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Abstract

The imbalanced data pose a significant challenge in the pattern recognition task. When

not countered, it may lead to poor prediction quality and strong bias towards the more

numerous class, which is also usually of less importance. One of the reasons for this diffi-

culty is the way of quality assessment. Traditional measures or objective (loss) functions

usually assume an equal cost of misclassification for each class. This, together with object

number disproportion, may result in a bigger focus on majority class prediction or even

omitting the minority class entirely. The usual solution to this problem - using metrics

aggregating classes’ recognition quality in a more balanced manner- faces the concern

of unclear optimisation direction, as the score itself does not hold information about its

factors, which reflect the performance of the problem’s classes prediction. The answer

to that problem could be multi-objective optimisation (moo), which allows maximising

classification quality for each class simultaneously.

This dissertation studies the application of multi-objective optimisation techniques in

methods dedicated to imbalanced data classification. The aim of the research is to

substantiate the hypothesis that incorporating moo in training imbalanced data

classifiers allows obtaining tailored solutions whose quality is no worse than

using single-objective optimisation . The following research questions were formu-

lated and answered to support this claim:

1. Is it feasible to employ moo in the process of training of the ensemble

classifier, and how does it compare to the ensembles optimised using a

single criterion?

The ensemble method was proposed, employing the moo algorithm in assigning

weights to committee members. The experiments showed the advantage of util-

ising multiple criteria over models, where weights were optimised based on single

objectives - both simple and aggregated quality metrics.

2. Is it possible to employ moo in the preprocessing stage, and how does

it improve the quality of a classification model

1
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The question was answered by a proposition of a hybrid sampling algorithm, where

parameters of sampling areas were optimised utilising the nsga ii method. The

conducted research compared the proposed approach with a classifier trained on

original data with no preprocessing, as well as popular sampling techniques.

3. What is the best approach to estimate the quality criteria of the classi-

fiers built using moo?

The study was conducted by comparing three different estimation protocols - hold-

out, testing on the training set, and 5x2 cross-validation. The results were analysed

in terms of the quality of generated Pareto front estimations, the consistency of

performance on training and validation data, and the overall quality of the obtained

solutions.

4. Is it possible to employ moo gradient methods for the imbalanced data

problem?

To answer the question, the utilisation of the weighted cross-entropy was pro-

posed, aiming to substitute for previously employed quality metrics. The series of

experiments was conducted to determine their applicability to the imbalanced data

problem, as well as their relation with the target criteria.

5. What is the diversity of classifiers from the Pareto front?

The aspect of diversity was considered as a means to support a solution selec-

tion. The study focused on the interpretability of the models originated from moo

results, and two approaches were proposed as a way to analyse the Pareto fronts.





Streszczenie

Problem danych niezbalansowanych stanowi znaczące wyzwanie w zadaniu rozpoznawa-

nia wzorców. Bez podjęcia odpowiednich środków może prowadzić do słabych zdol-

ności predykcyjnych oraz preferowania decyzji związanych z klasą większościową. Jedną

z trudności tego problemu jest wybór odpowiedniego sposobu oceny jakości modeli.

Tradycyjne miary oraz funkcje celu (bądź straty) zakładają równy koszt nieprawidłowej

klasyfikacji próbek, co wraz z dysproporcją między obiektami może skutkować większym

naciskiem na poprawną predykcję klasy większościowej, a nawet całkowitym pominięciem

klasy mniejszościowej. Standardowym rozwiązaniem jest wykorzystanie metryk agregu-

jących jakość rozpoznawania poszczególnych klas. W wyniku agregacji tracone są jed-

nak wartości składowych odpowiedzialnych za predykcję konkretnych klas, co skutkuje

brakiem kontroli nad kierunkiem optymalizacji modelu. Odpowiedzią na to mogłoby

być zastosowanie optymalizacji wielokryterialnej, która pozwala na jednoczesną poprawę

rozpoznawania wszystkich klas.

Poniższa rozprawa skupia się na analizie wykorzystania optymalizacji wielokryterialnej w

metodach przeznaczonych do rozwiązania problemu danych niezbalansowanych. Celem

rozprawy jest uprawdopodobnienie hipotezy, że włączenie optymalizacji wielokryte-

rialnej w trenowanie klasyfikatorów danych niezbalansowanych pozwala na os-

iągnięcie rozwiązań dopasowanych do potrzeb użytkownika, a także o jakości

nie gorszej niż metody wykorzystujące optymalizacje jednokryterialną . Następu-

jące pytania badawcze zostały sformułowane oraz zaadresowane w celu podparcia powyższego

twierdzenia:

1. Czy jest możliwe wykorzystanie optymalizacji wielokryterialnej w ucze-

niu zespołu klasyfikatorów oraz jak wypada w porównaniu do zespołów

optymalizowanych przy użyciu pojedynczej funkcji celu?

W pracy zaproponowano metodę wykorzystującą optymalizację wielokryterialną

do przydzielania wag członkom zespołu klasyfikatorów. Eksperymenty wykazały

przewagę w zastosowaniu wielu kryteriów nad modelami, których wagi optymali-

zowane były zgodnie z prostymi i zagregowanymi miarami oceny jakości.

4
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2. Czy jest możliwym zastosowanie optymalizacji wielokryterialnej na etapie

przetwarzania wstępnego danych oraz jak to poprawia jakość klasy-

fikacji?

Odpowiedzią na pytanie była propozycja hybrydowego algorytmu samplującego,

którego parametry obszarów próbkowania były optymalizowane przy pomocy metody

nsga ii. Przeprowadzone badania porównały zaproponowane podejście z klasy-

fikatorem wyuczonym na oryginalnych danych, a także poddanych przetwarzaniu

wstępnemu z wykorzystaniem popularnych technik próbkowania.

3. Jaki jest najlepszy sposób na estymację kryteriów jakości klasyfikatorów

trenowanych przy pomocy optymalizacji wielokryterialnej?

Przeprowadzono badanie porównujące trzy różne protokoły estymacji jakości mod-

elu - hold-out, testowanie na zbiorze trenującym oraz walidację krzyżową 5x2.

Wyniki zostały przeanalizowane pod kątem jakości estymowanych frontów Pareto,

zgodności wyników otrzymanych na danych testowych i walidacyjnych, a także

ogólnej jakości otrzymanych rozwiązań.

4. Czy jest możliwe zastosowanie metod optymalizacji wielokryterialnej

opartych na gradientach w problemie danych niezbalansowanych?

Żeby odpowiedzieć na pytanie, zostało zaproponowane użycie ważonej entropii

krzyżowej, służącej do zastąpienia wcześniej wykorzystywanych metryk oceny jakości.

Seria eksperymentów została przeprowadzona w celu określenia jej użyteczności

w problemie danych niezbalansowanych, a także zgodności z kryteriami docelowymi.

5. Jaki jest poziom różnorodności klasyfikatorów z frontu Pareto?

Rozważono różnorodność frontu Pareto w celu wsparcia procesu wyboru rozwiąza-

nia. Wywód skupił się na interpretowalności modeli powstałych w wyniku optymal-

izacji wielokryterialnej i zostały zaproponowane dwa podejścia do analizy frontu

Pareto.
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Chapter 1

Introduction

Since the beginning of time, people have used data obtained from different observations

and measurements to learn about the surrounding world. The gathered information

about plants’ characteristics, celestial bodies’ movements or specific symptoms allowed

humans to prevent poisoning, predict eclipses or diagnose diseases. Such utilisation of

the data required prior knowledge about the phenomenon bases, for example, in the

form of sets of rules (i.e. bitter taste may indicate that the plant is poisonous) or more

complex mathematical models. These, in turn, demanded long-standing experiments or

measurements together with assessing numerous hypotheses. Still, some dependencies

were too complex or difficult for humans to deduce.

The construction of computers and the development of computer science gave rise to

machine learning - the discipline meant to notice the patterns in data for various reasons

that are hard to find or even invisible to the human eye. Various proposed models aim

to differentiate the objects according to some principles, for example, their types, or

classes - i.e., poisonous or safe plant. They use different approaches and assumptions

to optimise their parameters according to some objective function and thus improve

the prediction quality. However, according to Wolpert’s no free lunch theorem [1], no

machine learning model is predominant for every problem. Therefore, depending on the

nature of the data, the proper method needs to be chosen to obtain the best results.

Moreover, the problems are often marked by additional difficulties which require even

more careful model selection and implementation of specific prevention mechanisms.

One of such challenges is presented in the imbalanced data problem. The problem occurs

when there is a disproportion between the sizes of the classes. In a binary classification

task, the class with more samples is called majority class, and the one with a smaller

population is called minority class. The reason behind the difficulty of classifying imbal-

anced data stems from the way how most of the models’ objective function is formulated.

10
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(a) An easy problem (b) A hard problem

Figure 1.1: Examples of problems with the disproportion of the class sizes.

Usually, the classical machine learning methods assume that the error on each sample is

equivalently significant, which may lead to a strong bias towards the majority class, as

reducing its prediction error decreases the overall error to a higher degree. Moreover, it

is not always the number of class samples that poses a challenge, but their distribution

in the feature space [2] (Figure 1.1). In a worst-case scenario, it may result in the model

always predicting a sample as belonging to the majority class. However, usually, it is a

prediction of minority class objects that is crucial, especially in domains such as medicine

[3], bank security [4] or computer networks [5]. Very often, in the case of rare illness

diagnosis, card fraud prevention or cyber attack detection, the rarer instances (i.e., sick

patients) are far more important to correctly classify, as their omitting may result in high

human and financial costs. The solution to that could be to always treat the sample as

belonging to the more significant class, but it would also be too costly and may result in

unnecessary treatments or preemptory measures.

One of the problems with tackling imbalanced data is the selection of a proper optimi-

sation criterion. As mentioned earlier, the classical prediction error, or complementary

prediction accuracy, does not suit data with class disproportion, as it often leads to a bias

towards the majority class. There are base quality metrics used for imbalanced data, such

as precision or recall. However, they show only one of the problem classes’ prediction

quality, mostly disregarding the others, and thus tend to lead to the bias towards either

of the problem’s classes. On the other hand, aggregated measures, for example, balanced

accuracy or geometric mean, though taking all of the aspects under consideration, lose

information about each of the model’s properties since they are different functions of the

base metrics [6] (Figure 1.2), and do not allow to steer the model’s quality into the o

desired direction.
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Figure 1.2: Different values of precision and recall resulting in the same geometric mean score.

This thesis proposition of solution to that problem is the employment of multi-objective

optimisation (moo) algorithms to the training of the imbalanced data classifiers. Opti-

misation of multiple criteria allows to overcome the problem of focusing on one aspect

of the model’s quality, as well as the information loss and randomness of the aggregated

measures. By optimising base metrics corresponding to each of the classes’ recognition,

we can ensure that the model is not biased towards either of them. Furthermore, since

moo optimisation algorithms result in several solutions, there is a possibility to choose

the predictive model configuration that fits the user’s needs the best.

In compliance with the above motivation, the main research hypothesis is to prove that

Incorporating moo in training imbalanced data classifiers allows obtaining

customised solutions which quality is no worse than using single-objective

optimisation.

To make the research hypothesis probable, the following research question will be an-

swered in this dissertation:

1. Is it feasible to employ moo in the process of training of the ensemble classifier,

and how does it compare to the ensembles optimised using a single criterion?

2. Is it possible to employ moo in the preprocessing stage, and how does it improve

the quality of a classification model?
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3. What is the best approach to estimate the quality criteria of the classifiers built

using moo?

4. Is it possible to employ moo gradient methods for the imbalanced data problem?

5. What is the diversity of classifiers from the Pareto front?

The structure of this dissertation is as follows. Chapter 2 describes the background

and related works of the task of machine learning, the imbalanced data problem, multi-

objective optimisation and its applications in the aforementioned. Chapter 3 presents

the first proposed method - the ensemble of classifiers employing moo to weights opti-

misation. Chapter 4 includes the second proposed approach, where moo is utilised in a

parameter tuning of a sampling algorithm. Chapter 5 shows the analysis of the applica-

tion of different evaluation protocols in moo objectives estimation. Chapter 6 proposes a

utilisation of weighted cross-entropies as surrogate criteria for gradient moo algorithms

and assesses its correspondence to previously used objectives. Chapter 7 examines the

selection of solutions from the estimation of a Pareto front in the context of analysing

and understanding the resulting classification models. Lastly, Chapter 8 concludes the

conducted research and outlines possible future directions.





Chapter 2

Related works

This chapter describes the state of knowledge in the areas related to the

dissertation problem. Firstly, the machine learning task will be defined,

and its experimental evaluation will be discussed. Then, some basic

methods for classification and clustering problems will be presented, with

a focus on the algorithms utilised in the later research. This will be

followed by specific approaches for imbalanced data classification. Next,

the concept of moo will be described, with examples of the methods,

evaluation metrics and solution selection aiding techniques. Lastly, the

application of moo in the imbalanced data problem will be researched

and analysed.

2.1 Machine learning task

Machine learning is a part of the Artificial Intelligence discipline aiming to build response

models based on given data without explicit knowledge about the underlying processes

generating samples [7]. The general form of the machine learning model may be presented

as:

y = f(x) (2.1)

where y is the model’s response, and its type varies depending on the nature of the

specific problem. x = [x1, x2, . . . , xn]T , x ∈ X ⊆ Rn is the vector representing an object

while xi are the problems features, such as pixel colour, petal’s length, network’s traffic

from the previous day or the result of blood pressure test, and X is called feature space

[8].

There are different divisions of machine learning tasks depending on, for example, the

representation of acquired knowledge or application [9]. However, the most popular one

15
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Figure 2.1: Categories of machine learning tasks based on the labels availability and type

is due to the type and availability of the objects labels (Figure 2.1). According to that,

we can determine the following categories of machine learning problems [10]:

1. Supervised learning, where the model is presented with labels associated with

each of the instances and its task is to predict the labels of the unknown samples;

2. Unsupervised learning, where the model does not obtain the labels and its task

is to, for example, isolate the groups of samples based on their similarity;

3. Semi-supervised learning, where only part of the data has assigned labels

4. Reinforcement learning, where the model task is to act upon the feedback

received from the environment.

Depending on the task type, different models and algorithms are used. In further part

of the chapter, categories and models relevant to the thesis will be closely described.

2.1.1 Classification

Classification is one of the tasks of supervised learning where there is a finite number

of different labels associated with samples, called classes. The classes could be, for

example, healthy/diseased in the case of illness diagnosis or various types of iris flowers.

The special case is binary classification, when there are only two classes, usually called

positive and negative. Any problem with n classes may be transformed into n binary

problems [11].
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(c) Support Vector Machine

Figure 2.2: Examples of decision regions of different classification models

A classifier aims to map from the feature space to the labels:

D : Rn → Ω (2.2)

where Ω is the label space. To achieve this, canonical classifiers employ the functions

called the discriminants:

gi : Rn → R, i = 1, 2, . . . , c (2.3)

which return so-called support for each of the classes. The class with the highest support

is chosen as the final decision. The feature space can be divided into the decision regions

based on the discriminant functions scores. The joints of decision regions are called

decision boundaries [8].

Different classifiers create different decision boundaries even when learning from the same

data (Figure 2.2). This is due to differences in assumptions and underlying mathemat-

ical models, which constitute each model bias, that must be considered when selecting

appropriate solutions to the problem.

The models determine the parameters of their discriminants by optimising specific loss

function, which usually measures the difference between the perfect solution and the

current configuration. The most canonical loss function would be error of misclassifi-

cation, which presents the number of incorrectly predicted samples. However, due to

the nature of many classification algorithms’ parameter optimisation, it is not feasible

to use it explicitly [12]. Instead, the so-called surrogate losses are employed, which are

the functions with properties allowing their inclusion in the model that still contribute

to the overall decrease of the classifier’s error [13].
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(a) Unlabelled data (b) Data after clustering

Figure 2.3: The example of clustering of unlabelled data

2.1.2 Clustering

Clustering is one of the tasks of unsupervised learning, meaning that the labels of the

samples are unavailable during model training [14]. Its aim is to assign samples to the

groups, called clusters. The example of clustering is presented in Figure 2.3.

One of the essential concepts of the clustering domain is similarity, as there is an assump-

tion that the samples from the same clusters should be as similar as possible, and objects

from different clusters should differ significantly. In this context, the similarity of two

objects denotes their proximity, and thus, distance metrics are employed as the measure

[15]. The most popular and default for many algorithms is Euclidean distance measure,

which is a special case of Minkowski distance (2.4) when p = 2. Another example is

cosine similarity (2.5) [15].

d(x, y) =

(
n∑
i=1

|xi − yi|p
) 1

p

(2.4)

d(x, y) =
x× y
‖x‖‖y‖

(2.5)

2.2 Experimental design

The basis of the scientific inquiry is a formulation of the hypothesis, which is then

verified by experimentation. Although many computer science theories used to be proved

by employing mathematics and theoretical debate, nowadays, new knowledge is mainly

derived from practical experiments, including the machine learning domain [16]. It is
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Figure 2.4: A scheme of the machine learning experimental pipeline

especially crucial to take appropriate measures while designing an experiment, both to

improve the quality of the proposed method and to make its performance more credible

and reproducible.

2.2.1 Experimental pipeline

The scheme of the machine learning experiment is presented in Figure 2.4. The experi-

ment consists of two main parts: training the machine learning model and its evaluation,

also called post-processing [17]. Both processes should use different subsets of original

data obtained by data splitting. Before the data is fed to the algorithm, it needs to be

preprocessed. The preprocessing is a set of techniques meant to modify original data to

improve or even enable classifier training [18]. It includes:

• data cleaning and imputation - as most of the classification models cannot handle

not numerical data, some features, for example, categorical, must be transformed

into numbers, and missing data need to be filled or, if feasible, discarded;

• feature engineering - consisting of feature selection and reduction- is employed

to remove attributes detrimental to the prediction quality or create new features

enhancing the classification. It may also lead to a decrease in the cost of data

acquisition, especially important in the cost-sensitive learning [19], as well as de-

crease the impact of the curse of dimensionality, which hinders models’ ability to

generalise from sparse data;
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• data sampling - crucial for handling noise data and detecting outliers, may improve

the generalisation abilities of the model and prevent overfitting. It may also be

employed in order to reduce large data sets to optimise computation complexity

[18]. Moreover, it is one of the ways of handling data imbalance.

Some processing, like data sampling, can be only performed on data used to train the

model, as its employment on evaluation sets might falsify the results. Others, for exam-

ple, data imputation and attribute generation, are crucial as the classifier is adjusted to

the specific feature space.

The whole pipeline is a part of the experimental loop. The number of repetitions of the

loop, as well as specific data split configuration, depend on the established evaluation

protocol.

2.2.2 Evaluation protocol

Evaluation protocol determines how to assess classification algorithms so the obtained

results are as close to reality as possible. To achieve that, it is crucial to examine how

the models predict data not seen before. There are a few different strategies for model

evaluation:

1. Testing on training set - utilising the same data the model was trained on.

It is unacceptable to employ this approach for model assessing and comparison

because it does not test the generalisation capabilities of the method, and leads

to overoptimistic resuls, as its high quality scores might be an effect of the model

remembering the samples instead of learning from them [8]. Nevertheless, many

classification algorithms use this method during parameter optimisation, sometimes

together with some procedures that prevent overfitting, such as pruning or depth

control in decision trees or limiting iterations in neural networks.

2. Hold-out is a strategy of splitting data into two disjoint sets of different sizes. The

set with more samples is used for training, and the other for model testing [20]. It is

the simplest way to ensure that the algorithm is evaluated using samples different

from the one it learnt from. However, it is challenging to select the ratio of the

training and test sets, as a model trained on more data is better at estimating real

distribution, but the less data is used on testing, the less reliable it becomes [20].

Moreover, due to no replication of the split, the quality estimation is less credible,

and the model’s good performance may be caused by intentional or unintentional

data picking - selecting the data subsets that fit the algorithm the best. Still, with
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the sufficient data volume and ensuring the same distribution in training and test

set, the protocol allows precise error estimations [21].

3. K-fold cross validation - in this protocol the data is split into k sets of the same

size, called folds. Each fold is then utilised for testing, while the rest is employed

for the classifier training. That gives k iterations of assessing the estimator, which

results are then averaged [7]. k usually equals 10 or 30. In general, the smaller

the dataset, the bigger k should be chosen, leading even be set to the number of

samples so that the test set is degraded to a single object. This approach is called

leave-one-out [22]. The advantage of the k-fold validation in relation to previous

protocols is a decrease in the influence of the split and a better estimation of the real

quality of the tested classifier. However, since only a small part ( 1k ) of the whole

dataset is used for validation, still the estimation might be inaccurate. Moreover,

there is a significant dependency between each of the training sets, as every pair

share k−2
k data [7].

4. 5 x 2 cross validation - is an improvement of k-fold cross validation [23]. In this

strategy, the data is split into two equal sets - the first is employed for training

and the other for testing. Then, the second is used for classifier training, and the

first is for validation. The whole procedure is repeated 5 times with shuffling the

samples in between splits. The value of 5 repetitions is determined experimentally

as a trade-off since with too few iterations, the noise in the variance of results has

too significant of an impact on the final estimation, and with too many repetitions,

there is too big of an influence of the sets dependency [23]. The biggest benefit

of this protocol is its quality estimation and the splits in which each sample is

used equally for training and testing. However, splitting the data in half can be

disadvantageous in the case of small datasets, as there might be too few objects

for the model to learn from.

The described protocols are presented in Figure 2.5.

In all of the described protocols, if the data split occurs, it should be random for better

quality estimation. However, to better replicate the distribution of the data, especially in

a case of imbalanced data, the split should be stratified, meaning that the proportion of

the problem’s classes in the training and test set are the same as in the original dataset.

2.2.3 Results analysis

When experiments are finished, and models’ predictions on test data are obtained, their

results should be processed and analysed. The post-processing of the experiments can
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Figure 2.5: Visualisations of different experimental protocols

be divided into two parts - quality measures calculation and statistical analysis.

2.2.3.1 Quality measures

Most of the prediction quality measures for classification are based on the so-called

confusion matrix (Fig. 2.6) [24]. The confusion matrix summarises how many of the

samples were correctly classified. For the binary problems, there are four segments of

the table:

1. True positives (tp) - number of objects from the positive class that were correctly

predicted by the model
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Figure 2.6: Confusion matrix

2. False positives (fp) - number of objects from the negative class that were pre-

dicted by the model as positive

3. True negatives (tn) - number of objects from the negative class that were cor-

rectly predicted by the model

4. False negatives (fn) - number of objects from the positive class that were pre-

dicted by the model as negative

The most popular general purpose prediction quality metric is accuracy (2.6) or the

complementary error rate (2.7) [24]. These measures inform how many of the samples

were correctly or incorrectly classified compared to the whole dataset.

accuracy =
TP + TN

TP + FP + TN + FN
(2.6)

error rate =
FP + FN

TP + FP + TN + FN
(2.7)

Both accuracy and error rate treat every sample prediction with the same importance.

However, this assumption is inadequate in the case of class imbalance since, for example,

high accuracy values might not indicate good general performance, but disregarding the

minority class [25].

One solution for that is the employment of the class-specific measures, such as recall

(otherwise called sensitivity or true positive ratio - tpr) (2.8), specificity (2.9) or precision

(2.10). The first two metrics determine what portion of positive and negative classes are

correctly classified, whereas precision informs how many of the samples predicted as
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positive are actually positive. The main disadvantage of class-specific quality metrics

is the fact that they do not indicate the other problem’s class prediction, which might

cause the model’s bias towards the considered class and hinder the analysis of the results

and, as a consequence, require presenting various quality assessments [25].

recall =
TP

TP + FN
(2.8)

specificity =
TN

TN + FP
(2.9)

precision =
TP

TP + FP
(2.10)

Another group of quality measures are aggregated metrics, which are the functions of

base metrics such as precision or recall. balanced accuracy (bac) [26] is the average of

recall and specificity :

bac =
recall + specificity

2
(2.11)

Its main advantage over previous measures is that it considers both classes equally and

decreases when one of the classes is predicted poorly.

Gmean (geometric mean) score is a similar measure employing both recall and specificity

[27]. However, instead of arithmetic, the geometric average is used:

Gmean1 =
√
recall ∗ specificity (2.12)

To focus more on the correct minority class prediction, another version of Gmean was

also proposed [28], employing recall and precision:

Gmean2 =
√
recall ∗ precision (2.13)

Another widely popular imbalanced data quality measure is Fβ score, which is the har-

monic mean of precision and recall :

Fβscore =
(
1 + β2

) precision ∗ recall
β2precision+ recall

(2.14)

β parameter is a weighting factor between precision and recall and should be higher

when predicting all of the minority samples is more important and lower if its correct

classification proves significant. Usually, both factors are treated equally and β = 1.

However, some studies claimed that it should be selected more thoroughly, for example,

by being dependent on minority and majority classes ratio, to decrease the bias towards

majority class [29].
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Another way of classifier evaluation is by employing the roc - receiver operating charac-

teristic curve, showing the relationship between true positive rate (tpr) and false positive

rate. The curve represents one classifier with different parameter values [17] or different

prediction thresholds [30]. If only one version of the model is considered, then roc has

the form of a single point. The measure encapsulating the roc curve is area under roc

curve (auc), which, as the name suggests, is obtained by calculating the area between

the x -axis and the roc curve with one as a limit. In the case of binary classification and

single point ’curves’, the auc measure is the same as the bac score.

Several other classification metrics were proposed, such as different variants of auc [31–

33], Index of Balanced Accuracy [34], Matthews Correlation Coefficient [35], Cohen’s

κ-measure [36] and many more.

Studies have shown that even similar evaluation metrics differ in their results and should

not be easily omitted, as very often the differences between compared methods are very

tight, and the best model might vary depending on the selected measure [37]. Neverthe-

less, to avoid overly complicating the analysis of the evaluation results, the number of

presented quality measures should be reasonable [25].

2.2.3.2 Statistical evaluation

Once the experiments’ results are obtained and measures calculated, the statistical eval-

uation must be conducted since the difference between each classifier scores might not

be significant and stem not from the model’s better quality but from specific data sam-

pling or the method’s randomness [38]. The selection of statistical tests depends on the

numbers of compared classifiers, datasets and the distribution of the results.

The first group of statistical tests is dedicated to comparing two models on one dataset.

One such method is McNemars test, which examines whether the difference between

unique mistakes made by both classifiers is significant [23]. The advantage of McNe-

mar’s test is its low type 1 error (when the significance in the difference in classifiers’

performance is accepted, while in truth, there are none). However, it can be conducted

only for one run, meaning that it has to be assumed that there is little variance between

employed and real data [23].

As hold-out should not be employed if possible, other tests must be considered. Paired t-

test with correction [39] could be used in a case of k-fold cross validation and combined 5x2

F-test [40] for 5x2 cross-validation protocol. Both tests check whether the mean of the

differences of the classifier’s prediction quality on all of the folds is close to 0, employing

appropriate statistics which consider each protocol’s assumptions, for example, the fact

that the data samples in each fold are not independent.
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The tests above cannot be employed to make a more general comparison over multiple

datasets, as the differences in quality on different data are not commensurable (as they

do not come from the same distribution) [41]. One of the tests dedicated to comparing

two methods on several problems is Wilcoxon sign-rank test [42]. Instead of calculating

statistics based directly on quality disparity values, the test ranks the differences and

employs their sums. Another way of statistical evaluation in such a scenario is signed test

[43], which only counts wins of every classifier and is based on the intuition that when

of similar quality, each of the models should win approximately half the time. Neither

of the tests assumes the normality of the distribution of the results, which, on the one

hand, makes them more applicable, but on the other, weaker than different parametric

tests, such as the paired t-test [41]. As the Wilcoxon test takes into consideration not

only how many times but also with what magnitude the model won, it is stronger and

shows the significance of the results more often than the signed test [41].

The last group of tests is dedicated to comparing more than two classifiers. Such evalu-

ation consists of two parts: firstly, the test is conducted to examine whether there is a

significant difference in multiple models’ performance, then a post-hoc test is employed

to determine which of the compared algorithms is better than the others [41]. One of the

most popular tests for comparing multiple models is anova (analysis of variance) [44],

with Tukey post-hoc test [45]. The main disadvantage of the anova is that it assumes

the normality and sphericity of the data distribution, which is not granted in the case

of classifiers results [41]. Friedman test [46] is nonparametric equivalent to the anova.

It ranks performances for every problem and then calculates the statistic based on the

average rank of each model. If the determined statistic proves the significance of the

results, the Nemenyi post-hoc test can be employed, which calculates critical difference

based on a number of compared algorithms and evaluated datasets. The critical differ-

ence determines how much the average rank of the model must differ to verify statistical

dominance.

Statistical evaluation is essential for the credibility of the experiments’ results. However,

it is crucial to select and analyse the results of the statistical test correctly. In literature,

there are occurrences of improper statistical evaluation, such as using multiple pairwise

tests to compare several versions of the models [43] or employing parametric assessments

without determining their assumptions fulfilment [41]. Moreover, the results of statistical

tests might be manipulated by adequate selection of the data splits or pool of compared

algorithms [38].

It must be noted that there are some critics to the established statistical evaluation

methodology, both with the methods used and drawn conclusions. They lead to propo-

sition of different approaches, such as Bayesian analysis [47].
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2.3 Chosen machine learning algorithms

2.3.1 Naive Bayes Classifier

The Naive Bayes Classifier is an example of a probabilistic estimation model. It uses a

posteriori class probabilities to select the class with the smallest risk of wrong predic-

tion. The term naive comes from the assumption that each of the problem’s features is

conditionally independent [8]. The formula for choosing the label is as follows:

ŷ = arg max
y
P (y)

n∏
i=1

P (xi | y) (2.15)

where P (y)are the a priori probabilities of the classes and xi are the consecutive features.

Different variants of Naive Bayes models use distinct assumptions about features’ distri-

bution; for example, the Gaussian Naive Bayes classifier assumes that the distributions

are normal.

2.3.2 K Nearest Neighbour Classifier

K Nearest Neighbour Classifier (knn) is an example of a density estimator, aiming to

predict samples’ classes without any knowledge about their distributions. It assumes

that instances with the same labels are somehow similar to each other and lay in close

proximity in the feature space [48]. When predicting the label of the samples, the model

searches for k instances from earlier obtained data closest to the examined point. The

label that belongs to the majority of such samples is selected as the prediction (Figure

2.7). knn model is often called lazy learner, as during training, it does not optimise any

discriminant function but checks the data during the prediction. The only parameters of

the knn model are the distance metric and k value. The most popular distance measure

is Euclidean metric 2.4. The appropriate selection of the value of nearest samples is

crucial and depends on the problem characteristic, such as the number of instances,

classes or their disproportion. Usually, k is chosen to be odd, for example, 3 or 5, to

prevent draws.

2.3.3 Decision Tree Classifier

Decision Tree Classifier is a sequential model consisting of a set of attribute values tests.

Each test, usually checking a single feature, creates a branch leading to a node with

either another decision rule or the final response (class label) called a leaf [49]. The

example of the decision process is presented in Figure 2.8.
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Figure 2.8: Visualisation of the decision tree trained on iris dataset

During training, each node test is selected based on the split criterion - each potential

feature space split is evaluated, and the one with the best score is executed. There are

several split measures, for example, Information Gain (2.16) or Gini impurity (2.18) [50].

InformationGain(xi, D) = Entropy(y,D)−
∑
v∈xi

PvEntropy(y,Dv) (2.16)

where xi is examined feature, v are different values of xi, Pv is a relative frequency of

value v, and

Entropy(y,D) =
∑
c∈y
−pc log2 pc (2.17)

while

Gini(D) = 1−
C∑
i=1

P 2
i (2.18)

where Pi is a relative frequency of the class i in the examined node.
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(a) Original space (b) Transformed space

Figure 2.9: Example of transformation ϕ(x1, x2) = (x1 ∗ x1, x2 ∗ x2)

The biggest advantages of decision trees are their interpretability [49] and flexibility, as

they are part of more complex and acclaimed algorithms such as Random Forest [51] or

XGBoost [52].

2.3.4 Support Vector Machines

Support Vector Machines (svm) [53] aim is to find the hyperplane dividing the problem’s

classes. Since many problems are not linearly separable, to achieve this, the algorithm

converts the samples to other- usually higher dimensional- space, where such partition is

possible, using some mapping ϕ(x) (Figure 2.9). To reduce calculation, the svms employ

so called kernel trick, when instead using function ϕ explicitly, they use kernel function

K that equals the dot product of two vectors [54]

K(xa, xb) = ϕ(xa) · ϕ(xb). (2.19)

Some examples of popular kernels are polynomial (2.20) or Gaussian RBF (2.21)

K(xa, xb) = (xa · xb + r)p (2.20)

K(xa, xb) = exp

(
−‖xa − xb‖

2

2σ2

)
(2.21)

where p is a chosen polynomial degree, r is added bias and σ is tuning parameter.
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2.3.5 Artificial Neuron Networks

Artificial Neural Networks (ann) are models designed to mimic the way of working of

the human brain [55]. They are composed of the processing units called neurons (Figure

2.10), which consist of:

• input vector u = [u1, u2, . . . , uq]

• weights vector w = [w1, w2, . . . , wq]

• a bias b

• activation function φ

The result output v of the neuron has a form [8]:

v = φ

(
q∑
i=1

wiui + b

)
(2.22)

Multiple activation functions where proposed, for example heaviside step 2.23 or rectified

w1

Σ +b φ

u1

u2

uq

w2

wq

v

Figure 2.10: Neuron unit scheme

linear unit (relu) 2.24 function:

φ(x) =

0 x < 0

1 x ≥ 0
(2.23)

φ(x) =

0 x < 0

x x ≥ 0
(2.24)

Neuron processing units are connected in a structured way, aligned in connected layers.

One of the easiest and most popular neural network models is Multilayer Perceptron

(mlp) (Figure 2.11). The discriminant function of the mlp model depends on the number

of layers and its activation, partitioning data into two planes with one layer and creating

more complex regions the deeper it gets [56]. Another example of models is convolutional
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Figure 2.11: Example of multilayer perceptron

neural networks (cnn) for an image or sequential data [57] or transformers for natural

language processing [58].

During training, the weights of the neuron connections are usually set at random and

then optimised based on the intended output using a technique called back propagation,

where the difference between obtained and true predictions influence each of the layers

sequentially [56]. There are several ways of optimising network parameters, but gradient

methods are the most popular. One of them is stochastic gradient descent calculating

the weights as follows [59] :

wt+1 = wt − αtC
δl(xt, yt;wt)

δw
(2.25)

where l(xt, yt;wt) is selected loss function which we want to minimise in the model, αt
is a learning rate and can be time dependent and C is positive-definite matrix. A more

advanced neural network optimiser is Adam (adaptive moment estimation) [60], which,

apart from explicitly using loss function gradient, also utilises its momentums.

As gradients are used to optimise neural network parameters, it is crucial that a loss

function is differentiable.

2.3.6 Ensemble learning

Ensembles of classifiers are the models which combine several estimators and aggregate

their predictions. Classifier committees have their foundations, among others, in Francis

Galton’s concept of wisdom of the crowd [61] and Cordocet’s jury theorem [62]. The

latter proves that in a situation when there is a group of independent estimators of equal

quality (although better than random) aggregated by selecting the response stated by

the majority:

1. The overall committee quality is better than the quality of a single member;
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2. The quality increases with the increase in committee size.

There are, however, some counterarguments that independence between classifiers is

not a sufficient condition and that it is error committing between models that must be

independent [63].

This fact, together with modularity and the ability to decompose the problem, resulting

in more complex decision boundaries, lead to the good quality and popularity of the

ensemble methods [64].

An ensemble model consists of two components: a pool of estimators and a combiner

aggregating their predictions (Figure 2.12) [8]. One of the most important aspects of the

selection and training of ensemble members is their diversity [65], as similar classifiers

tend to make the same mistakes - thus, there is no benefit in their combination. There

are different ways of assuring the diversity of estimators, and they can be assigned into

three categories [64]:

1. diversity by data alteration - meaning that each of the classifiers is trained using

different data obtained from the original set; it can be done for example by selecting

different subsets using bootstrapping. Another strategy is to train classifiers using

different problem features [65]

2. diversity in classification algorithms - as different classifiers have different biases,

combining them may lead to more complex decision regions and quality improve-

ment. The diversity might be in general classification models (e.g., knn, svm, etc.),

in that case, an ensemble is called heterogeneous, or in algorithms parameters (e.g.,

different kernel functions in support vector machines or learning rates in neural

networks) [8].

3. diversity by output manipulation - refers mostly to multi-class problem decomposi-

tion by, for example, binarisation with techniques such as one-vs-one, one-vs-all or

Error-Correcting Output Codes (ecoc) [66], where each of the ensemble members

trains from a different subproblem (i.e. two of the classes distinction) and their

output is later aggregated in a way to match the main problem’s classes.

Depending on the chosen combiner and specific problem, it may be necessary to conduct

a pruning procedure to reduce the ensemble size. It is especially important when train-

ing members on subspaces of data (both vertical and orthogonal), as some classifiers’

contribution might be detrimental to the overall committee’s quality [67]. One of the

examples of pruning is by choosing the n best classifiers or by greed search [8]. Another

example is to use some kind of metaheuristic, such as a genetic algorithm [68].
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Figure 2.12: Scheme of an ensemble classifier

The other crucial aspect of ensemble learning is the way of aggregating members’ predic-

tions. The most basic way of combining classifiers is via the majority voting, where the

response given by the biggest number of estimators is chosen as the final response [8]. A

slightly more complex and popular one is weighted majority voting, where each classifier

is assigned a weight, influencing their contribution in the final prediction. The response

from the model using this type of combiner is as follows [17]:

Ψ(x) = arg max
j∈M

n∑
i=1

[Ψk(x) = j]wi (2.26)

where wi is the weight of i-th ensemble member and [] stands for Inverson’s bracket:

[x] =

1 when x = true

0 when x = false
(2.27)

There are a few different ways to assign weights to the classifier [17], among others:

• each classifier has one weight assigned, for example, proportionate to its accuracy

[8]

• weights are assigned to each classifier for each class, for example, based on its recall

[69]

• as above, but additionally weights depend on x [17]

Another way of aggregating members’ decisions is to utilise meta-learning methods -

classifiers trained on the other estimators’ prediction [64]. In this case, the training
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set has the same number of samples as the original set used to train the committee

members, but the number of features depends on the ensemble size. Various classification

algorithms could be employed, for example, Naive Bayes classifier [8] or mlp [70].

Instead of basing the response on labels returned by base classifiers, estimators’ confi-

dence can also be taken into account, for example, in the form of each class’s support

[71].

There are several ensemble models and strategies. One of the most popular to employ

or improve are:

• Bagging ensemble (Bootstrap aggregating) [72] is an ensemble method utilising

bootstrapping to select data for each member training. The samples are drawn from

the original set with replacement, meaning that each object may appear more than

once. Members’ predictions are aggregated via majority voting. This technique is

especially prominent while employing unstable classification algorithms (meaning

that a slight change in data creates a significant change in the decision boundaries).

such as Decision Trees;

• AdaBoost (Adaptive Boosting) [73] is an ensemble algorithm employing boosting

strategy, meant to improve each iteration of the model. In this algorithm, each of

the data samples is assigned a weight, which is sequentially increased or decreased

based on its difficulty, calculated as the examined estimator’s exponential loss. This

technique ensures that as the generation of ensemble members proceeds, there is a

bigger focus on the samples that prove difficult to predict. The crucial assumption

of the algorithm is that it utilises weak learners, meaning that at the base, their

quality is slightly better than random and that their premised decision boundaries

are not too complex so that there is the possibility to improve their quality and to

prevent overfitting. Weighted majority voting is used to aggregate the members’

predictions. Instead of adding new estimators one by one in greedy approach, the

whole ensemble can be optimised using gradient, just like in XGBoost model [52]

• Random Forest [51] is an ensemble consisting of Decision Trees. Each tree is created

using a bagging procedure. Additionally, to introduce even more randomness, the

subset of random features is drawn for each split, and the best choice of attribute

is selected from that group, instead of from the whole feature space. Moreover, the

trees created utilising this technique are not pruned. Decisions of the members of

the ensemble are then aggregated using majority voting. One of the most significant

advantages of Random Forest ensemble is its generalisation abilities, even without

parameters tuning, and its robustness against noisy samples [74].
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2.3.7 Clustering algorithms

There are many approaches to the clustering problem. One of the categories of clustering

methods is algorithms based on the partition, which aim to divide the feature space by

finding the centres of the clusters [75]. One of the most popular examples is K-means

algorithm[76]. Its goal is to find k centroids that would minimise the distances to cluster

members. The scheme of the K-means algorithm is as follows:

1. Initialise clusters centers c1, c2, . . . , ck

2. Assign samples to clusters by finding for each xi

arg min
j∈{1,2,...,k}

d(xi, cj)

3. For each cluster C1, C2, . . . , Ck update its center

ci =
1

‖Ci‖
∑
x∈Ci

x

4. Calculate the error E

E =
k∑
i=1

∑
x∈Ci

|x− ci|2

5. Repeat until E does not change significantly or cluster memberships no longer

changes

The biggest disadvantage of the partitioning algorithms is their dependence on the k

parameter, which has to be selected based on expert knowledge, problem constraints

or extensive experimentation. Multiple measures were proposed to determine the best

number of clusters [77]. Nonetheless, they tend to favour the least or the most groups

possible. Another weakness of K-means and other centroid-based methods is that they

are not appropriate for non-convex data.

Another clustering strategy is to group samples based on their density [75]. Methods of

this type make an assumption that data in the dense areas belongs to the same clus-

ter. One such algorithm is dbscan [78], which connects points based on their density-

reachability, that is, their appropriate proximity (lesser than given ε) and being sur-

rounded by different objects. optics [79] is an expansion to dbscan, computing the

clusters for different values of the neighbourhood size. Both of the methods assume the

existence of noise - samples not belonging to any of the clusters. Moreover, selecting the

value ε is crucial and has the biggest influence on the created clusters and determining

noise objects.
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2.4 Methods for imbalanced data

The problem of data imbalance poses a significant challenge since it affects correct recog-

nition of the quintessential samples, such as occurrences of fraud or network attacks,

which very often are not as numerous as less important objects. There were proposed

multiple approaches to countering class imbalance in data, which can be grouped into

three categories [80]:

• data-level methods, which aim to balance classes ratio by adding or removing sam-

ples;

• algorithm-level methods, that change pattern recognition algorithm to take all of

the classes into consideration;

• hybrid methods, which combine both of the above, often in the form of classifiers

ensembles.

2.4.1 Data-level approaches

The first group focuses on modifying the distribution of the classes by, for example,

removing or generating new samples, which can be later used to train a classifier not

adjusted to the skewed data. The most basic methods are random under- and oversam-

pler, which randomly remove majority class samples or duplicate minority class samples.

They are computationally low cost, however they might lead to the erasure of the cru-

cial information or enhancement of the noise [80], which is the reason why most of the

sampling methods employ more guided techniques.

One of the most popular oversampling algorithms is Synthetic Minority Over-Sampling

Technique (smote), which generates new objects by interpolating selected minority sam-

ples and their randomly chosen nearest neighbours [81]. The algorithm allows the broad-

ening of the minority class decision regions and better generalisation. However, it may

also result in amplifying the influence of noise samples or even creating new ones. Many

algorithms based on smote were proposed to toggle its problem with creating unneces-

sary detrimental samples [82]. Borderline SMOTE focuses on creating samples around

borders of minority class clusters so that the decision regions are better defined and

potentially noise objects ignored [83]. On the other hand, Adaptive Synthetic Sampling

Approach (adasyn) creates more samples around minority class objects that may be

harder to predict because of their surroundings [84]. Other approaches include generat-

ing new samples and removing the ones which are detrimental to the prediction [85, 86],

modifying how the points are interpolated [87, 88], or employing smote in the clusters
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of samples determined for example by K-Means algorithm [89, 90]. There were also pro-

posed methods, such as DeepSMOTE [91], incorporating smote-like points generation

into deep learning models.

Another method for data preprocessing is undersampling, which removes majority class

samples. Many early algorithms, such as Condensed Nearest Neighbour (cnn) [92], Edited

Nearest Neighbour (enn) [93] or Tomek Links [94], were based on nearest neighbour ap-

proach. cnn removes samples that do not change the decision of the classifier model.

enn removes samples in which the majority of neighbours are from different classes. The

last algorithm removes so-called Tomek links, that is, objects with the nearest neighbour

from another class. In the case of imbalanced data, each method is conducted on samples

from the majority class. The problem with these methods is that they do not guarantee

the balancing of the classes and may not improve the recognition of the minority class,

especially in the case of a significant disproportion between classes. Clustering-based

undersampling divides majority class samples into clusters and leaves only one repre-

sentative from each group [95], while Radial-Based Undersampling removes majority

class samples with the biggest mutual-class potential [96] or Evolutionary Undersam-

pling which employs evolutionary algorithm to select optimal subset of the training set

[97]. The biggest disadvantage of undersampling techniques is that they decrease the

size of training sets, which can be detrimental to the predictive abilities of the classifiers.

Hybrid sampling algorithms combine both over and undersampling, improving minority

class recognition by both creating new examples and cleaning the areas of interest. One

such technique is a combine cleaning and resampling algorithm (ccr) and its radial-based

modification (rb-ccr), which cleans majority class in the areas around minority class

samples, with the possible variant of deleting them, and populate it with new synthetic

points [98, 99]. Different approaches examples are to employ svm to delete majority

class samples far from the decision boundary and then perform smote on the groups of

the remaining set [100] or dividing training data into clusters and performing over- or

undersampling based on the number of minority class samples [101].

Figure 2.13 presents the examples of results of different over- and undersampling algo-

rithms.

2.4.2 Algorithm-level approaches

Another way to deal with imbalanced data problem is to adapt the classification al-

gorithms so that they do not ignore the disproportion between samples[80]. One such

approach is cost-sensitive learning, which takes into consideration the cost coming from
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(a) SMOTE (b) Borderline SMOTE (c) adasyn

(d) k-means SMOTE (e) SMOTE with Tomek Links (f) CCR

(g) CNN (h) ENN (i) Tomek Links

Figure 2.13: Examples of different sampling algorithms processing

the misclassification of the objects or from data acquisition [102]. An example of accom-

modating differences in class importance is to assign higher weights and misclassification

costs to the minority class samples in models like knns [103], svms [104, 105] or Naive

Bayes classifier [106]. In the case of neural networks, the most straightforward and

popular algorithm-level approach is to employ a loss function that differentiates class in-

fluences [107]. Several optimisation objectives were proposed, such as Mean False Error

[108], which calculates the mean error of each class prediction separately:

FPE =
1

N

N∑
i=1

(yi − ŷi)2 (2.28)
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FNE =
1

P

P∑
i=1

(yi − ŷi)2 (2.29)

MFE = FPE + FNE (2.30)

Where FPE and FNE are false positive and negative errors, respectively, N and P are

a number of negative (majority) and positive (minority) samples, yi is i-th output of the

model while ŷi is i-th true value. Mean Squared False Error is the improvement of MFE,

which utilises both false positive and negative errors; however, it aggregates them in a

different manner so that it is more sensitive to the minority class recognition mistakes

[108]:

MSFE = FPE2 + FNE2 (2.31)

Another approach would be to employ cross-entropy loss function with appropriate class

weights [109]:

CE =
C∑
i=1

−wi[y = yi] log pi (2.32)

Where wi is the weight of the i-th class and pi is the model’s support for the i-th

class. The weights should be normalised, either before assignment or during samples’

loss aggregation.

The other proposed loss function is focal loss [110], which is a different modification of

basic cross-entropy but with a modulating factor that, apart from compensating for class

imbalance, also forces the model to focus on harder examples:

FL =

C∑
i=1

−yi(1− pi)γ log pi (2.33)

Where γ is the tuning parameter.

The main challenge of cost-sensitive learning and weight assignment is determining the

costs of misclassification in cases when it is not given by experts. Common approaches

are setting weights proportional to the ratio of class sizes [109] or optimising them based

on the performance objective [103].
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2.4.3 Hybrid approaches

Finally, the last methodology is a hybrid approach combining sampling and algorithm

adjustment. The common method to merge the two techniques is in the form of an

ensemble of classifiers, where sampling is used to provide diversity in data utilised in

each member training, and their predictions are aggregated in a way fitting imbalance

problem [111]. The bagging technique is altered to better suit skewed class ratio by

changing the way each of the subsets is drawn from the original data by, for example,

always choosing all of the minority samples and only bootstrapping from majority class

[112], drawing from both of the classes separately to obtain subsets which are "roughly

balanced" [113], differentiate the probability of being drawn for every sample based on its

type and neighbours [114], or employ sampling methods, such as smote, either during

bootstrapping [115] or after to balance individual subsets [114, 116]. Boosting algo-

rithms are also enhanced by adding techniques to deal with data imbalance, for example,

in the form of different samplers such as smote [117], Random Undersampling [118] or

Evolutionary Undersampling [119]. Another proposition is to assign bigger weights for

boosting the minority class samples, especially at the borders of classes [120]. Ensemble

learning is also a good approach to decrease the risk arising from undesirable sampling

since data can be split and processed multiple times, separately for every committee

member. For example, [121] proposes dividing majority class samples randomly into

bins and combining each group with the whole minority class, with weighting each of the

resulting classifiers based on the predicted object’s placement in feature space. On the

other hand, in [122] ensemble is built on cost-sensitive decision trees, which are trained

on different subspaces of features and pruned based on an evolutionary optimisation al-

gorithm, while [123] constructs and ensemble from cost-sensitive neural networks, which

differ in the cost assign to both of the classes. Lastly, some problems are naturally mod-

ular, such as stream learning or multiclass classification, thus ensembles employment is

widely popular. For imbalanced data streams, each chunk of data might be preprocessed

to balance the classes by using different sampling algorithms [124] or by aggregating

historic objects [125, 126]. Resulting estimators are then weighted based on measures

appropriate for class disproportion, such as bac [124] or Hellinger’s distance [127]. In the

case of classification with multiple classes, one solution could be to decompose the prob-

lem into smaller ones, for example, recognising one class [128] or differentiating between

two classes [129], where imbalance would have less of the impact on the final prediction.
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2.5 Multi-objective optimisation

The goal of multi-objective optimisation (moo), as opposed to traditional single-objective

optimisation (soo), is to optimise more than one criterion at the same time [130]. For-

mally, for the problem with m objective functions f1 : X → R, . . . , fm : X → R with X
as solution space, where m > 1, the aim of optimisation algorithm is to

minimise f(x) = (f1(x), f2(x), . . . , fm(x)), x ∈ X (2.34)

The simplest, but also popular, approach is to reduced the problem to single-objective

optimisation by aggregating the criteria into one function, although it does not guar-

antee obtaining the optimal value for any of the factors [131]. Very often, the criteria

somehow contradict each other, for example, the price and quality, and it is impossi-

ble to find a solution optimal for every objective simultaneously as well as determine

which solution is better than the rest. For this reason in a multi-objective environ-

ment, two solutions are compared in the context of Pareto dominance [132], which

is defined as follows: given two vectors u = [u1, . . . , um] = [f1(x1), . . . , fm(x1)] and

v = [v1, . . . , vm] = [f1(x2), . . . , fm(x2)] v is Pareto dominated by u (denoted u ≺pareto v)
if and only if

∀i ∈ {1, . . . ,m} : ui ≤ vi ∧ ∃i ∈ {1, . . . ,m} : ui < vi (2.35)

This means that all criteria values have to be at least equal, and at least one criterion has

to be lesser in order to dominate over the other optimisation solution [133]. A solution

is Pareto optimal when it is not dominated by any other vector:

∃!x ∈ X : x ≺pareto x∗ (2.36)

A Pareto optimal set consists of all solutions which are Pareto optimal, while a Pareto

front contains their placement in objective space [133]. The example of Pareto dominance

is presented in Figure 2.14.

2.5.1 Evolutionary optimisation algorithms

One group of multi-objective optimisation algorithms is population-based evolutionary

algorithms [130]. Just like their single objective counterpart, they consist of a group of

individuals representing the solutions to the problem and several sequentially executed

operators:
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NONDOMINATED SOLUTIONS
(PARETO FRONT)

DOMINATED SOLUTIONS

Figure 2.14: Illustration of the Pareto dominance for minimisation problem
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Figure 2.15: Diagram of a standard genetic algorithm

• selection, which ranks the individuals based on given objectives and chooses the

ones which will be employed in the next iterations;

• crossover, which combines the best solutions in order to create new ones;

• mutation, which modifies the individual solution in a randomised way to possibly

generate features not existing in the population.

The steps of the algorithm is shown in Figure 2.15.

The crossover and mutation are variation operators dedicated to creating new individ-

uals. While crossover merges two of the best solutions to obtain even better results,

the mutation is meant to prevent converging into local optima. Both of these opera-

tors are usually independent of the optimisation algorithms and are determined by the

problem. The distinction between evolutionary algorithms (single and multi-objective)

comes mostly with different selection operators since solutions are assessed and removed

or preserved in the population [130].
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One of the most popular moo evolutionary algorithms is Nondominated Sorting Genetic

Algorithm (nsga) ii [134]. The individuals are selected based on their nondomination

rank, where nondominated solutions are given the highest first rank and the rank of the

remaining points is based on the lowest rank of the solutions the particular individual

is dominated by (meaning the rank 2 goes to the points dominated by rank 1 etc.).

Additionally, to ensure more diversity the crowding operator is introduced, which, in

the case of two points of the same nondomination rank, selects the point with a bigger

distance to adjacent solutions. The nsga ii also contains elitism, meaning that the

solutions from previous iterations remain in the population pool, which, on the one hand,

prevents the loss of possibly the best solutions and accelerates the convergence, but on the

other hand, may also result in algorithm getting stuck in local optima, so appropriate

mutation mechanisms need to be introduced [135]. There are multiple advantages of

utilising nsga ii, such as its low computational complexity and lack of algorithm-specific

parameters [136].

Another example of a Pareto-based moo algorithm is the Strength Pareto Evolutionary

Algorithm (spea) 2, which assigns fitness based on the number of dominated solutions

and density in proximity to the point [137]. Other approaches include indicator-based

algorithms, such as sms-emoa [138], which aim to optimise specific measures of Pareto

front assessment, for example hypervolume, and decomposition-based techniques, like

nsga iii [139] or moae/d [140], that divide main problem to subproblems utilising

scalarisation, which are then locally optimised. However, most of them are either com-

putationally complex or require prior knowledge about search space [130].

2.5.2 Gradient algorithms

While evolutionary optimisation algorithms are popular thanks to their versatility and

ease of customisation to the problem, they are also time-consuming due to the necessity

of performing objective calculations many times (depending on the population size and

number of iterations) and, to some degree, random solution searching. Because of this,

together with the expanding utilisation of deep learning models, there is a development

of gradient-based methods utilising multi-objective optimisation [141].

One of the most straightforward moo gradient methods is Multiple-gradient descent

algorithm (mgda) [142]. It is based on the premise of Pareto stationarity, which is

defined as a point where a linear combination of the gradients equals zero, and the

selection of descent direction according to gradient vectors of all objective functions. To

obtain a set of Pareto optimal solutions, it is required to run the algorithm multiple

times with different starting points.
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One of the most significant drawbacks of the mgda method is that it does not ensure a

generation of the wide Pareto front, as the obtained solutions only depend on the starting

point, and the trade-offs between objectives cannot be controlled. One of the answers to

that problem was proposed in the Pareto Multi-Tasking Learning algorithm (paretomtl)

[143]. To ensure the diversity between solutions, objective space is divided into subspaces

based on provided preference vectors. Each of the created subproblems is then solved

until the Pareto critical point (when there is no possibility of obtaining better objective

values without impairing the others) is accomplished. Each subproblem is independent of

the other, allowing for parallelisation of the calculations, thereby shortening the training

time.

Another method allowing diverse Pareto front generation is Conditioned One-shot Multi-

Objective Search (cosmos) [144]. The main advantage of cosmos is its incorporation

of learning objectives trade-offs into the training process, resulting in one model that

can yield all Pareto solutions. The obtainment of each Pareto front point is controlled

by concatenating data with the preference vector. The penalty factor based on cosine

similarity meant to broaden the Pareto front is also included in objective loss function.

2.5.3 Pareto fronts’ assessment

As moo algorithms result in several non-dominated solutions, the assessment and com-

parisons of the methods are not as straightforward as in the case of single objective

optimisation [145]. Most of the proposed measures are based on the shape or the con-

vergence of the estimation of the Pareto front and are calculated in relation to perfect

point, which is the point with the best values of all criteria (that may not be possible to

achieve in practice), nadir point, which is analogically the point with the worst objective

values, and true Pareto front - the attainable set of non-dominated solutions, known

either theoretically or calculated as the result of several algorithm runs. Depending on

the knowledge of the problem and analysed properties, many different measures can be

employed. One of the most popular moo metrics in the literature [145] is hypervolume

[146], which is the volume of the hypercube between nadir point and estimation of the

Pareto front:

HV (PF ) = Λ

( ⋃
s∈PF

{s′|s ≺ s′ ≺ snadir}

)
(2.37)

Where PF is the assessed estimation of the Pareto front, snadir is the nadir point and Λ

is a Lebesque measure, which is a generalisation of the volume. The metric increases with
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Figure 2.16: Visualisation of the multiobjective optimisation metrics

the convergence of the Pareto front estimation as well as with its broadening, making it

difficult to distinguish specific characteristics of the front without additional measures.

Examples of different metrics are Ratio of non-dominated individuals (RNI), which cal-

culates the proportion of non-dominated solutions to all of the algorithms results, or

Generational Distance (GD), which is the distance from the received approximation to

the true Pareto front:

GD(PF ) =

√∑|PF |
i=1 d(si, TPF )2

|PF |
(2.38)

where TPF is the true Pareto front and d(si, PF ) is the distance to the closest point

from the Pareto front and |PF | is the size of the Pareto front approximation. While

they do not carry information about the diversity of the results, they can help identify

the ability to generate non-dominated solutions (in the algorithms where it is not always

provided) and their convergence.

2.5.4 Multi-criteria decision making

Multi-criteria decision making (mcdm), a part of multi-criteria decision analysis, is a

field dedicated to, among others, supporting the user in choosing a solution from the

Pareto front. In theory, the task could be left to the users themselves, though due to the

number of solutions, their similarity and trade-offs, it is usually not feasible. Decision

aiding, which mcdm is derived from, recognises a few different problem types, such as

the selection of a subset of appropriate actions, the classification of the alternatives

into predefined groups according to their utility or ranking the solutions based on their

comparisons [147]. The most basic mcdm method is the Weighted Sum Model (wsm)

[148], which is based on assigning importances to each of the criteria. Formally, the task

is to find:
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arg max
i

m∑
j=0

aijwj , i = 1, 2, . . . , |PF | (2.39)

where aij is the value of the j-th criterion of the i-th solution, while wj is the weight

assign to j-th objective. The disadvantage of the method is that it requires specific scores

for each criterion’s influence. Moreover, the objectives must be numeric and comparable,

as the algorithm is based on an additive utility assumption [148].

One of the mcdm approaches is outranking methods, which aim to rank alternatives based

on pairwise comparisons and grading of the differences in specific criterion scores. The

example of such an algorithm is electre (ELimination Et Choix Traduisant la REalite)

[149], which introduces thresholds of significant differences (both for how much aggrega-

tively better the solution has to be in some criteria and how much in maximum can it

be worse in others) as well as objective weighting. Due to this modification, even when

there is technically no dominance between two solutions, there is an option to differen-

tiate their utility. Another very popular outranking method is promethee (Preference

Ranking Organisation Method for Enrichment Evaluations) [150]. promethee, similarly

to electre, compares every pair of solutions and weighs the criteria. However, instead

of defined thresholds, it assigns a preference function to every criterion, which varies de-

pending on the difference between the value of the objective for both alternatives. Then

the ranking is determined based on aggregated preferences (including the weighting) in

favour of and against each of the solutions.

The mcdm field continues to grow, and many new algorithms are proposed [147]. Nev-

ertheless, one of the requirement of the mcdm methods is that the user, called Decision

Maker, is able to give their preferences: either in the form of specific parameters, such as

criteria weights or differences thresholds [149, 150] or examples of pairs of alternatives,

where one is preferred over the other [151].

2.6 Multi-objective optimisation application for imbalanced

data problem

The advantage of employing multiple optimisation criteria has led to the spread of ap-

plying moo algorithms in the imbalanced data problem. The most popular approach

seems to be utilising multi-objective optimisation in creating an ensemble of classifiers.

In [152], researchers analyse employing moo in different stages of committee assembling

- for generating a pool of estimators in their selection process and combination rule. e-

mosaic [153] is the ensemble model using moo for determining the best split of training

data used to train each of the members. In contrast, [154] proposes an improvement of
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the bagging algorithm by selecting appropriate bags with the utilisation of moo. se-

moos [155] is an ensemble model consisting of svm classifiers with hyperparameters and

feature selection optimised by moo. In turn, efis-moea [156] is created from estimators

resulting from the Pareto front where both specific instances and features were cho-

sen. [157] proposes a non-specialised ensemble in which members, created from different

classification algorithms and bootstrapped data, are pruned by the moo method. [158]

similarly creates an ensemble from different algorithms but uses moo for their weights

assignment. The method proposed in [159] generates members by bootstrapping with

undersampling while employing moo for feature selection. Both [160] and [161] propose

ensemble consisting of two classifiers - in the case [160] made from estimators trained

on skewed and balanced data respectively, and in [161] of two different under- and over-

sampling ensembles, and use moo to determine their involvement. [162] proposes model

using a combination of two classifiers, which are the extremes of the Pareto front, where

instance selection was optimised.

A different way of employing moo is in the preprocessing stage. An example of a data

sampling algorithm is meus (Multi-objective evolutionary undersampling) [163], which

selects instances from training data so that different criteria are maximised. To ensure

no bias towards any of the classes, the constraint is placed so that the resulting set

is balanced. In turn, [164] proposes emdid algorithm, dedicated to selecting the best

cutpoints of discretisation of continuous features.

Lastly, the other approach is to utilise multi-objective optimisation algorithms to create

or train the respective estimator. The utilisation might be algorithm specific, like in the

case of modifying svm learning, so that it allows multiple losses functions [165, 166].

Another way is to employ moo to determine the penalties of each class in the system

consisting of a deep learning model [167]. The training of model parameters might be

assigned entirely to the moo algorithm, like in the case of the method proposed in [168]

and [169], where it is used instead of a more typical gradient descent approach. Finally,

estimator could be created based solely on the results of moo, with the examples of [170],

where optimisation algorithm is utilised for the search of different discriminant functions

used for Gaussian classifiers,[171] where the algorithm chooses splits for Oblique Decision

Trees, or [172], which returns the set of fuzzy rules.

The most popular choice of criteria for multi-objective optimisation algorithms for the

imbalanced data problem is the base metrics connected to the quality of each of the

classes’ recognition. In the case of binary classification, usually recall and specificity

are selected [161–163, 170, 172, 173] or the errors of each class recognition [152]. Some

cases focus on minority class prediction by choosing recall and precision [155, 158, 163,

171]. Another approach is to utilise one quality metric together with diversity measure
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[153, 157]. auc is a fairly common objective [154, 156, 164, 169] paired with some

system-specific indicator. Lastly, methods often include a criterion meant to decrease

the computational complexity of the model, like, for example, the number of features or

instances selected [152, 156, 164, 172, 174]. As for the specific optimisation algorithm,

nsga ii is by far the most common choice [153, 154, 156, 162–164, 167, 168, 170, 172]. The

other methods used include spea 2 [173], spmode-ii [152], nsga iii [171], multi-objective

ant colony algorithm [159], swarm optimisation [174] and diferrential evolution [158].

Some methods evaluated all of the values from the range in case of the one parameter

tuning [160, 161] or combined the criteria into one and used methods dedicated to single

objective optimisation [169, 174].



Chapter 3

Application of the multi-objective

optimisation in ensemble learning

This chapter aims to answer the first thesis question - Is it feasible

to employ moo in the process of training ensemble classifier, and how

does it compare to the ensembles optimised using a single criterion?

For this purpose, the ensemble model will be proposed that generates

the pool of estimators based on different classification algorithms and

bootstrapped data. moo will be employed to assign weights to each com-

mittee member, indirectly influencing their line-up. The way of com-

paring Pareto front-based classifiers with singular models will be also

proposed. The method will be evaluated on the selection of different

datasets with skewed class ratio and compared with ensembles where es-

timator pools will be created in the same manner, but weights will be

assigned using single objective optimisation, as well as with the example

of popular ensemble models to study the influence of optimised weights

assignment. The results will be analysed in the context of moo-based

ensemble performance and its quality in reference to methods optimised

with a single criterion.

3.1 Motivation

Literature study shows that ensemble learning is a common domain of applying multi-

objective optimisation. One of the approaches is to utilise an optimisation algorithm

for selecting committee composition or assigning weights. Fletcher et al. [157] proposed

a model in which different classification algorithms are used to build a heterogenous

ensemble, further diversified by data bootstrapping. The proposed method seemed very

49
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promising. However, despite the authors’ claim that it can suit any type of data, the lack

of techniques countering skewed classes’ ratio and the utilisation of accuracy as one of the

optimisation criteria (second being measure of diversity) discredited its appropriability

for the imbalanced data problem [2], which was later backed by preliminary research.

Nevertheless, some developed procedures, like estimator generation and optimisation

criteria calculation, could benefit the imbalanced data ensemble model. Therefore, the

method could be proposed that would incorporate the core of aforementioned model with

modifications adjusting the algorithm to the context of data imbalance.

Another identified research gap that should be expanded was the analysis of the Pareto

front obtained from the moo algorithms, or more specifically, the resulted classifiers and

the choice of the solution. Usually, one solution is arbitrarily selected and compared

with standard soo models. Nonetheless, one of the biggest strengths of multi-objective

optimisation is the broad set of diverse solutions offered to the user. While it is diffi-

cult to compare such sets with models giving only one result, it cannot be ignored in

experimental evaluation. For this reason, the way of presenting specific solutions perfor-

mance, which would enable the analysis of the whole Pareto front quality, should also be

proposed.

3.2 Proposed method

The main goal of the proposed method is to classify imbalanced data, though, in principle,

it may also be used on balanced datasets. Three phases of training can be distinguished

in the proposed approach.

• First, bagging is utilised to create a pool of base classifiers based on several different

classification algorithms.

• Next, the moo algorithm is used to produce a Pareto optimal set of classifier

ensembles, jointly optimising precision and recall of the resulting model. Each

ensemble constructed in this step is encoded as a vector of weights assigned to

individual ensemble members.

• Lastly, since moo methods return not one but a set of solutions, it has to be chosen

which weights will be used in the final ensemble. The choice could be made by the

user manually, or a predefined criterion based on the selected MCDM approach

[147] may be employed, or the best ensemble could be chosen in the context of the

single metric presented in (eq. 2.6-2.14).
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Figure 3.1: A flow chart of the model.

After that, the proposed model is ready to classify incoming unlabeled data, employing

previously calculated weights to aggregate members’ decisions during weighted voting

(eq. 2.26). The flow chart of the model is presented in Figure 4.1.

Each of the phases is further described in consecutive sections.

3.2.1 Pool of classifier generation

A pool of classifiers, which become ensemble members, is generated based on the provided

set of models. Models may vary based on distinctive classification methods or different

parameters - in this study, the first option was chosen. Diversity is further assured by

training each of the created classifiers with a distinct subset of training data - for that,

stratified bagging is used. Two parameters should be provided: the number of bags, or

the number of classifiers trained from a single model, and the size of the subset sampled

from whole training data. The pseudocode of the process is presented in Algorithm 2.
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Algorithm 1 Generating a pool of diverse classifiers
Input: LS - learning set

TM = {TM1, TM2, . . . , TMN} - set of learning methods

b - number of bags per model

s - size of each bag

Output: Π - pool of trained classifiers

Π← ∅
cr ← class ratio of LS
N ← size of TM
for i← 1 to N do

for j ← 1 to b do

T S ← set of s observations sampled with replacement from LS that preserve

cr

Ψj
i ← train classifier using TMi and T S

Π← Π ∪ {Ψj
i}

end for

end for

3.2.2 Weight optimisation algorithm

The distinctive part of the proposed method is its weight optimisation algorithm. Good

weight assignment is important to mute weaker ensemble members and amplify the strong

ones in a process of weighted majority voting as presented in eq. 3.1.

Ψ(x) = arg max
j∈M

n∑
i=1

pjiwi (3.1)

Where M is a set of classes, wi is the weight of the i-th classifier and pij is a support

for the j-th class given by the i-th classifier. For weight optimisation, the nsga ii

[134] algorithm was employed due to its popularity in the application for the imbalanced

data problem as well as its lack of specific parameters, which should be provided by the

experts. In the proposed method, individuals are represented by a list of real values

Ind = [w1, w2 . . . wN ], wi ∈ [0, 1],

where wi stands for the weight of the i-th base classifier, while N is the size of the

classifier ensemble.

Two fitness functions F1 and F2 are proposed as follows
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maximise F1(w1, w2 . . . wN ) = recall

maximise F2(w1, w2 . . . wN ) = precision
(3.2)

The algorithm seeks to maximise both precision (2.10) and recall (2.8). Because these

goals oppose each other, focusing on only one may lead to a situation when all or none

of the samples are recognised as positive class.

3.2.3 Solution choice

The algorithm 2 returns a set of non-dominated individuals representing a combination

rule of classifier ensemble (3.1). Still, finally, the single set of weights that defines the

classifier ensemble must be chosen. As mentioned earlier, the solution selection from the

Pareto front should be done with the cooperation of the end-user. Nevertheless, as in

this study the user preference is not available, the following way of choosing solution is

proposed:

• based on each of the objectives - where either recall or precision has the best

value;

• balanced solution - with the smallest difference between the objectives;

• based on promethee [150] rule with usual criterion and a slight advantage of

either recall or precision. The advantage of either criterion was assured by setting

the weights (0.6 for the favourable objective, 0.4 for the other, so one objective is

slightly more important).

3.3 Experimental study

This section presents the results of experiments that were conducted to test the quality

of the designed model and compare its variants with different solution choice rules using

soo methods.

3.3.1 Objectives

The experiment aimed to answer the following research questions:

RQ1 Is it possible for the moo-based model to outperform the quality of the models

optimised in regard to its individual objectives?
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RQ2 Can selected moo-based model have a better quality than the ones created by

single optimisation of aggregated metrics?

RQ3 Is there the best approach to selecting one model from the Pareto front solutions?

The consecutive segments describe utilised benchmarked datasets, the configuration of

experimental studies, as well as analysis and discussion of obtained results.

3.3.2 Setup

Choice of benchmark datasets. Experiments were run on 26 different imbalanced

datasets from KEEL [175], UCI [176] and Kaggle repositories. The datasets can be split

into two categories: (1) small datasets (up to 1484 samples) and (2) big datasets (up to

318k samples). Chosen datasets also differ in the number of features (ranging from 3 to

187) and the Imbalance Ratio ( ir), varying from 53.6% to 0.2%. Some of the datasets

did not represent a binary problem. In these cases, the dataset was binarised, i.e., one

class was selected as a minority class, and the rest were labelled as one majority one.

The description of all datasets is presented in Table 3.1.

Implementation and reproducibility. Complete source code, sufficient to repeat

the experiments, is available at1. The complete results of the conducted experimental

analysis were also provided with the code.

The proposed algorithm, as well as the experiments described in this work, were imple-

mented in the Python programming language. Moreover, base classifiers from scikit-learn

module [177] were used, while the implementation of optimization algorithms was based

onpymoo module [178].

Choice of base classifiers. All ensembles were based on the same set of different

classification algorithms. The parameters of the used classifiers from scikit-learn module

[177] were as follows:

• AdaBoost - Decision Tree Classifier as base estimator with 50 iterations,

• Random Forest - with 100 estimators and Gini impurity as split criterion,

• Naive Bayes Classifier,

• knn Classifier with k = 5,

• multi-layer perceptron (mlp) with one hidden layer of 100 neurons, rectified linear

unit function for activation and Adam solver for weight optimisation,
1https://github.com/w4k2/moo-ensemble-weighting

https://github.com/w4k2/moo-ensemble-weighting
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Table 3.1: Description of datasets. #s denotes the number of samples, #f stands for the number of
features, and ir indicates the imbalance ratio

dataset #S #F ir [%]

aps failure 76000 170 1.8

covid 318438 12 2.1

credit card 284807 29 577.9

diabetes 101766 49 12.6

hand positions 78095 37 23.3

MiniBooNE 130064 50 39.0

mitbih 109446 187 2.6

page-blocks 5472 10 8.79

abalone9-18 731 8 6.1

glass4 214 9 6.5

glass5 214 9 4.4

yeast4 1484 8 3.6

yeast5 1484 8 3.1

yeast6 1484 8 2.4

flare-F 1066 11 4.2

ecoli1 336 7 29.7

ecoli2 336 7 18.3

ecoli3 336 7 11.6

glass0 214 9 48.6

glass1 214 9 55.1

haberman 306 3 36.0

pima 768 8 53.6

vehicle1 846 18 34.5

vehicle3 846 18 33.4

yeast1 1484 8 40.7

yeast3 1484 8 12.3

• Decision Tree Classifier (cart) - with Gini impurity as split criterion, no max

depth set, miniminum samples split equal to 2 and minimum samples leaf equal to

1.

Although AdaBoost and Random Forest are examples of ensemble approaches, they are

considered single estimators in this research.

The number of bags for each classifier was 3, which resulted in a pool of 18 models.

Optimisation algorithms. A standard genetic algorithm (ga) was used for single

objective optimization, with a tournament selection, two-point crossover and a Gaussian

mutation. For both nsga ii and ga, the number of iterations was set to 500, the

population consisted of 500 individuals, and the probability of mutation was 50%.
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The following objectives for soo-based ensembles were chosen: precision, recall, bac, F1

score, Gmean and auc.

Solution choice rules.

As mentioned before, presented models were chosen based on the best objectives values

(labelled moo precision and moo recall respectively), smallest difference between criteria

scores (moo balanced) and two according to promethee ranking - one with recall -

precision weights being equal to 0.6 and 0.4 (moo promethee recall) and second with

reverse weights (moo promethee precision).

Data partitioning. Inside the model, data was divided into training and validation

sets (used during the composition optimization process) with a ratio of 70:30%. The

experiments were conducted using 5×2 cross-validation, and the presented results are

the average value of all the metrics from individual folds.

Model comparisons Experiments were divided into two parts. In the first part, the

results of the moo and soo optimisation algorithms were compared and presented in

the form of Pareto fronts. For the second segment of overall classification performance

analysis, two comparative methods of the AdaBoost model built on decision trees and

the Bagging Ensemble consisting of 18 members (the same number as proposed method)

were included. Both methods are popular examples of widely utilised ensemble models

without a particular usage of data preprocessing algorithms, as they were not an object

of this research and could disrupt the comparison.

Result analysis. To analyse the classification performance of the chosen algorithms,

the Friedman test and Nemenyi post hoc test at a significance level of 0.05 were chosen

[179].

3.3.3 Pareto fronts’ analysis

Figures 3.2 and 3.3 present examples of Pareto fronts obtained from the moo algorithm

together with scores of each objective for solutions of single-objective optimization.

It may be observed that for big datasets, the Pareto front is well-defined and has a lot

of diverse solutions. Most soo solutions lie directly on or at a small distance from the

front. The only exceptions are solutions optimised concerning both objectives, that are

precision and recall, which sometimes lay far away from the rest. However, such models

would not be acceptable in realistic scenarios because they are biased in predicting too

many or too few samples as a minority class (as the other objective is very low). In

the case of smaller datasets, the Pareto front is typically very constrained (in the worst
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(a) yeast3 (b) pima

Figure 3.2: Examples of Pareto front of small datasets.

(a) aps failure (b) hand positions

(c) MiniBooNE

Figure 3.3: Examples of Pareto front of big datasets.
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case, the algorithm returned either only one solution or a few solutions but with the

same objective values). This phenomenon is probably due to limited possible values of

objective functions, which rely heavily on the minority class’s size, further limited by

employed stratified split into training and validation sets. This also means that criteria

are less stable and prone to overfitting. Moreover, the rest of the single-objective solutions

are distributed irregularly, though, with few exceptions, in a similar area. Even though

the Pareto front is relatively tight, the solutions obtained are considerably balanced in

terms of objectives and, in some cases, are even better than the ones given by soo. Still,

this suggests that the method requires a reasonably large dataset to achieve a satisfactory

performance, particularly a well-defined, wide front. Finally, it is worth noting that

the single-objective solutions typically have a different position on the Pareto front,

indicating that the optimal precision/recall trade-off depends on the specific performance

metric choice. This, in turn, suggests the usefulness of multi-objective optimization,

which can simultaneously produce multiple solutions optimised to the particular metrics.

3.3.4 Classification performance analysis

The detailed results of all quality measure scores are presented in Tables 8.1 - 8.6, while

Figures3.4 and 3.5) show the average ranks of methods and statistical evaluation. Firstly,

it should be analysed how moo-based solutions compare considering aggregated metrics

with ensembles optimised especially for these quality measures. In general, models gen-

erated from the Pareto fronts and selected according to best recall (moo recall and

promethee recall) as well as the balanced solution (moo balanced) outperform the sin-

gle optimisation estimators. Recall -based moo solutions expectedly achieve the highest

average rank in the case of bac and auc, while moo balanced comes in terms of F1

score, where precision has a bigger influence than the rest of the aggregated metrics.

The soo aggregated metrics ensembles do achieve the highest score for their respective

quality measures in some datasets, though in general they rank lower and are not consis-

tent with their optimisation criteria. This might be due to weaker generalisation abilities

and some overfitting. However, it should be noted that the difference is not statistically

significant (Fig. 3.5).

The situation is different when analysing the results of simple measures. Here, the en-

sembles based on single objective optimisation according to precision and recall obtained

the highest scores of their respective metrics by far, both in average ranks and number

of datasets for which they achieved the best results. moo precision model performed

similarly to its soo counterpart, since its scores were often very close or even better for

some problems. moo recall, even though second in average rank to soo recall, has never

exceeded it. Nevertheless, both moo recall and precision (as well as solutions selected
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with promethee) obtained much more balanced results compared to soo ensembles.

For single objective approaches, their excellent results in their respective metrics go to-

gether with very low, usually the worst, scores of the opposite measure. This indicates

that the methods are strongly biased towards or against the majority class and should

not be employed in the pattern recognition task. On the other hand, moo solutions,

even when selected according to the best precision and recall values, still achieved more

balanced results, with less of a difference between these two metrics. It is also reflected

in their aggregated measures scores.

When comparing the proposed ensemble with established methods of AdaBoost and

Bagging, it should be noted that the latter seems to be generally inferior for almost all

selected metrics. Only for precision and F1 score, which is highly dependent on the

preceding, does an ensemble using standard bagging obtain results better than most of

the moo-based models. Nevertheless, it must be highlighted that for all the metrics, a

variant of the proposed method with a higher average rank can always be chosen, though

the difference is statistically significant only in the case of recall values. Regarding

AdaBoost, both figure 3.4 and statistical test results show that most of the moo-based

methods are of better quality, where for precision, recall and F1 score, the difference is

statistically significant.

Figure 3.4: Average rank of every optimisation method for different performance metrics.
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(a) precision (b) recall

(c) bac (d) F1 score

(e) auc (f) Gmean

Figure 3.5: Results of Friedman and post hoc Nemenyi statistical tests for different metrics

3.4 Lessons learnt

In this chapter, the ensemble model utilising moo for weights assignment was proposed.

The pool of classifiers was generated utilising several classification algorithms, as well

as stratified data bootstrapping. Optimisation objectives were calculated based on the

validation set separated from the training. Analysis of the resulting Pareto fronts demon-

strated that for small datasets with low minority class count, solutions tend to converge

to a single point due to limited ranges of possible criteria values. This phenomenon may

lead to overfitting and significantly hinders the choice of solutions from the set.

As for the solution selection method, the results of the experiments show that there is no

one best way of choosing individual weight vectors from the Pareto front. Depending on

the metrics, either of the proposed solutions proved the best. However, the differences

that were obtained were not always statistically significant. It is worth noting that

solutions selected via the promethee method were the same as the ones with the highest

respective objective. It is probably caused by a small number of criteria and too general

assumptions of the algorithm rules. For this reason, the method was not chosen in further

research.

The proposed committee was compared with ensembles, in which weights were optimised

according to one criterion. One of the moo-based models was generally better for every

metric, with the only exception being recall and precision. Generally, ensembles opti-

mised utilising moo were characterised with more balanced results, even the ones with
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weights chosen based on the best objective scores. This could be especially noticed with

the values of aggregated measures, where both factors (i.e. some base metrics) had the

same influence on the results. However, it must be pointed out that even though the

general rank of moo ensembles was higher, they did not always obtain the best results

for every tested dataset.

Lastly, the proposed model was compared with different ensemble approaches, namely

Bagging and AdaBoost. In general, the moo-based committee obtained better ranks.

However, there were datasets where one of the compared ensembles was the best. Still,

the comparison is not exactly straightforward. Even though the compared method did

not have any specific techniques to counter data imbalance, such as member weights op-

timisation, they still use procedures which might help with better minority class recogni-

tion. For this reason, it cannot be fully determined which factor had the biggest influence

on the final results, and better quality might be problem-specific.

The proposed method, together with the results of the experimental evaluation, was

published in [180].



Chapter 4

Application of multi-objective

optimisation in data sampling

This chapter focuses on the application of moo in data preprocess-

ing, as to address the second research question posed in the thesis - Is

it possible to employ moo in the preprocessing stage, and how does

it improve the quality of the estimator?. For this purpose, a hybrid

oversampling algorithm will be proposed that creates several neighbour-

hoods of minority class samples, conducts cleaning, and generates new

observations. The proposed method will be assessed utilising a cart

classifier and compared to the estimator trained on original data, as

well as data sampled by different popular algorithms.

4.1 Motivation

Data preprocessing is the most popular approach to countering the problem posed by

data imbalance. Its main advantage over other methods is its universality, independence

from specific classification algorithms, as well as lack of interference in predictive models

or reliance on expert knowledge [181]. Nevertheless, as the previous research suggests,

moo is not widely used in the design of such algorithms. The only usages of multi-criteria

optimisation for data preprocessing found in the literature were for feature [155, 156, 159]

or instance [156, 162, 163] selection, which allows solely the undersampling that is not

always feasible. Previous research showed that employing moo in an imbalanced data

classification model gives an advantage over utilising aggregated metrics and results in

more balanced solutions in relation to minority class prediction quality and bias. Thus,

it could be beneficial to apply it for the new sample generation to populate the areas

that demand better minority class representation and not to create detrimental noise.

62
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ccr (Combined Clearning and Resampling) [98] is a hybrid sampling method that re-

moves the majority class samples and generates synthetic minority class samples in close

proximity to every minority class observation. The number of generated samples, as well

as the area where the procedure will be conducted, is determined by the neighbourhood

of each sample so that classes are better separated and no noise is enhanced. This ap-

proach could be improved by optimising the radii and populations of the areas based

on the actual classification quality, as moo employment should also ensure amplifica-

tion of the minority class influence without overly impairing minority class recognition.

However, it is important to modify the way the neighbourhoods are determined, since

cleaning and resampling areas around single points may lead to overfitting and ignoring

parts of feature space with smaller minority class representation, which could be lost

due to data partition. For the same reason, the evaluation protocol of the optimisation

algorithm should also be adjusted.

4.2 Proposed method

The proposed method is based on the ccr idea of cleaning neighbourhoods of the mi-

nority class samples from the majority class and generating new objects. However, the

areas are determined differently, so they depend more on the density of the majority

class rather than specific observations. Furthermore, the size of each neighbourhood and

the number of generated samples are optimised employing a moo algorithm to fit the

problem and eliminate areas that could deteriorate classification quality.

The idea of the algorithm is presented in Fig. 4.1.

Figure 4.1: A scheme of the proposed method

Each of the subsequent part of the proposed algorithm are further described in the

following sections.
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4.2.1 Neighbourhood determination

The first step of the algorithm is to determine the neighbourhoods, where cleaning and

generating samples will be conducted. The algorithm employs areas around groups of

minority samples, which are determined by the clustering method - K-means algorithm

to ensure possibly high generalisation and avoid overfitting. Calculated centroids of the

clusters become centres of neighbourhoods, defined as n-dimensional spheres, where n is

the problem’s dimensionality. Radii of determined areas are optimised at a later stage

of the algorithm.

K-means algorithm requires defining the k parameter, though any appropriate number

of clusters may vary based on the dataset size or distribution of the objects [77]. In

the conducted experiments, k = d13Nmine centres were chosen empirically, where Nmin

corresponds to the number of minority class samples used for training. This number

was found to be a good trade-off, so the selected clusters do not contain too few mi-

nority class samples and give the optimisation algorithm the flexibility in adjusting the

neighbourhoods and detecting noise samples.

4.2.2 Hybrid sampling algorithm

The main part of the proposed method is a process of cleaning and generating data.

The algorithm removes every majority class object for each given neighbourhood. Then,

depending on how many majority class samples are removed, an appropriate number of

minority class samples within the spheres are randomly generated. The number of sam-

ples for each area is calculated based on the parameter frac, indicating what percentage

of overall samples should be generated inside the given area.

The procedure is described in the Algorithm 2.

4.2.3 Optimisation algorithm

The last part of the proposed method is the optimisation algorithm. The optimisation

step aims to differentiate between rare samples, which should be enhanced, and noise

that should be avoided, as well as broaden the border between classes by selecting sizes

and sample counts of neighbourhoods that would be the most beneficial for the predictive

abilities of the classifier. To select parameters that are best tailored for the classifier,

it was decided to incorporate them in the optimisation process to properly estimate the

quality of the prediction from training on the resampled data.
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Algorithm 2 Hybrid sampling algorithm
Input: centers - set of coordinates of sphere centers
r - set of spheres radii
f - set of percentages of samples to be generated
Xmaj - set of majority class samples
Xmin - set of minority class samples

Output: LSnew - resampled data set
n← size(centers)
for i← 1 to n do

for x ∈ Xmaj do
if d(x, ci) ≤ ri then

Xmaj ← Xmaj \ {x}
end for

end for
ngen ← size(Xmaj)− size(Xmin)
for i← 1 to ngen do

ni ← ngen ∗ fi
for j ← 1 to ni do

xnew ← randomly drawn sample from the ith sphere
Xmin ← Xmin ∪ {xnew}

end for
end for
LSnew ← Xmaj ∪Xmin

The optimised parameters are in the form of a real value vector

Ind = [r1, r2, . . . , rk, f1, f2, . . . , fk]
T

where ri represents the radius of the ith sphere and fi stands for the percentage of

minority class samples, which will be generated in the sphere (parameter frac). The two

proposed objectives of the optimisation to be maximised are previously employed recall

and precision. With the aim to prevent the overfitting of the model, the values of the

criteria were obtained employing a 5x2 cross-validation protocol.

The example results of consecutive algorithm steps are depicted in Fig. 4.2.

4.3 Experimental study

4.3.1 Objectives

The experiments were designed to answer the following research questions:

RQ1 What are the properties and the quality of the proposed method?
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Figure 4.2: Example of algorithm processing

RQ2 How does the proposed algorithm compare to the state-of-the-art sampling meth-

ods?
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4.3.2 Setup

Choice of benchmark datasets. The experiments are conducted using 36 benchmark

datasets from the KEEL repository [175]. All of the datasets represent binary problems.

The datasets vary in size (both in samples and dimensionality) along with different

imbalance ratios (ranging from 2.06 to 85.88). Considering experimental protocol and

inner data division caused by fitness function, it was decided to employ datasets where

the minority class size is at least 17 samples. Descriptions of the used datasets may be

found in the Table 4.1.

Table 4.1: Description of datasets. #S denotes the number of samples, #F stands for the number of
features, and ir indicates the imbalance ratio

dataset #s #f ir [%] dataset #s #f ir [%]

page-blocks-1-3 vs 4 472 10 15.86 yeast-0-5-6-7-9 vs 4 528 8 9.35

yeast-1-2-8-9 vs 7 947 8 30.57 yeast-1-4-5-8 vs 7 693 8 22.1

yeast-1 vs 7 459 7 14.3 yeast-2 vs 4 514 8 9.08

yeast-2 vs 8 482 8 23.1 yeast4 1484 8 28.1

yeast5 1484 8 32.73 yeast6 1484 8 41.4

ecoli-0-1-4-7 vs 2-3-5-6 336 7 10.59 ecoli-0-1 vs 2-3-5 244 7 9.17

ecoli-0-2-6-7 vs 3-5 224 7 9.18 ecoli-0-6-7 vs 3-5 222 7 9.09

ecoli-0-6-7 vs 5 220 6 10.0 yeast-0-2-5-6 vs 3-7-8-9 1004 8 9.14

yeast-0-3-5-9 vs 7-8 506 8 9.12 abalone-17 vs 7-8-9-10 2338 8 39.31

abalone-19 vs 10-11-12-13 1622 8 49.69 abalone-20 vs 8-9-10 1916 8 72.69

flare-F 1066 11 23.79 kr-vs-k-zero vs eight 1460 6 53.07

poker-8-9 vs 5 2075 10 82.0 poker-8-9 vs 6 1485 10 58.4

poker-8 vs 6 1477 10 85.88 winequality-red-4 1599 11 29.17

winequality-white-3-9 vs 5 1482 11 58.28 winequality-white-3 vs 7 900 11 44.0

ecoli1 336 7 3.36 ecoli2 336 7 5.46

ecoli3 336 7 8.6 glass0 214 9 2.06

glass1 214 9 1.82 haberman 306 3 2.78

pima 768 8 1.87 yeast3 1484 8 8.1

Parameter setting. The only parameters of the proposed method arise from the appli-

cation of the evolutionary optimisation algorithm. For the nsga ii [134], the population

was set to 400 individuals, the number of iterations was 1000, and uniform crossover and

Gaussian mutation were used.

Solution choice rules. Just as in the previous research, for the sake of comparisons

three solutions were chosen from the estimation of the Pareto front - two with the highest

value of each criterion (best precision and best recall), as well as the solution, where the

difference between criteria was the smallest (balanced).
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Benchmark algorithms. The proposed method was compared to the selected baseline

sampling algorithms with the following parameters:

• RandomOversampler (ros),

• smote [81] with n = 5 neighbours,

• Borderline smote [83] with n_neighbors = 5 and k_neighbors = 5,

• adasyn [84], with d_th = 0.9,

• ccr with energy = 0.25 and scaling = 0.0.

Each of the algorithms samples objects until the point of equal classes’ sizes.

Tested classifier The proposed method and compared algorithms were employed to

sample data and then used to train a cart classifier, with Gini impurity as a split

criterion, no max depth set, and assessed via its predictive abilities.

Implementation and reproducibility The source code of the proposed method and

conducted experiments are available at the online repository 1. All of the methods

and procedures were implemented in the Python programming language, employing py-

moo[178], imbalance-learn [182], smote-variants [183] and scikit-learn [177] modules.

4.3.3 Results

4.3.3.1 Proposed method performance

To answer RQ1, the analysis of the method’s obtained result was conducted. The de-

tailed results are presented in the Appendix (Tables 8.7-8.11). It must be noticed that

the algorithm’s preprocessing improves the level of minority class recognition (measured

by recall) for almost all of the evaluated datasets compared to the original data. More-

over, in the case of other measures (excluding precision), there is almost always at least

one, but very often even all of them, solution that exceeds a classifier trained on original

dataset. The only exception is precision, which is to be expected, since the increase

in minority class prediction goes in pair with the precision deterioration, and to some

extent, F1 score, where precision is equally influential as recall. Nevertheless, all of the

selected solutions obtain better results on average according to recall, bac, Gmean, and

F1 score, which is substantiated with statistical evaluation for the first three metrics

(Fig. 4.4).
1https://github.com/w4k2/moo-sampling

https://github.com/w4k2/moo-sampling
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As for the quality of specific solutions, just as before, the solutions picked based on one

of the optimisation criteria tend to perform the best according to the same measures.

However, there are examples of the best precision solution outperforming the best recall

solution regarding the latter measure, but never the other way around. Surprisingly,

balanced solution seems to perform generally the worst across all of the selected metrics,

excluding precision. Nevertheless, there are still datasets in which it gets the best perfor-

mance. All in all, the solution selected based on the highest recall seems to perform the

best (meaning obtaining the highest quality on the most datasets, as well as the highest

average rank) according to recall, bac, Gmean, and F1 score, though the difference is not

statistically significant. These results might indicate that the estimations of the quality

of the solutions obtained during optimisation are not very precise. This might happen

due to the data partitioning during objectives calculation and resulting minority class

granulation, as well as the nature of data sampling, which might lead to overfitting and

thus to worse estimation of the model’s actual quality.

4.3.3.2 Algorithms comparison

Finally, to answer RQ2, it is important to determine how the proposed algorithm com-

pares with other oversampling methods. It can be noticed that for all of the metrics,

excluding precision, one of the method solutions obtained the best results for most of

the tested datasets, while sometimes even all three of the proposed variants exceeded or

were close to the baseline. The biggest improvement of the predictions quality took place

in the case of the datasets poker-8-9 vs 6 and poker-8 vs 6, where proposed algorithm

obtained results better by even 20 percent points, however, there were also instances

where the increase of quality measure was of the order of a few percent. In general, the

proposed method obtains the best average ranks in the case of recall, Gmean, bac, and

F1 score. All selected solutions present significantly better performance, considering at

least one assessment metric, than smote, Borderline smote, adasyn and ros. Com-

pared to the most similar algorithm, ccr, the proposed method outperforms it in the

case of many datasets and has a generally higher rank. The only exception is precision

measure, however, there are still some datasets where optimised sampling proved supe-

rior. Nevertheless, the differences are not statistically significant, so the employment of

either method should be considered based on the specific problem and specifications.

It is also worth noting that the trade-off between recall and precision of the proposed

approach is the smallest among all the assessed techniques. It is especially visible in

comparison to smote and adasyn, which have high values of recall and the rest of

similar quality measures while also obtaining the worst scores of precision and F1 score.
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This indicates that while the proposed method has good generalisation abilities, it does

not occur at the cost of decreased recognition of majority class objects.

Figure 4.3: Average rank of every sampling method for different performance metrics.

(a) precision (b) recall

(c) bac (d) F1 score

(e) Gmean

Figure 4.4: Results of Friedman and post hoc Nemenyi statistical tests for different metrics
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4.4 Lessons learnt

This chapter proposed the sampling method utilising multi-objective optimisation. The

algorithm removes the majority class from the determined minority class neighbourhoods

and populates them with new synthetic samples. The sizes of these areas, as well as the

number of generated samples, are optimised according to the best values of precision

and recall metrics. As creating new samples based on hold-out assessment might lead

to excessive overfitting, the objective values are calculated employing the 5x2 cross-

validation protocol.

The experiments that were conducted showcased frequent improvements in the quality

of the classifier trained on the data sampled by the proposed method compared to other

popular sampling algorithms. The obtained results were characterised by more balanced

recall and precision values, indicating good generalisation without intolerable focus on

minority class samples. Obtained moo solutions tended to act similarly to their Pareto

front equivalents in the case of the edge instances. However, balanced solutions did not

always have this property. In general, the datasets sampled according to the highest

recall obtained the best results across most of the metrics, though there were instances

where other solutions performed better. This indicates that selecting the parameters

from the estimation of Pareto front should be backed by some further analysis or assess-

ment. Nevertheless, all of the solutions obtained very good results and, in many cases,

outperformed the baseline approaches.

It must be highlighted that the obtained results are indicative only of the good quality

of the proposed method when used with the cart classifier, since only such evaluation

is presented in this work. Nonetheless, based on the growing demand for understanding

the model decision, interpretable methods such as decision trees become more desirable.

This feature can also facilitate analysing and selecting the solutions from the resulting

estimation of Pareto front, since their objective values might not always indicate the

future performance. Moreover, computational complexity of the proposed methodology

is very high, since data preprocessing and classifier training must be repeated several

times to obtain the fitness function values, further amplified based on the chosen op-

timisation population size and number of iterations. Because of that, employing more

computationally complex classifiers, such as svm, might not be feasible.

The presented method and experimental evaluation were published in [184].



Chapter 5

Analysis of the fitness calculation

protocols

This chapter aims to answer the third research question - What is the

best approach to estimate the quality criteria of the classifiers built

using moo? For this reason, the experiment was conducted comparing

three methods of estimating optimisation objectives: holdout, testing on

training set and 5x2 cross-validation protocols. These approaches were

employed to assess the quality of the classifier trained with undersam-

pled data, where the specific training instances were selected via the

optimisation algorithm. The methodology was tested using examples of

different classification models. The analysis was conducted to deter-

mine the performance of the tested approaches, considering the quality

of estimated Pareto fronts, the estimation of the assessment on the test

data and actual predictive abilities.

5.1 Motivation

Employment of an appropriate evaluation protocol is crucial to properly estimate the

quality of the model and thus obtain credible results. A discussion about various test

sampling approaches has long been present in the literature, and their strengths as well

as limitations are generally understood and sometimes, unfortunately, exploited. Nev-

ertheless, this subject is not covered at all in the context of the optimisation objective

function calculation, even though metrics employing classifiers’ predictions are very often

selected as optimisation criteria. In the standard optimisation tasks, objectives appear to

be deterministic. However, this is not the case with measures such as recall or precision,

where it is only possible to obtain an estimation of their values. In the moo application

72
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Figure 5.1: The idea of the studies

for imbalance data validation, using a hold-out protocol seems to be the most popular

[157, 162, 163, 169, 185], but there are also works that calculate quality measures based

on the whole training set [170, 173]. Alas, very often, the information about the way

criteria are obtained is not disclosed.

Previous research reflected the problem with appropriate objectives estimation, since

the difference between assessments conducted on separate test sets and those from the

optimisation algorithm was sometimes very prominent, i.e., the solution with the highest

score of one criterion did not obtain the same results when tested outside the optimisation

loop. With the imbalance in the data, another challenge arises when already under-

represented classes are split into smaller segments, which could lead to poor generalisation

of the sample distributions. Moreover, some utilised protocols might result in overly

optimistic objective scores, especially testing on training set, since high metric values

might be achieved due to model remembering objects, not learning from them. For this

reason, it should be studied how different objective calculation methods influence the

set of solutions and which protocol is the most fitting for the estimation of the model

created employing moo methodology.

5.2 Methodology

This study aimed to compare different ways of obtaining optimisation objectives. Each of

the studied protocols was used to estimate the quality of the classifier trained using data

that was the result of the optimisation. The general process of the research is presented

in Fig. 5.1, while each of the parts is described in more detail in the consecutive sections.
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5.2.1 Optimisation algorithm

To study the influence of the objective estimation selection, a simplified version of the

undersampling method found in the literature [156, 163] was employed. The goal of the

optimisation is to select samples from the training data that will be used to train the

chosen classifier. The algorithm individuals have a form of a vector

[u1, u2, . . . , uk] ui ∈ {0, 1}

where ui = 0 means that the ith sample was removed from the set, and ui = 1 denote its

usage in training of the classifier. There is no mechanism guaranteeing the class’s balance,

meaning that potentially all of the samples of one of the classes could be removed.

Just like the previous research, the two optimised criteria are precision and recall.

5.2.2 Tested protocols

In the study, three different evaluation protocols 2.2.2 were employed to estimate the

objectives:

1. Hold-out protocol [20]- which seems to be the most popular in the application of

moo for imbalanced data;

2. Testing on training set [8] - which cannot usually be employed in the model assess-

ment, however, is sometimes utilised during optimisation;

3. 5x2 cross-validation [23]- which is widely popular in classifier testing.

The individuals of the optimisation algorithm, as well as their processing, are customised

to match the specifics of the data divisions:

1. For the hold-out protocol, the validation set is separated before the optimisation

and passed as an argument directly for the objectives calculation, while the indi-

viduals have the size of the remaining samples. The final solution is applied only

for the designated training set, and the validation set is not used for later classifier

training.

2. In the case of testing on training set, the mask vector has the length of the whole

training data, which is then sampled based on the character of the individual.

Nonetheless, the whole, unsampled training set is employed to calculate the quality

metrics. The final solution for the optimisation is applied to all the training data.



Chapter 5. Analysis of the fitness calculation protocols 75

3. Lastly, the most complicated processing is applied for the 5x2 cross-validation

protocol. Individuals have the length of the whole training data, but for each split,

the sampling mask is only applied for the corresponding objects from the train set,

while the validation set is not sampled. This means that, similarly to the case of

testing on training set, each sample will always be used for testing; however, it

might not be used for training. As in the standard 5x2 cross-validation, the split

ratio is 50:50, and the process is repeated 5 times with training and validation sets

swapping places. Finally, the sampling mask selected via optimisation is applied

to the whole training data.

Each of the data processing is presented in Fig. 5.2.

(a) Hold-out protocol (b) Testing on training set protocol

(c) cross-validation protocol

Figure 5.2: Data processing on different protocols



Chapter 5. Analysis of the fitness calculation protocols 76

5.3 Experimental study

5.3.1 Objectives

The study, experiments and results analysis were conducted to find the answers to the

following questions:

RQ1 Is there a difference in the quality of the Pareto front obtained by different estima-

tion protocols?

RQ2 Which protocol estimates the actual objective values the best?

RQ3 Solution selection based on which protocol results in the classifiers of the best

quality?

5.3.2 Setup

Choice of benchmark datasets. The experiments are conducted using 39 benchmark

datasets from the KEEL [175] and UCI [176] repositories. All of the datasets represent

binary problems. The datasets vary in size (both in samples and dimensionality) along

with different imbalance ratios (ranging from 1.87 to 82.00). Descriptions of the used

datasets can be found in the Table 5.1.

Parameter setting. Most of the parameters stemmed from the nsga ii optimisation

algorithm - the size of population was 200, the number of iterations was 500, and the

chosen operators were two-point crossover and flip mutation. As for the protocols them-

selves, the holdout split was 80% of the samples for the training and 20% for validation,

and the cross-validation split was 50-50 and was repeated 5 times.

Solution choice rules. In the case of experiments 1 and 2, whole Pareto front estima-

tions were used to calculate metrics. For the last experiment, three solutions from each

optimisation result were selected - one with the best precision score, one with the best

recall score and the one where the difference between both objectives was the smallest

(labelled balanced).

Tested classifier Two classifiers were employed in this research, both in calculating

optimisation objectives’ values and final assessment:

1. Decision Tree Classifier (cart) - with Gini impurity as split criterion, no max

depth set, miniminum samples split equal to 2 and minimum samples leaf equal to

1,
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Table 5.1: Description of datasets. #S denotes the number of samples, #F stands for the number of
features, and ir indicates the imbalance ratio

dataset #s #f ir [%] dataset #s #f ir [%]

page-blocks0 2736 9 8.79 adult 16280 14 3.15

bank additional 20594 20 7.88 glass1 107 9 1.82

glass0 107 9 2.06 ecoli-0-6-7 vs 5 110 6 10.00

ecoli-0-6-7 vs 3-5 111 7 9.09 ecoli-0-2-6-7 vs 3-5 112 7 9.18

ecoli-0-1 vs 2-3-5 122 7 9.17 haberman 153 3 2.78

ecoli1 168 7 3.36 ecoli2 168 7 5.46

ecoli3 168 7 8.60 ecoli-0-1-4-7 vs 2-3-5-6 168 7 10.59

yeast-1 vs 7 229 7 14.30 page-blocks-1-3 vs 4 236 10 15.86

yeast-2 vs 8 241 8 23.10 yeast-0-3-5-9 vs 7-8 253 8 9.12

yeast-2 vs 4 257 8 9.08 yeast-0-5-6-7-9 vs 4 264 8 9.35

yeast-1-4-5-8 vs 7 346 8 22.10 pima 384 8 1.87

winequality-white-3 vs 7 450 11 44.00 yeast-1-2-8-9 vs 7 473 8 30.57

yeast-0-2-5-6 vs 3-7-8-9 502 8 9.14 flare-F 533 11 23.79

kr-vs-k-zero vs eight 730 6 53.07 poker-8 vs 6 738 10 85.88

winequality-white-3-9 vs 5 741 11 58.28 yeast3 742 8 8.10

poker-8-9 vs 6 742 10 58.40 yeast6 742 8 41.40

yeast5 742 8 32.73 yeast4 742 8 28.10

winequality-red-4 799 11 29.17 abalone-19 vs 10-11-12-13 811 8 49.69

abalone-20 vs 8-9-10 958 8 72.69 poker-8-9 vs 5 1037 10 82.00

abalone-17 vs 7-8-9-10 1169 8 39.31

2. knn Classifier with k = 5.

5.3.3 Results

5.3.3.1 Pareto fronts quality

The first experiment was dedicated to researching the difference between the quality of

the Pareto fronts obtained with different assessment protocols. The examples of result

sets are presented in Figure 5.3.

The first observation is that solutions obtained with holdout and test on train methodol-

ogy significantly dominate the models assessed with cross-validation. Their sets are also

more compact and thus less diverse, which is especially noticeable in the case of smaller

datasets (ecoli1 and glass1 ). Although technically worse in terms of prediction quality,

the cross-validation protocol results in more unique solutions (in the context of varying

pairs of objectives), when very often hold-out and test on train methodologies diverged

into one, albeit perfect, solution.
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(a) Dataset: page blocks, classifier: cart (b) Dataset: ecoli1, classifier: cart

(c) Dataset: adult, classifier: knn (d) Dataset: glass1, classifier: knn

Figure 5.3: Example of Pareto fronts obtained with different objectives estimation method

Tables 5.2 and 5.3 present the average number of unique solutions and the mean max-

imum spread, being the biggest distance between solutions in the Pareto front. It may

be noticed that the hold-out method results in very few different solutions. However, it

sometimes has the biggest spread amongst the tested protocols. The testing on training

set usually generates a more diverse result set, although it still very often ends with

only one solution with the highest objective score. The cross-validation protocol almost

always creates at least 10 different solutions, which often go in pairs with their wide

range.
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Table 5.2: Pareto fronts assessment employing cart for different objectives calculation protocols

dataset
hold-out train cv

unique
solutions

max
spread

unique
solutions

max
spread

unique
solutions

max
spread

adult 24.8 0.067 75.6 0.060 132.2 0.051

bank_additional 15.8 0.095 69.9 0.074 69.4 0.059

page-blocks0 5.8 0.097 17.9 0.062 123.8 0.137

glass1 1.5 0.038 1.0 0.000 102.2 0.425

glass0 2.1 0.108 1.0 0.000 82.0 0.369

ecoli-0-6-7_vs_5 1.0 0.000 1.0 0.000 14.1 0.327

ecoli-0-6-7_vs_3-5 1.0 0.000 1.0 0.000 13.6 0.280

ecoli-0-2-6-7_vs_3-5 1.1 0.050 1.0 0.000 20.6 0.300

ecoli-0-1_vs_2-3-5 1.0 0.000 1.0 0.000 32.5 0.446

haberman 4.1 0.227 3.3 0.041 138.8 0.434

ecoli1 1.4 0.039 1.5 0.016 98.4 0.366

ecoli2 1.4 0.100 1.0 0.000 43.0 0.281

ecoli3 1.2 0.040 1.0 0.000 67.0 0.475

ecoli-0-1-4-7_vs_2-3-5-6 1.2 0.067 1.2 0.007 32.2 0.461

yeast-1_vs_7 2.2 0.317 1.0 0.000 45.2 0.455

page-blocks-1-3_vs_4 1.0 0.000 1.0 0.000 7.3 0.242

yeast-2_vs_8 1.2 0.117 1.2 0.010 12.8 0.380

yeast-0-3-5-9_vs_7-8 2.4 0.238 1.9 0.044 87.6 0.545

yeast-2_vs_4 1.6 0.093 1.0 0.000 65.8 0.416

yeast-0-5-6-7-9_vs_4 1.5 0.089 2.0 0.032 75.6 0.416

yeast-1-4-5-8_vs_7 2.7 0.440 1.6 0.020 31.8 0.330

pima 6.7 0.211 17.7 0.158 146.8 0.232

winequality-white-3_vs_7 1.1 0.050 1.0 0.000 15.6 0.482

yeast-1-2-8-9_vs_7 2.0 0.310 1.7 0.050 33.4 0.364

yeast-0-2-5-6_vs_3-7-8-9 3.7 0.261 8.5 0.163 76.0 0.293

flare-F 2.7 0.217 12.6 0.416 67.0 0.482

kr-vs-k-zero_vs_eight 1.0 0.000 1.0 0.000 22.1 0.321

poker-8_vs_6 1.1 0.050 1.2 0.011 3.4 0.342

winequality-white-3-9_vs_5 1.8 0.172 1.0 0.000 26.2 0.378

yeast3 2.3 0.084 4.3 0.045 124.8 0.245

poker-8-9_vs_6 1.1 0.050 1.0 0.000 6.8 0.527

yeast6 1.7 0.177 1.2 0.011 39.6 0.339

yeast5 1.0 0.000 1.0 0.000 33.2 0.304

yeast4 1.8 0.162 1.6 0.015 66.0 0.417

winequality-red-4 3.0 0.383 3.5 0.109 54.8 0.440

abalone-19_vs_10-11-12-13 2.4 0.550 3.9 0.185 11.6 0.206

abalone-20_vs_8-9-10 2.3 0.320 2.5 0.085 22.4 0.352

poker-8-9_vs_5 1.2 0.067 1.8 0.042 17.8 0.316

abalone-17_vs_7-8-9-10 3.1 0.343 7.4 0.219 39.8 0.317



Chapter 5. Analysis of the fitness calculation protocols 80

Table 5.3: Pareto fronts assessment employing knn for different objectives calculation protocols

dataset
hold-out train cv

unique
solutions

max
spread

unique
solutions

max
spread

unique
solutions

max
spread

adult 15.0 0.105 182.3 0.124 343.2 0.097

bank_additional 15.8 0.095 69.9 0.074 69.4 0.059

page-blocks0 3.4 0.156 29.9 0.205 230.4 0.322

glass1 2.1 0.167 11.2 0.244 199.8 0.682

glass0 2.4 0.111 11.8 0.306 211.0 0.647

ecoli-0-6-7_vs_5 1.0 0.000 2.2 0.160 9.8 0.260

ecoli-0-6-7_vs_3-5 1.0 0.000 2.1 0.209 11.3 0.294

ecoli-0-2-6-7_vs_3-5 1.0 0.000 2.1 0.227 11.5 0.327

ecoli-0-1_vs_2-3-5 1.2 0.100 2.0 0.175 2.4 0.215

haberman 2.0 0.188 18.3 0.538 262.4 0.796

ecoli1 1.7 0.149 7.3 0.177 92.2 0.412

ecoli2 1.5 0.140 2.7 0.086 29.0 0.285

ecoli3 1.1 0.050 8.2 0.399 60.1 0.468

ecoli-0-1-4-7_vs_2-3-5-6 1.5 0.167 3.5 0.209 13.0 0.350

yeast-1_vs_7 1.9 0.517 2.8 0.480 15.4 0.658

page-blocks-1-3_vs_4 2.0 0.333 2.1 0.086 21.8 0.489

yeast-2_vs_8 1.3 0.183 2.8 0.520 2.8 0.544

yeast-0-3-5-9_vs_7-8 2.0 0.440 5.2 0.544 60.2 0.734

yeast-2_vs_4 1.9 0.217 2.0 0.133 15.2 0.274

yeast-0-5-6-7-9_vs_4 1.7 0.260 4.8 0.412 75.8 0.658

yeast-1-4-5-8_vs_7 1.6 0.420 2.6 0.700 4.8 0.422

pima 2.6 0.144 34.8 0.289 320.4 0.483

winequality-white-3_vs_7 1.1 0.067 1.9 0.770 1.4 0.070

yeast-1-2-8-9_vs_7 1.2 0.138 2.2 0.660 2.1 0.395

yeast-0-2-5-6_vs_3-7-8-9 3.1 0.346 8.4 0.432 96.8 0.667

flare-F 2.2 0.493 12.2 0.670 50.2 0.690

kr-vs-k-zero_vs_eight 1.5 0.250 2.1 0.185 11.2 0.408

poker-8_vs_6 1.1 0.050 2.0 0.504 1.9 0.219

winequality-white-3-9_vs_5 1.3 0.192 2.0 0.667 1.8 0.173

yeast3 1.8 0.089 8.2 0.192 74.4 0.280

poker-8-9_vs_6 1.1 0.050 2.0 0.392 2.0 0.466

yeast6 1.7 0.249 4.6 0.389 42.8 0.535

yeast5 1.3 0.065 6.6 0.273 69.8 0.624

yeast4 1.6 0.340 4.4 0.546 52.8 0.691

winequality-red-4 1.6 0.401 3.6 0.777 9.0 0.499

abalone-19_vs_10-11-12-13 1.0 0.000 1.9 0.760 1.4 0.070

abalone-20_vs_8-9-10 1.3 0.190 2.8 0.759 1.6 0.108

poker-8-9_vs_5 1.0 0.000 1.6 0.553 1.2 0.017

abalone-17_vs_7-8-9-10 1.7 0.480 2.6 0.679 6.0 0.716
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5.3.3.2 Final quality estimation

The previous experiment showed that the holdout and test on train protocols obtain

better objective values and thus prediction quality. However, estimations on training

sets are unreliable, and the hold-out validation set, in some cases, is too small and

has too large a variance. Therefore, RQ2 needs to be answered to determine if it is

possible to rely on the criteria score obtained during optimisation. To achieve that,

the distances between the optimisation solutions and respective objectives - recall and

precision - calculated on a separate test set, were computed. Tables 8.14 and 8.18 present

the average distance values over each solution across every fold, while Figure 5.4 shows

the examples of such calculations.

(a) Dataset: ecoli1, classifier: decision tree

(b) Dataset: haberman, classifier: knn

Figure 5.4: Example of distances of obtained results and ther respective test scores for each assessed
protocol

Visualisations show the significant difference between the quality of predicting data not

used in the optimisation process. Though the bias is to be expected, the biggest problem

is that the range of test scores can be pretty wide, and the properties of specific solutions

are uncertain. Very often, the dominance does not transfer to test data, and the sequence

of the solutions (according to the single objective) also does not hold. Moreover, one pair

of criteria values might respond to many different final scores, which is especially evident

in the case of the holdout protocol. It seems better for the cross-validation protocol,

though sometimes several optimisation results respond to a single point on the test data.
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Table 5.4: Average distance from train to test Pareto front (cart)

dataset holdout train cv

adult 0.129 0.321 0.026

bank_additional 0.167 0.409 0.052

page-blocks0 0.203 0.246 0.060

glass1 0.553 0.506 0.183

glass0 0.435 0.432 0.165

ecoli-0-6-7_vs_5 0.421 0.416 0.212

ecoli-0-6-7_vs_3-5 0.474 0.481 0.253

ecoli-0-2-6-7_vs_3-5 0.540 0.486 0.282

ecoli-0-1_vs_2-3-5 0.583 0.526 0.335

haberman 0.818 0.878 0.300

ecoli1 0.336 0.380 0.138

ecoli2 0.372 0.397 0.175

ecoli3 0.602 0.645 0.231

ecoli-0-1-4-7_vs_2-3-5-6 0.617 0.520 0.277

yeast-1_vs_7 0.816 0.914 0.418

page-blocks-1-3_vs_4 0.271 0.138 0.131

yeast-2_vs_8 0.557 0.702 0.298

yeast-0-3-5-9_vs_7-8 0.825 0.975 0.269

yeast-2_vs_4 0.427 0.447 0.252

yeast-0-5-6-7-9_vs_4 0.749 0.864 0.281

yeast-1-4-5-8_vs_7 0.953 1.241 0.436

pima 0.509 0.539 0.150

winequality-white-3_vs_7 0.830 1.083 0.416

yeast-1-2-8-9_vs_7 0.547 1.015 0.367

yeast-0-2-5-6_vs_3-7-8-9 0.578 0.642 0.181

flare-F 0.968 0.839 0.392

kr-vs-k-zero_vs_eight 0.394 0.131 0.239

poker-8_vs_6 0.591 0.417 0.412

winequality-white-3-9_vs_5 0.903 1.086 0.404

yeast3 0.347 0.466 0.100

poker-8-9_vs_6 0.637 0.505 0.270

yeast6 0.871 0.819 0.340

yeast5 0.549 0.582 0.217

yeast4 0.935 1.000 0.315

winequality-red-4 0.995 1.179 0.414

abalone-19_vs_10-11-12-13 0.982 1.155 0.303

abalone-20_vs_8-9-10 0.980 0.977 0.378

poker-8-9_vs_5 1.138 1.157 0.372

abalone-17_vs_7-8-9-10 0.867 0.928 0.298



Chapter 5. Analysis of the fitness calculation protocols 83

Table 5.5: Average distance from train to test Pareto front (knn)

dataset holdout train cv

adult 0.226 0.157 0.033

bank_additional 0.293 0.491 0.190

page-blocks0 0.183 0.148 0.075

glass1 0.502 0.367 0.176

glass0 0.510 0.367 0.190

ecoli-0-6-7_vs_5 0.600 0.239 0.280

ecoli-0-6-7_vs_3-5 0.502 0.266 0.283

ecoli-0-2-6-7_vs_3-5 0.519 0.261 0.269

ecoli-0-1_vs_2-3-5 0.352 0.190 0.193

haberman 0.786 0.588 0.343

ecoli1 0.337 0.281 0.172

ecoli2 0.270 0.179 0.134

ecoli3 0.652 0.370 0.233

ecoli-0-1-4-7_vs_2-3-5-6 0.322 0.208 0.225

yeast-1_vs_7 0.521 0.413 0.386

page-blocks-1-3_vs_4 0.414 0.279 0.308

yeast-2_vs_8 0.416 0.236 0.286

yeast-0-3-5-9_vs_7-8 0.496 0.490 0.375

yeast-2_vs_4 0.220 0.248 0.201

yeast-0-5-6-7-9_vs_4 0.640 0.571 0.419

yeast-1-4-5-8_vs_7 0.449 0.892 0.424

pima 0.482 0.422 0.187

winequality-white-3_vs_7 0.105 0.911 0.092

yeast-1-2-8-9_vs_7 0.326 0.553 0.276

yeast-0-2-5-6_vs_3-7-8-9 0.431 0.307 0.229

flare-F 0.809 0.647 0.450

kr-vs-k-zero_vs_eight 0.435 0.348 0.352

poker-8_vs_6 0.281 0.397 0.390

winequality-white-3-9_vs_5 0.320 0.684 0.210

yeast3 0.284 0.263 0.167

poker-8-9_vs_6 0.399 0.391 0.345

yeast6 0.531 0.478 0.366

yeast5 0.586 0.444 0.257

yeast4 0.719 0.538 0.429

winequality-red-4 0.387 0.805 0.340

abalone-19_vs_10-11-12-13 0.000 0.874 0.081

abalone-20_vs_8-9-10 0.258 0.689 0.201

poker-8-9_vs_5 0.000 0.602 0.020

abalone-17_vs_7-8-9-10 0.679 0.662 0.477
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It can be noticed in tables 8.14 and 8.18 that the cross-validation protocol has the lowest

average distance from train to test score for every but one dataset in the case of the

cart classifier. For the knn model, the scores obtained with test on train are sometimes

closer. Nevertheless, cross-validation estimations are better for most of the datasets, and

when not, its performance is still close to the best. As for the hold-out and testing on

training set protocols, there is no clear pattern with the first being better with some

examples and the second with the others. It has to be highlighted that some average

distances are really high, around 1, indicating significant overfitting of the classifier.

5.3.3.3 Classifiers performance

Lastly, even if the estimations are not accurate and overly optimistic, in the end, one

of the most important aspects is the quality of the model’s prediction. So to answer

RQ3, the third experiment compares the quality of classifiers obtained by selecting three

solutions for each protocol. The detailed results can be found in Tables 8.12 - 8.19 in

the Appendix, while the summary and statistical evaluation can be seen in Figures 5.5 -

5.8.

The results show that, in general, solutions optimised via cross-validation obtained higher

metric scores, followed by testing on training set and hold-out being the worst. There is

also more significant diversification in cross-validation solutions, as the models selected

based on each objective have the highest values of precision and recall, respectively, while

ranking last in the opposite measure. The difference is especially apparent for the cart

classifier. The distinction is less significant in the case of testing on training set and

hold-out. However, this might be due to the selection of one solution for each of the

three instances, as optimisation diverged into a single point. The models based on cross-

validation obtained the best results in all metrics in the case of the cart classifier, often

being statistically better than most other estimators. It must be noticed that for almost

all assessment measures, the cross-validation solution selected by the highest recall came

first, though it was the worst in the case of precision. However, the balanced solution

always obtained the second-best results. The situation is a little bit more interesting

for the knn estimator, since the advantage of cross-validation appears smaller, with

testing on training set achieving comparable results. In both cases, however, the hold-

out protocol is distinguished by the worst results. Nevertheless, there are examples of

problems where each of the protocols seems superior, sometimes by a big margin.
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Figure 5.5: Average rank of models based on solutions obtained from different objective calculation
protocols (cart)

Figure 5.6: Average rank of models based on solutions obtained from different objective calculation
protocols (knn)
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(a) precision (b) recall

(c) bac (d) F1 score

(e) Gmean

Figure 5.7: Results of Friedman and post hoc Nemenyi statistical tests for different metrics (cart)

(a) precision (b) recall

(c) bac (d) F1 score

(e) Gmean

Figure 5.8: Results of Friedman and post hoc Nemenyi statistical tests for different metrics (knn)
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5.4 Lessons learnt

In this chapter, the analysis of three different objective calculation protocols was con-

ducted. The experiments were dedicated to assessing proposed methods in the context

of the quality of generated Pareto fronts, estimation of the actual (test) scores and the

prediction abilities. The first study showed the dominance of solutions obtained by hold-

out and testing on training set protocols over cross-validation, while the latter resulted

in wider and more numerous fronts. Second experiment determined that even if hold-

out and testing on training set have a high training objective score, it might be due to

overfitting, as criteria calculated on a separate test set were significantly different, with

a high distance measure between respective points. Moreover, solutions with the same

values of objectives would correspond to multiple significantly different scores in the test

space. Cross-validation test solutions’ scores were closer to the training counterparts.

However, there was still a problem with test solutions not forming Pareto fronts and

not corresponding directly to the order in train space. Lastly, the third analysis was

dedicated to comparing particular solutions from each optimisation type. Results show

that, in general, models based on cross-validation, especially those selected according

to the highest recall and the smallest difference between criteria, achieve higher scores

than the rest of the protocols. The difference was prominent in the case of the cart

classifier. Nevertheless, for the knn testing on training set also obtained close results.

This might indicate that the properties of the classification algorithm have an influence

on the optimisation and assessment approach.

It must be highlighted that there is a difference in computational complexity between

each of the protocols, with hold-out being the fastest, testing on training computations

taking a few times more time, since it employs a bigger validation set, and cross-validation

being the slowest due to its repetitions. On this account, the fact that there was a

dataset for each of the approaches, where it was superior, and the classification algorithm

dependency, the user could consider adding protocol comparison to the development

process. Moreover, depending on the type of employment of moo in classifier training, it

might be difficult or even impossible to utilise some protocols in objective calculation. For

example, in the method proposed in Chapter 3, weights are being optimised for specific

estimators trained on bootstrapped data. Hence, without some complex measures, it is

infeasible to assess them with cross-validation (since it requires multiple training and

testing).



Chapter 6

Surrogate criteria for gradient

optimisation

This chapter answers the fourth research question - Is it possible to

employ moo gradient methods for the imbalanced data problem? To

accomplish this, a surrogate criteria will be proposed that substitutes

popular objectives employed in metaheuristic algorithms - recall and

specificity. The surrogate criteria will be evaluated utilising three dif-

ferent gradient optimisation methods - mgda, paretomtl and cosmos.

The proposed objectives will be assessed based on their similarity dur-

ing training and final estimation of the Pareto front, as well as the

overall quality of the resulting sets in the context of moo and pattern

recognition.

6.1 Motivation

Previous research showed that metrics dedicated to assessing the recognition quality

of the specific classes are appropriate as objectives for the moo application in the im-

balanced data task. Employing, for example, recall and precision in the parameter

optimisation results in more balanced models with better generalisation capabilities.

Nevertheless, calculating such criteria involves training a classifier, which may be very

time-consuming depending on the selected algorithm and the data size. Utilisation of an

estimation protocol based on repetition, such as cross-validation, additionally prolongs

the process time. Moreover, the mechanisms in the popular genetic algorithms, such as

mutations and crossovers, meant to improve the population and avoid converging into

local optima, include randomness, generating many individuals that need assessment.

While in general this methodology aims at finding potentially the best possible solution,

88
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this also results in numerous costly computations, many of which do not factor into the

final quality [186].

The solution to this problem could be employing a different type of optimisation method,

for example, the ones that are characterised by a high rate of convergence. One of these

groups of algorithms is gradient-based methods, usually employed in neural network

training. There are several proposed multi-objective gradient algorithms that use dif-

ferent techniques to search in several directions, either by conducting optimisation from

different starting points, segmenting the search space, or including a preferred direction

vector in the training process. The problem with this approach is that previously used

criteria cannot be utilised, as to calculate the gradient, the objective (loss) function needs

to be differentiable, which metrics based on the confusion matrix are not. For this rea-

son, the application of different optimisation criteria should be proposed, such that they

would fit the imbalanced data problem and substitute for the class prediction quality

measures in the sense of similar trends in training and final Pareto front estimations.

6.2 Proposed criteria

The most significant advantage of using criteria such as precision, recall (true positive

rate), and specificity (true negative rate) is that their utilisation allows for the consider-

ation of trade-offs of all classes’ prediction quality. To emulate this feature in a gradient

algorithm, the application of the cross-entropy loss function with weights enhancing

individual classes was proposed.

ln(xn, yn) = −wyn log
exp(pn,yn)∑C
c=1 exp(pn,c)

(6.1)

where yn is the class of the n-th sample, wyn is its weight, C is a number of classes and

pn,c is a support of sample xn belonging to the c-th class. To achieve the value for the

whole learning set, a weight-oriented mean is used:

L(x, y) =
N∑
n=1

ln∑N
n=1wyn

(6.2)

The number of objectives of moo equals the number of classes, and the weights differ

for each criterion. For the i-th objective, weights take the form of:
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wi = [wi1, w
i
2, . . . , w

i
C ]T

wic =

1− α if c = i

α
C−1 if c 6= i

The α parameter is meant to control the importance of the specific class recognition and

the influence of the remaining classes.

In this research, only binary classification problems were considered. Hence, there were

two objectives:

• cross-entropy minority - where the biggest weight was assigned to the minority

class

• cross-entropy majority - analogically for the majority class.

6.3 Experimental study

To exhaustively test the proposed surrogate criteria, they were applied to three gradient-

based algorithms - mgda [142], paretomtl [143] and cosmos [144], and evaluated pri-

marily in terms of their consistency with recall and specificity, but also in the context of

the quality of the Pareto front estimation and pattern recognition.

6.3.1 Objectives

The conducted set of experiments aims to prove the proposed surrogate criteria’s utility

by answering the following research questions:

RQ1 What is the influence of the α parameter on the properties of the surrogate objec-

tives?

RQ2 What is the quality of the approximation of the Pareto fronts obtained utilising

the proposed optimisation criteria?

RQ3 How well do solutions from surrogate space translate into the target space?

RQ4 How do optimisation methods using the proposed surrogate criteria perform com-

pared to single-objective optimisation methods?
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Table 6.1: Description of datasets. #S denotes the number of samples, #F stands for the number of
features, and ir indicates the imbalance ratio

dataset #s #f ir [%]

adult 32561 14 31.71

page-blocks0 5472 9 11.38

bank_additional 41188 20 12.70

MiniBooNE_PID 130064 50 39.00

ecoli1 336 7 29.73

ecoli3 336 7 11.63

glass0 214 9 48.61

glass1 214 9 55.07

haberman 306 3 36.00

pima 768 8 53.60

yeast-0-2-5-6_vs_3-7-8-9 1004 8 10.94

yeast-0-3-5-9_vs_7-8 506 8 10.96

yeast-0-5-6-7-9_vs_4 528 8 10.69

yeast3 1484 8 12.24

yeast4 1484 8 3.55

6.3.2 Setup

Choice of benchmark datasets. Experiments were run on 15 datasets, which can be

found on UCI [176] and KEEL [175] repositories. For analysis purposes, the datasets

were divided into two categories: a) big datasets, with sizes exceeding 5000 samples,

and b) small datasets, with sizes less than 5000 samples. The datasets also presented

different imbalance ratio levels, i.e., the proportion between minority and majority class

examples (from 3.55% to 55.07%)) and numbers of features (from 3 to 50). The data

characteristic is presented in Table 6.1.

Experimental protocol. For comparison, each method used the same neural network

architecture: three layers with rectified linear unit activation function and Adam opti-

miser with a learning rate of 0.001. The batches have sizes of 256 samples for big datasets

and the whole data for small datasets. All experiments were conducted utilising a 5x2

cross-validation protocol with stratified data splits.
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Implementation and reproducibility. The methods and evaluation were imple-

mented using the Python programming language, modules such as Pytorch [187] and

scikit-learn [177].

6.3.3 α hyperparameter analysis

To assess the influence of the α on the optimisation process, 10 values of the parameter

ranging from 0.0 to 0.45 were tested on all datasets employing the cosmos method.

The range was selected due to the symmetric nature of both criteria. Resulting Pareto

front estimations calculated on separate test sets (in both optimised - surrogate objec-

tives space, as well as the target - recall and specificity space) were then compared and

analysed. The example of such comparisons can be seen in Fig. 6.1.

Table 6.2: Average hypervolume measure for different α values in surrogate space

dataset 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

adult 0.378 0.354 0.336 0.322 0.312 0.304 0.299 0.295 0.292 0.292

page-blocks0 0.439 0.415 0.414 0.416 0.417 0.420 0.422 0.421 0.422 0.420

bank_additional 0.401 0.363 0.357 0.351 0.349 0.344 0.346 0.350 0.354 0.357

MiniBooNE_PID 0.434 0.421 0.412 0.403 0.397 0.391 0.388 0.386 0.383 0.383

ecoli1 0.395 0.381 0.371 0.361 0.351 0.348 0.347 0.345 0.345 0.346

ecoli3 0.376 0.366 0.367 0.368 0.371 0.376 0.377 0.379 0.379 0.379

glass0 0.331 0.312 0.295 0.280 0.269 0.260 0.254 0.249 0.246 0.245

glass1 0.295 0.283 0.269 0.254 0.240 0.227 0.215 0.208 0.205 0.203

haberman 0.255 0.224 0.214 0.203 0.196 0.192 0.187 0.183 0.183 0.184

pima 0.317 0.298 0.280 0.262 0.243 0.227 0.213 0.208 0.203 0.202

yeast-0-2-5-6_vs_3-7-8-9 0.328 0.287 0.305 0.331 0.348 0.359 0.367 0.373 0.378 0.380

yeast-0-3-5-9_vs_7-8 0.257 0.237 0.263 0.291 0.314 0.331 0.342 0.349 0.356 0.359

yeast-0-5-6-7-9_vs_4 0.319 0.279 0.289 0.311 0.326 0.337 0.344 0.352 0.358 0.361

yeast3 0.402 0.381 0.382 0.386 0.390 0.395 0.397 0.399 0.401 0.402

yeast4 0.233 0.310 0.358 0.380 0.388 0.398 0.410 0.417 0.422 0.425

The most noticeable trend is that the smaller the α, and thus the more focus on a single

class, the broader the resulting Pareto front is. With a higher α parameter, solutions are

relatively compact. However, they also have better criteria values across all the results.

Hypervolume values of surrogate (optimised) estimations of the Pareto front (Table 6.2)

show that in the cases of some smaller datasets, the dominance is very prominent (as

it significantly influences the scale of hypervolume). Nevertheless, in the case of bigger

datasets (and some smaller ones), the dominance is not significant enough to translate

into higher hypervolume scores. Moreover, this tendency seems not to cross to the target
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Figure 6.1: Comparision of different α values

recall -specificity space (Table 6.3), where solutions obtained from bigger α values do

not dominate the rest. The other observation is that, together with the lower range of

objective values, solutions obtained from higher α parameters tend to be slightly more

biased towards majority class criteria, both in surrogate and target space.

As the goal of the multi-objective optimisation is to generate a wide set of solutions, which

are furthermore not focused on one class recognition, for the rest of the experiments,

alpha = 0.0 was selected. This also intuitively corresponds to the prerogatives of the

target objectives, which only focus on the quality of one class recognition.
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Table 6.3: Average hypervolume measure for different α values in recall-specificity space

dataset 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

adult 0.886 0.867 0.840 0.814 0.777 0.739 0.693 0.650 0.610 0.584

page-blocks0 0.955 0.915 0.896 0.868 0.844 0.826 0.805 0.772 0.736 0.700

bank_additional 0.907 0.844 0.809 0.750 0.686 0.599 0.548 0.513 0.490 0.472

MiniBooNE_PID 0.953 0.946 0.938 0.926 0.914 0.899 0.884 0.871 0.852 0.838

ecoli1 0.888 0.878 0.854 0.835 0.807 0.779 0.757 0.727 0.713 0.688

ecoli3 0.849 0.830 0.826 0.777 0.744 0.724 0.681 0.610 0.592 0.582

glass0 0.803 0.790 0.767 0.746 0.718 0.687 0.653 0.621 0.600 0.583

glass1 0.763 0.755 0.743 0.720 0.695 0.639 0.579 0.548 0.521 0.511

haberman 0.665 0.664 0.640 0.584 0.509 0.456 0.382 0.303 0.260 0.215

pima 0.800 0.785 0.761 0.730 0.684 0.632 0.583 0.554 0.520 0.498

yeast-0-2-5-6_vs_3-7-8-9 0.793 0.642 0.570 0.553 0.531 0.500 0.476 0.472 0.471 0.455

yeast-0-3-5-9_vs_7-8 0.673 0.572 0.476 0.442 0.429 0.371 0.295 0.248 0.228 0.212

yeast-0-5-6-7-9_vs_4 0.778 0.648 0.535 0.471 0.410 0.407 0.328 0.294 0.299 0.291

yeast3 0.888 0.846 0.811 0.783 0.758 0.750 0.725 0.710 0.700 0.693

yeast4 0.722 0.467 0.404 0.336 0.141 0.000 0.000 0.000 0.000 0.000

6.3.4 Pareto Front generation

To answerRQ2, the ability to generate Pareto fronts of the models utilising the proposed

criteria was investigated. Firstly, the experiment was conducted to determine a relation

between both objectives, as interconnected or dependent functions are not suited for the

moo process since they could result in a narrow Pareto front, in the worst case, reduced

to a single point. Table 6.4 presents correlations of both criteria for all investigated

methods. For big datasets, a strong negative correlation (usually above 0.90) may be

noticed, meaning the objectives contradict each other and the optimisers can correctly

approximate Pareto fronts. This is also true for most small datasets for cosmos and

paretomtl models. The negative correlation is not as strong in the case of mgda, which

is probably caused by its tendency to create narrower nondominated sets with dispersed

dominated solutions due to the lack of data to train the model properly.

Secondly, it was assessed what the relationship is between training estimation Pareto

fronts, where the optimisations have taken place, and the resulting Pareto fronts calcu-

lated on a separate test set. The example of such Pareto fronts can be seen in Fig. 6.2.

Tables 6.7 and 6.8 present the average correlation between the proposed criteria on the

training and test sets. The results showcase an almost ideal correlation in the case of

paretomtl and cosmos algorithms. The situation is more complex for the mgda model,
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(a) mgda (b) paretomtl (c) cosmos

Figure 6.2: Examples of training and test Pareto fronts

Table 6.4: Average correlation of both criteria on testing data

dataset mgda paretomtl cosmos

adult -0.976 -0.953 -0.894

MiniBooNE_PID -0.918 -0.977 -0.824

page-blocks0 -0.023 -0.382 -0.864

bank_additional -0.956 -0.878 -0.878

ecoli1 -0.471 -0.822 -0.995

ecoli3 -0.415 -0.809 -0.953

glass0 -0.488 -0.914 -0.958

glass1 -0.736 -0.956 -0.946

haberman -0.390 -0.977 -0.963

pima -0.165 -0.881 -0.943

yeast-0-2-5-6_vs_3-7-8-9 -0.684 -0.962 -0.933

yeast-0-3-5-9_vs_7-8 -0.658 -0.975 -0.932

yeast-0-5-6-7-9_vs_4 -0.535 -0.872 -0.920

yeast3 -0.705 -0.852 -0.940

yeast4 -0.303 -0.925 -0.996

where there is a high correlation between train and test results for some datasets (no-

tably the bigger examples), while for some, the relation seems not to have a very strong

pattern. The reason for that could be the characteristics of the model, especially the fact

that it does not learn to create a wide Pareto front. The algorithm tends to result in a

denser set of solutions, where small changes might have a big impact on the correlation

score. Nevertheless, other models demonstrate that usually there is a good translation

between optimised criteria and their quality on unseen data, making it possible to select

a solution from the Pareto front and precisely forecast its properties.

Next, the quality of the generated solution sets was investigated. Tables 6.9 and 6.10 show
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Table 6.5: Average correlation between train-
ing (optimised) and test majority weighted cross-
entropy

dataset mgda paretomtl cosmos

adult 0.987 1.000 1.000

MiniBooNE_PID 0.993 1.000 1.000

page-blocks0 0.617 1.000 0.999

bank_additional 0.988 1.000 1.000

ecoli1 0.292 0.995 0.994

ecoli3 0.635 0.998 0.999

glass0 0.172 0.984 0.999

glass1 0.311 0.993 0.999

haberman 0.543 0.998 0.999

pima 0.330 0.999 0.997

yeast-0-2-5-6_vs_3-7-8-9 0.836 1.000 0.998

yeast-0-3-5-9_vs_7-8 0.515 0.998 0.999

yeast-0-5-6-7-9_vs_4 0.913 0.998 0.999

yeast3 0.902 0.999 0.996

yeast4 0.830 1.000 1.000

Table 6.6: Average correlation between train-
ing (optimised) and test minority weighted cross-
entropy

dataset mgda paretomtl cosmos

adult 0.939 0.990 1.000

MiniBooNE_PID 0.998 0.996 1.000

page-blocks0 -0.171 0.509 0.994

bank_additional 0.395 0.989 0.995

ecoli1 -0.698 0.972 0.984

ecoli3 -0.146 0.986 0.996

glass0 0.213 0.981 0.959

glass1 -0.154 0.990 0.995

haberman 0.211 0.991 0.999

pima 0.062 0.992 0.994

yeast-0-2-5-6_vs_3-7-8-9 0.617 0.989 0.998

yeast-0-3-5-9_vs_7-8 -0.224 0.985 0.990

yeast-0-5-6-7-9_vs_4 0.446 0.971 0.993

yeast3 -0.333 0.993 0.993

yeast4 0.037 0.942 1.000

proportions of nondominated solutions (Pareto front) on both training, on which optimi-

sation was performed, and testing data. For both partitions, the cosmos method results

in almost entirely nondominated sets, which was to be expected because of its ability

to learn generating Pareto fronts. In the case of algorithms without such a mechanism,

the number of nondominated solutions is much smaller, around one-third for paretomtl

and between 10 and 20 % for mgda. Especially in the case of mgda, there may be a

difference in order of magnitude between proportions on small and big datasets, which

might indicate difficulty learning from too few samples. Moreover, the mgda generates

much more limited Pareto fronts, resulting in a few nondominated solutions.

Although not all solutions form the Pareto front, dominated solutions could still be in

its proximity (Fig. 6.3). Tables 6.11 and 6.12 present average distances of dominated

points to the closest point in the Pareto front, normalised to the maximum Pareto front’s

values. For most datasets, the mean relative distance may not exceed 2%, proving that

the solutions are primarily focused around Pareto fronts.

The above results show that the proposed criteria are suitable for multi-objective op-

timisation, creating diverse Pareto fronts. Nonetheless, the final quality of solutions is

highly dependent on the employed optimisation algorithm, which is demonstrated pri-

marily by comparing the resulting sets of methods with diversification mechanisms, such

as cosmos, to others like mgda.
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Table 6.7: Average correlation between train-
ing (optimised) and test majority weighted cross-
entropy

dataset mgda paretomtl cosmos

adult 0.987 1.000 1.000

MiniBooNE_PID 0.993 1.000 1.000

page-blocks0 0.617 1.000 0.999

bank_additional 0.988 1.000 1.000

ecoli1 0.292 0.995 0.994

ecoli3 0.635 0.998 0.999

glass0 0.172 0.984 0.999

glass1 0.311 0.993 0.999

haberman 0.543 0.998 0.999

pima 0.330 0.999 0.997

yeast-0-2-5-6_vs_3-7-8-9 0.836 1.000 0.998

yeast-0-3-5-9_vs_7-8 0.515 0.998 0.999

yeast-0-5-6-7-9_vs_4 0.913 0.998 0.999

yeast3 0.902 0.999 0.996

yeast4 0.830 1.000 1.000

Table 6.8: Average correlation between train-
ing (optimised) and test minority weighted cross-
entropy

dataset mgda paretomtl cosmos

adult 0.939 0.990 1.000

MiniBooNE_PID 0.998 0.996 1.000

page-blocks0 -0.171 0.509 0.994

bank_additional 0.395 0.989 0.995

ecoli1 -0.698 0.972 0.984

ecoli3 -0.146 0.986 0.996

glass0 0.213 0.981 0.959

glass1 -0.154 0.990 0.995

haberman 0.211 0.991 0.999

pima 0.062 0.992 0.994

yeast-0-2-5-6_vs_3-7-8-9 0.617 0.989 0.998

yeast-0-3-5-9_vs_7-8 -0.224 0.985 0.990

yeast-0-5-6-7-9_vs_4 0.446 0.971 0.993

yeast3 -0.333 0.993 0.993

yeast4 0.037 0.942 1.000

Table 6.9: Average proportion [%] of nondomi-
nated solutions on training data

dataset mgda paretomtl cosmos

adult 42.80 66.00 100.00

MiniBooNE_PID 42.80 43.60 100.00

page-blocks0 24.80 26.80 100.00

bank_additional 26.40 62.80 100.00

ecoli1 21.20 39.20 100.00

ecoli3 17.20 35.60 100.00

glass0 12.00 46.40 100.00

glass1 16.80 46.00 100.00

haberman 16.00 63.20 100.00

pima 17.60 44.80 100.00

yeast-0-2-5-6_vs_3-7-8-9 16.40 56.40 100.00

yeast-0-3-5-9_vs_7-8 10.80 52.00 100.00

yeast-0-5-6-7-9_vs_4 18.80 40.40 100.00

yeast3 13.20 38.40 100.00

yeast4 14.00 36.80 100.00

Table 6.10: Average proportion [%] of nondomi-
nated solutions on testing data

dataset mgda paretomtl cosmos

adult 45.60 57.20 100.00

page-blocks0 16.00 36.40 99.60

bank_additional 28.75 54.00 100.00

MiniBooNE_PID 50.00 40.80 98.40

ecoli1 17.60 32.00 100.00

ecoli3 12.80 17.20 98.80

glass0 16.80 42.40 100.00

glass1 16.80 40.40 100.00

haberman 26.00 41.60 100.00

pima 19.20 35.20 100.00

yeast-0-2-5-6_vs_3-7-8-9 17.20 13.20 96.80

yeast-0-3-5-9_vs_7-8 17.20 25.20 100.00

yeast-0-5-6-7-9_vs_4 19.60 31.20 100.00

yeast3 17.20 29.60 98.40

yeast4 21.60 41.20 100.00
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Figure 6.3: Example of solutions obtained from mgda algorithm with denoted Pareto front and distances
to dominated points

Table 6.11: Average distance to Pareto front on
training data

dataset mgda paretomtl cosmos

adult 0.005 0.001 0.000

MiniBooNE_PID 0.003 0.000 0.000

page-blocks0 0.005 0.010 0.000

bank_additional 0.009 0.002 0.000

ecoli1 0.010 0.023 0.000

ecoli3 0.008 0.022 0.000

glass0 0.031 0.011 0.000

glass1 0.028 0.009 0.000

haberman 0.017 0.003 0.000

pima 0.019 0.009 0.000

yeast-0-2-5-6_vs_3-7-8-9 0.020 0.006 0.000

yeast-0-3-5-9_vs_7-8 0.036 0.007 0.000

yeast-0-5-6-7-9_vs_4 0.017 0.017 0.000

yeast3 0.008 0.022 0.000

yeast4 0.012 0.017 0.000

Table 6.12: Average distance to Pareto front on
testing data

dataset mgda paretomtl cosmos

adult 0.003 0.001 0.000

MiniBooNE_PID 0.003 0.000 0.000

page-blocks0 0.004 0.011 0.000

bank_additional 0.003 0.001 0.000

ecoli1 0.014 0.021 0.000

ecoli3 0.009 0.023 0.000

glass0 0.018 0.012 0.000

glass1 0.033 0.008 0.000

haberman 0.010 0.003 0.000

pima 0.016 0.008 0.000

yeast-0-2-5-6_vs_3-7-8-9 0.013 0.006 0.000

yeast-0-3-5-9_vs_7-8 0.022 0.006 0.000

yeast-0-5-6-7-9_vs_4 0.023 0.017 0.000

yeast3 0.005 0.020 0.000

yeast4 0.012 0.012 0.000
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6.3.5 Surrogate and target criteria relation

The aim of the second set of experiments was to answer RQ3 - How well do solutions

from surrogate space translate into the target space and thus investigate whether it is

appropriate to employ the proposed criteria to emulate target objectives, namely recall

and specificity, where cross-entropy minority corresponds to recall, as it focuses on mi-

nority class correct prediction, while analogically cross-entropy majority substitutes for

specificity. Firstly, it was examined whether the behaviour of the surrogate functions

matches the behaviour of the quality metrics, both during the training process and in

the final Pareto front estimations. Tables 6.13 and 6.14 show the correlation between

surrogate and target criteria during training, while 6.15 and 6.16 present their correlation

in the resulting Pareto fronts. In the case of training, it has to be pointed out that for al-

most all datasets, there is a strong (> 0.7) correlation between corresponding objectives.

This indicates that the proposed loss functions appropriately substitute for recall and

specificity, as the improvement of surrogate criteria directly influences the progression of

the target measure. The examples of weaker correlations were always related to smaller

datasets, which could be attributed to fewer possible values of quality measures (meaning

that the same value of recall would represent different values of minority cross-entropy).

As for the final solution sets correspondence, it may be noticed that for the big datasets,

all three models have an almost perfect negative correlation, meaning that their course

is almost exactly opposite, as surrogate ones need to be minimised and the targets

maximised. The same could be said about the smaller datasets, especially in the case

of the COSMOS algorithm, as in only a few examples, the correlation totals to less

than 0.7. Moreover, it is worth noting that decreases in correlation values are connected

to individual methods, as in all instances of a weaker relation, there is at least one

other model with a correlation value above 0.9. These results indicate that the values

and solutions placements are tightly related to the target space, meaning it is possible

to select solutions aiming at specific target properties based on characteristics in the

surrogate space.

The following experiment was intended to test whether the quality of the Pareto front in

the surrogate space translates into the target space. For this purpose, it was investigated

how many optimised Pareto front solutions are nondominated based on recall and speci-

ficity (Fig. 6.4). Tables 6.17 and 6.18 show the proportion of such cases compared to

all solutions. Further, it was examined what the mean distance between solutions that

are nondominated in surrogate space to the target space Pareto front is (Tables 6.19

and 6.20). Even though the solution is no longer part of the estimated Pareto front in

the target space, it still could be placed sufficiently close to other nondominated points.

Results indicate that not only are nondominated surrogate solutions close to the target
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Table 6.13: Average correlation of cross-entropy
majority and specificity during training on test
data

dataset mgda paretomtl cosmos

adult -0.939 -0.997 -0.999

MiniBooNE_PID -0.997 -0.997 -0.978

page-blocks0 -0.726 -0.756 -0.880

bank_additional -0.993 -0.999 -1.000

ecoli1 -0.603 -0.814 -0.081

ecoli3 -0.713 -0.766 0.056

glass0 -0.694 -0.673 -0.527

glass1 -0.808 -0.608 -0.702

haberman -0.479 -0.560 -0.835

pima -0.677 -0.639 -0.912

yeast-0-2-5-6_vs_3-7-8-9 -0.746 -0.752 -0.918

yeast-0-3-5-9_vs_7-8 -0.602 -0.700 -0.876

yeast-0-5-6-7-9_vs_4 -0.715 -0.764 -0.862

yeast3 -0.642 -0.852 -0.922

yeast4 -0.751 -0.771 -0.873

Table 6.14: Average correlation of cross-entropy
minority and recall during training on test data
cos tam

dataset mgda paretomtl cosmos

adult -0.983 -0.962 -0.999

MiniBooNE_PID -0.999 -1.000 -0.958

page-blocks0 -0.683 -0.880 -0.941

bank_additional -0.997 -0.992 -0.999

ecoli1 -0.467 -0.663 -0.639

ecoli3 -0.296 -0.576 -0.505

glass0 -0.403 -0.623 -0.806

glass1 -0.312 -0.636 -0.822

haberman -0.497 -0.637 -0.810

pima -0.273 -0.648 -0.891

yeast-0-2-5-6_vs_3-7-8-9 -0.457 -0.691 -0.837

yeast-0-3-5-9_vs_7-8 -0.602 -0.705 -0.904

yeast-0-5-6-7-9_vs_4 -0.538 -0.650 -0.827

yeast3 -0.338 -0.635 -0.373

yeast4 -0.581 -0.584 -0.201

Table 6.15: Correlation between majority
weighted cross-entropy and specificity on train
data

dataset mgda paretomtl cosmos

adult -0.997 -1.000 -1.000

MiniBooNE_PID -0.998 NaN -1.000

page-blocks0 -0.633 -0.984 -0.999

bank_additional -0.999 -1.000 -1.000

ecoli1 -0.209 -0.896 -0.982

ecoli3 -0.586 -0.942 -0.974

glass0 -0.761 -0.867 -0.989

glass1 -0.942 -0.827 -0.986

haberman -0.447 NaN -0.995

pima -0.733 -0.943 -0.999

yeast-0-2-5-6_vs_3-7-8-9 -0.619 -0.938 -0.995

yeast-0-3-5-9_vs_7-8 -0.838 -0.936 -0.999

yeast-0-5-6-7-9_vs_4 -0.859 -0.969 -0.997

yeast3 -0.788 -0.985 -0.995

yeast4 -0.921 -0.983 -0.998

Table 6.16: Correlation between minority
weighted cross-entropy and recall on test data cos
tam

dataset mgda paretomtl cosmos

adult -0.996 -1.000 -1.000

MiniBooNE_PID -0.998 NaN -1.000

page-blocks0 -0.716 NaN -0.995

bank_additional -0.997 -1.000 -1.000

ecoli1 -0.793 -0.713 -0.950

ecoli3 -0.697 NaN -0.875

glass0 -0.887 -0.181 -0.992

glass1 -0.919 -0.567 -0.990

haberman -0.615 NaN -0.990

pima -0.728 -0.540 -0.995

yeast-0-2-5-6_vs_3-7-8-9 -0.567 -0.848 -0.989

yeast-0-3-5-9_vs_7-8 -0.783 -0.855 -0.984

yeast-0-5-6-7-9_vs_4 -0.890 -0.551 -0.992

yeast3 -0.625 -0.761 -0.978

yeast4 -0.883 -0.807 -0.681
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Table 6.17: Average proportion [%] of nondomi-
nated surrogate solutions which are also nondom-
inated in target space (train data)

dataset mgda paretomtl cosmos

adult 80.20 71.01 100.00

MiniBooNE_PID 85.38 100.00 100.00

page-blocks0 45.07 15.31 70.80

bank_additional 87.20 65.17 98.00

ecoli1 42.43 17.48 38.00

ecoli3 46.76 12.22 15.60

glass0 45.33 7.87 35.60

glass1 44.21 16.33 42.80

haberman 31.50 81.84 66.00

pima 44.74 31.72 84.80

yeast-0-2-5-6_vs_3-7-8-9 35.36 30.44 59.20

yeast-0-3-5-9_vs_7-8 38.33 12.86 41.20

yeast-0-5-6-7-9_vs_4 42.19 21.21 33.60

yeast3 36.00 23.37 35.20

yeast4 27.33 18.66 12.80

Table 6.18: Average proportion [%] of nondomi-
nated surrogate solutions which are also nondom-
inated in target space (test data)

dataset mgda paretomtl cosmos

adult 80.15 73.41 100.00

MiniBooNE_PID 82.32 100.00 100.00

page-blocks0 47.95 21.20 79.20

bank_additional 89.00 67.91 100.00

ecoli1 32.10 27.20 36.00

ecoli3 38.11 17.31 19.60

glass0 34.38 17.83 45.60

glass1 63.33 18.36 53.20

haberman 16.96 90.09 72.00

pima 59.83 32.89 92.00

yeast-0-2-5-6_vs_3-7-8-9 30.94 36.82 58.40

yeast-0-3-5-9_vs_7-8 26.29 22.66 45.60

yeast-0-5-6-7-9_vs_4 45.33 28.55 45.60

yeast3 25.30 24.51 42.80

yeast4 35.56 26.65 12.80

Pareto fronts, but fairly often, they are also nondominated according to quality metrics,

which means that Pareto fronts translate fairly well into the target space. It should

be noted that the proportions are usually higher for the bigger datasets, especially for

the paretomtl and cosmos algorithms. Lower values for smaller data might be caused

by the phenomenon of confusion matrix Pareto fronts being less diverse and sparse for

smaller datasets, as small numbers of minority class samples result in fewer possible

values of quality measures [180] and the tendency to overfitting.

The obtained results show a strong relation between proposed cross-entropy-based cri-

teria and desired quality measures, not only individually but also in multi-objective

optimisation, which answers RQ3.
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Table 6.19: Average distance of nondominated
surrogate solutions to the Pareto front in target
space (train data)

dataset mgda paretomtl cosmos

adult 0.001 0.025 0.000

MiniBooNE_PID 0.000 0.000 0.000

page-blocks0 0.002 0.095 0.003

bank_additional 0.000 0.046 0.000

ecoli1 0.005 0.058 0.011

ecoli3 0.004 0.074 0.018

glass0 0.011 0.086 0.034

glass1 0.015 0.062 0.032

haberman 0.015 0.007 0.011

pima 0.005 0.045 0.005

yeast-0-2-5-6_vs_3-7-8-9 0.006 0.054 0.014

yeast-0-3-5-9_vs_7-8 0.008 0.136 0.035

yeast-0-5-6-7-9_vs_4 0.006 0.087 0.023

yeast3 0.003 0.102 0.008

yeast4 0.005 0.088 0.025

Table 6.20: Average distance of nondominated
surrogate solutions to the Pareto front in target
space (test data)

dataset mgda paretomtl cosmos

adult 0.001 0.002 0.000

MiniBooNE_PID 0.000 0.000 0.000

page-blocks0 0.001 0.084 0.002

bank_additional 0.000 0.014 0.000

ecoli1 0.009 0.046 0.012

ecoli3 0.008 0.056 0.019

glass0 0.019 0.045 0.020

glass1 0.010 0.049 0.019

haberman 0.026 0.005 0.008

pima 0.005 0.053 0.002

yeast-0-2-5-6_vs_3-7-8-9 0.009 0.038 0.010

yeast-0-3-5-9_vs_7-8 0.021 0.061 0.018

yeast-0-5-6-7-9_vs_4 0.017 0.053 0.014

yeast3 0.005 0.071 0.005

yeast4 0.008 0.055 0.038

(a) Solutions in surrogate space (b) Solutions in target space

Figure 6.4: Example of translation of nondominated solutions from surrogate to target space
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6.3.6 Single objective optimization comparison

Finally, the last study was conducted to answer RQ4 - How do optimisation methods

using the proposed surrogate criteria perform compared to single-objective optimisation

methods?. The experiment was executed on all 15 datasets using six models with the

same architecture but different objective functions to compare moo methods using the

proposed criteria with standard single-objective algorithms. For the single-objective

problems, the following losses were used:

• focal loss function with two different γ parameter values (γ = 0 and γ = 2)

• binary cross-entropy loss with positive (minority) class weight inversely propor-

tional to the ratio of minority class size to majority class size (Nmaj

Nmin
)

As the cosmos method presented the best ability to generate diverse Pareto fronts with

the best translation from the surrogate to the target space, it was selected as the moo

representative. For clarity purposes, three solutions from the Pareto set will be compared

with soo methods:

• two extreme solutions from the Pareto front (cosmos min and cosmos max

• the solution from the middle of the Pareto front (cosmos bal)

The methods were assessed using previously employed imbalanced data performance

measures - precision, recall, bac, F1 score, and Gmean. The results were checked for

statistical significance using the Friedman ranking test with the Nemenyi post hoc test.

As shown both in Figure 6.5 and Tables 8.25 - 8.24 (in the Appendix), very often the

soo methods were dominated by solutions from the Pareto front, and if not, there was

at least one cosmos solution better in the chosen metric. When the model optimised by

a single criterion was superior according to one measure, there was always a different one

where the moo solutions were favourable. None of the compared models came first for

all of the quality metrics. However, almost always, it was possible to choose a solution

from a Pareto front with the best or close to the best performance, and sometimes the

difference in quality was statistically significant (Fig. 6.7). Moreover, as presented in

Fig. 6.6, utilising the moo method with the proposed criteria allows the user to decide

whether to select a solution favouring the preferred metrics or balancing all the measures.

In contrast, the soo solutions are usually biased towards one performance aspect (i.e.,

both focal loss functions lean towards precision). They are hard to control the direction

of optimisation without excessive parameter testing. All of this proves the usability of

the proposed criteria paired with adequate moo method, thereby answering RQ4.
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(a) adult dataset (b) bank_additional dataset (c) ecoli3 dataset

Figure 6.5: Comparison of moo and soo methods in recall and specificity space

Figure 6.6: Radar diagram of average ranks of the methods
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(a) precision (b) recall

(c) bac (d) F1 score

(e) Gmean

Figure 6.7: Critical difference diagrams base on Nemenyi post hoc test
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6.4 Lessons learnt

This chapter proposed the employment of weighted cross-entropy loss as a surrogate

for recall and specificity quality metrics in multi-objective optimisation. The research

was conducted to determine the best way of weighting the loss functions, investigate

a relation, and thereby adequateness, between proposed and target criteria, as well as

assess its usefulness in comparison to single objective gradient optimisation.

The first experiment showed that using smaller α, which translated to smaller (or even

no) influence of the opposite class recognition, resulted in wider Pareto fronts, which

were also less biased towards the majority class. The second experiment was conducted

to assess the proposed loss functions as the criteria of the moo algorithm. The outcome

indicated that appropriately weighted cross entropies are not strictly dependent on each

other, which consequently results in, depending on the algorithm, a non-dominated set

of diverse solutions. Then it was determined that there is a strong correlation between

optimised and test Pareto fronts, making it possible to select adequate solutions based on

their training properties. The following experiment showcased the relationship between

the surrogate and target criteria. The proposed objectives were highly correlated with the

recall and specificity both during the training process, as well as the final Pareto fronts.

The dominance relation between solutions also translated well from the surrogate and

target spaces. These results showcase that it is feasible to train a neural network model

aiming for good recall and specificity scores, but also to select the solutions based on their

weighted cross-entropy loss values. Lastly, the experiment was conducted to compare the

moo model employing the proposed criteria to the model’s training, utilising a single

objective appropriate for imbalanced data learning. The results presented the advantage

of employing multiple objectives, as they offer a broad selection of models with different

properties, similar or better than the neural networks trained on single objective.

To conclude, the experimental evaluation proves that it is appropriate to employ weighted

cross-entropy in place of recall and specificity in a multi-objective gradient optimisation

algorithm, and it is beneficial for the imbalanced data classification problem compared

to standard optimisation with a single loss function. Nevertheless, it must be noticed

that this type of optimisation is limited to the methods using gradients for calculating

parameters and thus is not model agnostic.



Chapter 7

Pareto front solutions analysis

This chapter considers the last research question on evaluating the di-

versity of classifiers that form the Pareto front. The explainable artifi-

cial intelligence technique is proposed to help the user make a conscious

decision, i.e., choose the tailored solution. Considerations were limited

to a pool of interpretable models, and the visualisations used to show

the importance of individual features based on the location of classifiers

in the Pareto front. The limitations of the proposed method is also

discussed.

7.1 Motivation

Previous research demonstrated some difficulties with employing multi-objective optimi-

sation in the imbalanced data problem, such as quality criteria estimation and computa-

tional complexity. However, there is also one challenge related intrinsically to the nature

of optimising according to multiple criteria, which is the selection of the final solution.

The problem is not trivial even in the case of the typical multi-objective optimisation

employment, where the criteria are deterministic. Multiple methods have been proposed

to aid the user in making a decision[147]. Nevertheless, they might be insufficient in the

case of an imbalanced pattern recognition task. Firstly, these algorithms usually assume

that the decision maker can give particular preferences about each criterion’s importance.

However, it is often difficult to clearly determine the cost of class recognition. Moreover,

the differences between solutions are sometimes minimal and hard to appraise without

factors other than optimisation objectives. Secondly, because the quality metrics are es-

timated and not deterministic, there can always be some differences between the scores

obtained by the optimisation algorithm and their real values. It is especially prominent

in the case of imbalanced and small data, where estimations are limited, due to few

107
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possible unique scores, and of high variance [21]. The results showed that the solution

arrangement does not always directly transfer into the test space, meaning it is essential

to consider alternatives to the assessment of solutions besides their criteria values.

7.2 Solution selection based on the interpretable model

The easiest method to analyse the models resulting from the moo solutions is to employ

a classifier that is interpretable by nature, such as decision trees. In chapter 3, the

sampling method employing the cart was proposed. Since each solution represented

parameters for the sampler, resulting in data used to train each classifier, they can be

differentiated based on the generated models. The example of such interpretation is

presented in Figure 7.1.

Figure 7.1: Example of the tree solutions analysis

Utilising interpretable models allows the user to understand the mechanism behind their

prediction completely and to assess whether learned dependencies are accurate, by con-

trast to employing xai, which may not explain the decisions correctly [188]. Moreover, it

is pretty straightforward and does not require additional tools. However, there are also

some significant disadvantages to this approach. Firstly, this technique is limited to the

methods where the optimisation process results in (directly or indirectly) a single clas-

sifier. Furthermore, the prediction model needs to be interpretable, further restricting

the algorithm selection. Otherwise, some explainability approach needs to be employed.

Secondly, depending on the number of solutions, the analysis might be very complex and
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time-consuming. Moreover, even when interpretable, models might be very complex, for

example, in the case of the very deep decision trees.

7.3 Feature importance analysis

Another approach would be to analyse solutions from the Pareto front without depen-

dence on the model’s structure. It is possible to employ a model-agnostic xai technique

to explain the resulting classifier’s decision. However, it is important to select an appro-

priate one. To simplify the analysis of the Pareto front, the chosen algorithm should offer

the aggregated breakdown of the solutions, by, for example, determining the influence

of each attribute on the final prediction. With this knowledge, the expert might elim-

inate the solutions where some features weigh more on the selected class, which might

be caused by some bias or known false dependencies. It would also be beneficial in the

context of fairness in a prediction model, as classifiers where sensitive attributes have

too much influence might be discarded.

The method allowing for assessing the importance of each variable/feature was presented

in [189] and is based on permutation testing. The version of the procedure conducted in

this research is presented in Algorithm 3:

The premise of the method is that the more important the feature is, the bigger the

impact it has on the prediction quality. Because of it, when the attribute’s value does

not match the real sample, the recognition of the objects degrades. To measure that

decrease in quality, for each problem’s feature the algorithm permutes the values be-

tween the samples and calculate the difference between chosen metric scores of model’s

prediction on original and permuted data. Usually, the final importance value equals

either L0 − L∗j or L∗j

L0 . However, since the idea is to compare solutions from the Pareto

front with different base quality, the terms were merged to show the magnitude of the

feature’s influence. Furthermore, since the algorithm involves randomness (by randomly

permuting the values of one feature), the steps should be repeated multiple times [189].

In the case of the following analyses, the procedure was conducted 100 times for each

feature, and the values were averaged.



Chapter 7. Pareto front solutions analysis 110

Algorithm 3 Permutation based test to assess given feature importance
Input: Ψ - trained classifier

XT S - test set matrix

yT S - test set labels

l - loss function/quality measure

j - assessed feature index

k - number of comparison iterations

Output: vipj - importance of the feature

ŷT S ← Ψ(XT S)

l0 ← l(yT S , ŷT S)

vipj ← ∅
for i← 1 to k do

X∗jT S ← test set matrix with randomly perturbed j column

ŷ∗jT S ← Ψ(X∗jT S)

l∗j ← l(yT S , ŷ
∗j
T S)

vipj ← vipj ∪ { l
0−l∗j
l0
}

end for

vipj ← 1
‖vipj‖

∑
vip∗j∈vipj vip∗j

The benefit of employing only two criteria is that the solutions can be explicitly sorted

in direct proportion to one objective (and in descending order to the other). Making

advantage of that property, the plot presenting the influence of the feature based on

the Pareto front placement can be proposed. The example of the plot, obtained by the

cosmos method with weighted cross-entropy on the dataset Bank Marketing [190], is

presented in Figure 7.2.

The plot separately presents the change of each feature’s importance based on the spe-

cific Pareto front solutions, where solutions are sorted in increasing order from the first

objective. The importances are shown twofold. Firstly, the line of each plot indicates

local changes of the attributes’ influence on the final predictions, and it ranges between

the smallest and largest value of the solutions’ feature importance. It allows for deter-

mining trends in Pareto front solutions and limiting ranges based on selected variables.

Secondly, the colours of the plot show the global importance, to assess which of the fea-

tures influences the quality of prediction the most. In the example, it can be noticed that

the importances of some attributes change correspondingly to the Pareto front solutions

(duration, pdays, cons.price.idx, etc.), while only in some cases (mainly duration and

emp.var.rate) this trend is significant to the final result.
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Figure 7.2: Example of Pareto front features importance plot based on bac measure

The presented plot may be utilised in different ways:

1. Aiding solution selection - As mentioned before, a user with expert knowledge

may take into consideration the importance of each feature while choosing the

final model. For example, in the Figure 7.2, the feature with the most significant

influence on the final prediction is duration. However, this variable accounts for the

time of the phone call and is not known before the prediction (while being highly

correlated to the label), so that a big importance might mean lower predictive

abilities of the model. Furthermore, in the case of sensitive attributes, such as

gender or race, the solutions with strong bias could also be eliminated.
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2. Analysis of the model - In this thesis, moo was usually employed to deter-

mine the set of parameters of a specific model/algorithm. Because of that, the

feature importance plot allows analysis of the underlying method, since it shows

the change in the behaviour based on different attributes. For example, in Figure

7.2, some solutions obtained negative importances in the case of features like pout-

come, cons.price.idx. This might indicate that the features’ influence is negative for

the final prediction for solutions optimised more towards the second objective (in

the example, minority class recognition). Moreover, importance might be assessed

according to different quality metrics, meaning it could be analysed whether the

algorithm is generally biased towards any of the classes (Figure 7.3).

Figure 7.3: Example of Pareto front features importance plot based on precision measure
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The downside of the proposed feature importance plot is its reliance on the base impor-

tance measure selection. As presented in Figures 7.2 and 7.3, the importances and even

the trends of feature influence might vary significantly depending on what quality metric

is chosen. Furthermore, the plot is mainly limited to the two objectives optimisation, as

the visualisation of more criteria could be ambiguous and trends could also be hard to

determine.

7.4 Lessons learnt

This chapter raised the subject of aiding the selection of the solution from the Pareto

front, presenting concerns and difficulties with choice based only on objective values. The

proposed approach was to employ xai techniques that would allow deeper analysis and

differentiation of the classifiers resulting from the optimisation. The most direct method

was to explicitly utilise interpretable models, such as decision trees, to understand the

basis of the prediction completely. However, this approach severely limited possible

classification algorithms and required a long and complex breakdown of the solutions,

as well as specific knowledge about the problem that might not be even feasible to

obtain (such as particular dependencies of the problem’s attributes). The alternative

was the proposed feature importance plot, which presents the influence of the attribute

on the final prediction quality, utilising a permutation test. The plot allows analysis

of the solutions from the Pareto front, both in the context of model selection, where

classifiers might be discarded when the feature weights are not appropriate, and the

general algorithm behaviour breakdown. Its disadvantage is its reliance on two objectives

and the selection of an importance measure.
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Conclusion and Future Works

This dissertation considered the application of multi-objective optimisation in creating

methods dedicated to imbalanced data. Imbalanced data classification is a challenging

and important task, which, if left unaddressed, has a significant impact on the correct

recognition of rare samples. One of the difficulties of the problem is its assessment and

optimisation goal, as usually utilised solutions based on a single criterion have their limi-

tations on performance improvement. For this reason, the employment of multi-objective

optimisation techniques was proposed, and the following hypothesis was formulated:

Incorporating moo in training imbalanced data classifiers allows obtaining

customised solutions whose quality is no worse than using soo

To substantiate the hypothesis, several additional research questions were formulated

and answered in consecutive dissertations’ chapters.

Is it feasible to employ moo in the process of training of the ensemble
classifier, and how does it compare to the ensembles optimised using a
single criterion?

In the chapter 3, the ensemble method utilising moo was proposed. The committee

consisted of several classification algorithms, which were trained on different subsets of

the original data, obtained by stratified bootstrapping, to further ensure the diversity of

the estimator pool. The nsga ii method was utilised to optimise the weights of clas-

sifiers being part of the ensemble, which are used during the final model’s prediction

via weighted majority voting. The selected objectives of the optimisation were precision

and recall, so as to balance the influence of both classes’ recognition quality. The con-

ducted research proved the feasibility of employing moo techniques with the proposed

114
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criteria. However, the difficulties with a variety of Pareto front solutions for the smaller

datasets were also exposed, arising from the limited possible values of utilised quality

measures. The method was compared with ensembles created from the same estimator

pool, where weights were optimised using soo with different popular imbalanced data

assessment metrics as objectives. The moo-based models achieved results which were

better or comparable to the ones obtained by ensembles based on aggregated measures,

while also being more balanced in terms of recall and precision, in comparison to methods

optimised specifically according to those metrics. The study confirmed the applicability

of moo in imbalanced data and its advantages over using a single criterion.

Is it possible to employ moo in the preprocessing stage, and how does
it improve the quality of a classification model

In the chapter 4, the sampling method utilising moo was proposed. Data-based algo-

rithms are very popular, since they are independent of a classifying model. Nevertheless,

moo is very rarely utilised in sampling approaches aside from feature and instance se-

lection, even though it proved beneficial to the imbalanced data classification. The

proposed algorithm determined minority class neighbourhoods from majority class sam-

ples and populated areas with synthetic minority class objects. The nsga ii algorithm

was employed to optimise the sizes of the neighbourhoods (in the form of spheres) and

the number of newly created samples. The method was compared to the most common

baselines, as well as a classifier trained on original, not sampled data. The proposed algo-

rithm outperformed most of the baselines and was marked by balanced results, achieving

high scores for both classes recognition.

What is the best approach to estimate the quality criteria of the clas-
sifiers built using moo?

In the chapter 5, the research was conducted to analyse different protocols of obtaining

previously utilised optimisation objectives - precision and recall. Three methodologies

were studied: hold-out, testing on training set and 5x2 cross-validation, with respect to

the quality of estimated Pareto fronts, the estimation of the assessment on the test data

and actual predictive abilities of the resulting models. The experiment showed that even

though Pareto fronts generated by hold-out and testing on the training set dominated

solutions by cross-validation, it was at the cost of smaller diversity and a bigger gap

between training and validation scores. Furthermore, models generated by the latter

had overall better prediction quality, although each of the protocols was superior for

some datasets. In conclusion, cross-validation seems in general to be the best choice
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of objective estimation, although for some tasks choosing a different approach could be

beneficial or even necessary.

Is it possible to employ moo gradient methods for the imbalanced data
problem?

In the chapter 6, it was considered whether moo gradient methods could be employed in

place of the previously used genetic algorithm. The utilisation of weighted cross-entropy

for objectives was proposed, with weights influencing the magnitude of influence of spe-

cific class recognition, while others had less of an impact. In results, two objectives were

utilised - cross entropy minority and cross entropy majority, which aimed to substitute

for respectively recall and specificity. Research was conducted to determine the best

weights, the quality of Pareto fronts resulting from the proposed objective optimisation,

their relation with target criteria and the quality of prediction of the method in com-

parison with a model optimised with a single loss function. The experiment proved the

applicability of the proposed objectives and thus the moo gradient approaches.

What is the diversity of classifiers from the Pareto front?

Finally, the chapter 7 considered the diversity of the Pareto front solutions and the ap-

proaches of their exploration. Previous research uncovered the importance of analysis of

the classifiers resulting from multi-objective optimisation, so as to be able to consciously

select an appropriate model. Two ways of exploring Pareto fronts were proposed - first

based on utilising interpretable classification algorithms and second employing the XAI

technique to determine a relationship between the problem’s feature importance and

placement of the solution. The examples showed possible trends in attribute importance

variability, enabling both model analysis and solution selection based on their focus on

specific variables.

To conclude, the conducted research resulted in answering the formulated research ques-

tion and substantiating the research thesis.

Future work

During the preparation of this dissertation, a few new possible research directions were

identified.
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• Application of multi-objective optimisation in multi-class problems, which would

also entail a necessity of developing new approaches of solution selection and anal-

ysis;

• Research on different moo algorithms utilisation, for example, methods based on

decomposition;

• Employment of different objectives suitable to imbalanced data, especially mea-

sures not based on prediction quality, to bypass classifier training and reduce com-

putational complexity of the optimisation process;

• Research on new areas of moo employment in imbalanced data classification tasks,

for example, in feature selection or cost-sensitive learning;

• Application of moo in new types of data, for example, imbalanced data streams;

• Incorporation of additional criteria, for example, related to diversity or problem

constraints;

• Development of the method assisting decision making;

• Application of other techniques, i.e. xai, in the imbalance data problem.

It can be noted that the last idea resulted in the project plan and receiving Grant no

2024/53/N/ST6/03667 (Preludium) funded by the Polish National Center.
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Table 8.1: Precision results of compared ensembles

dataset

moo soo

best
precision

best
recall

balanced

pro
m
eth

ee
precision

pro
m
eth

ee
recall

bac

precision

recall

f1
score

auc

G
m
ean

A
daB

oost

B
agging

abalone9-18 0.811 0.811 0.811 0.811 0.811 0.672 0.763 0.538 0.661 0.691 0.59 0.485 0.586

aps failure 0.850 0.448 0.738 0.850 0.448 0.469 0.882 0.208 0.740 0.506 0.436 0.764 0.867

covid 0.925 0.419 0.425 0.925 0.419 0.129 0.826 0.021 0.478 0.130 0.121 0.624 0.674

credit card 0.951 0.900 0.900 0.951 0.900 0.887 0.970 0.434 0.894 0.884 0.907 0.823 0.914

diabetes 0.426 0.147 0.185 0.426 0.147 0.140 0.269 0.112 0.143 0.167 0.142 0.472 0.407

ecoli1 0.765 0.706 0.761 0.765 0.706 0.738 0.731 0.674 0.728 0.715 0.741 0.759 0.793

ecoli2 0.855 0.852 0.852 0.855 0.852 0.846 0.869 0.795 0.836 0.880 0.838 0.805 0.840

ecoli3 0.693 0.695 0.695 0.693 0.695 0.662 0.646 0.601 0.665 0.653 0.645 0.511 0.711

flare-F 0.271 0.327 0.331 0.271 0.327 0.310 0.318 0.132 0.307 0.271 0.272 0.409 0.172

glass0 0.700 0.692 0.690 0.700 0.692 0.676 0.687 0.608 0.665 0.685 0.690 0.730 0.779

glass1 0.732 0.727 0.727 0.732 0.727 0.696 0.704 0.564 0.693 0.692 0.695 0.669 0.768

glass4 0.499 0.499 0.499 0.499 0.499 0.440 0.525 0.473 0.352 0.257 0.467 0.734 0.695

glass5 0.088 0.088 0.088 0.088 0.088 0.000 0.000 0.000 0.000 0.000 0.000 0.69 0.621

haberman 0.514 0.537 0.537 0.514 0.537 0.550 0.540 0.491 0.515 0.543 0.512 0.391 0.391

hand positions 0.990 0.900 0.912 0.990 0.900 0.934 0.991 0.874 0.963 0.938 0.932 0.805 0.970

miniboone 0.917 0.362 0.875 0.917 0.362 0.806 0.982 0.282 0.854 0.807 0.808 0.847 0.886

mitbih 0.964 0.948 0.948 0.964 0.948 0.738 0.962 0.576 0.946 0.827 0.783 0.865 0.953

page-blocks 0.900 0.887 0.887 0.900 0.887 0.888 0.906 0.806 0.883 0.877 0.889 0.834 0.882

pima 0.678 0.664 0.664 0.678 0.664 0.691 0.701 0.667 0.684 0.685 0.678 0.647 0.656

vehicle1 0.594 0.570 0.578 0.594 0.570 0.584 0.604 0.438 0.570 0.590 0.574 0.568 0.618

vehicle3 0.604 0.554 0.576 0.604 0.554 0.559 0.614 0.436 0.561 0.552 0.538 0.594 0.604

yeast1 0.647 0.366 0.569 0.647 0.366 0.559 0.654 0.299 0.572 0.544 0.565 0.612 0.621

yeast3 0.787 0.693 0.772 0.787 0.693 0.758 0.797 0.216 0.767 0.754 0.716 0.751 0.777

yeast4 0.527 0.358 0.394 0.527 0.358 0.464 0.475 0.138 0.456 0.416 0.441 0.332 0.530

yeast5 0.711 0.625 0.668 0.711 0.625 0.633 0.737 0.531 0.664 0.670 0.640 0.711 0.757
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Table 8.2: Recall results of compared ensembles

dataset

moo soo

best
precision

best
recall

balanced

pro
m
eth

ee
precision

pro
m
eth

ee
recall

bac

precision

recall

f1
score

auc

G
m
ean

A
daB

oost

B
agging

abalone9-18 0.176 0.176 0.176 0.176 0.176 0.081 0.138 0.205 0.152 0.133 0.152 0.357 0.229

aps failure 0.581 0.868 0.736 0.581 0.868 0.860 0.496 0.918 0.725 0.848 0.866 0.647 0.695

covid 0.060 0.326 0.325 0.060 0.326 0.778 0.007 0.999 0.416 0.804 0.748 0.234 0.296

credit card 0.587 0.746 0.746 0.587 0.746 0.740 0.304 0.854 0.745 0.739 0.716 0.682 0.775

diabetes 0.002 0.345 0.174 0.002 0.345 0.219 0.001 1.000 0.436 0.290 0.549 0.013 0.04

ecoli1 0.738 0.805 0.769 0.738 0.805 0.788 0.777 0.832 0.803 0.800 0.767 0.749 0.741

ecoli2 0.815 0.823 0.823 0.815 0.823 0.823 0.812 0.854 0.812 0.800 0.815 0.735 0.735

ecoli3 0.544 0.549 0.549 0.544 0.549 0.548 0.567 0.636 0.590 0.533 0.543 0.522 0.557

flare-F 0.079 0.251 0.242 0.079 0.251 0.154 0.093 0.702 0.201 0.173 0.213 0.164 0.126

glass0 0.743 0.797 0.774 0.743 0.797 0.809 0.771 0.840 0.800 0.789 0.794 0.686 0.746

glass1 0.542 0.610 0.610 0.542 0.610 0.563 0.460 0.666 0.547 0.566 0.582 0.637 0.655

glass4 0.202 0.202 0.202 0.202 0.202 0.126 0.112 0.19 0.148 0.098 0.205 0.624 0.448

glass5 0.125 0.125 0.125 0.125 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.620 0.420

haberman 0.254 0.304 0.304 0.254 0.304 0.272 0.26 0.329 0.262 0.274 0.257 0.267 0.294

hand positions 0.783 0.852 0.851 0.783 0.852 0.851 0.778 0.858 0.839 0.848 0.849 0.589 0.880

miniboone 0.712 0.999 0.874 0.712 0.999 0.940 0.156 1.000 0.898 0.937 0.936 0.837 0.857

mitbih 0.589 0.600 0.600 0.589 0.600 0.643 0.591 0.691 0.600 0.628 0.637 0.431 0.582

page-blocks 0.777 0.800 0.800 0.777 0.800 0.789 0.738 0.821 0.797 0.798 0.790 0.790 0.842

pima 0.552 0.558 0.558 0.552 0.558 0.548 0.540 0.569 0.558 0.554 0.558 0.590 0.565

vehicle1 0.423 0.504 0.497 0.423 0.504 0.491 0.414 0.637 0.472 0.480 0.505 0.432 0.431

vehicle3 0.400 0.516 0.488 0.400 0.516 0.465 0.386 0.611 0.473 0.497 0.499 0.425 0.380

yeast1 0.435 0.949 0.604 0.435 0.949 0.627 0.418 0.987 0.586 0.638 0.622 0.466 0.454

yeast3 0.763 0.836 0.792 0.763 0.836 0.799 0.761 0.961 0.778 0.810 0.835 0.730 0.697

yeast4 0.201 0.423 0.368 0.201 0.423 0.298 0.184 0.679 0.309 0.361 0.274 0.203 0.224

yeast5 0.586 0.668 0.65 0.586 0.668 0.691 0.523 0.755 0.636 0.659 0.673 0.682 0.550
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Table 8.3: bac results of compared ensembles

dataset

moo soo

best
precision

best
recall

balanced

pro
m
eth

ee
precision

pro
m
eth

ee
recall

bac

precision

recall

f1
score

auc

G
m
ean

A
daB

oost

B
agging

abalone9-18 0.585 0.585 0.585 0.585 0.585 0.540 0.566 0.592 0.571 0.563 0.572 0.666 0.609

aps failure 0.790 0.924 0.866 0.790 0.924 0.921 0.747 0.770 0.860 0.916 0.922 0.822 0.846

covid 0.530 0.658 0.657 0.530 0.658 0.831 0.504 0.500 0.703 0.844 0.815 0.615 0.647

credit card 0.793 0.873 0.873 0.793 0.873 0.870 0.652 0.748 0.872 0.869 0.858 0.841 0.888

diabetes 0.501 0.519 0.539 0.501 0.519 0.538 0.500 0.500 0.548 0.549 0.565 0.505 0.516

ecoli1 0.834 0.852 0.848 0.834 0.852 0.851 0.845 0.854 0.856 0.852 0.842 0.838 0.840

ecoli2 0.894 0.897 0.897 0.894 0.897 0.897 0.894 0.906 0.891 0.889 0.893 0.850 0.854

ecoli3 0.757 0.760 0.760 0.757 0.760 0.757 0.766 0.792 0.777 0.749 0.753 0.732 0.765

flare-F 0.534 0.612 0.608 0.534 0.612 0.566 0.541 0.725 0.588 0.576 0.591 0.577 0.552

glass0 0.791 0.810 0.800 0.791 0.810 0.809 0.798 0.784 0.799 0.803 0.808 0.779 0.819

glass1 0.716 0.740 0.740 0.716 0.740 0.711 0.675 0.674 0.700 0.713 0.716 0.733 0.771

glass4 0.597 0.597 0.597 0.597 0.597 0.561 0.554 0.592 0.570 0.544 0.599 0.802 0.714

glass5 0.560 0.560 0.560 0.560 0.560 0.500 0.500 0.500 0.500 0.500 0.500 0.803 0.705

haberman 0.585 0.603 0.603 0.585 0.603 0.594 0.588 0.599 0.586 0.594 0.583 0.559 0.566

hand positions 0.891 0.915 0.916 0.891 0.915 0.919 0.888 0.914 0.916 0.917 0.917 0.778 0.937

miniboone 0.842 0.646 0.913 0.842 0.646 0.925 0.578 0.503 0.919 0.925 0.924 0.889 0.907

mitbih 0.794 0.800 0.800 0.794 0.800 0.816 0.795 0.666 0.800 0.810 0.814 0.715 0.791

page-blocks 0.883 0.894 0.894 0.883 0.894 0.889 0.864 0.895 0.892 0.893 0.889 0.886 0.915

pima 0.705 0.703 0.703 0.705 0.703 0.707 0.707 0.708 0.709 0.708 0.708 0.708 0.702

vehicle1 0.661 0.686 0.686 0.661 0.686 0.685 0.660 0.659 0.674 0.682 0.686 0.659 0.668

vehicle3 0.655 0.688 0.683 0.655 0.688 0.670 0.652 0.651 0.674 0.680 0.677 0.664 0.648

yeast1 0.668 0.639 0.708 0.668 0.639 0.709 0.663 0.523 0.701 0.708 0.712 0.673 0.670

yeast3 0.869 0.892 0.881 0.869 0.892 0.883 0.868 0.676 0.874 0.888 0.895 0.850 0.836

yeast4 0.596 0.691 0.672 0.596 0.691 0.642 0.589 0.690 0.648 0.671 0.629 0.594 0.607

yeast5 0.789 0.827 0.820 0.789 0.827 0.838 0.758 0.857 0.813 0.824 0.830 0.836 0.772
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Table 8.4: F1 score results of compared ensembles

dataset

moo soo

best
precision

best
recall

balanced

pro
m
eth

ee
precision

pro
m
eth

ee
recall

bac

precision

recall

f1
score

auc

G
m
ean

A
daB

oost

B
agging

abalone9-18 0.249 0.249 0.249 0.249 0.249 0.138 0.202 0.236 0.208 0.193 0.194 0.399 0.316

aps failure 0.687 0.587 0.737 0.687 0.587 0.606 0.628 0.307 0.732 0.631 0.577 0.700 0.771

covid 0.111 0.362 0.365 0.111 0.362 0.221 0.014 0.041 0.443 0.223 0.208 0.340 0.411

credit card 0.720 0.815 0.815 0.720 0.815 0.804 0.430 0.424 0.811 0.802 0.799 0.745 0.839

diabetes 0.003 0.169 0.178 0.003 0.169 0.149 0.002 0.201 0.211 0.192 0.225 0.025 0.072

ecoli1 0.747 0.750 0.762 0.747 0.750 0.758 0.751 0.741 0.762 0.752 0.750 0.750 0.762

ecoli2 0.830 0.832 0.832 0.830 0.832 0.830 0.835 0.821 0.821 0.833 0.824 0.762 0.781

ecoli3 0.600 0.604 0.604 0.600 0.604 0.590 0.594 0.598 0.621 0.572 0.580 0.511 0.619

flare-F 0.112 0.243 0.244 0.112 0.243 0.161 0.131 0.210 0.219 0.192 0.198 0.226 0.141

glass0 0.710 0.738 0.723 0.710 0.738 0.735 0.722 0.702 0.723 0.729 0.736 0.703 0.757

glass1 0.619 0.660 0.660 0.619 0.660 0.616 0.548 0.597 0.603 0.619 0.625 0.650 0.704

glass4 0.271 0.271 0.271 0.271 0.271 0.187 0.179 0.250 0.196 0.132 0.264 0.642 0.509

glass5 0.102 0.102 0.102 0.102 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.583 0.442

haberman 0.337 0.383 0.383 0.337 0.383 0.358 0.344 0.381 0.343 0.358 0.334 0.315 0.332

hand positions 0.874 0.874 0.880 0.874 0.874 0.891 0.872 0.865 0.897 0.891 0.888 0.680 0.923

miniboone 0.786 0.529 0.875 0.786 0.529 0.867 0.260 0.440 0.875 0.867 0.867 0.842 0.871

mitbih 0.731 0.735 0.735 0.731 0.735 0.646 0.732 0.458 0.734 0.687 0.668 0.575 0.723

page-blocks 0.833 0.840 0.840 0.833 0.840 0.835 0.813 0.801 0.837 0.834 0.836 0.810 0.862

pima 0.607 0.604 0.604 0.607 0.604 0.609 0.608 0.613 0.613 0.611 0.611 0.616 0.606

vehicle1 0.490 0.530 0.531 0.490 0.530 0.528 0.486 0.506 0.510 0.521 0.530 0.489 0.501

vehicle3 0.476 0.532 0.527 0.476 0.532 0.503 0.472 0.498 0.511 0.519 0.515 0.494 0.465

yeast1 0.515 0.528 0.584 0.515 0.528 0.585 0.506 0.459 0.575 0.585 0.590 0.528 0.523

yeast3 0.773 0.748 0.779 0.773 0.748 0.776 0.777 0.327 0.771 0.779 0.765 0.739 0.734

yeast4 0.255 0.331 0.353 0.255 0.331 0.341 0.249 0.193 0.359 0.370 0.317 0.248 0.289

yeast5 0.633 0.623 0.646 0.633 0.623 0.641 0.588 0.576 0.630 0.658 0.646 0.684 0.626
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Table 8.5: auc results of compared ensembles

dataset

moo soo

best
precision

best
recall

balanced

pro
m
eth

ee
precision

pro
m
eth

ee
recall

bac

precision

recall

f1
score

auc

G
m
ean

A
daB

oost

B
agging

abalone9-18 0.585 0.585 0.585 0.585 0.585 0.540 0.566 0.592 0.571 0.563 0.572 0.666 0.609

aps failure 0.790 0.924 0.866 0.790 0.924 0.921 0.747 0.770 0.860 0.916 0.922 0.822 0.846

covid 0.530 0.658 0.657 0.530 0.658 0.831 0.504 0.500 0.703 0.844 0.815 0.615 0.647

credit card 0.793 0.873 0.873 0.793 0.873 0.870 0.652 0.748 0.872 0.869 0.858 0.841 0.888

diabetes 0.501 0.519 0.539 0.501 0.519 0.538 0.500 0.500 0.548 0.549 0.565 0.505 0.516

ecoli1 0.834 0.852 0.848 0.834 0.852 0.851 0.845 0.854 0.856 0.852 0.842 0.838 0.840

ecoli2 0.894 0.897 0.897 0.894 0.897 0.897 0.894 0.906 0.891 0.889 0.893 0.850 0.854

ecoli3 0.757 0.760 0.760 0.757 0.760 0.757 0.766 0.792 0.777 0.749 0.753 0.732 0.765

flare-F 0.534 0.612 0.608 0.534 0.612 0.566 0.541 0.725 0.588 0.576 0.591 0.577 0.552

glass0 0.791 0.810 0.800 0.791 0.810 0.809 0.798 0.784 0.799 0.803 0.808 0.779 0.819

glass1 0.716 0.740 0.740 0.716 0.740 0.711 0.675 0.674 0.700 0.713 0.716 0.733 0.771

glass4 0.597 0.597 0.597 0.597 0.597 0.561 0.554 0.592 0.57 0.544 0.599 0.802 0.714

glass5 0.560 0.560 0.560 0.560 0.560 0.500 0.500 0.500 0.500 0.500 0.500 0.803 0.705

haberman 0.585 0.603 0.603 0.585 0.603 0.594 0.588 0.599 0.586 0.594 0.583 0.559 0.566

hand positions 0.891 0.915 0.916 0.891 0.915 0.919 0.888 0.914 0.916 0.917 0.917 0.778 0.937

miniboone 0.842 0.646 0.913 0.842 0.646 0.925 0.578 0.503 0.919 0.925 0.924 0.889 0.907

mitbih 0.794 0.800 0.800 0.794 0.800 0.816 0.795 0.666 0.8 0.81 0.814 0.715 0.791

page-blocks 0.883 0.894 0.894 0.883 0.894 0.889 0.864 0.895 0.892 0.893 0.889 0.886 0.915

pima 0.705 0.703 0.703 0.705 0.703 0.707 0.707 0.708 0.709 0.708 0.708 0.708 0.702

vehicle1 0.661 0.686 0.686 0.661 0.686 0.685 0.66 0.659 0.674 0.682 0.686 0.659 0.668

vehicle3 0.655 0.688 0.683 0.655 0.688 0.670 0.652 0.651 0.674 0.680 0.677 0.664 0.648

yeast1 0.668 0.639 0.708 0.668 0.639 0.709 0.663 0.523 0.701 0.708 0.712 0.673 0.670

yeast3 0.869 0.892 0.881 0.869 0.892 0.883 0.868 0.676 0.874 0.888 0.895 0.850 0.836

yeast4 0.596 0.691 0.672 0.596 0.691 0.642 0.589 0.69 0.648 0.671 0.629 0.594 0.607

yeast5 0.789 0.827 0.82 0.789 0.827 0.838 0.758 0.857 0.813 0.824 0.83 0.836 0.772
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Table 8.6: Gmean results of compared ensembles

dataset

moo soo

best
precision

best
recall

balanced

pro
m
eth

ee
precision

pro
m
eth

ee
recall

bac

precision

recall

f1
score

auc

G
m
ean

A
daB

oost

B
agging

abalone9-18 0.393 0.393 0.393 0.393 0.393 0.243 0.341 0.396 0.345 0.337 0.311 0.583 0.466

aps failure 0.687 0.587 0.737 0.687 0.587 0.606 0.628 0.307 0.732 0.631 0.577 0.803 0.833

covid 0.241 0.568 0.567 0.241 0.568 0.829 0.075 0.004 0.641 0.843 0.811 0.483 0.543

credit card 0.763 0.863 0.863 0.763 0.863 0.859 0.520 0.596 0.863 0.859 0.845 0.825 0.880

diabetes 0.038 0.343 0.395 0.038 0.343 0.350 0.018 0.002 0.521 0.455 0.564 0.112 0.198

ecoli1 0.827 0.850 0.843 0.827 0.850 0.847 0.841 0.853 0.854 0.849 0.838 0.832 0.833

ecoli2 0.889 0.893 0.893 0.889 0.893 0.892 0.889 0.904 0.886 0.883 0.888 0.840 0.845

ecoli3 0.722 0.726 0.726 0.722 0.726 0.723 0.732 0.767 0.751 0.711 0.718 0.696 0.733

flare-F 0.240 0.450 0.445 0.240 0.450 0.325 0.277 0.710 0.423 0.389 0.424 0.393 0.321

glass0 0.783 0.809 0.796 0.783 0.809 0.808 0.795 0.780 0.798 0.801 0.807 0.772 0.813

glass1 0.691 0.727 0.727 0.691 0.727 0.692 0.633 0.661 0.679 0.695 0.699 0.724 0.761

glass4 0.363 0.363 0.363 0.363 0.363 0.247 0.255 0.323 0.263 0.193 0.342 0.771 0.649

glass5 0.148 0.148 0.148 0.148 0.148 0.000 0.000 0.000 0.000 0.000 0.000 0.716 0.578

haberman 0.477 0.521 0.521 0.477 0.521 0.495 0.483 0.526 0.485 0.496 0.476 0.473 0.489

hand positions 0.884 0.912 0.914 0.884 0.912 0.916 0.881 0.913 0.912 0.915 0.915 0.754 0.935

miniboone 0.824 0.522 0.912 0.824 0.522 0.925 0.381 0.081 0.918 0.925 0.924 0.887 0.905

mitbih 0.767 0.775 0.775 0.767 0.775 0.796 0.769 0.575 0.774 0.789 0.794 0.656 0.763

page-blocks 0.877 0.889 0.889 0.877 0.889 0.883 0.855 0.891 0.887 0.887 0.884 0.880 0.912

pima 0.687 0.686 0.686 0.687 0.686 0.688 0.686 0.693 0.692 0.690 0.691 0.697 0.688

vehicle1 0.613 0.658 0.656 0.613 0.658 0.652 0.608 0.643 0.638 0.645 0.658 0.617 0.621

vehicle3 0.600 0.664 0.654 0.600 0.664 0.635 0.593 0.631 0.642 0.653 0.651 0.618 0.589

yeast1 0.623 0.555 0.699 0.623 0.555 0.701 0.613 0.235 0.690 0.703 0.705 0.640 0.634

yeast3 0.862 0.889 0.876 0.862 0.889 0.879 0.861 0.584 0.868 0.884 0.892 0.840 0.824

yeast4 0.425 0.614 0.587 0.425 0.614 0.532 0.390 0.662 0.546 0.586 0.510 0.438 0.449

yeast5 0.758 0.805 0.797 0.758 0.805 0.821 0.709 0.845 0.787 0.805 0.811 0.818 0.734

yeast6 0.557 0.613 0.577 0.557 0.613 0.582 0.561 0.735 0.592 0.528 0.574 0.617 0.575



Appendix 126

B Additional results for application of multi-objective op-

timisation in data sampling

Table 8.7: Precision results of compared algorithms for cart model.

dataset

B
are

classifi
er

ro
s

sm
o
te

B
ord

erlin
e

sm
o
te

a
da

sy
n

ccr

b
alan

ced

b
est

p
recision

b
est

recall

page-blocks-1-3 vs 4 0.885 0.933 0.915 0.774 0.925 0.826 0.842 0.864 0.845

yeast-0-5-6-7-9 vs 4 0.360 0.370 0.320 0.359 0.35 0.362 0.363 0.399 0.373

yeast-1-2-8-9 vs 7 0.204 0.182 0.094 0.177 0.096 0.221 0.167 0.167 0.176

yeast-1-4-5-8 vs 7 0.114 0.116 0.077 0.099 0.087 0.104 0.092 0.107 0.113

yeast-1 vs 7 0.318 0.294 0.180 0.225 0.185 0.294 0.314 0.322 0.293

yeast-2 vs 4 0.683 0.711 0.683 0.618 0.651 0.720 0.668 0.716 0.678

yeast-2 vs 8 0.507 0.533 0.418 0.476 0.343 0.536 0.438 0.453 0.395

yeast4 0.260 0.290 0.214 0.209 0.208 0.298 0.252 0.227 0.269

yeast5 0.642 0.673 0.658 0.531 0.666 0.601 0.596 0.589 0.609

yeast6 0.367 0.454 0.283 0.341 0.286 0.361 0.398 0.383 0.330

ecoli-0-1-4-7 vs 2-3-5-6 0.583 0.656 0.488 0.596 0.520 0.592 0.603 0.598 0.600

ecoli-0-1 vs 2-3-5 0.727 0.723 0.624 0.741 0.611 0.593 0.689 0.68 0.713

ecoli-0-2-6-7 vs 3-5 0.629 0.665 0.586 0.557 0.579 0.634 0.653 0.642 0.630

ecoli-0-6-7 vs 3-5 0.708 0.668 0.569 0.583 0.541 0.697 0.631 0.599 0.691

ecoli-0-6-7 vs 5 0.791 0.770 0.686 0.656 0.589 0.781 0.755 0.747 0.755

yeast-0-2-5-6 vs 3-7-8-9 0.465 0.509 0.385 0.402 0.356 0.445 0.442 0.439 0.454

yeast-0-3-5-9 vs 7-8 0.343 0.320 0.224 0.248 0.204 0.328 0.306 0.292 0.298

abalone-17 vs 7-8-9-10 0.271 0.263 0.161 0.196 0.180 0.180 0.228 0.259 0.158

abalone-19 vs 10-11-12-13 0.074 0.082 0.055 0.044 0.052 0.066 0.073 0.075 0.060

abalone-20 vs 8-9-10 0.229 0.261 0.168 0.228 0.166 0.173 0.191 0.202 0.136

flare-F 0.233 0.140 0.196 0.156 0.179 0.151 0.228 0.226 0.219

kr-vs-k-zero vs eight 0.910 0.871 0.907 0.843 0.877 0.894 0.859 0.836 0.878

poker-8-9 vs 5 0.086 0.104 0.071 0.074 0.066 0.097 0.105 0.068 0.080

poker-8-9 vs 6 0.190 0.109 0.285 0.170 0.262 0.469 0.827 0.746 0.741

poker-8 vs 6 0.309 0.389 0.513 0.297 0.502 0.476 0.667 0.746 0.697

winequality-red-4 0.105 0.091 0.101 0.103 0.065 0.101 0.092 0.113 0.102

winequality-white-3-9 vs 5 0.197 0.073 0.044 0.164 0.036 0.073 0.158 0.131 0.118

winequality-white-3 vs 7 0.304 0.164 0.068 0.314 0.056 0.105 0.281 0.253 0.169

ecoli1 0.708 0.721 0.707 0.700 0.713 0.724 0.715 0.731 0.692

ecoli2 0.718 0.747 0.723 0.713 0.674 0.757 0.716 0.740 0.719

ecoli3 0.591 0.448 0.459 0.517 0.507 0.502 0.547 0.575 0.493

glass0 0.628 0.691 0.665 0.642 0.651 0.667 0.667 0.691 0.628

glass1 0.649 0.641 0.625 0.634 0.581 0.637 0.630 0.639 0.611

haberman 0.357 0.343 0.346 0.364 0.357 0.399 0.375 0.353 0.337

pima 0.573 0.559 0.563 0.543 0.538 0.575 0.546 0.541 0.563

yeast3 0.697 0.697 0.660 0.656 0.658 0.718 0.679 0.687 0.687
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Table 8.8: Recall results of compared algorithms for cart model.

dataset

B
are

classifi
er

ro
s

sm
o
te

B
ord

erlin
e

sm
o
te

a
da

sy
n

ccr

b
alan

ced

b
est

p
recision

b
est

recall

page-blocks-1-3 vs 4 0.871 0.979 0.979 0.821 0.964 0.957 0.936 0.957 0.943

yeast-0-5-6-7-9 vs 4 0.401 0.400 0.489 0.478 0.538 0.395 0.436 0.448 0.451

yeast-1-2-8-9 vs 7 0.247 0.180 0.220 0.247 0.233 0.273 0.247 0.247 0.267

yeast-1-4-5-8 vs 7 0.14 0.107 0.173 0.127 0.193 0.133 0.133 0.140 0.173

yeast-1 vs 7 0.373 0.273 0.300 0.307 0.313 0.340 0.42 0.413 0.380

yeast-2 vs 4 0.691 0.663 0.757 0.683 0.749 0.753 0.71 0.698 0.705

yeast-2 vs 8 0.500 0.480 0.610 0.500 0.550 0.560 0.500 0.510 0.490

yeast4 0.286 0.284 0.393 0.302 0.382 0.329 0.373 0.326 0.404

yeast5 0.614 0.632 0.732 0.641 0.750 0.691 0.691 0.705 0.750

yeast6 0.436 0.420 0.505 0.476 0.521 0.522 0.515 0.526 0.573

ecoli-0-1-4-7 vs 2-3-5-6 0.608 0.578 0.668 0.635 0.660 0.641 0.660 0.695 0.676

ecoli-0-1 vs 2-3-5 0.550 0.583 0.608 0.575 0.650 0.642 0.692 0.708 0.708

ecoli-0-2-6-7 vs 3-5 0.627 0.573 0.655 0.527 0.664 0.655 0.664 0.700 0.636

ecoli-0-6-7 vs 3-5 0.664 0.627 0.682 0.700 0.709 0.664 0.691 0.718 0.664

ecoli-0-6-7 vs 5 0.670 0.620 0.700 0.580 0.590 0.750 0.720 0.750 0.770

yeast-0-2-5-6 vs 3-7-8-9 0.496 0.465 0.505 0.481 0.501 0.491 0.514 0.511 0.554

yeast-0-3-5-9 vs 7-8 0.336 0.308 0.368 0.332 0.316 0.360 0.344 0.340 0.344

abalone-17 vs 7-8-9-10 0.317 0.245 0.352 0.279 0.400 0.328 0.290 0.314 0.479

abalone-19 vs 10-11-12-13 0.100 0.062 0.206 0.069 0.194 0.081 0.138 0.144 0.294

abalone-20 vs 8-9-10 0.269 0.231 0.423 0.285 0.423 0.331 0.285 0.308 0.362

flare-F 0.163 0.261 0.201 0.242 0.182 0.303 0.218 0.205 0.209

kr-vs-k-zero vs eight 0.954 0.830 0.946 0.813 0.878 0.909 0.962 0.910 0.962

poker-8-9 vs 5 0.105 0.096 0.185 0.088 0.158 0.099 0.134 0.079 0.198

poker-8-9 vs 6 0.174 0.079 0.315 0.209 0.338 0.432 0.855 0.849 0.801

poker-8 vs 6 0.210 0.210 0.389 0.229 0.417 0.404 0.631 0.629 0.629

winequality-red-4 0.127 0.097 0.257 0.135 0.166 0.211 0.139 0.163 0.288

winequality-white-3-9 vs 5 0.169 0.073 0.137 0.178 0.119 0.137 0.194 0.178 0.194

winequality-white-3 vs 7 0.220 0.120 0.150 0.240 0.120 0.160 0.260 0.220 0.170

ecoli1 0.723 0.728 0.760 0.778 0.780 0.744 0.77 0.775 0.793

ecoli2 0.712 0.750 0.758 0.704 0.769 0.769 0.781 0.758 0.762

ecoli3 0.556 0.453 0.589 0.594 0.624 0.584 0.657 0.675 0.713

glass0 0.686 0.711 0.726 0.731 0.726 0.711 0.783 0.774 0.780

glass1 0.661 0.655 0.666 0.692 0.616 0.676 0.687 0.700 0.708

haberman 0.368 0.331 0.422 0.410 0.412 0.484 0.506 0.481 0.587

pima 0.58 0.584 0.604 0.598 0.565 0.613 0.578 0.589 0.581

yeast3 0.692 0.687 0.747 0.710 0.765 0.726 0.756 0.756 0.774
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Table 8.9: bac results of compared algorithms for cart model.

dataset

B
are
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er

ro
s

sm
o
te

B
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erlin
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b
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b
est

p
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b
est

recall

page-blocks-1-3 vs 4 0.932 0.987 0.986 0.903 0.980 0.971 0.962 0.973 0.965

yeast-0-5-6-7-9 vs 4 0.662 0.663 0.689 0.693 0.715 0.660 0.677 0.687 0.685

yeast-1-2-8-9 vs 7 0.607 0.576 0.573 0.603 0.582 0.620 0.604 0.604 0.613

yeast-1-4-5-8 vs 7 0.545 0.534 0.538 0.535 0.548 0.540 0.536 0.544 0.557

yeast-1 vs 7 0.659 0.613 0.600 0.616 0.607 0.641 0.677 0.674 0.655

yeast-2 vs 4 0.827 0.816 0.859 0.817 0.852 0.860 0.835 0.833 0.834

yeast-2 vs 8 0.738 0.729 0.783 0.737 0.749 0.768 0.735 0.741 0.726

yeast4 0.629 0.630 0.671 0.630 0.666 0.651 0.666 0.642 0.681

yeast5 0.801 0.811 0.860 0.812 0.869 0.838 0.838 0.844 0.867

yeast6 0.708 0.704 0.735 0.727 0.744 0.750 0.748 0.752 0.772

ecoli-0-1-4-7 vs 2-3-5-6 0.783 0.774 0.800 0.797 0.799 0.799 0.810 0.824 0.816

ecoli-0-1 vs 2-3-5 0.763 0.778 0.783 0.775 0.798 0.796 0.827 0.836 0.836

ecoli-0-2-6-7 vs 3-5 0.791 0.770 0.801 0.738 0.802 0.803 0.810 0.827 0.794

ecoli-0-6-7 vs 3-5 0.812 0.793 0.804 0.820 0.812 0.812 0.818 0.830 0.810

ecoli-0-6-7 vs 5 0.823 0.798 0.826 0.770 0.770 0.860 0.846 0.856 0.870

yeast-0-2-5-6 vs 3-7-8-9 0.716 0.707 0.708 0.700 0.700 0.712 0.721 0.720 0.739

yeast-0-3-5-9 vs 7-8 0.632 0.618 0.612 0.610 0.589 0.639 0.629 0.624 0.625

abalone-17 vs 7-8-9-10 0.647 0.614 0.652 0.624 0.677 0.644 0.632 0.645 0.705

abalone-19 vs 10-11-12-13 0.538 0.523 0.569 0.520 0.562 0.527 0.551 0.555 0.600

abalone-20 vs 8-9-10 0.628 0.611 0.697 0.635 0.697 0.654 0.634 0.645 0.664

flare-F 0.57 0.598 0.584 0.593 0.574 0.616 0.593 0.587 0.588

kr-vs-k-zero vs eight 0.976 0.914 0.972 0.905 0.938 0.954 0.979 0.953 0.979

poker-8-9 vs 5 0.546 0.544 0.578 0.537 0.566 0.544 0.56 0.531 0.584

poker-8-9 vs 6 0.581 0.535 0.650 0.595 0.659 0.701 0.925 0.921 0.898

poker-8 vs 6 0.601 0.602 0.691 0.609 0.704 0.699 0.813 0.812 0.812

winequality-red-4 0.545 0.533 0.589 0.548 0.542 0.574 0.547 0.560 0.600

winequality-white-3-9 vs 5 0.577 0.529 0.541 0.579 0.532 0.554 0.586 0.579 0.582

winequality-white-3 vs 7 0.603 0.553 0.552 0.613 0.539 0.567 0.621 0.601 0.572

ecoli1 0.816 0.822 0.832 0.837 0.842 0.829 0.837 0.843 0.843

ecoli2 0.829 0.850 0.850 0.824 0.848 0.860 0.860 0.853 0.851

ecoli3 0.755 0.694 0.754 0.763 0.776 0.757 0.796 0.808 0.813

glass0 0.741 0.775 0.771 0.764 0.765 0.768 0.789 0.797 0.771

glass1 0.730 0.722 0.719 0.733 0.685 0.729 0.731 0.739 0.728

haberman 0.565 0.552 0.570 0.576 0.571 0.610 0.600 0.582 0.586

pima 0.674 0.668 0.676 0.663 0.652 0.684 0.659 0.66 0.669

yeast3 0.827 0.825 0.849 0.832 0.858 0.845 0.856 0.856 0.865
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Table 8.10: F1 score results of compared algorithms for cart model.

dataset

B
are

classifi
er

ro
s

sm
o
te

B
ord

erlin
e

sm
o
te

a
da

sy
n

ccr

b
alan

ced

b
est

p
recision

b
est

recall

page-blocks-1-3 vs 4 0.865 0.954 0.944 0.790 0.943 0.879 0.875 0.897 0.880

yeast-0-5-6-7-9 vs 4 0.376 0.381 0.383 0.408 0.420 0.371 0.392 0.416 0.403

yeast-1-2-8-9 vs 7 0.218 0.177 0.130 0.204 0.136 0.236 0.195 0.191 0.210

yeast-1-4-5-8 vs 7 0.124 0.106 0.105 0.108 0.117 0.115 0.108 0.120 0.136

yeast-1 vs 7 0.339 0.279 0.222 0.256 0.230 0.312 0.355 0.356 0.321

yeast-2 vs 4 0.681 0.682 0.714 0.639 0.694 0.733 0.682 0.699 0.687

yeast-2 vs 8 0.486 0.480 0.474 0.477 0.412 0.526 0.455 0.469 0.426

yeast4 0.268 0.282 0.275 0.242 0.267 0.309 0.298 0.265 0.319

yeast5 0.619 0.642 0.68 0.575 0.696 0.634 0.634 0.633 0.661

yeast6 0.391 0.423 0.351 0.392 0.362 0.423 0.444 0.434 0.415

ecoli-0-1-4-7 vs 2-3-5-6 0.590 0.608 0.560 0.607 0.573 0.611 0.626 0.631 0.629

ecoli-0-1 vs 2-3-5 0.602 0.637 0.604 0.630 0.613 0.607 0.675 0.688 0.695

ecoli-0-2-6-7 vs 3-5 0.614 0.606 0.610 0.520 0.602 0.624 0.639 0.658 0.618

ecoli-0-6-7 vs 3-5 0.666 0.634 0.599 0.623 0.591 0.663 0.638 0.644 0.655

ecoli-0-6-7 vs 5 0.704 0.673 0.663 0.584 0.576 0.742 0.723 0.719 0.747

yeast-0-2-5-6 vs 3-7-8-9 0.476 0.483 0.436 0.434 0.413 0.465 0.473 0.471 0.494

yeast-0-3-5-9 vs 7-8 0.336 0.311 0.277 0.282 0.246 0.342 0.322 0.313 0.318

abalone-17 vs 7-8-9-10 0.286 0.251 0.218 0.227 0.246 0.231 0.250 0.280 0.234

abalone-19 vs 10-11-12-13 0.084 0.070 0.085 0.053 0.082 0.069 0.094 0.097 0.098

abalone-20 vs 8-9-10 0.245 0.240 0.239 0.248 0.237 0.225 0.224 0.234 0.194

flare-F 0.189 0.182 0.194 0.189 0.176 0.200 0.218 0.209 0.208

kr-vs-k-zero vs eight 0.928 0.838 0.921 0.819 0.872 0.897 0.905 0.862 0.916

poker-8-9 vs 5 0.091 0.095 0.100 0.078 0.091 0.097 0.115 0.069 0.111

poker-8-9 vs 6 0.180 0.085 0.290 0.182 0.289 0.435 0.823 0.783 0.754

poker-8 vs 6 0.248 0.254 0.418 0.254 0.423 0.425 0.638 0.661 0.627

winequality-red-4 0.114 0.092 0.144 0.117 0.093 0.136 0.109 0.132 0.149

winequality-white-3-9 vs 5 0.177 0.072 0.066 0.164 0.055 0.092 0.171 0.145 0.139

winequality-white-3 vs 7 0.237 0.134 0.093 0.256 0.076 0.125 0.252 0.209 0.155

ecoli1 0.711 0.720 0.728 0.730 0.741 0.729 0.736 0.747 0.736

ecoli2 0.712 0.741 0.730 0.702 0.711 0.757 0.740 0.743 0.731

ecoli3 0.568 0.449 0.514 0.549 0.558 0.535 0.592 0.617 0.578

glass0 0.652 0.698 0.689 0.680 0.682 0.685 0.709 0.722 0.689

glass1 0.651 0.644 0.642 0.659 0.596 0.653 0.655 0.665 0.654

haberman 0.361 0.336 0.379 0.385 0.381 0.435 0.426 0.404 0.427

pima 0.575 0.57 0.583 0.568 0.549 0.591 0.561 0.563 0.571

yeast3 0.694 0.691 0.699 0.681 0.706 0.721 0.714 0.719 0.726
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Table 8.11: Gmean results of compared algorithms for cart model.

dataset

B
are
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er

ro
s

sm
o
te

B
ord
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a
da
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b
est

p
recision

b
est

recall

page-blocks-1-3 vs 4 0.924 0.986 0.986 0.895 0.979 0.971 0.958 0.970 0.962

yeast-0-5-6-7-9 vs 4 0.605 0.606 0.652 0.654 0.689 0.596 0.628 0.641 0.638

yeast-1-2-8-9 vs 7 0.479 0.392 0.440 0.481 0.456 0.499 0.469 0.466 0.501

yeast-1-4-5-8 vs 7 0.335 0.296 0.382 0.317 0.386 0.326 0.317 0.334 0.367

yeast-1 vs 7 0.586 0.483 0.516 0.524 0.524 0.557 0.621 0.617 0.58

yeast-2 vs 4 0.813 0.800 0.851 0.802 0.844 0.852 0.823 0.819 0.822

yeast-2 vs 8 0.691 0.679 0.758 0.692 0.719 0.731 0.690 0.697 0.678

yeast4 0.517 0.512 0.604 0.522 0.591 0.558 0.596 0.557 0.620

yeast5 0.775 0.788 0.845 0.789 0.858 0.822 0.822 0.828 0.856

yeast6 0.648 0.633 0.692 0.676 0.706 0.709 0.707 0.713 0.742

ecoli-0-1-4-7 vs 2-3-5-6 0.760 0.746 0.786 0.775 0.782 0.782 0.791 0.809 0.801

ecoli-0-1 vs 2-3-5 0.718 0.750 0.758 0.743 0.781 0.776 0.810 0.822 0.822

ecoli-0-2-6-7 vs 3-5 0.767 0.740 0.784 0.696 0.785 0.784 0.788 0.812 0.772

ecoli-0-6-7 vs 3-5 0.794 0.773 0.791 0.807 0.802 0.795 0.803 0.817 0.793

ecoli-0-6-7 vs 5 0.803 0.774 0.812 0.73 0.738 0.849 0.833 0.844 0.860

yeast-0-2-5-6 vs 3-7-8-9 0.679 0.663 0.677 0.663 0.669 0.675 0.689 0.688 0.714

yeast-0-3-5-9 vs 7-8 0.554 0.529 0.559 0.539 0.517 0.572 0.556 0.553 0.555

abalone-17 vs 7-8-9-10 0.552 0.485 0.575 0.518 0.613 0.558 0.524 0.552 0.665

abalone-19 vs 10-11-12-13 0.272 0.202 0.416 0.208 0.417 0.260 0.336 0.340 0.508

abalone-20 vs 8-9-10 0.510 0.459 0.633 0.519 0.630 0.563 0.521 0.541 0.583

flare-F 0.395 0.478 0.426 0.470 0.406 0.528 0.454 0.442 0.444

kr-vs-k-zero vs eight 0.974 0.905 0.970 0.898 0.933 0.951 0.978 0.905 0.978

poker-8-9 vs 5 0.298 0.250 0.408 0.259 0.384 0.229 0.336 0.247 0.408

poker-8-9 vs 6 0.339 0.191 0.535 0.436 0.529 0.608 0.920 0.913 0.887

poker-8 vs 6 0.355 0.335 0.579 0.403 0.612 0.578 0.781 0.781 0.777

winequality-red-4 0.333 0.262 0.480 0.348 0.384 0.430 0.357 0.388 0.508

winequality-white-3-9 vs 5 0.397 0.201 0.312 0.402 0.308 0.336 0.423 0.380 0.405

winequality-white-3 vs 7 0.456 0.300 0.367 0.479 0.235 0.321 0.463 0.429 0.378

ecoli1 0.809 0.814 0.827 0.832 0.838 0.822 0.833 0.839 0.840

ecoli2 0.820 0.842 0.842 0.813 0.842 0.854 0.854 0.846 0.844

ecoli3 0.726 0.646 0.733 0.741 0.759 0.734 0.779 0.793 0.804

glass0 0.737 0.771 0.767 0.761 0.762 0.764 0.784 0.793 0.767

glass1 0.724 0.717 0.715 0.730 0.679 0.726 0.728 0.736 0.727

haberman 0.526 0.503 0.545 0.550 0.547 0.593 0.586 0.568 0.583

pima 0.666 0.662 0.672 0.659 0.644 0.678 0.653 0.656 0.662

yeast3 0.816 0.813 0.843 0.823 0.852 0.837 0.850 0.850 0.860
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C Additional results for analysis of the fitness calculation

protocols
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Table 8.12: Average precision scores for cart classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.611 0.600 0.609 0.611 0.591 0.602 0.618 0.606 0.618

bank_additional 0.516 0.508 0.517 0.520 0.498 0.519 0.526 0.517 0.527

page-blocks0 0.815 0.795 0.794 0.825 0.794 0.807 0.845 0.794 0.808

glass1 0.602 0.618 0.617 0.621 0.621 0.621 0.678 0.533 0.643

glass0 0.659 0.668 0.672 0.683 0.683 0.683 0.717 0.587 0.744

ecoli-0-6-7_vs_5 0.807 0.807 0.807 0.804 0.804 0.804 0.870 0.757 0.796

ecoli-0-6-7_vs_3-5 0.815 0.815 0.815 0.687 0.687 0.687 0.784 0.753 0.751

ecoli-0-2-6-7_vs_3-5 0.724 0.724 0.724 0.671 0.671 0.671 0.811 0.709 0.760

ecoli-0-1_vs_2-3-5 0.689 0.689 0.689 0.691 0.691 0.691 0.720 0.543 0.621

haberman 0.348 0.370 0.351 0.359 0.357 0.358 0.362 0.371 0.392

ecoli1 0.743 0.748 0.748 0.725 0.720 0.722 0.908 0.691 0.787

ecoli2 0.773 0.773 0.773 0.729 0.729 0.729 0.782 0.684 0.770

ecoli3 0.563 0.546 0.563 0.523 0.523 0.523 0.727 0.481 0.613

ecoli-0-1-4-7_vs_2-3-5-6 0.535 0.535 0.535 0.602 0.613 0.613 0.729 0.606 0.704

yeast-1_vs_7 0.307 0.255 0.234 0.307 0.307 0.307 0.453 0.304 0.287

page-blocks-1-3_vs_4 0.799 0.799 0.799 0.909 0.909 0.909 0.836 0.891 0.930

yeast-2_vs_8 0.685 0.685 0.685 0.472 0.486 0.486 0.831 0.556 0.600

yeast-0-3-5-9_vs_7-8 0.349 0.333 0.345 0.266 0.281 0.282 0.532 0.307 0.398

yeast-2_vs_4 0.713 0.722 0.723 0.708 0.708 0.708 0.846 0.635 0.694

yeast-0-5-6-7-9_vs_4 0.474 0.455 0.474 0.363 0.363 0.356 0.521 0.358 0.485

yeast-1-4-5-8_vs_7 0.124 0.117 0.108 0.099 0.114 0.114 0.099 0.074 0.082

pima 0.576 0.551 0.555 0.575 0.571 0.580 0.617 0.562 0.591

winequality-white-3_vs_7 0.553 0.553 0.553 0.259 0.259 0.259 0.342 0.319 0.320

yeast-1-2-8-9_vs_7 0.225 0.226 0.226 0.235 0.231 0.230 0.414 0.168 0.194

yeast-0-2-5-6_vs_3-7-8-9 0.524 0.466 0.477 0.516 0.428 0.458 0.679 0.469 0.569

flare-F 0.213 0.204 0.204 0.212 0.186 0.211 0.274 0.303 0.266

kr-vs-k-zero_vs_eight 0.715 0.715 0.715 0.898 0.898 0.898 0.873 0.749 0.832

poker-8_vs_6 0.714 0.714 0.714 0.838 0.744 0.744 1.000 0.872 0.872

winequality-white-3-9_vs_5 0.093 0.100 0.094 0.243 0.243 0.243 0.159 0.146 0.166

yeast3 0.734 0.730 0.735 0.673 0.650 0.646 0.800 0.695 0.734

poker-8-9_vs_6 0.657 0.668 0.657 0.668 0.668 0.668 0.879 0.630 0.630

yeast6 0.352 0.326 0.352 0.392 0.379 0.379 0.397 0.365 0.432

yeast5 0.633 0.633 0.633 0.620 0.620 0.620 0.608 0.625 0.674

yeast4 0.303 0.279 0.279 0.261 0.260 0.268 0.447 0.262 0.306

winequality-red-4 0.139 0.088 0.088 0.112 0.092 0.116 0.180 0.120 0.118

abalone-19_vs_10-11-12-13 0.045 0.058 0.058 0.112 0.101 0.122 0.086 0.053 0.060

abalone-20_vs_8-9-10 0.171 0.159 0.162 0.263 0.234 0.242 0.244 0.234 0.226

poker-8-9_vs_5 0.080 0.080 0.080 0.135 0.151 0.120 0.247 0.057 0.076

abalone-17_vs_7-8-9-10 0.285 0.220 0.255 0.291 0.264 0.268 0.272 0.216 0.224
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Table 8.13: Average recall scores for cart classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.621 0.635 0.624 0.602 0.639 0.620 0.626 0.643 0.627

bank_additional 0.538 0.556 0.540 0.511 0.551 0.529 0.541 0.552 0.541

page-blocks0 0.781 0.801 0.799 0.759 0.814 0.804 0.771 0.841 0.818

glass1 0.603 0.618 0.613 0.658 0.658 0.658 0.508 0.776 0.634

glass0 0.674 0.680 0.671 0.734 0.734 0.734 0.660 0.857 0.694

ecoli-0-6-7_vs_5 0.660 0.660 0.660 0.690 0.690 0.690 0.620 0.760 0.760

ecoli-0-6-7_vs_3-5 0.591 0.591 0.591 0.655 0.655 0.655 0.582 0.727 0.718

ecoli-0-2-6-7_vs_3-5 0.545 0.545 0.545 0.673 0.673 0.673 0.618 0.682 0.691

ecoli-0-1_vs_2-3-5 0.542 0.542 0.542 0.583 0.583 0.583 0.450 0.650 0.567

haberman 0.318 0.370 0.323 0.370 0.375 0.378 0.276 0.635 0.443

ecoli1 0.770 0.787 0.787 0.731 0.746 0.744 0.608 0.881 0.754

ecoli2 0.692 0.692 0.692 0.719 0.719 0.719 0.654 0.804 0.742

ecoli3 0.548 0.554 0.548 0.521 0.521 0.521 0.408 0.738 0.585

ecoli-0-1-4-7_vs_2-3-5-6 0.587 0.587 0.587 0.628 0.634 0.634 0.476 0.657 0.698

yeast-1_vs_7 0.267 0.313 0.273 0.420 0.420 0.420 0.247 0.420 0.420

page-blocks-1-3_vs_4 0.871 0.871 0.871 0.936 0.936 0.936 0.829 0.993 0.986

yeast-2_vs_8 0.590 0.590 0.590 0.500 0.530 0.530 0.550 0.560 0.560

yeast-0-3-5-9_vs_7-8 0.272 0.320 0.300 0.292 0.316 0.312 0.244 0.416 0.400

yeast-2_vs_4 0.560 0.634 0.626 0.679 0.679 0.679 0.564 0.820 0.718

yeast-0-5-6-7-9_vs_4 0.399 0.399 0.399 0.389 0.424 0.404 0.366 0.550 0.479

yeast-1-4-5-8_vs_7 0.100 0.127 0.107 0.107 0.120 0.120 0.107 0.160 0.120

pima 0.505 0.565 0.531 0.526 0.621 0.569 0.565 0.707 0.614

winequality-white-3_vs_7 0.220 0.220 0.220 0.200 0.200 0.200 0.250 0.290 0.290

yeast-1-2-8-9_vs_7 0.227 0.227 0.227 0.287 0.300 0.293 0.153 0.233 0.220

yeast-0-2-5-6_vs_3-7-8-9 0.479 0.469 0.469 0.465 0.513 0.477 0.506 0.616 0.554

flare-F 0.236 0.250 0.250 0.164 0.267 0.234 0.183 0.506 0.332

kr-vs-k-zero_vs_eight 0.792 0.792 0.792 0.917 0.917 0.917 0.605 0.931 0.858

poker-8_vs_6 0.281 0.281 0.281 0.642 0.604 0.604 0.342 0.364 0.364

winequality-white-3-9_vs_5 0.120 0.137 0.128 0.216 0.216 0.216 0.145 0.215 0.190

yeast3 0.699 0.719 0.720 0.658 0.692 0.651 0.669 0.875 0.755

poker-8-9_vs_6 0.326 0.342 0.326 0.629 0.629 0.629 0.446 0.361 0.361

yeast6 0.358 0.369 0.358 0.463 0.457 0.457 0.413 0.557 0.533

yeast5 0.605 0.605 0.605 0.564 0.564 0.564 0.555 0.768 0.691

yeast4 0.247 0.247 0.247 0.310 0.310 0.314 0.271 0.456 0.302

winequality-red-4 0.114 0.098 0.098 0.105 0.116 0.131 0.094 0.185 0.143

abalone-19_vs_10-11-12-13 0.038 0.050 0.050 0.119 0.150 0.131 0.081 0.062 0.069

abalone-20_vs_8-9-10 0.192 0.215 0.215 0.277 0.285 0.300 0.208 0.408 0.292

poker-8-9_vs_5 0.072 0.072 0.072 0.160 0.193 0.160 0.096 0.088 0.113

abalone-17_vs_7-8-9-10 0.228 0.224 0.214 0.248 0.290 0.255 0.169 0.300 0.245
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Table 8.14: Average bac scores for cart classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.747 0.750 0.748 0.740 0.749 0.745 0.752 0.755 0.752

bank_additional 0.737 0.744 0.738 0.726 0.740 0.733 0.739 0.743 0.740

page-blocks0 0.880 0.889 0.887 0.870 0.895 0.891 0.877 0.908 0.898

glass1 0.686 0.699 0.697 0.718 0.718 0.718 0.684 0.700 0.711

glass0 0.751 0.755 0.754 0.780 0.780 0.780 0.764 0.770 0.784

ecoli-0-6-7_vs_5 0.816 0.816 0.816 0.833 0.833 0.833 0.804 0.866 0.868

ecoli-0-6-7_vs_3-5 0.787 0.787 0.787 0.807 0.807 0.807 0.781 0.849 0.844

ecoli-0-2-6-7_vs_3-5 0.752 0.752 0.752 0.815 0.815 0.815 0.800 0.824 0.832

ecoli-0-1_vs_2-3-5 0.756 0.756 0.756 0.777 0.777 0.777 0.715 0.790 0.765

haberman 0.555 0.575 0.555 0.566 0.566 0.567 0.556 0.620 0.597

ecoli1 0.843 0.852 0.852 0.823 0.828 0.827 0.794 0.880 0.845

ecoli2 0.827 0.827 0.827 0.834 0.834 0.834 0.809 0.865 0.849

ecoli3 0.749 0.749 0.749 0.732 0.732 0.732 0.692 0.821 0.771

ecoli-0-1-4-7_vs_2-3-5-6 0.767 0.767 0.767 0.794 0.798 0.798 0.730 0.806 0.834

yeast-1_vs_7 0.611 0.625 0.607 0.676 0.676 0.676 0.607 0.674 0.671

page-blocks-1-3_vs_4 0.928 0.928 0.928 0.965 0.965 0.965 0.909 0.991 0.990

yeast-2_vs_8 0.786 0.786 0.786 0.736 0.751 0.751 0.772 0.769 0.770

yeast-0-3-5-9_vs_7-8 0.606 0.623 0.617 0.601 0.613 0.612 0.609 0.655 0.661

yeast-2_vs_4 0.767 0.803 0.799 0.824 0.824 0.824 0.776 0.883 0.840

yeast-0-5-6-7-9_vs_4 0.675 0.672 0.675 0.658 0.673 0.663 0.664 0.720 0.711

yeast-1-4-5-8_vs_7 0.526 0.538 0.530 0.530 0.537 0.537 0.533 0.535 0.534

pima 0.653 0.659 0.651 0.658 0.684 0.673 0.686 0.705 0.693

winequality-white-3_vs_7 0.606 0.606 0.606 0.593 0.593 0.593 0.620 0.635 0.636

yeast-1-2-8-9_vs_7 0.600 0.600 0.600 0.627 0.632 0.629 0.571 0.595 0.594

yeast-0-2-5-6_vs_3-7-8-9 0.715 0.704 0.704 0.708 0.718 0.706 0.738 0.769 0.753

flare-F 0.601 0.605 0.605 0.569 0.607 0.598 0.582 0.728 0.648

kr-vs-k-zero_vs_eight 0.893 0.893 0.893 0.958 0.958 0.958 0.801 0.962 0.926

poker-8_vs_6 0.638 0.638 0.638 0.819 0.799 0.799 0.671 0.681 0.681

winequality-white-3-9_vs_5 0.551 0.559 0.555 0.601 0.601 0.601 0.567 0.597 0.587

yeast3 0.834 0.843 0.844 0.809 0.823 0.803 0.824 0.914 0.860

poker-8-9_vs_6 0.659 0.668 0.659 0.812 0.812 0.812 0.722 0.677 0.677

yeast6 0.670 0.674 0.670 0.722 0.719 0.719 0.699 0.766 0.757

yeast5 0.797 0.797 0.797 0.777 0.777 0.777 0.772 0.877 0.840

yeast4 0.613 0.612 0.612 0.639 0.639 0.642 0.628 0.705 0.638

winequality-red-4 0.543 0.531 0.531 0.538 0.538 0.548 0.538 0.568 0.553

abalone-19_vs_10-11-12-13 0.513 0.518 0.518 0.550 0.561 0.556 0.533 0.517 0.522

abalone-20_vs_8-9-10 0.589 0.600 0.600 0.633 0.635 0.643 0.599 0.695 0.639

poker-8-9_vs_5 0.530 0.530 0.530 0.573 0.589 0.572 0.544 0.535 0.548

abalone-17_vs_7-8-9-10 0.607 0.602 0.599 0.616 0.634 0.618 0.579 0.635 0.611
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Table 8.15: Average F1 score scores for cart classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.616 0.617 0.616 0.607 0.614 0.611 0.622 0.623 0.623

bank_additional 0.526 0.531 0.528 0.516 0.523 0.524 0.533 0.534 0.533

page-blocks0 0.796 0.796 0.795 0.789 0.803 0.804 0.805 0.816 0.812

glass1 0.594 0.608 0.606 0.636 0.636 0.636 0.577 0.631 0.630

glass0 0.663 0.669 0.668 0.701 0.701 0.701 0.682 0.689 0.710

ecoli-0-6-7_vs_5 0.688 0.688 0.688 0.722 0.722 0.722 0.701 0.741 0.757

ecoli-0-6-7_vs_3-5 0.668 0.668 0.668 0.656 0.656 0.656 0.656 0.734 0.727

ecoli-0-2-6-7_vs_3-5 0.591 0.591 0.591 0.659 0.659 0.659 0.688 0.684 0.711

ecoli-0-1_vs_2-3-5 0.589 0.589 0.589 0.623 0.623 0.623 0.541 0.559 0.575

haberman 0.326 0.364 0.331 0.362 0.364 0.365 0.308 0.464 0.412

ecoli1 0.749 0.759 0.759 0.722 0.728 0.727 0.724 0.771 0.763

ecoli2 0.726 0.726 0.726 0.717 0.717 0.717 0.707 0.729 0.750

ecoli3 0.547 0.541 0.547 0.520 0.520 0.520 0.494 0.575 0.594

ecoli-0-1-4-7_vs_2-3-5-6 0.548 0.548 0.548 0.613 0.622 0.622 0.557 0.615 0.689

yeast-1_vs_7 0.267 0.274 0.246 0.351 0.351 0.351 0.291 0.346 0.333

page-blocks-1-3_vs_4 0.821 0.821 0.821 0.919 0.919 0.919 0.815 0.934 0.956

yeast-2_vs_8 0.602 0.602 0.602 0.465 0.484 0.484 0.648 0.546 0.563

yeast-0-3-5-9_vs_7-8 0.301 0.321 0.316 0.274 0.293 0.292 0.327 0.351 0.385

yeast-2_vs_4 0.597 0.667 0.660 0.688 0.688 0.688 0.670 0.706 0.697

yeast-0-5-6-7-9_vs_4 0.428 0.416 0.428 0.374 0.386 0.375 0.420 0.426 0.476

yeast-1-4-5-8_vs_7 0.091 0.113 0.100 0.102 0.116 0.116 0.101 0.097 0.097

pima 0.536 0.557 0.542 0.547 0.594 0.573 0.585 0.624 0.601

winequality-white-3_vs_7 0.279 0.279 0.279 0.220 0.220 0.220 0.261 0.271 0.273

yeast-1-2-8-9_vs_7 0.215 0.216 0.216 0.250 0.251 0.248 0.204 0.186 0.198

yeast-0-2-5-6_vs_3-7-8-9 0.491 0.453 0.457 0.485 0.459 0.462 0.567 0.530 0.557

flare-F 0.214 0.218 0.218 0.180 0.215 0.219 0.211 0.373 0.284

kr-vs-k-zero_vs_eight 0.729 0.729 0.729 0.905 0.905 0.905 0.681 0.819 0.824

poker-8_vs_6 0.396 0.396 0.396 0.716 0.658 0.658 0.484 0.460 0.460

winequality-white-3-9_vs_5 0.104 0.114 0.107 0.217 0.217 0.217 0.141 0.167 0.166

yeast3 0.713 0.722 0.726 0.663 0.669 0.646 0.726 0.774 0.743

poker-8-9_vs_6 0.424 0.437 0.424 0.640 0.640 0.640 0.571 0.443 0.443

yeast6 0.339 0.327 0.339 0.418 0.409 0.409 0.395 0.435 0.465

yeast5 0.613 0.613 0.613 0.581 0.581 0.581 0.573 0.679 0.676

yeast4 0.263 0.257 0.257 0.278 0.279 0.286 0.319 0.329 0.295

winequality-red-4 0.116 0.089 0.089 0.106 0.101 0.120 0.110 0.143 0.126

abalone-19_vs_10-11-12-13 0.039 0.051 0.051 0.113 0.119 0.125 0.081 0.056 0.062

abalone-20_vs_8-9-10 0.174 0.176 0.178 0.265 0.252 0.263 0.219 0.293 0.249

poker-8-9_vs_5 0.069 0.069 0.069 0.141 0.163 0.133 0.118 0.068 0.089

abalone-17_vs_7-8-9-10 0.249 0.216 0.228 0.261 0.268 0.254 0.201 0.243 0.231
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Table 8.16: Average Gmean scores for cart classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.737 0.741 0.738 0.727 0.741 0.734 0.741 0.747 0.742

bank_additional 0.709 0.719 0.711 0.693 0.716 0.704 0.712 0.718 0.712

page-blocks0 0.875 0.884 0.883 0.863 0.891 0.886 0.871 0.905 0.894

glass1 0.676 0.688 0.686 0.713 0.713 0.713 0.659 0.694 0.703

glass0 0.745 0.749 0.747 0.775 0.775 0.775 0.755 0.758 0.776

ecoli-0-6-7_vs_5 0.790 0.790 0.790 0.816 0.816 0.816 0.773 0.854 0.855

ecoli-0-6-7_vs_3-5 0.756 0.756 0.756 0.789 0.789 0.789 0.750 0.838 0.833

ecoli-0-2-6-7_vs_3-5 0.716 0.716 0.716 0.798 0.798 0.798 0.774 0.807 0.815

ecoli-0-1_vs_2-3-5 0.717 0.717 0.717 0.747 0.747 0.747 0.657 0.761 0.721

haberman 0.483 0.525 0.495 0.527 0.529 0.531 0.467 0.614 0.572

ecoli1 0.837 0.846 0.846 0.815 0.822 0.821 0.771 0.879 0.837

ecoli2 0.814 0.814 0.814 0.823 0.823 0.823 0.792 0.860 0.841

ecoli3 0.712 0.715 0.712 0.696 0.696 0.696 0.618 0.814 0.744

ecoli-0-1-4-7_vs_2-3-5-6 0.740 0.740 0.740 0.774 0.779 0.779 0.670 0.788 0.818

yeast-1_vs_7 0.480 0.527 0.484 0.619 0.619 0.619 0.476 0.614 0.616

page-blocks-1-3_vs_4 0.921 0.921 0.921 0.963 0.963 0.963 0.890 0.991 0.990

yeast-2_vs_8 0.756 0.756 0.756 0.688 0.710 0.710 0.736 0.737 0.738

yeast-0-3-5-9_vs_7-8 0.501 0.539 0.526 0.510 0.532 0.529 0.484 0.608 0.603

yeast-2_vs_4 0.720 0.780 0.773 0.809 0.809 0.809 0.742 0.877 0.828

yeast-0-5-6-7-9_vs_4 0.612 0.610 0.612 0.597 0.618 0.607 0.585 0.694 0.667

yeast-1-4-5-8_vs_7 0.266 0.319 0.277 0.275 0.293 0.293 0.292 0.365 0.293

pima 0.634 0.651 0.639 0.643 0.681 0.664 0.672 0.703 0.687

winequality-white-3_vs_7 0.442 0.442 0.442 0.438 0.438 0.438 0.432 0.519 0.520

yeast-1-2-8-9_vs_7 0.453 0.453 0.453 0.520 0.531 0.525 0.381 0.457 0.448

yeast-0-2-5-6_vs_3-7-8-9 0.669 0.655 0.656 0.662 0.684 0.666 0.697 0.753 0.725

flare-F 0.453 0.474 0.474 0.392 0.494 0.469 0.390 0.688 0.541

kr-vs-k-zero_vs_eight 0.879 0.879 0.879 0.954 0.954 0.954 0.766 0.958 0.920

poker-8_vs_6 0.463 0.463 0.463 0.750 0.714 0.714 0.563 0.579 0.579

winequality-white-3-9_vs_5 0.296 0.317 0.305 0.450 0.450 0.450 0.299 0.442 0.412

yeast3 0.822 0.833 0.834 0.793 0.812 0.788 0.808 0.913 0.853

poker-8-9_vs_6 0.502 0.519 0.502 0.744 0.744 0.744 0.663 0.590 0.590

yeast6 0.565 0.578 0.565 0.673 0.668 0.668 0.625 0.733 0.720

yeast5 0.769 0.769 0.769 0.739 0.739 0.739 0.721 0.866 0.824

yeast4 0.482 0.485 0.485 0.535 0.541 0.544 0.509 0.655 0.537

winequality-red-4 0.322 0.291 0.291 0.292 0.298 0.342 0.267 0.416 0.367

abalone-19_vs_10-11-12-13 0.134 0.169 0.169 0.335 0.357 0.331 0.245 0.218 0.214

abalone-20_vs_8-9-10 0.420 0.443 0.444 0.516 0.518 0.537 0.426 0.624 0.528

poker-8-9_vs_5 0.221 0.221 0.221 0.361 0.418 0.381 0.272 0.259 0.311

abalone-17_vs_7-8-9-10 0.460 0.455 0.447 0.484 0.524 0.487 0.394 0.535 0.486



Appendix 137

Table 8.17: Average precision scores for knn classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.649 0.645 0.645 0.657 0.631 0.632 0.663 0.640 0.640

bank_additional 0.586 0.581 0.586 0.586 0.579 0.581 0.588 0.580 0.588

page-blocks0 0.852 0.849 0.849 0.864 0.815 0.815 0.892 0.798 0.798

glass1 0.662 0.646 0.671 0.684 0.610 0.640 0.732 0.488 0.611

glass0 0.615 0.575 0.585 0.636 0.602 0.665 0.681 0.520 0.617

ecoli-0-6-7_vs_5 0.851 0.851 0.851 0.854 0.836 0.836 0.796 0.781 0.739

ecoli-0-6-7_vs_3-5 0.812 0.812 0.812 0.862 0.850 0.850 0.794 0.722 0.755

ecoli-0-2-6-7_vs_3-5 0.824 0.824 0.824 0.885 0.887 0.887 0.872 0.758 0.770

ecoli-0-1_vs_2-3-5 0.945 0.945 0.945 0.949 0.949 0.949 0.862 0.848 0.848

haberman 0.443 0.437 0.437 0.452 0.383 0.400 0.434 0.307 0.386

ecoli1 0.714 0.708 0.708 0.826 0.719 0.768 0.905 0.725 0.812

ecoli2 0.808 0.808 0.808 0.848 0.849 0.848 0.896 0.848 0.859

ecoli3 0.538 0.538 0.538 0.631 0.537 0.619 0.621 0.556 0.621

ecoli-0-1-4-7_vs_2-3-5-6 0.877 0.877 0.877 0.907 0.858 0.869 0.828 0.792 0.797

yeast-1_vs_7 0.434 0.434 0.434 0.781 0.734 0.734 0.642 0.445 0.445

page-blocks-1-3_vs_4 0.703 0.703 0.703 0.835 0.838 0.838 0.788 0.695 0.741

yeast-2_vs_8 0.649 0.649 0.649 0.822 0.922 0.922 0.912 0.912 0.912

yeast-0-3-5-9_vs_7-8 0.637 0.637 0.637 0.540 0.516 0.516 0.559 0.400 0.394

yeast-2_vs_4 0.890 0.890 0.890 0.882 0.882 0.882 0.856 0.809 0.809

yeast-0-5-6-7-9_vs_4 0.541 0.541 0.541 0.537 0.532 0.532 0.535 0.430 0.458

yeast-1-4-5-8_vs_7 0.153 0.153 0.153 0.142 0.142 0.142 0.144 0.156 0.156

pima 0.633 0.630 0.630 0.633 0.567 0.594 0.706 0.548 0.610

winequality-white-3_vs_7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

yeast-1-2-8-9_vs_7 0.233 0.233 0.233 0.578 0.603 0.603 0.335 0.340 0.340

yeast-0-2-5-6_vs_3-7-8-9 0.672 0.679 0.679 0.753 0.697 0.697 0.722 0.643 0.640

flare-F 0.309 0.356 0.356 0.141 0.301 0.311 0.420 0.280 0.284

kr-vs-k-zero_vs_eight 0.730 0.730 0.730 0.744 0.742 0.742 0.759 0.687 0.687

poker-8_vs_6 0.400 0.400 0.400 0.900 0.900 0.900 0.567 0.567 0.567

winequality-white-3-9_vs_5 0.000 0.000 0.000 0.133 0.133 0.133 0.075 0.075 0.075

yeast3 0.822 0.821 0.821 0.786 0.770 0.769 0.834 0.748 0.753

poker-8-9_vs_6 0.340 0.340 0.340 0.950 0.950 0.950 0.890 0.890 0.890

yeast6 0.568 0.568 0.568 0.606 0.537 0.551 0.583 0.509 0.529

yeast5 0.682 0.671 0.671 0.690 0.602 0.633 0.778 0.550 0.638

yeast4 0.440 0.440 0.440 0.504 0.491 0.491 0.526 0.344 0.353

winequality-red-4 0.201 0.201 0.201 0.189 0.149 0.149 0.225 0.197 0.197

abalone-19_vs_10-11-12-13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-20_vs_8-9-10 0.000 0.000 0.000 0.300 0.250 0.250 0.133 0.133 0.133

poker-8-9_vs_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-17_vs_7-8-9-10 0.150 0.150 0.150 0.388 0.367 0.367 0.350 0.355 0.355
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Table 8.18: Average recall scores for knn classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.567 0.577 0.577 0.556 0.608 0.608 0.574 0.621 0.621

bank_additional 0.372 0.381 0.372 0.374 0.399 0.385 0.392 0.403 0.392

page-blocks0 0.689 0.691 0.691 0.695 0.763 0.763 0.662 0.776 0.776

glass1 0.521 0.589 0.558 0.542 0.721 0.671 0.392 0.884 0.692

glass0 0.554 0.606 0.591 0.523 0.766 0.671 0.514 0.926 0.683

ecoli-0-6-7_vs_5 0.570 0.570 0.570 0.720 0.740 0.740 0.740 0.780 0.780

ecoli-0-6-7_vs_3-5 0.564 0.564 0.564 0.655 0.655 0.655 0.700 0.709 0.700

ecoli-0-2-6-7_vs_3-5 0.545 0.545 0.545 0.618 0.618 0.618 0.700 0.718 0.709

ecoli-0-1_vs_2-3-5 0.675 0.675 0.675 0.675 0.675 0.675 0.725 0.725 0.725

haberman 0.282 0.294 0.294 0.215 0.383 0.368 0.171 0.726 0.413

ecoli1 0.746 0.748 0.748 0.671 0.789 0.704 0.567 0.816 0.725

ecoli2 0.858 0.858 0.858 0.835 0.877 0.865 0.765 0.892 0.869

ecoli3 0.484 0.484 0.484 0.433 0.715 0.674 0.492 0.841 0.713

ecoli-0-1-4-7_vs_2-3-5-6 0.673 0.673 0.673 0.627 0.723 0.723 0.737 0.758 0.758

yeast-1_vs_7 0.113 0.113 0.113 0.227 0.220 0.220 0.273 0.307 0.307

page-blocks-1-3_vs_4 0.457 0.464 0.464 0.771 0.757 0.757 0.586 0.814 0.721

yeast-2_vs_8 0.340 0.340 0.340 0.440 0.550 0.550 0.550 0.550 0.550

yeast-0-3-5-9_vs_7-8 0.240 0.240 0.240 0.184 0.292 0.292 0.304 0.480 0.464

yeast-2_vs_4 0.635 0.635 0.635 0.678 0.678 0.678 0.695 0.738 0.738

yeast-0-5-6-7-9_vs_4 0.333 0.333 0.333 0.239 0.310 0.310 0.254 0.502 0.455

yeast-1-4-5-8_vs_7 0.033 0.033 0.033 0.033 0.033 0.033 0.053 0.060 0.060

pima 0.530 0.546 0.546 0.474 0.656 0.592 0.405 0.790 0.642

winequality-white-3_vs_7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

yeast-1-2-8-9_vs_7 0.027 0.027 0.027 0.087 0.093 0.093 0.087 0.093 0.093

yeast-0-2-5-6_vs_3-7-8-9 0.358 0.404 0.404 0.354 0.509 0.509 0.364 0.586 0.588

flare-F 0.103 0.130 0.130 0.061 0.294 0.276 0.237 0.465 0.455

kr-vs-k-zero_vs_eight 0.546 0.546 0.546 0.607 0.584 0.584 0.634 0.648 0.648

poker-8_vs_6 0.057 0.057 0.057 0.175 0.175 0.175 0.126 0.126 0.126

winequality-white-3-9_vs_5 0.000 0.000 0.000 0.016 0.016 0.016 0.017 0.017 0.017

yeast3 0.659 0.665 0.665 0.631 0.682 0.682 0.630 0.753 0.751

poker-8-9_vs_6 0.047 0.047 0.047 0.247 0.247 0.247 0.217 0.217 0.217

yeast6 0.470 0.470 0.470 0.425 0.441 0.441 0.532 0.658 0.618

yeast5 0.473 0.486 0.486 0.414 0.641 0.618 0.405 0.818 0.741

yeast4 0.118 0.118 0.118 0.176 0.246 0.246 0.207 0.395 0.372

winequality-red-4 0.023 0.023 0.023 0.030 0.030 0.030 0.064 0.068 0.068

abalone-19_vs_10-11-12-13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-20_vs_8-9-10 0.000 0.000 0.000 0.038 0.054 0.054 0.015 0.015 0.015

poker-8-9_vs_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-17_vs_7-8-9-10 0.007 0.007 0.007 0.055 0.055 0.055 0.048 0.055 0.055
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Table 8.19: Average bac scores for knn classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.735 0.738 0.738 0.732 0.748 0.748 0.741 0.755 0.755

bank_additional 0.669 0.673 0.669 0.670 0.681 0.675 0.678 0.683 0.679

page-blocks0 0.837 0.839 0.839 0.841 0.871 0.871 0.827 0.877 0.877

glass1 0.682 0.701 0.695 0.700 0.729 0.730 0.654 0.678 0.723

glass0 0.691 0.683 0.684 0.688 0.756 0.751 0.697 0.754 0.738

ecoli-0-6-7_vs_5 0.779 0.779 0.779 0.852 0.861 0.861 0.859 0.878 0.876

ecoli-0-6-7_vs_3-5 0.774 0.774 0.774 0.820 0.820 0.820 0.838 0.834 0.836

ecoli-0-2-6-7_vs_3-5 0.763 0.763 0.763 0.803 0.803 0.803 0.843 0.844 0.840

ecoli-0-1_vs_2-3-5 0.835 0.835 0.835 0.835 0.835 0.835 0.855 0.854 0.854

haberman 0.576 0.577 0.577 0.555 0.577 0.583 0.545 0.567 0.588

ecoli1 0.825 0.825 0.825 0.813 0.848 0.820 0.773 0.861 0.836

ecoli2 0.909 0.909 0.909 0.903 0.923 0.918 0.874 0.931 0.921

ecoli3 0.718 0.718 0.718 0.700 0.820 0.812 0.728 0.881 0.831

ecoli-0-1-4-7_vs_2-3-5-6 0.831 0.831 0.831 0.810 0.856 0.856 0.861 0.869 0.869

yeast-1_vs_7 0.552 0.552 0.552 0.610 0.606 0.606 0.631 0.637 0.637

page-blocks-1-3_vs_4 0.722 0.725 0.725 0.880 0.873 0.873 0.787 0.896 0.852

yeast-2_vs_8 0.669 0.669 0.669 0.719 0.774 0.774 0.774 0.774 0.774

yeast-0-3-5-9_vs_7-8 0.610 0.610 0.610 0.584 0.631 0.631 0.638 0.699 0.691

yeast-2_vs_4 0.813 0.813 0.813 0.834 0.834 0.834 0.841 0.859 0.859

yeast-0-5-6-7-9_vs_4 0.650 0.650 0.650 0.607 0.639 0.639 0.614 0.715 0.698

yeast-1-4-5-8_vs_7 0.514 0.514 0.514 0.513 0.512 0.512 0.519 0.520 0.520

pima 0.682 0.686 0.686 0.662 0.693 0.686 0.656 0.720 0.709

winequality-white-3_vs_7 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

yeast-1-2-8-9_vs_7 0.513 0.513 0.513 0.542 0.545 0.545 0.542 0.545 0.545

yeast-0-2-5-6_vs_3-7-8-9 0.669 0.691 0.691 0.670 0.742 0.742 0.674 0.774 0.775

flare-F 0.546 0.559 0.559 0.525 0.632 0.624 0.611 0.707 0.703

kr-vs-k-zero_vs_eight 0.770 0.770 0.770 0.801 0.790 0.790 0.815 0.821 0.821

poker-8_vs_6 0.528 0.528 0.528 0.588 0.588 0.588 0.563 0.563 0.563

winequality-white-3-9_vs_5 0.500 0.500 0.500 0.508 0.508 0.508 0.508 0.508 0.508

yeast3 0.821 0.824 0.824 0.805 0.828 0.828 0.807 0.861 0.860

poker-8-9_vs_6 0.523 0.523 0.523 0.623 0.623 0.623 0.608 0.608 0.608

yeast6 0.730 0.730 0.730 0.709 0.716 0.716 0.761 0.821 0.802

yeast5 0.732 0.739 0.739 0.703 0.814 0.803 0.700 0.898 0.863

yeast4 0.556 0.556 0.556 0.585 0.618 0.618 0.600 0.684 0.673

winequality-red-4 0.510 0.510 0.510 0.513 0.512 0.512 0.528 0.529 0.529

abalone-19_vs_10-11-12-13 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

abalone-20_vs_8-9-10 0.500 0.500 0.500 0.519 0.526 0.526 0.507 0.507 0.507

poker-8-9_vs_5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

abalone-17_vs_7-8-9-10 0.503 0.503 0.503 0.527 0.526 0.526 0.523 0.526 0.526
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Table 8.20: Average F1 score scores for knn classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.605 0.609 0.609 0.602 0.620 0.620 0.616 0.630 0.631

bank_additional 0.455 0.460 0.455 0.456 0.472 0.463 0.470 0.476 0.470

page-blocks0 0.761 0.761 0.761 0.769 0.787 0.788 0.759 0.786 0.786

glass1 0.551 0.607 0.594 0.600 0.657 0.653 0.505 0.626 0.646

glass0 0.569 0.566 0.568 0.564 0.670 0.662 0.575 0.665 0.645

ecoli-0-6-7_vs_5 0.655 0.655 0.655 0.773 0.777 0.777 0.755 0.773 0.754

ecoli-0-6-7_vs_3-5 0.639 0.639 0.639 0.734 0.730 0.730 0.732 0.693 0.713

ecoli-0-2-6-7_vs_3-5 0.607 0.607 0.607 0.712 0.712 0.712 0.761 0.718 0.718

ecoli-0-1_vs_2-3-5 0.782 0.782 0.782 0.782 0.782 0.782 0.779 0.772 0.772

haberman 0.336 0.342 0.342 0.283 0.380 0.381 0.240 0.429 0.394

ecoli1 0.720 0.717 0.717 0.735 0.751 0.732 0.688 0.766 0.761

ecoli2 0.827 0.827 0.827 0.835 0.858 0.851 0.819 0.868 0.861

ecoli3 0.476 0.476 0.476 0.493 0.609 0.642 0.544 0.667 0.661

ecoli-0-1-4-7_vs_2-3-5-6 0.737 0.737 0.737 0.728 0.780 0.785 0.770 0.766 0.769

yeast-1_vs_7 0.165 0.165 0.165 0.343 0.327 0.327 0.377 0.350 0.350

page-blocks-1-3_vs_4 0.517 0.525 0.525 0.779 0.763 0.763 0.627 0.740 0.699

yeast-2_vs_8 0.444 0.444 0.444 0.552 0.683 0.683 0.679 0.679 0.679

yeast-0-3-5-9_vs_7-8 0.328 0.328 0.328 0.264 0.366 0.366 0.387 0.433 0.423

yeast-2_vs_4 0.737 0.737 0.737 0.760 0.760 0.760 0.762 0.768 0.768

yeast-0-5-6-7-9_vs_4 0.401 0.401 0.401 0.319 0.385 0.385 0.329 0.460 0.454

yeast-1-4-5-8_vs_7 0.053 0.053 0.053 0.053 0.053 0.053 0.072 0.078 0.078

pima 0.574 0.583 0.583 0.539 0.607 0.592 0.512 0.647 0.624

winequality-white-3_vs_7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

yeast-1-2-8-9_vs_7 0.047 0.047 0.047 0.142 0.152 0.152 0.130 0.139 0.139

yeast-0-2-5-6_vs_3-7-8-9 0.460 0.501 0.501 0.470 0.584 0.584 0.475 0.607 0.607

flare-F 0.140 0.177 0.177 0.083 0.291 0.287 0.295 0.345 0.345

kr-vs-k-zero_vs_eight 0.613 0.613 0.613 0.662 0.647 0.647 0.684 0.664 0.664

poker-8_vs_6 0.099 0.099 0.099 0.287 0.287 0.287 0.202 0.202 0.202

winequality-white-3-9_vs_5 0.000 0.000 0.000 0.028 0.028 0.028 0.027 0.027 0.027

yeast3 0.731 0.734 0.734 0.696 0.722 0.722 0.716 0.750 0.751

poker-8-9_vs_6 0.079 0.079 0.079 0.383 0.383 0.383 0.343 0.343 0.343

yeast6 0.506 0.506 0.506 0.479 0.473 0.480 0.552 0.569 0.560

yeast5 0.525 0.534 0.534 0.504 0.608 0.612 0.498 0.652 0.675

yeast4 0.177 0.177 0.177 0.253 0.316 0.316 0.290 0.362 0.356

winequality-red-4 0.038 0.038 0.038 0.051 0.048 0.048 0.096 0.098 0.098

abalone-19_vs_10-11-12-13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-20_vs_8-9-10 0.000 0.000 0.000 0.065 0.087 0.087 0.027 0.027 0.027

poker-8-9_vs_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-17_vs_7-8-9-10 0.013 0.013 0.013 0.094 0.093 0.093 0.083 0.093 0.093
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Table 8.21: Average Gmean scores for knn classifier

dataset
hold-out train cv

precision

recall

balanced

precision

recall

balanced

precision

recall

balanced

adult 0.715 0.720 0.720 0.710 0.735 0.735 0.722 0.743 0.743

bank_additional 0.599 0.606 0.600 0.601 0.620 0.609 0.615 0.623 0.615

page-blocks0 0.824 0.825 0.825 0.828 0.865 0.865 0.810 0.871 0.871

glass1 0.633 0.686 0.673 0.679 0.726 0.726 0.597 0.639 0.719

glass0 0.666 0.657 0.659 0.660 0.753 0.743 0.665 0.732 0.732

ecoli-0-6-7_vs_5 0.737 0.737 0.737 0.841 0.851 0.851 0.847 0.870 0.868

ecoli-0-6-7_vs_3-5 0.730 0.730 0.730 0.801 0.801 0.801 0.824 0.821 0.822

ecoli-0-2-6-7_vs_3-5 0.710 0.710 0.710 0.778 0.778 0.778 0.827 0.831 0.826

ecoli-0-1_vs_2-3-5 0.818 0.818 0.818 0.817 0.817 0.817 0.844 0.843 0.843

haberman 0.487 0.494 0.494 0.434 0.542 0.539 0.388 0.531 0.555

ecoli1 0.818 0.818 0.818 0.799 0.846 0.811 0.742 0.859 0.827

ecoli2 0.906 0.906 0.906 0.898 0.921 0.915 0.864 0.930 0.918

ecoli3 0.645 0.645 0.645 0.636 0.813 0.799 0.683 0.879 0.821

ecoli-0-1-4-7_vs_2-3-5-6 0.805 0.805 0.805 0.784 0.843 0.844 0.848 0.858 0.859

yeast-1_vs_7 0.274 0.274 0.274 0.468 0.460 0.460 0.512 0.542 0.542

page-blocks-1-3_vs_4 0.650 0.656 0.656 0.864 0.851 0.851 0.740 0.885 0.827

yeast-2_vs_8 0.486 0.486 0.486 0.615 0.738 0.738 0.737 0.737 0.737

yeast-0-3-5-9_vs_7-8 0.473 0.473 0.473 0.393 0.522 0.522 0.540 0.663 0.652

yeast-2_vs_4 0.792 0.792 0.792 0.816 0.816 0.816 0.826 0.849 0.849

yeast-0-5-6-7-9_vs_4 0.559 0.559 0.559 0.470 0.545 0.545 0.489 0.679 0.652

yeast-1-4-5-8_vs_7 0.098 0.098 0.098 0.114 0.114 0.114 0.160 0.185 0.185

pima 0.662 0.670 0.670 0.633 0.691 0.679 0.604 0.715 0.705

winequality-white-3_vs_7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

yeast-1-2-8-9_vs_7 0.088 0.088 0.088 0.255 0.280 0.280 0.218 0.225 0.225

yeast-0-2-5-6_vs_3-7-8-9 0.588 0.627 0.627 0.586 0.703 0.703 0.594 0.750 0.751

flare-F 0.273 0.331 0.331 0.185 0.527 0.507 0.473 0.658 0.652

kr-vs-k-zero_vs_eight 0.734 0.734 0.734 0.771 0.758 0.758 0.789 0.798 0.798

poker-8_vs_6 0.149 0.149 0.149 0.389 0.389 0.389 0.271 0.271 0.271

winequality-white-3-9_vs_5 0.000 0.000 0.000 0.057 0.057 0.057 0.058 0.058 0.058

yeast3 0.804 0.808 0.808 0.784 0.815 0.815 0.787 0.854 0.853

poker-8-9_vs_6 0.135 0.135 0.135 0.486 0.486 0.486 0.460 0.460 0.460

yeast6 0.678 0.678 0.678 0.639 0.653 0.653 0.724 0.803 0.778

yeast5 0.671 0.682 0.682 0.637 0.788 0.775 0.621 0.893 0.853

yeast4 0.317 0.317 0.317 0.412 0.488 0.488 0.448 0.617 0.599

winequality-red-4 0.105 0.105 0.105 0.121 0.121 0.121 0.234 0.240 0.240

abalone-19_vs_10-11-12-13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-20_vs_8-9-10 0.000 0.000 0.000 0.139 0.178 0.178 0.055 0.055 0.055

poker-8-9_vs_5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

abalone-17_vs_7-8-9-10 0.037 0.037 0.037 0.211 0.211 0.211 0.193 0.206 0.206
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D Additional results for surrogate criteria for gradient op-

timisation

Table 8.22: Precision measure values of all compared methods

dataset cosmos
min

cosmos
bal

cosmos
max

focal
loss 0

focall
loss 2

bce

adult 0.89 0.553 0.383 0.683 0.699 0.566

page-blocks0 0.796 0.644 0.374 0.861 0.869 0.713

bank_additional 0.65 0.428 0.331 0.561 0.587 0.463

MiniBooNE_PID 0.995 0.974 0.869 0.956 0.95 0.931

ecoli1 0.802 0.675 0.584 0.802 0.785 0.719

ecoli3 0.603 0.483 0.415 0.647 0.633 0.53

glass0 0.717 0.618 0.495 0.700 0.697 0.645

glass1 0.698 0.593 0.467 0.637 0.651 0.621

haberman 0.577 0.458 0.265 0.447 0.450 0.411

pima 0.774 0.613 0.432 0.633 0.609 0.603

yeast-0-2-5-6_vs_3-7-8-9 0.730 0.428 0.151 0.692 0.673 0.451

yeast-0-3-5-9_vs_7-8 0.577 0.245 0.141 0.567 0.489 0.278

yeast-0-5-6-7-9_vs_4 0.641 0.375 0.220 0.551 0.576 0.439

yeast3 0.777 0.632 0.482 0.782 0.753 0.655

yeast4 0.180 0.130 0.092 0.462 0.489 0.309
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Table 8.23: Recall measure values of all compared methods

dataset cosmos
min

cosmos
bal

cosmos
max

focal
loss 0

focall
loss 2

bce

adult 0.309 0.856 0.980 0.615 0.605 0.810

page-blocks0 0.831 0.932 0.985 0.815 0.800 0.916

bank_additional 0.406 0.901 0.971 0.516 0.519 0.806

MiniBooNE_PID 0.736 0.892 0.979 0.952 0.951 0.970

ecoli1 0.735 0.888 0.967 0.780 0.751 0.858

ecoli3 0.789 0.880 0.931 0.601 0.601 0.829

glass0 0.340 0.851 0.954 0.706 0.717 0.806

glass1 0.229 0.745 0.945 0.624 0.621 0.700

haberman 0.215 0.596 0.995 0.284 0.303 0.504

pima 0.299 0.725 0.969 0.606 0.587 0.693

yeast-0-2-5-6_vs_3-7-8-9 0.451 0.667 0.881 0.477 0.461 0.617

yeast-0-3-5-9_vs_7-8 0.264 0.588 0.808 0.260 0.268 0.480

yeast-0-5-6-7-9_vs_4 0.350 0.698 0.859 0.349 0.369 0.592

yeast3 0.758 0.866 0.919 0.726 0.733 0.827

yeast4 0.756 0.843 0.855 0.262 0.290 0.525
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Table 8.24: bac measure values of all compared methods

dataset cosmos
min

cosmos
bal

cosmos
max

focal
loss 0

focall
loss 2

bce

adult 0.648 0.818 0.739 0.762 0.761 0.806

page-blocks0 0.904 0.937 0.896 0.900 0.893 0.937

bank_additional 0.689 0.874 0.861 0.732 0.736 0.844

MiniBooNE_PID 0.863 0.915 0.799 0.919 0.910 0.893

ecoli1 0.840 0.880 0.880 0.860 0.843 0.878

ecoli3 0.864 0.885 0.888 0.781 0.779 0.872

glass0 0.633 0.795 0.738 0.773 0.779 0.792

glass1 0.585 0.727 0.675 0.713 0.716 0.730

haberman 0.579 0.668 0.501 0.578 0.586 0.621

pima 0.626 0.739 0.642 0.708 0.692 0.723

yeast-0-2-5-6_vs_3-7-8-9 0.716 0.784 0.668 0.726 0.718 0.766

yeast-0-3-5-9_vs_7-8 0.621 0.694 0.632 0.618 0.618 0.670

yeast-0-5-6-7-9_vs_4 0.664 0.784 0.756 0.659 0.669 0.754

yeast3 0.866 0.902 0.896 0.851 0.851 0.886

yeast4 0.816 0.821 0.777 0.625 0.639 0.740
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Table 8.25: F1 score values of all compared methods

dataset cosmos
min

cosmos
bal

cosmos
max

focal
loss 0

focall
loss 2

bce

adult 0.456 0.672 0.551 0.645 0.648 0.666

page-blocks0 0.813 0.761 0.541 0.837 0.832 0.801

bank_additional 0.497 0.580 0.493 0.537 0.549 0.588

MiniBooNE_PID 0.846 0.931 0.920 0.954 0.950 0.950

ecoli1 0.765 0.766 0.726 0.786 0.764 0.780

ecoli3 0.683 0.623 0.574 0.620 0.613 0.645

glass0 0.444 0.713 0.650 0.692 0.701 0.711

glass1 0.339 0.657 0.625 0.628 0.633 0.657

haberman 0.310 0.512 0.419 0.345 0.359 0.449

pima 0.429 0.663 0.597 0.618 0.597 0.644

yeast-0-2-5-6_vs_3-7-8-9 0.544 0.518 0.257 0.558 0.543 0.516

yeast-0-3-5-9_vs_7-8 0.358 0.345 0.240 0.349 0.342 0.349

yeast-0-5-6-7-9_vs_4 0.444 0.483 0.345 0.421 0.443 0.495

yeast3 0.766 0.729 0.629 0.752 0.742 0.729

yeast4 0.29 0.226 0.167 0.326 0.353 0.381
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Table 8.26: Gmean measure values of all compared methods

dataset cosmos
min

cosmos
bal

cosmos
max

focal
loss 0

focall
loss 2

bce

adult 0.551 0.817 0.699 0.747 0.745 0.806

page-blocks0 0.901 0.936 0.892 0.896 0.888 0.936

bank_additional 0.626 0.873 0.853 0.699 0.702 0.843

MiniBooNE_PID 0.854 0.915 0.779 0.919 0.909 0.889

ecoli1 0.833 0.880 0.875 0.855 0.837 0.877

ecoli3 0.860 0.884 0.887 0.757 0.757 0.869

glass0 0.550 0.791 0.704 0.765 0.773 0.788

glass1 0.460 0.724 0.616 0.706 0.708 0.729

haberman 0.446 0.659 0.044 0.495 0.508 0.606

pima 0.532 0.738 0.550 0.700 0.683 0.722

yeast-0-2-5-6_vs_3-7-8-9 0.658 0.774 0.632 0.679 0.668 0.749

yeast-0-3-5-9_vs_7-8 0.504 0.685 0.602 0.499 0.503 0.640

yeast-0-5-6-7-9_vs_4 0.580 0.778 0.743 0.578 0.593 0.732

yeast3 0.859 0.901 0.895 0.841 0.843 0.884

yeast4 0.813 0.820 0.772 0.504 0.531 0.705
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