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Abstract

This doctoral thesis aims to develop data-driven forecasting methods designed to support
the decision-making processes of small and medium companies participating in electric-
ity markets. The methods are designed with low to medium computational complexity
and high level of automation. The thesis comprises five research papers which fulfill four
objectives, addressing different research gaps related to this main goal: (i) conduct a crit-
ical study of calibration sample selection for automation of electricity price forecasting;
(ii) use resampling methods to generate predictive distributions of electricity prices and
better assess uncertainty; (iii) utilize renewable generation and load forecasts to design
trading strategies in day-ahead and intraday markets; (iv) develop decision support meth-
ods for day-ahead bidding that use combinations of predictive distributions. The proposed
approaches are evaluated from statistical and financial points of view, offering both sci-
entific novelty and practical applicability.

Streszczenie

Ta rozprawa doktorska ma na celu opracowanie metod prognostycznych opartych na
danych, wspierających procesy decyzyjne małych i średnich firm operujących na rynkach
energii elektrycznej. Przedstawione metody są zaprojektowane tak, aby mieć niską lub
średnią złożoność obliczeniową i wysoką automatyzację. Rozprawa doktorska jest cyk-
lem pięciu publikacji, które realizują cztery zadania adresujące luki badawcze związane
z tym głównym celem: (i) przeprowadzenie krytycznego badania metod wyboru próbki
kalibracji do automatyzacji prognozowania cen energii elektrycznej; (ii) wykorzystanie
metod ponownego próbkowania do tworzenia rozkładów prognostycznych cen energii
elektrycznej i oceny niepewności; (iii) użycia prognoz produkcji energii ze źródeł odnaw-
ialnych i zapotrzebowania na elektryczność do planowania strategii handlu na rynkach
dnia następnego i intraday; (iv) opracowanie metod wspomagania podejmowania de-
cyzji do krótkoterminowego handlu wykorzystujących uśrednienia rozkładów prognosty-
cznych. Zaproponowane w tej pracy rozwiązania są oceniane zarówno ze statystycznego
jak i finansowego punktu widzenia, niosąc ze sobą wkład w rozwój dyscypliny i potencjał
w praktycznych zastosowaniach.
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Chapter 1

Introduction

1.1 Forecasting as a decision support tool in electricity
markets

Within the last few decades, electricity markets have been moving in the direction of
decentralization and deregulation. Aiming to increase competition and efficiency, energy
supply previously monopolized by state-owned utilities has undergone fragmentation and
privatization. A large share of developed countries introduced electrical power exchanges,
where companies may freely buy and sell energy. While operating in these markets is
subject to extensive legal regulations, most of the time electricity is traded according to
the law of supply and demand, under free market conditions.

The participants of electricity markets make a multitude of operational decisions on
a day-to-day basis. While long-term contracts are popular among large companies, the
spot market is widely considered the most important avenue for trading electricity (URE,
2023). It is the main reference point for risk management and the spot price is used as
the underlying of derivative products (Burger et al., 2014). In continental Europe the
spot market typically includes the day-ahead market, where trading is conducted within a
uniform-price auction for all hourly or block (e.g. peak or off-peak hours) contracts of the
next day; and the intraday market, where trading is possible until minutes before physical
delivery for hourly or shorter load periods (Mayer and Trück, 2018; TGE, 2024). They are
supplemented by technical markets, e.g. balancing markets, which hold a predominantly
technical role of ensuring safe and continuous functioning of the electrical grid.

Trading in the spot market requires the participating companies to submit their bids
and offers ahead of physical delivery. They need to carefully choose the delivery time
and price at which they will bid in the market, taking into account the uncertainty of
consumption and generation volume of renewable energy sources (RES), such as wind or
photovoltaic (PV) farms. Underestimating or overestimating RES generation necessitates
making additional, likely unfavorable, bids closer to delivery time. On a system-wide
scale, misjudging the market events may lead to a number of negative consequences:
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among them, price surges of a large magnitude, financial losses of companies or local
black- or brownouts, i.e. energy shortages (Morales et al., 2014).

The companies make these decisions using their knowledge of the market and fore-
casts of prices and fundamental variables, such as electricity demand and generation. As
explained by Waddell and Sohal (1994), "Forecasting is generally used to predict or de-

scribe what will happen (for example, to sales demand, cash flow, or employment levels)

given a set of circumstances or assumptions. Planning, on the other hand, involves the

use of forecasts to help in making good decisions about the most attractive alternatives

for the organization. [...] Generally speaking, forecasting and forecasts are inputs to the

planning process." A similar perspective is presented by Petropoulos et al. (2022), stating
the purpose of forecasting as "to improve decision making in the face of uncertainty. To

achieve this, forecasts should provide an unbiased guess at what is most likely to happen

(...), along with a measure of uncertainty (...). Such information will facilitate appropri-

ate decisions and actions." Types of forecasts used in management "(...) include point

estimates as well as expressions of uncertainty of such estimates in terms of probabilistic

forecasts, prediction intervals, or path forecasts" (Petropoulos et al., 2024).

With the majority of managers in the energy sector recognizing business analytics as
a crucial area of development, automation and data-driven forecasts are becoming com-
monplace among energy market participants. According to an international survey of
utility companies by SAS, over 70% of managers recognize analytics as a core part of
their operations, while 60% of the respondents cite business analytics as a transformative
factor in the way their business is conducted (SAS, 2017). Moreover, they point to energy
forecasting as the highest priority activity, more so than asset management or customer
segmentation analytics. These responses underscore a widespread practical relevance of
business analytics and forecasting, while practical case studies, such as the ones of Hong
(2016) and Fabbiani (2024), provide tangible evidence that reducing demand and/or price
forecast errors allows energy companies to save hundreds of thousands USD or EUR
yearly.

Typically, forecasting in organizations is a multi-step process with multiple partici-
pants involved. However, the actual methods used in practice do not realize the potential
seen in the scientific literature (Petropoulos et al., 2022). Indicators of uncertainty, such
as probabilistic forecasts, provide valuable and more complete information, but they may
be misinterpreted or ignored by the users in business contexts (Goodwin, 2014; Vukovic,
2023). Additional value can be gained from simulations and case studies evaluating per-
formance of forecasts applied in decision-making, since the connection between statistical
accuracy and business value is usually not straightforward (Kolassa, 2023; Robette, 2023).

There exists a wide disparity of available computational resources and data between
established, major market players and smaller utilities. While large companies are able
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to devote significant amounts of money and computational power to develop in-house
forecasting models or procure proprietary data, smaller market participants typically do
not have such capabilities. Therefore, accessible forecasts basing on openly available data
and produced with interpretable models address needs of a growing number of firms.

In a recent review, Maciejowska et al. (2023) identify three current trends in electricity
price forecasting:

• considering not only point but also probabilistic (interval, density) or path (also
called ensemble) forecasts,

• using statistical and machine learning approaches instead of parsimonious but less
accurate econometric models, and

• evaluating forecasts not only in terms of statistical error measures, but also by com-
paring profits from trading strategies.

The research articles that form the core part of this thesis cover all three directions, while
keeping in mind accessibility to the forecast users. They describe automated methods with
low to medium computational complexity, which can be used to complement or replace
simple forecasting models. Thus, they balance novelty with accessibility, providing both
scientific and practical value.

1.2 Aim and objectives

This thesis addresses the needs of small and medium enterprises participating in electricity
markets. It aims to develop automated and data-driven forecasting methods with low to
medium computational complexity, designed to support the decision-making processes.
With this in mind, four objectives are set:

1. Conduct a critical study of calibration sample selection for automation of electricity
price forecasting (Paper 1, Paper 2).

2. Use resampling methods to generate predictive distributions of electricity prices
and better assess uncertainty (Paper 3).

3. Utilize renewable generation and load forecasts to design trading strategies in day-
ahead and intraday markets (Paper 3, Paper 4).

4. Develop decision support methods for day-ahead bidding that use combinations of
predictive distributions (Paper 5).

Objective 1 addresses a research gap of selecting appropriate calibration samples for
estimating forecasting model parameters. Usually, electricity price forecasting literature
is focused on model specification, while the choice of the calibration sample is commonly
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performed in an ad-hoc, arbitrary manner, or dictated by data availability. However, some
studies are showing a major impact of this choice on forecasting accuracy. Optimal cali-
bration samples usually change over time and are difficult or impossible to predict a priori,
necessitating extensive backtesting to make informed decisions. As part of Objective 1,
automated methods of calibration sample selection are proposed, aiming to help the users
effectively calibrate their chosen models without additional expert knowledge.

Probabilistic forecasts, i.e. forecasts which give information about the distribution
of the predicted variable rather than just its expected value, are highly valuable when
used for decision support. They enable managers to assess the likelihood of positive or
negative events and plan accordingly. At the same time, probabilistic forecasting methods
can be seen as daunting and overly complex when implemented in practice. Objective 2
addresses this concern by generating predictive distributions using resampling methods,
which can be an extension of an existing point forecasting model.

For a company which produces or trades renewable energy in the spot market, electric-
ity prices are not the only relevant variable. Fundamental variables, such as system-wide
load (i.e. demand) and generation volume, hold high importance in operational deci-
sions. They also have a significant impact on future market prices. Objective 3 focuses
on designing trading strategies for renewable energy generators that utilize forecasts of
multiple variables in the decision-making process. This allows for a more comprehensive
assessment and can lead to better decisions.

Finally, a simple method to improve forecast accuracy and reduce model selection risk
at the same time is to combine forecasts from several different models into a single one.
Objective 4 aims to research whether the reduction in forecast errors from combining can
be leveraged for improving a company’s profits while trading. Additionally, an automatic,
data-driven method of assigning combination weights is compared to a naive averaging
approach.
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Chapter 2

Electricity markets and market
participants

2.1 Major market players

While the thesis focuses on generators and traders, this chapter aims to place them in
a wider context. Examples are drawn primarily from the German and Polish electricity
markets. The largest group of players in these markets are consumers. However, the
majority of them, such as households and small businesses, do not interact with the market
directly. Instead, they are served by utilities. However, large consumers such as heavy
industrial plants often bid directly or form personalized contracts with suppliers. Their
main interest while trading lies in achieving a reliable electricity supply.

The generators provide electricity supply by operating conventional (e.g. fossil fuel)
or renewable power plants. Large generation companies are likely to have a variety of
power plants in their portfolio and participate in the markets by bidding directly. Smaller
companies have fewer assets and may use services of intermediaries such as traders and
aggregators. While they differ with regards to amounts and types of power plants owned,
typically generation companies aim to earn revenue by selling produced energy in accor-
dance with market demand. The private companies participating in electricity markets
are overseen by the state-owned system regulators and operators, who are responsible for
maintaining the distribution grids and ensuring proper functioning of the system.

The process of decentralization of energy markets has been accelerated by constantly
increasing propagation of renewable energy solutions. With the increased availability of
small-scale wind or solar power installations, smaller companies and even private house-
holds (i.e. prosumers) may invest in energy generation, oftentimes producing electricity
for their personal needs and selling surplus back to the grid. While the majority of energy
is still produced by a number of large utilities, their joint market shares are decreasing in
favor of smaller generators. For example, Figure 2.1 shows the electricity market land-
scape in year 2023 in Poland. It can be seen that there are only four companies with
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1.2 % 

 Veolia

7.4 % 

 TAURON Polska 

 Energia SA

26.8 % 

 Pozostali wytwórcy

1 % 

 Polenergia
37.4 % 

 PGE Polska Grupa 

 Energetyczna SA

1.2 % 

 PAK SA

10.1 % 

 GRUPA ORLEN

14 % 

 ENEA SA

0.9 % 

 CEZ

Total capacity 

 151.9 TWh

Figure 2.1: Shares of electricity generation supplied by market participants in Poland in
2023. Data source: URE (2024).

market share larger than 5%, and their combined output constitutes less than 70% of the
total energy generation. Meanwhile, more than a quarter of total energy output is covered
by small companies, many of which are renewable energy generators (URE, 2024). A
similar trend can be seen in Germany, where in 2022 the combined market share of five
biggest companies equals 63%, with only three of them covering more than 5% of total
energy generation (BNetzA, 2023).

While prosumers do not independently participate in electricity markets and are thus
counted in the shares of larger companies, their impact on the market landscape cannot
be overlooked. In Poland, there are more than 1.4 million registered prosumers, 95% of
which are private households. They contribute approximately 80% of total Polish photo-
voltaic energy generation (URE, 2024). Across Europe, affluent areas observe emergence
of so-called renewable energy communities. They couple and connect multiple producers
and consumers of energy within a small geographical area, using internet of things tech-
nologies to flexibly manage supply and demand (Neska and Kowalska-Pyzalska, 2022).

For electricity market participants, free market trading offers both opportunities and
risks. Electrical grids require the influx and outflux of energy to be balanced at all times
in order to provide consistent voltage to customers. When the energy supply is centrally
regulated, the majority of uncertainty comes from the consumption. However, increasing
the number of companies participating in electricity trading makes supply unpredictable
as well. The volatility is further increased by the growing penetration of renewable energy
sources in many countries’ energy mixes (Paraschiv et al., 2014; Mwampashi et al., 2021).
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2.2 Characteristics and challenges of renewable energy
sources

Due to limited global supply and negative environmental impact, there is a worldwide
trend to move on from conventional power plants, which burn fossil fuels, to renewable
energy sources (Papież et al., 2019; Cullen and Reynolds, 2023). As their name implies,
they produce electrical energy from practically inexhaustible sources such as the sun,
wind or water. In 2023, the share of renewables in the global power generation mix
reached 29% and it was forecasted to rise by further 6 percentage points until 2025. In
Europe the penetration of renewables is even higher, with 35% across the whole continent
and in excess of 60% of total energy demand in countries such as Germany or Denmark
(IEA, 2023).

Aside from sustainability, the biggest advantage offered by renewable energy sources
is their low cost of operation. Due to the constant buying and consumption of non-
renewable fuels, conventional power plants have significantly higher marginal costs (i.e.
variable costs, primarily fuel and CO2 emissions) than RES generators, whose marginal
costs are often close to zero. When considering the levelized cost of generating electricity,
i.e. including fixed costs such as establishing and maintenance of generation facilities, the
difference is smaller, but still substantial. In 2020, the levelized costs were approximately
twice as large for coal and gas-powered plants than for industrial-scale onshore wind and
photovoltaic plants (IEA, 2020). Since offers in electricity markets are typically accepted
starting from the lowest marginal costs, this leads to a so-called merit-order effect, which
shifts the price curve, lowering the average cost of electricity per 1 MWh (see Fig. 2.2;
Cludius et al., 2014; Hagfors et al., 2016b; Kremer et al., 2021). In turn, increasing the
share of electricity consumption from renewable energy sources is likely to positively
affect the economic growth (Papież et al., 2019). Additionally, renewable energy invest-
ments improve the energy security of countries historically relying on imported fossil
fuels (Papież et al., 2018).

While the benefits of renewable energy sources in terms of affordability and green-
house gas emissions are substantial, they are not without drawbacks. The most common
renewable power plant types include hydroelectric turbines, wind turbines and photo-
voltaic panels. The latter two and some types of hydroelectric plants are intermittent,
non-dispatchable energy sources, meaning that their energy output is difficult or nearly
impossible to accurately predict and control. Power supplied by such a utility can signifi-
cantly vary between zero and nominal capacity. Their generation depends predominantly
on weather conditions and peak output does not usually coincide with periods of the most
intensive energy consumption. This behavior is different than conventional power gener-
ators, which can adjust their power output in a controlled and deterministic way, although
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Figure 2.2: Stylized merit-order curve in German electricity market, settling the final spot
price at the intersection of demand volume and supply offers from least to most expensive.
Source: Cludius et al. (2014).

not without costs or difficulties.

Electricity is highly distinct from most other commodities, which correspond to phys-
ical assets, often suitable for long-term storage and logistically difficult to transport. On
the contrary, the capacities for electricity storage are minuscule compared to the total de-
mand. The demand for electricity is largely considered to be inflexible, with its average
levels varying depending on the economic activity (higher during weekdays and lower
during weekends and holidays) and weather (rising with the necessity for heating or air
conditioning) (Paraschiv, 2013). Although there is a growing movement to implement
flexible demand response solutions, which would allow to control and adjust the load
to available supply, there are many technical and legislative barriers preventing a more
widespread use of these technologies (O’Connell et al., 2014; Negash and Westgaard,
2018; Parrish et al., 2019).

Uncertainty of renewable energy production can be alleviated by energy storage solu-
tions (see Paper 5 for an example of trading strategy). However, currently these technolo-
gies face a number of limitations. They either require particular geographical conditions
(such is the case of e.g. pumped-storage hydroelectric power plants, currently one of pri-
mary sources of flexibility (Bento et al., 2023) or have highly limited capacity coupled
with prohibitive costs (which applies to lithium-ion batteries). More efficient dispatch-
able energy generation and storage solutions are currently being developed, with some
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examples being hydrogen power storage systems and sodium-ion batteries. Even with
rapid evolution of such technologies, their widespread adoption may not happen before
the international climate energy agreement deadlines, such as the European Green Deal’s
climate neutrality by 2050.

Introducing large volumes of renewable energy into generation mix can lead to strain
on the transmission systems, due to congestion or instability of voltage (Intini and Water-
son, 2023). This, in turn, necessitates curtailing the renewable energy production below
its nominal effectiveness (Bird et al., 2016). Large conventional power plants have sub-
stantial ramp-up and ramp-down costs, i.e. costs in terms of time and money of turning
generators on and off to adjust power output, which increases the difficulty of flexible ad-
justment of energy supply (Finnah et al., 2022; Cullen and Reynolds, 2023). On the other
hand, profitability calculations are not straightforward when taking into account flexibility
requirements of the entire system. Companies may receive financial incentives to reserve
additional capacity in the event of excessive electricity demand, while those contributing
significantly to imbalance may receive penalties or lose subsidies (Zugno et al., 2013;
Laur et al., 2020; Intini and Waterson, 2023). This puts intermittent renewable energy
generators at financial risk.

A third issue connected to the rise in popularity of renewable electricity generation is
its high susceptibility to extreme weather events. While all energy sources are, to some
extent, able to be influenced by external factors – e.g. geopolitical, such as the Russian-
Ukrainian war – conventional fuels can be stockpiled in case of emergency, while most
renewable energy sources have no such capacity (Śmiech et al., 2021; Będowska-Sójka
et al., 2022). This issue can be further aggravated by the global climate changes and the
rise in occurrences of extreme weather events. An example of such a catastrophic phe-
nomenon are severe droughts in 2022, which in some countries caused a more than 20%
drop in hydropower generation compared to previous five-year average (IEA, 2023). Due
to such events, European electricity prices in 2022 and onwards have seen an unprece-
dented rise. With magnitudes larger values and volatility of the prices, market participants
need accurate forecasts to manage their financial risks (Fałdziński et al., 2021).

Within this landscape, renewable energy utilities participate in electricity markets
without precise knowledge about their actual generation. With the majority of trading
happening a day or more ahead of physical delivery, it may necessitate the companies to
submit multiple bids, both in day-ahead and real-time markets (see Section 2.3). While
the intended goal of intraday trading is to correct unforeseen deviations from day-ahead
schedules, it can also be used strategically by the participants (Pape et al., 2016). Larger
companies with sufficient market power may withhold or overestimate generation in order
to utilize arbitrage opportunities, especially with a diversified portfolio of renewable and
conventional power plants (Fabra and Imelda, 2023). Alternatively, wind power plants
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Figure 2.3: Graphical representation of the fictional company considered in Section 2.3.

have been observed to overestimate their generation in order to benefit from curtailment
regulations under British law (Intini and Waterson, 2023). Companies with smaller mar-
ket power cannot significantly impact market prices, but they can use forecasts of market
prices and generation to inform their bidding decisions, as shown e.g. in Papers 3–5.

2.3 Trading in electricity markets

In order to illustrate the challenges and decisions faced by the electrical energy market
participants, let us introduce a fictional company visualized in Fig. 2.3. This company
owns a small power plant consisting of intermittent renewable energy sources, e.g. wind
turbines, up to several megawatt hours of nominal capacity. They also own a battery
storage system with a smaller capacity. Such a utility operates commercially, with the
goal of turning a profit rather than producing for their own needs and only selling excess
energy. We can assume that this company is small enough not to meaningfully affect the
market prices through their actions.

At the beginning of the decision-making process, the company needs to estimate the
volume of energy they should buy or sell in the next day. The maximum supplied amount
is equal to the sum energy produced by the wind turbines and the planned state of charge
of the battery. They can also purchase an amount of energy equal to the discharged battery
capacity. When calculating these values they need to take into account the fact that wind
turbines usually produce energy in amounts lower than its nominal capacity, strongly
depending on atmospheric conditions. Looking at statistics on a national scale, they can
expect to generate around a fourth of their nominal capacity: in year 2023 in Poland,
installed wind farms with capacity of 9.63 GW produced approximately 2.52 GW per
hour, while for solar power plants this fraction was an even lower – 1.51 GW compared
to nominal capacity of 14.28 GW (Burger, 2024).

The primary source of revenue for this company is selling the energy generated by the

15



d d+ 1

h = 1, 2, . . . , 24

day-ahead trading

spot auction
∼ 12 PM

intraday
trading

Figure 2.4: Timeline of energy market auctions.

wind turbines in the spot market. The initial offers have to be placed before the day-ahead
auctions close, which is around noon (in Germany) or 1 PM (in Poland) on each working
day (EEX, 2024; TGE, 2024). This is illustrated in Fig. 2.4 for a simplified timeline,
where the green color marks the auction time and delivery period for the day-ahead auc-
tion, while the red color represents trading for an arbitrary contract in the intraday market.
Separately for all hours in the subsequent day, the company has to place offers with set
volume and price. The offers can be limited (executed at the designated or better price) or
unlimited (also known as volume or market orders, executed unconditionally at best pos-
sible price) (Madlener and Kaufmann, 2002; Mayer and Trück, 2018). Additionally, in
case of an unaccepted bid or unwillingness to trade, the company can temporarily curtail
their production by turning off turbines.

Several hours after the day-ahead auction closes, e.g. at around 3 PM in Germany, the
intraday (real-time) market opens for trading (EEX, 2024). The market participants are
encouraged to self-balance their bids in this market (Pape et al., 2016; Lehna et al., 2022).
In other words, they may use intraday trading to settle the difference between their day-
ahead bids and the actual generation. This may be done by selling, if the actual generation
is higher than the initial offer, or buying energy in the opposite case. Since intraday prices
tend to be on average more volatile than day-ahead prices, the latter scenario may be
costly (Maciejowska et al., 2019).

Although the company can also participate in the balancing market, its main role is to
ensure a reliable functioning of the grid rather than turning profits. Therefore, it is usually
not taken into account in trading case studies. In many countries there exist additional
mechanisms intended to help increase the system’s flexibility and reduce imbalances,
such as financial incentives or imbalance fees (Hu et al., 2018; Laur et al., 2020). They
can impact the company’s decisions, but are difficult to consider in research intended for
broad audience due to narrowing the range of likely applications.

During the decision-making process, the company has to be aware that electricity
prices frequently fluctuate. The price spikes have large magnitudes, driven both by sea-
sonality and by unexpected events, such as changes in supply or demand (Hagfors et al.,
2016a). Even relatively small changes in supply and demand can lead to positive or neg-
ative price spikes, as illustrated in Figure 2.5.
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Figure 2.5: Illustration of market price formation at the intersection of supply and demand
curves. Source: Ziel and Steinert (2016).

Additionally, the highest volumes of renewable energy are produced in hours outside
of peak consumption periods. Wind energy is largely independent from the time of day,
while photovoltaic energy generated throughout the day forms an approximate bell curve
with a peak around midday. With the peak energy consumption times being early morning
and late afternoon, this leads to a phenomenon dubbed "duck curve" by Denholm et al.
(2015). The name playfully describes the shape taken by residual demand, i.e. the share
of demand not covered by renewable generation, when photovoltaic energy sources are
prevalent in the generation mix. The residual demand drops during the night and mid-
day and rises in the mornings and evenings, resembling a duck’s silhouette (see Fig. 2.6
for illustration). Despite the name, the phenomenon itself is not harmless, due to adding
ramp-up and ramp-down strain on conventional power plants and increasing need for de-
mand flexibility. From the perspective of managing the company, the mismatch between
peak demand and generation of their power plants would expose them to the risk of low
or even negative market prices for their product.

An example of the duck curve and complex interactions, highlighting the importance
of forecasts in electricity markets can be seen in Figure 2.7. The plot depicts energy
generation and demand overlaid with market prices for a week in October of 2023. Sunny
and windy weather during that period led to unusually high renewable energy generation,
especially towards the end of the week. Because most major conventional power plants
need significant time and funds to ramp up and down, the generation cannot be elastically
adjusted in such situations, leading to overproduction of energy. Even with increased
cross-border export, this situation resulted in negative electricity market prices for brief
periods of time, which could lead to financial losses of small producers like the considered
company. These losses could potentially be mitigated with an accurate forecast of price
or demand.
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Figure 2.6: Infographic illustrating the appearance and process of formation of the "duck
curve". Source: Wallach (2022).

Ownership of an energy storage solution such as a lithium-ion battery system opens
up more opportunities for the company. Treated independently from the wind turbines,
it can be used to take advantage of electricity price variations while trading. Using a
forecast of hourly prices for the subsequent day, the battery can be charged with energy
purchased at the lowest possible price. Then, it can be discharged to sell the energy back
to the market when prices are high, e.g. during the evening peak. Since the battery’s
capacity is a known quantity, the company needs to decide when to enter the market and
at which price. This type of strategy is illustrated in Fig. 3.8 in Section 3.4.2.

In this thesis, strategies related to different types of power installations (wind tur-
bines, batteries etc.) are considered as stand-alone. Each research paper discusses a
single type of utility. This simplification of analyzed scenarios makes them relevant for a
broader variety of small and medium companies. It also allows to evaluate the advantages
of different forecasts more clearly than multi-step, complex scenarios. Since the busi-
ness value of a forecast is not a direct function of its accuracy, adding additional factors
to the decision-making processes can make interpretation of results even more difficult.
However, a company owning multiple types of infrastructure would naturally use them
together to mitigate risks. For example, instead of curtailing production when facing in-
sufficient demand, the unsold energy could charge the battery and then be sold at a more
convenient moment.
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Figure 2.7: Electricity price (red line), demand (black line), and generation (renewable:
green, conventional: gray, cross-border trading: purple) for a selected week in Poland.
Source: Burger (2024).
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Chapter 3

Summary of results

3.1 A critical study of calibration sample selection for au-
tomation of electricity price forecasting

3.1.1 Problem statement

In the context of forecasting, the accuracy of the predictions depends on both the model
and the data used for estimation of its parameters. While the former aspect is widely
considered in the electricity price forecasting literature, the latter is a much less popular
topic. Typically, simpler models such as linear regression assume that the forecasted time
series has a constant variance and has no linear relationship between independent vari-
ables (Greene, 2012). However, these assumptions are frequently violated in empirical
applications, especially in response to external events, e.g. geopolitical situation or legal
regulation changes.

The issue of selecting calibration sample has been addressed by econometric litera-
ture, see e.g. Zeileis et al. (2003); Tian and Anderson (2014), although it has only recently
gained attention in electricity price forecasting (Marcjasz et al., 2018; Hubicka et al.,
2019). In the presence of structural breaks, a natural approach would be to restrict the
model calibration sample to observations more recent than the last change-point. While
intuitive, this decision can increase the variance of estimators due a reduction of the num-
ber of observations used for estimating parameters. Pesaran and Timmermann (2007)
have shown that it is often beneficial to include older data from different regimes. The
resulting rise in bias does not necessarily negate the reduction of variance gained from
a larger sample size. In order to mitigate the estimation difficulties, the authors propose
using combination methods or cross validation to find optimal calibration windows.

Choosing an optimal calibration window length ex-ante is usually not straightforward.
While most research papers follow the trend of choosing the maximum sample length
available for the data and forecasting setup they are working with, the optimal choice can
be vastly different (see e.g. Hubicka et al., 2019; Maciejowska et al., 2020). To further
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Figure 3.1: A sample run of the NOT-based calibration sample selection algorithm. The
red dot is the target day. Vertical dashed lines indicate the located change-points separat-
ing periods with different statistical properties. The discarded prices are in gray. Source:
Paper 2.

complicate the decision, electricity markets tend to exhibit heavy seasonality with several
frequencies, as well as recurrently switching regimes (Avci et al., 2018).

Some long-term changes in the level or variance of data related to electricity mar-
kets can be explained with expert knowledge, such as regulatory laws or changes in the
generation mix (opening new power plants). Others, e.g. weather related disturbances or
changes related to geopolitical events, can be more difficult to identify. Using expert judg-
ment can be a challenge in such situations, and nearly impossible if the forecast user does
not have any access to analyses. This can be a case for small companies or prosumers.
To that end, automated methods which rely on data rather than domain knowledge fill an
important research gap.

In order to maximize forecasting power, the forecaster should ideally estimate model
parameters on samples relevant to the current market situation. In other words, the obser-
vations in the calibration sample should belong to the same regime as the forecasted data
point (de Marcos et al., 2020). An example of such segmentation based on identifying
change-points can be seen in Figure 3.1. Electricity prices in the period leading up to the
forecasted day are characterized by low mean level and frequent negative spikes. This
situation has been observed several times in the past, interspersed with periods of higher
prices. Estimating model parameters on the entire sample could lead to overestimating
the price level.

There are different approaches that may be used to automatically identify past periods
with similar statistical properties, i.e. belonging to the same regime. One may focus on
the forecasted variable itself, e.g. electricity price, and aim to find continuous consecu-
tive periods with particular properties. In electricity markets, such concepts have been
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addressed by regime switching models (e.g. Paraschiv et al., 2015) or change-point detec-
tion (de Marcos et al., 2020). Change-point detection methods typically assume that data
can be modeled with a linear regression model, which has piecewise constant parameters
on a set number of segments (Zeileis et al., 2003; Truong et al., 2020). Then, after identi-
fying regimes, the data needs to be filtered in order to select subsamples belonging to the
same regime.

Another idea for calibration sample selection would be to focus on the current market
conditions, represented, for example, by explanatory variables. Such a filtering would be
used to pick a set of individual data points rather than consecutive observations across
a period of time. Similarity can be judged with clustering algorithms, which have been
successfully used in electricity price and generation forecasting (Chaudhury et al., 2020;
Yesilbudak et al., 2017).

3.1.2 Forecasting Electricity Prices: Autoregressive Hybrid Nearest
Neighbors (ARHNN) Method (Paper 1)

As shown in Hubicka et al. (2019), the data used for model calibration has a major impact
on forecast accuracy. The authors also noted that forecast quality may be further improved
by averaging predictions obtained from estimating the same model on several calibration
windows with varying lengths. However, the presented method has two main limitations.
Firstly, the number and lengths of averaged calibration windows are selected based on
expert domain knowledge and may not be appropriate in more general applications. Sec-
ondly, all considered calibration windows comprise consecutive most recent observations
available at the time of forecasting.

Paper 1 aims to address both of these issues by introducing a hybrid model combining
autoregressive models with exogenous variables (ARX models) with a machine learning
algorithm: k-nearest neighbors. The k-nearest neighbors algorithm is used to find simi-
larities between the independent variables of the ARX model for the forecasted data point
and those within the historical observations, basing on Euclidean distance between vec-
tors. In other words, it compares the values of past prices (autoregressive component) and
fundamentals (forecasted load and RES generation) for the target observation with the
corresponding sets of values from the past, aiming to find k most similar data points. This
allows to estimate the model parameters on a subset of historical data which is most rele-
vant to the current situation, through an automatic process which does not rely on user’s
judgment. An illustration of the process of sample selection is shown in Figure 3.2.

A downside of this approach is, yet again, its dependence on an arbitrarily chosen
hyperparameter k, i.e. the size of the subset of most similar data points. In order to
further automate the process and, at the same time, leverage the forecast combination
technique, we introduce another step to the procedure, namely a validation window for
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Figure 3.2: An example of optimal selection of the calibration sample. The upper panel il-
lustrates the sample selection, presented on three key variables, i.e. preceding day’s price,
forecasts of load and wind generation; while the lower panel depicts the corresponding
selection in the time dimension. The most recent observation is marked with a red dot,
while the observations selected for the model calibration are depicted with blue points.
Source: Paper 1.
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exploring the impact of k on forecast accuracy. For each data point within that validation
window, the k-nearest neighbors algorithm is applied for all possible values of k. Then,
parameter k producing the most accurate prediction for that day is identified ex-post and
saved. Finally, the set of optimal values of k from the validation window is used to
produce an equally sized set of predictions for the target day, which are then averaged to
obtain the final forecast.

The introduced procedure, called Autoregressive Hybrid Nearest Neighbors (ARHNN)
is compared to several literature benchmarks using a day-ahead electricity price dataset
from the German EPEX SPOT market. Aside from spot prices, the data includes official
transmission system operator’s day-ahead forecasts of load and renewable energy gen-
eration. The data covers six years, from January 2015 to December 2020, with hourly
resolution. The data is tested on the final two years of the sample, with the remainder
used for model estimation and validation.

In order to assess the impact of calibration sample selection on forecast accuracy, all
methods use the same ARX model specification, differing in the size of the calibration
sample and usage of forecast combination techniques. The structure of the model, based
on expert knowledge, is as follows:

Pd,h = αhDd︸ ︷︷ ︸
Dummies

+
∑

p∈{1,2,7}
βh,pPd−p,h

︸ ︷︷ ︸
AR component

+ θh,1Pd−1,min + θh,2Pd−1,max︸ ︷︷ ︸
Yesterday’s price range

+

+ θh,3Pd−1,24︸ ︷︷ ︸
Last known price

+ θh,4L̂t,h + θh,5Ŵt,h + θh,6Ŝt,h︸ ︷︷ ︸
Exogenous variables

+εd,h.

(3.1)

The procedure is applied in a standard rolling window scheme. In other words, the mod-
els are retrained from scratch for each day in the test period. The forecasts are performed
independently for all 24 hours, treating them as separate market products. For every
subsequent day, the training data is updated to include the true observed values of the
previously forecasted price and fundamentals, and remove one day of the oldest observa-
tions. This ensures that the training sample size stays constant. Such a setup reflects how
forecasts may be performed in practice and is used in all research papers in this thesis.

Comparison in terms of the root mean squared error (RMSE) shows that the ARHNN
algorithm outperforms the considered benchmarks. Additionally it can be observed that
within the test period, the majority of optimal values of k produces very short or very long
calibration samples, validating the expert approach proposed by Hubicka et al. (2019).
The ARHNN algorithm is a novel algorithm combining well-established methods to bet-
ter utilize historical data compared to an ARX-type model. It may be implemented in
organizations which already use ARX-model generated point forecasts. ARHNN can
also be easily modified to use other point forecasting methods, such as neural networks.
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Aside from improving forecast accuracy, it can be used to gain insight into data, such as
investigating optimal calibration sample sizes.

Publication details:

• Authors: Nitka, W., Serafin, T., Sotiros, D.

• Conference proceedings: Computational Science – ICCS 2021

• DOI: 10.1007/978-3-030-77970-2_24

• Publication year: 2021

• MNiSW: 140 pts, CORE A

• Contribution: 33%, model co-implementation and verification, co-writing, co-editing

• Citations according to Scopus: 3 (3 excluding self citations of all authors)

3.1.3 Calibration Window Selection Based on Change-Point Detec-
tion for Forecasting Electricity Prices (Paper 2)

The second paper approaches the topic of calibration sample selection from another an-
gle, which is change-point detection. The motivation behind this approach is that chang-
ing geopolitical or economic situation in the electricity markets is reflected by structural
changes in the price time series. With many time series models incorporating the assump-
tion of stationarity and homoscedasticity in the entire sample, the existence of structural
breaks may violate these assumptions, negatively impacting the models’ suitability for
this application.

Structural breaks analysis aims to mitigate this issue by identifying subperiods of time
series with constant mean and variance, separated by change-points. This information can
be used to select a relevant calibration sample. Prior to Paper 2, this idea has been rarely
used in electricity price forecasting (de Marcos et al., 2020; Kaszuba, 2020).

While identifying a singular change-point is relatively straightforward, locating an
unknown number of structural breaks is a non-trivial issue due to exponentially increasing
computational complexity. Baranowski et al. (2019) propose an algorithm for generalized
change-point detection and call it the narrowest-over-threshold (NOT). The idea behind
NOT is to randomly draw subsamples from data, and use likelihood theory to locate a
change-point in each subsample. Then, among subsamples where likelihood exceeds a
certain user-defined threshold, the shortest one is chosen – rationalized as being the most
likely to contain exactly one change-point. Those operations are then repeated recursively
to locate a number of structural breaks up to a user-defined maximum. A major advantage
of NOT compared to methods used by de Marcos et al. (2020) and Kaszuba (2020) is the
possibility to modify the features used for change-point detection (e.g. only mean or mean
and variance). This allows to adjust the algorithm to user’s needs.
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Figure 3.3: Graphical illustration of the NOT algorithm. The plot shows a sample fore-
casted day (red dot) and past two years of prices (continuous line). The detected change-
points are marked with vertical dashed lines. The histogram on the right side of the plot
approximates the distribution of prices in the "current period", while horizontal dotted
lines mark the medians of each previous subperiod. Those falling in the center of the
distribution (black lines) are included in the final calibration sample, while those on the
extremes (gray lines) are discarded.

The flexibility of the NOT algorithm and its relatively low (near-linear) computational
complexity are features attractive for applications in forecasting. Paper 2 is the first
research paper published in the energy forecasting literature which uses this approach.
It proposes a procedure for forecasting electricity prices with an ARX model estimated
on a filtered calibration sample. In the procedure, the NOT algorithm is applied to the
initial calibration window of consecutive, most recent observations of electricity price,
i.e. the dependent variable. If any change-points are identified, the period between the
most recent change-point and the forecasted day is assumed to be the "current" market
situation. Within this period, a symmetrical interval between extreme quantiles of the
observed prices is computed. For all other subsamples between two consecutive change-
points, their respective medians are computed. The final calibration sample consists of the
most recent subsample and those among the remaining ones which are similar, defined as
those where their median falls within the set quantile interval (in Paper 2: the middle
95% of the distribution). The procedure is illustrated in Fig. 3.3.

This procedure is applied to German day-ahead electricity prices from the EPEX
SPOT market, with the data, the rolling window setup and the underlying autoregressive
model, see Eq. (3.1), identical to Paper 1. The results are compared to several bench-
marks, including ARHNN and combined forecasts from different windows. Additionally,
the results are compared for raw data and data normalized through variance stabilizing
asinh transformation (Uniejewski et al., 2018). The results show that using NOT is highly
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effective compared to a single-length calibration window, with the filtered calibration
sample resulting in forecast accuracy higher than any single window of consecutive ob-
servations, even selected ex-post. However, when using more sophisticated approaches
involving variance stabilizing transformations or forecast combination, the improvements
from optimizing calibration sample are smaller and not statistically significant. An in-
teresting pattern can be seen in the results of the procedure, where atypical, turbulent
market conditions typically lead to choosing a very short calibration sample, while or-
dinary price behavior is correlated with much less selectiveness and longer calibration
samples. Therefore, a user who needs point forecasts for irregular data, such as electricity
prices, can achieve a higher forecast accuracy by automatically selecting relevant data.
Additionally, this approach can offer additional insights for the user by revealing past
subperiods with similar characteristics.

Publication details:

• Authors: Nasiadka, J., Nitka, W., Weron, R.

• Conference proceedings: Computational Science – ICCS 2022

• DOI: 10.1007/978-3-031-08757-8_24

• Publication year: 2022

• MNiSW: 140 pts, CORE A

• Contribution: 50%, including co-conceptualization, model co-implementation, vi-
sualization, co-writing

• Citations according to Scopus: 1 (1 excluding self citations of all authors)

3.2 Using resampling methods to generate predictive dis-
tributions of electricity prices and better assess un-
certainty

3.2.1 Problem statement

The relative frequency of extreme events (e.g. positive and negative price spikes or supply
shortages) in electricity markets requires participants to effectively manage their opera-
tional risk. In practice, the majority of trading decisions of electricity utilities are made on
the basis of point forecasts (McGrath and Jonker, 2024; LEAG, 2024). While forecasting
the expected values of variables of interest is the most common approach, such forecasts
have limitations. They cannot convey uncertainty or the range of possible events. At the
same time, the extreme price spikes are the main source of trading risks. Hence, fore-
casting them is highly valuable for electricity market participants (Hagfors et al., 2016a).
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Especially small companies, with limited safety nets of resources and less know-how, are
especially susceptible to risk when trading in power exchanges (Kraft et al., 2023).

Communicating uncertainty of forecasts can have a number of positive effects for
planning and risk management. Studies comparing decision makers’ effectiveness in man-
aging extreme weather event risks showed that providing prediction intervals for forecasts
results in higher decisiveness and smaller financial losses (Ramos et al., 2013; Savelli and
Joslyn, 2013; Scoblic and Tetlock, 2021). However, trust in the forecast’s quality and use-
fulness is a significant factor in contributing to these advantages (Goodwin, 2014). Costly
and difficult to understand forecasts are less likely to be used in practice, diminishing their
usefulness to support decisions (Yardley and Petropoulos, 2021).

The most commonly used methods for probabilistic forecasting produce marginal dis-
tributions of variables, which do not convey interactions between different quantities.
However, for the purposes of decision-making processes, it is important to consider in-
terdependencies of the set of forecasts, e.g. spatial relationship between different wind
turbine locations (Pinson, 2013). Researchers in the field of electricity price forecasting
have successfully developed trading strategies for electricity generators basing on multi-
variate distributions of prices and fundamentals (Lee et al., 2018; Toubeau et al., 2022).
However, these methods rely on parametric multivariate Gaussian distributions or copu-
las, which may underperform when the observed data does not match the assumed distri-
butions. For this reason, in real-world applications, non-parametric methods may prove
more suitable.

One type of such a non-parametric approach is based on the concept of resampling.
Resampling methods allow the forecaster to estimate uncertainty of a prediction with
large flexibility with regards to the underlying model and data assumptions (Efron and
Gong, 1983). The main idea of these methods is to divide the training sample into two
or more subsets, which are then used respectively to make predictions and evaluate out-
of-sample forecast accuracy. Resampling approaches include conformal prediction, boot-
strap, jackknife and cross validation, among others (Barber et al., 2021; Kath and Ziel,
2021). However, these methods are mostly used in univariate scenarios. Multivariate
probabilistic forecasts in energy forecasting are typically created using parametric ap-
proaches such as vector autoregressive (VAR) models (Maciejowska, 2022) or copulas
(Manner et al., 2019; Toubeau et al., 2022). Hence, there exists a research gap in the area
of non-parametric multivariate probabilistic forecasts.

3.2.2 Multiple Split approach – multidimensional probabilistic fore-
casting of electricity markets (Paper 3)

Price spikes, especially negative, are a major source of risk for a small or medium re-
newable energy generator. Information about the likelihood of extreme events given by
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probabilistic forecasts of prices may reduce uncertainty, thus aiding them in risk manage-
ment. However, for a utility with uncertain generation, such as a wind farm, decisions
made using only price forecasts may not be optimal. Probabilistic forecasts of demand or
generation level, considered together with predictions of prices, are relevant to successful
trading.

Paper 3 aims to support the decision-making process of such a renewable energy
utility by proposing a data-based approach for informed market bidding. The goal of this
algorithm is to mitigate financial risks by optimizing the amount of energy offered in the
day-ahead market. With this topic being of great practical interest, has been increasingly
explored in the recent scientific literature (see e.g. Maciejowska et al., 2019; Finnah et al.,
2022; Kraft et al., 2023). Nevertheless, the vast majority of research focuses on point
forecasts or univariate probabilistic forecasts, with multivariate probabilistic forecasting
being still underrepresented.

In this study we propose and apply a novel Multiple Split method to produce joint
probabilistic forecasts of day-ahead and intraday market prices, and renewable energy
generation. The approach builds upon and extends previous literature related to resam-
pling methods such as conformal prediction (Kath and Ziel, 2021) and jackknife+ (Barber
et al., 2021). It is interpretable and versatile with regards to the underlying forecasting
model used, which makes it suitable for a practical implementation.

In the Multiple Split method the training data is randomly split into two disjoint sub-
sets: the estimation sample and the calibration sample. The estimation sample is used
to estimate parameters of a point forecasting model, e.g. an autoregressive model, si-
multaneously for all variables of interest. The parameters are then used to forecast both
the unknown future observation as well as the remaining training data, i.e. the calibration
sample. Since the observations from the calibration sample are known to the forecaster yet
have not been used to estimate parameters, the prediction errors of these data points can
be used as an estimate of the uncertainty of the forecast itself. The probabilistic forecast
then takes the form of an ensemble of simulated realizations. A schematic representation
of the algorithm is shown in Figure 3.4.

The construction of the Multiple Split method offers several advantages over other
probabilistic forecasting methods. Firstly, while the study in Paper 3 uses linear ARX
(autoregressive with exogenous variables) models to produce the underlying point fore-
casts, most other point forecasting models can be used in their place. This property,
shared with other resampling methods, allows potential users to easily incorporate the
method into already existing processes. Secondly, joint estimation of uncertainty for mul-
tiple variables in a single split preserves the correlation structure of their prediction errors.
As a result, the final ensemble represents a multivariate distribution of the forecasted vec-
tor of variables rather than their marginal distributions. This property can be leveraged
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Figure 3.4: Schematic illustration of the Multiple Split algorithm. Source: Paper 3.

to produce forecasts of functions of original variables, e.g. their linear combinations, for
more sophisticated uses. A proposed application of this property is described in Section
3.3.3.

The data used in this study comes from the German EPEX SPOT market and covers a
four-year-long period between October 2015 and September 2019. Due to a limited access
to intraday market prices necessary in this case study, the analyzed period is shorter than
in Papers 1 and 2. The ARX model for day-ahead prices is similar to the one shown
in Eq. 3.1, with additional variables included to leverage more information. Specifically,
the model is extended with lagged prices from 3 to 6 days ago, as well as fuel (coal and
gas) index prices. The last known price is replaced with the entire previous day’s average.
The models for intraday prices, price spread and load are similarly specified, while the
forecasts of wind generation use a much simpler model due to lack of seasonality or
dependence on human activity.

Paper 3 assesses the performance of the Multiple Split method compared to other
probabilistic forecasting methods: historical simulation and quantile regression. The ac-
curacy measures evaluate three aspects of proabailistic forecasts:

• the coverage of the prediction intervals via distance to the nominal coverage and
the Kupiec (1995) test,

• sharpness and calibration of the predictive distributions via the continuous ranked
probability score (CRPS Gneiting and Raftery, 2007)),

30



• multivariate calibration of ensembles via the reliability index (Gneiting et al., 2008).

Results show that the Multiple Split method is better calibrated than its competitors with
respect to the coverage of wide prediction intervals and the reliability index, while falling
behind in terms of the CRPS. This indicates its suitability to predict extreme events. Ad-
ditionally, the focus on correlation of errors allows the method to outperform other ap-
proaches when forecasting functions of several variables.

Publication details:

• Authors: Maciejowska, K., Nitka, W.

• Journal: preprint (arXiv)

• DOI: 10.48550/arXiv.2407.07795

• Publication year: 2024

• Contribution: 50%, including model co-implementation and verification, visualiza-
tion, co-writing, co-editing

3.3 Utilizing renewable generation and load forecasts to
design trading strategies in day-ahead and intraday
markets

3.3.1 Problem statement

As described in more detail in Section 2.2, renewable energy is an important part of the
generation mix in many European countries, and its prevalence continuously grows. Re-
newables are an important factor in price formation in electrical energy markets (Hagfors
et al., 2016b; Maciejowska, 2020; Rai and Nunn, 2020). With that in mind, it should not
be surprising that renewable energy generation is commonly included as an explanatory
variable in statistical electricity price forecasting models (Gianfreda et al., 2020).

A company whose primary business activity is electricity trading can base their strate-
gies solely on price forecasts. They can be only day-ahead market prices or include prices
from real-time markets (see e.g. Maciejowska et al., 2019; Serafin et al., 2022). However,
the majority of electricity market participants are generating or consuming energy. For
these companies, additional variables are highly relevant, such as electricity demand, total
generation or renewable generation (Zugno et al., 2013; Alipour et al., 2019). Including
them in the decision-making process can improve the company’s financial results.

Considering fundamental variables in decision-making processes is especially impor-
tant for renewable energy generators, who need to manage their output uncertainty. Fail-
ure to do so accurately may lead to significant financial consequences, either due to price
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changes in real-time markets, or due to imbalance penalties from regulatory organs. Con-
versely, reducing imbalance of supply and demand may lead to substantial profits, thanks
to market mechanisms such as flexibility premiums. Hence, energy utilities that cannot
hedge or diversify their outputs have a need for optimized bidding strategies, aimed to re-
duce their financial risks (Zugno et al., 2013). Due to large volatility of electricity prices,
risk management methods designed for other commodities are likely to not be suitable for
their purposes (Westgaard et al., 2019). Therefore, designing trading strategies tailored to
the needs of electricity market participants is a problem of high practical importance.

When evaluating forecasts used in trading, it has been shown that their statistical accu-
racy does not necessarily coincide with their economic or financial benefits (Maciejowska
et al., 2019; Yardley and Petropoulos, 2021). When comparing several different forecasts,
improving accuracy tends to increase business value. However, forecasts with the high-
est accuracy may not lead to the best operational decisions (Robette, 2023). In the light
of finance-related goals of renewable energy producers, oftentimes optimal bids signifi-
cantly differ from point predictions of their energy output. With different economic costs
of over- and underestimating forecasts, quantiles have been shown to work well as point
forecasts (Gneiting, 2011). Designing trading strategies and evaluating them on historical
data can help forecast users choose methods suitable to their decision-making processes.

The tangible financial benefits resulting from the use of data-driven forecasts and an-
alytics methods make them more attractive to managers and other end users, allowing
for their real-life implementations (Hong, 2016). On the other hand, statistical accuracy
measures can be considered to be more objective, compared to economic benefits which
are highly dependent on the given assumptions and forecast user’s needs (Kolassa, 2023).
Therefore, it is best to consider and present both aspects of forecast evaluation in research
papers.

3.3.2 Enhancing load, wind and solar generation for day-ahead fore-
casting of electricity prices (Paper 4)

The research presented in Paper 4 has been motivated by earlier work of Maciejowska
et al. (2019). It tackles designing a trading strategy for a small renewable energy genera-
tor, such as a wind farm. It is assumed that this company is too small to participate in the
power exchange directly, and instead is managed by an intermediary, e.g. a larger trading
company. However, they can autonomously decide on the amount of energy offered in
the market, as well as the type of auction they participate in: day-ahead or intraday trad-
ing. Such a problem setup is increasingly relevant with the rise in popularity of prosumer
installations or renewable energy communities (LEAG, 2024).

Clearly, at the time of the day-ahead bidding, the actual values of energy generation
for the traded time periods are yet unknown. While large market participants usually have
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access to proprietary data about electricity production, a small producer will likely rely
on publicly reported information. Transmission system operators (TSO) often publish
official forecasts of electricity demand and renewable generation for entire countries or
bidding zones, with a day-ahead or longer forecast horizon.

While evaluating historical data from the German EPEX SPOT market it was found
that the TSO forecasts for electricity demand, wind energy generation and solar energy
generation (i.e. fundamental variables) are systematically biased and hence exhibit large
prediction errors. This observation contrasts with the most common literature approach,
which assumes that TSO forecasts are accurate. Therefore, the main objectives of Paper
4 are twofold: firstly to improve upon the TSO forecasts with the use of statistical mod-
els; and secondly, to investigate whether using such enhanced predictions leads to higher
accuracy of point forecasts.

Simple ARX-type models, defined as in Eq. (3.1) with an additional independent
variable representing previous day’s average price, are used for forecasting both the fun-
damental variables and day-ahead and intraday market prices. The dataset used in this
research is identical to that of Paper 3. In the case of fundamental variables, all obtained
forecasts are more accurate than the original TSO predictions. The most significant im-
provement can be seen in the case of load forecasts, indicating that the TSO may not
effectively utilize all information available in the market. The decrease in forecast er-
ror measured by MAE and RMSE is smaller for renewable energy generation forecasts,
where more sophisticated models or additional information may be necessary.

The results of price forecasting experiment reveal an interesting insight into price
formation mechanisms. The forecast accuracy for both markets is evaluated in three sce-
narios: with the exogenous variables being the original TSO forecasts, improved forecasts
or "crystal ball" predictions, i.e. real values. In the case of intraday market prices, any
improvement of the TSO forecast quality results in a more accurate price forecast. In
other words, the intraday prices are established shortly before actual delivery basing on
realized load and renewable generation. However, this is not the case for the day-ahead
market price. In the latter case, having a perfect prediction of fundamentals does not
help in predicting day-ahead prices, as all market participants make their decisions using
forecasted values.

In order to evaluate the economic value of the enhanced forecasts, we consider the
decision process of a company that consistently generates 1 MWh of electricity. On the
day preceding physical delivery, before the settlement of the day-ahead auction, they
choose whether to sell the electricity in the day-ahead or intraday market. The decision
is based on the predicted sign of the price spread between these two markets, i.e. the
market chosen is the one with higher expected price. This approach is compared to the
naive strategy of always selling 1 MWh in the day-ahead market. With the statistically
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improved forecasts of fundamentals, the company can increase their yearly revenue by
13%. With perfect information, the maximum possible profit from optimizing market
choice was approximately 300% higher than the benchmark, highlighting the importance
of improving forecast accuracy, especially in the intraday market.

Publication details:

• Authors: Maciejowska, K., Nitka, W., Weron, T.

• Journal: Energy Economics 99, 105273
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3.3.3 Multiple Split approach – multidimensional probabilistic fore-
casting of electricity markets (Paper 3 cont.)

Section 3.2.2 introduced the Multiple Split method proposed in Paper 3. The Multiple
Split method allows for non-parametric joint probabilistic forecasting of multiple vari-
ables, yielding a forecast in the form of an ensemble of points. The obtained multivariate
forecast preserves the correlation structure between variables, allowing for the forecast
to convey additional information. For example, an accurate forecast of a linear combina-
tion of several variables (e.g. price spread or residual load) can be derived, which is not
possible with only marginal distribution forecasts.

In Paper 3, we leverage this property to construct several market strategies based
on joint probabilistic forecasts of electricity market prices and wind energy generation.
The forecasting experiment considers a utility that owns several wind farms spread across
Germany. It is assumed that its generation is proportional to the total market production.
This assumption is made due to data availability, and to generalize results for a broader
potential audience.

The utility generates an unknown amount of energy every hour and sells it to the
market in its entirety. They need to decide how large of a share of forecasted generation (q)
should be offered in the day-ahead market. It is assumed that the remaining amount and
potential forecast error are balanced (sold or purchased if needed) in the intraday market.
The amount q of energy sold, defined as a percentage of predicted total generation, is
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Figure 3.5: Histogram of optimal values of q for different data-driven strategies, where
q is the fraction of predicted generation sold in the day-ahead market (thus q = 1 is the
"naive" benchmark, q = 1 – selling entire generation in the intraday market). It can be
seen that aiming to maximize profits typically leads to preferring the market with higher
predicted price, while optimizing value-at-risk leads to hedging the bids (0 < q < 1).
Source: Paper 3.

decided one day before the delivery. It is chosen to optimize the median, value-at-risk
(VaR) or Sharpe ratio of the utility’s forecasted profit. Probabilistic forecasts of profit can
be based on the joint distribution of market prices and generation. The distribution of the
optimized bids q for different strategies is shown in Fig. 3.5. The strategies are compared
to "naive" benchmarks, which assume that the utility does not adjust their bids contitional
on market situation, rather choosing to bid the entire forecasted generation in the day-
ahead market. Although this topic is highly relevant for practitioners, strategies basing on
probabilistic forecasts of profits have not been previously explored in the electricity price
forecasting literature.

Another layer of the decision-making process is inspired by a phenomenon observed
in reality, where under certain circumstances renewable energy producers may be forced
to withdraw from market participation (Bird et al., 2016). The curtailment may be caused
by weather conditions, such as too light or heavy wind, as well as market events, e.g.
negative price levels. With that in mind, the decision-making process of the considered
company includes a possibility to turn off the generators (e.g. wind turbines) for a certain
amount of time. This decision is based on the predicted distribution of income. More
precisely, according to the utility’s risk appetite, a certain likelihood of incurring losses
leads to shutting down the production.
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Figure 3.6: Average profit per 1 MWh of generation for two types of strategies: with
production curtailment (marked with crosses) and without (marked with dots); depending
on risk aversion level. The risk aversion is defined as percentile of income distribution.
Production is curtailed if the considered quantile of predicted income is negative. Opera-
tion & Management costs are 10 Euro/MWh. Source: Paper 3.

We apply the discussed strategies for a model company operating in the EPEX SPOT
market in order to evaluate the financial gains in terms of expected profit and value at
risk. We show that the proposed methods can be successfully used to make data-driven
business decisions, improving over strategies basing on point forecasts. Moreover, we
illustrate that in this scenario there exists a trade-off between the total profit and financial
risk. However, a moderate risk appetite leads to the maximal profit per 1 MWh (see Fig.
3.6).

3.4 Development of decision support methods for day-
ahead bidding that use combinations of predictive dis-
tributions

3.4.1 Problem statement

Frequently, decision makers may have access to not one, but multiple forecasts of the
same variable. They may come from human expert predictions, internal models or third-
party providers (LEAG, 2024). Regardless of their source, the task of selecting the best
single forecast ex-ante is a daunting one. Changing market situation may be reflected in
varying performance over time, sometimes making historically successful forecasts less
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relevant.

Even with a single model specification, the output forecast can differ between fore-
casters. In case of machine learning models, this may be caused by stochasticity in hy-
perparameter optimization runs (Lago et al., 2021). Alternatively, as discussed in greater
detail in Section 3.1.1, both traditional statistical models and machine learning meth-
ods produce different predictions depending on the observations used for calibration. As
noted by Hubicka et al. (2019), predictions from long calibration samples are typically
more robust, while short calibration samples allow for quick adaptation to evolving mar-
ket conditions.

A possible solution to the problem is using forecast combinations, or ensemble fore-
casts. According to Timmermann (2006), diversification of information offered by en-
semble forecasts is, in practice, often preferable to selecting a single forecast, unless it
offers definite and significant advantages over its competitors.

The idea of combining forecasts motivated by analogies to portfolio diversification
dates at least to the 1960’s (Bates and Granger, 1969). It has recently been gaining pop-
ularity in the field of energy price forecasting, especially when it comes to probabilistic
forecast combinations (Hong et al., 2020). Compared to point forecasts, combining prob-
abilistic forecasts requires multiple times as many parameters. At each time point, every
individual forecast has a range of values rather than only the point prediction, which may
be combined with identical or diverse weights. The direction of averaging – e.g. for
quantile forecasts, whether to combine quantiles or probabilities – has to be chosen as
well (Uniejewski et al., 2019).

Within the scientific literature, many approaches to forecast combinations have been
developed. Typically, "naive" approaches of assigning equal weights to each forecast are
difficult to outperform due to estimation uncertainty (Blanc and Setzer, 2020). However,
literature proposes ways to modify weights according to past performance of the forecasts.
An exhaustive review of ensemble forecasting can be seen in Wang et al. (2022).

3.4.2 Combining predictive distributions of electricity prices. Does
minimizing the CRPS lead to optimal decisions in day-ahead
bidding? (Paper 5)

Forecast combination has been shown to be a simple but highly effective method to im-
prove forecast accuracy. This technique finds increasingly common uses in electricity
price forecasting, e.g. in Papers 1 and 2. However, in electricity price forecasting litera-
ture there is still a lack of conclusive recommendations about the sizes of forecast pools
used for averaging or the optimal weighting methods. The existing research suggests
that small ensembles of well-performing individual forecasts (i.e. experts) are preferred
(Wang et al., 2022), and that optimizing weights does not offer additional benefits unless
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Figure 3.7: Illustration of the two weighting schemes. The left panel shows predictive
distributions obtained from the DDNN_JSU_1 (teal color) and LEAR_QRA (red color)
models for a selected hour and day. The center panels present the resulting ensemble
forecasts obtained by estimating weights with naive (top) and CRPS learning (bottom)
methods. The right panels illustrate the relative weights for each quantile; these are hori-
zontal stacked bar plots with the length of the bar representing the weight of the forecast
in corresponding color and all weights summing up to 1. The dashed vertical line marks
the actual price. Source: Paper 5.

the ensemble is sufficiently diverse (Blanc and Setzer, 2020).

Paper 5 aims to address this research gap with a case study using German day-ahead
electricity prices from the EPEX SPOT market. The main objective is investigating the
impact of different methods of constructing ensemble forecasts on two aspects of fore-
cast goodness: the accuracy of the combined forecasts and their economic benefits in
a simulated trading scenario. To this end, a pool of probabilistic quantile forecasts is
used (Marcjasz et al., 2023). Out of twelve forecasts in total, eight of them are produced
by state-of-the-art distributional deep neural network (DDNN) models with different hy-
perparameter setups, while the remaining four are quantile regression-type models, well
established in the literature and used in the aforementioned paper as benchmarks.

With such a pool of expert forecasts, two main aspects of forecast combination are
tackled: selecting the pool of experts and optimizing weights. With the large amount
of possible combinations of individual forecasts, some limitations are introduced to the
process of selection. Firstly, following recommendations from (Marcjasz et al., 2023),
every final ensemble includes a set of four DDNN forecasts. They may be supplemented
by a set of two quantile regression forecasts, making the final ensembles contain four to
six individual forecasts.

For the task of assigning weights, two approaches are considered. The first and most
natural is the "naive" weighting, which assigns equal weights for all experts across all
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Figure 3.8: Illustration of the trading strategy with limit orders defined by the 80% PIs,
corresponding to a risk appetite of 0.8. Red dots indicate the price limits for the selected
hours. Source: Paper 5.

quantiles and time periods. The alternative weighting is achieved through applying CRPS
learning method (Berrisch and Ziel, 2023). It relies on calculating weights basing on
each expert’s past performance measured in terms of the CRPS (see Sec. 3.2.2). The
procedure allows for assigning different weights to forecasts of different quantiles, as
well as updating them over time. This ensures that the experts which are more effective
in predicting certain parts of distributions are assigned higher weights than those less
accurate. A toy example comparing the results of both weighting approaches is shown in
Figure 3.7.

The obtained ensemble forecasts are evaluated using a number of error measures. The
CRPS is used to compare entire distributions, while the point forecasting performance is
measured using MAE and RMSE. The results confirm that among the created combination
forecasts, even the worst performing ensemble is more accurate than the best individual
forecast. Furthermore, the choice of averaged forecasts is a more important factor than
weighting. However, using CRPS learning to optimize combination weights allows to
obtain small but statistically significant improvements.

The economic benefits of using ensemble forecasts for decision support are assessed
by applying a simulated trading scenario using a battery, first proposed by Uniejewski
(2024). In this scenario, the user aims to gain profits by buying and subsequently selling
1 MWh of energy every day in the day-ahead market (see Figure 3.8). The user selects the
appropriate hours for their transactions basing on the medians of forecasted prices, while
the tails of the distribution are used for risk management: setting limits on the bids when
the transaction is expected to be profitable, and foregoing trading when incurring a loss
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is likely. The results of this simulation indicate that greater forecast accuracy is gener-
ally correlated with achieving higher profits. However, small improvements of accuracy
gained from using CRPS learning do not necessarily improve profits even further.
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Chapter 4

Conclusions

Within the evolving landscape of electrical energy markets, one major change that has
been observed is the increasing number of small companies and prosumers participating
in trading. While such traders typically have simpler decision-making processes than
large market players, they also tend to have less experience and resources at their disposal.
At the same time, their financial safety reserves tend to be smaller, making market risks
more dangerous.

The objectives set in this thesis aim to support decision-making in small and medium
sized enterprises (SMEs) through data-driven forecasting. The thesis achieved this goal
by proposing novel forecasting methods and evaluating them from the point of view of
practical applications. To meet the needs of such decision makers, the methods had to
fulfill several criteria: high level of automation, ease of implementation and interpretation,
as well as relatively low computational complexity. Their viability is evaluated using
historical data and practical examples.

The thesis comprises five research articles. Paper 4 explores the idea of improving
electricity price forecasts from simple linear models by enhancing predictions of the fun-
damental variables used as inputs to the models. Papers 1 and 2 propose novel methods
that increase forecasting accuracy through automatic selection of calibration samples: Au-
toregressive Hybrid Nearest Neighbors (ARHNN) and an algorithm based on Narrowest-
Over-Threshold (NOT) change-point detection. Finally, Papers 3 and 5 deal with post-
processing of forecasts, by resampling forecast errors or averaging forecasts from several
models. More specifically, Paper 3 proposes a novel Multiple Split procedure for mul-
tivariate probabilistic forecasting that takes into account correlations between variables,
while Paper 5 uses CRPS learning, a cutting-edge method for combining probabilistic
forecasts based on their past performance.

These five papers constitute a significant addition to the operations research litera-
ture by demonstrating how relatively simple statistical models can be used efficiently for
electricity price forecasting. While often outperformed by more sophisticated forecasting
methods, they offer low computational complexity and are well known among practition-
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ers. The novel approaches proposed in this thesis are meant to extend and accompany
such simple models. They allow to improve forecast accuracy and business value at a
low cost in terms of money and user expertise. Thus, the thesis achieves its main goal
of providing SMEs with forecasting methods designed to support their decision-making
processes.

Finally, in accordance with current guidelines in operations research, the majority of
the research papers in this thesis include an evaluation of the economic benefits from
using the generated forecasts. By describing their potential use in trading strategies and
assessing the financial benefits, they demonstrate the tangible value of this research to
interested users.
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Abstract. The ongoing reshape of electricity markets has significantly
stimulated electricity trading. Limitations in storing electricity as well as
on-the-fly changes in demand and supply dynamics, have led price fore-
casts to be a fundamental aspect of traders’ economic stability and growth.
In this perspective, there is a broad literature that focuses on developing
methods and techniques to forecast electricity prices. In this paper, we
develop a new hybrid method, called ARHNN, for electricity price fore-
casting (EPF) in day-ahead markets. A well performing autoregressive
model, with exogenous variables, is the main forecasting instrument in our
method. Contrarily to the traditional statistical approaches, in which the
calibration sample consists of the most recent and successive observations,
we employ the k-nearest neighbors (k-NN) instance-based learning algo-
rithm and we select the calibration sample based on a similarity (distance)
measure over a subset of the autoregressive model’s variables. The optimal
levels of the k-NN parameter are identified during the validation period in
a way that the forecasting error is minimized. We apply our method in the
EPEX SPOT market in Germany. The results reveal a significant improve-
ment in accuracy compared to commonly used approaches.

Keywords: Electricity price forecasting · Day-ahead market · ARX ·
k-nearest neighbors

1 Introduction

Electricity markets have witnessed significant changes over the last decades.
Their deregulation, followed by the emergence of electrical power exchanges such
as EPEX SPOT, OMIE and Nord Pool in Europe, or PJM in the USA, allowed
for competitive electricity trading [23]. Electrical power exchanges usually consist
of several markets. The market with the biggest volume of trade is the day-ahead
(spot) market, which allows the traders to place bids and offers the day before the
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physical delivery of electricity. The day-ahead market is usually supplemented
by intraday and balancing markets, which allow trading until a few minutes
before delivery and target at providing more accurate offers. However, this is
often associated with paying significant balancing fees.

Notably, electricity market clearing prices, defined by the supply and the
demand curve, are characterized by high volatility. The cost of storing electricity
at large scales as well as the transition of power generation from conventional to
renewable sources, permeated with uncertainty in the production levels, lead to
fluctuations in the supply. On the other hand, demand may vary on an hourly
(peak and off-peak hours) and daily (weekends, weekdays and festivities) basis.
These factors, along with the requirement of supply and demand to be precisely
balanced in the power grid, lead to highly volatile prices in the electricity markets
which can undergo extreme changes within a span of a single day.

Traders, ideally, aim to maximize their profit as well as to minimize the
financial risk by selecting the most appropriate strategy in an imperfect market,
where there is incomplete information. Given the high level of price volatility
and the limitations in storing electricity, the selection of a wrong strategy, based
on price misinformation, may lead to economic losses or even bankruptcy. On
the contrary, utilizing accurate forecasts may increase profits or reduce the risk
of economic losses [9,14].

In this line of thought, there is a wide literature which focuses on providing
accurate day-ahead electricity price forecasts. Extended literature reviews are
provided in [1,21,23]. Two of the prominent broad classes of methods provided
in the literature rely either on statistical approaches or on machine learning tech-
niques. Statistical approaches utilize linear regression models or linear autore-
gressive models based on a set of variables related to observed prices and other
exogenous variables (load, wind, solar, temperature) that may affect price lev-
els. Differences in the implementation of the autoregressive models can be also
identified in terms of the calibration window length, which can be predefined or
estimated via more advanced econometric techniques [4,11,12]. However, in these
cases, the calibration sample consists of the most recent and successive obser-
vations. Methods that rely on machine learning employ a variety of techniques
such as artificial neural networks [24], support vector machines [27], clustering
algorithms [22] or a combination of them [17]. It is worthy to mention that a
hybrid approach that employs statistical and machine learning techniques has
been also proposed in the literature. Specifically, in [18] three clustering algo-
rithms and an autoregressive lag model were employed to predict consumers’
energy consumption in a simulation suite. However, this approach was tested on
simulated data.

In this paper we build on the bridge between the two aforementioned classes
of methods and we propose a new hybrid method, called autoregressive hybrid
nearest neighbors (ARHNN), for forecasting spot electricity prices. We generate
one-day-ahead forecasts using a linear ARX (autoregressive with exogenous vari-
ables) model with parameters calibrated on samples selected with the k-nearest
neighbors (k-NN) algorithm. ARX models are well-established in electricity price
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forecasting (EPF), as noted in [10,23]. The k-nearest neighbors algorithm has
been found to be successful in the field of electricity market forecasts, mainly
in forecasting electricity price and load [2,3,8,13,19,26] and renewable energy
sources (RES) generation [25]. The proposed method is applied to the EPEX
SPOT market in Germany. The results show a significant improvement in accu-
racy compared to commonly used benchmark approaches, while low increase in
the computational load is ensured.

The rest of this paper unfolds as follows. Section 2 describes the most impor-
tant features of the data used in this analysis. Section 3 provides an in-depth
explanation of the proposed method. Section 4 illustrates the results of the pro-
posed method applied to the EPEX SPOT data and provides comparison with
commonly used benchmark models. Finally, conclusions are drawn in Sect. 5.

2 Data

To illustrate our method, we use data describing the day-ahead electricity prices
in the EPEX SPOT market in Germany. As described in the Introduction, the
day-ahead market is the most important market in terms of traded volume. The
dataset, published by the transmission system operator (TSO), comprises four
variables: the electricity price in EUR/MWh and the corresponding official TSO
forecasts of total electrical load, wind energy generation and photovoltaic energy
generation, expressed in GWh.

The dataset spans six full years, from January 2015 until December 2020, with
hourly data (see Fig. 1). To evaluate the performance of the proposed algorithm,
the data is divided into three periods with lengths of approximately two years
each. The first 728-day period is reserved for the initial calibration window. Then,
the middle period, of the same length, is utilized for validation and tuning the
hyperparameters of the model as described in Subsect. 3.2. Finally, the procedure
is tested on the last period with length equal to 736 days.

The time series of the price and the load forecasts, as well as the division
into calibration, validation and testing periods, are depicted in Fig. 1. It can be
seen that the spot prices are indeed highly volatile, with frequent upward and
downward spikes multiple times greater in magnitude than the average price
range. However, load is relatively predictable, exhibiting both weekly and yearly
seasonality, which needs to be addressed by the predictive model.

3 Methods and Algorithms

As shown by numerous studies in the EPF [7,14], the selection of the calibration
sample impacts the overall forecasting accuracy of the autoregressive model.
While the majority of authors consider the longest possible portion of data for
the model calibration, averaging predictions obtained from calibration samples
of different lengths [16] or utilizing more sophisticated statistical methods [15]
allows for the significant reduction of forecasting errors. In this paper, we propose
a new method for the selection of the calibration sample, based on the k-nearest
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Fig. 1. Time series plot of the electricity spot prices (upper panel) and TSO load
forecast (lower panel) from the EPEX SPOT market. Dashed lines indicate the split
into calibration, validation and testing periods.

neighbors algorithm. The aforementioned methods rely on the time dimension
to select the calibration sample, i.e. the most recent successive observations
compose the calibration sample. On the contrary, in our method we define the
calibration sample on the basis of a similarity measure over a set of features.

3.1 Predictive Model

To predict the spot prices in hour h of day d + 1 we use an expert ARX model
with a specification well-established in the electricity price forecasting literature
[7,20]. Due to the idiosyncratic nature of the electricity market, every hour
of the day is treated as a distinct market product and separate forecasts are
implemented for each hour, i.e. predicting the prices for the entire day d + 1
requires estimating 24 independent parameter sets. The models for every hour
have an identical specification, incorporating an autoregressive structure with
lags corresponding to two preceding days and a week, notated as Pd+1−p,h where
p ∈ {1, 2, 7}. The price dynamics are further captured by including the minimal
and the maximal price from the previous day (respectively Pd,min and Pd,max)
as well as that day’s price in hour 24 (Pd,24) – the previous day’s last known
price.
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Finally, the model incorporates the publicly available forecasts of three exoge-
nous variables relevant to the price levels: total electrical load (L̂), wind energy
generation (Ŵ ) and photovoltaic energy generation (Ŝ). The complete model
takes the form

Pd+1,h = αhDd+1 +
∑

p∈{1,2,7}
βh,pPd+1−p,h

︸ ︷︷ ︸
AR component

+ θh,1Pd,min + θh,2Pd,max︸ ︷︷ ︸
Daily statistics

+ θh,3Pd,24︸ ︷︷ ︸
Last known price

+ θh,4L̂d+1,h + θh,5Ŵd+1,h + θh,6Ŝd+1,h︸ ︷︷ ︸
Exogenous variables

+εd+1,h,

(1)

where Dd+1 is the 1×7 vector of dummy variables representing days of the week
and εd+1,h is the Gaussian white noise. Henceforth, by P̂d+1,h(τ) we denote the
prediction obtained from model (1) calibrated on a sample containing the τ most
recent observations.

3.2 ARHNN Calibration Sample Selection

The k-Nearest Neighbors is an instance-based learning algorithm that can be
used either for classification or regression. In the former case, an observation is
assigned to the most common class label shared by its k-nearest neighbors. In
the second case, the property value for an observation derives from the average
of the k-nearest neighbors’ values. In both cases, a neighbor weighting function
can be employed [6].

To explain the applicability of the k-NN algorithm in our case study and the
differentiation of our method, suppose that at day d we want to forecast the
electricity price for the day ahead (day d+1). We denote by xd the vector of the
explanatory variables from model (1) for a given day d, after omitting dummy
variables, 2-day and 7-day lagged prices and random noise. Within the matrix
Xd+1 = (xd−726; . . . ;xd+1), it is evident that the most recent information we
possess, xd+1, provides the most accurate outlook at the current market state,
i.e. prices from previous days as well as forecasts for day d + 1. Notably, the
proposed statistical methods in the literature, rely on this assumption and they
further extend it. Specifically, they assume that the most recent observations will
provide the most accurate forecast and thus, they should compose the calibration
sample. However, in case structural breaks exist among the last observations,
the selected calibration sample will lead to a decreased forecasting accuracy. In
addition, this approach relies exclusively on the last observations (in terms of
time) and does not exploit information from other past data.

The main idea of our method is to identify past observations that resemble
xd+1 as closely as possible and use them to estimate the parameters of the fore-
casting model. To this end, we employ the k-NN algorithm to select a calibration
sample for the ARX model (1) consisting of the k-nearest neighbors of the point
xd+1 (see Fig. 2), in terms of the Euclidean distance. In a sense, we invert the
rationale of the k-NN method - instead of classifying the latest observation based
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on its neighboring points, we assume that the closest neighbors (in terms of the
distance, not time) of xd+1 belong to the same market “regime”.

Analogously to the notation in Sect. 3.1, we denote the price prediction for
day d + 1 and hour h, obtained by calibrating the forecasting model (1) on
the sample consisting of k closest observations, by P̂ ∗

d+1,h(k). Note that for the
clarity of notation, forecasts corresponding to the ARHNN method are marked
with an asterisk.

Fig. 2. The optimal (i.e. producing the lowest absolute prediction error) selection of
the calibration sample (k̄i = 181) based on the matrix Xd+1 for a specific day (d + 1).
The upper panel illustrates the sample selection, presented on three key variables,
i.e. preceding day’s price as well as forecasts of load and wind generation; while the
lower panel depicts the corresponding selection in the time dimension. The most recent
observation is marked with a red dot, while the observations selected for the model
calibration are depicted with blue points. (Color figure online)
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Obviously, the choice of the parameter k has a direct impact on the forecast-
ing accuracy of the model. Disentangling its effects, is one of the main challenges
that we address in the paper. As discussed in Sect. 2, in the validation period, we
use the 728-day rolling window to identify the optimal values of the k parameter,
which is responsible for the number of observations in the calibration sample. For
each of the 728 days in the validation period, the procedure identifies (ex-post)
the optimal value (i.e. the one that produced the lowest absolute prediction error
for a certain day; see Figs. 2, 3) of the parameter, k̄i, i = 1, . . . , 728. Next, in the
evaluation (testing) procedure, instead of selecting only one value of k for each
day, we consider 728 calibration samples, based on the set of past optimal values
(k̄1, . . . , k̄728). In such way, we obtain 728 price predictions for day d + 1, i.e.(
P̂ ∗

d+1,h(k̄1), . . . , P̂
∗
d+1,h(k̄728)

)
. Eventually, inspired by [16], we obtain the final

price prediction for day d + 1 and hour h from the average of these forecasts:

P̂d+1,h =
1

728

728∑

i=1

P̂ ∗
d+1,h(k̄i). (2)

Notably, there may be cases where the values of k̄i, i = 1, . . . , 728 coincide,
i.e. k̄i = k̄j for i �= j. Therefore, the above expression is translated to the
weighted average of forecasts calibrated to different samples, where the weight
corresponding to a certain prediction P̂ ∗

d+1,h(k̄i) depicts the relative frequency

of k̄i in (k̄1, . . . , k̄728). This can be interpreted as a weighting function which
reflects the “relative significance” of the k̄i values.

3.3 Benchmark Approaches

We evaluate the effectiveness of selecting the calibration period with the pro-
posed ARHNN procedure by comparing it to a number of literature benchmarks.
While all of them use Model (1) for computing the forecasts themselves, they dif-
fer in the selection of the calibration sample and in the forecasts post-processing.
The first group of benchmark approaches provides forecasts obtained by using
a single calibration window length throughout the entire test period. The cal-
ibration windows include from 56 to 728 days of the most recent data up to
the moment of forecasting. The second group utilizes two additional approaches
following [7]: the arithmetic mean of all the forecasts within the first group (673
predictions obtained from calibration windows of different lengths), and the aver-
age of forecasts from six hand-picked calibration windows: three short ones (56,
84, 112 days) and three long ones (714, 721, 728 days).

We assume the following convention to notate the aforementioned benchmark
methods: the single-length windows with length τ are denoted as Win(τ). The
forecast averages are named using the MATLAB sequence convention, respec-
tively becoming Av(56:728) and Av(56:28:112, 714:7:728).
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Fig. 3. Histogram of the optimal calibration sample lengths within the validation
period (728 calibration sample lengths in total) for hour 18.

4 Results

We evaluate the accuracy of the forecasts obtained from different approaches
with the use of the root mean squared error (RMSE). The reported error is
calculated across all hours and days of the 736-day out-of-sample period. The
results are presented in Fig. 4 and Table 1. The performance of single calibration
window benchmarks (i.e. models trained on samples comprising a fixed amount of
most recent observations) is presented with gray dots. In this approach, although
the average error generally diminishes with the increase of the calibration window
length τ and the longest window turns out to be the best choice, the decrease
is not monotonic as we may expect. As shown by [16], for certain datasets, the
error may even increase alongside with the calibration window length.

Table 1. The RMSE values of the selected benchmarks and the ARHNN method.

Method RMSE

Win(364) 8.4443

Win(728) 8.2860

Av(56:728) 8.0584

Av(56:28:112, 714:7:728) 8.0286

ARHNN 7.8604
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Fig. 4. The RMSE values as a function of calibration window length for the benchmark
approaches and the ARHNN method.

As can be seen from Fig. 4, the ARHNN method as well as the averaging
schemes outperform every approach based on a single, fixed calibration window
length in terms of RMSE. Methods based on forecasts averaging, Av(56:728)
and Av(56:28:112, 714:7:728), managed to outperform the predictive accuracy
of the longest, 728-day calibration window, approximately by 3%. The fore-
casts obtained from the introduced ARHNN method exhibit over 5% lower
error comparing to the best performing single calibration window length. The
method also gains over 2% in terms of the forecasting accuracy compared to the
well-performing literature benchmarks Av(56:728) and Av(56:28:112, 714:7:728).
Since these results are not sufficient for determining the statistical significance of
the difference between forecasts obtained from different approaches, we decided
to use the Diebold and Mariano (DM) [5] test. First, for each pair of methods X
and Y , we create a vector of errors for each day of the out-of-sample period. Here
we consider two different perspectives - univariate and multivariate as classified
by [28]. In the first one (multivariate), we consider 24-dimensional error vectors
for each day:

ΔX,Y,d = ||ε̄X,d|| − ||ε̄Y,d||, (3)

where ε̄X,d =
√

1
24

∑24
h=1 ε2

X,d,h and εX,d,h is the error of forecasts obtained with

method X for day d and hour h. In the second approach (univariate), instead of
considering 24 h jointly, we are looking at each of them separately. More precisely:

ΔX,Y,d,h = |εX,d,h| − |εX,d,h|. (4)

For each pair of approaches, we compute the p-value of the DM test with null
hypothesis H0: E(ΔX,Y,d) ≤ 0 (or H0: E(ΔX,Y,d,h) ≤ 0 in case of the univariate
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approach) and additionally perform a complementary test with the reverse null
hypothesis, HR

0 : E(ΔX,Y,d) ≥ 0 (or HR
0 : E(ΔX,Y,d,h) ≥ 0).

In Fig. 5 and Fig. 6, we present the p-values of the test. We use a heatmap
to indicate the span of p-values. The closer they are to zero (dark green), the
more significant is the difference between forecasts obtained with the approach
from X-axis (superior) and predictions from the method in the Y-axis (inferior)
[7,15,16]. The “chessboard” in Fig. 5 corresponds to the results of the multivari-
ate approach, considering 24-dimensional error vectors (see Eq. 3). It turns out,
that forecasts from the ARHNN method were able to significantly outperform
predictions from nearly all benchmarks. The well-performing averaging scheme
Av(56:28:112, 714:7:728) was neither significantly worse nor better than the pro-
posed approach. Two “chessboards” in Fig. 6, correspond to the results of the
univariate DM test for two exemplary hours. The selected Hour 9 and Hour 15
correspond to the worst and the best performance of the ARHNN method across
all hours, respectively. For Hour 9, the forecasts based on the ARHNN approach
were not able to statistically outperform predictions from any other method.
Additionally, they are outperformed by the forecasts based on the Av(56:728)
averaging scheme. When it comes to the results for Hour 15, the predictions from
the proposed ARHNN method significantly outperform forecasts from all bench-
marks, with p-values of the DM test close to zero. In general, the performance of
the ARHNN approach across 24 h of the day is shown in Table 2. The columns,
corresponding to 24 h are associated with six different performance classes, each
of them representing a certain result of the DM test:

– Class 1 (Hours 2, 6, 13, 14, 15, 16, 17) - forecasts from the ARHNN method
significantly outperform predictions from all benchmarks and are not outper-
formed by any of them,

– Class 2 (Hours 1, 3, 4, 5) - forecasts from the ARHNN method significantly
outperform predictions from three out of four benchmarks and are not out-
performed by any of them,

– Class 3 (Hours 7, 8, 10, 11, 12, 18) - forecasts from the ARHNN method
significantly outperform predictions from two out of four benchmarks and
are not outperformed by any of them,

– Class 4 (Hours 22, 23, 24) - forecasts from the ARHNN method significantly
outperform predictions from two out of four benchmarks and are outper-
formed by one of them,

– Class 5 (Hour 19) - forecasts from the ARHNN method do not significantly
outperform predictions from any benchmark and are not outperformed by
any of them,

– Class 6 (Hours 9, 20, 21) - forecasts from the ARHNN method do not sig-
nificantly outperform predictions from any benchmark and are outperformed
by one of them.

Looking at the results of the Diebold-Mariano test it can be observed that
forecasts from the ARHNN approach exhibit very satisfactory predictive accu-
racy compared to forecasts from the selected benchmarks. For eleven hours,
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Table 2. Results of the statistical significance test between forecasts from the ARHNN
approach and the selected benchmarks for all 24 h. Each class represents a certain result
of the DM test.

ARHNN forecasts were able to significantly outperform predictions from at least
three out of four benchmarks and, for twenty hours, at least two out of four.
Although the forecasts exhibit the worst performance for hours 9, 19, 20 and 21,
they were significantly outperformed by at most one benchmark approach and,
in the remaining twenty one hours of the day, by none of them.

Fig. 5. Results of the multivariate approach to the pairwise Diebold-Mariano test
between ARHNN method and the selected benchmarks. We illustrate the range of p-
values using a heatmap: green squares indicate a statistically significant superiority of
the forecasts from the method on the X-axis over the ones from the method on the
Y-axis. (Color figure online)
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Fig. 6. Sample results of the univariate approach to the pairwise Diebold-Mariano test
between ARHNN model and the selected benchmarks. We illustrate the range of p-
values using a heatmap: green squares indicate a statistically significant superiority of
the forecasts from the method on the X-axis over the ones from the method on the
Y-axis. (Color figure online)

5 Conclusions and Discussion

In this paper we introduced a hybrid method for electricity price forecasting in
day ahead markets. We employed a linear autoregressive model, with exogenous
variables (total electrical load, wind energy generation and photovoltaic energy
generation), as the underlying instrument for forecasts. Our novelty lies in the
selection of the calibration sample which is achieved via a machine learning
algorithm. Specifically, we utilized the k-NN instance-based learning algorithm
to select the calibration sample based on a similarity (distance) measure between
the most recent information and past observations, over a subset of the autore-
gressive model’s variables. Our aim was to identify past observations that belong
to the same “regime” with the latest available information.

The advantage of our method is therefore twofold. The selection of the cali-
bration sample relies on a similarity measure over a set of variables rather than
on the time dimension (i.e. to include only the most recent observations). With
this type of selection, homogeneity within the calibration sample is secured and
structural breaks are avoided. In addition, information from past observations
is exploited and consequently, the selected calibration sample is expected to
provide more accurate forecasts.

We applied our method on the EPEX SPOT market and we provided compar-
ison with commonly used literature benchmarks. The results show that our pro-
posed method achieves a statistically significant reduction in the forecasting error
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compared to the rest of the approaches, while remaining highly interpretable and
meaningful. The accuracy of the proposed method in other markets, the adoption
of other machine learning techniques as well as comparison with other methods
relying exclusively on them, are subjects for future research. Nevertheless, our
findings signify the importance and benefits of interdisciplinary research in this
field.
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Abstract. We employ a recently proposed change-point detection algo-
rithm, the Narrowest-Over-Threshold (NOT) method, to select subperi-
ods of past observations that are similar to the currently recorded values.
Then, contrarily to the traditional time series approach in which the most
recent τ observations are taken as the calibration sample, we estimate
autoregressive models only for data in these subperiods. We illustrate our
approach using a challenging dataset – day-ahead electricity prices in the
German EPEX SPOT market – and observe a significant improvement in
forecasting accuracy compared to commonly used approaches, including
the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.

Keywords: Change-point detection · Narrowest-Over-Threshold
method · Electricity price forecasting · Autoregressive model ·
Calibration window

1 Introduction

Electricity price forecasting (EPF) is an extremely challenging task. A number
of methods have been developed for this purpose, ranging from linear regression
to hybrid deep learning architectures utilizing long-short term memory and/or
convolutional neural networks. While most studies focus on improving model
structures, selecting input features with more predictive power or implementing
more efficient algorithms [3,5,6], the issue of the optimal calibration window is
generally overlooked [4].

This work is inspired by a recent article [2], which utilized a relatively sim-
ple change-point detection method [9] to split the time series into segments
with the ‘same’ price level, and an ICCS 2021 paper [7], which employed the
k-nearest neighbors (k-NN) algorithm to select the calibration sample based on
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Fig. 1. Electricity spot prices and day-ahead load, wind and solar power generation
forecasts in Germany. The last 736 days constitute the test period.

similarity over a subset of explanatory variables. Here, we utilize a recently pro-
posed change-point detection algorithm – the Narrowest-Over-Threshold (NOT)
method [1] – to construct an automatic method for detecting subperiods exhibit-
ing different temporal dynamics. Once identified, those not resembling the cur-
rent behavior are discarded when estimating the predictive model. In what fol-
lows, we provide empirical evidence that significant improvement in forecasting
accuracy can be achieved compared to commonly used EPF approaches.

The remainder of the paper is structured as follows. In Sect. 2 we present the
dataset and the transformation, which is used to standardize the data. In Sect. 3
we briefly describe the NOT method and introduce our approach to selecting
subperiods for model calibration. Next, in Sect. 4 we present the forecasting
models and in Sect. 5 the empirical results. Finally, in Sect. 6 we conclude and
discuss future research directions.

2 The Data

For comparison purposes, we use the same dataset as in [7]. It spans six years
(2015–2020) at hourly resolution and includes four series from the German EPEX
SPOT market: electricity spot prices Pd,h (more precisely: prices set in the day-
ahead auction on day d− 1 for the 24 h of day d) and day-ahead load L̂d,h, wind
Ŵd,h and solar power generation Ŝd,h forecasts, see Fig. 1. The first two years
are exclusively used for estimating the Autoregressive Hybrid Nearest Neighbors
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Fig. 2. A sample run of the algorithm introduced in Sect. 3. The red dot is the target
day. Vertical dashed lines indicate the located change-points separating periods with
different statistical properties. The discarded prices are in gray.

(ARHNN) method [7]; the remaining methods require less data for calibration.
The last 736 days constitute the out-of-sample test period.

The most distinct feature of the German power market are frequent spikes
and negative prices. Similarly volatile is wind energy generation, while load
and solar generation are more predictable. Following [8,10], to cope with this
extreme volatility, we transform the electricity prices using the area hyperbolic
sine: Yd,h = asinh (1b{Pd,h − a}) with asinh (x) = log{x+(x2 +1)0.5}, where a is
the median of Pd,h in the calibration window and b is median absolute deviation.
The price forecasts are then obtained by the inverse transformation.

Note that in [7] a different transformation was used. All series, not just Pd,h,
were normalized by subtracting the mean and dividing by the standard deviation
in each calibration window. We denote models utilizing asinh-transformed data
with subscript H; the remaining ones use the standard normalization, as in [7].

3 Calibration Window Selection Using NOT

The Narrowest-Over-Threshold (NOT) method [1] can detect an unknown num-
ber of change-points at unknown locations in one-dimensional time series data.
The key feature is its focus on the smallest local sections of the data on which the
existence of a change-point is suspected. A change-point is said to occur when
the behavior of the series changes significantly [2]. See www.changepoint.info for
an excellent review site and software repository on this topic. Said differently,
change-points split the data into stationary subseries, see Fig. 2. This is what
makes them interesting for model calibration and forecasting.

Our algorithm for calibration window selection, i.e., identifying periods with
similar time series dynamics to the currently observed, is as follows:

1. Set the maximum number Nmax
c of change-points to be identified.

2. Use the NOT method to identify Nc ∈ [0, Nmax
c ] change-points ci, i =

1, . . . , Nc, in the initial calibration window C0 of length τ . Additionally,
denote the first observation in C0 by c0.
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Fig. 3. Overview of NOT-selected (black) and discarded (gray) periods in the two-year
calibration window (dates on the x axis) for hours 4 (left panel) and 18 (right panel).
The red line indicates the forecasted day (date on the y axis).

3. If Nc = 0 return calibration sample C = C0. Otherwise, compute the empir-
ical quantiles qlow and qhigh of the observations within the period between
the most recent change-point found and the last observation in C0.

4. For every interval between two subsequent change-points ci−1 and ci compute
the median mi of its observations, i = 1, . . . , Nc − 1.

5. Set C =
⋃i

mi∈(qlow,qhigh)
[ci−1, ci].

Based on a limited simulation study, we set the maximum number of change-
points Nmax

c = 12 and the order of quantiles (qlow, qhigh) = (q0.025, q0.975). We
also use the least constraining form of NOT, i.e., we assume that the data have
piecewise continuous variance and piecewise continuous mean. Any deviations
from this are treated as a breach of stationarity.

A sample run of the algorithm is presented in Fig. 2. In the plot, the period
closest to the forecasted day (red dot) is characterized by relatively stable, low
prices with a small variance. The algorithm discards the light gray subperiods,
when either the prices or their variance are significantly higher. In Fig. 3 we
illustrate the results for two sample hours and the whole test window. We use
a rolling scheme, i.e., once forecasts for the 24 h of the first day in the test
sample are computed, the calibration window is moved forward by one day and
forecasts for the 2nd day in the test sample are calculated. A clear pattern of
vertical gray stripes emerges, meaning that for a range of windows the change-
points are consistently detected on the same or neighboring days. Comparing
these plots with the price trajectory in Fig. 1, we can observe that much fewer
observations are selected by NOT when the prices tend to be more spiky, as can
be seen in Spring 2020 (Apr 20 – Jun 20 on the y axis, esp. for hour 18).

4 Forecasting Models

For comparison purposes, the underlying model we use is the same as in [7]. It
is an autoregressive structure with exogenous variables dubbed ARX. Since the
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prices Pd,h are set in the day-ahead auction on day d − 1 independently for the
24h of day d, it is customary in the EPF literature [4,6] to treat every hour as
a separate time series. Hence, we consider 24 ARX models of the form:

Pd,h = αhDd︸ ︷︷ ︸
Dummies

+
∑

p∈{1,2,7}
βh,pPd−p,h

︸ ︷︷ ︸
AR component

+ θh,1Pd−1,min + θh,2Pd−1,max
︸ ︷︷ ︸

Yesterday’s price range

+ θh,3Pd−1,24
︸ ︷︷ ︸

Last known price

+ θh,4L̂d,h + θh,5Ŵd,h + θh,6Ŝd,h
︸ ︷︷ ︸

Exogenous variables

+ εd,h
︸︷︷︸
Noise

.

(1)

The autoregressive (AR) dynamics are captured by the lagged prices from the
same hour yesterday, two and seven days ago. Following [10], yesterday’s mini-
mum Pd−1,min, maximum Pd−1,max and the last known price Pd−1,24, as well as
day-ahead predictions of the three exogenous variables are included. Finally, a
1 × 7 vector of dummy variables Dd is used to represent the weekly seasonality
and the uncertainty is represented by white noise.

Overall, we compare seven types of approaches that all use ARX as the
underlying model. The first three are the same as in [7]: (i) Win(τ) – the
ARX model estimated using a window of τ days, with τ ∈ [56, 57, ..., 728], (ii)
Av(Win) – the arithmetic average of six forecasts of the ARX model for three
short (τ = 56, 84, 112) and three long windows (τ = 714, 721, 728), and (iii) the
ARHNN model. The next four include: (iv) WinH(τ) – the same as Win(τ)
but calibrated to asinh-transformed prices, (v) NOTH(728) – the ARX model
calibrated to asinh-transformed prices in NOT-selected subperiods from the 728-
day window, (vi) Av(WinH) – the same as Av(Win) but calibrated to asinh-
transformed prices, and (vii) Av(NOTH) – the same as Av(WinH) but with the
forecasts for the three long windows (τ = 714, 721, 728) replaced by NOTH(728).
The rationale behind the latter averaging scheme is that NOTH(τ) performs best
for long calibration windows and offers little or even no gain for τ < 1 year.

5 Results

We evaluate the forecasting performance of the seven approaches presented in
Sect. 4 in terms of the root mean squared error (RMSE; results for the mean
absolute error are similar and available from the authors upon request). The
RMSE values reported in Fig. 4 are aggregated (averaged) across all hours in
the 736-day test sample, see Fig. 1. Additionally, to test the significance of differ-
ences in forecasting accuracy, for each pair of models we employ the multivariate
variant of the Diebold-Mariano (DM) test, as proposed in [10].

Several conclusions can be drawn. Firstly, changing the preprocessing method
from normalization [7] to asinh transformation [8] generally reduces the RMSE.
Even the worst performing out of the latter approaches, WinH(728), improves
on ARHNN, the most accurate method in [7]. Secondly, NOT-selection yields
further improvement, although not statistically significant if considered on its
own. Compare NOTH(728) with WinH(728) and Av(NOTH) with Av(WinH).
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Fig. 4. RMSE errors in the out-of-sample test period (left panel). A heatmap of the
p-values for the multivariate Diebold-Mariano test [10] for each pair of methods (right
panel). The smaller the p-values, the more significant is the difference between the
forecasts of a model on the x-axis (better) and the forecasts of a model on the y-axis
(worse). Black color indicates p-values in excess of 0.1.

Fig. 5. RMSE values for all considered models; τ is the calibration window length.

The RMSE values for all considered approaches are presented graphically
in Fig. 5. It clearly shows the significant improvement from using the asinh –
compare between Win(τ) with WinH(τ) for all τ ’s. While WinH(728) is not
the best performing of all WinH(τ) models, the differences in performance
are relatively minor for τ ≥ 200 days. Even the best ex-post known model,
WinH(233), is slightly worse than NOTH(728). The averaged forecasts Av(WinH)
and Av(NOTH) are further able to improve on the accuracy, although the dif-
ferences between them are not significant.

6 Conclusions and Discussion

In this paper we propose a novel method for selecting calibration subperiods
based on Narrowest-Over-Threshold (NOT) change-point detection [1]. Contrar-
ily to the traditional time series approach in which the most recent observations
are taken as the calibration sample, we propose to estimate the predictive mod-
els only using data in the selected subperiods. We evaluate our approach using
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German electricity market data and seven variants of autoregressive models tai-
lored for electricity price forecasting (EPF). We provide empirical evidence that
significant improvement in forecasting accuracy can be achieved compared to
commonly used EPF approaches, including the recently proposed ARHNN [7].
In addition to calibration sample selection, our results also emphasize the impor-
tance of using transformations like the asinh, in line with [8,10].

The roughly sixfold increase in computational time of the NOT-based meth-
ods – 4.97s for 24 h forecasts using NOTH(728) vs. 0.83s using WinH(728),
running R ver. 3.6.3 on an i7-9750H processor – can be seen as a drawback,
especially compared to less complex ways of improving forecast accuracy, like
calibration window averaging [4]. However, the automation of the forecasting
process may make the trade-off worthwhile. If this is the case for more complex
models than the autoregressive ones considered here or the shallow neural net-
work in [2], e.g., LASSO-estimated AR (LEAR) and deep neural networks [6], is
left for future work.
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Abstract

In this article, a multiple split method is proposed that enables construction of multidi-
mensional probabilistic forecasts of a selected set of variables. The method uses repeated
resampling to estimate uncertainty of simultaneous multivariate predictions. This nonpara-
metric approach links the gap between point and probabilistic predictions and can be com-
bined with different point forecasting methods. The performance of the method is evaluated
with data describing the German short-term electricity market. The results show that the
proposed approach provides highly accurate predictions. The gains from multidimensional
forecasting are the largest when functions of variables, such as price spread or residual load,
are considered.

Finally, the method is used to support a decision process of a moderate generation utility
that produces electricity from wind energy and sells it on either a day-ahead or an intraday
market. The company makes decisions under high uncertainty because it knows neither the
future production level nor the prices. We show that joint forecasting of both market prices
and fundamentals can be used to predict the distribution of a profit, and hence helps to
design a strategy that balances a level of income and a trading risk.

1. Introduction

Electrical energy markets play a crucial role in modern economies. Reliable and cheap
energy supply is believed to be essential for the daily lives of citizens and business operations.
With the evolution and changing needs of economies, a large number of developed countries
abandoned monopolistic and government-controlled power systems in favor of decentralized
market structures. Today, trade is conducted in multiple ways: through bilateral contracts,
short-term spot markets organized in the form of energy exchanges, and futures markets.
Spot markets typically take the form of day-ahead (DA) markets in which offers are placed
for 24 hours of the next day. In many countries, they are complemented by an intraday
market that allows trade up to a few minutes prior to delivery and helps to dynamically
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balance supply and demand. DA prices serve as a reference price for other types of contracts
and therefore have a huge impact on the whole market.

Together with changes of the market structure, one could also observe dynamic devel-
opment of new electricity generation technologies, in particular those utilizing renewable
energy sources (RES). As RES generation is intermittent and depends on changing weather
conditions, it introduces a lot of uncertainty into the trade. Varying generation combined
with the constant need to balance demand and supply, and limited storage opportunities,
leads to high volatility of electricity prices. Their average level changes according to the
weather and demand. In unfavorable circumstances, they also exhibit spiky behavior, with
both positive and negative jumps.

The growing complexity of electricity markets and the increasing exposure of market
participants to various trading risks raise the need for reliable forecasts of both electricity
prices and market fundamentals, such as the demand level or RES generation. When re-
viewing the literature on electricity price forecasting (EPF), it is evident that the primary
focus is often on point forecasting, i.e. forecasting the expected value of prices [1]. Vari-
ous methods have been proposed and examined in that context, starting with simple linear
regression and autoregression types of models [2], through nonlinear models [see e.g. 3; 4],
different estimation methods [5] up to artificial intelligence (AI) approaches [6].

In contrast to point predictions, probabilistic forecasts assess the entire distribution, thus
allowing for assessing both the variable’s level and the prediction uncertainty. Although more
difficult to calculate, probabilistic predictions have gained popularity in the EPF literature
[7; 8]. The available methods can be classified into three main categories based on the way
they express the uncertainty of the forecast: quantile prediction, density estimations, and
ensemble predictions. As stated in [9], the distinction between different types of forecast is
to some extent artificial. For instance, quantiles can be derived from an ensemble, and an
ensemble can be generated using a fine approximation of the distribution. The literature
discusses various methods for constructing probabilistic forecasts. Popular approaches are
based on the analysis of forecast errors that come from a model used for point forecasting
[10; 11] or direct modeling of a density of data with quantile regression [QR, 12]. It should
be mentioned that to obtain a fine approximation of a continuous distribution, a substantial
number of quantiles needs to be modeled, which makes an application of QR computationally
burdensome. Moreover, the concept of quantiles describes primarily a univariate distribution
and does not have a direct and intuitive extension to a multiple output case [13]. Despite
these obstacles, a very good QR prediction performance has been verified by a number of
experiments, not only in the EPF area [10; 14; 15; 16].

Whether in the context of point or probabilistic forecasting, typical techniques are de-
signed to predict a single random variable. However, in many applications, the dependencies
between events are important and should be carefully modeled [9; 17]. For example, a wind
farm manager can explore a correlation between wind generation and electricity price fore-
cast errors to increase income [18]. An unexpected rise of RES generation is known to lead
to a fall of DA and ID prices, which should be reflected in the offer curve. Toubeau et al. [19]
analyze a performance of a virtual power plant (VPP) and shows how a multidimensional
forecast of non-shiftable load, renewable generation, and electricity prices can be used in the
management of the VPP. Finally, joint forecasting of electricity prices can be employed for
designing a trading strategy that allows one to place offers on multiple electricity markets,
similar to [20], [11], and [21].

Therefore, in this research paper, instead of forecasting electricity prices and fundamental
variables separately, we consider multidimensional probabilistic forecasting. There are two
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popular approaches that enable joint predicting of a set of time series. The first aggregates
all endogenous variables into a vector and uses a single model to describe its behavior. A
well-known example of such multidimensional models is vector autoregression [VAR, 22].
The approach is used in [11], where behavior of electricity prices, total load, and RES
generation is modeled with the structural VAR method. An alternative approach combines
distributions coming from univariate models via, for example, copulas [see 23; 24]. In such
a case, the modeling procedure is divided into two steps. Firstly, time-series or AI models
are applied to the individual variables. In the second step, the dependence between fitted
errors is described by the copula. In the EPF literature, this approach has been successfully
applied by [25; 19; 26; 27].

In this study, we propose an alternative multiple split procedure that is based on resam-
pling methods. Similarly to [25], we use univariate models to predict the expected values
of individual variables and a multidimensional distribution of forecast errors to calculate
probabilistic forecasts. The method can be particularly useful for practitioners, as it may
be combined with any unidimensional point-forecasting scheme. In this article, we explore
time series models. However, it could also be merged with other structural or AI based
techniques.

The proposed method combines previous work of Lei et al. [28] and Barber et al. [29]
and integrates multiple split conformal predictions with a jackknife+ approach. Several
names have been assigned to approaches that are based on the division of the sample into
disjoint subsets: split method, leave-k-out (LKO), d delete jackknife, or cross-validation
(CV) [30; 31; 29]. In the split approach [28; 32], the sample is randomly divided into
disjoint sets. The subsets resulting from the split are next used to estimate the parameters
and calculate the forecast errors. In this article, following [29], the outcome of each split
is the probabilistic forecast of the variable of interest not just the distribution of errors.
Hence, the method captures both the uncertainty that arises from estimation of parameters
and the stochastic nature of the data. The multiple split described in this work enhances
the existing literature in various directions:

(i) It extends the analysis from a univariate to a multivariate framework. The multi-
dimensional property is particularly important when complex decision problems are
considered that require approximation of a distribution of a function of random vari-
ables, e.g. their linear combination. In this case, the approach allows researchers to
account for various sources of uncertainty that may cross-depend on each other.

(ii) Unlike in previous articles such as [32], random splitting is repeated multiple times to
decrease the variability of the outcomes and reduce the dependence of the results on
a particular division of the data. However, contrary to jackknife+ approach of Barber
et al. [29], we do not consider all possible divisions of the original sample and hence
reduce the computation time.

(iii) The results obtained through the splits are stored as an ensemble rather then the dis-
tributions (parametric or a set of quantiles) as in [28] or [32]. Therefore, the approach
does not require aggregation of outcomes obtained from individual splits with prob-
abilistic forecast combination methods such as Bonferroni averaging [28]. Moreover,
the ensemble forecasts can be easily used to generate a prediction of any linear or
non-linear function of the original data. In such a case, a new ensemble is constructed
by applying the function to the set of multidimensional predictions.
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The performance of the proposed method is evaluated with a dataset describing a Ger-
man electricity market. First, it is applied for forecasting individual time series: day-ahead
(DA) and intraday (ID) prices, total load, and RES generations. Next, it is used to pre-
dict the distribution of their function: the price spread and residual load (computed as the
difference between load and RES). The accuracy of the forecast is assessed using various
measures: the coverage of the prediction intervals, the continuous ranked probability score
(CRPS), and the reliability index. They show how well the probabilistic predictions resem-
ble the out-of-sample distribution. Furthermore, given a correct calibration, CRPS assesses
the sharpness of the distribution obtained. The results are compared to the well-established
benchmarks: quantile regression and historical simulations. The second benchmark is ex-
tended to multidimensional forecasting to evaluate the potential gains from multiple splitting
of the data. Finally, the method is used to support the decision process of moderate wind
farms. The utility is assumed to decide about the quantity offered in the day-ahead market
on the day preceding the delivery. The choice is made under uncertainty because at the
time it is taken, the generator does not know neither its production level nor electricity
prices. We show that joint forecasting of both market prices and fundamentals can be used
to predict the distribution of future profit, and hence helps to design a trading strategy that
balances the level of income and the risk.

This article is structured as follows. Section 2 presents the main characteristics of the
dataset explored in the study. Next, the forecasting methods are presented in Section 3.
Section 4 describes the trading strategy of a small wind farm. Finally, the results of the
empirical study are presented in Section 5. Section 6 provides conclusions.

2. Data

In this article, we use a dataset describing the EPEX SPOT market in Germany. The
data span four calendar years, between October 1, 2015 and September 30, 2019, with an
hourly resolution. They are roughly equally divided into training and test periods, with
the first 728 days reserved for the initial calibration window and the remaining observations
used for evaluation of the forecasts. The variables include day-ahead market prices (DA)
and ID-3 intraday prices (ID), chosen as representative indicator of the average level of
energy prices during continuous intraday trading; as well as actual and forecasted values
of fundamental variables and, finally, closing prices of fuel futures contracts. The detailed
description of all data used with units, sources, and notation is presented in Table 1.

The average daily values of the variables most relevant for the analysis, which are the
prices in both the short-term markets and the generation structure, are plotted in Fig. 2
and Fig. 2, respectively. The price time series exhibits multiple features that differentiate
the electrical energy market from most other commodity markets. They follow cyclical
fluctuations that result from seasonal patterns of demand and yearly changes in weather.
When prices on short-term markets are considered, it can be observed that they are typically
highly volatile and strongly correlated. The average values across markets are similar.
For the period analyzed, they are equal to 36.11 EUR/MWh for the day-ahead market
and 36.24 EUR/MWh for the intraday market. However, the ID market is characterized
by a higher variance, with a standard deviation of 18.31 EUR/MWh compared to 16.93
EUR/MWh on the DA market. Finally, unlike in the case of other commodities, electricity
prices are subjected to spikes. Although in most days the average price stays between 10-30
EUR/MWh, sudden jumps occur when the price increases over 50 EUR/MWh or falls below
zero.
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Table 1: Data sources and units.
Data Notation Units Source
Day-ahead prices DA EUR/MWh http://www.epexspot.com
Intraday prices ID EUR/MWh http://www.epexspot.com
Load L GWh https://transparency.entsoe.eu
Wind generation W GWh https://transparency.entsoe.eu
PV generation S GWh https://transparency.entsoe.eu
Forecasted load FL GWh https://transparency.entsoe.eu
Forecasted wind generation FW GWh https://transparency.entsoe.eu
Forecasted PV generation FS GWh https://transparency.entsoe.eu
API2 Coal futures price C EUR finance.yahoo.com
TTF Gas futures price G EUR www.eex.com

Figure 2 complements the information on the short-term electricity market and presents
the load level (top panel, Fig. 2), the RES generation (middle panel, Fig. 2) and the wind
generation (bottom panel, Fig. 2). It can be observed that the load behavior is regular and
exhibits strong weekly and yearly seasonality. In the case of RES generation, the level of
production varies mainly due to short-term intermittency and changing weather conditions.
These fluctuations have a significant effect on the wholesale market and lead to an increase
of the price variability. The impact is the stronger, the larger becomes the share of RES in
the generation mix. Within the considered time period, the installed wind energy capacity
in Germany increased by approximately 36%, from 44.58 GW in 2015 to 60.75 GW in 20191.
The actual average monthly generation varied between approximately 10% during summers
(June to August) and 40% during winters (December to February). The share of RES in the
generation mix increased even more over the period due to investment in solar generation.
In 2019, RES has been estimated to account for 44.8% of the total energy generation in
Germany.

All time series were pre-processed to account for time zone changes, as in [1]. The
missing values (corresponding to the transition from winter to summer) were replaced by
the arithmetic averages of the two nearest values. The doubled values (corresponding to the
change from summer to winter) are replaced by their arithmetic mean.

3. Forecasting methods

In this paper, electricity prices and variables that describe the generation structure in
consecutive hours are interpreted as separate time series (products). Their point forecasts
are calculated with univariate models. Although the structure of the models remains un-
changed throughout the day, the values of the parameters are estimated independently for
each hour. Finally, in order to resemble the true trading problem, it is assumed that all the
computations are performed in the morning at 11:00, hence only the information available
at this time is used.

1Source: energy-charts.info
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3.1. ARX models
Autoregressive models with exogenous variables (ARX) are commonly used in the EPF

literature [7]. In this type of model, an expected value of an endogenous variable is de-
scribed as a linear function of its past realizations (an autoregressive component) and a
set of explanatory variables. When the structure of the model is predetermined and is not
subjected to statistical selection and verification, it can be viewed as an expert model. Here,
we adopt specifications used for forecasting of electricity prices, RES generation, and the
total load described by Maciejowska et al. [33]. Additionally, two models are proposed
that describe a residual load, defined as the difference between total load and the renewable
energy generation (RLt,h = Lt,h −RESt,h), and a price spread (SPt,h = DAt,h − IDt,h).

Let us first consider models that explain the generation structure: total load, RES and
wind generation, and residual load. Following [33], the load level is described by an equation
below:

Lt,h =αh + θh,1L
∗
t−1,h +

∑

p∈{2,7}
θh,pLt−p,h

︸ ︷︷ ︸
AR component

+βh,1FLt,h + βh,2FRESt,h︸ ︷︷ ︸
Forecasts of fundamentals

+ βh,3FLt,ave + βh,4FLt,max + βh,5FLt,min︸ ︷︷ ︸
Daily statistics

+εt,h,

(1)

The model consists of three main components: an autoregressive component with lags
p ∈ {1, 2, 7} that captures short-term dependencies and weekly seasonality, TSO forecasts
of fundamental variables ( FLt,h and FRESt,h = FWt,h + FSt,h), as well as the average,
minimum, and maximum forecasted load within day t. Because forecasts are performed
in the morning at 11:00, information on the load level for hours later than 10:00 is not
available. In this case, Lt−1,h is replaced by its TSO forecast. Therefore, in the regression
(1), a variable Lt−1,h is replaced by L∗

t−1,h, which is constructed as follows:

L∗
t,h =

{
Lt,h if h ≤ 10,

FLt,h if h > 10.
(2)

When RES and wind generation are considered, the model structure is slightly different.
First, the AR component is shortened and contains only one lag, p = 1. This is motivated
by the fact that neither wind nor solar generation exhibits weekly seasonality. TSO predic-
tions comprise not only the forecasts for hour h, but also for the previous and next hour,
respectively. It can be noticed that for hours h = 1 and 24 some of the information is not
available. In such a case, the corresponding variables: FRESt,h−1, FWt,h−1 or FRESt,h+1,
FWt,h+1, are not included in the regressions. The models take the following form:

Wt,h = αh + θhW
∗
t−1,h + βh,1FWt,h−1 + βh,2FWt,h + βh,3FWt,h+1 + εt,h, (3)

RESt,h = αh+ θhRES∗
t−1,h+βh,1FRESt,h−1+βh,2FRESt,h+βh,3FRESt,h+1+ εt,h. (4)

In order to prevent data leakage, for hours h > 10 the renewable energy generation is
replaced by its forecast:

W ∗
t,h =

{
Wt,h if h ≤ 10,

FWt,h if h > 10,
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RES∗
t,h =

{
RESt,h if h ≤ 10,

FRESt,h if h > 10.

A model describing the residual load comprises the above model specifications. Similarly
to the model (1), it contains three lags of load level, the predicted load, together with
information on the daily statistics of the forecasted load within the day t. Like in the model
(4), it includes the information on the RES level on the previous day and the predicted RES
generation in three consecutive hours: h− 1, h, h+ 1, whenever available.

RLt,h =αh + θLh,1L
∗
t−1,h +

∑

p∈{2,7}
θLh,pLt−p,h + βL

h,1FLt,h + βL
h,2FLt,ave + βL

h,3FLt,max

+ βL
h,4FLt,min + θRh,1RES∗

t−1,h +
1∑

i=−1

βR
h,2+iFRESt,h+i + εt,h,

(5)

Finally, the last three models describe the behavior of market prices: DA, ID and their
difference SP . These regressions are closely related to each other. They include seven
deterministic dummy variables Dt, which capture weekly seasonality, an autoregressive
component with lags p ∈ {1, 2, ..., 7}, TSO forecasts of fundamental variables (FLt,h and
FRESt,h), as well as the average, minimum and maximum levels of DA prices from the pre-
vious day, t − 1. Furthermore, the model takes into account generation costs and includes
fuel prices: coal (Ct) and gas (Gt).

DAt,h = αhDt +
∑

p∈{1,...,7}
θh,pDAt−p,h

︸ ︷︷ ︸
AR component

+βh,1DAt−1,ave + βh,2DAt−1,min + βh,3DAt−1,max︸ ︷︷ ︸
Daily quantities

+ βh,4FLt,h + βh,5FRESt,h︸ ︷︷ ︸
Forecasts of fundamentals

+βh,6Ct−1 + βh,7Gt−1︸ ︷︷ ︸
Fuel prices

+εt,h.

(6)

IDt,h = αhDt + θh,1ID
∗
t−1,h +

∑

p∈{2,...,7}
θh,pIDt−p,h + βh,1DAt−1,ave + βh,2DAt−1,min

+ βh,3DAt−1,max + βh,4FLt,h + βh,5FRt,h + βh,6Ct−1,h + βh,7Gt−1,h + εt,h.

(7)

While the day-ahead prices for day t are all known at the time of forecasting, the intraday
prices are represented by a variable ID∗, defined analogously to (2):

ID∗
t,h =

{
IDt,h if h ≤ 10,

DAt,h if h > 10.

The model of price spread has an analogous structure to eq. (7). The only difference
comes from the AR component, which includes lagged values of price spreads.

SPt,h = αhDt + θh,1SP
∗
t−1,h +

∑

p∈{2,...,7}
θh,pSPt−p,h + βh,1DAt−1,ave + βh,2DAt−1,min

+ βh,3DAt−1,max + βh,4FLt,h + βh,5FRt,h + βh,6Ct−1,h + βh,7Gt−1,h + εt,h.

(8)
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The intraday prices for hours after 10:00 are not known and therefore the SP ∗
t,h takes the

following form

SP ∗
t,h =

{
SPt,h if h ≤ 10,

DAt,h if h > 10.

The use of ARX models can be motivated by their very low computational complex-
ity and high interpretability coupled with a well-established performance in the literature.
While the model specifications presented in this section are used for further algorithm steps
in this paper, they may in practice be replaced with any point forecasting method.

3.2. Quantile regression
Quantile regression (QR) is a modeling approach that allows linking a selected quantile

of a distribution, τ , of an endogenous variable Yt with a vector of exogenous variables Xt.
Since quantiles are well defined only for univariate processes, QR requires separate modeling
of the variables of interest: electricity prices, load, and RES. Let us denote by Qτ (Yt) the τ
quantile of Yt. Then QR assumes that

Qτ (Yt) = Xtθτ , (9)

where Xt is a (1×K) vector of explanatory variables and θτ is a (K × 1) vector of param-
eters. Notice that θτ depends on τ and changes with the analyzed quantiles. To keep the
results comparable with other presented approaches, the variables included in the model (9)
correspond to the ARX specifications from the previous Section 3.1.

The coefficients of (9) can be estimated by minimizing the sum of pinball scores (PS)
throughout the calibration window. A PSt for a given period t is defined as:

PSt(τ) =

{
(1− τ)(Qτ (Yt)− Yt) for Yt < Qτ (Yt),

τ(Yt −Qτ (Yt)) for Yt ≥ Qτ (Yt).
(10)

The estimation process can be carried out for 99 percentiles: τ = 0.01, ..., 0.99 and
therefore QR can be used to approximate the entire distribution of Yt. Here, QR is employed
for the construction of prediction intervals (PI). A PI with a nominal coverage 1 − α can
be estimated as

PIQR
1−α = [ Qα/2(YT+1), Q(1−α/2)(YT+1) ],

where Qτ (YT+1) is a predicted quantile of Yt for the period T + 1.

3.3. Historical simulations
Historical simulation is a direct method of constructing probabilistic forecasts that is

widely studied in the literature [32]. In order to obtain a multidimensional ensemble of
forecasts, the method must be applied to all variables of interest at the same time. Let us
denote by Yt ∈ RK a K-dimensional vector of endogenous variables. In the case of elec-
tricity markets, the vector may include information about electricity prices and generation
structure, for example Yt = [DAt,h, IDt,h, Lt,h, RESt,h]. Suppose that we want to calculate
a forecast for a period T + 1. Let us define a training set, Strain, as a window that covers
periods preceding T +1, which is used to construct probabilistic predictions. The algorithm
consists of the following steps:

1. Calculation of point forecasts Ŷt for t ∈ Strain with a moving window approach.

9



2. Estimation of forecast errors: et = Yt − Ŷt.
3. Construction of the ensemble of predictions

Ψ = {y ∈ RK : y = ŶT+1 + et}

In this research, point predictions used in steps 1 – 3 are based on ARX models described
in Section 3.1. It can be noticed here that although the variable Yt is a vector, its indi-
vidual elements are described by different equations. However, thanks to a simultaneous
computation of the predictions, the residuals et maintain the correlation structure of the
true forecast errors.

The collection of forecasts, Ψ, is next used to construct prediction intervals. In a classical
form, a PI with a nominal coverage 1− α can be estimated as

PIhist1−α = [ Qα/2(Ψ), Q(1−α/2)(Ψ) ], (11)

where Qτ (Ψ) is the τ quantile of the pool Ψ.

3.4. Multiple split method
In this research, we propose a multiple split forecasting method. It is an extension of

an approach known in the literature under the name split conformal prediction or inductive
conformal inference described by [28; 31; 29; 10]. The main idea of this forecasting scheme
is to use a random split of the data to construct probabilistic predictions. First, the training
data is divided into two disjoint windows: estimation and calibration. The first (estimation)
subset is used to estimate the model parameters, which are then applied to calculate point
predictions of the observations both within the training window and out-of-sample (i.e.
target point prediction). The forecast errors are then estimated by computing the difference
between the actual observations and their predictions in the calibration subset. Finally,
the errors are used to approximate the distribution of the dependent variable. The way
the are explored depends on the adopted methodology. When classical resampling methods
are considered, they are used to directly approximate the quantiles of the distribution. In
the context of conformal predictions, their absolute values are used to construct prediction
intervals. Since our interest goes beyond prediction intervals, the first approach is adopted
in this paper.

The multiple split approach extends previous works in various directions. Firstly, the
random split is conducted multiple times in order to improve the forecast accuracy and
decrease the variability of the outcomes. However, unlike in leave-k-out or delete-d jack-
knife approaches [see 34], we do not consider all possible divisions of the sample. This
would significantly increase the computational complexity, but add little to the prediction
quality. Second, forecast errors from the training window are used to directly construct an
ensemble of forecasts rather than to estimate the distribution quantile. Therefore, the final
ensemble is constructed by adding the results from individual splits, and there is no need
for an intermediary step of averaging the quantiles or prediction intervals as in Lei et al.
[28]. Finally, the approach is applied to predict a multidimensional random variable. We
believe that resampling methods are of particular use in this context. They do not require
parametric modeling of the multidimensional distribution, and at the same time maintain
the correlation structure of forecasts and forecast errors.

In the multiple split method, similar to the historical approach, all variables are fore-
casted jointly and hence are collected in a K dimensional vector Yt. Suppose that we observe
a sample S that includes periods t = 1, ..., T and we want to calculate a forecast for a period
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T + 1. Each iteration of the proposed algorithm consists of N independent splits. The
procedure for a single split, i = 1, ..., N , is presented in Fig.3. On the graph, the estima-
tion subset and associated steps are marked in green. Gray shading represents calibration
periods. Striped boxes show the final forecasts. The placement of boxes indicates the or-
der of operations (from left to right and from top to bottom), while the arrows show the
dependency on the results from previous steps. The ith split consists of the following steps:

1. The sample is randomly divided into estimation (S(i)
estim, green colour Fig. 3) and

calibration (S(i)
calib, grey colour Fig. 3) subsets such that S = S

(i)
estim ∪ S

(i)
calib and

S
(i)
estim ∩ S

(i)
calib = ∅.

2. The data in the estimation window, S
(i)
estim, is used to estimate the parameters of

models used for forecasting, θ̂i, which are next employed to calculate predictions for
periods t ∈ {S(i)

calib, T + 1}: Ŷt,i = Xtθ̂i

3. For each observation in the calibration window, t ∈ S
(i)
calib, the forecast error is calcu-

lated as et,i = Yt − Ŷt,i

4. The ensemble of predictions is constructed as

Ψi = {y ∈ RK : y = ŶT+1,i + et,i, t ∈ S
(i)
calib}

Steps 1 – 4 are repeated N times, and new sets of forecasts are added to the pool

Ψ =

N⋃

i=1

Ψi. (12)

Finally, analogously to the historical method, the ensemble of predictions is used to construct
prediction intervals

PIMS
1−α = [ Qα/2(Ψ), Q(1−α/2)(Ψ) ], (13)

where 1− α is the nominal coverage level of PI.
As a result, the algorithm provides a set of forecasts that are derived from different

splits of the data. In the proposed approach, we aggregate information rather than average
prediction intervals as in [28]. This method has several advantages. First, by aggregating
the ensembles instead of the distributions, we do not need to decide on the averaging method
for probabilistic (e.g. quantile) forecasts [see 35; 36; 37]. Second, the Bonferroni averaging
method applied by Lei et al. [28] to construct prediction intervals limits the number of
splits, N , that can be used, as it requires estimation of a α/2N and 1 − α/2N quantiles
of data. Finally, it allows us to use a wider variety of measures for assessing the forecast
accuracy.

3.5. Forecast evaluation
Probabilistic forecasts discussed in previous sections represent two popular types of pre-

diction: quantile forecasts and ensemble forecasts. Although it is possible to estimate quan-
tiles from a set of predictions, it is more difficult to generate a diversified ensemble from
a set of quantiles. Therefore, in this article, we use two separate approaches to assess the
forecast accuracy that are dedicated to one of these types of predictions.

First, using QR, historical simulations, or the multiple split method, we approximate the
distribution of the variables of interest with 99 quantiles and construct prediction intervals
of nominal coverage 80%, 90%, 95% and 98%. The precision of PIs is evaluated with the PI
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ensemble

ŶT+1,i + et,i

Figure 3: Schematic illustration of the algorithm.

coverage probability (PICP). The measure is based on the average number of observations
in the testing window that fall into the PI. For an hour h, it is calculated as

PICPh =
1

T

∑

t

I(Yt,h ∈ PIt,h), (14)

where I(Yt,h ∈ PIt,h) is an indicator function that takes value 1 when the variable Yt,h falls
to the prediction interval PIt,h and zero otherwise. To obtain the final value, the PICP s
for individual hours are averaged

PICP =
1

24

∑

h

PICPh. (15)

From the definition, this empirical coverage should be as close as possible to the nominal
one. To evaluate whether PICPh is sufficiently close to the nominal coverage, we perform
a Kupiec test [38] for each hour of the day separately. The null hypothesis says that the
empirical coverage equals the nominal level, whereas under the alternative the PICPh differs
significantly from 1 − α. In this article, we report the percentages of hours for which we
were unable to reject the null at the significance level 5%. Therefore, the closer the measure
is to one, the more successful the prediction method is in providing PIs of a predefined
probability level.

Finally, to assess the quality of the estimated 99 quantiles, we use CRPS described by
Gneiting et al. [39] that evaluates both the calibration and the sharpness of the distribution.
The measure is defined as an integral of the the pinball score defined in eq. 10 over the entire
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predictive distribution, and can be approximated for quantile forecasts as the arithmetic
mean of pinball scores. For each of the 99 percentiles τ = 0.01, ..., 0.99, we calculate PSt,h(τ).
The CRPS of a given observation can then be calculated as

CRPSt,h =
1

99

∑

τ

PSt,h(τ). (16)

The measure for the whole out-of-sample period is an average over all observations:

CRPS =
1

T

1

24

∑

t

∑

h

CRPSt,h. (17)

The lower the value of CRPS, the better the approximation of the distribution. It should be
noted here that the sharpness of the distribution has a significant impact on the measure.
However, sharpness is a criterion that should be analyzed only when the calibration is
correct. Furthermore, since the pinball score is a loss function used to estimate the QR,
CRPS may favor the results that arise from this forecasting method. Thus, we believe that
CRPS should be analyzed together with other measures, such as PICP.

In this article, we also use evaluation methods that are dedicated only to ensemble
forecasts. In particular, we apply the reliability index [9], which assesses whether the ranks
of actual observations within the pool of predictions have a distribution close to uniform.

In the case of a univariate variable, Yt,h, we denote by rt,h a proportion of ensemble fore-
casts smaller than or equal to Yt,h. Since rt,h resembles a cumulative distribution function,
it should have a uniform distribution. Let us divide an interval [0, 1] into M equal bins:
B1, ..., BM , and denote by fj,h the frequency of rt,h falling into bin j in the out-of-sample
period.

fj,h =
1

T

T∑

t=1

I(rt,h ∈ Bj).

Then the reliability index can be calculated as follows

∆h =
M∑

j=1

|fj,h − 1

M
|. (18)

The lower the value of ∆h, the closer the empirical distribution of rt,h is to the uniform one.
The final measure of the discrepancy is calculated as an average of ∆h over 24 hours.

∆ =
1

24

24∑

h=1

∆h (19)

To assess the accuracy of the multivariate probabilistic forecast, we use the idea of a
multivariate rank histogram described by [9]. Given the ensemble of forecasts, Ψ, and the
verifying observation, Y0 ∈ RK , the procedure consists of the following steps:

1. First, the pre-ranks are assigned, such that

ρj =
M∑

i=0

I(Yi ⪯ Yj),

where Yi ∈ Ψ for i = 1, ...,M . Moreover, Yi ⪯ Yj if and only if Yi,k ≤ Yj,k for all
k = 1, ...,K.
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2. Next, the multivariate rank is calculated as the rank of the pre-ranks. When two
observations have the same pre-rank, the final rank is assigned randomly. Let us
adopt the following notation:

r1 =
1

M

M∑

j=0

I(ρj < ρ0),

r2 =
1

M

M∑

j=0

I(ρj < ρ0).

Then the final rank, r, is chosen randomly from the set {r1 + 1, ..., r1 + r2}.
3. Similarly to the univariate case, to calculate the reliability index, divide an interval

[0, 1] into M equal bins and denote by fj,h the frequency of rt,h falling into bin j.
Then the discrepancy indices can be calculated according to (18) - (19).

The multivariate rank histogram shows whether the multidimensional distribution is well
calibrated to the data. It depends on the quality of the marginal distributions as well as on
the ability to approximate the correlation between the variables.

4. Support of the decision process of a wind farm

In this research, we show how the joint prediction of different market fundamentals can
be used to support the decision process in the electricity market. We analyze the trading
decisions of a company that owns wind farms spread throughout Germany. The amount of
energy produced is assumed to be small enough not to influence market prices. Each day,
wind turbines generate electricity, which is sold in the power energy exchange. The company
has access to the day-ahead (DA) and intraday (ID) markets and does not speculate; i.e.,
it aims to sell the entire generated energy in either of these markets. Although purchasing
energy on the intraday market may be necessary in the case of an overestimated generation
forecast, this operation is never done intentionally.

The day before delivery, the company places bids on the DA market. The decision
on how much to offer there has a significant impact on the trading outcome. Due to the
intermittent nature of the wind, the company faces uncertainty about the level of generation
that hampers the decision-making process. If the company sells less electricity in the DA
market than it produces, the remaining generation needs to be offered in the ID market. On
the contrary, if it offers more than it generates, it needs to buy the missing production in the
ID market. To construct the offer, the company may use predictions of both its generation
and market conditions. Similarly to [11], decision is described by a parameter q ∈ [0, 1]
that represents the fraction of the forecasted wind generation Ŵ offered in the day-ahead
market.

In this paper, it is assumed that the company faces some operational and maintenance
costs CO&M , which influence the level of marginal profits. For simplicity, these costs are
kept constant and expressed in EUR per 1 MWh of production. Other types of cost are
interpreted as fixed costs and therefore do not influence the decision process. Then the
profit of the company can be calculated as follows

Π(q) = qŴt,hDAt,h︸ ︷︷ ︸
DA market

+(Wt,h − qŴt,h)IDt,h︸ ︷︷ ︸
ID market

−Wt,hCO&M︸ ︷︷ ︸
O&M costs

. (20)
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Hence, the profit per 1MWh of generation is

π(q) = qŵt,hDAt,h + (1− qŵt,h)IDt,h − CO&M , (21)

where ŵt,h shows how close is the predicted generation level to the actual one: ŵt,h =

Ŵt,h/Wt,h. When Wt,h = 0 then the average profit is also set to zero.
It should be noted here that the level and distribution of income depend on three main

sources of uncertainty associated with the unknown level of generation, Wt,h, and market
prices: DAt,h, IDt,h. Since profit is a nonlinear function of these variables, its distribution
is nontrivial. Resampling and simulation methods, such as the historical approach or the
multiple split method, are of great help in estimating its probabilistic forecasts. The set of
joint predictions of different market fundamentals can be used to construct an ensemble of
future profits, which in turn can be used to approximate the income distribution.

4.1. Bidding strategies
In this research, various trading strategies are considered. The benchmark naive strat-

egy assumes that the entire predicted generation is sold on the DA market. The profitability
of this approach depends primarily on the accuracy of wind generation forecasts. It is as-
sumed that the company places an unlimited bid for the quantity Ŵt,h on the DA market
and balances the position on the ID market. Hence, the parameter q is fixed and equal to
q = 1. This implies that the strategy responds only to the fluctuation of the generation but
does not adjust to the market situation.

Next, three data-driven strategies are proposed that explore probabilistic profit forecasts
to design the optimal trading strategy. As mentioned above, the strategy is adjusted with
a parameter q. For a grid of different values of q, the ensemble of predictions of π(q) is
constructed. The set of future profit values, Ψ(q), is used to derive the optimization criteria
and select the best value of q.

The first and most natural approach to choosing q is to maximize the expected value of
the profits, henceforth called the expected profit strategy. It is based on a point forecast
of income, calculated here as the median of the ensemble Ψ(q). The value of q is chosen as
the one for which the median is the highest. This strategy is expected to bring high income
at the cost of increased risk.

The second VaR strategy is relevant for more risk-averse traders. It focuses on mini-
mizing risk, commonly represented in business applications by Value-at-Risk (VaR). Here,
we calculate the Value-at-Risk as the 5th percentile of the ensemble. Note that VaR is often
expected to be negative and therefore presented as the absolute value of the quantiles of
predicted or historical returns, in which case the quantity should be minimized. In this
application, it is possible that VaR is positive (i.e., even the worst case scenario would not
lead to losses), and therefore we do not apply absolute value, leading to higher VaR being
more desirable.

The final strategy, called Sharpe Ratio strategy, aims to find a balance between
maximizing profits and minimizing risk. To do this, the Sharpe ratio (expected profit
divided by its standard deviation, [40]) is calculated for different values of q. The optimal
q is chosen so that the ratio is maximized. The Sharpe ratio strategy, contrary to two
previous approaches, explores information about the entire predictive distribution instead
of its selected quantile.

The three data-driven strategies can be summarized as follows:

1. Expected profit strategy (Eπ): q = argmaxq∈[0,1] Q50%(Ψ(q)),
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2. VaR strategy (V aR): q = argmaxq∈[0,1] Q5%(Ψ(q)),

3. Sharpe ratio strategy (SR): q = argmaxq∈[0,1] SR(q) = argmaxq∈[0,1]
π̄(q)
σπ(q)

, where
π̄(q) and σπ(q) denotes the average value and the standard deviation of the predicted
profits in the ensemble Ψ(q), respectively.

It can be noted that in the above specifications, the value of the profit per 1 MWh of
generation is used instead of the total profit. In addition, in the remaining parts of the
article, the profit per 1 MWh of generation is used to evaluate the results of the experiment
because π does not depend on the scale of the company (as long as it does not have market
power to impact electricity prices).

4.2. Stopping rules
It is well documented in the literature and is visible in Fig. 2 that electricity prices can

fall below zero. The existence of very low or negative prices implies that even an optimal
bidding strategy can cause losses. To avoid such a situation, we assume that the company is
allowed to curtail the production. It means that it either stops the generation (the turbines
are turned off) or stores electricity. The second solution becomes an attractive alternative
as more and more investments are made in the development of energy storage systems.

In our research, the production curtailment implies that no electricity is sold in any of
the markets, which simulates turning off the turbines without storing the unsold generation.
In the case of naive strategies, the trader may place a limited bid instead of an unlimited bid
on the DA market and set a lower bound for a price at zero. We call this a naive limited
bid strategy. In case of data driven strategies, more complex solutions are available
that account for a risk aversion of company owners. We assume that the generation is
stopped when a selected quantile of the profit distribution is less than zero. It means that
the company is engaged in the trade when Qτ (Ψ(q∗)) ≥ 0 and curtails the production
for Qτ (Ψ(q∗)) < 0. The fraction of predicted generation offered on the DA market, q∗, is
selected with one of the three approaches: Eπ, V aR or SP discussed in the previous Section
4.1 .

It can be noticed that a risk-neutral trader would likely base the decision on the center
of the distribution (for example, a median), whereas a risk-averse trader would place bids
depending on pessimistic scenarios (low quantiles). A trader who is reluctant to stop pro-
duction may consider high quantiles that exceed 50%. Finally, as the aversion to curtailment
increases, the selected quantile may converge to one, which will represent the strategy that
assumes daily trade (i.e. without stopping generation).

4.3. Evaluation of trading strategies
The performance of the presented trading strategies is evaluated according to the level

of average profit, the trading risk, and the frequency of generation curtailment. Hence, we
provide the company with a broad perspective, which encompasses potential preferences
and aversions of the trader.

When the income level is considered, two quantities are reported: the average profit and
the average profit per trade. The main difference between these measures results from the
approach towards days when the production is curtailed. The average profit includes the
whole testing period and is calculated as the weighted mean of individual hourly profits:

π̄ =
1

24T

T∑

t=1

24∑

h=1

πt,h(q
∗), (22)

16



where q∗ is an optimal value of the parameter selected with the analyzed strategy (q∗ changes
over days and hours). On the contrary, the profit per trade, π̃, is calculated only for periods
when the trade occurs, and therefore observations when the generation is curtailed are
disregarded. These two measures, π̄ and π̃, are different only for strategies with a stopping
rule.

To better understand the significance of the stopping rule, the frequency of trade is
computed. It shows how often the stopping rule is not violated. We expect that a frequent
curtailment of generation may result in a rise of the average profit per trade and a fall in
the average total profit.

Finally, the trading risk is evaluated with the VaR measure calculated as the 5% quantile
of the average profit πt,h. In the calculation of VaR only the days when the trade occurs
are taken into account. Otherwise, VaR for many strategies with stopping rules will simply
be zero, reflecting the profit on days when the generation is curtailed. However, in these
periods, the company is not exposed to a trading risk.

5. Results

The results of the research are divided into two parts. First, Section 5.1 focuses on evalu-
ating the statistical accuracy of probabilistic forecasts obtained with the methods discussed
above. Next, in Section 5.2, the performance of the trading strategies based on the multiple
split approach is assessed and the economic value of the predictions is measured. In the
analysis, we adopt the following specifications:

• The evaluation period consists of 730 observations.

• Two different window sizes are used to calibrate the parameters: 365 and 730 days,
which correspond to one and two years of observations, respectively.

• In the multiple split approach, the sample is evenly split between the estimation and
calibration parts. When the window of 365 days is considered, the calibration window
consists of 183 observations.

• Two values of the number of splits are evaluated: N = {1, 20}. The results of these
specifications are denoted MS(1) and MS(20), respectively.

The forecasting experiment is based on a rolling window scheme, in which each hour of the
entire two-year validation period is predicted separately.

5.1. Statistical accuracy of probabilistic forecasts
To evaluate the accuracy of forecasts, we first consider the four fundamental variables

that describe the electricity markets. DA price, ID price, total load, and RES generation.
Next, the ability to predict a linear combination of these variables is evaluated: price spread
(a difference between the DA and ID prices) and residual load (a difference between load
and RES). In the case of QR models, the residual load regression is specified as eq. (5).
When the price spread is predicted, the exogenous variables included in the model are the
same as in eq. (6). For ensemble forecasts based on historical simulations or multiple split
methods, the set of predictions is constructed as a function of individual elements (univariate
forecasts) from the pool. Hence, there is no need to specify separate models for forecasting
the linear combination of fundamental variables.
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5.1.1. Forecasting of market fundamentals
First, let us consider the probabilistic forecasts of the individual fundamental variables.

The results presented in Table 2 show the PI coverage probabilities for four levels of PIs:
80%, 90%, 95%, and 98%, together with the average frequencies of the Kupiec test indicating
a correct coverage and the levels of the CRPS measure. Forecasts are calculated using two
different sizes of calibration windows: 365 and 730 days. The outcomes show that all the
forecasting methods provide PIs that are too narrow and hence have PICP below the nominal
level. However, the PIs of the ensemble forecasts seem to be better calibrated to the data.
In particular, for T = 365, PICP of QR are much below the nominal coverage level, while
for MS (20) they are close to 1− α. This finding is confirmed by the results of the Kupiec
test. In case of electricity prices (columns DA and ID, Table 2), the test indicates that
the coverage level of the QR method is correct in less than 2% cases for T=365. At the
same time, for MS(20) forecasting method, the PICPs are not statistically different from
the nominal level in more than 90%. When the longer calibration window is considered,
the numbers are 43.33% and 76.67% for the ID prices, respectively. For load and RES, the
differences between QR and MS are less substantial but still visible. The proportion of cases
for which the Kupiec test cannot reject the null is greater for MS (20) than QR by almost
63 and 20 percentage points for load and RES, respectively.

When ensemble forecasts are analyzed, it can be observed that historical simulations have
PICPs closer to the nominal level than QR and MS(1) but worse than MS(20). Moreover,
the results for different MS specifications show that an increase of the number of splits
improves the calibration of the quantiles. There are also differences in behavior of the
approaches for different sizes of calibration windows. MS methods work relatively better for
shorter windows with T = 365, while historical simulations have empirical coverage closer
to the nominal level for T = 730. In this respect, the QR performs similarly to the historical
simulations.

Finally, the forecasting methods can be compared on the basis of CRPS. As the measure
is based on the pinball score, which is minimized when estimating QR, it is not surprising
that QR outperforms other approaches in this context. However, the differences between
QR and MS(20) are moderate, and MS(20) has the lowest CRPS of all the methods for
Load. Unlike in case of PICP, the historical simulations are outperformed by both QR and
MS(20). Also, the comparison of different window sizes leads to different conclusions than
PICP showing that a shorter window is preferable for all the models.

Next, let us take a deeper look at the ensemble methods. Table 3 presents the reliability
index (RI) for both univariate and multivariate analysis. It can be noted that the historical
simulation can be interpreted as the multivariate approach because it provides residuals
that maintain the correlation structure of the forecast errors. When MS approaches are
considered, we show first the results for cases where MS is applied independently to all
variables (called Uncorr. in Table 3). Second, the outcomes of the simultaneous forecasting
of the fundamentals are presented as MS Corr. Joint modeling allows to approximate the
correlation of the residuals. Similarly to the evaluation of quantile predictions, the reliability
index is shown separately for short and long calibration window sizes.

The results of the marginal distributions show that the MS(20) approach provides the
lowest index value for all variables, except for the DA, T = 730. Moreover, it is demon-
strated that from the perspective of an individual variable, there are no differences between
joint and separate applications of the MS method. Therefore, there are no gains of multidi-
mensional modeling. Finally, similar to PICP, the reliability index indicates that MS(1) is
inferior to MS(20) and the historical approach. When the forecasts of the multidimensional
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distributions are evaluated (last column of Table 3), the results confirm the superiority of
the MS(20) method. It provides the lowest value among all specifications RI = 0.3027.
Furthermore, substantial differences could be observed between approaches that account
for the correlation of forecast errors or not. For example, for T = 365 and MS(20), the
reliability index is 0.3267 for uncorrelated residuals and 0.3027 for correlated ones. This in-
dicates substantial gains of using multidimensional modeling in joint forecasting of market
fundamentals.

5.1.2. Forecasting of linear combinations of market fundamentals
Since the analysis of the prediction accuracy of the fundamentals of the market indicates

that MS(1) is inferior to MS(20), only the results for the latter are presented in the following
sections. Next, to assess the gains from multidimensional forecasting, we analyze separately
the outcomes for MS approach computed separately (Uncorr.) or jointly (Corr.) for all four
fundamental variables. In case of the QR, the multidimensional modeling is not available,
and therefore the price spread and the residual load need to be forecasted directly.

Table 4 shows three measures that describe the accuracy of quantile predictions: PICP,
proportions of the Kupiec test indicating a correct empirical coverage, and the average
value of CRPS. When the PICP is considered, the outcomes confirm that QR provides
prediction intervals which are too narrow and therefore exhibit coverage much lower than
the nominal levels. This property is particularly well visible when the rejection of the
Kupiec test is analyzed. In the case of QR, the test does not allow one to reject the null
of a correct coverage in only 4.15% and 12.5% of the cases for Price Spread and Residual
Load, respectively (T = 365). As the calibration window increases, the frequencies increase
accordingly to 62.50% and 24.17%, but still remain much lower than for historical simulations
and MS(20) with correlated errors. Similarly to previous outcomes, it can be observed that
the accuracy of QR predictions increases as the sample size rises from 365 to 730 days.

The empirical coverage measured by PICP of both ensemble methods is much closer to
the nominal level than in the case of QR. For a shorter calibration window, the results of
the Kupic test show that the coverage of the analyzed PIs is not statistically different from
the nominal level in 73.33% and 92.5% cases for the MS (20) approach (MS,Corr.). The
frequencies are slightly lower for the historical simulation method and are approximately
20.00% and 46.67%.

When the results of the CRPS measure are examined, the outcomes support previous
findings, which show that the QR method provides a forecast with the lowest CRPS level.
This indicates that the probabilistic forecasts of QR are sharper than those of other methods.

Finally, as multidimensional models are compared with independent forecasting of fun-
damental variables, the results indicate the superiority of the first approach. The MS(20)
method that does not account for the correlation of forecast errors (MS, Uncorr.), provide
too wide intervals with the empirical coverage far from the nominal level. The problem
is particularly severe for the Price Spread, for which the PICP of 80% PI exceeds 92%.
Furthermore, the performance of the method does not improve when a longer calibration
window is used. In this case, the Kupiec measure falls below 6% and 50% for Price Spread
and Residual Load, respectively.
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Table 2: Accuracy measures of probabilistic forecasts based on quantile predictions: market fundamentals

Model T=365 T=730

Data DA ID Load RES DA ID Load RES

PICP QR

80% 71.66% 72.99% 76.39% 78.22% 75.52% 77.52% 76.04% 79.09%

90% 82.28% 83.54% 86.78% 88.28% 86.06% 87.10% 87.18% 89.45%

95% 87.71% 89.46% 92.49% 93.41% 91.41% 92.06% 93.23% 94.32%

98% 90.72% 92.06% 96.00% 96.72% 95.41% 96.11% 96.54% 97.29%

Kupiec (%) 1.67% 0.00% 25.83% 74.17% 17.50 % 43.33% 35.83% 90.83%

CRPS 1.8692 2.5276 1.9691 1.8576 2.0067 2.6453 2.2387 1.9021

PICP Historical

80% 75.73% 76.28% 77.32% 77.55% 75.47% 76.50% 77.45% 79.02%

90% 86.31% 86.33% 87.13% 87.50% 87.57% 88.11% 88.56% 89.27%

95% 92.55% 92.80% 93.09% 93.50% 93.78% 93.87% 93.76% 94.70%

98% 96.68% 96.72% 97.03% 97.35% 97.65% 97.48% 97.35% 97.72%

Kupiec (%) 20.83% 33.33% 54.17% 74.17% 45.00% 55.00% 84.17% 98.33%

CRPS 2.0154 2.7723 2.0188 1.9258 2.1130 2.7387 2.2521 1.9440

PICP MS(1)

80% 73.10% 74.08% 77.00% 77.19% 72.60% 74.83% 75.05% 77.34%

90% 84.10% 85.36% 87.75% 87.42% 84.69% 85.51% 87.03% 88.07%

95% 91.36% 92.24% 94.07% 93.32% 91.51% 92.04% 93.15% 94.02%

98% 96.61% 96.92% 97.66% 97.15% 96.55% 96.86% 96.87% 97.41%

Kupiec (%) 10.83% 13.33% 70.83% 64.17% 8.33% 20.00% 28.33% 73.33%

CRPS 2.0749 2.7761 2.0129 1.9077 2.1627 2.7905 2.2774 1.9404

PICP MS(20)

80% 80.07% 80.76% 78.83% 78.61% 76.99% 78.50% 76.19% 78.12%

90% 90.13% 90.33% 89.75% 88.53% 87.95% 88.34% 88.14% 88.62%

95% 94.78% 94.95% 95.03% 93.81% 93.25% 93.63% 93.68% 94.25%

98% 97.67% 97.92% 97.90% 97.33% 97.51% 97.49% 97.05% 97.58%

Kupiec (%) 90.00% 98.33% 98.33% 92.50% 60.00% 76.67% 51.67% 81.67%

CRPS 1.9090 2.5653 1.9689 1.8843 2.0780 2.6873 2.2542 1.9284
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Table 3: Reliability index: univariate and multivariate analysis: market fundamentals

DA ID Load RES All

Model T = 365

Historical 0.3386 0.3460 0.3363 0.3400 0.3350

MS(1)
Uncorr. 0.4053 0.3797 0.3415 0.3380 0.3660

Corr. 0.4034 0.3769 0.3432 0.3393 0.3551

MS(20)
Uncorr. 0.3315 0.3092 0.2923 0.2927 0.3267

Corr. 0.3375 0.3133 0.3049 0.2889 0.3027

T = 730

Historical 0.3245 0.3185 0.3172 0.2904 0.3123

MS(1)
Uncorr. 0.3631 0.3401 0.3363 0.3129 0.3444

Corr. 0.3598 0.3407 0.3308 0.3140 0.3327

MS(20)
Uncorr. 0.3219 0.3112 0.3106 0.2941 0.3359

Corr. 0.3292 0.3112 0.3044 0.2893 0.3202

Table 4: Accuracy measures of probabilistic forecasts based on quantile predictions: linear combination of
market fundamentals

QR Historical MS(20)

Corr. Uncorr.

Spread RL Spread RL Spread RL Spread RL

PICP T=365

80% 74.71% 75.88% 75.83% 76.98% 82.61% 78.76% 92.74% 76.03%

90% 85.13% 86.23% 86.04% 86.92% 91.30% 89.16% 96.15% 87.01%

95% 90.67% 91.82% 92.00% 92.96% 95.55% 94.19% 97.87% 92.99%

98% 92.89% 95.02% 96.56% 97.12% 97.61% 97.22% 99.02% 97.15%

Kupiec (%) 4.17% 12.50% 20.00% 46.67% 73.33% 92.50% 18.33% 65.00%

CRPS 1.9176 1.9182 2.1840 2.9201 1.9870 2.8387 2.0984 3.2046

PICP T=730

80% 78.85% 75.74% 77.77% 76.86% 80.39% 76.90% 92.73% 76.59%

90% 88.23% 86.82% 88.09% 87.08% 89.90% 87.40% 96.48% 87.41%

95% 93.24% 92.77% 93.92% 93.13% 94.55% 93.18% 98.04% 93.33%

98% 96.31% 96.22% 97.35% 96.85% 97.61% 96.90% 99.16% 97.12%

Kupiec (%) 62.50% 24.17% 72.50% 44.17% 91.67% 45.83% 5.83% 46.67%

CRPS 1.9264 2.2044 2.2268 3.2397 1.9918 3.1097 2.1293 3.1101
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5.2. Economic value of forecasts
To assess the economic value of the newly proposed method, we use probabilistic pre-

dictions to support the decision process of a generation utility. As described in Section 4,
the company owns wind farms that are spread throughout Germany and needs to decide
on the share of predicted production, q, offered on the DA market. The remaining part of
the generation is sold on the ID market. In the case of wind generation, operational and
maintenance costs account for about 25%-35% of the levelized energy cost (LCOE) [41; 42].
It implies that O&M costs vary between USD 10-30 per MWh [43]. In the article [44], the
costs are estimated at USD 11 per MWh for onshore installations and are expected to de-
crease in the future. Since the exchange rate between USD and EUR has oscillated between
0.9-1 USD/EUR, in this research we assume that CO&M = 10.

First, let us analyze the average total income earned from different strategies. The results
are presented in Fig. 4, in which lines marked with dots show the outcomes of strategies
without production curtailment, and the lines marked with crosses present the strategies
that restrict trade. The naive benchmark, which assumes that all predicted generation is
sold on the DA market, q = 1, is depicted to facilitate comparison. It earns on average 27.27
EUR/MWh. The results show that the adoption of data-driven strategies is profitable even
when no curtailment is allowed. The highest revenue is achieved for the approach that aims
to maximize the expected profit. A strategy optimizing the Sharpe ratio is only slightly
worse, and brings 27.55 EUR/MWh instead of 27.56 EUR/MWh on average. When the
results are compared with the benchmark, it can be seen that they bring 1.39% and 1.46%
more, respectively.

The application of strategies that enable production curtailment requires the selection
of a profit quantile that is used as a threshold in the stopping rule. Therefore, in the case
of three data-driven approaches, revenue depends on the quantile τ . For low values of τ ,
generation is often reduced and, therefore, the company loses potential income. As the
threshold quantile increases, the profit rises and exceeds both the naive benchmark and the
limited bid. The strategies obtain their maximum of 27.95, 27.92, and 27.83 EUR/MWh
for strategies based on Eπ, Sharpe ratio and VaR. Finally, as seen in Fig. 4, income
starts to decrease and falls to the level of the corresponding strategies without stopping the
generation. The results indicate that the curtailment of production leads to a substantial
increase of income. Compared to the naive benchmark, the limited bid strategy rises profits
by 2.03%. In the case of data-driven approaches, the increase is even greater and reaches
2.87% for Eπ, 2.77% for Sharpe ratio and 2.42% for VaR strategies. This means that the
stopping rule increases the profits by additional 2%.

When the profit per trade is considered, it can be noticed that for strategies without
curtailment, the average profit and the profit per trade are the same. Therefore, Fig. 5
presents only the results of the strategies with stoppage of production. The profits of the
naive benchmark are added to the plot for comparison. The results show that the risk
averse strategies that are based on low quantiles of profits lead to an increase of the profit
per trade to 31 EUR per MWh. This implies that it exceeds the income of the naive
benchmark strategy by 15.34%. As τ increases, the frequency of trade also rises, and the
income per trade converges to the average total income presented in Fig. 4. When the
limited bid is considered, the profit per trade reaches 28.22 EUR/MWh and surpasses the
naive benchmark by 3.85%. However, income remains lower than for data-driven approaches
for most thresholds, τ < 70%. Only when the company becomes reluctant to curtailing the
generation, the outcome of the limited offer exceed those of other strategies. Finally, it can
be observed that among the data-driven approaches, the one that maximizes the expected
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value of profits is the most profitable. Similarly to previous results, it is followed by the
Sharpe ratio strategy. The lowest income is earned by the VaR approach.

The performance of different strategies is summarized in Table 5, which shows the fre-
quency of trade, average profits and average profits per trade relative to the naive bench-
mark. The outcomes of approaches that allow for stoppage of productions depend on the
quantile of profits used as the threshold. When τ is set equal to one (last column, Table
5), the strategy is equivalent to an approach without the stopping rule. The results indi-
cate that data-driven methods lead to a reduction in the generation of 0.00%–14.22%. The
greatest improvement is obtained for τ ∈ [0.3, 0.5], when the decrease in the generation
frequency by less than 5% brings an increase in profits of more than 2.5% in the case of
average profits and 5-7% in the case of average profit per trade. When the limited bid ap-
proach is considered, it can be seen that it leads to production curtailment in less than 2%
cases. At the same time, it brings an additional 2% of the average profits. The strategies
without stopping rule, shown in the last column of the table, confirm previous findings and
demonstrate that they lead to a moderate increase in profits (between 0.88% and 1.46%).

Economic evaluation is not complete without risk analysis. Here, 5% VaR is used to
measure profit in the case of a pessimistic scenario. The VaR for different strategies is
presented in Fig. 6. The plot shows the results of the strategies without (dot markers) and
with stopping rules (cross markers). First, it can be noticed that the naive benchmark is
characterized with VaR slightly above zero. Other approaches guarantee a positive profit
even at the bottom 5% of the scenarios. When the income of strategies without stopping
rule is considered, then the increase of VaR is moderate. Significantly lower risk is incurred
by approaches that allow for generation curtailment. The limited bid approach provides
VaR at 4.92 EUR/MWh. The results of data-driven strategies depend on the adopted
threshold quantile, τ , and vary between 2.05 and 13.88 EUR/MWh. Finally, although the
plot resembles the income per trade figure, it can be observed that the ordering of data-
driven approaches is different. The least risky is the VaR strategy, while the Eπ approach is
characterized by the lowest value of VaR. Hence, more profitable strategies are at the same
time more hazardous.

5.2.1. Portfolio analysis
The data-driven approaches presented above are characterized by different levels of profit

and associated risks. Similarly to other commodities, contracts that bring greater income are
associated with a higher level of uncertainty. Hence, the selection of the strategy depends
on the risk appetite of the utility owners. To make a proper decision, it could also be
beneficial for the company to understand where the difference comes from. Fig. 7 shows
the histograms of the decision variable, q∗ , for strategies without generation curtailment:
Eπ (left panel, Fig. 7), SR (middle panel, Fig. 7) and V aR (right panel, Fig. 7). It could
be seen that they differ significantly in terms of the given recommendations. The strategy
that maximizes expected profit selects in most cases extreme values of q. Hence, it offers
the entire forecasted generation in the DA market or leaves the whole production for the ID
market. Moreover, it chooses the ID market in 52% of the cases, compared to only 36% of
the times when DA is selected. In contrast, the V aR strategy provides mainly diversified
portfolios of contracts and recommends selling electricity in both markets. It selects q = 0
or q = 1 in 5% and 17% of the cases, respectively. Furthermore, most of the time more than
half of the predicted generation is offered on the DA market (q ≥ 0.5). In 40% of the periods,
it recommends choosing q ≥ 0.8. As observed previously, the strategy SR stays between Eπ
and V aR . It selects intermediate values of q in more than 60% of cases. However, similar
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Figure 4: Average profit per 1 MWh of generation for two types of strategies: with production curtailment
(marked with crosses) and without (marked with dots); depending on risk aversion level. Operation &
Management costs are 10 Euro/MWh.
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Figure 5: Performance of strategies with production curtailment: average profit per trade (left panel) and
frequency of trade (right panel); Operation & Management costs are 10 Euro/MWh.
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Table 5: Performance of trading strategies, relative to the naive benchmark

Strategy Quantile of profits, τ

0.05 0.30 0.50 0.70 0.95 1.00

Frequency of trade

Eπ 85.88% 95.75% 97.44% 98.61% 99.57% 100%

V aR 88.05% 95.64% 97.23% 98.30% 99.45% 100%

SR 87.28% 95.80% 97.43% 98.65% 99.64% 100%

Limited bid 0.9825

Average profit

Eπ -0.95% 2.80% 2.87% 2.57% 2.11% 1.46%

V aR -0.02% 2.37% 2.42% 2.22% 1.69% 0.88%

SR -0.17% 2.71% 2.77% 2.03% 1.39% 1.39%

Limited bid 2.03%

Average profit per trade

Eπ 15.34% 7.37% 5.58% 4.02% 2.55% 1.46%

V aR 13.54% 7.03% 5.34% 3.98% 2.25% 0.88%

SR 14.38% 7.20% 5.48% 3.87% 2.28% 1.39%

Limited bid 3.85%
Remark: Average profit and Average profit per trade are presented as the percentage

difference between the selected strategy and the naive benchmark approach.

to the Eπ approach, it is relatively often recommended to leave the entire generation for
the ID market. It occurs in almost 26% of the cases.

In conclusion, data-driven selection of the market (setting q = 0 or q = 1) is profitable,
but exposes the utility to a higher risk than choosing a balanced portfolio. Moreover,
strategies that offer a greater proportion of forecasted generation in the DA market bring
lower income, but at the same time reduce the trade uncertainty.

6. Conclusions and discussion

In this article, we propose a multiple split method to construct probabilistic forecasts of
both one- and multidimensional random variables. The approach splits the training sample
into two disjoint sets: estimation and calibration. The first subset is explored to estimate
the model parameters, whereas the second is used to calculate the forecast errors. Point
forecasts based on calibrated parameters and prediction errors are used to construct an
ensemble of forecasts. The splitting is repeated multiple times, and through merging the
splits a final ensemble is constructed.

This work enhances the current body of literature on multidimensional probabilistic
forecasting. The proposed approach combines and extends two methods: jackknife+ and
split conformal predictions. In the MS forecasting scheme, the random division of the
sample is performed multiple times to improve the accuracy of the forecast and decrease
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Figure 6: Value at Risk for two types of strategies: with production curtailment (marked with crosses) and
without (marked with dots). Values depend on risk aversion level and are calculated only for the hours
when the trade occurs. Operation & Management costs are 10 Euro/MWh.
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the variability of the results. However, unlike other methods such as delete-d jackknife,
jackknife+ or leave-k-out , MS uses a small number of splits: here, the number varies
between 1 and 20. This significantly decreases the computational complexity. Second,
forecast errors from the training window are used to construct an ensemble of forecasts rather
than to estimate the distribution quantiles. Hence, to obtain the final probabilistic forecasts,
it is not necessary to average quantiles or prediction intervals, as in [28]. It is sufficient to
aggregate the outcomes of individual splits into a final ensemble and then use it, for example,
to estimate the selected quantiles. Finally, when the split is performed simultaneously
on all the variables analyzed, the obtained residuals maintain the correlation structure
of the forecast errors and, therefore, are suitable for approximating the multidimensional
distribution. We believe that resampling methods are of particular use in this context. They
do not require parametric modeling of the multidimensional distribution and are able to
approximate well the complex relationship between variables. The multivariate distribution
of several variables can then be leveraged in decision-making processes by simultaneously
assessing multiple correlated sources of uncertainty or computing functions of the original
variables.

The accuracy of the multiple split forecasting approach is evaluated with data describing
the German electricity market: DA and ID electricity prices, total load, and RES gener-
ation. It is compared with two well-known approaches: quantile regression and historical
simulation. The out-of-sample period consists of 730 days, which corresponds to two years
of observations. The forecast performance is evaluated with measures that focus on the fit
of selected quantiles and explore the distribution of the ensemble. The results lead to the
following conclusions:

• QR provides prediction intervals that are less accurate than PIs from ensemble meth-
ods (historical simulations and MS). However, the probabilistic forecasts obtained with
QR are relatively sharper than those based on other methods, resulting in lower values
of the CRPS measure.

• The multiple split method allows one to construct prediction intervals that have an
accurate empirical coverage. The Kupiec test was unable to reject the null of a correct
PI calibration in more than 90% of the analyzed cases for T = 365.

• When different specifications of the MS approach are compared, the model with 20
splits, MS(20), outperforms the MS(1) method.

• Ensemble methods, MS in particular, perform very well when the linear combination
of fundamental variables is forecasted. In the case of Price Spread and Residual Load,
a multivariate MS(20) approach provides PIs with empirical coverage very close to the
nominal one. The Kupiec test confirms the correct empirical coverage in 73.33% and
92.5%, respectively.

• When the multidimensional distribution is considered, the ensemble methods that
allow for the joint forecasting of the fundamentals provide the best calibration of the
probabilistic predictions. Furthermore, the reliability index indicates that the MS(20),
Corr. approach produces the most accurate fit to the multidimensional distribution.

Next, the economic value is evaluated with an example of a generation utility that owns
wind farms spread throughout Germany. The company needs to make bids on the DA
market. In particular, it decides on the share of predicted production, q, that is offered on
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the DA market. To balance the position, the remaining part of generation is either sold
or purchased on the ID market. The company acts under uncertainty: it knows neither
the next-day production nor the future electricity prices. In this research, we consider
two benchmark strategies: a naive strategy, which assumes that all predicted generation
is offered on the DA market, and a limited bid strategy, which also has q = 1, but allows
for production curtailment when the DA prices fall below zero. These two benchmarks are
compared with data-driven approaches that explore the probabilistic prediction of profits.
They select the optimal value of q by maximizing the expected profit, the VaR, or Sharpe
ratio. Additionally, it is assumed that the company may curtail the generation, as in the
limited-bid case. The stopping rule ensures that the utility sells electricity only when a
selected quantile, τ , of profits is positive. The results can be summarized as follows:

• The naive benchmark approach is outperformed by all strategies, both in terms of
level of profits and risk.

• Adopting data-driven strategies without generation curtailment leads to an increase
in profits of 1-1.5% and a decrease in risk.

• Strategies that allow for stoppage of production bring on average higher profits than
those without any stopping rule, particularly when profit per trade is considered.

• The Limited bid strategy is dominated by data-driven methods for many values of τ .
When the quantile of profits used in the stopping rule varies between 0.25 and 0.6 then
the Limited bid provides a lower average profit and, at the same time, is characterized
by a higher risk than any of the data-driven strategies.

• The selection among data-driven strategies depends on the approach to risk. The
strategy that aims to maximize expected profits yields the highest income, but at the
same time has a lower value of VaR. The opposite can be observed for the method
based on VaR. As expected, the approach using the Sharpe ratio balances revenue
level and risk.

The results show the potential of the MS method in forecasting a multidimensional
distribution of variables describing the electricity market and designing trading strategies.
They encourage further research on properties and applications that go beyond the presented
analysis. First, it would be interesting to develop a rule to choose the number and proportion
of splits. Here, we show the results of only two scenarios MS(1) and MS(20) in which
these quantities were arbitrarily selected. A more comprehensive analysis in this area is
recommended. Next, since the size of the prediction intervals does not change much over
time, one could consider applying locally weighted methods to condition the length of the
PI on the fluctuating market situation. This can increase the sharpness of the distribution
and improve the statistical performance of the method. Finally, MS can be combined with
point forecasting methods other than AR, for example machine learning. Due to a simple
construction and flexibility in selecting the number of splits, it can be used together with
methods that are computationally burdensome.
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In recent years, a rapid development of renewable energy sources (RES) has been observed across the world. In-
termittent energy sources, which depend strongly on weather conditions, induce additional uncertainty to the
system and impact the level and variability of electricity prices. Predictions of RES, together with the level of de-
mand, have been recognized as one of the most important determinants of future electricity prices. In this re-
search, it is shown that forecasts of these fundamental variables, which are published by Transmission System
Operators (TSO), are biased and could be improved with simple regression models. Enhanced predictions are
next used for forecasting of spot and intraday prices inGermany. The results indicate that improving the forecasts
of fundamentals leads to more accurate predictions of both, the spot and the intraday prices. Finally, it is demon-
strated that utilization of enhanced forecasts is helpful in a day-ahead choice of a market (spot or intraday), and
results in a substantial increase of revenues.

© 2021 Published by Elsevier B.V.

1. Introduction

In the recent decades, electricity markets across the world have un-
dergone reforms, which have resulted in a deep market deregulation.
Electricity power exchanges have been created, such as Nord Pool or
EEX in Europe, PJM in the USA and NEM in Australia, which allow for a
competitive electricity trade. Nowadays, a large share of the transac-
tions is done in the day-ahead markets, where offers are placed around
noon on the day preceding the delivery. The day-ahead prices, which
clear the markets, are often called ‘spot prices'. In order to allow for an
adoption of trading positions to unplanned events, spot markets have
been complemented by intraday and balancing markets. The intraday
markets, typically organized by power exchanges, take the form of auc-
tions (e.g., in Spain) or continuous trading (e.g., in Germany), and allow
to trade the electricity throughout the whole day, up to a few minutes
before the physical delivery. The final balancing of the demand and
the supply is achieved via the balancing markets, which are controlled
by the Transmission System Operators (TSO) and aim at securing the
system stability. A more detailed explanations of the European electric-
ity markets can be found in Gianfreda et al. (2016) and Koch and Hirth
(2019). It is worth noting that trading in the day-ahead or intradaymar-
kets is usually not mandatory, neither for generators nor for consump-
tion units.

Themarket participants are now facing new trade opportunities and
can, to some extent, choose between different markets and contract
types. In particular, RES utilities do not know their exact generation
and therefore, are encouraged to self-balance their position in the intra-
day market (Pape et al., 2016; Kiesel and Paraschiv, 2017; Gianfreda
et al., 2016). As the result, managers can offer the majority of their pre-
dicted generation in the day-ahead market and leave a part for flexible
trade in order to manage the risk and revenue. Finally, it should be
underlined here, that the core business of RES utilities is electricity gen-
eration and therefore, it focuses on a real trade rather than speculation.

The literature indicates that the choice of the trading strategy could
result in a profit increase (Maciejowska et al., 2019) or risk reduction
(Kath and Ziel, 2018). In order to support the decision process, accurate
day-ahead predictions of spot and intraday prices are needed. The liter-
ature is rich in publications focusing on modelling and forecasting of
spot prices (see Weron, 2014; Nowotarski and Weron, 2018, for a
comprehensive review). Many papers indicate that the predicted RES
generation and electricity demand are one of the main drivers of the
day-ahead prices (Paraschiv et al., 2014; Woo et al., 2016; Gürtler and
Paulsen, 2018; Pape et al., 2016) and hence should be included in the
modelling scheme (Uniejewski and Weron, 2018; Ziel and Steinert,
2018; Gianfreda et al., 2020).

At the same time, not much attention has been placed on modelling
intraday markets. There are a few articles which analyze the intraday
markets in Europe (Kath and Ziel, 2018; Kiesel and Paraschiv, 2017;
Monteiro et al., 2016) and the US (Woo et al., 2016). Most of them
focus on a very short term – a few hours ahead – forecast, as in
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Uniejewski et al. (2019b) and hence, assume the knowledge of spot
prices. This type of models could not be directly used by utilities when
making operational decisions, such as a choice between the spot and in-
tradaymarket (see Maciejowska et al., 2019). In such case, newmodels
of intraday prices, which only use the information available at the time
of the decision, need to be developed.

This article extends the literature in various directions. First, it shows
that the TSO forecasts of total load, wind and solar generations, which
are crucial for electricity markets, may be systematically biased and
could be improved with autoregressive types of models. Although the
literature considers TSO predictions as the most efficient ones, practi-
tioners seek more accurate ways of forecasting the demand and the
generation structure. This article follows this idea and corrects the TSO
predictions with information available day-ahead, ensuring that the
outcomes could be used by utilities while placing final orders in the
spot market.

Second, it is investigated if the corrected forecasts could enhance the
predictions of the spot and intraday prices. Here, a novel approach for
forecasting of intraday electricity prices is adopted, which explores the
difference between the enhanced and TSO predictions. One could see
this model as a day-ahead counterpart of an approach used by Kiesel
and Paraschiv (2017). The results indicate that predictions of both
day-ahead and intraday prices could be significantly improved with
the use of enhanced fundamental variables forecasts.

Finally, the possibility of price spread forecast is examined. While a
related topic of forecasting load imbalance volumes has gained some in-
terest from researchers (Lisi and Edoli, 2018; Bunn et al., 2018), this
issue, although of a great practical importance, has not been studied
much in the literature. The results confirm previous findings of
Maciejowska et al. (2019) and show that the forecasted sign of the dif-
ference between intraday and spot prices could be used in the decision
process andmay lead to an increase of utility revenue. Moreover, usage
of the enhanced predictions of fundamentals in a decision process sub-
stantially raises the additional revenues.

The article is structured as follows. First, in Section 2, we present
and discuss the data. Then, in Section 3, we introduce and describe
the models. Next, in Section 4, we show the results and finally, in
Section 5, we conclude the study.

2. Data

This article analyzes the German electricity market, which is
known for its high RES penetration. In the first two quarters of the
year 2019, the RES share in the total electricity production exceeded
47% (see https://www.energy-charts.de). The data used in this
research is hourly and spans the period from 1 October 2015 to 30
September 2019. The sample is divided into four years. The first
year, 1 October 2015–30 September 2016, is utilized for calibrating
models used for forecasting fundamental variables. In the second
one, 1 October 2016–30 September 2017, the predictions of the fun-
damentals are collected, evaluated and next used as an input to price
models. Finally, in the last two years, 1 October 2017–30 September
2019, the performance of price forecasts is assessed and financial
gains from the proposed approach are computed. The notation and
sample division are summarized in Table 1.

The data set comprises day-ahead (DAh,t) and intraday (IDh,t)market
prices for corresponding bidding zones: Austria + Germany +
Luxembourg before 1 October 2018, Germany + Luxembourg after
1 October 2018. The intraday prices used in this research are ID3 in-
dexes (volume weighted prices from the last 3 hours of trade). They
are complemented by actual levels and system forecasts of fundamental
variables: the total load (Lh,t),which can be treated as a proxy for the de-
mand, and the RES (wind –Wh,t and solar – Sh,t) generation. Fundamen-
tal variables are collected for Germany. They are supplemented by the
forecasted temperatures for two German cities: Hamburg and Munich
(FTh,t). In the remaining part of the paper, the index h stands for an
hour and t for a day number. Data sources, units and notation are sum-
marized in Table 2.

The timepaths of the day-ahead and intraday prices are presented in
Fig. 1. For illustrative purposes two hours, h=4, 18, have been chosen,
representing the peak and the off-peak periods of a day. It can be
noticed that peak prices are higher than off-peak ones, both for the
day-ahead and intraday markets. Their variability changes in time and
exhibits a tendency for clustering. Finally, prices in different markets
co-move together. The occurrence of positive andnegative spikes is syn-
chronized in bothmarkets, but their magnitude is more pronounced for
the intraday prices.

When the fundamental variables are considered, it could be ob-
served that load, wind and solar generations have different statistical
properties. Daily averages of the variables together with their TSO fore-
cast errors are presented in Fig. 2. The plots indicate that load depends
strongly on a day of the week and follows a yearly seasonality. In
Germany, the electricity consumption is the highest during the winter,
when the energy is used for heating, and falls when the temperature in-
creases. Additionally, one could observe a slight increase in the demand
during summermonths, when air-conditioning is used. Unlike the load,
the RES generation does not exhibit a weekly pattern because it does
not depend on the electricity consumption. The wind generation rises
in the winter and drops slightly in the summer. Moreover, wind
shows a lot of variation and can change drastically within a few days.
At the same time, solar generation has an opposite yearly pattern with
a peak in summertime. It falls almost to zero during winter, when
days are short and the sunlight is insufficient.

In Fig. 2, fundamental variables are accompanied by their forecast er-
rors, computed as the difference between their actual values and corre-
sponding TSO predictions. Unlike fundamentals, forecast errors follow
neither weekly nor yearly seasonality. Only solar errors seem to be
larger in spring, when the PV (photovoltaic) generation increases. The
basic statistical properties of TSO forecast errors are presented in
Table 3, which includes information on their means andmean standard
deviations across peak (9–20) and off-peak (1–8, 21–24) hours. It is
clearly visible that there is a substantial bias in the TSO forecasts for all
three fundamental variables. The biggest bias is observed for load,

Table 1
Sample division and notation.

Notation Start date End date

2015 1 October 2015 30 September 2016
2016 1 October 2016 30 September 2017
2017 1 October 2017 30 September 2018
2018 1 October 2018 30 September 2019

Table 2
Data sources and units.

Data Notation Units Source

Day-ahead prices DA EUR/MWh EPEX SPOT, http://www.
epexspot.com

Intraday prices ID EUR/MWh EPEX SPOT, http://www.
epexspot.com

Load L GWh https://transparency.entsoe.eu
Wind generation W GWh https://transparency.entsoe.eu
PV generation S GWh https://transparency.entsoe.eu
Forecasted load FL GWh https://transparency.entsoe.eu
Forecasted wind
generation

FW GWh https://transparency.entsoe.eu

Forecasted PV
generation

FS GWh https://transparency.entsoe.eu

Forecasted temperature FT °C https://api.meteo.pl
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Fig. 1. Time plots of the day-ahead and intraday prices for two illustrative hours (4 a.m. and 6 p.m.).

Fig. 2. Time plots of daily averages of fundamental variables and the TSO forecasts errors.
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which, with mean error of−1.022 GWh during peak hours and−0.915
GWh in off-peak hours, is systematically underestimated. The standard
deviations of themean of load, wind and solar generation are presented
in brackets. They indicate that biases are significantly different from
zero for both peak and off-peak hours, and all the fundamental vari-
ables. Next, the autocorrelation of residuals is verified with the Ljung-
Box (LB) test statistic, for each hour separately. The last row of Table 3
shows the number of hours from the twelve-hour-long peak/off-peak
blocks, where the LB test rejects the null hypothesis at 5% significance
level. The results indicate a strong autocorrelation of forecast errors. It
can be observed that only for seven hours of solar generation and one
hour of wind generation the null hypothesis cannot be rejected. Most
of these hours coincidewith times of very low or no photovoltaic gener-
ation. To sum up, the initial analysis suggests that TSO forecasts are not
only systematically underestimated but also could be improved with
autoregressive type of models, which explore the autocorrelation struc-
ture of TSO forecast errors.

3. Methods

3.1. Problem setup

This research consists of three major parts: (i) a calibration of ARX-
type models of load, wind and solar generation, and a calculation of
their day-ahead forecasts, (ii) an assessment of prediction accuracy of
fundamental variables, (iii) an evaluation of financial gains resulting
from enhancement of fundamental forecasts. The gains are measured
in two ways. First, it is verified whether more accurate predictions of
load, wind and solar improve electricity price forecasts. Second, addi-
tional revenues from the price-driven choice of the trading strategy
are calculated and comparedwith those based on TSO information only.

Like the majority of energy studies, we consider a rolling window
scheme with a limited memory and model separately each hour of a
day. The algorithm consists of three steps. First, the model parameters
are estimated using the data from a calibration window of a fixed
length. Next, one day ahead forecasts of fundamental variables or elec-
tricity prices are calculated. Finally, the window is moved one step
ahead. All the steps are repeated until the forecasts of the last observa-
tion in the evaluation window are computed.

Two forecasting methods are used, conditional on the modeled var-
iable. In case of fundamentals, we follow recent papers of Hubicka et al.
(2019) and Marcjasz et al. (2018), which show that averaging across
different calibration windows yields better results than selecting ex-
ante a single window length. Here, we combine forecasts based on
three short and three long estimationwindows. A similar choice of win-
dow lengths was previously used by Marcjasz et al. (2018) and Serafin
et al. (2019). When we consider the electricity prices, the models are
calibrated with one year of observations. We restrict the analysis to a
single window length in order to capture the direct impact of enhanced
fundamental forecasts on the price predictions.

Finally, it should be emphasised here that the article focuses on day-
ahead forecasts because the market participants need to place their

orders in the morning of the day preceding the delivery. Moreover,
the forecasts are calculated before the decisions are made, which is as-
sumed to happen at 11 am. As a consequence, any new information ar-
riving after 10 am, for example an actual level of generation and its
structure or the level of intraday prices, are excluded from the informa-
tion set and not used for fundamental variables or price predictions.

3.2. Forecasting fundamentals

In order to forecast fundamental variables, ARX type of models are
adopted, which utilize both the information on system forecasts and ac-
tual past realizations of these variables. In this research, three different
model specifications are adopted. First, the total load is modeled as fol-
lows

Lt,h¼ αL
hD

L
t þ θLh,1L

⁎
t−1,h þ ∑

p∈ 2, 7f g
θLh,pLt−p,h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AR component

þ βL
h,1FLt,hþ βL

h,2FWt,hþ βL
h,3FSt,h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Forecasts off undamentals

þβL
h,4FLt,ave þ βL

h,5FLt,max þ βL
h,6FLt,min|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Daily statistics

þ βL
h,7FTt,h|fflfflfflfflffl{zfflfflfflfflffl}

Weather forecasts

þ εLt,h,

ð1Þ

where Dt
L is a (4 × 1) vector of deterministic variables consisting of a

constant and three dummy variables for Mondays, Saturdays and Sun-
days/Holidays. FLt,h, FWt,h and FSt,h are the TSO forecasts of all three
fundamental variables for the current day and hour, as defined in
Table 2. FLt,ave, FLt,max and FLt,min are daily statistics computed as the
mean, maximum and minimum of the TSO load forecast for the day t
over 24 hours. The weather forecast vector, FTt,h, includes predicted
temperature for two cities: Hamburg and Munich). In the AR part, lags
p ∈ {1,2,7} are chosen, which corresponds to lags used in price forecast-
ing studies (see Nowotarski et al., 2014; Uniejewski et al., 2016, 2019a;
Ziel, 2016 among others). This lag structure captures both the short run
dependence and the weekly seasonality. It should be mentioned here
that for some hours, h> 10, there is no information on the actual gener-
ation available at the time of forecasts. Therefore we define a variable:

L⁎t,h ¼ Lt,h if h ≤ 10,
FLt,h if h> 10,

�
ð2Þ

which replaces the missing observations with their TSO forecasts.
The model for wind generation is simpler than (1) and is given by

Wt,h ¼ αW
h DW

t þ θWh W⁎
t−1,h þ βW

h,1FWt,h þ βW
h,2FWt,h−1 þ βW

h,3FWt,hþ1

þ εWt,h: ð3Þ

The deterministic variable, Dt
W, includes only a constant because

wind does not follow a weekly seasonality. The variableWt−1,h
∗ controls

for missing information and is defined as (2). Finally, Eq. (3) includes
also information on predicted wind generation in two neighbouring
hours: h − 1 and h + 1 (when such information is available). It is as-
sumed that wind generation does not depend on the other fundamental
variables: load or solar, and its AR structure consists of only one lag.

A similarmodel is adopted for solar generation. It is described by the
following equation

St,h ¼ αS
hD

S
t þ θShS

⁎
t−1,h þ βS

h,1FSt,h þ βW
h,2FSt,h−1 þ βW

h,3FSt,hþ1 þ εSt,h, ð4Þ

where Dt
S consists of an intercept and the number of sun hours within a

day, which approximates the yearly seasonality. Analogously to (3), we
use a simple autoregressive structure with one lag.

The models (1), (3) and (4) are estimated for different lengths, τ, of
calibration windows. Following Marcjasz et al. (2018); Serafin et al.
(2019), we choose three short windows with τ ∈ {56,84,112}, which

Table 3
Descriptive statistics of TSO forecast errors.

Statistics Peak Off-peak

Load Wind Solar Load Wind Solar

Mean −1.022 −0.041 0.009 −0.915 −0.139 0.002
(0.017) (0.012) (0.008) (0.014) (0.012) (0.001)

LB test 12 11 12 12 12 5

Note: standard deviations of the mean estimators are stated in brackets; Ljung-Box (LB)
test reports a number of hours from the twelve-hour-long peak/off-peak blocks, where
the null is rejected at 5% significance level.
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correspond to 8, 12 and 16 weeks of observations, and three long win-
dows with τ ∈ {351,358,365}, which balance the short term effect. The
predictions are next computed as a simple average over individual
forecasts.

It should be noticed here that the model (4) can be estimated only
for hours in which at least some TSO forecasts are different from zero
for each of the calibration windows. The proportion of nonzero TSO
solar predictions (FSt,h) in consecutive calibration windows (56-day
long) are presented in Fig. 3, Appendix. The plots indicate that only
hours 8–17 satisfy the nonzero condition and therefore the prediction
of solar generation and its usage in the analysis is limited to hours 8–17.

3.3. Forecasting electricity prices

In order to compute the day-ahead forecasts of electricity prices, we
use autoregressive models with exogenous variables. The DAt,h price of
the day t and hour h is given by

DAt,h ¼ αhDt þ ∑
p∈ 1, 2, 7f g

θh,pDAt−p,h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AR component

þβh,4DAt−1,ave þ βh,4DAt−1,min þ βh,5DAt−1,max|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Daily quantities

þβh,6DAt−1,24|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Last known price

þ θhbXt,h|fflffl{zfflffl}
Fundamentals

þ εt,h,

ð5Þ

where DAt−1,ave, DAt−1,min and DAt−1,max are the average, the mini-
mum and the maximum of prices from the preceding day, DAt−1,24

is the last known price and Dt is a (4 × 1) vector of deterministic var-
iables: a constant and dummies for Mondays, Saturdays and Sun-
days/Holidays. Finally, bXt,h ¼ bLt,h, bWt,h,bSt,h� �0

is a vector of forecasts
of fundamental variables, which are based either on TSO predictions
(then bXt,h ¼ FLt,h, FWt,h, FSt,h

� �0) or results from models described in
the previous section. Note that the predictions of solar generation
are included in the model only for hours 8 − 17, when the solar ra-
diation is substantial.

In this research, two different models of intraday prices are consid-
ered. The first model is based on the approach adopted for forecasting
of day-ahead prices and takes the following form:

IDt,h ¼ αhDt þ θh,1ID
⁎
t−1,h þ ∑

p∈ 2, 7f g
θh,pIDt−p,h|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

AR component

þβh,4DAt−1,ave þ βh,4DAt−1,min þ βh,5DAt−1,max|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Daily day−ahead quantities

þβh,6DAt−1,24|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Last known price

þ θhbXt,h|fflffl{zfflffl}
Fundamentals

þ εt,h:

ð6Þ

It should be noticed that for hours h>10, the intraday prices – IDt,h –
are not known. In such case, they are replaced by their day-ahead coun-
terparts. Hence

ID⁎
t,h ¼ IDt,h if h ≤ 10,

DAt,h if h>10:

�
ð7Þ

Moreover, due to the lack of sufficient information, we can use nei-
ther average, minimum, maximum nor last intraday price from the
day t − 1. Therefore the model (6) uses the corresponding quantities
from the day-ahead market.

The secondmodel is similar to the approach proposed by Kiesel and
Paraschiv (2017), in which the intraday prices are conditioned on the
day-ahead prices and fundamental forecast errors. In this research, the

model includes additionally lagged prices and the current predictions
of fundamentals. Since the forecast errors of fundamentals are not
known, they are approximated by the difference between the model
based and TSO forecasts. The final form of themodel is given by the fol-
lowing equation

IDt,h ¼ αhDt þ βh,1
bDAt,h þ βh,2ID

⁎
t−1,h þ θh,1bXt,h

þθh,2 bXt,h−FXt,h

� �
þ θh,3 X⁎

t−1,h−FXt−1,h
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
forecast errors of fundamentals

þ εt,h, ð8Þ

where FXt,h = (FLt,h,FWt,h,FSt,h)′ is a (3 × 1) vector of summarizing TSO
forecasts and the difference bXt,h−FXt,h

� �
approximates the forecast er-

ror of fundamental variables. The variable Xt,h
∗ is defined similar to (2),

with X⁎
t,h ¼ bXt,h for h> 10. Notice that when themodel (8) is estimated

using only the information provided by TSO, then the forecast error,bXt,h−FXt,h

� �
, equals to zero and hence it needs to be removed from

the equation. Finally, while calculating IDt,h, there is no information on
DAt,h available. Therefore, instead of actual level of day-ahead prices,
the model utilizes their forecasts, bDAt,h, obtained with model (5).

3.4. Forecasting the sign of the price spread

When modelling the market choice, we follow the methodology
established in Maciejowska et al. (2019). A binary decision variable
Yt,h is defined, which equals to one when the generator decides to sell
the electricity produced for day t hour h in the intraday market, and
zero otherwise. Following Maciejowska et al. (2019), a benchmark,
called a naïve day-ahead strategy is considered. It assumes that all gen-
erated electricity is sold in the day-aheadmarket and hence Yt,h =0 for
all t and h. This benchmark strategy is compared with a data-driven ap-
proach, which links the decision to the relationship between the day-
ahead and the intraday price:

Yt,h ¼ 1 if IDt,h−DAt,h > 0,
0 if IDt,h−DAt,h ≤ 0:

�
ð9Þ

As the utility has to make its decision before the actual price differ-
ence ΔPt,h = IDt,h − DAt,h is known, it has to be based on the forecasted

spread ΔbPt,h ¼bIDt,h−bDAt,h. Hence, the generator sells electricity in the
intraday market, if the predicted spread is positive and in the day-
ahead market otherwise.

4. Results

In this research, three types of results are analyzed. First, the possi-
bility of an improvement of fundamental predictions over their TSO
forecasts is considered. The outcomes are compared using MAE and
RMSE forecast accuracy measures. Second, gains from enhancement of
fundamentals predictions in forecasting of electricity price is analyzed.
Finally, improved price forecasts are used in a decision process. The
resulting revenues are calculated and compared with the TSO based
strategies.

4.1. Enhancing the forecasts of fundamentals

The forecasts computed with models (1), (3) and (4) are compared
with those published by TSO using the data from the last three years:
2016–2018. The results are presented in Table 4, which shows MAE
and RMSE for the three considered fundamentals and three analyzed
years. The significance of the forecast accuracy change is statistically
verified with the Diebold-Mariano (DM) test (Diebold and Mariano,
1995). In order to compare the model performance across all 24
hours, we follow a vectorized DM approach described by Ziel and
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Weron (2018).We apply theDMtest to themultivariate loss differential
series between compared models X, Y defined as

ΔX,Y ,d ¼ ∥bεX,d∥−∥bεY ,d∥, ð10Þ

where bεX,d and bεY ,d are the 24-dimensional vectors of out-of-sample er-
rors for models X and Y respectively. The normutilized for calculation of
the loss differential depends on the forecast accuracy measure. We use
Euclidean, ∥.∥2, norm for RMSE and ∥.∥1 for MAE. Since not all market in-
formation is availablewhen calculating the predictions,we allow for the
autocorrelation of forecast errors while computing DM test statistics.

The outcomes indicate that load and wind forecasts could be sig-
nificantly improved with ARX types of models. The results show that
MAE of load is reduced by 31.6%, 26.8% and 37.9% in years 2016 to
2018, respectively. Also RMSE measure decreases considerably
and falls bymore than 20% in all years. This indicates that TSO load fore-
casts are strongly biased and could be substantially improved by the
employment of statistical models. When wind forecast is considered,
it should be noticed that gains from prediction enhancement are
much lower than in load case. The MAE of wind forecast rises slightly
in 2016 and falls by 1.1% in years 2017 and 2018. Similar, RMSE de-
creases by less than 2%. The changes of wind forecast accuracy in
years 2017 and 2018 are not statistically significant.

The solar predictions seem to be the most difficult to improve. The
proposed models are not able to significantly reduce the MAE and
RMSE. We believe that the proposed linear model is not sufficient
enough to capture the dynamic structure of solar generation.

4.2. Price forecasts

The enhanced predictions of load, wind and solar generation are
next used for electricity price forecasting. In order to evaluate the im-
pact of fundamentals on price predictions, fourmodel setups are consid-
ered. In the first one, later called a benchmark, the TSO forecasts are
included in models (5), (6) and (8). The benchmarks are compared
with models, in which fundamentals are excluded from mentioned re-
gressions. It should be noticed that in such case, themodel (8) is simpli-
fied substantially and includes only the predicted level of day-ahead
prices and lagged intraday prices. Next, we assess the performance of
models utilizing the predictions obtained with models (1), (3) and
(4). Finally, we consider a case, in which perfect forecasts of fundamen-
tal variables are available for researchers. This means that the real
values of load, wind and solar generations are known before the price
forecasts are calculated.

Two measures of price forecast accuracy, MAE and RMSE, are pre-
sented in Table 5 jointly for years 2017–2018. They are complemented
by DM tests, which compare the forecast performance of a particular
model with a benchmark (TSO) model. Since we propose two different
model specifications for intraday prices, their outcomes are evaluated
separately.

The results indicate that fundamental variables contain information,
which can significantly improve price forecast accuracy.MAE ofmodels,
which do not include fundamentals, is larger by 19.8%, 12.2% and 13.1%
respectively than MAE of benchmark models.

When day-ahead prices are considered the results are mixed. MAE
measure indicates that improving the fundamental forecasts (Enhanced
and Real columns) results inmore accurate price forecasts. On the other
hand, when RMSE is analyzed, forecasts utilizing real generation struc-
ture are not significantly different from predictions computed with
the benchmark model. Hence, the exact knowledge of future levels of
load, wind and solar generation does not help in predicting the day-
ahead prices.

The results for intraday prices depend on the model specification. It
could be noticed that in the case of perfect forecasts of fundamentals,
model (8) gives more accurate predictions than the other (6). This im-
plies that day-ahead prices are main driver of intraday prices, which

Table 4
Forecast accuracy of fundamental variables.

Variable Load Wind Solar

Year 2016 2017 2018 2016 2017 2018 2016 2017 2018

MAE

TSO 1.529 1.538 1.940 0.999 1.180 1.160 0.740 0.679 0.718
Enhanced 1.045 1.125 1.204 1.013 1.166 1.147 0.740 0.677 0.707
(p-val) (0.000) (0.000) (0.000) (0.017) (0.795) (0.249) (0.383) (0.352) (0.832)

RMSE

TSO 1.961 2.024 2.475 1.538 1.765 1.580 1.077 1.003 1.014
Enhanced 1.496 1.631 1.624 1.537 1.746 1.549 1.076 0.999 1.008
(p-val) (0.000) (0.000) (0.000) (0.960) (0.978) (0.929) (0.789) (0.292) (0.852)

Note: the difference of the forecast accuracy is testedwith Diebold-Mariano test with autocorrelation of order 7 and 2 for load and RES variables, respectively; p-values of the DM test are
presented in brackets.

Table 5
MAE and RMSE of price forecasts (DA and ID), in years 2017–2018.

Variable Model Measure Fundamentals

TSO None Enhanced Real

DA (5) MAE 6.004 7.195 5.920 5.912
(p-val) (0.000) (0.033) (0.229)
RMSE 8.526 10.885 8.434 8.621
(p-val) (0.000) (0.037) (0.370)

ID (6) MAE 7.701 8.638 7.621 7.176
(p-val) (0.000) (0.014) (0.000)
RMSE 11.183 12.994 11.066 10.523
(p-val) (0.000) (0.002) (0.000)

(8) MAE 7.899 8.935 7.719 7.058
(p-val) (0.005) (0.001) (0.000)
RMSE 11.315 13.470 11.117 10.363
(p-val) (0.920) (0.094) (0.000)

Note: the difference of the forecast accuracy is tested with Diebold-Mariano test with au-
tocorrelation of order 7; p-values of the DM test are presented in brackets.

Table 6
Share of correct market classifications and additional revenues, in years 2017–2018.

Models Correct classifications, p (%) Revenues, π (EUR)

DA ID TSO Enhanced Real TSO Enhanced Real

(5) (6) 52.0% 52.1% 52.9% 5705 5908 7577
(5) (8) 49.6% 50.8% 58.9% 4075 4627 16,333
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confirms previous findings of Kiesel and Paraschiv (2017) and Ziel
(2017). Secondly, the outcomes indicate that models using the en-
hanced forecasts of fundamentals are significantly better than the TSO
based predictions. The differences between models are more pro-
nounced for model (8), when the MAE falls from 7.899 to 7.719. At
the same time, using the real observations of load, wind and solar gen-
eration decreasesMAE by 10.6% to 7058. This shows the range of poten-
tial gains from the enhancement of forecasts of fundamentals.

4.3. Market choice

In this research, the market choice in based on the sign of the price
spread. The decision variable, Yt,h ∈ {0,1}, is defined by (9). It takes
value 1, when the intraday price is higher than the day-ahead price,
IDt,h > DAt,h, and zero otherwise. Since the actual prices are not
known, the sign of the spread is predicted using the day-ahead price

forecasts. In such case, bYt,h ¼ 1 when bIDt,h>
bDAt,h and bYt,h ¼ 0, whenbIDt,h≤bDAt,h. Similar to Maciejowska et al. (2019), the accuracy of fore-

casts, bYt,h, is evaluated using twomeasures: a ratio of correct predictions
(p) and an additional revenues (π). The ratio of correct predictions is
computed as follows

p ¼
# Yt,h ¼ bYt,h

� �
#Yt,h

, ð11Þ

where # Yt,h ¼ bYt,h

� �
is the number of correctly predicted spread signs

and #Yt,h is the size of the evaluation sample.
The additional revenues are calculated as income from selling

1 MWh according to the predicted decision variable, bYt,h, over the
day-ahead benchmark. This implies that the total additional daily
revenue, πt, becomes

πt ¼ ∑
24

h¼1

bYt,hIDt,h þ 1−bYt,h

� �
DAt,h−DAt,h

� �
¼ ∑

24

h¼1

bYt,hΔPt,h: ð12Þ

The two-year additional revenue, π, is computed as a sum of daily
revenues from 1 October 2017 to 30 September 2019. As shown
by the literature (Kath and Ziel, 2018; Gianfreda et al., 2018;
Maciejowska et al., 2019), financial measures are of particular im-
portance in evaluation of forecast accuracy and does not necessary
coincide with classical statistical measures, for example p.

The results are presented in Table 6. First, the ratio of correct market
classification is evaluated. The TSO basedmodels are able to predict cor-
rectly, which market offers a higher price, in 49.6%–52.0% of cases. The
ratios for models using the enhanced forecasts range from 50.8% to
52.1% and reach the higher level with the intraday model (6). At the
same time, an access to perfect forecasts of fundamentals enables to
choose the market correctly in 52.9%–58.9% of cases. In this case utiliz-
ing the intraday model (8) is favorable, showing that this model
(8) has more potential, should the forecast be improved further.

Next, additional revenues from the price driven market choice are
compared. It can be noticed that the additional revenues will reach
more than 16,000 EUR from 1 October 2017 to 30 September 2019, if
the true values of fundamentals are known at the time of the decision.
It approximates the upper bound of the presented methodology. At
the same time, revenues from the choice utilizing the TSO predictions
vary between 4075 and 5705 EUR, which is about 30% of the perfect in-
formation result. Finally, decision based on enhanced fundamentals
leads to an increase of the revenue by 4627–5908.

Finally, when the results of specifications using enhanced funda-
mental forecasts are analyzed, one could observe gains over the TSO
based approaches in both cases.When themodel (8) is adopted for fore-
casting intraday prices, the revenues reach 4627 EUR, which is 552 EUR

more than the benchmark. Although the additional revenues increase
slightly, the full information case shows that there is a plenty of room
for the further improvement, and that themain idea itself is reasonable.

5. Conclusions

This article analyzes the German electricitymarket and evaluates the
system forecasts of the fundamental variables: load,wind and solar gen-
eration. The research consists of three parts: calibration of time series
models of fundamentals and assessment of their prediction accuracy,
utilization of the enhanced predictions in day-ahead forecasting of the
day-ahead and intraday electricity prices and finally, an employment
of the calculated forecasts in the utility decision process.

First, ARX types ofmodels are employed for forecasting fundamental
variables. Since we do not know the optimal length of a calibrationwin-
dow, we follow an approach proposed by Hubicka et al. (2019) and
combine forecasts computed from a few short and a few long window
sizes. The obtained results show that the load forecast can be signifi-
cantly improvedover the TSObenchmark. This indicates that the system
operator does not utilize all the information available in the market at
the time of the forecast publication. On the other hand, the ARX types
of models are able to improve the TSO wind and solar predictions only
slightly. Hence, these two turn out to be more demanding variables,
which need a particular modelling approach (nonlinear or/and includ-
ing additional exogenous variables).

Second, the enhanced predictions of fundamentals are used for
forecasting day-ahead and intraday prices. Both variables are pre-
dicted day-ahead, as they are later used for choosing an optimal mar-
ket for selling the energy. Two types of intradaymodels are analyzed:
one using the ARX specification similar to the day-ahead market and
second, exploring the dependence on the day-ahead prices and fun-
damentals forecasts errors. The results reveal that the knowledge of
real levels of generation and its structure does not help to forecast
day-ahead prices. On the other hand, enhanced fundamental fore-
casts reduce both MAE and RMSE of day-ahead prices, as compared
to the TSO benchmark. This indicates that market participants use
the information available at the time of taking decision to place
their offers. When the intraday prices are considered, the results
clearly demonstrate that any improvement of accuracy of fundamen-
tal predictions leads to better price forecasts, both in terms of MAE
and RMSE measures.

Finally, the improved forecasts of fundamentals and electricity prices
are utilized in the decision process. In this article, a utility needs to
choosewhere to sell 1MWh of electricity: in the day-ahead or in the in-
traday market. The decision is data driven and is compared with a
benchmark (selling 1 MWh in the day-ahead market). The gains from
prediction enhancement are measured by an additional yearly revenue.
It turns out that the correction of fundamental forecasts results in a sig-
nificant income increase. The extra revenue coming from the market
choice rises by 13.5% from 4075 EUR to 4627 EUR a year per 1 MWh.
Moreover, the results show that if the actual values of fundamentals
are known, the revenue could reach 16,333 EUR, which encourages fur-
ther research in the field.
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Appendix A

Fig. 3. Fraction of days within a 56-day rolling window with forecasted solar energy values greater than 0 MWh for every hour of the day.
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Abstract

Probabilistic price forecasting has recently gained attention in power trading because decisions based on such predictions can
yield significantly higher profits than those made with point forecasts alone. At the same time, methods are being developed
to combine predictive distributions, since no model is perfect and averaging generally improves forecasting performance. In
this article, we address the question of whether using CRPS learning, a novel weighting technique minimizing the continuous
ranked probability score (CRPS), leads to optimal decisions in day-ahead bidding. To this end, we conduct an empirical study
using hourly day-ahead electricity prices from the German EPEX market. We find that increasing the diversity of an ensemble
can have a positive impact on accuracy. At the same time, the higher computational cost of using CRPS learning compared to
an equal-weighted aggregation of distributions is not offset by higher profits, despite significantly more accurate predictions.

Keywords: decision support, day-ahead electricity bidding, predictive distribution, combining forecasts, CRPS learning

1. Introduction

To mitigate risks or increase profits from trading in day-ahead power markets, market participants use
data-driven decision support techniques [12, 16, 17, 28]. For years, these have relied on point forecasts
of the major variables of interest: loads (or demand for electricity), generation from renewable energy
sources (RES), and electricity prices [10, 30]. However, as recently shown by Uniejewski and Weron [27],
decisions based on probabilistic price forecasts, i.e., quantiles, prediction intervals, or whole predictive
distributions, can yield significantly higher profits. For the quantile-based bidding strategies considered
in the Polish day-ahead power market, the profit obtained was from 5% to 19% higher than for the strategy
based on point forecasts alone.

Point forecasts are far more popular in the electricity price forecasting (EPF) literature, not only in a
decision support context. As reported by Maciejowska et al. [18], probabilistic EPF was not a part of
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the mainstream literature until the Global Energy Forecasting Competition in 2014 [9], and even now,
no more than 15% of the Scopus-indexed articles concern it. Although business analysts have begun
to recognize their importance in the planning and operation of energy systems (see, e.g., [13]), it is not
easy to generate accurate probabilistic predictions. Combining forecasts obtained from different model
specifications [19] or calibration sample lengths [11, 26] one can significantly increase accuracy without
sacrificing computational complexity or interpretability. Compared to selecting a single best-performing
forecast, combining forecasts from multiple models offers several advantages such as increased resilience
against model uncertainty or misspecification, and better adaptability in the event of structural breaks [29].

Forecast combinations (also called ensemble forecasts) involve assigning weights to the individual predic-
tions (or experts). While naive, i.e., equal, weighting is a straightforward – and surprisingly robust – way of
averaging point forecasts, in the case of predictive distributions, a choice must be made about what to combine.
Two natural approaches are vertical averaging of probabilities and horizontal averaging of quantiles [15, 20]
but the authors do not agree on which is better. Berrisch and Ziel [1] have recently proposed a cutting-edge
weighting technique, called CRPS learning that accounts for variations in predictive performance over time
and across quantiles of the distribution. It optimizes weights with respect to the continuous ranked probability
score (CRPS), the standard error metric for probabilistic forecasts [8, 18].

In this article, we address the question of whether forecast combinations obtained by minimizing the
CRPS lead to optimal decisions in day-ahead bidding. To this end, we conduct a comprehensive empirical
study involving:

• six years of hourly day-ahead electricity prices from the German EPEX market,
• state-of-the-art probabilistic forecasts generated by Marcjasz et al. [20] using distributional deep

neural networks (DDNN), as well as deep neural networks (DNN) and LASSO-estimated autore-
gressive (LEAR) models combined with quantile regression (QR),

• two approaches to combining predictive distributions – horizontal averaging of quantiles [15] and
CRPS learning [1].

Since statistical measures of forecast accuracy do not assess the utility of a forecast to its potential end
users [10, 13, 18, 31], we calculate the profits of a day-ahead bidding strategy [20, 25]. The latter aims
to find the most financially beneficial hours of the next day to buy electricity and charge a battery, then
discharge it and sell electricity. To minimize the risk of losses, limit orders are submitted to the power
exchange with the limits determined by selected quantiles of the predictive distributions.

The remainder of the article is organized as follows. In Section 2, the dataset and assumptions for
the forecasting problem are introduced. Section 3 describes the details of ensemble construction. The
results are presented in Section 4, with the forecast accuracy being the focus of Section 4.1, the trading
simulation described in 4.2, and its financial results in Section 4.3. Finally, Section 5 wraps up the results
and concludes.

2. Preliminaries and data sources

We assume a standard short-term forecast horizon of 1 day, performed in a rolling window scheme [30].
More precisely, forecasts of all 24 hourly prices on the day d are calculated at the same time in the
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morning of day d− 1, i.e., before the day-ahead market for day d closes, and that the model parameters
are estimated using a calibration sample of D most recent past observations. In our case, the underlying
data are hourly day-ahead electricity prices from the German EPEX market spanning the period from
1 January 2015 to 31 December 2020. The prices, day-ahead predictions of the loads, and RES generation
are publicly available from the ENTSO-E Transparency platform (https://transparency.entsoe.
eu). The full dataset, including emission allowances and fuel prices, is also available from https://
github.com/gmarcjasz/distributionalnn, a GitHub repository that accompanies [20].

The first D = 1456 days of the dataset are used as the initial calibration sample for all models, and
the additional 182 days are needed to calculate the quantile regression forecasts. The remaining 554 days
from 27 June 2019 until 31 December 2020 constitute the out-of-sample test period. Note that the latter
includes a major drop in the level of prices associated with a decrease in the demand for electricity during
the initial stage of the COVID-19 pandemic.

Since this study focuses on the evaluation of combination schemes for probabilistic forecasts and not
on the computation of predictive distributions themselves, we work directly with a pool of readily avail-
able state-of-the-art forecasts generated by Marcjasz et al. [20]. The latter takes the form of 99 predicted
percentiles for each day and hour, which approximate the predictive distribution quite well. They are
generated by twelve different models, eight of which are distributional deep neural networks (DDNN)
with the output layer returning fitted parameters of the normal or Johnson’s SU (JSU) distributions. Since
the quantile functions have no closed-form representations, the percentile forecasts are obtained as empir-
ical quantiles of a 10000-element random sample generated from the output normal or JSU distribution.
These forecasts are denoted further in the text as DDNN_N_{1–4} and DDNN_JSU_{1–4}, respectively,
with the numbers representing the hyperparameter set used for tuning the DDNNs.

The remaining models directly predict 99 percentiles with the use of quantile regression averaging
[QRA; 22] or quantile regression machine [QRM; 21] methods, applied to point forecasts of two well-
-performing benchmarks – LASSO-estimated autoregressive models (LEAR) and deep neural networks
(DNN) [14]. The combinations of these techniques make up the final four forecasts used in the ensembles:
LEAR_QRA, LEAR_QRM, DNN_QRA and DNN_QRM. Note that in the LEAR models, the prices for each of the
24 hourly load periods are treated as separate time series and estimated independently, whereas in the
DNN and DDNN neural networks, the 24 prices or 24 distributions are estimated jointly.

3. Methods

Combining forecasts has become a well-established method to increase predictive accuracy. The advan-
tages of using ensembles of experts in place of individual models include diversification of used infor-
mation and increasing robustness against model misspecification and structural breaks in the data [24].
While the literature generally recommends combining forecasts, many questions still remain open re-
garding the construction of ensembles. Across a multitude of possible specifications, the forecaster must
decide on how many predictions to combine, how to perform forecast selection, and how to choose
weights for each expert. Combining probabilistic forecasts is even more tricky, as the assigned weights
may change not just across experts and time, but also across quantile levels [29].
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3.1. Equal weighting

In point forecasting, the use of naive, i.e., equal, weights is often found to outperform more sophisticated
weighting schemes because the latter introduce excessive estimation bias [4]. In the case of predictive dis-
tributions, however, a choice must be made about what to combine. Two natural approaches are vertical
averaging of probabilities, which boils down to computing a mixture distribution, and horizontal averag-
ing of quantiles, where each quantile of the ensemble forecast is a weighted average of the corresponding
quantiles of all individual experts [15]. While the literature does not agree on which approach is bet-
ter, Marcjasz et al. [20] emphasize that horizontal averaging is more robust and results in a sharper, i.e.,
more concentrated, unimodal distribution. On the other hand, vertical averaging may lead to increased
variance and multimodality. For this reason, as well as potential information loss due to interpolation
needed to perform vertical averaging, only horizontal averaging of quantiles is considered in this paper.
For consistency with other EPF studies, we denote it in the text by qEns.

3.2. CRPS learning

Berrisch and Ziel [1, 2] have recently proposed a cutting-edge weighting technique that accounts for
variations in predictive performance over time and across quantiles; it is freely available in the profoc
package for R ([3], https://cran.r-project.org/web/packages/profoc). The authors called it
CRPS learning since it optimizes weights with respect to the continuous ranked probability score (CRPS).
The latter is a proper scoring rule and the standard error metric for probabilistic forecasts [7, 8]. It is
defined as:

CRPS(F, x) = −
∞∫

−∞

(
F (y)− 1{y≥x}

)2
dy (1)

where F is the cumulative distribution function of the evaluated probabilistic forecast. It can equivalently be
represented as a scaled integral of the quantile loss, which for an equidistant grid can be approximated by:

CRPS(F, x) ≈ 2

M

M∑

i=1

QLpi

(
F−1(pi), x

)
(2)

where (p1, . . . , pM ) is an equidistant monotonically increasing dense grid of probabilities and
QLp(q, x) =

(
1{x<q} − p

)
(q − x) is the quantile loss for a quantile forecast q of true value x for

probability p ∈ (0, 1), also known as the pinball score [1, 18]. In practice, the scaling factor of 2 in
eq. (2) is typically omitted; this is also the case here.

The CRPS learning algorithm aims to combine probabilistic forecasts by selecting optimal weights
for averaging across quantiles to minimize the CRPS of the resulting ensemble. The weight functions are
subject to online updating throughout the forecasting period and are chosen pointwise, i.e., for each quan-
tile of the distribution separately, depending on each expert’s performance. The framework additionally
includes smoothing procedures that reduce estimation noise of the weights [2].

In this study, the CRPS learning framework was applied once per ensemble, with the following ar-
bitrarily chosen set of parameters: Bernstein online aggregation (BOA) for updating weights, penalized
probabilistic smoothing with λ = 2(−5, ..., 5) updated based on past performance, and no forgetting past
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regret. The remaining options were set to the profoc package defaults. Such an approach is denoted in
the text by CRPS. Finally, note that the time required to compute forecasts of a single CRPS learning en-
semble for the entire test period is ca. 500 times longer than that for the naive qEns weighting. However,
it does not exceed 20 s on a laptop equipped with a 9th-generation Intel Core i7-9750H processor.

3.3. Comparison of the two weighting schemes

The general idea of averaging across quantiles, as well as differences between the two weighting schemes,
are shown in Figure 1. The illustration shows a toy example of a two-forecast ensemble. Among the
two experts, the DDNN_JSU_1 forecast (teal color) is sharper, i.e., more concentrated, predicting prices
between 26 and 37 C, and has a smoother cumulative distribution function (CDF), while the LEAR_QRA
predictive distribution (red color) is less sharp (with prices between 15 and 44 C) and more rugged.
Medians of both experts are relatively close to the actual observed price (31.89 C, vertical line), albeit
leaving room for improvement, i.e., with absolute errors of 0.52 and 1.24 C, respectively.
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Figure 1. Illustration of the two weighting schemes. The left panel shows predictive distributions
obtained from the DDNN_JSU_1 (teal color) and LEAR_QRA (red color) models for a selected hour and day.
The center panels present the resulting ensemble forecasts obtained by estimating weights with naive (top)

and CRPS learning (bottom) methods. The right panels illustrate the relative weights for each quantile;
these are horizontally stacked bar plots with the length of the bar representing the weight of the forecast

in the corresponding color and all weights summing up to 1. The dashed vertical line marks the actual price

The two individual forecasts are combined using the two weighting approaches, with the resulting
CDFs and the assigned weights shown in the panels to the right. It can be seen that while the qEns
approach, by definition, assigns equal weights to all models and quantiles, CRPS learning assigns larger
weights to the DDNN_JSU_1 forecast, based on its better past performance (not shown in the plot). The
share of the DDNN_JSU_1 forecast is smaller for the lowest 25 percentiles, but nevertheless, it still dom-
inates the CRPS ensemble, leading to its higher sharpness (price range of [24, 38] C) and smoothness
compared to the equally weighted ensemble (with values in the range [21, 42] C). However, both fore-
cast combinations provide a more accurate median forecast than the individual experts, with absolute
errors of 0.36 C for qEns ensemble and 0.22 C for CRPS learning.
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3.4. Selection of experts

The forecaster’s second decision is the selection of experts that are aggregated in the ensemble. Fol-
lowing [20], each ensemble we consider in this study contains a set of four DDNN forecasts, either
DDNN_N_{1–4} or DDNN_JSU_{1–4}. Furthermore, to diversify the pool of experts we additionally in-
clude benchmark quantile regression-based forecasts – either LEAR_QRA and LEAR_QRM or DNN_QRA and
DNN_QRM. While they have been demonstrated to perform significantly worse on their own, using them
can lead to a higher prediction accuracy of the ensembles by avoiding overfitting [29]. Thus, the resulting
naming convention for ensembles is:

DDNN_{distribution}_{averaging}_{experts}

with distribution={N,JSU} denoting whether normal or JSU forecasts were used, averaging={qEns,
CRPS} indicating the use of equal or CRPS learning-derived weights, and experts={LEAR,DNN} added
when additional experts – respectively LEAR_QRA and LEAR_QRM or DNN_QRA and DNN_QRM – were in-
cluded in the ensemble. A graphical illustration of the steps performed in order to construct the ensemble
forecasts is shown in Figure 2.

(Marcjasz et al. [20])
Calibration

sample
(Sec. 2)

Point
forecasts

Quantile
regression
forecasts

DDNN
forecasts

Sets of
experts

(Sec. 3.4)

Weighted
ensemble
forecasts

(Sec. 3.1–3.3)

Figure 2. Schematic illustration of the process of generating ensemble forecasts

It should be noted that additional forecast combinations were explored during the course of this re-
search. The complete list included smaller ensembles (four DDNN forecasts and a single QR-based fore-
cast; best 5 performing models), other combinations of quantile regression forecasts (e.g., four DDNN
forecasts, LEAR_QRA, DNN_QRA) and larger ensembles (four DDNN forecasts and four QR-based fore-
casts; eight DDNN forecasts as in [2]; all available forecasts). They offered comparable or, in the case of
the largest ensembles, significantly inferior performance to the combinations listed above, and have been
omitted from the presentation of results for the sake of clarity.

In an online learning setting, the forecaster may decide to discard the initial part of the test sample as
a burn-in period, which is beneficial for the stability of weights and hyperparameters, see, e.g., [2], which
uses a burn-in period of 182 days for combinations of DDNN forecasts. However, the quantile regression
forecasts are only available within the 554-day out-of-sample test period, the entirety of which has been
used in Berrisch et al. [2] and Marcjasz et al. [20] for evaluation. Since the majority of ensembles we
consider in this study include these quantile regression forecasts, for the sake of consistency no burn-in
period has been applied.
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4. Forecast evaluation

In this section, the generated ensemble forecasts are compared to each other and individual expert models.
The evaluation is divided into two parts. First, in Section 4.1, we measure the predictive accuracy in terms
of statistical error metrics:

• the mean absolute error (MAE) and the root mean squared error (RMSE) for median and mean
forecasts, respectively [6],

• the continuous ranked probability score (CRPS) for probabilistic forecasts [8, 23].

Then, in Sections 4.2–4.3, we measure the predictive accuracy in terms of profits – total and per trade
– from a day-ahead bidding strategy that utilizes probabilistic forecasts [20, 25]. Note that the CRPS
is approximated by a sum of pinball scores on a grid of 99 percentiles, see eq. (2). The statistical
significance of differences in CRPS scores is assessed using the Diebold–Mariano test [5].

4.1. Evaluation in terms of statistical error measures

As Gneiting et al. [7, 8] argue, the goal of probabilistic forecasting is to maximize the sharpness of the
predictive distributions subject to calibration. Here, calibration (also called reliability or unbiasedness)
refers to the statistical consistency between the probabilistic forecasts and the observations, e.g., whether
the 50% prediction interval (PI) covers 50% of the actual observations. Sharpness, on the other hand,
refers to the concentration of the predictive distributions. For instance, given two reliable 50% PIs,
the sharper or more narrow one is better. The CRPS introduced in Section 3 assesses calibration and
sharpness simultaneously [7]. Moreover, for a point forecast, it is equal to the MAE [23].

The CRPS values for all models ordered from the lowest/best to the highest/worst are shown in the
left panel of Figure 3; the corresponding MAE and RMSE errors in the right panel. Clearly, the two LEAR
forecasts perform the worst, while the DDNN_JSU_4 and two DNN forecasts the best out of the individual
models. Moreover, the individual experts are outclassed by all DDNN_N ensembles, which are further
outperformed by the DDNN_JSU combinations. The DDNN_JSU_CRPS_LEAR ensemble achieves the lowest
CRPS score. For all ensembles, both weighting schemes typically result in very similar forecasts and thus
accuracy. Nevertheless, CRPS learning yields slightly better predictions on average. A similar, though
not identical, ordering can be observed for the point forecasting error metrics. The most significant dif-
ferences are obtained for the DDNN_JSU_{1,3,4} experts in terms of the RMSE. As in [20], we calculate
the MAE for the median (i.e., the 50th percentile) and the RMSE for the expected value of each distribu-
tion; the errors presented for the individual forecasts as well as the DDNN_N_qEns and DDNN_JSU_qEns
ensembles are consistent with the results reported in [20].

To assess the statistical significance of differences in CRPS scores, we perform the Diebold–Mariano
(DM) test [5]. In order to correct for daily seasonality in CRPS values, following [14] and [20], we
consider a multivariate loss differential series defined for a pair of models A and B as:

∆A,B
d = ∥LA

d ∥1 − ∥LB
d ∥1 (3)

where LX
d = {LX

d,1, . . . , L
X
d,24} is the 24-dimensional vector of hourly CRPS values for model X on day

d and ∥LX
d ∥1 is its L1 norm. For each pair of models we apply two one-sided DM tests.
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Figure 3. CRPS scores (left panel) and MAE and RMSE errors (right panel) for all models
and ensembles ordered from the lowest to the highest CRPS. Compare with a CRPS of 1.284

of the best performing model of Berrisch and Ziel [2]
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A heatmap of the respective p-values is presented in Figure 4. The results indicate that the predic-
tions of the DDNN_JSU_CRPS_LEAR ensemble are significantly better than those of all competing models.
The predictions of the remaining ensembles within the top 4 do not significantly differ from each other.
Another ensemble whose forecasts are significantly better than those ranked lower in terms of the CRPS
is DDNN_JSU_CRPS_DNN, while most other ensembles do not yield significantly better predictions than
ensembles similarly ranked in terms of the CRPS.
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ensembles across quantiles, relative to the

DDNN_JSU_CRPS_LEAR ensemble. A lower score
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The CRPS score provides a single number for all quantiles (and each time point in the test period).
To see how the pinball scores for individual percentiles contribute to the CRPS, in Figure 5 we plot
them for selected best-performing ensembles. To enhance readability, all values are plotted with respect
to the pinball scores of the best-performing ensemble, i.e., DDNN_JSU_CRPS_LEAR. Clearly, the relative
performance of the ensembles is not uniform across the entire distributions. The largest disparity can
be seen below the median, with the relative ranking of the ensembles changing for the three lowest
percentiles. Above the median, the ensembles perform similarly.

4.2. Day-ahead bidding

Following Uniejewski [25], we consider a realistic trading strategy that utilizes battery storage and day-
ahead bidding based on probabilistic price forecasts. The goal is to buy electricity cheaply at hour h1 and
charge the battery, then discharge it and sell the electricity expensively at hour h2 > h1. To minimize the
risk of losses, limit orders are submitted to the power exchange with the limits determined by selected
– based on the trader’s risk appetite – quantiles of the predictive distributions.

We assume that the efficiency of charging as well as discharging the battery is 90%. Hence, 1/0.9
≈ 1.1 MWh is needed to charge the battery by 1 MWh. Similarly, discharging 1 MWh generates only
0.9 MWh. Further, we assume that the total usable capacity of the battery is B = 2 MWh and that at the
beginning of the simulation period, the battery starts halfway charged (B = 1). If both orders are executed
on the next day, this state persists. If B = 0 at the beginning of a day, an unlimited bid to buy 1 MWh is
placed at hour h∗ < h2, and if B = 2, an unlimited offer to sell 1 MWh is placed at hour h∗ < h1.
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For each day in the out-of-sample test period, the following two steps are performed. First, based on
median price forecasts Y 0.5

d,h for day d and hours h = 1, 2, ..., 24 computed on day d− 1, hours h1, h2 and
h∗ are selected to maximize the profit:

Πd = − 1

0.9
Ŷ 0.5
d, h1 + 0.9Ŷ 0.5

d, h2 − 1{B=0}
1

0.9
Ŷ 0.5
d, h∗ + 1{B=2}0.9Ŷ

0.5
d, h∗ (4)

When the battery is halfway charged (B = 1), this optimization problem reduces to selecting hours with
the lowest and the highest predicted median price. In other cases, linear programming is used to optimize
the selection of h1, h2, and h∗.
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Figure 6. Illustration of the trading strategy
with limit orders defined by the 80% PIs,

corresponding to a risk appetite of 0.8. Red dots
indicate the price limits for the selected hours

Next, following Marcjasz et al. [20], a profitability condition is checked. If the transaction is expected
to be profitable, i.e., the sum of the first two terms in eq. (4) is greater than zero, a buy order with price
limit Ŷ 1−q

d, h1 and a sell order with price limit Ŷ q
d, h2 are placed. Here q = (1 − α)/2 and α is trader’s risk

appetite, i.e., the PI level, set only once for the whole test period. This is illustrated in Figure 6 for a
sample day and forecasts generated by the DDNN_N_qEns ensemble. In this example, both orders would
be accepted since the actual price falls within the 80% PI, corresponding to a risk appetite of α = 0.8.
However, hour h2 is predicted suboptimally, a slightly higher price was observed for hour 21.

4.3. Evaluation in terms of trading profits

The total profits are presented in Table 1 for five values of risk appetite α ranging from 0.5 to 0.9; the mi-
nor differences between the reported values and those in [20] for the DDNN_N_qEns and DDNN_JSU_qEns
ensembles are a result of correcting a bug in the original software. The profitability results somewhat
correspond to the CRPS results, although with a few notable exceptions. On average, the DDNN_JSU
ensembles achieve higher total profits than the DDNN_N ensembles, mirroring their better performance in
terms of the CRPS. The detailed ranking of those ensembles is where the outcomes start to vary. While
the CRPS weighting scheme outperforms equal weights in terms of forecast accuracy, this trend is mostly
reversed in the financial results. This is especially true for lower values of the risk appetite.
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Table 1. Total profits from the quantile-based trading strategy in the whole test period
for risk appetite ranging from 0.5 to 0.9. The highest values in each column are in bold.

Cells are colored independently in each column from the best (→ green) to the worst (→ red)
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Figure 7. Average daily (dark green) and the minimum and maximum hourly (light green) prices
in Germany from 27 June 2019 to 31 December 2020 (top panel). 30-day moving average of cumulative profit

for the best-performing strategies, shown as a difference between the cumulative profit of each ensemble
and DDNN_JSU_CRPS_LEAR for risk appetite α = 0.6 (center panel) and α = 0.8 (bottom panel)

For instance, the most accurate in terms of the CRPS ensemble, i.e., DDNN_JSU_CRPS_LEAR, yields
lower profits than its qEns counterpart. This is likely due to the fact that while the CRPS weighting
is more accurate on average, it is significantly outperformed by the naive weighting for the few low-
est percentiles, see Figure 5, giving the latter an advantage during the initial stage of the COVID-19
pandemic (middle part of the test period), see Figure 7. A similar behavior can be observed for the



116 W. Nitka and R. Weron

DDNN_JSU_CRPS_DNN ensemble, which performs worse than its competitors for the extreme quantiles,
being at a significant disadvantage in the second half of the evaluation period, when the daily price
spread is higher than in the beginning.

It can be expected that an optimal trading strategy would result in executing exactly two trades per
day, buying on the low and selling on the high. With such a “crystal ball” strategy, the trader would
earn 13,587 C throughout the whole evaluation period. Conversely, taking the worst possible decisions
would lead to a total loss of −21, 425 C. On this scale of possible profits, all evaluated ensembles rank
relatively well. The lowest profit presented in Table 1 reaches 80% of the maximum, while the best of
all forecasts as much as 96%. For comparison, a naive strategy of placing bids at fixed hours selected
ex-post as having the highest price spread on average – buying at hour 3 and selling at hour 19 – would
lead to total profits of 8048 C, or 84% of the maximum, see [20].

Table 2. Profits per trade from the quantile-based trading strategy in the whole test period
for risk appetite ranging from 0.5 to 0.9. The highest values in each column are in bold.

Cells are colored independently in each column from the best (→ green) to the worst (→ red).
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The profit per trade results reported in Table 2 are less clear-cut, with the DDNN_N ensembles no
longer being completely outclassed by the DDNN_JSU ensembles, especially when there are fewer total
trades. As profits per trade can be seen as an indicator of the trader’s risk, this disparity is consistent with
literature findings [12]. It is worth noticing that, perhaps unintuitively, higher values of the risk appetite
correspond to higher risk aversion. This is an effect of the final step of the strategy, which checks the
income of the worst case scenario. With higher values of the risk appetite, this predicted profit tends
to be lower, leading the trader to act more cautiously. This seemingly leads to a dominance of models
which are more accurate across the entire distribution rather than only in the extreme quantiles, compare
the center (risk appetite α = 0.6) and bottom (risk appetite α = 0.8) panels of Figure 7 with Figure 5.
However, this is only a conjecture, as the relationship between daily price levels, price spreads, and PIs
is not direct or linear.

5. Conclusions and discussion

In this article, we address the question of whether minimizing the continuous ranked probability score
(CRPS) – the standard error metric for probabilistic forecasts – leads to optimal decisions in day-ahead
bidding. Conducting an extensive empirical study, we find that introducing diversity to a pool of fore-
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casts is highly beneficial, both in terms of forecast accuracy measured by the CRPS and profits from
a trading strategy implemented in the German day-ahead power market. Also optimizing combination
weights with CRPS learning positively impacts forecast accuracy. This is likely caused by the uneven
performance of experts across time and quantiles, which is an outcome consistent with the literature.

While trading profits generally follow forecast accuracy, the benefits of using CRPS learning are not as
pronounced in the trading scenario, especially considering the ca. 500 times higher computational burden.
The precise cause-and-effect relationships between the predictive accuracy and profits are difficult to
disentangle. However, the performance for the extreme quantiles of the distribution seems to be related
to some of the observed patterns. In general, using any of the considered ensembles leads to achieving
satisfactory profits, especially when compared to the best-case and worst-case scenarios.

For the sake of clarity, only selected forecast sets were considered. Extending the pool of experts
and ensembles could lead to a more comprehensive evaluation. Other possible extensions of this study
include comparisons with other weighting schemes, as well as automated methods for expert selection.
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