
Wrocław University of Science and Technology

Field of Study: Information and communication technology

PhD Thesis

Title of Thesis:
Building transparent classification models

Author:
mgr inż. Bogdan Gulowaty

Supervisor:
prof. dr hab. inż. Michał Woźniak

WROCŁAW 2024

List of Abbreviations

Acc Accuracy

ai Artificial Intelligence

bac Balanced accuracy

cart Classification And Regression Tree

compas Correctional Offender Management Profiling for Alternative Sanctions

cv Cross Validation

dt Decision Tree

ea Evolutionary Algorithms

ec Evolutionary Computing

Err Error rate

f1 F1 score

gdpr General Data Protection Regulation

ga Genetic Algorithm

GMean Geometric mean

gp Genetic Programming

Greedy Greedy rule list

iot Internet of Things

knn K-Nearest-Neighbours

lime Local Interpretable Model-Agnostic Explanations

ml Machine Learning

mst Minimum Spanning Tree

nn Nearest-Neighbours

note Non-overlapping Tree Ensemble

OneR One Rule

2 List of Abbreviations

ova One-Versus-All

ovo One-Versus-One

pca Principal Component Analysis

Pre Precision

Rec Recall

rf Random Forest

Sen Sensitivity

shap Shapley Additive Explanations

Spe Specificity

svc Support Vector Classifier

svm Support Vector Machines

xai Explainable Artificial Intelligence

List of Symbols

cm Function calculating complexity metric

cm(X) Value of complexity metric for set X

CS Set of cliques in graph

d Count of features

eval Fitness evaluation function

indv Genetic algorithm individual (chromosome)

j Single instance’s label

l Cardinality of rules set

LS Training dataset

M Labels set

n Number of data instances passed to procedure

N Cardinality of training dataset

p Single predicate (statement)

PS Set of predicates

Ψ Classification algorithm

Ψ̂ Ensemble of classifiers

r Single rule

rel Single relation in predicate

RS Set of rules

t Count of competence areas

T S Testing dataset

VS Validation set

X Feature space

x Training instance

4 LIST OF SYMBOLS

x(l) The lth feature

y Single instance’s label

Abstract

As Artificial Intelligence (ai) and Machine Learning (ml) technologies advance and be-
come deeply integrated into daily life, the need for transparent and interpretable models
grows increasingly urgent. ai systems must be understandable, trustworthy, and ethical,
especially in critical healthcare, finance, and legal sectors. The rise of Explainable Ar-
tificial Intelligence (xai) seeks to address these challenges by providing explanations of
model decisions, making ai systems more transparent. However, much of the progress
in xai has focused on deep neural networks, leaving other complex models like ensemble
methods needing to be explored more regarding their interpretability.

The thesis aims to fill that gap by developing novel methods to improve the trans-
parency and interpretability of ensemble classifiers while ensuring these models maintain
competitive predictive performance and build inherently transparent models. The central
hypothesis of the thesis is that it is possible to construct such transparent or explainable
models that perform as well as black-box models in a wide range of classification tasks.
The work focuses on three primary methods designed to either explain or replace complex
models with transparent alternatives: Non-overlapping Tree Ensemble (note), Optimal
Centroids and Quad Split algorithms. The thesis sets out with the following objectives:

• Develop novel algorithms that produce transparent classification models.

• Extract interpretable models from complex ensemble classifiers like Random Forest
(rf).

• Use data complexity metrics to assess and improve the performance of transparent
models.

• Evaluate the effectiveness of these methods across datasets of varying complexities,
ensuring the models are both interpretable and accurate.

The main contribution of the thesis is the introduction and evaluation of three novel
algorithms in the domain of xai:

note The note method is specifically designed to explain tree-based ensemble models
like Random Forests. While traditional ensemble models can combine transparent base
models like Decision Trees, they often produce overlapping decision boundaries, making
the ensemble challenging to interpret. note addresses this by selecting a subset of trees
that create non-overlapping decision areas, simplifying the overall model. The proposed
method applies graph analysis techniques to identify which rules, coming from Decision
Trees in the ensemble, may be used in a way that does not overlap and provide the
best generalizing abilities. The areas covered by selected rules are assigned Decision
Trees that are trained and combined to form a transparent version of the original model,
allowing users to understand individual predictions more easily. Experimental results

6

showed that note can significantly improve interpretability without significantly losing
predictive performance. In datasets of moderate complexity, note performed comparably
to the original rf while providing much more precise insights into the decision-making
process.

Optimal Centroids The Optimal Centroids algorithm focuses on creating interpretable
classification models by splitting the feature space into regions based on centroids and
1-Nearest-Neighbours (nn) classifier. In the method, the feature space is divided accord-
ing to centroids found by evolutionary algorithms, such as genetic algorithms. Centroid
positions are being evaluated to find their best distribution, which would maximize the
model accuracy. As part of the evaluation step, transparent models are trained for de-
cision space designated by every centroid. The model created in such a way has high
interpretability and solid predictive abilities.

Quad Split The Quad Split is a novel algorithm for creating transparent classification
models that has been introduced to compete with more complex models by creating
interpretable decision boundaries. The idea behind the Quad Split algorithm is based on
the assumption that multiple specialized models applied to parts of the whole dataset will
perform better than one. To achieve that, Quad Split recursively splits the decision space
based on feature values extracted from the training set. Those values serve as splitting
points. The algorithm evaluates those points to find one minimizing data complexity at
both sides of the split. Then, when stop criteria are reached, the interpretable model is
created in every split, finally resulting in an ensemble of transparent models, which could
be reduced to a list of simple rules.

Experimental Evaluation The thesis conducted a comprehensive evaluation of the
three proposed methods using 16 binary datasets with varying complexities. These
datasets included real-world and synthetic examples, covering a range of domains and
challenges such as class imbalance, high-dimensional spaces, and noisy data. Complexity
metrics from various categories, such as feature, dimensionality, and linearity-based, were
evaluated. The experimental setup focused on several key evaluation metrics:

• Predictive abilities: The performances of each model, as defined by balanced accu-
racy, F1 score, and geometric mean score, were compared against standard classifiers
like Random Forests, Decision Trees and rule models, focusing on overall prediction
accuracy.

• Model complexity: Base and proposed model complexities were quantified and eval-
uated against each other.

• Effectiveness as explainers: The ability of the models to explain traditional black-
box models like Random Forests was also assessed. The experiments evaluated how
well the proposed methods could serve as surrogate explainers for these complex
models.

All the above qualities were evaluated in the domain of changing internal algorithm
parameters, as well as different dataset complexities - defined by the aforementioned
complexity metrics.

Abstract 7

Conclusion and Future Work The thesis contributes to the science of ai by demon-
strating that transparent and explainable models can be built without sacrificing pre-
dictive abilities, particularly in moderately complex datasets. The proposed methods —
note, Optimal Centroids, and Quad Split — offer flexible and interpretable alternatives
to traditional black-box ensemble models. The main achievements of the thesis are:

• The development of two novel algorithms that create inherently transparent models
while maintaining competitive performance.

• The development of the forest ensemble explaining algorithm that is competitive
to the explained rf. Extensive experimental evaluation shows that the proposed
methods can explain and, in some cases, replace black-box models with transparent
alternatives.

• A demonstration that data complexity metrics play an important role in determining
when transparent models are most effective.

• Development of a programming library containing the algorithms mentioned above.

The three proposed methods offer significant improvements in interpretability, making
them suitable for applications where trust and transparency are essential, such as in
healthcare, finance, or legal systems. Along with that, several observations are made,
such as that:

• Evaluated classification models behave immensely differently when applied to datasets
with different complexity properties.

• Internal model complexities do not always correlate to dataset complexities.

• Evaluated explaining methods that used knowledge extracted from complex models
behaved better than inherently transparent ones when used as explainers.

Future research could focus on further refining the proposed methods in various ways,
such as fine-tuning the Genetic Algorithm (ga) parameters of Optimal Centroids or find-
ing better evaluation metrics for note. Additionally, the applicability of the algorithms
could be checked in a wider range of complex, black-box methods, such as neural net-
works. Observations made in the thesis might also help develop meta-algorithms based
on datasets’ complexity metrics. The thesis makes significant contributions to the field of
xai by demonstrating that transparent models can be built without sacrificing predictive
abilities.

Streszczenie

W miarę jak technologie Sztucznej Inteligencji (SI) i Uczenia Maszynowego rozwijają się
i stają się coraz bardziej zintegrowane z codziennym życiem, potrzeba budowania prze-
jrzystych i interpretowalnych modeli staje się coraz bardziej istotna. Systemy SI muszą
być zrozumiałe, godne zaufania i etyczne, zwłaszcza te używane w kluczowych sektorach,
takich jak opieka zdrowotna, finanse i systemy prawne. Rozwój Wyjaśnialnej Sztucznej
Inteligencji (eXplainable Artificial Intelligence - xai) ma na celu sprostanie tym wyzwan-
iom poprzez m.in. tworzenie bardziej przejrzystych i intepretowalnych modeli. Jednak
większość prac dotyczących xai koncentruje się na głębokich sieciach neuronowych, po-
zostawiając inne złożone modele, takie jak np. metody zespołowe bez rozwiązań w tym
zakresie. Jednym z celów rozprawy jest wypełnienie tej luki poprzez opracowanie nowa-
torskich metod poprawy przejrzystości i interpretowalności klasyfikatorów zespołowych,
przy jednoczesnym zachowaniu ich wysokiej jakości predykcji oraz budowę modeli klasy-
fikacji, które z góry zakładają swoją przejrzystosć. Główna hipoteza pracy stwierdza, że
możliwe jest skonstruowanie takich przejrzystych lub wyjaśnialnych modeli, które będą
działać równie dobrze jak modele typu "black box" w szerokim zakresie zadań predykcji
danych. W pracy zaprezentowano trzy autorskie algorytmy wyjaśniania lub zastępowa-
nia złożonych modeli przez transparentne alternatywy: Non-overlapping Tree Ensemble
(note), Optimal Centroids oraz Quad Split. Przyjęte cele pracy obejmują:

• Opracowanie nowych algorytmów tworzących przejrzyste modele klasyfikacyjne.

• Ekstrakcję interpretowalnych modeli ze złożonych klasyfikatorów zespołowych, ta-
kich jak Random Forest (rf).

• Wykorzystanie metryk złożoności danych do oceny i poprawy wydajności prze-
jrzystych modeli.

• Ocena skuteczności tych metod na zbiorach danych o różnej złożoności aby za-
pewnić, że modele są zarówno interpretowalne, jak i mają wysokie zdolności predyk-
cyjne.

Głównym wkładem tej pracy jest zaproponowanie i ocena trzech nowatorskich algo-
rytmów w dziedzinie xai:

note Metoda note została zaprojektowana specjalnie do wyjaśniania zespołów modeli
drzewiastych, takich jak rf. Tradycyjne modele zespołowe cechują się krokiem integracji
predykcji z modeli będącymi członkami zespołu, co utrudnia interpretację zespołu. note
rozwiązuje ten problem, wybierając podzbiór drzew, które tworzą nienachodzące na siebie
obszary decyzyjne, upraszczając ogólny model. Proponowana metoda stosuje techniki
analizy grafów w celu zidentyfikowania reguł pochodzących z drzew decyzyjnych w ze-
spole, które można wykorzystać do zdefiniowania nienachodzących na siebie obszarów,

10

zapewniając przy tym jak najlepsze możliwości predykcyjne modelu. Obszary pokryte
przez wybrane reguły są przypisywane do drzew decyzyjnych, które są trenowane i łączone
w komitet, tworząc przejrzystą wersję oryginalnego modelu, umożliwiając użytkownikom
łatwiejsze zrozumienie indywidualnych predykcji. Wyniki eksperymentów wykazały, że
metoda note poprawia interpretowalność, nie tracąc przy tym znacząco na wydajności
predykcyjnej. Na zbiorach danych o umiarkowanej złożoności metoda note osiągnęła
wyniki porównywalne z oryginalnym Random Forest, jednocześnie dostarczając dużo pre-
cyzyjniejszych informacji o procesie podejmowania decyzji.

Optimal Centroids Algorytm Optimal Centroids koncentruje się na tworzeniu inter-
pretowalnych modeli klasyfikacyjnych poprzez podział przestrzeni cech na regiony w opar-
ciu o centroidy i klasyfikator 1-nn. W tej metodzie przestrzeń cech jest podzielona zgod-
nie z centroidami, które są optymalizowane za pomocą algorytmów ewolucyjnych, takich
jak algorytm genetyczny. Pozycje centroidów są oceniane w celu znalezienia ich najlep-
szej dystrybucji, która maksymalizyje dokładność modelu. W ramach kroku ewaluacji
trenowane są przejrzyste modele dla przestrzeni decyzyjnych wyznaczonych przez cen-
troidy. Tak wytrenowany model cechuje się wysoką interpretowalnością i dobrymi zdol-
nościami predykcyjnymi.

Quad Split Algorytm Quad Split to nowatorska metoda tworzenia przejrzystych mod-
eli klasyfikacyjnych, zaprojektowana z myślą o konkurowaniu z bardziej złożonymi mod-
elami poprzez tworzenie interpretowalnych granic decyzyjnych. Algorytm ten zakłada,
że zastosowanie wielu wyspecjalizowanych modeli do części zbioru danych przyniesie lep-
sze wyniki niż jeden model globalny. Aby to osiągnąć, Quad Split rekursywnie dzieli
przestrzeń decyzyjną w oparciu o wartości cech wyodrębnionych ze zbioru treningowego.
Wartości te służą jako punkty podziału. Algorytm ocenia te punkty, aby znaleźć taki,
który minimalizuje złożoność danych po obu stronach podziału. Po osiągnięciu kryter-
iów zatrzymania w każdym podziale tworzony jest interpretowalny model, co ostatecznie
prowadzi do utworzenia zespołu przejrzystych modeli, który można sprowadzić do listy
prostych reguł.

Ocena eksperymentalna W ramach pracy przeprowadzono szeroki zakres badań
eksperymentalnych trzech proponowanych metod, używając 16 zbiorów danych do zada-
nia binarnej klasyfikacji o zróżnicowanej złożoności. Zbiory te obejmowały zarówno
przykłady rzeczywiste, jak i syntetyczne, dotyczyczące różnych dziedzin i wyzwań, ta-
kich jak niezbalansowane rozkłady klas, przestrzenie o wysokiej wymiarowości oraz szum
danych. Eksperymenty brały pod uwagę ocenę złożoności zbiorów danych w ramach
różnych kategorii, takich jak cechy, wymiarowość i liniowość. Eksperymenty koncen-
trowały się na kilku kluczowych wskaźnikach oceny:

• Zdolności predykcyjne: Wyniki każdego modelu, mierzone przez zbalansowaną
dokładność, F1-score i średnią geometryczną, zostały porównane ze standardowymi
klasyfikatorami, takimi jak Random Forest, drzewa decyzyjne oraz modele regułowe,
z naciskiem na ogólną dokładność predykcji.

• Złożoność modelu: Złożoność podstawowych i proponowanych modeli została
skwantyfikowana i oceniona w stosunku do siebie.

• Skuteczność jako metody wyjaśniania modeli: Oceniono zdolność proponowanych
algorytmów do wyjaśniania modeli typu "czarna skrzynka", takich jak Random

Streszczenie 11

Forest. Eksperymenty oceniły, jak dobrze proponowane metody mogą pełnić rolę
wyjaśniających modeli zastępczych dla tych bardziej złożonych.

Wszystkie powyższe cechy zostały ocenione w kontekście zmieniających się parametrów
wewnętrznych algorytmów oraz różnych złożoności zbiorów danych, zdefiniowanych przez
wspomniane metryki złożoności.

Wnioski i przyszłe kierunki badań Praca wnosi istotny wkład do rozwoju ai,
pokazując, że można budować przejrzyste i wyjaśnialne modele bez poświęcania ich zdol-
ności predykcyjnych. Proponowane metody — note, Optimal Centroids i Quad Split
— oferują elastyczne i interpretowalne alternatywy dla tradycyjnych modeli zespołowych
typu "czarna skrzynka". Główne osiągnięcia pracy obejmują:

• Opracowanie dwóch nowatorskich algorytmów, które generują przejrzyste modele
przy zachowaniu konkurencyjnych zdolności predykcji i generalizacji.

• Opracowanie algorytmu wyjaśniającego dla komitetów drzew decyzyjnych, który
jest konkurencyjny wobec algorytmu rf.

• Szeroką ocenę eksperymentalną, pokazującą, że proponowane metody mogą wy-
jaśniać, a w niektórych przypadkach zastępować modele typu "czarna skrzynka"
przejrzystymi alternatywami.

• Wykazanie, że metryki złożoności danych odgrywają ważną rolę w określaniu, kiedy
przejrzyste modele są najbardziej efektywne.

Trzy zaproponowane metody wnoszą znaczące ulepszenia w zakresie interpretowalności,
co czyni je odpowiednimi do zastosowań, w których zaufanie i przejrzystość są kluczowe,
takich jak opieka zdrowotna, finanse czy zastosowanie w problemach prawnych. Oprócz
powyższego, poczyniono kilka obserwacji, takich jak:

• Oceniane modele klasyfikacyjne zachowują się znacząco inaczej, gdy są stosowane
do zbiorów danych o różnych właściwościach złożoności.

• Wewnętrzna złożoność modeli nie zawsze koreluje ze złożonością zbiorów danych.

• Oceniane metody wyjaśniające, które wykorzystywały wiedzę wyodrębnioną z
złożonych modeli, działały lepiej niż z natury przejrzyste modele, gdy były
stosowane jako modele wyjaśniające.

Przyszłe badania mogłyby skupić się na dalszym udoskonalaniu proponowanych
metod, na przykład poprzez dostrajanie parametrów algorytmu genetycznego w metodzie
Optimal Centroids lub poszukiwanie lepszych metryk oceny dla note. Dodatkowo uza-
sadnione jest sprawdzenie zastosowanie algorytmów w szerszym zakresie złożonych metod
typu "czarna skrzynka", takich jak sieci neuronowe. Obserwacje poczynione w pracy
mogą również pomóc w opracowaniu meta-algorytmów opartych na metrykach złożoności
zbiorów danych. Praca wnosi znaczący wkład do dziedziny xai, wykazując, że można
budować przejrzyste modele bez poświęcania ich zdolności predykcyjnych.

Contents

List of Abbreviations 1

List of Symbols 3

Abstract 5

1 Introduction 15
1.1 Data as power driving world . 15
1.2 Ethics of AI . 15
1.3 Explaining behavior of classification models 17
1.4 Need for this thesis . 17
1.5 Structure of thesis . 18

2 Background and related works 21
2.1 Supervised learning classification . 21

2.1.1 Ensemble learning . 22
2.1.2 Metrics and evaluation in supervised classification 23

2.2 Classification algorithms . 25
2.3 Data complexity . 27
2.4 Explaining behavior of classification models 35

2.4.1 Ambiguity of terms in Explainable AI 35
2.4.2 XAI taxonomies . 36
2.4.3 How to quantify explanation? . 37

2.5 Genetic algorithms . 37
2.6 Evaluation methodology . 38

3 Explaining tree based ensemble models 43
3.1 Introduction and related works . 43
3.2 Explaining tree ensemble using graph modelling 44
3.3 Non-overlapping tree ensemble . 47
3.4 Computational complexity analysis . 49
3.5 Experimental evaluation . 51

3.5.1 Setup . 51
3.5.2 What is the influence of different selection metrics and number of

subspaces on model performance 53
3.5.3 How does method perform when presented with Random Forest of

different sizes . 56
3.5.4 What is the influence of dataset complexity on algorithms perfor-

mance? . 57
3.5.5 How complex is output model and what does influence it? 59

14 CONTENTS

3.6 Summary and lessons learned . 59

4 Utilizing constituents in building interpretable ensemble model 63
4.1 Introduction and related works . 63
4.2 Search based framework for transparent non-overlapping ensemble models . 64
4.3 Computational complexity analysis . 65
4.4 Experimental evaluation . 66

4.4.1 Setup . 67
4.4.2 What is the impact of number of subspaces on algorithm performance? 68
4.4.3 Learner performance in comparison to other models 70
4.4.4 Influence of datasets complexity on model performance 70
4.4.5 Comparison of different model depths for different datasets 72
4.4.6 Algorithm as Random Forest explainer 72

4.5 Summary and lessons learned . 75

5 Application of the complexity measure in interpretable model training 79
5.1 Introduction and related works . 79
5.2 Decision space splitting based on complexity 79
5.3 Computational complexity analysis . 81
5.4 Experimental evaluation . 82

5.4.1 Setup . 83
5.4.2 What is the impact of selected complexity measures used for sub-

space splitting and base algorithm parameters on model performance? 85
5.4.3 How does algorithm’s Balanced accuracy (bac), F1 score (f1) score

and Geometric mean (GMean) compare overall to other selected
models? . 85

5.4.4 What is the influence of dataset complexity on model performance? 87
5.4.5 How does model perform when used as explainer for Random Forest

classifier? . 88
5.4.6 How does the dataset complexity influence the final model’s com-

plexity in comparison to other algorithms? 88
5.5 Summary and lessons learned . 90

6 Comparison of proposed Explainable AI algorithms 97
6.1 Introduction . 97
6.2 Experimental evaluation . 97

6.2.1 Setup . 98
6.2.2 Which of the proposed methods performs best as rf explainer in

terms of standard performance metrics? 99
6.2.3 Are there significant differences when explaining rfs of different sizes?100
6.2.4 Which of the explaining approaches creates the most complex in-

ternal model? . 100
6.3 Summary and lessons learned . 102

7 Conclusion and future research 103
7.1 Future work . 105
7.2 Publications . 105

Bibliography 106

Chapter 1

Introduction

1.1 Data as power driving world
The statement saying that "data rules the world", without much thought, hesitation, or
analytical thinking, could be considered true by most people living and utilising inventions
of the modern world. One could also say that it has been true for decades, if not centuries.
Gathering information and potentially using them to raise some generic conclusions is a
tool that has been used by homo sapiens since the beginning of time. What was Socrates
doing, if not utilising data he collected during his lifetime about human nature to provide
insight to his fellow Athenians about their day-to-day behaviours? What would military
leaders do without data about enemy whereabouts, which consumed, resulted in specific
moves of their armies. A well-managed country with an economy that works like clockwork
was only possible by processing data and drawing conclusions from it.

Data-driven decisions have ruled the world for centuries, and now, on an unprece-
dented scale, various information is utilised and embedded within our day-to-day activ-
ities. Nowadays, it starts with insignificant actions such as walking somewhere with a
smartphone in our pocket, entering any website or even buying apples in the grocery
shop nearby. The majority of our everyday life activities may result in producing some
data – let it be GPS tracking to estimate traffic in some areas of the city you live in,
analysing user behaviour in a website to create new features and monetise existing ones
in the optimised way or to process invoices by the accountant of the grocery shop.

The scope of stored and processed data has continued to grow exponentially during the
last few years. The source of this phenomenon is not hard to grasp. Due to technological
advantages, we are able to link technology to more and more spheres of our lives. Forecasts
predict that up until 2030, there will be almost 30 billion Internet of Things (iot) devices
interconnected (Figure 1.1). The global amount of data created is predicted to reach 175
Zettabytes in 2025 [1].

1.2 Ethics of AI
With the aforementioned number of developments come numerous worries. Those worries
apply to us humans from a broad spectrum of angles. With an extended amount of
image recognition research come concerns for privacy and increased surveillance. It is
becoming harder to control and perceive who processes or stores our data, which became
defacto currency of the digital world. The issue has become so significant that to counter

1Source: statista.com

16

Figure 1.1: iot connected devices worldwide from 2019 to 2023 with future forecasts1

that (and create a business out of it), companies that delete our digital fingerprints have
started to emerge.

The risk of manipulation leading to the controlling behaviour of social groups is immi-
nent. A recent example of such behaviour can be found in the Israeli-Hamas war, where
participants manipulated images posted on social media to undermine the other side [2].
Currently, developments in generative imaging, voice, and video generation have come to
such quality that it is already hard for consumers to distinguish them from reality. This,
apart from providing the ability to create actual value for humanity, provides a great
toolset for fake news [3]. Even the fact of open-sourcing those tools raises ethical con-
cerns, as from one perspective, it supports freedom and allows individuals to participate
and share global wealth of development. But from others – it allows evildoers to mislead
and gain profit in doubtful ways.

Even though Artificial Intelligence (ai) backed systems lead to increased productivity
and operating cost reduction, ai developments result in computer systems taking on jobs
that do not require specialised knowledge. In return, it may lead to increased unem-
ployment and forced reduction of job places in different areas. Currently observed is the
polarisation of workplace distribution toward increased demand for highly skilled tech-
nical jobs and low skilled service positions, but decreasing demand for mid-qualification
occupations, such as factory or office workers [4].

All those concerns are just scratching the tip of the iceberg – as new developments
arise, so do new ethical issues. Last but not least, whether the concept of Artificial General
Intelligence is possible is still up to debate [5], [6], one more ethical question remains –

1.3. Explaining behavior of classification models 17

who and why should gather and control vast amount of data that is currently created in
the global sphere and how to incorporate individual privacy and safety into the picture.
[7]

1.3 Explaining behavior of classification models
Explainable Artificial Intelligence (xai) is currently one of the most important trends of
ai [8]. There are practical reasons behind the need to build explainable systems, primarily
related to the need to ensure that the solutions used are ethical [9], not biased [10]. We
can fully trust them [11]. Many well-known examples may be cited to support the above
observations, such as the Correctional Offender Management Profiling for Alternative
Sanctions (compas) algorithm for predicting recidivism, which issued decisions that were
biased against Afro-Americans by recognizing that the risk of re-offending in this group
is highest [12]. It is also important to be able to use the information to explain how
the model works as it is being built, including to guard against the influence of so-called
adversarial examples [13], or to respond to a change in task parameters when concept drift
occurs. Regulations are also an important aspect. Currently, the European Union defines
solutions classified as so-called Trustworthy Artificial Intelligence, as one that realizes the
"Right to Explanation" [14].

Biecek and Burzykowski [15] pointed out that one of the critical bottlenecks in pre-
dictive modelling is the need for more explanation tools for the predictors. We may take
one of two possible directions in the model explanation. Either we may build models
that are, by their nature, glass-box models, which generally use a symbolic knowledge
representation. This group includes models like decision trees, k-nearest-neighbors, lin-
ear/logistic regressions, rule-based models and general additive models [16]. Alternatively,
construct black-box models, which have complex structures and are not interpretable by
humans, e.g., due to the use of complex mathematical transformations, and treat the ex-
planation of the model as a separate task. This class includes both models that focus on
explaining behaviour for single observations such as Local Interpretable Model-Agnostic
Explanations (lime) [17] and Shapley Additive Explanations (shap) [18], or approaches
that offer model translation as a whole, e.g., by building surrogate models, e.g., extracting
interpretable models from complex models such as rf [19], or class models visualization
[20].

1.4 Need for this thesis
The dynamic growth of xai landscape can be observed for some time now, having ded-
icated conference tracks dating back to as far as 2017 [21]. As of the time span of the
development of this thesis, the scientific literature in the field of Machine Learning (ml)
and ai has received increasing focus in areas of Explainability and Interpretability. In
particular, a major research effort was undertaken in order to utilise the predictive power
of various types of neural networks whilst tackling the issue of its lack of transparency
[8], [22]–[24]. Rudin [25] points out noteworthy issues with the development of the xai
scenery as a whole. Very often, one can either use an existing high-performing black-box
model with use some kind of explainer or (given that training data is available) build the
new transparent model. Rudin argues that one of the issues is the fact that explainable
ml models provide explanations which are not faithful to the explained model. Having
this in mind, the fact – that, to some extent – a surrogate model created on a black

18

box will make mistakes makes it harder to trust it and thus makes its application to
real-world problems more difficult. Trust, often needed in high-stakes decision-making, is
considered one of the major drivers in the development of the xai domain [26]. Nowadays,
in public domains, application qualities attributing to trust are being enforced by various
government-level policies and regulations, such as General Data Protection Regulation
(gdpr) [27]. The next important factor is that explanations often do not provide enough
details to understand what the explained model is doing. A surrogate model, created as
a black-box explainer, might use completely different features and have different internal
decision-making mechanics. An example of this is saliency map, which points out where
a neural classification is looking in the image. In the literature, it is often considered as
one of xai methods, while all it does is pointing out where the model is looking – without
providing reasoning or explanation behind the decision. Having a surrogate explainer
poses an additional issue. When presented with potentially faulty data (for example, as
inputted to the system by human error), debugging the whole requires examining not one
but two models. It is also worth noting that in contrast to neural network xai devel-
opments, much less research is being done in terms of explaining other complex models,
such as meta ensembles. Additionally, in the scientific community, there is a lack of work
analysing the utilisation of proposed classification methods under specific conditions of
classified datasets, defined by their complexity.

Given all the above – mainly the need for the development and employment of in-
creasingly better transparent classification models – this work strives to connect all the
dots by stating the following hypothesis:

For a given classification task, it is possible to build such a transparent or
explainable model whose quality is not worse than a similarly applied

black-box model

To support or dismiss the above claim, the following objectives were formulated:

• Development of novel ensemble "glass-box" model extraction method

• Development of novel transparent, "white-box" models

• Utilization of data complexity metrics in developing novel transparent classification
method

• Experimental evaluation of proposed algorithms using a wide array of datasets at-
tributed with different complexities

• Designing and implementing a programming library

Completion, and as a natural part, development of new methods will hopefully bring
value to the scientific community and be a building block of further research.

1.5 Structure of thesis
This thesis is structured as follows. Its core consists of three chapters presenting devel-
oped and verified during PhD study methods. The first method, called note, presented
in chapter 3, was developed strictly as a way of explaining tree ensemble models. It
bases its internal work on extracting trees from the explained model and using a graph
analysis toolkit to find the best possible combination of the final model. The following

1.5. Structure of thesis 19

ones (chapters 4 and 5) were developed as novel transparent models (named respectively
Optimal Centroids and Quad Split), which – after some modifications – are also used as
model explainers. To set some common ground for the reader, in the next chapter, shared
background knowledge is presented that – to some extent – is needed to understand each
of the core chapters’ algorithms. Finally, methods are compared to each other in terms
of their performance. A common experimentation protocol toolkit is also presented in
chapter 2, along with details on used datasets. Then, methods are discussed and evalu-
ated altogether in chapter 6, which is followed by the last part containing conclusions and
further research proposals.

Chapter 2

Background and related works

The preliminary knowledge needed to proceed further into understanding of this thesis
spans across multiple areas: supervised learning, building and using ensemble models,
data complexity measures and explainable artificial intelligence. In the following sections
those topics will be expanded upon in scope that is shared among proposed methods
background. The detailed literature review of specific research relating to described,
proposed methods and algorithms will follow in next chapters.

2.1 Supervised learning classification

In supervised learning, the model (estimator) is trained on the basis of the labelled learning
set LS = {(x1, y1), (x2, y2), ..., (xN , yN)} where x is d-dimensional feature vector x =
[x(1), x(2), ..., x(d)]T ∈ X , and y ∈ M is its label, coming from discrete and finite M =
{y1, y2, ..., yN}. Therefore, single training dataset sample consists of d features, which can
be qualitative of quantitative.

Subset of qualitative data is "nominal" (coming from Latin word "nomen" which
means name), that is one where categories/labels are used without any meaningful order.
Examples of such data could be hair colour - "red", "black", or "blonde". When the order
of labels brings information, we talk about the ordinal features. Examples of such can be
grades - "A", "B+", and "C-".

When it comes to quantitative data, we mean numbers that can either be discrete
(cost of product) or continuous (height of person).

A classifier Ψ is such a function, that maps the feature space into the set of labels:

Ψ : X →M (2.1)

Methods of building predictive models can be divided into parametric and non-
parametric. In the first case, an assumption is made about the functional form of the
estimated relationship. For example, given training data, a linear relationship could be
observed and thus, linear model coefficients(parameters) will be estimated using the least
squares algorithm.

Non-parametric methods do not make assumptions about the shape of the estimated
function. Instead of that, those methods try to find such a model that fits all the data
points as closely as possible.

Most used supervised classification algorithms include Classification And Regression
Tree (cart), K-Nearest-Neighbours (knn), Support Vector Machines (svm), Naive Bayes
and some of them will be described later in this chapter [28].

22

2.1.1 Ensemble learning

Ensemble learning is a term for a group of methods that combine multiple base models
to make a decision. A base model is classification algorithm that produces a predictive
model. This approach is based on the assumption that when combining multiple models,
the error of a single classifier in the pool will be mitigated by others, thus creating a stable,
accurate model with low variance. Nowadays ensembles are considered a state-of-the-art
approach for solving machine learning problems [29].

A classifier ensemble Ψ̂ employs a pool of base classifiers:

Π = {Ψ1,Ψ2, ...,Ψk} (2.2)

and makes a decision based on a function F , that combines predictions provided by the
base classifiers:

Ψ̂(x) = F(Ψ1(x),Ψ2(x), ...,Ψk(x)) (2.3)

There are several reasons behind why such approach works [30]:

• It reduces over-fitting by averaging different hypotheses induced by multiple base
learners

• It reduces the possibility of being stuck in local optima when learning due to fact
of having multiple learners

• Hypotheses solution space for combined classifier can be greater than for single
learners due to combination step mixing multiple outputs

Many factors exist that could be manipulated when building ensemble models. The
building process may vary for example by how initial training dataset is being split,
which features are being fed to what learners, how outputs are combined (if they are
weighted), if samples for learning are drawn with replacement and finally, whether the
outcome ensemble is homogeneous (consisting only of models of one induction algorithm)
of heterogeneous. Ensemble learning can be applied in various areas of ai, such as Re-
inforcement Learning [31], regression [32] or data streams classification [33]. Below are
briefly described some of the most commonly used approaches for supervised learning.

Bootstrap aggregating (bagging) is one of the simplest and most popular ways to
build ensemble models. Given training set LS algorithm creates n so-called bootstrap
datasets by sampling the original dataset uniformly with replacement. Then, those
datasets are fed into the base learner, effectively creating an ensemble of multiple models.
Predictions of the ensemble are made by majority voting of the models [34].

Boosting is a technique of iteratively improving weak learners. Initially, some base
algorithm is fed original data. Then, higher weights are assigned to samples which were
misclassified in the previous step, and the next iteration follows, where the algorithm is
fed weighted samples of original data. Procedure repeats until certain stop criteria is
reached (such as number of iterations). The final ensemble takes the form of weak models
weighted by their performance [35].

2.1. Supervised learning classification 23

Stacking , also known as a two-level ensemble, works by randomly training weak learn-
ers, whose output is then taken by a meta-learner that raises the final prediction. Each of
the first-level learners returns some predicted label or support for given class. Those val-
ues are then fed into single final meta-learner to produce final prediction of the ensemble
[36].

2.1.2 Metrics and evaluation in supervised classification

In order to measure how good a given classification model performs, several well-
established metrics exist [37]. In this section, the most common of those metrics are
examined and picked as a base for further experimental evaluation.

In the case of binary classification problems, typically the base output of model eval-
uation is confusion matrix. It can be generalized to accumulate any number of classes.
The matrix for the binary case is depicted in Figure 2.1.

True
positivep′

p

False
negative

n total

P′

False
positiven′

total P

True
negative N′

N

actual
value

prediction outcome

Figure 2.1: Confusion matrix.

It consists of 4 metrics, which indicate number of samples, that model classified in certain
way:

• TP - true positive - number of positive instances classified as positive

• TN - true negative - number of negative instances classified as negative

• FP - false positive - number of instances which belonged to negative class, and were
classified as positive

• FN - false negative - number instances which belonged to positive class, and were
classified as negative

.
In the case of multiclass problems, such matrix can be either multiplied in One-Versus-All
(ova) method or expanded by rows and columns for more classes. Based on those four
values, number of classification metrics can be derived. One of the most common and
intuitive being:
Accuracy (Acc) defined as

Acc =
TP + TN

TP + TN + FP + FN
(2.4)

24

Intuitively its ratio of correctly classified instances to all instances
Error rate (Err) defined as

Err =
FN + FP

TP + TN + FP + FN
= 1− Acc (2.5)

which, in contrast to Accuracy, measures how often the model makes an error. Addition-
ally, the confusion matrix serves as basis for:
Recall (Rec) (also known as Sensitivity (Sen)), which measures, out of all examples pre-
dicted as positive, how many are positive:

Rec =
TP

TP + FN
(2.6)

Precision (Pre), which gives insight into how many of instances predicted as positive are
actually positive:

Pre =
TP

TP + FP
(2.7)

Specificity (Spe), which is counterpart of recall for negative class:

Spe =
TN

TN + FP
(2.8)

Those more specific measures can be used to prioritize specific behaviors of the outcome
model. For example, in an area where making an error in classifying an instance as
negative, such as Anti Money Laundering or Transaction Screening system [38], one might
prioritize maximizing specificity, therefore picking a model that would sacrifice accuracy
in favour of it.

Data imbalance Some of the abovementioned fall short when classified datasets’ char-
acteristics would be, that it’s strongly imbalanced. Taking an Acc as an example, let’s
imagine that the evaluation dataset on which a given model is tested has 99 positive ex-
amples and one negative. Having a simple model that classifies every presented instance
as positive would raise Acc score of 99% and Pre as 100%. Even though it would fail to
completely recognize underrepresented negative class.

Having this in mind, let’s examine the next set of derived metrics.
bac measure takes into consideration class imbalanced:

BAC =
Rec+ Spe

2
(2.9)

GMean squares class-wise recall:

Gmean =
√
Rec× Spe (2.10)

f1 is specific case of F-β score, which considers weighted precision and recall:

F1 = 2
Pre×Rec

Pre+Rec
(2.11)

.
All of the above-mentioned metrics may be used in multi-label classification problems

by employing either micro or macro averaging. Macro-averaging assigns equal weight to
instances and classes, where micro-average is preferred where potential class-imbalance is
suspected [39].

2.2. Classification algorithms 25

2.2 Classification algorithms

In this section, a brief overview of the most used and important from the perspective of
further examination algorithms is presented.

Decision Tree

Originally introduced in [40] by Quinlan, id3 (iterative dichotomies 3) decision tree in-
duction algorithm served as base for further research of what is today one of most popular
machine learning models. It is based on splitting decision space using entropy defined as

Entropy(S) =
C∑
i=1

Pilog2Pi (2.12)

where Pi represents probability of random variable having class i.
Another, often used for splitting measure is information gain (or mutual information).

In contrast to entropy, higher values indicate better split. Intuitively it provides insight
into how much knowledge random variable’s value brings:

Gain(S,A) = Entropy(S)−
∑

v∈V (A)

|Sv|
|S|

Entropy(Sv) (2.13)

where V (A) are possible values of attribute A and Sv is subset of S equal to value V .
Nowadays, many decision tree induction algorithms exist. Amongst them c4.5 (succes-

sor of id3), cart, Chi-squared Automatic Interaction Detection (chaid), Multivariate
Adaptive Regression Splines (mars), Generalized Unbiased Interaction Detection and
Estimation (guide), Conditional Inference Trees (ctree), Classification Rule with Un-
biased Interaction Selection and Estimation (cruise), Quick, Unbiased and Efficient Sta-
tistical Tree (quest) [41].

After the induction step, the output decision tree usually takes a very simple and
interpretable form consisting of a root, decision nodes and terminal nodes, an example of
which is depicted in Figure 2.2.

Random Forest

rf is an ensemble learning algorithm where the final output is so-called "forest" of decision
trees. Each tree in the ensemble is fed a sample drawn with replacement from the training
set. When splitting each node during the construction of a tree, the best split is found
through a search of the feature values of either all input features or a random subset
defined by a learning parameter. The aim of such approach is to decrease the variance of
the forest estimator. While individual decision trees typically display high variance and
tend to overfit (when not pruned), by combining their output, Random Forest reduces
those phenomena.

Those two sources of randomness in forests provide decision trees with reduced pre-
diction errors. By taking an average of those predictions, some errors may cancel out.
Random forests achieve a reduced variance by combining diverse trees, In practice the
variance reduction is often significant hence yielding an overall better model [42], [43].
The visualization of final model created by rf is present in Figure 2.3.

26

>≤

Figure 2.2: Decision tree visualization.

Greedy rule search

Greedy algorithms are a family of optimization algorithms that search for locally optimal
choices at each step in order to find a globally optimal solution. Greedily rule search
splits on one feature at a time along a single path. It tries to find rules which maximize
the probability of the majority class.

RuleFit

RuleFit algorithm learns sparse linear models that include automatically detected rela-
tions between input variables in the form of decision rules. The learning procedure consists
of two components. The first step is rules generation. Gradient boosting is used to fit an
ensemble of decision trees. Each tree in the ensemble is then converted into multiple rules.
RuleFit learns trees of different depths so that many diverse rules are generated. Then,
in the second step, the linear model is fitted. Not only rules are used, but also features
from the original dataset are used in the linear model. The result is a linear model that
has weights for all of the original features and for the rules. [44], [45]

2.3. Data complexity 27

Training Data

sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

mean in regression or majority vote in classification

prediction

Figure 2.3: rf of n trees visualization.

2.3 Data complexity

Essentially, most real-life classification problems find their sources in processes, which
can be described by the physical or behavioural models. Even though such sources might
have some non-deterministic random element within them, the distributions of features or
labels have some consequential structure which differentiates such sources from random
labelling. The latter is, at its core, a difficult problem because assigning labels randomly
to data points makes it impossible to find any valuable patterns.

The difficulty of the problem could be the result of various factors. Label distribution
may be intrinsically ambiguous or due to feature measurements of not sufficient quality.
The dataset might have been underrepresented by the lack of a number of samples de-
scribing the concept. Some concepts might have complex and multidimensional decision
boundaries, making it impossible to find a compact description of the boundary. Datasets
might have non-zero Bayes errors, making it impossible to classify concepts present within
them accurately. A sampling of the problem might have been performed in a way that
failed to describe the complexity of class distribution. In many complex real-life pro-
cesses, high-quality gathering samples might be problematic. It may apply to the whole
described phenomena in general, as well as to only a subset of classes, making the label
distribution imbalanced. Overall, real-world problems usually contain a mixture of such
difficulties.

With a sample completely describing the problem, the decision boundary could be de-
scribed by Kolmogorov complexity [46] or the minimum length of a computer algorithm
needed to reproduce it [47]. In this principle, a problem is complex if it takes a long

28

algorithm to describe the class boundaries. Given the knowledge that Kolgomorov com-
plexity is algorithmically uncomputable [48], other metrics describing data complexity
were created. They will be described in the following sections. [49]

The problem of estimating dataset complexity has been considered in literature widely
in the area of meta-learning. It is part of artificial intelligence that studies how the
learning system can become flexible enough to adapt itself to a specific environment.
It differs from base-learning in sense that in the latter the bias is fixed apriori, where
with meta-learning the learner has enough knowledge to chose bias dynamically. In a
typical learning scenario, bias is fixed as a result of choosing a specific model where it’s
embedded. The meta approach aims to discover ways to dynamically search and apply
the most suitable model and learning strategy based on the specific domain it operates in.
Thus, learning takes place not only at the instance level but also across-datasets (meta)
level [50].

Building a system that uses a meta-learning approach utilises so-called meta-features.
Those are measurable characteristics of datasets, which could form patterns that will even-
tually predict specific learners’ performance in a given problem domain. Those features
vary from as simple as dataset size to more complex ones containing structural info of
features or width of decision tree induced using the instances. The key component behind
such features is that they should be fairly easy to compute, so they may be utilised as
predictors of specific learner accuracy instead of the accuracy itself [51].

Literature on the subject matter provides a consistent approach to assigning meta-
learning features into categories. Lorena et al. [52] deals with complexity measures split
into a feature, linearity, dimensionality, neighbourhood and class balance based. Such
approach is persistent [49], [51], being extended upon with simple statistical measures
(like quantiles or number of instances), model-based features (height of tree or number
of leaves), land-marking features (which use some simple, usually fast-trained model to
set some based level) and structural info measures (where two feature vectors are being
generated from dataset and their statistics are employed as meta-features).

In the following sections, the data complexity categories will be expanded, and specific
measures’ definitions will be presented. As mentioned before, the scope of this doctoral
thesis covers the usage of linearity metrics and thus, more focus will be put on describing
those.

For further description, n will serve as a number of instances for which the complexity
metric is being calculated.

Linearity based measures

All following measures, to some extent, check whether the classification problem is linearly
separable.

L1. Sum of the error distance by linear programming The sum of the distances of
incorrectly classified examples to a linear boundary used in their classification is computed.
If the value is zero, then the problem is considered to be linearly separable and thus may
be considered simpler.

Having the svm hyperplane, error distance can be computed by summing up the ϵi
values. For instances correctly classified with a margin larger than 1, ϵi, otherwise it will
take the value of distance to the linear boundary. It is described by svm optimization

2.3. Data complexity 29

process:

SumErrorDist =
1

n

n∑
i=1

ϵi|Ψ(xi) ̸= yi (2.14)

Then, the L1 value can be computed as:

L1 =
SumErrorDist

1 + SumErrorDist
(2.15)

L1 does not allow the checking of whether one linearly separable problem is simpler than
another one with the same property. The dataset for which data are distributed narrowly
along the linear boundaries will have a L1 = 0 value, but so will the datasets where
classes are apart with a large margins. The complexity computation cost of this measure
is dependent on that of linear Support Vector Classifier (svc), and can take O(n2) in the
worst case ([53].

L2. Error rate of linear classifier The L2 measures complexity by calculating the
error rate of the linear svm classifier. When Ψ denotes the obtained linear classifier, the
metric is given by:

L2 =

∑n
i=1 I(Ψ(xi) ̸= yi)

n
(2.16)

A higher L2 value indicates more errors and, therefore, great complexity. When it comes
to problems that are linearly separable, it has a sample issue as L1 - it is unable to tell
which problem is more complex (barely separable - with a narrow margin) and which is
far apart. The computation complexity is the same as in L1 - O(n2)

L3. Non-linearity of linear classifier This metrics computation is based on genera-
tion of synthetic samples. Randomly chosen pairs of training examples of the same class
are interpolated, and then, using a random coefficient, a new sample is created along the
interpolation line. Then, a linear classifier is trained on the original data, and its error is
measured on synthetic data points. Thanks to such an approach, the metric is sensitive
to how the data from the class is distributed in the border regions and how much the
classes overlap. When Ψ denotes the linear classifier trained using original training data
the L3 measure may be expressed by:

L3 =
1

l

l∑
i=1

I(Ψ(x
′

i) ̸= y
′

i) (2.17)

where l is count of interpolated examples x′
i and their corresponding labels are denoted by

y
′
i. The asymptotic complexity cost of this measure is dependent on both the induction of

a linear svm and the time taken to obtain the predictions for the l test examples, resulting
in O(n2 +mlnc).

Neighborhood metrics

These metrics’ aim is to capture the shape of the decision boundary and quantify class
overlap by analyzing local neighbourhoods. All of them work by utilizing a distance
matrix of every point pair in dataset. Gower distance measure [54] is utilised to cover
both numerical and symbolic features.

30

−20

−10

0

10

20
l1=0.00, l2=0.00, l3=0.00 l1=0.00, l2=0.00, l3=0.00

−20 −10 0 10 20
−20

−10

0

10

20
l1=0.16, l2=0.17, l3=0.09

−20 −10 0 10 20

l1=0.21, l2=0.23, l3=0.23

Figure 2.4: Example of L1 and L2 metric values. As can be seen, those metrics do not
take into consideration the complexity of linearly separable datasets.

N1. Fraction of borderline points Minimum Spanning Tree (mst) is built from data,
where edges are weighted according to the distance between data points. The metric is
calculated by computing the percentage of vertices incident to edges connecting examples
of opposite classes. N1 estimates the size and complexity of the required decision boundary
through the identification of critical points in the dataset. Higher values indicate the need
for more complex boundaries to separate classes or that there is a large amount of overlap
between classes.

N1 =
1

n

n∑
i=1

I((xi, xj) ∈MST ∧mi ̸= yj) (2.18)

To compute the graph from the dataset, it is required to first compute the distance
matrix, which is O(mn2), and then create mst which, using Prim’s algorithm [55] has
O(n2) worst-case complexity.

N2. Ratio of intra/extra class Nearest-Neighbours (nn) distance This metric
computes the ratio of two sums: the sum of distances between all pairs of examples and
their closest neighbour from the same class and the sum of distances between each example
and its closest neighbour from another class. N2 is expressed as:

N2 = 1− 1

intraExtra
(2.19)

where

intraExtra =

∑n
i=1 d(xi, NN(xi) ∈ yi)∑n

i=1 d(xi, NN(xi) ∈ yj ̸= yi
(2.20)

2.3. Data complexity 31

and d(xi, NN(xi) ∈ yi) is distance to the example xi and its nearest neighbor from its
own class yi and d(xi, NN(xi) ∈ yj ̸= yi) is the distance to closes neighbor from another
class. Computation of this metric again requires obtaining distance matrix O(mn2).
Low values indicate simpler problems in which the overall distance between examples of
different classes exceeds the distance between examples of the same class. As indicated,
this metric is sensitive to how data are distributed within classes, not only to what the
boundary between classes is like.

N3. Error rate of nn classifier Simply put, this metric calculates the error rate of
1-nn classifier using the leave-one-out procedure:

N3 =

∑n
i=1 I(NN(xi) ̸= yi)

n
(2.21)

where NN(xi) denotes nn classifier’s prediction for sample xi. High N3 values indicate
that many examples are close to examples of other classes, making the problem more
complex. It complexity is O(mn2).

N4. Non-linearity of nn classifier Similar to L3 2.3 but uses nn classifier instead:

N4 =
1

l

l∑
i+1

I(NNT (x
′

i) ̸= y
′

i) (2.22)

where l is a number of interpolated points. In contrast to L3, this metric can be ap-
plied directly to multilabel classification problems without needing to decompose them
(for example, using ova or One-Versus-One (ovo) [56]) into binary sub-problems. The
computation complexity of this metric is O(mnl).

T1. Fraction of hyperspheres covering data The hypersphere is built and centred
at each one of the samples. The radius of hyperspere is iteratively increased until it reaches
example of another class. Smaller hyperspheres contained in bigger ones are eliminated.
Then, T1 is defined as the ratio of remaining hyperspheres to the total number of examples:

T1 =
no. of hyperspeheres

n
(2.23)

LSC. Local set average cardinality The local set of an example xi in dataset T is
defined as a set of points from T whose distance to xi is smaller than the distance from
xi to the nearest member of different class [57].

LS(xi) = {xj|d(xi, xj) < d(xi, ne(xi))} (2.24)

ne(xi) being the nearest member of other class. A big count of low-cardinality local sets
in the dataset indicates that the space between classes is narrow and irregular. In other
words, the boundary is more complex. The local set average cardinality measure (lsc) is
calculated here as:

LSC = 1− 1

n2

n∑
i=1

|LS(xi)| (2.25)

where |LS(xi)| is the cardinality of the local set for a given example. The complexity cost
of lsc is related to computation of pairwise distances between all samples, being O(mn2).

32

Network measures

Network-based measures model the dataset as a graph and extract the statistical charac-
teristics of network complexity. The base graph must preserve the similarities or distances
between examples for modelling the data relationships. Each example from the dataset
should correspond to a node or vertex of the graph, whilst undirected edges connect pairs
of examples and are weighted by the distances between the examples.

As in the neighbourhood measures, Gower distance is utilised. Two nodes i and j are
connected if dist(i, j) < ϵ. For this work purposes, ϵ was set to 0.15. The post-processing
step is applied to the graph, pruning edges between examples of different labels. A more
detailed description of the graph building process can be found in [52] and [58].

Average density of the networks Number of edges that are retained in the graph
created from the dataset normalized by the maximum number of edges between n pairs
of data points:

Density = 1− 2|E|
n(n− 1)

(2.26)

For datasets with dense regions for the same classes, lower metric value will be obtained,
translating to lower complexity. When there is a low number of edges observed for a given
dataset of low density, the metric will raise a higher value.

Clustering coefficient The clustering coefficient is defined as the root of number of
edges between neighbors and the maximum number of edges that could possibly exist
between them:

ClsCoef = 1− 1

n

n∑
i=1

2|ejk : vj, vk ∈ Ni|
ki(ki − 1)

(2.27)

where Ni denotes neighborhood set of vertex vi and ki is size of Ni. The Clustering
coefficient assesses the grouping tendency of vertexes by monitoring how close to forming
a clique vertexes are.

Hub score Hub score assigns each node the number of connections it has to other
nodes, which is then weighted by the number of connections these neighbors have. Highly
connected vertexes, which are also densely connected, will raise higher hub scores.

Hubs = 1− 1

n

n∑
i=1

hub(Vi) (2.28)

The values of hub(Vi) are given by the principal eigenvector of AtA, where A is the
adjacency matrix of the graph. In datasets in which there is high overlapping of the
classes, strong vertexes tend to be less connected to neighbours. Therefore smaller values
will be raised for simpler datasets.

Feature based metrics

F1 F1 calculates the ratio of overlap between values of features in different classes.

F1 =
1

1 + maxmi=1 rfi
(2.29)

where rfi is discriminant ratio for feature fi.

2.3. Data complexity 33

F2 F2 describes the overlap of classes’ feature values distribution. It is calculated by
first finding the minimum and maximum feature value for each class and then finding the
range of overlapping normalized intervals.

F2 =
m∏
i

overlap(fi)
range(fi)

=
m∏
i

max{0,minmax(fi)−maxmin(fi)}
maxmax(fi)−minminfi

(2.30)

where:
minmax(fi) = min(max(f c1

i),max(f c2
i))

maxmin(fi) = max(min(f c1
i),min(f c2

i))

maxmax(fi) = max(max(f c1
i),max(f c2

i))

minmin(fi) = min(min(f c1
i),min(f c2

i))

The values max(f cj
i) and min(f cj

i) are maximum and minimum values of each feature in
class cj. The asymptotic cost of the measure is O(mnnc). The higher the F2, the greater
the overlap between problem classes. If there is at least one non-overlapping feature, the
F2 value will be zero.

F3. Maximum individual feature efficiency This metric estimates the individual
efficiency of each feature in separating the problem classes and considers the maximum
value found among them. Every feature is checked for the overlap between examples of
different classes. If there is overlap, the classes are considered to be ambiguous in given
region. The problem is considered simpler if at least one feature shows low ambiguity
between classes:

F3 = minm
i=1

no(fi)

n
(2.31)

where no(fi) gives number of examples that are in the overlapping region for feature fi.
Small values of metric are raised when few examples overlap in at least one dimension.
Complexity of the metric is O(mnnc).

no(fi) =
n∑

j=1

I(xij > maxmin(fi) ∧ xji < minmax(fi)) (2.32)

F4. Collective feature efficiency The computation of this metric happens iteratively.
First, the most discriminative feature, according to F3, is selected. Next, all examples that
could be separated by this feature are removed from the dataset and then the procedure
is repeated. The algorithm is applied until all the features have been considered and can
also be stopped when no example remains. Then the ratio of examples that have not been
discriminated. F4 is computed after l rounds are performed through the dataset.

F4 =
n0(fmin(Tl))

n
(2.33)

where n0(fmin(Tl) measures number of points in the overlapping region of feature fmin

for the dataset in the l-th round of iteration. Then, the most discriminative feature in
dataset T can be found using:

fmin(Ti) = {fi|minm
j=1(no(fj))}Ti (2.34)

F4 uses the F3 procedure multiple times, and at most, it will iterate for all input features,
resulting in a worst-case complexity being O(m2nnc).

34

Dimensionality measures

Those measures give an idea of dataset sparsity. They are based on the dimensionality
- either original or reduced. The idea behind them is that it is harder to build a good
predictive model on sparse datasets.

T2. Average number of features per point This measure divides the number of
examples in the dataset by their dimensionality.

T2 =
d

n
(2.35)

The measure reflects the data sparsity – if there are many features and a small amount
of data points, the problem will potentially be harder to model as the samples will be
sparsely distributed in input space. It can be computed in O(d+ n).

T3. Average number of Principal Component Analysis (pca) dimensions per
point T3 is defined as number of pca [59] components needed to represent 95% of data
variability (d′):

T3 =
d′

n
(2.36)

Because T3 requires computing a pca analysis of the dataset, its worst complexity is
O(d2n+ d3).

T4. Ratio of pca dimension to the original dimension Related to the previous
two measures, this measure gives a rough estimate of the proportion of relevant dimensions
for the dataset. It is measured by calculating number of pca components needed for 95%
variability and comparing it to original dimensionality:

T4 =
d′

d
(2.37)

The larger the T4 value, the more of the original features are needed to describe data
variability. This indicates more complex combination of the data features. The complexity
cost of this measure is O(d2n+ d3).

Class Imbalance Measures

This group of measures considers the dataset imbalance ratio as an aspect that largely
influences the potential performance of machine learning models. In general, algorithms
tend to favour the majority class [60]

C1. Entropy of class proportions Taking pc as proportion of examples is each
classes, this measure can be expressed as:

C1 = 1 +
1

log(nci)

nc∑
i=1

pcilog(pci) (2.38)

This measure will express a minimum value for balanced problems. The computation
complexity for it is O(n).

2.4. Explaining behavior of classification models 35

C2. Imbalance ratio The standard metric for measuring class imbalance. We adopt
here versions proposed by [61], adopted for multiclass problems:

C2 = 1− 1

IR
(2.39)

where

IR =
nc − 1

nc

nc∑
i=1

nc

n− nci

(2.40)

and nci is number of instances for i-th class. These values can be computed in O(n) time.

2.4 Explaining behavior of classification models

2.4.1 Ambiguity of terms in Explainable AI

Before diving deeper into the review of xai related literature, it is worth noting and
clarifying certain terms discrepancies existing within the community. As Marcinkevičs
and Vogt [62] observe, synonymous terms are interchangeably used by scientists and
industry. Some authors [63] define interpretability as the ability to explain or present
a solution in understandable terms to humans. Lipton [64] notes, that many definitions
used in existing literature lack mathematical rigour and precision. Additionally, many
papers vaguely define motivations for interpretability, taking the definition of the term
as granted. Rudin and Huysmans[25], [65] point out, that interpretability is domain-
specific, therefore creating all-purpose definition is unnecessary and unfeasible. Rather,
the interpretability is dependent on many external factors, such as target user experience,
prior knowledge, and application domain. Authors also notice that the past research on
interpretable machine learning does not necessarily use terms like "interpretability" or
"explainability". For example, the original paper on inducing decision trees using id3
algorithm does not use any of the aforementioned [40]. Instead, it makes use of the term
"intelligibility" [25].

Marcus et al. [66] point out that heterogeneous and ill-defined terminology in the
field of xai makes the efficient search of papers impossible, therefore rendering research
efforts incapacitated. Let’s take a look at each of the used terms and try to figure out
definitions which will be followed for the rest of this thesis. Although this is out of the
scope of this thesis, for completeness, it is worth mentioning that the whole scientific area
on the crossroads of linguistics and philosophy exists considering questions such as "what
is explanation" in lingual aspect [67]. Originally, the term xai was coined by Van Lent
et al. 2004 paper [68] to characterize system capacity to explain actions of ai in gaming
applications. Oxford Dictionary gives the following definition of the word "interpret":
"explain or understand (behaviour etc.) in a specified manner" [69].

For the rest of the thesis, the following is used to define what we understand as
explainability. To reach it, both fidelity and interpretability are necessary [70]. The first
defines how faithful the explanation is to the model being explained, while the latter
states how understandable to the human receiver is the explanation. [17] also notes how
important it is to have a faithful explanation by stating that the description of the model
should be at least locally faithful in order to be meaningful at all.

Interpretability will be defined as the property of explanation [16]. The explanation
can be the result of the prediction of the inherently interpretable model or so-called post-
hoc explanation accompanying existing ai model. We will dive further into the taxonomies

36

of interpretable methods in section (2.4.2). Taking the above into consideration, we could
say that the ai system is interpretable if its model is inherently interpretable or it is
supported with another model that provides interpretable and faithful explanations.

Although pondering over definitions will not be the main subject of this thesis, certain
clarification should be in place for consistency. For the rest of this thesis, the following
definitions are accepted, followed after Arrieta et al.[16]:

• Understandability/intelligibility - property of model to make humans under-
stand how it works, without the need for explaining its inner algorithms

• Comprehensibility - ability of learning algorithm to represent its learned knowl-
edge in a way understandable to human [71]

• Interpretability - ability to explain or provide meaning in understandable to hu-
man terms

• Explainability - associated with explanation, defined as interface between human
and decision maker that is, equally accurate proxy (or, as Rudin [25] argued, ap-
proximation) of decision maker (model) and comprehensible to human receiver

• Transparency - based on the previous definition, it can be said that the model is
transparent if it is understandable.

2.4.2 XAI taxonomies

There are several taxonomies proposed in the xai field [21], [72], [73] for classifying such
methods. Amongst them, three repeating categorizations can be noticed:

• post-hoc / intristic – wherever the interpretability was achieved as an internal part
of model creation/training, or after it,

• model specific / agnostic – wherever the explaining method is applicable only to a
certain family of models, such as Deep Neural Networks or ensembles,

• global / local explanations – global, if the methods explain the whole model or only
given part of it, such as model behaviour given a particular sample.

One of the most cited and well-acclaimed works when it comes to model agnostic
explanations is lime [17]. This explanation technique utilizes local interpretable model
estimation in order to provide insight into specific classification event. It can be applied
to a wide spectrum of areas, including simple tabular data, text classification and im-
age classification models. Since its introduction, many other application-specific methods
have been researched based on it, in domains such as fake news detection [74] or financial
risk assessment [75]. Another method uses tools coming from game theory. Lundberg
and Lee [18] introduce shap, which makes use of Shapley value in order to provide local
explanations via decomposing the output of a model by the sums of the impact of each
feature. It was well acclaimed across the data science community and is present as a tool
in many libraries. What is worth mentioning is that a whole spectrum for explaining deep
neural networks exists. Among them can be found numerous methods for explaining con-
volutional neural networks used for image classification [76]–[78]. Usually, they provide an
explanation via heat-map showing, based on which area the model made a decision. Par-
tial dependency plots are often used as tool for introspecting feature importance learned
by model [79]. Sensitivity analysis [80] is another tool very often used, which over the
years was utilised to expose weaknesses of deep neural network models [81].

2.5. Genetic algorithms 37

2.4.3 How to quantify explanation?

Since the nature of the task of explanation is very subjective, it is difficult to compose or
find that would apply to a wide range of xai research while being objective. Explainable
systems are usually designed with the user in mind, which poses a thread of subjectivity
and randomness. Trust, satisfaction from explanation, its goodness and understanding
are generally "soft" values, hard to measure [82]. Rosenfeld [83] proposed four metrics
– D,R,F,S – for measuring the explainability of human-agent systems. They are not de-
pendent on the task performed or the algorithm itself. d quantifies the change in the
agent’s performance that occurred thanks to introducing explanations into the system. r
measures the complexity of rules in the system, which inherently measures explainable
model complexity. f measures the number of features provided by the agent to the sys-
tem in order to create a viable explanation, and finally, s measures system stability when
it performs under perturbed, randomized input. Authors of [84] make a point that it
is common for xai research paper to measure their methods in ways only applicable to
specific types of approaches or only to the proposed method itself. It is not uncommon
that explainable systems are being tested using human-generated opinions only for the
given system and no other [85]. Sovrano et al. [84] propose an objective method of mea-
suring explanation based on linguistic sets details of how explanation answers archetypal
questions (how? why? what?). In detail, it requires xai method to be able to provide
a textual explanation behind some reasoning, which is then reasoned using embeddings
and language models, which is also restricting and, to some degree, model-specific.

When it comes to rule-based models, which are the subject of the thesis, a couple of
model-specific measures are used across literature [86], namely:

• Completeness, defined as the ratio of instances covered by rules to the total number
of instances

• Correctness, defined as the ratio of instances correctly classified by rules over total
number of instances

• Fidelity, defined as accuracy to explained model

• Robustness, defined as resistance to small perturbations – how explainer is able to
withstand small changes to input without changing its prediction

• Total number of rules

• Average rule length

Islam et al. [87] concluded that, as purely explainability-related metrics are not yet
established within science, in most of the research, state-of-the-art quality measures are
used, such as accuracy or recall. Additionally, [88] et al. identified over 60 different metric
notions used across papers in xai domain. They also note that it is not uncommon to
rediscover the same metrics in different papers, making it even harder to enforce common
ground.

2.5 Genetic algorithms
In the following sections, an optimization problem will be raised as a way of building a
transparent model. Having this said, Evolutionary Algorithms (ea) will be utilized to

38

find feasible solutions. In this section Genetic Algorithm (ga) will be described as part
of aforementioned family of meta-heuristic. It should be noted that in this thesis, those
methods will be used just as part of the toolbox created with the intention of solving an
optimization problem. Therefore, fine-tuning and diving deeper into properties of ea is
out of the scope of this thesis.

ga are a family of exhaustive search-based methods established on the biology-
originating concepts of natural selection. ga include a group of different optimization
techniques inspired by genetic recombination processes such as mutation, crossover and
selection. Such solutions are evaluated using fitness functions, and the more appropriate
individuals have a greater probability of moving on to the next generation. In its classical
way, the procedure goes as follows. A population of chromosomes is randomly initialized.
Next, the value of the fitness function of each chromosome is computed. Two chromo-
somes are selected from the population according to fitness value and then, the crossover
operator – with some probability – is applied to produce offspring. Thereafter, mutation
operator is applied to produce offspring again, with certain probability, to produce new
offspring. The offspring returned after mutation is then placed in a new population, and
the whole procedure is repeated until the new population is complete [89].

In the aforementioned process, three distinct operations can be seen. Namely selec-
tion, crossover and mutation. Scientific development for all of these is actively ongoing.
Additionally, there are many variants of ga itself, which can be selected according to
applied domain, such as real-coded, parallel or multi-objective variations [90].

2.6 Evaluation methodology

In order to find out whether the proposed method is applicable to a wide range of prob-
lems, evaluate its generalization abilities and estimate overall performance, a tailored
experimentation protocol is required. In this section, such protocol will be proposed and
reasoned about.

Across scientific literature, one of the most frequently acclaimed procedures verifying
whether the model will perform well across different problems is Cross Validation (cv)
[91]. Performing a task of evaluating an algorithm, an experimentator is typically present
with a certain amount of learning sets WS, such as Wisconsin breast cancer 1 one. Said
set is then randomly sampled in order to generate training sets LS and testing set T S,
in a way that guarantees LS ∪ T S = ∅ (training and testing sets are disjoint).

In cv, the learning set is split into many disjoint training sets and validation sets VS.
The term validation set is typically used within the context of cv, while test set commonly
refers to the part of data that is put aside for a final model evaluation (hold-out test set).
Widely adopted and known k-fold cv procedure randomly splits learning dataset into
k equally sized folds k times, from which k−1

k
is used for training, and one is used for

validation. Another variation is nested k-fold cv. In, for example, the case of 5-times
nested 2-fold cv, the learning dataset is split into two equally-sized parts randomly five
times, giving 10 learning iterations in total. Metrics raised by such procedure could then
be averaged, to obtain unbiased and low-variance estimation of tested models’ accuracy.
Picking a number of repetitions and a number of folds (k) is a non-trivial task and was
broadly studied within the literature. [92], [93].

Depending on the sample size [94] Wong et al. suggest different folds and repeat
counts. 10-fold or 5x2 are widely considered. Since datasets selected for the experiments

1https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic

2.6. Evaluation methodology 39

Table 2.1: Selected binary dataset details with number of instances, features and their
types.

name #instances #features #integer #real #nominal

appendicitis 106 7 0 7 0
australian 690 14 5 3 6
bands 365 19 6 13 0
breast 277 9 0 0 9
bupa 345 6 5 1 0
crx 653 15 3 3 9
haberman 306 3 3 0 0
heart 270 13 12 1 0
hepatitis 80 19 17 2 0
housevotes 232 16 0 0 16
ionosphere 351 33 1 32 0
mammographic 830 5 5 0 0
monk-2 432 6 6 0 0
saheart 462 9 3 5 1
tic-tac-toe 958 9 0 0 9
wisconsin 683 9 9 0 0

in the following chapters are of various sample counts and in order to unify the evaluation
procedure, the methodology suggested in well acclaimed [93] is picked - 5 repetitions with
2 folds of equal size, replacing test with train in subsequent iterations.

Statistical significance In order to provide statistical insight in the results, statistical
tests are performed to check whether the difference is significant. The methodology pro-
posed by [95] will be followed, which uses Wilcoxon Signed-Rank test to check whether
performance, validated over multiple datasets with multiple repetitions, is significant or
random. Wilcoxon Signed-Rank test is non-parametric statistical test and an alterna-
tive to paired t-test. After performing metric measurements (such as accuracy) of two
classifiers on batch of datasets, absolute differences of values in those measurements are
considered and ranked for positive and negative scores. In the case of ties, average ranks
are assigned. T statistic is calculated by taking sum of ranks where the second algorithm
was better (R+) and worse (R−) and taking minimal value of the two. Critical values can
then be read from tables, or, for larger number of datasets, z statistic can be calculated:

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(2.41)

which is normally distributed and with α = 0.05 the null-hypothesis can be rejected if z
is smaller than −1.96.

In the Wilcoxon Signed-Rank test greater differences count more, which is probably
desired, but the absolute magnitudes are ignored. The test is safer since from the sta-
tistical point of view it does not assume normal distributions. Additionally, the outliers
have less effect on the value than on the t-test.

Additionally, Sign test is utilized to validate the performance of classifiers by com-
paring a number of wins, draws and losses [96]. If the two algorithms compared are,

40

Table 2.2: Dataset folds were assigned multiple labels according to quantile-based dis-
cretization. For each metric, each fold was assigned either low, medium or high value.
Boundaries which set the quantiles are presented in this table.

metric low low/medium mediun/high high

F1 0.017 0.49 0.757 0.982
F2 0.0 0.215 0.659 1.0
F3 0.225 0.824 0.948 1.0
F4 0.0 0.629 0.896 1.0
F1V 0.006 0.145 0.417 0.91
C1 0.001 0.009 0.069 0.39
C2 0.001 0.024 0.172 0.658
L1 0.0 0.179 0.266 0.487
L2 0.0 0.194 0.297 0.764
L3 0.0 0.14 0.301 0.604
N1 0.034 0.111 0.195 0.269
N2 0.373 0.493 0.54 0.732
N3 0.052 0.219 0.377 0.515
N4 0.013 0.155 0.25 0.377
T1 0.264 0.588 0.822 0.956
T2 0.012 0.035 0.096 0.475
T3 0.002 0.022 0.043 0.126
T4 0.2 0.421 0.667 1.0
clsCoef 0.013 0.081 0.368 1.0
hubs 0.245 0.505 0.738 0.946
density 0.402 0.718 0.879 0.981
LSC 0.698 0.96 0.986 0.994
size 80.0 306.0 462.0 958.0
features_count 3.0 9.0 14.0 33.0

as assumed under the null hypothesis, equivalent, each should win on approximately N
2

out of N datasets. The number of wins will be distributed according to the binomial
distribution. For an arbitrary number of datasets, the number of wins is under the null
hypothesis distributed according to N(N

2
,
√

N
2
), which allows for the use of z-test: if the

number of wins is at least N
2
+ 1.96

√
N
2

then the tested classifier is significantly better
with p < 0.05. Ties are split evenly between the two classifiers. If there is an odd number
of them, one will be ignored.

Datasets selection Standard Knowledge Extraction based on Evolutionary Learning
classification datasets repository was used as source of benchmark datasets [97]. It pro-
vides a set of widely and commonly used real-world datasets. Out of those, 16 were picked
in a way that would provide the widest spectrum of measured complexity metrics. It was
done by calculating each interesting complexity metric and picking subsequently maxi-
mum and minimum value datasets for given metrics. Description of the picked datasets
can be found in Table 2.1.

Complexity discretization In order to be able to raise conclusions about how a given

2.6. Evaluation methodology 41

algorithm performs under certain dataset properties, complexity metrics were computed
for every training fold. Complexity periods were calculated as follows. First, every com-
plexity metric was calculated for every used dataset training fold. Then, those com-
plexities were discretized using quantile-based approach into equal-sized buckets. Three
discrete values were used: low, medium, high. Such quantization resulted in each exper-
iment training instance having assigned multiple discrete values equal to the amount of
calculated complexity metrics. To get a final estimation of whether the data fold is com-
plex or not, the mode of those discrete values was taken. In the case of draws, a higher
complexity value was used. This resulted in every experiment having one complexity label
assigned. Specific, after discretization bin values can be found in Table 2.2.

Chapter 3

Explaining tree based ensemble models

3.1 Introduction and related works

In section (2.4) xai segment of ai was introduced. In this chapter, emphasis will be put
on a subset of xai focused on explaining classifier ensembles.

In terms of interpretability and explainability, the downside of ensemble models is
that they usually require some kind of integration step, which accumulates results from
all base learners. This step, even as simple as majority voting or selection of simple best
learner, often introduces a certain degree of incomprehensibility, in result rendering the
whole model less interpretable. xai methods seek a remedy to this problem.

Several methods were proposed for explaining ensemble models. Sagi and Rokach
[19] proposed a framework for constructing a single decision tree using rule conjunctions
extracted from decision forest. The conjunction of all possible rules is created, and then
such a set is organised into a single tree structure. The proposed Forest Based Tree
was often able to provide equally well-performing explanations of rf with deeper rules.
The problem of high computational complexity was also encountered and recognised by
authors, who then proposed some heuristics to tackle it. The proposed output model is a
single decision tree. Deng [98] proposed a method called InTrees for extracting, processing
and filtering rules from the tree ensemble and, as a result, creating an interpretable model
based on an ordered rule list. The extraction process is based on the frequency of variable
interactions in the trees, forming an ensemble as a quality measure. The frequency is
defined as the proportion of data instances satisfying a given rule. The notion of rule
complexity is also introduced, which is equal to the number of predicates in a single rule.
Extracted rules are pruned using the relative increase of error after removing the rule
from the set (called decay). Next, since the outcome rule set could be big, a rule selection
process is undertaken where more complex (longer) rules are penalised. Finally, rules
are summarised into a single tree using Simplified tree ensemble learner (STEL), which
exhaustively removes the best rules and covered by them instances from the set while
creating the final tree. Zhou and Hooker [99] operate within the medical domain, where
a rf was built to classify responses in diagnosis questionnaires. In the approach, the
explained model acts as an oracle which can be queried during the construction of the
resulting interpretable tree. The method focuses on ensuring that the number and quality
of samples are obtained from the oracle and that the variability due to random selection of
such samples is removed. Then the cart like algorithm is used on such sample instances
to construct the stable tree. A statistical test is developed to compare splits made by the
Gini criterion-based tree induction algorithm for the probability that the split would be the
same for another randomly drawn set of samples. Such a test assures that the estimated

44

tree is stable while being as accurate as the oracle. The pseudogenerated samples used
for learning the final tree are generated within specific split subspaces and provided labels
by the explained rf. genesim [100] uses ga (2.5) to transform an ensemble into single
decision tree. Initially, trees are extracted from the ensemble and fetched as individuals
into ga. In order to merge two decision trees within the genetic algorithm recombination
step, each tree is represented as a k-dimensional hyperplane. Then, the hyperplanes are
intersected using a sweep line approach, which in return is converted into a single decision
tree using various heuristics. Additionally, two mutations are implemented: choosing a
random node in the tree, replacing its split value with a random number and swapping two
random subtrees. Results were compared with different decision tree induction algorithms
as well as two tree ensemble learners.

Tolomei and Silvestri’s [101] mechanism is based on transforming a true negative in-
stance into a positively predicted one given an explained random forest. More precisely,
one needs to find a mapping that would transform the vector describing the original neg-
ative instance into a new one, which would allow the classification of such an instance
as positive. The task is defined as the optimisation problem of choosing the best trans-
formation among a set of possible transformations given cost function, which effectively
minimises the effort of mapping (distance between old and transformed vector). In con-
trast to previously described ensemble explanation methods, this one does not build a
whole new surrogate model but provides insight into the features’ importance. Namely,
authors, by using ad quality classification as an example, show that the model points
out features, which change has the biggest impact on shifting the label from negative to
positive. Therefore providing insight into ensemble behaviour.

Bastani et al. [102] propose a method that extracts a decision tree from a black box
model and evaluates it using a random forest as an example. A set of axis-aligned Gaussian
distributions is fit to training data using the Expectation Maximization algorithm. Then,
the so-called greedy decision tree is constructed using active sampling, which iteratively
finds decision node splits using weighted Gini impurity. Among the reviewed papers, only
the last one provided an actual explanation of quality evaluation using human subjects.
Apart from that, it compared the output interpretable model (decision tree) among other
models of the same type but induced by different learning algorithms. Apart from that,
persistent metrics among algorithm evaluation were accuracy and fidelity.

3.2 Explaining tree ensemble using graph modelling

In this section, a novel framework for simplifying tree-based ensembles is presented. Un-
like methods described in section (3.1), it does not completely break up with the ensemble
approach in order to gain explainability. Instead, the guarantee of high-quality classifica-
tion performance is obtained through the use of local specialisation of individual decision
trees in the selected subspaces. The advantage of such an approach is that it is easy to
interpret knowledge structure, which could also be interpreted as a single decision tree
or rules list and which is a symbolic representation of knowledge while maintaining a
relatively simple model for the classifier training.

The combination mechanism used by the classifier ensemble leads to decreased inter-
pretability. Therefore, to extract interpretable knowledge from the classifier ensemble,
dividing a feature space into non-overlapping competence areas and assigning an inter-
pretable model to each of them in the form of a Decision Tree (dt) could be fruitful.
Therefore, let us divide the feature space X into k constituents [103]:

3.2. Explaining tree ensemble using graph modelling 45

10 20 30 40 50 60 70 80

Age (years)

140

150

160

170

180

190

200

210
H

ei
g
h
t

(c
m

)
Default Tree

Rule 1 Tree

Rule 2 Tree

Rule 3 Tree

Figure 3.1: Example visualization of model’s competence areas. Model consists of 4 trees
in total. Each for every rule: (20 ≤ Age ≤ 40, 155 ≤ Height ≤ 180), (45 ≤ Age ≤ 60,
185 ≤ Height ≤ 210) and (70 ≥ Age) plus one additional default tree, covering all other
feature vectors.

R1

R2R3

R4

R5 R6

Figure 3.2: Example visualization of graph approach to modelling overlapping relation.
Every two rules connected by edge do not overlap. Rules 1, 3, 4, 6 create a clique since
they are densely connected. This also means, that they do not overlap one another and
could be treated as possible candidates of size 4.

46

X =
k⋃

i=1

Si (3.1)

Furthermore, lets define a set of l input rules RS and single rule r as tuple consisting of
set of c conditions (terms statements and predicates will be used interchangeably) PS –
each of which describes subspace of whole features space – and conclusion label j:

RS = {r1, r2, ..., rl} (3.2)

ri = (PS i, ji) (3.3)

PS i = {p1, p2, ..., pc} (3.4)

where pi is single condition applied over single feature x(l). Condition consists of a feature
value x(l) and relation rel:

pi = (x(l), rel) (3.5)

where x(l) ∈ X and rel ∈ {≤, <,≥, >,=, ̸=}. Example of a single rule, induced from the
famous titanic survivors dataset1, is:

R1 = ({age ≤ 25, sex = Female}, survived⇒ True)

It consists of two conditions for age and sex features and indicates that every Female
under the age of 26 has survived.

Rules may be subject to overlapping relation. Given the features space X , each pred-
icate pi designates some subspace Sp

i ⊂ X and in return, so does every rule. Let us
define Op(p1, p2) as conditions overlapping relation, and O(r1, r2) as rules overlapping.
Two predicates overlap if they are defined for the same feature and cover some common
part of the subspace. Two rules R1 and R2 overlap, if at least one pair of their conditions
overlap:

∀(R1, R2 ∈ RS)(∀(p1 ∈ R1)∀(p2 ∈ R2))

∃(Op(p1, p2))⇒ O(R1, R2) (3.6)

Rules overlapping relation is reflexive and symmetric. An example of such an overlapping
rule pair is:

R1 = ({age ≤ 25, sex = Female}, survived⇒ True)

R2 = ({age ≤ 50}, survived⇒ False)

In the example above, subspace designated by conditions of R2 covers a bigger part of
feature space, which also contains R1.

As part of the proposed method, a graph representation of rules is being used. Such an
approach allows modelling the rules with respect to overlapping relations and, therefore,
easily finding sets of non-overlapping rules. If a pair of rules do not overlap each other,
then there is an edge between them. The exemplary graph is presented in Figure 3.2. Let
us define clique of size c in undirected graph G. Such a clique is a complete subgraph of
size c in G, in which any two vertices are connected. In addition, maximal clique is clique
that cannot be extended by adding more connected vertices [104].

1https://www.kaggle.com/c/titanic/data

3.3. Non-overlapping tree ensemble 47

3.3 Non-overlapping tree ensemble
note bases its inner workings on a set of rules used to construct non-overlapping com-
petence regions for the ensemble of decision tree classifiers.

As the method uses prior knowledge provided by the model in the form of a set of
rules created either by an expert or an external algorithm, we can classify it as post-hoc
and model-specific. Moreover, the proposed framework provides global explanations, as
it may explain any feature vector in X .

The model takes the shape of an ensemble consisting of dts, each covering a specific
competence region designated by a single rule, plus an extra default tree, for samples not
covered by any of the rules. Thanks to default tree, the model allows covering the whole
X , and there is no need for utilizing the default class label approach or calculating the
distance to the nearest neighbour – which reduces interpretability – as in some of the rule
induction algorithms [105].

The learning process is described in Algorithm 1 and possible learning parameters
are shown in Table 3.1. The first step is to find all possible rule combinations of size
2, and measure them for overlapping (Equation 3.6). This way, every possible rule pair
Rnm = (Rn, Rm) ∈ RS is known for the existence of an overlapping relation. The
overlapping measurement procedure is fairly straightforward. It consists of iterating over
all possible 2-sized combinations and checking for overlapping, as described in section
(3.2).

Next, given that we know if every two rules are overlapping or not, candidates for
defining the ensemble’s competence areas are found. All rules are represented as a graph G,
where edges describe non-overlapping relation, and vertices are single rules. An example
of such a graph is depicted in Figure 3.2. Let us denote all maximal cliques of rules as CS,
and all maximal cliques of size ≤ s as CSc. A single clique may be interpreted as a set of
non-overlapping rules. Given the graph and learning parameter s, initially, all maximal
cliques CSs are considered as possible candidates for the model’s competence areas. This
allows adjusting the complexity to potential user’s requirements and cognitive abilities,
which is an important attribute of the explainable model. If no feasible candidates of size
s are found, namely CSs = ∅, then the algorithm takes one step backwards and checks
CSc−1 and so on until it reaches CS1, which are single rules.

Checking every possible clique, instead of only maximal ones, would be computation-
ally infeasible. Experiments performed on smaller datasets have shown that it would not
give significant improvement.

Having a set of cliques, where each clique is set of up to s non-overlapping rules,
we evaluate each of them and assign a score. To find the most efficient model with the
best possible generalization and prediction capabilities, we are using a stratified cross-
validation procedure [106]. For each fold, the model is trained according to Algorithm 2.
Let us denote the training and testing example sets for each fold as consecutively VStrain

and VStest. At this point, having clique q, we want to consider its rules’ conditions as
possible competence areas for a final classifier. For each competence area Si defined by
the given rule’s predicates, we train the dt using only those training samples that belong
to such area. Let us denote VStrain

i as the set of training samples used to train the tree
in competence area Si, then:

VStrain
i = {x ∈ VStrain|x ∈ Si} (3.7)

To make the final model adjustable in terms of complexity induced by the tree’s depth,
one can pass arbitrarily parameters to the base tree models, such as maximum tree depth

48

Algorithm 1 Procedure of finding best model.
Input:

set of training samples LS
set of input rules RS
cross-validation iterations cv
maximum number of competence areas s
evaluation method eval

Output:
trained model

1: procedure FindBestModel(LS, RS, cv, s, eval)
2: RSm ← measure(RS)
3: candidates ← FindNotOverlapping(RSm)
4: CVfolds ← StratifiedCV(LS, cv)
5: candidatesscores ← ∅
6: for all c ∈ candidates do
7: cscores ← ∅
8: for all LS fold,VS fold ∈ CVfolds do
9: model ← Train(LS fold, c)

10: prediction ← Predict(model, VS fold)
11: cscore ← eval(model, prediction)
12: cscores ← Add(cscores, cscore)
13: end for
14: candidatesscores ← Add(c, Mean(cscores))
15: end for
16: candidatebest ← FindBest(candidatesscores)
17: model ← Train(candidatebest,LS, d)
18: return model
19: end procedure

or pruning coefficients. This allows potential users to adjust the model’s complexity
according to the required needs and serves the purpose of managing overfitting. For
clarity, those specific parameters were excluded from algorithm listings.

It is not guaranteed by input rule cliques in RS to cover whole X . To tackle this
problem and avoid the possibility of any example not being covered by any of the cliques’
rules, we introduce the notion of default tree. Such a tree is being trained on all possible
samples from LS and is complementary to competence areas designated by the rules.
Namely, it provides the solution for all not already covered regions of the feature space.
Comparing this approach to other solutions used in rule classification systems, such as
assigning default class label (for example, based on the majority class) or calculating
distance to the nearest rule [107], the proposed procedure gives better predictive power
than the former and more interpretability than the distance calculation. If no samples in
the training dataset fall into it for a given competence area, then we do not train a tree
for such area, and its samples are being classified by the default tree.

The prediction mechanism is described in Algorithm 3. For each sample, we check
whether any competence area covers it. If it is true, then a tree assigned to such area is
used to predict the sample. Otherwise, the default tree is being used. Thanks to the fact
that only non-overlapping rules are considered, there is no possibility that any value will
be classified by more than one tree. An example of the trained model with its competence

3.4. Computational complexity analysis 49

Algorithm 2 Training note model.
Input:

set of samples LS
set of nonoverlapping rules RS

Output:
trained model Ψ̂

1: procedure Train(LS, RS)
2: Ψ̂ ← ∅
3: for all r ∈ RS do
4: LScovered ← FindCoveredSamples(r, LS)
5: if LScovered ̸= ∅ then
6: Ψ ← TrainDT(LScovered)
7: Ψ̂ ← Add(Ψ̂, Ψ)
8: end if
9: end for

10: Ψ̂default ← TrainDT(LS)
11: Ψ̂ ← Add(Ψ̂, Ψ̂default)
12: return Ψ̂
13: end procedure

areas is depicted in Figure 3.1.
Furthermore, the learning process is adjustable by cv and eval parameters. For each

aforementioned fold in VS, eval calculates score using samples predicted in VStest. The
most basic example of such a scorer is just accuracy. The final single clique’s score is the
evaluation method’s value averaged over all folds.

The best possible rule set is selected in the final stage by choosing one with the highest
score. The final model is then trained using competence areas designated by rules in the
set and with all samples from LS. Since competence areas are just simple rules and the
decision trees within them could also be interpreted as sets of rules, each prediction the
model provides can also be interpreted as given by rules.

3.4 Computational complexity analysis

Let N and d denote the number of training samples and feature space dimension, respec-
tively. Furthermore, let us use parameter symbols as in Table 3.1 and additionally denote
r as input rules count together with p as the maximal possible condition count in a single

Table 3.1: note learning parameters with description.

parameter description

s Maximal number of subspaces that the algorithm will use. It is not guar-
anteed that this number will be achieved, as this depends on input set of
rules.

eval Function used for scoring each set of considered competence areas. A
model with a higher score will be used.

cv Number of cross validation folds.

50

Algorithm 3 Predicting with note.
Input:

note model
samples to predict XS

Output:
list of predicted labelsMp

1: procedure Predict(model, XS)
2: Mp ← List[]
3: for all x ∈ XS do
4: Ψselected ← ∅
5: for all Ψ, competenceArea ∈ model do
6: if competenceArea covers x then
7: Ψselected ← Ψ
8: end if
9: end for

10: if Ψselected is empty then
11: Ψselected ← GetDefaultTree(model)
12: end if
13: y ← PredictDT(Ψselected, x)
14: Mp ← Add(Mp, y)
15: end for
16: returnMp

17: end procedure

rule.
The computational complexity of the learning procedure, as depicted in Algorithm 1,

can be factorized as follows:

O(measure(r, p) + findCliques(r)+
evaluate(r, cv, s,N, d) + findBest(r) + train(N, s))

(3.8)

where:

• measure is the complexity of measuring rules,

• findCliques is complexity of finding cliques,

• evaluate is complexity of evaluation of all cliques,

• findBest is complexity of finding the best rules set among already measured cliques,

• train is complexity of a single training iteration of the model.

Rules measuring complexity depend on the number of rules and the maximum possible
count of conditions within a single rule. In the worst case, to determine if two rules are
overlapping or not, we will need to compare all of their predicates against each other.
To measure all rules, we need to compare each pair. Therefore, the complexity of this
procedure can be estimated as:

O((rp)2) (3.9)

3.5. Experimental evaluation 51

In the proposed method’s implementation, NetworkX library was used to model the
graph and find the cliques [108]. Note that not every possible clique is considered, but
all maximal cliques are. The worst-case complexity of the algorithm implemented in the
library is 3

n
3 , where n is the count of nodes in a graph [104]. Since the previous measuring

step can raise up to r2 measurements in total, the complexity of finding non-overlapping
rules is:

O(3
r2

3) (3.10)

The evaluation procedure is the most complex part of the proposed method. It consists
of training and testing procedures for up to s+1 dts. From the previous steps of finding
an applicable set of rules, up to r2 candidates can be found. In addition, this procedure
is carried out cv times. Scikit-learn[43] implementation of dt was used. Its worst-case
complexity is estimated to be Nd logN for training and logN for querying. Furthermore,
the matching subspace is needed to be found for each sample to be classified or trained.
Consequently, the training complexity of the model could be estimated as:

O(sNd logN) (3.11)

and querying procedure as:
O(s logN) (3.12)

For each cross-validation fold, N cv−1
cv

samples are being used for training, and N
cv

samples
are used for testing. Additionally, the score needs to be calculated, which can be estimated
as (N cv−1

cv
)2. Therefore, the evaluation complexity is:

O(r2cv(sNd logN +
s logN

cv
+N2)) (3.13)

3.5 Experimental evaluation
The proposed method is being compared to the subject of explanation – rf – as well as
other standard, transparent classification algorithms, such as dt and ones mentioned in
the previous chapter. To support or dismiss the hypothesis, experiments were designed
to answer the following research questions:

rq1 What is the influence of different selection metrics and number of subspaces on
model performance?

rq2 How does the method perform when presented with a Random Forest of different
sizes?

rq3 What is the influence of dataset complexity on algorithm performance?

rq4 How complex is the output model, and what does influence it?

3.5.1 Setup

Choice of datasets A series of experiments were conducted across selected binary clas-
sification datasets. As the source for those Knowledge Extraction based on Evolutionary
Learning repository was used [97]. Datasets were pre-processed beforehand. Labels were
encoded into integers. Finally, to reasonably limit scope of experiments, 16 datasets were

52

Algorithm 4 Procedure of finding nonoverlapping rule combinations.
Input:

set of input rules RSm

size of maximal clique s
Output:

set of maximal cliques
1: procedure FindNotOverlapping(RSm)
2: G ← empty graph
3: for all rule ∈ RSm do
4: for ruleother ∈ {r : RS | r ̸= rule} do
5: if rule is not overlapping ruleother then
6: G ← AddNodes(rule, ruleother)
7: G ← AddEdge(rule, ruleother)
8: end if
9: end for

10: end for
11: results ← FindMaximalCliques(G, s)
12: return results
13: end procedure

randomly chosen. Although there is no consensus about a minimal amount of datasets
when comparing classification algorithms, such an amount is widely considered by the
research community as standard and good practice. Details of used datasets are in Table
2.1. Each dataset was shuffled and split according to the 5x2 cv experimental protocol.
Reasons behind such choice were described in chapter 2.

Complexity discretization In order to be able to raise conclusions about how a given
algorithm performs under certain dataset properties, complexity metrics were computed
for every training fold. Complexity periods were calculated as follows. First, every com-
plexity metric was calculated for every used dataset training fold. Then, those complex-
ities were discretized using a quantile-based approach into equal-sized buckets. Three
discrete values were used: low, medium, high. Such quantization resulted in each exper-
iment training instance having assigned multiple discrete values equal to the amount of
calculated complexity metrics. To get a final estimation of how complex the data fold is,
the mode of those discrete values was taken. In the case of draws, a higher complexity
value was used. This resulted in every experiment having one complexity label assigned.
Specific, after-discretization bin values may be found in Table 2.2.

Base algorithms For comparison, state-of-the-art rf with dt in cart implementation
[109] were used. For comparison, three other interpretable models were used: RuleFit ,
Greedy rule list (Greedy) and One Rule (OneR). Their internals were described in pre-
vious chapters.

Measuring models complexity In order to objectively compare trained model com-
plexities, they needed to be quantified into numerical values. For the sake of this experi-
ment, the pattern of assigning numerical values to models present in Table 3.2 was used.
In the case of RuleFit , the linear integration step was excluded, and so was in the case of
rf, as there is no standard way to quantify their complexities.

3.5. Experimental evaluation 53

Table 3.2: Internal models complexity computation details

model complexity formula
note # of trees +

∑trees # of rules
rf

∑trees # of leaves
dt # of leaves
OneR # of rules
RuleFit # of rules
Greedy # of rules

Implementation and reproducibility. The described method was implemented using
Python 3.8 programming language. scikit-learn[43] implementation of dt and rf base
models was used along with iModels [110] implementation of RuleFit , Greedy and OneR.
Slightly modified in terms of performance complexity metric implementation based on
Problexity library [58] was used. Experiments were run using Apple MacBook Pro M1
Max with 32GB RAM. NetworkX [108] implementation of graph procedures was used.
Following the trend of research replicability, the method’s source code has been published
in the online repository2.

Model parameters selection. The subject and base algorithms were pre-trained on
a subset of datasets to choose parameters from. Four datasets for pre-training procedure
were randomly selected. Grid Search method[111] was used for finding the best parameter
values. Special care was taken for alpha parameters of both cart and RuleFit algorithms.
As it follows particular pattern, exponential distribution was used for sampling those with
scale of 0.1. Then, best parameters for each dataset were taken and average for continuous
or mode for discrete parameters was taken as final set. dt parameters were propagated to
rfs’ base models. For consistency, the proposed algorithm also used pre-trained decision
tree parameters for the base classifiers. After pre-training parameters for base algorithms
can be found in Table 3.3.

In the following sections, results leading to answering research questions are presented.

3.5.2 What is the influence of different selection metrics and num-
ber of subspaces on model performance

The proposed model is parameterized by metrics used for scoring cliques formed by rules
extracted from rf. Each clique is assigned a score, and the one with the highest is then
used in the final model. Figure 3.3 shows how the model performs with different scoring
functions. Variations of accuracy and balanced accuracy are present, along with – used
for theoretical evaluation – test accuracy. The test accuracy is the theoretical maximum
that can be achieved by the method – in other words, it is the best subspace to choose
from. It can be seen that it stands out from the other measures by roughly 2% for all the
metrics. This raises the observation that the algorithm is prone to metric selection, and
possibly better metrics can be evaluated in the future to find and match the theoretical
maximum. For the following experiments, the standard accuracy measure will be picked
up as the base. The algorithm works by bounding maximal clique size with the parameter
provided by the operator – the number of subspaces. It will try to look for cliques of size
equal to the provided parameter, and if it fails to find such, it will iterate down until

2https://github.com/bgulowaty/non-overlapping-rules-ensemble

54

Table 3.3: Result of pre-training procedure for base algorithms undertaken on wisconsin,
australian, seheart and haberman datasets.

Algorithm Parameter Value Distribution Pretrain iterations

dt ccp_alpha 0.0115 exponential(0.1) 10000
criterion gini
max_features None

rf size 32 range(1,100) 1000
ccp_alpha 0.0115
criterion gini
max_features None

OneR max_depth 27 1000
criterion gini

Greedy max_depth 3 range(1,100) 1000
criterion gini

RuleFit alpha 0.1983 exponential(0.1) 1000
size 36 range(1,100)
tree_size 4 range(1,100)

a
cc

u
ra

cy

a
cc

u
ra

cy
+

1
*
b

a
la

n
ce

d
a
cc

u
ra

cy

a
cc

u
ra

cy
/
rf

a
cc

u
ra

cy

b
a
la

n
ce

d
a
cc

u
ra

cy

b
es

t
b
y

te
st

a
cc

b
es

t
b
y

tr
a
in

a
cc

rf
a
cc

u
ra

cy

rf
b

a
la

n
ce

d
a
cc

u
ra

cy

Complexity measure

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

v
a
lu

e

0.753 0.753 0.751 0.754
0.777

0.753 0.751 0.752

0.788 0.788 0.786 0.788
0.811

0.788 0.785 0.786

0.738 0.737 0.736 0.738
0.760

0.738 0.734 0.736

BAC

F1

GMean

Figure 3.3: Comparison of different clique selection metrics and their performance. The
numbers above the bars indicate metric values.

3.5. Experimental evaluation 55

3 5 7

Number of subspaces

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

v
a
lu

e

0.757 0.754 0.755

0.792 0.789 0.789

0.739 0.739 0.741

BAC

F1

GMean

Figure 3.4: Comparison of performance metrics across different number of subspaces. The
numbers above the bars indicate metric values.

DT

RF

ONER

RULEFIT

GREEDY

41.88

50.62

75

52.5

66.88

24.38

8.12

0.62

9.38

2.5

33.75

41.25

24.38

38.12

30.63

BAC

39.38

45.62

75.62

51.25

68.75

24.38

8.12

0.62

9.38

2.5

36.25

46.25

23.75

39.38

28.75

F1

43.12

50.62

76.25

50.62

68.12

24.38

8.12

0.62

10

2.5

32.5

41.25

23.12

39.38

29.38

GMean

better equal worse

Figure 3.5: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics. Vertical dashed lines indicate sign-test values.

56

DT

RF

ONER

RULEFIT

GREEDY

41.88

50.62

75

52.5

66.88

24.38

8.12

0.62

9.38

2.5

33.75

41.25

24.38

38.12

30.63

RF3

BAC

37.5

40

73.12

46.88

63.12

22.5

7.5

0.62

9.38

1.88

40

52.5

26.25

43.75

35

RF5

BAC

40

35

73.12

46.25

62.5

18.75

9.38

0

9.38

0.62

41.25

55.62

26.88

44.38

36.88

RF7

BAC

DT

RF

ONER

RULEFIT

GREEDY

39.38

45.62

75.62

51.25

68.75

24.38

8.12

0.62

9.38

2.5

36.25

46.25

23.75

39.38

28.75

F1

38.12

38.75

73.12

48.12

66.88

22.5

7.5

0.62

9.38

1.88

39.38

53.75

26.25

42.5

31.25

F1

38.75

33.75

73.12

45.62

66.88

18.75

9.38

0

9.38

0.62

42.5

56.88

26.88

45

32.5

F1

DT

RF

ONER

RULEFIT

GREEDY

43.12

50.62

76.25

50.62

68.12

24.38

8.12

0.62

10

2.5

32.5

41.25

23.12

39.38

29.38

GMean

37.5

41.88

74.38

45.62

63.75

23.12

7.5

0.62

9.38

1.88

39.38

50.62

25

45

34.38

GMean

40.62

38.75

76.25

45.62

64.38

18.75

9.38

0

9.38

0.62

40.62

51.88

23.75

45

35

GMean

better equal worse

Figure 3.6: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics in the domain of a different base ensemble size. Vertical dashed
lines indicate sign-test values.

finding a number of subspaces that do not overlap. In extreme scenarios, it will consider
only single rules.

When it comes to the number of subspaces, the experiment results may be seen in
Figure 3.4. One may notice that the lesser the number of subspaces is, the better the
algorithm behaves in terms of f1 and bac scores. The only standing out metric is the
GMean, which is better for seven subspaces. For further experiments, three subspaces
will be taken as base.

3.5.3 How does method perform when presented with Random
Forest of different sizes

Overall model performance can be examined in Figure 3.5. It is promising as Random
Forest is outperformed for each metric in roughly 40% of cases. Additionally, what is
important is that the model outperforms or draws the Decision Tree in 50% of cases for
every metric.

Figure 3.6 presents the algorithm’s performance for different metrics as an explainer for
rf of different sizes. Because of significant computational complexity three, five and seven
base estimators for Random Forests were considered. One of the most evident patterns

3.5. Experimental evaluation 57

DT

RF

ONER

RULEFIT

GREEDY

55

64.38

80.62

67.5

75.62

26.25

8.12

0.62

9.38

1.25

18.75

27.5

18.75

23.12

23.12

RF3

BAC

55

58.75

81.25

66.25

73.12

21.25

7.5

0.62

8.12

1.25

23.75

33.75

18.12

25.62

25.62

RF5

BAC

60.62

56.25

81.25

68.12

73.12

20.62

7.5

0.62

8.12

1.25

18.75

36.25

18.12

23.75

25.62

RF7

BAC

DT

RF

ONER

RULEFIT

GREEDY

60.62

63.75

83.12

67.5

80.62

26.25

8.12

0.62

9.38

1.25

13.12

28.12

16.25

23.12

18.12

F1

57.5

55

82.5

66.25

76.88

21.25

7.5

0.62

8.12

1.25

21.25

37.5

16.88

25.62

21.88

F1

59.38

54.37

81.88

68.75

75

20.62

7.5

0.62

8.12

1.25

20

38.12

17.5

23.12

23.75

F1

DT

RF

ONER

RULEFIT

GREEDY

54.37

61.88

78.75

62.5

73.75

26.25

8.12

0.62

10

1.25

19.38

30

20.62

27.5

25

GMean

55

58.75

79.38

61.88

71.88

21.88

7.5

0.62

8.75

1.25

23.12

33.75

20

29.38

26.88

GMean

60

56.25

80.62

65.62

72.5

20.62

7.5

0.62

8.75

1.25

19.38

36.25

18.75

25.62

26.25

GMean

better equal worse

Figure 3.7: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics in the domain of a different base ensemble size for cliques selected
via test accuracy. Vertical dashed lines indicate sign-test values.

is the amount of wins over rf decreases as the number of base classifiers increases. For
comparison, a similar barplot with test accuracy as a metric is presented in Figure 3.7.
Although it’s not achievable by standard scorers, with a theoretical maximum, one can see
that the overall scores are much better - regardless of performance metric, all algorithms
are outperformed in over 50% cases. Additionally, the quality decline as the number of
estimators increases is lower.

3.5.4 What is the influence of dataset complexity on algorithms
performance?

Figure 3.8 shows wins-ties-losses plot for different dataset complexities. Two interesting
observations can be made. The proposed model does outperform almost all tested algo-
rithms in 50% of cases when presented with high-complexity datasets. Furthermore, when
presented with low complexity, it tends to draw with dt very often, still outperforming it
in roughly 25% of cases. The method falls short when presented with moderately-complex
dataset, although still achieving edge of 40% of wins over rf when it comes to GMean.

58

DT

RF

ONER

RULEFIT

GREEDY

25

38.33

66.67

45

63.33

46.67

20

1.67

21.67

3.33

28.33

41.67

31.67

33.33

33.33

Complexity low

BAC

48.98

57.14

65.31

51.02

69.39

10.2

2.04

0

4.08

0

40.82

40.82

34.69

44.9

30.61

Complexity medium

BAC

54.9

58.82

94.12

62.75

68.63

11.76

0

0

0

3.92

33.33

41.18

5.88

37.25

27.45

Complexity high

BAC

DT

RF

ONER

RULEFIT

GREEDY

26.67

35

65

40

61.67

46.67

20

1.67

21.67

3.33

26.67

45

33.33

38.33

35

F1

42.86

48.98

71.43

46.94

73.47

10.2

2.04

0

4.08

0

46.94

48.98

28.57

48.98

26.53

F1

50.98

54.9

92.16

68.63

72.55

11.76

0

0

0

3.92

37.25

45.1

7.84

31.37

23.53

F1

DT

RF

ONER

RULEFIT

GREEDY

26.67

38.33

66.67

46.67

65

46.67

20

1.67

21.67

3.33

26.67

41.67

31.67

31.67

31.67

GMean

48.98

55.1

65.31

44.9

67.35

10.2

2.04

0

4.08

0

40.82

42.86

34.69

51.02

32.65

GMean

56.86

60.78

98.04

60.78

72.55

11.76

0

0

1.96

3.92

31.37

39.22

1.96

37.25

23.53

GMean

better equal worse

Figure 3.8: Results of overall performance comparison counted over 16 datasets in the
domain of different complexities. Vertical dashed lines indicate sign-test values.

low medium high

Dataset complexity

0

10

20

30

40

50

M
o
d

el
co

m
p

le
x
it

y

NOTE

RF

DT

RuleFit

OneR

Greedy

Figure 3.9: Internal complexity of compared models in the domain of dataset complexity.

3.6. Summary and lessons learned 59

l3 n
3

f1
v l1 f4

d
en

si
ty c1

cl
sC

o
ef t2 t3

Complexity metric

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C
o
rr

el
a
ti

o
n

to
m

o
d
el

co
m

p
le

x
it

y

0.46 0.44 0.44 0.44 0.43

-0.15 -0.15
-0.25 -0.27

-0.34

Figure 3.10: Correlation of internal note model complexity to the dataset complexity
metrics.

3.5.5 How complex is output model and what does influence it?

In order to compare how the proposed model complexity changes in the context of other
algorithms, let’s take a look at Figure 3.9. Let’s recall that model complexity was com-
puted as a number of leaves added to a number of rules. It can be seen that the model’s
complexity steadily rises as data complexity increases. It’s also worth noting that, al-
though it is slightly more complex than rf in lower complexities, the difference increases
in its favour as data complexity increases. By taking a look at Figure 3.10, we can see
that the most determinant factor for complexity increase is linearity, as defined by l3 and
l1 metrics. Additionally, model complexity decreases as the average number of features
per point and pca dimensions per point increase.

3.6 Summary and lessons learned

In this chapter note, a novel algorithm for explaining rf predictions was presented and
evaluated in a more extended version than in its original paper [112]. The algorithm was
verified for its behaviour when explaining Random Forests of different sizes and when per-
forming predicitons under circumstances of different dataset complexities. Additionally,
internal model complexities were evaluated, with an emphasis on capturing the dynamics
of their change.

The proposed xai method turned out to be an effective, from a predictive power point
of view, explainer for rf. It has been shown to be competitive in terms of predictive
abilities when explaining small-sized forests of three, five and seven trees. What was
observed is that while the method could outperform smaller forests, its performance would
show a trend of decreasing as the ensemble got bigger. Data complexity wise, there
are some areas where the model would consistently outperform other classic transparent
classification algorithms, such as dt or OneR. Solid predictive abilities were especially

60

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

4
0
.7

4

5
3
.7

7
4
.0

7

7
2
.2

2

5
3
.7 2

5
.9

3

3
.71

.8
5

0

5
.5

6 3
3
.3

3

4
2
.5

9

2
4
.0

7

2
7
.7

8

4
0
.7

4

t4
-lo

w

4
9
.2

3

5
3
.8

5

6
7
.6

9

5
0
.7

7

7
3
.8

5

1
5
.3

8

0

0

1
.5

4

0 3
5
.3

8

4
6
.1

5

3
2
.3

1

4
7
.6

9

2
6
.1

5

B
A

C

t4
-m

ed
iu

m

3
1
.7

1

4
1
.4

68
7
.8

2
9
.2

77
3
.1

7

3
6
.5

9

2
6
.8

3

0

3
4
.1

52
.4

4

3
1
.7

1

3
1
.7

1

1
2
.2

3
6
.5

9

2
4
.3

9

t4
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

3
7
.0

4

4
8
.1

5

8
3
.3

3

6
8
.5

2

4
6
.3 2

2
.2

2

5
.5

6

0

7
.4

1

5
.5

6

4
0
.7

4

4
6
.3

1
6
.6

7

2
4
.0

7

4
8
.1

5

f1
-lo

w

2
6
.4

2

3
5
.8

5

6
2
.2

6

3
5
.8

5

7
3
.5

8

4
1
.5

1

1
8
.8

71
.8

9

2
0
.7

51
.8

9

3
2
.0

8

4
5
.2

8

3
5
.8

5

4
3
.4

2
4
.5

3

f1
-m

ed
iu

m

6
2
.2

6

6
7
.9

2

7
9
.2

5

5
2
.8

3

8
1
.1

3 9
.4

3

0

0

0

0 2
8
.3

3
2
.0

8

2
0
.7

5

4
7
.1

7

1
8
.8

7

f1
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

3
1
.4

8

3
5
.1

98
1
.4

8

4
6
.3

6
4
.8

1

3
3
.3

3

2
0
.3

7

0

2
5
.9

3

5
.5

6

3
5
.1

9

4
4
.4

4

1
8
.5

2

2
7
.7

8

2
9
.6

3

n
2
-lo

w

4
5
.2

8

4
7
.1

7

8
6
.7

9

5
8
.4

9

6
4
.1

5 9
.4

3

0

0

00 4
5
.2

8

5
2
.8

3

1
3
.2

1

4
1
.5

1

3
5
.8

5

n
2
-m

ed
iu

m

4
9
.0

6

6
9
.8

1

5
6
.6

5
2
.8

3

7
1
.7 3

0
.1

9

3
.7

7

1
.8

9

1
.8

91
.8

9 2
0
.7

5

2
6
.4

2

4
1
.5

1

4
5
.2

8

2
6
.4

2

n
2
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

3
0
.9

1

3
6
.3

68
0

5
2
.7

3

5
0
.9

1 3
2
.7

3

2
0

0

2
5
.4

5

5
.4

5 3
6
.3

6

4
3
.6

42
0

2
1
.8

2

4
3
.6

4

c2
-lo

w

5
8
.1

8

5
4
.5

59
6
.3

6

4
5
.4

58
7
.2

7 7
.2

7

0

0

0

0

3
4
.5

5

4
5
.4

53
.6

4

5
4
.5

51
2
.7

3

c2
-m

ed
iu

m

3
66

2

4
66
0

6
2

3
4

4

2

22

3
0

3
4

5
23
8

3
6

c2
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

3
0
.9

1

3
6
.3

68
0

5
2
.7

3

5
0
.9

1 3
2
.7

3

2
0

0

2
5
.4

5

5
.4

5 3
6
.3

6

4
3
.6

42
0

2
1
.8

2

4
3
.6

4

c1
-lo

w

5
8
.1

8

5
4
.5

59
6
.3

6

4
5
.4

58
7
.2

7 7
.2

7

0

0

0

0

3
4
.5

5

4
5
.4

53
.6

4

5
4
.5

51
2
.7

3

c1
-m

ed
iu

m

3
66

2

4
66
0

6
2

3
4

4

2

22

3
0

3
4

5
23
8

3
6

c1
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

2
2
.2

2

3
7
.0

4

7
0
.3

7

4
8
.1

5

5
3
.7

3
3
.3

3

9
.2

6

1
.8

5

7
.4

1

7
.4

1 4
4
.4

4

5
3
.7

2
7
.7

8

4
4
.4

4

3
8
.8

9

f1
v
-lo

w

3
9
.6

2

4
3
.4

7
5
.4

7

5
4
.7

2

6
4
.1

5 3
2
.0

8

1
5
.0

9

0

2
0
.7

5

0

2
8
.3

4
1
.5

1

2
4
.5

3

2
4
.5

3

3
5
.8

5

f1
v
-m

ed
iu

m

6
4
.1

5

7
1
.7

7
9
.2

5

5
4
.7

2

8
3
.0

2 7
.5

50

0

0

0

2
8
.3

2
8
.3

2
0
.7

5

4
5
.2

8

1
6
.9

8

f1
v
-h

ig
h

4
0
.7

4

5
07
5
.9

3

6
8
.5

2

5
3
.7

2
5
.9

3

3
.7

1
.8

5

0

5
.5

6

3
3
.3

3

4
6
.3

2
2
.2

2

3
1
.4

8

4
0
.7

4

t4
-lo

w

4
0

4
4
.6

2

6
7
.6

9

4
7
.6

9

7
6
.9

2

1
5
.3

8

0

0

1
.5

4

0

4
4
.6

2

5
5
.3

8

3
2
.3

1

5
0
.7

7

2
3
.0

8

F
1

t4
-m

ed
iu

m

3
6
.5

9

4
1
.4

6

8
7
.8

3
4
.1

57
5
.6

1 3
6
.5

9

2
6
.8

3

0

3
4
.1

5

2
.4

4

2
6
.8

3

3
1
.7

1

1
2
.2

3
1
.7

1

2
1
.9

5

t4
-h

ig
h

4
0
.7

4

4
8
.1

57
9
.6

3

6
2
.9

6

4
8
.1

5

2
2
.2

2

5
.5

6

0

7
.4

1

5
.5

6

3
7
.0

4

4
6
.32
0
.3

7

2
9
.6

3

4
6
.3

f1
-lo

w

1
8
.8

7

3
0
.1

96
4
.1

5

3
0
.1

96
9
.8

1

4
1
.5

1

1
8
.8

7

1
.8

9

2
0
.7

5

1
.8

9

3
9
.6

2

5
0
.9

4

3
3
.9

6

4
9
.0

6

2
8
.3

f1
-m

ed
iu

m

5
8
.4

9

5
8
.4

9

8
3
.0

2

6
0
.3

8

8
8
.6

8 9
.4

3

0

0

0

0

3
2
.0

8

4
1
.5

1

1
6
.9

8

3
9
.6

2

1
1
.3

2

f1
-h

ig
h

3
3
.3

3

3
7
.0

48
1
.4

8

4
2
.5

9

6
6
.6

7 3
3
.3

3

2
0
.3

7

0

2
5
.9

35
.5

6 3
3
.3

3

4
2
.5

9

1
8
.5

2

3
1
.4

8

2
7
.7

8

n
2
-lo

w

4
5
.2

8

3
9
.6

28
4
.9

1

5
6
.6

6
9
.8

1 9
.4

3

0

0

0

0 4
5
.2

8

6
0
.3

81
5
.0

9

4
3
.4

3
0
.1

9

n
2
-m

ed
iu

m

3
9
.6

2

6
0
.3

8

6
0
.3

8

5
4
.7

2

6
9
.8

1 3
0
.1

9

3
.7

7

1
.8

9

1
.8

91
.8

9 3
0
.1

9

3
5
.8

5

3
7
.7

4

4
3
.4

2
8
.3

n
2
-h

ig
h

2
9
.0

9

3
6
.3

6

8
0

4
9
.0

9

5
2
.7

3 3
2
.7

3

2
0

0

2
5
.4

5

5
.4

5

3
8
.1

8

4
3
.6

42
0

2
5
.4

5

4
1
.8

2

c2
-lo

w

6
3
.6

4

4
7
.2

79
4
.5

5

4
9
.0

98
9
.0

9

7
.2

7

0

0

0

0

2
9
.0

9

5
2
.7

3

5
.4

5

5
0
.9

11
0
.9

1

c2
-m

ed
iu

m

2
4

5
4

5
05
66
4 3

4

4

2

2

2

4
2

4
2

4
84
23
4

c2
-h

ig
h

2
9
.0

9

3
6
.3

6

8
0

4
9
.0

9

5
2
.7

3 3
2
.7

3

2
0

0

2
5
.4

5

5
.4

5

3
8
.1

8

4
3
.6

42
0

2
5
.4

5

4
1
.8

2

c1
-lo

w

6
3
.6

4

4
7
.2

79
4
.5

5

4
9
.0

98
9
.0

9

7
.2

7

0

0

0

0

2
9
.0

9

5
2
.7

3

5
.4

5

5
0
.9

11
0
.9

1

c1
-m

ed
iu

m

2
4

5
4

5
05
66
4 3

4

4

2

2

2

4
2

4
2

4
84
23
4

c1
-h

ig
h

2
5
.9

3

3
7
.0

46
8
.5

2

4
4
.4

4

5
3
.7 3

3
.3

3

9
.2

6

1
.8

5

7
.4

1

7
.4

1

4
0
.7

4

5
3
.7

2
9
.6

3

4
8
.1

5

3
8
.8

9

f1
v
-lo

w

3
5
.8

5

3
5
.8

57
5
.4

7

4
7
.1

7

6
2
.2

6 3
2
.0

8

1
5
.0

9

0

2
0
.7

5

0

3
2
.0

8

4
9
.0

6

2
4
.5

3

3
2
.0

8

3
7
.7

4

f1
v
-m

ed
iu

m

5
6
.6

6
4
.1

5

8
3
.0

2

6
2
.2

6

9
0
.5

7 7
.5

50

0

0

0

3
5
.8

5

3
5
.8

5

1
6
.9

8

3
7
.7

49
.4

3

f1
v
-h

ig
h

b
e
tte

r
e
q
u
a
l

w
o
rse

4
2
.5

9

5
5
.5

6

7
4
.0

7

7
2
.2

2

5
7
.4

1

2
5
.9

3

3
.7

1
.8

5

0

5
.5

6

3
1
.4

8

4
0
.7

4

2
4
.0

7

2
7
.7

8

3
7
.0

4

t4
-lo

w

5
0
.7

7

5
2
.3

1

7
0
.7

7

4
7
.6

9

7
3
.8

5 1
5
.3

8

0

0

1
.5

4

0 3
3
.8

5

4
7
.6

9

2
9
.2

3

5
0
.7

7

2
6
.1

5

G
M

ean

t4
-m

ed
iu

m

3
1
.7

1

4
1
.4

6

8
7
.8

2
6
.8

37
3
.1

7

3
6
.5

9

2
6
.8

3

0

3
6
.5

9

2
.4

4

3
1
.7

1

3
1
.7

1

1
2
.2

3
6
.5

9

2
4
.3

9

t4
-h

ig
h

3
7
.0

4

4
8
.1

58
3
.3

3

6
8
.5

2

4
8
.1

5 2
2
.2

2

5
.5

6

0

7
.4

1

5
.5

6

4
0
.7

4

4
6
.31
6
.6

7

2
4
.0

7

4
6
.3

f1
-lo

w

3
2
.0

8

3
5
.8

5

6
2
.2

6

3
3
.9

67
3
.5

8 4
1
.5

1

1
8
.8

71
.8

9

2
0
.7

5

1
.8

9

2
6
.4

2

4
5
.2

8

3
5
.8

5

4
5
.2

8

2
4
.5

3

f1
-m

ed
iu

m

6
0
.3

8

6
7
.9

2

8
3
.0

2

4
9
.0

68
3
.0

2

9
.4

30

0

1
.8

9

0

3
0
.1

9

3
2
.0

8

1
6
.9

8

4
9
.0

61
6
.9

8

f1
-h

ig
h

3
1
.4

8

3
5
.1

98
1
.4

8

4
6
.3

6
4
.8

1 3
3
.3

3

2
0
.3

7

0

2
5
.9

3

5
.5

6 3
5
.1

9

4
4
.4

4

1
8
.5

2

2
7
.7

8

2
9
.6

3

n
2
-lo

w

4
5
.2

8

4
7
.1

79
0
.5

7

5
8
.4

9

6
7
.9

2 9
.4

3

0

0

0

0 4
5
.2

8

5
2
.8

39
.4

3

4
1
.5

1

3
2
.0

8

n
2
-m

ed
iu

m

5
2
.8

3

6
9
.8

1

5
6
.6

4
7
.1

7

7
1
.7

3
0
.1

9

3
.7

7

1
.8

9

3
.7

7

1
.8

9 1
6
.9

8

2
6
.4

2

4
1
.5

1

4
9
.0

6

2
6
.4

2

n
2
-h

ig
h

3
0
.9

1

3
6
.3

6

8
0

5
2
.7

3

5
2
.7

3 3
2
.7

3

2
0

0

2
5
.4

5

5
.4

5

3
6
.3

6

4
3
.6

42
0

2
1
.8

2

4
1
.8

2

c2
-lo

w

5
4
.5

5

5
4
.5

5

1
0
0

4
3
.6

48
9
.0

9 7
.2

7

0

0

1
.8

2

0

3
8
.1

8

4
5
.4

5

0

5
4
.5

51
0
.9

1

c2
-m

ed
iu

m

4
46

2

4
65
66
2

3
44

2

2

2

2
2

3
4

5
24
23
6

c2
-h

ig
h

3
0
.9

1

3
6
.3

6

8
0

5
2
.7

3

5
2
.7

3 3
2
.7

3

2
0

0

2
5
.4

5

5
.4

5

3
6
.3

6

4
3
.6

42
0

2
1
.8

2

4
1
.8

2

c1
-lo

w

5
4
.5

5

5
4
.5

5

1
0
0

4
3
.6

48
9
.0

9 7
.2

7

0

0

1
.8

2

0

3
8
.1

8

4
5
.4

5

0

5
4
.5

51
0
.9

1

c1
-m

ed
iu

m

4
46

2

4
65
66
2

3
44

2

2

2

2
2

3
4

5
24
23
6

c1
-h

ig
h

2
4
.0

7

3
7
.0

47
0
.3

7

5
0

5
7
.4

1

3
3
.3

3

9
.2

6

1
.8

5

7
.4

1

7
.4

1 4
2
.5

9

5
3
.72
7
.7

8

4
2
.5

9

3
5
.1

9

f1
v
-lo

w

4
1
.5

1

4
5
.2

8

7
5
.4

7

5
2
.8

3

6
4
.1

5

3
2
.0

8

1
5
.0

9

0

2
0
.7

5

0

2
6
.4

2

3
9
.6

2

2
4
.5

3

2
6
.4

2

3
5
.8

5

f1
v
-m

ed
iu

m

6
4
.1

5

6
9
.8

1

8
3
.0

2

4
9
.0

68
3
.0

2

7
.5

5

0

0

1
.8

9

0 2
8
.3

3
0
.1

9

1
6
.9

8

4
9
.0

61
6
.9

8

f1
v
-h

ig
h

F
igure

3.11:
O

verallpercentage
ofw

ins,ties
and

losses
counted

over
alldatasets

for
bac,f1

and
G

M
ean

m
etrics

in
the

dom
ain

ofdifferent
dataset

com
plexities.

V
erticaldashed

lines
indicate

sign-test
values.

3.6. Summary and lessons learned 61

present when:

• Data would be characterized by a big overlap of classes, as pointed out by F1 and
F1V complexity values.

• When there is a moderate and low ratio of pca dimension to the data dimensions.
This property is indicated by T4 complexity measure.

• In datasets where entropy of class proportions and balance is moderate, as indicated
by C1 and C2 metrics.

What is also noticeable is that, on average, the model displayed lesser complexity than
rf and RuleFit , even though trained using the same data and having excluded integration
steps in the complexity calculation of the other models. note shows promises as a useful
explanation method, although coming with its flaws. Computational complexity analysis
has shown that the algorithm’s complexity is very high, making it difficult to apply to
large, multidimensional datasets in real time. It also needs to be recognized that it does
not apply to some more specific domains, like continuous learning. It may still find its
applicability to a wide range of areas where time is not essential and explainability of a
pre-trained model is required. That said, a possible branch of further research is finding
a way of reducing it. One of the possible ways to tackle this problem is to reduce the
number of considered model candidates.

Apart from that, the method shows promise as a useful explanation method, and its
proven performance supports the thesis statement.

Chapter 4

Utilizing constituents in building
interpretable ensemble model

4.1 Introduction and related works
One of the approaches to achieving a high degree of transparency in the applied predictive
models is to use an algorithm which is intelligible by design. Widely used examples of such
models are rule-based models [113], dt, logistic regression or even Generalized Additive
Models [114]. While, in some cases, the training procedure could be relatively easy to
understand, the outcome model poses difficulties when it comes to understanding its
structure or relationship between input and output.

Based on research presented in the previous chapter [112], the efficiency of having
designated, specialised models for specific areas in decision space was noticed. In this
chapter, a method utilising this observation in building a transparent model is proposed.
It is obtained via optimizing consituents distribution around the decision space via ga.

As [115] point out, while there are xai methods for explaining the behaviour of Evo-
lutionary Computing (ec) processes, there is not much research when it comes utilising
ec for explaining classification models. Guidotti et al. [116] use ga exploration to gen-
erate synthetic neighbourhoods for learning local interpretable predictors. Sharma et al.
[117] use ec to generate counterfactual explanations – a widely adopted technique of
providing samples in input space that are close to samples of a different classes. Evolu-
tionary techniques have been used to produce self-interpretable agents [118] and discover
interpretable plasticity rules [119]. It is much more common to encounter evolutionary
approach in inducing glass-box models, such as trees [120]–[122] or decision rules [123]–
[126].

When it comes to utilizing Genetic Programming (gp) in xai domain, methods can
be separated into 3 top-level categories [127]:

• Intrinsic interpretability – where gp is used to create inherently interpretable model

• Post-hoc interpretability – where gp is used as explainer for already trained black-
box model

• Visualization – when gp is used for examining how given model behaves when
performing.

The proposed method falls into the first category of intrinsic interpretability. Major
subcategory in this area is so called bloat control [128]. As gp models tend to grow ex-
tensively, many redundant components can be observed, which results in unnecessarily

64

large models [129]. Bloat control aims to reduce output model size without significantly
decreasing accuracy. It can be controlled by fixing the generated tree’s depth [130], pe-
nalizing size of the model in the search procedure [131], applying specific (for example
pruning) mutation or crossover operators [132], controlling model size via adapting the
target distribution during gp process [133] or simplifying the model by replacing its parts
(eg. subtrees) via simpler ones after the process [134]. Another way of making the output
model more interpretable is making sure, that forms of structural complexity – other than
its size – are taken into consideration in evaluation function. Measure proposed in [135]
recursively aggregates complexity of the nodes underneath each internal node of induce
tree. In the case of non-linear regression models, their functional complexity can be re-
duced by taking curvature into consideration [136]. Another technique of reducing model
complexity relate to feature manipulations. Input features can be aggregated and com-
bined to reduce problem dimensional, original features can be measured and selected [137]
or completely new features can be constructed, depending on domain of the problem [138].
Genetic algorithms and evolutionary approaches are not new when it comes to building
ensemble models. Oliviera et al. [139] proposed usage hierarchical multi-objective genetic
algorithm in building ensemble via, first features selection, and then model selection. [140]
used an evolutionary approach to prune rf and select the possible best subset of trees
that would not impact the predictive abilities of the ensemble. [141] used evolutionary
algorithms to enhance bagging by evolving contents of the bags to increase their diversity.
Sylvester and Chawla [142] implement framework that assigns weights to classifiers in
ensemble in order to maximize collaboration among classifiers.

In the following proposed approach, the evolutionary genetic algorithm is utilised to
maximize the accuracy of the ensemble by finding the optimal distribution of competence
areas of each model. In contrast to the aforementioned approaches, the proposed ensem-
ble can be thought of as an interpretable model, as models do not overlap each other.
Therefore, the integration step is simplified to the simple nearest neighbour assignment.

4.2 Search based framework for transparent non-
overlapping ensemble models

The proposed algorithm is expanding upon the mechanism from the previous research
[112] of using dedicated models for selected decision space areas. From now on, it will be
referred to as Optimal Centroids because of its internal mechanics explained later.

The following are details of the proposed learning algorithm, whose pseudocode is
shown in Alg. 5. A possible classifier ensemble is represented by a chromosome that is a
real-valued vector describing centroid coordinates and depths of each cluster’s tree. For
example, the following is ga individual of three centroids in two dimensional space:

indv =

centroid 1︷ ︸︸ ︷
c11, c

1
2 , c21, c

2
2︸ ︷︷ ︸

centroid 2

,

centroid 3︷ ︸︸ ︷
c31, c

3
2

 (4.1)

Initially, the set of centroids is randomly sampled by the user’s ga preferences. In each
generation, the centroids, due to real-numbered mutation and crossover operators, are
"floating" in the feature space to find their optimal position. Additionally, to make the
solutions domain continuous, tree depths are also represented as real-valued integers, and
are discretized upon individual evaluation. The chromosomes are evaluated by the scoring

4.3. Computational complexity analysis 65

Algorithm 5 Procedure of model training
Input:

set of training samples LS
centroids C

Output:
model Ψ̂

1: procedure TrainModel(LS, C)
2: Π← ∅
3: 1nn← Train1NN(C)
4: for all ci ∈ C do
5: LSi ← SamplesInCluster(ci, 1nn,LS)
6: Ψi ← TrainDT(LSi)
7: Π← AddToEnsemble(Π,Ψi, ci)
8: end for
9: return Π, 1nn

10: end procedure

method and the best individual is used to train the final model. If tree depth is equal to
zero, the cluster given by such centroid is deactivated.

The function SamplesInCluster is responsible for selecting only those samples that
fall into the competence area given by the first argument. Train1NN and TrainDT are
respectively training nn model, used for assigning samples into correct constituent, and
decision tree model. Finally, AddToEnsemble adds trained base model to final set of
classifiers, along with its assigned competence area label. An exemplary visualization of
the training steps for an example presented in (4.1) and depicted in Figure 4.1.

Although the scoring method could be easily manipulated and changed according
to needs, ultimately, one is interested in the accuracy of the created predictive model.
Therefore, fitness consists of averaged 5x2 cross-validated accuracy over training set [143].
Namely, during each fitness evaluation, cross-validation creates train and validation folds
and validates t decision trees. Samples are assigned to each competence area – and
finally, to each tree – by nn classifier [144]. The final model consists of up to t centroids
(or nearest-neighbor classifier) and up to t trained decision trees.

This proposition offers excellent opportunities for future modifications, as the chosen
cross-validation method and the underlying model can easily be tailored to the user’s
preferences. In some applications, it may be more appropriate to optimize other crite-
ria, e.g., those dedicated to imbalanced data [145], or one may consider multi-criteria
optimization methods that could offer the user the Pareto-front optimal solutions that
would be selected for further exploitation. Also, the way the model is evaluated during
the learning process may be adjusted to the user’s preferences., i.e., the cross-validation
parameters and the cross-validation itself.

4.3 Computational complexity analysis

This section will analyze the computational complexity of model querying and training
procedures. Let N and d denote consecutively training dataset samples to count and
feature space dimension. Furthermore, let t be competence areas count.

For experimental evaluation purposes, Scikit-learn implementation of decision tree
classifier was used [43]. Its worst case complexity is estimated to be O(Nd logN) for
training. Let us assume that kd-tree spatial data structure is used as a base for the
competence area classifier. Its construction complexity can be estimated as O(t log t)

66

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100

Competence area 1

Competence area 2

Competence area 3

Figure 4.1: Visualisation of learning procedure using ga. Conceptually the algorithm is
moving centroids (marked as black triangles) in space, evaluating them as competence
area centres to find the most accurate distribution.

[146].
Then, we can estimate the computational complexity of single model training as:

O(tNd logN + t log t) (4.2)

Likewise, a trained model query consists of querying 1-nn and corresponding decision
tree later. Tree’s implementation query time is estimated as O(logN) [43]. Additionally.
kd-tree query complexity is given as O(t1− 1

d) [146]. Therefore, we can estimate total query
complexity for N samples as:

O(t1−
1
d + logN) (4.3)

Those estimates aren’t generally high, as compared to, for example, training a single
decision tree, and could render the model usable in high data-intensive scenarios. However,
the potential user should consider that the whole learning procedure includes a genetic
algorithm, which parameters, especially the number of generations, population size and
evaluation procedure, which may include cross-validation, multiply those estimates by a
significant value.

4.4 Experimental evaluation
Originally the research questions included verifying only performance against widely used
Decision Tree and Random Forest classification algorithms [147]. In the thesis, the domain
was extended to include analysis of algorithm behaviour under certain dataset complex-
ities. Additionally, analysis of the complexity of the model itself is a topic of interest.
Overall, the following research questions were raised:

4.4. Experimental evaluation 67

rq1 What is the impact of number of subspaces on algorithm performance?

rq2 How does the algorithm’s accuracy, f1 score and geometric mean compare overall to
other commonly used models?

rq3 What is the influence of dataset complexity on model performance?

rq4 How does the dataset complexity influence final model’s complexity in comparison
to other algorithms?

rq5 How does the algorithm perform as explainer for Random Forest model?

4.4.1 Setup

In this section approach to experimental evaluation and environment details are described.

Choice of datasets A series of experiments were conducted across selected binary clas-
sification datasets. As the source for those Knowledge Extraction based on Evolutionary
Learning repository was used [97]. Datasets were pre-processed beforehand. Labels were
encoded into integers. Finally, to reasonably limit scope of experiments, 16 datasets were
randomly chosen. Although there is no consensus about a minimal amount of datasets
when comparing classification algorithms, such an amount is widely considered by the
research community as standard and good practice. Details of used datasets are in Table
2.1. Each dataset was shuffled and split according to the 5x2 cv experimental protocol.
Reasons behind such choice were described in chapter 2.

Complexity discretization In order to be able to raise conclusions about how a given
algorithm performs under certain dataset properties, complexity metrics were computed
for every training fold. Complexity periods were calculated as follows. First, every com-
plexity metric was calculated for every used dataset training fold. Then, those complex-
ities were discretized using a quantile-based approach into equal-sized buckets. Three
discrete values were used: low, medium, high. Such quantization resulted in each exper-
iment training instance having assigned multiple discrete values equal to the amount of
calculated complexity metrics. To get a final estimation of how complex the data fold is,
the mode of those discrete values was taken. In the case of draws, a higher complexity
value was used. This resulted in every experiment having one complexity label assigned.
Specific, after-discretization bin values may be found in Table 2.2.

Base algorithms For comparison, state-of-the-art rf with dt in cart implementation
[109] were used. For comparison, three other interpretable models were used: RuleFit ,
Greedy and OneR. Their internals were described in previous chapters.

Measuring models complexity In order to objectively compare trained model com-
plexities, they needed to be quantified into numerical values. For the sake of this experi-
ment, the pattern of assigning numerical values to models present in Table 4.1 was used.
In the case of RuleFit the linear integration step was excluded, and so was in the case of
rf and the proposed algorithm, as there is no standard way to quantify their complexities.

68

Table 4.1: Internal models complexity computation details

model complexity formula
Optimal Centroids

∑trees # of leaves
rf

∑trees # of leaves
dt # of leaves
OneR # of rules
RuleFit # of rules
Greedy # of rules

Implementation and reproducibility. The described method was implemented using
Python 3.8 programming language. scikit-learn[43] implementation of dt and rf base
models was used along with iModels [110] implementation of RuleFit , Greedy and OneR.
Slightly modified in terms of performance complexity metric implementation based on
Problexity library [58] was used. Experiments were run using Apple MacBook Pro M1
Max with 32GB RAM. PyMoo[148] implementation of ga was used. Following trend of
research replicability, the method’s source code has been published in online repository1.

Model parameters selection. The subject and base algorithms were pre-trained on
a subset of datasets to choose parameters from. Four datasets for pre-training procedure
were randomly selected. Grid Search method[111] was used for finding the best parameter
values. Special care was taken for alpha parameters of both cart and RuleFit algorithms.
As it follows particular pattern, exponential distribution was used for sampling those
with scale of 0.1. Then, best parameters for each dataset were taken and average for
continuous or mode for discrete parameters was taken as final set. dt parameters were
propagated to rfs’ base models. For consistency, the proposed algorithm also used pre-
trained decision tree parameters for the base classifiers. For consistency, the proposed
algorithm also used pre-trained decision tree parameters for the base classifiers. The pre-
training procedure was also applied to choosing the genetic algorithm’s population size
and number of generations. Results of the procedure can be found in Table 4.2.

In the following sections, results leading to answering research questions are presented.

4.4.2 What is the impact of number of subspaces on algorithm
performance?

Apart from setting the parameters for the base classifier that is being trained in the
constituents and ga parameters, the user of the algorithm is able to choose a number
of subspaces being trained. Picking different number of subspaces was tested and the
results may be found in Figure 4.2. Out of all tested values, which spanned from three
to 30, results with a lesser amount of subspaces prevailed as the best. For the considered
metrics, differences in means between the best and second-best parameter values were
not bigger than one percent in the case of f1. What is also noticeable is that a certain
tendency can be seen that the bigger the number of subspaces, the worse the algorithm’s
performance.

The decreasing performance is likely the result of the slight overfitting of models in
every subspace. Picking more subspaces creates more specialized models in the ensemble.

1https://github.com/bgulowaty/optimal-centroids

4.4. Experimental evaluation 69

Table 4.2: Result of pretraining procedure for base algorithms undertaken on wisconsin,
australian, seheart and haberman datasets.

Algorithm Parameter Value Distribution Pretrain iterations

ga n_gen 100 1000
pop_size 25

dt ccp_alpha 0.0115 exponential(0.1) 10000
criterion gini
max_features None

rf size 32 range(1,100) 1000
ccp_alpha 0.0115
criterion gini
max_features None

OneR max_depth 27 1000
criterion gini

Greedy max_depth 3 range(1,100) 1000
criterion gini

RuleFit alpha 0.1983 exponential(0.1) 1000
size 36 range(1,100)
tree_size 4 range(1,100)

3 5

1
0

1
5

2
0

3
0

Subspaces

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

v
a
lu

e

0.749 0.743 0.732 0.724 0.724 0.720

0.782 0.772 0.764 0.759 0.759 0.7570.733 0.731
0.718 0.711 0.709 0.704

BAC

F1

GMean

Figure 4.2: Comparison of performance metrics across different number of subspaces. The
numbers above the bars indicate metric values.

70

It leads to some models being trained with smaller sample sizes or one specific for a given
consistent pattern. As a result, overall generalizing ability decreases.

For further evaluation, the best-performing number of subspaces (3) is considered.

4.4.3 Learner performance in comparison to other models

In order to see how the proposed algorithm competes against other tested ones, let’s take a
look at Figure 4.3. While simple OneR and Greedy algorithms are usually outperformed
in more than 50% of cases, followed up by RuleFit in roughly 40%, the situation differs
when it comes to dt and rf. For the former, what is noticeable is that Decision Tree
comparison results as a draw most often out of all tested algorithms. Additionally, it is
constantly outperformed in over 32% of cases. Finally, rf is best outperformed when
it comes to the GMean, where in over 38%, it is either worse or equal to the proposed
method. The worst scenario happens for the f1 metric, where such phenomena occur
only 25% times. It draws promising results given the much higher complexity of rf and
state-of-the-art applications of dt.

4.4.4 Influence of datasets complexity on model performance

By taking a look at Figure 4.4, one can see how the model behaves with different com-
plexities of datasets.

What is noticeable is that when the dataset displays low complexity, the algorithm is
much more likely to tie other algorithms, which can happen even in 20% of cases when it
comes to RuleFit . In medium complexities ties almost do not occur, and in high they occur
only when it comes to dt, which is due to its fallback mechanism. It is also noticeable
that algorithm is much more likely to outperform its competitors in higher complexities,
especially in terms of GMean, but when it would be considered as explainer of rf, low
complexities would be where it could be most likely applied due to high value of draws
and wins combined.

The above inference gives general application suggestions when it comes to dataset
complexity. Let’s dig deeper to see what kind of characteristics and specific complexity
metrics a given dataset needs to have to be suitable for the application. Figure 4.5
presents the variance of wins for a given metric and given complexity measure. It can
be seen that wins are not distributed equally along all complexity metrics. For some,
the wins occur more often than for others. For rf and dt, and for each of the metrics
complexity measures with the most amount of wins – in other words, most often repeated
as "biggest" in pie plots – were t4, c2, c1 and n2.

Figure 4.6 presents wins-ties-losses plots for most discriminative complexity metrics.
The tendency from previous observation prevails – algorithm does best in cases of high
complexities. Especially when the overlapping of features is high, as presented by f1 and
f1v metrics. When distances between samples of the same class are relatively small in
comparison to distances to samples between classes, as expressed by high n2 score, the
algorithm also does very well. Finally, same thing happens when it comes to higher imbal-
ances between labels. In all those situations, almost every other algorithm is outperformed
in over 50% of cases. Where algorithm falls short are low complexities in general, where
it can have almost 90% of losses as compared to Random Forest and low t4 measures.
It indicates that the algorithm fails to draw better decision boundaries when the dataset
displays fairly simple relationships, where, for example, the ratio of pca dimensions to
original dimensions is small, or features are not overlapping much.

4.4. Experimental evaluation 71

DT

RF

ONER

RULEFIT

GREEDY

34.38

23.75

70.62

41.88

56.88

10.62

6.88

0.62

8.12

2.5

55

69.38

28.75

50

40.62

BAC

32.5

18.75

71.25

38.12

56.88

10

6.25

0.62

7.5

1.88

57.5

75

28.12

54.37

41.25

F1

38.12

31.87

73.75

43.75

60

10.62

6.88

0.62

7.5

2.5

51.25

61.25

25.62

48.75

37.5

GMean

better equal worse

Figure 4.3: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics. Vertical dashed lines indicate sign-test values.

DT

RF

ONER

RULEFIT

GREEDY

33.33

21.67

66.67

41.67

58.33

16.67

18.33

1.67

20

3.33

50

60

31.67

38.33

38.33

Complexity low

BAC

34.69

18.37

57.14

36.73

53.06

0

0

0

2.04

0

65.31

81.63

42.86

61.22

46.94

Complexity medium

BAC

35.29

31.37

88.24

47.06

58.82

13.73

0

0

0

3.92

50.98

68.63

11.76

52.94

37.25

Complexity high

BAC

DT

RF

ONER

RULEFIT

GREEDY

36.67

18.33

66.67

35

53.33

16.67

16.67

1.67

20

3.33

46.67

65

31.67

45

43.33

F1

22.45

10.2

55.1

32.65

55.1

0

0

0

0

0

77.55

89.8

44.9

67.35

44.9

F1

37.25

27.45

92.16

47.06

62.75

11.76

0

0

0

1.96

50.98

72.55

7.84

52.94

35.29

F1

DT

RF

ONER

RULEFIT

GREEDY

31.67

23.33

68.33

41.67

58.33

16.67

18.33

1.67

20

3.33

51.67

58.33

30

38.33

38.33

GMean

40.82

36.73

59.18

40.82

57.14

0

0

0

0

0

59.18

63.27

40.82

59.18

42.86

GMean

43.14

37.25

94.12

49.02

64.71

13.73

0

0

0

3.92

43.14

62.75

5.88

50.98

31.37

GMean

better equal worse

Figure 4.4: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics in domain of different dataset complexities. Vertical dashed lines
indicate sign-test values.

72

t4

c2

c1n2

f1

f1v

l3

n3

n1

n4

l2

size l1
lsc

f4

hubs

density

f3

t2

clsCoef

f2
t1
features countt3

Figure 4.5: Weighted variance of wins against rf and dt for Optimal Centroids algorithm
within discretized complexities for dataset complexity metrics.

4.4.5 Comparison of different model depths for different datasets

Figures 4.7 and 4.8 display model complexity evaluation in domain of datasets of differ-
ent inherent complexities. Surprisingly, the proposed algorithm does not exceed RuleFit
complexity and is competitive to dt itself. It displays an intuitive relationship where in
higher dataset complexities, mean model complexity tends to be smaller than in medium
ones. It is worth noting again that this complexity computation does not include the nn
classification step, which might raise perception complexity for the potential operator of
the model. Finally, by looking at Figure 4.9 two behaviors may be examined. Model
complexity rises with the overlapping of features in training data, and it decreases when
the dataset displays a high number of features per sample.

4.4.6 Algorithm as Random Forest explainer

As an extension of the original paper to accommodate the need to explainability research,
two modifications of the proposed algorithm were developed:

• One where original algorithm takes rf as input and, using additional features of
individual in ga, picks trees from the forest as base models (with tree selection)

• One where best-performing tree is fed into constituent as base model, but without
the utilisation of additional ga features – simply by iterating over all trees in the
forest and picking the best (without tree selection)

Figures 4.10 and 4.11 present performance results for both of those variations. As can
be seen, there is no decisive winner between the two proposed versions. Variation with
tree selection tends to outperform dt more often than its competitor. It also prevails
when considered in terms of bac and GMean. Version, where the best tree is simply

4.4. Experimental evaluation 73

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

2
2
.2

2

1
1
.1

1 6
4
.8

1

5
3
.7

1

3
3
.3

3

1
4
.8

1

1
.8

5

0

3
.7

5
.5

6

6
2
.9

7

8
7
.0

4 3
5
.1

9

4
2
.5

9

6
1
.1

1

t4
-l

o
w

4
4
.6

2

2
7
.6

9

6
4
.6

1

3
6
.9

2

6
7
.6

90

0

1
.5

4

1
.5

4

1
.5

4

5
5
.3

8

7
2
.3

1

3
3
.8

5

6
1
.5

4

3
0
.7

7

B
A

C

t4
-m

ed
iu

m

3
4
.1

5

3
4
.1

5 8
7
.8

3
4
.1

5

7
0
.7

3

2
1
.9

5

2
4
.3

9

0

2
4
.3

9

04
3
.9

4
1
.4

6

1
2
.2

4
1
.4

6

2
9
.2

7

t4
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

1
6
.3

6

7
.2

7

7
2
.7

3

3
8
.1

8

3
4
.5

5

2
9
.0

9

1
6
.3

6

0

2
0

5
.4

5

5
4
.5

5

7
6
.3

7 2
7
.2

7

4
1
.8

2

6
0

c2
-l

o
w

4
3
.6

4

2
9
.0

9 9
0
.9

1

4
0 7

8
.1

8

1
.8

2

1
.8

2

0

0

0

5
4
.5

4

6
9
.0

9

9
.0

9

6
0 2

1
.8

2

c2
-m

ed
iu

m

4
4

3
6 4
6

4
8 5
8

0

2

2 4

2

5
6

6
2 5
2 4
8 4
0

c2
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

1
6
.3

6

7
.2

7

7
2
.7

3

3
8
.1

8

3
4
.5

5

2
9
.0

9

1
6
.3

6

0

2
0

5
.4

5

5
4
.5

5

7
6
.3

7 2
7
.2

7

4
1
.8

2

6
0

c1
-l

o
w

4
3
.6

4

2
9
.0

9 9
0
.9

1

4
0 7

8
.1

8

1
.8

2

1
.8

2

0

0

0

5
4
.5

4

6
9
.0

9

9
.0

9

6
0 2

1
.8

2

c1
-m

ed
iu

m

4
4

3
6 4
6

4
8 5
8

0

2

2 4

2

5
6

6
2 5
2 4
8 4
0

c1
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

2
0
.3

7

9
.2

6

7
4
.0

7

3
7
.0

4

4
8
.1

5

2
2
.2

2

1
8
.5

2

0

2
0
.3

7

3
.7

5
7
.4

1

7
2
.2

2 2
5
.9

3

4
2
.5

9

4
8
.1

5

n
2
-l

o
w

2
4
.5

3

1
1
.3

2

8
1
.1

3

3
5
.8

5

5
4
.7

1

9
.4

3

0

0

0

1
.8

9

6
6
.0

4

8
8
.6

8

1
8
.8

7

6
4
.1

5

4
3
.4

n
2
-m

ed
iu

m

5
8
.4

9

5
0
.9

4

5
6
.6

5
2
.8

3

6
7
.9

2

0

1
.8

9

1
.8

9

3
.7

7 1
.8

9

4
1
.5

1

4
7
.1

7

4
1
.5

1

4
3
.4

3
0
.1

9

n
2
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

2
2
.2

2

1
2
.9

6

7
7
.7

8

5
1
.8

6

3
5
.1

9

1
2
.9

6

3
.7

0

3
.7

3
.7

6
4
.8

2

8
3
.3

4 2
2
.2

2

4
4
.4

4

6
1
.1

1

f1
-l

o
w

2
4
.5

3

1
6
.9

8 6
0
.3

7

2
8
.3 6
2
.2

7

1
8
.8

7

1
6
.9

8

1
.8

9

2
0
.7

5 3
.7

7

5
6
.6

6
6
.0

4

3
7
.7

4

5
0
.9

5

3
3
.9

6

f1
-m

ed
iu

m

5
6
.6

4
1
.5

1

7
3
.5

8

4
5
.2

8

7
3
.5

8

0

0

0

0

04
3
.4

5
8
.4

9

2
6
.4

2

5
4
.7

2

2
6
.4

2

f1
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

2
4
.0

7

2
0
.3

7 7
4
.0

7

4
0
.7

4

4
8
.1

5

7
.4

1

5
.5

6

0

3
.7 3
.76

8
.5

2

7
4
.0

7 2
5
.9

3

5
5
.5

6

4
8
.1

5

f1
v
-l

o
w

2
6
.4

2

9
.4

3 6
4
.1

5

4
3
.4

4
7
.1

7

2
4
.5

3

1
5
.0

9

1
.8

9

2
0
.7

5

3
.7

74
9
.0

6

7
5
.4

8 3
3
.9

6

3
5
.8

5

4
9
.0

6

f1
v
-m

ed
iu

m

5
2
.8

3

4
1
.5

1

7
3
.5

8

4
1
.5

1

7
5
.4

70

0

0

0

0

4
7
.1

7

5
8
.4

9

2
6
.4

2

5
8
.4

9

2
4
.5

3

f1
v
-h

ig
h

2
4
.0

7

1
1
.1

1

7
0
.3

7

5
3
.7

1

3
1
.4

8

1
2
.9

6

1
.8

5

0

1
.8

5

3
.7

6
2
.9

7

8
7
.0

4

2
9
.6

3

4
4
.4

4

6
4
.8

2

t4
-l

o
w

3
8
.4

6

1
6
.9

2 6
1
.5

4

2
7
.6

9 6
7
.6

9

0

0

1
.5

4

1
.5

4

1
.5

4

6
1
.5

4

8
3
.0

8 3
6
.9

2

7
0
.7

7 3
0
.7

7

F
1

t4
-m

ed
iu

m

3
4
.1

5

3
1
.7

1

8
7
.8

3
4
.1

5 7
3
.1

7

2
1
.9

5

2
1
.9

5

0

2
4
.3

9

04
3
.9

4
6
.3

4 1
2
.2

4
1
.4

6

2
6
.8

3

t4
-h

ig
h

1
6
.3

6

7
.2

7

7
2
.7

3

3
8
.1

8

3
6
.3

6

2
7
.2

7

1
4
.5

5

0

1
8
.1

8

3
.6

4

5
6
.3

7

7
8
.1

8 2
7
.2

7

4
3
.6

4

6
0

c2
-l

o
w

4
7
.2

7

2
5
.4

5

9
4
.5

5

4
0

8
1
.8

2

1
.8

2

1
.8

2

0

0

0

5
0
.9

1

7
2
.7

3

5
.4

5

6
0

1
8
.1

8

c2
-m

ed
iu

m

3
4

2
4 4

4

3
6 5

2

0

2

2

4

2

6
6

7
4 5

4

6
0 4

6

c2
-h

ig
h

1
6
.3

6

7
.2

7

7
2
.7

3

3
8
.1

8

3
6
.3

6

2
7
.2

7

1
4
.5

5

0

1
8
.1

8

3
.6

4

5
6
.3

7

7
8
.1

8 2
7
.2

7

4
3
.6

4

6
0

c1
-l

o
w

4
7
.2

7

2
5
.4

5

9
4
.5

5

4
0

8
1
.8

2

1
.8

2

1
.8

2

0

0

0

5
0
.9

1

7
2
.7

3

5
.4

5

6
0

1
8
.1

8

c1
-m

ed
iu

m

3
4

2
4 4

4

3
6 5

2

0

2

2

4

2

6
6

7
4 5

4

6
0 4

6

c1
-h

ig
h

2
4
.0

7

9
.2

6

7
4
.0

7

3
7
.0

4

5
1
.8

5

2
0
.3

7

1
6
.6

7

0

1
8
.5

2

1
.8

55
5
.5

6

7
4
.0

7 2
5
.9

3

4
4
.4

4

4
6
.3

n
2
-l

o
w

2
6
.4

2

7
.5

5

8
4
.9

1

3
3
.9

6

5
8
.4

9

9
.4

3

0

0

0

1
.8

9

6
4
.1

5

9
2
.4

5

1
5
.0

9

6
6
.0

4

3
9
.6

2

n
2
-m

ed
iu

m

4
7
.1

7

3
9
.6

2

5
4
.7

1

4
3
.4

6
0
.3

7

0

1
.8

9 1
.8

9

3
.7

7 1
.8

9

5
2
.8

3

5
8
.4

9

4
3
.4

5
2
.8

3

3
7
.7

4

n
2
-h

ig
h

2
9
.6

3

1
4
.8

1

7
7
.7

8

5
1
.8

5

3
8
.8

9

1
1
.1

1

1
.8

5

0

1
.8

5

1
.8

5

5
9
.2

6

8
3
.3

4

2
2
.2

2

4
6
.3

5
9
.2

6

f1
-l

o
w

2
0
.7

5

1
1
.3

2 6
0
.3

7

2
0
.7

5 5
4
.7

2

1
8
.8

7

1
6
.9

8

1
.8

9

2
0
.7

5

3
.7

76
0
.3

8

7
1
.7 3

7
.7

4

5
8
.5

4
1
.5

1

f1
-m

ed
iu

m

4
7
.1

7

3
0
.1

9 7
5
.4

7

4
1
.5

1 7
7
.3

60

0

0

0

0

5
2
.8

3

6
9
.8

1 2
4
.5

3

5
8
.4

9 2
2
.6

4

f1
-h

ig
h

2
9
.6

3

1
8
.5

2

7
4
.0

7

3
7
.0

4

4
4
.4

4

5
.5

6

3
.7

0

3
.7 1
.8

56
4
.8

1

7
7
.7

8

2
5
.9

3

5
9
.2

6

5
3
.7

1

f1
v
-l

o
w

2
2
.6

4

5
.6

6

6
4
.1

5

3
7
.7

4

4
7
.1

7

2
4
.5

3

1
5
.0

9

1
.8

9

1
8
.8

7

3
.7

7

5
2
.8

3

7
9
.2

5 3
3
.9

6

4
3
.4

4
9
.0

6

f1
v
-m

ed
iu

m

4
5
.2

8

3
2
.0

8 7
5
.4

7

3
9
.6

2 7
9
.2

50

0

0

0

0

5
4
.7

2

6
7
.9

2 2
4
.5

3

6
0
.3

8 2
0
.7

5

f1
v
-h

ig
h

b
e
tt

e
r

e
q
u
a
l

w
o
rs

e

2
2
.2

2

1
4
.8

1

7
0
.3

7

5
3
.7

1

3
5
.1

9

1
4
.8

1

1
.8

5

0

1
.8

5

5
.5

6

6
2
.9

7

8
3
.3

4

2
9
.6

3

4
4
.4

4

5
9
.2

5

t4
-l

o
w

5
3
.8

5

4
3
.0

8

6
7
.6

9

4
0 7

3
.8

4

0

0

1
.5

4

1
.5

4

1
.5

4

4
6
.1

5

5
6
.9

2

3
0
.7

7

5
8
.4

6 2
4
.6

2

G
M

ea
n

t4
-m

ed
iu

m

3
4
.1

5

3
6
.5

9

8
7
.8

3
6
.5

9 7
0
.7

3

2
1
.9

5

2
4
.3

9

0

2
4
.3

9

04
3
.9

3
9
.0

2 1
2
.2

3
9
.0

2

2
9
.2

7

t4
-h

ig
h

1
6
.3

6

7
.2

7

7
4
.5

5

3
8
.1

8

3
4
.5

5

2
9
.0

9

1
6
.3

6

0

1
8
.1

8

5
.4

5

5
4
.5

5

7
6
.3

7 2
5
.4

5

4
3
.6

4

6
0

c2
-l

o
w

4
3
.6

4

3
4
.5

5

9
6
.3

6

4
1
.8

2 8
5
.4

5

1
.8

2

1
.8

2

0

0

0

5
4
.5

4

6
3
.6

3

3
.6

4

5
8
.1

8 1
4
.5

5

c2
-m

ed
iu

m

5
6

5
6

4
8 5
2 6
0

0 2

2

4

2

4
4

4
2

5
0 4
4 3
8

c2
-h

ig
h

1
6
.3

6

7
.2

7

7
4
.5

5

3
8
.1

8

3
4
.5

5

2
9
.0

9

1
6
.3

6

0

1
8
.1

8

5
.4

5

5
4
.5

5

7
6
.3

7 2
5
.4

5

4
3
.6

4

6
0

c1
-l

o
w

4
3
.6

4

3
4
.5

5

9
6
.3

6

4
1
.8

2 8
5
.4

5

1
.8

2

1
.8

2

0

0

0

5
4
.5

4

6
3
.6

3

3
.6

4

5
8
.1

8 1
4
.5

5

c1
-m

ed
iu

m

5
6

5
6

4
8 5
2 6
0

0 2

2

4

2

4
4

4
2

5
0 4
4 3
8

c1
-h

ig
h

2
0
.3

7

9
.2

6

7
4
.0

7

3
7
.0

4

4
8
.1

5

2
2
.2

2

1
8
.5

2

0

1
8
.5

2

3
.7

5
7
.4

1

7
2
.2

2 2
5
.9

3

4
4
.4

4

4
8
.1

5

n
2
-l

o
w

2
8
.3

2
0
.7

5

8
8
.6

8

3
7
.7

4

6
2
.2

6

9
.4

3

0

0

0

1
.8

9

6
2
.2

7

7
9
.2

5

1
1
.3

2

6
2
.2

6

3
5
.8

5

n
2
-m

ed
iu

m

6
6
.0

4

6
6
.0

3

5
8
.4

9

5
6
.6

1

6
9
.8

1

0

1
.8

9

1
.8

9

3
.7

7 1
.8

9

3
3
.9

6

3
2
.0

8

3
9
.6

2

3
9
.6

2

2
8
.3

n
2
-h

ig
h

2
0
.3

7

1
2
.9

6

8
1
.4

8

5
1
.8

5

3
5
.1

9

1
2
.9

6

3
.7

0

1
.8

5

3
.7

6
6
.6

7

8
3
.3

4

1
8
.5

2

4
6
.3

6
1
.1

1

f1
-l

o
w

3
0
.1

9

2
4
.5

3 6
0
.3

7

3
0
.1

9 6
4
.1

5

1
8
.8

7

1
6
.9

8

1
.8

9

2
0
.7

5

3
.7

7

5
0
.9

4

5
8
.4

9

3
7
.7

4

4
9
.0

6

3
2
.0

8

f1
-m

ed
iu

m

6
4
.1

5

5
8
.4

9

7
9
.2

5

4
9
.0

6

8
1
.1

3

0

0

0

0

0

3
5
.8

5

4
1
.5

1

2
0
.7

5

5
0
.9

4

1
8
.8

7

f1
-h

ig
h

2
2
.2

2

2
2
.2

2

7
5
.9

3

4
0
.7

4

4
8
.1

5

7
.4

1

5
.5

6

0

3
.7 3

.77
0
.3

7

7
2
.2

2 2
4
.0

7

5
5
.5

6

4
8
.1

5

f1
v
-l

o
w

3
0
.1

9

1
5
.0

9 6
6
.0

3

4
3
.4

4
9
.0

62
4
.5

3

1
5
.0

9

1
.8

9

1
8
.8

7

3
.7

7

4
5
.2

8

6
9
.8

2 3
2
.0

8

3
7
.7

4

4
7
.1

7

f1
v
-m

ed
iu

m

6
2
.2

6

5
8
.4

9

7
9
.2

5

4
7
.1

7 8
3
.0

2

0 0

0

0

0

3
7
.7

4

4
1
.5

1

2
0
.7

5

5
2
.8

3 1
6
.9

8

f1
v
-h

ig
h

F
ig

ur
e

4.
6:

O
ve

ra
ll

pe
rc

en
ta

ge
of

w
in

s,
ti

es
an

d
lo

ss
es

co
un

te
d

ov
er

al
l

da
ta

se
ts

fo
r

ba
c
,
f1

an
d

G
M

ea
n

m
et

ri
cs

in
do

m
ai

n
of

da
ta

se
t

co
m

pl
ex

ity
m

et
ri

cs
.

V
er

ti
ca

ld
as

he
d

lin
es

in
di

ca
te

si
gn

-t
es

t
va

lu
es

.

74

low medium high

0

100

200

300

400

500

M
o
d
el

co
m

p
le

x
it

y

f4

low medium high

t4

low medium high

f1v

low medium high

lsc

optimal-centroids

RF

DT

RuleFit

OneR

Greedy

Figure 4.7: Changes in internal model complexities in domain of dataset complexity.

low medium high
0

20

40

M
o
d
el

co
m

p
le

x
it

y

f4

low medium high

t4

low medium high

n2

low medium high

l3

optimal-centroids

DT

RuleFit

OneR

Greedy

Figure 4.8: Changes in internal model complexities in domain of dataset complexity
without rf.

4.5. Summary and lessons learned 75

f4 ls
c f3 t1 f1
v

fe
a
tu

re
s

co
u

n
t

c2 c1 t2 t3

Complexity metric

−1.0

−0.5

0.0

0.5

1.0

C
o
rr

el
a
ti

o
n

to
m

o
d

el
co

m
p

le
x
it

y
0.47 0.45 0.45 0.44 0.44

-0.15 -0.19 -0.23
-0.33 -0.37

Figure 4.9: Correlation of internal model complexity to dataset complexities.

picked, on the other hand, outperforms the first one when it comes to the number of wins
in f1 scoring.

4.5 Summary and lessons learned

In this chapter novel classification model creation algorithm was presented. It can be
considered an ensemble model, where designated competence areas are classified by a
specified model. The predictions are assigned to specified models by picking the nearest
neighbour.

The algorithm was examined in a variety of different areas: by comparison to other
interpretable models and rf, by validating its performance in different dataset complex-
ities. On top of that, two variations of algorithms were presented, which serve as rf
explanation methods.

The algorithm is parameterized by the amount of subspaces into which the decision
space is split. It displays a decay of performance as the number of subspaces increases.
As more subspaces are present, smaller are the decision areas for specific models, and
therefore smaller is the amount of training samples which are being picked for training of
base models. This may lead to decreased predictive capabilities as some patterns might
be underrepresented, as they might span across multiple subspaces and therefore being
fed to multiple base algorithms.

Overall performance-wise, the model was able to outperform the strongest out of com-
petitors – rf – in over 30% of cases when it comes to GMean score, and as low as 18%,
when it comes to bac. Further examinations have shown that model performs over-
whelmingly well when presented data with high complexity measures. Specifically, when
dataset is characterized by high overlapping of features, small ratio of distances between
samples inter- and intra- classes or high imbalance. In those cases, algorithm was able to
stable outperform almost all models in over 50% of cases GMean wise. When presented
with a dataset of low complexity - especially when the ratio of the pca dimensions to
the original dataset dimensions is small – model falls short in performance. Additionally,
the state-of-the-art cart algorithm was outperformed in high and medium complexities

76

DT

RF

ONER

RULEFIT

GREEDY

43.12

24.38

76.25

50.62

64.38

11.25

9.38

1.88

7.5

4.38

45.62

66.25

21.88

41.88

31.25

BAC

46.25

18.75

76.88

49.38

66.88

10.62

8.75

1.88

6.25

3.75

43.12

72.5

21.25

44.38

29.38

F1

46.25

28.75

77.5

50

66.88

11.25

9.38

1.88

6.88

4.38

42.5

61.88

20.62

43.12

28.75

GMean

better equal worse

Figure 4.10: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics for algorithm explainer modification with tree selection. Vertical
dashed lines indicate sign-test values.

DT

RF

ONER

RULEFIT

GREEDY

41.88

23.12

74.38

51.88

65

12.5

7.5

5

4.38

8.12

45.62

69.38

20.62

43.75

26.88

BAC

43.12

20.62

74.38

48.75

66.88

9.38

6.88

3.75

4.38

5

47.5

72.5

21.88

46.88

28.12

F1

42.5

26.88

77.5

48.75

66.88

12.5

7.5

5

4.38

8.12

45

65.62

17.5

46.88

25

GMean

better equal worse

Figure 4.11: Overall percentage of wins, ties and losses counted over all datasets for
bac, f1 and GMean metrics for algorithm explainer modification without tree selection.
Vertical dashed lines indicate sign-test values.

4.5. Summary and lessons learned 77

steadily in roughly 50% of cases.
Finally, algorithm’s complexity was verified. It was shown that inherent model com-

plexity, excluding the knn step, goes on par with other models excluding rf. Complexity
was usually lower than this of RuleFit algorithm and higher than this of dt.

Chapter 5

Application of the complexity measure
in interpretable model training

5.1 Introduction and related works

In the previous chapters, introduced methods utilised the notion of splitting decision
space into specialized parts covered by specific models. While the first method’s outcome
could, in fact, be interpreted as a set of rules, it was complex in terms of computation.
The second method, while performing better out of the box, it used the nearest centroid
to assign the samples to specific constituents, which may be interpreted as impeding
explainability [114].

In this chapter, another novel method, based on observations made in previous devel-
opments, is introduced. By utilising data complexity metrics, one is able to quantify how
complex a given data distribution is given some specific criteria. The overview of widely
used measures and their characteristics have been reviewed in section (2.3). Measures of
complexity are functions applied over labelled datasets used to estimate the difficulty of a
given classification problem. Computing such value allows us to discriminate which classi-
fication method will perform better or worse [149] and allows a better understanding of the
given dataset. Based on such metrics, improved classification methods are developed, for
example, by integrating information about instance-level complexity to boost the learning
process [150]. The learner for the interpretable model is introduced by utilising such met-
rics. The next section introduces its mechanics and is followed by experiments proving its
viability in both learning new intelligible models, as well as explaining a black-box one.

5.2 Decision space splitting based on complexity

Dataset complexity metrics are widely used for so called meta-learning [50], [51]. It is
process of selecting particular classifier based on characteristics of specific problem. It
is closely related with [151], which automates various aspect of solving machine learning
problem, such as feature engineering, aforementioned model search, model compression
and hyper-parameter tuning.

Most of the metrics mentioned here [52] may be somehow standardized to provide
a value between [0, 1], where 1 means that it is complex, according to a given metric,
problem. Based on that notion, one could calculate the metrics for a specific dataset and,
based on its output, figure out that either a very complex or very simple model could
suffice for solving the issue. Visualization of the behaviour of one of the linearity metrics

80

−20 −10 0 10 20
−20

−10

0

10

20
l2=0.0

−20 −10 0 10 20

l2=0.17

−20 −10 0 10 20

l2=0.23

Figure 5.1: Visualisation of linearity-based complexity metric changes with dataset.
Dataset was generated using make_blobs from scikit-learn with standard deviation 3,
5 and 7.

can be found in Figure (5.1). Therefore, one can see that finding a split that minimizes
complexities in both resulting subspaces could be beneficial in terms of simplifying prob-
lems for potential learners. Having this assumption, an algorithm was created for finding
an optimal split that would have learners operate on easier, in terms of given metric,
classification task. Such an idea could be classified as an example of meta-learning and
static classifier selection [51].

As an input parameters algorithm accepts complexity metric, dataset and base clas-
sifier, which will be used as a predictor after the splits are done. The algorithm works
recursively in the sense that after splitting the decision space into two parts, it will pro-
ceed further, splitting the outcome parts until stop criteria are reached. Therefore, the
algorithm accepts two additional parameters indicating whether the split will process fur-
ther: a minimal number of samples in the resulting split and a minimal percentage of
samples in each of the halves. This way, the operator can control the stop criteria of
the algorithm, thus controlling overfitting and the level of generalization of subsequent
models.

The procedure works as follows. After being presented with training dataset LS,
the algorithm considers every sample x ∈ LS and every one of d features x =[
x1, x2, ..., x(l), ..., x(d)

]T . In order to find the best split possible given the selected com-
plexity metric, the algorithm iterates over features, and for every datapoint value for this
feature, it considers it at the potential split. For the given the n-th sample and the i-th
feature, it does so by calculating the complexities of data distributions remaining at both
sides of the split. As a result, every single feature value is assigned two values:

LSn,i
left = {x ∈ LS|x

i < xi
n} (5.1)

LSn,i
right = {x ∈ LS|x

i ≥ xi
n} (5.2)

Then, such values are averaged and saved as this split’s estimate. So, overall value of
split for n-th sample and i-th feature is defined as:

complexity(xi
n) =

cm(LSn,i
left) + cm(LSn,li

right)

2
(5.3)

After iterating over all samples and features, the split that offers the lowest average
complexity is picked. Such process is then recursively repeated for samples defined by

5.3. Computational complexity analysis 81

left and right split until stop criteria are reached. Such stop criteria can be defined by a
minimal number of samples in a split or by the minimal percentage of samples in created
splits. This can be understood as a variation of dt pruning, as having a bigger number
will lead to less amount of splits in total, having a potentially less complex model. The
whole learning procedure is described in Algorithm 6.

Algorithm 6 Procedure of training model
Input:

set of training samples LS
complexity metric cm
minimal number of samples in split ms

minimal percentage of samples in split ps
base classifier Ψ

Output:
set of predicates

1: procedure Train(LS)
2: RS ← Split(LS, ∅)
3: Ψ̂ ← ∅
4: for all r ∈ RS do
5: LSr ← GetSamples(r, LS)
6: if HasSingleClass(LSr) then
7: Ψ̂ ← SingleClassClassifier(LSr)
8: else
9: Ψ̂ ← Ψ(LSr)

10: end if
11: end for
12: return Ψ̂
13: end procedure

5.3 Computational complexity analysis
In this section estimation of computational complexity of the algorithm is presented. Let
LS denote the training dataset. As the number of splits, and therefore recursions, is
dependent on min_samples_split and min_percentage_split parameters, and ultimately,
every sample can have its own subspace, there is maximal N number of splits possible.
Additionally, let’s denote the number of features as d. Then, in each subspace, the base
model will be trained. Let’s denote its training complexity as O(train). Additionally,
the complexity metric used as splitting criteria is also attributed to some computational
effort. Lets denote it by O(complexityMetric). In each step, for each sample, there is a
split calculated and the left and right sides of it are considered - thus, a factor of 2, which
is reduced in final calculation. So, computing candidates of a single split for every feature
has the complexity of

O(dNO(complexityMetric)) (5.4)

Then, picking the best value of split would be just finding the maximum array element,
which would be O(dN). In the worst case, the algorithm would produce a single rule for
a single training data sample, therefore iterating N − 1. Given this scenario, no classifier
training would occur, as those subspaces would be homogeneous. Assuming a scenario

82

Algorithm 7 Procedure of recursively splitting subspaces
Input:

current set of predicates PS
set of training samples LS
complexity metric cm
minimal number of samples in split ms

minimal percentage of samples in split ps
Output:

set of predicates
1: procedure Split(LS, PS)
2: splitsWithScores ← ∅
3: for all x ∈ LS do
4: for all xi ∈ x do
5: LS left, LSright ← Split(xi)
6: if not ReachedEndConditions(LS left, LSright, ms, ps) then
7: cmleft ← cm(LS left)
8: cmright ← cm(LSright)
9: splitsWithScores ← (xi, avg(cmleft,cmright))

10: end if
11: end for
12: end for
13: if size(splitsWithScores) = 0 then
14: return PS
15: end if
16: LSleft, LSright, predicate ← GetBest(splitsWithScores)
17: PS ← Add(PS, predicate)
18: return Split(LSleft,PS) ∪ Split(LSright,PS)
19: end procedure

where the split occurs in a way where in every subspace there are two samples of different
classes, training can occur N

2
times. Therefore, having an assumption that training single

base model is more complex than iterating over dataset, total worst-case complexity is:

O(dN2O(complexityMetric) +
NO(trainbase)

2
) (5.5)

where O(trainbase) is the complexity of building base classifier. As for prediction, having
the assumption that predicting using a base model is more complex than reading constant
class assigned to a given subspace, one would need to iterate over all rules and check
their predicates. Assuming that model produced r rules, where most complex rule has
p predicates and, that base classifier prediction complexity is O(predict), the prediction
complexity for single sample is:

O(rp+O(predict)) (5.6)

5.4 Experimental evaluation
To analyse the proposed method in terms of applicability for classification and explanation
of complex models, the following research questions were raised:

5.4. Experimental evaluation 83

0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10 0 2 4 6 8 10

Figure 5.2: Visualisation of learning procedure using quad-split.

rq1 What is the impact of the selected complexity measure used for subspace splitting
and base algorithm parameters on model performance?

rq2 How does algorithm’s bac, f1 and GMean compare overall to other selected models?

rq3 What is the influence of dataset complexity on model performance?

rq4 How does the dataset complexity influence the final model’s complexity in compar-
ison to other algorithms?

rq5 How does the model perform when used as an explainer for the Random Forest
classifier?

5.4.1 Setup

In this section approach to experimental evaluation and environment details are described.

Choice of datasets A series of experiments were conducted across selected binary clas-
sification datasets. As the source for those Knowledge Extraction based on Evolutionary
Learning repository was used [97]. Datasets were pre-processed beforehand. Labels were
encoded into integers. Finally, to reasonably limit scope of experiments, 16 datasets were
randomly chosen. Although there is no consensus about a minimal amount of datasets
when comparing classification algorithms, such an amount is widely considered by the
research community as standard and good practice. Details of used datasets are in Table
2.1. Each dataset was shuffled and split according to the 5x2 cv experimental protocol.
Reasons behind such choice were described in chapter 2.

84

Complexity discretization In order to be able to raise conclusions about how a given
algorithm performs under certain dataset properties, complexity metrics were computed
for every training fold. Complexity periods were calculated as follows. First, every com-
plexity metric was calculated for every used dataset training fold. Then, those complex-
ities were discretized using a quantile-based approach into equal-sized buckets. Three
discrete values were used: low, medium, high. Such quantization resulted in each exper-
iment training instance having assigned multiple discrete values equal to the amount of
calculated complexity metrics. To get a final estimation of how complex the data fold is,
the mode of those discrete values was taken. In the case of draws, a higher complexity
value was used. This resulted in every experiment having one complexity label assigned.
Specific, after-discretization bin values may be found in Table 2.2.

Base algorithms For comparison, state-of-the-art rf with dt in cart implementation
[109] were used. For comparison, three other interpretable models were used: RuleFit ,
Greedy and OneR. Their internals were described in previous chapters.

Measuring models complexity In order to objectively compare trained model com-
plexities, they needed to be quantified into numerical values. For the sake of this experi-
ment, the pattern of assigning numerical values to models present in Table 5.1 was used.
In the case of RuleFit the linear integration step was excluded, and so was in the case of
rf, as there is no standard way to quantify their complexities.

Table 5.1: Internal models complexity computation details

model complexity formula
Quad Split

∑trees +# of rules
rf

∑trees # of leaves
dt # of leaves
OneR # of rules
RuleFit # of rules
Greedy # of rules

Implementation and reproducibility. The described method was implemented using
Python 3.8 programming language. scikit-learn[43] implementation of dt and rf base
models was used along with iModels [110] implementation of RuleFit , Greedy and OneR.
Slightly modified in terms of performance complexity metric implementation based on
Problexity library [58] was used. Experiments were run using Apple MacBook Pro M1
Max with 32GB RAM. Following the trend of research replicability, the method’s source
code has been published in the online repository1.

Model parameters selection. The subject and base algorithms were pre-trained on
a subset of datasets to choose parameters from. Four datasets for pre-training procedure
were randomly selected. Grid Search method[111] was used for finding the best parameter
values. Special care was taken for alpha parameters of both cart and RuleFit algorithms.
As it follows particular pattern, exponential distribution was used for sampling those
with scale of 0.1. Then, best parameters for each dataset were taken and average for

1https://github.com/bgulowaty/quad-split

5.4. Experimental evaluation 85

continuous or mode for discrete parameters was taken as final set. dt parameters were
propagated to rfs’ base models. For consistency, the proposed algorithm also used pre-
trained decision tree parameters for the base classifiers. For consistency, the proposed
algorithm also used pre-trained decision tree parameters for the base classifiers. The pre-
training procedure was also applied to choosing the genetic algorithm’s population size
and number of generations. Results of the procedure can be found in Table 5.2. What is
significant is that beta-binominal distribution was used for sampling the "min_samples"
parameter and uniform distribution for split percentage. The selection of complexity
metric user for splitting subspaces was performed as follows. To consider the algorithm
applicable, it is important to consider its internal computational complexity and speed
of execution. Therefore, a subset of randomly chosen datasets was chosen, and then each
dataset was split according to the 5x2 cv procedure, giving 10 folds in total. Then, on each
fold, each complexity metric was calculated, and its time execution time was measured.
Machine specs on which it was performed were as follows: Executions were not parallelized
in any way, meaning each metric was computed sequentially in Python using one core and
thread. Given results were averaged, giving each metric execution time. Then, 6 fastest
metrics from each group were selected for experiment and evaluation purposes, being: f2,
t4, c1, n3, l2 and density.

In the following sections, results leading to answering research questions are presented.

5.4.2 What is the impact of selected complexity measures used
for subspace splitting and base algorithm parameters on
model performance?

Figure 5.3 presents classification metric measures in domain of complexity metric param-
eter used for subspacing. Mean test metric values were aggregated over all experiments
for given splitting criteria. As mentioned before, potential complexity metric candidates
were chosen based on their speed and complexity. It may be seen that there is no major
difference when it comes to parametrizing models with different splitting criteria. All
metric values, as well as their variances, are distributed the same way. Given this fact, for
subsequent experiment evaluation only one base complexity measure is selected, which is
density.

Figure 5.4 presents the aforementioned equivalent for the base classification algorithm.
Three basic models were used, which are dt, 3-nn and svc. It is shown that among the
chosen, the best performing was the dt. It is, therefore, chosen as a parameter for
evaluation in further experiments.

5.4.3 How does algorithm’s bac, f1 score and GMean compare
overall to other selected models?

To validate how the proposed model compares to others, let’s take a look at Figure 5.5,
which presents the number of wins, ties and losses in comparison to other algorithms. The
subspace splitting approach mostly resembles the decision tree classification idea. When it
comes to comparison with the cart algorithm, model can be found to be better in almost
21% of cases bac wise. In terms of f1 and GMean, dt was outperformed consequently
20% and 27% of times.

Most complex and strongest in terms of generalizing abilities of the opponents, rf,
was only outperformed in terms of bac in 12.5%, but 18.75% in terms of GMean. Other

86

Table 5.2: Pre-train results for quad-split method.

Algorithm Parameter Value Distribution Iterations
Quad Split min_samples 28 betabinom(65, 2.578, 5.106) 1000

min_split_percentage 0.183 uniform(0.01, 0.49)
dt ccp_alpha 0.0115 exponential(0.1) 10000

criterion gini
max_features None

rf size 32 range(1,100) 1000
ccp_alpha 0.0115
criterion gini
max_features None

OneR max_depth 27 1000
criterion gini

Greedy max_depth 3 range(1,100) 1000
criterion gini

RuleFit alpha 0.1983 exponential(0.1) 1000
size 36 range(1,100)
tree_size 4 range(1,100)

c1

d
en

si
ty f2 l2 n
3 t4

Complexity measure

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

v
a
lu

e

0.704 0.712 0.710 0.712 0.710 0.709

0.744 0.751 0.750 0.751 0.749 0.749

0.682 0.691 0.688 0.689 0.689 0.687

BAC

F1

GMean

Figure 5.3: Comparison of different complexity metrics used as splitting parameter and
their performance. The numbers above the bars indicate metric values.

5.4. Experimental evaluation 87

d
t

k
n

n

sv
m

Base classifier

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

v
a
lu

e

0.725
0.712

0.691

0.759 0.760

0.7280.712
0.677

0.673

BAC

F1

GMean

Figure 5.4: Comparison of different used base models and their performance. The numbers
above the bars indicate metric values.

interpretable models, such as OneR and Greedy were either completely outperformed –
as in case with the latter – or almost equalized when it comes to bac.

5.4.4 What is the influence of dataset complexity on model per-
formance?

By taking a look at Figure 5.6, one may see that dataset complexity plays an important
role in Quad Split’s application area. While rf was hardly outperformed in the general
view, it is visible that it is only outperformed when dataset complexity is low. In this case,
the proposed model is better in 11% of cases and equalizes rf accuracy in 11% of cases.
The model showed rather a stable amount of wins against OneR. In general, it may be
concluded that it is best to apply the model in either big or low-complexity datasets.

To validate which complexities were most predictive when it comes to the number of
the model’s wins against other algorithms, let’s take a look at Figure 5.7. It presents
the distribution of wins variance against rf and rf algorithms. Based on that, one may
conclude that there are some complexity metrics which indicate whether quad-split will
be performing better than other algorithms. To analyse further behaviour in different
categories of those complexities, the top eight with the highest variance were selected,
which are: T3, T2, T1, N3, T4, L3, F2, and L1.

Figure 5.8 shows different metrics performance for different categories dataset-wise
complexities. It can be noticed that the proposed method performs exceedingly well with
high complexities. In three cases of high complexity, rf is outperformed in more than
30% of the cases, while dt is outperformed in more than half the cases the same amount
of times when it comes to GMean. Promising results are also shown in medium values of
T3 and N3 complexities. Method falls short when the dataset is characterized by low to
moderate values of feature-based metrics, as well as linearity metrics.

88

DT

RF

ONER

RULEFIT

GREEDY

21.88

12.5

63.75

21.25

52.5

0.62

0.62

0.62

0.62

0

77.5

86.88

35.62

78.12

47.5

BAC

20

7.5

64.38

19.38

53.75

0.62

0

0

0.62

0

79.38

92.5

35.62

80

46.25

F1

27.5

18.75

67.5

25.62

56.25

0.62

0.62

0.62

0.62

0

71.88

80.62

31.87

73.75

43.75

GMean

better equal worse

Figure 5.5: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics. Vertical dashed lines indicate sign-test values.

5.4.5 How does model perform when used as explainer for Ran-
dom Forest classifier?

In order to adapt the algorithm to be able to act as an explainer of the rf model, two
approaches are proposed. From now, they will be referenced to as v1 and v2.

• v1 - the algorithm is splitting the decision space as originally designed, but instead
of training the base classifier, it iterates through rf’s trees and picks the best in
terms of accuracy for the given space.

• v2 - the algorithm is trained as usual, using dt as the base model. It uses rf’s
predictions as training labels.

Results for the first approach may be seen in Figure 5.9, while results for the version
with just training data utilisation are in Figure 5.10. It can be seen that the tree-picking
method outperforms the second version in almost every aspect. In high and low complex-
ities, bac and GMean wise first version beats rf twice as much, and dt roughly 15%
more often. The only lacking area is the medium complexity datasets’ f1 score, where
the second approach slightly outperforms.

5.4.6 How does the dataset complexity influence the final model’s
complexity in comparison to other algorithms?

To see how the model’s complexity changes in the domain of dataset complexity, the four
most influential dataset complexities were calculated. The calculation assumed ranking
each complexity by how much all model complexities change within it – absolute change
values were summed. This allowed narrowing examination to f4, lsc, dataset size and t2.
The change plots for those metrics are present in Figures 5.11 and 5.12. rf, excluding even
its integration step, is the most complex. It is followed by quad-split, which usually has
a tendency to follow common sense’s expected behaviour, where model complexity rises
along with dataset complexity. This is not true for t2 metric, where – for its high values –
both RuleFit and Quad Split complexities seem to decline. Out of a more complex model,
dt displays one of the lower complexities. Additionally, Greedy and OneR algorithms
display the lowest internal complexity.

5.4. Experimental evaluation 89

DT

RF

ONER

RULEFIT

GREEDY

18.33

15

56.67

28.33

51.67

1.67

1.67

1.67

1.67

0

80

83.33

41.67

70

48.33

Complexity low

BAC

18.37

10.2

48.98

18.37

46.94

0

0

0

0

0

81.63

89.8

51.02

81.63

53.06

Complexity medium

BAC

29.41

11.76

86.27

15.69

58.82

0

0

0

0

0

70.59

88.24

13.73

84.31

41.18

Complexity high

BAC

DT

RF

ONER

RULEFIT

GREEDY

21.67

15

60

28.33

55

1.67

0

0

1.67

0

76.67

85

40

70

45

F1

14.29

2.04

46.94

10.2

44.9

0

0

0

0

0

85.71

97.96

53.06

89.8

55.1

F1

23.53

3.92

86.27

17.65

60.78

0

0

0

0

0

76.47

96.08

13.73

82.35

39.22

F1

DT

RF

ONER

RULEFIT

GREEDY

18.33

18.33

56.67

28.33

51.67

1.67

1.67

1.67

1.67

0

80

80

41.67

70

48.33

GMean

28.57

26.53

53.06

32.65

53.06

0

0

0

0

0

71.43

73.47

46.94

67.35

46.94

GMean

37.25

11.76

94.12

15.69

64.71

0

0

0

0

0

62.75

88.24

5.88

84.31

35.29

GMean

better equal worse

Figure 5.6: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics in domain of different dataset complexities. Vertical dashed lines
indicate sign-test values.

To examine what influences the complexity of Quad Split model, let’s take a look at
Figures 5.14 and 5.13. Five of the highest and lowest correlations were calculated for
dataset complexity measures for a number of rules in the model and the proportion of
complex classifiers to dummy ones. Simple classifiers are those subspaces/rules where, in
the end, samples were homogeneous. Therefore, there was no need for training of the base
classifier. Instead – class label was assigned to such rule. The proportion was calculated
as:

of complex models
of complex models + no of simple models

=
of complex models

of rules
(5.7)

.
The model tends to have more complex classifiers as neighbourhood and feature-based

metrics have higher values. What is also noticeable is that when the number of rules
decreases, so does the number of complex models, which is counter-intuitive – one might
suspect that when space was split fewer times, it would require more complex classifiers
to be present in those. Additionally, the smaller the dataset, the more dummy classifiers
will there be.

When it comes to a number of rules, the most influential predictor of those is the size
of the dataset – it is natural that the bigger the dataset is, it might require more rules
to be covered. Additionally, high values of complexity measures indicate more rules and

90

f1v

t4

f1

n3

l3

n2

n1

l2

n4

c2

c1

lsc l1
f4

f3

hubs

density

size

t1

clsCoef

t2

f2
features count
t3

Figure 5.7: Weighted variance of wins against rf and dt for Quad Split algorithm within
discretized complexities for dataset complexity metrics.

lower dimensionality datasets tend to have fewer rules.

5.5 Summary and lessons learned
In this chapter, a novel algorithm based on recursive decision space splitting was presented.
Three variations of the method were examined: one purely for classification and two others
acting as explanator of rf classifier. The output model has the structure of a rules list
where each rule points to a trained, application-specific transparent model.

The model is parameterized by a complexity metric that is used to build a rule list
via splitting subspaces. A set of fastest-performing complexity measures was evaluated
as potential model parameters. Experiments have shown that there are small differences
when it comes to picking splitting metrics. Average bac, f1 score and GMean were
roughly similar, with a slight edge for density metric. The algorithm allows using any
function that takes a set of training data instances as splitting criteria, which allows
fine-tuning it according to application criteria.

Another parameter that can be modified is the base classifier, which is trained with
samples designated by rules. It allows fine-tuning it for tasks where high interpretability
and explainability are needed. During experiments, the performance of three base classi-
fiers was evaluated. Out of 3-nn, svc and dt algorithms, dt performed best. Therefore,
it was used as a base for further evaluation.

Experiments were designed and conducted to validate the performance of the proposed
algorithm in comparison to other commonly used interpretable algorithms as well as rf.
Different dataset complexity circumstances were considered. The proposed algorithm
finds its application areas in scenarios where:

• data in which the overall distance between examples of different classes is smaller

5.5. Summary and lessons learned 91

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

1
4
.8

1

1
4
.8

1 7
5
.9

3

2
5
.9

3

4
8
.1

5

1
.8

5

0

0

0

08
3
.3

4

8
5
.1

9 2
4
.0

7

7
4
.0

7

5
1
.8

5

f1
v
-l

o
w

1
5
.0

9

3
.7

7 4
5
.2

8

1
5
.0

9

3
7
.7

4

0

1
.8

9

1
.8

9

1
.8

9

08
4
.9

1

9
4
.3

4

5
2
.8

3

8
3
.0

2

6
2
.2

6

B
A

C

f1
v
-m

ed
iu

m

3
5
.8

5

1
8
.8

7 6
9
.8

1

2
2
.6

4 7
1
.70

0

0

0

0

6
4
.1

5

8
1
.1

3 3
0
.1

9

7
7
.3

6 2
8
.3

f1
v
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

9
.2

6

1
1
.1

1

5
1
.8

5

1
8
.5

2

2
4
.0

7

1
.8

5

0

0

0 0

8
8
.8

9

8
8
.8

9

4
8
.1

5

8
1
.4

8

7
5
.9

3

t4
-l

o
w

3
6
.9

2

2
0

6
0

3
2
.3

1

6
6
.1

5

0

1
.5

4

1
.5

4

1
.5

4

0

6
3
.0

8

7
8
.4

6

3
8
.4

6

6
6
.1

5

3
3
.8

5

t4
-m

ed
iu

m

1
4
.6

3

2
.4

4

8
5
.3

7

7
.3

2

6
8
.2

9

0

0

0

0

0

8
5
.3

7

9
7
.5

6

1
4
.6

3

9
2
.6

8 3
1
.7

1

t4
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

9
.2

6

5
.5

6

7
2
.2

2

2
0
.3

7

2
5
.9

3

0 0

0

0 0

9
0
.7

4

9
4
.4

4 2
7
.7

8

7
9
.6

3

7
4
.0

7

f1
-l

o
w

1
5
.0

9

1
1
.3

2

4
5
.2

8

1
5
.0

9 5
8
.4

9

1
.8

9

1
.8

9

1
.8

9

1
.8

9

0

8
3
.0

2

8
6
.7

9

5
2
.8

3

8
3
.0

2

4
1
.5

1

f1
-m

ed
iu

m

4
1
.5

1

2
0
.7

5 7
3
.5

8

2
8
.3 7

3
.5

8

0

0

0

0

0

5
8
.4

9

7
9
.2

5 2
6
.4

2

7
1
.7 2

6
.4

2

f1
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

1
8
.5

2

1
2
.9

6 7
2
.2

2

2
4
.0

7

6
4
.8

1

0 0

0

0

0

8
1
.4

8

8
7
.0

4 2
7
.7

8

7
5
.9

3

3
5
.1

9

n
3
-l

o
w

3
0
.1

9

1
6
.9

8

5
0
.9

4

2
0
.7

5 5
6
.6

1
.8

9

1
.8

9

1
.8

9

1
.8

9

06
7
.9

2

8
1
.1

3

4
7
.1

7

7
7
.3

6

4
3
.4

n
3
-m

ed
iu

m

1
6
.9

8

7
.5

5

6
7
.9

2

1
8
.8

7

3
5
.8

5

0

0

0

0

0

8
3
.0

2

9
2
.4

5 3
2
.0

8

8
1
.1

3

6
4
.1

5

n
3
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

1
1
.1

1

1
2
.9

6 7
0
.3

7

2
5
.9

3

5
9
.2

6

1
.8

5

1
.8

5

1
.8

5

0

0

8
7
.0

4

8
5
.1

9 2
7
.7

8

7
4
.0

7

4
0
.7

4

l3
-l

o
w

1
6
.9

8

1
1
.3

2 5
4
.7

2

1
8
.8

7

3
3
.9

6

0 0

0

1
.8

9 0

8
3
.0

2

8
8
.6

8 4
5
.2

8

7
9
.2

4

6
6
.0

4

l3
-m

ed
iu

m

3
7
.7

4

1
3
.2

1 6
6
.0

4

1
8
.8

7 6
4
.1

5

0

0

0

0

0

6
2
.2

6

8
6
.7

9 3
3
.9

6

8
1
.1

3 3
5
.8

5

l3
-h

ig
h

D
T

R
F

O
N

E
R

R
U

L
E

F
IT

G
R

E
E

D
Y

7
.4

1

1
.8

5 5
7
.4

1

7
.4

1

3
8
.8

9

0 0

0

0

09
2
.5

9

9
8
.1

5 4
2
.5

9

9
2
.5

9

6
1
.1

1

n
2
-l

o
w

1
8
.8

7

5
.6

6

7
9
.2

5

1
5
.0

9

5
2
.8

3

0

0

0

0

0

8
1
.1

3

9
4
.3

4

2
0
.7

5

8
4
.9

1

4
7
.1

7

n
2
-m

ed
iu

m

3
9
.6

2

3
0
.1

9

5
4
.7

1

4
1
.5

1

6
6
.0

4

1
.8

9

1
.8

9 1
.8

9

1
.8

9

0

5
8
.4

9

6
7
.9

2

4
3
.4

5
6
.6

3
3
.9

6

n
2
-h

ig
h

2
0
.3

7

1
2
.9

6

7
5
.9

3

2
9
.6

3

5
1
.8

5

1
.8

5

0

0

0

07
7
.7

8

8
7
.0

4

2
4
.0

7

7
0
.3

7

4
8
.1

5

f1
v
-l

o
w

1
3
.2

1

5
.6

6 4
9
.0

6

1
3
.2

1

3
5
.8

5

0

0

0

1
.8

9

0

8
6
.7

9

9
4
.3

4 5
0
.9

4

8
4
.9 6
4
.1

5

F
1

f1
v
-m

ed
iu

m

2
6
.4

2

3
.7

7

6
7
.9

2

1
5
.0

9

7
3
.5

8

0

0

0

0

0

7
3
.5

8

9
6
.2

3

3
2
.0

8

8
4
.9

1

2
6
.4

2

f1
v
-h

ig
h

1
2
.9

6

5
.5

6

5
1
.8

5

2
2
.2

2

2
4
.0

7

1
.8

5

0

0

0 0

8
5
.1

9

9
4
.4

4 4
8
.1

5

7
7
.7

8

7
5
.9

3

t4
-l

o
w

3
0
.7

7

1
0
.7

7 6
1
.5

4

2
4
.6

2 6
6
.1

5

0

0

0

1
.5

4

0

6
9
.2

3

8
9
.2

3 3
8
.4

6

7
3
.8

4 3
3
.8

5

t4
-m

ed
iu

m

1
2
.2

4
.8

8

8
5
.3

7

7
.3

2

7
3
.1

7

0

0

0

0

0

8
7
.8

9
5
.1

2

1
4
.6

3

9
2
.6

8

2
6
.8

3

t4
-h

ig
h

1
2
.9

6

9
.2

6

7
2
.2

2

2
2
.2

2

2
9
.6

3

0 0

0

0

0

8
7
.0

4

9
0
.7

4

2
7
.7

8

7
7
.7

8

7
0
.3

7

f1
-l

o
w

1
6
.9

8

7
.5

5 4
9
.0

6

1
6
.9

8 5
8
.4

9

1
.8

9

0

0

1
.8

9

0

8
1
.1

3

9
2
.4

5 5
0
.9

4

8
1
.1

3 4
1
.5

1

f1
-m

ed
iu

m

3
0
.1

9

5
.6

6

7
1
.7

1
8
.8

7

7
3
.5

8

0

0

0

0

0

6
9
.8

1

9
4
.3

4

2
8
.3

8
1
.1

3

2
6
.4

2

f1
-h

ig
h

2
2
.2

2

1
2
.9

6

7
4
.0

7

2
5
.9

3 6
8
.5

2

0

0

0

0

0

7
7
.7

8

8
7
.0

4

2
5
.9

3

7
4
.0

7 3
1
.4

8

n
3
-l

o
w

2
0
.7

5

5
.6

6 5
0
.9

4

1
5
.0

9 5
4
.7

2

1
.8

9

0

0

1
.8

9

07
7
.3

6

9
4
.3

4 4
9
.0

6

8
3
.0

2 4
5
.2

8

n
3
-m

ed
iu

m

1
6
.9

8

3
.7

7

6
7
.9

2

1
6
.9

8

3
7
.7

4

0

0

0

0

0

8
3
.0

2

9
6
.2

3

3
2
.0

8

8
3
.0

2

6
2
.2

6

n
3
-h

ig
h

1
4
.8

1

1
4
.8

1

7
2
.2

2

2
7
.7

8 6
1
.1

1

1
.8

5

0

0

0

0

8
3
.3

4

8
5
.1

9

2
7
.7

8

7
2
.2

2 3
8
.8

9

l3
-l

o
w

1
3
.2

1

3
.7

7

5
2
.8

3

9
.4

3

3
2
.0

8

0

0

0

1
.8

9

0

8
6
.7

9

9
6
.2

3 4
7
.1

7

8
8
.6

8

6
7
.9

2

l3
-m

ed
iu

m

3
2
.0

8

3
.7

7

6
7
.9

2

2
0
.7

5 6
7
.9

2

0

0

0

0

0

6
7
.9

2

9
6
.2

3

3
2
.0

8

7
9
.2

5 3
2
.0

8

l3
-h

ig
h

7
.4

1

3
.7

5
7
.4

1

7
.4

1 4
2
.5

9

0 0

0

0

09
2
.5

9

9
6
.3

4
2
.5

9

9
2
.5

9 5
7
.4

1

n
2
-l

o
w

2
2
.6

4

3
.7

7

7
9
.2

5

2
0
.7

5 5
4
.7

2

0

0

0

0

07
7
.3

6

9
6
.2

3

2
0
.7

5

7
9
.2

5 4
5
.2

8

n
2
-m

ed
iu

m

3
0
.1

9

1
5
.0

9 5
6
.6

3
0
.1

9 6
4
.1

5

1
.8

9

0

0

1
.8

9

0

6
7
.9

2

8
4
.9

1 4
3
.4

6
7
.9

2

3
5
.8

5

n
2
-h

ig
h

b
e
tt

e
r

e
q
u
a
l

w
o
rs

e

1
4
.8

1

1
6
.6

7

7
5
.9

3

2
5
.9

3

4
8
.1

5

1
.8

5

0

0

0

08
3
.3

4

8
3
.3

3

2
4
.0

7

7
4
.0

7

5
1
.8

5

f1
v
-l

o
w

1
6
.9

8

7
.5

5 4
5
.2

8

1
8
.8

7

3
5
.8

5

0

1
.8

9

1
.8

9

1
.8

9

0

8
3
.0

2

9
0
.5

6 5
2
.8

3

7
9
.2

4

6
4
.1

5

G
M

ea
n

f1
v
-m

ed
iu

m

5
0
.9

4

3
2
.0

8 8
1
.1

3

3
2
.0

8 8
4
.9

10

0

0

0

0

4
9
.0

6

6
7
.9

2 1
8
.8

7

6
7
.9

2 1
5
.0

9

f1
v
-h

ig
h

1
1
.1

1

1
2
.9

6 5
3
.7

1
6
.6

7

2
4
.0

7

1
.8

5

0

0

0

0

8
7
.0

4

8
7
.0

4 4
6
.3

8
3
.3

3

7
5
.9

3

t4
-l

o
w

4
4
.6

2

3
3
.8

5

6
6
.1

5

4
4
.6

2

7
3
.8

50

1
.5

4

1
.5

4

1
.5

4

0

5
5
.3

8

6
4
.6

1

3
2
.3

1

5
3
.8

4

2
6
.1

5

t4
-m

ed
iu

m

2
1
.9

5

2
.4

4

8
7
.8

7
.3

2

7
0
.7

3

0

0

0

0

0

7
8
.0

5

9
7
.5

6

1
2
.2

9
2
.6

8

2
9
.2

7

t4
-h

ig
h

1
1
.1

1

5
.5

6

7
2
.2

2

2
0
.3

7

2
4
.0

7

0

0

0

0 0

8
8
.8

9

9
4
.4

4

2
7
.7

8

7
9
.6

3

7
5
.9

3

f1
-l

o
w

1
5
.0

9

1
6
.9

8

4
9
.0

6

1
8
.8

7 6
2
.2

6

1
.8

9

1
.8

9

1
.8

9

1
.8

9

0

8
3
.0

2

8
1
.1

3

4
9
.0

6

7
9
.2

4 3
7
.7

4

f1
-m

ed
iu

m

5
6
.6

3
3
.9

6 8
1
.1

3

3
7
.7

4 8
3
.0

20

0

0

0

0

4
3
.4

6
6
.0

4 1
8
.8

7

6
2
.2

6 1
6
.9

8

f1
-h

ig
h

1
8
.5

2

1
2
.9

6

7
2
.2

2

2
4
.0

7 6
4
.8

1

0

0

0

0

0

8
1
.4

8

8
7
.0

4

2
7
.7

8

7
5
.9

3 3
5
.1

9

n
3
-l

o
w

3
7
.7

4

3
2
.0

8

5
2
.8

3

3
0
.1

9

6
0
.3

8

1
.8

9

1
.8

9

1
.8

9

1
.8

9

06
0
.3

7

6
6
.0

3

4
5
.2

8

6
7
.9

2

3
9
.6

2

n
3
-m

ed
iu

m

2
6
.4

2

1
1
.3

2

7
7
.3

6

2
2
.6

4

4
3
.40

0

0

0

0

7
3
.5

8

8
8
.6

8

2
2
.6

4

7
7
.3

6

5
6
.6

n
3
-h

ig
h

1
1
.1

1

1
4
.8

1

7
0
.3

7

2
5
.9

3 5
9
.2

6

1
.8

5

1
.8

5

1
.8

5

0

0

8
7
.0

4

8
3
.3

4

2
7
.7

8

7
4
.0

7 4
0
.7

4

l3
-l

o
w

2
8
.3

2
2
.6

4 5
6
.6

2
8
.3

3
7
.7

40

0

0

1
.8

9 0

7
1
.7

7
7
.3

6 4
3
.4

6
9
.8

1

6
2
.2

6

l3
-m

ed
iu

m

4
3
.4

1
8
.8

7

7
5
.4

7

2
2
.6

4

7
1
.70

0

0

0

0

5
6
.6

8
1
.1

3

2
4
.5

3

7
7
.3

6

2
8
.3

l3
-h

ig
h

7
.4

1

1
.8

5

5
7
.4

1

7
.4

1 3
7
.0

4

0

0

0

0

0

9
2
.5

9

9
8
.1

5

4
2
.5

9

9
2
.5

9

6
2
.9

6

n
2
-l

o
w

2
2
.6

4

7
.5

5

8
6
.7

9

1
8
.8

7 6
2
.2

6

0

0

0

0

0

7
7
.3

6

9
2
.4

5

1
3
.2

1

8
1
.1

3 3
7
.7

4

n
2
-m

ed
iu

m

5
2
.8

3

4
7
.1

7

5
8
.4

9

5
0
.9

4

6
9
.8

11
.8

9

1
.8

9 1
.8

9

1
.8

9

04
5
.2

8

5
0
.9

4

3
9
.6

2

4
7
.1

7

3
0
.1

9

n
2
-h

ig
h

F
ig

ur
e

5.
8:

O
ve

ra
ll

pe
rc

en
ta

ge
of

w
in

s,
ti

es
an

d
lo

ss
es

co
un

te
d

ov
er

al
l

da
ta

se
ts

fo
r

ba
c
,
f1

an
d

G
M

ea
n

m
et

ri
cs

in
do

m
ai

n
of

da
ta

se
t

co
m

pl
ex

it
ie

s.
V

er
ti

ca
ld

as
he

d
lin

es
in

di
ca

te
si

gn
-t

es
t

va
lu

es
.

92

DT

RF

ONER

RULEFIT

GREEDY

36.67

30

61.67

46.67

56.67

8.33

8.33

0

13.33

0

55

61.67

38.33

40

43.33

Complexity low

BAC

28.57

18.37

57.14

26.53

51.02

2.04

2.04

0

2.04

0

69.39

79.59

42.86

71.43

48.98

Complexity medium

BAC

41.18

17.65

92.16

37.25

66.67

0

0

0

0

0

58.82

82.35

7.84

62.75

33.33

Complexity high

BAC

DT

RF

ONER

RULEFIT

GREEDY

41.67

18.33

61.67

43.33

60

6.67

8.33

0

11.67

0

51.67

73.33

38.33

45

40

F1

22.45

12.24

57.14

24.49

55.1

2.04

2.04

0

2.04

0

75.51

85.71

42.86

73.47

44.9

F1

37.25

7.84

90.2

37.25

68.63

0

0

0

0

0

62.75

92.16

9.8

62.75

31.37

F1

DT

RF

ONER

RULEFIT

GREEDY

36.67

31.67

65

45

58.33

8.33

8.33

0

13.33

0

55

60

35

41.67

41.67

GMean

38.78

26.53

63.27

34.69

57.14

2.04

4.08

0

2.04

0

59.18

69.39

36.73

63.27

42.86

GMean

49.02

27.45

98.04

39.22

70.59

0

0

0

0

0

50.98

72.55

1.96

60.78

29.41

GMean

better equal worse

Figure 5.9: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics for explaining algorithm modification based on choosing trees.
Vertical dashed lines indicate sign-test values.

than the overall distance between examples from the same class as indicated by the
high amount of wins for high N2 complexity measures. In such cases rf and dt
were outperformed in 47% and 52% of cases in terms of geometric mean measure.
Fact, that it those algorithms are excelled in terms of balanced accuracy and geo-
metric mean indicates, that the proposed algorithms is better in learning decision
boundaries for underrepresented problems, as caused by big imbalance ratio

• data in which many features display overlapping, as indicated amount of wins in
high F1 and F1V datasets

• in datasets where a moderate amount of original features are needed to describe
data variability indicated by T4

• data in which there is a moderate amount of inter-class distance of samples, as
indicated by performance in N3 metric

Those create opportunities for potential ml application designers to consider the pro-
posed algorithm as a viable, interpretable alternative to rf and even to well-established
dt.

5.5. Summary and lessons learned 93

DT

RF

ONER

RULEFIT

GREEDY

27.22

18.89

57.78

35

53.89

2.22

3.33

1.67

2.22

2.22

70.56

77.78

40.56

62.78

43.89

Complexity low

BAC

27.21

23.13

53.06

34.01

48.98

0.68

0.68

0

0

0

72.11

76.19

46.94

65.99

51.02

Complexity medium

BAC

28.76

9.8

88.24

41.18

56.21

0.65

1.96

0

0

0.65

70.59

88.24

11.76

58.82

43.14

Complexity high

BAC

DT

RF

ONER

RULEFIT

GREEDY

32.78

18.33

61.11

34.44

54.44

1.67

2.22

1.11

2.22

1.67

65.56

79.44

37.78

63.33

43.89

F1

31.29

17.69

59.18

37.41

59.18

0.68

0.68

0

0

0

68.03

81.63

40.82

62.59

40.82

F1

30.07

8.5

86.93

42.48

61.44

0.65

1.31

0

0

0

69.28

90.2

13.07

57.52

38.56

F1

DT

RF

ONER

RULEFIT

GREEDY

27.78

20

59.44

36.11

55

2.22

3.33

2.22

2.22

3.89

70

76.67

38.33

61.67

41.11

GMean

29.25

25.17

59.18

32.65

53.74

0.68

0.68

0

0

0

70.07

74.15

40.82

67.35

46.26

GMean

32.68

17.65

92.81

35.29

58.17

0.65

1.96

0

0.65

0

66.67

80.39

7.19

64.05

41.83

GMean

better equal worse

Figure 5.10: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics for explaining algorithm modification based on rf predictions.
Vertical dashed lines indicate sign-test values.

low medium high

0

100

200

300

400

500

f4

low medium high

t4

low medium high

lsc

low medium high

size

quad-split

RF

DT

RuleFit

OneR

Greedy

Figure 5.11: Change of internal model complexities in domain of dataset complexities for
quad-split.

94

low medium high

0

50

100

150

f4

low medium high

t4

low medium high

lsc

low medium high

size

quad-split

DT

RuleFit

OneR

Greedy

Figure 5.12: Change of internal model complexities in domain of dataset complexities for
quad-split without rf.

n
2

f1
v f1 t1

h
u

b
s f3 t4

fe
a
tu

re
s

co
u

n
t

si
ze

ru
le

s
co

u
n
t

Complexity metric

−1.0

−0.5

0.0

0.5

1.0

C
o
rr

el
a
ti

o
n

to
m

o
d

el
co

m
p

le
x
it

y

0.43 0.36 0.36 0.33 0.33

-0.02 -0.07
-0.19

-0.40 -0.41

Figure 5.13: Correlation of complex to dummy classifiers proportion to dataset complex-
ities.

5.5. Summary and lessons learned 95

si
ze f4 f3 f2 ls
c

n
2 c2 c1 t2 t3

Complexity metric

−1.0

−0.5

0.0

0.5

1.0

C
o
rr

el
a
ti

o
n

to
m

o
d

el
co

m
p

le
x
it

y 0.98

0.53 0.52
0.44 0.38

-0.45 -0.50 -0.52 -0.59 -0.60

Figure 5.14: Correlation of number of rules to dataset complexities.

Additionally, computational complexity analysis shows that the algorithm is suitable
for high-demand applications as it has relatively low training and prediction complexity.
Its prediction complexity is based mostly on base classifier complexity, which provides
great flexibility.

Last but not least, the model was tested as an explainer for rf algorithm. Two
versions were present, where one would use rf’s trees as classifiers, and the other one
would just be trained at the forest’s output. The first one significantly outperformed the
latter, which indicates that extracting knowledge from the forest is a viable source of
improving classification. Additionally, the forest was not only significantly simplified but
was outperformed in numerous cases, most significant being those indicated by geometric
mean for low – over 25%.

The proposed model complexity was also examined. It was shown that, although it
is higher than all other explainable algorithms, it’s still significantly lower than Random
Forest while having the ability to outperform all tested models in some cases. Model
behaved intuitively when it comes to changing its complexity in most of the tested cases
but one. In a situation where the dataset displays a high ratio of features per point, model
complexity decreases, which pinpoints possible areas of explainability application. It was
shown that the number of rules decreases as dimensionality metrics rise, and it increases
in the case of features overlapping. When it comes to model complexity displayed by
a number of complex classifiers, it tends to decrease in favour of simple areas when the
dataset has a big size, or the feature count is higher. On the other hand, there are more
complex classifiers trained when features and decision areas are overlapping.

Overall, the algorithm shows a variety of promising features in different areas, making
it not only competitive when it comes to standard classification but also as an explainer
of rf.

Chapter 6

Comparison of proposed Explainable
AI algorithms

6.1 Introduction
In the previous chapters, three xai algorithms were introduced. While the first one –
note – was inherently designed for explaining rf. The other two – Optimal Centroids
and Quad Split were designed as a way of building transparent models. For each of the
latter two explainable variations were introduced in order to check feasibility of applying
them as surrogate model explainer and to compare the results to note.

• For Optimal Centroids:

– Algorithm variation with tree selection, that would enhance ga’s individual to
include parameters for picking dt models out of all rf’s trees and applying
them for every constituent

– Variation without tree selection which, for every constituent, would iterate over
all rf’s trees and pick the best one (as per accuracy)

• For Quad Split:

– Algorithm version which, for every rule, assigns best (as per accuracy) tree
from rf

– Version which uses original algorithm and base models, but uses output of rf
as training labels

Out of the proposed variations of Optimal Centroids method, one with tree selection
was discarded as it has shown slightly better performance, which has been proven in
previous chapters. The same goes for Quad Split and its version, which is trained on
the output of rf predictions. As a result, in the following sections, the experimental
evaluation of the three methods in explaining the same rf is presented.

6.2 Experimental evaluation
Three proposed methods were evaluated in-depth when it comes to their performance
and complexity in previous chapters. In this one focus is put on evaluating them as each
other. Following research questions till be evaluated:

98

rq1 Which of the proposed methods performs best as rf explainer in terms of standard
performance metrics?

rq2 Are there significant differences when explaining rfs of different sizes?

rq3 Which of the explaining approaches creates most complex internal model?

6.2.1 Setup

In this section approach to experimental evaluation and environment details are described.
To provide common ground for testing all three methods, following assumptions were

made:

• All algorithms would be tested as explainers, and against, same rf of equal sizes -
3, 5, 7

• Every possible randomness (coming for example from inherent rf bagging random-
ness or ga individuals sampling) would be mitigated by using same pseudo-random
number generators with same seed

Choice of datasets A series of experiments were conducted across selected binary clas-
sification datasets. As the source for those Knowledge Extraction based on Evolutionary
Learning repository was used [97]. Datasets were pre-processed beforehand. Labels were
encoded into integers. Finally, to reasonably limit scope of experiments, 16 datasets were
randomly chosen. Although there is no consensus about a minimal amount of datasets
when comparing classification algorithms, such an amount is widely considered by the
research community as standard and good practice. Details of used datasets are in Table
2.1. Each dataset was shuffled and split according to the 5x2 cv experimental protocol.
Reasons behind such choice were described in chapter 2.

Measuring models complexity In order to objectively compare trained model com-
plexities, they needed to be quantified into numerical values. For the sake of this experi-
ment, the pattern of assigning numerical values to models present in Table 6.1 was used.
In the case of Optimal Centroids the 1-nn step was excluded as there is no unified way
to measure its complexity.

Table 6.1: Internal models complexity computation details

model complexity formula
Quad Split

∑trees +# of rules
Optimal Centroids

∑trees # of leaves
note # of leaves + # of rules

Base algorithms For comparison, state-of-the-art rf with dt in cart implementation
[109] were used.

6.2. Experimental evaluation 99

Measuring models complexity In order to objectively compare trained model com-
plexities, they needed to be quantified into numerical values. For sake of this experiment,
the following pattern of assigning numerical values to models were used:

• Quad Split -
∑trees +# of rules

• Optimal centroids -
∑trees # of leaves

• note - # of leaves + # of rules

• rf -
∑trees # of leaves

Implementation and reproducibility. The described methods were implemented us-
ing Python 3.8 programming language. scikit-learn[43] implementation of dt and rf base
models was used. Slightly modified in terms of performance complexity metric implemen-
tation based on Problexity library [58] was used. Details of implementation for specific
algorithms can be found in previous chapters. Experiments were run using Apple MacBook
Pro M1 Max with 32GB RAM.

Model parameters selection. The subject and base algorithms were pretrained on
subset of datasets to choose parameters from. Four datasets for pretraining procedure
were randomly selected. Grid Search procedure was used for optimizing along with for
parameters. Special care was taken for alpha parameters of both cart and RuleFit algo-
rithms. As it follows particular pattern, exponential distribution was used for sampling
those with scale of 0.1. Then, best parameters for each dataset were taken and average
for continuous or mode for discrete parameters was taken as final set. dt parameters
were propagated to rfs’ base models. For consistency, the proposed algorithm also used
pre-trained decision tree parameters for the base classifiers.

In the following sections, results leading to answering research questions are presented.

6.2.2 Which of the proposed methods performs best as rf ex-
plainer in terms of standard performance metrics?

Figure 6.2 presents performance metrics in domain of different size of explained forest
ensemble. As in previous Chapters, three metrics were used - balanced accuracy, f1 score

Table 6.2: Pre-train results for the compared methods.

Algorithm Parameter Value Distribution Iterations
ga n_gen 100 1000

pop_size 25
Quad Split min_samples 28 betabinom(65, 2.578, 5.106) 1000

min_split_percentage 0.183 uniform(0.01, 0.49)
dt ccp_alpha 0.0115 exponential(0.1) 10000

criterion gini
max_features None

rf size 32 range(1,100) 1000
ccp_alpha 0.0115
criterion gini
max_features None

100

3 5 7

Random Forest size

0

50

100

150

200

C
o
m

p
le

x
it

y

35.163 37.192 37.922

114.094 116.031 116.806

28.456 27.444 26.931

NOTE quad-split optimal-centroid

Figure 6.1: Averaged model complexities for different rf sizes.

and geometric mean. It can be observed that note outperforms two other algorithms in
every scenario and every metric. When it comes to figuring out winner between the other
two – in most cases, apart from F1 score, quad split has edge over optimal centroids.

Above mentioned observations find its clarifications in amount of wins, draws and
losses against explained Random Forest, as depicted in Figure 6.3. In this case however,
amount of wins as compared between optimal-centroid and quad-split points out the
former as a clear winner. It is able to outperform Random Forest in 32% and 28% of
cases when it comes to F1 score and forests of size 3 and 5, where quad-split falls short
by even 7%.

6.2.3 Are there significant differences when explaining rfs of dif-
ferent sizes?

When it comes to change in domain of rf size, the algorithms display steady pattern of
decreasing performance as the size increases. The most significant drop occurs with the
best performing algorithm – note – where the percentage of wins for bac would drop by
10% as the forest would grow from 3 to 7. Optimal Centroids would note the lowest drop,
by less than 7%. What is interesting is while note, as depicted by Figure 6.2, average
metric values increase for Quad Split and Optimal Centroids, but keep stable with rf size
for note. As can be also observed and which is expected, the forest performs better with
increase with its size – the amount of wins over methods increases, while note metric
values did not.

6.2.4 Which of the explaining approaches creates the most com-
plex internal model?

When it comes to overall final model complexity, as displayed in Figure 6.2, Quad Split
algorithm, for every size of explained forest, produces most complex models – even by fac-
tor of three. Lowest complexity models are produced consequently by optimal-centroids.
Although it is worth remembering, that complexity calculation for it does not include
existing within knn model used for constituent selection. What is also noticeable, is that
Quad Split has the biggest variance, meaning that the created models complexity was
much less predictable and would not correlate with model performance.

6.2. Experimental evaluation 101

3 5 7
Random Forest size

0.5

0.6

0.7

0.8

0.9

1.0

M
et

ri
c

v
a
lu

e

0.755 0.756 0.755
0.744 0.741 0.7480.744 0.746 0.749

BAC

3 5 7

Random Forest size

0.790 0.790 0.7900.784 0.783 0.7900.781 0.781 0.784

F1

3 5 7

Random Forest size

0.739 0.740 0.740
0.717 0.714 0.7200.725 0.729 0.732

GMean

NOTE optimal-centroid quad-split

Figure 6.2: Comparison of rf size influence on models performance. The numbers above
the bars indicate metric values.

NOTE

optimal-centroid

quad-split

43.83

33.75

35

7.81

12.5

6.25

48.36

53.75

58.75

RF3

BAC

NOTE

optimal-centroid

quad-split

40.57

32.5

28.75

7.81

10.62

6.25

51.61

56.88

65

F1

NOTE

optimal-centroid

quad-split

45.47

35.62

39.38

7.89

13.12

6.25

46.64

51.25

54.37

GMean

NOTE

optimal-centroid

quad-split

38.28

26.25

31.25

7.92

8.75

5

53.8

65

63.75

RF5

BAC

NOTE

optimal-centroid

quad-split

34.74

25.62

26.88

7.92

7.5

5

57.34

66.88

68.12

F1

NOTE

optimal-centroid

quad-split

42.42

30.63

36.25

7.92

8.75

5

49.66

60.62

58.75

GMean

better equal worse

NOTE

optimal-centroid

quad-split

33.85

26.88

27.5

8.59

11.88

5

57.55

61.25

67.5

RF7

BAC

NOTE

optimal-centroid

quad-split

30.78

28.12

21.25

8.44

9.38

4.38

60.78

62.5

74.38

F1

NOTE

optimal-centroid

quad-split

38.33

31.25

34.38

8.49

13.12

5.62

53.18

55.62

60

GMean

Figure 6.3: Overall percentage of wins, ties and losses counted over all datasets for bac,
f1 and GMean metrics for different rf sizes. Vertical dashed lines indicate sign-test
values.

102

6.3 Summary and lessons learned
Three methods for explaining Random Forest were examined in this chapter. One in-
herently designed for explaining Random Forest – note – with variations of transparent
model algorithms presented previously.

What’s noteworthy is that, in comparison, note – the method that was natively
designed for explaining forest ensemble, was able to outperform it most of the time out of
all tested approaches. At the same time, stale of note model performance was noticed
as rf size and generalizing abilities increased. It would indicate that the algorithm would
be unable to extract all knowledge achieved by the forest or was bound by the ability
to find the best clique. As the drop of metrics Quad Split and Optimal Centroids was
less than this of note, it can be theorized that at some arbitrary forest size, the models
would grow closer in generalizing abilities or even swap in rankings. The last observation
is that the proposed model complexity does not necessarily transfer to predictive abilities,
as was shown by Quad Split. Its complexity was multiple bigger than this of other models
– even though it was not able to outperform note. Finally, the model utilizing the actual
structure of rf performed the best, which can act as an indicator in further development
and design of xai models.

Chapter 7

Conclusion and future research

This thesis touched upon three critical ai areas: supervised classification, explainability
and interpretability and data complexity measures. This thesis aimed to elaborate on and
support or dismiss the hypothesis stating that:

For a given classification task, it is possible to build such a transparent
or explainable model, whose quality is not worse than the similarly applied
black-box model.
Four main objectives were formulated to acknowledge or drop the claim. As a result of
research conducted and described in past chapters, those targets were completed, namely:

• Development of novel ensemble "glass-box" model extraction method
and Development of novel transparent, "white-box" models – Three novel
algorithms were proposed:

– note - which extracts interpretable model from rf by using graph modelling
of rules and scoring cliques

– Optimal Centroids - which utilises a genetic algorithm in building an in-
tepretable model that splits decision area into constituents by nearest neigh-
bour approach and then assigns each constituents interpretable base model

– Quad Split - that splits recursively decision space, in dt manner, by using
complexity measures, and then assigns each fold (described by rule) inter-
pretable base model

• Utilisation of data complexity metrics in developing novel transparent
classification method – metrics were used as inherent mechanism in Quad Split
algorithm

• Experimental evaluation of proposed algorithms using wide array of
datasets attributed with different complexities – methods were evaluated
against each other as well as commonly used classification algorithms, which was
subject of this thesis

• Creation of programming library – implementation of every method – note1,
Optimal Centroids2 and Quad Split3 – were released as open-source Python code
bundle along with additional utilitity library4

1https://github.com/bgulowaty/non-overlapping-rules-ensemble
2https://github.com/bgulowaty/optimal-centroids
3https://github.com/bgulowaty/quad-split
4https://github.com/bgulowaty/ml-utils

104

While the first proposed method inherently works as an explainer of rf, the other
two can be used as independent, transparent classification models. Nevertheless, two
variations of each serving as rf explainer were proposed and examined.

Every algorithm’s predictive abilities were verified multifold:

• by testing its significant configuration parameters

• by verifying its behavior in a quantitative manner over all experiments and compar-
ing it to other models

• by verifying its performance in domain of different dataset complexities, which shed
light on potential areas of applications

• by examining model complexities and comparing it to others numerically

The stated hypothesis was found to be true during an examination of the thesis. As
shown in previous chapters, experimental results supported the above-mentioned. In the
process of evaluating every proposed algorithm, it was shown that there were numerous
examples in which the built model would outperform rf, as well as other interpretable
models. Although the phenomena were not constant, it was seen that there are certain
properties of the dataset that favour applying proposed transparent models over complex
ones without losing quality. During research following additional observations were made:

• Evaluated classification models behave immensely differently when ap-
plied in datasets with different complexity properties. During examination
of proposed algorithms, their performance was evaluated for different datasets, which
had assigned different complexity labels. It was shown that the same model can be-
have vastly differently, in terms of competing with another model, when applied
to datasets with high and low values of some complexity metric. This indicates
different application areas for specific models, and – what was observed – renders
more complex models less usable in some scenarios.

• Intrinsic model complexities do not always follow dataset complexities.
By analysing quantified internal model complexities (as expressed, for example, by
a number of rules), it was shown that even though some complexity metrics were
describing the dataset as complex, it did not reflect in trained model complexity. It
was true not only for specific metrics but overall dataset complexity as quantified
by mean of all complexities.

• Different complexity metrics are better predictors of model performance.
As shown during the evaluation of each method, some complexity measures de-
scribed bigger potential when predicting wins and losses. This indicates that some
of them may be applied as potential meta-learners or predictor of model performance

• Transparent model that used knowledge extracted from complex model
behaved better than inherently transparent ones. As per the comparison
presented in the previous chapter, it was found that note algorithm had the best
performance. This leads to the conclusion that, at least in the tested sizes of rf, de-
veloping an explaining algorithm that utilises the internal structure of the explained
model may bring better value than using just the black-box predictions

7.1. Future work 105

7.1 Future work
The methods and observations subjected in this work may serve as a base for further
research. Various aspects can be pursued, method-specific as well as general ones, such
as:

• Developing more fine-grained scoring metrics for note, which would allow extract-
ing subspaces raising results closer to theoretical maximum

• Extending optimal-centroid methods into using constituen selector, that is more
interpretable than k-nearest neighbours algorithm

• Fine-tuning optimal-centroid’s genetic algorithm parameters and verify, how often
it is being stuck in local optima

• Verify all of the above as explainers for other models, such as neural networks or
other ensemble models

• Develop more fine-grained methods of assigning base classifiers into constituents of
each methods, such as using heterogenous approach

• Use observations made in this thesis to train meta-learning model, that would assess
and pick a specific model based on dataset complexity

7.2 Publications
During process of working on this thesis, the author has published following articles:

• B. Gulowaty and P. Ksieniewicz, “Smote algorithm variations in balancing data
streams”, in Intelligent Data Engineering and Automated Learning – IDEAL 2019,
H. Yin, D. Camacho, P. Tino, et al., Eds., Cham: Springer International Publishing,
2019, pp. 305–312, isbn: 978-3-030-33617-2
CORE C, MNiSW: 20

• B. Gulowaty and M. Woźniak, “Extracting interpretable decision tree ensemble
from random forest”, in 2021 International Joint Conference on Neural Networks
(IJCNN), 2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9533601
CORE A, MNiSW: 140

• B. Gulowaty and M. Woźniak, “Search-based framework for transparent non-
overlapping ensemble models”, in 2022 International Joint Conference on Neural
Networks (IJCNN), 2022, pp. 1–6. doi: 10.1109/IJCNN55064.2022.9892360
CORE A, MNiSW: 140

Bibliography

[1] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World”, en, 2020.

[2] W. Bedingfield, Generative ai is playing a surprising role in israel-hamas disinfor-
mation, Oct. 2023. [Online]. Available: https://www.wired.com/story/israel-
hamas-war-generative-artificial-intelligence-disinformation/.

[3] M. Choras, K. Demestichas, A. Gielczyk, et al., Advanced Machine Learning Tech-
niques for Fake News (Online Disinformation) Detection: A Systematic Mapping
Study, en, arXiv:2101.01142 [cs], Dec. 2020. [Online]. Available: http://arxiv.
org/abs/2101.01142 (visited on 09/07/2024).

[4] M. T. Hošman, “Richard Baldwin: The Globotics Upheaval: Globalisation,
Robotics, and the Future of Wor.k”, Czech Journal of International Relations,
vol. 55, no. 2, pp. 65–69, Jun. 2020, issn: 2570-9429, 0323-1844. doi: 10.32422/
mv.1695. [Online]. Available: https://cjir.iir.cz/index.php/cjir/article/
view/91 (visited on 09/07/2024).

[5] Sedat Sonko, Adebunmi Okechukwu Adewusi, Ogugua Chimezie Obi, Shedrack
Onwusinkwue, and Akoh Atadoga, “A critical review towards artificial general in-
telligence: Challenges, ethical considerations, and the path forward”, World Journal
of Advanced Research and Reviews, vol. 21, no. 3, pp. 1262–1268, Mar. 2024, issn:
25819615. doi: 10.30574/wjarr.2024.21.3.0817. [Online]. Available: https:
//wjarr.com/content/critical- review- towards- artificial- general-
intelligence-challenges-ethical-considerations (visited on 09/07/2024).

[6] R. Fjelland, “Why general artificial intelligence will not be realized”, en, Humanities
and Social Sciences Communications, vol. 7, no. 1, p. 10, Jun. 2020, issn: 2662-
9992. doi: 10.1057/s41599-020-0494-4. [Online]. Available: https://www.
nature.com/articles/s41599-020-0494-4 (visited on 09/07/2024).

[7] V. C. Müller, “Ethics of Artificial Intelligence and Robotics”, in The Stanford Ency-
clopedia of Philosophy, E. N. Zalta and U. Nodelman, Eds., Fall 2023, Metaphysics
Research Lab, Stanford University, 2023.

[8] A. Das and P. Rad, Opportunities and Challenges in Explainable Artificial Intelli-
gence (XAI): A Survey, en, arXiv:2006.11371 [cs], Jun. 2020. [Online]. Available:
http://arxiv.org/abs/2006.11371 (visited on 03/17/2024).

[9] B. C. Stahl and D. Wright, “Ethics and Privacy in AI and Big Data: Implement-
ing Responsible Research and Innovation”, en, IEEE Security & Privacy, vol. 16,
no. 3, pp. 26–33, May 2018, issn: 1540-7993, 1558-4046. doi: 10.1109/MSP.
2018.2701164. [Online]. Available: https://ieeexplore.ieee.org/document/
8395078/ (visited on 03/17/2024).

108 BIBLIOGRAPHY

[10] R. Challen, J. Denny, M. Pitt, L. Gompels, T. Edwards, and K. Tsaneva-
Atanasova, “Artificial intelligence, bias and clinical safety”, en, BMJ Quality &
Safety, vol. 28, no. 3, pp. 231–237, Mar. 2019, issn: 2044-5415, 2044-5423. doi:
10.1136/bmjqs-2018-008370. [Online]. Available: https://qualitysafety.
bmj.com/lookup/doi/10.1136/bmjqs-2018-008370 (visited on 03/17/2024).

[11] A. Mikołajczyk, M. Grochowski, and A. Kwasigroch, “Towards Explainable Classi-
fiers Using the Counterfactual Approach - Global Explanations for Discovering Bias
in Data”, en, Journal of Artificial Intelligence and Soft Computing Research, vol. 11,
no. 1, pp. 51–67, Jan. 2021, issn: 2083-2567. doi: 10.2478/jaiscr-2021-0004.
[Online]. Available: https://www.sciendo.com/article/10.2478/jaiscr-
2021-0004 (visited on 03/17/2024).

[12] K. Kirkpatrick, “It’s not the algorithm, it’s the data”, en, Communications of the
ACM, vol. 60, no. 2, pp. 21–23, Jan. 2017, issn: 0001-0782, 1557-7317. doi: 10.
1145/3022181. [Online]. Available: https://dl.acm.org/doi/10.1145/3022181
(visited on 03/17/2024).

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and Harnessing Adversarial
Examples, en, arXiv:1412.6572 [cs, stat], Mar. 2015. [Online]. Available: http:
//arxiv.org/abs/1412.6572 (visited on 03/17/2024).

[14] B. Goodman and S. Flaxman, “European Union regulations on algorithmic
decision-making and a "right to explanation"”, en, AI Magazine, vol. 38, no. 3,
pp. 50–57, Sep. 2017, arXiv:1606.08813 [cs, stat], issn: 0738-4602, 2371-9621. doi:
10.1609/aimag.v38i3.2741. [Online]. Available: http://arxiv.org/abs/1606.
08813 (visited on 03/17/2024).

[15] P. Biecek and T. Burzykowski, Explanatory model analysis: Explore, explain and
examine predictive models. Chapman and Hall/CRC, 2021.

[16] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, et al., “Explainable Artifi-
cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges to-
ward responsible AI”, en, Information Fusion, vol. 58, pp. 82–115, Jun. 2020, issn:
15662535. doi: 10.1016/j.inffus.2019.12.012. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1566253519308103 (visited on
09/14/2020).

[17] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should i trust you?": Explaining
the predictions of any classifier”, KDD ’16, pp. 1135–1144, 2016. doi: 10.1145/
2939672.2939778. [Online]. Available: https://doi.org/10.1145/2939672.
2939778.

[18] S. Lundberg and S.-I. Lee, A Unified Approach to Interpreting Model Predictions,
arXiv:1705.07874 [cs, stat], Nov. 2017. [Online]. Available: http://arxiv.org/
abs/1705.07874 (visited on 09/17/2024).

[19] O. Sagi and L. Rokach, “Explainable decision forest: Transforming a decision for-
est into an interpretable tree”, en, Information Fusion, vol. 61, pp. 124–138, Sep.
2020, issn: 15662535. doi: 10.1016/j.inffus.2020.03.013. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S1566253519307869
(visited on 11/02/2020).

BIBLIOGRAPHY 109

[20] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps, en, arXiv:1312.6034
[cs], Apr. 2014. [Online]. Available: http://arxiv.org/abs/1312.6034 (visited
on 03/17/2024).

[21] A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable
Artificial Intelligence (XAI)”, en, IEEE Access, vol. 6, pp. 52 138–52 160, 2018, issn:
2169-3536. doi: 10.1109/ACCESS.2018.2870052. [Online]. Available: https:
//ieeexplore.ieee.org/document/8466590/ (visited on 05/17/2020).

[22] R. Dwivedi, D. Dave, H. Naik, et al., “Explainable AI (XAI): Core Ideas, Tech-
niques, and Solutions”, en, ACM Computing Surveys, vol. 55, no. 9, pp. 1–33, Sep.
2023, issn: 0360-0300, 1557-7341. doi: 10.1145/3561048. [Online]. Available:
https://dl.acm.org/doi/10.1145/3561048 (visited on 09/12/2024).

[23] W. Saeed and C. Omlin, “Explainable AI (XAI): A systematic meta-survey of cur-
rent challenges and future opportunities”, en, Knowledge-Based Systems, vol. 263,
p. 110 273, Mar. 2023, issn: 09507051. doi: 10.1016/j.knosys.2023.110273.
[Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii /
S0950705123000230 (visited on 09/12/2024).

[24] J. Górriz, I. Álvarez-Illán, A. Álvarez-Marquina, et al., “Computational approaches
to Explainable Artificial Intelligence: Advances in theory, applications and trends”,
en, Information Fusion, vol. 100, p. 101 945, Dec. 2023, issn: 15662535. doi:
10.1016/j.inffus.2023.101945. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1566253523002610 (visited on 10/06/2024).

[25] C. Rudin, Stop explaining black box machine learning models for high stakes deci-
sions and use interpretable models instead, May 2019. doi: 10.1038/s42256-019-
0048-x.

[26] S. Thiebes, S. Lins, and A. Sunyaev, “Trustworthy artificial intelligence”, en, Elec-
tronic Markets, vol. 31, no. 2, pp. 447–464, Jun. 2021, issn: 1019-6781, 1422-
8890. doi: 10.1007/s12525-020-00441-4. [Online]. Available: https://link.
springer.com/10.1007/s12525-020-00441-4 (visited on 09/16/2024).

[27] B. Goodman and S. Flaxman, “European Union regulations on algorithmic
decision-making and a "right to explanation"”, 2016, Publisher: arXiv Version
Number: 3. doi: 10 . 48550 / ARXIV . 1606 . 08813. [Online]. Available: https :
//arxiv.org/abs/1606.08813 (visited on 09/16/2024).

[28] T. J. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning:
data mining, inference, and prediction (Springer series in statistics), eng, 2nd ed.
New York: Springer, 2009, isbn: 978-0-387-84858-7.

[29] O. Sagi and L. Rokach, “Ensemble learning: A survey”, en, WIREs Data Mining and
Knowledge Discovery, vol. 8, no. 4, e1249, Jul. 2018, issn: 1942-4787, 1942-4795.
doi: 10.1002/widm.1249. [Online]. Available: https://wires.onlinelibrary.
wiley.com/doi/10.1002/widm.1249 (visited on 03/17/2024).

[30] R. Polikar, “Ensemble based systems in decision making”, en, IEEE Circuits and
Systems Magazine, vol. 6, no. 3, pp. 21–45, 2006, issn: 1531-636X. doi: 10 .
1109/MCAS.2006.1688199. [Online]. Available: http://ieeexplore.ieee.org/
document/1688199/ (visited on 04/11/2024).

[31] Y. Song, “Ensemble reinforcement learning: A survey”, en, Applied Soft Computing,
2023.

110 BIBLIOGRAPHY

[32] J. O. Mendes-Moreira, L.-I. Tec, C. Soares, A. M. R. Jorge, L.-I. Tec, and J. F. D.
Sousa, “Ensemble approaches for regression: A survey”, en, ACM Computing Sur-
veys, vol. 45, no. 1,

[33] B. Krawczyk, “Ensemble learning for data stream analysis: A survey”, en, Infor-
mation Fusion, 2017.

[34] L. Breiman, “Bagging predictors”, Mach. Learn., vol. 24, no. 2, pp. 123–140, Aug.
1996, issn: 0885-6125. doi: 10 . 1023 / A : 1018054314350. [Online]. Available:
https://doi.org/10.1023/A:1018054314350.

[35] Y. Cao, Q.-G. Miao, J.-C. Liu, and L. Gao, “Advance and Prospects of AdaBoost
Algorithm”, en, Acta Automatica Sinica, vol. 39, no. 6, pp. 745–758, Jun. 2013, issn:
18741029. doi: 10.1016/S1874-1029(13)60052-X. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S187410291360052X (visited on
09/07/2024).

[36] B. Pavlyshenko, “Using stacking approaches for machine learning models”, pp. 255–
258, Aug. 2018. doi: 10.1109/DSMP.2018.8478522.

[37] M. Hossin and S. M.N, “A review on evaluation metrics for data classification eval-
uations”, International Journal of Data Mining & Knowledge Management Process,
vol. 5, pp. 01–11, Mar. 2015. doi: 10.5121/ijdkp.2015.5201.

[38] Z. Chen, L. D. Van Khoa, E. N. Teoh, A. Nazir, E. K. Karuppiah, and K. S.
Lam, “Machine learning techniques for anti-money laundering (AML) solutions
in suspicious transaction detection: A review”, en, Knowledge and Information
Systems, vol. 57, no. 2, pp. 245–285, Nov. 2018, issn: 0219-1377, 0219-3116. doi:
10.1007/s10115-017-1144-z. [Online]. Available: http://link.springer.com/
10.1007/s10115-017-1144-z (visited on 07/30/2024).

[39] D. Brzezinski, J. Stefanowski, R. Susmaga, and I. Szczech, “On the Dynamics of
Classification Measures for Imbalanced and Streaming Data”, IEEE Transactions
on Neural Networks and Learning Systems, vol. 31, no. 8, pp. 2868–2878, Aug.
2020, Publisher: Institute of Electrical and Electronics Engineers (IEEE), issn:
2162-237X, 2162-2388. doi: 10.1109/tnnls.2019.2899061. [Online]. Available:
https://ieeexplore.ieee.org/document/8668688/ (visited on 09/17/2024).

[40] J. R. Quinlan, “Induction of decision trees”, en, Machine Learning, vol. 1, no. 1,
pp. 81–106, Mar. 1986, issn: 0885-6125, 1573-0565. doi: 10.1007/BF00116251.
[Online]. Available: http://link.springer.com/10.1007/BF00116251 (visited
on 02/18/2024).

[41] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm
for Machine Learning”, en, Journal of Applied Science and Technology Trends,
vol. 2, no. 01, pp. 20–28, Mar. 2021, issn: 2708-0757. doi: 10.38094/jastt20165.
[Online]. Available: https://jastt.org/index.php/jasttpath/article/view/
65 (visited on 09/08/2024).

[42] G. Biau and E. Scornet, “A random forest guided tour”, en, TEST, vol. 25, no. 2,
pp. 197–227, Jun. 2016, issn: 1133-0686, 1863-8260. doi: 10.1007/s11749-016-
0481-7. [Online]. Available: http://link.springer.com/10.1007/s11749-016-
0481-7 (visited on 10/03/2021).

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning
in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

BIBLIOGRAPHY 111

[44] K. Dembczyński, W. Kotłowski, and R. Słowiński, “Maximum likelihood rule
ensembles”, en, in Proceedings of the 25th international conference on Machine
learning - ICML ’08, Helsinki, Finland: ACM Press, 2008, pp. 224–231, isbn:
978-1-60558-205-4. doi: 10.1145/1390156.1390185. [Online]. Available: http:
/ / portal . acm . org / citation . cfm ? doid = 1390156 . 1390185 (visited on
09/08/2024).

[45] J. H. Friedman and B. E. Popescu, “Predictive learning via rule ensembles”, en,
The Annals of Applied Statistics, vol. 2, no. 3, Sep. 2008, arXiv:0811.1679 [stat],
issn: 1932-6157. doi: 10.1214/07-AOAS148. [Online]. Available: http://arxiv.
org/abs/0811.1679 (visited on 09/08/2024).

[46] M. Li and P. M. Vitányi, “Kolmogorov Complexity and its Applications”, en, in
Algorithms and Complexity, Elsevier, 1990, pp. 187–254, isbn: 978-0-444-88071-
0. doi: 10.1016/B978-0-444-88071-0.50009-6. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/B9780444880710500096 (visited
on 04/14/2024).

[47] M. Gell-Mann, “What Is Complexity?”, in Complexity and Industrial Clusters,
A. Q. Curzio and M. Fortis, Eds., Heidelberg: Physica-Verlag HD, 2002, pp. 13–
24, isbn: 978-3-642-50007-7.

[48] J. Maciejowski, “Model discrimination using an algorithmic information criterion”,
en, Automatica, vol. 15, no. 5, pp. 579–593, Sep. 1979, issn: 00051098. doi:
10.1016/0005-1098(79)90006-2. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/0005109879900062 (visited on 04/14/2024).

[49] Tin Kam Ho and M. Basu, “Complexity measures of supervised classification prob-
lems”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 3, pp. 289–300, Mar. 2002, issn: 01628828. doi: 10.1109/34.990132. [On-
line]. Available: http://ieeexplore.ieee.org/document/990132/ (visited on
04/14/2024).

[50] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning”, Arti-
ficial Intelligence Review, vol. 18, Sep. 2001. doi: 10.1023/A:1019956318069.

[51] I. Khan, X. Zhang, M. Rehman, and R. Ali, “A Literature Survey and Empirical
Study of Meta-Learning for Classifier Selection”, IEEE Access, vol. 8, pp. 10 262–
10 281, 2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.2964726. [Online].
Available: https : / / ieeexplore . ieee . org / document / 8951014/ (visited on
04/15/2024).

[52] A. Lorena, L. P. Garcia, J. Lehmann, M. de Souto, and T. Ho, “How complex
is your classification problem?: A survey on measuring classification complexity”,
ACM Computing Surveys, vol. 52, pp. 1–34, Sep. 2019. doi: 10.1145/3347711.

[53] L. Bottou and C.-J. Lin, “Support Vector Machine Solvers”, en, in Large-Scale
Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Eds.,
The MIT Press, Aug. 2007, pp. 1–28, isbn: 978-0-262-25579-0. doi: 10.7551/
mitpress/7496.003. 0003. [Online]. Available: https://direct. mit.edu/
books/book/3172/chapter/88087/Support-Vector-Machine-Solvers (visited
on 06/06/2024).

112 BIBLIOGRAPHY

[54] J. C. Gower, “A General Coefficient of Similarity and Some of Its Properties”,
Biometrics, vol. 27, no. 4, p. 857, Dec. 1971, issn: 0006341X. doi: 10.2307/
2528823. [Online]. Available: https://www.jstor.org/stable/2528823?origin=
crossref (visited on 06/10/2024).

[55] A. Kershenbaum and R. Van Slyke, “Computing minimum spanning trees effi-
ciently”, en, in Proceedings of the ACM annual conference on - ACM’72, vol. 1,
Boston, Massachusetts, United States: ACM Press, 1972, p. 518. doi: 10.1145/
800193.569966. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=800193.569966 (visited on 06/10/2024).

[56] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “An overview
of ensemble methods for binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes”, en, Pattern Recognition, vol. 44, no. 8,
pp. 1761–1776, Aug. 2011, issn: 00313203. doi: 10.1016/j.patcog.2011.01.
017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0031320311000458 (visited on 09/28/2024).

[57] E. Leyva, A. Gonzalez, and R. Perez, “A Set of Complexity Measures Designed for
Applying Meta-Learning to Instance Selection”, IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 2, pp. 354–367, Feb. 2015, issn: 1041-4347. doi:
10.1109/TKDE.2014.2327034. [Online]. Available: http://ieeexplore.ieee.
org/document/6823733/ (visited on 06/10/2024).

[58] J. Komorniczak and P. Ksieniewicz, Problexity – an open-source Python library
for binary classification problem complexity assessment, Version Number: 1, 2022.
doi: 10.48550/ARXIV.2207.06709. [Online]. Available: https://arxiv.org/
abs/2207.06709 (visited on 06/15/2024).

[59] A. Maćkiewicz and W. Ratajczak, “Principal components analysis (PCA)”, en,
Computers & Geosciences, vol. 19, no. 3, pp. 303–342, Mar. 1993, issn: 00983004.
doi: 10 . 1016 / 0098 - 3004(93) 90090 - R. [Online]. Available: https : / /
linkinghub . elsevier . com / retrieve / pii / 009830049390090R (visited on
06/15/2024).

[60] F. Thabtah, S. Hammoud, F. Kamalov, and A. Gonsalves, “Data imbalance
in classification: Experimental evaluation”, en, Information Sciences, vol. 513,
pp. 429–441, Mar. 2020, issn: 00200255. doi: 10.1016/j.ins.2019.11.004.
[Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii /
S0020025519310497 (visited on 09/12/2024).

[61] A. K. Tanwani and M. Farooq, “Classification Potential vs. Classification Accuracy:
A Comprehensive Study of Evolutionary Algorithms with Biomedical Datasets”, in
Learning Classifier Systems, J. Bacardit, W. Browne, J. Drugowitsch, E. Bernadó-
Mansilla, and M. V. Butz, Eds., vol. 6471, Series Title: Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 127–144, isbn:
978-3-642-17507-7 978-3-642-17508-4. doi: 10.1007/978- 3- 642- 17508- 4_9.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-17508-
4_9 (visited on 06/15/2024).

[62] R. Marcinkevičs and J. E. Vogt, Interpretability and Explainability: A Machine
Learning Zoo Mini-tour, en, arXiv:2012.01805 [cs], Mar. 2023. [Online]. Available:
http://arxiv.org/abs/2012.01805 (visited on 01/31/2024).

BIBLIOGRAPHY 113

[63] F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine
Learning”, en, arXiv:1702.08608 [cs, stat], Mar. 2017, arXiv: 1702.08608. [Online].
Available: http://arxiv.org/abs/1702.08608 (visited on 05/17/2020).

[64] Z. C. Lipton, “The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery.”, Queue, vol. 16, no. 3,
pp. 31–57, Jun. 2018, issn: 1542-7730. doi: 10.1145/3236386.3241340. [Online].
Available: https://doi.org/10.1145/3236386.3241340.

[65] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens, “An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models”, en, Decision Support Systems, vol. 51, no. 1, pp. 141–154, Apr. 2011,
issn: 01679236. doi: 10.1016/j.dss.2010.12.003. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0167923610002368 (visited on
02/03/2024).

[66] A. F. Markus, J. A. Kors, and P. R. Rijnbeek, “The role of explainability in creating
trustworthy artificial intelligence for health care: A comprehensive survey of the
terminology, design choices, and evaluation strategies”, en, Journal of Biomedical
Informatics, vol. 113, p. 103 655, Jan. 2021, issn: 15320464. doi: 10.1016/j.
jbi.2020.103655. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1532046420302835 (visited on 02/04/2024).

[67] L. S. Carrier, “On What We Know We Don’t Know. Explanation, Theory, Lin-
guistics, and How Questions Shape Them”, en, Philosophical Books, vol. 35, no. 1,
pp. 38–39, Jan. 1994, issn: 0031-8051, 1468-0149. doi: 10.1111/j.1468-0149.
1994.tb02395.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1111/j.1468-0149.1994.tb02395.x (visited on 02/18/2024).

[68] M. Lent, W. Fisher, and M. Mancuso, “An explainable artificial intelligence system
for small-unit tactical behavior.”, Jan. 2004, pp. 900–907.

[69] D. Thompson, Ed., The Oxford dictionary of current English (Oxford paperbacks),
eng, 2. ed., Oxford University Press paperback. Oxford: Oxford University Press,
1993, isbn: 978-0-19-283127-9.

[70] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-
plaining Explanations: An Overview of Interpretability of Machine Learning”,
en, arXiv:1806.00069 [cs, stat], Feb. 2019, arXiv: 1806.00069. [Online]. Available:
http://arxiv.org/abs/1806.00069 (visited on 05/16/2020).

[71] R. S. Michalski, “A Theory and Methodology of Inductive Learning”, en, in Ma-
chine Learning, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 1983, pp. 83–134, isbn: 978-3-662-12407-9
978-3-662-12405-5. doi: 10.1007/978-3-662-12405-5_4. [Online]. Available:
http://link.springer.com/10.1007/978- 3- 662- 12405- 5_4 (visited on
09/20/2024).

[72] Y. Zhang and X. Chen, “Explainable Recommendation: A Survey and New Per-
spectives”, en, FNT in Information Retrieval, vol. 14, no. 1, pp. 1–101, 2020, issn:
1554-0669, 1554-0677. doi: 10.1561/1500000066. [Online]. Available: http://
www.nowpublishers.com/article/Details/INR-066 (visited on 09/14/2020).

114 BIBLIOGRAPHY

[73] E. Tjoa and C. Guan, “A Survey on Explainable Artificial Intelligence (XAI):
Toward Medical XAI”, en, IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 11, pp. 4793–4813, Nov. 2021, issn: 2162-237X, 2162-2388.
doi: 10.1109/TNNLS.2020.3027314. [Online]. Available: https://ieeexplore.
ieee.org/document/9233366/ (visited on 03/17/2024).

[74] M. Szczepański, M. Pawlicki, R. Kozik, and M. Choraś, “New explainability method
for BERT-based model in fake news detection”, en, Scientific Reports, vol. 11,
no. 1, p. 23 705, Dec. 2021, issn: 2045-2322. doi: 10.1038/s41598-021-03100-6.
[Online]. Available: https://www.nature.com/articles/s41598-021-03100-6
(visited on 10/06/2024).

[75] A. Gramegna and P. Giudici, “SHAP and LIME: An Evaluation of Discriminative
Power in Credit Risk”, Frontiers in Artificial Intelligence, vol. 4, p. 752 558, Sep.
2021, issn: 2624-8212. doi: 10.3389/frai.2021.752558. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/frai.2021.752558/full
(visited on 10/06/2024).

[76] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for Sim-
plicity: The All Convolutional Net, Version Number: 3, 2014. doi: 10.48550/
ARXIV.1412.6806. [Online]. Available: https://arxiv.org/abs/1412.6806
(visited on 09/12/2024).

[77] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Local-
ization”, 2016, Publisher: arXiv Version Number: 4. doi: 10.48550/ARXIV.1610.
02391. [Online]. Available: https://arxiv.org/abs/1610.02391 (visited on
09/12/2024).

[78] M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Net-
works, arXiv:1311.2901 [cs], Nov. 2013. [Online]. Available: http://arxiv.org/
abs/1311.2901 (visited on 09/12/2024).

[79] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.”,
The Annals of Statistics, vol. 29, no. 5, Oct. 2001, issn: 0090-5364. doi: 10 .
1214 / aos / 1013203451. [Online]. Available: https : / / projecteuclid . org /
journals/annals-of-statistics/volume-29/issue-5/Greedy-function-
approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.
full (visited on 09/12/2024).

[80] C. Szegedy, W. Zaremba, I. Sutskever, et al., Intriguing properties of neural net-
works, Version Number: 4, 2013. doi: 10.48550/ARXIV.1312.6199. [Online].
Available: https://arxiv.org/abs/1312.6199 (visited on 09/12/2024).

[81] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A Review
of Machine Learning Interpretability Methods”, en, Entropy, vol. 23, no. 1, p. 18,
Dec. 2020, issn: 1099-4300. doi: 10.3390/e23010018. [Online]. Available: https:
//www.mdpi.com/1099-4300/23/1/18 (visited on 01/31/2024).

[82] R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman, “Metrics for explainable ai:
Challenges and prospects”, 2019. arXiv: 1812.04608 [cs.AI]. [Online]. Available:
https://arxiv.org/abs/1812.04608.

BIBLIOGRAPHY 115

[83] A. Rosenfeld, “Better metrics for evaluating explainable artificial intelligence”, in
Proceedings of the 20th International Conference on Autonomous Agents and Mul-
tiAgent Systems, ser. AAMAS ’21, Virtual Event, United Kingdom: International
Foundation for Autonomous Agents and Multiagent Systems, 2021, pp. 45–50,
isbn: 9781450383073.

[84] F. Sovrano and F. Vitali, “An objective metric for Explainable AI: How and why
to estimate the degree of explainability”, en, Knowledge-Based Systems, vol. 278,
p. 110 866, Oct. 2023, issn: 09507051. doi: 10.1016/j.knosys.2023.110866.
[Online]. Available: https : / / linkinghub . elsevier . com / retrieve / pii /
S0950705123006160 (visited on 09/11/2024).

[85] F. Sovrano, S. Sapienza, M. Palmirani, and F. Vitali, “A Survey on Methods and
Metrics for the Assessment of Explainability under the Proposed AI Act”, 2021,
Publisher: arXiv Version Number: 1. doi: 10.48550/ARXIV.2110.11168. [Online].
Available: https://arxiv.org/abs/2110.11168 (visited on 09/11/2024).

[86] G. Vilone, L. Rizzo, and L. Longo, “A comparative analysis of rule-based, model-
agnostic methods for explainable artificial intelligence”, Dec. 2020.

[87] M. R. Islam, M. U. Ahmed, S. Barua, and S. Begum, “A Systematic Review of
Explainable Artificial Intelligence in Terms of Different Application Domains and
Tasks”, en, Applied Sciences, vol. 12, no. 3, p. 1353, Jan. 2022, issn: 2076-3417.
doi: 10.3390/app12031353. [Online]. Available: https://www.mdpi.com/2076-
3417/12/3/1353 (visited on 09/20/2024).

[88] M. Pawlicki, A. Pawlicka, F. Uccello, et al., “Evaluating the necessity of the multi-
ple metrics for assessing explainable AI: A critical examination”, en, Neurocomput-
ing, vol. 602, p. 128 282, Oct. 2024, issn: 09252312. doi: 10.1016/j.neucom.2024.
128282. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0925231224010531 (visited on 09/20/2024).

[89] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, en.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, isbn: 978-3-642-08233-7 978-
3-662-03315-9. doi: 10.1007/978-3-662-03315-9. [Online]. Available: http:
//link.springer.com/10.1007/978-3-662-03315-9 (visited on 09/20/2024).

[90] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
Past, present, and future”, en, Multimedia Tools and Applications, vol. 80, no. 5,
pp. 8091–8126, Feb. 2021, issn: 1380-7501, 1573-7721. doi: 10.1007/s11042-020-
10139-6. [Online]. Available: http://link.springer.com/10.1007/s11042-
020-10139-6 (visited on 09/20/2024).

[91] D. Berrar, “Cross-Validation”, en, in Encyclopedia of Bioinformatics and Compu-
tational Biology, Elsevier, 2019, pp. 542–545, isbn: 978-0-12-811432-2. doi: 10.
1016/B978-0-12-809633-8.20349-X. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/B978012809633820349X (visited on 09/20/2024).

[92] T. G. Dietterich, “Approximate Statistical Tests for Comparing Supervised Clas-
sification Learning Algorithms”, en, Neural Computation, vol. 10, no. 7, pp. 1895–
1923, Oct. 1998, issn: 0899-7667, 1530-888X. doi: 10.1162/089976698300017197.
[Online]. Available: https://direct.mit.edu/neco/article/10/7/1895-
1923/6224 (visited on 06/03/2024).

116 BIBLIOGRAPHY

[93] E. Alpaydm, “Combined 5 × 2 cv F Test for Comparing Supervised Classification
Learning Algorithms”, en, Neural Computation, vol. 11, no. 8, pp. 1885–1892, Nov.
1999, issn: 0899-7667, 1530-888X. doi: 10.1162/089976699300016007. [Online].
Available: https://direct.mit.edu/neco/article/11/8/1885-1892/6310
(visited on 06/03/2024).

[94] T.-T. Wong and P.-Y. Yeh, “Reliable Accuracy Estimates from k -Fold Cross Val-
idation”, en, IEEE Transactions on Knowledge and Data Engineering, vol. 32,
no. 8, pp. 1586–1594, Aug. 2020, issn: 1041-4347, 1558-2191, 2326-3865. doi:
10.1109/TKDE.2019.2912815. [Online]. Available: https://ieeexplore.ieee.
org/document/8698831/ (visited on 06/03/2024).

[95] J. Demšar, “Statistical comparisons of classifiers over multiple data sets”, J. Mach.
Learn. Res., vol. 7, pp. 1–30, Dec. 2006, issn: 1532-4435.

[96] D. Sheskin, Handbook of parametric and nonparametric statistical procedures, eng,
Fifth edition. Boca Raton: Chapman & Hall/CRC, 2020, OCLC: 1162175922, isbn:
978-1-00-008327-9.

[97] J. Alcalá-Fdez, L. Sánchez, S. García, et al., “KEEL: A software tool to assess
evolutionary algorithms for data mining problems”, en, Soft Computing, vol. 13,
no. 3, pp. 307–318, Feb. 2009, issn: 1432-7643, 1433-7479. doi: 10.1007/s00500-
008-0323-y. [Online]. Available: http://link.springer.com/10.1007/s00500-
008-0323-y (visited on 06/03/2024).

[98] H. Deng, “Interpreting tree ensembles with inTrees”, en, Int J Data Sci Anal, vol. 7,
no. 4, pp. 277–287, Jun. 2019, issn: 2364-415X, 2364-4168. doi: 10.1007/s41060-
018-0144-8. [Online]. Available: http://link.springer.com/10.1007/s41060-
018-0144-8 (visited on 01/24/2021).

[99] Y. Zhou and G. Hooker, Interpreting Models via Single Tree Approximation, en,
arXiv:1610.09036 [stat], Oct. 2016. [Online]. Available: http://arxiv.org/abs/
1610.09036 (visited on 03/17/2024).

[100] G. Vandewiele, O. Janssens, F. Ongenae, F. De Turck, and S. Van Hoecke, GEN-
ESIM: Genetic extraction of a single, interpretable model, en, arXiv:1611.05722
[cs, stat], Nov. 2016. [Online]. Available: http://arxiv.org/abs/1611.05722
(visited on 10/17/2022).

[101] G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas, “Interpretable Predictions of
Tree-based Ensembles via Actionable Feature Tweaking”, en, in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, arXiv:1706.06691 [stat], Aug. 2017, pp. 465–474. doi: 10.1145/3097983.
3098039. [Online]. Available: http://arxiv.org/abs/1706.06691 (visited on
03/17/2024).

[102] O. Bastani, C. Kim, and H. Bastani, Interpreting Blackbox Models via Model Ex-
traction, en, arXiv:1705.08504 [cs], Jan. 2019. [Online]. Available: http://arxiv.
org/abs/1705.08504 (visited on 03/17/2024).

[103] K. Kuratowski and A. Mostowski, Set Theory: With an Introduction to Descriptive
Set Theory (Studies in logic and the foundations of mathematics). North-Holland,
1976. [Online]. Available: https://books.google.pl/books?id=cdcDMQAACAAJ.

BIBLIOGRAPHY 117

[104] U. Adamy, M. Hoffmann, J. Solymosi, and M. Stojaković, “Coloring octrees”, en,
Theoretical Computer Science, vol. 363, no. 1, pp. 11–17, Oct. 2006, issn: 03043975.
doi: 10.1016/j.tcs.2006.06.021. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0304397506003562 (visited on 05/03/2024).

[105] M. Brent, “Instance-based learning: Nearest neighbour with generalisation”, Mas-
ter thesis, University of Waikato, Hamilton, New Zealand, Mar. 1995. [Online].
Available: https://www.researchgate.net/publication/33051309_Instance-
based_learning_Nearest_neighbour_with_generalisation.

[106] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model se-
lection”, Statistics Surveys, vol. 4, no. none, Jan. 2010, issn: 1935-7516. doi:
10 . 1214 / 09 - SS054. [Online]. Available: https : / / projecteuclid . org /
journals/statistics-surveys/volume-4/issue-none/A-survey-of-cross-
validation- procedures- for- model- selection/10.1214/09- SS054.full
(visited on 09/13/2024).

[107] J. Fürnkranz, D. Gamberger, and N. Lavrač, Foundations of Rule Learning (Cogni-
tive Technologies), en. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, isbn:
978-3-540-75196-0 978-3-540-75197-7. doi: 10.1007/978-3-540-75197-7. [On-
line]. Available: https://link.springer.com/10.1007/978-3-540-75197-7
(visited on 09/13/2024).

[108] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure,
Dynamics, and Function using NetworkX”, Pasadena, California, Jun. 2008, pp. 11–
15. doi: 10.25080/TCWV9851. [Online]. Available: https://doi.curvenote.com/
10.25080/TCWV9851 (visited on 09/13/2024).

[109] R. Lewis, “An introduction to classification and regression tree (cart) analysis”,
Jan. 2000.

[110] C. Singh, K. Nasseri, Y. S. Tan, T. Tang, and B. Yu, “Imodels: A python package
for fitting interpretable models”, Journal of Open Source Software, vol. 6, no. 61,
p. 3192, 2021. doi: 10.21105/joss.03192. [Online]. Available: https://doi.
org/10.21105/joss.03192.

[111] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization”, J.
Mach. Learn. Res., vol. 13, no. null, pp. 281–305, Feb. 2012, issn: 1532-4435.

[112] B. Gulowaty and M. Wozniak, “Extracting Interpretable Decision Tree Ensem-
ble from Random Forest”, in 2021 International Joint Conference on Neural Net-
works (IJCNN), Shenzhen, China: IEEE, Jul. 2021, pp. 1–8, isbn: 978-1-66543-
900-8. doi: 10.1109/IJCNN52387.2021.9533601. [Online]. Available: https:
//ieeexplore.ieee.org/document/9533601/ (visited on 10/03/2021).

[113] P. Langley and H. A. Simon, “Applications of machine learning and rule induction”,
en, Communications of the ACM, vol. 38, no. 11, pp. 54–64, Nov. 1995, issn:
0001-0782, 1557-7317. doi: 10.1145/219717.219768. [Online]. Available: https:
//dl.acm.org/doi/10.1145/219717.219768 (visited on 05/06/2024).

[114] C. Molnar, Interpretable machine learning: a guide for making black box models ex-
plainable, eng. Victoria, British Columbia: Leanpub, 2020, isbn: 978-0-244-76852-2.

118 BIBLIOGRAPHY

[115] J. Bacardit, A. E. I. Brownlee, S. Cagnoni, G. Iacca, J. McCall, and D. Walker,
“The intersection of evolutionary computation and explainable AI”, en, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion,
Boston Massachusetts: ACM, Jul. 2022, pp. 1757–1762, isbn: 978-1-4503-9268-6.
doi: 10.1145/3520304.3533974. [Online]. Available: https://dl.acm.org/doi/
10.1145/3520304.3533974 (visited on 09/12/2024).

[116] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti,
Local Rule-Based Explanations of Black Box Decision Systems, Version Number:
1, 2018. doi: 10.48550/ARXIV.1805.10820. [Online]. Available: https://arxiv.
org/abs/1805.10820 (visited on 09/12/2024).

[117] S. Sharma, J. Henderson, and J. Ghosh, “CERTIFAI: A Common Framework to
Provide Explanations and Analyse the Fairness and Robustness of Black-box Mod-
els”, en, in Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
New York NY USA: ACM, Feb. 2020, pp. 166–172, isbn: 978-1-4503-7110-0. doi:
10.1145/3375627.3375812. [Online]. Available: https://dl.acm.org/doi/10.
1145/3375627.3375812 (visited on 09/12/2024).

[118] Y. Tang, D. Nguyen, and D. Ha, “Neuroevolution of Self-Interpretable Agents”,
2020, Publisher: arXiv Version Number: 2. doi: 10 . 48550 / ARXIV . 2003 .
08165. [Online]. Available: https://arxiv.org/abs/2003.08165 (visited on
09/12/2024).

[119] J. Jordan, M. Schmidt, W. Senn, and M. A. Petrovici, “Evolving interpretable
plasticity for spiking networks”, en, eLife, vol. 10, e66273, Oct. 2021, issn: 2050-
084X. doi: 10.7554/eLife.66273. [Online]. Available: https://elifesciences.
org/articles/66273 (visited on 09/12/2024).

[120] E. Canti-Paz and C. Kamath, “Inducing oblique decision trees with evolutionary
algorithms”, en, IEEE Transactions on Evolutionary Computation, vol. 7, no. 1,
pp. 54–68, Feb. 2003, issn: 1089-778X. doi: 10.1109/TEVC.2002.806857. [On-
line]. Available: http://ieeexplore.ieee.org/document/1179908/ (visited on
09/12/2024).

[121] M. Kretowski, “An Evolutionary Algorithm for Oblique Decision Tree Induction”,
in Artificial Intelligence and Soft Computing - ICAISC 2004, D. Hutchison, T.
Kanade, J. Kittler, et al., Eds., vol. 3070, Series Title: Lecture Notes in Computer
Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 432–437, isbn:
978-3-540-22123-4 978-3-540-24844-6. doi: 10.1007/978-3-540-24844-6_63.
[Online]. Available: http://link.springer.com/10.1007/978-3-540-24844-
6_63 (visited on 09/12/2024).

[122] A. Shali, M. R. Kangavari, and B. Bina, “Using genetic programming for the in-
duction of oblique decision trees”, in Sixth International Conference on Machine
Learning and Applications (ICMLA 2007), Cincinnati, OH, USA: IEEE, Dec.
2007, pp. 38–43, isbn: 978-0-7695-3069-7. doi: 10.1109/ICMLA.2007.66. [On-
line]. Available: http://ieeexplore.ieee.org/document/4457205/ (visited on
09/12/2024).

[123] J. Bacardit, E. K. Burke, and N. Krasnogor, “Improving the scalability of rule-
based evolutionary learning”, en, Memetic Computing, vol. 1, no. 1, pp. 55–67,
Mar. 2009, issn: 1865-9284, 1865-9292. doi: 10 . 1007 / s12293 - 008 - 0005 - 4.
[Online]. Available: http://link.springer.com/10.1007/s12293-008-0005-4
(visited on 09/12/2024).

BIBLIOGRAPHY 119

[124] J. Juan Liu and J. Tin-Yau Kwok, “An extended genetic rule induction algorithm”,
in Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat.
No.00TH8512), vol. 1, La Jolla, CA, USA: IEEE, 2000, pp. 458–463, isbn: 978-
0-7803-6375-5. doi: 10.1109/CEC.2000.870332. [Online]. Available: http://
ieeexplore.ieee.org/document/870332/ (visited on 09/12/2024).

[125] R. Mazouni and A. Rahmoun, “AGGE: A Novel Method to Automatically Gen-
erate Rule Induction Classifiers Using Grammatical Evolution”, en, in Intelligent
Distributed Computing VIII, D. Camacho, L. Braubach, S. Venticinque, and C.
Badica, Eds., vol. 570, Series Title: Studies in Computational Intelligence, Cham:
Springer International Publishing, 2015, pp. 279–288, isbn: 978-3-319-10421-8 978-
3-319-10422-5. doi: 10 . 1007 / 978 - 3 - 319 - 10422 - 5 _ 30. [Online]. Available:
https://link.springer.com/10.1007/978- 3- 319- 10422- 5_30 (visited
on 09/12/2024).

[126] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. De Carvalho, and A. A. Fre-
itas, “A Survey of Evolutionary Algorithms for Decision-Tree Induction”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), vol. 42, no. 3, pp. 291–312, May 2012, issn: 1094-6977, 1558-2442. doi:
10.1109/TSMCC.2011.2157494. [Online]. Available: http://ieeexplore.ieee.
org/document/5928432/ (visited on 09/12/2024).

[127] Y. Mei, Q. Chen, A. Lensen, B. Xue, and M. Zhang, “Explainable Artificial In-
telligence by Genetic Programming: A Survey”, IEEE Transactions on Evolution-
ary Computation, vol. 27, no. 3, pp. 621–641, Jun. 2023, issn: 1089-778X, 1089-
778X, 1941-0026. doi: 10.1109/TEVC.2022.3225509. [Online]. Available: https:
//ieeexplore.ieee.org/document/9965435/ (visited on 09/12/2024).

[128] S. Luke and L. Panait, “A Comparison of Bloat Control Methods for Genetic
Programming”, en, Evolutionary Computation, vol. 14, no. 3, pp. 309–344, Sep.
2006, issn: 1063-6560, 1530-9304. doi: 10.1162/evco.2006.14.3.309. [Online].
Available: https://direct.mit.edu/evco/article/14/3/309- 344/1242
(visited on 09/12/2024).

[129] S. Silva and E. Costa, “Dynamic limits for bloat control in genetic programming
and a review of past and current bloat theories”, en, Genetic Programming and
Evolvable Machines, vol. 10, no. 2, pp. 141–179, Jun. 2009, issn: 1389-2576, 1573-
7632. doi: 10.1007/s10710-008-9075-9. [Online]. Available: http://link.
springer.com/10.1007/s10710-008-9075-9 (visited on 09/12/2024).

[130] M. Virgolin, T. Alderliesten, C. Witteveen, and P. A. N. Bosman, “Scalable ge-
netic programming by gene-pool optimal mixing and input-space entropy-based
building-block learning”, en, in Proceedings of the Genetic and Evolutionary Com-
putation Conference, Berlin Germany: ACM, Jul. 2017, pp. 1041–1048, isbn: 978-
1-4503-4920-8. doi: 10.1145/3071178.3071287. [Online]. Available: https://dl.
acm.org/doi/10.1145/3071178.3071287 (visited on 09/12/2024).

[131] T. Soule and J. A. Foster, “Effects of Code Growth and Parsimony Pressure on
Populations in Genetic Programming”, en, Evolutionary Computation, vol. 6, no. 4,
pp. 293–309, Dec. 1998, issn: 1063-6560, 1530-9304. doi: 10.1162/evco.1998.6.
4.293. [Online]. Available: https://direct.mit.edu/evco/article/6/4/293-
309/832 (visited on 09/12/2024).

120 BIBLIOGRAPHY

[132] E. Alfaro-Cid, J. J. Merelo, F. F. De Vega, A. I. Esparcia-Alcázar, and K. Sharman,
“Bloat Control Operators and Diversity in Genetic Programming: A Comparative
Study”, en, Evolutionary Computation, vol. 18, no. 2, pp. 305–332, Jun. 2010, issn:
1063-6560, 1530-9304. doi: 10.1162/evco.2010.18.2.18206. [Online]. Available:
https://direct.mit.edu/evco/article/18/2/305- 332/1341 (visited on
09/12/2024).

[133] S. Silva and S. Dignum, “Extending Operator Equalisation: Fitness Based Self
Adaptive Length Distribution for Bloat Free GP”, in Genetic Programming, L. Van-
neschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner, Eds., vol. 5481, Se-
ries Title: Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 159–170, isbn: 978-3-642-01180-1 978-3-642-01181-8. doi:
10.1007/978-3-642-01181-8_14. [Online]. Available: http://link.springer.
com/10.1007/978-3-642-01181-8_14 (visited on 09/12/2024).

[134] M. Naoki, B. McKay, N. Xuan, E. Daryl, and S. Takeuchi, “A New Method for Sim-
plifying Algebraic Expressions in Genetic Programming Called Equivalent Decision
Simplification”, in Distributed Computing, Artificial Intelligence, Bioinformatics,
Soft Computing, and Ambient Assisted Living, S. Omatu, M. P. Rocha, J. Bravo,
et al., Eds., vol. 5518, Series Title: Lecture Notes in Computer Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 171–178, isbn: 978-3-642-02480-
1 978-3-642-02481-8. doi: 10.1007/978-3-642-02481-8_24. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-02481-8_24 (visited on
09/12/2024).

[135] M. Kommenda, G. Kronberger, M. Affenzeller, S. M. Winkler, and B. Burlacu,
“Evolving Simple Symbolic Regression Models by Multi-Objective Genetic Pro-
gramming”, in Genetic Programming Theory and Practice XIII, R. Riolo, W.
Worzel, M. Kotanchek, and A. Kordon, Eds., Series Title: Genetic and Evolution-
ary Computation, Cham: Springer International Publishing, 2016, pp. 1–19, isbn:
978-3-319-34221-4 978-3-319-34223-8. doi: 10.1007/978-3-319-34223-8_1. [On-
line]. Available: http://link.springer.com/10.1007/978-3-319-34223-8_1
(visited on 09/12/2024).

[136] L. Vanneschi, M. Castelli, and S. Silva, “Measuring bloat, overfitting and functional
complexity in genetic programming”, en, in Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, Portland Oregon USA: ACM, Jul.
2010, pp. 877–884, isbn: 978-1-4503-0072-8. doi: 10.1145/1830483.1830643.
[Online]. Available: https://dl.acm.org/doi/10.1145/1830483.1830643
(visited on 09/12/2024).

[137] G. S. I. Aldeia and F. O. De França, “Measuring feature importance of symbolic
regression models using partial effects”, en, in Proceedings of the Genetic and Evo-
lutionary Computation Conference, Lille France: ACM, Jun. 2021, pp. 750–758,
isbn: 978-1-4503-8350-9. doi: 10.1145/3449639.3459302. [Online]. Available:
https://dl.acm.org/doi/10.1145/3449639.3459302 (visited on 09/12/2024).

[138] S. Ahmed, M. Zhang, L. Peng, and B. Xue, “Multiple feature construction for
effective biomarker identification and classification using genetic programming”,
en, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, Vancouver BC Canada: ACM, Jul. 2014, pp. 249–256, isbn: 978-1-
4503-2662-9. doi: 10.1145/2576768.2598292. [Online]. Available: https://dl.
acm.org/doi/10.1145/2576768.2598292 (visited on 09/12/2024).

BIBLIOGRAPHY 121

[139] L. S. Oliveira, M. Morita, R. Sabourin, and F. Bortolozzi, “Multi-objective Genetic
Algorithms to Create Ensemble of Classifiers”, in Evolutionary Multi-Criterion Op-
timization, D. Hutchison, T. Kanade, J. Kittler, et al., Eds., vol. 3410, Series Title:
Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 592–606, isbn: 978-3-540-24983-2 978-3-540-31880-4. doi: 10.1007/978-
3-540-31880-4_41. [Online]. Available: http://link.springer.com/10.1007/
978-3-540-31880-4_41 (visited on 09/12/2024).

[140] M. N. Adnan and M. Z. Islam, “Optimizing the number of trees in a decision forest
to discover a subforest with high ensemble accuracy using a genetic algorithm”,
en, Knowledge-Based Systems, vol. 110, pp. 86–97, Oct. 2016, issn: 09507051. doi:
10.1016/j.knosys.2016.07.016. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0950705116302301 (visited on 09/12/2024).

[141] G. Ngo, R. Beard, and R. Chandra, “Evolutionary bagging for ensemble learning”,
en, Neurocomputing, vol. 510, pp. 1–14, Oct. 2022, issn: 09252312. doi: 10.1016/
j.neucom.2022.08.055. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0925231222010414 (visited on 09/12/2024).

[142] J. Sylvester and N. Chawla, “Evolutionary Ensemble Creation and Thinning”, in
The 2006 IEEE International Joint Conference on Neural Network Proceedings,
Vancouver, BC, Canada: IEEE, 2006, pp. 5148–5155, isbn: 978-0-7803-9490-2. doi:
10.1109/IJCNN.2006.247245. [Online]. Available: http://ieeexplore.ieee.
org/document/1716816/ (visited on 09/12/2024).

[143] E. Alpaydın, Introduction to machine learning (Adaptive computation and ma-
chine learning), eng, Fourth edition. Cambridge, Massachusetts London: The MIT
Press, 2020, isbn: 978-0-262-04379-3.

[144] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A Brief Review of Nearest Neigh-
bor Algorithm for Learning and Classification”, in 2019 International Conference
on Intelligent Computing and Control Systems (ICCS), Madurai, India: IEEE,
May 2019, pp. 1255–1260, isbn: 978-1-5386-8113-8. doi: 10.1109/ICCS45141.
2019.9065747. [Online]. Available: https://ieeexplore.ieee.org/document/
9065747/ (visited on 09/13/2024).

[145] K. Stapor, P. Ksieniewicz, S. García, and M. Woźniak, “How to design the fair ex-
perimental classifier evaluation”, en, Applied Soft Computing, vol. 104, p. 107 219,
Jun. 2021, issn: 15684946. doi: 10.1016/j.asoc.2021.107219. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S1568494621001423
(visited on 09/13/2024).

[146] H. M. Kakde, Range searching using kd tree. 2005.

[147] B. Gulowaty and M. Woźniak, “Search-based framework for transparent non-
overlapping ensemble models”, in 2022 International Joint Conference on Neural
Networks (IJCNN), 2022, pp. 1–6. doi: 10.1109/IJCNN55064.2022.9892360.

[148] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python”, IEEE
Access, vol. 8, pp. 89 497–89 509, 2020.

[149] J. M. Sotoca, R. A. Mollineda, and J. S. Sanchez, “A meta-learning framework for
pattern classification by means of data complexity measures”, INTELIGENCIA
ARTIFICIAL, vol. 10, no. 29, p. 481, Dec. 2006, issn: 1988-3064, 1137-3601. doi:
10.4114/ia.v10i29.875. [Online]. Available: http://journal.iberamia.org/
index.php/ia/article/view/481 (visited on 09/13/2024).

122 BIBLIOGRAPHY

[150] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level analysis of
data complexity”, en, Machine Learning, vol. 95, no. 2, pp. 225–256, May 2014,
issn: 0885-6125, 1573-0565. doi: 10.1007/s10994-013-5422-z. [Online]. Avail-
able: http://link.springer.com/10.1007/s10994-013-5422-z (visited on
04/14/2024).

[151] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art”, en,
Knowledge-Based Systems, vol. 212, p. 106 622, Jan. 2021, issn: 09507051. doi:
10.1016/j.knosys.2020.106622. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0950705120307516 (visited on 05/13/2024).

[152] B. Gulowaty and P. Ksieniewicz, “Smote algorithm variations in balancing data
streams”, in Intelligent Data Engineering and Automated Learning – IDEAL 2019,
H. Yin, D. Camacho, P. Tino, A. J. Tallón-Ballesteros, R. Menezes, and R. All-
mendinger, Eds., Cham: Springer International Publishing, 2019, pp. 305–312,
isbn: 978-3-030-33617-2.

[153] B. Gulowaty and M. Woźniak, “Extracting interpretable decision tree ensemble
from random forest”, in 2021 International Joint Conference on Neural Networks
(IJCNN), 2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9533601.

