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Abstract

A
myloids are insoluble, fibrilar protein aggregates, best known for their
role in the development of neurodegenerative disorders. However, more
recent studies show that such structures can be utilized by a variety of
organisms to perform physiological functions including biofilm formation,

hormone storage and signaling. It was shown that both functional and pathological
amyloids can interact in a number of ways. Such interactions can lead to a significant
increase in aggregation rates or inhibition of fibril formation. Several computational
methods have been proposed. Unfortunately, their accuracy is still limited. This is
especially true in the case of functional amyloids which are severely underrepresented
in amyloid databases. Furthermore, there are no tools dedicated to the prediction of
amyloid cross-interactions. This relatively recently discovered phenomenon can play
a pivotal role in our understanding of the comorbidity of amyloid-related disorders.

During my PhD, I extended my research on the modeling of amyloid aggregates
and developed a new method for the identification of aggregation-prone regions in
proteins - PATH (Prediction of Amyloidogenicity by THreading). The method com-
bines structural modeling with machine learning. The proposed method allows for
the accurate identification of amyloidogenic fragments and enables the user to infer
the most probable structural class of the resulting amyloid core. Our results showed
that PATH, as well as some other bioinformatics methods, is robust against misan-
notated training data. All tested methods have problems with the identification of
functional amyloids which are severely underrepresented in available databases. To
better understand functional amyloids, a detailed characterization of CsgA proteins
from Escherichia coli and Salmonella enterica was performed. We also investigated
amyloids in the Caenorhabditis elegans proteome. We scanned the whole proteome
for possible amyloidogenic proteins, using PATH and AmyloiGram tools. Despite
using two different methods, our analysis showed many false positives, which shows
potential problems with applying computational methods on a proteome scale.

Difficulties with large-scale identification of amyloids encouraged us to try a dif-
ferent method in the next project. We aimed to better understand the fungal NLR
system. It uses amyloid aggregation to propagate the signal between the receptor
and effector protein by so-called Amyloid Signaling Motifs (ASM). Using de novo
motif detection tools as well as natural language processing models we identified
a new type of ASM - PUASM which stands for Pnp_Udp Amyloid Signaling Mo-
tif. We also significantly improve the annotation of NLR-related protein domains.
Finally, I took part in the development of AmyloGraph database and I developed
PACT - the first method for the prediction of amyloid cross-interactions. PACT not
only achieved good accuracy on the task of interaction prediction but can also be
used to identify novel amyloid-prone regions. The method was then used to identify
which region is most likely involved in interactions of CsgA with hIAPP.
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Chapter 2

Streszczenie pracy doktorskiej
(Summary in Polish)

2.1 Wstęp

B
iałka, obok lipidów oraz kwasów nukleinowych, są jednym z fundamental-
nych elementów każdego żywego organizmu. Ze względu na swoją mod-
ułową budowę mogą one pełnić rozmaite role, począwszy od struktural-
nych kończąc na katalizowaniu złożonych reakcji chemicznych. Źródłem

tak szerokich możliwości tej klasy makromolekuł jest ich trójwymiarowa struktura,
zakodowana w sekwencji aminokwasowej. Gdy jednak z jakiegoś powodu białko
zmienia lub traci swoją strukturę, wiąże się to zwykle z utratą jego prawidłowej
funkcji, co skutkuje rozwojem wielu chorób. Jedną z klas takich często niepraw-
idłowo sfałdowanych białek są amyloidy.

Amyloidy zostały po raz pierwsze zidentyfikowane w preparatach histologicznych
wyizolowanych z centralnego układu nerwowego. Początkowo ze względu na swoją
włóknistą strukturę zostały omyłkowo sklasyfikowano jako zbudowane ze skrobi
(“amylum”), skąd wzięły one swą obecną nazwę. Wkrótce jednak stało się jasne,
że zbudowane są z białek. Z tego powodu przez wiele lat były one głównie kojarzone
z ich rolą w rozwoju chorób neurodegeneracyjnych, takich jak choroba Alzheimera
czy Parkinsona. Potencjalna rola w patologii wspomnianych chorób przełożyła się
na duże zainteresowanie tymi strukturami w środowisku biologów i biochemików.
Bardziej szczegółowe badania pokazały szczególne właściwości włókien amyloid-
owych takie jak zdolność do wiązania niektórych barwników, w tym czerwieni kongo
oraz tioflawiny T, które wciąż stanowią jedną z podstawowych metod identyfikacji
amyloidów. Wysokorozdzielcze metody mikroskopowe oraz krystalograficzne poz-
woliły zbadać szczegóły ich struktury oraz morfologii. Odkryto, że kluczem do wy-
jaśnienia niespotykanej stabilności agregatów amyloidowych jest tak zwana struk-
tura zamka błyskawicznego (ang. steric zipper) utworzona przez dwie ściśle przylega-
jące beta-kartki utrzymywane razem przez oddziaływania pomiędzy zazębiającymi
się resztami aminokwasowymi. Niezwykła stabilność włókien amyloidowych została
również kreatywnie wykorzystana przez naturę. W ciągu ostatnich dwóch dekad tak
zwane amyloidy funkcjonalne zostały zidentyfikowane w bardzo wielu organizmach
przynależących do wszystkich królestw życia wliczając w to człowieka.

Kolejnym przełomem było odkrycie, że obecność agregatów amyloidowych jed-
nego białka może drastycznie przyspieszać agregacje inych białek. Proces ten nazwano
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krzyżową inicjacją agregacji i zaczęto w nim upatrywać molekularnych podstaw
współwystępowania chorób amyloidowych. Wkrótce potem pokazano również, że w
niektórych przypadkach podobny mechanizm może prowadzić również do spowol-
nienia agregacji. Okazało się, że proces ten jest również wykorzystywany przez
niektóre organizmy, czego przykładem może być ekspresja białka CsgB inicjującego
agregacje białka CsgA przez bakterie E. coli. CsgA jest funkcjonalnym amyloidem
bakteryjnym budującym rusztowanie dla biofilmu tworzonego przez wybrane szczepy
tej bakterii. Nawet bardziej spektakularnym przykładem takich interakcji mogą być
białka NLR produkowane przez szereg gatunków grzybów. Są to białka stanowiące
swego rodzaju układ odpornościowy grzybów chroniące je poprzez uruchamianie sz-
eregu reakcji prowadzących do śmierci zainfekowanych komórek. Pokazano że jeden z
etapów przekazywania sygnału jest tutaj realizowany właśnie za pomocą krzyżowych
interakcji amyloidów.

Pomimo dużego znaczenia amyloidów nasza wiedza na ich temat jest wciąż
ograniczona. Jednym z największych ograniczeń w badaniu tych struktur jest koniecz-
ność przeprowadzania skomplikowanych i czasochłonnych eksperymentów. Z tego
względu udało się dobrze scharakteryzować stosunkowo niewiele białek przejawia-
jących skłonności do agregacji amyloidowej. Dużym wyzwaniem pozostaje iden-
tyfikacja tak regionów odpowiedzialnych za agregacje (hot-spotów) amyloidowych
będących relatywnie krótkimi fragmentami ich sekwencji, których obecność jest
wystarczająca do utworzenia agregatu przez białko.

Aby rozwiązać ten problem, zaproponowano wiele obliczeniowych metod iden-
tyfikacji hot-spotów amyloidowych w białkach. Jedne z pierwszych metod opierały
się na modelach fizykochemicznych zbudowanych w oparciu o nieliczne wówczas
zbiory sekwencji amyloidowych. Pomimo ich ograniczeń modele te okazały się istot-
nym wsparciem prac eksperymentalnych, pozwalając w sposób bardziej racjonalny
planować badania. Wraz ze wzrostem liczby doświadczalnie scharakteryzowanych
sekwencji pojawiły się pierwsze bazy danych, takie jak AmyLoad czy Waltz, zbier-
ające sekwencje amyloidów. Rosnąca ilość danych pozwoliła na budowę bardziej
złożonych modeli statystycznych, a wreszcie także modeli uczenia maszynowego.
Choć w ostatnich latach skuteczność metod istotnie wzrosła, to wciąż jest ona
niewystarczająca do wykorzystania ich na skalę całych proteomów. Dużym proble-
mem jest tutaj niewystarczająca specyficzność, która przekłada się na wiele fałszy-
wie pozytywnych wyników. Co więcej, większość obecnie dostępnych metod nie
została zaprojektowana do pracy z amyloidami funkcjonalnymi, które często różnią
się składem aminokwasowym od swoich patologicznych odpowiedników. W tym
przypadku jednym z głównych ograniczeń jest niewystarczająca ilość dobrze prze-
badanych sekwencji amyloidów funkcjonalnych. Wreszcie, na chwilę obecną nie ma
dostępnych narzędzi pozwalających na przewidywanie interakcji krzyżowych. Celem
pracy doktorskiej było zatem opracowanie lepszych metod identyfikacji regionów
amyloidowych oraz badania ich interakcji.

2.2 Wyniki
Ze względu na opisane wcześniej ograniczenia dostępnych metod predykcji regionów
amyloidowych, zdecydowano się na zaproponowanie nowej metody obliczeniowej.
Założeniem było stworzenie narzędzia o wyższej skuteczności, a przede wszystkim
wyższej specyficzności. W tym celu zaproponowano model łączący modelowanie
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strukturalne z metodami uczenia maszynowego. Stworzona metoda przyjmuje podobne
założenia jak jedno z pierwszych dostępnych narzędzi, a mianowicie metoda profili
3D. Wspomniana metoda wykorzystuje nawlekanie sekwencji badanego fragmentu
na strukturę włókna amyloidowego uzyskaną z badań krystalograficznych i obliczanie
energii uzyskanego w ten sposób modelu. Niestety metoda ta zakłada tylko je-
den możliwy sposób upakowania peptydów w strukturze agregatu. Wraz z pojaw-
ieniem się większej liczby dostępnych struktur włókien amyloidowych pokazano,
że możliwych jest kilka różnych sposobów upakowania. Opierając się na anal-
izie grup symetrii zaproponowano dziesięć możliwych klas strukturalnych z czego
siedem zostało potwierdzonych doświadczalnie. Pierwszym krokiem było zatem
uwzględnienie tej różnorodności w mojej procedurze modelowania. Zaproponowano
metodę korzystającą z narzędzia Modeller do wykonywania nawlekania a następnie
ocenę uzyskanych modeli przy pomocy potencjału statystycznego DOPE zaimple-
mentowanego we wspomnianym programie oraz szeregu innych z pakietu Rosetta.
Sprawdzono również możliwość zbudowania modelu uczenia maszynowego wyko-
rzystującego obliczone parametry do predykcji regionów amyloidowych. Metoda
ta została następnie istotnie rozwinięta. Sprawdzono dodatkowe rodzaje modeli
uczenia maszynowego oraz przeprowadzono dodatkowe dostrojenie ich parametrów.
Przeprowadzona została szczegółowa analiza skuteczności metody na większych zbio-
rach danych. Algorytm modelowania został zoptymalizowany i zrównoleglony w celu
możliwości wykorzystania go do analizy dużych zbiorów danych. Na tej podstawie
zostało stworzone narzędzie PATH (Prediction of Amyloidogenicity by THreading),
które jest publicznie dostępne na stronie:
https://github.com/KubaWojciechowski/PATH. Wyniki tych badań zostały opub-
likowane w pracy (Wojciechowski i Kotulska 2020).

Podczas prac nad przygotowaniem narzędzia PATH natrafiliśmy na problem,
który wcześniej zauważyli również autorzy metody AmyloGram. Zidentyfikowali oni
kilka peptydów dla których ich narzędzie konsekwentnie, z dużą pewnością dawało
przeciwną klasyfikację fragmentów amyloidowych (agregujące jako nie agregujące
i odwrotnie). Dokładniejsza analiza zbioru danych pokazała również, że kilka z
sekwencji dostępnych w bazie danych WaltzDB, występuje tam dwa razy zarówno
jako fragmenty agregujące jak i nieagregujące. Aby sprawdzić takie przypadki,
wybrane zostały 24 peptydy, zaklasyfikowane przez AmyloGram inaczej niż w bazie
WaltzDB. Peptydy te zostały zsyntezowane a następnie przebadane eksperymen-
talnie z wykorzystaniem technik spektroskopowych oraz mikroskopii sił atomowych.
Jak się okazało, większość z tych niejednoznacznych 24 sekwencji została źle zaetyki-
etowana w bazie danych. Wyniki te pokazują dość dużą odporność narzędzi takich
jak PATH czy AmyloGram na źle zaetykietowane dane, pomimo, że narzędzia te
były na nich uczone. Wyniki te zostały opublikowane w pracy (Szulc i inni 2021a).

Obie prace udowadniają pierwszą z postawionych w tej pracy hipotez a mi-
anowicie, że Modelowanie strukturalne w połączeniu z metodami uczenia
maszynowego poprawia skuteczność przewidywania fragmentów amyloid-
owych.

Na kolejnym etapie naszych badań zwróciliśmy uwagę na problem identyfikacji
funkcjonalnych amyloidów bakteryjnych. W tym celu przeprowadziliśmy analizę
bioinformatyczną oraz eksperymentalną białka CsgA z dwóch gatunków bakterii:
Escherichia coli i Salmonella enterica. Białko to tworzy amyloidy funkcjonalne
stanowiące jeden z głównych elementów biofilmu. Ciekawą własnością CsgA jest
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jego modułowa budowa, składa się ono z pięciu fragmentów powtórzonych R1-R5.
Badania pokazały, że pomimo dużego podobieństwa wszystkich fragmentów, tylko
fragmenty R1, R3 i R5 w białku z E. coli są zdolne do tworzenia agregatów. Analiza
tych różnic może zatem rzucić światło na cechy sekwencji amyloidów funkcjonal-
nych decydujące o ich zdolnościach agregacyjnych. Ze względu na niedużą liczbę
fragmentów występujących w CsgA, zdecydowaliśmy się rozszerzyć nasze badania o
analizę jego dużo słabiej poznanego homologa CsgA z bakterii S. enterica. W ten
sposób uzyskaliśmy zbiór 10 dość podobnych fragmentów, różniących się zdolnoś-
cią do tworzenia agregatów. Przeprowadzono szczegółową charakteryzację każdego
z fragmentów z wykorzystaniem metod spektroskopii oscylacyjnej oraz wysoko-
rozdzielczych technik obrazowania, w tym transmisyjnej mikroskopii elektronowej.
Na potrzeby przeprowadzonych badań opracowano metodologię badania amyloidów
przy pomocy spektroskopii ramanowskiej z transformatą Fouriera (FT-Raman).
Pokazano możliwość wykorzystania tej metody jako techniki komplementarnej do
szeroko stosowanych technik spektroskopii podczerwieni takich jak ATR-FTIR czy
mikro-IR w kontekście badania agregatów peptydowych. Przeprowadzona analiza
bioinformatyczna pokazała, że obecnie dostępne metody identyfikacji regionów amy-
loidowych działają dużo słabiej na sekwencjach amyloidów funkcjonalnych. Wyniki
te zostały opublikowane w pracy (Szulc i inni 2021b). Badania w tym zakresie są
dalej kontynuowane.

Równolegle, we współpracy z zespołem Prof. Petera Roya z uniwersytetu w
Toronto rozpoczęliśmy poszukiwania nowych amyloidów w proteomie modelowego
organizmu Caenorhabditis elegans. Naukowcy z Kanady prowadząc badania rozwoju
tego organizmu zaobserwowali w okolicach jego otworu gębowego struktury wiążące
Czerwień Kongo - barwnik tradycyjnie wykorzystywany do identyfikacji włókien
amyloidowych. Co więcej, analiza ekspresji genów w trakcie jednej z faz rozwo-
jowych (linienia) pokazała zwiększoną ekspresję enzymów rozkładających amyloidy,
oraz inhibitorów agregacji amyloidowej. Niejasnym pozostawało które z białek w
proteomie C. elegans mają charakterystykę amyloidów. W tym celu przeszukaliśmy
cały proteom za pomocą dwóch narzędzi: AmyloGram i opracowanym w ramach tej
pracy PATH. W 37% badanych białek zidentyfikowaliśmy przynajmniej jeden hot-
spot amyloidowy. Zaobserwowano, że w większości nie są to białka wydzielane na
zewnątrz komórki, lecz nie stwierdzono ich nadreprezentacji w strukturach tworzą-
cych gardziel. Wyniki te zostały opublikowane w pracy (Kamal i inni 2022). Tak
duża liczba znalezionych potencjalnych amyloidów powinna skutkować tworzeniem
dużej liczby włókien amyloidowych w różnych częściach tego organizmu. Jednak
w rzeczywistości sytuacja taka nie ma miejsca. Istnieją dwa potencjalne wytłu-
maczenia tej obserwacji. Po pierwsze obecnie dostępne narzędzia działają na za-
sadzie skanowania sekwencji nakładającym się oknem przesuwnym, najczęściej o
długości 6 aminokwasów. Oznacza to że przykładowo dla białka o długości 300
aminokwasów, wykonywane jest 300 - 6 = 294 sprawdzenia, co nawet przy bardzo
restrykcyjnych parametrach dających specyficzność na poziomie 0.99 skutkuje śred-
nio trzema fałszywie pozytywnymi wynikami na białko. Nawet jeśli stosujemy dwie
różne metody, jak to miało miejsce w tej pracy, przy badaniach w skali całego
proteomu wciąż istnieje ryzyko wystąpienia wielu fałszywie pozytywnych wyników.
Niemniej jednak przy tak dużej liczbie trafień jest niemal niemożliwe aby wszystkie
one były wynikami fałszywie pozytywnymi. Szczególnie, że wówczas nie powinniśmy
obserwować statystycznie istotnych różnic pomiędzy ich rozmieszczeniem w różnych
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tkankach czy typach białek. Możliwe, że występujące w proteomie C. elegans frag-
menty amyloidowe zlokalizowane są w większości w hydrofobowych rdzeniach bi-
ałek, które w normalnych warunkach nie są eksponowane do środowiska, przez co
nie powodują agregacji. Hipoteza ta wydaje się tym bardziej prawdopodobna, że
przed rozpoczęciem linienia, oprócz ekspresji szeregu enzymów katabolicznych ek-
spresjonowane są również białka chaperonowe oraz enzymy i inhibitory powstrzymu-
jące agregację. Zatem istnieje mechanizm zdolny do unieszkodliwiania rozkładanych
w tym procesie białek które mogą zawierać fragmenty amyloidowe.

Ze względu na opisane trudności z bezpośrednim wykorzystaniem narzędzi do
predykcji regionów amyloidowych, w następnym projekcie przyjęliśmy zupełnie inne
podejście. We współpracy z Prof. Witoldem Dyrką przyjrzeliśmy się bliżej grzy-
bowym białkom NLR. Ciekawą cechą tych białek jest obecność amyloidowych mo-
tywów sygnałowych, które biorą udział w przekazywaniu sygnału pomiędzy bi-
ałkiem receptorowym a efektorowym. Aby lepiej zrozumieć działanie tego systemu
przeprowadziliśmy szczegółową anotację domen białkowych występujących w grzy-
bowych białkach NLR. Aby wykryć potencjalne amyloidowe motywy sygnałowe,
przeszukaliśmy krótkie (<150 aa) N oraz C-końce wykorzystując narzędzia do identy-
fikacji de novo motywów oraz dedykowanych modeli językowych takich jak gramatyki
bezkontekstowe. Przeanalizowaliśmy również współwystępowanie znalezionych mo-
tywach w parach receptor-efektor. Badania te doprowadziły między innymi do
zidentyfikowania nowego amyloidowego motywu sygnałowego PUASM związanego
z domeną PNP_UDP (Pnp Udp Amyloid Signaling Motif). Wyniki tych badań
zostały opublikowane w pracy (Wojciechowski i inni 2022).

Opisane powyżej wyniki pokazują problemy z bezpośrednim zastosowaniem metod
bioinformatycznych do analizy dużych ilości danych biologicznych. Mniejsza skutecz-
ność metod obliczeniowych dla amyloidów funkcjonalnych oraz problem dużej ilości
potencjalnie fałszywie pozytywnych wyników sugeruje konieczność opracowania bar-
dziej specyficznych metod. Stąd druga hipoteza tej pracy potwierdzona wynikami
wspomnianych badań mówi, że Poszukiwanie amyloidów w skali genomowej
wymaga wyspecjalizowanych metod.

Ostatnim etapem badań było stworzenie narzędzia do przewidywania krzyżowych
interakcji amyloidów. W tym celu niezbędne było zebranie rozsianych po literaturze
danych i utworzenie pierwszej na świecie bazy danych interakcji amyloidowych.
Zdecydowano się na budowę bazy grafowej, w której każdy amyloid prezentowany
jest jako węzeł, natomiast krawędzie oznaczają interakcje pomiędzy białkami. Na
chwilę obecną baza zbiera blisko 900 przypadków interakcji krzyżowych zebranych z
prawie 200 artykułów naukowych podzielonych ze względu na charakter interakcji.
Baza jest publicznie dostępna pod adresem: http://AmyloGraph.com. Oprócz ut-
worzenia bazy, przy okazji jej tworzenia zaproponowano ustandaryzowaną termi-
nologię. Wyniki te zostały opublikowane w pracy (Burdukiewicz i inni 2023).

Zwieńczeniem prac było opracowanie pierwszej metody do przewidywania amy-
loidowych interakcji krzyżowych PACT (Prediction of Amyloid Cross-interactions by
Threading). Ze względu na ograniczoną liczbę danych oraz dużą nadreprezentację
interakcji kilku dobrze przebadanych białek, jednym z najważniejszych założeń było
zbudowanie jak najbardziej odpornego modelu. Z tego względu zdecydowano się
na wykorzystanie modelowania strukturalnego. Podobnie jak w przypadku PATH,
PACT wykorzystuje nawlekanie obu sekwencji na znana strukturę włókna amyloid-
owego. Końcowy model w tym przypadku składa się z czterech łańcuchów, po dwóch
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każdego ze sprawdzanych fragmentów. Ponieważ wchodzące w interakcje fragmenty
mogą być różnej długości, zdecydowano się na wykorzystanie modelu długiego pep-
tydu jako szablonu do modelowania i korzystania tylko z części z niego w przypadku
krótszych peptydów. W takich wypadkach konieczne było również znormalizowanie
energii modelu poprzez podzielenie jej przez średnią długość badanych fragmen-
tów. Zaproponowana metoda uzyskała bardzo wysoką skuteczność predykcji in-
terakcji krzyżowych oceniana na podstawie wartości parametrów AUC (0.88) i F1
(0.82). Pokazano również, że zaproponowana metoda może być z powodzeniem
wykorzystana do predykcji homoagregacji, i jest skuteczna również w przypadku
amyloidów funkcjonalnych. PACT został następnie wykorzystany do przewidywa-
nia interakcji pomiędzy różnymi wariantami białka CsgA i ludzkim białkiem odgry-
wającym kluczową rolę w rozwoju choroby parkinsona - alpha-synucleiną, oraz do
ustalenia które z fragmentów CsgA są kluczowe z punktu widzenia interakcji z
ludzką amyliną. Wyniki te zostały opublikowane w pracy (Wojciechowski i inni
2023) i potwierdzają trzecią hipotezę mówiącą, że Modelowanie strukturalne
pozwala przewidzieć krzyżowe interakcje amyloidów. PACT jest dostępny
pod adresem https:/github.com/KubaWojciechowski/PACT oraz jako webserwer
pod adresem https://pact.e-science.pl/pact/

2.3 Podsumowanie
Wszystkie postawione w tej pracy tezy zostały potwierdzone. Zaproponowano nową
metodę przewidywania fragmentów amyloidowych i pokazano jej odporność na błędy
w danych uczących. Pokazano ograniczenia możliwości stosowania predyktorów
amyloidowych w przypadku danych w skali całych proteomów oraz problemy związane
z identyfikacją amyloidów funkcjonalnych. Wreszcie zaproponowano metodę przewidy-
wania krzyżowych interakcji amyloidów, która może być również z powodzeniem
wykorzystana do identyfikacji regionów amyloidowych również w przypadku amy-
loidów funkcjonalnych. Stworzono dwa narzędzia których kod źródłowy został pub-
licznie udostępniony oraz web serwer pozwalający na przewidywanie interakcji. Za-
proponowane rozwiązania w istotny sposób zwiększają wachlarz oraz użyteczność
metod obliczeniowych w badaniach amyloidów.

Chapter 2 Jakub W. Wojciechowski 12



Chapter 3

General Introduction

P
roteins, lipids, and nucleic acids are the most fundamental building blocks
of life. These nano-scale machines encoded in genomes of all living organ-
isms perform an astonishing variety of functions. An orchestrated action
of around 20 000 [1] of them in a human organism enables us to survive,

thrive, think, and occasionally write a Ph.D. thesis. The fascinating palette of pro-
tein functions is a result of a multitude of their possible structures, cleverly encoded
in their amino acid sequences [2]. twenty different amino acids can be combined
in an astronomical number of ways producing a sequence also known as a primary
protein structure. However, this is just the tip of the iceberg in terms of complexity,
since in an aqueous environment it folds into well-organized structures. These so-
called secondary structures are then arranged in three dimensions to form a tertiary
structure. Finally, some proteins are formed by more than one polypeptide chain.
The mutual orientation of different folded chains makes the quaternary structure
[3].

Although perfected through eons of evolution, this mechanism is not always
working as intended. Sometimes even a single mutation can drastically change the
protein structure and therefore disturbed its functioning, leading to a disease. One
of the striking examples of protein misfolding is the formation of amyloid fibers
playing an important role in the onset of neurodegenerative diseases [4].

The history of amyloids is rather convoluted and full of unexpected turns. This
term was coined in 1854 by Rudolf Virchow, a German physician, and biologist from
eastern Pomerania present-day Świdwin Poland, who used it to describe microscopic
tissue abnormalities. Based on iodine staining, he mistakenly concluded that they
consist of starch (amylum) and therefore called them amyloids [5]. It took a few
years before scientists realized that they are in fact protein aggregates. In 2006
an article published in Nature showed the connection between amyloid beta and
Alzheimer’s disease [6]. This discovery directed the attention of many researchers to
this protein, making it one of the most important drug targets. However, recently
shreds of evidence of image manipulation undermined the credibility of this work [7].
For more than 100 years amyloids were almost exclusively associated with disorders
[8], yet in the last two decades it became clear that they can be creatively used by
a variety of organisms [9].

History continues, and we learn new things about this class of proteins every day.
In the following sections, I will discuss in more detail the current state of knowledge.
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3.1 Amyloids
Amyloids are insoluble, fibrilar protein aggregates composed of multiple proteins
stacked together along the fiber axis. The core of the fiber consists of tightly packed
polypeptides in beta-sheet conformation. The interdigitating sidechains of such
fragments form a structure resembling a zipper, hence such an arrangement is of-
ten referred to as a “steric zipper structure” or cross-beta structure. This packing
results in a characteristic diffraction pattern that was first described In 1935 by
British biophysicist William Astbury [10]. Further structural research involving Nu-
clear Magnetic Resonance (NMR) spectroscopy [11] and X-ray diffraction techniques
revealed molecular details of amyloid cores. The tight packing of monomers, the for-
mation of salt bridges, and the regular network of hydrogen bonds play a pivotal
role in stabilizing the structure of an aggregate [12]. The resulting fiber has extraor-
dinary material properties comparable to that of steel [13]. Furthermore, they are
resistant to proteolytic cleavage, and many denaturing factors [14].

With the growing number of available molecular structures of amyloid fibers,
it became clear that there is more than one way of packing peptides into a steric
zipper structure. In fact, based on analysis of symmetry groups, structural biologists
proposed ten different possible arrangements out of which seven were experimentally
confirmed [15]. Surprisingly, it was also shown that the same amyloidogenic proteins
can form differently arranged aggregates. This phenomenon called polymorphism
can profoundly affect the onset of diseases [16].

3.2 Amyloids and diseases
Since the very discovery of amyloid fibers, they were associated with diseases. In
1907 Alois Alzheimer described amyloid plaques found in the brains of patients suf-
fering from dementia [17]. Later these plaques were found to be formed by two
proteins amyloid beta and tau [18]. A few years later, Alzheimer described sim-
ilar structures in patients suffering from Pick’s disease [19], and a year later in
Parkinson’s disease [20]. This time, however, plaques turned out to be formed by
Alpha-synuclein [21].

Amyloids were found to be involved in a number of other neurodegenerative
disorders including Huntington’s disease [22], amyotrophic lateral sclerosis [23], or
Creutzfeldt–Jakob disease [24]. But they are also involved in a range of other disor-
ders. For example, aggregates of Islet Amyloid Polypeptide (IAPP) were found in
Type II diabetes patients [25]. Further studies showed that IAPP aggregates show
cytotoxic effects against pancreatic cells [26]. Interestingly, in this case, the most
toxic were oligomers formed during the early stages of the aggregation process rather
than mature fibers. Higher toxicity of oligomers was also shown for Alpha-synuclein
[27] and amyloid beta [28]. Later, a number of other amyloids were shown to be the
most toxic in oligomeric form [29].

3.3 Amyloid structures
The molecular structure is crucial for understanding amyloid properties. As briefly
mentioned in the previous paragraph, one of the defining features of amyloid fibers is
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the cross-beta structure of their core. In fact, usually the core of the fiber is formed
by a relatively short fragment of the protein. The presence of such fragments, called
amyloid hot spots, turned out to be sufficient to drive the aggregation of the whole
proteins [30]. Therefore, the first molecular structures of amyloid fibers were solved
for very short fragments, usually around six amino acids long. The first structures
confirmed the previously proposed model of the cross-beta structure, consisting of
two beta-sheets with interdigitating amino acid residues. It was shown that the
monomers are stacked on top of each other along the fiber axis. Also, the distance
between layers was found to be around 4.8 A [31]. The first structures shed light on
the origins of the incredible stability of amyloids. First of all, a very regular network
of hydrogen bonds was observed between subsequent layers [32], but not between
sheets within the same layer, which are held together by hydrophobic effect and
weak interactions between tightly fitting side chains. It was also shown, that some
amino acids, like glutamine, asparagine and tyrosine, are usually aligned to form
so-called ladders which introduce additional interactions, such as hydrogen bonds
and pi-pi interactions between layers [33, 34].

In the beginning, the only techniques that were able to provide molecular struc-
tures were X-ray diffraction and NMR spectroscopy. However, in recent years, Cryo-
Electron Microscopy (Cryo-EM) was introduced and applied to the study of amyloid
structures [35]. This technique can overcome many problems of previously utilized
techniques. Unlike X-ray diffraction, Cryo-EM does not require crystallization of
the sample, and unlike solution NMR, it can be used for the study of insoluble
structures. It is also possible to study much larger fragments or even whole proteins
[36, 37].

With the growing number of available structures, it became apparent that there
exists more than one possible packing of peptides into the cross-beta structure. The
most obvious possibilities are parallel and antiparallel arrangements of beta sheets,
but the variability does not end here. Based on symmetry operations, ten different
structural classes were proposed, and seven of them were experimentally confirmed
[15] (Fig. 3.1).

Unlike in the case of most globular proteins, the same amyloidogenic sequence
can form different structures. Such structures are usually energetically very similar
[38], yet can lead to visible differences in fibril morphology [39]. It was also shown
that different polymorphs can be specific for different diseases. For example, dif-
ferent polymorphs of tau protein from Alzheimer’s disease, Pick’s disease, chronic
traumatic encephalopathy, and corticobasal degeneration show significantly different
structures [40]. Despite years of research and a rapidly growing number of available
structures, amyloids can still surprise. For almost a century, amyloids were thought
to be composed of peptides in beta-sheet conformation. However, very recently a
team of researchers led by Meytal Landau published the structure of Uperin - an
amphibian antimicrobial peptide capable of forming amyloid fibers. To everyone’s
surprise, the fiber core consisted mostly of alpha-helical fragments. What was even
more astonishing, the described structure was able to switch conformation between
newly discovered cross-alpha and classical cross-beta [41]. Later, similar structures
and switching behavior were described for plenty of other antimicrobial amyloids
[42].
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Figure 3.1: seven experimentally confirmed structural classes of amyloid fibers. Each
class shows different packing of peptides in steric zipper structure.

3.4 Functional Amyloids
Although amyloids are mostly known for their involvement in neurodegenerative
diseases, they can also be utilized by a wide variety of organisms to perform phys-
iological functions. For the last two decades, numerous such functional amyloids
have been described. Most of the early discoveries were made by studying microor-
ganisms, the term functional amyloids was first used in the year 2000 to describe
Hydrophobins. These are fungal proteins whose main role is an alteration of cell
surface properties and formation of hydrophobic aerial structures like aerial hyphae
and spores [43]. Two years later amyloids were found to be the main components of
curli fibers of Escherichia coli, which creates a scaffold for biofilm formation. The
more detailed study revealed the presence of Curli Specific Genes (Csg) operon,
which turned out to include genes encoding functional amyloid CsgA [44]. Later,
functional amyloids were found to be responsible for biofilm formation in a number
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of other microorganisms, including FapC from Pseudomonas sp. [45], TasA from
Bacillus subtilis [46] or SuhB [47] and PSM [48] from Staphylococcus aureus. Also,
some adhesive proteins like Bap [49] or Aap [50], responsible for cell-to-cell and
cell-to-surface adhesion, show amyloid aggregation propensity.

However, the role of functional amyloids in microorganisms is not limited to
adhesion or biofilm formation. The ability to form reversible amyloids was shown
that Cdc19 protein from yeasts plays an important role in stress response. This
protein functions as a pyruvate kinase, which under hostile conditions aggregates,
which leads to stopping of a cell cycle. After the stressor is removed, the fibers
decompose and the cell cycle is restored [51]. On the other hand, the Rim4 protein
from the same organism is responsible for translational repression and works in
the aggregated state [52]. Furthermore, amyloids can be used for signaling. Nod
Like Receptors (NLR) proteins play an important role in the immune responses of
fungi [53] and filamentous bacteria [54]. In both cases, signal transmission between
receptor and effector proteins can be realized by aggregation and propagation of
amyloid fold.

Functional amyloids can also be found in much more complicated organisms,
including humans. For example, PMEL 17 is a protein found in human melanocytes
that was shown to play an important role in melanin synthesis [55]. Amyloids are also
involved in programmed necrosis. They mediate the formation of the RIP1/RIP3
complex, which initiates processes leading to cell death [56].

Although both pathological and functional amyloids share a lot of features, there
are some important differences. The most apparent difference is in amino acid
composition. Sequences of functional amyloids contain more polar amino acids,
especially asparagine, and glutamine. On the other hand, in pathological amyloids
more positively charged residues were observed [35].

3.5 Amyloid cross-interactions
Another interesting feature of amyloids is their ability to interact with each other.
This was first demonstrated in the work by Lundmark and coworkers. The authors
showed that mouses treated with pre-formed amyloid fibers of several different pro-
teins developed amyloid plaques in their spleens within 16 days [57]. Soon, as more
examples of such interactions were shown in the literature, it became clear that this
might explain the comorbidities of different amyloid-related diseases. For exam-
ple, such interactions were shown between amyloid beta and alpha-synuclein [58] or
between amyloid beta and IAPP [59]. However, amyloid cross-interactions do not
always lead to increased aggregation rate. In some cases, the opposite effect can be
observed. A classic example can be the interaction between IAPP from rats and
humans. In this case, the presence of rodent IAPP leads to the inhibition of hu-
man IAPP aggregation [60]. This mechanism was even used to design drugs against
diabetes that mimic rodent IAPP [61].

Despite the importance of amyloid cross-interactions, their mechanisms still re-
main unclear. In general, amyloid aggregation follows a sigmoidal characteristic
with three distinctive phases: nucleation, elongation, and the equilibrium phase.
In the nucleation phase monomers change their structure upon binding with other
monomers and form oligomers. Oligomers then act in a similar manner as crystal-
lization seeds and seed the growth of an amyloid fiber (Fig 3.2) [62]. Cross-seeding

Chapter 3 Jakub W. Wojciechowski 17



Computational studies of amyloids and their interactions

seems to follow the same general steps, but in this case the pre-formed oligomers
of one protein can seed the aggregation of another. This results in a reduced nu-
cleation phase, and therefore, a faster formation of amyloid fibers. This model is
usually referred to as template-assisted cross-seeding. Another model called the
conformational selection model assumes the formation of heterogeneous seeds which
consist of both interacting peptides [63]. In both cases, such interaction requires
that both interacting partners should be able to adopt a similar structure [64]. It
was shown that even highly dissimilar proteins like amyloid beta and PrP can in-
teract in that way [65]. The case of interactions leading to slower aggregation is
much less understood. A computational study performed by Zhang and coworkers
suggested that hetero aggregates formed by IAPP from humans and rats are more
energetically favorable compared to homo aggregates [66]. This might suggest the
formation of complexes which are less likely to rearrange into mature fibrils [64].

Figure 3.2: Sigmolidal characteristics of amyloid aggregation.

3.6 Computational methods for studying amyloids
Experimental research laid the foundation for our knowledge about amyloid pro-
teins. X-ray diffraction [31], NMR spectroscopy [11], and cryo-EM [36] provided
insight into the molecular structure of amyloid fibers. The morphology of amyloid
assemblies can be observed using high-resolution imaging techniques such as electron
microscopy [67] or atomic force microscopy [68]. Biochemical assays including Congo
red [69] and Thioflavin T [70] staining proved to be useful in identifying amyloid
plaques in tissue samples and provided a way of monitoring the aggregation process.
Unfortunately, all experimental techniques require obtaining a sample of protein or
peptide which, due to aggregation propensity, is by itself a challenging task [71]. As
a result, experimental studies are expensive and time-consuming. Therefore, their
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use on a genome-wide scale is still limited. To overcome this limitation several com-
putational methods have been developed. In the following paragraphs, important
computational methods and resources will be discussed.

3.7 Amyloid databases
The development of computational methods for studying amyloids requires data to
build and test models. In the early days, such information was scattered across a
large body of literature. One of the earliest approaches to collecting this information
was the fibril_one database. It gathered data about 250 mutations of 22 amyloid
proteins in different conditions [72]. However, as the database relied only on disease-
related proteins and their mutations, it was unsuitable for developing computational
methods. One of the first datasets widely used for the development of amyloid-prone
regions was published in 2004. The authors aimed to better understand aggregation
driving patterns by mutating synthetic amyloidogenic peptide STVIIE [30]. This
provided an important insight into the properties of amyloid hot spots, but also
introduced a strong bias due to the high similarity of tested sequences. Soon after,
the AMYPdb database was published. This is the oldest still active database which
contains full-length sequences, of amyloids and structures of many precursor proteins
[73].

With the growing number of experimentally studied amyloid hot spots, two ded-
icated databases appeared in 2015. The first of them, Waltz-DB focuses on amy-
loidogenic hexapeptides. The authors not only gathered the data from existing
databases and literature but also tested a number of new sequences [74]. In 2020 it
received a major update and now contains more than 1400 amyloidogenic and non-
amyloidogenic hexapeptides [75]. In the same 2015 year, the AmyLoad database was
published, which also focuses on aggregation-prone regions, but unlike Waltz-DB it
collects regions of all lengths. Currently, it contains almost 1500 hot spots of lengths
between 4 and 89 amino acids [76].

In 2016 CPAD database was released. This was one of the first approaches to
provide a more unified database that will not only contain hot-spot and full-length
sequences, but also structures and information about aggregation kinetics [77]. A
significant update for this database was released in 2020 [78].

With the rapidly growing number of functional amyloids, and prion sequences,
it became apparent that such sequences are an important part of an amyloid land-
scape. Developed in 2018 AmyPro database, apart from containing information
about sequences and aggregation-prone regions, distinguishes between functional
and pathological amyloids and prions [79].

Recent advances in structural studies of amyloid fibers provided a large collec-
tion of molecular structures of amyloid structures. The PDB_Amyloid database,
developed in 2019, aimed at collecting these structures [80]. As of June of 2023, it
contains over 770 records.

This year, the first database of amyloid cross-interactions AmyloGraph was de-
veloped. It contains information about almost 900 pairs of amyloid interactions
extracted from almost 200 articles. Each record reports the sequence of interact-
ing proteins, as well as information about observed changes in aggregation kinetics,
including faster and slower aggregation or inhibition of fibril formation. It also re-
ports evidence of the formation of heterogenous aggregates formed by two different
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amyloids. In this work, we also proposed a standardized terminology for describing
amyloid interactions [81].

3.8 Aggregation-prone region predictors
One of the most important tasks in characterizing an amyloid protein is the iden-
tification of its amyloid hot spots. This usually requires the testing of numerous
peptides and is a labor-intensive task. Therefore, many computational methods
were developed to identify such regions. The first attempt at the identification of
aggregating peptides was Tango. This method is grounded in statistical physics. To
estimate the aggregation propensity of a peptide, it calculates the partition function
of the conformational space and allows for taking into consideration temperature,
pH, and ionic strength [82]. Although it can predict aggregation, the authors of the
method emphasize that this is not necessarily equivalent to amyloidogenicity [83].

One of the first methods dedicated to the identification of amyloidogenic frag-
ments was the 3D profiles method. It is based on molecular threading of the frag-
ment of interest on the first solved molecular structure of an amyloid fiber. The main
idea behind this method is the amyloidogenic fragment threaded on the steric zip-
per structure will be more energetically favorable than non-amyloidogenic fragments
[84]. This method was used for the first large-scale identification of amyloid-prone
regions. The authors scanned genomes of more than 100 organisms and found that
aggregation-prone regions are in fact very common in proteins. However, in most
cases, such fragments are buried in the hydrophobic core and therefore are unlikely
to drive the aggregation [85].

In the same year as the 3D profiles method was released, the PASTA predictor
was introduced [86]. This method was then significantly updated in 2014 [87]. It
is another physicochemical method that uses statistical potential to estimate the
pairwise interactions between amino acids in the query sequence. An even simpler
approach was chosen by the authors of Aggrescan software [88]. This method uses
an experimentally derived aggregation propensity score based on the mutational
analysis of the amyloid beta core region [89].

The growing number of known amyloid sequences led to the development of ma-
chine learning-based methods. In 2009 two such methods were proposed - NetCSSP
[90] and Pafig [91]. The first method uses an artificial neural network, while the
other a supported vector machines classifier. The same increase in data availabil-
ity opened the way for statistics-based models like FoldAmyloid [92] and Waltz [93].
Waltz is based on Position Specific Scoring Matrices and was one of the first methods
that emphasized the importance of specific sequences of amino acids.

As the number of available predictors increased, meta-predictors were introduced.
These tools combine a range of available methods and use them to perform consensus
classification of the sequence of interest. The first such method was Amylpred
developed in 2009 and used a relatively small number of tools [94]. Later on, more
and more complex methods were built, including AmylPred2 [95] and MetAmyl
[96]. Interestingly, MetAmyl not only calculates the consensus of available methods,
but it uses their outputs as input for the logistic regression model. The authors of
this method precomputed the classification for all possible 64 million hexapeptides
and stored the results. This not only reduced the time of prediction, but also
made the method independent of the availability of other tools and therefore more
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reproducible. This is an important feature since many amyloidogenicity prediction
methods are not further supported or even not available.

The development of amyloid predictors leads also to the development of a new
machine-learning method. FISH Amyloid is a method of identifying patterns in the
co-occurrence of pairs of amino acids [97].

Up to this point, all the discussed methods scanned the protein sequence with a
short, usually six amino acids long, sliding window. This was caused by the available
datasets, which mostly consisted of hexapeptides. The first method that brokek the
hexapeptide sliding window paradigm was ArchCandy [98]. The main assumption
of this method is that aggregation-prone region in amyloids often forms beta-arch
structure. This structural motif is formed by two beta strands connected by a
short loop. To overcome the problem of a constant-length sliding window. First,
ArchCandy scans the sequence for potential candidate fragments. If such a fragment
is found, modeling of beta-arch begins, starting from the middle loop and extending
towards the ends as long as the extending beta-strands produce high-scoring models.
In 2018 this idea was extended to model longer and more complex structures called
beta-serpentines, which consist of multiple beta-arches [99].

One of the important milestones in the amyloid hot spots predictions was the
release of Waltz-DB and AmyLoad databases in 2015. For the first time, a large
collection of experimentally studied peptides were easily available. This led to the de-
velopment of a number of more sophisticated models. One such model was APPNN -
Amyloidogenicity Propensity Prediction Neural Network [100]. It used many physic-
ochemical properties of amino acids, which were used as an input for the artificial
neural network. Soon after, the AmyloGram was developed. This method translates
the query sequence to a reduced alphabet representation, in which every amino acid
is assigned to one of six groups. Using a smaller alphabet a n-gram enabled the use
of n-gram analysis. The frequency vector of n-gram occurrence is used as an input
for the random forest classifier [101].

Currently, many new methods combine statistical or machine learning methods
with physicochemical or structural information. One such technique is AgMata [102]
developed in 2020. This approach combines custom-made statistical potential with
unsupervised machine learning. Another example can be developed as a part of
this thesis PATH. PATH is a method inspired by a classical 3D profiles method,
but it uses a collection of templates representing different possible structural classes
of amyloid fiber cores. Unlike 3D profiles, PATH operates on a number of energy
functions that are used as an input for the machine learning model [103]. A similar
approach was proposed by the authors of Cordax [104]. Nevertheless, also methods
based on classical machine learning algorithms are still being developed, taking
advantage of a growing number of available data. For example, the Budapest [105]
method is based on supported vector machines while ENTAIL [106] uses Naive Bayes
Classifier.

Although most of the available predictors use sequences as an input, there is
also a group of methods that operates on protein structures. The first of such
methods was Aggrescan3D, introduced in 2015 as a web server [107] and later as a
standalone package [108]. Recently, a new version of this software has been published
[109]. The main goal of this method is to identify aggregation-prone regions that
are exposed to the environment, and therefore have a good chance of driving the
aggregation. This is done by identifying surface patches with high aggregation
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propensity according to the Aggrescan scale. To account for protein flexibility,
Aggrescan3D probes the possible conformations using CABSflex [110]. Another
example of a structure-based method can be AggScore [111] introduced in 2018 as
a part of Schrödinger’s BioLuminate Suite. It also scans the surface of the protein
and identifies hydrophobic and charged patches and scores them.

3.9 Prediction of amyloidogenicity of an entire pro-
tein

All previously described sequence-based predictors aimed at the identification of
amyloid hot spots by using a sliding window approach. The main drawback of this
approach is that even for a medium-sized protein hundreds of short fragments need
to be tested. Therefore, there is a high probability of obtaining false positive results.
This poses challenges in utilizing such methods on a genome-wide scale. To overcome
this problem, a number of predictors of amyloidogenicity of entire proteins were
proposed. The first such method was RFAmyloid [112]. This tool extracts features
of a query sequence and uses them as an input for the random forest classifier.
Almost all later methods followed a similar path of feature extraction and machine
learning. For example, iAMY-SCM [113] uses dipeptide composition combined with
Scoring Card Method (SCM), AMYPred-FRL [114] applies a feature representation
learning framework, and ECAmyloid [115] is based on ensemble learning.

3.10 Prediction of the mutation effects and aggre-
gation kinetics

From the clinical point of view, a very important task is the prediction of the effects
of mutations in amyloid proteins. Sometimes even small changes to the amino acid
sequence can have profound effects on protein aggregation rate. A classical example
can be amyloid beta, whose mutations are linked to numerous variants of familial
Alzheimer’s disease [116].

Prediction of the mutation effects started from rather simple empirical models.
In 2003 the first of such models was proposed by Chiti and coworkers [117]. It
takes into consideration the changes in the physicochemical properties of a pep-
tide, like hydrophobicity or charge, caused by a mutation. This model was further
developed not only to account for the effects of mutations but also to predict the
absolute aggregation kinetics by DuBay and coworkers [118]. As the field matured
more sophisticated methods were proposed, including AmyloidMutants [119]. Us-
ing a statistical potential to model the effects of mutations on the stability and
conformation of an amyloid fiber. However, this method does not provide informa-
tion about the aggregation kinetics, which can be obtained using methods such as
AggreRATE-Disc [120]. AggreRATE-Disc uses a machine-learning model to predict
which mutations can enhance or inhibit the aggregation of a sequence of interest.
In 2020 this model was significantly improved by including structure-based features
and proposing different strategies for short peptides and proteins. The resulting
method was called AggreRATE-Pred [78].
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3.11 Other computational methods
The multitude of computational problems related to amyloid research led to the de-
velopment of many unique methods that are difficult to classify. An example can be
the Fibrilizer [121, 122] suite containing four modules CreateFibril, Fibril Mutant,
MAPOR, and SEMBA, each dedicated to a different task. CreateFibril builds mod-
els of amyloid fibrils based on monomer or oligomer structure provided by the user.
Fibril Mutant assesses the stability of structural models of amyloids. MAPOR can
be used to analyze the effects of mutations, using energy functions approximating
Lennard-Jonesa and Coulomb interactions, as well as solvation energy. A similar
approach is utilized by SEMBA to analyze the binding affinity of amyloids.

Another interesting tool related to amyloid research is the probabilistic context-
free grammar model for amyloid signaling motifs [123]. Probabilistic context-free
grammars are natural language processing models which were previously applied to a
number of biological problems [124]. Here, such a model was used to identify amyloid
signaling motifs which play an important role in fungal immune response [53]. Such
motifs are usually modeled using Hidden Markov Models (HMM). Unlike HMM,
probabilistic context-free grammar makes no assumption about the evolutionary
relationship of the sequences and can capture dependencies between distant positions
in the sequence. This enables them to better generalize even over different motifs
[123].

Finally, as a part of this thesis, I have developed PACT the first available method
for the prediction of amyloid cross-interactions. PACT models the structure of
an amyloid hetero-aggregate formed by two query peptides and assesses if such
aggregate is energetically favorable.
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Chapter 4

Thesis of this work

This dissertation is based on three theses:

1. Structural modeling combined with machine learning can improve the identi-
fication of amyloid-prone regions.
(Modelowanie strukturalne w połączeniu z metodami uczenia maszynowego
poprawia skuteczność przewidywania fragmentów amyloidowych)

2. Searching for new amyloids on a genome-wide scale requires more specialized
methods.
(Poszukiwanie amyloidów w skali genomowej wymaga wyspecjalizowanych metod.)

3. Structural modeling can be used for the prediction of amyloid cross-interaction.
(Modelowanie strukturalne pozwala przewidzieć krzyżowe interakcje amyloidów)
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Chapter 5

Results

T
his dissertation is based on a set of six scientific articles and one preprint
that is currently after the round of revisions (Major revision). Each of the
following sections discusses the results published in the article with the
same title:

1. Path - prediction of amyloidogenicity by threading and machine
learning.
In this work I developed the methodology, implemented the algorithm, and
tested the resulting method. Together with my supervisor, I analyzed the
data and prepared the manuscript.

2. Bioinformatics methods for identification of amyloidogenic peptides
show robustness to misannotated training data
In this work I performed bioinformatics analysis of sequences using a range of
amyloid predictors. Also, I performed a dimensionality reduction on the set of
IR spectra and took part in the analysis of results and writing the manuscript.

3. Variability of Amyloid Propensity in Imperfect Repeats of CsgA
Protein of Salmonella enterica and Escherichia coli
In this work I performed bioinformatics analysis of CsgA fragments using a
range of amyloid predictors, performed a dimensionality reduction on the set
of IR spectra. Also, I performed FT-Raman measurements of fragments and
took part in the analysis of results and writing the manuscript.

4. A spatiotemporal reconstruction of the C. elegans pharyngeal cuticle
reveals a structure rich in phase-separating proteins
In this work I performed bioinformatics analysis of C. elegans proteome using
a combination of AmyloGram and PATH. I also took part in the analysis of
results and writing the manuscript

5. Exploring a diverse world of effector domains and amyloid signaling
motifs in fungal NLR proteins
In this work I performed bioinformatics analysis including iterative homology
search using HMM models. I filtered the results, extracted N and C-terminals,
and performed a denovo motif search. I took part in the structural analysis of
HeLo, Goodbye and MLKL-like domains. I also took part in the analysis of
results and writing the manuscript.
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6. AmyloGraph: a comprehensive database of amyloid–amyloid inter-
actions
I took part in the preparation of curator’s form and performed data collection
and data curation. I also took part in the testing of the database, analysis of
results, and writing the manuscript.

7. PACT - Prediction of Amyloid Cross-interaction by Threading (Preprint
published in bioRxiv, under revision in Scientific Reports)
In this work I developed the methodology, implemented the algorithm, and
tested the resulting method. I took part in the development of a web server
version of the tool. Together with my supervisor, I analyzed the data and
prepared the manuscript.

5.1 Path - prediction of amyloidogenicity by thread-
ing and machine learning.

The currently available methods for the prediction of aggregation-prone regions still
have many limitations. Although their accuracy significantly improved over the past
two decades their specificity is still insufficient to use them in large-scale studies.
Many such methods heavily rely on limited and biased training data, such models of-
ten lacking reliability and interpretability. Furthermore, almost all of them provide
only a binary classification of whether the peptide of interest is likely to form amyloid
fibers or not. However, more recent studies revealed a diversity of amyloid struc-
tures. In order to account for this variability and overcome the limitations of current
methods I developed PATH - a new method for the identification of amyloid-prone
regions was proposed. These results were published in (Wojciechowski and Kotulska
2020). There were three main goals I have in mind for developing PATH. First, to
improve the accuracy and specificity of available methods. The second reason was to
propose a method that will be capable of providing more detailed information about
possible molecular structures formed by putative amyloidogenic fragments. Finally,
we aimed to provide a highly interpretable model, which could provide new knowl-
edge about molecular features of aggregation-prone regions. To achieve these goals
we decided to build a physicochemical model involving template-based modeling. A
similar approach was previously used by the authors of the 3D profiles method [84].
I extended the method by utilizing multiple modeling templates based on recently
available structural data. Furthermore, the procedure was extended by introducing
machine learning classification operating on features of obtained models.

In the first step of the proposed method, a putative amyloidogenic fragment is
threaded on seven structural templates using Modeller software [125]. Each template
represents different possible packing of peptides in the amyloid core [15] and consists
of 12 polypeptide chains forming a steric zipper structure. Then, each generated
model was scored using DOPE [126] statistical potential implemented in Modeller.
This by itself allowed reasonable distinction between amyloids and non-amyloids but
to further improve the performance of the method I decided to extend the procedure.
For the model with the best score, or in other words, the most energetically favorable
one, additional scoring functions were calculated using PyRosetta [127]. Finally, all
these scoring functions were used as input to a machine learning classifier. I decided
to test several classical machine learning algorithms including logistic regression,
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support vector machine, or random forest algorithm implemented in Scikit-Learn
[128] Python package.

To train and test the model I used 1080 hexapeptides from the WaltzDB database
[74] which were split into training and test sets. Additional benchmarks were per-
formed on the pep424 dataset used by authors of PASTA 2.0 [87], which is more
balanced with respect to the number of positive and negative examples. Finally,
to test the performance of structural class prediction, 24 amyloid fibers structures
from PDB, assigned to specific structural classes were used.

Most of the tested models achieved comparable results, however the best, and
the most robust classification was achieved using logistic regression. The procedure
is summarized in Fig 5.1. To better understand the proposed model, I analyzed
the regression coefficients and investigated which features are the most important
for classification using the Boruta algorithm [129]. In general, both methods of
analysis highlighted the importance of van der Waals interactions and interactions
with solvents. PATH showed comparable performance to state-of-the-art methods
like AmyloGram [101], PASTA 2.0 [87], or FoldAmyloid [92] (Table 5.1). The method
achieved high values of the Area Under ROC (AUC) parameter of 0.88 and a very
high specificity of 0.94. The high specificity of the method can limit the number of
false positive results and therefore may enable the use of the method in larger-scale
studies.

Figure 5.1: Prediction procedure. The query sequence is threaded on seven tem-
plates and for each of them ten models are made. The model with the lowest DOPE
score is selected. For this model, additional energy terms are calculated and used
as input for a machine learning classifier.

Unfortunately, we were not able to reliably classify structural classes of fibers.
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Table 5.1: Comparison of PATH with several state of the art predictors of amy-
loidogenicity. PATH showed one of the best performances among tested methods.

Method AUC Sensitivity Specificity MCC
PATH 0.88 0.42 0.94 0.44
PASTA 2.0 0.86 0.38 0.95 0.43
AmyloGram 0.89 0.68 0.90 0.61
FoldAmyloid 0.76 0.75 0.72 0.45

In this case, the one vs all accuracy of the method was around 0.46 which is below
our expectation, but still much better than random. This is likely caused by the
ability to form polymorphic structures by most amyloidogenic sequences. PATH
provides all the structural models created during the modeling procedure, which
can then be used for other structural analyses or molecular dynamics simulations.
Our model not only achieved good results in identifying aggregation-prone sequences
but also highlighted the role of van der Waals and solvent interactions in stabilizing
aggregates.

PATH is available at https://github.com/KubaWojciechowski/PATH

5.2 Bioinformatics methods for identification of amy-
loidogenic peptides show robustness to misan-
notated training data

During the development of PATH we have encountered the same problem as the
authors of AmyloGram [101]. Some of the peptides from the WaltzDB database
[74, 75] repeatedly obtained very confident yet opposite classifications. 24 of these
peptides along with 10 reference peptides with strong and correct classification were
selected for more in-depth investigation. The procedure is summarized in Fig 5.2.
The aggregation propensity of chosen peptides was assessed using a combination
of IR spectroscopy (ATR-FTIR and IR microscope) and Atomic Force Microscopy
(AFM) performed for selected peptides. For the reference peptides, obtained classi-
fication was in very good agreement with the experimental results and database an-
notation. For each of them, I performed amyloidogenicity predictions using among
others PATH (Wojciechowski and Kotulska 2020), AmyloGram [101], PASTA 2.0
[87] and FoldAmyloid [92]. For the majority of the 24 remaining peptides, bioin-
formatic predictions matched experimental evidence but not database annotation.
Although ambiguous cases were also present. I performed Principal Component
Analysis (PCA) on IR spectra to provide a better classification of IR spectroscopy
results.

Our study showed that indeed most of the 24 studied peptides were misannotated
in the database. Although discovered peptides make up only around 1% of the
whole Waltz database, this raised the question about the quality of available data
and its effect on the performance of the bioinformatics software. Interestingly all
of the mentioned bioinformatic tools classified them correctly despite being trained
on them. This study shows the robustness of computational tools including PATH.
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Figure 5.2: Procedure of selecting reference and outliers peptides. A) Hexapeptides
are extracted from AmyLoad and Waltz databases. B) Peptieds are divided into
subsets and into C) aggregating and non-aggregating. D) For each sequence predic-
tions are performed and E) peptides with extreme scores are chosen for experimental
study.

The presence of misannotated training data can also explain why in the case of
PATH the best classification was achieved using the simplest of tested classifiers -
the logistic regression model. Logistic regression is a relatively simple model with
a small number of parameters compared to other, more advanced machine learning
classifiers. The results were published in (Szulc et al 2021a).

Both articles presented so far support the first thesis of this work which states
that Structural modeling combined with machine learning can improve
the identification of amyloid-prone regions.

5.3 Variability of Amyloid Propensity in Imperfect
Repeats of CsgA Protein of Salmonella enterica
and Escherichia coli

One of the important problems regarding the prediction of amyloid-prone regions is
the identification of functional amyloids. This is a major limitation of all available
methods due to the small number of well-studied sequences. Also, functional amy-
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loids usually have different amino acid compositions than their pathological coun-
terparts. Therefore, it is much more difficult to predict their aggregation propensity.
To address this problem we decided to study CsgA proteins from two organisms Es-
cherichia coli and Salmonella enterica. CsgA protein is a major component of curli
fibers [44]. It consists of five imperfect repeats R1-R5 which, despite their sequence
similarity, differ in their aggregation propensity [130, 131]. Understanding how these
small sequential differences can change the behavior of repeated fragments can pro-
vide important insight into the mechanisms governing the aggregation of functional
amyloids.

In the first step, I performed bioinformatics analysis of R1-R5 fragments of CsgA
proteins from E. coli using PATH (Wojciechowski and Kotulska 2020), AmyloGram
[101], PASTA 2.0 [87], FoldAmyloid [92], Waltz [93], AmylPred2 [95], MetAmyl [96]
and ArchCandy [98]. Unfortunately, none of the available methods was able to cor-
rectly classify all fragments. In the next step, we extended our analysis to include
CsgA from S. enterica. Fragments from both proteins were studied using a combina-
tion of vibrational spectroscopy and high-resolution imaging techniques. I developed
the methodology of measurements and registered spectra using Fourier Transform
Raman spectroscopy (FT-Raman) which to our best knowledge, has never been
used to study functional amyloids before. This technique can provide complemen-
tary information to more widely used Infrared spectroscopy. For example, it allowed
overcoming the problem of strong water absorbance in the Amide I region. This re-
gion is often used to study a secondary structure of peptides, but its use is limited
when proteins and peptides are studied in aqueous solutions. A combination of IR
and FT-Raman spectroscopy enabled us to better assign secondary structures, and
get more insight into the structures of aggregates. Finally, I performed Principal
Component Analysis (PCA) on the set of IR spectra. By analyzing which wave-
lengths contributed to the first three principal components, I was able to identify
bands important for distinguishing between different groups of spectra.

In this work, not only we characterized CsgA protein from S. enterica, but we
also highlighted the problem of prediction of functional amyloids. In general, CsgA
produced by S. enterica was shown to be much more aggregation-prone than its
counterpart from E. coli. We also discussed the possible role of selected residues
changing among different repeated fragments and between organisms. Based on
these results we proposed the role of several amino acids differing among sequences.
Especially the location of charged residues seems to be an important factor. The
obtained results lead to the formulation of new hypotheses on the mechanisms of ag-
gregation of this class of proteins, which were later studied in more detail by analysis
of mutated versions of the peptides. These results are submitted for publication.

5.4 A spatiotemporal reconstruction of the C. ele-
gans pharyngeal cuticle reveals a structure rich
in phase-separating proteins

At the next step of my research, I started a collaboration with Prof. Peter Roy from
the University of Toronto. His team was studying the development of pharyngeal
cuticle of Caenorhabditis elegans, which is a flatworm used as a model organism in
neuroscience [132] neurodegeneration [133, 134], immunity [135], toxicology [136], as
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well as microbiome research [137]. During their research, they observed structures
that bind Congo Red and Thioflavin T, dyes commonly used for the identification
of amyloids [138, 139]. Furthermore, their analysis of gene expression through the
molting stage revealed the presence of proteins capable of regulating amyloid ag-
gregation including Neprilysin, and ITM-2. The first protein was shown to play an
important role in the degradation of amyloid-beta [140] while the second is a molec-
ular chaperon containing the BRICHOS domain which can inhibit the secondary
nucleation of amyloids [141]. This naturally leads to a question about the presence
and potential role of amyloids in C. elegans development. To address this question I
scanned the whole proteome using AmyloGram and PATH. I decided to use two dif-
ferent methods to minimize the false positive rate. In the first step, all proteins were
scanned using AmyloGram, and the identified amyloid-prone regions were checked
using PATH. This approach enables the utilization of advantages of both methods
- the high performance of AmyloGram and the high specificity of PATH.

After applying only an AmyloGram software, amyloid-prone regions were iden-
tified in around 35% of proteins (Fig 5.3A). The additional filtration with PATH
decreased this number to about 26% (Fig 5.3B). Despite the identification of hot
spots in such a large number of sequences, there was no enrichment of amyloids in
pharynx proteins compared to other tissues. The most significant differences were
observed between secreted and non-secreted proteins. The second group on average
contained more amyloidogenic fragments.

Figure 5.3: Fractions of proteins with identified amyloid hot spots in different tissues.

Despite many clues suggesting the involvement, or at least the presence of amy-
loids in C. elegans pharynx, no fibrilar structures were observed. There are sev-
eral possible explanations for those seemingly contradictory results. First of all,
amyloid-prone regions are very common in many proteomes but their presence is
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not necessarily sufficient to drive the aggregation of the whole protein [142]. This is
especially the case when they are buried in the hydrophobic core of the protein [85].
The smaller abundance of amyloid hot spots in secreted proteins might be related to
the fact that such proteins need to operate outside the well-controlled environment
of the cell. Therefore, any possible aggregation-prone region is more likely to be
exposed due to external factors such as varying pH, ionic strength, or the presence
of other denaturing factors. Hence, there might exist an evolutionary pressure to
reduce the number of amyloidogenic regions. This however does not explain the
expression of amyloid-regulating proteins. It is therefore possible, that amyloids are
produced, but their aggregation can be inhibited by the presence of a large number
of intrinsically disordered proteins, which were shown to inhibit amyloid aggregation
[143].

These results show that the identification of amyloid-prone regions is not suffi-
cient for the reliable identification of potential novel amyloids. Especially, consid-
ering that most of the currently available computational methods scan the query
sequence with a short, typically six amino acids long sliding window. This means
that for 300 amino acids long proteins 300 − 6 = 294 tests are performed. Even
when such software is capable of achieving a very high specificity of 0.99 we can still
expect around three false positive hits.

Although there was no enrichment of amyloids in the pharynx, the enrichment of
Low-complexity, Aromatic-Rich, Kinked Segments (LARKS) was detected. These
structures closely resemble amyloids. They form reversible aggregates, which were
shown to play a role in the formation of membrane-less organelles [144].

5.5 Exploring a diverse world of effector domains
and amyloid signaling motifs in fungal NLR pro-
teins

Considering the limitations of available predictors discussed in previous works, I
aimed to explore other methods of amyloid identification. I started collaborating
with Dr. Witold Dyrka, and we aimed to identify novel functional amyloids in fungi.
We decided to focus on NLR proteins that are a vital component of animal, plant,
and fungal immune systems. These are immune receptors that trigger a number of
host responses including cell death [145, 146]. A very peculiar characteristic of fungal
NLR architectures is their ability to use amyloid aggregation to propagate the signal.
This is realized through the presence of Amyloid Signaling Motifs (ASM) [147]. One
of the best-studied implementations of this system is HET-S system of a model fungi
Podospora anserina. Here NLR protein - NWD2 contains an amyloidogenic region
in its N-terminal domain that can induce aggregation of the C-terminal of HET-S.
This initiates a series of events leading to cell death [148]. Considering the crucial
role of amyloids in this system, it is reasonable to assume that their aggregation
properties should be fine-tuned through the eons of evolution. This makes them
a very promising model for studying functional amyloids. Unfortunately, despite
intensive research, only a few of them are well described.

To better understand ASM we first need to better understand the context in
which they operate. In the first step, we aimed at improving annotations of N-
terminals from proteins containing known NLR domains (NACHT or NB-ARC do-
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mains). To do so we clustered terminals longer than 20aa using MMseqs2 [149]
and for clusters containing at least 20 representants we searched for homologs using
HHblitz [150]. This procedure improved the annotation coverage from 57% to 66%.
However, this procedure worked poorly for relatively short N-termini (below 150
amino acids). As in this set of sequences, we identified some of known ASM we
decided to focus on this group to search for new motifs.

In the next step, I aimed to identify a set of motifs that appears both in the
previously mentioned N-terminals and C-terminals of proteins containing effector
domains. The main assumption behind this approach is that in this way I should
be able to identify only functional motifs involved in signaling and not just any
aggregation-prone regions. To obtain a set of N and C-terminals I started from a
set of proteins with (NACHT or NB-ARC) domains and known effector domains.
I searched NCBI’s “nr” sequences database [151] using HMMER 3.2.1 and for both
sets, I extracted N and C-terminals respectively. I filter the sets by length to include
only fragments between 10 and 150 amino acids and cluster them at 70% of identity
using CD-HIT [152] software. In both sets, I searched for sequential motifs using
MEME software [153] and built HMM profiles, which were then used to check for
the presence of motifs in the opposite set (C-terminal motifs in a set of N-terminals
and vice versa). Furthermore, it was verified if the matched motifs were located
in genomic proximity. This procedure led to the identification of 22 motifs which
were then clustered and compared with previously known ASM (Fig ??). One of
them was found to be significantly different from all previously identified motifs.
It exclusively occurred in proteins in proteins containing the PNP_UDP domain,
therefore we called it PUASM for Pnp_Udp-associated Amyloid Signaling Motif.

The newly characterized motif was then studied in more detail using vibrational
spectroscopy, ThT assay, and Atomic Force Microscopy. Experiments performed on
a selected pair of representative sequences confirmed that this motif is capable of
forming amyloid aggregates in vitro. Furthermore, detailed spectroscopic charac-
terization revealed that it is likely to adopt a beta helical structure, characteristic
of many previously characterized signaling amyloids including HET-S. Our French
collaborators confirmed the prion-like behavior of this motif in vivo.

This work resulted not only in the improved annotation of fungal NLR pro-
teins by identification of functional domains and novel ASM but most importantly
proposes a new approach for the identification of signaling amyloids.

Three described above articles (Szulc et al 2021, Kamal et al. 2022, and Woj-
ciechowski et al. 2022) among others explore different aspects of amyloidogenicity
prediction. The first of them explore the subtle details that can dramatically affect
the aggregation propensity of functional amyloids, as well as provides examples of
sequences that are poorly classified by existing amyloidogenicity predictors. The
second of them highlights the difficulties and potential pitfalls of directly applying
bioinformatic predictors on large datasets. It also shows that even the predicted
presence of amyloid-prone regions not always will result in the formation of amyloid
fibrils. Finally, the third one shows the benefits of using a dedicated procedure for
the identification of functional amyloids. The results published in those three arti-
cles support the second thesis of this work which states that Searching for new
amyloids on a genome-wide scale requires more specialized methods.
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Figure 5.4: Clustering amyloid identified signaling motifs. The number in brackets
represents the number of occurrences of the motif. If two motifs fitted the same
sequence (significant e− value) they were connected with an edge. The number on
the edge indicates the number of such sequences for which two different motifs were
aligned.

5.6 AmyloGraph: a comprehensive database of amy-
loid–amyloid interactions

The last aim of my PhD thesis was to propose the first computational method of
amyloid cross-interactions. This was by far the most ambitious part of this work
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since there was no previous research on this topic and the available data were quite
limited and scattered across a large number of research articles. Therefore to even
start thinking about building a tool it was necessary to build a reliable database of
amyloid-amyloid interactions. We assembled a team of curators under the lead of Dr.
MIchał Burdukiewicz. Very quickly we realized that there is no consensus regarding
the terminology used to describe amyloid-cross interactions. We considered different
possible modes of interaction and proposed a standardized terminology. Based on
that we came up with detailed forms containing a number of questions that helped
us systematically describe almost 900 pairs of interactions scattered across almost
200 articles.

Data are presented in the form of a graph where nodes represent amyloid proteins
and edges interactions between them (Fig 5.5). Among others, users can filter
visible interactions by the protein of interest or type of interaction including slower
and faster aggregation, formation of heterogeneous fibrils, etc. These results were
published in [81].

Figure 5.5: Fragment of an AmyloGraph interface. The edges of the graph represent
amyloid proteins and the edges - interactions between them.

AmyloGraph is publically available as an online database at http://AmyloGraph.com/
and R package at https://github.com/KotulskaLab/AmyloGraph.

5.7 PACT - Prediction of Amyloid Cross-interaction
by Threading

After building AmyloGraph I was ready to pursue the last goal of this project. I
aimed to develop a computational method for amyloid-amyloid interaction predic-
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tion. After analyzing the content of AmyloGraph I quickly realized that there was
a relatively small number of unique proteins available in the database and a few
of them are heavily overrepresented. These issues significantly restricted the use of
statistical or machine learning models, therefore I decided to build a physicochem-
ical model involving template-based modeling. One of the first problems was that
most sequences from AmyloGraph were much longer than typical amyloid hot spots.
Furthermore, the prediction of interactions between amyloids requires modeling in-
teraction between two different sequences, that often differ in length.

I decided to use a structure of hIAPP as a template, which is a 37 amino acids
long peptide, and at that time was one of the longest amyloidogenic fragments with
known detailed molecular structure. To allow for different lengths of interacting
peptides, both sequences were aligned to the center of the template (Fig 5.6A). In
such a way if any of the sequences is shorter than a template, only a part of the
template will be used for modeling. To model cross-interactions both sequences
are threaded onto the same template at once. In such a way structure of a hetero
aggregate is obtained (Fig 5.6B). Same as in the case of PATH I decided to use
Modeller software [125] for modeling. I tested a version using a single template
structure as well as multiple templates.

Figure 5.6: A) Values of ndope score for amyloidogenic and non-amyloidogenic
peptides from AmyLoad database. B) ROC for amyloid non-amyloid classification.

Since the use of multiple templates does not improve the classification perfor-
mance significantly, yet dramatically increased the computational cost, I decided to
use a single template variant. Another problem that I faced was that DOPE sta-
tistical potential provided a different range of values for different sequence lengths.
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Therefore, I decided to normalize the score by dividing it by the average length of
modeled sequences.

First, I tested if the proposed method is capable of distinguishing between amy-
loidogenic and non-amyloidogenic peptides. Figure 5.7A shows a difference in ob-
tained normalized DOPE score (ndope). In general, amyloidogenic sequences ob-
tained lower scores than non-aggregating ones. This allows setting a score threshold
for classification. To do so I plotted a ROC curve and chose a point closest to 0 False
Positive Rate (FPR) and 1 True Positive Rate (TPR) (Fig 5.7 B). Such a classifier
achieved an Accuracy of 0.77 and high values of Sensitivity (0.73) and Specificity
(0.86). This proves that such a method can distinguish amyloids from non-amyloids.

Figure 5.7: A) Values of ndope score for amyloidogenic and non-amyloidogenic
peptides from AmyLoad database. B) ROC for amyloid non-amyloid classification.

Considering previously identified problems with the identification of functional
amyloids I decided to try this method on a set of CsgA fragments from E. coli and
S. enterica studied experimentally in our previous project. On this set very small
set method achieved an accuracy of 0.9 and to my best knowledge, it is currently
the only method that worked well on this dataset.

However, the main aim of this project was to predict cross-interactions. In order
to do so the same methodology was applied, the only difference being that now
pairs of interacting sequences from AmyloGraph were used to train the model. The
greatest problem I faced in this part of the project was the lack of a good negative
dataset. It was almost impossible to find any reported cases of non-interacting
pairs of amyloids as such findings are rarely proven and reported in the literature.
Although there are pairs of amyloids labeled as non-interacting it turns out that
the same pairs in most cases have other labels such as faster or slower aggregation.
These cases predominantly refer to situations where no interactions were detected
in specific conditions for example a very low concentration of one of the proteins.
Therefore I needed to build a different negative set. To do so, I decided to use non-
amyloidogenic sequences from the AmyLoad database. A closer look at this dataset
reveals that it is mostly composed of peptides with strong beta propensity used by
authors of the Tango method [82].
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I have trained the method using pairs of interactions resulting in faster aggrega-
tion vs negative set and pairs of interactions slowing down aggregation vs negative
set. Figure 5.8 shows the resulting scores. Same as in the previous case, a threshold-
based classifier was built. The resulting predictor achieved an accuracy of 0.83 along
with good sensitivity (0.78) and specificity (0.88).

Figure 5.8: Values of ndope score for non-amyloids and A) pairs of peptides resulting
in faster and B) slower aggregation.

The resulting method was called PACT (Prediction of Amyloid Cross-interactions
by Threading) and it is publicly available as a standalone Python program at the
GitHub repository at: https://github.com/KubaWojciechowski/PACT and as a web
server at: https://pact.e-science.pl/pact/

As an additional test, and the showcase of the use of PACT I used it to study
interactions between CsgA proteins from several microbial species inhabiting the
human gut, which were recently studied experimentally [154]. Results obtained
from PACT corresponded very well with the experiment. Finally, we decided to use
PACT to predict the interactions of CsgA fragments with hIAPP. Interactions be-
tween these two proteins were previously reported in the literature, but the detailed
mechanism of the interactions still remains unclear. We decided to shed some light
on it by identifying which region of CsgA is most likely to interact with hIAPP. To
do so I first performed a prediction of cross-interaction between R1-R5 fragments
and hIAPP. Based on the results we chose two of them (R1 and R5) for seeding
experiments, and experimentally confirmed that the R1 fragment can enhance the
aggregation of hIAPP.

The results of the use of the PACT method prove the final thesis of this work
which states that Structural modeling can be used for the prediction of
amyloid cross-interaction.

5.8 Summary and Discussion
Computational tools have become a vital part of modern biological sciences, sup-
porting experimental efforts to understand life at different scales. The main goal of
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this work was to develop bioinformatics methods and protocols for studying amy-
loids, their interactions and explore their potential role in living organisms. First, a
new method of identifying aggregation-prone regions, called PATH, was developed.
The proposed method achieved good classification performance, comparable with
other state-of-the-art techniques. Unlike the previous attempts at this task PATH
aimed not only at identifying new fragments but also at providing more structural
and physicochemical information about amyloid structures. The true test of the ro-
bustness of this tool was the study of mislabeled peptides found in publicly available
databases. PATH, as well as many other computational tools, was able to correctly
identify such problematic sequences and classify them correctly despite being trained
on them. These results show that the currently available methods can be reliably
used to identify amyloidogenic peptides. However, there are still some areas where
the performance of such tools can be improved.

All of the tested software failed to correctly identify aggregation-prone regions
of CsgA bacterial functional amyloid. To better understand the aggregation of this
protein and why it is such a difficult example for amyloid predictors, fragments
R1-R5 from two bacterial species were synthesized and characterized using a range
of experimental techniques. Obtained results showed that even very few mutations
can drastically alter the aggregation properties of functional amyloids. This high-
lights the incredible precision developed by evolution and might explain why such
patterns are so difficult to capture by prediction software. Another area that can be
improved is the use of amyloid predictors on a genome-wide scale. Currently, all of
the methods using the sliding window approach will most likely produce a significant
number of false positive results. Recently a number of predictors aiming at predict-
ing the aggregation propensity of whole proteins have been proposed however their
accuracy is comparable to sliding window-based methods. As a result, the use of
such techniques in large-scale studies is limited. In recent years our understanding
of amyloids drastically changed. Discoveries of LARKS and alpha-amyloids opened
whole new areas of research and posed new challenges on amyloid predictors. The
study of amyloids in C. elegans proteome, apart from providing an important in-
sight into the development of pharyngeal cuticle, highlighted the role of LARKS and
phase separation. At the same time, it showed the limitations of currently available
amyloid predictors.

Therefore we are in need of more specialized approaches for identifying new
amyloids. An example of such a procedure was proposed in the study regarding
functional amyloids in NLR proteins. In this study, the possible search space was
drastically reduced by focusing on a single group of proteins that were previously
known to contain amyloid signaling motifs. We were able to take advantage of this
knowledge to identify a number of amyloid signaling motifs in short terminals of
NLR including a new one found exclusively in proteins containing the PNP_UDP
domain. These results not only lead to a better understanding of the fungal immune
system but also showed a complementary approach to identifying novel functional
amyloids.

The growing body of research highlights the importance of amyloid interactions.
From amyloid signaling in fungi and filamentous bacteria to comorbidities of human
disease-related amyloids such interactions seems to be an important factor in the
aggregation process. To paint the bigger picture of such interactions for the first
time the literature investigating cross-interactions gathered into the AmylGraph
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database. This enabled the building of the first amyloid interaction prediction tool -
PACT. The new method was shown not only to be capable of accurately identifying
cross-interactions but also was able to identify functional amyloids.

New ways of identifying amyloids and their cross-interactions can shed new light
on the origin of amyloid-related disorders as well as explain numerous biological pro-
cesses where amyloids can play a pivotal role. A better understanding of pathological
and functional aggregation may lead to the development of new drugs and strate-
gies for combating biofilm formation by pathogenic microorganisms. The incredible
properties of amyloids can be also utilized by scientists and engineers to produce
novel biomaterials and self-assembling nanostructures. However, to achieve these
goals, a deep understanding of mechanisms governing aggregation and interactions
of this class of protein will be necessary.
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pAtH - prediction of 
Amyloidogenicity by threading and 
Machine Learning
Jakub W. Wojciechowski & Małgorzata Kotulska✉

Amyloids are protein aggregates observed in several diseases, for example in Alzheimer’s and 
Parkinson’s diseases. An aggregate has a very regular beta structure with a tightly packed core, which 
spontaneously assumes a steric zipper form. Experimental methods enable studying such peptides, 
however they are tedious and costly, therefore inappropriate for genomewide studies. Several 
bioinformatic methods have been proposed to evaluate protein propensity to form an amyloid. 
However, the knowledge of aggregate structures is usually not taken into account. We propose 
pAtH (prediction of Amyloidogenicity by tHreading) - a novel structure-based method for predicting 
amyloidogenicity and show that involving available structures of amyloidogenic fragments enhances 
classification performance. Experimental aggregate structures were used in templatebased modeling to 
recognize the most stable representative structural class of a query peptide. Several machine learning 
methods were then applied on the structural models, using their energy terms. Finally, we identified the 
most important terms in classification of amyloidogenic peptides. The proposed method outperforms 
most of the currently available methods for predicting amyloidogenicity, with its area under Roc curve 
equal to 0.876. Furthermore, the method gave insight into significance of selected structural features 
and the potentially most stable structural class of a peptide fragment if subjected to crystallization.

Amyloids are unbranched, fibrillar protein aggregates, which produce characteristic diffraction pattern in X-ray 
diffraction experiments1. For a long time their occurrence was associated exclusively with severe neurodegenera-
tive diseases, such as Alzheimer’s and Parkinson’s diseases. However, more recent studies showed that these pro-
teins play other roles in a wide variety of organisms, from bacteria and fungi to human2. Plenty of studies showed 
that formation of amyloid fibers depends on the presence of short fragments with an appropriate sequence pat-
terns, called hot-spots3. These fragments are responsible for formation of a steric zipper - tightly packed structure 
which involves two beta sheets that form a core of the amyloid aggregate. High resolution studies, using X-ray 
diffraction, shed light on molecular details of the steric zipper and revealed different forms of packing peptides 
into such structures. Theoretical extrapolation, based on symmetry operations, led to proposing ten putative 
structural classes of the zipper structure, formed by parallel or antiparallel beta sheets4. Currently, using X-ray 
diffraction, seven structural classes of the crystal zipper structure have been identified. Classes 3, 9, and 10 have 
not been proven, yet.

Amyloidogenic hot-spots can be identified experimentally and computationally. Experiments typically use 
Congo Red5 and Thiflavin T6 staining, high resolution techniques such as electron microscopy7 and atomic force 
microscopy8. Recently, infrared spectroscopy has become one of the leading methods, due to its simplicity and 
efficiency9. However, experimental techniques are expensive and time consuming, which hampers their use in 
genome wide studies.

To overcome these limitations several bioinformatic methods for amyloid prediction have been pro-
posed. Some of them, like PASTA 2.010 or ArchCandy11, use structural information. Others like Waltz12 or 
AGGRESCAN13 employ statistical analysis of a sequence. FoldAmyloid14 utilizes density of a protein’s contact 
sites. Along with a growing number of known amyloidogenic sequences, machine learning methods, such as 
FISH Amyloid15, APPNN16, or AmyloGram17 were proposed. Finally, consensus predictors, such as MetAmyl18 
or Amylpred219, are also available. Machine learning methods benefit from statistically significant patterns, which 
can be found in datasets, capable of providing predictions with a good accuracy. Not all of them reveal relations 
between the features representing solutions to the problem. For example, most of the bioinformatic methods do 
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not provide much insight into structure of amyloidogenic fragments, especially when aggregates are formed by 
short sequences. Studying short peptides is relevant, since they represent the phenomenon of amyloidogenicity 
triggering amyloid pathways of longer peptides or proteins. Moreover, most of the currently known amyloido-
genic sequences are hexapeptides20,21. Despite polymorphism in amyloid structures, amyloid crystals represent 
the ground state of the protein folding energy landscape in short peptides, hence including them in modeling 
amyloidogenicity may bring essential knowledge into these methods22.

Accordingly, we combined a structural approach to modeling amyloidogenicity with machine learning meth-
ods, and developed PATH (Prediction of Amyloidogenicity by THreading). While classifying amyloidogenic pro-
pensity of peptides, PATH should provide structural insight into steric zipper structures formed by their crystals. 
Furthermore, we aimed to identify the most important energy terms characterizing these structures, which split 
them between potential amyloids and non-amyloids.

Methods
Data set. The data that we used in our study included four data sets of hexapeptides. Peptide fragments of this 
length are regarded as very good representatives of amyloid hot-spots, which are believed to include between 4 
and 10 amino acids. Moreover, they constitute the majority of instances in databases of amyloidogenic sequences.

The first data set, Templates, consisted of structural templates that were applied to modeling potential struc-
tures of amyloid aggregates formed by other hexapeptides. Based on the structural classification of amyloid hexa-
peptides, proposed in 4, seven crystallographic structures of steric zippers were selected from the Protein Data 
Bank. Their crystallographic structures of steric zippers were selected from the Protein Data Bank. Each of them 
represented one of the experimentally confirmed structural class of amyloid hexapeptides (see Table 1). For the 
purpose of this study, the available structures were processed. All non-protein fragments, such as small organic 
molecules assisting crystallization, ions, or water molecules were removed from the structures. Since the original 
structures differed in numbers of chains forming the zipper, our final templates were built with six peptide chains 
in each beta sheet. In this procedure, copying existing chains and translating them by an appropriate vector was 
performed, based on the crystallographic data of the original structures.

In the first stage of our study, we modeled structural classes of amyloidogenic peptides. For this purpose we 
collected a set of validating structures from the Protein Data Bank. The obtained set, Amyloid Structures, con-
sisted of 24 amyloid fibers with experimentally determined structures, which were available in the Protein Data 
Bank and already assigned to a structural class4.

The data used in the final classification between two classes (amyloids and non-amyloids) constituted the 
Classification set, which was extracted from the Waltz database23. It consisted of 1080 unique hexapeptides, exper-
imentally assigned either to amyloidogenic (244 peptides) or non-amyloidogenic (836 peptides) class. These data 
were used for design, training, and testing the final effectiveness of our method. Before training the method, the 
classification set was divided into two separate sets - the training and testing data. During development of the 
classification methods, k-folds cross validation was performed with k = 5, on the training data set only. The final 
testing set consisted of 326 randomly selected peptides (30% of the total classification set), in which 85 were amy-
loidogenic and 241 non-amyloidogenic. It was used to evaluate the complete method.

Our approach was additionally tested with with the use of hexapeptides included in another benchmark set, 
pep424, applied by the authors of Pasta 2.0 for evaluation of their method10. The benchmark set consisted of 164 
hexapeptides from pep424, in which 67 were amyloidogenic and 97 non-amyloidogenic. The advantage of this 
data is such that it is much better balanced with regard to representation of both classes. Similarly to our previ-
ously described classification test, it was used to train and then test the potential of our algorithm. In both cases 
the sets were randomly divided into training and test sets containing 70% and 30% of samples, respectively.

Modeling. Each query sequence, from the set of amyloid structures and from training part of the classifica-
tion set, was threaded into seven previously described templates. The structural modeling was performed with 
Modeller 9.21, which is designed for homology or comparative modeling, and its automodel class with default 
parameters and the model-multichain.py procedure24. Ten models were obtained for each structural class (70 
models in total), for each of the query sequences. All of the models were scored using DOPE statistical potential 
implemented in Modeller. The model with the lowest value of this score, representing each of the sequences, was 
then chosen for further analysis.

Structural class PDB code Sequence Origin

1 1YJO NNQQNY yeast prion Sup35

2 2Y3J AIIGLM amyloid-beta

4 2ONV GGVVIA amyloid-beta

5 3LOZ LSFSKD beta 2 microglobulin

6 3PZZ GAIIGL amyloid-beta

7 3OW9 KLVFFA amyloid-beta

8 3NHC GYMLGS human prion PrP

Table 1. Hexapeptide structures representing different classes, used as templates for modeling (class numbering 
in accordance with4).
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First, based on the best model structures obtained from Modeller, we attempted to predict structural classes of 
peptide fragments. In this study, only 24 peptides included in the set of amyloid structures were modeled.

The next study was applied to the sequences from the training part of the classification set. For these sequences, 
Rosetta Energy Function (REF15)25 and some of its components were calculated for each of their optimal model 
structures selected in the first stage. The statistical potentials corresponded to the following energy terms: van 
der Waals interactions (fa_atr, fa_rep, fa_intra_rep), electrostatic interactions (fa_elec), inter-
actions with a solvent (fa_sol, lk_ball_wtd, fa_intra_sol_xover4), and statistical parameters 
describing amino acid conformation (omega, fa_dun, p_aa_pp, ref, rama_prepro). All of them 
were calculated using PyRosetta26. These terms, as well as previously computed DOPE and other scores provided 
by Modeller, were normalized and further used as an input for machine learning classifiers (see Fig. 1). Logistic 
regression, support vector machines (SVM) with three different kernel functions, and random forest methods 
were tested.

All classifiers were built using scikit-learn Python library27. The logistic regression model with L1 regulariza-
tion was built using LogisticRegression function with default parameters. SVM with linear, polynomial and RBF 
kernels were built using sklearn.svm.SVC method with default parameters. The random forest consisted of 100 
decision trees with the maximum depth of 4, and it was built with RandomForestClassifier using cross-entropy as 
the loss function. Other parameters of models were default. To make sure that the methods do not overfit to the 
data, k-folds cross validation was performed on the training data set, with k = 5.

Methods were trained and tested on both classification and benchmark sets. In both cases the sets were 
randomly divided into training and test sets containing 70% and 30% of samples, respectively. To assess the 
performance of the method, accuracy, which is defined as a fraction of correctly classified samples, sensitivity, 
specificity, Area Under ROC Curve (AUC) and Matthew Correlation Coefficient (MCC) were calculated.

feature selection. In order to identify the most important features that distinguish models of amyloids from 
non-amyloids, feature selection was performed, using three approaches. In the first step, we analyzed coefficients 
of logistic regression. In general, input parameters with the largest absolute values of coefficients contribute more 
to the classification than parameters with coefficients close to zero. Furthermore, the proposed model used L1 
regularization, which penalized the contribution of less significant inputs. Feature selection was performed using 

Figure 1. Prediction procedure. Using comparative modeling, query sequence was threaded into seven 
templates representing different structural classes (class numbering in accordance with4). For each of them 
ten models were proposed and the model with the lowest DOPE score was selected. For this model REF15 and 
selected PyRosetta energy terms were calculated and used as an input for machine learning classifiers.
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previously described random forest classifier and feature_importances_ method. Finally feature selection 
was performed using the algorithm Boruta28.

Results and Discusion
Hexapeptides were modeled using seven templates representing all different structural classes of the steric zipper 
form. For each sequence the model with the lowest DOPE score was chosen. Figure 2 shows the obtained DOPE 
values for the best models of amyloidogenic and non-amyloidogenic fragments from the benchmark set. As 
expected, amyloids obtained lower scores when threaded onto steric zippers, which indicate that they formed 
more energetically favourable, and thus more stable, structures. However, this method alone does not allow 
unambiguously distinguishing between amyloids and non-amyloids since both classes partially overlap (Fig. 2). 
Nevertheless, this initial study showed that DOPE may give some clue to the nature of a query hexapeptide.

Structural class prediction. Based on the comparative modeling and available class templates, we tested 
whether it is possible to predict the potentially most probably structural class which a query peptide sequence 
could assume. This hypothesis assumed that the model structure with the lowest energy, represented by DOPE 
value, should be the most stable and closest to the native structure. Our results showed that the model with the 
lowest DOPE score did not always correspond to the experimentally observed class. A predicted structural class 
matched the one experimentally derived in only 11 out of 24 peptides from the set of structures. Table 2 shows the 
accuracy of the classification in the form one vs all.

Although the results turned out below the expectations, it should be noted that the testing set was very small. 
Unfortunately, there are very few X-ray structures of amyloid hexapeptides that have been annotated to represent-
ative classes4, therefore many structural classes were strongly underrepresented. There are also other reasons why 
such methods might struggle to identify the correct class. For example, most statistical potentials including DOPE 
are parametrized using a set of globular proteins. Thus, they might describe protein aggregates, such as amyloids, 
with a certain level of inaccuracy. Another reason may be structural polymorphism of amyloid structures. To 
certain extent, the final structure of a fiber depends on the experimental conditions, and even in the same envi-
ronment a population containing different structures can be observed29. However, there are studies showing that 
crystal structures of short amyloid fragments assume a very stable and well defined structure, in contrast to pol-
ymorphic fibrils22. In the case of our studies, energy differences between amyloids and non-amyloids were much 
greater than between different structural classes. Therefore, a certain inaccuracy in the class prediction should not 
affect prediction of amyloidogenicity. Energy differences between amyloids and non-amyloids were much greater 
than between different structural classes.

predicting amyloidogenicity. Using calculated structural scores and several energy terms of the assum-
ably most stable structural models, which were obtained in the first stage, we trained several machine learning 
methods to classify amyloidogenicity of hexapeptides. Figure 3 shows the receiver operating curves (ROC) of 
all methods. Table 3 shows metrics of the best classifiers, such as area under ROC curve (AUC), sensitivity and 
specificity, obtained on the testing subsets of the data used to build our method. These results are very close to 
the results obtained from the k-fold cross-validation. The performance of selected methods was within the same 

Figure 2. DOPE score of amyloidogenic and non-amyloidogenic sequences threaded onto steric zipper 
structures for the benchmark set.

class 1 2 4 5 6 7 8

number of 
peptides 5 4 3 2 1 4 5

accuracy 0.40 0.75 0.67 0.50 0.00 0.25 0.40

Table 2. Accuracy of class prediction for different classes from the study on the set of Structures.
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range. Finally, for PATH we chose logistic regression, which was the simplest and one of the best performing clas-
sifiers. An additional benefit of using this method is that it is highly interpretable because it fits several coefficients 
of the linear function during the training. All methods were trained and tested on the training subsets of two data 
sets: classification database and hexapeptides from pep424 data set (see Methods).

The performance of PATH (on its test set) was compared to selected three other top predictors of amyloido-
genicity (Table 4). The performance metrics of other methods are based on the data reported by their authors, 

Figure 3. ROC curves for compared machine learning methods, for two test sets.

Method

AUC [95% CI] Sensitivity [95% CI] Specificity [95% CI]

Waltz db benchmark Waltz db benchmark Waltz db benchmark

Logistic regression 0.8762 [0.8351–0.9161] 0.9379 [0.9091–0.9609] 0.4235 [0.3082–0.5404] 0.8569 [0.7945–0.9077] 0.9414 [0.9095–0.9712] 0.9069 [0.8528–0.9528]

SVM linear kernel 0.8681 [0.8208–0.9115] 0.9232 [0.8899–0.9500] 0.3540 [0.2597–0.4578] 0.7828 [0.7109–0.8403] 0.9551 [0.9271–0.9811] 0.8655 [0.8024–0.9170]

SVM polynomial kernel 0.8165 [0.7577–0.8732] 0.9418 [0.9153–0.9645] 0.2132 [0.1219–0.3084] 0.6792 [0.6095–0.7449] 0.9792 [0.9577–0.9955] 0.9089 [0.8565–0.9540]

SVM RBF kernel 0.8375 [0.7828–0.8867] 0.9479 [0.9237–0.9670] 0.4843 [0.3681–0.5951] 0.7865 [0.7222–0.8418] 0.9409 [0.9087–0.9710] 0.8627 [0.8000–0.9134]

Random forest 0.8668 [0.8193–0.9090] 0.9544 [0.9289–0.9780] 0.4273 [0.3188–0.5409] 0.8915 [0.8403–0.9387] 0.9259 [0.8929–0.9585] 0.9086 [0.8542–0.9526]

Table 3. Performance of machine learning classifiers trained and tested on subsets of classification (Waltz 
database) and benchmark sets. 95% confidence intervals (CI) were calculated using bootstrap.
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calculated using their test sets. The observed differences between the three best performing predictors were neg-
ligible. PATH performed very well compared to the methods used here for a comparison.

Additionally, as suggested by one of the reviewers, we tested the approach from PATH on FVFLM pentapep-
tide, which was shown to inhibit aggregation of Abeta amyloid involved in the Alzheimer’s disease, although it 
is strongly amyloidogenic itself30. This peptide was too short for many predictors of amyloidogenicity. Moreover 
only four out of more than ten predictors that could analyze it, identified it correctly as amyloidogenic. PATH 
was able to classify it correctly as an amyloid, even though our method was not trained on any pentapeptides or 
hexapeptides that included this sequence.

feature selection. In the next step, we identified the most important features for our model. This was done 
by studying the logistic regression coefficients (see Fig. 4). Three most important features turned out to be DOPE 
score, REF15 score and the repulsive component of Lennard-Jones term (fa_rep). The first two terms represent 
complex energy functions that are not trivial to interpret. In general, both of them should approximate the free 
energy of a protein, thus low values of these functions indicate highly stable conformations. As expected, amyloi-
dogenic fragments obtained lower scores when threaded into a steric zipper structure. The last identified term, 
fa_rep, has a physical interpretation - it describes repulsion between atoms, arising from Pauli repulsion. This 
indicates that structures with high values of this function are too tightly packed.

A similar analysis was performed using a random forest classifier and the algorithm Boruta. Figure 5 shows 
the most important features. DOPE and fa_rep terms showed a large impact on the classification. Since this 
classifier is more sophisticated and capable of capturing nonlinear relationships in data, more features were iden-
tified in this case. The term fa_atr, describing the attractive part of the Lennard-Jones potential between two 
atoms on different residues separated by a certain distance, approximates van der Waals interactions, which are 
known to be important for fiber stabilization. A similar interpretation has fa_intra_rep, but it is calculated 
for atoms within the same residue. Finally, ref is a reference energy for a given amino acid type in an unfolded 
state and it was introduced in Rosetta as a tool for protein design. It reflects the importance of the amino acid 
composition of amyloidogenic fragments. Since logistic regression and random forest used slightly different 
features, we tested if both methods produced consistent results. Comparing the results from both classifiers, it 
turned out that less than 7% of sequences were classified differently.

conclusions
Recognizing amyloidogenic propensity of short peptides provides more knowledge on their potentially adverse 
behavior, especially if they appear inside longer functional proteins. Bioinformatical methods offering their fast 
and faultless identification are indispensable tools to advance the prediction of amyloids.

Method AUC Sensitivity Specificity MCC

PATH 0.8762 0.4235 0.9414 0.4444

Pasta 2.0 0.8550 0.3826 0.9519 0.4291

AmyloGram 0.8856 0.6779 0.9037 0.6057

FoldAmyloid 0.7531 0.7517 0.7185 0.4526

Table 4. Comparison of PATH with several state of the art predictors of amyloidogenicity. PATH showed one of 
the best performances among tested methods.

Figure 4. Coefficients of logistic regression model for energy terms.
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We proposed a new method predicting amyloidogenic propensity of hexapeptides. PATH is based on thread-
ing potentially amyloidogenic sequences on zipper-like amyloid structures, corresponding to all representative 
and experimentally confirmed structural classes of short amyloids. An affinity of a sequence to each structural 
class was first evaluated with regard to the total energy of its structure. The structures were obtained using com-
parative modeling with regard to structures of class representatives. A model with the minimal DOPE statistical 
potential, representing total energy of the structure, was assumed as the most stable and the most accurate for 
each tested sequence. Although this energy could hint on potential amyloidogenicity of a sequence, since the 
median energy of amyloids was lower than that of non-amyloids, it did not allow for unambiguous split into two 
classes. Some of the non-amyloidogenic sequences, forced to assume an amyloid structure, received energies 
lower than amyloidogenic sequences.

In the other study, only amyloidogenic sequences were considered. The objective was prediction of the most 
suitable structural class of a query sequence, based on the total energy of its model structure. The correct struc-
tural class was accurately predicted for 46% of sequences. The class corresponding to the model with the lowest 
energy was selected out of 7 possible classes. This analysis, however, could not be regarded as conclusive - the 
set of available instances is very scarce, containing only 24 sequences. There might be also other reasons which 
additionally hamper this kind of modeling, such as the choice of the statistical potential, representing energy of 
the structures, or tendency of amyloid structures to polymorphism.

Since the general structural features are not sufficient for differentiating between amyloids and non-amyloids, 
in the next stage of the classification we applied more specific and descriptive energy terms from PyRosetta. The 
extended set of statistical potentials, corresponding to the best model structure from the first stage of mode-
ling, was used to build computational machine learning models. Out of several available algorithms, we finally 
selected logistic regression, as the one which gave the best accuracy. Additionally, this method is not so much of 
a black-box type, allowing for interpretation of the results. Our method was verified on two data sets, using also 
cross-validation. PATH showed a very good potential for classification of amyloidogenicity, with AUC ROC at 
0.88, sensitivity Sn = 0.42, specificity Sp = 0.94, and MCC equal to 0.44. The relatively low value of sensitivity is 
a problem for many other amyloid predictors and is related to the low ratio of amyloids to non-amyloids in the 
available experimental data. This was the case in our method. Applying the other benchmark data set, consisting 
of hexapeptides from the pep424 set, the sensitivity was much higher (Sn = 0.8569), without deterioration of the 
specificity (Sp = 0.9069). This was due to much better balanced number of instances representing both classes in 
this data set.

Confronting our method with other available predictors, we note that its effectiveness is very high and it could 
effectively support modeling amyloidogenicity. One of its assets, compared to other methods, is the combination 
of the structural approach with machine learning on numerous instances. It appears that a somehow similar 
approach of modeling amyloidogenicity was very recently applied in the version 2.0 of Waltz database class pre-
diction21, in which experimental data of the instances are accompanied with their structural models and their 
energy values. The authors, however, do not reveal all details regarding their method and its performance.

Due to the high interpretability of our method, it was possible to identify the most important features that 
distinguished amyloids from non-amyloids in the classification. Apart from differences in total energies, such as 
DOPE from Modeler and REF15 from PyRosetta, some other energy terms appeared to play a role. All applied 
methods for feature selection showed the importance of the fa_rep energy term, representing repulsive van 
der Waals interactions, which approximate Pauli repulsion, whose high values may indicate clashes in structures 
and imply that non-amyloidogenic fragments may not be fitted well into a steric zipper structure. It could explain 
relatively low accuracy of the first stage of modeling, in which non-amyloids threaded on amyloid structures, are 
indeed faulty. Also, a relatively high importance of the energy term describing repulsion of atoms within the same 

Figure 5. Mean z-scores for energy terms obtained from Boruta feature selection method.
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residue (fa_intra_rep) was observed. A relatively low importance of statistical terms describing conforma-
tion of the backbone and side chains were observed. It should be noted, however, that statistical potentials were 
mostly fitted to describe structures of globular proteins and their use with other proteins may not be optimal11, 
therefore using better suited descriptors might improve the results and give more insight into the most influential 
features of the structures.

code availability
All the scripts are available on https://github.com/KubaWojciechowski/PATH.
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Bioinformatics methods 
for identification of amyloidogenic 
peptides show robustness 
to misannotated training data
Natalia Szulc1,2, Michał Burdukiewicz3,4,7*, Marlena Gąsior‑Głogowska1, 
Jakub W. Wojciechowski1, Jarosław Chilimoniuk5, Paweł Mackiewicz5, Tomas Šneideris6, 
Vytautas Smirnovas6 & Malgorzata Kotulska1,7*

Several disorders are related to amyloid aggregation of proteins, for example Alzheimer’s or 
Parkinson’s diseases. Amyloid proteins form fibrils of aggregated beta structures. This is preceded by 
formation of oligomers—the most cytotoxic species. Determining amyloidogenicity is tedious and 
costly. The most reliable identification of amyloids is obtained with high resolution microscopies, such 
as electron microscopy or atomic force microscopy (AFM). More frequently, less expensive and faster 
methods are used, especially infrared (IR) spectroscopy or Thioflavin T staining. Different experimental 
methods are not always concurrent, especially when amyloid peptides do not readily form fibrils but 
oligomers. This may lead to peptide misclassification and mislabeling. Several bioinformatics methods 
have been proposed for in-silico identification of amyloids, many of them based on machine learning. 
The effectiveness of these methods heavily depends on accurate annotation of the reference training 
data obtained from in-vitro experiments. We study how robust are bioinformatics methods to weak 
supervision, encountering imperfect training data. AmyloGram and three other amyloid predictors 
were applied. The results proved that a certain degree of misannotation in the reference data can be 
eliminated by the bioinformatics tools, even if they belonged to their training set. The computational 
results are supported by new experiments with IR and AFM methods.

Amyloids are a group of proteins folding into assemblies of insoluble fibrils of very regular and tightly packed 
β-structures, which resemble a steric zipper. Despite the importance of amyloids, which is related to their roles in 
various diseases, their formation and unique behavior are not fully  explained1. One of the challenges associated 
with amyloid studies is to establish computationally, whether a protein can form amyloids. Currently available 
tools addressing this question use statistical and physical  models2,3. The statistical methods are only based on 
the amino acid composition of previously annotated amyloid and non-amyloid proteins and use computational 
models recognizing regularities in the  sequences4–6. The physical models, on the other hand, determine folding 
of proteins into fibrils and use structural  constraints7–9. All these methods first require reference data, i.e. a col-
lection of sequences and/or structures of proteins labeled with their ability or inability to form amyloid fibrils. 
This information is crucial and its imperfection may introduce a bias into prediction  methods10. However, the 
process of labeling potential amyloid sequences and confirming the ability to form amyloid fibrils is costly and 
laborious, usually involving a set of diverse experiments.

Amyloids can be recognized by a characteristic cross-β sheet diffraction pattern observable in X-ray studies. 
However, to identify the occurrence of an amyloid, less precise methods are usually applied, some of which are 
direct and others indirect. Direct methods involve microscopy and  spectroscopy11,12. High resolution micro-
scopic techniques, such as atomic force microscopy (AFM) or transmission electron microscopy (TEM), allow 
for direct examination of amyloid fibril structures. These methods are focused on their topology and mechanical 
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properties, such as Young  modulus13,14. Spectroscopic methods involve vibrational  spectroscopy15, especially IR 
 spectroscopy16. In addition to precise information about the kinetics of self-assembly and details about their 
secondary structures, spectroscopic methods reveal the fraction of amyloid aggregates in the structure.

Indirect techniques rely on the detection (usually through fluorescence) of probes selectively binding to amy-
loid fibrils. Thioflavin T (ThT) is considered to be the most reliable  probe17, but Congo Red can also be  applied18. 
Although indirect methods are less expensive, there are some concerns regarding their  specificity19. Therefore, 
it is helpful if such methods are complemented with direct experimental verification.

As direct and indirect methods focus on different aspects of amyloid fibrils, their results may differ. The prob-
lem of experimental validation is further heightened by the elusiveness of amyloid  properties20. Experimental 
conditions, such as incubation time, pH and ionic strength, may greatly affect the kinetics of self-assembly, which 
effectively prevent the development of amyloid  fibrils21. Therefore, even experimental results bring only partial 
confidence into the amyloid properties of a peptide or protein.

Such a situation leads to a classical problem of weak labeling (weak supervision)22, where some labels (amy-
loid or non-amyloid) are wrongly assigned to reference instances (proteins or peptides). The weak supervision 
is common in all applications of machine learning and significantly lowers the performance of a model. Among 
several approaches proposed to solve this issue, it is suggested to detect mislabeled training data by applying a 
computational model as a filter, capable of identifying  outliers23. Here, the outliers are defined as instances pre-
dicted computationally with a high probability to have a label opposite to that obtained from a reference dataset. 
This approach can enhance the classification accuracy achieved by learning algorithms by improving the quality 
of training data. However, a potential obstacle should be considered, related to overfitting of prediction methods, 
which may not so easily find mislabeled data in their own training data sets.

To investigate the impact of weak supervision in computational prediction of amyloid proteins, we decided 
to test AmyloGram, as a filter on training data, which may be mislabeled in databases. The objective was verify-
ing the filtering approach and detecting possible outliers in the learning set. To do this, we selected a subset of 
peptides for which bioinformatics predictions by AmyloGram were opposite to their labels assigned in experi-
mental AmyLoad and Waltz  databases24,25. The most extreme outliers, with the highest probability of a predicted 
label being opposite to that in databases, were then evaluated experimentally. It allowed to verify if the filtering 
properties of AmyloGram were sufficient to clean the training data from doubtful instances. To strengthen the 
analysis, we also tested three different bioinformatics predictors of amyloids in this regard. The results revealed 
how robust are bioinformatics predictors of amyloids to errors in learning datasets.

Materials and methods
Data selection. Peptides were uploaded from  AmyLoad24 database. The original dataset used for training 
AmyloGram included 421 amyloid peptides and 1044 non-amyloid peptides (1465 sequences in total). In terms 
of their amyloid propensities, all these peptides were also identically annotated in Waltz 2.0  database25. The 
flow chart of the data selection procedure is presented in Fig. 1. First, all sequences with six residues (hexapep-
tides) and without atypical amino acids were selected. The obtained set included 1088 sequences. It was then 
divided into two subsets, based on their origin. The first subset contained 158 (67 amyloid and 91 non-amyloid) 
sequences which were based on the original AmylHex  database26, and the other set of 930 (180 amyloid and 750 
non-amyloid) sequences was based on instances from other sources. AmylHex was the first available data set of 
amyloid peptides and, although still valuable, it has a strongly biased pattern related to the method by which it 
was obtained. Therefore, the division in our data processing was introduced to avoid overrepresentation of the 
AmylHex sequences in the final set and diminish the influence of these biases. Then, all non-redundant amino 
acid sequences of hexapeptides were converted into the simplified amino acid alphabet obtained in AmyloGram 
and redundant sequences were removed, leading to 184 encoded amyloid sequences and 683 encoded non-
amyloid  sequences4. Importantly, each of these sequences previously belonged to the reference training dataset 
and were used to develop AmyloGram.

Since the original experimental annotations do not necessarily have to agree with the classifications obtained 
with a computational method, the peptides were again classified, now computationally, with AmyloGram 
(AmyloGram available at: http:// www. smorfl and. uni. wroc. pl/ shiny/ Amylo Gram/). Peptides that obtained a high 
probability of classification in agreement with their original database annotations were defined as references. 
Peptides with a high probability of labels opposite to their original database annotations were defined as outliers. 
Finally, 10 sequences out of the references were selected and represented with the full amino acid alphabet—we 
denote this dataset as the reference dataset. Similarly, 24 sequences from outliers (represented here with the full 
amino acid alphabet) were selected and labeled as the test dataset. Both sets were used in further experimental 
validations. The first set served to set up and validate our experimental and chemometric methods, while the 
other to verify whether the original database annotations of the peptides were correct.

Materials. All hexapeptide sequences selected for experimental validation were provided by CASLO 
(CASLO ApS, Denmark). The experiments were carried out on 34 sequences, out of which 10 were reference 
sequences (FNPQGG, FTFIQF, ISFLIF, KPAESD, LVFYQQ, NPQGGY, SFLIFL, TKPAES, YLLYYT, YTVIIE), 
and 24 were test sequences (ALEEYT, ASSSNY, DETVIV, ELNIYQ, FGELFE, FQKQQK, FTPTEK, HGFNQQ, 
HLFNLT, HSSNNF, MIENIQ, MIHFGN, MMHFGN, NIFNIT, NNSGPN, NTIFVQ, QANKHI, QEMRHF, 
SHVIIE, STTIIE, STVVIE, SWVIIE, WSFYLL, YYTEFT). The purity of synthesized peptides was in the range 
between 95% and 99.6%.

Sample preparation. First, lyophilized hexamers were dissolved and vortexed in 0.1  M NaOH. Next, 
phosphate-buffered saline (50 mM, pH 7.2) was added to obtain pH = 7. Samples were diluted to the final con-
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centration of 4 mg/ml with Milli-Q water. Then, they were incubated at 37 °C for one month. To assure the 
reproducibility of new experimental results, reported in this work, the table based on the MIRRAGGE  protocol27 
is available in the Supplement 1, 2, Table 1.

Experimental evaluation. To keep the experimental validation robust, we employed three direct tech-
niques: two methods of IR spectra measurements and AFM. They complement each other in terms of the pres-
ence of aggregates and the exact morphology of fibrils.

Atomic force microscopy. AFM images were recorded using Dimension Icon (Bruker) atomic force microscope 
operating in tapping mode and equipped with a silicon cantilever RTESPA-300 (40 N/m, Bruker), with a typical 
tip radius of curvature 8 nm. Images (4 × 4, 5 × 5 and 10 × 10 µm2) of sample topography were recorded at the 
resolution of 1024 × 1024 pixels. The scan rate was 0.5–1.0 Hz. In each experiment, 20 µl of peptide solution was 
deposited on freshly etched mica surface and incubated for 10 min. Subsequently, samples were rinsed with 1 ml 
of MilliQ water and dried under gentle airflow.

Figure 1.  Scheme of peptide selection. (A) 1088 hexapeptides in the simplified amino acid alphabet were 
used to train AmyloGram. (B) Two subsets of the sequences were defined. (C) Sequences were divided into 
amyloids and non-amyloids according to their annotations in the database. (D) Each peptide was classified with 
AmyloGram. Peptides with a high probability of classification in agreement with their original annotations were 
defined as references. Peptides with a high probability of classification opposite to their original annotations 
were defined as outliers. (E) Ten references and 24 outliers were selected for experiments.
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Infrared spectroscopy. Two vibrational spectroscopic  techniques28, commonly used in the field of peptide 
aggregation, were used in the study: Attenuated Total Reflection—Fourier Transform Infrared (ATR-FTIR)29, 
and Fourier Transform Infrared Microscopy using transmission mode (IR microscopy)30. The main drawback 
of examining proteins in aqueous solutions by means of IR spectroscopy is strong absorbance of water in the 
region of approximately 1634   cm-131. Therefore, in our procedures of spectroscopic measurements we used a 
dry-film  technique32.

The ATR-FTIR spectra were collected using a Nicolet 6700 spectrometer (Thermo Scientific, USA) equipped 
with ATR Accessory with Heated Diamond Top-plate (PIKE Technologies, USA). The spectrometer was con-
tinuously purged with dry air. Peptides aliquots of 20 μl volumes were pipetted onto the ATR crystal and 
allowed to dry out. Spectra were recorded with a resolution of 4  cm-1 with 128 co-added scans over the range of 
3600–150  cm-1, at the constant temperature of 25 °C. The background spectrum was recorded before measure-
ment of the sample spectra using 512 scans under resolution 4  cm-1.

The spectra from IR microscopy were recorded using Nicolet iN10 FTIR microscope (Thermo Scientific, 
USA). Samples were measured with a liquid nitrogen cooled mercury cadmium telluride (MCT-A) detector at the 
spatial resolution of 10 μm. The microscope was continuously purged with dry air. An area of 450 μm × 450 μm 
was first selected with the upper aperture (100/5 = 50 μm), then the data were collected. All spectra were recorded 
in the wave number range from 4000 to 500  cm-1; 64 interferograms per sample at the resolution of 4  cm-1 were 
collected. The volume of 10 μl of the solution was applied to barium chloride window cell and allowed to dry out 
until the coffee-ring was  formed33. The measurements were carried out at room temperature. For each spectral 
map the average spectrum was calculated.

Using two IR methods with different acquisition modes allowed us to verify the observations and avoid ambi-
guity that may arise due to high water  absorption34. ATR-FTIR spectrophotometer provides one average single 
spectra obtained from a small area (typically of 3  mm2). The FTIR microscopy allows for mapping the probe 
with a step of 10 μm or less. The liquid nitrogen cooled MCT-A detector is more sensitive and allows to measure 
smaller aliquots. The built-in camera allows to choose a region of interest, significant for non-homogeneous 
deposition patterns, created in film techniques. Although IR microscopy is a more precise method and was finally 
selected as our reference experimental method, we also examined whether ATR-FTIR, which is a cheaper and a 
more widespread method, would provide different annotations of the peptides.

Spectroscopic data processing. All spectra were analyzed using the OriginPro 2019 program (OriginLab 
Corporation, USA). The spectra preprocessing included: baseline  correction35 and normalization for the Amide 
I band maximum. The second derivative (DII)36 was performed in the range of 1720–1580  cm-1 to identify the 
local maximum of the component bands. The second derivative spectra were smoothed with the Savitzky-Golay 
filter (parameters: polynomial order 2, window 30)37.

Chemometric analysis. For both types of the IR spectra, Principal Component Analysis (PCA)38,39 was 
performed on DII of the described region, using PCA function from scikit-learn Python  library40 with default 
parameters.

Bioinformatics methods. The hexapeptide sequences were classified by bioinformatics methods, such 
as  AmyloGram4 (http:// www. smorfl and. uni. wroc. pl/ shiny/ Amylo Gram/),  PATH41 (in-house software), 
 FoldAmyloid6 (http:// bioin fo. protr es. ru/ fold- amylo id/), and PASTA 2.09 (http:// old. prote in. bio. unipd. it/ 
pasta2/). AmyloGram is a tool based on machine learning methods, FoldAmyloid and PASTA 2.0 are based 
on physical models, whereas PATH is our latest method combining physical modeling with machine learn-
ing. AmyloGram and PATH were previously trained on the reference peptide sequences, which included all 

Table 1.  Reference data set of sequences and their amyloid propensity by different experimental methods 
(’Yes’—identified as amyloid, ’No’—non-amyloid, ’Yes*’—oligomer, ’s’—strong band, ’m’—medium band, ’w’—
weak band, ’br’—broad band, ’sh’—shoulder band, band maxima in bold).  The results agree with the original 
database annotations, which were also in agreement with AmyloGram predictions.

No Sequence Database

IR microscopy ATR-FTIR AFM Consensus with database 
annotationAmide I  [cm−1] Class Amide I  [cm−1] Class Class

1 FNPQGG No 1679(m)/1641(s) No 1655(s,br) No No Yes

2 FTFIQF Yes 1689(m,sh)/1628(s) Yes 1690(w)/1622(s) Yes Yes* Yes

3 ISFLIF Yes 1689(m,sh)/1631(s) Yes 1685(w)/1631(s) Yes Yes Yes

4 KPAESD No 1665(s,br) No 1678(s,br)/1640(m,sh) No No Yes

5 LVFYQQ Yes 1631(s) Yes 1683(w,sh)/1629(s) Yes* Yes Yes

6 NPQGGY No 1658(s,br) No 1658(s,br) No No Yes

7 SFLIFL Yes 1689(m)/1633(s) Yes* 1632(s) Yes Yes* Yes

8 TKPAES No 1652(s,br) No 1678(s)/1640(sh) No No Yes

9 YLLYYT Yes 1686(m,sh)/1629(s) Yes 1685(m)/1630(s) Yes Yes* Yes

10 YTVIIE Yes 1685(m)/1627(s) Yes 1684(m)/1626(s) Yes Yes Yes
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sequences verified here anew (reference and test sets), using their original annotations in the database. All predic-
tors, excluding PASTA 2.0, were used with their default parameters. In PASTA 2.0, the peptide option was chosen 
to set the thresholds. The presented statistics of classification results included: Accuracy (Acc) calculated as the 
ratio of correctly assigned data labels, Sensitivity (Sn) denoting the ratio of correctly identified true positives 
versus actual positives, and Specificity (Sp) meaning the ratio of true negatives versus actual negatives.

Results
Experimental verification of the reference dataset of sequences. First, we examined the reference 
set, whose instances had identical annotations in reference databases (AmyLoad and Waltz) and classifications 
by AmyloGram. The direct microscopy method AFM and two IR methods (ATR-FTIR and IR microscopy) were 
used to experimentally verify these instances, as well as calibrate our empirical and chemometric methods.

Based on the AFM micrographs (Supplement 1, 1.1) and spectral characteristics (Supplement 1, 2.1 and 2.2), 
peptides were annotated into three classes: positive (amyloids), negative (non-amyloids), and oligomers (Fig. 2). 
The last class is not considered by any bioinformatics method but is evident in experimental analyses and may 
pose a problem for computational tools in its correct classification.

The IR spectra can be fairly easily analyzed in terms of potential amyloidogenicity of the peptides, showing 
different characteristics for non-amyloids, small assemblies of amyloid aggregates known as oligomers, and 
mature fibrils. Exemplary spectra of our reference set, representing each of these classes, are presented in Fig. 3.

Amide bands characteristic of peptide bonds dominate in the protein infrared spectra. The most intensive, 
Amide I, occurs in the range of 1700–1600  cm-1, which corresponds to C = O stretching  vibrations34. Amyloid 
fibrils show absorbance between 1611 and 1630  cm-1, usually close to 1630  cm-1, while for native β-sheet proteins 
it extends from 1630 to 1643  cm-1. This method also enables recognition of typical amyloid oligomers, indicated 

Figure 2.  Schemes of peptide classes, representing a general idea.

Figure 3.  Representative IR microscopy spectra: amyloid (LVFYQQ) in red, oligomer (SFLIFL) in green, non-
amyloid (KPAESD) in blue.
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by the presence of two local maxima in Amide I region. The major one is located at 1630  cm-1, and the minor 
peak, resulting from a strong dipolar coupling, ranges between 1695 and 1685  cm-1. The latter peak is often 
approximately five-fold weaker than the absorption at 1630  cm-1 (Fig. 3)29,35,36.

Both IR methods, used in our studies, provided compatible results. As expected, they were in general agree-
ment with their original annotations in the databases (Table 1). However, there were differences, which may 
have resulted from the experimental specifics (see Materials and Methods), or the oligomer class. The sequence 
SFLIFL provided slightly different spectra in both IR methods: transmission (microscopy) and attenuated reflec-
tion (ATR-FTIR) (Table 1 and Supplement 1, 2.4, Table 7), indicating formation of oligomers which did not 
transform into fibrils.

The differences may be caused by the artifacts incited by the thickness of the sample—thicker samples can 
raise the spectrum in the transmission mode in IR microscopy. On the other hand, the signal registered with 
ATR-FTIR could be influenced by water molecules in contact with the  crystal42. The contact of peptide molecules 
with the diamond surface in ATR-FTIR can accelerate the aggregation process. Therefore, IR microscopy could 
be regarded as a more accurate experimental method. The study confirmed that infrared spectroscopy could be 
used as a time-efficient tool to investigate the formation of different types of aggregates.

Furthermore, for fast and more robust identification of amyloids and non-amyloids, we applied principal 
component analysis (PCA) on the IR  spectra38,39. PCA separated out 4 sequences in the ATR-FTIR spectra of the 
reference set: NPQGGY, FNPQGG, KPAESD, TKPAES. All these sequences were identified as non-amyloids by 
a human expert based on different experimental methods. Each of the remaining sequences, more dispersed in 
the plot, was previously identified either as an amyloid or oligomer—based on the same experimental methods. 
Similarly, PCA for IR microscopy spectra also distinguished the group of non-amyloid peptides (Figs. 4A,B). 

Figure 4.  PCA plots for IR spectra of the reference set: (A) ATR-FTIR. (B) IR microscopy. Crosses denote 
amyloids and dots represent non-amyloids, as identified on the spectra by a human expert.

Figure 5.  Representative AFM micrographs: (A) oligomer (FTFIQF), (B) amyloid (LVFYQQ), C. non-amyloid 
(NPQGGY).
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The results obtained by means of IR spectroscopy were verified with high resolution microscopy using AFM 
(Fig. 5, Supplement 1, 2.1, Table 2). In these studies, the process of hexapeptide self-assemblance was observed 
a few minutes after preparation of the peptide solution.

Bioinformatics analysis of the reference dataset. The annotations based on IR microscopy results 
were compared with all bioinformatics methods, including not only AmyloGram, but also FoldAmyloid, PASTA 
2.0 and PATH (Table 2). Generally, all methods recognized the sequences correctly and in agreement with IR 
spectroscopy. Concurrence of the IR microscopy and computational results was at a high level, reaching 75 or 
100%. We want to emphasize that due to the very small size of the set and the method of its selection (based on 
the strong prediction probabilities by AmyloGram), the prediction results from different bioinformatics meth-
ods by no means should be treated as benchmarks of their individual general performances.

Annotations of sequences in the test dataset. The experiments on the reference dataset showed that 
IR spectroscopy is in good agreement with much more laborious and expensive AFM method. Therefore, IR 
spectroscopy was selected for experimental validation of the annotations in the test set, which was the main 
objective of our studies. The results obtained for 24 sequences that constituted this set are presented in Table 3. 
These data did not take into account the component bands from aromatic amino acids, such as: phenylalanine 
(1600), tyrosine (1616) and tryptophan (1620)43.

Out of 24 hexapeptides, only one peptide, STTIIE, gave an ambiguous result in terms of IR spectroscopic 
methods (Table 3 and Supplement 1, 3.2, Table 12). For STTIIE, we observed in IR microscopy two local maxima, 
1657  cm-1 corresponding to the strong band from α- helix and 1607  cm-1 assigned to tyrosine vibrations. There-
fore, this peptide was labeled as non-amyloid. Although Amide I band is very broad, there are many component 
bands, which are confirmed by the second derivative (Supplement 1, 3.1.2.2., Table 11). This fact cannot exclude 
that the oligomerization process could have occurred. However, based on the ATR-FTIR, this structure can be 
identified as oligomer, therefore in terms of classification by bioinformatics tools—positively. Two local maxima 
characteristic of oligomers can be observed in the spectrum. The first maximum at 1684  cm-1 and the second, 
more intense, at 1633  cm-1 (Supplement 1, 3.2). The spectral features can be assigned to anti-parallel oligomeric 
β-sheets. For the remaining 23 sequences both IR techniques provided consistent results.

Based on the results presented in Table 4, we observed that in the test set, for which AmyloGram’s classifica-
tion disagreed with the original database annotations, 17 (71%) peptides were indeed misannotated, 12 (70%) 
of them were false positives and 5 (30%) were false negatives. In the set of misannotated sequences, five were 
actually amyloids and all of them (100%) were misannotated, while 19 were non-amyloids and 12 (63%) of them 
were misannotated. A variety of reasons could have contributed to it, which is shown in Supplement 2, Table 1.

Importantly, all these sequences were previously used for training of AmyloGram, using the misannotated 
labels. However, AmyloGram was capable of recognizing misannotated instances in its training dataset, which 
showed its robustness with regard to incorrect labeling. Only 7 sequences out of this set were correctly annotated 
in the database and misclassified by AmyloGram. The majority of them were sequences rich in aromatic and 
charged amino acids.

IR spectra of the test set were analyzed with PCA. Similar to the reference set, a good separation between amy-
loids and non-amyloids (as previously identified by the human expert) was obtained for majority of the sequences 
(Fig. 6), especially good agreement was obtained for the data from IR microscopy (Fig. 6B). The automated PCA 
analysis on the spectra from ATR-FTIR located the sequence no 20 (STTIIE), which was ambiguous with regard 
to IR experiments, outside the amyloid and non-amyloid clusters. As expected, PCA based on the spectra from 
the IR microscopy assigned it to the cluster of non-amyloids. A few other sequences were also located outside the 
aggregated clusters, either in the PCA analysis on ATR-FTIR or IR microscopy, but there was no overlap between 
them, except the sequence no 4 (ELNIYQ). Interestingly, although this sequence was experimentally verified as 
non-amyloid, it was predicted by AmyloGram and FoldAmyloid as a potential amyloid.

Table 2.  Reference sequences and their amyloid propensity obtained by different bioinformatic methods, 
compared to IR microscopy (’Yes’—amyloid, ’No’—non-amyloid, ’Yes*’—oligomer).

No Sequence IR microscopy AmyloGram FoldAmyloid PASTA 2.0 PATH (LR) PATH (RF)
Consensus with 
IR (%)

1 FNPQGG No No No No No No 100

2 FTFIQF Yes Yes Yes No Yes Yes 80

3 ISFLIF Yes Yes Yes Yes Yes Yes 100

4 KPAESD No No No No No No 100

5 LVFYQQ Yes Yes Yes No Yes Yes 80

6 NPQGGY No No No No No No 100

7 SFLIFL Yes* Yes Yes Yes Yes Yes 100

8 TKPAES No No No No No No 100

9 YLLYYT Yes Yes Yes No Yes Yes 80

10 YTVIIE Yes Yes Yes Yes No Yes 80
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The annotations from IR microscopy for the test set were compared with results from other bioinformatics 
predictors, out of which PATH is another method also trained on the set including the misannotated sequences, 
which can use either logistic regression (LR) or random forest (RF) classification methods. Except for Amylo-
Gram and PATH, other bioinformatics methods might have not been trained on the misannotated data (methods 
not developed in our group). The majority of methods agreed with our IR results (Table 4, detailed scores in 
Supplement 2: Table 2 and Table 3), including the cases in which the original annotation in the database was 
contradicted by the experiments presented in Table 3. There were a few less obvious instances. For example, the 
consensus between bioinformatics methods dropped for two sequences: DETVIV and ELNIYQ. In case of DET-
VIV, the IR microscopy result was also ambiguous—it showed oligomeric rather than fibril aggregates. In case 
of ELNIYQ, PCA-based classification of the spectra did not locate it in the cluster of non-amyloids. The bioin-
formatics analysis identified the sequence no 20 (STTIIE), which was ambiguous regarding IR experiments, as 
non-amyloid (3 out of 4 methods), which agrees with IR microscopy and associated PCA analysis. AmyloGram 
was the only method which misclassified it as amyloid. Table 5 presents aggregated results of the bioinformatics 
analysis.

All computational methods correctly identified the majority of misannotated sequences. Again, we want to 
emphasize that due to the size of the set and the method of its selection (based on the strong adverse predic-
tions by AmyloGram), the prediction results from different bioinformatics methods should not be treated as 
benchmarks of their general performances.

Discussion
Amyloid aggregates may lead to serious health problems, when peptides enter the amyloid pathway, therefore it 
is crucial to recognize them correctly and identify specific sequence features, which can be associated with amy-
loidogenicity. Although several direct and indirect experimental methods are available to determine the amyloid 
propensity of a sequence, all of them are laborious and expensive. What is even more important, the results of 
the experiments are not always conclusive and identical, if obtained with different experimental methods. This 
may lead to misannotation of the sequences regarding their amyloidogenicity. Moreover, errors occurring in 
databases, related to data retrieval or curation, may additionally contribute to mislabeling of the data.

Many bioinformatics methods have been developed  to classify amyloidogenicity of amino acid 
sequences. These methods readily and efficiently support experiments, saving time and money. However, all 

Table 3.  Test sequences and their amyloid propensities (’Yes’—identified as amyloid, ’No’—non-amyloid, 
’Yes*’—oligomer, ’s’—strong band, ’m’—medium band, ’w’—weak band, ’br’—broad band, ’sh’—shoulder band, 
band maxima in bold), compared with the original database annotation (all in disagreement with AmyloGram 
predictions).

No Sequence Database

IR microscopy ATR-FTIR Consensus with database 
annotationAmide I  [cm−1] Class Amide I  [cm−1] Class

1 ALEEYT Yes 1655(s,br) No 1654(s) No No

2 ASSSNY Yes 1649(m,sh) No 1655(m,br) No No

3 DETVIV No 1685(w)/1635(s) Yes* 1685(m)/1633(s) Yes* No

4 ELNIYQ No 1661(w,sh)/1635(s) No 1681(m,br)/1668(m,br)/16
35(s) No Yes

5 FGELFE No 1660(s)/1650(w) No 1659(s) No Yes

6 FQKQQK No 1660(s,br) No 1682(s,br) No Yes

7 FTPTEK No 1660(s,br) No 1680(s,br) No Yes

8 HGFNQQ Yes 1662(s,br) No 1682(s,br) No No

9 HLFNLT Yes 1674(s,br) No 1680(s,br)/1633(m,br) No No

10 HSSNNF Yes 1649(m,br) No 1680(s)/1646(m,sh) No No

11 MIENIQ Yes 1656(s,br) No 1655(s,br) No No

12 MIHFGN Yes 1677(s,br) No 1680(s,br)/1646(m,br) NO NO

13 MMHFGN Yes 1675(s) No 1676(s,br) No No

14 NIFNIT Yes 1657(s) No 1663(s,br) No No

15 NNSGPN Yes 1676(sh)/1648(s,br) No 1676(s,br)/1654(m,br) No No

16 NTIFVQ No 1629(s) Yes 1682(w)/1631(s) Yes* No

17 QANKHI Yes 1680(s,br) No 1681(s)/1653(sh) No No

18 QEMRHF Yes 1679(s,br) No 1676(s,br)/1655(sh) No No

19 SHVIIE No 1688(m)/1630(s) Yes 1684(m)/1633(s) Yes No

20 STTIIE No 1657(s,br) No 1681(m)/1630(s) Yes* Yes ambiguous

21 STVVIE No 1685(w,br)/1633(s) Yes 1682(w,br)/1630(s) Yes* NO

22 SWVIIE No 1682(w,sh)/1631(s) Yes 1684(w)/1631(s) Yes No

23 WSFYLL No 1658(s,br) No 1675(w,sh)/1637(s) No Yes

24 YYTEFT No 1665(s,br) No 1659(s,br) No Yes



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8934  | https://doi.org/10.1038/s41598-021-86530-6

www.nature.com/scientificreports/

computational methods, like modeling in general, heavily depend on the data used in the model construction. 
Data including misannotated instances may lead to an incorrect model, not even revealed by standard evaluation 
methods, which would also rely on the mislabeled reference data.

Therefore, we posed a question: How robust could be bioinformatics methods to the problem of certain 
misannotations in the reference data? The problem occurred when we observed that some of the computational 
classifications did not always agree with labeling of the reference training data. To address the question, we 

Table 4.  Test sequences and their amyloid propensities predicted by different bioinformatics methods and 
compared with IR microscopy (’Yes’—amyloid, ’No’—non-amyloid, ’Yes*’—oligomer). For comparison, the 
’Database’ column presents original annotations from the databases.

No Sequence Database
IR 
microscopy AmyloGram PATH (LR) PATH (RF) FoldAmyloid PASTA 2.0

Bioinformatics 
consensus with 
IR [%]

1 ALEEYT Yes No No No No No No 100

2 ASSSNY Yes No No No No No No 100

3 DETVIV No Yes* Yes No Yes No Yes 60

4 ELNIYQ No No Yes No No Yes No 60

5 FGELFE No No Yes No No No No 80

6 FQKQQK No No Yes No No No No 80

7 FTPTEK No No Yes No No No No 80

8 HGFNQQ Yes No No No No No No 100

9 HLFNLT Yes No No No Yes Yes No 60

10 HSSNNF Yes No No No No No No 100

11 MIENIQ Yes No No No No No No 100

12 MIHFGN Yes No No No No No No 100

13 MMHFGN Yes No No No No No No 100

14 NIFNIT Yes No No No Yes Yes No 60

15 NNSGPN Yes No No No No No No 100

16 NTIFVQ No Yes YES Yes Yes Yes No 80

17 QANKHI Yes No No No No No No 100

18 QEMRHF Yes No No No No No No 100

19 SHVIIE No Yes Yes No No Yes Yes 60

20 STTIIE No No Yes No No No No 80

21 STVVIE No Yes Yes No Yes Yes Yes 80

22 SWVIIE No Yes Yes No Yes Yes Yes 80

23 WSFYLL No No Yes Yes Yes Yes No 80

24 YYTEFT No no Yes No No No No 80

Figure 6.  PCA plots for IR spectra of the test set: (A) ATR-FTIR. (B) IR microscopy. Crosses denote amyloids 
and dots represent non-amyloids, as identified on the spectra by a human expert.
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selected a set of sequences and tested their amyloidogenicity by experimental and computational methods. The 
first part of the set, when classified by our predictor AmyloGram, strongly agreed with the initial labeling in 
the database, as it was expected. We used it to set up our experimental and chemometric methods, including 
two IR spectroscopy methods, ATR-FTIR and IR microscopy, and AFM microscopy. The second part of the set 
included sequences whose classification by AmyloGram strongly disagreed with the initial labeling in the refer-
ence databases. Besides amyloids and non-amyloids, we also noted that a third class of structures, i.e. oligomers, 
should be included in the analyses.

As a result, we observed that 17 out of 24 non-compatible sequences were actually misannotated in the origi-
nal databases. Therefore, the bioinformatics predictor proved resistant to overfitting, and able to find errors in 
its own training data. Tests on other bioinformatics predictors showed that all of them were able to classify the 
misannotated data correctly, with accuracies reaching at least 80% or more—also for methods which were trained 
on all these mislabeled data. This proves that bioinformatics methods can be successfully applied to evaluate 
quality of experimental data and used for their filtering. However, we underline that the fraction of mislabeled 
instances cannot be excessively high in the training set.
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Table 5.  Consensus between annotations obtained from bioinformatics methods and IR microscopy 
(Accuracy Acc, Sensitivity Sn, Specificity Sp). Presented results are for: (A) all 24 sequences from the test set, 
(B) only 17 sequences from the test set, which turned out misannotated in databases.
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Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; monika.szefczyk@pwr.edu.pl
4 Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wroclaw University of Science and
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Abstract: CsgA is an aggregating protein from bacterial biofilms, representing a class of functional
amyloids. Its amyloid propensity is defined by five fragments (R1–R5) of the sequence, representing
non-perfect repeats. Gate-keeper amino acid residues, specific to each fragment, define the fragment’s
propensity for self-aggregation and aggregating characteristics of the whole protein. We study the
self-aggregation and secondary structures of the repeat fragments of Salmonella enterica and Escherichia
coli and comparatively analyze their potential effects on these proteins in a bacterial biofilm. Using
bioinformatics predictors, ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism,
and transmission electron microscopy, we confirmed self-aggregation of R1, R3, R5 fragments, as
previously reported for Escherichia coli, however, with different temporal characteristics for each
species. We also observed aggregation propensities of R4 fragment of Salmonella enterica that is
different than that of Escherichia coli. Our studies showed that amyloid structures of CsgA repeats are
more easily formed and more durable in Salmonella enterica than those in Escherichia coli.

Keywords: functional amyloids; curli; aggregation; biofilm; ATR-FTIR; FT-Raman

1. Introduction

Functional amyloids are spread across nearly the whole tree of life, including archaea,
bacteria, fungi, protozoa, and viruses [1]. Although functional amyloids, similarly to
pathological amyloids, self-assemble into fibers, their aggregates are involved in a wide
range of crucial molecular tasks, including hormone storage, signaling, enhancing cell
adhesion, and biofilm formation [2]. Aside from these functionalities, some bacterial
functional amyloids constitute a proteinaceous skeleton of the extracellular matrix, called
biofilm. Bacteria produce biofilms to create an environment protecting them from adverse
conditions. This ability is widespread in nature and can be seen as one of the most common
survival strategies adopted by bacteria [3]. It is estimated that between 40% and 80% of all
bacterial cells are part of biofilms [4].

As the ability to form stable biofilms depends on the bacterial natural niche and their
genotypic characteristics [5], it is also affected by the phylogenetic variability of functional
amyloids involved in this process. Here, we focus on one of the best-studied amyloids
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involved in biofilm formation, curli fibers [6]. Curli form non-branched fibrils on the cell
surface, which are very resistant to degradation by proteases and detergents. A primary
structural component of these fibrils is CsgA protein. The most widely studied functional
amyloid is CsgA of Escherichia coli (E. coli). It is a 151 amino acid long protein, including N
terminal signaling peptide, which is proteolytically cleaved, and a core amyloid domain
transported outside the cell by CsgG protein [7]. CsgA forms amyloid fibrils along with
CsgB protein, which enhances the fibril formation [8]. The curli homologs are prevalent
among other Enterobacteriaceae, although in many cases they exhibit a large structural
diversity. The CsgA sequence consists of five imperfect repeats labeled as R1–R5 fragments,
which, in E. coli, follows a common pattern S-[X]5-Q-[X]-G-[X]-G-N-[X]-A-[X]3-Q. The
motif depends on bacterial species and it can be altered in curli of other species. Fragments
R1 and R5, as the most amyloidogenic, are critical for seeding and the curli formation in
E. coli [9,10]. The other three fragments are less prone to aggregation or non-aggregating
at all.

Despite their variability, it has been shown that even very distant CsgA homologs
can together contribute to the formation of the heterogeneous curli fibrils [11]. This
phenomenon probably occurs due to the widespread presence of imperfect repeats, which
appear more or less commonly in all CsgA and CsgA-like proteins [12].

This ability to interact with other amyloids is also a source of putative negative
effect of curli. It has been shown that CsgA produced by the gut microflora can promote
aggregation of human proteins by the phenomenon called cross-seeding, for example,
facilitating aggregation of α-synuclein or amyloid Aβ, which are involved in human
amyloid diseases [13,14]. This poorly understood phenomenon, termed “mapranosis”
(microbiota-associated proteopathy and neuroinflammation), may lead to contribution of
the microbiome to neurodegenerative diseases [15].

Currently, one of the challenges in understanding the self-assembly propensity of
CsgA is the evolutionary variability of imperfect repeats. To shed more light on the
structural determinants of the amyloid propensity of imperfect repeats, we studied the
behavior of CsgA homolog from Salmonella enterica (S. enterica), a common foodborne
pathogen that creates many challenges in medicine and food industry [16]. Its CsgA has
a slightly altered motif; one of the glycines is not always present (R1 lacking the first
glycine, R3 and R4 lacking the second one). Although it is very similar to CsgA from E. coli,
the aggregation kinetics of these two proteins may be different. Therefore, we compare
in vitro the aggregation propensities of CsgA fragments S. enterica with E. coli strain K12.
The knowledge of their properties may lead to better understanding of the principles of
functional amyloid aggregation and, thus, help in developing anti-biofilm agents [17].

2. Results
2.1. Sequence Alignment

CsgA proteins from E. coli and S. enterica are closely related homologues with 75%
of identity, as calculated by BLAST [18]. To further investigate differences between corre-
sponding fragments, pairwise alignments were performed for each pair of the fragments
(Figure 1). The alignment confirmed that the sequences were highly similar to their coun-
terparts. Almost all of the peptides share similar features: they are rather hydrophilic, with
their ends often containing charged amino acids and a highly flexible glycine rich linker in
the middle. Such an architecture suggests the propensity to form beta arch structure, which
agrees with the computational results of ArchCandy for almost all of these sequences [19]
(Table S1 in SI).
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However, their aggregation propensities may differ in terms of physicochemical
properties due to point mutations of CsgA genes. For example, their hydrophobicity (as
shown by GRAVY index score, Table S2 in SI) or pI can be changed. Mutations of aromatic
amino acids, stabilizing amyloid peptide structures by forming π stacking, are of great
importance to the aggregates [20]. Similarly, charged residues may play an important role
in the amyloid propensity of CsgA proteins, depending on their location [21–23]. Not only
the contributing residues affect the peptide aggregation susceptibility but also the sequence
order is of great importance. This fact was discovered by statistical analyses, which led to
the release of several bioinformatics predictors. The sequence alignment of corresponding
pairs from both bacterial species shows that different amyloid propensities of the CsgA
fragments could not be excluded.

2.2. Bioinformatics Analysis

We applied bioinformatics tools to analyze amyloidogenic propensity of CsgA frag-
ments with imperfect repeats from E. coli and S. enterica. The objective was identification of
possible differences in their amyloidogenic propensities, and potential impact on different
aggregation of the whole proteins. The results directed us to further in vitro studies of
the fragments.

The analysis was performed with our amyloid predictors, which showed a very high
accuracy, AmyloGram [24] and PATH [25]. Both methods were trained on hexapeptides
collected in AmyLoad [26] and Waltz 2.0 databases [27]. The only difference between
corresponding fragments was obtained for R4. In this case, despite significant similarity
of the sequences, AmyloGram provided different results. R4 fragment from S. enterica
was reported as amyloidogenic, while R4 from E. coli was reported as non-amyloidogenic.
Therefore, this fragment was selected as a candidate that may have different aggregation
propensities. For a comparison, we also applied several other bioinformatic predictors,
such as Pasta 2.0 [28], Waltz [29], AmylPred2 [30], FoldAmyloid [31], MetAmyl [32], and
Tango [33]. The results of their predictions were not unanimous (Table S1 in SI).

Since experimental data on the fragments were only published for E. coli, we verified
our predictions based on their reported aggregation propensities. None of the predictors
provided the classification results in good agreement with experimental data, which report
R1, R3, and R5 of E. coli as capable of forming aggregates [9]. The best agreement was
obtained for the R1 fragment (AmyloGram, PATH, and Waltz). The lack of agreement
between computational and experimental results may partly come from the functional
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character of these sequences. All of the presented methods were trained mostly on frag-
ments of pathological amyloids and their mutants, which somehow showed different
characteristics from functional amyloids [34,35]. However, we believe that these methods
are still sensitive enough to detect differences between highly similar fragments whose
scarce point mutations are indicated as potentially leading to changing of the aggregation
propensity. Therefore, we expected differences in amyloid aggregation of R4 fragments
from E. coli and S. enterica bacteria, which we tested experimentally.

2.3. Experimental Analysis

Spectroscopic techniques (CD, ATR-FTIR, and FT-Raman) were used to study aggre-
gation propensity of all E. coli and S. enterica fragments. These methods provide general
information about the secondary structure and allow for monitoring of the fibrillization
process [36–39]. Finally, we performed transmission electron microscopy (TEM) to analyze
morphology of the selected fragments [40].

2.3.1. Circular Dichroism

Circular dichroism (CD) spectroscopy was used to elucidate general characteristics
of the secondary structure of the CsgA fragments. CD spectra of E. coli fragments are
presented in Figure 2A. On the day of sample dissolving, for all E. coli fragments, a
minimum of ca. 200 nm could be observed in all recorded spectra, which is characteristic
of a random coil conformation. The spectra resemble the results presented for the whole
CsgA, studied by Shu et al. 2012 [41]. The authors observed that CsgA initially exhibited
random coil structure; however, after 13 days of incubation, it showed the presence of a
β-sheet structure.
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CD spectra of S. enterica fragments are depicted in Figure 2B. The spectrum of R1
fragment showed a single maximum at 198 nm and a single minimum at 217 nm, which
were characteristic of the β-sheet conformation. Analysis of R2 fragment revealed a single
minimum at 203 nm, which corresponded to the random coil. Fragment R3 displayed a
maximum at 194 nm and a broad minimum at 220 nm, which indicated the presence of
the β-sheet. R4 fragment showed a maximum at 201 nm and a single minimum at 216 nm,
which was also characteristic of the β-sheet conformation. In case of R5 fragment, the
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broad maximum at 200 nm and broad single minimum at 230 nm could also be assigned to
the β-sheet conformation.

In summary, CsgA fragments of S. enterica show two types of structures: β-sheet
conformations can be assigned to fragments R1 and R3–R5, the random coil conformation
is present in case of fragment R2. Shifting in peaks positions and a weak negative Cotton
effect, observed especially for fragments R3 and R5, can be a consequence of the aggregation
process occurring during the measurement. This was also observed with other techniques,
as we discuss further.

The results of the secondary structure analysis, based on CD spectra, indicate that the
rate of assuming the β-sheet conformation is higher in the fragments from S. enterica than
in their counterparts from E. coli. While all E. coli fragments were still in the phase of the
random coil structure, all potentially aggregating fragments of S. enterica showed β-sheet
conformations on the day of dissolving. This process seemed most advanced for R1 and
R4 fragments; however, the results for R5 and R3 fragments also indicated the onset of
amyloid aggregation.

2.3.2. ATR-FTIR

ATR-FTIR spectra in the wavenumber range of 1725–1590 cm−1 were used for a more
advanced secondary structure analysis of the CsgA fragments.

We compared the spectra of E. coli fragments obtained on the day of dissolving
(Figure 3A) with those after one month of incubation at 37 ◦C (Figure 3B). Fragments R1,
R3, and R5, on the day of dissolving, showed the main band located below 1630 cm−1,
which corresponds to cross-β amyloid architecture (Figure 3A). It indicated the presence of
aggregates [37]. These repeating units were considered as highly amyloidogenic. Wang et al.
showed that R1 and R5 fragments are critical for CsgA protein to form fibrils [9]. The
analysis of the second derivative spectrum of R3 unveiled that R3 formed more rigid and
ordered fibrils than R1 or R5. It was revealed by the location of its main negative peak
at lower wavenumbers at c.a. 1621 cm−1, as well as the band width. For fibril forming
fragments R1, R3, and R5, the Amide I band had an additional local maximum located at
approximately 1665 cm−1, which is typically attributed to the parallel β-sheet structure that
shows a high-frequency component between 1670–1660 cm−1 [42]. It can also be assigned
to turn structures [43,44], as well as loops [45]. High absorbances in that loop–turn region
are characteristic of parallel β-helix structure and observed, for example, in infrared spectra
of HET-s [46] or PrPSc [47], which are known to adopt beta solenoid conformations.
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In turn, the fragment R2 had a more complex spectral characteristic, with a broad local
maximum at 1678 cm−1 assigned to β-turns. The shoulder at 1648 cm−1 was typical of a
random coil [48]. ATR-FTIR spectrum of R2 lacked the β-sheet component below 1640 cm−1

and, due to its low absorbance below 1630 cm−1, we concluded that this fragment did
not manifest aggregation properties. These observations are consistent with CD results
(see Section 2.3.1) and with literature [49,50]. Fragments R2 and R4 from E. coli’s CsgA
are considered incapable of self-assembly into ordered amyloid fibers in vitro; albeit, it
is worth adding that Wang et al. [51] observed fibers with TEM experiments in which
R2 or R4 were incubated at 2 mg/mL at room temperature for 5 days. As expected,
peptide R4 under our experimental conditions did not manifest significant amyloidogenic
properties. However, the secondary derivative in the range of 1725–1590 cm−1 (Figure S5 in
SI) revealed the presence of β-sheet low frequency component at ca. 1628 cm−1, and high
frequency component in the range of 1710–1690 cm−1, typical of anti-parallel β-sheet [42].
The absorbance of these sub-bands was relatively low.

After 30 days of incubation at 37 ◦C we observed that Amide I bands in ATR-FTIR
spectra, registered for R1, R3, and R5 fragments of E. coli, broadened (Figure 3B). They
lost spectral signatures typical of aggregates. Nevertheless, in the second derivative, the
spectrum of R1 (Figure S6 in SI) was still clearly visible, leading to the conclusion that
the R1 fragment remained partially aggregated. Moreover, all fragments, excluding R4,
exhibited local minima at about 1693 and 1678 cm−1, assigned to antiparallel β-sheet and
β-turns, respectively. This spectral characteristic is typical of oligomers [36,42,52]. In turn,
Amide I bands in the ATR-FTIR spectra of R2 and R4 were dominated by the sub-band at
around 1644 cm−1, assigned to random structures.

We concluded that the aggregates formed by R1, R3, and R5 fragments of CsgA from
E. coli were not stable in time under studied conditions. This phenomenon can be caused
by deamination of asparagine and glutamine residues present in the fragments. This non-
enzymatic reaction leads to carboxylic acid derivatives, confirmed by higher absorption
in the range of 1725–1710 cm−1. The process is known to occur during the incubation
in vitro [53,54] and also during peptide synthesis [55]. Deamidation process is generally
slow, but it can be strengthened by experimental conditions, such as increased temperature.
In our case, two factors may have influenced the observed effect: incubation time (30 days)
and temperature (37 ◦C). After three months of the incubation process, disintegration of
E. coli fragments appeared. This observation is very interesting with regard to the fact
that CsgA protein is a functional amyloid from an organism frequently co-existing with
humans, and as such, its fibrils should not be as stable as those from pathological amyloids.

Similarly, we compared the spectra of S. enterica fragments obtained on the day
of dissolving (Figure 4A) with those measured after one month of incubation at 37 ◦C
(Figure 4B). Spectra of fragments R1, R3, R4, and R5, directly after dissolving, showed a
high intensive absorbance at about 1622 cm−1 (Figure 4A). This indicates the presence of
long and rigid amyloid fibrils [36,56]. For the R2 fragment, a broad band located at about
1645 cm−1 in the Amide I, which is characteristic of disordered proteins [57], could be
observed. After 30 days of incubation at 37 ◦C, we did not notice any significant changes
in all studied ATR-FTIR spectra in the range of 1725–1590 cm−1 (Figure 4B). Contrary to
E. coli, all S. enterica fragments maintained the same structures as they assumed directly
after dissolving. This result indicates that CsgA fragments of S. enterica are more stable
than those from E. coli. However, after 3 months of incubation at 37 ◦C, we observed that
all fragments of S. enterica also disintegrated (data not shown).
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The results from ATR-FTIR do not exactly match those obtained from CD, as we also
observed here. ATR-FTIR experiments may speed up formation of amyloid fibrils due
to interaction of peptides with the hydrophobic surface of the ATR accessory diamond.
For example, early occurrence of amyloids in the fragments of E. coli, as shown by our
ATR-FTIR experiments, could be related to the increased ratio of aggregation, not yet
observed with CD at this stage.

A summary of the Amide I spectral analysis is presented in Table 1. The corresponding
fragments are compared, including time effects. Locations of the most characteristic spectral
components show propensity of each peptide to amyloid aggregation and other details on
their secondary structures.

Table 1. Secondary structure assignments of the studied peptides with sequences from E. coli and S.
enterica on the basis of Amide I (ν(C=O) 80%, ν(NH) 20%) band in ATR-FTIR spectra. The results are
from experiments on the day of dissolving and after incubation for 30 days at 37 ◦C. Band positions
(cm−1) are presented, along with tentative assignments based on the most intense local minima of
the second derivatives.

After Dissolving 30 Days

cm−1 Assignment cm−1 Assignment

E. coli

R1 1626 aggregates 1679 turns
R2 1667 turns 1646 random
R3 1621 aggregates 1679 turns
R4 1654 random 1642 random
R5 1624 aggregates 1646 random

S. enterica

R1 1626 aggregates 1679 turns
R2 1645 random 1646 random
R3 1622 aggregates 1623 aggregates
R4 1622 aggregates 1623 aggregates
R5 1622 aggregates 1624 aggregates

We carried out principal component analysis (PCA) based on normalized ATR-FTIR
spectra after application of SG 35, in the range of 1725–1590 cm−1 (see Methods). PCA
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analysis distinguished a class of aggregates in the set of studied peptides, based on the
first three components (Figure 5 and Figure S1 in SI). Based on ATR-FTIR spectra of CsgA
fragments, the loading plot of PC1 was obtained (Figure S2 in SI). It shows that the Amide
I component at 1620 cm−1 strongly contributes to the separation of aggregates and non-
aggregates. PC2 distinguished oligomers, due to high contributions of 1690, 1680, and
1630 cm−1. These features are characteristic of anti-parallel structures [52]. The results of
PCA analysis matched those by a human expert, as presented in Table 1.
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2.3.3. FT-Raman

For further structure analysis of the long-incubated CsgA fragments, FT-Raman spec-
troscopy was applied for R1–R5 fragments of E. coli and S. enterica after 30 days of incu-
bation at 37 ◦C. This study can bring information complementary to ATR-FTIR regarding
amyloid structures. FT-Raman technique is not frequently used for studying amyloids,
although it can shed new light on structural analysis of aggregates. Results of FT-Raman
spectra of CsgA fragments from E. coli and S. enterica are presented in Figure 6, including
Amide I (1725–1575 cm−1), (second derivative spectra are available in Figure S7 in SI),
and Amide III (1375–1185 cm−1) bands (Figure S3 in SI). The main drawback of studying
peptides and proteins in aqueous solutions using FTIR spectroscopy is a strong water
absorbance band at approximately 1635 cm−1 in Amide I band. Contrary to ATR-FTIR
spectra, those from FT-Raman are usually analyzed in all these bands because there is
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no water interference in Amide I. Furthermore, different secondary structures of proteins
have more observable differences in their amide III spectra [58]. Importantly, simultaneous
analysis of two regions enables higher certainty of structure assignments.
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Raman results prove a partial deamidation of peptides corresponding to five imperfect
repeating units of CsgA from E. coli. The FT-Raman spectra of E. coli subunits in the Amide
I range are much more complex than the spectra of S. enterica, but in general, the Amide
I band positions are characteristic of β structures [59]. Four fragments (R1, R3, R4, R5)
of E. coli assumed a high percentage of β-sheet structures, which is indicated by the
presence of a second derivative minimum at about 1670 cm−1 [60,61]. Bands in the range
of 1695–1680 cm−1 are usually assigned to the β-turn structure [44]. However, disordered
proteins also exhibit high contribution in that region [62]. Therefore, the R2 fragment
of E. coli showed a broad Amide I band with the maximum at about 1691 cm−1, with
an associated (shoulder) band at 1647 cm−1. The assignment of the sub-band at around
1645 cm−1 is debatable in literature, but in our opinion, it should be assigned to disordered
structures. The appearance of additional Amide I mode at 1645 cm−1 is correlated with
the strongly enhanced band of 1245–1255 cm−1 in the Amide III region (Figure S3 in SI),
typically attributed to unordered structures.

Additionally, all spectra, except for R2, revealed higher intensities at about 1600 cm−1,
due to surface-enhanced Raman spectroscopy (SERS) effect, which occurred upon the
adsorption of the peptide on metal surfaces [63]. This broad band can be mainly attributed
to ring modes of phenylalanine and tyrosine [64], but it also overlaps with other spectral
features in that region, i.e., Amide II. The most intensive band at ~1600 cm−1 was observed
for R1 and R5 fragments (Figure 6), which indicates the presence of the most rigid aggre-
gates. The differences in its intensities can indicate various exposures of aromatic amino
acids to the external environment, most probably caused by changes in tertiary structure
of peptides during the aggregation process [65]. The analysis of Amide III (Figure 3A,
Table S3 in SI) confirmed that all fragments possessed dominant β conformation but, in
addition, revealed some differences in secondary structures between studied fragments.
While fragments R1, R2, R4, and R5 had higher intensities near 1267 cm−1, which corre-
sponded to the β-turns, the location of an amide III band at 1250 cm−1 obtained for R3 was
typical of random and loose β structures. In all second derivative spectra in the range of
1375–1195 cm−1, the minimum at ~1230 cm−1 was present. It was most intensive in the
spectrum of R5, and it could be assigned to the β-sheet structure [66].
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In FT-Raman spectra of S. enterica, we observed that all peptides exhibited Amide I
band maxima near 1670 cm−1, which is typical of β-structures [67,68]. As mentioned above,
β-turns give an additional contribution to the spectra in the range of 1715–1675 cm−1.
For the R2 fragment of S. enterica, the Amide I band was very broad with the full width
at half maximum (FWMH) = 60 cm−1, indicating a complex structure (Table S4 in SI).
The narrow (FWMH is 19 cm−1) and intensive Amide I band, as of R1, indicated the
presence of well-ordered β-strands [38] (Figure 6B). The R3 fragment also exhibited a
complex spectrum; however, the dominant maximum at 1671 cm−1 marked the signature
of β-sheet conformation. All Amide bands of R3 consisted of more sub-bands than bands
from other peptides (Figure 6B, Figure S3B in SI). Additionally, the spectrum had an
increased intensity at about 1600 cm−1, which can be interpreted as a contribution from
aggregates. The analysis of Amide III band confirms all above observations (see Figure S3,
Table S3 in SI). The wavenumber range of 1375–1185 cm−1 was dominated by signatures
typical of β structures. Fragments R4 and R5 exhibited intensive features at 1225 cm−1,
which arose from β-sheet conformations [61,69].

A summary of the spectral analysis based on FT-Raman experiments is presented in
Table 2. Locations of the most characteristic spectral components show propensity of each
peptide to certain secondary structures.

Table 2. Main band positions of Amide I in FT-Raman spectra of studied peptides in aqueous solution
after 30 days of incubation at 37 ◦C. Band positions (cm−1) along with tentative assignments based
on the most intensive local minima of the second derivatives.

30 Days

cm−1 Assignment

E. coli

R1 1668 β-sheet
R2 1691 turns
R3 1667 β-sheet
R4 1669 β-sheet
R5 1668, 1680 β-sheet/turns

S. enterica

R1 1670 β-sheet
R2 1670, 1697 β-sheet/turns
R3 1671 β-sheet
R4 1670 β-sheet
R5 1670 β-sheet

Summarizing the results, FT-Raman spectroscopy showed that R1, R3, and R4 frag-
ments of E. coli after 30 days of incubation contained a high number of β-sheet conforma-
tions, while R2 fragments had a dominant β-turn conformation. The presence of β-turns
was also detected in R1, R4, and R5. Only R1 and R5 fragments showed some symptoms of
amyloid aggregates. However, the Amide I band in FT-Raman spectrum registered for the
R5 fragment of E. coli was typical of a random coil. It may indicate that fragment R5 formed
less structured aggregates in comparison to the structure of R1. In the case of S. enterica, R1,
R3–R5 fragments formed amyloid aggregates. However, R3 formed amyloid aggregates
with additional contribution of other complex secondary structures. R2 had a complex
non-aggregated secondary structure. Spectral signatures for this fragment are typical of a
disordered conformation. R1, R4, and R5 represented a structure with dominant β-sheets.

Based on FT-Raman results, it is evident that all S. enterica CsgA sequence repeats show
higher stability than corresponding fragments of E. coli. The fibril forming units exhibited
intensive and narrow Amide I bands located at ~1670 cm−1, while in the case of E. coli,
broad and complex FT-Raman signatures were observed in the range of 1725–1590 cm−1.
FT-Raman findings are consistent with previously presented results from ATR-FTIR.
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2.3.4. Transmission Electron Microscopy

To observe the morphology and size of aggregates from S. enterica fragments, which
have not been studied and published so far, we used transmission electron microscopy
(TEM) [70,71]. Presence of fibrils was observed in cases of R1, R4, and R5 fragments. The
observed fibrils were organized into rigid and high-ordered structures that ranged from
10 nm to 100 nm in diameter and from 500 nm to more than 1 µm in length. Interestingly,
the morphology of fragment R3 differed from other fragments of S. enterica. The aggregates
were composed of many connected oligomers/monomers. The observation matches the
results from FT-Raman technique, which indicated a complex structure. This result shows
that fragment R3 of S. enterica does not have as strong amyloid propensity as R1 and R5,
similar to R3 of E. coli [49]. In turn, the micrographs of the R2 fragment did not reveal
fibrils (Figure 7). These results are in agreement with ATR-FTIR and FT-Raman techniques,
which also classified R2 as a non-aggregating fragment.
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2.4. Comparative Analysis of R4 Fragments from S. enterica and E. coli

Different prediction results from bioinformatics tools indicated that the R4 fragment
may differ in the aggregation properties for sequences from E. coli and S. enterica. Our
spectroscopy and microscopy results confirmed the computational prediction and demon-
strated that R4 is the only fragment with different amyloid characteristics. Therefore, we
carried out additional analyses regarding both sequences of R4.

2.4.1. ThT Assay

To track the fibrillation kinetics, we performed a thioflavin-T (ThT) fluorescence as-
say [72]. The results are presented in Figure 8. A significant increase in the fluorescence
emission was observed for S. enterica, which confirmed fibril assembly [73]. The fluores-
cence of R4 of S. enterica was about nine times higher than that of E. coli fragment. The lag
phase was not observed there, which indicated rapid aggregation. The fibrillation steps of
R4 of S. enterica indicated immediate elongation phase and saturation phase.
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2.4.2. Comparative Transmission Electron Microscopy Micrographs

The micrographs of R4 fragment from E. coli, measured on the day of the dissolving,
did not reveal fibrils (Figure 9A). This result contrasted with the micrographs of S. enter-
ica, which showed fibrils (Figure 9B). However, we made a very interesting observation
regarding R4 fragment of E. coli. The fibrils of R4 were also observed for E. coli, but only
after seven days of incubation at 37 ◦C (Figure 9C). Our results show that the R4 fragment
has an amyloid propensity in both bacterial species; however, the aggregation process of
isolated S. enterica fragments is much faster than that in E. coli.
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Figure 9. Comparison R4 fragments. (A) E. coli on the day of dissolving (B) S. enterica on day of dissolving (C) E. coli after
7 days of incubation in 37 ◦C. Images registered at the magnification of 200 nm. Peptide concentration was 0.5 µM.

3. Discussion

Bacteria produce biofilms to create an environment protecting them from adverse
conditions using amyloid forming fibrils, such as CsgA curli protein. Understanding of the
self-assembly propensity of CsgA can be based on evolutionary variability of imperfect
repeats. The structural and functional nature of the CsgA protein is defined by R1–R5
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fragments, representing non-perfect repeats of amino acid sequences. In this work we
compared aggregation propensities of CsgA fragments in vitro from E. coli with those
from S. enterica, not reported so far. The results may help in better understanding of the
principles of curli aggregation and potential effects on human health, especially in the case
of salmonellosis.

Based on previous publications on E. coli [9,49], it was expected that R1 and R5 frag-
ments are the aggregation seeds, driving the amyloid propensity of CsgA. Fragment R3 is
also capable of aggregation, while R2 and R4 are non-aggregating. Tendency to form amy-
loid fibrils is defined by certain gate-keeper residues, specific to each fragment. Generally,
the repeat fragments are defined by the common motif: S-[X]5-Q-[X]-[G{Ec}/X{Se}]-[X]-
[G{Ec}/X{Se}]-N-[X]-A-[X]3-Q, where {Ec} and {Se} indicate differences in motifs character-
istic of E. coli and S. enterica, respectively. The discovered gate-keepers are located at the
mutating positions, denoted here with [X].

One of those gate-keeper residues, observed in R1 fragment of E. coli, is a negatively
charged glutamic acid (Q) at its position 7 and aspartic acid (N) at position 12. These
positions are not mutated in S. enterica. It should also be noted that negatively charged
aspartic acid (N) at position 23 is replaced by positively charged lysine (K) in S. enterica.

The non-amyloid nature of R2 is secured by the presence of glycine (G) at positions
13 and 17, as well as negatively charged aspartic acid (D) at position 15. This pattern is
identical in both bacterial species, which suggests that R2 keeps its non-amyloid character
also in S. enterica.

Fragment R3, which is a weak amyloid in E. coli, is slowed down in its amyloid
susceptibility by two gate-keeper residues: aspartic acid (D) at positions 4 and 17. One of
these residues is mutated in S. enterica—aspartic acid at position 4 is replaced by glutamic
acid (D4E). This substitution should lead to stronger amyloid propensity in R3 from
S. enterica when compared to its counterpart from E. coli.

An even greater change concerning gate-keeper residues appears in the R4 fragment.
Here, aggregation in E. coli is slowed down by glycine (G) at position 13 and aspartic acid
(D) at position 17. Both positions are substituted in S. enterica, glycine by alanine (G13A)
and aspartic acid by glutamic acid (D17N). This substitution may lead to increased amyloid
propensity in R4 from S. enterica.

Strong amyloid propensity of R5 from E. coli was assigned to negatively charged
glutamic acid (N) residues at positions 4 and 12 and histidine (H) at position 17. Fragment
R5 in S. enterica has two substitutions at these positions; negatively charged aspartic acid is
replaced by uncharged methionine (N4M) and positively charged histidine by negatively
charged aspartic acid (H17N). The substitutions of gate-keeper residues could affect the
amyloid nature of R5.

We studied self-aggregation and secondary structures of the repeat fragments of S.
enterica and E. coli and comparatively analyzed their potential effects on these proteins in
a bacterial biofilm. Different methods were applied, including bioinformatics prediction,
ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism, and transmission
electron spectroscopy.

Bioinformatics predictors were not unanimous in their results and, unfortunately, not
very accurate when confronted with reported results from experimental studies. This could
have been due to the functional role of CsgA. Functional amyloids are scarcely represented
in reference datasets on which computational predictors of amyloids are based. Therefore,
a statistical sequence profile of functional amyloids is most probably significantly different
from that of a pathological amyloid. This conjecture comes from different structural details
of the two classes of amyloids, their different temporal characteristics, and different stability
and controllability by environmental conditions and interactions. However, currently
available methods are not totally useless regarding functional amyloids; they are capable
of guiding a more informed search. In our studies, bioinformatic method AmyloGram
predicted a different amyloid propensity of R4 fragments from E. coli and S. enterica,
indicating that non-amyloid R4 from E. coli changes its nature in S. enterica, where it may be
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aggregating. The analysis of mutations in its gate-keeper residues supported this possibility.
Although the R4 fragment of E. coli was previously reported as non-aggregating in similar
conditions [9], there were no studies of R4 from S. enterica.

The clue from computational prediction was confirmed in our experiments—R4 from
S. enterica turned out to be strongly aggregating. ThT kinetic studies showed very fast
aggregation of R4 from S. enterica, in which we were not able to observe a lag phase.
It contrasted with the results of the ThT study of R4 from E. coli, which did not show
aggregation. The results were consistent with ATR-FTIR studies, showing more aggregates
in R4 from S. enterica and the prevalence of random coils in E. coli. However, our TEM
studies, taken after 7 days of incubation, showed that the initial lack of aggregates of R4
from E. coli did not reflect its true nature. R4 also forms amyloid fibrils, but the process
is much slower than in S. enterica. Aggregation of R4 was also reported in [51], where
its concentration was much higher than typically used in such studies, which indicated
some amyloid propensity of the peptide. Nevertheless, after 30 days of incubation, the
aggregates of R4 from E. coli disintegrated. The general structure was random coil, however,
the presence of oligomers could not be excluded. Stability of R4 from S. enterica turned out
differently—the aggregates were unchanged after 30 days, as indicated by ATR-FTIR and
FT-Raman studies.

We note that, in aggregation prone peptides, charged residues were observed mostly
in terminal parts. Additional arguments for the importance of the charge distribution can
be found in the change of aggregation propensity of the R4 fragment, observed from our
study. In its sequence derived from E. coli, two charged amino acids are located outside the
terminal or linker region (6K and 17D). However, in its strongly aggregating counterpart
form S. enterica, they are no longer present. The replacement of amino acids at positions
17 and 21 leads to the change in charge distribution. This, alongside the loss of charge
at position 6, leads to the structure with all charged amino acids at the same side of the
folded peptide, and outside the core of the predicted β-arch. Combined with the loss of
gate-keeper residues, it could be the key reason for the different amyloid propensity.

The experimental techniques confirmed self-aggregation of R1, R3, and R5 fragments
for both species, as previously reported for E. coli, and now also shown by ATR-spectra and
TEM micrographs for S. enterica. We also observed a much weaker aggregation propensity
of R3 than R1 and R5 fragments, as previously reported by other studies for E. coli [49].
The ratio of aggregation was significantly lower for fragments of E. coli, as obtained from
CD spectra and ThT-measurements. However, disintegration of amyloid fibrils in E. coli
proceeded faster, as shown by ATR-FTIR and FT-Raman techniques for the fragments after
30 days of incubation.

The multitude of techniques applied in our studies also revealed other more subtle
details regarding the aggregation processes and secondary structures of the repeating
fragments, indicating also the presence of more complex structures formed of some frag-
ments, as well as their evolution over time. All spectroscopy techniques confirmed the
presence of β-harpin structure of monomers in general confirmation of CsgA fragments.
All fragments, except R2, exhibited signatures of turns and β-sheet structures in vibra-
tional techniques. These results are in agreement with previously published computational
models of CsgA [74,75] and ssNMR structure [76].

We also showed that FT-Raman can be used as a complementary technique to infrared
spectroscopy in amyloid studies [77]. It provides information about secondary structure
and, additionally, about tertiary structure—revealing exposure of aromatic amino acids to
the external environment. The undoubted advantage of Raman spectroscopy is the fact
that the analysis of the well-resolved Amide III band provides complementary structural
information to the Amide I. Using the FT-Raman technique, we could observe that R3
fragment of S. enterica had more complex structures than other fragments of CsgA. More
sub-bands were present in the second derivative of R3 spectra than in those of other
fragments. TEM images confirmed that the fibrils of R3 were morphologically distinct.
The morphological differences can be caused by location of charged amino acids in the
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sequence. The R3 fragment contains additional positively charged amino acids in the linker
region and negatively charged aspartic acid residue at position 17.

Our studies showed that amyloid structures of CsgA repeats are more rapidly formed
and more stable in S. enterica than those in E. coli, which has not been demonstrated so far.
This result seems to be in accordance with in vitro aggregation of different curli variants,
where the self-assembly of CsgA from E. coli is slower than that from S. typhimurium [11].
This phenomenon might be related to the general lifestyle of the Salmonella genus, where
biofilm formation seems to be an important long-term colonization strategy [78]. Quicker
self-assembly of CsgA could provide an advantage towards the prolonged infection.

Although there are no relevant reports concerning human amyloid diseases associated
with salmonellosis, some clues could be derived from animal studies. As reported in [79],
bacterial infection with Salmonella Typhimurium of the brains of transgenic 5XFAD mice
resulted in rapid seeding and accelerated β-amyloid deposition, which closely colocalized
with the invading bacteria. This finding could support a hypothesis that β-amyloid may
play an immuno-protective role against bacterial infections and drive amyloidosis as a side
effect. However, another mechanism may also be in play—a cross-talk between amyloid
curli in bacterial biofilm and β-amyloid peptides where interactions of human proteins with
bacterial curli accelerate formation of pathological aggregates. Therefore, understanding
of amyloid propensity of Salmonella curli could be instrumental in studying aspects of
human amyloid diseases.

Another important novelty in our studies is simultaneous use of a combination of
several different experimental techniques. This approach enabled comparing different
aspects revealed by each of the methods. In particular, FT-Raman spectroscopy was applied,
which is very infrequently used in amyloid research. We also studied temporal changes in
amyloid characteristics, regarding the curli from both species, not reported so far.

Further studies are required to shed more light on the surprising efficiency of self-
assembly of CsgA produced by S. enterica, especially, effects of the sequence variability
on the whole protein characteristics in vivo. The results would contribute significantly to
better understanding of the curli aggregation.

4. Materials and Methods
4.1. Sample Preparation

CsgA S. enterica and E. coli fragments sequences were provided by CASLO (CASLO
ApS, Denmark) (Table S4 in SI). Additionally, fragments: R2, R5 and partially R3 of E.
coli of strain K12, were synthesized “in-house”. The synthesis was carried out with an
automated solid-phase peptide synthesizer (Liberty Blue, CEM) using rink amide AM
resin (loading: 0.59 mmol/g) (Table S5, Figure S6 in SI). Fmoc deprotection was achieved
using 20% piperidine in DMF for 1 min at 90 ◦C. A double-coupling procedure was
performed with 0.5 M solution of DIC and 0.25 M solution of OXYMA (1:1) in DMF for
4 min at 90 ◦C. Cleavage of the peptides from the resin was accomplished with the mixture
of TFA/TIS/H2O (95:2.5:2.5) after 3 h of shaking. The crude peptide was precipitated
with ice-cold Et2O and centrifuged (9000 rpm, 15 min, 4 ◦C). Peptides were purified
using preparative HPLC (Knauer Prep) with a C18 column (Thermo Scientific, Hypersil
Gold 12 µ, 250 mm × 20 mm) with water/ACN (0.05 TFA) eluent system. The purity of
synthesized peptides was in the range between 95% and 99.6%. A sample of each peptide
was dissolved in 490 µL of 0.01 M NaOH and vortexed for one minute. Then, 450 µL of
phosphate-buffered saline (PBS) pH 7.2 was added, followed by 60 µL of Milli-Q® (Merck
& Co. Inc., USA) water, pH 6.9. The final concentration of the aliquot was about 500 µM,
pH 7.4. To obtain monomers, each sample was filtered through a 0.2 µm PVDF syringe
filter (Table S2 in SI, prepared based on the MIRRAGGE protocol [80]).

Initial monomerization of aggregates is a necessary step; however, it may affect the
results with regard to their full validity when they are extrapolated to actual behavior of the
protein. The lack of initial protofibrils, which constitute transient pre-fibrillar intermediates,
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may affect the pathway of further aggregation process. The filtration method lowers the
effective concentration of the peptides.

4.2. Bioinformatic Analysis

The aggregation propensity of studied peptides was assessed using nine bioinfor-
matics methods: AmyloGram [24], PATH [25], Pasta2.0 [28], Waltz [29], AmylPred2 [30],
FoldAmyloid [31], MetAmyl [32], Tango [33], and ArchCandy [19]. Each predictor was
used with its default parameters. Pairwise alignments of corresponding regions in E. coli
and S. enterica were visualized using Jalview software [81].

4.3. Circular Dichroism (CD)

CD spectra were recorded on JASCO J-815 at 20 ◦C between 250 and 190 nm in PBS
buffer pH = 7.2 with the following parameters: 0.2 nm resolution, 1.0 nm bandwidth,
20 mdeg sensitivity, 0.25 s response, 50 nm/min scanning speed, and 0.02 cm cuvette path
length. The sample concentration was 500 µM. The CD spectra of the solvent alone was
recorded and subtracted from the raw data. The CD intensity is given as mean residue
molar ellipticity (θ [deg × cm2 × dmol−1]). Spectra were smoothened and plotted using
Origin 2020b software.

4.4. Attenuated Total Reflectance—Fourier-Transform Infrared (ATR-FTIR)

FTIR studies were performed using Nicolet 6700 FTIR spectrometer (Thermo Scientific,
USA) with ATR accessory and heated diamond top-plate (PIKE Technologies), continuously
purged with dry air. Each sample of 10 µL of peptide aqueous solution was dropped directly
on the diamond surface and allowed to dry out. All ATR-FTIR spectra were obtained in
the range of 3600–400 cm−1. For each spectrum, 512 interferograms was co-added with
4 cm−1 resolution at constant temperature 22 ◦C [71.6 F]. Directly before sampling, the
background spectrum of diamond/air was recorded as a reference (512 scans, 4 cm−1). We
used 500 µM concentration, which was essential to obtain a good signal-to-noise ratio. The
raw data are shown in Tables S7 and S8 in SI.

4.5. FT-Raman

Raman spectra were carried out using a Nicolet NXR 9650 FT-Raman spectrometer
with MicroStage extension equipped with Nd:YVO4 laser (1064 nm, 500 mW) as an excita-
tion source and InGaAs detector. A drop of 10 µL of each sample was deposited on the
gold surface and dried under laser irradiation. All FT-Raman spectra were acquired in the
range of 3700–0 cm−1 with 4 cm−1 resolution by averaging 1024 scans. The raw data are
shown in Table S9 in SI.

4.6. Spectral Analysis

The spectra were analyzed using OriginPro 2020b (OriginLab Corporation, USA). The
analysis included spectra baseline correction, smoothing using the Savitzky–Golay filter
(polynomial order 2, widow size 35, SG 35) [82], normalization of spectra relative to Amide
I band (ATR-FTIR), or deformation vibrations of CH2 group, at 1450 cm−1 (FT-Raman).

PCA was performed on the second derivative of the Amide I region of the spectra
(1725–1590 cm−1) using Scikit-learn Python package [83]. Matplotlib [84] Python package
was used for visualization.

4.7. Thioflavin T (ThT) Fluorescence Assay

The fluorescence of each well was read by a microplate reader CLARIOstar, as well as
BMG LABTECH at 25 ◦C with 30 s shaking every 58.8 s during 244.85 min measurements.
The samples containing 10 µL of 500 µM peptide and 90 µL of 500 µM ThT solution were
mixed in a 96-well plate. The excitation wavelength was set at 440 nm and emission at
480 nm. Each group of experiments contained six parallel samples, and the data were
averaged after measurements.
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4.8. Transmission Electron Microscopy (TEM)

Imaging was performed using a transmission electron microscope Hitachi H-800
(Hitachi HighTech, Japan) on accelerating voltage of 150 kV. Negative stained samples were
prepared by applying a 4 µL drop of solution containing 0.5 µM peptide in water on glow
discharged carbon on copper grid (Agar S160, Agar Scientific Ltd, United Kingdom). After
1 min of adhesion, an excess of the material was blotted, and 2% uranyl acetate was applied
for 1 min before blotting. The samples were allowed to dry under normal conditions for at
least 1 h.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22105127/s1, SI: Table S1: Amyloidogenicity prediction results. Where 0 denotes non-
amyloid, 1 stands for amyloid., Table S2: MIRRAGGE, Figure S1: Scree plot of PCA from ATR-FTIR
spectra., Figure S2: Loading plot of PCA analysis as is resulted from the ATR-FTIR data., Figure S3:
Normalized FT-Raman spectra of CsgA protein fragments with the second derivatives spectra
smoothed 2 times with SG 35 in the wavenumber range of 1375–1185 cm−1 (Amide III). (A) Spectra
for E. coli fragments after 30 days of incubation at 37 ◦C, (B) Spectra for S. enterica fragments after
30 days of incubation at 37 ◦C., Table S3: Main band positions of Amide III in FT-Raman spectra of
studied peptides in aqueous solution after 30 days of incubation at 37 ◦C. Band positions (cm−1)
along with tentative assignments based on the minima of the second derivatives. Bold values indicate
the most intensive local minima., Table S4: Full width at half maximum (FWHM) of Amide I in
the FT-Raman., Table S5: Peptides analytical data purchased from CASLO., Table S6: Peptides
analytical data synthesized “in house”., Figure S4: Analytical HPLC chromatograms of “in house”
studied peptide., Table S7: Raw ATR-FTIR spectra of E. coli fragments in the range of 3600–900 cm−1,
Table S8: Raw ATR-FTIR spectra of S. enterica fragments in the range of 3600–900 cm−1, Table S9: Raw
FT-Raman spectra of E. coli fragments in the range of 3600–600 cm−1, Figure S5: ATR-FTIR second
derivatives spectra of E. coli fragments in the wavenumber range of 1725–1590 cm−1, smoothed
twice with SG 35 (see Methods). (A) on the day of the dissolving (B) after month incubation at 37 ◦C.
Peptide concentration was 500 µM, Figure S6: ATR-FTIR second derivatives spectra of S. enterica
fragments in the wavenumber range of 1725–1590 cm−1, smoothed twice with SG 35 (see Methods).
(A) on the day of the dissolving (B) after month incubation at 37 ◦C. Peptide concentration was
500 µM, Figure S7: FT-Raman second derivatives spectra, smoothed twice with SG 35 (see Methods),
in the wavenumber range of 1725–1575 cm−1. (A) Spectra for E. coli fragments after 30 days of
incubation at 37 ◦C, (B) Spectra for S. enterica fragments after 30 days of incubation at 37 ◦C. Peptide
concentration was 500 µM.
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Abstract How the cuticles of the roughly 4.5 million species of ecdysozoan animals are 
constructed is not well understood. Here, we systematically mine gene expression datasets to 
uncover the spatiotemporal blueprint for how the chitin- based pharyngeal cuticle of the nematode 
Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression 
patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, 
catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross- linkers, 
and homologs of amyloid regulators subsequently peak in expression. Forty- eight percent of the 
gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), 
many of which belong to four distinct families whose transcripts are expressed in overlapping waves. 
These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four 
families have sequence properties that drive phase separation and we demonstrate phase sepa-
ration for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle 
construction and highlights the massive contribution that phase- separating materials make to the 
structure.

Editor's evaluation
Cuticles are specialized extracellular matrices that cover the bodies of ecdysozoans, which make up 
85% of all animals, and how cuticles are formed is very poorly understood, in particular in light of the 
fact that cuticles are shed and regrown as animals grow. The authors present a comprehensively and 
carefully curated resource of the components of the pharyngeal cuticle of C. elegans and provide a 
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spatiotemporal framework to understand cuticle assembly. In doing so, the authors propose a func-
tion for a large class of intrinsically disordered proteins (IDPs). The significance of this work is high 
because our understanding of both cuticle formation and of IDPs is poor.

Introduction
Over 85% of living animal species belong to the superphylum ecdysozoa. This group includes nema-
todes, arthropods, tardigrades, and five other phyla (Telford et al., 2008; Aguinaldo et al., 1997). 
They are defined by having a common ancestor and a specialized extracellular matrix that covers their 
body called the cuticle. The ecdysozoan cuticle is shed and regrown to accommodate juvenile growth 
in a process called ecdysis or molting.

Cuticle shape is patterned by the tissue beneath it, but also takes on additional diversity beyond 
the underlying tissue shape. One example of this structural diversity is the mouthparts of nematodes. 
Many carnivorous nematodes and nematode parasites of animals have cuticle- based teeth that bite 
into their prey or host (Sieriebriennikov and Sommer, 2018; John and Petri, 2006). Nematode 
parasites of plants have needle- like cuticle stylets that pierce plants and act as a syringe to deposit 
effectors and suck out vital nutrients (Mejias et al., 2019). Bacterivorous nematodes, like the model 
nematode Caenorhabditis elegans, have cuticle grinders that pulverize bacteria into digestible bits 
(Sparacio et al., 2020). These specialized mouthparts are variations of the cuticle that lines the ante-
rior alimentary tract. Despite this diversity in form and the importance of the cuticle to most animals, 
a spatiotemporal blueprint for cuticle construction is lacking. Here, we provide such a blueprint by 
mining published datasets of C. elegans gene expression.

All epithelia in C. elegans that would otherwise be exposed to the environment, except the intes-
tine, are protected by a cuticle. These include the body cuticle that protects the hypodermis (aka 
epidermis), the anterior alimentary cuticle that reinforces the lumen of the buccal cavity and pharynx, 
and other cuticles that protect the rectum, vulva, and excretory pore tissues (Altun and Hall, 2020). 
Here, we will refer to the anterior alimentary cuticle as the pharyngeal cuticle.

The non- chitinous body cuticle has multiple layers that include an outer carbohydrate- rich glyco-
calyx, a lipid- rich epicuticle, and multiple inner collagenous layers (Altun and Hall, 2020; Page and 
Johnstone, 2007; Cox et al., 1981). By contrast, the pharyngeal cuticle is not collagenous (Altun 
and Hall, 2020; Cox et al., 1981) and instead contains a chitin- chitosan matrix that likely helps main-
tain luminal integrity (Zhang et al., 2005; Heustis et al., 2012). The pharyngeal cuticle is layered 
(Sparacio et al., 2020; Wright and Thomson, 1981), but the molecular composition of the different 
layers is unknown. Like other ecdysozoans, C. elegans sheds its cuticles at the end of each larval stage. 
As the old cuticle is being shed, a new cuticle is built underneath, and the next developmental stage 
ensues (Sparacio et al., 2020; Lazetic and Fay, 2017). C. elegans adults do not molt.

In addition to chitin, the pharyngeal cuticle contains a group of largely disordered proteins called 
the APPGs (also known as the ABU/PQN Paralog Group) (George- Raizen et al., 2014). The APPGs 
are low complexity (i.e., they have a biased composition involving a limited set of amino acids) and 
have been described as prion- like (Michelitsch and Weissman, 2000) and potentially amyloidogenic 
(George- Raizen et al., 2014). An examination of the expression pattern of five APPGs showed that 
all five are expressed in cells that surround the pharyngeal cuticle and that APPG::GFP fusion proteins 
are incorporated into the pharyngeal cuticle (George- Raizen et al., 2014). The disruption of two of 
these genes exhibits feeding phenotypes consistent with disruption of this cuticle (George- Raizen 
et al., 2014). In this study, we find the APPGs to be one of several groups of proteins dominated by 
large intrinsically disordered regions (IDRs) with low- complexity sequences that are likely secreted into 
the developing pharyngeal cuticle.

IDRs are defined here as a 30 or more continuous residues whose primary sequence fails to form a 
stereotypical stable tertiary structure and instead rapidly interconverts between heterogenous confor-
mations (van der Lee et al., 2014). Despite lacking ordered structure, IDRs can interact with other 
IDRs through local areas of hydrophobicity, complementary charge, hydrogen- bond formation, and 
pi- stacking interactions along the respective peptide chains (Vernon and Forman- Kay, 2019). IDRs 
often harbor repeating sequence features that can facilitate the formation of multivalent interac-
tion networks with multiple binding partners (Vernon and Forman- Kay, 2019). Depending on the 
local environment, multivalent IDRs, and particularly low- complexity IDRs, can phase separate to 
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form liquid–liquid phase- separated droplets (LLPS) (i.e., liquid condensates) or gels, which can then 
transition to more solid structures, including fibers (Mittag and Parker, 2018; Banani et al., 2017). 
LLPS has been shown to be an important first step in the self- assembly of IDR- rich proteins into the 
extracellular matrices of insects, arachnids, and molluscs (reviewed in Muiznieks et al., 2018). For 
example, IDR- rich proteins that form liquid condensates fill a porous chitin- based matrix in a key step 
of squid beak development (Tan et al., 2015). Given that the affinity of any one interaction along an 
IDR is relatively weak, the ability of IDRs to form these phase- separated networks is easily modulated 
by a variety of factors, including pH, ions, temperature, protein concentration, and post- translational 
modifications (Murray et al., 2017).

Here, we describe the spatiotemporal logic of pharyngeal cuticle construction that we have uncov-
ered by mining published mRNA expression datasets and canonical amyloid and chitin- binding dyes. 
We identify six families of low- complexity proteins that are likely secreted into the developing cuticle, 
including the IDPAs, IDPBs, and IDPCs, each of which are described for the first time here, and the 
APPGs, NSPBs, and the FIPRs. These six families peak in expression level in successive waves over 
the course of each larval stage. Computational analyses predict that the IDPA, IDPB, IDPC, and APPG 
families, and 12 other singletons are IDR- rich proteins capable of phase separation. We speculate 
that the malleable properties of the disordered phase- separating proteins are especially suited to a 
flexible cuticle that must be rapidly destroyed and reconstructed during molting.

Results
Validating fluorescent dyes as probes of pharyngeal cuticle structure
Earlier transmission electron microscopy of the C. elegans pharynx cuticle revealed it to be a complex 
structure that changes in character along its anterior–posterior axis (Sparacio et al., 2020; Wright 
and Thomson, 1981; White et  al., 1986; Figure  1). To further characterize its structure, we first 
sought to validate dyes as probes of the cuticle. Congo Red (CR) fluoresces red and binds to amyloid 
oligomers, protofibrils, and fibrils (Bennhold, 1922; Wu et al., 2012) and has been previously shown 
to stain the cuticular grinder of the pharynx (George- Raizen et al., 2014). Thioflavin S (ThS) increases 
in blue fluorescence emission upon binding amyloid structures (Vassar and Culling, 1959). Calcofluor 
white (CFW) fluoresces deep blue and is used as a chitin probe in other systems (Roncero et al., 
1988). Eosin Y (EY) is a yellow- red fluorescent dye that binds chitosan, which is the deacetylated form 
of chitin (Baker et al., 2007).

We confirmed that the four dyes specifically bind components within the pharyngeal cuticle in two 
ways. First, we performed pulse- chase experiments with the dyes to determine whether the dye’s 
fluorescent signal would be lost as the larvae shed their old cuticle during their transition to the next 
developmental stage (see ‘Materials and methods’ for details). After the 18 hr chase, very few animals 
who were initially L3s had CFW, EY, CR, or ThS signal (Figure 2, Figure 2—figure supplement 1). By 
contrast, the dyes’ signal persisted in animals that were initially young adults (Figure 2). The loss of 
the four dyes from the larvae but not adults in the pulse- chase experiments indicates that the dyes 
bind the pharyngeal cuticle.

Second, we tested whether the dyes bind the pharyngeal cuticle after the cuticle has separated 
from the animal, the attachment of which persists in mlt- 9(RNAi) mutants (Frand et al., 2005). We 
found that all four dyes bind the exterior pharyngeal cuticle of mlt- 9(RNAi) animals (Figure 2S–X). 
As a positive control, we find that GFP- tagged ABU- 14 is retained in the shed pharyngeal cuticle 
(Figure 2Y). These data establish CR, ThS, CFW, and EY as specific probes of the pharyngeal cuticle.

Cuticle dyes stain distinct structures within the pharyngeal cuticle
We examined the colocalization of the four dyes in wildtype animals and correlated the resulting 
patterns to the ultrastructural features observed in a series of unpublished TEM images by Kenneth 
A. Wright and Nicole Thomson (Wright and Thomson, 1981; Figure 3). These TEM images show 
that the cuticle of the buccal cavity and the channels is a mixture of electron- light and electron- dense 
(dark) material, with the dark material forming circumferential ribs (white arrows) and ‘flaps’ (yellow 
arrows).

Two features suggest that the chitin- binding dyes may bind components within the electron- light 
material. First, the expansive electron- light material at the anterior half of the buccal cuticle correlates 
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Figure 1. The pharyngeal cuticle and surrounding cells. (A) A schematic of the relative position of the C. elegans 
pharynx (green). (B) A schematic of the pharynx. The image of the outer cells is transparent, revealing the 
pharyngeal cuticle underneath. The 5 cells of the gland and the 20 pharynx- associated neurons are not shown. 
Each of the cell types are labeled followed by individual number of cells (c) and nuclei (n). aa, anterior arcade 

Figure 1 continued on next page
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with the expanded CFW and EY signal (orange arrows in Figure 3A and E). Second, CFW and EY 
brightly stain a prominent collar at the base of the buccal cavity (green arrows in Figure 3A and E). 
The amyloid- binding dyes stain the collar less (Figure 3B and C), and ABU- 14::GFP fails to mark the 
collar (Figure 3D). In the TEM images, this collar is composed of light material. Hence, the electron- 
light material is likely enriched with chitin.

The CR dye and the ABU- 14::GFP localize to the cuticle flaps (yellow arrows in Figures 1E and 
3B and D), which are composed of the darker electron- dense material in the TEM (Figure 3E). The 
dark material of the flaps is contiguous with the dark ribbing of the buccal cuticle and the luminal- 
facing coating of the cuticle, all of which encapsulate the less electron- dense material (Figure 3E). An 
analogous organization is present in the cuticle that lines the channels (Figure 3E). Together, these 
observations suggest that the electron- dense material may be enriched in amyloid- like proteins and 
establish CR, ThS, CFW, and EY as useful markers of pharyngeal cuticle structure.

Mining expression datasets yields a spatiotemporal map of pharyngeal 
cuticle development
To better understand pharynx cuticle construction, we built a spatiotemporal map of cuticle- centric 
gene expression by combining four published datasets (see Figure 4—source data 1). First, we 
anchored the map using a dataset that tracked gene expression levels in synchronized animals every 
hour for 16 hr from the mid L3- stage to adulthood at 25°C (Hendriks et al., 2014). This study iden-
tified 2718 genes whose expression oscillates during larval development with a peak in expression 
every 8 hr (p<0.001); this period corresponds to the 8 hr duration of the third and fourth larval stages 
at 25°C. Two of these 2718 genes have been retired due to reannotation. The 2716 genes can be 
grouped into bins of genes that peak at different larval development phases. For example, some 
genes peak during the first and ninth hour, others peak during second and tenth hour etc., such that 
there are successive waves of genes that oscillate through time (see Figure 1e of Hendriks et al., 
2014). We present the 2716 genes from this dataset in the temporal order in which the genes peak 
in their expression over the 8 hr cycle (Figure 4A). We note that since we initiated our study an addi-
tional temporally resolved dataset has been published (Meeuse et al., 2020).

Second, we defined the interval on the map that corresponds to the molt by overlaying a dataset 
of genes that are upregulated during the L4 molt (p<0.001) (George- Raizen et al., 2014). The overlay 
indicates that molting peaks in the sixth hour on the map (Figure 4A and B,, Figure 4—source data 
1). The fact that the genes that are upregulated during the L4 molt are clustered on the map provides 
reciprocal validation for both datasets (George- Raizen et al., 2014; Hendriks et al., 2014). We herein 
routinely refer to hour 6 as the reference peak molting hour.

Third, we identified the genes on the temporal map whose expression is enriched in the cells 
surrounding the pharyngeal cuticle relative to all other tissues. We did this by overlaying single- cell 
expression data from cells isolated from L2- staged animals (Cao et al., 2017). We found 367 ‘phar-
ynx’-enriched transcripts (>1.5- fold enriched in the pharynx relative to all other tissues and at least 25 
transcripts per 1 million reads) that oscillate over time (Figure 4A, Figure 4—figure supplement 1, 

cells; pa, posterior arcade cells; e, pharynx epithelium; pm1- 8, pharynx muscle; mc1- 3, marginal cells. The yellow, 
purple, and pink dashed lines represent the area of the cross sections in (F–H), (I–K), and (L–N), respectively. 
(C) A schematic of the pharyngeal cuticle. Black and gray is cuticle; white is the lumen of the buccal cavity, central 
lumen, and channels. (D, E). Micrographs of the head of young adults expressing ABU- 14::sfGFP. Differential 
interference contrast (DIC) is on the left and GFP of a similarly staged animal, taken with confocal microscopy, is on 
the right. Purple arrows show the buccal cuticle. The three purple arrows in the inset mark regions of ABU- 14::GFP 
enrichment that likely correspond to the cuticle specializations noted in (H) and (K). Yellow arrows, the metastomal 
flaps; dark pink arrows, mc1 channel; light pink arrows, mc2 channel; white arrows, grinder. (F–N) TEM images 
taken from the White et al., 1986 N2T series, stored on the WormAtlas EM archives. (F–H) show a cross section of 
the anterior buccal cavity; the surrounding arcade cells are highlighted in yellow in (G). (I–K) show a cross section 
of the posterior buccal cavity; the surrounding e epithelial cells are highlighted in purple in (J). (L–N) show a cross 
section of the procorpus posterior to the buccal cavity. In (M), the mc1 marginal cells associated with the channels 
are highlighted in pink; the pharyngeal muscles pm2 and pm3 are highlighted in green and ‘g’ indicates the 
gland. The pink box in (L) indicates the magnified area in (N). Orange arrows in (N) indicate the pm3- mc1 plasma 
membrane interface; the pink arrows indicate the adherens junctions.

Figure 1 continued
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Figure 2. Pulse- chase and cuticle mutant experiments show dye association with the cuticle. (A) Schematic 
showing the pulse- chase assay. Synchronized populations of L3 or adult worms were incubated with a dye for 
3 hr (the ‘pulse’), after which worms were washed with M9 and run on normal plates with food for 1 hr. Worms 
are transferred to fresh plates and the presence of the dye was scored (see ‘Materials and methods’ for details). 

Figure 2 continued on next page
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Figure 4—source data 1). This set of genes includes those enriched in expression within the pharyn-
geal epithelium, muscles, and gland cells, but not pharyngeal- associated neurons.

Fourth, we determined the likelihood of gene products being secreted using Signal P (v4.1) predic-
tions extracted from the WormBase Parasite database to identify signal peptides (with scores of 0.45 
or more) genome- wide (Hertz- Fowler and Hall, 2004). We recognize that while this approach is 
systematic, Signal P does not identify all secreted or plasma membrane- associated transmembrane 
proteins. The oscillating pharynx- enriched set contained 226 genes (62%) that encode a signal peptide 
(Figure 4A, Figure 4—source data 1). By comparison, only 39% of the remaining oscillating gene 
set (n = 2349) and only 17% of the entire non- oscillating genes of the genome (n = 17,614) encode 
a signal peptide (Figure 4—source data 1). The temporal map shows a concentration of genes that 
peak in expression from the pharynx and are secreted at the time of molting (Figure 4A).

We investigated the change in transcript abundance in the pharynx over the cyclical 8 hr window 
of larval development for the oscillating genes. We found a nearly 30- fold increase in transcript abun-
dance for those gene products predicted to be secreted relative to the global average of pharynx 
gene expression during the peak molting hour (Figure 4B). There is a shoulder of peak expression at 
hour 7 for those non- secreted gene products (Figure 4B) that may correspond to the increase in tissue 
growth after the molt. Cao et al., 2017 further dissected their single- cell sequencing data into tissue 
subtypes. We find that the expression of predicted secreted products from the pharynx epithelial cells 
peaks dramatically during the peak molting hour, whereas pharynx gland transcription peaks in the 
preceding hour (Figure 4). Non- secreted epithelial and muscle products peak in expression during 
hour 7 (Figure 4C and E). Given that mRNA expression levels are positively correlated with protein 
abundance in invertebrate systems (Ho et al., 2018; Schrimpf et al., 2009), we conclude that there is 
a likely a burst of proteins secreted in preparation for the molt.

Orthogonal data validate the spatiotemporal map
We explored the validity of the spatiotemporal map in four ways. First, previous work established 
that the molting of the body cuticle precedes that of the pharyngeal cuticle (Wright and Thomson, 
1981). We therefore expected a peak in gene expression from the hypodermis that precedes that of 
the pharynx, which is what we observe (Figure 5A).

Second, we systematically investigated published reports of expression (not including the datasets 
used to build the spatiotemporal map) for the 226 oscillating pharynx secretome genes. In this anal-
ysis, we also included the 17 additional genes of special interest called out in Figure 4A that include 
myo- 1, myo- 2, and myo- 5 for example (see Supplementary file 1 for details). We surveyed Yuji Koha-
ra’s whole- mount RNA in situ database (Motohashi et al., 2006) and literature reports of transgene 
and sequencing- based expression patterns curated by WormBase to determine whether there is addi-
tional evidence that these 243 genes are enriched in expression within the pharynx (Supplementary 
file 1). 83 (34%) of the 243 genes lacked reported expression patterns in the Kohara and WormBase 
databases. Of the remaining 160, 152 (95%) demonstrate a clear enrichment of expression within the 
pharynx (Figure 5B; Supplementary file 1).

Then, 18 hr later (i.e., after the chase), worms were again scored for the presence of the dye. (B–Q) In each of the 
four groups of eight micrographs with the dye indicated in the header, the top two rows show the pulse- chase 
experiment done starting with L3s, and the bottom two rows show the pulse- chase experiment done with adults. 
The filter used to visualize the dyes is indicated at the header of the rightmost column in each of the four panel 
sets. In all panels, white arrows highlight the presence of the dye in the cuticle and black arrows show cuticle 
without dye signal. The scale bar is indicated. (R) The fraction of worms with stained cuticle before and after the 
chase for each dye is shown; a minimum of four repeats (N) were done with a sample size of 7–34 animals (average 
= 13) (n) per repeat. Asterisk denotes statistically significant difference relative to the pre- chase values (p<0.05). 
Standard error of the mean is shown. (S–X) Wildtype animals treated with mlt- 9(RNAi) that are incubated with 
the indicated dye for 3 hr. The brightfield differential interference contrast (DIC) image and the corresponding 
fluorescent image are shown for each treatment. (Y) An animal expressing transgenic ABU- 14::GFP treated with 
mlt- 9(RNAi) but without dye stain. The scale in (S) applies to all panels.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The fluorescence and filter controls for dye staining.

Figure 2 continued



 Research article Developmental Biology

Kamal, Tokmakjian, Knox et al. eLife 2022;11:e79396. DOI: https://doi.org/10.7554/eLife.79396  8 of 34

Figure 3. Probing pharyngeal cuticle composition with characterized dyes. (A–D) Images of the buccal and mc1 channel cuticles and surrounding cells. 
The dyes or GFP- fusion protein examined is indicated. DIC, differential interference contrast; CFW, calcofluor white; ThS, thioflavin S. The scale shown 
in (A) is the same for (B–D). (E) Serial coronal sections of unpublished transmission electron micrographs taken by Wright and Thomson, 1981. The 
scale in (E(i)) applies to all images in the E series. (F–H) Magnifications of the boxed areas highlighted in the images to the left. (G) represents a slightly 
different plane than that depicted in (E(iv)) and was chosen because of the clearly visible filaments. The scale in (F) is the same as that for (G) and (H). 
For all panels: a, arcade cells; ch, mc1 channel; cu, cuticle; e, e epithelium; gl, gland cell; bc, buccal cavity; cl central lumen; orange arrows, the anterior 
enlargement of the buccal cuticle; green arrows, the prominent ring at the base of the buccal cavity; yellow arrows, the electron- dense flaps at the base 
of the buccal cavity; red arrows, the electron- dense material at the anterior end of the channel cuticle; black arrows, pharyngeal cuticle when too small 
to be labeled with ‘cu’; white arrows, the ribbing of the pharyngeal cuticle; pink arrows, the cytoplasmic filaments that correspond to the abutment of 
the ribbing.
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Figure 4. An informatic reconstruction of the pharyngeal cuticle. (A) A chart of 2716 genes whose expression oscillates over larval development with 
a periodicity that corresponds to larval stages. See text for details. Each row represents a single gene. Rows are arranged along the y- axis in order of 
the time at which each gene reaches its peak expression level with those earliest in the time course at the bottom and those latest in the period at the 
top. Because the periodicity is a continuum during larval development, Hendriks et al., 2014 represented time as degrees of a circle. That concept 
is preserved here, and the degree is indicated along the y- axis and divided into bins of time relative to the molting period. The first data column (red) 
represents the 602 oscillating genes that also were found to be upregulated in expression during the L4 lethargus (molting) period (see Supplemental 
Table 1 in George- Raizen et al., 2014); the scale of the relative expression level from this independent study (George- Raizen et al., 2014) (is indicated 
in the legend). The second data column (black) represents the 367 genes from the set of 2716 that are enriched in expression in the pharynx (data from 

Figure 4 continued on next page
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Third, we reasoned that the pharynx secretome might be rich in protein–protein interactions (PPIs) 
because many of the secreted proteins likely interact to form a matrix. We explored PPIs systemati-
cally using Genemania, which is an online tool that facilitates the analysis of experimentally derived 
interaction data curated from the literature (Franz et al., 2018). To analyze each tissue’s secretome, 
we returned to the Cao et al., 2017 single- cell sequence datato parse the proteome into proteins 
that are enriched in the major tissues using the same criteria described above for the pharynx (Figure 
4—source data 1). These tissues included the pharynx (470 proteins), body wall muscles (BWMs) (326 
proteins), glia (426 proteins), gonad (832 proteins), hypodermis (411 proteins), intestine (781 proteins), 
and neurons (965 proteins) (Figure 4—figure supplement 1). We separated out the 166 collagens 
from the proteome because of their unique sequence properties. The remaining 15,892 proteins are 
binned into a non- specific group. For each of these groups, we parsed them into those encoding a 
signal peptide, and those without. Genemania reports multiple lines of evidence for 36 PPIs among a 
network of 20 proteins within the pharynx secretome (Figure 5C). This interaction network is denser 
than that from most other secretomes (Figure 5—figure supplement 1, Figure 5—source data 1).

Fourth, literature searches reveal that the spatiotemporal map includes many genes with known 
roles in pharynx development (feh- 1, myo- 1, myo- 2, nep- 1, pqn- 75, sms- 5, tnc- 2, and tni- 4) and the 
few genes known to play roles in pharynx cuticle formation (abu- 6, abu- 14, chs- 2, and nas- 6) (Supple-
mentary file 1). We further investigated the functional relevance of the map by conducting a survey 
of publicly available mutants of genes predicted to contribute to the pharyngeal cuticle. Light micros-
copy revealed obvious cuticle defects in the pharynx of animals harboring disruptions of feh- 1, idpa- 3, 
idpc- 1, lrpc- 1, and the positive control nas- 6 (Figure 5D; Supplementary file 1), bringing the total 
number of genes with known pharynx cuticle defects to 7 of the 243 genes listed in Supplementary 
file 1. The pattern of amyloid and chitin dyes is unaligned in the feh- 1, idpa- 3, idpc- 1, and lrpc- 1 
mutants (Figure 5D). This not only provides insight into the proteins’ importance in cuticle structure, 
but reinforces the idea that the two dyes recognize distinct components within the cuticle.

Finally, we further confirmed the map’s ability to predict spatial expression patterns by inserting 
green fluorescent protein coding sequence in frame with five poorly characterized gene products, 
namely, IDPA- 3, IDPB- 3, IDPC- 1, FIPR- 4, and NSPB- 12 (Figure 6). We also included the previously 
characterized ABU- 14::GFP (Figure  6A). We counterstained the resulting transgenic animals with 
CFW to interrogate the spatial overlap of the tagged proteins with the chitinous cuticle. As predicted, 
we found that all five reporters are expressed exclusively in association with the pharynx and overlap 
in their localization with the pharynx cuticle. Briefly, tagged IDPA- 3 was enriched in the grinder, over-
lapping the CFW- stained component and lining of the terminal bulb cuticle. In addition, we observed 
enrichment of tagged IDPA- 3 in the presumptive ECM that lies between the terminal bulb and the 
intestinal valve (white arrow in Figure 6B). Tagged IDPB- 3 was expressed weakly and localized exclu-
sively to the pm6 cells and material surrounding the CFW- stained grinder (Figure 6C). Tagged IDPC- 1 
had a similar pattern to that of tagged ABU- 14; associating with both the anterior and posterior 
components of the pharyngeal cuticle. However, tagged ABU- 14 appears to localize adjacent to 
CFW- stained components whereas tagged IDPC- 1 overlaps CFW- stained components (Figure  6A 
and D, Figure 6—figure supplement 1). Tagged NSPB- 12 localized to the anterior pharynx cuticle 

Cao et al., 2017; see Figure 4—source data 1 for enrichment). The purple columns show the 226 genes (of the 367 pharynx- enriched set) that are 
predicted to be secreted. They are duplicated to show the 26 protein–protein interactions (PPI) among the 17 oscillating pharynx- secreted proteins 
identified through Genemania (see Figure 5C, Figure 4—source data 1, and Figure 5—source data 1 for the details of which protein pairs interact). 
The identity of the interacting proteins is indicated with bold lettering and a dotted arrow on the right of the graph. The last column (blue) represents 
those pharynx- enriched genes that lack an obvious domain as predicted by WormBase, PFAM, and SMART databases (see text for details). 78 pharynx- 
expressed genes of special interest are indicated with arrows to the right of the graph. The color of the arrows and text corresponds to broad categories 
indicated in the legend. (B–E) The average number of transcripts produced by genes whose expression is enriched in the indicated tissue as a function 
of developmental time. In all graphs, results are binned according to the hours indicated in (A), the global average transcript number (49.33) is indicated 
by the red dotted line. Statistical differences were measured using a Student’s t- test against the global average of gene expression levels in the pharynx. 
Standard error of the mean is shown in all graphs. The peak molting hour in (B–E) is highlighted by the transparent red box.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. This is the master file with all relevant data for the spatiotemporal map.

Figure supplement 1. Tissue- enriched expression levels of tissue- enriched classes of genes.

Figure 4 continued
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Figure 5. The spatiotemporal map has predictive power. (A) Average gene expression in each of the indicated tissue types plotted as a function 
of developmental time. In the first hour of the time course, for example, 219 genes peak in expression and the average expression of each of these 
219 genes in each of the indicated tissues is plotted for hour 1 on the graph. Standard error of the mean is shown. The peak pharynx molting hour 
is highlighted by the transparent red box. Significant differences relative to the global mean is calculated with a Student’s t- test. (B) A pie chart 
summarizing the search of publicly available information on previously documented expression patterns of the 226 oscillating pharynx secretome 
genes and 17 other genes of interest (which are part of the 78 genes highlighted in Figure 4A). Published expression patterns could be found for 
160 of the 243 genes. Of the 160, the expression pattern of only 8 genes (indicated in fuchsia) did not support clear enrichment in the pharynx. 
See Supplementary file 1 for details. (C) Protein–protein interactions within the pharynx secretome. Dark pink nodes are those genes that peak in 
expression during hours 4, 5, or 6 on the spatiotemporal map. Light pink nodes peak in expression outside of hours 4, 5, or 6. White nodes represent 
genes that do not oscillate. Nodes outlined in bold are those proteins composed of >75% intrinsically disordered regions (IDRs). (D) A survey of 
mutants for obvious pharynx cuticle defects. Each of the indicated backgrounds are stained with calcofluor white (CFW) and Congo Red (CR). The mean 
percentage of animals showing defects, together with the standard error of the mean (N = 3 independent trials with more than eight animals each trial). 
The total number of animals surveyed is indicated in brackets. The scale for L1 and adult animals is shown. DIC, differential interference contrast, black 
arrows indicate a normal terminal bulb grinder, blue arrows indicate a dysmorphic grinder, and white arrows indicate discordant CR staining.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Supporting information for the network diagram in Figure 5C and related insights.

Figure supplement 1. The pharynx secretome has a dense protein–protein interaction (PPIs) network relative to other secretomes.
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Figure 6. The localization of six fluorescently tagged pharynx cuticle components. Each of the six large horizontal boxes contain data about the six 
predicted gene products indicated on the left. In each box, the four images on the left are of the head of a single worm, imaged first with differential 
interference contrast (DIC), then with calcofluor white (CFW) in green, then the fluorescently tagged protein (tp) protein of interest in fuchsia, followed 
by a merged (m) image as indicated at the top of the columns. A blue horizontal line indicates the intersection of two cropped images to show 

Figure 6 continued on next page
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components exclusively, including that of the buccal cavity, flaps, and anterior channels (Figure 6E). 
Tagged FIPR- 4 localized to both anterior and posterior pharynx cuticle components (but not the 
grinder teeth proper) and the presumptive pharynx- intestinal valve ECM (Figure 6F). Together, these 
analyses provide confidence in the predictive value of the spatiotemporal map.

The pharynx secretome is enriched in proteins with high predictions of 
phase separation
To better understand the types of proteins that are secreted by the pharynx, we manually curated 
the domain organization of all 367 oscillating pharynx- enriched gene products as reported by the 
WormBase, SMART, and PFAM protein databases (Letunic and Bork, 2018; El- Gebali et al., 2019; 
Figure 4—source data 1). We found that 106 of the 226 secreted proteins (47%) lacked any defined 
domain (last column of the chart in Figure 4A, Figure 4—source data 1). This prompted a systematic 
investigation of low- complexity sequence within the pharynx secretome using NCBI’s SEG algorithm 
(Wootton and Federhen, 1993). Indeed, we found the pharynx secretome to be greatly enriched 
with low- complexity regions (LCRs) (p=1E- 69) (Figure 7A). Given that low complexity is tightly associ-
ated with intrinsic disorder, we used the Spot- Disorder algorithm (Hanson et al., 2017) to systemat-
ically analyze whether the pharynx secretome is also enriched for IDRs and found that it is (p=8E- 10) 
(Figure 7B).

Low- complexity intrinsically disordered protein regions often provide multivalency that can enable 
a protein to transition from being soluble to becoming a phase- separated liquid, gel, stable polymeric 
matrix, or an insoluble amyloid (Muiznieks et al., 2018). We explored the potential of the different 
protein sets to phase separate using three different predictive algorithms, including PSPredictor (Chu 
et al., 2022), PLAAC (Lancaster et al., 2014), and LLPhyScore (Cai et al., 2022). PLAAC was origi-
nally designed to scan for prion- like sequences, but has been retrospectively used as a reliable tool to 
predict phase separation (Vernon and Forman- Kay, 2019). Each algorithm reveals that the pharynx 
secretome is enriched in proteins with phase separation capability (p=2E- 46, p=2E- 52, and p=2E- 31, 
respectively) (Figure 7C–E).

We also examined low- complexity, intrinsic disorder and phase- separation propensity as a func-
tion of developmental time. The peak molting hour corresponds to a clear peak in low- complexity 
and intrinsic disorder of secreted products (Figure 7A’ and B’). The other three predictors also show 
significant peaks in phase separation propensity of secreted products during the peak molting hour, 
but variably show peaks at other time points as well (Figure 7C’–E’). To better understand the relative 
abundance of gene products with the specific sequence features highlighted in Figure 7A’–E’, we 
multiplied the trait value for each gene with the relative number of transcripts for each respective 
gene. In this light, we see a striking peak of all trends at the peak molting hour (Figure 7A’’–E’’). This 
analysis suggests that the pharyngeal cuticle is likely flooded with low- complexity, intrinsically disor-
dered proteins with phase separation potential during the peak molting hour.

Finally, we tested these predictions by asking whether IDPC- 2 can phase separate. Upon cleaving 
off the MBP affinity tag from the in vitro- expressed proteins, we see that IDPC- 2 and the positive 
control FUS can form phase- separated droplets (Figure 8A and B). In these experiments, we use a 

different relevant focal planes of the same animal. The scale is indicated. The middle set of eight images correspond to magnified buccal cavity and 
channels (top) and terminal bulb and grinder (bottom). The scale is indicated. Colored arrows are used for reference in (A) and used to draw attention 
to particular features in (B–F): Orange, buccal cavity; yellow, flaps; green, collar; red, anterior channels; blue, grinder; white, presumptive ECM between 
the terminal bulb and intestinal valve. The graph on the right is a UMAP plot of the pharynx mRNA expression pattern for the respective gene (see text 
for details). The relative expression level is indicated. (A) An RP3439 animal harboring the trIs113[Pabu- 14:abu- 14:superfolderGFP; rol- 6(d); unc- 119(+)] 
integrated array. (B) An RP3519 animal harboring the Ex[idpa- 3p::IDPA- 3::mNeonGreen; myo- 2p::mCherry] extrachromosomal array. (C) An RP3498 
animal harboring the Ex[idpb- 3p::IDPB- 3::mNeonGreen; myo- 2p::mCherry] extrachromosomal array. (D) An RP3497 animal with genomic idpc- 1 fused 
in- frame to the coding sequence for mGreenLantern. (E) An RP3499 animal harboring the Ex[nspb- 12p::NSPB- 12::mNeonGreen; myo- 2p::mCherry] 
extrachromosomal array. (F) An RP3514 animal harboring the Ex[fipr- 4p::FIPR- 4::mNeonGreen; myo- 2p::mCherry] extrachromosomal array. All animals 
are counterstained with the calcofluor white (CFW) chitin stain. The expression patterns shown are typical of the population that are positive for the 
transgene.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. A comparison of the tagged ABU- 14 and IDPC- 1 localization patterns.

Figure 6 continued
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Figure 7. The pharynx secretome is enriched with intrinsically disordered proteins with phase separation capability. 
(A–E) An analysis of the entire proteome for the indicated properties. The tissue type examined, as well as the 
number of genes in each bin, is indicated at the bottom of the graph in (E) (hypoderm., hypodermis; non- spec., 
non- specific). Statistical differences, indicated with an asterisk at the bottom of each graph, were measured 

Figure 7 continued on next page
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molecular crowding reagent (Ficoll) to mimic in vivo molecular crowding (André and Spruijt, 2020). 
These data support the informatic analyses that predict that many of the proteins incorporated into 
the cuticle may be capable of phase separation.

The pharynx secretome is not enriched with amyloidogenic proteins
We investigated the propensity of pharynx secretome proteins to form filaments. We first used the 
LARKS algorithm that predicts kinked b- structure, which can drive proto- filament assembly and revers-
ible fiber formation (Hughes et al., 2018). Indeed, we find a significant enrichment in LARKS scores 
within the pharynx secretome (Figure 8C). This prediction is corroborated by the LLPhyScore predictor 
of kinked b- structure (Figure 8D). We also investigated whether the pharynx secretome is enriched in 
amyloidogenic proteins. Both the Budapest (Keresztes et al., 2021) and AmyloGram (Burdukiewicz 
et al., 2017) machine- learning predictors, as well as the structure- based PATH predictor (Wojciech-
owski and Kotulska, 2020), fail to show any enrichment within the pharynx secretome of amyloi-
dogenic proteins (Figure 8E–G).

We further probed the ability of the pharynx secretome to form amyloid fibers using CR dye. CR 
has long been used as a diagnostic tool to identify rigid amyloid fibrils because of its special prop-
erty of emitting apple green birefringence upon binding the ordered fibril array in the presence of 
polarized white light (Divry, M, 1927). This is in sharp contrast to the colorless birefringence of the 
crystalizing compounds (Figure 8H). While CR specifically stains the pharynx cuticle, we found that 
CR- stained cuticles do not emit apple green birefringence (n > 30) (Figure 8I and J). We are confident 
that our imaging system is capable of detecting CR- derived apple green birefringence because of 
a serendipitous observation. We found that when CR is co- incubated with a small molecule (called 
wact- 190) that forms crystals in the pharyngeal cuticle (Kamal et  al., 2019), the resulting crystals 
exhibit apple green birefringence (Figure 8K). We infer that this happens because CR likely becomes 
incorporated into a regular array, that is, the wact- 190 crystal. Together, these results indicate that 
it is unlikely that the cuticle harbors rigid amyloid fibrils, which is consistent with both the flexible 
nature of the pharynx cuticle (Huang et al., 2008; Avery, 1993) and the absence of any detectable 
amyloid- like fibers in previous transmission electron micrographs of the pharynx cuticle (Wright and 
Thomson, 1981; White et al., 1986). We conclude that the pharynx secretome is likely enriched in 
proteins with intrinsic disorder, phase separation capability, and proto- filament formation capability, 
but not enriched with proteins that form rigid amyloid fibrils.

The transcripts encoding secreted IDR protein families peak in 
expression in overlapping waves during cuticle construction
Given the enrichment in low- complexity sequence within the pharynx secretome, we were curious to 
know whether it has any global bias in amino acid residue distribution relative to other protein sets. 
We found a significant enrichment of nine residues with a strong bias against charged and hydro-
phobic residues (at least p<2E- 05; Figure 9A). Upon considering relative abundance of amino acid 
residues as a function of time, we see that proteins rich in cysteine, proline, and glutamine peak in 
expression during new cuticle construction (Figure 9B).

We used the Clustal Omega clustering tool (Sievers et  al., 2011) to determine whether there 
were families of proteins with similar sequence within the 106 proteins that lacked domains within 
the pharynx secretome. We found six distinct families of low- complexity proteins through this analysis 

using a Student’s t- test against the global average (indicated with a red hatched line for each property). (A’–E’) 
An examination of the same properties as (A–E), but with a focus on genes whose expression is enriched in the 
pharynx over developmental time. (A’’–E’’) An examination of the same properties as (A’–E’), but normalized with 
respect to each gene’s transcript abundance within the pharyngeal epithelium. For each gene, the number of 
transcripts was multiplied by the value of gene products property (i.e., % within low- complexity region [LCR], % 
withing intrinsically disordered regions [IDRs], or PSPredictor score, etc.), and the average for that temporal bin was 
calculated. The Y- axis in (A’’–E’’) reports numbers in the thousands. Statistical differences were measured using a 
Student’s t- test against the global average. In all graphs, standard error of the mean is shown. Because the PLAAC 
algorithm can report negative scores up to –60, 60 was added to the PLAAC scores of all gene products for the 
sake of clarity. The peak molting hour is highlighted by the transparent red box.

Figure 7 continued
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Figure 8. Cuticle proteins can likely phase separate and are enriched with protofilament but not amyloidogenic 
sequence. (A) In vitro purified maltose- binding protein (MBP) control (15% Ficoll) or fusions with the FUS- positive 
control (5% Ficoll) and IDPC- 2 (15% Ficoll) phase separate into spheres upon cleaving off the MBP tag with TEV 
protease, while the MBP- only negative control does not. The inset is a magnification of the corresponding area. 

Figure 8 continued on next page
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(Figure 9C, Figure 9—source data 1). Members of each family share an enrichment of particular 
residues (Figure 9D), contain regions of high percentage positional sequence identity (Figure 9E, 
Figure 9—figure supplement 1), and are expressed at similar times as one another (Figures 4A and 
9F). These six families include three new families of IDR- rich proteins, which we have named IDPA, 
IDPB, and IDPC, a subgroup of APPGs (George- Raizen et al., 2014; Figure 9E), and the relatively 
short NSPBs and FIPRs about which little is known. See Supplementary file 1 for all newly named 
genes presented in this study and Supplementary file 2 for all members of the six families described 
here. Systematic searches relying on positional alignment reveal no obvious homologs of these six 
families in any group beyond Nematoda (WormBase). Furthermore, a comparison of the consensus 
sequence from these families (Figure 9E, Figure 9—figure supplement 1) to the cuticle proteins of 
other Ecdysozoans (Willis, 2010) reveals no obvious similarity in the pattern or amino acid sequence 
biases.

The transcription of the six families of low- complexity proteins peaks in expression in successive 
overlapping waves, with five of the waves concentrated around the peak molting hour (Figure 9F). 
The combined use of the three different predictors of phase separation suggests that the IDPAs, 
IDPBs, IDPCs, and the APPGs may be able to phase separate (Figure 9F). The FIPRs and NSBPs are 
also likely to phase separate but fail to score high with the SpotDisorder algorithm because of their 
small size. The IDPAs and IDPBs are predicted to form protofilaments (as measured by LARKS), the 
IDPAs and APPGs score especially high with the prion sequence evaluator (PLAAC), and five members 
of the APPGs (ABU- 6, ABU- 7, ABU- 8, ABU- 15, and PQN- 54) are predicted to be amyloidogenic (as 
measured by AmyloGram and PATH) (Figure 9F). These results further support the idea that a large 
proportion of the proteins secreted by the pharynx during cuticle construction are IDR- rich with 
phase- separating capability.

Epithelial and transdifferentiated cells secrete abundant products 
during the molt
We sought increased spatial resolution of peak gene expression that is associated with pharyngeal 
cuticle construction over the course of the temporal map. We therefore returned to the Cao et al. 
single- cell sequencing dataset (Cao et al., 2017; Packer et al., 2019) to systematically visualize the 
expression patterns of pharynx secretome components. Cao et al., 2017 and Packer et al., 2019 
identified 1675 sequenced cells that belong to the pharynx. When grouped according to similar 
expression profiles, the pharynx cells form subclusters on a Uniform Manifold Approximation and 
Projection (UMAP) created by Packer et al. (see https://cello.shinyapps.io/celegans_L2/) that repre-
sent cells of a similar type (Packer et  al., 2019; Figure  10A). Based on the expression of some 
characterized reporter transgenes and their single- cell sequence analysis of the embryo, Packer et al. 
made tentative cell assignments for most subclusters of the L2 pharynx (see Supplemental Table 12 
in Packer et al., 2019).

The scales for all insets and larger images are respectively the same. (B) Quantification of the fold change in optical 
density (OD; 395 nm) of indicated samples after 1 hr of treatment with TEV relative to the OD without the addition 
of TEV. *p<0.01 and **p<0.001, respectively, using a Student’s t- test. In (A, B), all proteins are at a concentration 
of 1 mg/mL, except for FUS, which is at 1.5 mg/mL. The MBP- only control is therefore a vast molar excess. 
(C–G) An analysis of the entire proteome for the indicated properties. The details are the same as that indicated 
for Figure 7. (H) Control for the dependence of the apple green color on Congo Red (CR). Wildtype animals 
are incubated in wact- 190 as previously described (Kamal et al., 2019) and yield birefringent crystals that lack 
notable apple green color (blue arrowhead). (I) Wildtype adult worms incubated with CR exhibit red fluorescent 
pharyngeal cuticle (red arrowhead; left column), but no apple green birefringence (white arrowhead; middle 
column). Differential interference contrast (DIC) is shown in the left column. Zero out of 30 animals exhibited 
apple green birefringence. (J) Control for the CR RFP signal. Wildtype animals are incubated without CR present. 
No birefringence (white arrowhead) or CR signal (black arrowhead) results. (K) Control for the ability to detect 
CR apple green birefringence. The wildtype animal was incubated simultaneously in CR and wact- 190, a small 
molecule that crystalizes in the pharyngeal cuticle. The apple green birefringence (green arrowhead) manifests 
under these conditions because CR likely incorporates into the regular crystal lattice of the wact- 190- derived 
crystals. The scale in (H) is representative of all panels.

Figure 8 continued
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Figure 9. Properties of the low- complexity protein families that are likely secreted into the developing cuticle. (A) Average percent amino acid 
composition of the proteins within the indicated tissue type. The percentages along a single row sum to 100. The color scale indicates the range of 
values within a single column so as to compare the relative abundance of the indicated residue among the different protein sets. The collagens are not 
included in the color scale comparison. SS, secreted proteins based on harboring a signal sequence; BWM, body wall muscles. All of the mean residue 
percentages from the set of proteins secreted from the pharynx cells are significantly different compared to that of the remaining proteome (Student’s 
t- test; p<2E- 05). (B) A plot of the average percentage cysteine, proline, and glutamine composition of each protein as a function of developmental time. 
Secreted (ss) and non- secreted proteins are represented by solid lines and dashed lines, respectively. Open circles indicate signification differences 
relative to the non- secreted class (p<0.05). (C) Clustal Omega pairwise comparisons of all 106 low- complexity proteins in the pharynx secretome. Both 
X and Y axis have the same 106 proteins in the same order. Families with high sequence identity are outlined with a red box. (D) Similar to (A), except 
that residue composition is restricted to the indicated low- complexity family and that the color scale compares percentages across the entire chart. 
(E) Consensus sequence logos for the indicate protein families. The full consensus sequence (without the signal peptide) of the FIPRs and NSPBs is 

Figure 9 continued on next page
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We searched the literature for additional GFP reporter transgenes that are expressed in the postem-
bryonic pharynx to help refine the identities of many of the L2 pharynx subclusters (Figure 10—figure 
supplements 1 and 2). We then transformed the Cao and Packer et al. L2 pharynx subcluster data 
into transcript summaries (see ‘Materials and methods’) and examined the expression level of oscil-
lating pharynx- enriched transcripts in each of the subclusters (Figure 10B and C; see Figure 1 for the 
relative location of each cell type).

During hours 3, 4, and 5, abundant products are secreted by the e epithelial cells, the mc3 marginal 
cells and presumptive pm6 and 7 transdifferentiated cells (see below). The identity of these transcripts 
(see Figure 4 and Figure 4—source data 1) suggests that the cells are accumulating stores for the 
catabolism of the old cuticle and construction of the new one at the onset of the molt. Despite being 
confident in our assignment of cluster 11 as pm1 (Figure 10—figure supplements 1 and 2), the 
expression profile of cluster 11 is more like the arcade, e epithelial cells, and mc3 marginal cells than 
muscle, suggesting that pm1 may also play a role in the catabolism of the old cuticle. This is consistent 
with the correlation between the pharynx UMAP plot for ABU- 14 and what we observe in animals with 
fluorescently tagged ABU- 14 (Figure 6A and A’).

During hours 5 and 6 (which is the peak molting hour), the arcade and e epithelial cells produce 
abundant secreted components, consistent with the construction of a new buccal cuticle (Figure 10B 
and D). The mc1 and mc2 marginal cells also secrete abundant product (Figure 10B and E), again 
consistent with the construction of the channel cuticles and sieve (see Figures 1, 6A and A’).

Conspicuously absent from the expression profiles of confidently assigned subclusters is abundant 
secretion from the cells that surround the grinder in the posterior bulb (i.e., pm6 and pm7). Subcluster 
22, which is confidently identified as pm5, pm6, pm7, and pm8 muscle, express only low levels of 
secreted proteins during the peak molting hour. Previous work has shown that the pm6 and pm7 cells 
transdifferentiate from muscle into highly secretory cells during the molting period to build a larger 
grinder (Sparacio et al., 2020). Based on the expression of a combination of markers (Figure 10—
figure supplements 1 and 2) and the abundant expression of secreted products, we infer that subclus-
ters 1 and 5 represent transdifferentiated pm6 and pm7 that secrete many of the same components 
used in the anterior pharynx epithelia to build the grinder (Figure 10B and F). We find that the IDPAs 
and IDPBs are expressed in the early transdifferentiating pm6 and pm7 cells (Figure 10B and Supple-
mentary file 2), and therefore likely contribute to grinder formation. This prediction is consistent 
with our finding that disruption of IDPA- 3, which localizes to the grinder (Figure 6B and B’), results 
in obvious grinder defects (Figure 5D). This prediction is also supported by the exclusive localization 
of tagged IDPB- 3 to the grinder and pm6 cells (Figure 6C and C’). Finally, idpb- 1 and idpp- 3 are two 
genes belonging to subcluster 1 (Figure 10B, hours 4 and 5) and Yuji Kohara’s mRNA in situ expres-
sion database reveals robust and specific expression of these two genes in only the posterior bulb 
cells (Motohashi et al., 2006; Supplementary file 1). Together, these observations are consistent 
with the assignment of subclusters 1 and 5 to the transdifferentiating pm6 and pm7 cells.

During the peak molting hour 6, IDPCs and the APPGs are expressed in most cells that contribute 
to the pharyngeal cuticle. Again, Kohara’s mRNA in situ database confirms this interpretation with 
robust and specific pharynx expression patterns for abu- 6, abu- 14, appg- 2, idpc- 1, idpc- 3, and idpc- 5, 
and pqn- 13 (Supplementary file 1). The localization of tagged ABU- 14 and IDPC- 1 also supports this 
conclusion (Figure 6A, A’, D and D’).

During hours 7 and 8, NSPB and FIPR expression is more restricted to the arcade, e epithelial cells, 
and the mc1 cells (Figure 10B and Supplementary file 2). Tagged NSPB- 12 supports this prediction 
(Figure 6E and E’). Tagged FIPR- 4, while localizing to the anterior cuticle, is also present in the poste-
rior cuticle, suggesting that secreted FIPR- 4 may be able to diffuse extensively (Figure 6F and F’). 

shown. The full consensus sequence of the remaining groups is given in Figure S5. (F) A chart of properties for the six low- complexity families. Because 
the PLAAC algorithm can report negative scores up to –60, 60 was added to the PLAAC scores of all gene products for the sake of clarity. All values 
show means ± standard error of the mean.

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Supporting information for the chart diagram in Figure 9C.

Figure supplement 1. Consensus sequence for select low- complexity families.

Figure 9 continued
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Figure 10. Expression of pharynx- enriched genes in distinct cell types. (A) A UMAP of 1675 pharynx cells modified with permission from Packer et al., 
2019's online tool. The clusters are numbered according to Packer et al., 2019. The cell type identities are partially based on those from Packer et al., 
2019 (see Figure 10—figure supplements 1 and 2 for details). Due to space constraints, three cluster groups from the map are shown as insets. (B, 
C) The expression level of the pharynx- enriched gene set in the indicated tissue type. The graph notation and the order of genes in rows is preserved 

Figure 10 continued on next page
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Cytoplasmic components involved in muscle development peak in expression during hours 7 and 8 
(Figure 10C and F).

The number of genes expressed from the gland cells is not obviously enriched in any one temporal 
interval (Figure 10B and C), yet the overall abundance of gland transcripts peak in hour 5 (Figure 4D). 
This apparent contradiction is due to the two most abundantly expressed genes from the gland, 
phat- 2 and phat- 4, peaking in expression during hour 5 (Figure  10B, Figure 4—source data 1). 
PHAT- 2 and PHAT- 4 are paralogous mucin- like proteins (Ghai et al., 2012; Smit et al., 2008) whose 
timing of peak expression suggests that they may play a role in cuticle structure or function. PHAT- 2 
and PHAT- 4 notwithstanding, the overall temporal pattern of expression from the gland suggests that 
its products do not play a large role in cuticle turnover during the molt.

Discussion
A model of pharyngeal cuticle construction
Here, we have mined published resources to bioinformatically reconstruct the C. elegans pharynx 
cuticle. This map provides unprecedented insight into the spatiotemporal progression of cuticle 
construction. During hours 3 and 4, genes that encode homologs of chitin and amyloid catabolic 
enzymes peak in their expression. These include the predicted chitinases CHT- 1, CHT- 2, CHT- 5, CHT- 6, 
two predicted amyloid peptidases (NEP- 1 and NEP- 12) (Iwata et al., 2001), and the NAS- 6 protease 
that helps degrade pharyngeal cuticle (Sparacio et  al., 2020; Park et  al., 2010). The predicted 
amyloid- fibril inhibitor ITM- 2 (Cohen et al., 2015) also peaks in expression during this interval, perhaps 
to prevent aggregation during disassembly. The expression profile at this interval is consistent with 
preparation for apolysis (the detachment of the old cuticle).

During hours 4, 5, and 6, anabolic enzymes and constructive components peak in expression. These 
include the characterized chitin synthase CHS- 2 (Zhang et  al., 2005), putative chitosan synthases 
LGX- 1 and CHTS- 1 that deacetylates chitin to produce chitosan (Heustis et al., 2012), and putative 
chitin binders and cross- linkers CHTB- 1, CHTB- 2, and CHTB- 3. In this interval, components implicated 
in amyloid metabolism also peak in expression. These include a predicted amyloid chaperone LRX- 1 
(Cam et al., 2004), two predicted amyloid- chitin linkers LRPC- 1 and PQN- 74 (Brodeur et al., 2012), 
and a predicted amyloid precursor protein interactor FEH- 1 (McLoughlin and Miller, 2008).

During hours 5 and 6, a massive increase in gene expression of the pharynx secretome occurs. The 
period coincides with the upregulation of secreted intrinsically disordered proteins from the pharynx 
epithelium and includes successive waves of peak transcript expression encoding four of the intrinsi-
cally disordered families, IDPA, IDPB, IDPC, and APPG members that have been previously implicated 
in cuticle development (George- Raizen et al., 2014).

During hours 5 and 6, the gene products that peak in expression are rich in PPIs compared to the 
proteins secreted by other tissues. The protein interactors within the pharynx secretome network are 
highly enriched in low- complexity sequences predicted to phase separate.

Finally, during hours 7 and 8, genes that encode muscle contraction components are upregulated, 
which likely corresponds to a period of tissue growth at the tail end of molting. We also see the peak 
expression of the low- complexity families NSPB and FIPR, which are likely added to the cuticle in its 
final phase of maturation. Together, these observations illustrate the utility of the spatiotemporal map 
in revealing the logic by which a cuticle is assembled.

from Figure 4A. Genes encoding a signal peptide are shown in (B) and those without a signal sequence are shown in (C). The mc1, pm3- 4, and pm5- 8 
values represent the average gene expression of the cells within the respective clusters (26, 16, and 22). The values corresponding to the other cell types 
represent the highest average from among the group of clusters that constitute that cell type. For example, the arcade cells are represented by clusters 
6, 20, and 25, but the expression level from each of these clusters is distinguished by time, not space, and averaging signal from all three would dilute 
the expression level that represents that cell type. All members of the six low- complexity families are indicated on the left of (B) and the color code is 
the same as that present in Figure 4A. (D–F) The average transcript level of all genes within the indicated cell type as a function of binned time. Open 
white circles represent a significantly greater value (p<0.01) compared to the bin 2 hr previous.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Identity assignment of the pharynx UMAP clusters.

Figure supplement 2. UMAP plots of the gold standard genes used to assign identity to the pharynx UMAP reference cluster.

Figure 10 continued
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The pharynx cuticle is unlikely to harbor amyloid fibrils
Despite the pharynx secretome not being enriched for amyloidogenic proteins, multiple pharynx cuticle 
proteins are predicted to nevertheless be amyloidogenic. In addition, multiple predicted amyloid 
regulators are upregulated during pharyngeal cuticle development. Yet, evidence argues against the 
presence of amyloid fibrils within the pharynx cuticle. We speculate that fibril formation may not occur 
within the pharyngeal cuticle because of the heterogeneous mixture of the IDR- rich proteins within 
the structure. In other words, the relatively low concentration of any one protein species within the 
cuticle mixture may preclude the assembly of long fibrils with birefringent properties. Indeed, the 
presence of other IDRs antagonizes Abeta42 fibril formation (Ikeda et al., 2020). A second factor 
that may antagonize fibril formation is the presence of a chitin matrix. During the formation of the 
squid beak, IDR- rich proteins form phase- separated coacervates that infiltrate a chitin matrix (Tan 
et al., 2015), which may limit amyloid fibril formation. It is unknown whether similar dynamics take 
place during pharyngeal cuticle development. Third, the pharynx secretome is enriched with kinked 
β-structure that can support liquid- phase separation and may facilitate protofilament formation but 
otherwise antagonizes extensive fibril growth (Hughes et al., 2018). Notably, many well- characterized 
proteins with amyloidogenic propensity only form fibrils when associated with pathogenesis (Patel 
et al., 2015; Cremades et al., 2012).

The idea that the pharyngeal cuticle contains a non- rigid network of IDRs is appealing because 
the pharyngeal cuticle must be sufficiently flexible to accommodate pharynx movements along the 
dorsal–ventral (Huang et al., 2008) and anterior–posterior (Avery, 1993) axes. Indeed, others have 
suggested that IDR- rich proteins within chitin- based cuticles might add elastic properties to what 
might otherwise be an inflexible chitin- based material (Andersen, 2011). An elastic cuticle might also 
aid in returning the open and extended lumen (which results from pharynx muscle contraction) to the 
relaxed ground state position.

Potential contributions of IDPs to the cycles of cuticle formation and 
destruction
A key feature of phase- separating IDRs is their potential to reversibly transition between different 
states of matter depending on local conditions and post- translational modifications (Murray et al., 
2017; Deiana et al., 2019), including liquids and gel- like biomaterials. The pharyngeal cuticle must 
soften, be shed, and be reconstructed about every 8 hr during larval development (Lazetic and Fay, 
2017). The notion that a network of IDR- rich proteins is not locked into a rigid state but may instead 
be regulated to increase or decrease intermolecular interactions and change material properties as 
needed during the molting cycle is an appealing idea that requires further investigation.

Both the APPGs and the IDPBs are highly enriched with cysteines and contribute heavily to an 
increase in the relative abundance of cysteines that is likely deposited into the developing cuticle as 
the animal prepares to molt. Other work has shown that the C. elegans cuticle is indeed rich in disul-
fides during the intermolt period and becomes reduced to facilitate apolysis (Stenvall et al., 2011). 
Furthermore, exogenously supplied reducing agent can induce pharyngeal cuticle apolysis during 
the intermolt period (Stenvall et al., 2011). Manipulating the redox state of cysteines can alter the 
ability of IDR- rich proteins to phase separate or further condense (Reed and Hammer, 2018; Zhang 
et al., 2020; Kato et al., 2019). Whether the abundant cysteines within the pharyngeal cuticle are 
key to phase separation and yield a network of variably dynamic cross- linked proteins remains to be 
determined.

The spatiotemporal map suggests that many different types of IDPs likely contribute to the 
pharyngeal cuticle. Previous studies have shown that coexisting condensed protein phases, each 
with distinct protein compositions, can yield complex biomaterials with layers and other non- 
uniform properties (Mountain and Keating, 2020; Lu and Spruijt, 2020; Lin et al., 2018). The 
distinct compositions of the six families uncovered by the spatiotemporal map are suggestive of 
the potential immiscibility of their condensed phases and of physical mechanisms for building the 
cuticle, particularly when combined with varying temporal expression, similar to what is observed 
during cuticle formation of the mussel byssus (Jehle et  al., 2020). What is becoming clearer is 
how evolution has repeatedly capitalized on biomolecular condensates to make complex protective 
structures.
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The molecular composition of cuticles may be evolutionarily plastic
The extent to which the blueprint of C. elegans pharyngeal cuticle development is conserved among 
other phyla within Ecdysozoa is unknown. The incorporation of chitin and chitosan within Ecdysozoan 
cuticles is firmly established (Moussian, 2010; Muthukrishnan et al., 2019). Mounting evidence also 
indicates that the arthropod cuticle has abundant IDR- rich proteins (Andersen, 2011) with amyloid- 
like folds (Sviben et al., 2020). However, of the 12 families of known arthropod cuticle proteins, only 
CPAP1 and CPAP3 have recognizable conservation with nematodes (Willis, 2010; Muthukrishnan 
et  al., 2019). CPAP1/3 are defined by the ChtBD2 chitin- binding domain that is also harbored in 
the pharyngeal cuticle proteins CHTB- 2, LRPC- 1, and PQN- 74. CPR is the only other arthropod 
cuticle family protein beyond the CPAPs that is well- characterized to bind chitin; the function of the 
remaining families remains obscure (Willis, 2010; Muthukrishnan et al., 2019). Furthermore, homo-
logs of the six low- complexity families found within the pharyngeal cuticle cannot be found beyond 
Nematoda. It is not clear whether the IDR- rich proteins of arthropod and nematode cuticles are of 
distinct evolutionary origin or have simply diverged beyond recognition because of reduced primary 
sequence constraints. Regardless, the IDP- chitin combination clearly provides an effective barrier that 
is evolutionarily malleable to provide diverse form for millions of species.

The spatiotemporal map is a foundation for future investigation
The spatiotemporal map provides a starting point to investigate many important questions. First, what 
is the mechanism by which the temporal unfurling of gene expression is coordinated? While the global 
oscillatory pattern of C. elegans gene expression has been modeled in detail (Meeuse et al., 2020; 
Hutchison et al., 2020), how the oscillatory pattern of each gene becomes temporally offset from 
other oscillating genes is not understood. One candidate regulator of oscillation is the C. elegans 
period ortholog LIN- 42. LIN- 42 is a known regulator of developmental timing in the worm (Jeon 
et al., 1999; McCulloch and Rougvie, 2014), is expressed in the pharynx and other tissues (Monsalve 
et al., 2011), and alters the timing of molting when disrupted (Monsalve et al., 2011). Temporally 
uncoordinated gene expression would almost certainly be lethal, yet lin- 42 null mutants are viable 
(Edelman et al., 2016), suggesting that other key regulators are involved. Investigating the relation-
ship between tissue- restricted transcription factors and their targets as a function of developmental 
time may provide insight into the coordinated temporal regulation of gene expression (Roy, 2022).

Second, how are catabolic and anabolic processes separated and regulated? The process of 
molting leaves animals vulnerable and must occur rapidly. In that light, it is perhaps not surprising that 
we observe a temporal overlap of expression of catabolic and anabolic components. Previous work on 
the ultrastructure of the grinder cuticle and molt indicates that dense core vesicles (DCVs) lie in wait 
until the new cuticle is assembled, at which point the DCVs likely fuse with the plasma membrane and 
dump their contents (Sparacio et al., 2020). Based on the timing of the peak expression of secreted 
components with respect to the timing of the molt itself, we surmise that (1) there is a temporal lag 
between the period of peak expression for a given gene and when protein abundance peaks, and 
(2) unknown mechanisms regulate the timing at which catabolic and anabolic components, perhaps 
within distinct DCVs, are released into the ECM. In this way, it might be possible to have temporal 
overlap in the peak expression of genes that encode catabolic and anabolic components. Exactly how 
the secretion of catabolic and anabolic components is regulated remains to be determined.

Finally, how are patterns within the pharyngeal cuticle established? Cuticle lumen shape and size 
are likely patterned by the underlying cells, but this simply extends the question. How is the patterning 
of the electron- dense cuticle ribbing established? Is the information that governs pattern of the flaps, 
which is seemingly independent of the shape of nearby cells, contained within the flaps’ protein 
components? Do the successive waves of expression of low- complexity protein families contribute 
to the layering of the cuticle seen in the electron micrograph cross sections? How might coexisting 
condensed phases of these proteins establish layering and other complexities of the cuticle structure? 
The spatiotemporal map of pharyngeal cuticle construction presented here may serve as the founda-
tion for answering these and other questions in the future.
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Materials and methods
Methods
C. elegans culture, microscopy, and synchronization
C. elegans strains were cultured as previously described (Kamal et al., 2019). Unless otherwise noted, 
the wildtype N2 Bristol strain was used. Worms are prepared for imaging by washing them three 
times in M9 buffer and resuspended in a paralytic solution of either 50 mM levamisole or 50 mM 
sodium azide. The resuspended worms are then mounted on a 3% agarose pad on a glass slide and a 
coverslip for all brightfield and fluorescent microscopic analyses and photography. Unless otherwise 
noted, a Leica DMRA compound microscope with a Qimaging Retiga 1300 monochrome camera 
was used for routine analyses. Confocal imaging was performed using the Zeiss LSM 880 attached to 
an inverted epifluorescent microscope with a ×63 (numerical aperture 1.4) oil immersion objective. 
Worms expressing GFP were excited using an argon laser operating at 488 nm. Confocal images 
were obtained using digital detectors with an observation window of 490–607 nm (green). Pseudo- 
transmission images were obtained by illuminating with the 488  nm laser and detected with the 
transmission photomultiplier tube and converted to digital images. Birefringent analyses were done 
with the Leica DMRA with the polarizer and analyzer polarized filters at right angles to one another. 
Colored birefringence images were captured using a Leica Flexacam C1 colour camera.

Synchronized populations of worms were obtained by first washing off a population of worms rich 
with gravid adults on plates with M9 buffer, collecting the sample in 15 mL conical tubes, and centri-
fuging the samples at 800 × g to concentrate worms. The supernatant is then removed via aspiration 
and additional washes with M9 buffer are done until all bacteria are removed. 1.5 mL of suspended 
worms are then left in each tube and in rapid succession, 1 mL of 10% hypochlorite solution (Sigma) 
is added followed by 2.5 mL of 1 M sodium hydroxide solution and 1 mL double- distilled water. The 
mixture is incubated on a nutator for ~3.5 min. The tubes are then vortexed for 10 s with two 5 s 
pulses and visually inspected for near- complete digestion of post- embryonic worms. M9 buffer is 
then added to 12 mL. The tube is spun at 2000 rpm for 1 min, supernatant removed, fresh M9 buffer 
added to ~12 mL, and the tube is vigorously shaken. This is repeated two more times. After the final 
wash, the tube is incubated overnight on a nutator at 20°C to allow egg- hatching. The next day, the 
sample is checked for synchronized L1s. To obtain other synchronized stages, the synchronize L1s are 
plated on solid agar substrate with Escherichia coli food and allowed to progress to the desired stage 
before processing.

C. elegans transgenes
NQ824 qnEx443[Pabu- 14:abu- 14:sfGFP; rol- 6(d); unc- 119(+)] was a kind gift from David Raizen. We 
chromosomally integrated the qnEx443 extra- chromosomal array using previously described meth-
odology (Mello and Fire, 1995), resulting in the RP3439 trIs113[Pabu- 14:abu- 14:sfGFP; rol- 6(d); unc- 
119(+)] strain. Tagged IDPC- 1 was generated by InVivoBiosystems (Eugene, USA) by using CRISPR/
Cas9- based mGreenLantern knock- in at the C- terminus of the Y47D3B.6 native locus. Two guide RNAs, 
sgRNA1 (5′-  AGCT  CCTG  GGAC  ACAG  GCTG -3′) and sgRNA2 (5′-  GCTG  GAGT  CTGC  CAGT  GCGC -3′), 
were designed to target the C- terminus of Y47D3B.6. The single- stranded donor homology DNA 
included 35 bp homology arms flanking a GGGSGGGGS linker and the mGreenLantern sequence. 
Insertion of the mGreenLantern sequence was identified by PCR and confirmed by sequencing.

IDPA- 3, IDPB- 3, FIPR- 4, and NSPB- 12 were tagged C- terminally with mNeonGreen. The mNeo-
nGreen coding sequence was PCR- amplified from the C. elegans strain WD835 (a kind gift from 
Brent Derry) using the following primers: 5- mNeon (5′-  GTCA  GACC  GGTG  GCGG  TGGA  TCAG  TCTC  
CAAG  GGAG  AGGA  GGAC  AACA  TGG-3′) and 3- mNeon (5′-  TTAC  GGAA  TTCT  CACC  CTTG  TAGA  GCTC  
GTCC  ATTC  CCAT G-3′). The 5- mNeon primer introduced a flexible GGGGS linker sequence to the 
epitope tag. The resulting PCR product was purified, digested with AgeI and EcoRI, and the 728 bp 
fragment was ligated to the 5  kb AgeI/EcoRI digested pPRGS762 (unc- 6p::YFP) vector backbone 
to generate pPRJK1199 (unc- 6p- mNeonGreen-unc- 54 3′UTR). The coding and upstream promotor 
sequences (up to the end of the upstream gene) of IDPA- 3, IDPB- 3, FIPR- 4, and NSPB- 12 were ampli-
fied from wildtype C. elegans N2 genomic DNA template using the following primer pairs: 5- IDPA- 3 
(5′-  CCGT  ACTG  CAGA  GCAT  CTCT  AGAA  CTGA  CCAT  CTGA  CC-3′) and 3- IDPA- 3 (5′-  GTTA  GACC  GGTG  
TTTG  GCAT  TGGT  GGCC  ATCC  TCCT  TG-3′); 5- IDPB- 3 (5′-  CAGT  ACTG  CAGA  GCAG  ATGA  TCTC  ACTA  
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GTGC  AACC -3′) and 3- IDPB- 3 (5′-  GTTA  GACC  GGTG  CACT  TGTC  TCCT  CCCT  TGGC  TGG-3′); 5- FIPR- 4 
(5′-  CCGT  ACTG  CAGC  ATGT  GTTG  GTTT  TGTC  ATAG  AAAC  TGTC G-3′) and 3- FIPR- 4 (5′-  GTTA  GACC  
GGTG  TTCT  GAAT  AGGT  CCAA  ATCC  AGC-3′); 5- NSPB- 12 (5′-  CCGT  AATG  CATT  TGCT  GGCG  TATT  GTCT  
AAAC  CTTG C-3′) and 3- NSPB- 12 (5′-  GTTA  GACC  GGTA  GCGG  TGGT  TGGC  TTCT  GATT  GTTA  AG-3′). 
The PCR products were purified, digested with PstI and AgeI (IDPA- 3, IDPB- 3, FIPR- 4) or NsiI and 
AgeI (NSPB- 12), and ligated to the 4.2 kb fragment of the PstI/AgeI digested pPRJK1199 vector to 
generate pPRJK1213 (idpa- 3p::IDPA- 3::mNeonGreen [1232 bp of sequence upstream of the ATG]), 
pPRJK1202 (idpb- 3p::IDPB- 3::mNeonGreen [334 bp of sequence upstream of the ATG]), pPRJK1212 
(fipr- 4p::FIPR- 4::mNeonGreen [1360 bp of sequence upstream of the ATG]), and pPRJK1203 (nspb- 
12p::NSPB- 12::mNeonGreen [1973 bp of sequence upstream of the ATG]), respectively. All constructs 
were verified by sequencing. Wildtype C. elegans N2 worms were injected with each of the constructs 
described above along with the pPRGS382 (myo- 2p::mCherry) co- injection marker at the following 
concentrations for expression analysis: pPRJK1213 (10 ng/μL) + pPRGS382 (2 ng/μL) + pKS (88 ng/μL); 
pPRJK1202 (10 ng/μL) + pPRGS382 (2 ng/μL) + pKS (88 ng/μL); pPRJK1212 (10 ng/μL) + pPRGS382 
(2 ng/μL) + pKS (88 ng/μL); pPRJK1203 (10 ng/μL) + pPRGS382 (2 ng/μL) + pKS (88 ng/μL).

Pulse-chase analyses
Synchronized wildtype L1 worms are plated on 10 cm plates at 7000 L1s/plate seeded with OP50 E. 
coli strain. Plates with worms destined for pulse- chase analyses of larvae or adults are grown at 16°C 
or 25°C, respectively. Then, 72 hr after plating, the ‘L3’ samples and the ‘adult’ samples are washed 
with M9 to remove bacteria. The concentrations and solvents for all dyes are described in the relevant 
methods section. In all cases, 50 µL of packed worms from centrifugation are used per tube in the dye 
incubation. Note that the number of worms should not exceed 1000 because adding more worms 
reduces stain intensity. Also, siliconized tips are used with the ends cut with flame- sterilized scissors 
to avoid injuring the worms. The tubes with worms and dye are then incubated on a nutator for 3 hr 
in the dark at room temperature. After incubation, the 1.5 mL tubes are spun at 5000 rpm for 1 min 
and the concentrated pellet is carefully transferred to 15 mL falcon tube and washed with 8 mL of 
M9 buffer to remove excess dye. The tubes are inverted gently and spun at 2000 rpm for 1 min. The 
supernatant is removed and the concentrated washed worms are spotted onto the clear (agar) surface 
of 6 cm plates seeded with OP50. Then, 30 min later, 20–30 worms are picked onto a second plate 
lightly seeded with OP50. The staining of the cuticle for each is then semi- quantitatively assessed on 
an epifluorescent microscope. These data represent the pre- chase counts. The scoring system was 
as follows: animals exhibiting robust staining in the buccal cavity and anterior channels = 3; animals 
exhibiting moderate staining in the buccal cavity and anterior channels = 2; animals showing faint 
staining in the buccal cavity and anterior channels = 1; animals showing no detectable staining in any 
part of the pharynx cuticle = 0. The remaining animals on the original 6 cm plate are incubated for a 
total of 18 hr at 20°C, after which dye staining of the cuticle is quantified. These data represent the 
post- chase counts.

Generating mlt-9(RNAi) Cuticle Defects
mlt- 9 RNAi was carried out as described previously (Frand et al., 2005) with some modifications. 
Briefly, a bacterial culture expressing dsRNA of mlt- 9 (referred to here as mlt- 9(RNAi)) (Kamath et al., 
2003) was started from a single colony in 30 mL LB broth containing 100 µg/mL ampicillin for 18 hr at 
37°C at 200 rpm. The cells were pelleted by centrifuging at 3200 rpm for 15 min, after which the cells 
were concentrated tenfold. Then, 1 mL of the pelleted cells was added to 10 cm NGM agar plates 
containing 8 mM IPTG and 40 µg/mL carbenicillin and left to dry overnight at room temperature in 
the dark. The next day (day 0), 6500 synchronized L1s were plated onto each RNAi plate, after which 
the plates were stored at 16°C in the dark. Ninety hours later, the worms were inspected for mlt- 9 
RNAi phenotypes. Approximately 50% of mlt- 9(RNAi)- treated worms exhibit the expected cuticle 
defects. Performing mock RNAi with the empty L4440 plasmid failed to yield worms with obvious 
cuticle defects.
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Dye staining of wildtype and mlt-9(RNAi) animals
Congo Red (CR) staining
Synchronized wildtype adult worms were washed and incubated with 0.02% CR from a 1% stock (w/v, 
dissolved in DMSO; Fisher chemical C580- 25; CAS 573- 58- 0) in 500 µL of liquid NGM for 3 hr in the 
dark. Worms are then prepped for microscopic analysis as described above.

Thioflavin S (ThS) staining
Synchronized wildtype adult worms were washed and incubated with 0.1% ThS from a 10% stock (w/v, 
dissolved in DMSO; ThS; SIGMA, T1892- 25G) in 500 µL of liquid NGM for 3 hr in the dark. Worms 
are then prepped for microscopic analysis as described above. The concentration chosen for ThS 
staining of C. elegans pharynx was based on a published protocol (Wu et al., 2006). ThS is a complex 
mixture of molecules with two major species of 377.1 and 510.1 MW and several other minor species 
(Enthammer et al., 2013). Given that the ratio of molecules is unknown, we used an average MW of 
443.6 for ThS in our calculations.

Eosin Y (EY) staining
EY staining was performed as described (Heustis et al., 2012). Briefly, synchronized wildtype adult 
worms were washed and incubated with 0.15 mg/mL from a 5 mg/mL stock (dissolved in 70% ethanol; 
Eosin Y; Sigma- Aldrich, E4009) in 500 µL of liquid NGM for 3 hr in the dark. Worms are then prepped 
for microscopic analysis as described above. Note that eosin Y stock should be stored at –20°C and 
before its use it should be incubated at 55°C for ~2 min and vigorously vortexed to ensure its solvation.

Calcofluor white (CFW) staining
Synchronized wildtype adult worms were washed and incubated with 0.005% CFW from a 1% stock 
(w/v, dissolved in DMSO; Fluorescent Brightener 28, Sigma- Aldrich, CAS 4404- 43- 7) in 500 µL NGM 
for 3 hr in the dark. Worms are then prepped for microscopic analysis as described above. Note that 
the CFW stock should be placed in boiling water for ~2 min and then vigorously vortexed to ensure 
solvation of the dye.

Calculations of low-complexity and intrinsic disorder
LCRs in the amino acid sequences of each protein within the C. elegans proteome (WormBase release 
WS274) were identified using the SEG algorithm with default stringency parameters set (i.e., WINdow 
= 12, LOWcut = 2.2, HIGhcut = 2.5) (Wootton and Federhen, 1993). Percentage sequence in LCRs 
was calculated for each protein based on the total number of residues found within LCRs returned by 
SEG relative to protein length. The intrinsic disorder of each protein within the C. elegans proteome 
(obtained from WormBase version WS274) was analyzed using the Spot- Disorder script (Hanson 
et al., 2017). The computational analysis was conducted using the Niagara supercomputer at the 
SciNet HPC Consortium. The GNU ‘parallel’ package was used to perform the computational analysis 
in parallel. The individual protein SPOT- Disorder output data were then computationally analyzed 
using Python for IDRs (defined as any string of 30 or more disordered residues), total number of disor-
dered residues, and percentage of amino acid residues within intrinsically disordered regions.

LLPhyScore calculations
The LLPhyScore phase separation score of each protein was calculated using the LLPhyScore algorithm 
(Cai et  al., 2022). The LLPhyScore algorithm is a machine learning- based interpretable predictive 
algorithm that is based on the idea that a combination of multiple different physical interactions drives 
protein liquid–liquid phase separation. A protein’s LLPhyScore is a weighted combination of eight 
sub- scores, each representing one physical feature that is inferred from the input sequence. These 
physical features include protein–water interactions, hydrogen bonds, pi–pi interactions, disorder, 
kinked- beta structure, and electrostatics. The scores are optimized via training with 500+ experimen-
tally known phase- separating protein sequences against selected negative sequences. More details 
about this algorithm can be found in the manuscript in preparation.
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AmyloGram and path analyses
AmyloGram (Burdukiewicz et al., 2017) is a method based on machine learning, trained on hexa-
peptides experimentally tested for their amyloidogenic propensities (Wozniak and Kotulska, 2015). 
Amino acids are represented by the alphabet that best encoded amyloidogenicity of peptides 
modeled by n- grams, and it was optimized by a random forest classifier. Classification of a protein 
amyloidogenicity included calculating its profile with a hexapeptide window shifting along the protein 
chain. Proteins with amyloid propensity were identified on the basis of an appearance of at least 
one amyloidogenic fragment. To avoid an excessive number of false positives, non- default specificity 
values were used: 0.95 and 0.99.

PATH (Wojciechowski and Kotulska, 2020) uses molecular modeling and machine learning. It is a 
computational pipeline based on Python and bash scripts, using Modeller (Sali and Blundell, 1993) 
and PyRosetta (Chaudhury et  al., 2010). A potentially amyloidogenic query sequence of a hexa-
peptide was threaded on seven representative amyloid templates. Comparative structure modeling 
provided evaluation of the models with statistics and physics- based functions. Next, the scores were 
used by the logistic regression classifier. The analyses with PATH were carried out in two stages. The 
first scan along the protein chain was done by AmyloGram with the specificity threshold at 0.99, which 
was then followed by structural modeling and classification using PATH. The second stage was only 
applied to amyloid- positive regions found by AmyloGram.

LARKS analyses
LARKS predictions were done on a proteome downloaded from WormBase on October 18, 2021. 
Sequences not completely comprised of the 20 canonical amino acids were rejected from anal-
ysis. Each protein from the filtered proteome set of 20,042 proteins was then submitted for LARKS 
predictions. First, the sequence was separated into a series of overlapping hexapeptide segments 
(each segment overlapped with five residues from the segment before it; a 150 amino acid sequence 
contains 145 hexapeptides). The sidechains for each residue in a hexapeptide are computationally 
grafted onto a fibril model for each of three different LARKS structures (FUS- SYSGYS, FUS- STGGYG, 
and hnRNPA1- GYNGFG; PDB IDs: 6BWZ, 6BZP, and 6BXX). Energy minimization is done using a 
Rosetta energy score as a readout, and if the final energy is below a backbone- dependent threshold, 
then hexapeptide segment is considered a LARKS. Proteins’ LARKS content was determined by the 
number of favorable LARKS segments divided by the length of the protein.

In vitro expression and analysis of IDPs
Expression vectors and constructs
All protein expression vectors generated for this work were derivatives of the pMBP- FUS- FL- WT 
(a gift from Nicolas Fawzi [Addgene plasmid # 98651; http://n2t.net/addgene: 98651; RRID:Ad-
dgene_98651; Burke et al., 2015], which was modified to remove the FUS1 coding region and to 
have two cloning sites BamHI and NotI) for facile cloning of new proteins in phase with the HIS- tagged 
Maltose Binding Protein (MBP) at the N- terminus followed by a TEV protease cleavage site (TEVcs) to 
generate pPRRH1197. The coding region of proteins of interest (minus signal sequences) was codon 
optimized for expression in E. coli, synthesized with appropriate linkers, and subcloned into frame 
with MBP (GenScript), resulting in pPRPM1191 (HIS::MBP::TEVcs::IDPC- 2).

Protein preparation and purification
Proteins were expressed in E. coli BL21DE3 RIPL in LB with kanamycin and chloramphenicol. Cells 
were grown to OD600 of 0.5, induced with 0.5 mM IPTG, and grown overnight at 18°C. The next day 
cultures were centrifuged at 5000 × g at 4°C for 10 min. Pellets were frozen at –80°C then thawed and 
resuspended in lysis buffer (2.5 mM Tris pH 7.5, 500 mM NaCl, 20 mM imidazole, 2 mM DTT and 1x 
Protease inhibitor cocktail; Sigma, P8849). This suspension was sonicated to lyse E. coli and clarified 
by centrifugation at 39,000 × g for 45 min at 4°C. The cleared supernatant was added directly to a 
pre- equilibrated nickel column. Optimal wash and elution conditions had to be determined empiri-
cally for each protein. Purified fractions where then dialyzed with 2.5 mM Tris pH 7.5, 150 mM NaCl, 
2 mM DTT to remove excess salts and imidazole and protein concentration determined with Bradford 
assay.
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Phase separation assays
Proteins were incubated in 2.5 mM Tris pH 7.5, 150 mM NaCl, 2 mM DTT with either 5% Ficoll (Sigma, 
F2637) for MBP::FUS1 or 15% Ficoll for MBP::IDPC- 2 for 1 hr at 30°C with or without TEV protease 
(10 units in a 50 μL reaction). The optimal percent Ficoll was determined empirically. Turbidity was 
measure at 395 nm with a Clariostar plate reader (Mandel). 10 μL of each reaction was spotted onto 
slides with coverslips then condensates visualized with DIC using a Leica DMRA2 microscope at ×63 
magnification.

Protein sequence analysis and logo generation
We used Clustal Omega (Sievers et al., 2011) to align the 110 low- complexity protein sequences 
and generate a percent identity matrix based on the multiple sequence alignment. For those low- 
complexity proteins with a predicted signal peptide, the first 20 amino acids were removed from the 
protein sequence before alignment.

To generate sequence logos, full- length protein sequences from each of the low- complexity 
protein families identified by the percent identity matrix were aligned using ClustalW (Thompson 
et al., 1994). Sequence logos were constructed based on these alignments using WebLogo 3.7.4; 
(https://weblogo.berkeley.edu/; Crooks et al., 2004; Schneider and Stephens, 1990). Amino acid 
residues were colored according to their chemical properties: polar (G,S,T,Y,C) in green, neutral (Q,N) 
in purple, basic (K,R,H) in blue, acidic (D,E) in red, and hydrophobic (A,V,L,I,P,W,F,M) in black. The 
height of the symbol within each stack indicates the relative frequency of that amino acid in that posi-
tion. Stack widths are scaled by the fraction of symbols in that position (positions with many gaps are 
narrow). Details of protein sequences used can be found in Figure 4—source data 1.

Statistics and graphs
Except where indicated, statistical differences were measured using a two- tailed Student’s t- test. Plots 
were either generated using Prism 8 graphing software or Excel.

Materials availability statement
The C. elegans strains expressing the fluorescently tagged fusion proteins will be made available at 
the C. elegans Genetic Center.
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context with other data for each gene. Also note that the column indicators below are named 
after the column in Supplementary File 1. (C) All 78 gene products called out in Figure 4A are 
shown, along with all 226 genes represented in Figure 4A, in addition to 17 genes that are of 
special interest (including additional members of the idpp gene class referred to elsewhere in the 
text). (B) The APPGs that have higher sequence similarity to one another and have more similar 
temporal expression patterns are described as APPG family (#1) members to distinguish them 
from more divergent APPGs. (E) The Name Status indicates the 41 new WormBase- approved gene 
assignments. (H) The indicated hour and degree is with respect to Figure 4A. (J) In some cases, the 
updated Signal P algorithm will identify a signal peptide when ParaSite did not, as indicated with 
a ‘no, but likley SS.’ (L) The spatial expression patterns of the indicated clones can be inspected at 
http://nematode.lab.nig.ac.jp/dbest/srchbyclone.html. A green color indicates confirmation of the 
expected expression pattern (enriched in pharynx); ‘no signal’ indicates little to no signal anywhere 
in photo micrographs. In two cases indicated in pink, signal could be observed in the animal, but 
the pharynx lacked signal. (M, N) The PubMed ID number (PMID) is shown for the publication that 
provides additional spatial expression information for the gene. The nature of the data is either 
from a transgene (transg), an antibody (Ab), or is sequence- based (seq). A green color indicates 
confirmation of the expected expression pattern (enriched in pharynx).

•  Supplementary file 2. Transcript levels of six low- complexity protein families within pharynx cells. 
The data is extracted from the data presented in Figure 10B.

•  MDAR checklist 

Data availability
All source data for the spatiotemporal reconstruction is in the Source data files.
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Abstract

NLR proteins are intracellular receptors constituting a conserved component of the innate

immune system of cellular organisms. In fungi, NLRs are characterized by high diversity of

architectures and presence of amyloid signaling. Here, we explore the diverse world of

effector and signaling domains of fungal NLRs using state-of-the-art bioinformatic methods

including MMseqs2 for fast clustering, probabilistic context-free grammars for sequence

analysis, and AlphaFold2 deep neural networks for structure prediction. In addition to sub-

stantially improving the overall annotation, especially in basidiomycetes, the study identifies

novel domains and reveals the structural similarity of MLKL-related HeLo- and Goodbye-like

domains forming the most abundant superfamily of fungal NLR effectors. Moreover, com-

pared to previous studies, we found several times more amyloid motif instances, including

novel families, and validated aggregating and prion-forming properties of the most abundant

of them in vitro and in vivo. Also, through an extensive in silico search, the NLR-associated

amyloid signaling was identified in basidiomycetes. The emerging picture highlights similari-

ties and differences in the NLR architectures and amyloid signaling in ascomycetes, basidio-

mycetes and other branches of life.

Author summary

All living organisms possess an immune system allowing them to cope with pathogens

and, more broadly, to manage interactions with other organisms. One of its conserved

components are the so-called NLR proteins, which are found in bacteria, plants, animals

and fungi. NLRs are intracellular sensors that trigger a host response upon the detection

of non-self markers, which is typically performed by effector domains of NLRs. We
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investigate the repertoire of these domains in almost 500 fungal strains. We identify sev-

eral major effector classes, most of which are involved in regulated cell death. Some NLRs

do not have built-in effector domains but instead activate separate effector proteins via

prion-like signal propagation. This activation is triggered by passing the amyloid fold

from a short signaling domain on the NLR to its counterpart on the effector. Using inno-

vative computational approaches, we identify new amyloid signaling motifs and find them

overall several times more common in fungal NLRs than previously reported, including

the evidence of amyloid signaling in basidiomycetes. Our results describe the global

ensemble of NLRs effector domains in fungi and thus enhance our comparative view of

this nearly-universally conserved immune receptor family.

Background

NLR proteins

All living organisms possess an immune system allowing them to cope with viral or cellular

pathogens. Among the central and conserved components of the innate immune system in

animals and plants are the NLR proteins. NLRs are intracellular immune receptors that

induces various host responses including regulated cell death upon the detection of non-self

cues [1–3]. A typical NLR protein functions following a ligand-induced oligomerization and

activation process. Its tripartite domain architecture displays 1) a central Nucleotide-binding

and Oligomerization Domain (NOD), 2) a C-terminal domain composed of superstructure

forming repeats that is typically involved in detection of non-self cues in the form of DAMPs

or MAMPs (Damage- or Microbe-Associated Molecular Patterns) and 3) a N-terminal effector

domain whose activation induces various downstream host responses including regulation of

the infected cell death [4–8]. While historically, NLRs were mostly studied within the animal

and plant kingdoms (as Nod-Like Receptors and NBS-LRR Receptors respectively) [9, 10],

their homologs were identified in bacteria and fungi [4, 11–13].

In fungi, homologs of NLR proteins were initially identified in the context of the study of a

non-self recognition process termed heterokaryon incompatibility [14]. This reaction occurs

in filamentous fungi in the event of the fusion (anastasmosis) of the hyphæ of genetically

incompatible individuals, resulting in the death of mixed fusion cells [15, 16]. Incompatibility

prevents in particular the transmission of mycoviruses between isolates during the anastomo-

sis events. In Podospora anserina, HET-E, one of the proteins controlling heterokaryon incom-

patibility is a homolog of NLR proteins (although its N- and C-terminal domains differ from

those known in animals and plants, a situation typical for NLR architecture proteins outside of

the plant and animal kingdom [4, 11, 17]). Its central NOD domain is one of the original

founding members used to define the NACHT domain (Pfam PF05729) common in animal

NLRs (the H in the NACHT acronym stands for HET-E) [10, 18]. The C-terminal domain of

HET-E protein, built of hypervariable WD40 repeats recognizes a non-self cue, here polymor-

phic variants of a host protein termed HET-C, a glycolipid transfer protein universally con-

served in eukaryotes that could represent a pathogen effector target [19]. In such event, the N-

terminal HET domain of the HET-E protein is activated which ultimately leads to regulated

cell death [19]. The HET domain (PF06985) [18] is a cell death inducing domain with a remote

homology to TIR domains [20, 21], including conservation of a functionally relevant glutamate

[11, 22]. Several other fungal cell death inducing incompatibility pathways in Podospora and

other species are controlled by NLR proteins [5, 23]. Yet, apparently only a small fraction of

the existing fungal NLRs are involved in heterokaryon incompatibility and it is proposed that
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these proteins have more general functions in immune defense and establishment of symbiotic

interactions in fungi [5, 24]. Indeed, NLR proteins are abundant in multicellular filamentous

fungi (no NLR protein was found in unicellular yeasts). In a recent study, a total of about 36

000 NLR proteins have been found in around 880 strains of over 560 species of fungi with on

average 57 NLRs per genome and numerous species displaying hundreds of NLR genes [5, 11].

In terms of domain annotation fungal NLRs differ from their typical animal and plant

counterparts. Unlike more homogenous NLR proteins in animals and plants, the central

domain of fungal NLRs can be either of the NACHT [10] or the NB-ARC type (PF00931) [9].

Then fungal NLRs display ankyrin repeats (ANK, Pfam CL0465), tetratricopeptide repeats

(TPR, CL0020) and beta-propellers of the WD40 meta-family (CL0186) in place of the LRR

repeats found in most animal and plant NLRs. The NBS-TPR architecture was proposed to

correspond to the ancestral architecture whilst NLR proteins in multicellular bacteria also

typically display TPR, ANK or WD repeats [4, 11, 12, 17]. Consistent with a role in immune

defense C-terminal repeated domains of fungal NLRs display marks of positive selection and

are highly variable [11, 23, 25]. In addition, the C-terminal domains show original modes of

functional diversification. First, about 1/6 of these C-terminal repeat domains consist of highly

similar repeats with only a few highly variable positions under positive selection [11, 26].

These repeats arrays with high internal similarity are hypervariable loci in which individual

repeats are exchanged and reshuffled resulting in functional diversification [25, 26]. High

internal similarity of repeats is both a cause and a result of an unequal crossing over mecha-

nism, a process which is 5–6 orders of magnitude faster than the point mutation [27]. Then, in

the truffle Tuber melanosporum a superfamily of NACHT-ANK NLR encoding genes displays

dozens of 3 bp mini-exons whose alternative splicing can considerably diversify the repertoire

of potential C-terminal recognition domain [28]. These striking modes of recognition domain

diversification are consistent with the proposed role of NLR proteins in the immune response,

as capability of quickly adapting to evolving pathogens is a condition of success in the constant

arms race against them [25].

For about 50% of fungal NLR proteins, N-terminal domain annotations could be deter-

mined with the Pfam [29] and similar HMM profiles [11], which make up for 12–13 major

meta-families [5, 11]. Functionally, the characterized N-terminal domains belong to three

basic types: enzymatic, signaling, and regulated cell death induction [30]. The four largest

families of fungal NLR effectors are the Alpha/Beta hydrolases [31], the purine and uridine

phosphorylases [32, 33], both associated with enzymatic functions, pore-forming domains

homologous to HeLo [34–38], and functionally and structurally uncharted Goodbye homologs

[11, 37]. The first three families are widespread in various branches of life. For example, the

HeLo domain is a fungal homolog of human MLKL, plant RPW8 and bacterial Bell domains

[12, 37, 38]. It is understood that upon oligomerization, these domains, whose central part is a

four-helix bundle, expel a N-terminal alpha-helix to form a pore targeting the membrane and

thus induce cell death [39, 40]. Out of 72 theoritically possible NLR architectures made with

the most common domain families (12 types of N-terminal domains, 2 types of central

domains and 3 clans of C-terminal domains), as many as 32 were identified in fungal prote-

omes [11]. Interestingly, in about 20 cases, the closest orthologs of the central domain

sequences were bound to different N-terminal domains (including in two different strains of

the same species). Moreover, the maximum-likelihood phylogenetic trees generated separately

for the N-terminal and central domains were mutually incompatible, and distribution of the

N-terminal domains over the branches of central domains trees generated for selected species

was scattered. Together with a relatively high number of NLRs without ortholog in other

strains of the same species, these findings indicate high plasticity of the architecture of NLR

proteins and the occurrence of the death-and-birth evolution process [5, 11].
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Amyloid signaling motifs

Another notable feature of fungal NLRs is the occurrence of amyloid-forming motifs at their

N-termini [30]. A series of studies derived from the characterization of the Podospora anserina
[Het-s] prion protein, which controls regulated cell death in the context of heterokaryon

incompatibility, has revealed that a fraction of the fungal NLRs employ amyloid signaling to

activate downstream cell death effector domains [30, 41]. The paradigmatic example of such

amyloid NLR signalosomes is the HET-S/NWD2 two-component system of P. anserina.

HET-S encodes a cell death execution protein with a globular N-terminal HeLo domain

(PF14479) and a C-terminal amyloid forming prion domain composed of two elementary

repeats r1 and r2 which are able adopt a specific β-solenoid amyloid fold [36, 42–44]. Amyloid

transconformation of the C-terminal domain induces activation of the HeLo domain, which

turns into a pore-forming toxin. NWD2 is a NLR, encoded by the gene immediately adjacent

to het-S, and displays at its N-terminus a motif termed r0 which is homologous to the elemen-

tary r1 and r2 repeats [37, 41]. When activated by their cognate ligand, engineered variants of

NWD2 are capable of triggering transconformation of HET-S and to induce its toxicity. In this

system, activation of the NLR leads to amyloid folding of its N-terminus which then serves as

template to activate a cognate cell death execution protein [30]. Throughout this paper the

term amyloid signaling refers to passing information from one protein to another by transmit-

ting the amyloid fold due to the compatibility of amyloid motifs [30].

The r0, r1, and r2 motifs, collectively referred to as the HET-s motif, represent one of the

best studied examples of an amyloid signaling motif (ASM). Homologs of the HET-s motif can

be grouped in 5 subclasses (collectively denoted as HET-s Related Amyloid Motifs or HRAM)

[45], which co-occur in N-termini of fungal NLR proteins and in C-termini of HeLo [34–36]

and HeLo-like (PF17111) proteins [11, 37] encoded by genes adjacent to NLR-encoding genes

in the genome. In some organisms, two or three subclasses of HRAMs exist simultaneously,

which allows for maintaining distinct signaling pathways [45, 46].

There are two other families of fungal ASMs with similar functionality in the NLR protein

system, namely σ (named after the σ prion, which contains this motif [47]) and PP (pseudopa-

lindromic due to the amino acid pattern NxGxQxGxN at its core) [37]. The PP motif bears sig-

nificant resemblance to the mammalian RHIM motif [38, 48, 49] with remote homologs also

in multicellular bacteria [12].

Still, this repertoire of already described fungal ASMs is significantly smaller in comparison

to bacterial amyloid signaling motifs. A recent in silico analysis of over 100,000 available bacte-

rial genomes in search of sequence motifs repeated in adjacent genes encoding the Bell (bacte-

rial homolog of fungal HeLo) and NLR proteins revealed ten families of Bacterial Amyloid

Signal Sequences (BASS) widespread in multicellular Actinomycetes, Cyanobacteria and in

Archaea [12]. Despite their sequence-level diversity, at least some if not all known bacterial

and fungal ASMs are believed to share the beta-arch fold [50–52].

While it is not fully understood why the NLR/effector pairs involving amyloid signaling are

generally encoded by clustered genes, the same situation has been recently reported in regu-

lated cell death pathways involving protease/gasdermine clustered gene pairs [53, 54]. The

most likely explanation for this genomic clustering relates to genetic inheritability of such clus-

ters. Genetic association of the genes encoding the receptor and effector moiety of the cell

death pathway favors both its vertical (meiotic) and horizontal (transposition driven) inheri-

tance of the pathway as a whole. There is evidence that NLRs in fungi can be preferentially

associated with and carried by transposons [55].

When compared to the NLR proteins in plant and animal kingdoms, the fungal NLR pro-

teins display larger diversity of architectures. In addition, NLR-associated amyloid signaling
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appears specific to fungal and bacterial kingdoms although amyloid motifs also occur in

immune pathways in animals [56, 57]. The dominant view, until recently, was that the archi-

tecture and immunological function of NLR proteins in plants and animals resulted from the

convergent evolution [17]. However, higher diversity of NLRs in fungi than in animals and

plants, as well as presence of NLRs in prokaryotes [4, 12, 13] suggest the early evolutionary ori-

gins of the architecture and the immune function of NLR proteins [5, 30]. Exploration of the

diversity of fungal NLRs is an important asset for deciphering of the potential roles of these

immune receptors in fungal biology in addition to their documented role in cell death related

to incompatibility. In addition, comparative studies of NLRs in the different kingdoms can

provide a more global view of the long term evolution of these central components of immu-

nity in both microbes and macro-organisms. The aim of the current study is to improve the

annotation and characterization of the vast ensemble of N-terminal domain of fungal NLRs

with particular emphasis on short domains (shorter than 150 amino acids) and amyloid-like

motifs.

Results

Overview of N-terminal domains of fungal NLRs

In roughly 36 000 fungal NLRs identified in a previous study [12], over 90% proteins had N-

terminal extension to the NOD domain at least 20 amino-acids long and therefore capable to

accommodating a functional domain (Fig 1a). Only 57% of them was previously annotated

using the Pfam [29] or inhouse profiles [11]. To improve the Pfam annotation coverage, we

clustered the set of N-termini with MMseqs2 [58] and then, for each cluster with at least 20

members, searched for homologs in UniRef30 [59, 60] and subsequently in Pfam using

HHblits [61] (see Computational methods for details). The procedure resulted in assigning the

Pfam-based annotations to 3003 additional N-termini, thus increasing the annotation coverage

to 66%.

N-terminal annotations of fungal NLRs are not evenly distributed. The length distribu-

tion of N-termini varied significantly with regard to the fungal phylum (Fig 1b and Fig A in S1

Text): while Basidiomycota were over-represented among short N-termini (below 100 amino

acids), Ascomycota made up for 85% of termini longer than 200 amino acids. The Pfam anno-

tation coverage was also not evenly distributed. While almost 90% of longer N-terminal

domains (200 aa or more) were at least partially annotated, the figure was below 40% for the

middle range, and—not surprisingly—a few percent for domains shorter than 100 amino

acids, which constituted 1/4 of all NLR N-termini (Fig 1c). The Pfam annotation coverage also

strongly depended on taxonomic scope: N-termini from Ascomycota were more completely

annotated (72%) than N-termini from Basidiomycota (23%), even though our new clustering-

based annotation scheme increased coverage of the latter phylum roughly twice (Fig 1d). This

inequality holded as well when N-termini in the same length ranges (above 100 aa) were com-

pared in both branches. In the clustering-based approach, Pfam annotations were found for

more than 80% N-termini with the UniRef homologs outside the Fungi kingdom, but only for

around 20% sequences with fungal-only homologs (Fig 1e). While better coverage of more

universally spread domains is not surprising, taken together, our results highlight the fact that

the NLRs of fungi, and especially Basidiomycota, are still not sufficiently represented in Pfam.

Novel annotations include the ubiquitin, TIR, and purine nucleoside phosphorylase

domains. The updated annotations of fungal NLR N-termini were summarized in Fig 1f and

in Fig B in S1 Text. Vast majority of newly added annotations belonged to domain families

already described as fungal NLR effectors (Table A in S1 Text). The exceptions were the Crink-

ler domain of the Ubiquitin clan only recently included in Pfam [62–66], and the Sterile Alpha

PLOS COMPUTATIONAL BIOLOGY Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLRs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010787 December 21, 2022 5 / 36



Fig 1. Fungal NLR N-termini. a) Major general architectures; b) N-termini length distribution with taxonomic division, c) Same data

scaled to 100% for each length range; Annotation coverage with regard to d) N-terminus length, e) taxonomic division; f) Annotation

coverage of the MMSeqs clustered N-termini with regard to presence of taxonomically distant homologs in UniRef top hits (see Results).

Euk. denotes Eukaryota, off Euk. category includes Bacteria, Archaea and Viruses. Colored bars indicate fraction of Pfam & inhouse

annotated sequences (blue: only direct Pfam hits, violet: direct and with clustering & HHblits, rose: only with clustering & HHblits).
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Motif family SAM_Ste50p [67]. SAMs are involved in homologous and heterologous protein-

protein interactions [68], notably they are present in SARM1 protein of the Toll-Interleukin-1

Receptor (TIR) family [69–71]. Moreover, the new scheme increased the number of the Purine

and Uridine Phosphorylase (PUP) superfamily annotations, mostly due to the matches to the

purine NUcleoside Permease (NUP) profile [72]. In addition, dozens of Pezizomycotina spe-

cies contained NLR N-termini comprising of C-terminal part of the PNP_UDP_1 fold (cf.

pdb:6po4B, residues 176–234). A large number of agaricomycetal N-termini displayed the

double domain C2 Goodbye-like architecture [11, 37], the architecture which was specific to

Agaricomycetes. The Goodbye-like domain was found also in other double domain architec-

tures of NLR N-termini (Table A in S1 Text). Please refer to S1 Text for additional notes on

the updated annotations.

Some effector domains are absent in basidiomycetal NLRs. Overall, several most abun-

dant domain classes including the Goodbye-, HeLo-, SesB-like and PUP families, accounted

for majority of fungal NLR N-termini (Fig 1f). The two latter superfamilies were common in

ascomycetal NLRs (13–14% each) but were almost (SesB-like) or completely (PUP) missing

from basidiomycotal NLRs (Fig B in S1 Text). The complete lack of PUP (and HET) domains

in basidiomycetal NLRs contrasted with the presence of these domains in other (non-NLR)

domain architectures in this division.

Relation between HeLo-, Goodbye- and basidiomycotal MLKL-likes

HeLo- and Goodbye-like annotations overlap in basidiomycetal homologs of human

MLKL. Notably, we found clusters with apparently overlapping HeLo/HeLo-like and HeLo-

like/Goodbye-like domain annotations. The latter situation was found in Basidiomycota

and mostly involved sequences annotated as MLKL_NTD according to Conserved Domain

Database (CDD) [73]. Moreover, there were additional basidiomycotal clusters with CDD

MLKL_NTD annotation and/or with Pfam HeLo- or Goodbye-like annotations just below the

assignment threshold, surmounting to a total of 600 basidiomycotal MLKL-like (BaMLKL)

sequences. This made the superfamily of Goodbye/HeLo/MLKL_NTD-like domains the most

frequent in Basidiomycota (nearly 2000 sequences, 23% of all), similarly to Ascomycota (10

000 sequences or 38%, Fig B in S1 Text).

We analyzed the largest cluster with the overlapping Goodbye-like and HeLo-like annota-

tions assigned through the HHblits-based procedure (OBZ65626, 106 sequences). Several

sequences in the cluster received also hits from various MLKL-related Pfam profiles when

sequences were searched individually (sequence and domain E-values of 1e − 3, Fig 2a). Not

surprisingly, the multiple sequence alignment of the cluster closely matched (HHpred [74, 75]

probability above 98%) the sequence of human MLKL executioner domain with an experi-

mentally solved three-dimensional structure (pdb:6vzo [76], Fig 2b). In fact the MLKL domain

was almost perfectly aligned with the Helo_like_N profile match, while the related SesA profile

match was slightly shorter. At the same time, the matches to the two Goodbye-like profiles,

Goodbye and NACHT_N [11], were both shifted N-terminally with regard to the MLKL-like

domain resulting in a partial overlap, significantly longer for NACHT_N. Importantly, the

multiple sequence alignment was well conserved for the combined stretch of Goodbye- and

HeLo-like matches regardless of Pfam annotations of individual sequences (Fig 2a).

HeLo-, Goodbye- and basidiomycotal MLKL-like proteins share a core structural fold.

Then, we attempted structure prediction for the largest MLKL-like clusters using AlphaFold2

Inhouse profiles were used only for direct Pfam searches. g) Distribution of domain families. Additional non-Pfam annotations

included, see Results and Methods. N-termini shorter than 20 amino acids are distinguished, as unlikely to contain functional domains.

https://doi.org/10.1371/journal.pcbi.1010787.g001
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Fig 2. MLKL-like N-termini. a) Fingerprint alignment of the doubly (Goodbye-like & Helo-like) annotated OBZ65626 cluster including non-

redundant sequences with direct Pfam annotations. The alignment was truncated C-terminally. Darker shade implies higher conservation,

while gaps are represented as lines. Columns matched with Pfam profiles of MLKL-like domains are indicated with brown bars. Columns

corresponding to helices in a predicted OBZ65626 model are indicated with solid magenta boxes. Columns alignable to the human MLKL

structure are framed with a brown dashed line. Columns corresponding to helices in the aligned MLKL structure are indicated with dashed
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[77] through the ColabFold advanced notebook [78]. The predictions were carried out solely

using multiple sequences alignments of each cluster. Except for the largest HeLo-like cluster,

all other predictions resulted in very good quality models (pLDDT around 0.80) sharing a

four-helix core (Fig 2c), which is characteristic to the solved MLKL structure. When aligned to

the latter using TM-align [79], the predicted models achieved TM-scores between 0.51 to 0.64.

The four-helix bundle configuration was supported with alignment conservation scores, calcu-

lated with ConSurf [80, 81], which were consistently high for residues facing the interior of

the bundle (Fig C in S1 Text). The most notable difference between structural models obtained

for various clusters was an additional N-terminal helix in basidomycotal MLKL_NTD homo-

logs and Goodbye-likes (hG in Fig 2), not found in MLKL and HeLo-likes. However, Good-

bye-like models presented longer and more complex N-terminal extension than BaMLKLs.

Noteworthy was the relatively high conservation of hG residues facing the bundle and h1 resi-

dues facing the exterior of the bundle (Fig C in S1 Text). Also, Goodbye-likes lacked a short

perpendicular helix (hM) between helices h3 and h4, which seemed to be a common feature of

human and basidiomycotal MLKLs and HeLo-likes (Fig 2c).

Taken together, these analyses indicate that although Goodbye-like profiles share a core

region with the MLKL bundle and HeLo and Helo-like profiles, they also differ by the presence

of an N-terminal extension ahead of the region corresponding to the first helix in MLKL/

RPW8/HeLo proteins. Considering the critical role of this region in the oligomerization, mem-

brane targeting and ion specificity of these animal, plant and fungal proteins, further experi-

mental investigation are needed before a potential cell death inducing activity can be firmly

attributed to Goodbye-like profiles [39, 40, 44, 82, 83].

Unannotated longer N-termini

A novel helical effector domain is shared between Pezizomycotina and Mortierellomy-

cetes. In addition, largest unannotated clusters were carefully examined and subjected to

structural modeling using AlphaFold2 [77, 78] (see Computational methods). The identified

domains were listed Table B in S1 Text and briefly characterized in S1 Text. Notably two clus-

ters, mutually homologous, consisted of relatively long domains (N-terminal length above 500

aa) from Pezizomycotina and Mortierellomycetes predicted to be made of multiple alpha-heli-

ces forming two stretches of the alpha solenoid-like structure (NLR_Helical in Table B and Fig

Dab in S1 Text). Interestingly, homologous domains were also found in bacteria, mainly in

Mycoavidus cysteinexigens. As this betaproteobacteria is an endosymbiont of Linnemania
(Mortierella) elongata AG-77 (a fungus with the largest number of these proteins [2]), this may

suggest possibility of the horizontal gene transfer.

TIR-like effectors are present in Pezizomycotina. Another unannotated cluster con-

sisted of moderately long NLR N-termini (median length of 389 aa), from various Pezizomyco-

tina species, which partially resembled the SEFIR family [84, 85] of TIR clan. A good quality

structural model predicted with AlphaFold2 supported homology to TIR and HET domains

(Fig Dc in S1 Text). Importantly, the TIR domain was reported in NLRs from plants, bacteria

and Chytridiomycota [5, 12, 21, 86]. Interestingly, homologous domains were also present as

separate proteins in Mucormycota Rhizophagus irregularis, a species related to Mortierella, and

in Mycoavidus cysteinexigens, in accordance with the possibility of horizontal gene transfer

[87].

magenta boxes. b) The human MLKL structure (pdb:6zvoA). c) Structural models of various MLKL-like domains predicted with AlphaFold2

(see Methods). Regions aligned to the human MLKL structure with TM-align are shown in brown. Rainbow colors indicate model quality in

terms of pLDDT (below or 50: red, 60: yellow, 70: green, 80: cyan, above 90: blue).

https://doi.org/10.1371/journal.pcbi.1010787.g002
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Specialized effector domains are abundant in fungal NLRs. Importantly, all other lon-

ger domains were represented by less than 100 sequences. With the limitation that in some

cases larger families may have been superficially partitioned into small clusters, this indicates

that the current Pfam annotations (plus MLKL_NTD and a few inhouse profiles) cover all

widely spread abundant domains. At the same time, there seems to exist a substantially large

corpus of thousands of specialized N-termini, sometimes confined to narrow taxonomic

branches. While some of them may be formed with a tuple of known domains, other could

represent novel families (likely being difficult targets for structure prediction due to small

alignments). With regard to our previous analyses [5, 11], the current study suggests less diver-

sity in major effector classes (5–7 rather than 12–13), but highlights a likely abundance of spe-

cialized domains.

Amyloid-like motifs in short N-termini

A novel in silico approach finds amyloid-like motifs in 1/6 of all short NLR N-ter-

mini. The largest deficiency in the annotation coverage concerned short N-terminal

sequences (length below 150 amino acids). Only less than six percent of them (645 out of 11

634) received any Pfam-based annotation, while less than two percent (214) was annotated

as so called prion-forming domains (PFD) [11, 37], consisting of the three known families

of fungal ASMs. As more than 3 000 short N-terminal domains were assigned to clusters

made with at least 20 sequences, this suggested presence of conserved sequential features.

Therefore, we searched for potential additional fungal amyloid signaling motifs using an

approach that combined filtering with a probabilistic grammatical model inferred from ten

families of bacterial ASMs (BASS1–10 [12]), shown to be sensitive to fungal amyloid signal-

ing sequences [52], with the MEME motif extraction [88] (see Computational methods

for details). The procedure resulted in identifying 16 grammar-compatible motifs (Fig 3a.

Then, we used profile HMMs of these motifs to scan all NLR N-termini at least 10 amino-

acids long, and found hits in 1537 sequences (Table 1), which represented 17% (36%) of all

(clustered) short N-termini. The number included 204 out of all 242 sequences already

annotated as PFD-LIKEs (84% sensitivity).

Amyloid-like motifs in fungal NLRs cluster to nine classes likely assuming the beta-arch

fold. Not surprisingly, some of the 16 motifs clearly corresponded to the three fungal ASM

families: HRAM (NLR13, found in 131 sequences), PP (NLR07, 296), and σ (NLR28, 71).

The overall recall of 498 hits was twice higher in comparison to the combined Pfam-based

approaches (242). Several hits of another two motifs, NLR12 and NLR40, overlapped with the

NLR13 (HRAM) matches (Fig 3b). Moreover, the HMM scan with a generalized HRAM pro-

file based on HRAM dataset from [45] recognized 27/51 NLR12 and 14/22 NLR40 motifs, thus

indicating that these two classes were related to HRAM. Indeed, the NLR12 motif (Fig 3a) is

apparently similar to HRAM3 [45]. In addition, the G-hydrophobic-Q-hydrophobic-G pattern

of NLR39 motif resembled NLR07 (PP). Five other motifs (NLR17, NLR19, NLR20, NLR32

and NLR34, in 138 sequences altogether) were difficult to assign to the known families. The

final and the largest subgroup (689 sequences) consisted of five motifs (NLR05/08/22/29/44)

with hits substantially overlapping NLR22 hits. This large group was specific to basidiomycetes

except of a dozen of NLR22 hits overlapping ascomycotal NLR28 (σ) (Fig 3b). While most

motifs were distributed in larger taxonomic branches, two motifs were more restricted: NLR17

was specific to Amanita muscaria (strain Koide) and NLR19 to genus Tuber. A combined

NLR19 + NLR34 configuration was found in five highly homologous sequences from Tuber
melanosporum (Fig 3b). All 16 motifs are likely to assume the beta-arch fold typical to known

fungal and bacterial ASMs as from 45 to 95% motif instances passed the fold prediction
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threshold of ArchCandy (column AC+ in Table 1). The only exceptions were two shortest

motifs, NLR05 (28%) and NLR44 (none), probably because they comprise only parts of the

actual amyloid-like motif (Fig 3a).

For four motifs, the amyloid signaling is supported by genomic co-localization of effec-

tors. Significant numbers of similar sequence stretches in C-termini (100aa) of genomically

neighboring (20kbp) proteins were found only for motifs representing the three fungal ASM

families (NLR07 in 37 sequences, NLR12 in 4, NLR13 in 16, and NLR28 in 42) and for NLR32

(in 11 sequences). This suggests that NLR32 defines a new family of amyloid signaling motifs.

(For further computational and experimental verification, see below).

Amyloid-like motifs differ in their position in NLR N-termini. While instances of the

NLR05/22 group were usually situated in the very terminus, most HRAMs (NLR12/13/40) and

PPs (NLR07/39) were located at positions 5–9. Moreover, NLR32 and σ motifs (NLR28) were

shifted further C-terminally with relative majority at positions 20–49 and 50–99, respectively

(Fig 3c). In addition, a couple of dozens of amyloid-like sequences of various families (includ-

ing 17 NLR05 and 7 NLR07) were found located centrally or C-terminally in longer N-termini.

Some of them formed combined architectures with annotated domains, most notably with

Fig 3. Amyloid-like motifs in short N-termini of NLRs. Clusters of N-termini containing sequences resembling bacterial amyloid

signaling motifs were identified using a probabilistic grammatical model [52]. Motifs were extracted with MEME [88] and iteratively refined

with profile HMMs. (a) Profile HMM-based motif logos—grouped according to overlapping hits in NLR N-termini, as shown in panel (b)

Overlapping hits in NLR N-termini. See Results and Methods for details. (c) Stacked histogram of motif hits positions in NLR N-termini for

the five largest motif families, color-coded as in panel (a)).

https://doi.org/10.1371/journal.pcbi.1010787.g003
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NLR_PRDR (NLR05 in 10 sequences from A.bisporus) and MLKL-likes (5 BaMLKL + NLR05

in Laccaria bicolor, 4 HeLo-like + NLR28 and 1 HeLo-like + NLR07 in various Ascomycota).

A reverse approach: Amyloid-like motifs in C-termini of effector proteins

Two novel amyloid-like motifs are uniquely associated with the PNP_UDP effector

domain. In order to complement the search for amyloid signaling motifs in NLRs and verify

discovery of the fourth NLR-related fungal ASM family, we adapted the approach recently

used for identification of 10 families of bacterial ASMs in NLR-related proteins in bacteria

[12]. The procedure, which also used MEME for motif extraction, started from known effector

proteins [5], and relied on genomic proximity of their genes and genes encoding NLRs (see

Computational methods for details). Consequently, we identified 22 motifs, and clustered

them on the basis of their co-occurrence in 190 pairs of genomically neighboring proteins (Fig

E in S1 Text). Three clusters clearly corresponded to the already known families PP, σ, and

HRAM (Fig E in S1 Text). Two additional motifs with few pairs apparently resembled

HRAM2 and HRAM4 [45], respectively. The fourth largest family of motifs exhibited a distinc-

tive conserved pattern FxGxGxQxxGxGxF, which clearly corresponded to the NLR32 motif

in Fig 3. Since in both searches the motif was found associated uniquely with the PNP_UDP

domain, we termed it PUASM, or the Pnp_Udp-associated Amyloid Signaling Motif. The

NLRs with the PUASM motif proteins were annotated either as NACHT or NACHT WD40.

All matched instances of the PUASM motif came from various Pezizomycotina species.

Finally, we found one more distinct motif related to PNP_UDP, however only present in four

pairs (PF01048_015 in Fig E in S1 Text).

Amyloid-like motifs differ in the effector domain association. Overall, the ASM dif-

fered in type of associated effector domain, either pore-forming (HeLo and HeLo-like for

Table 1. Amyloid-like motifs in short N-termini of NLRs. Motif id indicates ranks in the MEME output. Motifs are grouped based on overlapping hits in NLRs and simi-

lar sequence patterns. Established and proposed motif annotation labels are given where applicable. L is the motif length. #NLR and #nei. indicate number of sequences

with a given motif in short N-termini of NLRs and C-termini of their genomic neighbors, respectively. AC+ indicates a proportion of motif instances for which ArchCandy

score is 0.56 or above. Major taxonomic branch including vast majority of NLRs with the motif is given. #eff. indicates total number of effector proteins (with established

association to NLRs) [5] with a given motif in C-termini. #cooc. indicates number of sequences with a given motif in short N-termini of NLRs / C-termini of effector pro-

teins cooccurring in the same strains (genome assemblies). #str. is a number of such strains with cooccurrence. Exp. indicates selected studies reporting experimental vali-

dation of some properties typical to ASM for a motif instance in a given family.

Id Annot. L #NLR AC+ Major tax. #nei. #eff. #cooc. #str. Exp.

05 — 17 387 0.28 Agaricomycetes 0 0 — — —

08 — 30 138 0.55 Agaricomycetes 0 0 — — —

22 — 24 263 0.53 Agaricomycetes 0 0 — — —

29 — 20 60 0.53 Agaricales 0 0 — — —

44 — 12 24 0.00 Agaricomycetes 0 0 — — —

07 PP 23 296 0.64 Ascomycota 37 106 157/76 56 [106]

39 PP 24 20 0.80 Ascomycota 0 2 1/1 1 —

12 HRAM3 26 110 0.48 Sordariomycetes 4 17 80/14 13 —

13 HRAM 24 131 0.57 Ascomycota 16 43 41/24 20 [43, 46]

40 HRAM 26 24 0.92 Ascomycota 0 0 — — —

17 — 26 24 0.88 A. muscaria 0 0 — — —

19 — 27 53 0.60 Tuber 0 0 — — —

20 — 21 37 0.68 Agaricales 0 0 — — —

28 σ 28 71 0.80 Ascomycota 42 62 45/43 40 [52]

32 PUASM 22 33 0.45 Sordariomycetes 11 29 25/21 18 this study

34 — 28 29 0.52 Ascomycota 0 0 — — —

https://doi.org/10.1371/journal.pcbi.1010787.t001
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HRAM/NLR13), enzymatic (PNP_UDP for HRAM/NLR12, NLR32 and PF01048_015), or

both (PP/NLR07 and σ/NLR28). Interestingly, while the NLR13 motif was typically found as a

double in C-termini of HeLo and HeLo-like domains, for the second HRAM-like, NLR12,

only single instances were found in C-termini of PNP_UDP_1 effector proteins. This may sug-

gest a different mode of operation despite their similar sequence profiles. Notably, the occur-

rence of ASMs as single instances or two (or three) fold repeats was also reported for bacterial

ASMs [12].

Amyloid signaling suspected between NLRs and effectors encoded by non-adjacent

genes. To check the possibility that proteins cooperating through the amyloid signaling are

encoded by non-adjacent genes, we analyzed co-occurrence of particular amyloid-like motifs

in N-termini of NLRs and C-termini of established effector domains [5] in entire genomes.

Non-singular C-terminal hits and genomic co-occurrences were found only for the three

established fungal ASM families and PUASM (Table 1). Such cases were relatively most fre-

quent for HRAM/NLR12, in parallel with the high ratio between the NLR-side and the effec-

tor-side motifs in some genomes (mean ratio 5.7:1, Table 1).

Amyloid-like motifs in Basidiomycota

Genome-wide motif searches suggest the NLR-related amyloid signaling in Agaricomy-

cetes. With the NLR-related amyloid signaling previously described in multicellular bacteria

and Ascomycota, apparent is the lack of evidence of this mechanism in Basidiomycota. On the

other hand, we found numerous homologs of the pore-forming HeLo and HeLo-like domains

in Basidiomycotal NLRs. Thus, we used them for searching the entire Basidiomycota genomes

for homologs separate from NLR domains. We identified hundreds of such putative singular

pore-forming domains, which—because of their potential to cause the cell death—can be

expected to be under control of other proteins. As in Ascomycota such control is exerted by

NLRs through the amyloid signaling sequences, we scanned the identified BaMLKL homologs

against ASM profiles and grammars. However, fragments resembling ASMs were identified

only in a few out of 500 sequences and in no case similar fragments were found in the neigh-

boring NLRs. Yet in two cases pairs of amyloid-like motif instances occurred when entire

genomes were considered (Fig 4a). In Moniliophthora roreri (strain MCA 2997) there was a 18

amino-acid long motif apparently shared between two BaMLKL C-termini and 26 short

NACHT N-termini (Fig F in S1 Text). In addition, in Fibularhizoctonia sp. CBS 109695 there

was a conserved pattern shared between two BaMLKL C-termini, eight short NLR N-termini

(including KZP25847 with NLR20 instance), and additional five NLR proteins with the pattern

situated between BaMLKL and NACHT domains (including KZP30127 and KZP3012 with

NLR22 instances)—see alignment in Fig G in S1 Text. It would suggest a possibility that in

Fibularhizoctonia proteins with the N-terminal and C-terminal amyloid-like sequences were

pseudogenes, especially that three NLRs in this group were atypically short (less than 200

amino acids). However, NLRs with N-terminal and mid-sequence ASMs differed in domain

configuration with the former belonging to NACHT, NACHT ANK and NACHT VHS archi-

tectures, while the latter were all of the NACHT TPR type (Fig 4a). (In M. rorei, we found only

one protein with the BaMLKL + NOD architecture (ESK90106.1) and the linker sequence

between the domains did not resemble an amyloid-like motif).

Amyloid-like motifs in agaricomycetal NLRs share features with the HET-s motif

homologs. In addition, we investigated two Agaricomycetes species with proteins compris-

ing of a singular HeLo domain and a C-terminal double HET-s motif. In the genome of

Sphaerobolus stellatus (strain SS14), which included four such C-termini, we found at least

eight NACHT NLRs with N-termini comprising of single HRAM-like sequences (Fig H in
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S1 Text). Two instances (in KIJ28522 and KIJ30800) resembled the NLR13 HRAM motif. This

strain was the only case where an NLR and three HeLo proteins were situated on a single con-

tig in genome assembly (Fig 4b and 4c). The shortest distance between genes encoding NLR

and HeLo was relatively large 95 kbp. The second species, Gymnopus luxurians (strain FD-317

M1), included one protein with HeLo + double HET-s motif architecture. While we did not

Fig 4. Potentially interacting amyloid-like motifs in Agaricomycetes. (a) Motif logos, sequence alignments and domain architectures of selected

motif instances. (b) Schematic representation of a cluster of amyloid-like motifs in contig SPHSTscaffold_52 from genome assembly GCA_000827215.1

of Sphaerobolus stellatus SS14. (c) Multiple sequence alignment of motif instances in (b).

https://doi.org/10.1371/journal.pcbi.1010787.g004
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find any typical HRAMs in N-termini of 200 NLRs, several dozens included an instance of the

NLR05/08/22/44 motif meta-family. When fragments of N-terminal sequences best-fitting the

PCFG model were aligned, it revealed a 25-residue long core pattern. Interestingly, the align-

ment exhibited features characteristic to HRAMs: the N-terminal pattern of three hydrophobic

residues and the C-terminal G[DN] bigram (Fig I in S1 Text). In total 32 amyloid-like motif

instances were associated with NB-ARC, NACHT, NACHT WD and NACHT TPR domain

architectures. Taken together these analyses strongly suggest that the NLR-associated amyloid

signaling process also occurs in Basidiomycota.

N-terminal amyloid motifs often found in dozens of NLRs per basidiomycetal

strain. Taken together, presented results support the presence of amyloid signaling in

Basidiomycota, or more specifically in Agaricomycetes, in the context of NLR-based regula-

tion of HeLo-/MLKL_NTD-likes. Moreover, they suggest that NLR05/08/22/29/44 meta-

family of motifs is a basidiomycotal variety of the HRAM motif or its homolog. However,

there were significant differences with regard to Ascomycota. First, while NLR-side amyloid

signaling motifs were present in roughly half of Ascomycota strains, they were only found

in 1/4 (30%) of Basidiomycota (Agaricomycetes) strains. Second, while there were typically

only few amyloid signaling sequences per ascomycotal strain, there were usually dozens per

basidiomycotal strain. At the same time, basidiomycotal effector-side C-terminal ASM

sequences were seemingly less frequent than NLR-side N-terminal ASM sequences (Fig F–I

in S1 Text). Indeed, the high number of NLR-side ASM sequences corresponded to enrich-

ment of basidiomycotal sequences among shorter N-terminal domains (Fig 1b and Fig A in

S1 Text).

Experimental validation of a novel amyloid signaling motif

PUASM displays sequence patterns typical to amyloid-like motifs. The alignment of

PUASM instances (Fig 5a) revealed high similarity of PNP_UDP- and NLR-side sequences in

the core region covered with the NANBNtm_035 pattern. Some divergence was present C-ter-

minally, with pattern GND prevailing in PNP_UDP-side motifs and pattern ARD in NLR-side

motifs. Interestingly, these 3-mers can be found in C-termini of already known amyloid signal-

ing motifs HRAM1 [45] and BASS2 [12], respectively. Further four residues of the C-terminal

extension of the motif exhibited a hydrophobic pattern well-conserved in pairwise alignments

(Fig 5a). On the other side, N-terminal extensions of the PUASM profile matches often

included histidine on the PNP_UDP side and glutamic acid on the NLR side. This, together

with the overall composition of the N-terminal extensions, suggests some role of the charge

complementarity.

Aggregation of synthetic PUASM peptides examined with ATR-FTIR, AFM and ThT

assay. To check if biochemical properties of PUASM are consistent with its presumed role as

the amyloid signaling motif, we experimentally analyzed a representative pair of motifs of this

family, namely, PNP_UDP-side C-terminal EQB50682.1_332_355 and NLR-side N-terminal

EQB50683.1_9_31 from a plant pathogenic fungus Colletotrichum gloeosporioides Cg-14 [89]

(Table C and Fig J in S1 Text). The selected fragments entirely covered the matches of PUASM

profiles and the pairwisely conserved C-terminal extensions. The aggregation propensities of

the PUASM peptides were determined experimentally using the Attenuated Total Reflectance

—Fourier Transform Infrared spectroscopy (ATR-FTIR), Atomic Force Microscopy (AFM),

and the Thioflavin T fluorescence assay (ThT). The ATR-FTIR spectroscopy allows determina-

tion of secondary structure and monitoring structural changes of peptides upon aggregation

processes [90–92], while AFM is useful for detection and visualization of aggregates [93]. In

turn, ThT is considered to be the “gold standard” for identifying amyloid fibrils [94, 95]. It is
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Fig 5. The PUASM motif. Alignment of the PUASM sequence pairs (a) from effector C-terminus (left) and NLR N-terminus (right). Colors

indicate residue hydrophobicity, curly brackets—the motif ranges. Deconvolution of ATR–FTIR spectra of air-dried peptide films of

EQB50682.1_332_355 (bc) and EQB50683.1_9_31 (de) in the amide bands region (1750–1500 cm−1). Spectra registered at 20˚C (68˚F) after

dissolving (bd) or after 40 days of incubation at 37˚C (98.6˚F) (ce). AFM images with cross-section profiles of peptides EQB50682.1_332_355

(fh) and EQB50683.1_9_31 (gi). Samples imaged after dissolving (fg) or after 40 days of incubation at 37˚C (98.6˚F) (hi).

https://doi.org/10.1371/journal.pcbi.1010787.g005
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widely accepted that such a combination of experimental techniques is necessary to ascertain

whether a particular peptide or protein is able to form the amyloid assemblies [96–98].

PUASM peptides display intramolecular β-structures and intermolecular β-sheets.

Analysis of the ATR-FTIR spectra in the range of 1750–1500 cm−1 (Fig 5b, 5c, 5d and 5e, Fig

K, Table D and Table E in S1 Text) confirmed aggregation properties of studied peptides.

The position of the Amide I’ band maximum was observed at 1625 cm−1 and 1630 cm−1 for

EQB50682.1_332_355 and EQB50683.1_9_31, respectively. This signature is considered to

be a spectroscopic marker of the cross-β amyloid architecture [91, 99]. High absorbances in

the region of 1670–1660 cm−1 were observed in both spectra. The assignment of this band is

still discussed in the literature [100–102]. The overall spectral line in Amide I’ was similar

to the spectra observed for β-solenoidal proteins, including HET-s [103] and PrPSc [104].

While for both studied peptides the aggregation process was observed immediately after dis-

solving, N-terminal EQB50683.1_9_31 aggregated quicker and formed more well-ordered

structures [105] (Fig 5b and 5d). A band curve-fitting method allowed to resolve individual

Amide I’ band components and obtain a more detailed information about secondary struc-

ture of studied peptides. In the wavenumber range of 1640–1610 cm−1 two components were

visible. The subband at about 1635 cm−1 corresponds to intramolecular β-structures. The

percentage area of this component was 31% and 14% for peptide EQB50683.1_9_31 and

EQB50682.1_332_355, respectively. In turn, the second component at about 1620 cm−1 cor-

responds to intermolecular β-sheets. Peptide EQB50683.1_9_31 displayed this subband at

1616 cm−1, while EQB50682.1_332_355 at 1620 cm−1, indicating a looser fibrillar structure

of the latter.

PUASM peptides form amyloid-like aggregates that elongate during incubation.

Atomic Force Microscopy images of both PUASM peptides were acquired for two conditions

related to the spectroscopy studies: after dissolving, and after 40 days of incubation at 37˚C. The

aggregation process of the peptides was present already in the sample after dissolving as the

fibers with height of 3.44 ± 0.3 nm and 3.33 ± 0.3 nm, respectively for EQB50682.1_332_355

and EQB50683.1_9_31, were observed (Fig 5f and 5g). The height of the object observable in

AFM is comparable with the size of the HET-s peptides obtained by the solid-state NMR tech-

nique (pdb:2kj3) [43]. Peptide aggregation was further enhanced in the samples imaged after 40

days of incubation at 37˚C (Fig 5h and 5i), when the height of the aggregates reached 10.08 ±
0.9 nm and 14.28 ± 1.3 nm, respectively for EQB50682.1_332_355 and EQB50683.1_9_31. This

clearly visible increasing aggregation process was in line with the ATR-FTIR measurements

(Fig 5c and 5e).

PUASM peptides show an increase in ThT fluorescence in the assembly process. Thio-

flavin T (ThT) fluorescence assay is the most common assay to follow amyloid formation. We

thus determined whether the PUASM peptides bind ThT. We observed an increase in ThT

fluorescence over time with a sigmoidal curve for PNP_UDP-side C-terminal peptide

EQB50682.1_332_355, starting with a lag phase of 2 hours (Fig L in S1 Text), followed by a

rapid growth phase from 2–2.20 h, and ending at a stable plateau with the maximum ThT

intensity. A significant increase in the fluorescence emission was observed for NLR-side N-ter-

minal peptide EQB50683.1_9_31 (about 5 times higher than for EQB50682.1_332_355). The

lag phase was not observed (Fig L in S1 Text). The steeper ThT curve with quicker attainment

of plateau might indicate faster aggregation process of peptide EQB50683.1_9_31 in compari-

son to peptide EQB50682.1_332_355. While it is clear that both peptides showed an increase

in ThT fluorescence during the assembly process, the presence of short fibrils in the AFM

study complicate the comparative study of the aggregation kinetics of the two peptides.

GFP-PUASM spontaneously forms cytoplasmic foci in vivo alike other amyloid-like

motifs. It was previously reported that fungal, bacterial and mammalian amyloid motifs
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could form prions in vivo in the Podospora anserina model [12, 41, 46, 106]. To determine if

PUASMs could also form prions in vivo, we expressed the PNP_UDP-side C-terminal

EQB50682.1_332_355 from a plant pathogenic fungus Colletotrichum gloeosporioides Cg-14

[89] in P. anserina as GFP or RFP fusions. Three different constructs were generated: a N-

terminal GFP fusion (GFP-PUASM) and C-terminal RFP and GFP fusions (respectively

PUASM–RFP and PUASM–GFP). The three constructs were expressed from a strong consti-

tutive promotor. In GFP–PUASM, the motif thus occurs C-terminally to the GFP domain, an

organization that is analogous to that of the native full length EQB50682.1, in which the motif

occurs C-terminally to the phosphorylase domain (PF01048). Prion formation was monitored

using fluorescence microscopy by following the formation of cytoplasmic fluorescent foci as

previously described for other amyloid signaling motifs expressed in P. anserina [12, 41, 46,

106]. A GFP fusion with an instance of previously characterized ASM (BASS3 of Streptomyces

atratus) was used as positive control and its two proline mutants (BASS3 Q113P and Q120P)

were used as negative controls [12]. GFP–BASS3 led to foci formation while the proline

mutants did not. The GFP-PUASM fusion led initially to a diffused fluorescence signal (Fig 6,

Table F in S1 Text). Upon subculturing, the number of transformants showing cytoplasmic

foci gradually increased over time as typically observed for other prion amyloid motifs [106]

Fig 6. Expression of GFP/RFP-fused PUASM motifs in Podospora anserina. a) Micrographs of P. anserina strains expressing molecular fusions of PUASM with GFP

or RFP, as indicated on the left; scale bar: 5 μm. Strains were analyzed in their initial state after transfection (left panels marked) and either after several days of

subculturing (middle panels, spontanous foci formation) or after cytoplasmic contact with a strain expressing GFP–PUASM in the foci state (right panels, induced foci

formation). Note that the GFP–PUASM construct (but not PUASM–RFP and PUASM–GFP) leads to spontaneous and induced foci-formation. Quantification of the

rate of foci formation is given in Table F in S1 Text. b) Micrographs of strains expressing GFP–BASS3—positive control for the spontanous foci formation (BASS3 motif

of WP_037701008.1 of Streptomyces atratus, positions 70 to 124, left panel), and two GFP–BASS3 mutants—negative controls (Q113P, middle, and Q120P, right panel).

https://doi.org/10.1371/journal.pcbi.1010787.g006
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(Table F in S1 Text). In contrast to the GFP–PUASM construct, fusion constructs displaying

the motif N-terminally (PUASM–GFP and PUASM–RFP) remained diffused and did not

form foci even upon prolonged subsculturing. A similar situation was observed previously for

the HELLF and RHIM motifs for which N-terminal position of the GFP/RFP inhibited foci

formation [106]. We conclude from these experiments, that GFP–PUASM (but not RFP–

PUASM and GFP–PUASM) spontaneously forms cytoplasmic foci as previously reported for

other amyloid signaling motifs.

GFP-PUASM behaves as a prion in vivo in the Podospora model. To determine whether

the foci state is infectious, strains expressing GFP–PUASM, PUASM–GFP or PUASM–RFP in

the diffuse state were confronted to strains expressing GFP-PUASM in the foci state to induce

cytoplasmic contact. At several time points after cytoplasmic contact, the recipient strains

were subcultured and monitored to presence of foci (Table F in S1 Text). In this induced prion

formation assay, GFP–PUASM strains were efficiently converted to the foci state after cyto-

plasmic contact with a GFP-PUASM strain in the foci state (Fig 6, Table F in S1 Text). In 96

hours after contact with the inducing strain, all tested strains displayed dots. In comparison,

spontaneous dot formation was only detected in about 3% of the strains after 5 days of subcul-

turing (Table F in S1 Text). Thus contact with a strain expressing GFP–PUASM dots induced

dot formation in the recipient strain. Again, for the PUASM-GFP and PUASM-RFP proteins

prion conversion was not observed. After confrontation with a strain expressing GFP–

PUASM foci, when strains were subcultured no foci formation was detected. We conclude

from these experiments that the GFP–PUASM fusion protein behaved as a prion in vivo in the

Podospora model. Apparently, as in the case of other amyloid signaling motifs, the C-terminal

position of the GFP/RFP inhibited foci formation [106]. In addition, the spontaneous and

induced prion conversion of GFP–PUASM was somewhat less efficient than for other amyloid

motifs that have been previously tested in the same way [12, 46, 106].

Discussion

In previous studies we computationally screened N-terminal domains of fungal NLRs using

profile Hidden Markov Models (HMM) from the Pfam database directly and complemented

the search with several Pfam-like inhouse models [5, 11]. Here we expanded the most recent

analysis with a more sensitive search using the state-of-the-art clustering offered by MMseqs2

and HMM–HMM searches with HHblits. The study increased the overall Pfam annotation

coverage of N-terminal domains by about 16% (or 19% when MLKL_NTD from CDD is

counted), but also highlighted remarkable deficiencies in availability of annotations. Our

results highlight the fact that the NLRs of fungi, and especially Basidiomycota, are still not suf-

ficiently described.

Goodbye resembles Helo but with an additional N-terminal extension

The identification of a common structural core of Helo-like and Goodbye-like domains, the

four-helix bundle, raises the question of their functional similarity. Both the distribution of

associated nucleotide-binding domain and C-terminal domains, and the paralog-to-ortholog

ratio for Goodbye-like and HeLo-like domains are similar [11], which may suggest similarities

in their mode of operation. However, Goodbye-likes in NLR N-termini are often associated

with another annotated effector domains, which is untypical for HeLo-likes. Moreover, the

opposite is true for association with the amyloid signaling motifs, which is common to HeLos,

HeLo-likes and basidiomycotal MLKL_NTDs but not to Goodbye-likes. In a plant homolog of

HeLo, the N-terminal helix of the bundle (and entire protein) is known to play a significant

role in triggering the cell death process [82]. However, in BaMLKL and Goodbye-likes, the
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bundle is extended N-terminally by one or more helices, respectively. Thus, while the common

evolutionary ancestry of HeLo-like and Goodbye-like is rather evident, the question of their

functional similarity remains open. In particular, the functional role of the N-terminal exten-

sion of Goodbye-likes remains to be explored. For example, it can be speculated that the heli-

ces of the N-terminal extension in Goodbye-likes are displaced to enable the oligomerization

process occur, possibly under the control of a non-amyloid mechanism involving domains

associated with Goodbye-likes.

A large fraction of the effector domains are involved in regulated cell death

With the limitation that the evolutionary relation of Goodbye-like domains does not necessar-

ily imply functional similarity, it appears that a substantial fraction of the effector domains in

both ascomycetes and basidiomycetes is predicted to control regulated cell death. Involvement

in regulated cell death has been reported not only for the HeLo/MLKL group but also for the

HET domain [107], the Patatin [23] domain and more indirectly for the SesB-like domain

[38]. One needs to add to this list the amyloid signaling motifs that control separate down-

stream cell-death effector domains. Globally, it would appear of at least one-third to half of the

fungal NLRs could be involved in some kind of regulated cell death process. This high propor-

tion raises the question of whether some of the other domains (whether annotated or not)

could also play a role in regulated cell death. For example, it was recently reported that genes

encoding fungal NLRs with N-terminal CHAT and S8 protease effector domains reside adja-

cent to Gasdermin-encoding genes [53].

Annotation of very short domains requires more complex methods than

profile HMMs

While the vast majority of longer domains is at least partially annotated, this is true only for a

definite minority of shorter domains. The shortage of annotations cannot be easily explained

by the lack of conserved sequential features. Instead, one of the reasons is the profile HMM

model itself, which by assessing each alignment position independently (except for indels) is

not statistically powerful enough when dealing with short sequences. In other words, profile

HMM models of more diverse families of short sequence fragments (e.g. 20–40 amino-acids

long) cannot be sensitive and specific at the same time [52]. Currently, the problem can be at

least partially addressed by using more complex and computationally demanding protein

sequence models, such as probabilistic context-free grammars (PCFG) [12, 52, 108] and co-

evolutionary Potts models [109–111]. Another viable option are the recurrent and attention-

based neural networks, which have enough computational power to describe relevant depen-

dencies in protein sequences [112–114]. However, while modern neural networks have been

successfully applied to annotation of protein families [115, 116], their performance in model-

ing short protein sequence fragments is yet too be evaluated.

NLR-associated amyloid-like motifs are less diverse in fungi compared to

bacteria

In Ascomycota, we discovered two new amyloid signaling motif family, which are uniquely

associated with the PNP_UDP domain. The amyloid properties of the more abundant

PUASM motif were confirmed experimentally using a representative pair of N- and C-termi-

nal sequences. Both of them generated amyloid-like fibers in the in vitro condition. (In depth

study of the co-aggregation process is left for a separate study.) The effector-side PUASM

sequence was shown to be capable of forming prions in vivo in the Podospora anserina model.
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Despite the extensive search, the expand diversity of ASM remains lower in fungi than in bac-

teria using similar identification procedure, which is not inconsistent of the larger phyloge-

netic breath of the scanned bacterial genome as compared to the fungal ensemble.

Two strategies emerge for facilitating inheritance of amyloid signaling

Similarly to other ascomycotal amyloid signaling motifs, HRAM, PP and σ, effector proteins

with C-terminal motif are often coded by direct genomic neighbors of the motif–NLR genes.

Such genomic co-localization may facilitate co-inheritence of the two genes of the functional

unit in the event of a recombination process. This may be of special importance for the NLR

signaling pathway, which is polymorphic in population given the death-and-birth evolution. A

notable exception is a PNP_UDP-associated HRAM motif variant (NLR12), for which only in

a few cases the effector–motif and motif–NLR pairs present in the genome were co-localized

(that is encoded by adjacent genes), while its NLR-side instances were relatively more frequent

than the effector-side instances in some genomes. In Basidiomycota, virtually none of the

hundreds of instances of amyloid-like motifs found in our survey in N-termini of NLRs was

genomically co-localized with amyloid-like motif instances in effector C-termini. Again, in

genomes were ASM co-occurred in both types of proteins, the NLR-side N-terminal instances

were more frequent than the effector-side C-terminal instances. We speculate that the pres-

ence of many NLRs controlling the same effector could potentially relieve the need for geno-

mic co-localization of NLRs and their effectors linked by amyloid signaling sequences.

Internal ASM instances may serve as scaffolds to stabilize the NLR

oligomers

One interesting finding is presence of NLRs with intra-proteins amyloid-like motifs in Fibular-
hizoctonia sp. CBS 109695. Different central and C-terminal domain association in compari-

son to NLRs with N-terminal ASM-likes suggest also different functions of the motifs in both

cases. Therefore, we hypothesize that these internal ASM instances may serve as scaffolds to

stabilize the NLR oligomers, similar to cRHIM in the RIP1K/RIP3K complex [57]. In these

lines, it is possible that also some other amyloid-like sequences identified in the current study

but with no matching effector-side counterparts participate in the assembly of the NLR signa-

losome or are involved in interactions with motifs located outside the C-terminus of the asso-

ciated protein.

Materials and methods

Computational methods

Annotation of NLR N-termini. A set of 36,141 NLR proteins from 487 fungal strains

was identified in a previous study through the PSI-BLAST [117] search among completely

sequenced fungal genomes in the NCBI nr database [11, 12] (the full list of accessions with

their corresponding NOD domain boundaries is included in S1 Table). 32 962 N-termini at

least 20 amino-acids long (91%), delimited according to the NACHT or NB-ARC query

matches, were further considered, of which 18,674 (57%) were annotated using direct matches

to Pfam [29] or inhouse HMM profiles (S1 Data) [11, 12]. The set of N-termini at least 20

amino-acid long was clustered with MMseqs2 [58] in mode 1 (21 758 N-termini in 127 clus-

ters, 15 105 already annotated). Then, sequences in each cluster with at least 20 members were

aligned using Clustal-Omega [118] (S2 Data) and searched for homologs in UniRef30 [59, 60]

using HHblits [61] (parameters: -e 0.001 -n 2 -E 0.01 -Z 1000000 -M 50).

Subsequently, the resulting alignments were used to search Pfam (HHblits parameters:
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-e 0.001 -n 1 -E 1 -Z 1000000). The clustering required mutual coverage of at least

80% of sequence length, and the annotations were only assigned to sequences which covered

at least 50% of the match to the Pfam profile. The resulting cluster-level annotations were

retained only if the alignment match to the Pfam profile covered at least 50% of the profile

length, and assigned only to individual sequences which covered at least 50% of the match.

After completing the main processing, the set of N-termini was re-scanned for the Crinkler

domain (PF20147) added recently to the Pfam database.

The tabularized results of the annotation are provided in S1 Table. The overlapping Pfam

annotations were resolved as in [11, 12]. The double HeLo/HeLo-like annotations were kept in

S1 Table and in Table A in S1 Text but were represented as HeLo in Fig 1f and Fig B in S1

Text. In addition, basidiomycotal sequences from clusters doubly annotated as Goodbye-like/

Helo-like, as well as from clusters with CDD [73] MLKL_NTD annotations, were denoted as

BaMLKL (see Results).

Comparative analysis of Goodbye-, HeLo- and MLKL-likes. For the largest clusters

annotated as HeLo, HeLo-like, Goodbye-like and BaMLKL, their representative sequences

were submitted to AlphaFold2 structure prediction [77] through the ColabFold advanced

notebook [78]. Standard parameters of the notebook were applied except of (1) using the

cluster alignments instead of searching genetic databases, (2) trimming off fragments just

upstream the NACHT domain were applicable. Successful models—with the mean predicted

pLDDT score [77] above 70 overall, and around 80 or more for the core helix bundle—and

respective ColabFold outputs are provided in S3 Data. For each cluster, the highest rank model

was selected and structurally aligned to the experimentally solved MLKL domain (pdb:6zvo)

using TM-align with default parameters [79]. Alignment conservation scores were calculated

using the ConSurf webserver with default parameters [80, 81] based on the cluster alignments

and AlphaFold2 structural models.

Characterization of unannotated longer N-termini. In addition, the largest MMSeqs-

produced clusters, which did not get any Pfam annotation through the HHblits procedure,

were carefully examined. For five unannotated clusters with at least ten members at the iden-

tity threshold of 70% and the median length above 100 amino acids, homologs were searched

in UniProt [119] through the web-based hmmsearch with standard parameters [120], and pre-

dictions of the three dimensional structure for their representative sequences were attempted

using AlphaFold2 [77] through the ColabFold advanced notebook [78]. Standard parameters

were used except of adding the MMseqs2 alignments to input (sequences just upstream the

NACHT domain was trimmed off). Good quality structures (the predicted pLDDT score

above 70) were obtained for three clusters, KEY84097, KFH66451 and PQE30996 (S4 Data).

The proposed annotations for the five clusters (Table B in S1 Text) are assigned to member

sequences in S1 Table and included in the TIR-like and “other” groups in Fig 1f and Fig B in

S1 Text.

Extraction of amyloid-like motifs in short N-termini. A subset of 54 NLR N-termini

clusters with mean/median sequence length of at most 160/161 amino acids was selected. It

consisted of N-termini of 3441 sequences, which were scanned using the PCFG-CM software

[52, 121] probabilistic grammatical model inferred from ten families of bacterial ASMs

(BASS1–10) [12, 52] (S5 Data) with scanning window of 20 to 40 amino acids and the smooth-

ing factor of 10 PAM [52]. Very high scoring fragments (maximum log10 score at least 3.5,

mean log10 score above 1.67) were found in 18 clusters with 1456 sequences (S6 Data). This

included all 8 clusters (592 sequences) with at least one PFD-like annotation. The N-terminal

sequences were made non-redundant at the identity level of 90% using CD-HIT 4.7 [122, 123]

and submitted to motif extraction with MEME 5.0.5 [88, 124] with the following parameters:

-nmotifs 100, -minsites 10, -maxsites 500, -minw 10, -maxw 30,
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-allw, -evt 1. For each of 51 motifs found at the E-value threshold of 1, HMM profiles

were built with HMMER 3.2.1 [125] and used for searching against the full set of grammar-fit-

ting N-terminals (at the sequence and domain E-values of 1e − 2). Then, obtained hits were

extended by 5 amino acids in each direction and realigned using Clustal-Omega with the

auto parameter. For each motif, the extended sequences were re-examined for consistency

with the grammatical model (maximum log10 score at least 3, mean log10 score above 1). For

16 motifs which passed the grammatical filter, the alignments were used to build final HMM

profiles (S7 Data).

Analysis of N-terminal amyloid-like motifs. The HMM profiles of the 16 motifs were

used for scanning all N-termini longer than 10 amino acids (domain (independent) E-value

threshold of 1e − 2), comprising also sequences not included in the 127 clusters with 20 or

more members. The resulting hits in 1538 sequences are included in S1 Table with coordinates

(outermost in rare cases of double ASM hits). For further analysis only hits in N-termini

shorter than 200 amino acids not located beyond position 150 were considered. Motif

sequences in envelopes of 5 amino acids were tested for the beta-arch structure with Arch-

Candy 2.0 [51] using the recommended threshold of 0.56. Constituent sequences of the motifs

were scanned using a generalized HRAM profile (S8 Data) at the domain (independent) E-

value of 1e − 2. The profile was built from HRAM motif sequences in Supplementary File 2

from [45], realigned using Mafft [126] (in the auto mode) and pruned of columns with more

than 50% gaps using trimAl [127].

For each motif-containing NLR sequence, proteins coded by genes within the ±20kbp

neighborhood of the genes encoding these NLRs were fetched from NCBI GenBank [128] or

EMBL ENA [129] using an in-house Python (version 3.7.3) script aided by packages requests

[130] and xmltodict [131] (S2 Table). The set was then confined to proteins in the length range

of 200–400 amino acids (S9 Data), which is typical for proteins with single domain architec-

tures known to be associated to NLRs via amyloid signaling [12, 45]. Next, C-termini (100

amino acids) of the found neighboring proteins were scanned for the presence of the motifs

using HMMER (domain (independent) E-value threshold of 1e − 2, all heuristic filters off).

Pairwise hits of the same motifs in N-termini of NLRs and C-termini of genomically neighbor-

ing proteins are collected in S3 Table.

Note that common occurrence of amyloid motifs at the N-termini of NLRs and at the C-

termini of effector domains enco ded by adjacent genes was repeatedly used for the identifica-

tion of such motifs both in fungi and bacterial genomes [12, 37]. This criterion adds sensitivity

and specificity to the identification of amyloid motifs.

Homology search of effector domains. Remote homologs of effector domains related to

NLR proteins were iteratively searched for, starting from 19 Pfam profiles of N-terminal

domains of NLRs reported in [5]: Pkinase (PF00069), Peptidase_S8 (PF00082), C2 (PF00168),

PNP_UDP_1 (PF01048), TIR (PF01582), Patatin (PF01734), RelA_SpoT (PF04607), DUF676

(PF05057), HET (PF06985), PK_Tyr_Ser-Thr (PF07714), PGAP1 (PF07819), Abhydrolase_6

(PF12697), CHAT (PF12770), TIR_2 (PF13676), HeLo (PF14479), NACHT_N (PF17100),

SesA (PF17107), Goodbye (PF17109) and Helo_like_N (PF17111). First, Pfam HMM profiles

for each of the domains were used for searching against a local copy of the non-redundant pro-

tein sequences database (NCBI’s “nr”, downloaded in November 2019) [128] using HMMER

3.2.1 with the sequence inclusion E-value of 1e − 2. Found proteins were then used to build the

new HMM profiles and the search was repeated (this time with the more stringent sequence

inclusion E-value of 1e − 3) until the number of hits did not change by more than 7%. Final

profiles were used to delimit domain boundaries through yet another hmmsearch run with the

same E-value parameter but all heuristic filters turned off and the initial search space set to 12

155 478 (S10 Data). In addition, all fungal NACHT (PF05729) and NB-ARC (PF00931)
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proteins were retrieved from the Pfam database (as of January 2020). C-termini of effector

domains and N-termini of NACHT/NB-ARC NLRs were extracted and—in both cases—only

fragments between 10 and 150 aa were selected for further analysis. (This effectively excluded

nearly all proteins with effector + NOD architectures.) The final set included around 235k

(nr: 187k) of effector C-termini and 6.8k (nr: 5.1k) NLR N-termini (S11 and S12 Data,

respectively).

Identification of paired amyloid motifs. The sets of N- and C-termini were clustered

using CD-HIT to reduce redundancy at the 70% similarity threshold (separately for each effec-

tor domain, together for NACHT and NB-ARC). Then, motif search was performed using

MEME with the following parameters: -nmotifs 100 for effectors or -nmotifs 50 for

NLRs, -minsites 1% of sequences but no less than 5 and no more than 10, -maxsites
500, -minw 10, -maxw 30, -mod anr. For each of 818 motifs identified at the E-

value threshold of 1, including 769 motifs in effector C-termini and 49 motifs in NLR N-ter-

mini, HMM profiles were built in the two-stage procedure, as described above (see S13 Data).

Next, the N- and C-termini were scanned with the combined set of effector- and NLR-side

motif profiles. The same-motif hits in effector proteins and in NLRs (at domain (independent)

E-value of 1e − 2) were matched based on genomic proximity (up to 20kbp) of genes encoding

the proteins (see S4 Table for the genomic neighborhoods of genes encoding NACHT and

NB-ARC proteins with short N-termini). At least 3 non-redundant pairs of motif instances

were found for 22 motifs (S13 Data), which were then clustered on the basis of their co-occur-

rence in 190 pairs of genomically neighboring proteins (S5 Table and Fig E in S1 Text).

Finally, hits of the 16 ASM motif profiles in short N-termini of NLRs (previously analyzed)

and hits in short C-termini of effector domains (from the homology search, included at

domain (independent) E-value of 1e − 2 over the entire set) were matched on the strain level

(through the BioSample and BioProject identifiers; entries with incomplete pairs of identifiers

were rejected) in order to identify potentially correlated pairs, which are not co-localized in

genomes (S6 Table).

Specialized searches for amyloid motifs in Basidiomycota. BaMLKL homologs were

searched in UniProt [119] through the web-based hmmsearch [120] with standard parameters

starting from the alignment of the largest BaMLKL cluster in Basidiomycota (representative

protein: KIM77258), trimmed to the NACHT_N match. Hits were further restricted to

GenBank sequences with length up to 400 amino acids and no Pfam P-loop_NTpase clan

(CL0023) annotation at E-value of 1. C-termini (100aa) of resulting 241 BaMLKL homologs

(S14 Data) were scanned with the PCFG BASS model (S5 Data) with the same parameters as

above (except the minimum scanning window length of 15). For proteomes with the most

promising hits in BaMLKL homologs (log10 score above 3, eight sequences from six species),

N-termini (150 aa) of all NLR proteins were again scanned with the grammars. Promising N-

terminal hits were obtained for Moniliophthora roreri (strains 2995 and 2997), Laccaria
amethystina (strain LaAM-08–1), and Fibularhizoctonia sp. CBS 109695. The matched frag-

ments were aligned with their C-terminal counterparts on the per genome basis with Mafft

[126] in an accurate mode (–maxiterate 1000 –localpair). The NLR N-terminal

and BaMLKL C-terminal ASM-like sequences aligned satisfactorily for M. roreri (we only ana-

lyzed strain 2997 due to high similarity between the strains) and Fibularhizoctonia sp. CBS

109695. The alignments were then extended and trimmed manually (Fig F and Fig G in S1

Text). In addition, the sequences were scanned with the 16 HMM profiles of amyloid-like

motifs (domain (independent) E-value of 1e − 2).

Next, fungal proteomes in UniProt were scanned using web-based jackhmmer [120] with

standard parameters starting from the double HET-s motif from Q03689 (AAB94631) (resi-

dues 218–289) of Podospora anserina, which resulted in finding five complete HeLo-
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HRAM-HRAM proteins in two Agaricomycetes: four from Sphaerobolus stellatus SS14 and

one from Gymnopus luxurians FD-317 M1 (see Fig 4). NLRs in these genomes were then

scanned with the PCFG model and the hits exceeding the log10 score threshold of 2.33 were

aligned with their C-terminal counterparts on the per genome basis with Mafft [126] in the

accurate mode. Finally, the alignments were curated manually (poorly aligned sequences were

excluded, sequences were extended or trimmed if necessary, Fig H and Fig I in S1 Text).

Visualization. Basic data processing and visualization was conducted in Python using

pandas [132, 133], matplotlib [134] and seaborn [135] packages, as well as in LibreOffice,

GIMP and Inkscape. Multiple sequence alignments and logos were generated using TeXshade

[136]. The graph of logos in Fig E in S1 Text was generated with graphviz 2.40.1 [137]. Visuali-

zations of structural models were generated with RasMol [138] (Fig 2) or taken directly from

the ColabFold notebook [78] (Fig D in S1 Text).

Experimental methods

In vitro analysis. Peptide synthesis. All commercially available reagents and solvents

were purchased from Merck, Sigma-Aldrich and Lipopharm.pl, and used without further

purification. Peptides EQB50682.1_332_355 (VFHGKGIQHTGSGNFSVGNDLSIS) and

EQB50683.1_9_31 (FHGHGIALSGAGNITVGGDFIIG) were synthesized with an automated

solid-phase peptide synthesizer (Liberty Blue, CEM) using rink amide AM resin (loading: 0.59

mmol/g). Fmoc deprotection was achieved using 20% piperidine in DMF for 1 min at 90˚C. A

double-coupling procedure was performed with 0.5 M solution of DIC and 0.25 M solution of

OXYMA (1:1) in DMF for 4 min at 90˚C. Cleavage of the peptides from the resin was accom-

plished with the mixture of TFA/TIS/H2O (95:2.5:2.5) after 3 h of shaking. The crude peptide

was precipitated with ice-cold Et2O and centrifuged (8000 rpm, 15 min, 2˚C). Peptides were

purified using preparative HPLC (Knauer Prep) with a C18 column (Thermo Scientific,

Hypersil Gold 12 μl, 250 × 20 mm) with water/acetonitrile (0.05% TFA) eluent system.

Peptide analytics. Analytical high-performance liquid chromatography (HPLC) was per-

formed using Kinetex 5μ EVO C18 100A 150 × 4.6 mm column. Program (eluent A: 0.05%

TFA in H2O, eluent B: 0.05% TFA in acetonitrile, flow 0.5 mL/min): A: t = 0 min, 90% A;

t = 45 min (25 min in case of EQB50682.1_332_355). Peptides were studied by WATERS LCT

Premier XE System consisting of high resolution mass spectrometer (MS) with a time of flight

(TOF).

Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR).

Lyophilized peptides were dissolved in D2O (deuterium oxide, 99.8% D, Carl Roth, GmbH,

Germany) to final concentration of ca. 814 μM. The spectroscopic measurements were per-

formed directly after dissolving peptides in a solvent, after 7 and 40 days of incubation process

at 37˚C (98.6˚F). In addition peptides were measured after 40 days of incubation at 4˚C

(39.2˚F, Fig K in S1 Text). Each time, 10 μl of peptide solution was dropped directly on the dia-

mond surface and was allowed to dry out. ATR-FTIR spectra were recorded using a Nicolet

6700 FTIR Spectrometer (Thermo Scientific, USA) with Golden Gate Mk II ATR Accessory

with Heated Diamond Top-plate (PIKE Technologies). The spectrometer was continuously

purged with dry air. Directly before sampling, the background spectrum of diamond/air was

collected as a reference. For each spectrum 512 scans with a resolution of 4 cm−1 were co-

added. All spectra were obtained in the range of 4000–450 cm−1 at 20˚C (68.0˚F).

Spectroscopy data treatment. ATR-FTIR spectra were initially preprocessed using

OMNIC software (version 8, Thermo Fisher Scientific, USA): atmospheric and ATR correc-

tion. All spectra were analyzed using the OriginPro (version 2019, OriginLab Corporation,

USA). The analysis included: baseline correction, smoothing using the Savitzky-Golay
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polynomial filter (polynomial order 2, a window size of 9 points) [139] and normalization to 1

for the Amide II’ band. Spectra in the amide bands region (1750–1500 cm−1) were deconvo-

luted into subcomponents using the Lorentz function based on second and fourth derivative

spectra (R-Square 0.997).

Atomic Force Microscopy. AFM images were acquired in tapping mode using a Nano-

scope IIId scanning probe microscope with Extender Module (Bruker) in the dynamic modus.

An active vibration isolation platform was applied. Olympus etched silicon cantilevers were

used with a typical resonance frequency in the range of 100–200 kHz and a spring constant of

40 N/m. The set-point amplitude of the cantilever was maintained by the feedback circuitry at

80% of the free oscillation amplitude of the cantilever. The volume of 10 μL of 0.814 μM pep-

tide was applied to freshly cleaved ultra-clean mica (Nano and More) and incubated at room

temperature for 30 s. The mica discs were then rinsed with ultra-clean purified 18.2 MO

deionized water and dried using gentle nitrogen gas flow. All samples were measured at room

temperature in air. Structural analysis and height measurements of acquired images were per-

formed with Nanoscope v.6.13 software.

Thioflavin T fluorescence assay. ThT powder was dissolved in MilliQ to final concentra-

tion 2 mM and filtered through 0.22 μm syringe. ThT solution was dissolved in 50 mM Tris-

HCl (pH = 7.4) to final concentration 10 μM and filtered. The 90 μL of ThT buffer was mixed

with 10 μL of peptide solution (concentration 400 μM) in the 96-wells plate. Samples were

measured on the SpectraMax Gemini XPS Microplate (Molecular Devices LLC). The measure-

ments were conducted in room temperature. The excitation wavelength was set at 450 nm and

the emission was recorded in the range from 470 to 500 nm. Each group of experiment con-

tained three parallel samples and the data were averaged after measurements.

In vivo analysis. Strains and plasmids. The Podospora anserina Δhellp (ΔPa_5_8070)

Δhet-s (ΔPa_3_620) Δhellf (ΔPa_3_9900) strain [106] was used as recipient strain for the expres-

sion of molecular fusions of PUASM (PNP_UDP-side C-terminal EQB50682.1_332_355

VFHGKGIQHTGSGNFSVGNDLSIS) from the plant pathogenic fungus Colletotrichum gloeos-
porioides Cg-14 [89] and the GFP (green fluorescent protein) or RFP (red fluorescent protein).

These fusions were expressed from plasmids based on the pGEM-T backbone (Promega)

named pOP [38] and containing either the GFP or RFP encoding gene, or in a derivative of the

pAN52.1 GFP vector [140], named pGB6-GFP and containing the GFP encoding gene. In both

cases, the molecular fusions were under the control of the strong constitutive P. anserina gpd

(glyceraldehyde-3-phosphate dehydrogenase) promoter. The Δhellp Δhet-s Δhellf strain was

transformed as described [141] with a fusion construct along with a second vector carrying a

ble phleomycin-resistance gene, pPaBle (using a 10:1 molar ratio). Phleomycin-resistant trans-

formants were selected, grown for 30 h at 26˚C and screened for the expression of the trans-

genes using fluorescence microscopy. PUASM was amplified with specific primers either 5’

ggcttaattaaATGGTCTTTCATGGCAAGGGCATCC 3’ and 5’ ggcagatcttgctccGGA
GATGCTGAGATCG 3’ for cloning in pOP plasmids, or 5’ ggcgc ggccgcGTCTTTCATGG
CAAGGGCATC 3’ and 5’ ggcGGATC-CTTAGGAGATGCTGAGATCGTTGCC 3’ for cloning in

the pGB6 plasmid (capital letters correspond to the PUASM sequence). The PCR products were

cloned upstream of the GFP or RFP coding sequence in the pOP plasmids using PacI/BglII

restriction enzymes to generate the pOPPUASM-GFP and pOPPUASM-RFP vectors in

which in addition to the BglII site, a two amino acid linker (GA) was introduced between the

sequences encoding PUASM and GFP or RFP and cloned downstream of the GFP using NotI/

BamHI restriction enzymes to generate the pGB6-GFP-PUASM plasmid.

Microscopy. P. anserina hyphæ were inoculated on solid medium and cultivated for 24 to

48 h at 26˚C. The medium was then cut out, placed on a glass slide and examined with a Leica
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DMRXA microscope equipped with a Micromax CCD (Princeton Instruments) controlled by

the Metamorph 5.06 software (Roper Scientific). The microscope was fitted with a Leica PL

APO 63X immersion lens.

Prion propagation. Methods for determination of prion formation and propagation were

previously described [12, 142]. Prion formation and propagation can be observed using

microscopy by monitoring the formation of fluorescent dots. Spontaneous prion formation

is first monitored as the rate of spontaneously acquired prion phenotype (dot formation) in

the initially prion-free subculture after 5, 11, 18, 32, 49 and 75 days of growth at 26˚C on

corn-meal agar using microscopy as described. Prion formation can also be measured as the

ability to propagate prions from a donor strain (containing prion) to a prion-free strain

(induced strain). In practice, prion-free strains are confronted on solid corn-meal agar

medium for 2 to 5 days (contact between strains was observed after 24 to 36 hours of culture)

before being subcultured and observed by fluorescence microscopy for the presence of dots

(this test is referred to as induced prion formation). At least 18 different transformants were

used and the tests were realized in triplicates. It is to note that transformants were randomly

tested for prion formation allowing various expression levels of the transgene (high levels of

expression are usually associated with rapid spontaneous prion formation) except for the

induced conversion test where transformants expressing moderate level of transgene were

preferred to limit the rate of spontaneous transition within the timing of the experiment that

could mask the prion induction.

As a control, we also imaged anew GFP fusion proteins with the wild-type and mutant

form of a previously characterized amyloid signaling motif the BASS3 motif found in

WP_037701008.1 from Streptomyces atratus described in [12]. Two proline mutants substitut-

ing conserved glutamine residues that were found previously to abolish in vivo dot formation

were used (Q113P and Q120P).

Supporting information

S1 Text. Supplementary online materials. The document includes supplementary text, tables

(Table A–F in S1 Text) and figures (Fig A–L in S1 Text).

(PDF)

S1 Table. Tabularized results of N-termini annotation. The table aggregates results pre-

sented in the manuscript.

(CSV)

S2 Table. Genomic neighbors of candidate short N-termini NLRs with ASMs. The list

includes accessions of proteins encoded by genes within the neighborhood of 20kbp of genes

encoding the query proteins (S6 Data).

(CSV)

S3 Table. Pairwise hits of the same ASMs in N-termini of NLRs and C-termini of genomi-

cally neighboring proteins. The table is based on S6 and S7 Data, S2 Table and S9 Data. See

Computational methods for details.

(CSV)

S4 Table. Genomic neighbors of candidate short N-termini Pfam NACHT and NB-ARC

proteins. The list includes accessions of proteins encoded by genes within the neighborhood

of 20kbp of genes encoding the query proteins (S12 Data).

(CSV)
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S5 Table. Pairwise hits of the same ASMs in N-termini of NACHT/NB-ARC NLRs and C-

termini of genomically neighboring effector proteins. The table is based on S11, S12 and S13

Data and S4 Table. See Computational methods for details.

(CSV)

S6 Table. Pairwise hits of the same ASMs in N-termini of NLRs and C-termini of genomi-

cally co-occurring effector proteins. The table is based on S6 and S7 Data and S11 Data. See

Computational methods for details.

(CSV)

S1 Data. Profile HMMs of NLR effector domains. The file includes previously unpublished

models used in [5, 11].

(HMM)

S2 Data. Multiple sequence alignments of N-termini clusters. The alignments were calcu-

lated using ClustalOmega for 127 MMseqs2 clusters with at least 20 member sequences.

(GZ)

S3 Data. Structure prediction of HeLo-/Goodbye-/MLKL-like domains. Full AlphaFold2/

ColabFold outputs.

(GZ)

S4 Data. Structure prediction of previously unannotated domains. Full AlphaFold2/Colab-

Fold outputs.

(GZ)

S5 Data. PCFGs for BASS. The file includes previously unpublished grammars used in [52]

and a sample scanning configuration.

(GZ)

S6 Data. Candidate short NLR N-termini with ASMs. The FASTA file includes sequences

from clusters with high content of ASM-like sequences, according to the BASS PCFGs (S5

Data).

(FA)

S7 Data. Profile HMMs of ASMs found in short NLR N-termini. Please refer to Computa-

tional methods for the profile generation process.

(HMM)

S8 Data. Profile HMM of HeLo-related HRAMs. The profile is based on the motifs identified

in [45].

(HMM)

S9 Data. Short C-termini of 200–400 aa long proteins genomically neighboring candidate

short NLR N-termini with ASMs. The FASTA file concerns target proteins listed in S2 Table.

(FA)

S10 Data. Lists of HMMER domain hits of effector domain profiles. The lists were obtained

through iterative searches in NCBI “nr” starting from Pfam profiles of known NLR effector

domains.

(GZ)

S11 Data. Short C-termini of effector proteins. The FASTA file concerns target proteins

listed in S10 Data.

(FA)
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S12 Data. Short N-termini of Pfam NACHT and NB-ARC proteins. The FASTA file con-

cerns proteins from NCBI “nr” associated with the two families in the Pfam database.

(FA)

S13 Data. Profile HMMs of ASMs found both in effector C-termini and NLR N-termini of

genomically neighboring proteins. Please refer to Computational methods for the profile

generation process.

(HMM)

S14 Data. BaMLKL homologs identified with hmmsearch in Basidiomycota. A FASTA file.

(FA)

Acknowledgments

The authors acknowledge the use of the E-SCIENCE.PL infrastructure.

Author Contributions

Conceptualization: Sven J. Saupe, Witold Dyrka.

Data curation: Jakub W. Wojciechowski, Emirhan Tekoglu, Witold Dyrka.

Formal analysis: Jakub W. Wojciechowski, Emirhan Tekoglu, Witold Dyrka.

Funding acquisition: Sven J. Saupe.

Investigation: Jakub W. Wojciechowski, Emirhan Tekoglu, Marlena Gąsior-Głogowska, Vir-

ginie Coustou, Natalia Szulc, Monika Szefczyk, Marta Kopaczyńska, Sven J. Saupe, Witold

Dyrka.

Methodology: Jakub W. Wojciechowski, Emirhan Tekoglu, Marlena Gąsior-Głogowska, Vir-

ginie Coustou, Sven J. Saupe, Witold Dyrka.

Project administration: Witold Dyrka.

Resources: Marlena Gąsior-Głogowska, Virginie Coustou, Monika Szefczyk, Marta Kopac-

zyńska, Sven J. Saupe.

Software: Jakub W. Wojciechowski, Emirhan Tekoglu, Witold Dyrka.

Supervision: Marta Kopaczyńska, Witold Dyrka.

Validation: Emirhan Tekoglu, Marlena Gąsior-Głogowska, Virginie Coustou, Natalia Szulc,

Monika Szefczyk, Marta Kopaczyńska, Sven J. Saupe, Witold Dyrka.

Visualization: Marlena Gąsior-Głogowska, Virginie Coustou, Natalia Szulc, Marta Kopac-

zyńska, Witold Dyrka.

Writing – original draft: Jakub W. Wojciechowski, Emirhan Tekoglu, Marlena Gąsior-Gło-

gowska, Natalia Szulc, Monika Szefczyk, Marta Kopaczyńska, Sven J. Saupe, Witold Dyrka.

Writing – review & editing: Jakub W. Wojciechowski, Marlena Gąsior-Głogowska, Natalia

Szulc, Sven J. Saupe, Witold Dyrka.

References
1. Jones JDG, Vance RE, Dangl JL. Intracellular innate immune surveillance devices in plants and ani-

mals. Science. 2016; 354(6316):aaf6395. https://doi.org/10.1126/science.aaf6395 PMID: 27934708

PLOS COMPUTATIONAL BIOLOGY Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLRs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010787 December 21, 2022 29 / 36



2. Uehling J, Deveau A, Paoletti M. Do fungi have an innate immune response? An NLR-based compari-

son to plant and animal immune systems. PLoS Pathogens. 2017; 13(10):e1006578. https://doi.org/

10.1371/journal.ppat.1006578 PMID: 29073287

3. Duxbury Z, Wu Ch, Ding P. A Comparative Overview of the Intracellular Guardians of Plants and Ani-

mals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology. 2021; 72(1):155–184.

https://doi.org/10.1146/annurev-arplant-080620-104948 PMID: 33689400

4. Koonin EV, Aravind L. Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell

Death & Differentiation. 2002; 9:394–404. https://doi.org/10.1038/sj.cdd.4400991 PMID: 11965492

5. Daskalov A, Dyrka W, Saupe SJ. NLR function in fungi as revealed by the study of self/non-self recog-

nition systems. In: Benz JP, Schipper K, editors. NLR Function in Fungi as Revealed by the Study of

Self/Non-self Recognition Systems. Cham: Springer International Publishing; 2020. p. 123–141.

6. Xiong Y, Han Z, Chai J. Resistosome and inflammasome: platforms mediating innate immunity. Cur-

rent opinion in plant biology. 2020; 56:47–55. https://doi.org/10.1016/j.pbi.2020.03.010 PMID:

32554225

7. Bi G, Zhou JM. Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. Annual review

of phytopathology. 2021; 59:239–263. https://doi.org/10.1146/annurev-phyto-020620-095952 PMID:

33957051

8. Saur IML, Panstruga R, Schulze-Lefert P. NOD-like receptor-mediated plant immunity: from structure

to cell death. Nat Rev Immunol. 2021; 21(5):305–318. https://doi.org/10.1038/s41577-020-00473-z

PMID: 33293618

9. van der Biezen EA, Jones JDG. The NB-ARC domain: a novel signalling motif shared by plant resis-

tance gene products and regulators of cell death in animals. Current Biology. 1998; 8(7):R226–R228.

https://doi.org/10.1016/S0960-9822(98)70145-9 PMID: 9545207

10. Koonin E, Aravind L. The NACHT family—a new group of predicted NTPases implicated in apoptosis

and MHC transcription activation. Trends in Biochemical Sciences. 2000; 25:223–224. https://doi.org/

10.1016/S0968-0004(00)01577-2 PMID: 10782090

11. Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A, Paoletti M, et al. Diversity and Variability of

NOD-Like Receptors in Fungi. Genome Biology and Evolution. 2014; 6:3137–3158. https://doi.org/10.

1093/gbe/evu251 PMID: 25398782

12. Dyrka W, Coustou V, Daskalov A, Lends A, Bardin T, Berbon M, et al. Identification of NLR-associated

amyloid signaling motifs in bacterial genomes. Journal of Molecular Biology. 2020; 432(23):6005–

6027. https://doi.org/10.1016/j.jmb.2020.10.004 PMID: 33058872

13. Gao LA, Wilkinson ME, Strecker J, Makarova KS, Macrae RK, Koonin EV, et al. Prokaryotic innate

immunity through pattern recognition of conserved viral proteins. Science. 2022; 377(6607):

eabm4096. https://doi.org/10.1126/science.abm4096 PMID: 35951700

14. Saupe S, Turcq B, Begueret J. A gene responsible for vegetative incompatibility in the fungus Podos-

pora anserina encodes a protein with a GTP-binding motif and G beta homologous domain. Gene.

1995; 162:135–139. https://doi.org/10.1016/0378-1119(95)00272-8 PMID: 7557402

15. Paoletti M. Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick.

Fungal Biol Rev. 2016; 30(4):152–162. https://doi.org/10.1016/j.fbr.2016.08.002
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25. Paoletti M, Saupe SJ, Clavé C. Genesis of a Fungal Non-Self Recognition Repertoire. PLoS ONE.

2007; 2(3):e283. https://doi.org/10.1371/journal.pone.0000283 PMID: 17356694

26. Chevanne D, Saupe S, Clave C, Paoletti M. WD-repeat instability and diversification of the Podospora

anserina hnwd non-self recognition gene family. BMC Evolutionary Biology. 2010; 10(1):134. https://

doi.org/10.1186/1471-2148-10-134 PMID: 20459612

27. Rando OJ, Verstrepen KJ. Timescales of Genetic and Epigenetic Inheritance. Cell. 2007; 128:655–

668. https://doi.org/10.1016/j.cell.2007.01.023 PMID: 17320504

28. Iotti M, Rubini A, Tisserant E, Kholer A, Paolocci F, Zambonelli A. Self/nonself recognition in Tuber

melanosporum is not mediated by a heterokaryon incompatibility system. Fungal Biology. 2012; 116

(2):261–275. https://doi.org/10.1016/j.funbio.2011.11.009 PMID: 22289772

29. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families data-

base: towards a more sustainable future. Nucleic Acids Research. 2016. https://doi.org/10.1093/nar/

gkv1344 PMID: 26673716

30. Saupe SJ. Amyloid Signaling in Filamentous Fungi and Bacteria. Annual Review of Microbiology.

2020; 74(1):673–691. https://doi.org/10.1146/annurev-micro-011320-013555 PMID: 32689912

31. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, et al. The alpha/beta hydrolase fold.

Protein Engineering, Design and Selection. 1992; 5(3):197–211. https://doi.org/10.1093/protein/5.3.

197 PMID: 1409539

32. Mushegian A, Koonin E. Unexpected sequence similarity between nucleosidases and phosphoribosyl-

transferases of different specificity. Protein science: a publication of the Protein Society. 1994; 3

(7):1081–1088. https://doi.org/10.1002/pro.5560030711 PMID: 7920254

33. Mao C, Cook W, Zhou M, Koszalka G, Krenitsky T, Ealick S. The crystal structure of Escherichia coli

purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topol-

ogy. Structure (London, England: 1993). 1997; 5(10):1373–1383. https://doi.org/10.1016/S0969-2126

(97)00287-6 PMID: 9351810

34. Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, et al. Domain organization

and structure-function relationship of the HET-s prion protein of Podospora anserina. The EMBO Jour-

nal. 2003; 22(9):2071–2081. https://doi.org/10.1093/emboj/cdg213 PMID: 12727874

35. Fedorova ND, Badger JH, Robson GD, Wortman JR, Nierman WC. Comparative analysis of pro-

grammed cell death pathways in filamentous fungi. BMC Genomics. 2005; 6:177. https://doi.org/10.

1186/1471-2164-6-177 PMID: 16336669

36. Greenwald J, Buhtz C, Ritter C, Kwiatkowski W, Choe S, Maddelein ML, et al. The mechanism of prion

inhibition by HET-S. Molecular Cell. 2010; 38:889–899. https://doi.org/10.1016/j.molcel.2010.05.019

PMID: 20620958

37. Daskalov A, Paoletti M, Ness F, Saupe SJ. Genomic Clustering and Homology between HET-S and

the NWD2 STAND Protein in Various Fungal Genomes. PLoS ONE. 2012; 7(4):e34854. https://doi.

org/10.1371/journal.pone.0034854 PMID: 22493719
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75. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A Completely Reimplemented

MPI Bioinformatics Toolkit with a New HHpred Server at its Core. Journal of Molecular Biology. 2018;

430(15):2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007 PMID: 29258817
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103. Berthelot K, Ta HP, Géan J, Lecomte S, Cullin C. In Vivo and In Vitro Analyses of Toxic Mutants of

HET-s: FTIR Antiparallel Signature Correlates with Amyloid Toxicity. Journal of Molecular Biology.

2011; 412(1):137–152. https://doi.org/10.1016/j.jmb.2011.07.009 PMID: 21782829

104. Requena JR, Wille H. The structure of the infectious prion protein. Prion. 2014; 8(1):60–66. https://doi.

org/10.4161/pri.28368 PMID: 24583975

105. Moran SD, Zanni MT. How to Get Insight into Amyloid Structure and Formation from Infrared Spectros-

copy. The journal of physical chemistry letters. 2014; 5(11):1984–1993. https://doi.org/10.1021/

jz500794d PMID: 24932380

106. Bardin T, Daskalov A, Barrouilhet S, Granger-Farbos A, Salin B, Blancard C, et al. Partial Prion Cross-

Seeding between Fungal and Mammalian Amyloid Signaling Motifs. mBio. 2021; 12(1):e02782–20.

https://doi.org/10.1128/mBio.02782-20 PMID: 33563842
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Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, 5School of Biosciences, College of Life and Environmental
Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom, 6Faculty of Medicine,
Wrocław Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland, 7Laboratory of Microbiome
Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla
12, 53-114 Wrocław, Poland, 8Department of Genomics, Faculty of Biotechnology, University of Wrocław, Fryderyka
Joliot-Curie 14a, 50-383 Wrocław, Poland and 9Department of Pharmacology, Wroclaw Medical University,
Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland

Received August 14, 2022; Revised September 22, 2022; Editorial Decision September 27, 2022; Accepted September 30, 2022

ABSTRACT

Information about the impact of interactions be-
tween amyloid proteins on their fibrillization propen-
sity is scattered among many experimental articles
and presented in unstructured form. We manually
curated information located in almost 200 publica-
tions (selected out of 562 initially considered), ob-
taining details of 883 experimentally studied inter-
actions between 46 amyloid proteins or peptides.
We also proposed a novel standardized terminol-
ogy for the description of amyloid–amyloid inter-
actions, which is included in our database, cover-
ing all currently known types of such a cross-talk,
including inhibition of fibrillization, cross-seeding
and other phenomena. The new approach allows for
more specific studies on amyloids and their inter-
actions, by providing very well-defined data. Amy-
loGraph, an online database presenting informa-
tion on amyloid–amyloid interactions, is available
at (http://AmyloGraph.com/). Its functionalities are
also accessible as the R package (https://github.
com/KotulskaLab/AmyloGraph). AmyloGraph is the

only publicly available repository for experimentally
determined amyloid–amyloid interactions.

INTRODUCTION

Amyloids are proteins able to self-assembly into insoluble
�-sheet supra-molecular fibrils characterized by very regu-
lar beta-cross structures. Some of them interact with each
other during fibrillization, which may accelerate or slow
down development of fibrils or even lead to the formation
of heterogeneous fibrils (1). Interactions between amyloid
proteins raise a growing interest since they may contribute
to amyloid-related diseases. The aggregation of amyloid fib-
rils can be associated with pathologies observed in a wide
range of diseases known as amyloidoses. For example, amy-
loid fibrils which aggregate in the brain and central nervous
system, are related to Alzheimer’s and Parkinson’s diseases
(2). Another example is a prion conversion, where ingested
misfolded proteins can seed the aggregation of their homol-
ogous polypeptide sequence (3). Similar mechanisms can
trigger other amyloidoses (4), but experimental data con-
sidering such phenomena are dispersed and often very in-
compatible.

The importance of interactions between amyloid proteins
makes them a subject of numerous experimental studies.
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However, reviews on interactions between amyloid proteins
show that available experimental results are often contra-
dictory (5). Although the information on amyloid proteins
is collected in several databases (6–10), until now there has
been no database consolidating the results of numerous ex-
periments studying interactions of amyloids. Importantly,
existing efforts to present the overview of amyloid–amyloid
interactions do not allow for a more in-depth inspection of
data (11).

Other problems arise from the lack of clear definitions of
field. Although there have been attempts to standardize the
vocabulary (12,13) or a list of requirements necessary in re-
porting amyloid studies (14), the practices are still not being
fully implemented. Therefore, comparing different studies,
especially those regarding amyloid–amyloid interactions, is
problematic and even fundamental concepts may be under-
stood incompatibly.

Therefore, we designed a structured vocabulary to de-
scribe amyloid–amyloid interactions more rigorously. It
covers descriptors that fully define the exact nature of the
influence of an interactor on an interactee. Using the pro-
posed methodology, we manually curated a majority of re-
ported interactions between amyloids and presented this in-
formation in the form of an interactive graph and a tabular
database.

MATERIALS AND METHODS

Standardized terminology

To describe interactions between amyloid proteins, we cre-
ated a precisely controlled vocabulary. First, we defined six
possible scenarios of amyloid–amyloid interactions (Fig-
ure 1A). All scenarios assume that there are only two partic-
ipants in each interaction, and an interactor modulates self-
assembly of an interactee. We are aware that in reality the
distinction between the interactee and interactor may not
always be clear or, depending on other factors, a specific in-
teraction can fall under more than one scenario at the same
time. However, this simplification allowed us to better de-
sign the standardized terminology and led to a more struc-
tured description of interactions between amyloid proteins.

Next, we developed three descriptors to more rigorously
describe details of the scenarios, based on one of the follow-
ing: the fibrillization speed, presence of physical binding be-
tween both interacting proteins and appearance of hetero-
geneous fibrils (Figure 1 B).

Each descriptor provides specific dictionary terms of pos-
sible states. For example, descriptor I, ‘The impact on the
speed of fibrillization’, enables the choice of one of the
following states: ‘faster fibrillization’, ‘slower fibrillization’,
‘no fibrillization’, ‘no effect’ and ‘no information’. The de-
signed states are mutually exclusive and provide in-depth
description to relate them to relevant experimental results
(Supplementary Information, section Descriptors and Sup-
plementary Figure S1).

It is essential to stress that most publications provided
information only on the interactee’s (a protein whose
self-assembly is modulated by interactee) ability to create
amyloid-like fibrils. Therefore, the descriptors focus only on
the behavior of interactee. However, some manuscripts re-
ported on the self-assembly of both interactee and interac-

tor. In this case, such interactions were reported bidirection-
ally, where protein A acts as an interactor and protein B as
the interactee, and vice versa.

Our descriptors do not replace existing terminology, but
rather standardize it. For example, a combination of an-
swers to descriptor I ‘The impact on the speed of fibril-
lization’: ‘Faster aggregation’ and descriptor II ‘Physical
binding between interactor and interactee’: ‘Yes, direct evi-
dence’ or ‘Yes, implied by kinetics’ can be related to either
cross-seeding or co-incubation (12). These two experiments
are drastically different design-wise: co-incubation requires
both interactee and interactor to be in monomeric form,
while in cross-seeding experiment interactee is monomeric
and interactor in the form of small aggregates. However,
studies frequently do not mention the exact form of inter-
actee and interactor making general descriptors easier to
use and more accurate.

Database scope

The scope of the current AmyloGraph version is limited
to interactions between two proteins, each of them able to
form an amyloid-like aggregate by its wild type. Addition-
ally, we allowed for non-aggregating homologs of a well-
known amyloid protein, such as rat amylin (15).

While selecting the source publications, we focused on in
vitro studies published after 2000. The complete list of eligi-
bility criteria is available in the Supplementary Information,
section Manuscript collection.

Data acquisition and curation

To ensure the highest possible quality of the collected data,
the data acquisition and curation were executed in a three-
stage pipeline, including: pre-screen of manuscripts, man-
ual curation and independent final validation. Importantly,
the first two steps were supported by dedicated forms which
played a crucial role in standardizing annotations provided
by curators.

The pre-screen of manuscripts started with our in-house
collection of 24 publications. Next, we expanded the search
by repeatedly adding manuscripts cited by manuscripts or
referencing manuscripts from our collections. The final col-
lection included 562 manuscripts, out of which 364 were pu-
tatively suitable for the database. Although our collection
system was laborious, we found it to be more effective than
a search of PubMed records based on its annotations (Sup-
plementary Figure S2A).

Next, the database curators manually extracted informa-
tion on interactions from the suitable manuscripts. It should
be emphasized that, in the curation procedure, we did not
re-interpret data and conclusions provided by their authors.
Curators interpreted the data only if the authors did not
provide a description of the results or if the existing descrip-
tion was too limited. To help curators interpret the results,
we enhanced the descriptors with the specifics of experimen-
tal procedures, which helped them to identify a descriptor
level and draw the best final conclusion. Moreover, during
the project, we developed a FAQ list of almost 100 questions
related to the curation procedure, which helped the curators.
Thanks to all these precautions, the curators could provide
data of a higher quality.
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A B

Figure 1. (A) Six scenarios of interactions between amyloid proteins. Orange and blue tiles denotes molecules of amyloid-like proteins participating in in-
teractions. Roman numerals denote different interactions scenarios. (B) Three descriptors of AmyloGraph. Rectangles represent the descriptors. Rectangles
with round edges represent the levels of the descriptors. Green, yellow and purple represent descriptors 1, 2 and 3, respectively.

During the initial curation, curators reviewed all col-
lected manuscripts. Curators annotated these interactions
using our three descriptors and collected information on se-
quences of proteins participating in the interaction, focus-
ing on the presence of mutations or other alterations. Cu-
rators were also obliged to preserve parts of the publication
(in the graphical or textual form) supporting their decisions
regarding final description in the records.

After the initial curation, we validated all the collected
data to further increase their quality. In this procedure,
new curators reviewed the assigned interaction records. The
semi-random assignment procedure ensured that the cura-
tor who validated a specific record was not involved in its
initial curation. Finally, the correct records were accepted
in the database. The manual curation resulted in 172 publi-
cations and 883 interactions (Supplementary Figure S2B).

Next, we contacted the authors of all 172 publications
included in AmyloGraph to obtain their validation of our
records. We always tried to reach the corresponding au-
thors or, in case of their unavailability, the publication’s first
author. The authors were provided with customized links
to Google Sheets only containing data from manuscripts
they authored. In total, we contacted 122 authors, and 11
authors (9.04%) confirmed 81 interactions (9.17%) in 21
manuscripts (12.14%). Despite our efforts, we could not find
correct and up-to-date contact information to authors of
three manuscripts. It is important to notice that no inter-
actions were removed or added after the contact with the
authors, which implies a high data quality (Supplementary
Figure S2C).

The in-depth description of the curation procedure is
available in the Supplementary Information, section Data
acquisition. The full list of 172 manuscripts is available in

the Supplementary Information, section Supplementary ref-
erences.

Implementation

One of the main limitations of web-based tools is their in-
built reliance on the external servers which reduces their
persistence (16). Therefore, we made AmyloGraph fully de-
ployable and usable even if the main server is no longer
available. To do so, we implemented our tool as an R
package (17). The package contains also the front-end
of our database, available as a Shiny app (18). The lo-
cal deployment of AmyloGraph only requires a very rudi-
mentary knowledge of R and is described in the Amy-
loGraph main repository at https://kotulskalab.github.io/
AmyloGraph/. The AmyloGraph codebase is open and doc-
umented in the roxygen2 standard.

DATABASE OVERVIEW

Manually curated data, obtained in the previously described
procedure, are available in the AmyloGraph database. Cur-
rently, the database includes 883 interactions between 46
proteins reported in 172 manuscripts. Furthermore, one of
the main objectives of the database is to present the inter-
actions between amyloid proteins in a standardized man-
ner and user-friendly presentations, such as a graph format
(Figure 2A). Here, nodes represent individual amyloid pro-
teins and edges stand for interactions between them. No-
tably, a single edge represents all interactions between two
amyloid proteins. Tooltips of the edges represent digital ob-
ject identifiers (DOIs) of manuscripts reporting the interac-
tions.
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A

B

C

Figure 2. Overview of the AmyloGraph database. (A) Graph view of interactions between amyloid proteins. The interactions (edges of the graph) are
colored according to the levels of descriptor 2, ‘physical binding’. The panel on the right-hand side represents an overview of the amyloid-� interactions.
(B) Tabular view of interactions. The top section of this card contains download options allowing to obtain data in a selected flat-file format. (C) View of
a single interaction with the sequential information.
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After clicking on a node, a panel on the right-hand side
opens. It presents brief information on a protein, its name
and links to its UniProt record. If a single amyloid pro-
tein in AmyloGraph is associated with several records in the
UniProt, we provide links to all of them. This panel also
contains two tables presenting all interactees and interac-
tors of the protein.

Aside from the graph, AmyloGraph enables tabular rep-
resentation of the interaction data (Figure 2B). The table
is interactive and searchable. A user can also download se-
lected rows in a flat-table format (.csv or .xlsx). As a result,
the downloaded table contains all available information, in-
cluding the sequences of amyloid proteins participating in
the interactions.

Both, graph and tabular representations of the data can
be filtered out using filters available on the left-hand side
of the user interface. The filters cover all three descriptors.
Moreover, a user can color the edges on the graph, accord-
ing to the levels of a chosen descriptor. The user can also use
amino acid sequences to filter the information presented in
the graph or tabular form. Here, we implemented a simpli-
fied set of regular expression inspired by the POSIX system
to facilitate more advanced searches.

The last card of the graphical interface, ‘Interaction’,
opens when the user selects a specific interaction (Fig-
ure 2C). This view presents information on a single interac-
tion, including levels of all descriptors and exact sequences
of proteins. In case of multi-chain proteins, such as insulin,
AmyloGraph presents the sequences of all chains.

To streamline the use of AmyloGraph, we enhanced it
with helpers explaining basic functionalities of the database.
Moreover, a video tutorial is available, presenting examples
of AmyloGraph queries.

AmyloGraph is a FAIR-compliant database (19). All in-
teractions are identifiable by an individual index. They are
also linked to original publications using their DOIs pro-
vided by the Crossref. Proteins participating in interactions
are linked to the UniProt database (20). As recommended
by the FAIR guidelines, we extended the existing vocabu-
lary to describe our data by fully providing our standard-
ized methodology.

CONCLUSIONS AND FUTURE DIRECTIONS

AmyloGraph is the first endeavor to present an overview of
experimentally verified interactions between amyloid pro-
teins. It has also been the first attempt to standardize re-
porting of the amyloid–amyloid interactions and present
them in the interactive database. We believe that, thanks
to our rigorous data curation procedure, we have managed
to collect and thoroughly systematize the majority of avail-
able information. Even though AmyloGraph is currently
the most comprehensive compendium on the interactions
between amyloid proteins, we see three areas that require
an improvement: constant updates, representation of pro-
tein data and extending information of experimental condi-
tions.

The greatest challenge regarding AmyloGraph, which we
envisage, will be to keep it updated. We encountered a sud-
den influx of new publications reporting new interactions
during our work on the database. To alleviate this issue,

AmyloGraph offers a submission form for authors involved
in relevant research to report their results directly to the
database. Thus, we are going to implement a highly struc-
tured system for finding publications by annotating records
acquired in searches of the PubMed database.

One of other challenges regarding AmyloGraph is rep-
resentation of protein data. Right now, AmyloGraph is
very protein-centric and treats whole families of homologs
or variants of a single protein as a single entity. The ac-
tual situation is much more complicated as we often deal
with fragments of recombinant proteins or even protein
grafts (21). In the future, we want to extend AmyloGraph to
contain more information about the protein sequence and
allow proteins with non-standard amino acids or even non-
amino-acid modifications. This change is also necessary to
add to AmyloGraph information on the impact of small
molecules on amyloid fibrillization.

Another limitation of AmyloGraph, which we plan to
alleviate in the next version, is the lack of experimental
information. Amyloid assembly process and their interac-
tions are extremely liable to experimental conditions, such
as pH (22) or concentration of proteins (23). We are con-
vinced that each record in AmyloGraph should be anno-
tated with more parameters defining the environment of the
interaction.

Even considering all limitations described above, we still
believe that the current release of AmyloGraph is a valuable
tool that provides access to a unique dataset. To our knowl-
edge, AmyloGraph is the first effort to collect and present
information on interactions between amyloid proteins in a
unified format. AmyloGraph’s high accessibility and data
quality further enhance its usefulness.

DATA AVAILABILITY

The forms supporting collection of manuscripts, initial cu-
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data acquisition, the in-depth definitions of AmyloGraph
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definitions.html. AmyloGraph is available as an online
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CODE AVAILABILITY

All AmyloGraph functionalities are also accessible as the R
package (https://github.com/KotulskaLab/AmyloGraph).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

Access to Wroclaw Centre for Networking and Supercom-
puting at Wroclaw University of Science and Technology is
greatly acknowledged. We also thank Daniel Otzen (Aarhus
University, Denmark) and Vytautas Smirnovas (University
of Vilnus, Lithuania) for fruitful discussions.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/D

1/D
352/6761729 by guest on 20 June 2023



Nucleic Acids Research, 2023, Vol. 51, Database issue D357

FUNDING

National Science Centre, Poland [2019/35/B/NZ2/03997];
M.B. was supported by the Maria Zambrano grant funded
by the European Union-NextGenerationEU.
Conflict of interest statement. None declared.

REFERENCES
1. Konstantoulea,K., Louros,N., Rousseau,F. and Schymkowitz,J.

(2022) Heterotypic interactions in amyloid function and disease.
FEBS J., 289, 2025–2046.

2. Ivanova,M.I., Lin,Y., Lee,Y.-H., Zheng,J. and Ramamoorthy,A.
(2021) Biophysical processes underlying cross-seeding in amyloid
aggregation and implications in amyloid pathology. Biophys. Chem.,
269, 106507.

3. Gil-Garcia,M., Iglesias,V., Pallarès,I. and Ventura,S. (2021)
Prion-like proteins: from computational approaches to
proteome-wide Analysis. FEBS Open Biol., 11, 2400–2417.

4. Friedland,R.P. and Chapman,M.R. (2017) The role of microbial
amyloid in neurodegeneration. PLoS Path., 13, e1006654.

5. Tran,J., Chang,D., Hsu,F., Wang,H. and Guo,Z. (2017) Cross-seeding
between A�40 and A�42 in Alzheimer’s disease. FEBS Lett., 591,
177–185.

6. Wozniak,P.P. and Kotulska,M. (2015) AmyLoad: Website dedicated
to amyloidogenic protein fragments. Bioinformatics (Oxford,
England), 31, 3395–3397.

7. Louros,N., Konstantoulea,K., De Vleeschouwer,M., Ramakers,M.,
Schymkowitz,J. and Rousseau,F. (2020) WALTZ-DB 2.0: An updated
database containing structural information of experimentally
determined amyloid-forming peptides. Nucleic Acids Res., 48,
D389–D393.

8. Varadi,M., De Baets,G., Vranken,W.F., Tompa,P. and Pancsa,R.
(2018) AmyPro: A database of proteins with validated amyloidogenic
regions. Nucleic Acids Res., 46, D387–D392.

9. Rawat,P., Prabakaran,R., Sakthivel,R., Thangakani,M.A., Kumar,S.
and Gromiha,M. (2020) CPAD 2.0: A repository of curated
experimental data on aggregating proteins and peptides. Amyloid, 27,
128–133.
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ABSTRACT

Amyloids are protein aggregates usually associated with their contribution to several diseases e.g., Alzheimer’s and Parkinson’s.
However, they are also beneficially utilized by many organisms in physiological roles, such as microbial biofilm formation
or hormone storage. Recent studies showed that an amyloid aggregate can affect aggregation of another protein. Such
cross-interactions may be crucial for understanding the comorbidity of amyloid diseases or the influence of microbial amyloids
on human amyloidogenic proteins. However, due to demanding experiments, understanding of interaction phenomena is
still limited. Moreover, no dedicated computational method to predict potential amyloid interactions has been available until
now. Here, we present PACT - a computational method for prediction of amyloid cross-interactions. The method is based on
modeling a heterogenous fibril formed by two amyloidogenic peptides. The stability of the resulting structure is assessed using
a statistical potential that approximates energetic stability of a model. Importantly, the method can work with long protein
fragments and, as a purely physicochemical approach, it relies very little on training data. PACT was evaluated on data
collected in the AmyloGraph database and it achieved high values of AUC (0.88) and F1 (0.82). The new method opens the
possibility of high throughput studies of amyloid interactions. We used PACT to study interactions of CsgA, a bacterial biofilm
protein from several bacterial species inhabiting human intestines, and human Alpha-synuclein protein which is involved in the
onset of Parkinson’s disease. We show that the method correctly predicted the interactions, performing experimental validation,
and highlighted the importance of specific regions in both proteins.
The tool is available as a web server at: https://pact.e-science.pl/pact/. The local version can be downloaded from:
https://github.com/KubaWojciechowski/PACT

Introduction
Pathological misfolding and aggregation of proteins is a hallmark of a number of devastating disorders, including major
public health challenges like Alzheimer’s and Parkinson’s diseases1, 2, type II diabetes3, 4, as well as some cancers5. These
diseases not only share a similar molecular mechanism, but they also often co-occur in the same patients. Among others,
comorbidities were observed between Alzheimer’s disease and type II diabetes6, 7 and Alzheimer’s and Parkinson’s diseases8.
One of the possible explanations of this phenomenon could be related to amyloid cross-interactions. Amyloids are insoluble
protein aggregates characterized by exceptional stability due to the tight packing of monomers, resulting in characteristic
pattern in X-ray diffraction experiments.9. Despite significant structural similarities shared by all amyloids, their sequences are
surprisingly diverse and have little homology10. On the other hand, sometimes very similar sequences can result in distinctive
structures11. Numerous, both experimental and computational studies, explored mechanisms of amyloid aggregation and their
roles in neurodegenerative disorders, including the pivotal role of oligomers formed at early stages of the aggregation process12.
More recent studies have shown that in some cases presence of amyloid aggregates can affect the aggregation rate of other
proteins13. Later, it was observed that interacting proteins can form heterogeneous fibers consisting of molecules of both
interaction partners. Hypothetical structural mechanisms of the cross-seeding, depending on the nature of interactors, are
proposed in14. Aggregation and co-aggregations, observed in the phenomenon of cross-talk, is affected by environmental or
experimental conditions. In case of the aggregation enhanced by interaction with another amyloid at conditions hampering the



aggregation, the cross-seeding presumably helps to overcome an energy barrier required for fibrillation (e.g., as observed in
BSA protein in the presence of HEWL15 )

The cross-interactions were identified between numerous proteins, including those involved in type II diabetes and
neurodegenerative diseases. For example, interactions between Alpha synuclein and human Islet Amyloid Polypeptide
(hIAPP)16. This shed new light on potentially new aspects regarding the origin of comorbidity of these disorders17. A similar
mechanism was found to enhance the virulence HIV virus by increasing its adhesion to host cells18. Despite the importance of
this process, its mechanisms are still poorly understood, although it was shown that polymorphism of an amyloid structure may
play a certain role in the aggregation processes19, 20. The lacking understanding of this process can be attributed to a limited
number of experimental data. As a result, interactions of only a few well-described proteins, such as Amyloid-beta (Abeta),
islet amyloid polypeptide, or Alpha-synuclein, have been very extensively studied and they contributed to a majority of data.
This may introduce a bias in available data. Despite the difficulties, it was shown that proteins with similar sequences are more
likely to interact, however, many counterexamples were also shown17. The studies highlight the importance of the structural
compatibility of amyloid cores.

The main limitation regarding experimental studies of amyloid aggregation and their interactions is that they require
expensive and time consuming methods. In practice, biochemical assays based on the binding of Congo Red21, Thioflavin
T22, and infrared spectroscopy are frequently used. Especially the last method is widely applied, due to its simplicity and
efficiency23. Another approach involves direct observation of fibers using high resolution imaging techniques, such as electron
microscopy24 and atomic force microscopy25. Finally, the advancements in NMR spectroscopy made it an important tool for
studying aggregation at the molecular levels26. Since different methods rely on different approaches, their results might differ
in some cases. More importantly, all of them are expensive and time consuming. Experiments are hampered by difficulties
in handling amyloids, including their low solubility, rapid aggregation, and need for their high-purity27. Currently, the use
of experimental methods for the identification of all amyloids in genome wide studies would be impossible. To address this
problem several computational methods have been proposed based on different approaches (reviewed in28 and29), starting
from structural modeling30, statistical analysis of the sequence including FoldAmyloid31 and FishAmyloid32, physicochemical
models like PASTA 2.033, machine learning techniques such as APPNN34 and AmyloGram35. Furthermore, there are methods
combining both approaches such as PATH36 and Cordax37. Finally, some methods, like Aggrescan 3D38, utilize information
about protein structure. It was also shown that bioinformatics techniques are quite robust and capable of identifying even some
misannotated data despite being trained on them39. Unfortunately, none of these methods can predict amyloid cross-interactions.

Here, we present a new computational method PACT (Prediction of Amyloid Cross-interaction by Threading) designed
for the identification of potentially interacting amyloid pairs. The method is based on the molecular threading applied to the
potential complex of interacting amyloids and the assessment of the stability of obtained molecular models.

Results
The main assumption of the method is that interactions between amyloidogenic fragments that cross-interact, threaded into an
amyloid fiber structure, would result in a heterogeneous aggregate that is more stable, thus energetically more favorable than a
non-interacting pair. In PACT, we use the Modeller40 software for threading a query sequence on the structure of amyloid fiber
formed by Islet Amyloid Polypeptide (IAPP)41. To assess obtained models we proposed ndope score, which is a normalized
version of DOPE (Discrete Optimized Protein Energy) statistical potential implemented in the Modeller software.

PACT correctly identifies amyloid-prone peptides
In the first step, we focused on the prediction of homoaggregation, which can be considered a special case of heteroaggregation.
We compared ndope scores obtained for models of potential homoagregates of amyloidogenic and non-amyloidogenic peptides,
for which the sequences were obtained from the AmyLoad database42. The majority of models obtained for amyloidogenic
peptides showed much lower scores (meaning more stable structures) in comparison with non-amyloids and their first
quartiles of the scores were well separated (Fig.1). Differences between both groups were statistically significant. Based
on the Mann–Whitney U test we were able to reject the hypothesis that the distributions of both populations were identical
(p = 2.48e−8). Considering energy difference, we built a threshold-based classifier. The classification threshold was chosen
based on the Receiver Operating Characteristic (ROC) curve, as a point on the curve closest to the point (0,1), representing
perfect classification (Fig. 1B). The chosen value of ndope score was -242. If used merely for distinguishing amyloids from
non-amyloids, such a classifier was able to achieve an Area Under ROC Curve (AUC) of 0.73 and Accuracy of 0.77. Moreover,
high values of Sensitivity (0.73) and Specifictity (0.86) were obtained. Such results are comparable with state-of-the-art amyloid
predictors on the same data set (Table S1).

We also tested if the method is capable of recognizing amyloid propensity in functional amyloids, which pose a major
problem for most predictors due to their under-representation in databases of amyloids. We tested the performance of the
method on imperfect repeats of CsgA protein from Escherichia coli and Salmonella enterica23 (Fig. S1). Aggregation-prone
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Figure 1. A) Distribution of ndope score for models of amyloidogenic and non-amyloidogenic peptides. B) ROC curve for
amyloid vs non-amyloid classification. The orange line represents the distance between perfect classification point (0,1) and the
chosen threshold

regions of this protein (R1, R3, and R5) scored much lower than non-amyloidogenic regions (R2 and R4) from Escherichia coli.
On this data, PACT achieved an accuracy of 0.9. Furthermore, the observed difference between ndope score for R4 fragments
from Escherichia coli and Salmonella enterica corresponds very well to the difference in their aggregation propensities observed
in experimental works23.

The results showed that the method can accurately predict aggregation-prone peptides of varying lengths. Furthermore, it
can be utilized to detect functional amyloids.

PACT predicts amyloid cross-interactions
We used a similar methodology to predict cross-interactions of amyloid peptides, which is the main purpose of the method.
The ndope scores of heteroaggregates consisting of pairs of peptides whose cross-interactions resulted in faster aggregation
were compared with non-amyloidogenic pairs of peptides (Fig.2). A similar analysis was performed for pairs of peptides
whose cross-interactions resulted in slower aggregation (Fig. S3). In both cases, models of heterologous aggregates resulting
from cross-interactions showed lower values of ndope scores than non-amyloids, and well-separated first quartiles of their
scores (Fig.2). Furthermore, in both cases, differences between groups were statistically significant (Mann–Whitney U test,
p = 5.54e−16 for faster vs negative and p = 2.19e−15 slower vs negative cases. Therefore, we built the threshold-based
classifier using the approach described in the previous section.

To assess the performance and choose the optimal threshold value, ROC curves were calculated for both cases; faster rate
vs negative (Fig.3) and slower vs negative (Fig. S3) on both training and test sets. To minimize the impact of the data choice,
we performed k-folds cross-validation with k=5 on the training set and calculated several metrics describing the performance of
the method (Table 1). The same metrics were then calculated on an independent test set. The same analysis was performed for
the case of prediction of interactions resulting in slower aggregation (Table S2). Chosen ndope thresholds were very similar in
both scenarios, namely -256 and -245 for faster vs negative and slower vs negative respectively. PACT performed well on both
cross-validation and independent test set. It achieved the Accuracy of 0.83 and 0.80 on test sets of faster vs negative and slower
vs negative cases, respectively. In all cases, the results obtained on the test set were within the value of one standard deviation
range from the mean values obtained with the cross-validation procedures. The method performance was quite similar in both
faster vs negative and slower vs negative scenarios. However, due to the smaller data set size, a larger standard deviation was
obtained for slower vs negative scenario (Table 1). The results show that the method can predict whether two peptides can
cross-interact but cannot distinguish between types of interactions with regard to their rate.

PACT is robust to bias in data
A serious problem with the data regarding interacting amyloids, which is available in the literature and, consequently, our
dataset, is the large overrepresentation of interactions concerning the Abeta peptide. This may cause overfitting of the method to
this group of sequences. To assess its effect, we analyzed the scores obtained for interactions between different Abeta variants
(Fig. S4). The observed scores for Abeta pairs fall within the range of values observed for the remaining pairs and, therefore,
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Figure 2. The score ndope for models of interacting identical non-amyloidogenic peptides (negative set) and interacting pairs
resulting in increased aggregation rates (faster set).

Table 1. Performance of PACT on cross-validation and independent test set for classification of non-aggregating and cross
interacting pairs resulting in faster aggregation

Acc [std] Sens [std] Spec [std] F1 [std] MCC [std]

Cross-
validation

0.90 [0.05] 0.91 [0.03] 0.90 [0.08] 0.90 [0.04] 0.80 [0.06]

Test set 0.83 0.78 0.88 0.82 0.66

they should not have a significant effect on the performance of the method. These pairs showed a relatively narrow distribution
of the ndope values, centered slightly below the ndope value of −275, which is relatively close to the identified classification
threshold of −256, while the remaining interacting pairs showed even lower scores.

Interactions between bacterial amyloids and Alpha-synuclein
In recent years, numerous studies have highlighted the connection between the gut microbiome composition and the onset of
many diseases, including neurodegenerative ones such as Alzheimer’s and Parkinson’s diseases43. Despite extensive research,
understanding of the molecular mechanisms underlying this connection remains elusive. One possible explanation for this
relates to functional amyloids from bacteria and human disease-related amyloids through the cross-interaction theory. The
aggregation of bacterial amyloids could speed up the aggregation of disease-related proteins, leading to the disorder44. This
hypothesis seems consistent with the results obtained by Chen and co-workers, who discovered increased production and
aggregation of Alpha-synuclein in rats exposed to bacterial strains producing biofilm-related functional amyloids45.

In order to better understand this connection we studied possible interactions between bacterial functional amyloid CsgA
and human Alpha-synuclein, whose aggregation is a hallmark of Parkinson’s disease. We used PACT to predict interactions
of CsgA protein from five different organisms found in the human microbiome; Escherichia coli (EC), Hafnia alvei (HA),
Yokenella regensburgei (YR), Citrobacter youngae (CY), and Cedecea davisae (CD) with human Alpha-synuclein which were
recently studied experimentally by Bhoite and coworkers46. It should be noted that CsgA protein was not included in the data
set used to develop PACT since it exceeded the maximum length of the template.

The sequence of Alpha-synuclein was divided into overlapping fragments of length 20 amino acids and their interactions
with R1-R5 repeats of each of CsgA proteins were tested. Consistently with experimental results, all of the studied CsgA
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Figure 3. ROC curves for classification of non-aggregating and cross-interacting pairs resulting in faster aggregation on (A)
training and (B) test set.

variants were predicted to interact with Alpha-synuclein. Among CsgA proteins’ fragments, R1, R3 and R5 were predicted to
interact, with R5 showing the best scores (Fig. 4). These results are consistent with our current state of knowledge about CsgA
as the most aggregation-prone regions in these proteins are R1, R3 ad R5. Furthermore, R5 fragment which showed the lowest
ndope scores, is located at the protein surface, therefore it can interact without a need for major conformational changes. On
the Alpha-synuclein part, the best scoring region was located between positions 32 and 56 (Fig. S5). This region was recently
shown to be of crucial importance for the aggregation of the protein47, 48.

Mechanism of cross-interactions between CsgA and hIAPP
Finally, we studied interactions of CsgA protein from Escherichia coli with human Amylin (hIAPP) and complemented the
results with experimental validation (see Supplementary materials). It was previously shown that CsgA could enhance the
aggregation of hIAPP18. We aimed at more detailed characterization of this interaction by identifying which CsgA region is
most likely to interact with hIAPP. To do so, interactions between each of CsgA repeats and hIAPP were first modeled. PACT
classified positively interactions of hIAPP with R1 and R5, with the scores of -257.39 for R5 and -256.52 for R1. Notably,
these fragments are likely to be exposed to the environment, which additionally makes them good candidates for potential
interactions. To test the PACT predictions, experimental validation was performed using ThT assay (Methodology and results
are presented in section 4 of the Supplementary materials). Obtained results showed stronger fluorescence in both cases and
reduced durations of the lag phase and half-time of hIAPP aggregation in the presence of R5 (Fig. S8, Table S5). This could
suggest a particular role of R5 fragment in seeding hIAPP, as predicted by PACT.

Code Availability
PACT was implemented as an open-source Python module, available at GitHub repository: https://github.com/
KubaWojciechowski/PACT. For users’ convenience, we prepared a docker container for the application, as well as the
web server: https://pact.e-science.pl/pact/. For the prediction of cross-interaction we recommend the use of
a default score threshold of -256 and for the prediction of homoaggregation -242. The classification result denoted as "1"
indicates potential interactions. Apart from the classification, the software returns generated models of aggregates.

Discussion
We proposed the first computational method for predicting amyloid cross-interactions. It is based on a highly interpretable
and well-established physicochemical model, which is not heavily dependent on training data. This feature is especially
important since the available data contains a strong interest bias towards interactions of a few popular amyloids related
to neurodegenerative diseases, for example Abeta. However, in case of our method we carefully studied the effect of this
overrepresentation and showed that it does not affect its performance. Furthermore, good performance on functional amyloids,
which are very underrepresented in the datasets, suggests that the method is robust and can be effectively used on a wide range
of sequences. In total, PACT achieved a high accuracy of 0.83 and 0.80 on the independent test sets of interactions concerning
increasing and decreasing aggregation rates. On both sets the method achieved high AUC values of 0.88 and 0.89, and F1
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Figure 4. Lowest ndope scores for interactions of R1-R5 repeats from each of CsgA proteins with Alpha-synuclein.

values of 0.82 and 0.77, respectively. On the other hand, since both cases were characterized by similar interaction energies,
the method cannot distinguish between enhancement and inhibition of aggregation. These results suggest that both processes
may be driven by similar mechanisms. The issue was addressed in a recently published work by Louros and coworkers49, who
applied a somewhat similar approach to study the effect of point mutations on aggregation characteristics.

We used PACT to predict the interactions of bacterial functional amyloid CsgA from different species with human Alpha-
synuclein and human amylin. Although these interactions were not included in the training data set, our results are in good
agreement with recently published data regarding these pairs of proteins. Importantly, they also indicate which regions can
drive the cross-interactions between both proteins. The identification of potentially interacting regions can provide important
insights into the possible mechanism of the process and guide future experiments.

Apart from the identification of amyloid cross-interactions, the proposed method is also capable of reliably predicting
amyloid-prone regions in proteins with comparable accuracy to state-of-the-art techniques. Furthermore, it overcomes their
major limitations regarding the identification of functional amyloids. Unlike most of the currently available amyloid predictors,
it does not rely on the scanning of a query sequence with a very short sliding window.

High-throughput identification of amyloid cross-interactions is an important step towards our understanding of its mecha-
nisms. It can allow for a better understanding of the principles governing the process and can also be used to identify novel
cases of amyloid interactions. Such capabilities can shed light on possible mechanisms responsible for the comorbidity of
devastating disorders.

Methods
The main assumption of the method is that interactions between amyloidogenic fragments that cross-interact, threaded into an
amyloid fiber structure, would result in a heterogeneous aggregate that is more stable, thus energetically more favorable than a
non-interacting pair. A somewhat similar assumption was successfully applied in our previous work to predict the aggregation
of short amyloidogenic fragments36, although the current approach differs in other aspects of the method and the objectives.
In PACT, we use the Modeller software for threading a query sequence on the structure of amyloid fiber formed by Islet the
Amyloid Polypeptide (IAPP)41. To assess obtained models we have proposed ndope score, which is a normalized version of the
DOPE statistical potential implemented in the Modeller software.

Data sets
To build and test the method we used the following datasets:
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• the set of 86 amyloidogenic (amyloid) and 55 non-amyloidogenic (non-amyloid) peptides of lengths between 14 and 45
from the AmyLoad database42.

• the set of 119 pairs of peptides, which enhance (faster dataset) and 73 which slow down (slower dataset) the aggregation
of each other. Both from AmyloGraph database50. After the removal of identical records 57 and 55 pairs of peptides
which enhance and slow down the aggregation of each other respectively.

The first two sets (amyloid and non-amyloid) were used to test the method on cases of homoaggregation i.e., identifying
amyloid-prone peptides.

For the prediction of cross-interactions, we used faster, slower and non-amyloid sets. The use of the set of non-aggregating
peptides as the negative set in the interaction study was caused by the lack of a sufficient number of negative examples of
non-interacting amyloid pairs. This is a common problem in studies of protein-protein interactions since negative results are
rarely published, which often creates a strong bias in biological data51. An analysis of this dataset reveals that it is mostly
composed of peptides with strong beta propensity used by authors of the Tango method52. The proteins from this set could
be mistaken for amyloid proteins by modeling methods, therefore they provide the best available negative dataset concerning
amyloidogenicity. Importantly, due to the length restrictions, CsgA protein, which was used in our validation studies, was not
included in the data sets used in the development of PACT.

Datasets used in this study are available at GitHub repository:
https://github.com/KubaWojciechowski/PACT

Modeling
A query pair of sequences were threaded on the structure of amyloid fiber formed by Islet Amyloid Polypeptide (IAPP)41. In
order to allow the method to deal with sequences of varying lengths, sequences shorter than the sequence of a template use only
the main part of the template structure. In such cases, a shorter sequence is aligned to the middle of the template sequence (Fig.
5A). This choice can be justified considering that most of the currently known amyloid fragments, which are longer than a few
amino acids, share a similar beta-sheet turn architecture, commonly known as the beta arch. This assumption was previously
successfully applied by Ahmed and coworkers to build the ArchCandy method for amyloidogenic region prediction53. PACT
allows sequences to be marginally longer than the template and, as a result, can be used to study cross-interactions between
peptides of lengths between 14 and 45. For each of the tested pairs, 10 different models, consisting of two chains of each
interacting peptide (Fig. 5B) were built using Modeller 9.24 model-multichain.py procedure with default parameters40. Then,
the model with the lowest DOPE value was chosen for further analysis. Since the dataset consisted of fragments of varying
lengths, we proposed a normalized DOPE score (ndope) defined as follows:

ndope =
DOPE

L
(1)

where L is an average length of sequences used to build a given model. Then, ndope scores were compared between amyloids
and non-amyloids, as well as between pairs of amyloids interacting with non-amyloids.

To choose the ndope threshold for the classification, Receiver Operating Characteristics (ROC) curve was calculated by
applying different score thresholds and recording False Positive Ratio (FPR) and True Positive Ratio (TPR). The threshold
closest to the (0,1) point (representing perfect classification) was chosen. The whole procedure was schematically summarized
in Fig. 6.

We also tested a variant of the method which utilized three different structural templates (PDB: 2nnt, 2e8d), however, it did
not improve the accuracy of the method but significantly increased the computational time. Therefore, this approach was finally
abandoned.

Assessment of performance and data analysis
All the data analysis was performed using Python 3.8 with Matplotlib54, NumPy55, Pandas56, Scikit-Learn57, and Seaborn58

packages.
To test the performance of the proposed method, a dataset was randomly split into a training set and test set, which consisted

of 30% of the data. Additionally, k-folds cross-validation (with k=5) was performed on the training data. Area Under ROC
curve (AUC), Accuracy (ACC), Sensitivity (Sens), Specificity (Spec) and Matthew Correlation Coefficient (MCC) were used to
assess the performance of the method

Effect of Amyloid-beta variants
For the analysis of the effect of over-represented amyloid beta pairs, we divided the faster data set into two subsets: one
containing only pairs were both interacting peptides were variants of amyloid beta (16 pairs) (abeta), and the set of remaining
pairs (39 pairs) (no abeta).
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Figure 5. Schematic representation of the modeling procedure. A) In case when a query sequence is shorter than the template,
only a part of it is used in modeling. B) The model of heterogenous fibril consists of two chains of each interacting peptide.

Figure 6. Schematic procedure of PACT

Interactions between bacterial amyloids and Alpha-synuclein
Modeling the interactions between Alpha-synuclein and CsgA proteins was performed using human Alpha-synuclein sequence
(Uniprot id: P37840) and CsgA protein from five different organisms found in human microbiome; Escherichia coli (EC)
(Uniprot id: P28307), Hafnia alvei (HA) (Uniprot id: G9Y7N6) , Yokenella regensburgei (YR) (Uniprot id: A0A6H0K4L9),
Citrobacter youngae (CY) (Uniprot id: A0A549VPM7), and Cedecea davisae (CD) (Uniprot id: S3IYN9). The sequence
of Alpha-synuclein was divided into overlaping subsequences of lengths 20. This window length was chosen because it is
similar to the length of repeated units in CsgA protein, responsible for its aggregation. CsgA variants were split into five
non-overlaping fragments R1-R5 corresponding to five imperfect repeats observed in their sequences. Interactions of each of
CsgA fragments with all Alpha-synuclein fragments were studied.
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Data availability
Datasets used in this study are available at the GitHub repository:
https://github.com/KubaWojciechowski/PACT
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1. Classification of amyloid vs non-amyloid peptides

To assess PACT performance for recognizing amyloids from non-amyloids, we calculated
the same metrics for three other amyloidogenicity predictors: FoldAmyloid, AmyloGram and
PACT (Table S1). PACT performance was similar to these methods, which shows that it can
be used also for prediction of amyloid-prone peptides.

Tablele S1 Performance of PACT on the set of aggregating and non-aggregating peptides of
lengths between 14 and 45 amino acids from AmyLoad daTablease.

Method Accuracy Sensitivity Specificity F1 MCC

PACT 0.77 0.73 0.85 0.81 0.55

PATH 0.67 0.56 0.85 0.68 0.41

AmyloGram 0.81 0.83 0.78 0.86 0.59

FoldAmyloid 0.75 0.73 0.78 0.80 0.49

2. Performance on functional amyloids

Our experience shows that most of amyloidogenicity predictors perform poorly on functional
amyloids, which are underrepresented in available daTableases. To test if our method can
be used on functional amyloids we tested it on R1-R5 imperfect repeats from CsgA protein
from  E. coli and  S. enterica, which we studied previously (Szulc et al. 2021). Fig.ure S2
shows calculated ndope scores for these fragments. Aggregation prone regions of R1, R3,
and R5 scored much lower than non-amyloidogenic regions, R2 and R4, from E. coli.  On
this data, PACT achieved the Accuracy of 0.9. Furthermore, the observed a difference in



ndope score for R4 fragments from E. coli  and S. enterica, which corresponds very well to
the difference in their aggregation propensity.

Fig.  S1 ndope scores for  R1-R5 imperfect  repeats of  CsgA protein from  E.  coli  and  S.
enterica.

3. Prediction of cross-interactions

In the next step, we tested the performance of the method on pairs of interacting  amyloids.
We tested pairs whose interactions resulted both in increased and decreased aggregation
speed. The first case is described in more detail in the main text. Here we show the results
for the case of interactions resulting in slower aggregation (Fig. S2). 



Fig.  S2 Normalized DOPE score for  models of  non-amyloidogenic  peptides and pairs of
interactions resulting in decreased aggregation rates. 
Same as in the case of prediction of homoaggregation, the threshold based classifier was
built, but this time the data set was first split into training and test sets. On the training set k-
folds cross-validation was performed with k=5. Then we used the whole training set to find
the threshold again and tested the method on the independent test set. ROC curves were
calculated for both training and test sets (Fig. S3), ndope threshold of -245 was found and
other metrics were calculated (Table S2). The results similar to those obtained for faster
aggregation were obtained.

Fig. S3 ROC curves for classification of non-aggregating and cross interacting pairs resulting
in slower aggregation on (A) training and (B) test set.

Table S2 Performance of PACT on cross-validation and independent test set for 
classification of non-aggregating and cross-interacting pairs resulting in their slower 
aggregation.

Accuracy 
[std]

Sensitivity
[std]

Specificity
[std]

F1 [std] MCC [std]

Cross-validation 0.90 [0.07] 0.91 [0.17] 0.86 [0.13] 0.89 [0.09] 0.81 [0.12]

Test set 0.79 0.71 0.88 0.77 0.59

Next, we tested how interest bias of authors of the publications influences the performance
of PACT. To do so, highly overrepresented interactions of different variants of Abeta were
closely studied. The obtained scores for Abeta pairs were within the same range as values
for the remaining pairs, and therefore should not have a significant effect on the performance
of  the method.  These pairs  obtained quite similar  ndope values,  centered slightly  below
ndope value of -275, which is relatively close to identified classification threshold for faster vs
negative scenario of -256.



Fig.  S4 Normalized DOPE score for  models of  non-amyloidogenic  peptides and pairs of
interactions resulting in increased aggregation rates where both partners belong to Abeta
variants and the remaining pairs.

Fig. S5 Scores for interactions of CsgA fragments with Alpha-synuclein fragments. Each dot
represents the starting position of 20 amino acid fragment of the sequence.



4. Experimental validation

Table S3 Peptides analytical data.

Name Sequence Formula Calculated M/z Experimental M/z
Analytical

HPLC 
t r [min]

R1 H-SELNIYQYGGGNSALALQTDARN-NH2 C94H153N29O36
[(M+2H)/2] 1228.1060
[(M+3H)/3] 819.0733

[(M+2H)/2] 1228.1328
[(M+3H)/3] 819.0726

14.599

R5 H-SDLTITQHGGGNGADVGQGSDD-NH2 C87H138N28O36
[(M+2H)/2] 1994.9397
[(M+3H)/3] 997.9738

[(M+2H)/2] 1994.2070
[(M+3H)/3] 997.5491

12.273

hIAPP H-KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY-NH2 C165H261N51O55S2 
[(M+3H)/3] 1302.8
[(M+4H)/4] 977.3

[(M+3H)/3] 1302.5
[(M+4H)/4] 977.3

10.230

Fig. S6 Analytical HPLC chromatograms of the studied peptides.



Materials and Methods

Peptide synthesis. All commercially available reagents and solvents were purchased from
Merck and used without further purification. Peptides R1 and R5 were synthesized with an
automated  solid-phase  peptide  synthesizer  (Liberty  Blue,  CEM)  using  H-Rink  amide
ChemMatrix resin 35-100 mesh particle size (loading: 0.59 mmol/g). Fmoc deprotection was
obtained using 20% piperidine in DMF for 1 min at 90 ºC. A single-coupling procedure was
achieved with 0.5 M solution of  N,N′-diisopropylcarbodiimide (DIC) and 0.5 M solution of
Oxyma Pure Novabiochem® in DMF for 4 min at 90 °C. Cleavage of the peptides from the
resin was accomplished with the mixture of TFA/TIS/H2O (95:2.5:2.5) after 3 h of shaking.
The crude peptide was precipitated with ice-cold Et2O and centrifuged (7 000 rpm, 10 min, 4
°C). Peptides were purified using preparative HPLC (Knauer AZURA ASM 2.1L) with a C18
column (Thermo Scientific, Hypersil Gold 12 µm, 250 mm × 20 mm) with water/acetonitrile
(0.05% TFA) eluent system. hIAPP was purchased from ProteoGenix, see Table S3.

Analytical high-performance liquid chromatography (HPLC). Analytical HPLC for R1 and
R5 was performed using column ReproSil Saphir C18 100Å 5µ 4.6 × 150 mm; detection
wavelength 222 nm; eluent system: A = H2O+0.05% TFA, B = CH3CN+0.05% TFA, gradient:
t=0–20  min,  90%–0% A;  t=20–22  min,  0% A;  t=22–25  min,  0%–90% A,  see  Fig.  S6).
Analytical HPLC for hIAPP was provided by ProteoGenix and performed on PLRP-S column
100Å 4.6 × 250 mm; detection wavelength 220 nm; eluent system: A = CH3CN+0.1 % TFA,
B = H2O+0.1% TFA, gradient: t=0–25 min, 10%–90% A; t=25–30 min, 100%–0% A).

Mass spectrometry (MS). Peptides R1 and R5 were studied by WATERS LCT Premier XE
System consisting of a high resolution mass spectrometer with a time of flight (TOF) using
electrospray ionization (ESI). MS analysis for hIAPP was provided by ProteoGenix.

Circular dichroism (CD). CD spectra were recorded on JASCO J-1500 at 20 °C between
250 and 190 nm in water with following parameters: 0.2 nm resolution, 1.0 nm band width,
20 mdeg sensitivity, 0.25 s response, 50 nm/min scanning speed, 5 scans, 0.1 cm cuvette
path length. The CD spectra of the 10 mM PBS buffer pH 7.4 was recorded and subtracted
from the raw data. The peptides were dissolved in hexafluoroisopropanol (HFIP), then mixed
for 3 hours to obtain monomers. HFIP was evaporated overnight in a desiccator, then the
samples were dissolved in a PBS buffer to obtain peptide concentration of 100 µM. Then, a
filtration process was conducted,  and the resulting filtrate was employed for  subsequent
experimentation. The CD intensity is given as mean residue ellipticity (θ [deg × cm2 × dmol-
1]). The spectra were smoothed using the Savitzky–Golay filter (polynomial order 2, widow
size 19) applied in the SciPy package. 

Thioflavin T (ThT) fluorescence assay.  Kinetic measurements were carried out in a 96-
well BRANDplate® on a CLARIOstar Plus, BMG LABTECH, at 20 °C, using wavelengths of
440±15 nm and 480±20 nm, for ThT excitation and emission respectively. Additionally, the
plate was shaken for 30 s at the interval of 30 min during 24 hours of measurements. Final
concentrations were 50  μM of ThT and 100  μM of each monomerized peptide. Peptides
were monomerized according to the procedure described in the CD section. The experiment



was performed in the duplicate. The obtained fluorescence values were normalized to the
fluorescence maximum in the 0–1 range. 

Results 

An experimental validation was conducted to confirm the predictions of cross-interactions
obtained by PACT. Peptides for the studies were chosen based on the predicted energies
and availability and included fragments R1 and R5 of the CsgA protein from E. coli species,
known for their functional amyloid properties1, as well as hIAPP, an amyloid associated type
2 diabetes2. The interactions between the N-terminal (R1) and C-terminal (R5) fragments of
CsgA protein and hIAPP were investigated using circular dichroism (CD) and Thioflavin T
(ThT) fluorescence assays. The studies were undertaken to demonstrate cross-interaction of
R1 and R5 fragments with hIAPP, as predicted computationally with PACT.

CD spectra of all samples exhibited a minimum at approximately 200 nm upon dissolution
(see Fig. S7 and Table S4) indicating a random coil formation. Throughout the time course
of the experiment, only a slight shift towards lower wavenumbers (approximately 1-2 nm)
was observed for all samples. Despite that the secondary structure characteristic observed
still resembled those of a random coil, the reduced spectral intensity and higher voltage on
the photomultiplier indicate occurrence of the temporal aggregation.

Fig. S7 Far-UV CD spectra of the studied samples: (A) fragment R1 of CsgA protein of  E.
coli species, (B) fragment R1 of CsgA protein of E. coli species + hIAPP, (C) fragment R5 of
CsgA protein of E. coli species, (D) fragment R5 of CsgA protein of E. coli species + hIAPP,
(E) hIAPP, on the day of dissolving, after one hour and after one day in the PBS buffer.
Cpep=100 µM.



Table S4 Changes in the positions of CD spectra minima (given in nm) of the studied 
samples within time in the PBS buffer. Cpep=100 µM.

sample
time

R1 R5 hIAPP R1+hIAPP R5+hIAPP

0 197.8 199.2 198.6 200 199.2

1 hour 199.2 197.2 197.2 198.6 198.6

1 day 197.0 198.0 197.4 198.2 197.2

Comparative  analysis  revealed  an  acceleration  of  aggregation  for  the  R1+hIAPP  and
R5+hIAPP  samples  compared  to  the  individual  peptides  (see  Fig.  S8  and  Table  S5),
confirming cross-interactions between the peptides. This acceleration was accompanied by
a reduction in the lag phase duration from hours, observed in the case of terminal fragments
of  the CsgA protein,  to minutes upon addition  of  hIAPP to the mixture.  Additionally,  the
heterogeneous  mixture  of  R5+hIAPP showed  a  faster  rate  of  aggregation  compared  to
R1+hIAPP (see Table S5).  The R5+hIAPP mixture exhibited a stronger  cross-interaction
effect than R1+hIAPP. The PACT score indicated a lower energy (-257.39) for the R5-hIAPP
interaction compared to R1+hIAPP (-256.52), which is consistent with the ThT results. The
difference between these two heterogeneous mixtures was minimal based on the half-time,
lag time, and the increase in normalized fluorescence value.

Fig. S8 ThT curves for the studied samples following the aggregation process in the PBS 
buffer. Cpep=100 µM.

Table S5 Parameters obtained by fitting aggregation kinetics to studied peptides. Cpep=100 
µM. Where, the symbol '-' denotes that no half-time calculation was performed due to the 
absence of a fitted curve (only the lag phase was observed, representing the monomeric 
state of the peptide).

sample
parameter R1 R5 hIAPP R1+hIAPP R5+hIAPP

lag phase 24 hours 23 hours 30 minutes 30 minutes 10 minutes

half time - 24 hours 50 minutes 1 hour 30 minutes
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