
 

Traffic forecasting in optical networks 

with predefined traffic levels 

Prognozowanie ruchu w sieciach optycznych 

posiadających ustalone poziomy ruchu 

(rozprawa doktorska) 

 

mgr inż. Daniel Szostak 

 

 Promotor: prof. dr hab. inż. Krzysztof Walkowiak 

 

 

Słowa kluczowe: 

 Uczenie maszynowe 

 Sieci optyczne 

 Szeregi czasowe 

 Klasyfikacja 

 Regresja 

 Prognozowanie ruchu sieciowego 

 

 

D 
 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 Wrocław, październik 2022  

POLITECHNIKA WROCŁAWSKA 

Wydział Informatyki i Telekomunikacji 

Katedra Systemów i Sieci Komputerowych 

 



ii 
 

  



iii 
 

Acknowledgments 

I would like to express my sincere gratitude to my supervisor, Prof. Krzysztof Walkowiak 

for his help, guidance, shared knowledge and continuous support of my Ph.D. studies in 

the past 4 years. Thank you for all time, remarks and discussions, not only about science. 

They allowed me to become better scientist. Thank you for your patience, motivation and 

understanding. I could not have imagined having a better supervisor and mentor for my 

Ph.D. studies. 

My sincere thanks also go to Prof. Agnieszka Wyłomańska from Faculty of Pure 

and Applied Mathematics, Wrocław University of Science and Technology. Your 

advanced knowledge and consultations about time series methods supported me during 

experimental part of my work. 

I also wish to express my thanks to Department of Systems and Computer 

Networks, Faculty of Computer Science and Telecommunications, Wrocław University 

of Science and Technology for providing me with all the necessary facilities for 

conducting my research. 

I would like to thank my parents. You gave me possibility to start the studies and 

were supporting me during my whole scientific career. Thank you for all discussions, 

advices and support in my decisions. I know that I am ready for next chapters of my life. 

I give thanks to my wife Kasia for continuous support, always being next to me 

and all smiles during my moments of doubts. Thank you for help with visual aspects of 

my dissertation and showing me that creating drawings is not complicated. 

Last but not least, I would like to thank my brothers, Paweł and Maciek. Thank 

you for help with grammar and language corrections and for all shared knowledge about 

writing scientific works. 

  



iv 
 

 

  



v 
 

Abstract 

Quick and global development of network technologies and services reflects in traffic 

increase in backbone networks. Nowadays means of communication, carrying 

voluminous, aggregated user data traffic, are optical networks. They use fibers linked into 

one physical cable as a transmission medium. Using the wavelength division multiplexing 

technique, data are transported using optical channels transmitted at different 

wavelengths. A next-generation optical networks architecture called Elastic Optical 

Networks allows to optimize network operation and management. It uses orthogonal 

frequency division multiplexing technology, which distributes data in a multicarrier 

system, where each sub-carrier is orthogonally modulated. A single optical channel 

supported by a single transceiver can carry a fixed amount of data. As a result, the 

information required to establish a connection is the number of optical channels required 

to carry a transmission. Additionally, most of the transport network technologies such as 

an Optical Transport Network, various versions of Ethernet, satellite networks, different 

generations of mobile networks or computer networks where transmission medium is 

twisted pair cable are also provisioned in some granularities of the bitrate. 

This dissertation focuses on network traffic forecasting. Due to physical network 

characteristics, the task is realized by predicting future traffic levels rather than the exact 

traffic volume. Two main problems are considered, namely a one-step ahead prediction, 

which is referred as a short-term traffic forecasting and a multi-steps ahead prediction, 

which is also called a long-term traffic forecasting. Information from each forecasting 

type can improve various network management tasks, i.e., routing, failure detection, 

network expansion planning. For both problems this work checks possibility of traffic 

levels forecast by statistical analysis, application of machine learning algorithms and 

application of time series algorithms. All algorithms were tested using three proposed 

forecast approaches. Methods that obtained the best results were examined under various 

real network scenarios. To estimate performance of algorithms, thus final traffic level 

forecasting quality, this work proposes new quality metric, which can be adjusted to 

operator expectations. 

According to the obtained results, machine learning algorithms allow to forecast 

traffic levels with high quality. Additionally, their performance outperforms naïve 

statistical analysis methods. 
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Streszczenie 

Szybki i globalny rozwój technologii i usług sieciowych przekłada się na wzrost ruchu w 

sieciach szkieletowych. Obecnie środkiem komunikacji, przenoszącym duży, 

zagregowany ruch danych użytkowników, są sieci optyczne. Wykorzystują one jako 

medium transmisyjne włókna połączone w jeden fizyczny kabel. Wykorzystując technikę 

WDM, dane są transportowane za pomocą kanałów optycznych przesyłanych na różnych 

długościach fali. Architektura sieci optycznych nowej generacji zwana elastyczne sieci 

optyczne pozwala na optymalizację pracy i zarządzania siecią. Wykorzystuje ona 

technologię OFDM, która dystrybuuje dane w systemie wielu nośnych, gdzie każda nośna 

jest ortogonalnie modulowana. Pojedynczy kanał optyczny obsługiwany przez 

pojedynczy nadajnik może przenosić ustaloną ilość danych. W rezultacie, informacją 

wymaganą do ustanowienia połączenia jest liczba kanałów optycznych, które wystarczą 

do pomieszczenia danych. Dodatkowo, większość technologii sieci transportowych, 

również wykorzystuje transmisję opartą o granulację przesyłanych danych. 

Niniejsza praca doktorska koncentruje się na prognozowaniu ruchu sieciowego. 

Ze względu na fizyczne właściwości sieci, zadanie to jest realizowane poprzez 

przewidywanie przyszłych poziomów ruchu, a nie dokładnej wartości natężenia ruchu. 

Rozważane są dwa główne problemy, mianowicie predykcja jeden krok w przód, która 

jest określana jako krótkoterminowe prognozowanie ruchu oraz predykcja wiele kroków 

w przód, która jest również nazywana długoterminowym prognozowaniem ruchu. 

Informacje z każdego rodzaju prognozowania mogą usprawnić różne zadania zarządzania 

siecią, tj. wyznaczanie tras, wykrywanie awarii, planowanie rozbudowy sieci. Dla obu 

problemów w niniejszej pracy sprawdzono możliwość prognozowania poziomu ruchu 

poprzez analizę statystyczną, zastosowanie algorytmów uczenia maszynowego oraz 

zastosowanie algorytmów szeregów czasowych. Wszystkie algorytmy zostały 

przetestowane przy użyciu trzech proponowanych podejść do prognozowania. Metody, 

które uzyskały najlepsze wyniki, zostały zbadane w różnych rzeczywistych scenariuszach 

sieciowych. W celu oszacowania wydajności algorytmów, a tym samym końcowej 

jakości prognozowania poziomu ruchu, w pracy zaproponowano nową metrykę jakości, 

która może być dostosowana do oczekiwań operatora. 
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Zgodnie z uzyskanymi wynikami, algorytmy uczenia maszynowego pozwalają na 

prognozowanie poziomów ruchu z wysoką jakością. Dodatkowo, osiągają one lepsze 

wyniki niż metody analizy statystycznej.  
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1. Introduction 

Rapid growth of network traffic in backbone networks makes resource management a 

challenging and crucial task for network operators. The knowledge about the future traffic 

may highly improve a range of tasks that Communications Service Providers (CSPs) have 

to face. Artificial intelligence provides suitable tools to forecast future traffic based on 

dependencies that occurred in historical data flows in the network. In this dissertation two 

aspects of a network traffic forecasting problem are considered, i.e., a one-step ahead 

prediction, which is referred as a short-term traffic forecasting and a multi-steps ahead 

prediction, which is also called a long-term traffic forecasting. 

 

1.1. Motivation 

Quick and global development of network technologies such as the Internet of things, 5G, 

or a cloud computing causes instant growth of endpoint devices [44]. According to the 

Cisco Annual Internet Report, the number of Internet users will grow from 3.9 billion in 

2018 to 5.3 billion in 2023 [25]. Moreover, the recent Nokia report [85] presents and 

discusses various network traffic trends in 2020. It shows that as a result of COVID-19 

pandemic, in the first weeks of lockdown, comparing to pre pandemic time, network 

traffic increased by 30-50%. Additionally, by September 2020, traffic has stabilized at 

20-30% above pre pandemic level. To overcome the possible capacity crunch problem in 

the Internet, network operators build and incessantly improve backbone networks 

utilizing various optical technologies [80], [128]. However, constantly growing network 

traffic, the  increase of which is sometimes rapid in a short time, presents new challenges 

to CSPs. To improve the performance of future optical networks, compared to 

conventional mechanisms currently used in optical networks, a concept of a cognitive 

optical network [20] has been proposed. In more detail, a cognitive optical network is a 

network with a cognitive process that can monitor current network conditions and then 

adjust the network operation to those conditions. The cognitive process, which uses 

history to improve performance, usually employs machine learning algorithms [21]. ML 

techniques can be successfully applied to analyze and find dependencies in historical data, 

e.g., traffic flows. Gained knowledge can be used as a valuable information for different 

network optimization tasks, e.g., traffic flow control, network operational cost reduction, 

anomalies detection, or physical network expansion. 
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Nowadays, means of communication used as backbone networks, carrying 

voluminous, aggregated user data traffic, are optical networks [79]. They use fibers linked 

into one physical cable as a transmission medium. Using wavelength division 

multiplexing (WDM) technique, data are transferred using optical channels transmitted 

at different wavelengths. Optical networks are constantly improved and developed. A 

next-generation optical networks architecture called Elastic Optical Networks[53], [138] 

allows to optimize network operation and management. It uses orthogonal frequency 

division multiplexing (OFDM) technology, which allows distributing data in a 

multicarrier system, where each sub-carrier is orthogonally modulated. A single optical 

channel supported by a single transceiver can carry a fixed amount of data. As a result, 

the information required to establish a connection is the number of optical channels 

required to carry a transition. Therefore, in this dissertation traffic forecasting is realized 

by predicting future traffic levels rather than the exact traffic volume. Although the work 

is focused on forecasting traffic in optical networks, most of the transport network 

technologies and networks types are also provisioned in some granularities of the bitrate, 

namely an Optical Transport Network (OTN), various versions of Ethernet, satellite 

networks, different generations of mobile networks or computer networks where 

transmission medium is twisted pair cable. Therefore, methods and results reported in this 

dissertation can be applied to various type of network technologies. 

 

1.2. Thesis, aims and goals 

This dissertation proposes methods for network traffic forecasting in the short-term (one-

step ahead) and the long-term (multi-steps ahead) approach. The thesis of this dissertation 

is as follows: 

There exist methods for short-term and long-term traffic forecast in optical networks, 

where transmission bases on predefined traffic levels. 

To prove the proposed thesis, the following aims and goals are formulated: 

 To design and implement historical data flows preprocessing methods which 

return input for machine learning and other type algorithms. 

 To develop short-term and long-term traffic forecasting strategies using machine 

learning and time series algorithms. 

 To define an evaluation metric for considered problem. 
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 To evaluate the effectiveness of the best proposed method under various network 

scenarios. 

 To collect real traffic data. 

1.3. Structure of the dissertation 

This dissertation is divided into 6 chapters: 

 The first chapter briefly describes the problem, research motivation and thesis, 

aims and goals. 

 Chapter 2 presents theoretical background. Concepts related to traffic in 

computer networks, machine learning and time series are introduced. At the end, 

the literature study is presented. 

 Next chapter introduces problem formulation. Concepts like network model, 

datasets description, possible solutions and algorithms evaluation metrics are 

presented in details. 

 Chapters 4 and 5 present numerical results of conducted experiments. The former 

is related to short-term traffic levels forecasting and the later to long-term traffic 

levels forecasting. 

 The last chapter concludes the dissertation and presents planned future works. 

This dissertation work was supported by the National Science Centre, Poland under Grant 

2017/27/B/ST7/00888 “Optimization of cognitive optical networks”.  
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2. Background 

The main problem that this dissertation describes is network traffic forecasting. 

Forecasting problem is a sub-discipline of prediction problems, where estimations about 

future are made taking into account temporal dimension [30], [32], [33]. In other words, 

forecast is a time-based prediction. Network traffic forecasting can be divided into two 

sub problems, i.e., a one-step ahead forecast, which is referred as a short-term traffic 

forecasting [7], [52], [57] and a multi-steps ahead forecast, which is also called a long-

term traffic forecasting [1], [26]. Information from different time horizons of the forecast 

can be used to improve various network task. In case of the short term forecasting, 

prediction bases on the nearest past. Such knowledge can help with routing and anomalies 

detection in real time. In turn, knowledge about further future can help in infrastructure 

planning and also traffic routing. Output from both types of forecast can significantly 

decrease network operational costs. In this work, traffic forecast is realized using various 

approaches, i.e., Machine Learning (ML) algorithms, Time Series (TS) methods, and 

statistical analysis.  

This section consists of theoretical background about concepts, techniques and 

terms discussed in the work. It describes the basics of optical as well as Ethernet networks 

and their methods of data transmission, possible approaches of traffic forecast and 

arguments confirming the importance of the problem under consideration. 

 

2.1. Traffic in computer networks 

Computer networks are integral part of today's everyday life. People benefit from 

networks often without even being aware of it – computer networks are transparent for 

them. Daily activities related to work duties, communication with others or entertainment 

require constant communication between electronic devices. Nowadays network traffic 

characteristics evolve all the time. Number of new services available for users rapidly 

grow. Additionally, for existing ones, quality of service (QoS) is improved. This facts 

have reflection in increase of traffic amount in computer networks. It can be noticed in 

traffic statistics collected by different Internet exchange points (IXes) or network 

operators. Figure 1 presents peak and average sum of incoming and outgoing traffic of 

Internet Exchange Point in Seattle (SIX) [101]. In addition, Figure 2 shows average sum 

of incoming and outgoing traffic of one IX of NetIX network (network, which connects 
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over 30 IXes over the world) [82]. Both figures confirm significant growth of network 

traffic between years 2008 and 2022. 

 

Figure 1 – Incoming and outgoing traffic of Internet Exchange Point in Seattle [101] 

 

 

Figure 2 – Average incoming and outgoing traffic of NetIX network [82] 

The annual reports published by leading communication companies, such as 

CISCO or NOKIA, can be reliable source of information about network traffic 

characteristics, their current and future evolution. Report [25] is the latest Cisco Annual 

Internet Report (CAIR), which describes network development over years 2018 – 2023. 

According to CAIR, there are few main aspects causing growth of network traffic. First, 

number of connections to IP networks. By 2023 nearly two-thirds of the global population 

will have Internet access. Number of network devices will rise form 2,4 per person in 
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2018 to 3,6 per person in 2023 and achieve total number of 29,3 billion network devices. 

Secondly, huge part of traffic in computer networks is generated by video services. With 

the introduction of Ultra-High-Definition (UHD) video streaming or 4K,  demand for 

bitrate for such services increased more than twice, comparing to High Definition (HD) 

technology and nine times comparing to Standard-Definition (SD) technology. CISCO 

estimate that by 2023, 66% of the installed flat-panel TVs will be UHD. Another key 

technology, which increases data in computer networks is the Internet of Things (IoT). 

More and more everyday use devices have prefix “smart” in their name, which allow 

them to connect to the network. Despite the fact that amount of data generated by a single 

device is small, their aggregated traffic is visible in computer networks. Taking this all 

into account, the global average broadband speed will more than double from 2018 to 

2023.  

Another company that analyzes network traffic is NOKIA. [85] presents its report 

about network traffic trends in 2020, the year when COVID-19 pandemic appeared. This 

event caused a sudden change in network traffic. Nokia shows that a year’s worth of 

traffic growth happened in just few weeks. In the first days of lockdown, people wanted 

to stay in touch with family and friends, thus the most significant increase was in the use 

of communications applications. However, since messaging does not require big amount 

of transfer, its overall impact on network traffic was minimal. More visible influence had 

bandwidth-heavy traffic types like video streaming and cloud-based gaming applications, 

which before lockdown were mostly popular during evenings and in 2020 the use of them 

increased also during day. As more people stayed at home, the Internet usage became 

heavier throughout the day, with significant traffic increases at the time of previously 

‘quiet’ times. Another important aspect, which resulted in higher levels of traffic in 

networks, was the fact that people started to work remotely. The first week of a lockdown 

brought a 350% increase in teleconferencing traffic, as people scrambled to move their 

daily in-person meetings to videoconferencing calls. What is more, videoconferencing 

traffic levels remained high in September 2020. To sum up, in first weeks of lockdown, 

comparing to pre pandemic time, network traffic increased by 30-50%. Additionally, by 

September 2020, when many of lockdowns were eased or lifted, traffic has stabilized at 

20-30% above pre pandemic level. 

Nokia’s insights are confirmed by the report created by LINX in 2020 [66]. It is a 

United Kingdom’s network operator, with network spread over six IXes in UK and USA. 
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They noticed a global traffic increase by 38% across the whole network in just under 12 

months and 40% traffic growth in London IX. At the beginning of pandemic, they 

received significant number of orders for new ports connections and were asked to 

improve seed of existing ones in their datacenters. 

Telecommunication development causes constant growth of traffic in the 

computer networks. New applications and services are more bandwidth hungry. 

Additionally, unexpected events like lockdowns suddenly change global network 

characteristics. It all challenges CSPs, who have to manage network dynamically. 

Nowadays up to 95 percent of changes in the network are still performed manually [25]. 

It results in operational costs two to three times higher than the cost of the network. As a 

result, there is a high demand for intelligent and automotive solutions in network 

administration [44], [67]. 

Currently, the greatest amount of traffic is transported by backbone optical 

networks. Those are the networks which tie together diverse networks in the wide 

geographic areas, and provide a path for exchange of data between these different 

networks. Backbone optical networks are designed to transfer network traffic at higher 

speed, maximize the reliability and performance of large-scale, long-distance data 

communications. They aggregate data from end users, thus their capacity has to be 

sufficiently high. They should be resistant to malfunctions, because breakdown of 

backbone optical network may affect many end users. Knowledge about future traffic 

volume in the backbone optical network can be helpful in many aspects related to network 

management, i.e., better prevention of failure, operational cost reduction, more efficient 

routing, expansion planning. Backbone optical networks architecture consists of network 

routers and switches, which are mostly connected by fiber optic [13], [105]. End users do 

not connect directly to backbone optical networks. 

Widely used way of communication in backbone networks is the Ethernet protocol 

[107]. It is a set of rules providing communication in wired computer networks introduced 

in 1980. Devices which communicate over Ethernet divide a stream of data into shorter 

pieces called frames [47]. Each frame consists of source and destination addresses and 

error-checking data so that damaged frames can be detected and discarded. Frames are 

sent and received using network cards. Origin and destination network cards are 

connected via transmission medium. First networks used coaxial cable, however 

nowadays optical fiber and twisted pair cables are utilized [73], depending on the required 
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transmission bitrate and distance. Ethernet network is spanned over routers and switches. 

The former are responsible for routing frames between different networks. The latter 

allow to connect different end point devices in one network. Over the years, the Institute 

of Electrical and Electronics Engineers (IEEE) has defined new standards of Ethernet 

protocol [51]. First Ethernet connections allowed for 2.94 Mbit/s transmission and 

achieved up to 400 Gbit/s nowadays. Additionally, standards allowing transmission speed 

up to 1.6 Tbit/s are under development. Currently, there are number of Ethernet standards 

which are in use. Table 1 presents evolution of Ethernet standards over the years to meet 

higher speed. Note, that there are two widely used types of transmission medium in 

Ethernet networks, namely twisted pair cables and optical fibers.  

Table 1 - IEEE Ethernet standards 

Name Standard Speed Medium Year 

10BASE-T 802.3i 10 Mbit/s Twisted pair 1990 

100BASE-TX 802.3u 100 Mbit/s Twisted pair 1995 

1000BASE-SX 

1000BASE-LX/EX 
802.3z  1 Gbit/s Optical fiber 1998 

1000BASE-T 802.3ab 1 Gbit/s Twisted pair 1999 

10GBASE‑SR 

10GBASE‑LR/ER 
802.3ae 10 Gbit/s Optical fiber 2003 

10GBASE-T 802.3an 10 Gbit/s Twisted pair 2006 

40GBASE-SR4/LR4 802.3ba 40 Gbit/s Optical fiber 2010 

100GBASE-SR10/LR4/ER4 802.3ba 100 Gbit/s Optical fiber 2010 

40GBASE-T 802.3bq 40 Gbit/s Twisted pair 2015 

100GBASE-SR4 802.3bm 100 Gbit/s Optical fiber 2015 

400GBASE-SR16 802.3bs 400 Gbit/s Optical fiber 2017 

To be defined 
To be 

defined 
800 Gbit/s Optical fiber 2020 

To be defined 
To be 

defined 
1,6 Tbit/s Optical fiber 2020 

The vast majority of physical connections in backbone networks are realized by 

optical networks [79], [105]. They use optical fibers linked into one physical cable as a 

transmission medium. Data in such medium are transmitted through light channels in 

form of light signals, which are generated using a laser. The laser is responsible for 

conversion electric signal into light. It is localized in transceivers [15], which transmit 

optical signal by optical fibers. At the other side, the signal is converted back to electrical 
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one. The signal strength decreases with distance traveled, so in case of long-distance 

transmission some amplifiers have to be applied [94]. They reinforce signal, in most cases 

without the need to first convert it to an electrical one. The optical signal can be 

transmitted in the efficient way as a result of Wavelength Division Multiplexing (WDM) 

technique. This technology allows to transmit multiple light channels using different 

wavelengths. Wavelengths reflect the spectral frequency range used to transmit single 

channel. For each channel laser generates single signal with different central frequency. 

Next, multiplexers are used to aggregate channels into single fiber. At the transceiver side 

signal is processed by demultiplexer, and then, information is received [72]. WDM 

technology allows transmitting 40 Gbit/s and 100 Gbit/s per channel. 

Available optical spectrum range is divided by International Telecommunication 

Union, which coordinate telecommunication operations and services throughout the 

world, into a fixed grid with the width of each single spectrum slice equal to 50 GHz. As 

a result, each transmission utilizes the whole wavelength, even if the traffic is smaller 

than the wavelength capacity [127]. Such transmission wastes valuable resources. 

Additionally, the upper limit of transmission is defined. Fixed grid solution does not 

support bitrates over 400 Gbit/s. 

To face fixed grid problems [39], a next-generation optical networks architecture 

called Elastic Optical Network (EON) [53], [138] was proposed. It uses orthogonal 

frequency division multiplexing (OFDM) technology [69], [103], which allows 

distributing data in a multicarrier system, where each sub-carrier is orthogonally 

modulated [105]. Adjacent channels can overlap each other which provides better 

transmission spectral efficiency. What is more, channels in case of OFDM are narrower, 

compared to WDM, e.g. 6,25 GHz, 12,5 GHz [97]. It all results in more flexible grid, 

where channel width can be adjusted to transmission requirements without wasting 

resources. Undoubted advantage of EON is a possibility to use different signal 

modulation formats, which differ in case of spectral efficiency and transmission range 

[23], [71]. Maximum bitrate that can be achieved in EON bases on modulation type that 

is supported by transceiver, number of used slices, bitrate of single slice. In [122] it was 

assumed that single slice with width 12,5 GHz, with base modulation BPSK has capacity 

equal to 12,5 Gbps. By creating channels consisting of a few slices and applying more 

efficient modulation, the higher bitrates can be achieved. Note that, maximum capacity 

of channel is equal to multiplicity of 12,5 Gbps. In turn, authors in [58], based on [97], 
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assumed that each transceiver transmits three 12,5 GHz width slices. Depending on used 

modulation, bitrate up to 300 Gbps can be achieved. Table 2 presents possible signal 

range and bitrate depending on transceiver modulation type in [58]. On the other hand, 

different companies from optical industry constantly develop their products. Table in [58] 

presents line rates of next generations of digital signal processors Ciena company. Their 

product WaveLogic 5 Extreme supports line rates from 200Gb/s to 800Gb/s in 50G steps 

[134]. 

Table 2 - Reach and bitrate depending on modulation format 

Modulation format Reach [km] Bitrate [Gbps] 

BPSK 4000 50 

QPSK 2000 100 

8-QAM 1000 150 

16-QAM 500 200 

32-QAM 250 250 

64-QAM 125 300 

 

Note that length of the shortest possible slice in EON is fixed and longer channels 

may be multiples of this length. Figure 3 compares spectrum resources usage in case of 

WDM (fixed grid) and OFDM (flexible grid). 

 

 

Figure 3 - Fixed and flexible grid 

Term closely related to optical networks is a concept of a cognitive optical 

network [20], [135]. It is a network, which has a cognitive process [76] that analyzes 

current network conditions and then adjusts network operation to them. Cognitive process 

should be aware of existing conditions and plan, decide and act on those conditions [132]. 
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It works in continuous cycle, presented in Figure 4. In more detail, the cognitive optical 

network observes environment and defines current network condition. Based on the given 

outlines and its own knowledge, it plans and decides about future actions. It learns from 

acts of adaptation to the network conditions and uses obtained knowledge in future cycles 

[121]. All parts of cognitive process help to optimize performance of optical networks, 

providing possibility for efficient resource management. Cognitive techniques often 

benefit from ML methods [14]. Note that knowledge about future traffic volumes in the 

network can significantly improve cognitive process operation. Thus, forecasting future 

traffic should be integral part of any cognitive optical network. 

 

Figure 4 - Cognitive process loop 

Constantly increasing traffic in backbone optical networks and limitations of 

transportation medium capacity trigger the need for deploying current network 

technologies. Knowledge about network traffic volumes in the future, both near and a bit 

further, can significantly improve network optimization. Physical characteristics of 

optical technologies have an impact on traffic forecasting method, i.e., each optical 

channel can carry a fixed amount of data (fixed bitrate) based on the characteristics of the 
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used transceiver. For example, supposing that a single optical channel supported by a 

single transceiver can carry 100 Gbps, to serve traffic with bitrates of 110 Gbps or 190 

Gbps, regardless of the fact that the bitrates are different, there is a need to establish two 

optical channels (two transceivers) for transmission, since both of the considered bitrates 

require provision of 200 Gbps. Additionally, various versions of Ethernet are also 

provisioned in some granularities of the bitrate. Therefore, traffic forecasting should 

focus on predicting traffic levels, rather than the exact traffic volume. Traffic levels are 

defined by a multiple of optical channel capacity or Ethernet standard granulation. 

Although the dissertations focus on forecasting traffic in optical networks, 

presented methods can also be applied to other types of networks where traffic levels can 

be  are used, e.g. computer networks using twisted-pair cables, satellite networks. 

 

2.2. Machine Learning and Time Series 

Machine Learning is a part of Artificial Intelligence which uses data analysis and 

algorithms to imitate way that humans learn. There is no official definition what ML is, 

however according to [40], “Machine learning is every autonomous change in the system 

that takes place on the basis of experience, that leads to the improvement of the quality 

of its operation”. System  analyzes data with use of statistical techniques and allows 

computers to “learn” without being directly programed and to be able to change and 

improve their algorithms by themselves. Beginning of ML is dated at 1950 when Alan 

Turing presented a test [123], which determines if machine is able to “think” as human 

[78]. During the test a computer and a human have a conversation. To pass it, the machine 

has to convince the human that it is also a human. The name Machine Learning was 

proposed in 1959 by Arthur Samuel [99]. Before this date, the term defining this field of 

computer science was a Computer Intelligence. Although concept of ML is not new, it 

evolves all the time. Scientists present new algorithms and develop existing ones. ML is 

a suitable tool to improve and simplify many technical problems, i.e., forecasting future 

network traffic flows. 

There are few terms related to ML, that should be described at the beginning[64]: 

 Object 𝑥 (also called instance or input vector) – a single observation from 

the domain. It is described by features, thus it can be considered as a 
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vector. All observations create a set of input vectors 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑖), where 𝑖 𝜖 𝑁.  

 Feature 𝑓 – value, which describes the characteristics of the object, i.e., 

day of appearance, minute of appearance, bitrates in the past. Number of 

features describing objects varies depending on the problem. 

 Class (label) 𝑦 – output categories of the problem, i.e., traffic levels. In 

considered problem, each object has one class assigned. All possible 

traffic levels create a set  𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑗), where 𝑗 𝜖 𝑁. When number 

of possible classes is equal to two, then problem is called a binary problem. 

When number of possible classes is more than two, then it is a multiclass 

problem. 

 Dataset – a set of objects and classes assigned to them. It defines 

considered problem. 

 ML algorithm – a method that analyzes the dataset and creates a model 

𝑀(𝑋) = 𝑌, which reflects characteristics of the dataset. The model is able 

to map input vector to the object class. 

Before the ML algorithm is able to analyze dataset, data have to be studied by 

expert, who assigns classes to instances. An expert can be a human or a system. There are 

three types of ML, with reference to learning type [75]: 

 Supervised Learning [100] – learning with expert, learning with examples 

– the most common type of learning used in the field. Each learning 

instance has an already assigned label. These labels claim to which class 

the object belongs. Expert, by analyzing data, assigns labels to samples. 

Objective of the supervised learning algorithm is to learn mapping 

function from the input features to the output class. Supervised learning 

task has two different forms [4]: regression, when the label is presented by 

a real value and classification, where the class is a category [63]. 

 Unsupervised Learning [46] – learning without expert – system gets data 

about which it has no knowledge. The aim of unsupervised learning 

algorithms is to explore hidden structures and examples of the information. 

It is a learning procedure without corrections, and the algorithm will 

attempt to find the basic structure on its own. Unsupervised learning task 

has two different forms: clustering, when task is to discover similar groups 
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of instances and group them together; and association, when algorithm 

discovers some rules that describe the relationships between objects. 

 Semi-Supervised Learning [137] – at the beginning of the procedure there 

is a small set of instances with already assigned classes and a big set of 

objects about which the system knows nothing. Labeled samples are used 

to obtain model, which analyzes unlabeled data and gives them categories. 

Next it uses newly labeled data to expand its knowledge. 

On the other hand, ML can also be considered in terms of data availability during 

whole process. Two different types of ML can be distinguished: 

 Online learning [49] – data arrive to system in parts, often in real time. 

System has to analyze them ad hoc and update model. 

 Offline learning [2] – whole dataset is known at the beginning of the task. 

System creates single model, which is current for whole dataset. 

As mentioned earlier, the problem considered in this dissertation is a network 

traffic forecasting realized by prediction of future traffic levels. Because traffic levels 

have a hierarchy (they can be arranged in ascending order), task is considered as an 

ordinal classification [62], also called ordinal regression, problem. In general, it is a 

multiclass classification problem [108], [119] (in specific case, when only two traffic 

levels are considered, it is a binary problem), where possible classes have inherent order. 

Labels can take any value, even numeric, e.g. “Level_1”, “100Gbps”, “100”, however, 

from the classification point of view, there is no meaningful numeric difference among 

them [38], i.e., it does not matter if traffic levels differ by 100, 1000 or even by different 

granulations. Additionally, the problem is the offline learning. The whole dataset of 

historical data flows in the network is known in advance and models are not updated 

during forecasting.  

Selecting suitable set of features is crucial for forecasting problem. Based on them, 

algorithms define relevant mapping functions. Choosing right features of instances is 

called features selection [59], [64]. When ML algorithm bases on features that do not 

affect classification or on features which do not describe problem, then computational 

complexity of the problem is getting needlessly high and quality of forecasting 

deteriorates. Figure 5 shows different types of features. 
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Figure 5 - Features types: a) Information feature b) Feature with low information value 

c) Redundant feature (ci -belonging area of object to class i, Fi – feature) 

In case of an information feature, uncertainty area of belonging of an instance to 

a class is narrow. This kind of feature carries a lot of information about object it describes. 

Selection of such feature significantly improves quality of classification. Feature with low 

information value, in most of its range, gets values of few different classes. Range, in 

which it clearly decelerates instance belonging to one of the classes is small. This kind of 

feature does not carry any information that can be helpful to correctly classify the object. 

Such feature increases error, increases computational complexity and it should be 

ignored. Redundant feature is relatively good, because it allows to classify instance with 

high score. However, compared to information feature, it can be seen that information 

feature carries all information of the redundant feature. Selection of it does not have 

impact on error, however it increases computational complexity. Redundant features 

should also be ignored [54]. 

As it was stated above, traffic in a backbone optical network creates regular and 

continuous flows, which are correlated with time. As a result, traffic flows can be 

considered as a TS problem [84]. TS is a series of data points ordered in time. Forecasting 

in the TS problem is similar to the ML problem. First, some patterns in dataset have to be 

identified and based on them TS model is created. Next, using the obtained model, future 

bitrates can be forecast. TS models are used to forecast future observations based on the 

historical data of previous time points collected for the same observation, i.e., network 

traffic flow. TS can be characterized by four components [48]. The first component is 
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trend, which indicates what is a general direction of TS in long term, i.e., if mean values 

increase, decrease or stay at the same level. Despite that traffic volumes in networks rise 

in a wide time horizon, in a shorter time (like few months) they stay at the same level. 

Thus it can be assumed that considered TS data have no trend, i.e., their mean values stay 

at the same level.  

The next component is cyclical behavior. It denotes cyclic patterns in a TS shape. 

It is assumed that TS has a cyclic behavior if its recurrent variations last longer than a 

year. Traffic flows analyzed in this work are shorter than year, hence they do not have 

cyclic behavior.  

The third component is seasonality. It is a TS characteristic in which the data show 

regular and repeated changes that recur with some frequency. Period of changes is less 

than year and it can be a day, a week, a month. Traffic in the backbone optical network 

has strong daily and weekly seasonality as a consequence of every day users’ activity. 

Bitrates during evenings, between 6:00 p.m. and 8:00 p.m. are higher than bitrates at 6:00 

a.m. The reason of that is because people generate high traffic after returning home from 

work or school, rather than early in the morning. Additionally, traffic during weekends is 

higher than traffic during week.  

The last component is a residual, also called error. It is created after removing 

seasonal and trend components of TS. It results from short term fluctuations in the series 

which are neither systematic nor predictable. TS can also be characterized by its 

stationarity. TS is said to be stationary if its statistical properties, i.e., mean, variation, do 

not change over time. 

There are four commonly used TS models, which can be helpful in case of traffic 

levels forecasting [87], [104]: 

 Auto Regressive model – AR(p) – it relies on assumption that the future 

can be predicted based on the past. Each value of TS in time point t can be 

modeled as function of the series’ values at earlier points in time. Its 

parameter p indicates how many previous points should be considered 

during modeling. AR(p) is defined by equation: 

𝑦𝑡 = 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝, (2.1) 
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where 𝑦𝑡−𝑖 is past observation distant by 𝑖 from 𝑦𝑡 and 𝛽𝑖 indicates 

coefficient for 𝑦𝑡−𝑖. 

 Moving Average model – MA(q) – the value of each point in time is a 

function of the recent past value of residuals. This model calculates the 

errors of past TS and forecast future based on them. Parameter q says how 

many residuals are used for model creation. Equation that defines MA(q) 

is the following: 

𝑦𝑡 = 𝛼1𝜀𝑡−1 + 𝛼2𝜀𝑡−2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞 , (2.2) 

where 𝜀𝑡−𝑖 is past error distant by 𝑖 from 𝑦𝑡 and 𝛼𝑖 indicates coefficient 

for 𝜀𝑡−𝑖. 

 Auto Regressive Moving Average model – ARMA(p, q) – is a 

combination of AR(p) and MA(q) models. The impact of previous lags 

along with the residuals is considered for forecasting the future values of 

the time series. Parameters p and q define number of previous points and 

residuals respectively. ARMA(p, q) equation is: 

𝑦𝑡 = 𝛽1𝑦𝑡−1 + 𝛼1𝜀𝑡−1 + 𝛽2𝑦𝑡−2 + 𝛼2𝜀𝑡−2 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝

+ 𝛼𝑞𝜀𝑡−𝑞 
(2.3) 

where 𝛽𝑖 represents the coefficients of the AR model and 𝛼𝑖 represents the 

coefficients of the MA model. 

 Auto Regressive Integrated Moving Average – ARIMA(p, d, q) – above 

mentioned models can be applied to TS, which is stationary, i.e., their 

variance and mean are constant in time. To make TS stationary the process 

of differencing or integrated method can be applied. It is subtraction of        

𝑡 − 1  values from t values of TS. Number of differencing repetitions 

determines order of differencing. ARIMA(p, d, q) is similar to 

ARMA(p, d) model. It includes at the beginning the differencing with 

order d to make TS stationary. 

During TS forecasting problem, TS algorithms try to find the best model and the 

best parameter values for the given data. To specify p, d and q values, autocorrelation and 

partial autocorrelation function can be analyzed. The former measures similarity between 

a given time series and the lagged version of that time series over successive time periods. 

The latter is a measure of similarity between observations of a time series that are 
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separated by 𝑖 units, i.e., 𝑦𝑡 and 𝑦𝑡−𝑖, without impact of observations 

𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦𝑡−𝑖+1. Autocorrelation and partial autocorrelation take values form range 

〈−1, 1〉, where 1 means maximum positive score, -1 means maximum negative score and 

0 means a total lack of correlation [84]. 

In case of ML, there are few algorithms that are used in this work to forecast future 

traffic levels: 

 Decision tree (DT for classification task and DTR for regression task) 

[109] – it builds hierarchical model in the shape of tree, which consists of 

decision nodes and leafs. Each node applies if-then test function to the data 

and returns decision. Succeeding level of the tree has another test node or 

leaf which determine final model decision. Decision tree decomposes a 

complex problem into a series of individual, simple steps. It is a recursive 

division of the analyzed space. 

 k – Nearest Neighbor (kNN for classification task and kNNR for 

regression task) [10], [27] – belongs to the group of minimal distance 

algorithms. Final decision is made based on k objects in the nearest 

neighborhood. The neighborhood is determined using distance metric, 

which usually is the Euclidean distance. Note that depending on the k 

parameter, the final decision may differ. 

 Logistic regression (LoR) [31] – is a linear model for classification task. 

Based on the dataset statistical analysis, it estimates probabilities 

describing the possible outcomes of a single trial using a logistic function. 

 Linear regression (LR) [77] – assumes a linear relationship between the 

input (features) and output. To create the model, ordinary least squares 

method for coefficients’ calculation is used. LR can be applied for 

regression. 

 Multilayer perceptron (MLP for classification task and MLPR for 

regression task) [120] – the neutral network composed of one input layer, 

one or more hidden layers and one output layer. Each layer consists of 

number of single perceptrons [96] also called neurons. Perceptrons in input 

layer represent input features. Each neuron in the hidden layer transforms 

the values from the previous layer with a weighted linear summation 
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followed by a non-linear activation function. The output layer receives the 

values from the last hidden layer and transforms them into output values. 

To achieve better performance, single algorithms can be aggregated into 

ensembles [29], [64], [136]. An ensemble is a group of base algorithms (also called 

estimators), whose individual decisions are combined in some way, typically by 

unweighted or weighted voting. Ensemble often returns better performance than single 

algorithms, which make them up. Following ensemble methods were tested during 

experiments: 

 Extra Trees (ET for classification task and ETR for regression task) [34], 

[35]  – implementation of decision trees ensemble provided by scikit-learn 

python library [90]. It trains number of decision trees on various sub-

samples of the dataset and uses averaging to improve performance. As a 

base estimator DT and DTR can be applied. 

 Random Forest (RF for classification task and RFR for regression task) 

[11] – ensemble of decision trees. It builds decision trees on different 

objects and takes their majority vote for classification and average in case 

of regression. As a base estimator DT and DTR can be applied. 

 One versus rest (OvR) [95] – it splits a multiclass classification problem 

into one binary classification problem per class, i.e., the task postponed to 

classifiers is to decide if considered class occurred or not.   

 One versus one (OvO) [89] – it splits a multiclass classification problem 

into one binary classification problem per each pair of classes. Number of 

algorithms in the ensemble is equal to the number of classes’ pairs. Each 

algorithm decides if object belongs to one of the considered classes. 

 Eibe Frank and Mark Hall ensemble method (EFMH) – an ensemble 

designed for ordinal classification problems and described in [36]. It 

transforms a multiclass problem into binary problems. Each algorithm has 

to answer the question if object is higher or lower than the considered 

class. 

 Bagging regressor (BR) [110] – also known as bootstrap aggregation. BR 

is ensemble of regression algorithms, e.g., kNNR, DTR. It trains base 

algorithms on random subsets of the original dataset. Training set is 

selected with replacement, i.e., the individual objects can be chosen more 
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than once. As a final forecast it returns average of base algorithms 

forecasts. 

Once ML algorithm or TS algorithm creates a model, they have to be evaluated. 

A common practice is to divide available dataset into two subsets, i.e., training set and 

test set [45], [68], [93]. Training set is used for finding suitable model and test set – to 

evaluate its performance. By dividing the dataset into training and test sets only once, 

there can occur a situation, when the result will be unreliable, because training or test set 

will consist of specific data, i.e., instances with only one class. To prevent such case, k-

fold cross validation can be used [9]. It is a technique, which retains the advantages of 

randomness and eliminates the problem of unfortunate split. 𝑘 parameter determines 

number of dataset divisions. Let 𝑘 = 4. First whole dataset is randomly divided into 4 

datasets. Then, subsets 1, 2 and 3 are taken to train the model and subset 4 – to test the 

model. Model performance calculated based on subset 4 is stored. Next, new model is 

created based on subsets 1, 2, 4 and tested on subset 3. Such procedure is retaken two 

more times, for subsets 2 and 1 as test datasets and remaining subsets as training datasets. 

Final performance metric value is the mean of four models’ performance. Characteristic 

of k-fold cross validation is that dataset division is made randomly.  

Evaluation of ordinal classification is a challenging task. The reason of that is 

twofold. First, there is a number of metrics that can be used for algorithms evaluation. 

Each metric can measure different aspect of algorithms performance. Additionally, 

because of the lack of metrics for ordinal classification, to evaluate such problems, 

metrics appropriate for nominal classification, i.e., classification problem, where there is 

no order between classes, are typically used [126]. Secondly, some errors are worse than 

others [38], i.e., let 𝑌 = (𝑦1, 𝑦2, 𝑦3) be a set of ordinal classes and 𝑦1 = 100, 𝑦2 = 200 

and 𝑦3 = 300. Assigning 𝑦1 to 𝑥 when actual class is 𝑦2 (some data are lost during 

transmission) costs network operator more than assigning 𝑦3 to the same 𝑥 (transmission 

occurs, however it uses more network resources than required). There are few well known 

and widely used classification metrics. They are calculated based on a confusion matrix 

(𝐶𝑜𝑛𝑀) [70]. It is a matrix of the size 𝑗 𝑥 𝑗, where 𝑗 denotes number of possible classes. 

Each column indicates forecasted classes and each row – real classes. There are two types 

of confusion matrixes: for binary problems and for multiclass problems. 
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Binary problems are problems where only two classes can be distinguished, i.e., 

positive: 1 and negative: 0. Figure 6 presents scheme of confusion matrix for binary 

problem. It contains the following variables [45], [93]: 

 TP (true positive) – cases in which algorithm predicts positive class and 

real class is positive. 

 TN (true negative) – cases in which algorithm predicts negative class and 

real class is negative. 

 FP (false positive) – cases in which algorithm predicts positive class and 

real class is negative. 

 FN (false negative) – cases in which algorithm predicts negative class and 

real class is positive. 

 

Figure 6 - Confusion Matrix for binary problem 

Individual values presented in confusion matrix give comparison between actual 

and predicted classes and can be used as base metrics for classification. However, based 

on them, few another metrics can be calculated [93]. 

One of the most classic metric is a classification accuracy (ACC). It shows 

percentage of correct predictions in reflection to all considered instances and can be easily 

used for binary as well as multiclass problems. ACC can be calculated by equation [45]: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2.4) 

However, it leads to wrong conclusions when the distribution of classes number 

in training set is not equal. For example, let 𝑃 be a training set of 100 pairs  (𝑋, 𝑌) where 

𝑌 = (𝑦1, 𝑦2). 90 elements of 𝑃 have 𝑦1 assigned and other 10 have 𝑦2 assigned. Let 𝑃∗ 
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be set of 50 pairs (𝑋, 𝑌) reflecting the future. 45 elements of 𝑃 have 𝑦1 assigned and 5 

have 𝑦2 assigned. In such case, function 𝑀(𝑋) which was defined by algorithm based on 

training set, can return 𝑦1 for each instance in 𝑃∗ and reach ACC equal to 0,9, which is 

misleading. ACC is often multiplied by 100 and expressed in percentages. Metric, which 

is opposite to ACC is an Error Rate (ER). It reflects cases when classes prediction is 

wrong. It can be calculated in the following way [93]: 

𝐸𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
= 𝐴𝐶𝐶 − 1 (2.5) 

Another metric in classification problems is a Precision (PREC). It points how 

many of the correctly predicted classes actually are positive. PREC is useful when FP is 

a higher concern than FN, i.e., in recommendation system where wrong result has 

negative impact on system. The equation for PREC is [45]: 

𝑃𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.6) 

On the other hand, a Recall (REC), also named sensitivity or true positive rate, 

explains how many of the actual positive classes the algorithm was able to predict 

correctly. It can be used in case of problems where FN is of higher concern than FP. For 

example, it is important in medical problems, where not predicting patient’s disease in 

case when the patient has one costs more than predicting disease for patient who is not 

ill. REC can be obtained by [45]: 

𝑅𝐸𝐶 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.7) 

PREC and REC are in a trade-off relationship. Optimizing one of them is at the 

expense of the other. Combination between PREC and REC metrics is a F1 Score (F1_S). 

It calculates the harmonic mean of PREC and REC. Its value ranges from 0 to 1 and 

reaches the higher rate when PREC is equal to REC. F1_S allows to obtain algorithm that 

is equally good at minimizing both FP and FN. Equation that calculates F1_S is [93]: 

𝐹1_𝑆 = 2 ∗
𝑃𝑅𝐸𝐶 ∗ 𝑅𝐸𝐶

𝑃𝑅𝐸𝐶 + 𝑅𝐸𝐶
 (2.8) 

Classification task can be realized by algorithms in two ways, i.e., by directly 

returning class or by returning probabilities of occurrence for each class. In case of the 

latter, as outcome is chosen the class with the highest probability. There are metrics, 

which base on probabilities of individual classes. One of the most frequently used is Area 
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Under the Receiver Operating Characteristic Curve (AUROC). It quantifies the model’s 

ability to distinguish between each class. Because it is a probability metric, it can be 

applied only to algorithms that can return class membership probabilities. AUROC plots 

the REC against false positive rate (FPR) at different threshold values. FPR is calculated 

by [45]: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2.9) 

Value of the AUROC ranges between 0 and 1. Greater rate means better 

performance of the algorithm at different threshold. For AUROC equal to 1, algorithm 

distinguishes classes perfectly. When AUROC is 0, algorithm predicts all positive classes 

as negative ones and vice versa. AUROC equal to 0,5 means that algorithm is not able to 

distinguish classes at all. All methods based on ROC analysis fit better for evaluation of 

the ability of an algorithm to correctly rank the objects, i.e., placing objects in correct 

order, than to assign them correct class [6]. Additionally, it cannot be calculated for many 

algorithms, since not all algorithms return probability for classes.  

All performance measures presented above are easily calculated for binary 

problems. They base on a confusion matrix, the presentation of which is intuitive. 

However for multiclass problems, a confusion matrix is more complex [43]. Let us 

consider a multiclass ordinal classification problem, i.e., traffic levels forecasting, where 

possible classes belong to set 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑗). Figure 7 shows its confusion matrix 

𝐶𝑜𝑛𝑀. Each element 𝑎𝑢𝑔 , where 𝑢, 𝑔 𝜖 (1, 2, … , 𝑗) represents the number of cases when 

algorithm returned 𝑦𝑔 and actual it was 𝑦𝑢. 

 

Figure 7 – Confusion Matrix for multiclass problem 
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Based on the above confusion matrix, defining TP, TN, FP and FN and counting 

classical classification performance measurements, i.e., PREC, REC, F1, AUROC, FPR, 

can be confusing. It can be simplified by creating a confusion matrix with shape 2 𝑥 2 for 

each possible class, counting metrics for each matrix and averaging them at the end. 

However, values of TP, TN, FP and FN depend on specification of traffic levels 

forecasting problem. In some cases the aim is to establish connection, even with a cost of 

usage of too much network resources. In such situation algorithms which overestimate 

traffic levels are more preferred than algorithms which underestimate forecasts. When the 

greatest importance is attached to efficient resources management, then algorithms which 

return the highest number of correct forecasts are better choice. If the aim is somewhere 

in the middle, for example underestimations are not acceptable and small overestimations 

(one level above) are acceptable, then algorithms should be still different. Unfortunately, 

based on classic classification metrics, straightforward decision about the best algorithm 

cannot be done, especially in case of multiclass ordinal classification problems. The main 

reason is that classic classification metrics do not consider ordinance of classes [18], [38]. 

To face that problem, there is a need to create specific metric for each ordinal 

classification problem [8], [28].  

To evaluate a performance of algorithm in ordinal classification, also some error 

functions can be applied. Such functions measure how far are forecasts from the real 

value. In ordinal classification problems their value is correlated with numerical 

representation of classes, i.e., values of traffic levels, since this values are used for 

calculations. However they still can give overview of algorithm performance. One of the 

most widely used error function is mean absolute error (MAE) [45]. It is used in number 

of ordinal classification problems [17], [37], [117], [118], [124]. Let 𝑌∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗) 

be the set of classes returned by algorithm in ordinal classification task, and 𝑌 =

(𝑦1, 𝑦2, … , 𝑦𝑛) be a set of real classes corresponding to 𝑌∗. MAE can be calculated by: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

∗|

𝑛

𝑖=1

 (2.10) 

It represents the average of the absolute differences between forecast and actual 

classes. MAE is “lower is better” type of performance. Additionally, according to[38] it 

can be used to minimize number of errors. 
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Important aspect of algorithm’s performance is its execution time. In case of 

traffic level forecasting problem, execution time is a sum of time needed for definition of 

function which maps historical data into future traffic levels, and time of forecasting 

traffic levels in next TIs. Most algorithms define mapping function once and based on it 

they forecast future. Other algorithms update mapping function from time to time, 

however updates do not occur often. In contrast, forecasting future is a task which 

algorithm does more frequently. In case of short time forecasting, algorithms usually 

work in real time. Because of that, forecasting time is more crucial and can be an effective 

measure of algorithm’s performance [112]. 

 

2.3. Network traffic forecasting in literature 

The network traffic forecasting problem is not new in literature and has been 

widely studied in many papers. Typically, the problem of forecasting network traffic is 

formulated as a TS problem. A large majority of works in the field use approaches based 

on ARIMA and its numerous variations, as well as ML techniques [98], to solve the 

problem. Authors of [26] compared ARIMA, Holt-Winters, and neural network 

algorithms for forecasting the amount of traffic in TCP/IP-based networks. The datasets 

based on distinct time scales, namely 5 minutes, 1 hour and 1 day, and different 

forecasting horizons were analyzed. Obtained results concluded that neutral network 

achieved the best results for 5 minutes and hourly data, when the Holt-Winters was the 

best for the daily forecast. Work [86] presents TS algorithms for traffic forecasting. 

ARIMA and SARMIA models were used for short-term and long-term future traffic 

volume forecasts. Authors propose procedure of separating temporal and seasonal 

variations of traffic. Additionally, work also investigates impact of traffic forecasting on 

traffic engineering. As a result of traffic management, based on forecasted traffic flows, 

the required bandwidth for data transmission was reduced by almost 19%. In [3], the 

allocation of data center traffic with and without traffic prediction was compared. Authors 

set together Monte Carlo Tree Search algorithm [61] and Artificial Neural Network as a 

mechanisms for traffic forecasting in cloud data center networks. The performance of all 

traffic allocation algorithms was improved by using ML techniques. In [125], authors 

used a graph convolutional generative adversarial networks model to predict burst events 

in an optical network. Authors consider traffic in the network as requests that originate 

from a source node and terminate at a destination node. The proposed method 
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outperformed the long short-term memory network reference algorithm. Authors of [19] 

presented a traffic forecasting method based on the Facebook PROPHET algorithm, 

procedure for time data series based on an additive model where non-linear trends are fit 

with yearly, weekly, and daily seasonality, plus holiday effects. The work shows that 

PROPHET can be well used for a 14 days horizon traffic forecasting. Three different 

models containing sets of additional input features to improve the forecasting quality of 

different ML algorithms are presented in [60]. Models were evaluated on datasets with 

different types of traffic. Authors evaluated Linear Regression, k Nearest Neighbors, 

AdaBoost and Random Forest ML algorithms. Performance of them was measured suing 

MAPE. Experiment proved that relevant features improve quality of ML algorithms. 

Obtained MAPE values varied between 1 – 10%. Article [41] investigates methods of 

network traffic prediction after a node failure. Three supervised ML algorithms were 

tested, namely Linear Regression, k Nearest Neighbors, and Multilayer Perceptron. 

Authors studied fifteen different methods of traffic forecast. In case of normal network 

state, Linear Regression regressor achieved the lowest error equal to 0,01%. The main 

conclusion after application of node failure is that the selection of a prediction approach 

is a compromise between its forecasting accuracy and reliability. Both characteristics are 

determined by the number of features used as an algorithm’s input. Authors in [42] 

compare methods of modeling using Fourier Transform and forecasting using ML 

algorithm of daily traffic patterns in transport telecommunication networks based on two 

historical datasets, i.e., WASK and SIX. The modeling method error was in average lower 

then 0,1%. In turn, average forecasting error for SIX was 3,36% and for WASK 

forecasting turned out to be extremely challenging. Authors in [112], [113] and [114] 

presents future traffic forecasting by prediction occurrence of future requests in network. 

Each request consists of source node, destination node and request volume information. 

The assumption is that traffic in network can be characterized as chain traffic, i.e., it 

represents traffic flow between network nodes in which single virtual network functions 

are located. Authors employ different ML classification algorithms, namely k Nearest 

Neighbors, Decision Tree, Random Forest, Gaussian Naïve Bayes, Multilayer Perceptron, 

Linear Discriminant Analysis. Experiments brought forecasting quality up to 94%. 

Besides the traffic forecasting problem, ML techniques can be successfully 

employed for other purposes in optical networks. In [88], the authors used ML techniques 

for the problem of fault localization in optical networks. They successfully localized 
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single-link failures using a Gaussian process classifier trained on data that described the 

network state upon current and past failure incidents. The presented approach achieves 

high localization accuracy ranges from 91% to 99%. A similar problem, connected with 

failure localization, is considered in [102]. Authors presented an ML system for detection 

and identification of equipment failures in optical networks. They tested several ML 

methods, a random forest, a neural network with a single hidden layer, and different 

variants of the support vector machine. As a result, accuracy above 98% was obtained. 

Authors of [130] used ML classification techniques such as decision tree and naïve Bayes 

discretization to classify traffic flows into mouse flows (occur frequently but carry a small 

number of bytes) and elephant flows (occur occasionally but have a huge number of 

bytes). The paper presented classifiers performance in terms of accuracy and 

classification speed. Another well-examined issue is estimation of the quality of service. 

In [91], the authors introduced an alien wavelength performance monitoring technique 

and ML quality of service estimation for lightpath provisioning of intradomain and 

interdomain traffic. Obtained results reached up to 95% of prediction accuracy. Authors 

in [56] proposed an ML regression approach to predict the quality of transmission of an 

unestablished lightpath. They used a neural network as a base algorithm for prediction. 

The evaluation was carried out considering the generalized signal-to-noise ratio metric. 

In [83], the authors presented an intelligent module in the form of an ML application 

using deep learning modeling. The system described in this publication uses a neutral 

network for solving the task of proactive network monitoring for the security and 

protection of computing infrastructures. More information about the application of ML 

techniques in optical networks can be found in comprehensive surveys [16], [22], [55], 

[65], [74], [81], [92]. 

Despite the fact that many works have presented promising results, application of 

ML methods to network problems is still in its early stage [74]. Thus, there is a high 

demand for exploring the topic of ML usage for solving network problems [16]. Most of 

the related works implemented the traffic forecasting task as a prediction of exact traffic 

bitrates. According to the best of this dissertation Author’s knowledge, traffic forecasting 

has not been addressed in the literature in the context of  prediction of traffic level. To fill 

the research gap, this work introduces, formulates and examines the forecasting problem 

as a prediction of fixed traffic levels. Such a concept follows from characteristics of 

optical networks and other transport network technologies. Other Author’s works on this 
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topic are [111], [115] and [116]. Additionally, a manuscript presenting results included 

in section 5 of this dissertation was submitted to a journal.  
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3. Problem formulation 

This section describes a formulation of the main problem under consideration. It contains 

verbal description and mathematical definition of the problem, suggestion of possible 

solutions, information about used metrics and summary of tested datasets. The 

dissertation focuses on traffic forecasting in networks with predefined traffic levels where 

transmission is provisioned by some granulation of the bitrate. 

 

3.1. Network model 

The problem, which is examined in this dissertation, is a network traffic forecasting based 

on historical traffic data flows. Let 𝑘 be the number of all nodes in the network and 𝑣 be 

the number of links between nodes in the network. This work assumes that the network 

is modeled as a directed graph 𝐺 = (𝑁, 𝐸), where 𝑁 = (𝑛1, 𝑛2, … , 𝑛𝑘) represents the set 

of 𝑘 physical nodes and 𝐸 = (𝑒1, 𝑒2, … , 𝑒𝑣) represents the set of links connecting them 

(reflecting the set of physical links between nodes). The time scale of the network 

operation is divided into time intervals (TIs) of the same size (e.g., 5 minutes, 30 minutes, 

60 minutes). For consecutive TIs, traffic volumes (bitrates) related to a single pair of 

nodes or a whole traffic going through a single node create continuous and regular data 

flows. Depending on the transport network technology, to establish connection, network 

operator requires information about a traffic level which is sufficient to carry a 

transmission and allows allocation of network resources efficiently, e.g., choosing 

adequate number of optical channels in optical networks. Thus, for each TI, a 

corresponding traffic level can be assigned. In this work traffic level is calculated as 

maximum bitrate value within TI, however different ways of calculations can be applied, 

for example average value. Figure 8 illustrates the process of defining traffic levels for 

traffic flows. The blue line represents real bitrate values and the green line traffic levels 

that correspond to them. Possible traffic levels (determined by a transport network 

technology) are represented by grey horizontal lines. Based on such formulation, final 

network traffic forecasting outcome is the information about future traffic levels in TIs, 

rather than the exact traffic volume. 
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Figure 8 – Traffic levels definition 

 

3.2. Datasets description 

Datasets used for experiments contains real and artificially generated data. Datasets with 

synthetic data were created with the use of the custom traffic generator proposed in [133]. 

The overall shape of the output traffic reflects the real-world traffic based on the time-

varying data taken from the Internet Exchange Point in Seattle, Washington (SIX). Traffic 

statistics for this exchange point are available publicly at its official website 

(https://www.seattleix.net/ , accessed on 27 December 2020). The data was gathered from 

rrd traffic files which were uploaded periodically with a granulation time of 5 min per TI. 

Every week the recent data was downloaded, read and stored. This data was then applied 

as an input for the described traffic generator, as a general shape of time-varying traffic 

for a month-span interval. 

The generator is an ensemble of smaller requests generators that represent several 

web services, each with an assigned share [25] and their own properties such as a set of 

combinations of stochastic processes with assigned individual parameters and 

contribution scales for each of them. Stochastic processes which are assumed are Poisson 

process (PP), Poisson Pareto burst process (PPBP) [139], and a constant traffic (CT) with 

uniformly distributed random offset. Considered web services are: 

 Internet video with a share of 51% of overall bitrate made of two different PPs, 

PPBP and CT. 

 IP VOD with a share of 22% of overall bitrate made of a single PP. 
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 web data with a share of 18% of overall bitrate made of the different PPs. 

 file sharing with a share of 8% of overall bitrate made of a single CT. 

 gaming with a share of 1% of overall bitrate made of a single CT. 

Such differentiation of traffic characteristics of given web services tries to project 

the diverse nature of the Internet traffic over time. The overall bitrate of generated 

requests varies through time depending on the provided traffic characteristics. This traffic 

is distributed between nodes of a given network topology. This work, considers 

the Euro28 backbone network [129] with 28 nodes, 84 links, and an average link length 

of 625 km. Figure 9 presents topology of Euro28 backbone network. 

 

Figure 9 - Euro28 backbone network 

The distribution of traffic between nodes is inversely proportional to the distance 

between each pair of nodes. The output traffic is a series of tuples of 756 numbers, 

representing the volume of traffic for each pair of nodes in each time slot. The expected 

summed bitrate for each time slot reflects the overall required bitrate for the considered 

network and keeps the time-varying trends similar to the provided traffic characteristics. 
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The division of traffic between nodes provides a more insightful perspective on the traffic 

in the network and allows for focusing on particular nodes. 

Traffic of each generated nodes’ pair can by characterized by its fluctuation. As a 

fluctuation metric Mean Absolute Percentage Error (MAPE) is considered. It determines 

how values of one traffic flow stand out from values of the base traffic flow. Let 𝐴 =

(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) contain bitrates of traffic flows. Let us consider 

𝐵 as base traffic flow. MAPE for 𝐴 can be calculated by: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑏𝑖 − 𝑎𝑖

𝑏𝑖
|

𝑛

𝑖=1

 (3.1) 

To calculate MAPE of a single traffic flow from the generated data, as the base 

flow, SIX bitrates flows were used and normalized to common range of considered flow 

bitrates values. In other words, MAPE indicates how the considered traffic flow differs 

from the SIX traffic. In this dissertation, five forecasting cases were examined: 

 dataset_1 – traffic flow related to a single pair of nodes (traffic between Lyon and 

Zurich), MAPE is equal to 2,9%. 

 dataset_2 – traffic flow related to a single pair of nodes (traffic between Lyon and 

Brussels), MAPE is equal to 7%. 

 dataset_3 – traffic flow related to a single pair of nodes (traffic between Paris and 

Glasgow), MAPE is equal to 11,6%. 

 dataset_4 – traffic flow related to whole incoming traffic to a single node (traffic 

incoming to the node located in Athens), MAPE is equal to 1,2%. 

 dataset_5 – traffic flow related to real volumes collected by SIX, MAPE is equal 

to 0%. 

Although traffic generator generates traffic for all 756 nodes’ pairs, above datasets 

were chosen from among all datasets, because they are representative of the MAPE value. 

The sizes of datasets differ for particular experiment and are defined in experiments’ 

specification. Figures Figure 10 – Figure 14 visualize one week data flows, from 

30.05.2021 to 06.06.2021, of datasets mentioned above. It can be clearly seen that their 

difference in terms of fluctuation and MAPE correctly reflects their characteristic, i.e., 

higher MAPE points more frequent fluctuation. 
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Figure 10 - dataset_1 visualization 

 

Figure 11 - dataset_2 visualization 
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Figure 12 - dataset_3 visualization 

 

Figure 13 - dataset_4 visualization 
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Figure 14 - dataset_5 visualization 

 

3.3. Proposed approaches 

To formalize considered problem let us define a set of input vectors 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖) 

and a set of traffic levels (in ordinal classification called ordered labels or ordered classes) 

𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑗), where 𝑖, 𝑗 𝜖 𝑁. In the network traffic levels’ forecasting problem 

there occurs an order among classes, i.e., 𝑦1 <  𝑦2 < ⋯ < 𝑦𝑗. For each instance 𝑥𝑖, class 

from 𝑌 can be assigned. As a result, a set of pairs 𝑃 = (𝑋, 𝑌) = (𝑥𝑡, 𝑦𝑡), where t points 

TI, is created. 𝑃 can also be called a training set. The task posed to ML algorithms in 

classification problem is to first obtain knowledge about historical data flows and their 

traffic levels representation, i.e., train using training set, and find a function 𝑀(𝑥𝑡) = 𝑦𝑡, 

which maps 𝑋 into 𝑌  [12].  Next, to forecast 𝑌 for unseen 𝑃∗ = (𝑋, 𝑌), which reflects 

the future. Each input vector in set 𝑋 consists of 𝑤 number of features, i.e., 𝐹 =

(𝑓1, 𝑓2, … , 𝑓𝑤). 

This work presents three different approaches for traffic levels forecasting: 

 Label based (LB) – problem is treated as a pure classification task. Possible 

network traffic levels create set of classes and employed algorithms return exact 

traffic level in the TI. 

 Real values based (RVB) – in this case problem is considered as regression task 

at the beginning. First, the applied algorithm returns value of a bitrate in a 
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particular TI. Next, based on the obtained result, traffic levels in TIs are calculated 

by rounding up the forecasted bitrate. 

 Labels values based (LVB) – it is a mix of previous two cases. Regression 

algorithms are applied to forecast values of traffic levels. Because the forecast is 

rarely the exact value of traffic level, final decision is the traffic level closest to 

the value returned by algorithm. 

Figures Figure 15 – Figure 17 illustrate way of prediction in case of particular 

approach. Black color represents historical traffic, which algorithm get as an input, green 

color reflects forecasts and, for RVB and LVB approaches, blue color symbolizes traffic 

levels defined based on forecasts. 

 

Figure 15 - LB approach 

 

 

Figure 16 - RVB approach 
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Figure 17 - LVB approach 

For each approach, different types of algorithms can be employed, i.e., ML 

algorithms, TS algorithms, statistical analysis. Besides different ways of forecast, 

outcome is the same in case of all approaches, i.e., at the end traffic levels in TIs are 

returned. In general, algorithms map input vector (which describes data flows) into 

network traffic levels. 

Taking above into account, in this dissertation, a traffic level forecasting is 

considered as an ordinal classification [62], also called ordinal regression, problem. 

Additionally, because occurrence of traffic levels is related with time scale, it can also be 

studied as a TS problem. 

LB and LVB approaches can be executed as follows: let set 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑇) 

consists of historical bitrates related to a single pair of nodes or to a single node in network 

for 𝑇 consecutive TIs. For each 𝑏𝑡, where 𝑡 = 1, … , 𝑇, a class from set 𝑌 can be assigned, 

based on actual value of a bitrate. Additionally, for each 𝑏𝑡, a vector from 𝑋 can be 

defined, based on instances from 𝑏1 to 𝑏𝑡−1. Methods of defining vectors in 𝑋 are 

presented below. Algorithms take as input pairs 𝑃 = (𝑋, 𝑌) = (𝑥𝑡, 𝑦𝑡), find 𝑀(𝑥𝑡) = 𝑦𝑡 

and forecast 𝑌 for unseen 𝑋. The difference between LB and LVB approaches is the type 

of algorithms used during forecast. LB approach is pure classification, thus it uses 

classifiers. In turn, LVB approach relies on regression, so it uses regressors.  

In case of RVB approach, first a set of 𝑌∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑇
∗ ) has to be defined. For 

each 𝑏𝑡, 𝑦𝑡
∗, which represents exact bitrate value of 𝑏𝑡 can be assigned. Vectors in set 𝑋 

are defined in the same way like in case of level based approach. Algorithms first train to 
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find a function 𝑀(𝑥𝑡) = 𝑦𝑡
∗, next forecast 𝑌∗ based on unseen 𝑃∗ = (𝑋, 𝑌∗) and at the 

end assign 𝑌 based on 𝑌∗, by rounding up 𝑌∗ to the nearest 𝑌. 

Each input vector in set 𝑋 consists of 𝑤 number of features, i.e., 𝐹 =

(𝑓1, 𝑓2, … , 𝑓𝑤). Selecting suitable set of features is crucial for the forecasting problem. 

Based on them, algorithms define relevant 𝑀(𝑋). In more detail, when forecast bases on 

historical information, features should allow mapping history into future. In the network 

traffic some daily and weekly patterns can be distinguished, thus characteristic of traffic 

flows is correlated with time. Additionally, because general shape of flows repeats in 

time, i.e., there is a seasonality in the data, bitrates from past can reflect future traffic. To 

determine which previous TIs correlate with current TI, autocorrelation function has to 

be studied. Figures Figure 18 to Figure 22 present week autocorrelation of datasets 1 to 5 

respectively. For presented data, TIs length is equal to 30 min. Base on graphs, strong 

seasonality can be noticed. In case of each dataset, a high positive autocorrelation occurs 

by every 48 points, i.e., after 24 hours, since each single point reflects 30 minutes. 

Additionally, the highest autocorrelation appear for TIs close to first TI. The blue 

background designate area where autocorrelations become insignificant. Last, high 

significant autocorrelation occurs for 7th day. 

 

 

Figure 18 - dataset_1 one week autocorrelation, TI equal to 30 min 
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Figure 19 - dataset_2 one week autocorrelation, TI equal to 30 min 

 

Figure 20 - dataset_3 one week autocorrelation, TI equal to 30 min 

 

Figure 21 – dataset_4 one week autocorrelation, TI equal to 30 min 
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Figure 22 - dataset_5 one week autocorrelation, TI equal to 30 min 

Considering all of this, following sets of features 𝐹 have been tested in this work: 

 𝐹1 = (𝑑𝑎𝑦, 𝑚𝑖𝑛𝑢𝑡𝑒, 𝑏𝑡−1, 𝑏𝑡−2, 𝑏𝑡−3, 𝑏𝑡−24ℎ). 

 𝐹2 = (𝑑𝑎𝑦, 𝑚𝑖𝑛𝑢𝑡𝑒, 𝑏𝑡−24ℎ, 𝑏𝑡−1−24ℎ, 𝑏𝑡−2−24ℎ, 𝑏𝑡−3−24ℎ, 𝑏𝑡−7𝑑). 

 𝐹3 = (𝑏1, 𝑏2, … , 𝑏𝑇). 

In above, 𝑑𝑎𝑦 ϵ [1, 7] and defines the number of the day in the week and 

𝑚𝑖𝑛𝑢𝑡𝑒 ϵ [0, 1440] and also reflects the minute during the day. Different types of 𝐹 were 

used for different forecast models. Forecast models are described in detail in next 

sections. To better understand (𝑋, 𝑌) pairs creating process, let us consider an example. 

Let set B = (95, 155, 220, 450, 390, 280, 105, 180, 240, 450, 420, 405, 395, 380, 350, 

295, 250, 180, 150, 80, 90, 115, 160, 210, 280, 450, 320, 150, 200) consists of historical 

bitrates related to a single pair of nodes in network for consecutive TIs, and set Y = (100, 

200, 300, 400, 500), contains possible classes in a network traffic levels forecasting 

problem. For each element from B information about TI number, the day during the week, 

the minute during the day and a traffic level out of Y can be assigned. Based on that, set 

of pairs (𝑋, 𝑌) can be created, where 𝑋 contains 𝐹1 features’ set. Figure 23 describes 

process of creation of such pairs. Note, that B has 29 elements and only 5 pairs can be 

created. It is because of the fact that there is no information about 𝑏𝑡−24 for first 24 

elements in B. 
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Figure 23 - (X, Y) pairs creation 

Sets of pairs (𝑋, 𝑌) containing features from 𝐹2 are created in a similar way.  𝐹3 

features’ set is intended for TS and statistical models. In this case the plain dataset is 

given as an input for models. 

During the forecasting process, algorithms take input vectors, whose features are 

based on the past. To forecast using 𝐹1 features’ set, algorithms have to get information 

about traffic in three TIs which precede considered TI. Because of that, forecast horizon 

is limited to one TI ahead (one step ahead). To forecast future for longer time horizon, 

algorithms can use their forecasts as  features’ values. In turn, 𝐹2 features’ set requires 

information about traffic from TIs distant by one day from considered TI, thus it allows 

to forecast one day ahead. In this dissertation the strategy where real traffic levels or 

bitrates are used as features is called static prediction, and the strategy which uses 

algorithms’ forecasts as features to extend possible forecast horizon is called dynamic 

prediction. Note, that dynamic prediction strategy is used only with 𝐹1 features’ set, since 

𝐹2 features’ set provides sufficient forecasting horizon. 

All ML algorithms’ implementation was done using scikit-learn python library 

[90]. Each of used algorithms has number of parameters, which influence its architecture 

and final performance. To select optimal set of parameters’ values for each algorithm, 
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parameters’ tuning process has to be performed. For ML algorithms it was done using a 

grid search procedure. TS algorithms’ parameters were determined using auto_arima() 

function from alkaline-ml python library [106]. Table 3 presents tested parameters’ values 

at the beginning of each conducted experiment. Values of parameters not included in table 

were left as default. Selected parameters values are listed in experiments descriptions. 

Table 3 - Algorithms parameters values tested during tuning process 

Algorithm Parameter Tested values 

DT 

criterion gini, entropy, log_loss 

splitter best, random 

max_depth 5, 10, 15, None 

min_samples_leaf 1, 2, 5, 10 

DTR 

criterion squared_error, friedman_mse, absolute_error, poisson 

splitter best, random 

max_depth 5, 10, 15, None 

min_samples_leaf 1, 2, 5, 10 

kNN 
n_neighbors 3, 5, 9, 11 

weights uniform, distance 

kNNR 
n_neighbors 3, 5, 9, 11 

weights uniform, distance 

LoR 

penalty l1, l2, elasticnet 

solver newton-cg, lbfgs, liblinear, sag, saga 

multi_class ovr 

LR all parameters left as default 

MLP 

hidden_layer_sizes (5,), (5,5) (10,), (10,10), (100,) 

activation identity, logistic, tanh, relu  

solver lbfgs, sgd, adam 

MLPR 

hidden_layer_sizes (5,), (5,5) (10,), (10,10), (100,) 

activation identity, logistic, tanh, relu  

solver lbfgs, sgd, adam 

ET 
n_estimators 50, 100, 150, 200, 250 

criterion gini, entropy, log_loss 

ETR 
n_estimators 50, 100, 150, 200, 250 

criterion squared_error, absolute_error 

RF 
n_estimators 50, 100, 150, 200, 250 

criterion gini, entropy, log_loss 

RFR 
n_estimators 50, 100, 150, 200, 250 

criterion squared_error, absolute_error, poisson 

BR n_estimators 10, 50, 100, 150 

TS 
p, q, P, Q 0, 1, 2, 3 

d, D 0, 1, 2 
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3.4. Algorithms evaluation 

As it was stated above, each ordinal classification problem has different 

characteristic and there is need to define specific metric to evaluate performance of ML 

algorithms. For each traffic forecasting case, the interpretation matrix can be defined. It 

is a matrix of the size 𝑗 𝑥 𝑗, where 𝑗 denotes number of possible classes. Figure 24 presents 

interpretation matrix 𝐼𝑛𝑡𝑒𝑟𝑀 of a classification problem related to the confusion matrix 

showed by Figure 7. Each element 𝑖𝑢𝑔, where 𝑢, 𝑔 𝜖 (1, 2, … , 𝑗) represents the 

interpretation of each classification type, i.e., importance of cases when algorithm 

returned 𝑦𝑔 and actual was 𝑦𝑢. 𝑖𝑢𝑔 values are in range [−1, 1]. A positive value of 𝑖𝑢𝑔 

means that such type of classification is acceptable with specific weight, a negative values 

means that such type of classification is unwanted with specific weight and 0 means that 

such type of classification is neutral. Diagonal of 𝐼𝑛𝑡𝑒𝑟𝑀 represents cases, where correct 

classes have been chosen and often contains 1, i.e., correct classifications are highly 

desirable. Additionally, values above 𝐼𝑛𝑡𝑒𝑟𝑀 diagonal represent overestimations and 

those below diagonal represent underestimations. 

 

Figure 24 – Interpretation Matrix for classification problem 

To estimate performance of algorithms, thus final traffic level forecasting quality, in this 

work, the metric called Traffic Level Prediction Quality (TLPQ) is defined. It can be 

calculated based on confusion matrix (𝐶𝑜𝑛𝑀) and interpretation matrix, using following 

equation:  

𝑇𝐿𝑃𝑄 = ∑ ∑
𝑎𝑢𝑔 ∙ 𝑖𝑢𝑔

∑ ∑ 𝑎𝑢𝑔
𝑗
𝑔=0

𝑗
𝑢=0

𝑗

𝑔=0

,

𝑗

𝑢=0

 (3.2) 
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where 𝑎𝑢𝑔 and 𝑖𝑢𝑔 are elements of 𝐶𝑜𝑛𝑀 and 𝐼𝑛𝑡𝑒𝑟𝑀 respectively, 𝑗 denotes number of 

possible classes and 𝑢, 𝑔 𝜖 (1, … , 𝑗). TLPQ is flexible metric and can be adjusted to 

specification of any traffic level prediction problem. It ranges from −1 to 1. It is a point 

metric, i.e., greater score is better, where −1 means that algorithm returns only 

unacceptable classes, 0 means that number of acceptable and unacceptable classifications 

are equal and 1 means that only acceptable classes are returned by algorithm. Note that 

when diagonal of 𝐼𝑛𝑡𝑒𝑟𝑀 contains only 1 and other elements of 𝐼𝑛𝑡𝑒𝑟𝑀 are equal to 0, 

then 𝑇𝐿𝑃𝑄 represents ACC. Defining a specific measure for an ordinal classification 

problem is a common practice [5], [6], [8], [18], [38]. This is due to the fact that 

characteristics of each classification task are different and there is no one well known 

measure that can be applied to each problem [8], [28]. 

In this dissertation, two metrics are used as main performance metrics of 

algorithm, namely, proposed TLPQ metric and MAE. This choice is due to the fact that 

TLPQ gives high flexibility, thus can be adjusted to any traffic level prediction problem 

by definition of 𝐼𝑛𝑡𝑒𝑟𝑀. Its calculation is intuitive and easier comparing to classical 

classification metrics. Literature study shows that MAE is a widely used metric in case 

of ordinal classification. Tied together, they give reliable insight on algorithm 

performance. Additionally, algorithms are examined in terms of the execution time, 

which is a crucial aspect in traffic level forecasting problems, where often information 

about future is needed immediately, because network systems work in a real time, 

especially in short-term forecasting. 

To test algorithms for different network scenarios, three variants of TLPQ are 

calculated, namely TLPQ_1, TLPQ_2 and TLPQ_3. Let us consider problem with five 

possible traffic levels. 𝐼𝑛𝑡𝑒𝑟𝑀 matrices for individual TLPQ’s are presented below. 

𝐼𝑛𝑡𝑒𝑟𝑀1 can be applied for TLPQ_1, 𝐼𝑛𝑡𝑒𝑟𝑀2 for TLPQ_2 and 𝐼𝑛𝑡𝑒𝑟𝑀3 for TLPQ_3. 

For problem with different number of possible traffic levels, 𝐼𝑛𝑡𝑒𝑟𝑀 matrices change 

dimension and take values of elements according to the scheme. TLPQ_1 is suitable when 

CSP accepts correct forecasts and overestimations by one traffic level with the same 

weight equal to 1. In turn, overestimations by more than one traffic level, together with 

underestimations are neutral. In TLPQ_2 the highest importance have the correct 

forecasts. Overestimations are acceptable, but with lower weight, equal to 0,7. 

Underestimations are unacceptable with weight 0,3. Overestimations by more than one 

traffic level are neutral for TLPQ_2 quality metric. In TLPQ_3 the most significant are 
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correct forecasts. Overestimations by one level are acceptable with weight 0,5. The same 

weight of unacceptance have underestimations. Overestimations by more than one traffic 

level do not impact TLPQ_3 value. 

𝐼𝑛𝑡𝑒𝑟𝑀1 = |
|

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

|
|  (3.3) 

𝐼𝑛𝑡𝑒𝑟𝑀2 = |
|

1 0,7 0 0 0
0,3 1 0,7 0 0
0,3 0,3 1 0,7 0
0,3 0,3 0,3 1 0,7
0,3 0,3 0,3 0,3 1

|
| (3.4) 

𝐼𝑛𝑡𝑒𝑟𝑀3 = |
|

1 0,5 0 0 0
0,5 1 0,5 0 0
0,5 0,5 1 0,5 0
0,5 0,5 0,5 1 0,5
0,5 0,5 0,5 0,5 1

|
| (3.5) 

In case of the traffic level forecasting problem, data are related with time and have 

sequential order. Additionally, specificity of the problem is that often the future is 

forecasted based on nearest past. Because of that, in this work, to get reliable model 

performance, dataset is divided into training and test subsets in slightly different way. At 

the beginning the whole dataset is divided into equal subsets, containing consecutive 

elements. Let us assume that dataset is divided into four subsets. As it was in case of k-

fold cross validation, four different models are created. Each model is created and tested 

based on single subset of the whole dataset. From each subset, a given number of 

consecutive dataset elements are taken as the training subset and the remaining ones are 

taken as the test subset. At the end, as a final metric value, an average of all models’ 

performance is taken. Note that subsets of the whole dataset can be disjoint as well as 

they can have partly the same elements. Figure 25 presents method of training and test 

sets’ creation in case of k-fold cross validation and consecutive division. 
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Figure 25 - k-fold cross validation and consecutive division 
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4. Short-term forecasting problem 

This section presents numerical results of experiments for short-term traffic levels 

forecasting. The main objective of the performed research was to compare different traffic 

levels forecasting methods and to find the best one. During each experiment, dataset used 

for training phase contained bitrates from 28 days. Next, algorithms were forecasting 

traffic level for one TI ahead. Information about total number of forecasted TIs is 

contained in experiments assumptions. There are five main studies conducted in case of 

the analyzed problem. First, some statistical analysis methods were examined. Next, 

possibility of short-term traffic level forecasting using single ML and TS algorithms was 

tested. Then, it was checked how the use of the ensembles would affect forecasting result. 

Selecting the best algorithms, the influence of the number of traffic levels and data time 

granulation type were checked. Algorithms performance was evaluated using three 

variants of the TLPQ metric, MAE error and execution time. To check if differences 

between methods are statistically significant, the Friedman test and Nemenyi post hoc 

test at a significance level set to 0.05 were performed. The statistical tests results for all 

metrics are presented in figures. According to the performed tests, the difference between 

the methods that are not connected with a line is statistically significant. To provide the 

best ML algorithms efficiency, the values of their parameters were adjusted in the tuning 

process, performing a grid search procedure. TS algorithms parameters were determined 

using auto_arima() function from alkaline-ml python library [106]. All ML algorithms 

implementation was done using scikit-learn python library [90]. Data sets used for 

experiments consisted of data from 02.05.2021 to 27.06.2021. To get representative 

results, each experiment was conducted four times and as a final result an average was 

taken. In more details, since test set length in experiments contained 7 days, forecasts 

during each studies were done for 28 days, i.e., 7 days four times. Additionally, training 

set contained 28 days. As a result dataset required during experiments contained bitrates 

from 56 days. Detailed way of creating training and testing datasets presents Figure 25.  

Some results presented in this section were published in [111], [115] and [116].  

 

4.1. Statistical analysis 

First, to find effective method for traffic levels forecasting, the statistical dataset analysis 

was performed. Statistical analysis is a simple and quick method. It does not require high 
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computing power. Statistical methods used in the research do not need parameters tuning. 

Experiments in this subsection were conducted with the following assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   30 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  7 days 

Repetitions:  4 

Features sets:  not applicable 

Tested approaches: LB, RVB 

 

According to autocorrelations graphs presented in section 3.3 (Figure 18 to Figure 

22), strong seasonality can be noticed in case of all datasets. Every 24 hours (48 points 

on the graph), a high positive autocorrelation occurs. The highest autocorrelation appears 

for TI preceding considered TI. Additionally, traffic characteristic also follows week 

patterns, i.e., every day of the week is similar to the one from the same day from the 

previous week. Based on above, some naïve analysis methods for traffic forecasting were 

proposed: 

 Previous TI – traffic level or bitrate value in TI is equal to traffic level or 

bitrate value in previous TI. 

 Previous day – traffic level or bitrate value in TI is equal to traffic level or 

bitrate value in TI occurred one day before. 

 Previous week – traffic level or bitrate value in TI is equal to traffic level 

or bitrate value in TI occurred one week before. 

 Moving average – it can be applied only to regression approach. Traffic 

value in TI is calculated based on moving average method, i.e., as 

an average of previous three TIs traffic values. 

Table 4 presents performance metrics of tested analysis methods. The best results 

within the same dataset are bolded. In case of all performance metrics, taking traffic level 

in TI as a value from previous TI brought the best result. TLPQ values vary between 

considered 𝐼𝑛𝑡𝑒𝑟𝑀 variants. It is the highest for TLPQ_1 and the lowest for TLPQ_3. 

TLPQ values are similar in taking traffic level form previous day and previous week, 
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however in case of previous day MAE error is higher. Method based on moving average 

calculation returned the worst result from among all methods. Its TLPQ values are much 

smaller and it makes higher errors. Note that execution time needed for above analysis is 

slight and it can be omitted. According to statistical tests (Figure 26, Figure 27, Figure 28, 

Figure 29), in case of all metrics, there is statistical difference between previous TI 

method and moving average method. Previous TI method also achieved the highest rank. 

 

Table 4 – Dataset statistical analysis TLPQs and MAE performance 

 Method TLPQ_1 TLPQ_2 TLPQ_3 MAE 

d
at

as
et

_
1

 Previous TI 0,79 0,69 0,59 83,2 

Previous day 0,75 0,62 0,53 116,9 

Previous week 0,75 0,61 0,53 107,0 

Moving average 0,40 0,24 0,14 241,9 

d
at

as
et

_
2

 Previous TI 0,65 0,48 0,39 25,5 

Previous day 0,61 0,44 0,33 32,2 

Previous week 0,59 0,42 0,31 31,6 

Moving average 0,40 0,23 0,12 46,9 

d
at

as
et

_
3

 Previous TI 0,62 0,46 0,36 14,7 

Previous day 0,61 0,45 0,34 19,3 

Previous week 0,61 0,45 0,34 18,6 

Moving average 0,53 0,37 0,27 21,6 

d
at

as
et

_
4

 Previous TI 0,80 0,69 0,59 224,7 

Previous day 0,76 0,63 0,54 336,8 

Previous week 0,77 0,66 0,58 290,9 

Moving average 0,38 0,22 0,12 753,3 

d
at

as
et

_
5

 Previous TI 0,81 0,70 0,68 10289,5 

Previous day 0,80 0,68 0,60 15545,1 

Previous week 0,80 0,69 0,61 13799,3 

Moving average 0,38 0,22 0,12 38232,1 

 

 

Figure 26 – Statistical analysis methods ranking according to Friedman statistical test, 

TLPQ_1 metric, short-term 
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Figure 27 - Statistical analysis methods ranking according to Friedman statistical test, TLPQ_2 

metric, short-term 

 

Figure 28 - Statistical analysis methods ranking according to Friedman statistical test, TLPQ_3 

metric, short-term 

 

Figure 29 - Statistical analysis methods ranking according to Friedman statistical test, MAE 

metric, short-term 

4.2. Single ML and TS algorithms 

Naïve dataset analysis methods presented above in Section 4.1 did not achieve the highest 

performance metrics values, i.e., obtained TLPQ values were far from possible maximum. 

To find more effective methods for traffic level forecast, some ML algorithms (classifiers 

and regressors), together with TS algorithms were tested. Their results were described in 

following subsection. Experiments in this subsection were conducted with the following 

assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   30 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  7 days 

Repetitions:  4 

Features sets:  𝐹1, 𝐹3 

Tested algorithms: DT, kNN, LoR, MLP, TS, DTR, kNNR, LR, MLPR, TS 
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Tested approaches: LB, RVB, LVB 

Algorithms parameters Presented in Table 5 

  

Table 5 - Single algorithms parameters values, short-term forecast 

DT 

criterion gini 

splitter random 

max_depth 5 

min_samples_leaf 2 

DTR 

criterion squared_error 

splitter best 

max_depth 5 

min_samples_leaf 2 

kNN 
n_neighbors 9 

weights distance 

kNNR 
n_neighbors 9 

weights distance 

LoR 

penalty l2 

solver lbfgs 

multi_class ovr 

LR all parameters left as default 

MLP 

hidden_layer_sizes (5,), 

activation relu  

solver adam 

MLPR 

hidden_layer_sizes (5,), 

activation relu  

solver adam 

 

Tables 6 to 8 present performance metrics values of tested ML and TS algorithms, 

for LB, RVB and LVB approaches respectively. TS was used only for RVB approach, 

since it returns traffic bitrate real values. Bolded elements represent the highest values 

within single dataset. It can be concluded that, in case of most algorithms, application of 

ML and TS improved TLPQ values, compared to dataset naïve analysis methods. TLPQ 

value is correlated with dataset fluctuation. Traffic of datasets with lower MAPE value is 

easier to predict. In case of datasets with lower MAPE value (dataset_1, dataset_4 and 

dataset_5), simple classifiers and regressors, i.e., kNN, DT, kNNR, DTR, yield the best 

TLPQ performance. For datasets with higher MAPE values (dataset_2 and dataset_3), the 

highest TLPQ values achieved more complex algorithms, i.e., MLP and MLPR. TS 

algorithms have TLPQ performance lower than the best ML algorithms in case of all 
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datasets. Additionally, for dataset_1 and dataset_2 they got worse result than naïve 

analysis methods. Comparing general results returned by different approaches, i.e., LB, 

RVB and LVB, the best performance achieved algorithms for LVB approach (Table 8). 

Although ML and TS algorithms (for particular datasets) achieved higher TLPQ values 

than dataset naïve analysis methods, in most cases they have higher MAE error. Only 

algorithms in RVB approach obtained smaller MAE error (Table 7). Additionally, in case 

of LoR, MLP, MLPR and TS algorithms the train time, i.e., time needed to learn 

dependencies in historical data, significantly differs from the rest of the analyzed 

algorithms. TS algorithms have the train time (which reflects time needed for parameters 

estimation) several hundred times larger than ML algorithms. In case of all tested 

algorithms prediction time is negligibly small. 

Figures 30 to 34 present statistical tests’ results. When analyzing them, it is clear 

that for TLPQ metrics and time metrics algorithms in the LVB approach got the highest 

ranks (Figure 30, Figure 31, Figure 32, Figure 34). For MAE metric, the best ones turned 

out to be real values approaches (Figure 33). It also points that the LB approach is worse 

than the other two approaches. 

To sum up the above analysis, choosing the right algorithm for traffic level 

forecasting task depends on traffic fluctuation. In case of datasets with lower MAPE, 

namely dataset_1, dataset_4 and dataset_5, the higher TLPQ values achieved simple ML 

algorithms, i.e., kNN, DT, kNNR, DTR. For datasets with higher MAPE value, dataset_2 

and dataset_3, more complex algorithms, i.e., MLP and MLPR, turned out to be more 

appropriate. Algorithms returned the best TLPQ values in case of LVB approaches. In 

turn, if the most important is to minimalize MAE error, then ML algorithm should be 

used with RVB approach.  
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Table 6 – Label based approach, single algorithms TLPQs, MAE and times performance 

metrics, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 DT_LB 0,79 0,69 0,62 139 0,001 0,001 

kNN_LB 0,85 0,77 0,71 129 0,001 0,020 

LoR_LB 0,68 0,55 0,47 199 0,710 0,001 

MLP_LB 0,84 0,74 0,68 131 1,350 0,001 

d
a

ta
se

t_
2
 DT_LB 0,59 0,42 0,31 35 0,010 0,001 

kNN_LB 0,63 0,48 0,37 29 0,001 0,020 

LoR_LB 0,60 0,45 0,36 36 0,230 0,001 

MLP_LB 0,69 0,53 0,42 28 1,850 0,001 

d
a

ta
se

t_
3
 DT_LB 0,60 0,44 0,34 21 0,010 0,001 

kNN_LB 0,64 0,48 0,38 18 0,001 0,020 

LoR_LB 0,68 0,52 0,42 19 0,140 0,001 

MLP_LB 0,72 0,57 0,47 16 1,780 0,001 

d
a

ta
se

t_
4
 DT_LB 0,87 0,80 0,75 389 0,010 0,001 

kNN_LB 0,86 0,80 0,76 358 0,001 0,020 

LoR_LB 0,74 0,63 0,55 557 1,810 0,001 

MLP_LB 0,85 0,79 0,75 364 2,310 0,010 

d
a

ta
se

t_
5

 DT_LB 0,90 0,85 0,82 19331 0,001 0,001 

kNN_LB 0,90 0,86 0,83 18439 0,010 0,020 

LoR_LB 0,76 0,65 0,58 30598 5,250 0,001 

MLP_LB 0,93 0,89 0,86 19552 2,400 0,001 
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Table 7 - Real values based approach, single algorithms TLPQs, MAE and times performance 

metrics, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DTR_RVB 0,81 0,70 0,63 88 0,010 0,001 

kNNR_RVB 0,87 0,79 0,74 62 0,001 0,010 

LR_RVB 0,85 0,77 0,72 64 0,001 0,001 

MLPR_RVB 0,84 0,76 0,71 64 1,200 0,001 

TS 0,73 0,62 0,50 160 408,960 0,001 

d
a

ta
se

t_
2
 

DTR_RVB 0,61 0,44 0,33 30 0,010 0,001 

kNNR_RVB 0,70 0,55 0,45 23 0,001 0,010 

LR_RVB 0,69 0,54 0,44 23 0,001 0,001 

MLPR_RVB 0,70 0,55 0,45 22 1,820 0,001 

TS 0,63 0,48 0,37 35 631,130 0,001 

d
a

ta
se

t_
3
 

DTR_RVB 0,63 0,47 0,36 18 0,001 0,001 

kNNR_RVB 0,72 0,57 0,47 14 0,001 0,001 

LR_RVB 0,71 0,57 0,47 13 0,001 0,001 

MLPR_RVB 0,72 0,58 0,49 13 1,710 0,001 

TS 0,67 0,53 0,43 18 460,470 0,001 

d
a

ta
se

t_
4
 

DTR_RVB 0,86 0,79 0,74 174 0,001 0,010 

kNNR_RVB 0,88 0,82 0,78 146 0,001 0,001 

LR_RVB 0,87 0,81 0,77 139 0,001 0,001 

MLPR_RVB 0,87 0,81 0,77 150 2,210 0,001 

TS 0,83 0,77 0,72 391 250,520 0,001 

d
a

ta
se

t_
5
 

DTR_RVB 0,91 0,87 0,84 5073 0,010 0,001 

kNNR_RVB 0,91 0,87 0,84 4945 0,001 0,010 

LR_RVB 0,93 0,90 0,88 3858 0,001 0,001 

MLPR_RVB 0,91 0,87 0,84 4739 2,050 0,001 

TS 0,91 0,88 0,85 19982 311,380 0,001 
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Table 8 – Labels values based approach, single algorithms TLPQs, MAE and times 

performance metrics, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 DTR_LVB 0,80 0,70 0,64 137 0,001 0,001 

kNNR_LVB 0,94 0,82 0,75 120 0,001 0,001 

LR_LVB 0,95 0,80 0,71 117 0,001 0,001 

MLPR_LVB 0,94 0,79 0,70 117 2,210 0,001 

d
a

ta
se

t_
2
 DTR_LVB 0,61 0,45 0,34 34 0,010 0,001 

kNNR_LVB 0,77 0,62 0,52 28 0,001 0,001 

LR_LVB 0,78 0,62 0,52 28 0,001 0,001 

MLPR_LVB 0,79 0,64 0,54 27 4,570 0,001 

d
a

ta
se

t_
3

 DTR_LVB 0,63 0,47 0,36 21 0,001 0,001 

kNNR_LVB 0,79 0,63 0,53 17 0,001 0,010 

LR_LVB 0,80 0,65 0,55 16 0,010 0,001 

MLPR_LVB 0,80 0,51 0,55 16 1,640 0,001 

d
a

ta
se

t_
4
 DTR_LVB 0,85 0,77 0,72 385 0,010 0,001 

kNNR_LVB 0,95 0,86 0,80 337 0,001 0,020 

LR_LVB 0,97 0,83 0,73 342 0,010 0,001 

MLPR_LVB 0,96 0,82 0,73 335 2,631 0,010 

d
a

ta
se

t_
5

 DTR_LVB 0,90 0,86 0,83 18902 0,001 0,001 

kNNR_LVB 0,96 0,90 0,86 18093 0,001 0,001 

LR_LVB 0,96 0,83 0,73 18470 0,001 0,001 

MLPR_LVB 0,97 0,84 0,75 16810 3,590 0,001 
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Figure 30 – Single algorithms ranking according to Friedman statistical test, TLPQ_1 metric, 

short-term forecast 

 

 

Figure 31 - Single algorithms ranking according to Friedman statistical test, TLPQ_2 metric, 

short-term forecast 

 

 

Figure 32 - Single algorithms ranking according to Friedman statistical test, TLPQ_3 metric, 

short-term forecast 
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Figure 33 - Single algorithms ranking according to Friedman statistical test, MAE metric, 

short-term forecast 

 

 

Figure 34 - Single algorithms ranking according to Friedman statistical test, train time metric, 

short-term forecast 

 

4.3. Algorithms ensemble 

Ensembles consisting of weak algorithms often perform better than a single algorithm. 

To obtain better traffic levels forecasting quality, in this subsection, four different 

ensembles’ types with DT, kNN, DTR and kNNR applied as base algorithms were 

examined, namely OvsR, OvsO, BR and EFMH. Additionally, four other ensembles with 

DT or DTR as base algorithm were used, i.e., RF, ET, RFR and ETR. Parameters’ values 

of ensembles’ base algorithms are the same as in previous experiment and are presented 

in Table 5. Parameters’ values of ensembles are presented below. Experiments in this 

subsection were conducted with the following assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   30 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  7 days 
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Repetitions:  4 

Features sets:  𝐹1, 𝐹5 

Tested algorithms: ET, RF, OvsR (DT, kNN), OvsO (DT, kNN), EFMH (DTR, 

kNNR), BR (DTR, kNNR), RFR, ETR 

Tested approaches: LB, RVB, LVB 

Algorithms parameters: Presented in Table 5, Table 9 

 

Table 9 - Ensembles parameters values, short-term forecast 

ET 
n_estimators 200 

criterion gini 

ETR 
n_estimators 150 

criterion squared_error 

RF 
n_estimators 200 

criterion gini 

RFR 
n_estimators 150 

criterion squared_error 

BR n_estimators 50 

 

Tables 10 to 12 present performance metrics’ values of tested ensembles, for LB, 

RVB and LVB approaches respectively. Bolded numbers represent the best result for a 

single dataset. Application of ensemble methods brought significant effect. TLPQ metrics 

values are better (higher) for algorithms’ ensembles comparing to single algorithms’ 

performance. Each single algorithm returned lower TLPQ than ensemble with it as the 

base estimator. For majority cases, ensembles with DT and DTR as base obtained the best 

result. Exception is dataset_1, where the best turned out to be ensembles with kNN and 

kNNR as a base estimator. For traffics with lower MAPE values, i.e., dataset_1, dataset_4 

and dataset_5, algorithms were able to obtain TLPQ values close or equal to 1, even for 

TLPQ_3, which was generally lower than TLPQ_1 and TLPQ_2 in case of single 

algorithms. For datasets with higher MAPE values, i.e., dataset_2 and dataset_3, TLPQ 

results are also high, especially in case of TLPQ_1. For LVB approach (Table 12) and 

dataset_2 and dataset_3, TLPQ_1 value is higher than 0,8 and for dataset_1 it is close to 

1. In each tested approach, the use of ensembles allowed to increase TLPQ values for 

dataset with the highest MAPE (dataset_3), for which ensembles returned results similar 

to results of dataset_2. TLPQ values returned by ensembles also confirmed conclusions 

from previous subsection. First, that TLPQ values are correlated with dataset fluctuation. 
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Ensembles obtained the lowest TLPQ values for dataset with the higher MAPE value 

(dataset_3) and the highest TLPQ values for dataset with the lowest MAPE value 

(dataset_5). Second, that the best TLPQ values were obtained by ensembles in case of 

LVB approach (Table 12). 

Analyzing MAE errors, it can be seen that ensembles make smaller errors than 

single algorithms, however the difference is insignificant. Additionally, RVB approach 

obtain smaller errors than two other approaches. Difference is the most visible for 

dataset_5, where errors in case of RVB approach are smaller over four times. MAE value 

depends on dataset. It is the lowest for dataset_3 and the highest for dataset_5. 

Algorithms ensembles needed more time for training phase, comparing to single 

algorithms. Training ensembles with DT and DTR as base classifiers was more time 

consuming that training ensembles with kNN and kNNR base estimators. The training 

phase took the longest for ET and reached few seconds. In turn, for other algorithms it 

was less than 0,05 second. What is more, prediction time for ensembles was higher than 

in case of single algorithms and again, this phase took ET ensembles the longest.  

During statistical tests, for TLPQ metric (Figure 35, Figure 36 and Figure 37), the 

highest rank obtained ensembles with DT and DTR as a base estimator, tested using RVB 

and LVB approaches. For TLPQ_3 metric there is no statistical difference between 

considered ensembles (Figure 37). In case of MAE error (Figure 38), the highest rank 

obtained EFMH ensemble. Time metrics were dominated by LB approaches (Figure 39 

and Figure 40).  
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Table 10 - Label based approach, ensembles TLPQs, MAE and times performance metrics, 

short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

ET_LB 0,86 0,78 0,73 127 0,460 0,050 

RF_LB 0,87 0,79 0,74 123 0,590 0,050 

OvsR-DT_LB 0,85 0,77 0,72 133 0,050 0,001 

OvsR-kNN_LB 0,87 0,80 0,75 126 0,040 0,030 

OvsO-DT_LB 0,84 0,76 0,70 132 0,110 0,020 

OvsO-kNN_LB 0,87 0,79 0,74 131 0,110 0,120 

EFMH-DT_LB 0,83 0,74 0,68 129 0,020 0,001 

EFMH-

kNN_LB 
0,87 0,80 0,75 126 0,020 0,020 

d
a

ta
se

t_
2
 

ET_LB 0,71 0,57 0,47 28 0,510 0,050 

RF_LB 0,69 0,55 0,45 28 0,620 0,050 

OvsR-DT_LB 0,67 0,51 0,41 32 0,040 0,001 

OvsR-kNN_LB 0,69 0,54 0,44 28 0,040 0,030 

OvsO-DT_LB 0,67 0,51 0,41 33 0,110 0,020 

OvsO-kNN_LB 0,67 0,51 0,41 31 0,130 0,120 

EFMH-DT_LB 0,66 0,50 0,40 30 0,030 0,001 

EFMH-

kNN_LB 
0,69 0,54 0,44 28 0,020 0,020 

d
a

ta
se

t_
3

 

ET_LB 0,71 0,56 0,46 18 0,480 0,050 

RF_LB 0,71 0,56 0,46 18 0,580 0,050 

OvsR-DT_LB 0,69 0,53 0,43 19 0,030 0,001 

OvsR-kNN_LB 0,71 0,55 0,45 18 0,040 0,020 

OvsO-DT_LB 0,69 0,54 0,43 20 0,090 0,020 

OvsO-kNN_LB 0,68 0,52 0,41 20 0,110 0,090 

EFMH-DT_LB 0,69 0,53 0,43 18 0,020 0,001 

EFMH-

kNN_LB 
0,71 0,55 0,45 18 0,020 0,020 

d
a

ta
se

t_
4
 

ET_LB 0,90 0,85 0,82 358 0,410 0,040 

RF_LB 0,91 0,86 0,82 363 0,560 0,050 

OvsR-DT_LB 0,89 0,83 0,79 395 0,030 0,001 

OvsR-kNN_LB 0,89 0,83 0,79 361 0,030 0,030 

OvsO-DT_LB 0,88 0,81 0,77 391 0,110 0,020 

OvsO-kNN_LB 0,88 0,81 0,77 363 0,110 0,110 

EFMH-DT_LB 0,89 0,83 0,79 376 0,020 0,001 

EFMH-

kNN_LB 
0,89 0,83 0,79 361 0,020 0,020 

d
a

ta
se

t_
5
 

ET_LB 0,94 0,90 0,88 18075 0,440 0,050 

RF_LB 0,94 0,91 0,89 18166 0,590 0,050 

OvsR-DT_LB 0,94 0,90 0,88 20394 0,040 0,001 

OvsR-kNN_LB 0,92 0,88 0,85 18713 0,040 0,030 

OvsO-DT_LB 0,93 0,89 0,86 19415 0,130 0,020 

OvsO-kNN_LB 0,93 0,88 0,86 18768 0,120 0,140 

EFMH-DT_LB 0,93 0,89 0,87 18993 0,020 0,010 

EFMH-

kNN_LB 
0,92 0,88 0,85 18713 0,020 0,020 
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Table 11 - Real values based approach, ensembles TLPQs, MAE and times performance 

metrics, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1

 

BR-DTR_RVB 0,88 0,80 0,75 62 0,050 0,010 

BR-

kNNR_RVB 
0,89 0,82 0,78 59 0,030 0,030 

RF_RVB 0,85 0,76 0,70 75 0,190 0,040 

ET_RVB 0,89 0,82 0,77 59 5,910 0,140 

d
a

ta
se

t_
2
 

BR-DTR_RVB 0,73 0,58 0,48 22 0,050 0,001 

BR-

kNNR_RVB 
0,72 0,58 0,48 22 0,030 0,030 

RF_RVB 0,70 0,55 0,45 23 0,160 0,050 

ET_RVB 0,74 0,60 0,50 21 6,510 0,100 

d
a

ta
se

t_
3

 

BR-DTR_RVB 0,74 0,60 0,51 13 0,050 0,001 

BR-

kNNR_RVB 
0,75 0,61 0,51 13 0,030 0,020 

RF_RVB 0,74 0,59 0,50 13 0,150 0,050 

ET_RVB 0,77 0,62 0,52 13 7,780 0,090 

d
a

ta
se

t_
4
 

BR-DTR_RVB 0,90 0,84 0,81 135 0,050 0,001 

BR-

kNNR_RVB 
0,90 0,85 0,81 141 0,020 0,020 

RF_RVB 0,85 0,76 0,70 209 0,200 0,040 

ET_RVB 0,91 0,86 0,83 124 8,830 0,190 

d
a

ta
se

t_
5
 

BR-DTR_RVB 0,95 0,92 0,90 3978 0,050 0,001 

BR-

kNNR_RVB 
0,93 0,88 0,86 4910 0,030 0,020 

RF_RVB 0,86 0,78 0,73 9421 0,180 0,030 

ET_RVB 0,95 0,92 0,91 3432 8,700 0,140 
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Table 12 - Labels values based approach, ensembles TLPQs, MAE and times performance 

metrics, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

BR-DTR_LVB 0,96 0,83 0,75 119 0,040 0,010 

BR-

kNNR_LVB 
0,97 0,83 0,74 119 0,020 0,020 

RF_LVB 0,94 0,79 0,70 125 0,140 0,040 

ET_LVB 0,98 0,83 0,74 117 3,190 0,110 

d
a

ta
se

t_
2

 

BR-DTR_LVB 0,79 0,63 0,53 28 0,040 0,001 

BR-

kNNR_LVB 
0,80 0,65 0,55 27 0,030 0,020 

RF_LVB 0,78 0,63 0,53 28 0,120 0,030 

ET_LVB 0,82 0,67 0,56 27 4,330 0,140 

d
a

ta
se

t_
3
 

BR-DTR_LVB 0,83 0,68 0,58 17 0,040 0,001 

BR-

kNNR_LVB 
0,81 0,66 0,56 17 0,020 0,020 

RF_LVB 0,82 0,67 0,57 17 0,130 0,040 

ET_LVB 0,84 0,69 0,59 16 4,590 0,110 

d
a

ta
se

t_
4
 

BR-DTR_LVB 0,97 0,87 0,80 353 0,030 0,010 

BR-

kNNR_LVB 
0,99 0,86 0,78 336 0,030 0,030 

RF_LVB 0,96 0,80 0,70 367 0,160 0,050 

ET_LVB 0,99 0,85 0,75 334 3,090 0,160 

d
a

ta
se

t_
5
 

BR-DTR_LVB 0,99 0,92 0,88 18346 0,030 0,001 

BR-

kNNR_LVB 
0,99 0,90 0,83 18160 0,030 0,020 

RF_LVB 0,98 0,82 0,72 19269 0,130 0,040 

ET_LVB 1,00 0,87 0,79 17819 2,910 0,170 

 

 

 

Figure 35 – Ensembles methods ranking according to Friedman statistical test, TLPQ_1 metric, 

short-term forecast 
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Figure 36 - Ensembles methods ranking according to Friedman statistical test, TLPQ_2 metric, 

short-term forecast 

 

Figure 37 - Ensembles methods ranking according to Friedman statistical test, TLPQ_3 metric, 

short-term forecast 

 

Figure 38 - Ensembles methods ranking according to Friedman statistical test, MAE metric, 

short-term forecast 
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Figure 39 - Ensembles methods ranking according to Friedman statistical test, train time 

metric, short-term forecast 

 

 

Figure 40 - Ensembles methods ranking according to Friedman statistical test, prediction time 

metric, short-term forecast 

4.4. Different number of traffic levels 

Traffic amplitude in the network may vary with size of the network. In networks with 

grater traffic volume range, higher number of transceivers is needed. Thus higher number 

of traffic levels can be defined. This section checks sensitivity of traffic forecast 

algorithms for different number of possible traffic levels in network. To perform the 

appropriate tests, based on previous research, following algorithms were chosen: DT, RF, 

DTR, ET. RF and ET obtained the best performance in case of previous experiments. 

Additionally, those are ensembles with DT and DTR as a base estimator, thus DT and 

DTR are also tested as a single algorithms reference. Parameters’ values of ensembles 

base algorithms, ensembles and single algorithms are the same as in previous 

experiments. Experiments in this subsection were conducted with the following 

assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 



67 
 

TI granulation:   30 minutes  

Number of traffic levels: 5, 10, 15, 20 

Training set length: 28 days 

Test set length:  7 days 

Repetitions:  4 

Features sets:  𝐹1 

Tested algorithms: DT, RF, DTR, ET 

Tested approaches: LB, RVB, LVB 

Algorithms parameters: Presented in Table 5, Table 9 

 

Tables 13 to 16 present results obtained in experiments for 5, 10, 15 and 20 

possible traffic levels respectively. Bolded numbers represent the best result for a single 

dataset. Based on them it is clear that quality of traffic forecast, in terms of TLPQ metrics, 

depends on number of possible traffic levels in network traffic. For cases with lower 

number of traffic levels, algorithms and ensembles achieved higher TLPQ values. For 5 

possible traffic levels (Table 13), examined algorithms and ensembles got similar the best 

results among all datasets for TLPQ_1. Additionally, difference between single 

algorithms and ensembles of TLPQ_2 and TLPQ_3 values is imperceptible. In case of 5 

and 10 traffic levels scenario (Table 13, Table 14), methods obtained TLPQ_1 values for 

datasets with lower MAPE value, i.e., dataset_1, dataset_4 and dataset_5, close to 1. 

TLPQ values in case of 20 possible traffic levels (Table 16) significantly stand out from 

scenarios with lower number of traffic levels, especially for datasets with higher MAPE 

value, namely dataset_2 and dataset_3. Considering TLPQ_1 metric, the highest values 

always returned ET ensemble in LVB approach. In turn, in case of TLPQ_2 and TLPQ_3 

metrics, for datasets with lower MAPE value, i.e., dataset_1, dataset_4, dataset_5, the 

best turned out to be RF in LB approach, and for datasets with higher MAPE value, i.e., 

dataset_2 and dataset_3 - ET in LVB approach. 

The number of possible traffic levels also influences MAE error. It was lower for 

scenarios with higher number of possible traffic levels (Table 16). Exception is DTR, 

whose error stays at the same level in case of each tested traffic level number variant. 

In case of training and predication time, there is no significant difference among 

all tested cases. For each algorithm and ensemble, times stayed at more or less the same 

level for all tested traffic level number variants. 
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Figures 41 – 45 present the highest TLPQ values for each number of traffic levels 

variant. Blue line represents TLPQ_1 results, green line represents TLPQ_2 results and 

orange line represents TLPQ_3 results. Increase of number of traffic levels causes 

decrease of TLPQ values. Difference between TLPQ values for 5 and 20 traffic levels 

variants is correlated with dataset MAPE value and it increases for datasets with higher 

MAPE values (Figure 42, Figure 43). Additionally, there is also similar correlation 

between TLPQ_1, TLPQ_2 and TLPQ_3 differences and dataset MAPE value. 

Difference decreases with decrease of dataset MAPE value (Figure 45). 

According to statistical tests, for TLPQ metrics (Figure 46, Figure 47, Figure 48), 

ensemble methods got the best rank. Additionally, there is statistical difference between 

the best ensemble and all single algorithms. The same situation occurs for MAE error 

(Figure 49). In turn, for time metrics (Figure 50, Figure 51) the best turned out to be single 

classifiers algorithms. There is visible statistical difference between single algorithms and 

ensembles. 
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Table 13 - Different number of traffic levels, TLPQs, MAE and times performance metrics, 5 

traffic levels, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,92 0,86 0,83 228 0,010 0,001 

RF_LB 0,92 0,88 0,85 209 0,500 0,050 

DTR_RVB 0,92 0,86 0,82 87 0,001 0,001 

ET_RVB 0,91 0,85 0,82 75 0,160 0,040 

DTR_LVB 0,91 0,86 0,82 223 0,010 0,001 

ET_LVB 1,00 0,83 0,73 206 0,110 0,020 

d
a

ta
se

t_
2
 

DT_LB 0,80 0,69 0,62 47 0,010 0,001 

RF_LB 0,82 0,74 0,68 40 0,530 0,040 

DTR_RVB 0,81 0,70 0,63 30 0,001 0,001 

ET_RVB 0,84 0,75 0,69 23 0,160 0,040 

DTR_LVB 0,81 0,70 0,63 48 0,001 0,001 

ET_LVB 0,98 0,82 0,72 41 0,130 0,040 

d
a

ta
se

t_
3

 

DT_LB 0,81 0,70 0,62 31 0,001 0,001 

RF_LB 0,84 0,74 0,68 28 0,490 0,040 

DTR_RVB 0,81 0,70 0,62 17 0,001 0,001 

ET_RVB 0,85 0,75 0,69 13 0,180 0,040 

DTR_LVB 0,81 0,69 0,61 31 0,001 0,001 

ET_LVB 0,98 0,83 0,73 26 0,120 0,030 

d
a

ta
se

t_
4
 

DT_LB 0,94 0,90 0,88 685 0,001 0,001 

RF_LB 0,94 0,91 0,89 668 0,470 0,040 

DTR_RVB 0,93 0,89 0,86 178 0,010 0,001 

ET_RVB 0,90 0,85 0,82 209 0,210 0,040 

DTR_LVB 0,94 0,90 0,87 698 0,010 0,001 

ET_LVB 1,00 0,85 0,75 647 0,110 0,020 

d
a

ta
se

t_
5
 

DT_LB 0,94 0,91 0,89 33417 0,001 0,001 

RF_LB 0,96 0,93 0,92 33340 0,460 0,030 

DTR_RVB 0,96 0,93 0,92 5189 0,001 0,001 

ET_RVB 0,91 0,87 0,84 9421 0,160 0,040 

DTR_LVB 0,95 0,92 0,91 34019 0,001 0,001 

ET_LVB 1,00 0,85 0,75 33712 0,110 0,040 
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Table 14 - Different number of traffic levels, TLPQs, MAE and times performance metrics, 10 

traffic levels, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,82 0,72 0,65 137 0,010 0,001 

RF_LB 0,87 0,80 0,75 124 0,580 0,040 

DTR_RVB 0,83 0,72 0,66 87 0,020 0,010 

ET_RVB 0,85 0,76 0,70 75 0,410 0,110 

DTR_LVB 0,81 0,71 0,64 135 0,010 0,001 

ET_LVB 0,94 0,79 0,70 125 0,200 0,050 

d
a

ta
se

t_
2
 

DT_LB 0,61 0,44 0,33 36 0,010 0,001 

RF_LB 0,69 0,54 0,45 28 0,710 0,050 

DTR_RVB 0,62 0,45 0,34 30 0,020 0,001 

ET_RVB 0,70 0,55 0,45 23 0,500 0,100 

DTR_LVB 0,64 0,48 0,38 34 0,010 0,001 

ET_LVB 0,78 0,63 0,53 28 0,160 0,050 

d
a

ta
se

t_
3

 

DT_LB 0,62 0,46 0,35 21 0,020 0,001 

RF_LB 0,72 0,58 0,48 18 1,560 0,130 

DTR_RVB 0,64 0,48 0,38 17 0,020 0,001 

ET_RVB 0,74 0,59 0,50 13 0,440 0,090 

DTR_LVB 0,64 0,48 0,36 21 0,010 0,001 

ET_LVB 0,82 0,67 0,57 17 0,230 0,050 

d
a

ta
se

t_
4
 

DT_LB 0,88 0,81 0,76 392 0,020 0,001 

RF_LB 0,91 0,86 0,82 361 1,210 0,110 

DTR_RVB 0,87 0,80 0,76 178 0,020 0,001 

ET_RVB 0,85 0,76 0,70 209 0,460 0,090 

DTR_LVB 0,87 0,80 0,75 387 0,010 0,001 

ET_LVB 0,96 0,80 0,70 367 0,180 0,040 

d
a

ta
se

t_
5
 

DT_LB 0,91 0,86 0,83 18989 0,020 0,001 

RF_LB 0,94 0,91 0,89 18229 1,310 0,100 

DTR_RVB 0,94 0,90 0,87 5189 0,020 0,010 

ET_RVB 0,86 0,78 0,73 9421 0,490 0,120 

DTR_LVB 0,92 0,88 0,85 18807 0,001 0,001 

ET_LVB 0,98 0,82 0,72 19269 0,160 0,070 
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Table 15 - Different number of traffic levels, TLPQs, MAE and times performance metrics, 15 

traffic levels, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,72 0,58 0,49 111 0,010 0,001 

RF_LB 0,78 0,66 0,58 92 0,610 0,050 

DTR_RVB 0,72 0,58 0,49 87 0,010 0,001 

ET_RVB 0,76 0,63 0,54 75 0,150 0,040 

DTR_LVB 0,72 0,58 0,49 108 0,001 0,001 

ET_LVB 0,85 0,71 0,62 96 0,150 0,050 

d
a

ta
se

t_
2
 

DT_LB 0,52 0,34 0,23 32 0,010 0,001 

RF_LB 0,58 0,42 0,31 26 0,590 0,040 

DTR_RVB 0,49 0,31 0,19 30 0,010 0,001 

ET_RVB 0,58 0,41 0,29 23 0,150 0,030 

DTR_LVB 0,50 0,32 0,20 32 0,001 0,001 

ET_LVB 0,64 0,48 0,37 26 0,160 0,030 

d
a

ta
se

t_
3

 

DT_LB 0,48 0,31 0,20 19 0,001 0,001 

RF_LB 0,56 0,38 0,27 16 0,590 0,040 

DTR_RVB 0,49 0,32 0,20 17 0,001 0,001 

ET_RVB 0,60 0,44 0,33 13 0,130 0,030 

DTR_LVB 0,49 0,32 0,21 19 0,010 0,001 

ET_LVB 0,64 0,49 0,39 15 0,130 0,050 

d
a

ta
se

t_
4
 

DT_LB 0,77 0,65 0,56 263 0,001 0,001 

RF_LB 0,82 0,72 0,65 234 0,590 0,040 

DTR_RVB 0,77 0,65 0,56 178 0,010 0,001 

ET_RVB 0,73 0,60 0,52 209 0,130 0,050 

DTR_LVB 0,77 0,64 0,56 275 0,001 0,001 

ET_LVB 0,83 0,69 0,60 266 0,130 0,050 

d
a

ta
se

t_
5
 

DT_LB 0,88 0,81 0,76 12351 0,001 0,001 

RF_LB 0,89 0,83 0,79 11237 0,570 0,040 

DTR_RVB 0,88 0,81 0,76 5189 0,010 0,001 

ET_RVB 0,76 0,63 0,55 9421 0,160 0,040 

DTR_LVB 0,89 0,82 0,78 12221 0,001 0,001 

ET_LVB 0,86 0,72 0,63 13001 0,180 0,040 
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Table 16 - Different number of traffic levels, TLPQs, MAE and times performance metrics, 20 

traffic levels, shot-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,59 0,43 0,32 96 0,010 0,001 

RF_LB 0,66 0,51 0,41 77 0,610 0,040 

DTR_RVB 0,58 0,43 0,32 87 0,001 0,001 

ET_RVB 0,61 0,45 0,35 75 0,160 0,040 

DTR_LVB 0,59 0,43 0,32 97 0,001 0,001 

ET_LVB 0,68 0,53 0,43 87 0,140 0,040 

d
a

ta
se

t_
2
 

DT_LB 0,40 0,23 0,11 31 0,010 0,001 

RF_LB 0,44 0,26 0,14 25 0,590 0,050 

DTR_RVB 0,37 0,19 0,07 30 0,001 0,001 

ET_RVB 0,48 0,30 0,19 23 0,170 0,030 

DTR_LVB 0,38 0,21 0,10 31 0,010 0,001 

ET_LVB 0,50 0,34 0,24 24 0,140 0,030 

d
a

ta
se

t_
3

 

DT_LB 0,35 0,18 0,06 18 0,001 0,001 

RF_LB 0,40 0,22 0,10 15 0,620 0,040 

DTR_RVB 0,36 0,19 0,08 17 0,001 0,001 

ET_RVB 0,46 0,29 0,17 13 0,160 0,050 

DTR_LVB 0,35 0,18 0,07 18 0,010 0,001 

ET_LVB 0,46 0,31 0,20 14 0,130 0,040 

d
a

ta
se

t_
4
 

DT_LB 0,71 0,57 0,48 226 0,010 0,001 

RF_LB 0,75 0,62 0,54 196 0,590 0,040 

DTR_RVB 0,69 0,55 0,45 178 0,010 0,001 

ET_RVB 0,64 0,49 0,39 209 0,150 0,030 

DTR_LVB 0,71 0,56 0,46 233 0,001 0,001 

ET_LVB 0,72 0,58 0,48 242 0,150 0,050 

d
a

ta
se

t_
5
 

DT_LB 0,82 0,72 0,66 9282 0,001 0,001 

RF_LB 0,85 0,77 0,72 8401 0,570 0,040 

DTR_RVB 0,83 0,74 0,67 5189 0,010 0,001 

ET_RVB 0,66 0,52 0,42 9421 0,170 0,050 

DTR_LVB 0,83 0,74 0,67 9337 0,001 0,001 

ET_LVB 0,76 0,63 0,55 10897 0,130 0,040 
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Figure 41 - The highest TLPQ values for each number of traffic levels variant, dataset_1 

 

Figure 42 - The highest TLPQ values for each number of traffic levels variant, dataset_2 

 

Figure 43 - The highest TLPQ values for each number of traffic levels variant, dataset_3 
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Figure 44 - The highest TLPQ values for each number of traffic levels variant, dataset_4 

 

Figure 45 - The highest TLPQ values for each number of traffic levels variant, dataset_5 

 

Figure 46 - Tested methods ranking according to Friedman statistical test, different number of 

traffic levels:, TLPQ_1 metric, short-term forecast 
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Figure 47 – Tested methods ranking according to Friedman statistical test, different number of 

traffic levels, TLPQ_2 metric, short-term forecast 

 

Figure 48 - Tested methods ranking according to Friedman statistical test, different number of 

traffic levels, TLPQ_3 metric, short-term forecast 

 

Figure 49 - Tested methods ranking according to Friedman statistical test, different number of 

traffic levels, MAE metric, short-term forecast 

 

Figure 50 - Tested methods ranking according to Friedman statistical test, different number of 

traffic levels, train time metric, short-term forecast 

  

 

Figure 51 - Tested methods ranking according to Friedman statistical test, different number of 

traffic levels, prediction time metric, short-term forecast 
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4.5. Different time granulation 

A factor that varies with the type of network can also be a data granulation time. In this 

section results present influence of different TI granulation on traffic forecast quality. As 

in previous section, only the best ensembles and their base estimators were tested. 

Considered TI granulations are 5 minutes, 30 minutes and 60 minutes. Parameters’ values 

of ensembles base algorithms, ensembles and single algorithms are the same as in 

previous experiments. Experiments in this subsection were conducted with the following 

assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   5 minutes, 30 minutes, 60 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  7 days 

Repetitions:  4 

Features sets:  𝐹1 

Tested algorithms: DT, RF, DTR, ET 

Tested approaches: LB, RVB, LVB 

Algorithms parameters: Presented in Table 5, Table 9 

 

Tables 17 to 19 present results returned in experiments for 5, 30 and 60 minutes 

TI respectively. Bolded numbers represent the best result within a single dataset. 

Additionally, figures 52 to 56 present the highest TLPQ values for each TI granulation 

variant. Blue color represents TLPQ_1 results, green color represents TLPQ_2 results and 

orange color represents TLPQ_3 results. It can be noticed that TLPQ values are correlated 

with TIs length. The highest TLPQ values obtained algorithms and ensembles in case of 

5 minutes granulation datasets (Table 17). For the traffic with lower MAPE value 

(dataset_1, dataset_4, dataset_5) and TLPQ_1 the best methods were able to achieve 0,99 

and 1 (Figure 52, Figure 55, Figure 56). For datasets with higher MAPE value (dataset_2 

and dataset_3), the best methods achieved 0,88 (Figure 53, Figure 54). Considering 

TLPQ_2 and TLPQ_3 metrics, algorithms and ensembles also had high performance, 

especially in case of dataset_4 and dataset_5, where metrics values were close to 1 

(Figure 55, Figure 56). For scenarios with 30 and 60 minutes TIs (Table 18, Table 19), 

algorithms and ensembles got lower TLPQ values, however change was not big. The 
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difference between the highest TLPQ values in 5 minutes datasets and 60 minutes datasets 

was up to 0,1. The best algorithm in case of TLPQ_1 metric, all datasets and TIs scenarios 

turned out to be ET together with LVB approach. For TLPQ_2, TLPQ_3 metrics, for 

datasets with lower MAPE value, namely dataset_1, dataset_4 and dataset_5, the highest 

metrics’ values returned RF with LB approach, and for datasets with higher MAPE value, 

i.e., dataset_2 and dataset_3, the best performance had ET and LVB approach. 

Based on MAE values, it is clear that algorithms and ensembles forecasts’ errors 

were higher in case of datasets with longer TIs (Table 19). The most sensitive to 

granulation type was DTR in case of dataset_5. Its error increased almost four times 

comparing the 5 minutes granulation (Table 17) and the 60 minutes granulation 

(Table 19) variants. 

Time needed for training phase decreased with the increase of TI granulation, 

when datasets had fewer elements, especially for ensembles. Time needed for prediction 

stayed on the same level among all granulation variants. 

In statistical tests, for TLPQ metrics (Figure 57, Figure 58 and Figure 59) and 

MAE metrics (Figure 60), ensemble methods brought the best performance and got the 

highest rank. The best ensembles are statistically different than single algorithms. In case 

of both types of times (Figure 61, Figure 62), single algorithms got the best ranks. There 

occurred statistical difference between them and ensembles. 
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Table 17 - Different time granulation, TLPQs, MAE and times performance metrics, TI of 5 

minutes, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,86 0,77 0,71 128 0,030 0,001 

RF_LB 0,90 0,84 0,80 119 1,930 0,080 

DTR_RVB 0,86 0,78 0,72 63 0,040 0,001 

ET_RVB 0,89 0,82 0,78 51 0,150 0,051 

DTR_LVB 0,86 0,78 0,72 128 0,020 0,000 

ET_LVB 0,99 0,84 0,75 116 0,150 0,04 

d
a

ta
se

t_
2
 

DT_LB 0,69 0,54 0,44 31 0,040 0,010 

RF_LB 0,76 0,63 0,55 26 2,100 0,110 

DTR_RVB 0,69 0,53 0,43 25 0,040 0,001 

ET_RVB 0,78 0,65 0,57 18 0,160 0,050 

DTR_LVB 0,69 0,54 0,44 31 0,030 0,001 

ET_LVB 0,88 0,72 0,62 24 0,160 0,050 

d
a

ta
se

t_
3

 

DT_LB 0,68 0,52 0,42 19 0,030 0,001 

RF_LB 0,76 0,63 0,55 16 1,930 0,110 

DTR_RVB 0,69 0,53 0,43 16 0,040 0,001 

ET_RVB 0,77 0,64 0,56 11 0,160 0,040 

DTR_LVB 0,68 0,53 0,42 19 0,030 0,001 

ET_LVB 0,88 0,72 0,62 15 0,140 0,040 

d
a

ta
se

t_
4
 

DT_LB 0,91 0,85 0,82 364 0,030 0,001 

RF_LB 0,94 0,90 0,87 358 1,900 0,090 

DTR_RVB 0,91 0,86 0,83 120 0,030 0,001 

ET_RVB 0,91 0,86 0,83 115 0,160 0,060 

DTR_LVB 0,91 0,86 0,82 364 0,030 0,001 

ET_LVB 1,00 0,84 0,73 359 0,130 0,050 

d
a

ta
se

t_
5
 

DT_LB 0,97 0,96 0,95 18471 0,030 0,010 

RF_LB 0,98 0,97 0,96 18219 1,610 0,060 

DTR_RVB 0,97 0,96 0,95 1915 0,040 0,010 

ET_RVB 0,93 0,90 0,87 4157 0,130 0,020 

DTR_LVB 0,97 0,96 0,95 18385 0,030 0,010 

ET_LVB 1,00 0,85 0,75 18689 0,140 0,040 
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Table 18 - Different time granulation, TLPQs, MAE and times performance metrics, TI of 30 

minutes, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,82 0,72 0,65 137 0,020 0,001 

RF_LB 0,87 0,80 0,75 124 0,530 0,040 

DTR_RVB 0,83 0,72 0,66 87 0,020 0,001 

ET_RVB 0,85 0,76 0,70 75 0,150 0,050 

DTR_LVB 0,81 0,71 0,64 135 0,010 0,001 

ET_LVB 0,94 0,79 0,70 125 0,130 0,050 

d
a

ta
se

t_
2
 

DT_LB 0,61 0,44 0,33 36 0,001 0,001 

RF_LB 0,69 0,54 0,45 28 0,550 0,040 

DTR_RVB 0,62 0,45 0,34 30 0,001 0,001 

ET_RVB 0,70 0,55 0,45 23 0,170 0,030 

DTR_LVB 0,64 0,48 0,38 34 0,010 0,001 

ET_LVB 0,78 0,63 0,53 28 0,120 0,040 

d
a

ta
se

t_
3

 

DT_LB 0,62 0,46 0,35 21 0,001 0,001 

RF_LB 0,72 0,58 0,48 18 0,540 0,040 

DTR_RVB 0,64 0,48 0,38 17 0,020 0,001 

ET_RVB 0,74 0,59 0,50 13 0,150 0,040 

DTR_LVB 0,64 0,48 0,36 21 0,001 0,001 

ET_LVB 0,82 0,67 0,57 17 0,130 0,050 

d
a

ta
se

t_
4
 

DT_LB 0,88 0,81 0,76 392 0,001 0,001 

RF_LB 0,91 0,86 0,82 361 0,510 0,040 

DTR_RVB 0,87 0,80 0,76 178 0,001 0,001 

ET_RVB 0,85 0,76 0,70 209 0,150 0,050 

DTR_LVB 0,87 0,80 0,75 387 0,001 0,001 

ET_LVB 0,96 0,80 0,70 367 0,130 0,040 

d
a

ta
se

t_
5
 

DT_LB 0,91 0,86 0,83 18989 0,001 0,001 

RF_LB 0,94 0,91 0,89 18229 0,500 0,040 

DTR_RVB 0,94 0,90 0,87 5189 0,010 0,001 

ET_RVB 0,86 0,78 0,73 9421 0,160 0,040 

DTR_LVB 0,92 0,88 0,85 18807 0,010 0,001 

ET_LVB 0,98 0,82 0,72 19269 0,140 0,050 
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Table 19 - Different time granulation, TLPQs, MAE and times performance metrics, TI of 60 

minutes, short-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,82 0,72 0,65 143 0,001 0,001 

RF_LB 0,84 0,75 0,69 130 0,470 0,040 

DTR_RVB 0,81 0,71 0,64 92 0,001 0,001 

ET_RVB 0,82 0,72 0,65 87 0,150 0,050 

DTR_LVB 0,80 0,70 0,63 143 0,001 0,001 

ET_LVB 0,91 0,76 0,66 132 0,100 0,040 

d
a

ta
se

t_
2
 

DT_LB 0,58 0,42 0,31 37 0,001 0,001 

RF_LB 0,64 0,48 0,38 32 0,570 0,050 

DTR_RVB 0,59 0,42 0,31 33 0,001 0,001 

ET_RVB 0,66 0,50 0,40 25 0,200 0,050 

DTR_LVB 0,61 0,44 0,33 36 0,001 0,001 

ET_LVB 0,76 0,61 0,50 29 0,130 0,040 

d
a

ta
se

t_
3

 

DT_LB 0,63 0,48 0,38 21 0,001 0,001 

RF_LB 0,68 0,52 0,42 19 0,550 0,040 

DTR_RVB 0,63 0,47 0,36 18 0,001 0,001 

ET_RVB 0,75 0,61 0,52 14 0,170 0,050 

DTR_LVB 0,64 0,48 0,37 20 0,001 0,010 

ET_LVB 0,80 0,65 0,55 17 0,130 0,040 

d
a

ta
se

t_
4
 

DT_LB 0,79 0,70 0,64 384 0,001 0,001 

RF_LB 0,85 0,78 0,73 360 0,450 0,050 

DTR_RVB 0,82 0,74 0,68 222 0,010 0,001 

ET_RVB 0,83 0,72 0,66 243 0,150 0,060 

DTR_LVB 0,83 0,74 0,68 411 0,001 0,001 

ET_LVB 0,94 0,79 0,69 395 0,150 0,050 

d
a

ta
se

t_
5
 

DT_LB 0,88 0,81 0,76 20893 0,001 0,001 

RF_LB 0,88 0,83 0,79 19062 0,430 0,030 

DTR_RVB 0,87 0,80 0,76 7837 0,001 0,001 

ET_RVB 0,83 0,73 0,67 11239 0,190 0,070 

DTR_LVB 0,89 0,82 0,78 20375 0,001 0,010 

ET_LVB 0,94 0,78 0,67 20757 0,150 0,040 
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Figure 52 - The highest TLPQ values for each TI granulation variant, dataset_1 

 

Figure 53 - The highest TLPQ values for each TI granulation variant, dataset_2 

 

Figure 54 - The highest TLPQ values for each TI granulation variant, dataset_3 
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Figure 55 - The highest TLPQ values for each TI granulation variant, dataset_4 

 

Figure 56 - The highest TLPQ values for each TI granulation variant, dataset_5 

 

Figure 57 - Tested methods ranking according to Friedman statistical test, different time 

granulation, TLPQ_1 metric, short-term forecast 
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Figure 58 - Tested methods ranking according to Friedman statistical test, different time 

granulation, TLPQ_2 metric, short-term forecast 

 

Figure 59 - Tested methods ranking according to Friedman statistical test, different time 

granulation, TLPQ_3 metric, short-term forecast 

 

Figure 60 - Tested methods ranking according to Friedman statistical test, different time 

granulation, MAE metric, short-term forecast 

 

Figure 61 - Tested methods ranking according to Friedman statistical test, different time 

granulation, train time metric, short-term forecast 

 

Figure 62 - Tested methods ranking according to Friedman statistical test, different time 

granulation, prediction metric, short-term forecast 
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4.6. Conclusions 

Results presented in this section describe experiments conducted for short-term traffic 

levels forecasting. The main goal of conducted studies was to compare different traffic 

levels forecasting methods in terms of applied metrics, under various network scenarios. 

Table 20 summarizes experiments from sections 4.1, 4.2 and 4.3. First column 

defines considered dataset. Second column indicates type of algorithm, i.e., which section 

the results are taken from. Next three columns contain the best TLPQ values. Bolded 

numbers represent the highest result. Last three columns consist of algorithms and 

approaches names which obtained the best TLPQ values. Research showed that statistical 

analysis methods returned the lowest performance. According to various experiments, 

application of single algorithms managed to improve results, however the best metric 

values were obtained after grouping algorithms into ensembles. During statistical 

analysis, in case of each dataset and TLPQ variant, the best turned out to be previous TI 

method. Experiments in section 4.2, i.e., forecasting using single algorithms, reveal that 

for datasets with lower MAPE value, namely dataset_1, dataset_4 and dataset_5, in most 

cases, application of simple algorithms, namely kNNR and LR, brought the best results. 

Datasets with higher MAPE value, i.e., dataset_2 and dataset_3, required more complex 

algorithms like MLPR. For most datasets and TLPQ variants, the best results returned 

ensembles with DTR as the base estimator. The exceptions were TLPQ_2 and TLPQ_3 

variants in case of dataset_1, where the highest performance obtained ensembles with 

kNNR as the base estimator. The best approach turned out to be LVB, for which methods 

returned the highest TLPQ values in most cases. 

Table 21 presents information about the lowest MAE errors and time values, 

together with methods that obtained them during experiments in sections 4.1, 4.2 and 4.3. 

First column defines considered dataset and second column indicates type of algorithm, 

like in Table 20. Next three columns contain information about MAE error, train time and 

prediction time respectively. Bolded numbers represent the best results. Last three 

columns consist of algorithms and approaches names which obtained the lowest metric 

values. Training and prediction times in case of statistical analysis were insignificant and 

are not included in the table. Similar to TLPQ values, during statistical analysis the best 

MAE errors’ values returned previous TI method. During experiments with single 

algorithms and ensembles, the lowest MAE errors and times obtained methods for RVB 

approach. In case of single algorithms, for datasets with lower MAPE error, namely 
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dataset_1, dataset_4 and dataset_5, the best metrics values obtained kNNR and LR 

algorithms. In turn, for traffic with higher MAPE values, i.e., dataset_2 and dataset_3, in 

general, the best results obtained MLPR. In case of ensembles, mostly the best metrics 

values achieved ET, however for TLPQ_2 and TLPQ_3 in dataset_1 the lowest metrics 

got BR-kNNR, and for TLPQ_2 in dataset_5 the best was BR-DTR. 

 

Table 20 - The best TLPQ values and algorithms obtained them, short-term forecast 

  
TLPQ_

1 

TLPQ_

2 

TLPQ_

3 

TLPQ_1 the 

best algorithm 

TLPQ_2 the 

best algorithm 

TLPQ_3 the 

best algorithm 

d
a

ta
se

t_
1
 

Statistical 

analysis 
0,81 0,71 0,64 Previous TI Previous TI Previous TI 

Single 

algorithm 
0,95 0,82 0,75 LR_LVB kNNR_LVB kNNR_LVB 

Ensemble 0,98 0,83 0,78 ET_LVB 
BR-

kNNR_LVB 

BR-

kNNR_RVB 

d
a

ta
se

t_
2
 Statistical 

analysis 
0,67 0,52 0,42 Previous TI Previous TI Previous TI 

Single 

algorithm 
0,79 0,64 0,54 MLPR_LVB MLPR_LVB MLPR_LVB 

Ensemble 0,82 0,67 0,56 ET_LVB ET_LVB ET_LVB 

d
a

ta
se

t_
3

 Statistical 

analysis 
0,70 0,55 0,45 Previous TI Previous TI Previous TI 

Single 

algorithm 
0,80 0,65 0,55 MLPR_LVB LR_LVB MLPR_LVB 

Ensemble 0,84 0,69 0,59 ET_LVB ET_LVB ET_LVB 

d
a

ta
se

t_
4
 Statistical 

analysis 
0,84 0,74 0,68 Previous TI Previous TI Previous TI 

Single 

algorithm 
0,97 0,86 0,80 LR_LVB kNNR_LVB kNNR_LVB 

Ensemble 0,99 0,87 0,83 ET_LVB ET_LVB ET_RVB 

d
a

ta
se

t_
5
 Statistical 

analysis 
0,86 0,78 0,72 Previous TI Previous TI Previous TI 

Single 

algorithm 
0,97 0,90 0,88 MLPR_LVB kNNR_LVB LR_RVB 

Ensemble 1,00 0,92 0,91 ET_LVB BR-DTR_LVB ET_RVB 
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Table 21 - The best MAE and times values and algorithms obtained them, short-term forecast 

  MAE 
Train 

time [s] 

Pred. 

Time [s] 

MAE the best 

algorithm 

Train time the 

best algorithm 

Pred. time the 

best algorithm 

d
a

ta
se

t_
1
 

Statistical 

analysis 
83,21 - - Previous TI - - 

Single 

algorithm 
61,66 0,001 0,001 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble 59,11 0,030 0,010 ET_RVB 
BR-

kNNR_RVB 
BR-DTR_RVB 

d
a

ta
se

t_
2

 

Statistical 

analysis 
25,53 - - Previous TI - - 

Single 

algorithm 
21,97 0,001 0,001 MLPR_RVB kNNR_RVB kNNR_RVB 

Ensemble 21,38 0,030 0,001 ET_RVB 
BR-

kNNR_RVB 
BR-DTR_RVB 

d
a

ta
se

t_
3
 

Statistical 

analysis 
14,67 - - Previous TI - - 

Single 

algorithm 
13,03 0,001 0,001 MLPR_RVB kNNR_RVB kNNR_RVB 

Ensemble 12,69 0,030 0,001 ET_RVB 
BR-

kNNR_RVB 
BR-DTR_RVB 

d
a

ta
se

t_
4

 

Statistical 

analysis 
224,70 - - Previous TI - - 

Single 

algorithm 
139,07 0,001 0,001 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble 124,22 0,020 0,001 ET_RVB 
BR-

kNNR_RVB 
BR-DTR_RVB 

d
a

ta
se

t_
5
 

Statistical 

analysis 
10289,5 - - Previous TI - - 

Single 

algorithm 
3858,37 0,001 0,001 LR_RVB kNNR_RVB kNNR_RVB 

Ensemble 3432,10 0,030 0,001 ET_RVB 
BR-

kNNR_RVB 
BR-DTR_RVB 

 

Some general conclusions can also be drawn. First, TLPQ values returned by 

algorithms are correlated with traffic MAPE value. Algorithms returned the highest 

TLPQs for datasets with the lowest MAPE (dataset_5) and the lowest TLPQs for datasets 

with the highest MAPE (dataset_3). Second, TLPQ values vary between considered 

𝐼𝑛𝑡𝑒𝑟𝑀 variants. They are the highest for 𝐼𝑛𝑡𝑒𝑟𝑀1 and the lowest for 𝐼𝑛𝑡𝑒𝑟𝑀3. Last, 

there is no one, the most appropriate algorithm or method for each forecasting case. 

Selection of suitable algorithm depends on result expectations and should be proceeded 

by careful analysis of historical traffic data. 
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5. Long-term forecasting problem 

Numerical results included in this section summarize experiments for long-term traffic 

levels forecast. The key objective of the performed research was to compare different 

traffic levels forecasting methods and to find the best one. Datasets used during training 

phase contained bitrates from 28 days. Next, trained algorithms were forecasting traffic 

levels for number of TIs ahead, depending on forecasting scenario. There are three main 

studies conducted in case of this problem. First, single ML and TS algorithms were tested 

during long-term traffic level forecasting task. Next, it was checked what results would 

ensembles return. In the end, the influence of forecast horizon on quality metrics was 

examined. Algorithms’ performance was evaluated using three variants of TLPQ metric, 

MAE error and execution time. To examine if differences between methods are 

statistically significant, the Friedman test and Nemenyi post hoc test at a significance 

level set to 0.05 were performed. The statistical tests’ results for all metrics are presented 

in figures. According to performed tests, the difference between the methods that are not 

connected with a line is statistically significant. To provide the best ML algorithms’ 

efficiency, the values of their parameters were adjusted in the tuning process, performing 

the grid search procedure. TS algorithms’ parameters were determined using 

auto_arima() function from alkaline-ml python library [106]. All ML algorithms’ 

implementation was done using scikit-learn python library [90]. Data sets used for 

experiments consisted of data from 02.05.2021 to 27.06.2021. To get representative 

results, experiments in sections 5.1 and 5.2 were conducted 28 times. The number of 

experiments’ repetitions in section 5.3 depended on a considered variant. As a final result, 

the average value was taken. Detailed way of creating training and testing datasets 

presents Figure 25. In case of all experiments, two different prediction approaches were 

tested, i.e., static and dynamic. In the former, 𝐹2 features set was used. Using values 

distant from considered TI by 24h as a feature, it is possible to predict traffic up to one 

day ahead. The latter uses 𝐹1 features set. During the forecast phase algorithms take 

previously predicted values as features. This section omits statistical analysis, since its 

results would be the same as obtained in the previous section. Based on characteristics of 

the problem, only two statistical methods could be applied to long-term forecasting, 

namely (a) previous day, in case of time horizon not greater than one day and (b) previous 

week, for time horizon not greater than one week. A manuscript describing results 

presented in this subsection was submitted to a journal. 
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5.1. Single ML and TS algorithms 

First, to find methods for long-term traffic levels’ forecasting, performance of single ML 

and TS algorithms was examined. Experiments in this subsection were conducted with 

the following assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   30 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  1 day 

Repetitions:  28 

Features sets:  𝐹1, 𝐹2, 𝐹3 

Tested algorithms: DT, kNN, LoR, MLP, DTR, kNNR, LR, MLPR, TS 

Tested approaches: LB, RVB, LVB 

Algorithms parameters Presented in Table 22 

Table 22 - Single algorithms parameters values, long-term forecast 

DT 

criterion gini 

splitter random 

max_depth 10 

min_samples_leaf 2 

DTR 

criterion squared_error 

splitter best 

max_depth 10 

min_samples_leaf 2 

kNN 
n_neighbors 13 

weights distance 

kNNR 
n_neighbors 13 

weights distance 

LoR 

penalty l2 

solver lbfgs 

multi_class ovr 

LR all parameters left as default 

MLP 

hidden_layer_sizes (10,), 

activation relu  

solver adam 

MLPR 

hidden_layer_sizes (10,), 

activation relu  

solver adam 
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Results presented below describe results of single ML and TS algorithms during 

long-term traffic levels’ forecast. Tables 23 to 28 include performance metrics of tested 

algorithms. The best results among single dataset are bolded. TS was used only for RVB 

approach, since it returns traffic bitrate real values. Additionally, it returns traffic levels 

for the whole forecast horizon, so its way of operation is similar to the static prediction. 

Based on TLPQ values, the general trend, which was also visible in case of short-term 

forecast, can be noticed. Algorithms obtained higher TLPQ values for datasets with lower 

MAPE, namely dataset_1, dataset_4 and dataset_5. In case of static prediction, the best 

results had algorithms in LVB approach (Table 24). For dataset_1, dataset_4 and 

dataset_5 the best TLPQ values returned LR and for other datasets, i.e., dataset_2 and 

dataset_3, the best turned out to be kNNR. Different situation occurs for dynamic 

prediction. The highest TLPQ values obtained algorithms in the LB approach (Table 26). 

Additionally, for datasets with higher MAPE, i.e., dataset_2 and dataset_3, the best 

algorithms in RVB (Table 27) and LVB (Table 28) approaches got similar TLPQ results. 

In case of other datasets, the LVB approach did not bring good forecast results (Table 28). 

Algorithms in such configuration obtained very low TLPQ values. In RVB (Table 27) 

and LVB (Table 28) approaches algorithms with simpler architecture, i.e., kNNR, LR, 

turned out to return better TLPQ metrics than more complex algorithms, like MLPR. For 

LB approach (Table 26), in case of datasets with higher MAPE, i.e., dataset_2 and 

dataset_3, MLP was better than other algorithms. Comparing static and dynamic 

prediction, algorithms return better results in case of the static prediction. 

Analyzing MAE errors, it can be seen that algorithms in case of the RVB approach 

(Table 24, Table 27) make smaller mistakes than LB (Table 23, Table 26) and LVB 

(Table 25, Table 28) approaches. Such characteristic is true for both static and dynamic 

predication. For datasets with higher MAPE value, namely dataset_2, dataset_3, 

algorithms obtained lower MAE in case of static prediction, when for datasets with lower 

MAPE values, i.e., dataset_1, dataset_4 and dataset_5, MAE values are similar in case of 

both static and dynamic predictions. 

Similar as it was in case of short-term forecast, training and prediction phases’ 

times are equal to 0,001 s for most of single algorithms. Exceptions are: training times of 

MLP, MLPR and TS algorithms. MLP and MLPR training times are generally higher for 

RVB (Table 24, Table 27) and LVB (Table 25, Table 28) approaches, comparing to LB 

approach. Training time also differ in terms of the prediction type. It is higher in case of 
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dynamic prediction (Table 26, Table 27, Table 28). Additionally, TS algorithms have 

training time several hundred times higher than MLP and MLPR. 

According to statistical tests, kNNR for RVB and LVB approaches got the best 

rank for TLPQ metrics (Figure 63, Figure 64, Figure 65). Statistical tests for MAE 

(Figure 66) and training time (Figure 67) confirm that RVB and LVB approaches are 

better than LB approach.  

 

 

 

Table 23 - Label based approach, base algorithms TLPQs, MAE and times performance 

metrics, static prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 DT_LB 0,70 0,57 0,48 162 0,010 0,001 

kNN_LB 0,74 0,62 0,54 144 0,001 0,001 

LoR_LB 0,64 0,51 0,42 202 0,620 0,001 

MLP_LB 0,73 0,61 0,53 158 1,430 0,001 

d
a

ta
se

t_
2
 DT_LB 0,53 0,36 0,25 39 0,010 0,001 

kNN_LB 0,55 0,38 0,26 32 0,001 0,001 

LoR_LB 0,58 0,42 0,31 38 0,190 0,001 

MLP_LB 0,59 0,53 0,33 33 1,500 0,001 

d
a

ta
se

t_
3
 DT_LB 0,56 0,39 0,28 23 0,001 0,001 

kNN_LB 0,58 0,41 0,29 19 0,001 0,001 

LoR_LB 0,66 0,49 0,38 21 0,110 0,001 

MLP_LB 0,68 0,52 0,40 18 1,420 0,001 

d
a

ta
se

t_
4

 DT_LB 0,72 0,59 0,51 427 0,010 0,001 

kNN_LB 0,76 0,64 0,57 417 0,001 0,001 

LoR_LB 0,70 0,57 0,48 572 1,600 0,001 

MLP_LB 0,77 0,64 0,59 411 1,330 0,001 

d
a

ta
se

t_
5
 DT_LB 0,74 0,63 0,55 22047 0,001 0,001 

kNN_LB 0,76 0,65 0,57 20897 0,001 0,010 

LoR_LB 0,69 0,56 0,47 31927 4,200 0,001 

MLP_LB 0,78 0,66 0,60 19875 1,120 0,001 
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Table 24 - Real values based approach, base algorithms TLPQs, MAE and times performance 

metrics, static prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1

 

DTR_RVB 0,75 0,62 0,53 114 0,010 0,001 

kNNR_RVB 0,80 0,68 0,61 95 0,001 0,001 

LR_RVB 0,80 0,69 0,62 92 0,001 0,001 

MLPR_RVB 0,77 0,65 0,57 163 2,010 0,001 

TS 0,69 0,58 0,47 221 439,100 0,001 

d
a

ta
se

t_
2
 

DTR_RVB 0,58 0,41 0,29 34 0,001 0,001 

kNNR_RVB 0,67 0,51 0,41 26 0,001 0,001 

LR_RVB 0,67 0,51 0,40 27 0,001 0,001 

MLPR_RVB 0,60 0,43 0,32 49 2,580 0,001 

TS 0,53 0,37 0,25 41 601,850 0,001 

d
a

ta
se

t_
3

 

DTR_RVB 0,62 0,45 0,34 19 0,010 0,001 

kNNR_RVB 0,70 0,55 0,45 15 0,001 0,001 

LR_RVB 0,70 0,54 0,44 15 0,001 0,001 

MLPR_RVB 0,68 0,53 0,43 16 1,050 0,001 

TS 0,59 0,39 0,36 25 482,550 0,001 

d
a

ta
se

t_
4
 

DTR_RVB 0,76 0,63 0,55 322 0,001 0,001 

kNNR_RVB 0,80 0,69 0,61 281 0,001 0,001 

LR_RVB 0,81 0,70 0,63 262 0,001 0,001 

MLPR_RVB 0,81 0,71 0,64 259 1,640 0,001 

TS 0,69 0,58 0,47 602 300,050 0,001 

d
a

ta
se

t_
5

 

DTR_RVB 0,77 0,65 0,58 15939 0,010 0,001 

kNNR_RVB 0,81 0,71 0,65 13180 0,001 0,001 

LR_RVB 0,82 0,72 0,66 12335 0,001 0,001 

MLPR_RVB 0,80 0,69 0,62 22806 2,130 0,001 

TS 0,71 0,62 0,53 28254 351,230 0,001 
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Table 25 - Labels values based approach, base algorithms TLPQs, MAE and times performance 

metrics, static prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 DTR_LVB 0,75 0,62 0,54 156 0,001 0,001 

kNNR_LVB 0,89 0,76 0,67 136 0,001 0,001 

LR_LVB 0,90 0,75 0,64 133 0,001 0,001 

MLPR_LVB 0,89 0,74 0,63 135 0,980 0,001 

d
a

ta
se

t_
2
 DTR_LVB 0,58 0,41 0,30 39 0,010 0,001 

kNNR_LVB 0,75 0,59 0,49 30 0,001 0,001 

LR_LVB 0,73 0,58 0,48 31 0,001 0,001 

MLPR_LVB 0,70 0,54 0,43 41 1,390 0,001 

d
a

ta
se

t_
3

 DTR_LVB 0,61 0,45 0,34 23 0,010 0,001 

kNNR_LVB 0,76 0,61 0,50 18 0,001 0,001 

LR_LVB 0,75 0,60 0,50 18 0,001 0,001 

MLPR_LVB 0,73 0,57 0,46 22 1,430 0,001 

d
a

ta
se

t_
4
 DTR_LVB 0,75 0,63 0,54 438 0,001 0,001 

kNNR_LVB 0,89 0,75 0,65 406 0,001 0,001 

LR_LVB 0,92 0,77 0,66 393 0,001 0,001 

MLPR_LVB 0,85 0,68 0,57 836 2,170 0,001 

d
a

ta
se

t_
5

 DTR_LVB 0,77 0,65 0,57 21782 0,001 0,001 

kNNR_LVB 0,89 0,74 0,65 21084 0,001 0,001 

LR_LVB 0,94 0,78 0,67 20313 0,001 0,001 

MLPR_LVB 0,88 0,72 0,61 31568 1,820 0,001 
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Table 26 - Label based approach, base algorithms TLPQs, MAE and times performance 

metrics, dynamic prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 DT_LB 0,56 0,45 0,37 431 0,010 0,510 

kNN_LB 0,80 0,66 0,56 257 0,001 0,540 

LoR_LB 0,41 0,32 0,26 641 0,870 0,510 

MLP_LB 0,79 0,63 0,55 260 1,520 0,510 

d
a

ta
se

t_
2
 DT_LB 0,47 0,33 0,25 72 0,010 0,510 

kNN_LB 0,65 0,49 0,39 36 0,001 0,540 

LoR_LB 0,45 0,32 0,24 70 0,280 0,510 

MLP_LB 0,64 0,49 0,38 42 1,620 0,520 

d
a

ta
se

t_
3

 DT_LB 0,47 0,35 0,27 40 0,010 0,510 

kNN_LB 0,66 0,50 0,40 20 0,001 0,530 

LoR_LB 0,56 0,42 0,33 33 0,180 0,510 

MLP_LB 0,68 0,53 0,43 19 1,600 0,500 

d
a

ta
se

t_
4
 DT_LB 0,28 0,23 0,19 2223 0,010 0,500 

kNN_LB 0,77 0,61 0,50 874 0,010 0,530 

LoR_LB 0,31 0,20 0,12 2229 2,110 0,500 

MLP_LB 0,76 0,59 0,51 924 1,390 0,500 

d
a

ta
se

t_
5

 DT_LB 0,28 0,23 0,20 121769 0,001 0,500 

kNN_LB 0,76 0,59 0,47 44824 0,001 0,530 

LoR_LB 0,26 0,15 0,07 122496 5,610 0,500 

MLP_LB 0,75 0,63 0,55 29851 1,160 0,500 
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Table 27 - Real values based approach, base algorithms TLPQs, MAE and times performance 

metrics, dynamic prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 DTR_RVB 0,69 0,55 0,46 142 0,010 0,500 

kNNR_RVB 0,77 0,64 0,56 109 0,001 0,530 

LR_RVB 0,74 0,61 0,52 125 0,001 0,500 

MLPR_RVB 0,71 0,57 0,47 186 2,980 0,510 

d
a

ta
se

t_
2
 DTR_RVB 0,58 0,41 0,30 35 0,001 0,510 

kNNR_RVB 0,68 0,52 0,42 26 0,001 0,530 

LR_RVB 0,60 0,43 0,31 32 0,001 0,500 

MLPR_RVB 0,65 0,48 0,37 28 2,070 0,510 

d
a

ta
se

t_
3

 DTR_RVB 0,59 0,43 0,32 20 0,010 0,500 

kNNR_RVB 0,72 0,57 0,47 15 0,001 0,540 

LR_RVB 0,64 0,47 0,36 18 0,001 0,500 

MLPR_RVB 0,67 0,51 0,40 16 1,950 0,500 

d
a

ta
se

t_
4
 DTR_RVB 0,73 0,60 0,52 377 0,010 0,500 

kNNR_RVB 0,73 0,59 0,50 351 0,001 0,520 

LR_RVB 0,70 0,55 0,46 406 0,001 0,500 

MLPR_RVB 0,70 0,58 0,50 382 3,250 0,500 

d
a

ta
se

t_
5

 DTR_RVB 0,73 0,62 0,55 17357 0,010 0,500 

kNNR_RVB 0,72 0,59 0,50 17560 0,001 0,520 

LR_RVB 0,58 0,41 0,29 30549 0,001 0,490 

MLPR_RVB 0,71 0,61 0,53 18134 4,420 0,500 
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Table 28 - Labels values based approach, base algorithms TLPQs, MAE and times performance 

metrics, dynamic prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 
d

a
ta

se
t_

1
 DTR_LVB 0,42 0,33 0,28 599 0,010 0,680 

kNNR_LVB 0,51 0,40 0,33 447 0,010 0,700 

LR_LVB 0,15 0,11 0,09 697 0,001 0,680 

MLPR_LVB 0,18 0,13 0,09 731 4,000 0,660 

d
a

ta
se

t_
2

 DTR_LVB 0,54 0,40 0,31 63 0,010 0,690 

kNNR_LVB 0,65 0,51 0,41 60 0,001 0,710 

LR_LVB 0,34 0,26 0,20 96 0,001 0,690 

MLPR_LVB 0,26 0,18 0,12 133 2,780 0,700 

d
a

ta
se

t_
3
 DTR_LVB 0,51 0,39 0,31 42 0,010 0,810 

kNNR_LVB 0,72 0,57 0,48 32 0,001 0,820 

LR_LVB 0,30 0,23 0,18 60 0,001 0,770 

MLPR_LVB 0,24 0,18 0,14 76 2,530 0,800 

d
a

ta
se

t_
4
 DTR_LVB 0,37 0,30 0,26 1995 0,001 0,680 

kNNR_LVB 0,54 0,42 0,34 1320 0,001 0,710 

LR_LVB 0,05 0,04 0,03 3432 0,001 0,680 

MLPR_LVB 0,12 0,08 0,06 3336 3,070 0,680 

d
a

ta
se

t_
5

 DTR_LVB 0,29 0,23 0,20 126339 0,010 0,690 

kNNR_LVB 0,54 0,42 0,35 67895 0,001 0,720 

LR_LVB 0,04 0,03 0,02 333897 0,001 0,690 

MLPR_LVB 0,06 0,01 0,02 228530 3,800 0,690 

 

 

Figure 63 - Single algorithms ranking according to Friedman statistical test, TLPQ_1 metric, 

long-term forecast 
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Figure 64 - Single algorithms ranking according to Friedman statistical test, TLPQ_2 metric, 

long-term forecast 

 

Figure 65 - Single algorithms ranking according to Friedman statistical test, TLPQ_3 metric, 

long-term forecast 

 

Figure 66 - Single algorithms ranking according to Friedman statistical test, MAE metric, long-

term forecast 

 

Figure 67 - Single algorithms ranking according to Friedman statistical test, train time metric, 

long-term forecast 
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5.2. Algorithms ensemble 

Based on the fact that ensembles often perform better than single algorithms, four 

different ensembles’ types with DT and kNN as base algorithm were examined, namely 

OvsR, OvsO, BR and EFMH. Additionally, four other ensembles with DR or DTR as 

base algorithm were used, i.e., RF, ET, RFR and ETR. Parameters’ values of ensembles’ 

base algorithms are the same as in previous experiment and are presented in Table 5. 

Parameters’ values of ensembles are presented below. Experiments in this subsection 

were conducted with the following assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   30 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  1 day 

Repetitions:  28 

Features sets:  𝐹1, 𝐹2 

Tested algorithms: ET, RF, OvsR (DT, kNN), OvsO (DT, kNN), EFMH (DTR, 

kNNR), BR (DTR, kNNR), RFR, ETR 

Tested approaches: LB, RVB, LVB 

Algorithms parameters Presented in Table 22, Table 29 

 

Table 29 - Ensembles parameters values, long-term forecast 

ET 
n_estimators 200 

criterion gini 

ETR 
n_estimators 150 

criterion squared_error 

RF 
n_estimators 200 

criterion gini 

RFR 
n_estimators 150 

criterion squared_error 

BR n_estimators 50 

 

Tables 30 to 35 consist of ensembles’ performance metrics. Bolded numbers 

represent the best result for a single dataset. In most cases, application of ensemble 

returned higher TLPQ values than single algorithms. Exception was: a dynamic 

prediction and LVB approach (Table 35), where TLPQ metrics turned out to be lower, 
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comparing to single algorithms (Table 28). Static prediction (Table 30, Table 31, 

Table 32) exceeded dynamic prediction (Table 33, Table 34, Table 35) in term of TLPQ 

values of each tested approach. In case of LB approach (Table 30, Table 33), the highest 

TLPQ values achieved ensembles with kNN as a base estimator. In turn, for RVB (Table 

31, Table 34) and LVB (Table 32, Table 35) approaches the best turned out to be 

ensembles with DTR as base estimator. Ensemble which predicted traffic with the highest 

TLPQ performance was ET in LVB approach and static prediction (Table 32). 

Analyzing MAE values, it can be noticed that errors are higher in case of 

ensembles during dynamic prediction (Table 33, Table 34, Table 35). Additionally, 

ensembles in case of RVB approach (Table 31, Table 34) made the lowest errors among 

all tested approaches. 

Ensembles methods have much longer training and prediction phases, comparing 

to single algorithms, which are their base estimators. What is more, training and 

prediction times are higher in case of dynamic prediction (Table 34, Table 34, Table 35) 

than in case of static prediction (Table 31, Table 32, Table 33). OvsR, OvsO and EFMH 

ensembles perform faster than ET and RF ensembles. 

Analyzing statistical tests for TLPQ metrics (Figure 68, Figure 69, Figure 70), it 

can be noticed that for all TLPQ variants, the highest ranks obtained ensembles in RVB 

approach, namely, ET and kNNR. In case of MAE metric (Figure 71), algorithms in RVB 

approach are visibly better, i.e., they got the highest ranks. Based on times metric tests 

(Figure 72, Figure 73), it is clear that all approaches with ET, RF, ETR and RFR 

ensembles obtained the worst rank.  
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Table 30 - Label based approach, ensembles TLPQs, MAE and times performance metrics, 

static prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 
d

a
ta

se
t_

1
 

ET_LB 0,79 0,68 0,61 136 0,410 0,030 

RF_LB 0,79 0,68 0,61 136 0,540 0,030 

OvsR-DT_LB 0,75 0,63 0,55 146 0,020 0,001 

OvsR-kNN_LB 0,80 0,70 0,63 141 0,030 0,010 

OvsO-DT_LB 0,75 0,62 0,54 145 0,050 0,020 

OvsO-kNN_LB 0,76 0,64 0,56 151 0,060 0,080 

EFMH-DT_LB 0,72 0,59 0,51 144 0,020 0,001 

EFMH-kNN_LB 0,80 0,70 0,63 141 0,020 0,010 

d
a

ta
se

t_
2
 

ET_LB 0,63 0,47 0,37 31 0,440 0,030 

RF_LB 0,63 0,47 0,37 31 0,560 0,030 

OvsR-DT_LB 0,60 0,43 0,32 34 0,020 0,001 

OvsR-kNN_LB 0,64 0,48 0,38 31 0,020 0,010 

OvsO-DT_LB 0,62 0,46 0,36 35 0,060 0,020 

OvsO-kNN_LB 0,62 0,45 0,34 34 0,060 0,080 

EFMH-DT_LB 0,61 0,44 0,33 35 0,020 0,010 

EFMH-kNN_LB 0,64 0,48 0,38 31 0,020 0,010 

d
a

ta
se

t_
3
 

ET_LB 0,66 0,50 0,39 19 0,450 0,030 

RF_LB 0,67 0,50 0,40 19 0,550 0,040 

OvsR-DT_LB 0,67 0,51 0,40 20 0,020 0,001 

OvsR-kNN_LB 0,66 0,50 0,39 19 0,030 0,010 

OvsO-DT_LB 0,66 0,50 0,39 21 0,060 0,010 

OvsO-kNN_LB 0,63 0,46 0,36 20 0,070 0,070 

EFMH-DT_LB 0,65 0,48 0,37 20 0,020 0,001 

EFMH-kNN_LB 0,66 0,50 0,39 19 0,020 0,010 

d
a

ta
se

t_
4

 

ET_LB 0,79 0,69 0,62 390 0,390 0,030 

RF_LB 0,78 0,67 0,60 398 0,530 0,030 

OvsR-DT_LB 0,76 0,64 0,57 411 0,020 0,001 

OvsR-kNN_LB 0,78 0,67 0,59 411 0,020 0,010 

OvsO-DT_LB 0,75 0,63 0,56 430 0,050 0,010 

OvsO-kNN_LB 0,76 0,63 0,55 430 0,060 0,070 

EFMH-DT_LB 0,75 0,64 0,56 416 0,020 0,001 

EFMH-kNN_LB 0,78 0,67 0,59 411 0,020 0,010 

d
a

ta
se

t_
5
 

ET_LB 0,81 0,71 0,65 19976 0,370 0,030 

RF_LB 0,79 0,69 0,62 19572 0,520 0,030 

OvsR-DT_LB 0,76 0,65 0,58 21773 0,020 0,001 

OvsR-kNN_LB 0,82 0,72 0,65 21130 0,020 0,010 

OvsO-DT_LB 0,78 0,67 0,60 20666 0,060 0,010 

OvsO-kNN_LB 0,79 0,68 0,60 22074 0,060 0,070 

EFMH-DT_LB 0,77 0,65 0,58 20929 0,020 0,001 

EFMH-kNN_LB 0,81 0,72 0,65 21061 0,020 0,010 
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Table 31 - Real values based approach, ensembles TLPQs, MAE and times performance 

metrics, static prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1

 

BR-DTR_RVB 0,78 0,67 0,60 94 0,050 0,001 

BR-

kNNR_RVB 
0,81 0,70 0,63 92 0,030 0,010 

RF_RVB 0,81 0,71 0,64 90 0,170 0,010 

ET_RVB 0,81 0,71 0,64 86 4,500 0,020 

d
a

ta
se

t_
2
 

BR-DTR_RVB 0,67 0,51 0,41 26 0,050 0,001 

BR-

kNNR_RVB 
0,69 0,54 0,43 25 0,030 0,010 

RF_RVB 0,66 0,50 0,39 27 0,170 0,010 

ET_RVB 0,68 0,53 0,43 25 4,490 0,030 

d
a

ta
se

t_
3

 

BR-DTR_RVB 0,71 0,55 0,44 15 0,040 0,001 

BR-

kNNR_RVB 
0,71 0,56 0,46 15 0,030 0,010 

RF_RVB 0,71 0,55 0,45 15 0,160 0,010 

ET_RVB 0,72 0,56 0,46 15 4,430 0,030 

d
a

ta
se

t_
4
 

BR-DTR_RVB 0,79 0,68 0,61 275 0,050 0,001 

BR-

kNNR_RVB 
0,80 0,69 0,62 271 0,030 0,010 

RF_RVB 0,80 0,69 0,62 265 0,180 0,010 

ET_RVB 0,81 0,71 0,64 253 4,500 0,030 

d
a

ta
se

t_
5
 

BR-DTR_RVB 0,81 0,71 0,65 12761 0,050 0,001 

BR-

kNNR_RVB 
0,83 0,73 0,67 12530 0,030 0,010 

RF_RVB 0,83 0,74 0,67 12129 0,160 0,010 

ET_RVB 0,83 0,74 0,67 11739 4,520 0,030 
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Table 32 - Labels values based approach, ensembles TLPQs, MAE and times performance 

metrics, static prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1

 

BR-DTR_LVB 0,88 0,75 0,66 130 0,040 0,001 

BR-

kNNR_LVB 
0,91 0,76 0,66 134 0,030 0,010 

RF_LVB 0,91 0,75 0,65 136 0,130 0,010 

ET_LVB 0,92 0,78 0,68 126 2,610 0,020 

d
a

ta
se

t_
2
 

BR-DTR_LVB 0,74 0,58 0,47 30 0,040 0,001 

BR-

kNNR_LVB 
0,76 0,60 0,49 30 0,030 0,010 

RF_LVB 0,74 0,58 0,48 30 0,130 0,010 

ET_LVB 0,77 0,61 0,50 29 3,180 0,030 

d
a

ta
se

t_
3

 

BR-DTR_LVB 0,78 0,63 0,53 18 0,040 0,001 

BR-

kNNR_LVB 
0,77 0,62 0,52 18 0,030 0,010 

RF_LVB 0,77 0,62 0,52 18 0,140 0,020 

ET_LVB 0,77 0,62 0,52 18 3,320 0,030 

d
a

ta
se

t_
4
 

BR-DTR_LVB 0,90 0,76 0,67 393 0,040 0,001 

BR-

kNNR_LVB 
0,91 0,75 0,65 402 0,030 0,010 

RF_LVB 0,92 0,76 0,65 405 0,120 0,010 

ET_LVB 0,93 0,78 0,68 366 2,360 0,030 

d
a

ta
se

t_
5
 

BR-DTR_LVB 0,91 0,78 0,69 19659 0,040 0,001 

BR-

kNNR_LVB 
0,92 0,76 0,65 20706 0,020 0,010 

RF_LVB 0,94 0,77 0,65 20897 0,130 0,010 

ET_LVB 0,95 0,79 0,69 18871 2,270 0,020 
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Table 33 - Label based approach, ensembles TLPQs, MAE and times performance metrics, 

dynamic prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

ET_LB 0,77 0,64 0,55 306 0,440 1,920 

RF_LB 0,83 0,68 0,58 283 0,600 1,930 

OvsR-DT_LB 0,53 0,43 0,37 531 0,020 0,590 

OvsR-kNN_LB 0,84 0,70 0,60 249 0,020 0,920 

OvsO-DT_LB 0,46 0,37 0,31 555 0,050 1,130 

OvsO-kNN_LB 0,81 0,66 0,56 278 0,060 3,440 

EFMH-DT_LB 0,56 0,45 0,38 483 0,020 0,660 

EFMH-kNN_LB 0,84 0,70 0,60 249 0,020 0,930 

d
a

ta
se

t_
2
 

ET_LB 0,71 0,55 0,45 39 0,500 1,880 

RF_LB 0,66 0,52 0,42 45 0,620 1,880 

OvsR-DT_LB 0,52 0,41 0,33 75 0,020 0,590 

OvsR-kNN_LB 0,71 0,55 0,45 35 0,030 0,910 

OvsO-DT_LB 0,50 0,38 0,30 74 0,060 1,110 

OvsO-kNN_LB 0,69 0,54 0,44 41 0,060 3,380 

EFMH-DT_LB 0,49 0,37 0,28 76 0,020 0,690 

EFMH-kNN_LB 0,71 0,55 0,45 35 0,020 0,970 

d
a

ta
se

t_
3
 

ET_LB 0,70 0,55 0,45 24 0,490 1,860 

RF_LB 0,69 0,55 0,46 26 0,590 1,860 

OvsR-DT_LB 0,60 0,45 0,36 32 0,020 0,580 

OvsR-kNN_LB 0,72 0,57 0,47 21 0,020 0,870 

OvsO-DT_LB 0,58 0,45 0,37 39 0,060 1,060 

OvsO-kNN_LB 0,68 0,51 0,41 23 0,060 3,140 

EFMH-DT_LB 0,63 0,49 0,40 30 0,020 0,700 

EFMH-kNN_LB 0,72 0,57 0,47 21 0,020 0,980 

d
a

ta
se

t_
4

 

ET_LB 0,80 0,65 0,54 983 0,410 1,900 

RF_LB 0,66 0,54 0,45 1238 0,570 1,910 

OvsR-DT_LB 0,42 0,34 0,28 1869 0,020 0,600 

OvsR-kNN_LB 0,83 0,67 0,56 801 0,020 0,890 

OvsO-DT_LB 0,46 0,38 0,32 1724 0,050 1,100 

OvsO-kNN_LB 0,76 0,61 0,50 949 0,060 3,280 

EFMH-DT_LB 0,46 0,37 0,30 1667 0,020 0,710 

EFMH-kNN_LB 0,83 0,67 0,56 801 0,020 0,990 

d
a

ta
se

t_
5
 

ET_LB 0,68 0,53 0,43 61875 0,370 1,870 

RF_LB 0,56 0,44 0,36 78180 0,530 1,870 

OvsR-DT_LB 0,24 0,19 0,16 136894 0,020 0,580 

OvsR-kNN_LB 0,78 0,61 0,50 44470 0,020 0,890 

OvsO-DT_LB 0,29 0,23 0,19 124159 0,050 1,080 

OvsO-kNN_LB 0,75 0,58 0,47 46635 0,060 3,230 

EFMH-DT_LB 0,41 0,32 0,26 105518 0,020 0,700 

EFMH-kNN_LB 0,78 0,61 0,50 44470 0,020 0,970 
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Table 34 - Real values based approach, ensembles TLPQs, MAE and times performance 

metrics, dynamic prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1

 

BR-DTR_RVB 0,78 0,67 0,59 100 0,050 0,590 

BR-

kNNR_RVB 
0,80 0,68 0,59 102 0,030 0,830 

RF_RVB 0,67 0,52 0,42 146 0,160 1,100 

ET_RVB 0,81 0,70 0,63 89 5,170 1,480 

d
a

ta
se

t_
2
 

BR-DTR_RVB 0,68 0,52 0,42 26 0,050 0,580 

BR-

kNNR_RVB 
0,69 0,53 0,43 25 0,030 0,820 

RF_RVB 0,56 0,39 0,28 35 0,160 1,100 

ET_RVB 0,70 0,55 0,44 24 5,130 1,480 

d
a

ta
se

t_
3

 

BR-DTR_RVB 0,71 0,56 0,45 15 0,050 0,590 

BR-

kNNR_RVB 
0,72 0,57 0,46 15 0,030 0,820 

RF_RVB 0,62 0,46 0,35 18 0,150 1,130 

ET_RVB 0,74 0,59 0,48 14 5,130 1,520 

d
a

ta
se

t_
4
 

BR-DTR_RVB 0,76 0,64 0,56 299 0,060 0,580 

BR-

kNNR_RVB 
0,75 0,63 0,54 322 0,030 0,810 

RF_RVB 0,65 0,49 0,39 455 0,140 1,100 

ET_RVB 0,79 0,69 0,62 240 5,090 1,490 

d
a

ta
se

t_
5
 

BR-DTR_RVB 0,76 0,65 0,58 17598 0,050 0,580 

BR-

kNNR_RVB 
0,74 0,61 0,52 17214 0,030 0,810 

RF_RVB 0,67 0,52 0,42 22391 0,150 1,090 

ET_RVB 0,83 0,74 0,67 11377 5,030 1,530 
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Table 35 - Labels values based approach, ensembles TLPQs, MAE and times performance 

metrics, dynamic prediction, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

BR-DTR_LVB 0,32 0,24 0,19 717 0,040 0,730 

BR-

kNNR_LVB 
0,43 0,32 0,25 489 0,030 1,000 

RF_LVB 0,49 0,38 0,30 484 0,140 3,150 

ET_LVB 0,38 0,29 0,22 522 3,310 3,570 

d
a

ta
se

t_
2

 

BR-DTR_LVB 0,36 0,28 0,22 109 0,050 0,880 

BR-

kNNR_LVB 
0,66 0,51 0,41 62 0,030 1,210 

RF_LVB 0,42 0,33 0,26 91 0,170 3,490 

ET_LVB 0,51 0,39 0,32 80 4,980 4,020 

d
a

ta
se

t_
3
 

BR-DTR_LVB 0,40 0,31 0,25 56 0,050 0,880 

BR-

kNNR_LVB 
0,71 0,56 0,47 34 0,030 1,190 

RF_LVB 0,43 0,34 0,27 52 0,170 3,500 

ET_LVB 0,47 0,37 0,30 48 4,970 4,080 

d
a

ta
se

t_
4
 

BR-DTR_LVB 0,24 0,18 0,15 2440 0,040 0,730 

BR-

kNNR_LVB 
0,48 0,36 0,29 1429 0,030 1,000 

RF_LVB 0,50 0,39 0,32 1491 0,140 3,170 

ET_LVB 0,40 0,30 0,23 1646 3,000 3,630 

d
a

ta
se

t_
5
 

BR-DTR_LVB 0,19 0,15 0,11 140616 0,040 0,710 

BR-

kNNR_LVB 
0,43 0,33 0,26 76328 0,030 0,990 

RF_LVB 0,49 0,38 0,30 77869 0,130 3,110 

ET_LVB 0,35 0,26 0,20 89669 3,670 3,520 

 

 

Figure 68 – Ensembles methods ranking according to Friedman statistical test, TLPQ_1 metric, 

long-term forecast 
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Figure 69 - Ensembles methods ranking according to Friedman statistical test, TLPQ_2 metric, 

long-term forecast  

 

Figure 70 - Ensembles methods ranking according to Friedman statistical test, TLPQ_3 metric, 

long-term forecast 

 

Figure 71 - Ensembles methods ranking according to Friedman statistical test, MAE metric, 

long-term forecast 
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Figure 72 - Ensembles methods ranking according to Friedman statistical test, train time 

metric, long-term forecast 

 

Figure 73 - Ensembles methods ranking according to Friedman statistical test, prediction time 

metric, long-term forecast 
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5.3. Different forecast horizon 

In long-term forecast, one of the key aspect is the forecast horizon, i.e., for how many 

future TIs traffic levels are predicted. To check influence of the forecast horizon length, 

the following algorithms were chosen – DT, RF, DTR, ET. RF and ET obtained the best 

performance in case of previous experiments. Additionally, those are ensembles with DT 

and DTR as a base estimator, thus DT and DTR are also tested as a single algorithms 

reference. Note that the forecast horizon is significant only in case of a dynamic 

prediction, therefore only this prediction type was examined. Additionally, static 

prediction allows to forecast only 24 hours ahead, since used features require information 

about traffic from TIs distant by one day from forecasted TI. Parameters’ values of 

ensembles’ base algorithms, ensembles and single algorithms are the same as in previous 

experiments. Experiments in this subsection were conducted with the following 

assumptions: 

Datasets:    dataset_1, dataset_2, dataset_3, dataset_4, dataset_5 

TI granulation:   30 minutes  

Number of traffic levels: 10 

Training set length: 28 days 

Test set length:  6h, 12h, 24h, 7 days 

Repetitions:  4, 28, 56, 112 

Features sets:  𝐹1 

Tested algorithms: DT, RF, DTR, ET 

Tested approaches: LB, RVB, LVB 

Algorithms parameters: Presented in Table 22, Table 29 

 

Tables 36 to 39 contain obtained experiments’ results for 6h, 12h, 24h and 7 days 

forecast horizon respectively. Based on TLPQ values, it is clear that metrics’ values 

decrease with an increase of a forecast horizon. In case of all time horizons, only for the 

LB approach ensemble performance exceeded single algorithm performance. For other 

approaches, namely RVB and LVB, ET ensembles got lower TLPQ values than single 

DTR algorithms. For all time horizons’ variants, for dataset_1, dataset_2 and dataset_3 

the best turned out to be RF ensemble, applied with LB approach. For the rest of datasets, 

i.e., dataset_4 and dataset_5, single algorithm DTR, applied with RVB approach, brought 

the highest metrics values. For 6h forecast horizon (Table 36), investigated algorithms 
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and ensembles on dataset_1 and dataset_5 were able to obtain TLPQ_1 values equal to 

0,9. 

Analyzing MAE values, it can be noticed that errors for 6h (Table 36) and 12h 

(Table 37) forecast horizons are similar. The same situation occurs for 24h (Table 38) and 

168h (Table 39) horizons. Errors are higher for algorithms and ensembles in case of 

longer time horizons. 

Training phase time is similar in case of all algorithms and ensembles among all 

datasets and time horizons’ variants. However prediction time significantly increases for 

longer forecast horizons. It increases up to several dozen times for 168h (Table 39) 

horizon, comparing to 6h (Table 36) horizon. 

Figures 74 to 78 present the highest TLPQ values for each forecast horizon 

variant. Blue color represents TLPQ_1 results, green color represents TLPQ_2 results and 

orange color represents TLPQ_3 results. TLPQ values are sensitive to forecast horizon. 

In most cases algorithms performed worse in case of longer forecasts. Exception is 

TLPQ_2 values obtained for dataset_3 (Figure 76), where algorithm got the lowest 

TLPQ_2 value for 6h forecast horizon. TLPQ_2 and TLPQ_3 values do not differ much 

within single dataset, especially for 12h, 24h and 168h forecast horizons. 

Based on TLPQ_1 (Figure 79) and MAE (Figure 82) statistical tests, it can be seen 

that there is statistical difference between DTR, ET in RVB approach, RF in LB approach 

and other tested ensembles. Statistical tests for TLPQ_2 (Figure 80) and TLPQ_3 (Figure 

81) showed that RF in LB approach got the highest ranks. Time metrics tests (Figure 83, 

Figure 84) point that single algorithms, namely DT and DTR achieved higher ranks than 

ensembles. 
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Table 36 - Label based approach, 6h forecast time horizon, TLPQs, MAE and times 

performance metrics, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,74 0,62 0,54 367 0,010 0,070 

RF_LB 0,90 0,77 0,68 257 0,600 0,430 

DTR_RVB 0,80 0,66 0,57 114 0,010 0,070 

ET_RVB 0,77 0,64 0,55 142 0,160 0,220 

DTR_LVB 0,69 0,58 0,50 373 0,010 0,090 

ET_LVB 0,68 0,55 0,46 425 0,140 0,750 

d
a

ta
se

t_
2
 

DT_LB 0,59 0,45 0,36 60 0,010 0,070 

RF_LB 0,77 0,62 0,53 42 0,620 0,420 

DTR_RVB 0,66 0,50 0,39 39 0,010 0,070 

ET_RVB 0,65 0,49 0,38 28 0,150 0,220 

DTR_LVB 0,63 0,50 0,40 61 0,010 0,090 

ET_LVB 0,60 0,49 0,41 78 0,150 0,780 

d
a

ta
se

t_
3

 

DT_LB 0,65 0,50 0,41 34 0,010 0,070 

RF_LB 0,77 0,62 0,53 26 0,600 0,420 

DTR_RVB 0,67 0,50 0,39 20 0,010 0,070 

ET_RVB 0,73 0,57 0,46 18 0,150 0,210 

DTR_LVB 0,59 0,46 0,37 38 0,001 0,090 

ET_LVB 0,61 0,50 0,42 45 0,140 0,790 

d
a

ta
se

t_
4
 

DT_LB 0,61 0,52 0,46 1418 0,010 0,070 

RF_LB 0,79 0,67 0,59 1066 0,560 0,410 

DTR_RVB 0,84 0,73 0,65 347 0,010 0,070 

ET_RVB 0,73 0,59 0,49 437 0,150 0,210 

DTR_LVB 0,67 0,56 0,49 1341 0,010 0,090 

ET_LVB 0,69 0,57 0,48 1332 0,140 0,720 

d
a

ta
se

t_
5
 

DT_LB 0,60 0,51 0,44 81762 0,010 0,070 

RF_LB 0,67 0,56 0,48 70391 0,530 0,410 

DTR_RVB 0,90 0,80 0,74 15093 0,010 0,070 

ET_RVB 0,76 0,62 0,53 21720 0,150 0,210 

DTR_LVB 0,56 0,47 0,41 88590 0,001 0,090 

ET_LVB 0,66 0,54 0,46 70203 0,130 0,700 
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Table 37 - Label based approach, 12h forecast time horizon, TLPQs, MAE and times 

performance metrics, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,67 0,55 0,47 373 0,010 0,180 

RF_LB 0,84 0,70 0,60 272 0,610 0,880 

DTR_RVB 0,71 0,57 0,47 135 0,010 0,180 

ET_RVB 0,68 0,53 0,43 148 0,160 0,470 

DTR_LVB 0,61 0,50 0,43 426 0,010 0,240 

ET_LVB 0,58 0,45 0,36 440 0,130 1,380 

d
a

ta
se

t_
2
 

DT_LB 0,55 0,41 0,32 62 0,010 0,180 

RF_LB 0,73 0,59 0,49 41 0,630 0,890 

DTR_RVB 0,58 0,40 0,29 37 0,010 0,180 

ET_RVB 0,57 0,40 0,29 30 0,160 0,480 

DTR_LVB 0,55 0,41 0,32 59 0,010 0,220 

ET_LVB 0,53 0,41 0,34 79 0,160 1,690 

d
a

ta
se

t_
3

 

DT_LB 0,55 0,41 0,32 34 0,010 0,170 

RF_LB 0,75 0,60 0,50 24 0,600 0,860 

DTR_RVB 0,59 0,42 0,30 21 0,010 0,180 

ET_RVB 0,65 0,49 0,38 18 0,150 0,480 

DTR_LVB 0,53 0,39 0,30 37 0,010 0,220 

ET_LVB 0,53 0,42 0,35 46 0,150 1,710 

d
a

ta
se

t_
4
 

DT_LB 0,53 0,44 0,38 1614 0,010 0,190 

RF_LB 0,68 0,56 0,48 1139 0,610 0,930 

DTR_RVB 0,72 0,59 0,51 359 0,010 0,180 

ET_RVB 0,65 0,50 0,39 454 0,160 0,470 

DTR_LVB 0,59 0,48 0,41 1473 0,000 0,220 

ET_LVB 0,61 0,48 0,40 1336 0,130 1,700 

d
a

ta
se

t_
5
 

DT_LB 0,51 0,41 0,35 85468 0,010 0,200 

RF_LB 0,60 0,48 0,41 67998 0,610 0,970 

DTR_RVB 0,76 0,63 0,55 16520 0,010 0,180 

ET_RVB 0,67 0,53 0,43 22320 0,160 0,470 

DTR_LVB 0,44 0,36 0,30 98039 0,010 0,220 

ET_LVB 0,56 0,44 0,37 70980 0,130 1,680 
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Table 38 - Label based approach, 24h forecast time horizon, TLPQs, MAE and times 

performance metrics, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,57 0,46 0,38 430 0,010 0,530 

RF_LB 0,81 0,66 0,57 290 0,600 1,920 

DTR_RVB 0,68 0,54 0,44 143 0,010 0,520 

ET_RVB 0,67 0,52 0,42 146 0,160 1,100 

DTR_LVB 0,45 0,36 0,30 580 0,010 0,710 

ET_LVB 0,49 0,38 0,30 484 0,150 3,040 

d
a

ta
se

t_
2
 

DT_LB 0,48 0,35 0,27 73 0,010 0,520 

RF_LB 0,68 0,53 0,43 43 0,620 1,930 

DTR_RVB 0,58 0,40 0,29 36 0,010 0,520 

ET_RVB 0,56 0,39 0,28 35 0,160 1,110 

DTR_LVB 0,51 0,37 0,28 63 0,001 0,660 

ET_LVB 0,42 0,33 0,26 91 0,140 3,410 

d
a

ta
se

t_
3

 

DT_LB 0,50 0,37 0,28 38 0,001 0,520 

RF_LB 0,70 0,55 0,45 25 0,600 1,910 

DTR_RVB 0,56 0,39 0,27 21 0,010 0,530 

ET_RVB 0,62 0,46 0,35 18 0,160 1,100 

DTR_LVB 0,49 0,37 0,29 43 0,001 0,640 

ET_LVB 0,43 0,34 0,27 52 0,150 3,270 

d
a

ta
se

t_
4
 

DT_LB 0,30 0,24 0,21 2253 0,010 0,500 

RF_LB 0,69 0,55 0,46 1165 0,550 1,820 

DTR_RVB 0,71 0,59 0,50 430 0,010 0,520 

ET_RVB 0,65 0,49 0,39 455 0,160 1,110 

DTR_LVB 0,36 0,29 0,25 2063 0,001 0,620 

ET_LVB 0,50 0,39 0,32 1491 0,130 3,140 

d
a

ta
se

t_
5
 

DT_LB 0,31 0,26 0,22 122129 0,010 0,500 

RF_LB 0,53 0,42 0,35 79534 0,520 1,820 

DTR_RVB 0,76 0,64 0,56 16847 0,010 0,530 

ET_RVB 0,67 0,52 0,42 22391 0,160 1,100 

DTR_LVB 0,27 0,22 0,18 130212 0,001 0,620 

ET_LVB 0,49 0,38 0,30 77869 0,120 3,200 
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Table 39 - Label based approach, 168h forecast time horizon, TLPQs, MAE and times 

performance metrics, long-term forecast 

 Algorithm TLPQ_1 TLPQ_2 TLPQ_3 MAE Train time [s] Pred. time [s] 

d
a

ta
se

t_
1
 

DT_LB 0,49 0,39 0,33 549 0,020 17,290 

RF_LB 0,44 0,35 0,29 641 0,600 26,930 

DTR_RVB 0,64 0,49 0,39 204 0,010 17,290 

ET_RVB 0,37 0,20 0,09 307 0,160 21,540 

DTR_LVB 0,22 0,17 0,14 826 0,010 21,680 

ET_LVB 0,19 0,15 0,12 859 0,130 43,640 

d
a

ta
se

t_
2
 

DT_LB 0,38 0,29 0,23 98 0,010 17,090 

RF_LB 0,60 0,47 0,38 59 0,610 26,520 

DTR_RVB 0,60 0,43 0,32 34 0,000 17,320 

ET_RVB 0,34 0,16 0,04 59 0,170 21,380 

DTR_LVB 0,42 0,32 0,25 84 0,010 21,060 

ET_LVB 0,22 0,17 0,13 145 0,140 44,040 

d
a

ta
se

t_
3

 

DT_LB 0,48 0,37 0,29 45 0,010 16,750 

RF_LB 0,67 0,54 0,45 29 0,590 26,060 

DTR_RVB 0,58 0,41 0,29 20 0,010 16,830 

ET_RVB 0,52 0,35 0,24 23 0,170 21,130 

DTR_LVB 0,47 0,35 0,28 44 0,010 21,100 

ET_LVB 0,27 0,21 0,17 67 0,140 44,020 

d
a

ta
se

t_
4
 

DT_LB 0,17 0,14 0,11 2820 0,001 16,740 

RF_LB 0,31 0,24 0,20 2240 0,550 26,150 

DTR_RVB 0,67 0,55 0,47 516 0,010 16,900 

ET_RVB 0,31 0,13 0,02 1107 0,160 21,080 

DTR_LVB 0,17 0,13 0,11 2871 0,010 21,380 

ET_LVB 0,24 0,19 0,15 2480 0,120 42,620 

d
a

ta
se

t_
5
 

DT_LB 0,18 0,14 0,12 146188 0,001 16,620 

RF_LB 0,26 0,20 0,17 126286 0,520 25,880 

DTR_RVB 0,70 0,60 0,51 22418 0,001 16,820 

ET_RVB 0,31 0,14 0,03 54963 0,160 21,090 

DTR_LVB 0,17 0,14 0,11 158911 0,001 25,050 

ET_LVB 0,22 0,17 0,14 132071 0,150 41,260 
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Figure 74 - The highest TLPQ values for each forecast horizon variant, dataset_1 

 

Figure 75 - The highest TLPQ values for each forecast horizon variant, dataset_2 

 

Figure 76 - The highest TLPQ values for each forecast horizon variant, dataset_3 
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Figure 77 - The highest TLPQ values for each forecast horizon variant, dataset_4 

 

Figure 78 - The highest TLPQ values for each forecast horizon variant, dataset_5 

 

Figure 79 - Tested methods ranking according to Friedman statistical test, different prediction 

horizon, TLPQ_1 metric, long-term forecast 
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Figure 80 - Tested methods ranking according to Friedman statistical test, different prediction 

horizon, TLPQ_2 metric, long-term forecast 

 

Figure 81 - Tested methods ranking according to Friedman statistical test, different prediction 

horizon, TLPQ_3 metric, long-term forecast 

 

Figure 82 - Tested methods ranking according to Friedman statistical test, different prediction 

horizon, MAE metric, long-term forecast 

 

Figure 83 - Tested methods ranking according to Friedman statistical test, different prediction 

horizon, train time metric, long-term forecast 

 

Figure 84 - Tested methods ranking according to Friedman statistical test, different prediction 

horizon, prediction time metric, long-term forecast 
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5.4. Conclusions 

Results presented in this section describe experiments conducted for long-term traffic 

levels’ forecasting. Studies compared different traffic levels’ forecasting methods and 

tested the best ones, in terms of applied metrics, under various network scenarios. 

Experiments showed that each tested method allowed to successfully forecast traffic 

levels.  

Table 40 summarizes experiments from sections 5.1 and 5.2. First column defines 

considered dataset. Second column indicates type of algorithm, i.e., which section the 

results are taken from. Next three columns contain the best TLPQ values. Bolded numbers 

represent the highest result. Last three columns consist of algorithms and approaches 

names which obtained the best TLPQ values. Results showed that in case of single 

algorithms forecast,  kNNR obtained the best TLPQ values the most frequently. In turn, 

ensemble which obtained the highest TLPQ values in most cases was ET. Additionally, 

other ensembles that performed the best were OvsR-kNN and BR-DTR. Analyzing 

results, it is clear that ensemble methods outperformed single algorithms. In case of each 

dataset, ensembles got higher TLPQs values than single algorithms. Static prediction 

returned better performance values than dynamic prediction for all datasets. Looking at 

proposed approach, for single algorithm static, ensemble static and ensemble dynamic 

forecasts, the best was the LVB approach. In case of single algorithm dynamic forecast 

the highest TLPQ values returned algorithms applied with RVB approach. 

Table 41 presents information about the lowest MAE errors and time values, 

together with methods that obtained them during experiments in sections 5.1 and 5.2. First 

column defines considered dataset and second column indicates type of algorithm, like in 

Table 40. Next three columns contain information about MAE error, train time and 

prediction time respectively. Bolded numbers represent the best results. Last three 

columns consist of algorithms and approaches names which obtained the lowest metric 

values. Conducted study showed that the lowest MAE errors’ values got ensemble 

methods, in both static and dynamic prediction. In case of all datasets, ET ensemble 

together with RVB approach obtained the best values of MAE errors. RVB approach also 

allowed to obtain the lowest values of MAE errors by single algorithms, among which 

the best performance, in most cases, had kNNR. Analyzing algorithms training times it 

can be noticed that single algorithms were trained quicker than ensembles. The shortest 

times generally were obtained by kNNR algorithms and RVB approach. The exceptions 
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were: static predictions for dataset_1 and dataset_5, where the best one turned out to be 

LR with RVB approach. Prediction times returned by algorithms show that dynamic 

ensemble prediction took the longest for all tested datasets. In case of other prediction 

types, namely, single algorithm static, ensemble static and single algorithm dynamic, 

prediction times were lower. Approach, which performed the quickest was RVB. 
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Table 40 - The best TLPQ values and algorithms obtained them, long-term forecast 

  
TLPQ_

1 

TLPQ_

2 
TLPQ_3 

TLPQ_1 the 

best algorithm 

TLPQ_2 the 

best algorithm 

TLPQ_3 the 

best algorithm 

d
a

ta
se

t_
1
 

Single algorithm 

static 
0,90 0,76 0,67 LR_LVB kNNR_LVB kNNR_LVB 

Ensemble static 0,92 0,78 0,68 ET_LVB ET_LVB ET_LVB 

Single algorithm 

dynamic 
0,77 0,64 0,56 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble 

dynamic 
0,84 0,70 0,63 

OvsR-

kNN_LB 

OvsR-

kNN_LB 
ET_RVB 

d
a

ta
se

t_
2
 

Single algorithm 

static 
0,75 0,59 0,49 kNNR_LVB kNNR_LVB kNNR_LVB 

Ensemble static 0,77 0,61 0,50 ET_LVB ET_LVB ET_LVB 

Single algorithm 

dynamic 
0,68 0,52 0,42 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble 

dynamic 
0,71 0,55 0,45 ET_LB 

OvsR-

kNN_LB 

OvsR-

kNN_LB 

d
a

ta
se

t_
3
 

Single algorithm 

static 
0,76 0,61 0,50 kNNR_LVB kNNR_LVB kNNR_LVB 

Ensemble static 0,78 0,63 0,53 BR-DTR_LVB BR-DTR_LVB BR-DTR_LVB 

Single algorithm 

dynamic 
0,72 0,57 0,47 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble 

dynamic 
0,74 0,59 0,48 ET_RVB ET_RVB ET_RVB 

d
a

ta
se

t_
4

 

Single algorithm 

static 
0,92 0,77 0,66 LR_LVB LR_LVB LR_LVB 

Ensemble static 0,93 0,78 0,68 ET_LVB ET_LVB ET_LVB 

Single algorithm 

dynamic 
0,73 0,60 0,52 kNNR_RVB DTR_RVB DTR_RVB 

Ensemble 

dynamic 
0,83 0,69 0,62 

OvsR-

kNN_LB 
ET_RVB ET_RVB 

d
a

ta
se

t_
5
 

Single algorithm 

static 
0,94 0,78 0,62 LR_LVB LR_LVB LR_LVB 

Ensemble static 0,95 0,79 0,69 ET_LVB ET_LVB ET_LVB 

Single algorithm 

dynamic 
0,73 0,62 0,55 DTR_RVB DTR_RVB DTR_RVB 

Ensemble 

dynamic 
0,83 0,74 0,67 ET_RVB ET_RVB ET_RVB 
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Table 41 - The best MAE and times values and algorithms obtained them, long-term forecast 

  MAE 
Train 

time [s] 

Pred. 

Time 

[s] 

MAE the 

best 

algorithm 

Train time the 

best algorithm 

Pred. time the 

best algorithm 

d
a

ta
se

t_
1
 

Single algorithm 

static 
92,41 0,001 0,001 LR_RVB LR_RVB LR_RVB 

Ensemble static 86,34 0,020 0,001 ET_RVB OvsR-DT_LB BR-DTR_RVB 

Single algorithm 

dynamic 
109,11 0,001 0,001 kNNR_RVB kNNR_RVB TS 

Ensemble 

dynamic 
89,43 0,020 0,590 ET_RVB OvsR-DT_LB BR-DTR_RVB 

d
a

ta
se

t_
2
 

Single algorithm 

static 
25,82 0,001 0,001 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble static 24,82 0,020 0,001 ET_RVB OvsR-DT_LB BR-DTR_RVB 

Single algorithm 

dynamic 
26,29 0,001 0,001 kNNR_RVB kNNR_RVB TS 

Ensemble 

dynamic 
24,09 0,020 0,580 ET_RVB OvsR-DT_LB BR-DTR_RVB 

d
a

ta
se

t_
3
 

Single algorithm 

static 
15,18 0,001 0,001 kNNR_RVB kNNR_RVB kNNR_RVB 

Ensemble static 14,59 0,020 0,001 ET_RVB OvsR-DT_LB BR-DTR_RVB 

Single algorithm 

dynamic 
14,96 0,001 0,001 kNNR_RVB kNNR_RVB TS 

Ensemble 

dynamic 
14,46 0,020 0,590 ET_RVB OvsR-DT_LB BR-DTR_RVB 

d
a

ta
se

t_
4

 

Single algorithm 

static 
258,97 0,001 0,001 MLPR_RVB kNNR_RVB MLPR_RVB 

Ensemble static 252,92 0,020 0,001 ET_RVB OvsR-DT_LB BR-DTR_RVB 

Single algorithm 

dynamic 
351,08 0,001 0,001 kNNR_RVB kNNR_RVB TS 

Ensemble 

dynamic 
240,24 0,020 0,580 ET_RVB OvsR-DT_LB BR-DTR_RVB 

d
a

ta
se

t_
5
 

Single algorithm 

static 
12334,66 0,001 0,001 LR_RVB LR_RVB LR_RVB 

Ensemble static 11738,57 0,020 0,001 ET_RVB OvsR-DT_LB BR-DTR_RVB 

Single algorithm 

dynamic 
17357,22 0,001 0,001 DTR_RVB kNNR_RVB TS 

Ensemble 

dynamic 
11376,63 0,020 0,580 ET_RVB OvsR-DT_LB BR-DTR_RVB 
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6. Final conclusions and future work 

This dissertation has been focused on two fundamental problems related to traffic 

prediction in backbone optical networks, namely a one-step ahead prediction, which is 

referred to as a short-term traffic forecasting, and a multi-steps ahead prediction, which 

is also called a long-term traffic forecasting. Data obtained from each traffic forecasting 

type can improve different network management tasks. Information about one-step ahead 

traffic can be used to control links load and prevent the congestion state. Additionally, 

short-term traffic forecasts base on recent past, hence they can help to detect failures in 

network operation by discovering unnatural flows. On the other hand, knowledge about 

multi-steps ahead traffic can help CSPs to plan network expansion. It is also valuable 

input information for routing procedure. Due to the fact that to establish connection in 

nowadays backbone optical networks, information about number of required transceiver  

is needed, in this dissertation traffic forecasting has been realized by predicting future 

traffic levels rather than the exact traffic volume.  

The dissertation’s main contributions can be divided into five parts, where each 

part realizes one of the research goals: 

1. Designing and implementation of historical data flows preprocessing methods. 

Each dataset used during experiments was initially analyzed using statistical 

methods. The analysis included datasets values’ variations and amplitude, their 

relation with time, traffic flows shape and elements of autocorrelation. Based 

on the outcome, three different sets of features were proposed. 

2. Development of short-term and long-term traffic levels forecast strategies using 

ML and TS algorithms. 

Depending on the feature set, different ML and TS algorithms’ approaches were 

proposed, namely LB, RVB and LVB. Additionally, for long-term traffic levels 

forecast problem, two different strategies were proposed and tested, i.e., static 

prediction and dynamic prediction. 

3. Definition of a new evaluation metric suitable for the considered problem. 

To make appropriate problem evaluation, a new metric called TLPQ was 

introduced. It allowed to evaluate tested algorithms in terms of underpredictions 

and overpredictions, which can be significant for network operators. Its main 

characteristic is flexibility. TLPQ uses 𝐼𝑛𝑡𝑒𝑟𝑀, which allows to assign different 
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weights to underpredictions and overpredictions, thus adapt them to operator’s 

expectations. 

4. Evaluation of effectiveness of the best proposed methods under various network 

scenarios. 

For ML algorithms, which achieved the best results, different network scenarios 

were defined and tested, namely algorithms sensitivity to TI granulation, 

algorithms sensitivity to number of possible traffic levels and algorithms 

sensitivity to forecasting horizon. 

5. Collection of real traffic data. 

Before experiments, real data form SIX, Internet traffic exchange point, were 

collected. Obtained data were used as an input to dataset generator proposed in 

[133] by Adam Włodarczyk. As a result a four new datasets were generated. 

Analysis of collected data allowed to model real traffic characteristics in 

generated datasets. 

Following the research conducted in this dissertation, it can be stated that the 

thesis from the section 1.2: There exist methods for short-term and long-term traffic 

forecast in optical networks, where transmission bases on predefined traffic levels, has 

been confirmed. 

For future work, the following research directions are proposed: 

 Obtaining different real traffic datasets and testing ML and TS algorithms 

on them. 

 Designing and implementing new ML and TS algorithms and strategies 

for traffic level forecast problems. 

 Performing further analyses of datasets characteristics. 

 Investigating network scenarios, where traffic levels have different 

distances between each other. 

 Applying the knowledge about future traffic levels as an input to routing 

methods. 

 Treating dataset as a data stream and applying online learning methods to 

predict future traffic levels. 
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