linear, ranging from 0.508777 to 0.713199.
However, the F1 metric seems to be helpful, ranging from 0.925607 to 0.929970, indicating
that the best value is the lowest tested. Exploring the lower order of magnitude could be
beneficial in this case. To explore the lower order of magnitude, 10 tests have been run,
respectively, from a learning rate of 0.001 to 0.01 with a step of 0.001. The results have
been presented in Table 6.3 and Figure 6.3. The log loss metric has yielded results within
the range between 0.505253 and 0.692421. The significantly higher value in the left range
of the tested values indicates that the correct order of magnitude has been explored. The
F1 score, which ranges from 0.928317 to 0.931559, indicates that the best learning rate
within this experiment run is between 0.005 and 0.007. Given the results of those two
trials, the learning rate of 0.006 will be used throughout the rest of the steps within this
experiment.
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Table 6.2: Finding optimal learning rate

Learning rate F1 score Log loss
0.01 0.929970 0.508777
0.02 0.928611 0.524553
0.03 0.926087 0.542531
0.04 0.926850 0.565760
0.05 0.926416 0.583194
0.06 0.926590 0.611297
0.07 0.926811 0.628111
0.08 0.925607 0.667290
0.09 0.927118 0.680355
0.10 0.927411 0.713199
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Figure 6.2: Finding optimal learning rate

Table 6.3: Finding optimal learning rate

Learning rate F1 score Log loss
0.001 0.928317 0.692421
0.002 0.930401 0.576734
0.003 0.931425 0.531021
0.004 0.931492 0.514018
0.005 0.931365 0.507350
0.006 0.931452 0.505634
0.007 0.931559 0.505253
0.008 0.931248 0.505999
0.009 0.930560 0.507481
0.010 0.929970 0.508757
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Figure 6.3: Finding optimal learning rate

6.2. Finding Improvement Ratios of EEG Bands, Attention, and
Meditation Measures

To calculate the improvement ratio of Attention and Meditation measures, as described
above, ratios of respectively F1 scores and log losses have been calculated. The results
have been presented in Table 6.4 and Figure 6.4. The results for both F1 score and log
loss metrics seem to indicate that the Attention and Meditation measures do not have
realistic impact on the classifier - while the F1 score indicates that the classifier might
perform better with those features included, ranging from 0.929242 to 0.931452, and the
log loss metric indicates the same, ranging from 0.536998 to 0.536998, the difference made
is not of a big impact. Given that the Attention and Meditation measures seem to be
virtually ineffective within this experiment run, they will not be used throughout the rest
of the steps within this experiment.
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Figure 6.4: Finding Attention/Meditation improvement ratios
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Table 6.4: Finding Attention/Meditation improvement ratios

Attention included Meditation included F1 score Log loss
No No 0.930172 0.536998
No Yes 0.930425 0.511083
Yes No 0.929242 0.512351
Yes Yes 0.931452 0.505634

To calculate the improvement ratio of EEG bands, as described above, ratios of respec-
tively F1 scores and log losses have been calculated. Similarly to previous experiments, to
simplify the process, five whole bands have been used (alpha, beta, gamma, delta, theta),
without distinction to the high/low classification that are specific to MindWave interface.
The results have been presented in Table 6.5 and Figure 6.5.

The results for both F1 score and log loss metrics seem to indicate that within a
margin of error, there are no dominating EEG bands in this experiment run - while the
F1 score, ranging from 0.999933 to 1.000236, may indicate the theta band as the most
important one and the gamma band as the least important, the log loss metric, ranging
from 0.979745 to 1.005588, seems to agree regarding the alpha band being the best one,
but indicates gamma as the worst one.

Given that none of the EEG bands seem to be significantly more important than the
others within this experiment run, none of them will be dropped throughout the rest of
the steps within this experiment.

Table 6.5: Finding EEG bands improvement ratios

Band F1 score improvement Log loss improvement
Alpha 0.999959 1.005588
Beta 1.000081 0.997108

Gamma 0.999933 0.979745
Delta 1.000072 0.988693
Theta 1.000236 0.997489
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Figure 6.5: Finding EEG bands improvement ratios
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6.3. Finding Optimal Preprocessors Parameters

To find the optimal poor signal level filter threshold, 21 tests have been run, respec-
tively, from a value of 0 to 200 with a step of 100. The results have been presented in
Table 6.6 and Figure 6.6. The results for both the F1 score and the log loss metrics seem
to consistingly indicate the threshold of the poor signal level filter of 20 is the best suited
for this classifier while retaining most of the samples. While both of the measures seem
not to be linearly correlated with the filter value, both classifiers seem to perform the
best with the filter value of 20, with the F1 score and log loss respectively of 0.930172
and 0.938964, thus accepting all samples, these measures are not significantly lower for
the filter value of 20, with the same metrics being the value respectively of 0.498983 and
0.536998. Given that the best filter value, while retaining most samples, is the value of
20, it will be used throughout the rest of the steps within this experiment.

Table 6.6: Finding optimal poor signal level filter

Worst acceptable level F1 score Log loss
0..20 0.938964 0.498983
30..50 0.934522 0.515733
60..70 0.932313 0.524400
80..190 0.932126 0.525348

200 0.930172 0.536998
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Figure 6.6: Finding optimal poor signal level filter

To find the optimal window size for the Simple Moving Average algorithm, 19 tests
have been run, respectively, from a value of 2 to 20 with a step of 1. The results have
been presented in Table 6.7 and Figure 6.8. The results for both the F1 score and the log
loss metrics seem to improve linearly in relation to the window size of the algorithm, the
F1 score metric ranging from 0.934388 to 0.957666 and the log loss metric ranging from
0.326809 to 0.500844. While higher values of window size may benefit the performance
of the classifier, practical reason dictates that there should be a reasonable limit for the
window size. Given that reasoning, the window size of 5 will be used throughout the rest
of the steps within this experiment.
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Window size F1 score Log loss
2 0.934388 0.500844
3 0.935906 0.481396
4 0.938425 0.462433
5 0.937304 0.448629
6 0.940566 0.431338
7 0.941632 0.421574
8 0.946301 0.401764
9 0.948770 0.390852
10 0.948775 0.383666

Window size F1 score Log loss
11 0.950510 0.373755
12 0.951998 0.360644
13 0.956399 0.352709
14 0.953562 0.347907
15 0.955081 0.344675
16 0.957003 0.338670
17 0.957308 0.333460
18 0.957556 0.335006
19 0.956925 0.329131
20 0.957666 0.326809

Figure 6.7: Finding optimal Simple Moving Average window size
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Figure 6.8: Finding optimal Simple Moving Average window size

To find the optimal step size for the Simple Moving Average algorithm, 5 tests have
been run, respectively, from a value of 1 to 5 with a step of 1. The results have been
presented in Table 6.7 and Figure 6.9. The results for both the F1 score and the log loss
metrics seem to indicate an inverse linear correlation between the efficiency of the classifier
and the step size of the Simple Moving Average algorithm. This is not unexpected, as
the larger step size effectively limits the number of samples which the classifier can use.
In this case, both the F1 score metric ranging from 0.914040 to 0.937304 and the log
loss metric ranging from 0.448629 to 0.596507 suggest that the step value of 1 is the best
suited in this classifier. Given that the step value of 1 seems to have the best outcome
for the classifier, it will be used throughout the rest of the steps within this experiment.
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Table 6.7: Finding optimal Simple Moving Average step size

Step size F1 score Log loss
1 0.937304 0.448629
2 0.930753 0.489975
3 0.924619 0.537296
4 0.925153 0.552745
5 0.914040 0.596507
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Figure 6.9: Finding optimal Simple Moving Average step size

6.4. Evaluating the Classifier

To finally evaluate the classifier, the ratios of, respectively, F1 scores and log losses
have been calculated. The results have been presented in Table 6.8 and Figure 6.10. It
seems that introducing the used preprocessing steps made the Attention and Meditation
features more important within the classifier, while the delta and theta bands are the least
improving features. The improvement of the F1 score metric ranges between 1.000139
and 1.005111, while the improvement of the log loss metric ranges between 0.910533 and
0.993065. Although the differences are not by a large margin, they still bring important
insights to the classifier.

Table 6.8: Finding features improvement ratios

Feature F1 score Log loss
Alpha 1.001815 0.967010
Beta 1.003087 0.956933

Gamma 1.005111 0.910533
Delta 1.000139 0.983035
Theta 1.000200 0.993065

Attention 1.002797 0.955370
Meditation 1.003936 0.933027
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Figure 6.10: Finding features improvement ratios

The final classifier metrics are presented in Table 6.9. The confusion matrix is
presented by Table 6.10. Reaching the F1 score of 0.945356 is a satisfactory result of this
classifier, beating the metrics of the classifier built upon the "Stress" dataset. While the
classification is not perfect, the brief analysis of confusion matrix also indicates that while
taking wrong predictions, the classifier tends towards the false positive error rather than
the false negative one, having precision and recall, respectively, of 0.901603 and 0.993748.
Taking into account the topic of this thesis and potential cybersecurity applications, it is
better for the classifier to falsely mark the subject as stressed and potentially deny access
to sensitive data or systems than to grant such access by mistake.

Table 6.9: Stress detection classifier metrics

Metric Value
F1 Score 0.945356
Log loss 0.401116
Entropy 0.550409

Table 6.10: Stress detection classifier confusion matrix

Predicted
Positive Negative Recall

Truth Positive 3656 23 0.993748
Negative 399 139 0.258364
Precision 0.901603 0.858025
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The classifier built in this chapter has been using the "Login" dataset described above
and has been fine-tuned to evaluate the best possible performance. First, the model
parameters have been evaluated and it has been determined that the best parameters
are 600 trees and the learning rate of 0.006. Subsequently, the improvement ratios of
the EEG bands and the Attention and Meditation features were calculated. It has been
made clear that no feature has significantly improved the classifier. Even with small
difference, the alpha, beta and gamma bands seem to be more important bands than
delta and theta, which makes it consistent with earlier work[17]. For the preprocessing
part, the poor signal level filter value has been set to 20. Applying the Simple Moving
Average algorithm preprocessor to the data revealed intuitive insight of the changes in
the parameters. While increasing the window size almost linearly improves the classifier
performance, having more data in the domain of time within one sample and removing
potential noise, increasing the step size linearly decreases the classifier performance,
having fewer samples to train and validate the classifier on. The results of the classifier
evaluation, with an F1 score of 0.945356, are satisfactory and better than the classifier
built upon the "Stress" dataset. The brief analysis of confusion matrix indicates that the
classifier tends towards the false-positive error rather than the false-negative one, having
precision and recall, respectively, of 0.901603 and 0.993748. Given the topic of this thesis
and potential cybersecurity applications, it is better for the classifier to return the false
positive prediction rather than the false negative one.
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7. Binary Subject Recognition Classifier

The classifier built in this chapter uses the "Login" dataset described above. Similarly
to the previous experiments, the full brute-force approach would take a long time without
guaranteeing error-proof code, so this chapter describes the step-by-step approach taken
to fine-tune the parameters of the classifier. First, the impact of number of trees is
explored within the Fast Tree classifier to locate the optimal value. A similar approach
is used for the learning rate. Afterwards, within the parameters defined in the previous
steps, the improvement ratio is calculated for all EEG bands, along with the Attention
and Meditation measures, to determine the importance of the features used to build
the classifier. Next, the preprocessing approach is defined. Firstly, the poor signal level
preprocessor is evaluated to determine how dismissal of samples with this metric being less
than or equal to the predetermined value will impact the performance of the classifier. It is
followed by applying the Simple Moving Average algorithm preprocessor and evaluating
its impact on the classifier relative to the window size of the algorithm. Finally, the
classifier is evaluated with the metrics provided by the ML.NET library, as well as the
improvement ratios of the features used to build it. At the end of the chapter, conclusions
are drawn from the final results.
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Figure 7.1: Finding optimal number of trees
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7.1. Finding Optimal Parameters of Fast Tree Classifier

To find the optimal number of trees, 10 tests have been run, respectively, from 100
to 1000 trees with a step of 100. The results have been presented in Table 7.1 and
Figure 7.1. Within this classifier, log loss seems to be difficult to use; while ranging from
0.238800 to 0.417722 up to 300 trees, it reaches infinity on 400 trees. The F1 score, which
ranges from 0.175879 to 0.182931, looks significantly worse than within the previously
developed classifiers. Although the results are not promising, the classifier reached the
best performance with 400 trees. Given that this is the best result achieved within this
experiment run, it will be used throughout the rest of the steps within this experiment.

Table 7.1: Finding optimal number of trees

# Trees F1 score Log loss
100 0.175879 0.238800
200 0.180254 0.326927
300 0.179947 0.417722
400 0.182931 ∞
500 0.179881 ∞
600 0.180864 ∞
700 0.179836 ∞
800 0.176444 ∞
900 0.177790 ∞
1000 0.177928 ∞

To find the optimal number of trees, 10 tests have been run, respectively, from a
learning rate of 0.1 to 1.0 with a step of 0.1. The results have been presented in Table 7.2
and Figure 7.2. The classifier yielded the only useful log loss value of 0.322200 for a 0.1
learning rate. However, the F1 score metric, ranging from 0.147878 to 0.182931, indicates
that classifier performance improves with the decrease of learning rate, stopping at 0.2
learning rate with the best F1 score. Given that these are the best results achieved within
this experiment run, the learning rate of 0.2 will be used throughout the rest of the steps
within this experiment.

Table 7.2: Finding optimal learning rate

Learning rate F1 score Log loss
0.1 0.180210 0.322200
0.2 0.182931 ∞
0.3 0.179573 ∞
0.4 0.177856 ∞
0.5 0.173158 ∞
0.6 0.171878 ∞
0.7 0.168612 ∞
0.8 0.158827 ∞
0.9 0.150649 ∞
1.0 0.147878 ∞
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Figure 7.2: Finding optimal learning rate (F1 score)

7.2. Finding Improvement Ratios of EEG Bands, Attention, and
Meditation Measures

To calculate the improvement ratio of Attention and Meditation measures, as described
above, ratios of respectively F1 scores and log losses have been calculated. The results
have been presented in Table 7.3 and Figure 7.3. The results for the F1 score, ranging from
0.068570 to 0.182931, seem to indicate that Attention and Meditation indeed have the
measurable impact on the classifier. Given that the Attention and Meditation measures
seem to be effective within this experiment run, they will be used throughout the rest of
the steps within this experiment.

Table 7.3: Finding Attention/Meditation improvement ratios

Attention included Meditation included F1 score Log loss
No No 0.068570 ∞
No Yes 0.126090 ∞
Yes No 0.117635 ∞
Yes Yes 0.182931 ∞
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Figure 7.3: Finding Attention/Meditation improvement ratios (F1 score)
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To calculate the improvement ratio of the EEG bands, as described above, the ratios
of the F1 scores have been calculated. To simplify the experiment, five whole bands
have been used (alpha, beta, gamma, delta, theta), without distinction to the high/low
classification that are specific to MindWave interface. The results have been presented in
Table 7.4 and Figure 7.4. The improvement results of the F1 score, ranging from 0.992984
to 1.422657, strongly indicate the dominance of the gamma EEG band. Regardless of the
gamma EEG band being dominant in the classifier, none of the other bands will be
dropped throughout the rest of the steps within this experiment.

Table 7.4: Finding EEG bands improvement ratios

Band F1 score improvement
Alpha 0.992984
Beta 1.102444

Gamma 1.422657
Delta 1.090385
Theta 0.997525
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Figure 7.4: Finding EEG bands improvement ratios (F1 score)

7.3. Finding Optimal Preprocessors Parameters

To find the optimal window size for the Simple Moving Average algorithm, 19 tests
have been run, respectively, from a value of 2 to 20 with a step of 1. The results have
been presented in Table 7.5 and Figure 7.6. The results for the F1 score metric, ranging
from 0.295870 to 0.930051, indicate that the classifier performance improves along with
the window size of the Simple Moving Average algorithm. Although higher values of
window size may benefit the performance of the classifier, practical reason dictates that
there should be a reasonable limit for the window size. Given that reasoning, the window
size of 20 will be used throughout the rest of the steps within this experiment, without
checking extended range of possible values.
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Window size F1 score
2 0.295870
3 0.421824
4 0.547763
5 0.632653
6 0.704027
7 0.756741
8 0.788955
9 0.821150
10 0.846271

Window size F1 score
11 0.859182
12 0.872131
13 0.889224
14 0.900655
15 0.908559
16 0.916218
17 0.921740
18 0.923466
19 0.928390
20 0.930051

Figure 7.5: Finding optimal Simple Moving Average window size
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Figure 7.6: Finding optimal Simple Moving Average window size (F1 score)

7.4. Evaluating the Classifier

To finally evaluate the classifier, the F1 score ratios have been calculated. The
results have been presented in Table 7.5 and Figure 7.7. It seems that introducing the
used preprocessing steps made the Attention and Meditation features more important
within the classifier, while the delta and theta bands are the least improving features.
The improvement of the F1 score metric ranges between 1.087870 and 1.287013. The
differences have a larger margin than in the previously developed classifier and bring
important insights into the classifier.
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Table 7.5: Finding features improvement ratios

Feature F1 score
Alpha 1.210912
Beta 1.238773

Gamma 1.287013
Delta 1.087870
Theta 1.091508

Attention 1.156059
Meditation 1.150487
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Figure 7.7: Finding features improvement ratios (F1 score)

The final classifier metrics are presented in Table 7.6. The confusion matrix is
presented by Table 7.7. Reaching the F1 score of 0.927333 is a satisfactory result of
this classifier, being similar to the metrics of the classifiers built previously. The brief
analysis of confusion matrix indicates that while taking wrong predictions, the classifier
no longer tends towards the false positive error rather than the false negative one, having
precision and recall, respectively, of 0.867618 and 0.696472. Taking into account the
topic of this thesis and potential cybersecurity applications, the classifier is more likely to
make a false-negative prediction. To allow comparison with multi-class model described
afterwards, the accuracy measure has been calculated from the confusion matrix in Figure
7.8.

Table 7.6: Stress detection classifier metrics

Metric Value
F1 Score 0.927333
Log loss 0.178655
Entropy 0.225432
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Table 7.7: Subject recognition classifier confusion matrix

Predicted
Positive Negative Recall

Truth Positive 373002 162557 0.696472
Negative 56913 13867621 0.995913
Precision 0.867618 0.988414

a =
tp+ tn

tp+ fp+ tn+ fn

=
373002 + 13867621

373002 + 56913 + 13867621 + 162557

=
14240623

14460093
= 0.984822

(7.1)

tp− number of true positives

fp− number of false positives

tn− number of true negatives

fn− number of false negatives

Figure 7.8: Accuracy of the binary subject recognition classifier

The classifier built in this chapter has been using the "Login" dataset described above
and has been fine-tuned to evaluate the best possible performance. First, the model
parameters have been evaluated and it has been determined that the best parameters
are 400 trees and the learning rate of 0.2. Subsequently, the improvement ratios of the
EEG bands and the Attention and Meditation features were calculated. It has been
made clear that gamma EEG band improved the classifier the most. Even with a small
difference, the alpha and beta bands seem to be the more important bands than delta and
theta, which is consistent with earlier work[17]. For the preprocessing part, the Simple
Moving Average algorithm preprocessor applied to the data revealed intuitive insight of
the changes in the parameters, as increasing the window size also improves the classifier
performance, having more data in the domain of time within one sample and removing
potential noise. Unfortunately, there was not enough data in the data set to explore the
poor signal level filter and step size for the Simple Moving Average algorithm. The results
of the classifier evaluation, with an F1 score of 0.927333 and an accuracy of 0.984822, are
satisfactory. The brief analysis of confusion matrix indicates that the classifier may tend
towards the false-negative error with higher probability than the previously developed
classifiers, having precision and recall, respectively, of 0.867618 and 0.696472. Given the
topic of this thesis and potential cybersecurity applications, unfortunately, the classifier
is more likely to make the false-negative prediction.
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8. Multi-class Subject Recognition Classifier

The classifier built in this chapter uses the "Login" dataset described above. Contrary
to the previous experiments, this classifier is a multi-class model, requiring a slightly
different approach and evaluating different metrics. However, a similar characteristic is
that the full brute-force approach would take a long time without guaranteeing error-proof
code, so this chapter describes the step-by-step approach used to fine-tune the classifier
parameters. First, the impact of number of iterations is explored within the LightGBM
classifier to locate the optimal value. A similar approach is used for the learning rate.
Afterwards, within the parameters defined in the previous steps, the improvement ratio
is calculated for all EEG bands, along with the Attention and Meditation measures,
to determine the importance of the features used to build the classifier. Next, the
preprocessing approach is defined. Firstly, the poor signal level preprocessor is evaluated
to determine how dismissal of samples with this metric being less than or equal to the
predetermined value will impact the performance of the classifier. It is followed by
applying the Simple Moving Average algorithm preprocessor and evaluating its impact
on the classifier relative to the size of the window and the step of the algorithm. Finally,
the classifier is evaluated with the metrics provided by the ML.NET library, as well as the
improvement ratios of the features used to build it. At the end of the chapter, conclusions
are drawn from the final results.

Table 8.1: Finding optimal number of iterations

# Iterations Macro accuracy Micro accuracy Log loss
100 0.275150 0.279059 3.290677
200 0.277940 0.279775 3.775411
300 0.279851 0.280748 3.972300
400 0.278266 0.278524 4.088000
500 0.280794 0.281358 4.164211
600 0.281033 0.281882 4.225815
700 0.280593 0.281004 4.273329
800 0.281800 0.281385 4.314268
900 0.282693 0.281832 4.347961
1000 0.282099 0.280883 4.378086
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8.1. Finding Optimal Parameters of LightGBM Classifier

To find the optimal number of iterations, 10 tests have been run, respectively, from
100 to 1000 iterations with a step of 100. The results have been presented in Table 8.1 and
Figure 8.1. Within this classifier, log loss, ranging from 3.290677 to 4.378086, seems to
be increasing along with the number of iterations, thus not being helpful in determining
the best number of iterations. Macro and micro accuracy measures, ranging respectively
from 0.275150 to 0.282693 and from 0.278524 to 0.281882 , favor the higher number of
iterations. However, given that the processing time grows almost linearly with the number
of iterations, a reasonable value needs to be chosen. Given that the differences in accuracy
measures are not of high margin, the number of iterations of 300 will be used throughout
the rest of the steps within this experiment.
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Figure 8.1: Finding optimal number of iterations

To find the optimal learning rate, 10 tests have been run, respectively, from a learning
rate of 0.01 to 0.01 with a step of 0.01. The results have been presented in Table 8.2 and
Figure 8.2. Within this classifier, log loss seems to grow linearly with the learning rate,
ranging from 2.407454 to 3.453484. The macro and micro accuracy measures, ranging
respectively from 0.283197 to 0.299322 and from 0.285617 to 0.301298, indicate the
best classifier performance with the smallest learning rate. Exploring the lower order
of magnitude could be beneficial in this case. To explore the lower order of magnitude,
10 tests have been run, respectively, from a learning rate of 0.001 to 0.01 with a step
of 0.001. The results have been presented in Table 8.3 and Figure 8.3. The log loss
measure, ranging from 2.407454 to 3.453484, starts to be useful within this experiment
run, indicating the higher loss within the lowest tested learning rates, consistent with
macro- and micro-accuracy measures, ranging respectively from 0.270710 to 0.299322 and
from 0.279033 to 0.301298. All metrics together seem to show that the best learning rate
in this scenario is 0.01. Further experiments will be conducted with this value.
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Table 8.2: Finding optimal learning rate

Learning rate Macro accuracy Micro accuracy Log loss
0.01 0.299322 0.301298 2.407454
0.02 0.298308 0.300808 2.483696
0.03 0.297970 0.300380 2.598158
0.04 0.288502 0.293009 2.745824
0.05 0.285868 0.291206 2.881024
0.06 0.288088 0.291765 3.024592
0.07 0.284399 0.286604 3.150235
0.08 0.287686 0.290889 3.264041
0.09 0.287537 0.290678 3.359978
0.10 0.283197 0.285617 3.453484
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Figure 8.2: Finding optimal learning rate

Table 8.3: Finding optimal learning rate

Learning rate Macro accuracy Micro accuracy Log loss
0.001 0.270710 0.279033 2.837064
0.002 0.287695 0.291832 2.671082
0.003 0.291237 0.293637 2.573057
0.004 0.290408 0.291475 2.507983
0.005 0.297026 0.297693 2.464454
0.006 0.298106 0.299150 2.438563
0.007 0.296000 0.297326 2.421246
0.008 0.295788 0.296700 2.412345
0.009 0.295526 0.297722 2.407782
0.010 0.299322 0.301298 2.407454
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Figure 8.3: Finding optimal learning rate

8.2. Finding Improvement Ratios of EEG Bands, Attention, and
Meditation Measures

To calculate the improvement ratio of the Attention and Meditation measures, as
described above, the ratios of all measures have been calculated. The results have been
presented in Table 8.4 and Figure 8.4. The results of all of the measures: macro accuracy,
ranging from 0.148814 to 0.299322; micro accuracy, ranging from 0.156410 to 0.301298;
and log loss, ranging from 2.407454 to 2.971764; strongly indicate that the Attention and
Meditation features indeed have the measurable impact on the classifier. The Attention
and Meditation measures seem to be actually helpful in this classifier, and thus will be
included in the further experiments.
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Figure 8.4: Finding Attention/Meditation improvement ratios
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Table 8.4: Finding Attention/Meditation improvement ratios

Attention Meditation Macro accuracy Micro accuracy Log loss
False False 0.148814 0.156410 2.971764
False True 0.229188 0.237468 2.634001
True False 0.230468 0.236229 2.615459
True True 0.299322 0.301298 2.407454

To calculate the improvement ratio of the EEG bands, as described above, the ratio of
all measures has been calculated. To simplify the experiment, five whole bands have been
used (alpha, beta, gamma, delta, theta), without distinction to the high/low classification
that are specific to MindWave interface. The results have been presented in Table 8.5
and Figure 8.5. The improvement ratios of all measures: macro accuracy, ranging from
1.018970 to 1.301907; micro accuracy, ranging from 1.017225 to 1.276775; and log loss,
ranging from 0.930719 to 0.995911; strongly indicate the gamma EEG band as dominant
and the alpha band as least improving. An interesting correlation can be observed, as
the gamma band was also among the most important features in the previous classifier.
Regardless of the gamma EEG band being dominant in the classifier, none of the other
bands will be dropped throughout the rest of the steps within this experiment.

Table 8.5: Finding EEG bands improvement ratios

Band Macro accuracy Micro accuracy Log loss
Alpha 1.018970 1.017225 0.995911
Beta 1.110455 1.111552 0.975223

Gamma 1.301907 1.276775 0.930719
Delta 1.078893 1.071601 0.980386
Theta 1.026352 1.025912 0.990897
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Figure 8.5: Finding EEG bands improvement ratios
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8.3. Finding Optimal Preprocessors Parameters

To find the optimal poor signal level filter threshold, 21 tests have been run, respec-
tively, from a value of 0 to 200 with a step of 100. The results have been presented in Table
8.6 and Figure 8.6. The results of all metrics: macro accuracy, ranging from 0.261358
to 0.299322; micro accuracy, ranging from 0.257003 to 0.301298; and log loss, ranging
from 2.407454 to 2.511040; seem to indicate no classifier performance improvement along
with restrictiveness of the poor signal level filter. Given that the best filter value, while
retaining most samples, is the value of 200, using a poor level signal filter may not be
warranted in this classifier and will not be used throughout the rest of the steps within
this experiment.

Table 8.6: Finding optimal poor signal level filter

Worst acceptable level Macro accuracy Micro accuracy Log loss
0..20 0.261358 0.257003 2.511040
30..50 0.277411 0.270201 2.503422
60..70 0.275834 0.273088 2.500117
80..190 0.280869 0.276034 2.505149

200 0.299322 0.301298 2.407454
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Figure 8.6: Finding optimal poor signal level filter

To find the optimal window size for the Simple Moving Average algorithm, 19 tests
have been run, respectively, from a value of 2 to 20 with a step of 1. The results have been
presented in Table 8.7 and Figure 8.7. The results for all of the metrics: macro accuracy,
ranging from 0.395102 to 0.929150; micro accuracy, ranging from 0.398246 to 0.929453;
and log loss, ranging from 0.364307 to 2.035322; seem to improve along with the window
size of the Simple Moving Average algorithm. Although higher values of window size may
benefit the performance of the classifier, practical reason dictates that there should be a
reasonable limit for the window size. Given that reasoning, the window size of 20 will be
used throughout the rest of the steps within this experiment, without checking extended
range of possible values.
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Table 8.7: Finding optimal Simple Moving Average window size

Window size Macro accuracy Micro accuracy Log loss
2 0.395102 0.398246 2.035322
3 0.499794 0.501536 1.735300
4 0.584854 0.582611 1.483580
5 0.646965 0.645821 1.282528
6 0.711561 0.709050 1.093982
7 0.756321 0.760478 0.952696
8 0.794135 0.792310 0.838758
9 0.818804 0.818001 0.757710
10 0.840717 0.840026 0.681960
11 0.856697 0.855515 0.630811
12 0.870485 0.868892 0.581237
13 0.886395 0.886173 0.526200
14 0.892619 0.892704 0.492559
15 0.905986 0.904065 0.460060
16 0.910468 0.909777 0.440138
17 0.914232 0.913396 0.413030
18 0.916051 0.915673 0.400550
19 0.922816 0.921958 0.374644
20 0.929150 0.929453 0.364307
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Figure 8.7: Finding optimal Simple Moving Average window size
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To find the optimal step size for the Simple Moving Average algorithm, 20 tests have
been run, respectively, from a value of 1 to 20 with a step of 1. The results have been
presented in Table 8.8 and Figure 8.8. The results for all metrics: macro accuracy, ranging
from 0.327106 to 0.929150; micro accuracy, ranging from 0.300237 to 0.929453; and log
loss, ranging from 0.364307 to 2.751214; seem to indicate an inverse linear correlation
between the efficiency of the classifier and the step size of the Simple Moving Average
algorithm. This is not unexpected, as the larger step size effectively limits the number of
samples which the classifier can use. In this case, all metrics suggest that the step value
of 1 is the best suited in this classifier. Given that the step value of 1 seems to have the
best outcome for the classifier, it will be used throughout the rest of the steps within this
experiment.

Table 8.8: Finding optimal Simple Moving Average step size

Step size Macro accuracy Micro accuracy Log loss
1 0.929150 0.929453 0.364307
2 0.845421 0.850069 0.614096
3 0.764927 0.770895 0.866870
4 0.730392 0.727758 1.071665
5 0.680138 0.669350 1.243780
6 0.607671 0.611723 1.432725
7 0.594035 0.582923 1.567695
8 0.549060 0.538404 1.764976
9 0.510485 0.504177 1.821368
10 0.543018 0.522546 1.880632
11 0.530766 0.499585 1.970681
12 0.445809 0.422917 2.157311
13 0.414622 0.402648 2.319753
14 0.379477 0.378084 2.239907
15 0.434032 0.434486 2.157635
16 0.369080 0.387063 2.356020
17 0.359244 0.323238 2.621151
18 0.387341 0.380912 2.450045
19 0.327106 0.322091 2.587622
20 0.332727 0.300237 2.751214
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Figure 8.8: Finding optimal Simple Moving Average step size

8.4. Evaluating the Classifier

To finally evaluate the classifier, the ratios of all metrics have been calculated. The
results have been presented in Table 8.9 and Figure 8.9. It seems that introducing the used
preprocessing steps made the Attention and Meditation features less important within the
classifier, while the delta and theta bands became improving features. The improvement of
all metrics: macro accuracy, ranging from 1.036777 to 1.254743; micro accuracy, ranging
from 1.038507 to 1.253139; and log loss, ranging from 0.577915 to 0.760693; indicates
the vast importance of alpha, beta, and gamma EEG bands, bringing important insights
into the classifier, as those bands are also among the most important features in emotion
recognition research.

Table 8.9: Finding features improvement ratios

Feature Macro accuracy Micro accuracy Log loss
Alpha 1.182739 1.182899 0.688734
Beta 1.200190 1.204240 0.655263

Gamma 1.254743 1.253139 0.577915
Delta 1.076644 1.076114 0.842695
Theta 1.076832 1.077163 0.849521

Attention 1.044127 1.041553 0.760693
Meditation 1.036777 1.038507 0.754411
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Figure 8.9: Finding features improvement ratios

The final classifier metrics are presented in Table 8.10. Reaching the macro and
micro accuracy scores of respectively 0.929150 and 0.929454 is a satisfactory result of
this classifier, being similar to the metrics of the classifiers built previously. Analysis of
confusion matrix would not be efficient in this case, having almost 30 classes.

Table 8.10: Multi-class subject recognition classifier metrics

Metric Value
Macro accuracy 0.929150
Micro accuracy 0.929454

Log loss 0.887535

The classifier built in this chapter has been using the "Login" dataset described above
and has been fine-tuned to evaluate the best possible performance. First, the model
parameters have been evaluated and it has been determined that the best parameters are
300 iterations and the learning rate of 0.01. Subsequently, the improvement ratios of the
EEG bands and the Attention and Meditation features were calculated. It has been made
clear that gamma EEG band improved the classifier the most. Even with small difference,
the alpha and beta bands seem to be more important bands than delta and theta, which
makes it consistent with earlier work[17]. For the preprocessing part, the poor signal
level filter value has been set to 200. Applying the Simple Moving Average algorithm
preprocessor to the data revealed intuitive insight of the changes in the parameters.
While increasing the window size almost linearly improves the classifier performance,
having more data in the domain of time within one sample and removing potential noise,
increasing the step size linearly decreases the classifier performance, having fewer samples
to train and validate the classifier on. The results of the classifier evaluation, with the
macro accuracy of 0.929150 and micro accuracy of 0.929454, are satisfactory. Analysis of
confusion matrix would not be efficient in this case, having almost 30 classes.
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9. Summary and Future Work

The main purpose of this thesis was to present the original solution to the scientific
problem of exploring the applications of simplified brain-computer interfaces in cyberse-
curity and emotion recognition, especially in terms of evaluating the potential of such
interfaces within the field of stress detection and subject recognition. Given that simpli-
fied EEG interfaces seem to have more customer-friendly potential than traditional ones
because of their simplicity and low cost, it has been done by building stress detection and
subject recognition classifiers based on the data provided by the Neurosky MindWave
Mobile 2 interface and evaluating the results, with cybersecurity applications in mind,
and what are the metrics of such classifiers. Considering the participation of human
participants, the research has been approved by the Committee for Research Ethics.

There were two Fast Tree classifiers built to evaluate the possibilities of using a
simplified EEG interface for stress detection, built respectively on "Stress" and "Login"
datasets. To fine-tune such classifiers, first, the model parameters have been evaluated
to determine the best values for both the number of trees and the learning rates of the
classifiers. The improvement ratios have been calculated for all available EEG bands,
along with the attention and meditation features, to define the impact of a specific
feature on the performance of the model. The preprocessing part of the experiment
included the poor signal level filter and the Simple Moving Average algorithm. First,
the poor signal level filter was evaluated to determine the best threshold value for the
classifier performance. Second, the window and step sizes for the Simple Moving Average
algorithm have been evaluated in a similar manner. In the end, both classifiers have
been evaluated by calculating their metrics and improvement ratios for all the included
features. Although the performance of both models has been quite similar and overall
satisfactory, that stress seems to be detectable in all EEG bands, the model built upon
the "Login" dataset performed slightly better than the "Stress" one. The classifier built
upon the "Stress" dataset achieved the F1 score of 0.921606 with precision of 0.857198
and recall of 0.996541, while the classifier built upon the "Login" dataset achieved the
F1 score of 0.945356 with precision of 0.901603 and recall of 0.993748. Regarding the
improvement ratios of the F1 score and the Log loss metrics, although the difference is
subtle, the "Login" dataset classifier shows that the alpha, beta, and gamma bands appear
to be the most impactful, which is consistent with earlier work[17]. The analysis of the
confusion matrices produced by both models indicates that it is possible to use simplified
EEG interfaces in stress detection. Within inaccurate predictions, both models tend to
skew the results into false-positive area, which in terms of cybersecurity makes it more
desirable than skewing into false-negative predictions.
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To address the second research question, two classifiers have been built to evaluate the
possibilities of using the simplified EEG interface for subject recognition; both of them
have been built on the "Login" dataset. Contrary to the stress detection recognition
study, these two classifiers were, respectively, binary model calculated for every subject
based on the Fast Tree classifier, compared to the one-for-all multi-class model based
on the LightGBM classifier. To fine-tune these classifiers, first, the model parameters
have been evaluated to determine the best values for both the number of trees and the
learning rate for the Fast Tree classifier, along with the number of iterations and the
learning rate for the LightGBM classifier. The improvement ratios have been calculated
for all available EEG bands, along with the attention and meditation features, to define
the impact of a specific feature on the performance of the model. The preprocessing part
of the experiment included the poor signal level filter and the Simple Moving Average
algorithm. Similarly, the poor signal level filter was evaluated to determine the best
threshold value for classifier performance. After that, the window and step sizes for
the Simple Moving Average algorithm have been evaluated in a similar manner. In the
end, both classifiers have been evaluated by calculating their metrics and improvement
ratios for all the included features. Although it is challenging to compare the binary
and multi-class models, the metrics of both seem to be satisfactory. The binary classifier
achieved the F1 score of 0.927333 with accuracy of 0.984822, while the multi-class model
achieved the macro accuracy of 0.929150 and micro accuracy of 0.929454. Such measure
values indicate that it may be more viable to create a model per subject in commercial
setup, especially that it has the advantage of making the setup process for the new user
more streamlined, as the system would not have to re-learn every subject when there is new
subject joining the group of users. Regarding the improvement ratios of the metrics, both
the binary and multi-class models strongly indicate the importance of alpha, beta, and
gamma EEG bands (especially gamma in the multi-class model), which is also consistent
with earlier work[17].

The research presented in this thesis has addressed the initial research questions,
demonstrating the feasibility of constructing stress detection and subject recognition clas-
sifiers using data from simplified EEG interfaces. The metrics obtained, as summarized
in the preceding sections, validate the potential of these classifiers. However, this study
opens several avenues for future research. One significant recommendation for future work
is the anonymization and public dissemination of the datasets used in this study. Making
these datasets available on platforms such as GitHub would enable other researchers to
replicate and extend the findings presented here, fostering a collaborative environment for
further advancements in this field. Such transparency and accessibility are crucial for the
validation and refinement of the classifiers developed. Moreover, the domain of simplified
EEG interfaces remains rich in unexplored potential. Future research could investigate
the optimization of these interfaces for practical applications, particularly in the realm
of cybersecurity. The integration of EEG-based stress detection systems in cybersecurity
protocols could revolutionize the way digital security is approached, providing real-time
monitoring and response mechanisms based on physiological data. In conclusion, while
this thesis has made significant strides in demonstrating the capabilities of simplified
EEG interfaces for stress detection and subject recognition, it also highlights the vast
landscape of opportunities that lie ahead. Continued research and collaboration in this
area is essential to fully realize the potential of these technologies, paving the way for
innovative applications that improve both scientific understanding and practical utility in
cybersecurity and beyond.
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C. Committee for Research Ethics - Research
Info

Załącznik nr 1 do Wniosku o wydanie opinii w sprawie aspektów 

etyczno-deotologicznych projektu badań naukowych z udziałem 

człowieka 

 

Informacja o badaniach, z uwzględnieniem aspektów prawno-etycznych. 

 

„Badanie zastosowań uproszczonych interfejsów EEG w cyberbezpieczeństwie, detekcji stresu 
oraz rozpoznawaniu emocji.” 

 
 

Jak będzie wyglądało badanie? 
Badanie rozpoczyna się od założenia i uruchomienia urządzenia EEG na głowę osoby badanej. 
Po uruchomieniu aplikacji, osoba badana wpisuje w aplikacji informacje o wieku oraz płci, a 
także oświadczenia o historii epilepsji, nadużywania alkoholu, papierosów oraz substancji 
psychoaktywnych. Inne dane nie są wymagane, wobec tego zbierane dane nie spełniają 
definicji danych osobowych w myśl przepisów RODO. Osoba badana informowana jest o 
przebiegu badania. 
 
Następnie prezentowany jest ekran utworzenia „konta” w aplikacji. Konto to nie jest nigdzie 
przechowywane w sposób permanentny – istnieje tylko do potrzeb przeprowadzenia badania. 
Po założeniu konta osoba badana proszona jest o trzykrotne zalogowanie się do systemu. 
 
Następnie osoba badana proszona jest o trzykrotne zalogowanie się do systemu, gdzie 
każdemu z tych zalogowań towarzyszyć będzie inny bodziec stresowy: 

• dźwiękowy; emisja jednocześnie dwóch dźwięków o częstotliwości odpowiednio X oraz 
Y Hz, 

• wizualny; szybkie wyświetlanie powiadomień typu „pop-up”, 
• placebo; osoba badana spodziewa się bodźca stresowego, który nie występuje. 

 
Po 10-sekundowej przerwie, osoba badana proszona jest o trzykrotne „włamanie się” na konto 
innego użytkownika. 
 
Badanie polega na bezinwazyjnym i bezpiecznym dla badanego pomiarze aktywności mózgu, 
bez bezpośredniej ingerencji w działanie mózgu.  Wykorzystywane urządzenie nie jest 
sprzętem medycznym, a pozyskane pomiary fal mózgowych nie będą danymi o charakterze 
medycznym.  

 
Jak te dane będą wykorzystywane? 

Dane zostaną wykorzystane do stworzenia klasyfikatora, który umożliwi wykorzystanie 
interfejsu EEG do uwierzytelniania wieloskładnikowego oraz detekcji stresu i rozpoznawania 
emocji. 
 

Co będzie rezultatem końcowym? 
Rezultatem końcowym będzie klasyfikator, który umożliwi uwierzytelnianie wieloskładnikowe 
z detekcją stresu. 
 

Aspekty prawno-etyczne: 
 
Liczba osób, która będzie brała udział w badaniu to ok. 30 osób pełnoletnich, w tym studenci 
Politechniki Wrocławskiej. Dane pozyskane przy użyciu interfejsu EEG będą anonimowe i w 
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żaden sposób nie będą powiązane z osobami z których zostały pozyskane. Dane zostaną 
wykorzystane do porównania działania wybranych modeli do klasyfikacji tych danych oraz 
stworzenia modeli klasyfikatorów. 
Przed wykonaniem badania, każdy z badanych otrzyma formularz informacyjny dotyczący 
przebiegu czynności i doświadczeń użytkownika podczas badań.  
Zespół badawczy na bieżąco monitoruje stan badanych oraz dopełnia wszelkich starań, aby 
osoby badane były informowane, że w każdym momencie badanie może zostać przez nich 
przerwane.  Czas badania będzie wynosił około 5 minut. 
 
Zebranie od uczestników danych, będzie wykonane na podstawie świadomej, dobrowolnej i 
jednoznacznej zgody, informując ówcześnie uczestników o celach przetwarzania tych danych. 
Zebrane dane osobowe, płeć i przedział wiekowy oraz zapis fal EEG, będą przechowywane w 
sposób bezpieczny i poufny. Podjęte zostaną odpowiednie środki techniczne i organizacyjne, 
aby zapewnić ochronę danych przed dostępem osób nieuprawnionych. Po zebraniu danych, 
niezwłocznie podjęte zostaną natychmiastowe działania w celu anonimizacji danych, tak aby 
nie można ich było zidentyfikować. Zanonimizowane dane będą przetwarzane w celu analizy i 
wykorzystania ich do celów naukowych, takich jak prowadzenie nad nimi badań, analizowanie 
wyników i wnioskowanie. Przetwarzanie danych będzie odbywać się zgodnie z zasadą 
ograniczenia celu, co oznacza, że dane będą przetwarzane tylko w zakresie niezbędnym do 
osiągnięcia określonych celów naukowych. Po zakończeniu okresu retencji, dane osobowe 
zostaną usunięte. 
 
Administrator danych osobowych jest odpowiedzialny za zapewnienie odpowiednich środków 
ochrony danych, takich jak zabezpieczenia techniczne i organizacyjne, które minimalizują 
ryzyko nieautoryzowanego dostępu, utraty czy uszkodzenia danych. 
 
Interfejs EEG: 
 
Urządzeniem, które będzie wykorzystywane w badaniach będzie Neurosky Mindwave Mobile 
2. Posiada ono jedną elektrodę sucho-stykową, do której wykorzystania nie jest potrzebny żel 
przewodzący. Komunikacja z urządzeniem odbywa się za pomocą łączności bezprzewodowej 
Bluetooth. 
 
Biorąc pod uwagę Stany Zjednoczone jako rodzimy rynek dla tego interfejsu, spełnia ono 
wymagania stawiane przez agencję Federal Communications Commission (FCC) (załącznik nr 
3 do wniosku). 
 
Szersze informacje o wykorzystywanym sprzęcie można znaleźć pod adresem producenta:  
https://store.neurosky.com/pages/mindwave  
 
Fachowa dezynfekcja sprzętu wykorzystanego do badań: 
 
Naszym głównym celem jest zapewnienie higienicznych warunków badań oraz minimalizacja 
ryzyka zakażenia dla naszych uczestników. 
W celu skutecznej dezynfekcji opaski EEG, będziemy przestrzegać następujących procedur: 
 

● Wybór odpowiednich środków dezynfekcyjnych: Wykorzystamy tylko te środki 
dezynfekcyjne, które są skuteczne przeciwko szerokiemu spektrum drobnoustrojów, w 
tym wirusom, bakteriom i grzybom. 
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● Przygotowanie przed dezynfekcją: Przed przystąpieniem do procesu dezynfekcji, 
dokładnie oczyścimy interfejs EEG z widocznych zanieczyszczeń, takich jak kurz czy 
ślady makijażu, za pomocą miękkiej ściereczki. 

● Na miękką ściereczkę lub chusteczkę do dezynfekcji naniesiemy odpowiednią ilość 
środka dezynfekcyjnego i dokładnie wyczyścimy wszystkie powierzchnie opaski EEG. 
Skupimy się na dezynfekcji pasków mocujących, elektrod oraz innych obszarów, które 
mogą mieć kontakt z ciałem osoby badanej. 

● Czas kontaktu środka dezynfekcyjnego: Upewnimy się, że środek dezynfekcyjny będzie 
miał wystarczający czas kontaktu z powierzchnią opaski, zgodnie z zaleceniami 
producenta, aby zapewnić skuteczną dezynfekcję. 

● Wietrzenie i suszenie: Po oczyszczeniu opaski EEG, zostawimy ją na odpowiednim 
podłożu, aby naturalnie wyschła. Przed ponownym użyciem upewnimy się, że opaska 
jest w pełni sucha i przygotowana dla kolejnego uczestnika badania.  

 
Nasze procedury dezynfekcji zostaną przeprowadzone z najwyższą starannością i zgodnie z 
aktualnymi standardami higienicznymi. Będziemy również stale monitorować i aktualizować 
nasze procedury, aby spełniały wszelkie obowiązujące przepisy związane z ochroną danych 
osobowych oraz zabezpieczeniem uczestników naszych badań. 



D. Committee for Research Ethics - Consent
Form

                                     Zał. nr 1a do ZW 158/2021    
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..….........................  
miejscowość, data 

 

..….........................  
Nr identyfikacyjny  

(wypełnia opiekun badania) 

 

 

ZGODA NA UDZIAŁ W BADANIACH 
 

 

 

 

Imię i nazwisko osoby badanej:.................................................................................................................. 

 

Wiek: .......................................................................................................................................................... 

Płeć: ............................................................................................................................................................ 
Jestem osobą praworęczną / leworęczną. (właściwe podkreślić). 

 
 

Niniejszym oświadczam, że zostałem/am* szczegółowo poinformowany/a* o sposobie 
przeprowadzenia badań i moim w nich udziale.  
Rozumiem, na czym polegają badania i do czego potrzebna jest moja zgoda. Oświadczam,  
że otrzymałem/am* wyczerpujące, satysfakcjonujące mnie odpowiedzi na zadane pytania, dotyczące 
tego badania.  
Zostałem/am* poinformowany/a*, że mogę odmówić uczestnictwa w badaniach w każdym momencie 
realizacji projektu badawczego. 

Wyrażam  opartą  na  przedstawionych  mi  informacjach  zgodę  na  uczestnictwo   

w  badaniach. 

   
......................................... 

podpis osoby badanej 
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KLAUZULA INFORMACYJNA DOTYCZĄCA PRZETWARZANIA DANYCH 

OSOBOWYCH 

Na podstawie art. 13 i 14 Rozporządzenia Parlamentu Europejskiego i Rady (UE) 2016/679  

z dnia 27 kwietnia 2016 r.  w sprawie ochrony osób fizycznych w związku z przetwarzaniem danych 

osobowych i w sprawie swobodnego przepływu takich danych oraz uchylenia dyrektywy 95/46/WE 

(ogólne rozporządzenie o ochronie danych) (Dz. U. UE L.2016.119.1 z dnia 04.05.2016 r. – dalej: 

„Rozporządzenie” lub „RODO”), informujemy, że: 

1) Administratorem Danych Osobowych jest Politechnika Wrocławska z siedzibą we Wrocławiu, 

ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, strona internetowa: www.pwr.edu.pl).  

Z administratorem danych osobowych można kontaktować się za pomocą formularza 

kontaktowego na stronie: http://pwr.edu.pl/kontakt. W sprawach dotyczących przetwarzania 

danych osobowych czy skorzystania z praw dotyczących przetwarzania danych osobowych 

można się też zwracać bezpośrednio do kierownika badania - w tym na jego adres 

elektroniczny dr inż. Michał Kędziora – michal.kedziora@pwr.edu.pl 
2) Podstawą przetwarzania będzie art. 6 ust. 1 lit. a  RODO. 
3) Twoje dane osobowe będą przetwarzane: 

a) przez 5 lat - na potrzeby rachunkowości oraz ze względów podatkowych, okres liczony jest 

od końca roku kalendarzowego, w którym powstał obowiązek podatkowy;  

b) do czasu wniesienia sprzeciwu lub cofnięcia zgody na przetwarzanie danych osobowych, 

jeśli Twoje dane przetwarzaliśmy na takiej podstawie.  

4) Jednak co do zasady Twoje dane przetwarzane będą przez minimalnie niezbędny okres: 

przeprowadzania badań naukowych, a następnie będą anonimizowane, przechowywane przez 

okres niezbędny do rozliczenia grantu, po ukończeniu badań chronione przez pracownika 

uczelni. 
5) W imieniu Administratora dane osobowe przetwarzać będą upoważnieni pracownicy - 

członkowie zespołu badawczego. Ponadto Administrator udostępni dane osobowe podmiotom, 

które wybrał do przetwarzania danych osobowych, które przetwarzają dane osobowe w związku 

z wykonywaniem powierzonego im zadania (np. obsługa IT, przechowywanie danych itp.). 

Zespół badawczy nie będzie używał usług związanych z transferem danych poza obszar Unii 

Europejskiej. 

6) Przysługują Ci następujące prawa związane z przetwarzaniem danych osobowych: 

a) prawo do wniesienia sprzeciwu wobec przetwarzania danych w celach marketingowych lub 

badania jakości i satysfakcji  – jako że przetwarzamy Twoje dane na podstawie prawnie 

uzasadnionego interesu, 

b) prawo do wniesienia sprzeciwu wobec przetwarzania danych ze względu na szczególną 

sytuację – w przypadkach, kiedy przetwarzamy Twoje dane na podstawie naszego prawnie 

uzasadnionego interesu w celach innych niż w punkcie powyżej, 

c) prawo żądania sprostowania Twoich danych osobowych, 

d) prawo żądania usunięcia Twoich danych osobowych, tylko w sytuacji jeśli nie będziemy 

zobligowani przepisami prawa do ich przetwarzania, 

e) prawo żądania ograniczenia przetwarzania Twoich danych osobowych, 

f) prawo do przenoszenia Twoich danych osobowych, tj. prawo otrzymania od nas Twoich 

danych osobowych, w ustrukturyzowanym, powszechnie używanym formacie 

informatycznym nadającym się do odczytu maszynowego. Możesz przesłać te dane innemu 

administratorowi danych lub zażądać, abyśmy przesłali Twoje dane do innego 

administratora. Jednakże zrobimy to tylko jeśli takie przesłanie jest technicznie możliwe. 

g) dostępu do Twoich danych osobowych, 



Aby skorzystać z powyższych praw, skontaktować się należy z kierownikiem badania lub 

wyznaczonym inspektorem ochrony danych. Natomiast do organu nadzorczego zajmującego się 

ochroną danych osobowych, tj. Prezesa Urzędu Ochrony Danych Osobowych można zwrócić 

się ze skargą w razie uznania, że przetwarzanie Twoich danych osobowych narusza 

postanowienia RODO. 

7) Zebrane dane osobowe nie podlegają zautomatyzowanemu podejmowaniu decyzji, oraz nie 

podlegają profilowaniu.  
8) Podanie danych osobowych jest dobrowolne lecz niezbędne do wzięcia udziału w badaniach. 
9) Osoby, których dane dotyczą mają prawo do cofnięcia zgody w dowolnym momencie bez 

wpływu na zgodność z prawem przetwarzania, którego dokonano na podstawie zgody przed jej 

cofnięciem. Wycofanie zgody na przetwarzanie danych osobowych można przekazać tą samą 

drogą jaką ją udzielono przy czym Administrator danych zastrzega sobie możliwość 

przeprowadzenia dalszych czynności w celu upewnienia się co do tożsamości osoby 

wycofującej zgodę. 

10) Administrator danych wyznaczył Inspektora Ochrony Danych (adres e-mail: iod@pwr.edu.pl) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FORMULARZ ŚWIADOMEJ ZGODY NA UDZIAŁ W BADANIU 

 

Aplikacji do wykrywania kłamstw z wykorzystaniem interfejsu mózg-komputer oraz 
algorytmów sztucznej inteligencji 

temat badania 
 

Ja niżej podpisana/y .......................................................................................................... oświadczam, że 

zostałam/em poinformowana/y przez ............................................................................................. o celu 

powyższego badania, czasie trwania, sposobie jego przeprowadzenia, oczekiwanych korzyściach, 

ewentualnym ryzyku i zagrożeniach, wszelkich niedogodnościach związanych z uczestniczeniem w tym 

badaniu oraz o moich prawach i obowiązkach.  

 

Przeczytałam/em też i zrozumiałam treść Formularza Informacyjnego dla Uczestnika badania. Poinformowano 

mnie, że dodatkowe pytania dotyczące badania mogę kierować bezpośrednio do osoby prowadzącej badania i 

że uzyskam na nie wyczerpującą odpowiedź.  

 

Oświadczam, że wszelkie podane przeze mnie informacje są zgodne z prawdą i zapewniam, że będę 

informowała/ł na bieżąco o wszelkich zmianach w stanie mojego zdrowia.  

 

Jestem świadoma/y przysługującego mi prawa do odstąpienia od udziału w badaniu na każdym jego etapie, 

bez podania przyczyny. Wiem również, że skorzystanie z tego prawa nie wpłynie na dalszy przebieg mojego 

badania. Otrzymałam/em do rąk własnych Formularz Informacyjny dla Uczestnika badania oraz Oświadczenie 

dotyczące zgody na udział w badaniu z klauzulą informacyjną o przetwarzaniu moich danych osobowych. 

 

Niniejszym wyrażam pełną, świadomą i dobrowolną zgodę na udział w tym badaniu oraz na  anonimowe 

przetwarzanie i na publikację wyników moich badań ( w rozumieniu Rozporządzenia Parlamentu 

Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. w sprawie ochrony osób fizycznych w związku 

z przetwarzaniem danych osobowych i w sprawie swobodnego przepływu takich danych oraz uchylenia 

dyrektywy 95/46/WE (ogólne rozporządzenie o ochronie danych) oraz przyjmuję przedstawione mi warunki. 

 

 

.................................................................................................. 

imię i nazwisko uczestnika badania (drukowanymi literami) 

 

…………………….................................................................      

miejscowość , data, czytelny podpis uczestnika badania        

 

  

Oświadczenie osoby odbierającej ZGODĘ NA UDZIAŁ W BADANIACH  

 
Ja niżej podpisana/y wyjaśniłam/em osobie biorącej udział w badaniu szczegóły proponowanego badania, zgodnie z 

opisem w Formularzu Informacyjnym. Zanim podjęte zostały jakiekolwiek procedury omówiłam/em z osobą biorą udział 

w badaniu jej/jego udział w całym programie badawczym informując o celu i charakterze badania oraz o korzyściach i 

zagrożeniach wynikających z udziału w tym badaniu. Poinformowałem także o przysługujących jej/jemu prawach 

wynikających z RODO. Przekazałam/em do rąk własnych Formularz Informacyjny, Formularz Świadomej Zgody na 

udział w badaniu oraz klauzulę informacyjną dot. ochrony danych osobowych. 

 

….............................................................................. 

imię i nazwisko badacza (drukowanymi literami) 

…………………….................................................................      

miejscowość , data, czytelny podpis badacza 

 
*niepotrzebne skreślić 

 

 



Formularz Informacyjny dla Uczestnika badania 

 

 
 
 
 

Informacje o badaniu: 
 

● Badany wchodzi do pomieszczenia, w którym przeprowadzamy badanie. 

● Po zajęciu wskazanego miejsca, na głowę osoby badanej zostanie założona uprzednio 

zdezynfekowana opaska do badania EEG. 

● Następnie osobie badanej zostanie przedstawiona aplikacja do zbierania danych (znajdująca się 

na laptopie). 

● Badanie rozpoczyna się od wpisania przez uczestnika wieku oraz płci w aplikacji. 

● Utworzenie konta użytkownika w aplikacji 

● Rozpoczęcie właściwego badania, które składa się z 3 bloków: 

o Trzykrotne zalogowanie się na swoje konto 

o Trzykrotne zalogowanie się na konto przy obecności bodźców stresowych 

o Trzykrotne włamanie się na konto innej osoby 

● Badanie trwa około 5 minut, a przez cały czas przy osobie badanej będzie znajdować się 

osoba je przeprowadzająca. 

● Osoba badana może w dowolnej chwili i bez podania przyczyny zrezygnować z udziału w 
badaniu. 
 

 



E. Committee for Research Ethics - Safety and
Regulations

 
 

 

 

 

 

 

Safety and Regulations 
 

Operating Conditions 

● Operating temperature:  0-35C 
● Headset: 1.5V / 95mA maximum average current 

 

Safety 

●   Batteries should not be exposed to excessive heat such as sunshine, fire, or 
similar conditions.  

 

ISO/IEC 

ISO/IEC Guide 37 [17]. 
●   No naked flame sources, such as lighted candles, should be placed on the 

apparatus; 
●   Battery disposal: This product requires the use of an AAA battery.  AAA 

batteries commonly available in the market contains hazardous waste and should 
be properly disposed of. Contact your local government for disposal or recycling 
practices in your area. 

FCC 

This device complies with Part 15 of the FCC Rules. Operation is subject to the following 
two conditions: (1) this device may not cause harmful interference, and (2) this device 
must accept any interference received, including interference that may cause undesired 
operation. 

 
Changes or modifications not expressly approved by the party responsible for compliance 
could void the user's authority to operate the equipment. 
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