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Abstract

The imbalanced data pose a significant challenge in the pattern recognition task. When
not countered, it may lead to poor prediction quality and strong bias towards the more
numerous class, which is also usually of less importance. One of the reasons for this diffi-
culty is the way of quality assessment. Traditional measures or objective (loss) functions
usually assume an equal cost of misclassification for each class. This, together with object
number disproportion, may result in a bigger focus on majority class prediction or even
omitting the minority class entirely. The usual solution to this problem - using metrics
aggregating classes’ recognition quality in a more balanced manner- faces the concern
of unclear optimisation direction, as the score itself does not hold information about its
factors, which reflect the performance of the problem’s classes prediction. The answer
to that problem could be multi-objective optimisation (MOO), which allows maximising

classification quality for each class simultaneously.

This dissertation studies the application of multi-objective optimisation techniques in
methods dedicated to imbalanced data classification. The aim of the research is to
substantiate the hypothesis that incorporating M00 in training imbalanced data
classifiers allows obtaining tailored solutions whose quality is no worse than
using single-objective optimisation. The following research questions were formu-

lated and answered to support this claim:

1. Is it feasible to employ MOO in the process of training of the ensemble
classifier, and how does it compare to the ensembles optimised using a

single criterion?

The ensemble method was proposed, employing the MOO algorithm in assigning
weights to committee members. The experiments showed the advantage of util-
ising multiple criteria over models, where weights were optimised based on single

objectives - both simple and aggregated quality metrics.

2. Is it possible to employ M0OO in the preprocessing stage, and how does

it improve the quality of a classification model

1
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The question was answered by a proposition of a hybrid sampling algorithm, where
parameters of sampling areas were optimised utilising the NSGA 1I method. The
conducted research compared the proposed approach with a classifier trained on

original data with no preprocessing, as well as popular sampling techniques.

3. What is the best approach to estimate the quality criteria of the classi-

fiers built using M00?

The study was conducted by comparing three different estimation protocols - hold-
out, testing on the training set, and 5x2 cross-validation. The results were analysed
in terms of the quality of generated Pareto front estimations, the consistency of
performance on training and validation data, and the overall quality of the obtained

solutions.

4. Is it possible to employ M0O gradient methods for the imbalanced data

problem?

To answer the question, the utilisation of the weighted cross-entropy was pro-
posed, aiming to substitute for previously employed quality metrics. The series of
experiments was conducted to determine their applicability to the imbalanced data

problem, as well as their relation with the target criteria.

5. What is the diversity of classifiers from the Pareto front?

The aspect of diversity was considered as a means to support a solution selec-
tion. The study focused on the interpretability of the models originated from MOO

results, and two approaches were proposed as a way to analyse the Pareto fronts.






Streszczenie

Problem danych niezbalansowanych stanowi znaczace wyzwanie w zadaniu rozpoznawa-
nia wzorcéow. Bez podjecia odpowiednich érodkéw moze prowadzi¢ do stabych zdol-
nosci predykcyjnych oraz preferowania decyzji zwiazanych z klasa wiekszosciows. Jedna
z trudnodci tego problemu jest wybor odpowiedniego sposobu oceny jakosci modeli.
Tradycyjne miary oraz funkcje celu (badz straty) zaktadaja rowny koszt nieprawidtowe;
klasyfikacji probek, co wraz z dysproporcja miedzy obiektami moze skutkowaé wiekszym
naciskiem na poprawng predykcje klasy wiekszosciowej, a nawet catkowitym pominieciem
klasy mniejszosciowej. Standardowym rozwiazaniem jest wykorzystanie metryk agregu-
jacych jako$é rozpoznawania poszczegdlnych klas. W wyniku agregacji tracone sa jed-
nak wartosci skltadowych odpowiedzialnych za predykcje konkretnych klas, co skutkuje
brakiem kontroli nad kierunkiem optymalizacji modelu. Odpowiedziag na to mogloby
by¢ zastosowanie optymalizacji wielokryterialnej, ktéra pozwala na jednoczesng poprawe

rozpoznawania wszystkich klas.

Ponizsza rozprawa skupia sie na analizie wykorzystania optymalizacji wielokryterialnej w
metodach przeznaczonych do rozwiazania problemu danych niezbalansowanych. Celem
rozprawy jest uprawdopodobnienie hipotezy, ze wtgczenie optymalizacji wielokryte-
rialnej w trenowanie klasyfikatorow danych niezbalansowanych pozwala na os-
iggniecie rozwigzan dopasowanych do potrzeb uzytkownika, a takze o jakosci
nie gorszej niz metody wykorzystujgce optymalizacje jednokryterialng. Nastepu-
jace pytania badawcze zostaty sformutowane oraz zaadresowane w celu podparcia powyzszego

twierdzenia:

1. Czy jest mozliwe wykorzystanie optymalizacji wielokryterialnej w ucze-

niu zespotu klasyfikatoré6w oraz jak wypada w poréwnaniu do zespoléw
optymalizowanych przy uzyciu pojedynczej funkcji celu?
W pracy zaproponowano metode wykorzystujaca optymalizacje wielokryterialna
do przydzielania wag cztonkom zespotu klasyfikatoréw. Eksperymenty wykazaly
przewage w zastosowaniu wielu kryteriéw nad modelami, ktérych wagi optymali-
zowane byty zgodnie z prostymi i zagregowanymi miarami oceny jakosci.

4
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2. Czy jest mozliwym zastosowanie optymalizacji wielokryterialnej na etapie
przetwarzania wstepnego danych oraz jak to poprawia jakosé klasy-
fikacji?

Odpowiedzia na pytanie byta propozycja hybrydowego algorytmu samplujacego,
ktorego parametry obszaréw probkowania byty optymalizowane przy pomocy metody
NSGA 1I. Przeprowadzone badania poréwnaly zaproponowane podejscie z klasy-
fikatorem wyuczonym na oryginalnych danych, a takze poddanych przetwarzaniu

wstepnemu z wykorzystaniem popularnych technik préobkowania.

3. Jaki jest najlepszy sposdb na estymacje kryteriow jakosci klasyfikatorow

trenowanych przy pomocy optymalizacji wielokryterialnej?

Przeprowadzono badanie poréwnujace trzy rézne protokoty estymacji jakosci mod-
elu - hold-out, testowanie na zbiorze trenujacym oraz walidacje krzyzowa 5x2.
Wyniki zostaty przeanalizowane pod katem jakosci estymowanych frontéw Pareto,
zgodnosci wynikéw otrzymanych na danych testowych i walidacyjnych, a takze

ogoblnej jakosci otrzymanych rozwigzaii.

4. Czy jest mozliwe zastosowanie metod optymalizacji wielokryterialnej

opartych na gradientach w problemie danych niezbalansowanych?

Zeby odpowiedzie¢ na pytanie, zostalo zaproponowane uzycie wazonej entropii
krzyzowej, stuzacej do zastapienia wczesniej wykorzystywanych metryk oceny jakosci.
Seria eksperymentoéw zostala przeprowadzona w celu okreslenia jej uzytecznodci

w problemie danych niezbalansowanych, a takze zgodnosci z kryteriami docelowymi.

5. Jaki jest poziom réznorodnosci klasyfikatoréw z frontu Pareto?

Rozwazono réznorodnosé frontu Pareto w celu wsparcia procesu wyboru rozwigza-
nia. Wywdd skupit sie na interpretowalnosci modeli powstalych w wyniku optymal-
izacji wielokryterialnej i zostaly zaproponowane dwa podejscia do analizy frontu

Pareto.
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Chapter 1

Introduction

Since the beginning of time, people have used data obtained from different observations
and measurements to learn about the surrounding world. The gathered information
about plants’ characteristics, celestial bodies’ movements or specific symptoms allowed
humans to prevent poisoning, predict eclipses or diagnose diseases. Such utilisation of
the data required prior knowledge about the phenomenon bases, for example, in the
form of sets of rules (i.e. bitter taste may indicate that the plant is poisonous) or more
complex mathematical models. These, in turn, demanded long-standing experiments or
measurements together with assessing numerous hypotheses. Still, some dependencies

were too complex or difficult for humans to deduce.

The construction of computers and the development of computer science gave rise to
machine learning - the discipline meant to notice the patterns in data for various reasons
that are hard to find or even invisible to the human eye. Various proposed models aim
to differentiate the objects according to some principles, for example, their types, or
classes - i.e., poisonous or safe plant. They use different approaches and assumptions
to optimise their parameters according to some objective function and thus improve
the prediction quality. However, according to Wolpert’s no free lunch theorem [1], no
machine learning model is predominant for every problem. Therefore, depending on the
nature of the data, the proper method needs to be chosen to obtain the best results.
Moreover, the problems are often marked by additional difficulties which require even

more careful model selection and implementation of specific prevention mechanisms.

One of such challenges is presented in the imbalanced data problem. The problem occurs
when there is a disproportion between the sizes of the classes. In a binary classification
task, the class with more samples is called majority class, and the one with a smaller
population is called minority class. The reason behind the difficulty of classifying imbal-

anced data stems from the way how most of the models’ objective function is formulated.

10
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Figure 1.1: Ezxamples of problems with the disproportion of the class sizes.

Usually, the classical machine learning methods assume that the error on each sample is
equivalently significant, which may lead to a strong bias towards the majority class, as
reducing its prediction error decreases the overall error to a higher degree. Moreover, it
is not always the number of class samples that poses a challenge, but their distribution
in the feature space [2] (Figure 1.1). In a worst-case scenario, it may result in the model
always predicting a sample as belonging to the majority class. However, usually, it is a
prediction of minority class objects that is crucial, especially in domains such as medicine
[3], bank security [4] or computer networks [5]. Very often, in the case of rare illness
diagnosis, card fraud prevention or cyber attack detection, the rarer instances (i.e., sick
patients) are far more important to correctly classify, as their omitting may result in high
human and financial costs. The solution to that could be to always treat the sample as
belonging to the more significant class, but it would also be too costly and may result in

unnecessary treatments or preemptory measures.

One of the problems with tackling imbalanced data is the selection of a proper optimi-
sation criterion. As mentioned earlier, the classical prediction error, or complementary
prediction accuracy, does not suit data with class disproportion, as it often leads to a bias
towards the majority class. There are base quality metrics used for imbalanced data, such
as precision or recall. However, they show only one of the problem classes’ prediction
quality, mostly disregarding the others, and thus tend to lead to the bias towards either
of the problem’s classes. On the other hand, aggregated measures, for example, balanced
accuracy or geometric mean, though taking all of the aspects under consideration, lose
information about each of the model’s properties since they are different functions of the
base metrics [6] (Figure 1.2), and do not allow to steer the model’s quality into the o

desired direction.
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Figure 1.2: Different values of precision and recall resulting in the same geometric mean score.

This thesis proposition of solution to that problem is the employment of multi-objective
optimisation (MOO) algorithms to the training of the imbalanced data classifiers. Opti-
misation of multiple criteria allows to overcome the problem of focusing on one aspect
of the model’s quality, as well as the information loss and randomness of the aggregated
measures. By optimising base metrics corresponding to each of the classes’ recognition,
we can ensure that the model is not biased towards either of them. Furthermore, since
MOO optimisation algorithms result in several solutions, there is a possibility to choose

the predictive model configuration that fits the user’s needs the best.
In compliance with the above motivation, the main research hypothesis is to prove that

Incorporating MOO in training imbalanced data classifiers allows obtaining
customised solutions which quality is no worse than using single-objective

optimisation.

To make the research hypothesis probable, the following research question will be an-

swered in this dissertation:

1. Is it feasible to employ MOO in the process of training of the ensemble classifier,

and how does it compare to the ensembles optimised using a single criterion?

2. Is it possible to employ MOO in the preprocessing stage, and how does it improve

the quality of a classification model?
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3. What is the best approach to estimate the quality criteria of the classifiers built

using MOO?
4. Is it possible to employ MOO gradient methods for the imbalanced data problem?

5. What is the diversity of classifiers from the Pareto front?

The structure of this dissertation is as follows. Chapter 2 describes the background
and related works of the task of machine learning, the imbalanced data problem, multi-
objective optimisation and its applications in the aforementioned. Chapter 3 presents
the first proposed method - the ensemble of classifiers employing MOO to weights opti-
misation. Chapter 4 includes the second proposed approach, where MOO is utilised in a
parameter tuning of a sampling algorithm. Chapter 5 shows the analysis of the applica-
tion of different evaluation protocols in MOO objectives estimation. Chapter 6 proposes a
utilisation of weighted cross-entropies as surrogate criteria for gradient MOO algorithms
and assesses its correspondence to previously used objectives. Chapter 7 examines the
selection of solutions from the estimation of a Pareto front in the context of analysing
and understanding the resulting classification models. Lastly, Chapter 8 concludes the

conducted research and outlines possible future directions.






Chapter 2

Related works

This chapter describes the state of knowledge in the areas related to the
dissertation problem. Firstly, the machine learning task will be defined,
and its experimental evaluation will be discussed. Then, some basic
methods for classification and clustering problems will be presented, with
a focus on the algorithms utilised in the later research. This will be
followed by specific approaches for imbalanced data classification. Next,
the concept of MOO will be described, with examples of the methods,
evaluation metrics and solution selection aiding techniques. Lastly, the
application of MOO in the imbalanced data problem will be researched

and analysed.
2.1 Machine learning task

Machine learning is a part of the Artificial Intelligence discipline aiming to build response
models based on given data without explicit knowledge about the underlying processes
generating samples |7]. The general form of the machine learning model may be presented

as:

y=f(z) (2.1)

where y is the model’s response, and its type varies depending on the nature of the
specific problem. = = [z1,z9, ... ,xn]T, x € X C R” is the vector representing an object
while z; are the problems features, such as pixel colour, petal’s length, network’s traffic

from the previous day or the result of blood pressure test, and X is called feature space

18].

There are different divisions of machine learning tasks depending on, for example, the

representation of acquired knowledge or application [9]. However, the most popular one

15
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Figure 2.1: Categories of machine learning tasks based on the labels availability and type

is due to the type and availability of the objects labels (Figure 2.1). According to that,

we can determine the following categories of machine learning problems [10]:

1. Supervised learning, where the model is presented with labels associated with

each of the instances and its task is to predict the labels of the unknown samples;

2. Unsupervised learning, where the model does not obtain the labels and its task

is to, for example, isolate the groups of samples based on their similarity;
3. Semi-supervised learning, where only part of the data has assigned labels

4. Reinforcement learning, where the model task is to act upon the feedback

received from the environment.

Depending on the task type, different models and algorithms are used. In further part

of the chapter, categories and models relevant to the thesis will be closely described.

2.1.1 Classification

Classification is one of the tasks of supervised learning where there is a finite number
of different labels associated with samples, called classes. The classes could be, for
example, healthy/diseased in the case of illness diagnosis or various types of iris flowers.
The special case is binary classification, when there are only two classes, usually called
positive and negative. Any problem with n classes may be transformed into n binary

problems [11].
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Figure 2.2: Examples of decision regions of different classification models

A classifier aims to map from the feature space to the labels:

D:R" = Q (2.2)

where €2 is the label space. To achieve this, canonical classifiers employ the functions
called the discriminants:

g R" >R i=1,2,...,c (2.3)

which return so-called support for each of the classes. The class with the highest support
is chosen as the final decision. The feature space can be divided into the decision regions
based on the discriminant functions scores. The joints of decision regions are called

decision boundaries [8].

Different classifiers create different decision boundaries even when learning from the same
data (Figure 2.2). This is due to differences in assumptions and underlying mathemat-
ical models, which constitute each model bias, that must be considered when selecting

appropriate solutions to the problem.

The models determine the parameters of their discriminants by optimising specific loss
function, which usually measures the difference between the perfect solution and the
current configuration. The most canonical loss function would be error of misclassifi-
cation, which presents the number of incorrectly predicted samples. However, due to
the nature of many classification algorithms’ parameter optimisation, it is not feasible
to use it explicitly [12]|. Instead, the so-called surrogate losses are employed, which are
the functions with properties allowing their inclusion in the model that still contribute

to the overall decrease of the classifier’s error [13].
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Figure 2.3: The example of clustering of unlabelled data

2.1.2 Clustering

Clustering is one of the tasks of unsupervised learning, meaning that the labels of the
samples are unavailable during model training [14]. Its aim is to assign samples to the

groups, called clusters. The example of clustering is presented in Figure 2.3.

One of the essential concepts of the clustering domain is similarity, as there is an assump-
tion that the samples from the same clusters should be as similar as possible, and objects
from different clusters should differ significantly. In this context, the similarity of two
objects denotes their proximity, and thus, distance metrics are employed as the measure
[15]. The most popular and default for many algorithms is Euclidean distance measure,
which is a special case of Minkowski distance (2.4) when p = 2. Another example is

cosine similarity (2.5) [15].

d(,y) = (Zm - yr> ' (2.4)
=1

T Xy

d(z,y) =
(iRl

2.2 Experimental design

The basis of the scientific inquiry is a formulation of the hypothesis, which is then
verified by experimentation. Although many computer science theories used to be proved
by employing mathematics and theoretical debate, nowadays, new knowledge is mainly

derived from practical experiments, including the machine learning domain [16]. It is



Chapter 2. Related works 19

EXPERIMENTAL LOOP

Yy T M e EmEmmmmm o= -
V4 \
' [ senem L -~
] V4 AN |
1 | 11

I cLassiFication |
1 ALGORITHM 1
1 | 11
1 1 11
| 4 \ U |
1 DATA SPLIT | PREPROCESSING 11
1 a1
: RE Dy -
| 1 11
I I TEg;'TNG prepicTIoN N
| 1 11
1 \ 11
\ NI et

MODEL EVALUATION
A Y 4
N o mm o o mm o mm mm o mm mm m mm mm o mm mm o mm mm e mm -

Figure 2.4: A scheme of the machine learning experimental pipeline

especially crucial to take appropriate measures while designing an experiment, both to
improve the quality of the proposed method and to make its performance more credible

and reproducible.

2.2.1 Experimental pipeline

The scheme of the machine learning experiment is presented in Figure 2.4. The experi-
ment consists of two main parts: training the machine learning model and its evaluation,
also called post-processing [17]. Both processes should use different subsets of original
data obtained by data splitting. Before the data is fed to the algorithm, it needs to be
preprocessed. The preprocessing is a set of techniques meant to modify original data to

improve or even enable classifier training [18|. It includes:

e data cleaning and imputation - as most of the classification models cannot handle
not numerical data, some features, for example, categorical, must be transformed

into numbers, and missing data need to be filled or, if feasible, discarded;

e feature engineering - consisting of feature selection and reduction- is employed
to remove attributes detrimental to the prediction quality or create new features
enhancing the classification. It may also lead to a decrease in the cost of data
acquisition, especially important in the cost-sensitive learning [19], as well as de-
crease the impact of the curse of dimensionality, which hinders models’ ability to

generalise from sparse data;
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e data sampling - crucial for handling noise data and detecting outliers, may improve
the generalisation abilities of the model and prevent overfitting. It may also be
employed in order to reduce large data sets to optimise computation complexity

[18]. Moreover, it is one of the ways of handling data imbalance.

Some processing, like data sampling, can be only performed on data used to train the
model, as its employment on evaluation sets might falsify the results. Others, for exam-
ple, data imputation and attribute generation, are crucial as the classifier is adjusted to

the specific feature space.

The whole pipeline is a part of the experimental loop. The number of repetitions of the
loop, as well as specific data split configuration, depend on the established evaluation

protocol.

2.2.2 Evaluation protocol

Evaluation protocol determines how to assess classification algorithms so the obtained
results are as close to reality as possible. To achieve that, it is crucial to examine how
the models predict data not seen before. There are a few different strategies for model

evaluation:

1. Testing on training set - utilising the same data the model was trained on.
It is unacceptable to employ this approach for model assessing and comparison
because it does not test the generalisation capabilities of the method, and leads
to overoptimistic resuls, as its high quality scores might be an effect of the model
remembering the samples instead of learning from them [8|. Nevertheless, many
classification algorithms use this method during parameter optimisation, sometimes
together with some procedures that prevent overfitting, such as pruning or depth

control in decision trees or limiting iterations in neural networks.

2. Hold-out is a strategy of splitting data into two disjoint sets of different sizes. The
set with more samples is used for training, and the other for model testing [20]. It is
the simplest way to ensure that the algorithm is evaluated using samples different
from the one it learnt from. However, it is challenging to select the ratio of the
training and test sets, as a model trained on more data is better at estimating real
distribution, but the less data is used on testing, the less reliable it becomes [20].
Moreover, due to no replication of the split, the quality estimation is less credible,
and the model’s good performance may be caused by intentional or unintentional

data picking - selecting the data subsets that fit the algorithm the best. Still, with
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the sufficient data volume and ensuring the same distribution in training and test

set, the protocol allows precise error estimations |21].

3. K-fold cross validation - in this protocol the data is split into k sets of the same
size, called folds. Fach fold is then utilised for testing, while the rest is employed
for the classifier training. That gives k iterations of assessing the estimator, which
results are then averaged [7]. k usually equals 10 or 30. In general, the smaller
the dataset, the bigger k£ should be chosen, leading even be set to the number of
samples so that the test set is degraded to a single object. This approach is called
leave-one-out [22|. The advantage of the k-fold validation in relation to previous
protocols is a decrease in the influence of the split and a better estimation of the real
quality of the tested classifier. However, since only a small part (%) of the whole
dataset is used for validation, still the estimation might be inaccurate. Moreover,
there is a significant dependency between each of the training sets, as every pair

share 22 data [7].

4. 5 x 2 cross validation - is an improvement of k-fold cross validation [23|. In this
strategy, the data is split into two equal sets - the first is employed for training
and the other for testing. Then, the second is used for classifier training, and the
first is for validation. The whole procedure is repeated 5 times with shuffling the
samples in between splits. The value of 5 repetitions is determined experimentally
as a trade-off since with too few iterations, the noise in the variance of results has
too significant of an impact on the final estimation, and with too many repetitions,
there is too big of an influence of the sets dependency [23]. The biggest benefit
of this protocol is its quality estimation and the splits in which each sample is
used equally for training and testing. However, splitting the data in half can be
disadvantageous in the case of small datasets, as there might be too few objects

for the model to learn from.

The described protocols are presented in Figure 2.5.

In all of the described protocols, if the data split occurs, it should be random for better
quality estimation. However, to better replicate the distribution of the data, especially in
a case of imbalanced data, the split should be stratified, meaning that the proportion of

the problem’s classes in the training and test set are the same as in the original dataset.

2.2.3 Results analysis

When experiments are finished, and models’ predictions on test data are obtained, their

results should be processed and analysed. The post-processing of the experiments can
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Figure 2.5: Visualisations of different experimental protocols

be divided into two parts - quality measures calculation and statistical analysis.

2.2.3.1 Quality measures

Most of the prediction quality measures for classification are based on the so-called
confusion matriz (Fig. 2.6) [24]. The confusion matrix summarises how many of the
samples were correctly classified. For the binary problems, there are four segments of
the table:

1. True positives (TP) - number of objects from the positive class that were correctly

predicted by the model
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PREDICTED LABELS

NEGATIVE

Figure 2.6: Confusion matriz

2. False positives (FP) - number of objects from the negative class that were pre-

dicted by the model as positive

3. True negatives (TN) - number of objects from the negative class that were cor-

rectly predicted by the model

4. False negatives (FN) - number of objects from the positive class that were pre-

dicted by the model as negative

The most popular general purpose prediction quality metric is accuracy (2.6) or the
complementary error rate (2.7) [24]. These measures inform how many of the samples

were correctly or incorrectly classified compared to the whole dataset.

TP + TN
TP +FP+ TN+ FN

accuracy = (2.6)

. FP + FN 2
rrorTate = Tp T FP + TN 4 FN ‘

Both accuracy and error rate treat every sample prediction with the same importance.
However, this assumption is inadequate in the case of class imbalance since, for example,
high accuracy values might not indicate good general performance, but disregarding the

minority class [25].

One solution for that is the employment of the class-specific measures, such as recall
(otherwise called sensitivity or true positive ratio - TPR) (2.8), specificity (2.9) or precision
(2.10). The first two metrics determine what portion of positive and negative classes are

correctly classified, whereas precision informs how many of the samples predicted as
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positive are actually positive. The main disadvantage of class-specific quality metrics
is the fact that they do not indicate the other problem’s class prediction, which might
cause the model’s bias towards the considered class and hinder the analysis of the results

and, as a consequence, require presenting various quality assessments [25].

TP
Il = ——— 2.
reca TP 1 FN (2.8)
e TN
SPECZfZCZty = m (29)
TP
810N = ————— 2.10
precision = s (2.10)

Another group of quality measures are aggregated metrics, which are the functions of
base metrics such as precision or recall. balanced accuracy (BAC) [26] is the average of

recall and specificity:

o recall + speci ficity

: (2.11)

Its main advantage over previous measures is that it considers both classes equally and

decreases when one of the classes is predicted poorly.

Gmean (geometric mean) score is a similar measure employing both recall and specificity

[27]. However, instead of arithmetic, the geometric average is used:

Gmeany = +/recall * speci ficity (2.12)

To focus more on the correct minority class prediction, another version of Gmean was

also proposed [28], employing recall and precision:

Gmeany = \/recall x precision (2.13)

Another widely popular imbalanced data quality measure is Fg score, which is the har-

monic mean of precision and recall:

precision * recall

Fgscore = (1+ 8% (2.14)

B2precision + recall

B parameter is a weighting factor between precision and recall and should be higher
when predicting all of the minority samples is more important and lower if its correct
classification proves significant. Usually, both factors are treated equally and 5 = 1.
However, some studies claimed that it should be selected more thoroughly, for example,
by being dependent on minority and majority classes ratio, to decrease the bias towards

majority class [29].
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Another way of classifier evaluation is by employing the ROC - receiver operating charac-
teristic curve, showing the relationship between true positive rate (TPR) and false positive
rate. The curve represents one classifier with different parameter values [17] or different
prediction thresholds [30]. If only one version of the model is considered, then ROC has
the form of a single point. The measure encapsulating the ROC curve is area under ROC
curve (AUC), which, as the name suggests, is obtained by calculating the area between
the z-axis and the ROC curve with one as a limit. In the case of binary classification and

single point 'curves’, the AUC measure is the same as the BAC score.

Several other classification metrics were proposed, such as different variants of Auc [31-
33|, Index of Balanced Accuracy [34], Matthews Correlation Coefficient [35|, Cohen’s

k-measure [36] and many more.

Studies have shown that even similar evaluation metrics differ in their results and should
not be easily omitted, as very often the differences between compared methods are very
tight, and the best model might vary depending on the selected measure [37]. Neverthe-
less, to avoid overly complicating the analysis of the evaluation results, the number of

presented quality measures should be reasonable [25].

2.2.3.2 Statistical evaluation

Once the experiments’ results are obtained and measures calculated, the statistical eval-
uation must be conducted since the difference between each classifier scores might not
be significant and stem not from the model’s better quality but from specific data sam-
pling or the method’s randomness [38]. The selection of statistical tests depends on the

numbers of compared classifiers, datasets and the distribution of the results.

The first group of statistical tests is dedicated to comparing two models on one dataset.
One such method is McNemars test, which examines whether the difference between
unique mistakes made by both classifiers is significant [23]. The advantage of McNe-
mar’s test is its low type 1 error (when the significance in the difference in classifiers’
performance is accepted, while in truth, there are none). However, it can be conducted
only for one run, meaning that it has to be assumed that there is little variance between

employed and real data [23].

As hold-out should not be employed if possible, other tests must be considered. Paired t-
test with correction [39] could be used in a case of k-fold cross validation and combined 512
F-test [40] for 5x2 cross-validation protocol. Both tests check whether the mean of the
differences of the classifier’s prediction quality on all of the folds is close to 0, employing
appropriate statistics which consider each protocol’s assumptions, for example, the fact

that the data samples in each fold are not independent.
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The tests above cannot be employed to make a more general comparison over multiple
datasets, as the differences in quality on different data are not commensurable (as they
do not come from the same distribution) [41]. One of the tests dedicated to comparing
two methods on several problems is Wilcozon sign-rank test [42]. Instead of calculating
statistics based directly on quality disparity values, the test ranks the differences and
employs their sums. Another way of statistical evaluation in such a scenario is signed test
[43], which only counts wins of every classifier and is based on the intuition that when
of similar quality, each of the models should win approximately half the time. Neither
of the tests assumes the normality of the distribution of the results, which, on the one
hand, makes them more applicable, but on the other, weaker than different parametric
tests, such as the paired t-test [41]. As the Wilcoxon test takes into consideration not
only how many times but also with what magnitude the model won, it is stronger and

shows the significance of the results more often than the signed test [41].

The last group of tests is dedicated to comparing more than two classifiers. Such evalu-
ation consists of two parts: firstly, the test is conducted to examine whether there is a
significant difference in multiple models’ performance, then a post-hoc test is employed
to determine which of the compared algorithms is better than the others [41]. One of the
most popular tests for comparing multiple models is ANOVA (analysis of variance) [44],
with Tukey post-hoc test [45]. The main disadvantage of the ANOVA is that it assumes
the normality and sphericity of the data distribution, which is not granted in the case
of classifiers results [41]. Friedman test [46] is nonparametric equivalent to the ANOVA.
It ranks performances for every problem and then calculates the statistic based on the
average rank of each model. If the determined statistic proves the significance of the
results, the Nemenyi post-hoc test can be employed, which calculates critical difference
based on a number of compared algorithms and evaluated datasets. The critical differ-
ence determines how much the average rank of the model must differ to verify statistical

dominance.

Statistical evaluation is essential for the credibility of the experiments’ results. However,
it is crucial to select and analyse the results of the statistical test correctly. In literature,
there are occurrences of improper statistical evaluation, such as using multiple pairwise
tests to compare several versions of the models [43] or employing parametric assessments
without determining their assumptions fulfilment [41]. Moreover, the results of statistical
tests might be manipulated by adequate selection of the data splits or pool of compared

algorithms [38].

It must be noted that there are some critics to the established statistical evaluation
methodology, both with the methods used and drawn conclusions. They lead to propo-

sition of different approaches, such as Bayesian analysis [47].
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2.3 Chosen machine learning algorithms

2.3.1 Naive Bayes Classifier

The Naive Bayes Classifier is an example of a probabilistic estimation model. It uses a
posteriori class probabilities to select the class with the smallest risk of wrong predic-
tion. The term naive comes from the assumption that each of the problem’s features is

conditionally independent [8]. The formula for choosing the label is as follows:

n
9 = arg max P(y) H P(x; | y) (2.15)

Y i=1
where P(y)are the a priori probabilities of the classes and z; are the consecutive features.
Different variants of Naive Bayes models use distinct assumptions about features’ distri-
bution; for example, the Gaussian Naive Bayes classifier assumes that the distributions

are normal.

2.3.2 K Nearest Neighbour Classifier

K Nearest Neighbour Classifier (KNN) is an example of a density estimator, aiming to
predict samples’ classes without any knowledge about their distributions. It assumes
that instances with the same labels are somehow similar to each other and lay in close
proximity in the feature space [48]. When predicting the label of the samples, the model
searches for k instances from earlier obtained data closest to the examined point. The
label that belongs to the majority of such samples is selected as the prediction (Figure
2.7). KNN model is often called lazy learner, as during training, it does not optimise any
discriminant function but checks the data during the prediction. The only parameters of
the KNN model are the distance metric and k value. The most popular distance measure
is Euclidean metric 2.4. The appropriate selection of the value of nearest samples is
crucial and depends on the problem characteristic, such as the number of instances,
classes or their disproportion. Usually, k£ is chosen to be odd, for example, 3 or 5, to

prevent draws.

2.3.3 Decision Tree Classifier

Decision Tree Classifier is a sequential model consisting of a set of attribute values tests.
Each test, usually checking a single feature, creates a branch leading to a node with
either another decision rule or the final response (class label) called a leaf [49]. The

example of the decision process is presented in Figure 2.8.
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Figure 2.8: Visualisation of the decision tree trained on iris dataset

During training, each node test is selected based on the split criterion - each potential
feature space split is evaluated, and the one with the best score is executed. There are

several split measures, for example, Information Gain (2.16) or Gini impurity (2.18) [50].

InformationGain(x;, D) = Entropy(y, D) — Z P,Entropy(y, Dy) (2.16)

VET;
where z; is examined feature, v are different values of z;, P, is a relative frequency of

value v, and

Entropy(y, D) = Y —pclogs pe (2.17)
cey
while
C
Gini(D)=1-Y P} (2.18)
=1

where P; is a relative frequency of the class i in the examined node.
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Figure 2.9: Ezample of transformation p(x1,x2) = (1 * T1, T2 * T2)

The biggest advantages of decision trees are their interpretability [49] and flexibility, as
they are part of more complex and acclaimed algorithms such as Random Forest [51] or

XGBoost [52].

2.3.4 Support Vector Machines

Support Vector Machines (svM) [53] aim is to find the hyperplane dividing the problem’s
classes. Since many problems are not linearly separable, to achieve this, the algorithm
converts the samples to other- usually higher dimensional- space, where such partition is
possible, using some mapping ¢(z) (Figure 2.9). To reduce calculation, the svMs employ
so called kernel trick, when instead using function ¢ explicitly, they use kernel function

K that equals the dot product of two vectors [54]

K (x4, 2p) = ¢(2a) - (). (2.19)

Some examples of popular kernels are polynomial (2.20) or Gaussian RBF (2.21)

K(xg,xp) = (g - 2p + 1) (2.20)
T
K(xq,p) = exp <—Hxaz(;b”) (2.21)

where p is a chosen polynomial degree, r is added bias and ¢ is tuning parameter.
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2.3.5 Artificial Neuron Networks

Artificial Neural Networks (ANN) are models designed to mimic the way of working of
the human brain [55|. They are composed of the processing units called neurons (Figure
2.10), which consist of:

e input vector u = [u1, ua, ..., ug
e weights vector w = [wy, ws, ..., wg]
e a bias b

activation function ¢

The result output v of the neuron has a form [8]:

v=2¢ (Z wiu; + b) (2.22)
=1

Multiple activation functions where proposed, for example heaviside step 2.23 or rectified

Figure 2.10: Neuron unit scheme

linear unit (relu) 2.24 function:

0 z<0

o) = (2.23)
1 >0
0 <0

o(z) = (2.24)
r x>0

Neuron processing units are connected in a structured way, aligned in connected layers.
One of the easiest and most popular neural network models is Multilayer Perceptron
(mLp) (Figure 2.11). The discriminant function of the MLP model depends on the number
of layers and its activation, partitioning data into two planes with one layer and creating

more complex regions the deeper it gets [56]. Another example of models is convolutional
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an

Figure 2.11: Ezample of multilayer perceptron

neural networks (CNN) for an image or sequential data [57] or transformers for natural

language processing [58].

During training, the weights of the neuron connections are usually set at random and
then optimised based on the intended output using a technique called back propagation,
where the difference between obtained and true predictions influence each of the layers
sequentially [56]. There are several ways of optimising network parameters, but gradient
methods are the most popular. One of them is stochastic gradient descent calculating

the weights as follows [59] :

Ol xe, ye; wy)

= (2.25)

W41 = W — o C

where (2, y¢; wy) is selected loss function which we want to minimise in the model, oy
is a learning rate and can be time dependent and C' is positive-definite matrix. A more
advanced neural network optimiser is Adam (adaptive moment estimation) [60], which,

apart from explicitly using loss function gradient, also utilises its momentums.

As gradients are used to optimise neural network parameters, it is crucial that a loss

function is differentiable.

2.3.6 Ensemble learning

Ensembles of classifiers are the models which combine several estimators and aggregate
their predictions. Classifier committees have their foundations, among others, in Francis
Galton’s concept of wisdom of the crowd [61] and Cordocet’s jury theorem [62]. The
latter proves that in a situation when there is a group of independent estimators of equal
quality (although better than random) aggregated by selecting the response stated by
the majority:

1. The overall committee quality is better than the quality of a single member;
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2. The quality increases with the increase in committee size.

There are, however, some counterarguments that independence between classifiers is
not a sufficient condition and that it is error committing between models that must be

independent [63].

This fact, together with modularity and the ability to decompose the problem, resulting
in more complex decision boundaries, lead to the good quality and popularity of the

ensemble methods [64].

An ensemble model consists of two components: a pool of estimators and a combiner
aggregating their predictions (Figure 2.12) [8]. One of the most important aspects of the
selection and training of ensemble members is their diversity [65], as similar classifiers
tend to make the same mistakes - thus, there is no benefit in their combination. There
are different ways of assuring the diversity of estimators, and they can be assigned into

three categories |64]:

1. diversity by data alteration - meaning that each of the classifiers is trained using
different data obtained from the original set; it can be done for example by selecting
different subsets using bootstrapping. Another strategy is to train classifiers using

different problem features [65]

2. diversity in classification algorithms - as different classifiers have different biases,
combining them may lead to more complex decision regions and quality improve-
ment. The diversity might be in general classification models (e.g., KNN, SVM, etc.),
in that case, an ensemble is called heterogeneous, or in algorithms parameters (e.g.,
different kernel functions in support vector machines or learning rates in neural

networks) [8].

3. diversity by output manipulation - refers mostly to multi-class problem decomposi-
tion by, for example, binarisation with techniques such as one-vs-one, one-vs-all or
Error-Correcting Output Codes (ECOC) [66], where each of the ensemble members
trains from a different subproblem (i.e. two of the classes distinction) and their

output is later aggregated in a way to match the main problem’s classes.

Depending on the chosen combiner and specific problem, it may be necessary to conduct
a pruning procedure to reduce the ensemble size. It is especially important when train-
ing members on subspaces of data (both vertical and orthogonal), as some classifiers’
contribution might be detrimental to the overall committee’s quality [67]. One of the
examples of pruning is by choosing the n best classifiers or by greed search [8]. Another

example is to use some kind of metaheuristic, such as a genetic algorithm [68].
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Figure 2.12: Scheme of an ensemble classifier

The other crucial aspect of ensemble learning is the way of aggregating members’ predic-
tions. The most basic way of combining classifiers is via the majority voting, where the
response given by the biggest number of estimators is chosen as the final response [8]. A
slightly more complex and popular one is weighted majority voting, where each classifier
is assigned a weight, influencing their contribution in the final prediction. The response

from the model using this type of combiner is as follows [17]:

U(z) = arjgeljl\l/tax Z[\Ilk(a:) = jlw; (2.26)

where w; is the weight of i-th ensemble member and [] stands for Inverson’s bracket:

1 when x = true
[z] = (2.27)
0 when x = false

There are a few different ways to assign weights to the classifier [17], among others:

e each classifier has one weight assigned, for example, proportionate to its accuracy
18]

e weights are assigned to each classifier for each class, for example, based on its recall
[69]

e as above, but additionally weights depend on z [17]

Another way of aggregating members’ decisions is to utilise meta-learning methods -

classifiers trained on the other estimators’ prediction [64]. In this case, the training
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set has the same number of samples as the original set used to train the committee
members, but the number of features depends on the ensemble size. Various classification

algorithms could be employed, for example, Naive Bayes classifier [8] or MLP |70].

Instead of basing the response on labels returned by base classifiers, estimators’ confi-
dence can also be taken into account, for example, in the form of each class’s support
[71].

There are several ensemble models and strategies. One of the most popular to employ

or improve are:

e Bagging ensemble (Bootstrap aggregating) |72] is an ensemble method utilising
bootstrapping to select data for each member training. The samples are drawn from
the original set with replacement, meaning that each object may appear more than
once. Members’ predictions are aggregated via majority voting. This technique is
especially prominent while employing unstable classification algorithms (meaning
that a slight change in data creates a significant change in the decision boundaries).

such as Decision Trees;

e AdaBoost (Adaptive Boosting) [73] is an ensemble algorithm employing boosting
strategy, meant to improve each iteration of the model. In this algorithm, each of
the data samples is assigned a weight, which is sequentially increased or decreased
based on its difficulty, calculated as the examined estimator’s exponential loss. This
technique ensures that as the generation of ensemble members proceeds, there is a
bigger focus on the samples that prove difficult to predict. The crucial assumption
of the algorithm is that it utilises weak learners, meaning that at the base, their
quality is slightly better than random and that their premised decision boundaries
are not too complex so that there is the possibility to improve their quality and to
prevent overfitting. Weighted majority voting is used to aggregate the members’
predictions. Instead of adding new estimators one by one in greedy approach, the

whole ensemble can be optimised using gradient, just like in XGBoost model [52]

e Random Forest [51] is an ensemble consisting of Decision Trees. Each tree is created
using a bagging procedure. Additionally, to introduce even more randomness, the
subset of random features is drawn for each split, and the best choice of attribute
is selected from that group, instead of from the whole feature space. Moreover, the
trees created utilising this technique are not pruned. Decisions of the members of
the ensemble are then aggregated using majority voting. One of the most significant
advantages of Random Forest ensemble is its generalisation abilities, even without

parameters tuning, and its robustness against noisy samples [74].
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2.3.7 Clustering algorithms

There are many approaches to the clustering problem. One of the categories of clustering
methods is algorithms based on the partition, which aim to divide the feature space by
finding the centres of the clusters [75]. One of the most popular examples is K-means
algorithm|76]. Its goal is to find k centroids that would minimise the distances to cluster
members. The scheme of the K-means algorithm is as follows:

1. Initialise clusters centers c1,ca, ..., Ck

2. Assign samples to clusters by finding for each x;

arg min d(z;, ¢;)
j€{1727»k}

3. For each cluster C1, (s, ..., C); update its center

1
= e 2

4. Calculate the error FE

k
B=Y Sl
i=1 zeC}
5. Repeat until E does not change significantly or cluster memberships no longer

changes

The biggest disadvantage of the partitioning algorithms is their dependence on the k
parameter, which has to be selected based on expert knowledge, problem constraints
or extensive experimentation. Multiple measures were proposed to determine the best
number of clusters [77]. Nonetheless, they tend to favour the least or the most groups
possible. Another weakness of K-means and other centroid-based methods is that they

are not appropriate for non-convex data.

Another clustering strategy is to group samples based on their density [75]. Methods of
this type make an assumption that data in the dense areas belongs to the same clus-
ter. One such algorithm is DBSCAN [78], which connects points based on their density-
reachability, that is, their appropriate proximity (lesser than given €) and being sur-
rounded by different objects. OPTICS [79] is an expansion to DBSCAN, computing the
clusters for different values of the neighbourhood size. Both of the methods assume the
existence of noise - samples not belonging to any of the clusters. Moreover, selecting the
value € is crucial and has the biggest influence on the created clusters and determining

noise objects.



Chapter 2. Related works 36

2.4 Methods for imbalanced data

The problem of data imbalance poses a significant challenge since it affects correct recog-
nition of the quintessential samples, such as occurrences of fraud or network attacks,
which very often are not as numerous as less important objects. There were proposed
multiple approaches to countering class imbalance in data, which can be grouped into

three categories [80]:

e data-level methods, which aim to balance classes ratio by adding or removing sam-

ples;

e algorithm-level methods, that change pattern recognition algorithm to take all of

the classes into consideration;

e hybrid methods, which combine both of the above, often in the form of classifiers

ensembles.

2.4.1 Data-level approaches

The first group focuses on modifying the distribution of the classes by, for example,
removing or generating new samples, which can be later used to train a classifier not
adjusted to the skewed data. The most basic methods are random under- and oversam-
pler, which randomly remove majority class samples or duplicate minority class samples.
They are computationally low cost, however they might lead to the erasure of the cru-
cial information or enhancement of the noise [80], which is the reason why most of the

sampling methods employ more guided techniques.

One of the most popular oversampling algorithms is Synthetic Minority Over-Sampling
Technique (SMOTE), which generates new objects by interpolating selected minority sam-
ples and their randomly chosen nearest neighbours [81]. The algorithm allows the broad-
ening of the minority class decision regions and better generalisation. However, it may
also result in amplifying the influence of noise samples or even creating new ones. Many
algorithms based on SMOTE were proposed to toggle its problem with creating unneces-
sary detrimental samples [82|. Borderline SMOTE focuses on creating samples around
borders of minority class clusters so that the decision regions are better defined and
potentially noise objects ignored [83]. On the other hand, Adaptive Synthetic Sampling
Approach (ADASYN) creates more samples around minority class objects that may be
harder to predict because of their surroundings [84]. Other approaches include generat-
ing new samples and removing the ones which are detrimental to the prediction [85, 86|,

modifying how the points are interpolated [87, 88|, or employing SMOTE in the clusters



Chapter 2. Related works 37

of samples determined for example by K-Means algorithm [89, 90|. There were also pro-
posed methods, such as DeepSMOTE [91], incorporating SMOTE-like points generation

into deep learning models.

Another method for data preprocessing is undersampling, which removes majority class
samples. Many early algorithms, such as Condensed Nearest Neighbour (CNN) [92], Edited
Nearest Neighbour (ENN) [93] or Tomek Links [94], were based on nearest neighbour ap-
proach. CNN removes samples that do not change the decision of the classifier model.
ENN removes samples in which the majority of neighbours are from different classes. The
last algorithm removes so-called Tomek links, that is, objects with the nearest neighbour
from another class. In the case of imbalanced data, each method is conducted on samples
from the majority class. The problem with these methods is that they do not guarantee
the balancing of the classes and may not improve the recognition of the minority class,
especially in the case of a significant disproportion between classes. Clustering-based
undersampling divides majority class samples into clusters and leaves only one repre-
sentative from each group [95], while Radial-Based Undersampling removes majority
class samples with the biggest mutual-class potential [96] or Fvolutionary Undersam-
pling which employs evolutionary algorithm to select optimal subset of the training set
[97]. The biggest disadvantage of undersampling techniques is that they decrease the

size of training sets, which can be detrimental to the predictive abilities of the classifiers.

Hybrid sampling algorithms combine both over and undersampling, improving minority
class recognition by both creating new examples and cleaning the areas of interest. One
such technique is a combine cleaning and resampling algorithm (CCR) and its radial-based
modification (RB-CCR), which cleans majority class in the areas around minority class
samples, with the possible variant of deleting them, and populate it with new synthetic
points [98, 99|. Different approaches examples are to employ SVM to delete majority
class samples far from the decision boundary and then perform SMOTE on the groups of
the remaining set [100] or dividing training data into clusters and performing over- or

undersampling based on the number of minority class samples [101].

Figure 2.13 presents the examples of results of different over- and undersampling algo-

rithms.

2.4.2 Algorithm-level approaches

Another way to deal with imbalanced data problem is to adapt the classification al-
gorithms so that they do not ignore the disproportion between samples[80]. One such

approach is cost-sensitive learning, which takes into consideration the cost coming from
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Figure 2.13: Ezxamples of different sampling algorithms processing

the misclassification of the objects or from data acquisition [102]. An example of accom-
modating differences in class importance is to assign higher weights and misclassification
costs to the minority class samples in models like KNNs [103], svMs [104, 105] or Naive
Bayes classifier [106]. In the case of neural networks, the most straightforward and
popular algorithm-level approach is to employ a loss function that differentiates class in-
fluences [107]. Several optimisation objectives were proposed, such as Mean False Error

[108], which calculates the mean error of each class prediction separately:

N
1 N
FPE =+ E 1 (yi — 9i)° (2.28)
1=
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MFE = FPE + FNE (2.30)

Where FPE and FINE are false positive and negative errors, respectively, N and P are
a number of negative (majority) and positive (minority) samples, y; is i-th output of the
model while ¢; is i-th true value. Mean Squared False Error is the improvement of MFE,
which utilises both false positive and negative errors; however, it aggregates them in a
different manner so that it is more sensitive to the minority class recognition mistakes
[108]:

MSFE = FPE? + FNFE?> (2.31)

Another approach would be to employ cross-entropy loss function with appropriate class
weights [109]:

C
Z yi] log pi (2.32)

Where w; is the weight of the i-th class and p; is the model’s support for the i-th
class. The weights should be normalised, either before assignment or during samples’

loss aggregation.

The other proposed loss function is focal loss [110], which is a different modification of
basic cross-entropy but with a modulating factor that, apart from compensating for class

imbalance, also forces the model to focus on harder examples:

1 _pz Wlogpl (233)

HMQ

Where v is the tuning parameter.

The main challenge of cost-sensitive learning and weight assignment is determining the
costs of misclassification in cases when it is not given by experts. Common approaches
are setting weights proportional to the ratio of class sizes [109] or optimising them based

on the performance objective [103].



Chapter 2. Related works 40

2.4.3 Hybrid approaches

Finally, the last methodology is a hybrid approach combining sampling and algorithm
adjustment. The common method to merge the two techniques is in the form of an
ensemble of classifiers, where sampling is used to provide diversity in data utilised in
each member training, and their predictions are aggregated in a way fitting imbalance
problem [111]. The bagging technique is altered to better suit skewed class ratio by
changing the way each of the subsets is drawn from the original data by, for example,
always choosing all of the minority samples and only bootstrapping from majority class
[112], drawing from both of the classes separately to obtain subsets which are "roughly
balanced" [113], differentiate the probability of being drawn for every sample based on its
type and neighbours [114], or employ sampling methods, such as SMOTE, either during
bootstrapping [115] or after to balance individual subsets [114, 116]. Boosting algo-
rithms are also enhanced by adding techniques to deal with data imbalance, for example,
in the form of different samplers such as SMOTE [117], Random Undersampling [118] or
Evolutionary Undersampling [119]. Another proposition is to assign bigger weights for
boosting the minority class samples, especially at the borders of classes [120]. Ensemble
learning is also a good approach to decrease the risk arising from undesirable sampling
since data can be split and processed multiple times, separately for every committee
member. For example, [121] proposes dividing majority class samples randomly into
bins and combining each group with the whole minority class, with weighting each of the
resulting classifiers based on the predicted object’s placement in feature space. On the
other hand, in [122] ensemble is built on cost-sensitive decision trees, which are trained
on different subspaces of features and pruned based on an evolutionary optimisation al-
gorithm, while [123] constructs and ensemble from cost-sensitive neural networks, which
differ in the cost assign to both of the classes. Lastly, some problems are naturally mod-
ular, such as stream learning or multiclass classification, thus ensembles employment is
widely popular. For imbalanced data streams, each chunk of data might be preprocessed
to balance the classes by using different sampling algorithms [124] or by aggregating
historic objects [125, 126]. Resulting estimators are then weighted based on measures
appropriate for class disproportion, such as BAC [124] or Hellinger’s distance [127]. In the
case of classification with multiple classes, one solution could be to decompose the prob-
lem into smaller ones, for example, recognising one class [128] or differentiating between

two classes [129], where imbalance would have less of the impact on the final prediction.
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2.5 Multi-objective optimisation

The goal of multi-objective optimisation (MOO), as opposed to traditional single-objective
optimisation (SO0), is to optimise more than one criterion at the same time [130]. For-
mally, for the problem with m objective functions f; : X - R, ..., fi, : X - R with X

as solution space, where m > 1, the aim of optimisation algorithm is to

minimise f(x) = (fi(x), fo(x),..., fm(x)), z€ X (2.34)

The simplest, but also popular, approach is to reduced the problem to single-objective
optimisation by aggregating the criteria into one function, although it does not guar-
antee obtaining the optimal value for any of the factors [131]. Very often, the criteria
somehow contradict each other, for example, the price and quality, and it is impossi-
ble to find a solution optimal for every objective simultaneously as well as determine
which solution is better than the rest. For this reason in a multi-objective environ-
ment, two solutions are compared in the context of Pareto dominance [132|, which
is defined as follows: given two vectors u = [u1,...,un| = [fi(x1),..., fm(z1)] and
v=[v1,...,0n] = [fi(x2),..., fm(x2)] v is Pareto dominated by u (denoted u <pgreto v)
if and only if

Vie{l,...om} :u; <v; AFie{l,....m}:u; < (2.35)

This means that all criteria values have to be at least equal, and at least one criterion has
to be lesser in order to dominate over the other optimisation solution [133]. A solution

is Pareto optimal when it is not dominated by any other vector:

Az € Xz <pareto T° (2.36)

A Pareto optimal set consists of all solutions which are Pareto optimal, while a Pareto
front contains their placement in objective space [133]|. The example of Pareto dominance

is presented in Figure 2.14.

2.5.1 Evolutionary optimisation algorithms

One group of multi-objective optimisation algorithms is population-based evolutionary
algorithms [130]. Just like their single objective counterpart, they consist of a group of
individuals representing the solutions to the problem and several sequentially executed

operators:
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Figure 2.15: Diagram of a standard genetic algorithm

e selection, which ranks the individuals based on given objectives and chooses the

ones which will be employed in the next iterations;
e crossover, which combines the best solutions in order to create new ones;

e mutation, which modifies the individual solution in a randomised way to possibly

generate features not existing in the population.

The steps of the algorithm is shown in Figure 2.15.

The crossover and mutation are variation operators dedicated to creating new individ-
uals. While crossover merges two of the best solutions to obtain even better results,
the mutation is meant to prevent converging into local optima. Both of these opera-
tors are usually independent of the optimisation algorithms and are determined by the
problem. The distinction between evolutionary algorithms (single and multi-objective)
comes mostly with different selection operators since solutions are assessed and removed

or preserved in the population [130].
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One of the most popular MOO evolutionary algorithms is Nondominated Sorting Genetic
Algorithm (NSGA) 11 [134]. The individuals are selected based on their nondomination
rank, where nondominated solutions are given the highest first rank and the rank of the
remaining points is based on the lowest rank of the solutions the particular individual
is dominated by (meaning the rank 2 goes to the points dominated by rank 1 etc.).
Additionally, to ensure more diversity the crowding operator is introduced, which, in
the case of two points of the same nondomination rank, selects the point with a bigger
distance to adjacent solutions. The NSGA 1II also contains elitism, meaning that the
solutions from previous iterations remain in the population pool, which, on the one hand,
prevents the loss of possibly the best solutions and accelerates the convergence, but on the
other hand, may also result in algorithm getting stuck in local optima, so appropriate
mutation mechanisms need to be introduced [135]. There are multiple advantages of
utilising NSGA 11, such as its low computational complexity and lack of algorithm-specific

parameters [136].

Another example of a Pareto-based MOO algorithm is the Strength Pareto Evolutionary
Algorithm (SPEA) 2, which assigns fitness based on the number of dominated solutions
and density in proximity to the point [137]. Other approaches include indicator-based
algorithms, such as SMS-EMOA [138|, which aim to optimise specific measures of Pareto
front assessment, for example hypervolume, and decomposition-based techniques, like
NSGA III [139] or MOAE/D [140], that divide main problem to subproblems utilising
scalarisation, which are then locally optimised. However, most of them are either com-

putationally complex or require prior knowledge about search space [130].

2.5.2 Gradient algorithms

While evolutionary optimisation algorithms are popular thanks to their versatility and
ease of customisation to the problem, they are also time-consuming due to the necessity
of performing objective calculations many times (depending on the population size and
number of iterations) and, to some degree, random solution searching. Because of this,
together with the expanding utilisation of deep learning models, there is a development

of gradient-based methods utilising multi-objective optimisation [141].

One of the most straightforward MOO gradient methods is Multiple-gradient descent
algorithm (MGDA) [142]. Tt is based on the premise of Pareto stationarity, which is
defined as a point where a linear combination of the gradients equals zero, and the
selection of descent direction according to gradient vectors of all objective functions. To
obtain a set of Pareto optimal solutions, it is required to run the algorithm multiple

times with different starting points.
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One of the most significant drawbacks of the MGDA method is that it does not ensure a
generation of the wide Pareto front, as the obtained solutions only depend on the starting
point, and the trade-offs between objectives cannot be controlled. One of the answers to
that problem was proposed in the Pareto Multi- Tasking Learning algorithm (ParetoMTL)
[143]. To ensure the diversity between solutions, objective space is divided into subspaces
based on provided preference vectors. Each of the created subproblems is then solved
until the Pareto critical point (when there is no possibility of obtaining better objective
values without impairing the others) is accomplished. Each subproblem is independent of
the other, allowing for parallelisation of the calculations, thereby shortening the training

time.

Another method allowing diverse Pareto front generation is Conditioned One-shot Multi-
Objective Search (COsSMOS) [144]. The main advantage of COSMOS is its incorporation
of learning objectives trade-offs into the training process, resulting in one model that
can yield all Pareto solutions. The obtainment of each Pareto front point is controlled
by concatenating data with the preference vector. The penalty factor based on cosine

similarity meant to broaden the Pareto front is also included in objective loss function.

2.5.3 Pareto fronts’ assessment

As MOO algorithms result in several non-dominated solutions, the assessment and com-
parisons of the methods are not as straightforward as in the case of single objective
optimisation [145]. Most of the proposed measures are based on the shape or the con-
vergence of the estimation of the Pareto front and are calculated in relation to perfect
point, which is the point with the best values of all criteria (that may not be possible to
achieve in practice), nadir point, which is analogically the point with the worst objective
values, and true Pareto front - the attainable set of non-dominated solutions, known
either theoretically or calculated as the result of several algorithm runs. Depending on
the knowledge of the problem and analysed properties, many different measures can be
employed. One of the most popular MOO metrics in the literature [145] is hypervolume
[146], which is the volume of the hypercube between nadir point and estimation of the

Pareto front:

HV(PF)=A ( U {s'|s < s =< smdir}) (2.37)

seEPF

Where PF is the assessed estimation of the Pareto front, s,,44:; 18 the nadir point and A

is a Lebesque measure, which is a generalisation of the volume. The metric increases with
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Figure 2.16: Visualisation of the multiobjective optimisation metrics

the convergence of the Pareto front estimation as well as with its broadening, making it

difficult to distinguish specific characteristics of the front without additional measures.

Examples of different metrics are Ratio of non-dominated individuals (RNI), which cal-
culates the proportion of non-dominated solutions to all of the algorithms results, or
Generational Distance (GD), which is the distance from the received approximation to

the true Pareto front:

\/ S IPF d(s;, TPF)?
|PF|

GD(PF) = (2.38)

where TPF is the true Pareto front and d(s;, PF) is the distance to the closest point
from the Pareto front and |PF| is the size of the Pareto front approximation. While
they do not carry information about the diversity of the results, they can help identify
the ability to generate non-dominated solutions (in the algorithms where it is not always

provided) and their convergence.

2.5.4 Multi-criteria decision making

Multi-criteria decision making (MCDM), a part of multi-criteria decision analysis, is a
field dedicated to, among others, supporting the user in choosing a solution from the
Pareto front. In theory, the task could be left to the users themselves, though due to the
number of solutions, their similarity and trade-offs, it is usually not feasible. Decision
aiding, which MCDM is derived from, recognises a few different problem types, such as
the selection of a subset of appropriate actions, the classification of the alternatives
into predefined groups according to their utility or ranking the solutions based on their
comparisons [147]. The most basic MCDM method is the Weighted Sum Model (WsM)
[148], which is based on assigning importances to each of the criteria. Formally, the task

is to find:
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m
argmaxZaijwj,i =1,2,...,|PF] (2.39)

) ]:0

where a;; is the value of the j-th criterion of the i-th solution, while w; is the weight
assign to j-th objective. The disadvantage of the method is that it requires specific scores
for each criterion’s influence. Moreover, the objectives must be numeric and comparable,

as the algorithm is based on an additive utility assumption [148|.

One of the MCDM approaches is outranking methods, which aim to rank alternatives based
on pairwise comparisons and grading of the differences in specific criterion scores. The
example of such an algorithm is ELECTRE (ELimination Et Choix Traduisant la REalite)
[149], which introduces thresholds of significant differences (both for how much aggrega-
tively better the solution has to be in some criteria and how much in maximum can it
be worse in others) as well as objective weighting. Due to this modification, even when
there is technically no dominance between two solutions, there is an option to differen-
tiate their utility. Another very popular outranking method is PROMETHEE ( Preference
Ranking Organisation Method for Enrichment Evaluations) [150|. PROMETHEE, similarly
to ELECTRE, compares every pair of solutions and weighs the criteria. However, instead
of defined thresholds, it assigns a preference function to every criterion, which varies de-
pending on the difference between the value of the objective for both alternatives. Then
the ranking is determined based on aggregated preferences (including the weighting) in

favour of and against each of the solutions.

The MCDM field continues to grow, and many new algorithms are proposed [147]. Nev-
ertheless, one of the requirement of the MCDM methods is that the user, called Decision
Maker, is able to give their preferences: either in the form of specific parameters, such as
criteria weights or differences thresholds [149, 150] or examples of pairs of alternatives,

where one is preferred over the other [151].

2.6 Multi-objective optimisation application for imbalanced

data problem

The advantage of employing multiple optimisation criteria has led to the spread of ap-
plying MOO algorithms in the imbalanced data problem. The most popular approach
seems to be utilising multi-objective optimisation in creating an ensemble of classifiers.
In [152], researchers analyse employing MOO in different stages of committee assembling
- for generating a pool of estimators in their selection process and combination rule. E-
MOSAIC [153] is the ensemble model using MOO for determining the best split of training

data used to train each of the members. In contrast, [154] proposes an improvement of
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the bagging algorithm by selecting appropriate bags with the utilisation of MOO. SE-
MOOS [155] is an ensemble model consisting of svM classifiers with hyperparameters and
feature selection optimised by MOO. In turn, EFIS-MOEA [156] is created from estimators
resulting from the Pareto front where both specific instances and features were cho-
sen. [157] proposes a non-specialised ensemble in which members, created from different
classification algorithms and bootstrapped data, are pruned by the MOO method. [158|
similarly creates an ensemble from different algorithms but uses MOO for their weights
assignment. The method proposed in [159] generates members by bootstrapping with
undersampling while employing MOO for feature selection. Both [160] and [161] propose
ensemble consisting of two classifiers - in the case [160] made from estimators trained
on skewed and balanced data respectively, and in [161] of two different under- and over-
sampling ensembles, and use MOO to determine their involvement. [162] proposes model
using a combination of two classifiers, which are the extremes of the Pareto front, where

instance selection was optimised.

A different way of employing MOO is in the preprocessing stage. An example of a data
sampling algorithm is MEUS (Multi-objective evolutionary undersampling) [163|, which
selects instances from training data so that different criteria are maximised. To ensure
no bias towards any of the classes, the constraint is placed so that the resulting set
is balanced. In turn, [164] proposes EMDID algorithm, dedicated to selecting the best

cutpoints of discretisation of continuous features.

Lastly, the other approach is to utilise multi-objective optimisation algorithms to create
or train the respective estimator. The utilisation might be algorithm specific, like in the
case of modifying svM learning, so that it allows multiple losses functions [165, 166].
Another way is to employ MOO to determine the penalties of each class in the system
consisting of a deep learning model [167]. The training of model parameters might be
assigned entirely to the MOO algorithm, like in the case of the method proposed in [168§]
and [169], where it is used instead of a more typical gradient descent approach. Finally,
estimator could be created based solely on the results of MOO, with the examples of [170],
where optimisation algorithm is utilised for the search of different discriminant functions
used for Gaussian classifiers,[171] where the algorithm chooses splits for Oblique Decision

Trees, or [172|, which returns the set of fuzzy rules.

The most popular choice of criteria for multi-objective optimisation algorithms for the
imbalanced data problem is the base metrics connected to the quality of each of the
classes’ recognition. In the case of binary classification, usually recall and specificity
are selected [161-163, 170, 172, 173] or the errors of each class recognition [152]. Some
cases focus on minority class prediction by choosing recall and precision [155, 158, 163,

171]. Another approach is to utilise one quality metric together with diversity measure
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[153, 157]. AUC is a fairly common objective [154, 156, 164, 169] paired with some
system-specific indicator. Lastly, methods often include a criterion meant to decrease
the computational complexity of the model, like, for example, the number of features or
instances selected [152, 156, 164, 172, 174|. As for the specific optimisation algorithm,
NSGA 11 is by far the most common choice [153, 154, 156, 162-164, 167, 168, 170, 172]. The
other methods used include SPEA 2 [173], spMODE-1I [152], NSGA 111 [171], multi-objective
ant colony algorithm [159], swarm optimisation [174] and diferrential evolution [158].
Some methods evaluated all of the values from the range in case of the one parameter
tuning [160, 161] or combined the criteria into one and used methods dedicated to single

objective optimisation [169, 174].
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Application of the multi-objective

optimisation in ensemble learning

This chapter aims to answer the first thesis question - Is it feasible
to employ MOO in the process of training ensemble classifier, and how
does it compare to the ensembles optimised using a single criterion?
For this purpose, the ensemble model will be proposed that generates
the pool of estimators based on different classification algorithms and
bootstrapped data. MOO will be employed to assign weights to each com-
mittee member, indirectly influencing their line-up. The way of com-
paring Pareto front-based classifiers with singular models will be also
proposed. The method will be evaluated on the selection of different
datasets with skewed class ratio and compared with ensembles where es-
timator pools will be created in the same manner, but weights will be
assigned using single objective optimisation, as well as with the example
of popular ensemble models to study the influence of optimised weights
assignment. The results will be analysed in the context of MOO-based
ensemble performance and its quality in reference to methods optimised

with a single criterion.
3.1 Motivation

Literature study shows that ensemble learning is a common domain of applying multi-
objective optimisation. One of the approaches is to utilise an optimisation algorithm
for selecting committee composition or assigning weights. Fletcher et al. [157] proposed
a model in which different classification algorithms are used to build a heterogenous

ensemble, further diversified by data bootstrapping. The proposed method seemed very
49
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promising. However, despite the authors’ claim that it can suit any type of data, the lack
of techniques countering skewed classes’ ratio and the utilisation of accuracy as one of the
optimisation criteria (second being measure of diversity) discredited its appropriability
for the imbalanced data problem [2|, which was later backed by preliminary research.
Nevertheless, some developed procedures, like estimator generation and optimisation
criteria calculation, could benefit the imbalanced data ensemble model. Therefore, the
method could be proposed that would incorporate the core of aforementioned model with

modifications adjusting the algorithm to the context of data imbalance.

Another identified research gap that should be expanded was the analysis of the Pareto
front obtained from the MOO algorithms, or more specifically, the resulted classifiers and
the choice of the solution. Usually, one solution is arbitrarily selected and compared
with standard soo models. Nonetheless, one of the biggest strengths of multi-objective
optimisation is the broad set of diverse solutions offered to the user. While it is diffi-
cult to compare such sets with models giving only one result, it cannot be ignored in
experimental evaluation. For this reason, the way of presenting specific solutions perfor-
mance, which would enable the analysis of the whole Pareto front quality, should also be

proposed.

3.2 Proposed method

The main goal of the proposed method is to classify imbalanced data, though, in principle,
it may also be used on balanced datasets. Three phases of training can be distinguished

in the proposed approach.

e First, bagging is utilised to create a pool of base classifiers based on several different

classification algorithms.

e Next, the MOO algorithm is used to produce a Pareto optimal set of classifier
ensembles, jointly optimising precision and recall of the resulting model. Each
ensemble constructed in this step is encoded as a vector of weights assigned to

individual ensemble members.

e Lastly, since MOO methods return not one but a set of solutions, it has to be chosen
which weights will be used in the final ensemble. The choice could be made by the
user manually, or a predefined criterion based on the selected MCDM approach
[147] may be employed, or the best ensemble could be chosen in the context of the

single metric presented in (eq. 2.6-2.14).
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Figure 3.1: A flow chart of the model.

After that, the proposed model is ready to classify incoming unlabeled data, employing
previously calculated weights to aggregate members’ decisions during weighted voting

(eq. 2.26). The flow chart of the model is presented in Figure 4.1.

Each of the phases is further described in consecutive sections.

3.2.1 Pool of classifier generation

A pool of classifiers, which become ensemble members, is generated based on the provided
set of models. Models may vary based on distinctive classification methods or different
parameters - in this study, the first option was chosen. Diversity is further assured by
training each of the created classifiers with a distinct subset of training data - for that,
stratified bagging is used. Two parameters should be provided: the number of bags, or
the number of classifiers trained from a single model, and the size of the subset sampled

from whole training data. The pseudocode of the process is presented in Algorithm 2.
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Algorithm 1 Generating a pool of diverse classifiers

Input: LS - learning set
TM={TMy,TMs,...,TMnp} - set of learning methods
b - number of bags per model

s - size of each bag

Output: II - pool of trained classifiers
I+ 0
cr + class ratio of LS
N « sizeof TM
for i< 1to N do
for j < 1tod do
TS « set of s observations sampled with replacement from LS that preserve
cr
\1’3 <+ train classifier using 7.M; and TS
I« U {w/}
end for

end for

3.2.2 'Weight optimisation algorithm

The distinctive part of the proposed method is its weight optimisation algorithm. Good
weight assignment is important to mute weaker ensemble members and amplify the strong

ones in a process of weighted majority voting as presented in eq. 3.1.
n
U(z) = arg max Z Djiw; (3.1)
JEM g

Where M is a set of classes, w; is the weight of the i-th classifier and p;; is a support
for the j-th class given by the i-th classifier. For weight optimisation, the NsGA 11
[134] algorithm was employed due to its popularity in the application for the imbalanced
data problem as well as its lack of specific parameters, which should be provided by the

experts. In the proposed method, individuals are represented by a list of real values
Ind = [wy,wy ... wy], w; €[0,1],

where w; stands for the weight of the ¢-th base classifier, while N is the size of the

classifier ensemble.

Two fitness functions F} and F5 are proposed as follows
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maximise Fi(wi,ws ... wy) = recall
( ) (3.2)

maximise Fp(wyi,ws...wyN) = precision

The algorithm seeks to maximise both precision (2.10) and recall (2.8). Because these
goals oppose each other, focusing on only one may lead to a situation when all or none

of the samples are recognised as positive class.

3.2.3 Solution choice

The algorithm 2 returns a set of non-dominated individuals representing a combination
rule of classifier ensemble (3.1). Still, finally, the single set of weights that defines the
classifier ensemble must be chosen. As mentioned earlier, the solution selection from the
Pareto front should be done with the cooperation of the end-user. Nevertheless, as in
this study the user preference is not available, the following way of choosing solution is

proposed:

e based on each of the objectives - where either recall or precision has the best

value;
e balanced solution - with the smallest difference between the objectives;

e based on PROMETHEE [150] rule with usual criterion and a slight advantage of
either recall or precision. The advantage of either criterion was assured by setting
the weights (0.6 for the favourable objective, 0.4 for the other, so one objective is

slightly more important).

3.3 Experimental study

This section presents the results of experiments that were conducted to test the quality
of the designed model and compare its variants with different solution choice rules using

SO0 methods.

3.3.1 Objectives

The experiment aimed to answer the following research questions:

RQ1 Is it possible for the MOO-based model to outperform the quality of the models

optimised in regard to its individual objectives?
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RQ2 Can selected MOO-based model have a better quality than the ones created by

single optimisation of aggregated metrics?

RQ3 Is there the best approach to selecting one model from the Pareto front solutions?

The consecutive segments describe utilised benchmarked datasets, the configuration of

experimental studies, as well as analysis and discussion of obtained results.

3.3.2 Setup

Choice of benchmark datasets. Experiments were run on 26 different imbalanced
datasets from KEEL [175], UCI [176] and Kaggle repositories. The datasets can be split
into two categories: (1) small datasets (up to 1484 samples) and (2) big datasets (up to
318k samples). Chosen datasets also differ in the number of features (ranging from 3 to
187) and the Imbalance Ratio ( IR), varying from 53.6% to 0.2%. Some of the datasets
did not represent a binary problem. In these cases, the dataset was binarised, i.e., one
class was selected as a minority class, and the rest were labelled as one majority one.

The description of all datasets is presented in Table 3.1.

Implementation and reproducibility. Complete source code, sufficient to repeat
the experiments, is available at'. The complete results of the conducted experimental

analysis were also provided with the code.

The proposed algorithm, as well as the experiments described in this work, were imple-
mented in the Python programming language. Moreover, base classifiers from scikit-learn
module [177] were used, while the implementation of optimization algorithms was based

onpymoo module [178].

Choice of base classifiers. All ensembles were based on the same set of different
classification algorithms. The parameters of the used classifiers from scikit-learn module
[177] were as follows:

e AdaBoost - Decision Tree Classifier as base estimator with 50 iterations,

e Random Forest - with 100 estimators and Gini impurity as split criterion,

e Naive Bayes Classifier,

e KNN Classifier with £ = 5,

e multi-layer perceptron (MLP) with one hidden layer of 100 neurons, rectified linear

unit function for activation and Adam solver for weight optimisation,

"https://github. com/wdk2/moo-ensemble-weighting
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Table 3.1: Description of datasets. #$s denotes the number of samples, #F stands for the number of
features, and 1R indicates the imbalance ratio

DATASET #S #F IR (%]
aps failure 76000 170 1.8
covid 318438 12 2.1
credit card 284807 29 577.9
diabetes 101766 49 12.6
hand positions 78095 37 23.3
MiniBooNE 130064 50 39.0
mitbih 109446 187 2.6
page-blocks 5472 10 8.79
abalone9-18 731 8 6.1
glassy 214 9 6.5
glassd 214 9 4.4
yeasts 1484 8 3.6
yeasts 1484 8 3.1
yeast6 1484 8 2.4
flare-F 1066 11 4.2
ecolil 336 7 29.7
ecoli2 336 7 18.3
ecoli3 336 7 11.6
glass0 214 9 48.6
glass1 214 9 55.1
haberman 306 3 36.0
pima 768 8 53.6
vehiclel 846 18 34.5
vehicle3 846 18 33.4
yeast] 1484 8 40.7
yeast3 1484 8 12.3

e Decision Tree Classifier (CART) - with Gini impurity as split criterion, no max
depth set, miniminum samples split equal to 2 and minimum samples leaf equal to
1.

Although AdaBoost and Random Forest are examples of ensemble approaches, they are

considered single estimators in this research.
The number of bags for each classifier was 3, which resulted in a pool of 18 models.

Optimisation algorithms. A standard genetic algorithm (GA) was used for single
objective optimization, with a tournament selection, two-point crossover and a Gaussian
mutation. For both NSGA 1I and GA, the number of iterations was set to 500, the

population consisted of 500 individuals, and the probability of mutation was 50%.
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The following objectives for SOO-based ensembles were chosen: precision, recall, BAC, F'1

score, Gmean and AUC.
Solution choice rules.

As mentioned before, presented models were chosen based on the best objectives values
(labelled MOO precision and MOO recall respectively), smallest difference between criteria
scores (MOO balanced) and two according to PROMETHEE ranking - one with recall -
precision weights being equal to 0.6 and 0.4 (MOO PROMETHEE recall) and second with

reverse weights (MOO PROMETHEE precision).

Data partitioning. Inside the model, data was divided into training and validation
sets (used during the composition optimization process) with a ratio of 70:30%. The
experiments were conducted using 5x2 cross-validation, and the presented results are

the average value of all the metrics from individual folds.

Model comparisons Experiments were divided into two parts. In the first part, the
results of the MOO and SOO optimisation algorithms were compared and presented in
the form of Pareto fronts. For the second segment of overall classification performance
analysis, two comparative methods of the AdaBoost model built on decision trees and
the Bagging Ensemble consisting of 18 members (the same number as proposed method)
were included. Both methods are popular examples of widely utilised ensemble models
without a particular usage of data preprocessing algorithms, as they were not an object

of this research and could disrupt the comparison.

Result analysis. To analyse the classification performance of the chosen algorithms,
the Friedman test and Nemenyi post hoc test at a significance level of 0.05 were chosen
[179].

3.3.3 Pareto fronts’ analysis

Figures 3.2 and 3.3 present examples of Pareto fronts obtained from the MOO algorithm

together with scores of each objective for solutions of single-objective optimization.

It may be observed that for big datasets, the Pareto front is well-defined and has a lot
of diverse solutions. Most SOO solutions lie directly on or at a small distance from the
front. The only exceptions are solutions optimised concerning both objectives, that are
precision and recall, which sometimes lay far away from the rest. However, such models
would not be acceptable in realistic scenarios because they are biased in predicting too
many or too few samples as a minority class (as the other objective is very low). In

the case of smaller datasets, the Pareto front is typically very constrained (in the worst
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case, the algorithm returned either only one solution or a few solutions but with the
same objective values). This phenomenon is probably due to limited possible values of
objective functions, which rely heavily on the minority class’s size, further limited by
employed stratified split into training and validation sets. This also means that criteria
are less stable and prone to overfitting. Moreover, the rest of the single-objective solutions
are distributed irregularly, though, with few exceptions, in a similar area. Even though
the Pareto front is relatively tight, the solutions obtained are considerably balanced in
terms of objectives and, in some cases, are even better than the ones given by soo. Still,
this suggests that the method requires a reasonably large dataset to achieve a satisfactory
performance, particularly a well-defined, wide front. Finally, it is worth noting that
the single-objective solutions typically have a different position on the Pareto front,
indicating that the optimal precision /recall trade-off depends on the specific performance
metric choice. This, in turn, suggests the usefulness of multi-objective optimization,

which can simultaneously produce multiple solutions optimised to the particular metrics.

3.3.4 Classification performance analysis

The detailed results of all quality measure scores are presented in Tables 8.1 - 8.6, while
Figures3.4 and 3.5) show the average ranks of methods and statistical evaluation. Firstly,
it should be analysed how MOO-based solutions compare considering aggregated metrics
with ensembles optimised especially for these quality measures. In general, models gen-
erated from the Pareto fronts and selected according to best recall (MOO recall and
PROMETHEE recall) as well as the balanced solution (MOO balanced) outperform the sin-
gle optimisation estimators. Recall-based MOO solutions expectedly achieve the highest
average rank in the case of BAC and AUC, while MOO balanced comes in terms of FI
score, where precision has a bigger influence than the rest of the aggregated metrics.
The SO0 aggregated metrics ensembles do achieve the highest score for their respective
quality measures in some datasets, though in general they rank lower and are not consis-
tent with their optimisation criteria. This might be due to weaker generalisation abilities
and some overfitting. However, it should be noted that the difference is not statistically

significant (Fig. 3.5).

The situation is different when analysing the results of simple measures. Here, the en-
sembles based on single objective optimisation according to precision and recall obtained
the highest scores of their respective metrics by far, both in average ranks and number
of datasets for which they achieved the best results. MOO precision model performed
similarly to its SOO counterpart, since its scores were often very close or even better for
some problems. MOO recall, even though second in average rank to SOO recall, has never

exceeded it. Nevertheless, both MOO recall and precision (as well as solutions selected
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with PROMETHEE) obtained much more balanced results compared to SOO ensembles.
For single objective approaches, their excellent results in their respective metrics go to-
gether with very low, usually the worst, scores of the opposite measure. This indicates
that the methods are strongly biased towards or against the majority class and should
not be employed in the pattern recognition task. On the other hand, MOO solutions,
even when selected according to the best precision and recall values, still achieved more
balanced results, with less of a difference between these two metrics. It is also reflected

in their aggregated measures scores.

When comparing the proposed ensemble with established methods of AdaBoost and
Bagging, it should be noted that the latter seems to be generally inferior for almost all
selected metrics. Only for precision and F1 score, which is highly dependent on the
preceding, does an ensemble using standard bagging obtain results better than most of
the MOO-based models. Nevertheless, it must be highlighted that for all the metrics, a
variant of the proposed method with a higher average rank can always be chosen, though
the difference is statistically significant only in the case of recall values. Regarding
AdaBoost, both figure 3.4 and statistical test results show that most of the MOO-based
methods are of better quality, where for precision, recall and F1 score, the difference is

statistically significant.
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Figure 3.4: Average rank of every optimisation method for different performance metrics.
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Figure 3.5: Results of Friedman and post hoc Nemenyi statistical tests for different metrics

3.4 Lessons learnt

In this chapter, the ensemble model utilising MOO for weights assignment was proposed.
The pool of classifiers was generated utilising several classification algorithms, as well
as stratified data bootstrapping. Optimisation objectives were calculated based on the
validation set separated from the training. Analysis of the resulting Pareto fronts demon-
strated that for small datasets with low minority class count, solutions tend to converge
to a single point due to limited ranges of possible criteria values. This phenomenon may

lead to overfitting and significantly hinders the choice of solutions from the set.

As for the solution selection method, the results of the experiments show that there is no
one best way of choosing individual weight vectors from the Pareto front. Depending on
the metrics, either of the proposed solutions proved the best. However, the differences
that were obtained were not always statistically significant. It is worth noting that
solutions selected via the PROMETHEE method were the same as the ones with the highest
respective objective. It is probably caused by a small number of criteria and too general
assumptions of the algorithm rules. For this reason, the method was not chosen in further

research.

The proposed committee was compared with ensembles, in which weights were optimised
according to one criterion. One of the MOO-based models was generally better for every
metric, with the only exception being recall and precision. Generally, ensembles opti-

mised utilising MOO were characterised with more balanced results, even the ones with
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weights chosen based on the best objective scores. This could be especially noticed with
the values of aggregated measures, where both factors (i.e. some base metrics) had the
same influence on the results. However, it must be pointed out that even though the
general rank of MOO ensembles was higher, they did not always obtain the best results

for every tested dataset.

Lastly, the proposed model was compared with different ensemble approaches, namely
Bagging and AdaBoost. In general, the MOO-based committee obtained better ranks.
However, there were datasets where one of the compared ensembles was the best. Still,
the comparison is not exactly straightforward. Even though the compared method did
not have any specific techniques to counter data imbalance, such as member weights op-
timisation, they still use procedures which might help with better minority class recogni-
tion. For this reason, it cannot be fully determined which factor had the biggest influence

on the final results, and better quality might be problem-specific.

The proposed method, together with the results of the experimental evaluation, was
published in [180].



Chapter 4

Application of multi-objective

optimisation in data sampling

This chapter focuses on the application of MOO in data preprocess-
ing, as to address the second research question posed in the thesis - Is
it possible to employ MOO in the preprocessing stage, and how does
it improve the quality of the estimator?. For this purpose, a hybrid
oversampling algorithm will be proposed that creates several neighbour-
hoods of minority class samples, conducts cleaning, and generates new
observations. The proposed method will be assessed wutilising a CART
classifier and compared to the estimator trained on original data, as

well as data sampled by different popular algorithms.
4.1 Motivation

Data preprocessing is the most popular approach to countering the problem posed by
data imbalance. Its main advantage over other methods is its universality, independence
from specific classification algorithms, as well as lack of interference in predictive models
or reliance on expert knowledge [181]. Nevertheless, as the previous research suggests,
MOO is not widely used in the design of such algorithms. The only usages of multi-criteria
optimisation for data preprocessing found in the literature were for feature [155, 156, 159]
or instance [156, 162, 163] selection, which allows solely the undersampling that is not
always feasible. Previous research showed that employing MOO in an imbalanced data
classification model gives an advantage over utilising aggregated metrics and results in
more balanced solutions in relation to minority class prediction quality and bias. Thus,
it could be beneficial to apply it for the new sample generation to populate the areas

that demand better minority class representation and not to create detrimental noise.

62
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CCR (Combined Clearning and Resampling) [98] is a hybrid sampling method that re-
moves the majority class samples and generates synthetic minority class samples in close
proximity to every minority class observation. The number of generated samples, as well
as the area where the procedure will be conducted, is determined by the neighbourhood
of each sample so that classes are better separated and no noise is enhanced. This ap-
proach could be improved by optimising the radii and populations of the areas based
on the actual classification quality, as MOO employment should also ensure amplifica-
tion of the minority class influence without overly impairing minority class recognition.
However, it is important to modify the way the neighbourhoods are determined, since
cleaning and resampling areas around single points may lead to overfitting and ignoring
parts of feature space with smaller minority class representation, which could be lost
due to data partition. For the same reason, the evaluation protocol of the optimisation

algorithm should also be adjusted.

4.2 Proposed method

The proposed method is based on the CCR idea of cleaning neighbourhoods of the mi-
nority class samples from the majority class and generating new objects. However, the
areas are determined differently, so they depend more on the density of the majority
class rather than specific observations. Furthermore, the size of each neighbourhood and
the number of generated samples are optimised employing a MOO algorithm to fit the

problem and eliminate areas that could deteriorate classification quality.

The idea of the algorithm is presented in Fig. 4.1.

MINORITY CLASS
CLUSTERS' sampled ) i SAMPLED
RAW DATA —b—b CENTROIDS d ia parameters DATA
l—b om g SOLUTION CHOICE 41

Figure 4.1: A scheme of the proposed method

Each of the subsequent part of the proposed algorithm are further described in the

following sections.
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4.2.1 Neighbourhood determination

The first step of the algorithm is to determine the neighbourhoods, where cleaning and
generating samples will be conducted. The algorithm employs areas around groups of
minority samples, which are determined by the clustering method - K-means algorithm
to ensure possibly high generalisation and avoid overfitting. Calculated centroids of the
clusters become centres of neighbourhoods, defined as n-dimensional spheres, where n is
the problem’s dimensionality. Radii of determined areas are optimised at a later stage

of the algorithm.

K-means algorithm requires defining the k& parameter, though any appropriate number
of clusters may vary based on the dataset size or distribution of the objects [77]. In
the conducted experiments, k = [%Nmm} centres were chosen empirically, where Ny,
corresponds to the number of minority class samples used for training. This number
was found to be a good trade-off, so the selected clusters do not contain too few mi-
nority class samples and give the optimisation algorithm the flexibility in adjusting the

neighbourhoods and detecting noise samples.

4.2.2 Hybrid sampling algorithm

The main part of the proposed method is a process of cleaning and generating data.
The algorithm removes every majority class object for each given neighbourhood. Then,
depending on how many majority class samples are removed, an appropriate number of
minority class samples within the spheres are randomly generated. The number of sam-
ples for each area is calculated based on the parameter frac, indicating what percentage

of overall samples should be generated inside the given area.

The procedure is described in the Algorithm 2.

4.2.3 Optimisation algorithm

The last part of the proposed method is the optimisation algorithm. The optimisation
step aims to differentiate between rare samples, which should be enhanced, and noise
that should be avoided, as well as broaden the border between classes by selecting sizes
and sample counts of neighbourhoods that would be the most beneficial for the predictive
abilities of the classifier. To select parameters that are best tailored for the classifier,
it was decided to incorporate them in the optimisation process to properly estimate the

quality of the prediction from training on the resampled data.



Chapter 4. Application of multi-objective optimisation in data sampling 65

Algorithm 2 Hybrid sampling algorithm

Input: centers - set of coordinates of sphere centers
r - set of spheres radii
f - set of percentages of samples to be generated
Xmaj - set of majority class samples
Xmin - set of minority class samples
Output: LS,y - resampled data set
n « size(centers)
for i < 1 ton do
for z € X,,,; do
if d(z,c¢;) < r; then
Xmaj < Xmaj \ {l‘}
end for
end for
Ngen — 812€(Xmaj) — size(Xmin)
for i <1 to nge, do
n; < Ngen * fz
for j < 1 ton; do
Tnew < randomly drawn sample from the ith sphere
Xmin — Xmin U {xnew}
end for
end for
ESnew < Xmaj U Xmin

The optimised parameters are in the form of a real value vector

Ind = [r1,r2, 7k J1s foo oo i)

where 1; represents the radius of the i¢th sphere and f; stands for the percentage of
minority class samples, which will be generated in the sphere (parameter frac). The two
proposed objectives of the optimisation to be maximised are previously employed recall
and precision. With the aim to prevent the overfitting of the model, the values of the

criteria were obtained employing a 5x2 cross-validation protocol.

The example results of consecutive algorithm steps are depicted in Fig. 4.2.

4.3 Experimental study

4.3.1 Objectives

The experiments were designed to answer the following research questions:

RQ1 What are the properties and the quality of the proposed method?
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Figure 4.2: Example of algorithm processing

RQ2 How does the proposed algorithm compare to the state-of-the-art sampling meth-

ods?
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4.3.2 Setup

Choice of benchmark datasets. The experiments are conducted using 36 benchmark
datasets from the KEEL repository [175]. All of the datasets represent binary problems.
The datasets vary in size (both in samples and dimensionality) along with different
imbalance ratios (ranging from 2.06 to 85.88). Considering experimental protocol and
inner data division caused by fitness function, it was decided to employ datasets where
the minority class size is at least 17 samples. Descriptions of the used datasets may be
found in the Table 4.1.

Table 4.1: Description of datasets. #S denotes the number of samples, #F stands for the number of
features, and 1R indicates the imbalance ratio

DATASET #s #r 1R [%] ‘ dataset #s #r IR %)
page-blocks-1-3 vs 4 472 10 15.86 | yeast-0-5-6-7-9 vs 4 528 8 9.35
yeast-1-2-8-9 vs 7 947 8 30.57 | yeast-1-4-5-8 vs 7 693 8 22.1
yeast-1 vs 7 459 7 14.3 | yeast-2 vs 4 514 8 9.08
yeast-2 vs 8 482 8 23.1 | yeast 1484 8 28.1
yeasts 1484 8 32.73 | yeast6 1484 8 41.4
ecoli-0-1-4-7 vs 2-3-5-6 336 7 10.59 | ecoli-0-1 vs 2-3-5 244 7 9.17
ecoli-0-2-6-7 vs 3-5 224 7 9.18 | ecoli-0-6-7 vs 3-5 222 7 9.09
ecoli-0-6-7 vs 5 220 6 10.0 | yeast-0-2-5-6 vs 3-7-8-9 1004 8 9.14
yeast-0-3-5-9 vs 7-8 506 8 9.12 | abalone-17 vs 7-8-9-10 2338 8 39.31
abalone-19 vs 10-11-12-13 1622 8 49.69 | abalone-20 vs 8-9-10 1916 8 72.69
flare-F 1066 11 23.79 | kr-vs-k-zero vs eight 1460 6 53.07
poker-8-9 vs 5 2075 10 82.0 | poker-8-9 vs 6 1485 10 58.4
poker-8 vs 6 1477 10 85.88 | winequality-red-4 1599 11 29.17
winequality-white-3-9 vs 5 1482 11 58.28 | winequality-white-3 vs 7 900 11 44.0
ecolil 336 7 3.36 | ecoli2 336 7 5.46
ecoli3 336 7 8.6 | glass0O 214 9 2.06
glass1 214 9 1.82 | haberman 306 3 2.78
pima 768 8 1.87 | yeast3 1484 8 8.1

Parameter setting. The only parameters of the proposed method arise from the appli-
cation of the evolutionary optimisation algorithm. For the NSGA 11 [134], the population
was set to 400 individuals, the number of iterations was 1000, and uniform crossover and

Gaussian mutation were used.

Solution choice rules. Just as in the previous research, for the sake of comparisons
three solutions were chosen from the estimation of the Pareto front - two with the highest
value of each criterion (best precision and best recall), as well as the solution, where the

difference between criteria was the smallest (balanced).
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Benchmark algorithms. The proposed method was compared to the selected baseline

sampling algorithms with the following parameters:

RandomOversampler (ROS),

SMOTE [81] with n = 5 neighbours,

Borderline SMOTE [83] with n_ neighbors =5 and k_neighbors = 5,

ADASYN [84], with d_th = 0.9,

CCR with energy = 0.25 and scaling = 0.0.

Each of the algorithms samples objects until the point of equal classes’ sizes.

Tested classifier The proposed method and compared algorithms were employed to
sample data and then used to train a CART classifier, with Gini impurity as a split

criterion, no max depth set, and assessed via its predictive abilities.

Implementation and reproducibility The source code of the proposed method and
conducted experiments are available at the online repository '. All of the methods
and procedures were implemented in the Python programming language, employing py-

moo|178|, imbalance-learn [182], smote-variants [183] and scikit-learn [177] modules.

4.3.3 Results

4.3.3.1 Proposed method performance

To answer RQ1, the analysis of the method’s obtained result was conducted. The de-
tailed results are presented in the Appendix (Tables 8.7-8.11). It must be noticed that
the algorithm’s preprocessing improves the level of minority class recognition (measured
by recall) for almost all of the evaluated datasets compared to the original data. More-
over, in the case of other measures (excluding precision), there is almost always at least
one, but very often even all of them, solution that exceeds a classifier trained on original
dataset. The only exception is precision, which is to be expected, since the increase
in minority class prediction goes in pair with the precision deterioration, and to some
extent, F'I score, where precision is equally influential as recall. Nevertheless, all of the
selected solutions obtain better results on average according to recall, BAC, Gmean, and
F1 score, which is substantiated with statistical evaluation for the first three metrics

(Fig. 4.4).

"https://github. com/wdk2/moo- sampling
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As for the quality of specific solutions, just as before, the solutions picked based on one
of the optimisation criteria tend to perform the best according to the same measures.
However, there are examples of the best precision solution outperforming the best recall
solution regarding the latter measure, but never the other way around. Surprisingly,
balanced solution seems to perform generally the worst across all of the selected metrics,
excluding precision. Nevertheless, there are still datasets in which it gets the best perfor-
mance. All in all, the solution selected based on the highest recall seems to perform the
best (meaning obtaining the highest quality on the most datasets, as well as the highest
average rank) according to recall, BAC, Gmean, and F'I score, though the difference is not
statistically significant. These results might indicate that the estimations of the quality
of the solutions obtained during optimisation are not very precise. This might happen
due to the data partitioning during objectives calculation and resulting minority class
granulation, as well as the nature of data sampling, which might lead to overfitting and

thus to worse estimation of the model’s actual quality.

4.3.3.2 Algorithms comparison

Finally, to answer RQ2, it is important to determine how the proposed algorithm com-
pares with other oversampling methods. It can be noticed that for all of the metrics,
excluding precision, one of the method solutions obtained the best results for most of
the tested datasets, while sometimes even all three of the proposed variants exceeded or
were close to the baseline. The biggest improvement of the predictions quality took place
in the case of the datasets poker-8-9 vs 6 and poker-8 vs 6, where proposed algorithm
obtained results better by even 20 percent points, however, there were also instances
where the increase of quality measure was of the order of a few percent. In general, the
proposed method obtains the best average ranks in the case of recall, Gmean, BAC, and
F1 score. All selected solutions present significantly better performance, considering at
least one assessment metric, than SMOTE, Borderline SMOTE, ADASYN and ROS. Com-
pared to the most similar algorithm, CCR, the proposed method outperforms it in the
case of many datasets and has a generally higher rank. The only exception is precision
measure, however, there are still some datasets where optimised sampling proved supe-
rior. Nevertheless, the differences are not statistically significant, so the employment of

either method should be considered based on the specific problem and specifications.

It is also worth noting that the trade-off between recall and precision of the proposed
approach is the smallest among all the assessed techniques. It is especially visible in
comparison to SMOTE and ADASYN, which have high values of recall and the rest of

similar quality measures while also obtaining the worst scores of precision and F1 score.
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This indicates that while the proposed method has good generalisation abilities, it does

not occur at the cost of decreased recognition of majority class objects.
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Figure 4.3: Average rank of every

sampling method for different performance metrics.
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Results of Friedman and post hoc Nemenyi statistical tests for different metrics
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4.4 Lessons learnt

This chapter proposed the sampling method utilising multi-objective optimisation. The
algorithm removes the majority class from the determined minority class neighbourhoods
and populates them with new synthetic samples. The sizes of these areas, as well as the
number of generated samples, are optimised according to the best values of precision
and recall metrics. As creating new samples based on hold-out assessment might lead
to excessive overfitting, the objective values are calculated employing the 5x2 cross-

validation protocol.

The experiments that were conducted showcased frequent improvements in the quality
of the classifier trained on the data sampled by the proposed method compared to other
popular sampling algorithms. The obtained results were characterised by more balanced
recall and precision values, indicating good generalisation without intolerable focus on
minority class samples. Obtained MOO solutions tended to act similarly to their Pareto
front equivalents in the case of the edge instances. However, balanced solutions did not
always have this property. In general, the datasets sampled according to the highest
recall obtained the best results across most of the metrics, though there were instances
where other solutions performed better. This indicates that selecting the parameters
from the estimation of Pareto front should be backed by some further analysis or assess-
ment. Nevertheless, all of the solutions obtained very good results and, in many cases,

outperformed the baseline approaches.

It must be highlighted that the obtained results are indicative only of the good quality
of the proposed method when used with the CART classifier, since only such evaluation
is presented in this work. Nonetheless, based on the growing demand for understanding
the model decision, interpretable methods such as decision trees become more desirable.
This feature can also facilitate analysing and selecting the solutions from the resulting
estimation of Pareto front, since their objective values might not always indicate the
future performance. Moreover, computational complexity of the proposed methodology
is very high, since data preprocessing and classifier training must be repeated several
times to obtain the fitness function values, further amplified based on the chosen op-
timisation population size and number of iterations. Because of that, employing more

computationally complex classifiers, such as SVM, might not be feasible.

The presented method and experimental evaluation were published in [184].



Chapter 5

Analysis of the fitness calculation

protocols

This chapter aims to answer the third research question - What is the
best approach to estimate the quality criteria of the classifiers built
using MOO? For this reason, the experiment was conducted comparing
three methods of estimating optimisation objectives: holdout, testing on
training set and 5x2 cross-validation protocols. These approaches were
employed to assess the quality of the classifier trained with undersam-
pled data, where the specific training instances were selected via the
optimisation algorithm. The methodology was tested using examples of
different classification models. The analysis was conducted to deter-
mine the performance of the tested approaches, considering the quality
of estimated Pareto fronts, the estimation of the assessment on the test

data and actual predictive abilities.
5.1 Motivation

Employment of an appropriate evaluation protocol is crucial to properly estimate the
quality of the model and thus obtain credible results. A discussion about various test
sampling approaches has long been present in the literature, and their strengths as well
as limitations are generally understood and sometimes, unfortunately, exploited. Nev-
ertheless, this subject is not covered at all in the context of the optimisation objective
function calculation, even though metrics employing classifiers’ predictions are very often
selected as optimisation criteria. In the standard optimisation tasks, objectives appear to
be deterministic. However, this is not the case with measures such as recall or precision,

where it is only possible to obtain an estimation of their values. In the MOO application

72



Chapter 5. Analysis of the fitness calculation protocols 73

MOO ALGORITHM

/ EVALUATION LOOP \

-

¥ A
—k EVALUATION PROTOCOL

_ ™ SAI;‘;I:EB " Aaceria” e
A

INDERSAMPLING ALGORITHM

’

___________

Figure 5.1: The idea of the studies

for imbalance data validation, using a hold-out protocol seems to be the most popular
[157, 162, 163, 169, 185], but there are also works that calculate quality measures based
on the whole training set [170, 173]. Alas, very often, the information about the way

criteria are obtained is not disclosed.

Previous research reflected the problem with appropriate objectives estimation, since
the difference between assessments conducted on separate test sets and those from the
optimisation algorithm was sometimes very prominent, i.e., the solution with the highest
score of one criterion did not obtain the same results when tested outside the optimisation
loop. With the imbalance in the data, another challenge arises when already under-
represented classes are split into smaller segments, which could lead to poor generalisation
of the sample distributions. Moreover, some utilised protocols might result in overly
optimistic objective scores, especially testing on training set, since high metric values
might be achieved due to model remembering objects, not learning from them. For this
reason, it should be studied how different objective calculation methods influence the
set, of solutions and which protocol is the most fitting for the estimation of the model

created employing MOO methodology.

5.2 Methodology

This study aimed to compare different ways of obtaining optimisation objectives. Each of
the studied protocols was used to estimate the quality of the classifier trained using data
that was the result of the optimisation. The general process of the research is presented

in Fig. 5.1, while each of the parts is described in more detail in the consecutive sections.
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5.2.1 Optimisation algorithm

To study the influence of the objective estimation selection, a simplified version of the
undersampling method found in the literature [156, 163| was employed. The goal of the
optimisation is to select samples from the training data that will be used to train the

chosen classifier. The algorithm individuals have a form of a vector

[ul,uQ,.. . ,uk] u; € {0,1}

where u; = 0 means that the ith sample was removed from the set, and u; = 1 denote its
usage in training of the classifier. There is no mechanism guaranteeing the class’s balance,

meaning that potentially all of the samples of one of the classes could be removed.

Just like the previous research, the two optimised criteria are precision and recall.

5.2.2 Tested protocols

In the study, three different evaluation protocols 2.2.2 were employed to estimate the

objectives:

1. Hold-out protocol [20]- which seems to be the most popular in the application of

MOO for imbalanced data;

2. Testing on training set [8] - which cannot usually be employed in the model assess-

ment, however, is sometimes utilised during optimisation;

3. 5x2 cross-validation [23]- which is widely popular in classifier testing.

The individuals of the optimisation algorithm, as well as their processing, are customised

to match the specifics of the data divisions:

1. For the hold-out protocol, the validation set is separated before the optimisation
and passed as an argument directly for the objectives calculation, while the indi-
viduals have the size of the remaining samples. The final solution is applied only
for the designated training set, and the validation set is not used for later classifier

training.

2. In the case of testing on training set, the mask vector has the length of the whole
training data, which is then sampled based on the character of the individual.
Nonetheless, the whole, unsampled training set is employed to calculate the quality

metrics. The final solution for the optimisation is applied to all the training data.
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3. Lastly, the most complicated processing is applied for the 5x2 cross-validation
protocol. Individuals have the length of the whole training data, but for each split,
the sampling mask is only applied for the corresponding objects from the train set,
while the validation set is not sampled. This means that, similarly to the case of
testing on training set, each sample will always be used for testing; however, it
might not be used for training. As in the standard 5x2 cross-validation, the split
ratio is 50:50, and the process is repeated 5 times with training and validation sets
swapping places. Finally, the sampling mask selected via optimisation is applied

to the whole training data.

Each of the data processing is presented in Fig. 5.2.
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Figure 5.2: Data processing on different protocols
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5.3 Experimental study

5.3.1 Objectives

The study, experiments and results analysis were conducted to find the answers to the

following questions:

RQ1 Is there a difference in the quality of the Pareto front obtained by different estima-

tion protocols?
RQ2 Which protocol estimates the actual objective values the best?

RQ3 Solution selection based on which protocol results in the classifiers of the best

quality?

5.3.2 Setup

Choice of benchmark datasets. The experiments are conducted using 39 benchmark
datasets from the KEEL [175] and UCI [176] repositories. All of the datasets represent
binary problems. The datasets vary in size (both in samples and dimensionality) along
with different imbalance ratios (ranging from 1.87 to 82.00). Descriptions of the used
datasets can be found in the Table 5.1.

Parameter setting. Most of the parameters stemmed from the NSGA 1I optimisation
algorithm - the size of population was 200, the number of iterations was 500, and the
chosen operators were two-point crossover and flip mutation. As for the protocols them-
selves, the holdout split was 80% of the samples for the training and 20% for validation,

and the cross-validation split was 50-50 and was repeated 5 times.

Solution choice rules. In the case of experiments 1 and 2, whole Pareto front estima-
tions were used to calculate metrics. For the last experiment, three solutions from each
optimisation result were selected - one with the best precision score, one with the best
recall score and the one where the difference between both objectives was the smallest
(labelled balanced).

Tested classifier Two classifiers were employed in this research, both in calculating

optimisation objectives’ values and final assessment:

1. Decision Tree Classifier (CART) - with Gini impurity as split criterion, no max
depth set, miniminum samples split equal to 2 and minimum samples leaf equal to

1

)
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Table 5.1: Description of datasets. #S denotes the number of samples, #F stands for the number of
features, and 1R indicates the imbalance ratio

DATASET #s #F 1R |%] | dataset #s #F 1R %]
page-blocks0 2736 9 8.79 | adult 16280 14 3.15
bank additional 20594 20 7.88 | glassl 107 9 1.82
glass0 107 9 2.06 | ecoli-0-6-7 vs 5 110 6 10.00
ecoli-0-6-7 vs 3-5 111 7 9.09 | ecoli-0-2-6-7 vs 3-5 112 7 9.18
ecoli-0-1 vs 2-3-5 122 7 9.17 | haberman 153 3 2.78
ecolil 168 7 3.36 | ecoli2 168 7 5.46
ecolil 168 7 8.60 | ecoli-0-1-4-7 vs 2-3-5-6 168 7 10.59
yeast-1 vs 7 229 7 14.30 | page-blocks-1-3 vs 4 236 10 15.86
yeast-2 vs 8 241 8 23.10 | yeast-0-3-5-9 vs 7-8 253 8 9.12
yeast-2 vs 4 257 8 9.08 | yeast-0-5-6-7-9 vs 4 264 8 9.35
yeast-1-4-5-8 vs 7 346 8 22.10 | pima 384 8 1.87
winequality-white-3 vs 7 450 11 44.00 | yeast-1-2-8-9 vs 7 473 8 30.57
yeast-0-2-5-6 vs 3-7-8-9 502 8 9.14 | flare-F 533 11 23.79
kr-vs-k-zero vs eight 730 6 53.07 | poker-8 vs 6 738 10 85.88
winequality-white-3-9 vs 5 741 11 58.28 | yeast3 742 8 8.10
poker-8-9 vs 6 742 10 58.40 | yeast6 742 8 41.40
yeastd 742 8 32.73 | yeast4 742 8 28.10
winequality-red-4 799 11 29.17 | abalone-19 vs 10-11-12-183 811 8 49.69
abalone-20 vs 8-9-10 958 8 72.69 | poker-8-9 vs 5 1037 10 82.00
abalone-17 vs 7-8-9-10 1169 8 39.31

2. KNN Classifier with k£ = 5.

5.3.3 Results

5.3.3.1 Pareto fronts quality

The first experiment was dedicated to researching the difference between the quality of
the Pareto fronts obtained with different assessment protocols. The examples of result

sets are presented in Figure 5.3.

The first observation is that solutions obtained with holdout and test on train methodol-
ogy significantly dominate the models assessed with cross-validation. Their sets are also
more compact and thus less diverse, which is especially noticeable in the case of smaller
datasets (ecolil and glass1). Although technically worse in terms of prediction quality,
the cross-validation protocol results in more unique solutions (in the context of varying
pairs of objectives), when very often hold-out and test on train methodologies diverged

into one, albeit perfect, solution.
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Figure 5.3: Example of Pareto fronts obtained with different objectives estimation method

Tables 5.2 and 5.3 present the average number of unique solutions and the mean max-
imum spread, being the biggest distance between solutions in the Pareto front. It may
be noticed that the hold-out method results in very few different solutions. However, it
sometimes has the biggest spread amongst the tested protocols. The testing on training
set usually generates a more diverse result set, although it still very often ends with
only one solution with the highest objective score. The cross-validation protocol almost
always creates at least 10 different solutions, which often go in pairs with their wide

range.
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Table 5.2: Pareto fronts assessment employing CART for different objectives calculation protocols

hold-out train cv
DATASET . . .
unique max unique max unique max

solutions spread solutions spread solutions spread
adult 24.8 0.067 75.6 0.060 132.2 0.051
bank _additional 15.8 0.095 69.9 0.074 69.4 0.059
page-blocks0 5.8 0.097 17.9 0.062 123.8 0.137
glassl 1.5 0.038 1.0 0.000 102.2 0.425
glass0 2.1 0.108 1.0 0.000 82.0 0.369
ecoli-0-6-7_vs_5 1.0 0.000 1.0 0.000 14.1 0.327
ecoli-0-6-7_vs_3-5 1.0 0.000 1.0 0.000 13.6 0.280
ecoli-0-2-6-7_vs_3-5 1.1 0.050 1.0 0.000 20.6 0.300
ecoli-0-1_vs_2-3-5 1.0 0.000 1.0 0.000 32.5 0.446
haberman 4.1 0.227 3.3 0.041 138.8 0.434
ecolil 1.4 0.039 1.5 0.016 98.4 0.366
ecoli2 1.4 0.100 1.0 0.000 43.0 0.281
ecoli3 1.2 0.040 1.0 0.000 67.0 0.475
ecoli-0-1-4-7 vs_ 2-3-5-6 1.2 0.067 1.2 0.007 32.2 0.461
yeast-1_vs 7 2.2 0.317 1.0 0.000 45.2 0.455
page-blocks-1-3 vs 4 1.0 0.000 1.0 0.000 7.3 0.242
yeast-2_vs_ 8 1.2 0.117 1.2 0.010 12.8 0.380
yeast-0-3-5-9 _vs_7-8 24 0.238 1.9 0.044 87.6 0.545
yeast-2_vs_ 4 1.6 0.093 1.0 0.000 65.8 0.416
yeast-0-5-6-7-9 _vs_4 1.5 0.089 2.0 0.032 75.6 0.416
yeast-1-4-5-8 vs 7 2.7 0.440 1.6 0.020 31.8 0.330
pima 6.7 0.211 17.7 0.158 146.8 0.232
winequality-white-3_vs 7 1.1 0.050 1.0 0.000 15.6 0.482
yeast-1-2-8-9 vs 7 2.0 0.310 1.7 0.050 33.4 0.364
yeast-0-2-5-6 _vs_ 3-7-8-9 3.7 0.261 8.5 0.163 76.0 0.293
flare-F 2.7 0.217 12.6 0.416 67.0 0.482
kr-vs-k-zero_vs_ eight 1.0 0.000 1.0 0.000 22.1 0.321
poker-8 vs 6 1.1 0.050 1.2 0.011 3.4 0.342
winequality-white-3-9_vs_5 1.8 0.172 1.0 0.000 26.2 0.378
yeast3 2.3 0.084 4.3 0.045 124.8 0.245
poker-8-9 vs 6 1.1 0.050 1.0 0.000 6.8 0.527
yeast6 1.7 0.177 1.2 0.011 39.6 0.339
yeasth 1.0 0.000 1.0 0.000 33.2 0.304
yeast4 1.8 0.162 1.6 0.015 66.0 0.417
winequality-red-4 3.0 0.383 3.5 0.109 54.8 0.440
abalone-19 vs 10-11-12-13 24 0.550 3.9 0.185 11.6 0.206
abalone-20 _vs_8-9-10 2.3 0.320 2.5 0.085 22.4 0.352
poker-8-9 vs 5 1.2 0.067 1.8 0.042 17.8 0.316
abalone-17 _vs_7-8-9-10 3.1 0.343 74 0.219 39.8 0.317
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Table 5.3: Pareto fronts assessment employing KNN for different objectives calculation protocols

hold-out train cv
DATASET . . '
unique max unique max unique max

solutions spread solutions spread solutions spread
adult 15.0 0.105 182.3 0.124 343.2 0.097
bank _additional 15.8 0.095 69.9 0.074 69.4 0.059
page-blocks0 3.4 0.156 29.9 0.205 230.4 0.322
glassl 2.1 0.167 11.2 0.244 199.8 0.682
glass0 2.4 0.111 11.8 0.306 211.0 0.647
ecoli-0-6-7_vs_5 1.0 0.000 2.2 0.160 9.8 0.260
ecoli-0-6-7_vs_3-5 1.0 0.000 2.1 0.209 11.3 0.294
ecoli-0-2-6-7_vs_3-5 1.0 0.000 2.1 0.227 11.5 0.327
ecoli-0-1_vs_2-3-5 1.2 0.100 2.0 0.175 2.4 0.215
haberman 2.0 0.188 18.3 0.538 262.4 0.796
ecolil 1.7 0.149 7.3 0.177 92.2 0.412
ecoli2 1.5 0.140 2.7 0.086 29.0 0.285
ecoli3 1.1 0.050 8.2 0.399 60.1 0.468
ecoli-0-1-4-7 vs_ 2-3-5-6 1.5 0.167 3.5 0.209 13.0 0.350
yeast-1_vs_ 7 1.9 0.517 2.8 0.480 15.4 0.658
page-blocks-1-3 vs 4 2.0 0.333 2.1 0.086 21.8 0.489
yeast-2_vs_8 1.3 0.183 2.8 0.520 2.8 0.544
yeast-0-3-5-9 _vs_7-8 2.0 0.440 5.2 0.544 60.2 0.734
yeast-2_vs_4 1.9 0.217 2.0 0.133 15.2 0.274
yeast-0-5-6-7-9 _vs_4 1.7 0.260 4.8 0.412 75.8 0.658
yeast-1-4-5-8 vs_ 7 1.6 0.420 2.6 0.700 4.8 0.422
pima 2.6 0.144 34.8 0.289 320.4 0.483
winequality-white-3_vs_ 7 1.1 0.067 1.9 0.770 1.4 0.070
yeast-1-2-8-9 vs 7 1.2 0.138 2.2 0.660 2.1 0.395
yeast-0-2-5-6_vs_ 3-7-8-9 3.1 0.346 8.4 0.432 96.8 0.667
flare-F 2.2 0.493 12.2 0.670 50.2 0.690
kr-vs-k-zero_vs_ eight 1.5 0.250 2.1 0.185 11.2 0.408
poker-8 vs 6 1.1 0.050 2.0 0.504 1.9 0.219
winequality-white-3-9_vs_5 1.3 0.192 2.0 0.667 1.8 0.173
yeast3 1.8 0.089 8.2 0.192 74.4 0.280
poker-8-9 vs 6 1.1 0.050 2.0 0.392 2.0 0.466
yeast6 1.7 0.249 4.6 0.389 42.8 0.535
yeasth 1.3 0.065 6.6 0.273 69.8 0.624
yeast4 1.6 0.340 4.4 0.546 52.8 0.691
winequality-red-4 1.6 0.401 3.6 0.777 9.0 0.499
abalone-19 vs 10-11-12-13 1.0 0.000 1.9 0.760 1.4 0.070
abalone-20 _vs_8-9-10 1.3 0.190 2.8 0.759 1.6 0.108
poker-8-9 vs 5 1.0 0.000 1.6 0.553 1.2 0.017
abalone-17 _vs_7-8-9-10 1.7 0.480 2.6 0.679 6.0 0.716
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5.3.3.2 Final quality estimation

The previous experiment showed that the holdout and test on train protocols obtain
better objective values and thus prediction quality. However, estimations on training
sets are unreliable, and the hold-out validation set, in some cases, is too small and
has too large a variance. Therefore, RQ2 needs to be answered to determine if it is
possible to rely on the criteria score obtained during optimisation. To achieve that,
the distances between the optimisation solutions and respective objectives - recall and
precision - calculated on a separate test set, were computed. Tables 8.14 and 8.18 present
the average distance values over each solution across every fold, while Figure 5.4 shows

the examples of such calculations.
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(b) Dataset: haberman, classifier: knn

Figure 5.4: FExample of distances of obtained results and ther respective test scores for each assessed
protocol

Visualisations show the significant difference between the quality of predicting data not
used in the optimisation process. Though the bias is to be expected, the biggest problem
is that the range of test scores can be pretty wide, and the properties of specific solutions
are uncertain. Very often, the dominance does not transfer to test data, and the sequence
of the solutions (according to the single objective) also does not hold. Moreover, one pair
of criteria values might respond to many different final scores, which is especially evident
in the case of the holdout protocol. It seems better for the cross-validation protocol,

though sometimes several optimisation results respond to a single point on the test data.
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Table 5.4: Average distance from train to test Pareto front (CART)

DATASET holdout train cv

adult 0.129 0.321 0.026
bank additional 0.167 0.409 0.052
page-blocks0 0.203 0.246 0.060
glass1 0.553 0.506 0.183
glass0 0.435 0.432 0.165
ecoli-0-6-7_vs_5 0.421 0.416 0.212
ecoli-0-6-7_vs_ 3-5 0.474 0.481 0.253
ecoli-0-2-6-7_vs_3-5 0.540 0.486 0.282
ecoli-0-1_vs_2-3-5 0.583 0.526 0.335
haberman 0.818 0.878 0.300
ecolil 0.336 0.380 0.138
ecoli2 0.372 0.397 0.175
ecoli3 0.602 0.645 0.231
ecoli-0-1-4-7 vs_2-3-5-6 0.617 0.520 0.277
yeast-1_vs 7 0.816 0.914 0.418
page-blocks-1-3_vs_4 0.271 0.138 0.131
yeast-2_vs_8 0.557 0.702 0.298
yeast-0-3-5-9 _vs_T7-8 0.825 0.975 0.269
yeast-2_vs_4 0.427 0.447 0.252
yeast-0-5-6-7-9 _vs 4 0.749 0.864 0.281
yeast-1-4-5-8 vs_7 0.953 1.241 0.436
pima 0.509 0.539 0.150
winequality-white-3 _vs 7 0.830 1.083 0.416
yeast-1-2-8-9 vs 7 0.547 1.015 0.367
yeast-0-2-5-6_vs_ 3-7-8-9 0.578 0.642 0.181
flare-F 0.968 0.839 0.392
kr-vs-k-zero_vs_ eight 0.394 0.131 0.239
poker-8 vs 6 0.591 0.417 0.412
winequality-white-3-9 _vs 5 0.903 1.086 0.404
yeast3 0.347 0.466 0.100
poker-8-9_vs_6 0.637 0.505 0.270
yeast6 0.871 0.819 0.340
yeasth 0.549 0.582 0.217
yeast4 0.935 1.000 0.315
winequality-red-4 0.995 1.179 0.414
abalone-19 vs 10-11-12-13 0.982 1.155 0.303
abalone-20_vs_8-9-10 0.980 0.977 0.378
poker-8-9 vs 5 1.138 1.157 0.372
abalone-17 vs_7-8-9-10 0.867 0.928 0.298
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Table 5.5: Average distance from train to test Pareto front (KNN)

DATASET holdout train cv

adult 0.226 0.157 0.033
bank additional 0.293 0.491 0.190
page-blocks0 0.183 0.148 0.075
glass1 0.502 0.367 0.176
glass0 0.510 0.367 0.190
ecoli-0-6-7_vs_5 0.600 0.239 0.280
ecoli-0-6-7_vs_ 3-5 0.502 0.266 0.283
ecoli-0-2-6-7_vs_3-5 0.519 0.261 0.269
ecoli-0-1_vs_2-3-5 0.352 0.190 0.193
haberman 0.786 0.588 0.343
ecolil 0.337 0.281 0.172
ecoli2 0.270 0.179 0.134
ecoli3 0.652 0.370 0.233
ecoli-0-1-4-7 vs_2-3-5-6 0.322 0.208 0.225
yeast-1_vs 7 0.521 0.413 0.386
page-blocks-1-3_vs_4 0.414 0.279 0.308
yeast-2_ vs_ 8 0.416 0.236 0.286
yeast-0-3-5-9 _vs_T7-8 0.496 0.490 0.375
yeast-2_vs_4 0.220 0.248 0.201
yeast-0-5-6-7-9 _vs 4 0.640 0.571 0.419
yeast-1-4-5-8 vs_7 0.449 0.892 0.424
pima 0.482 0.422 0.187
winequality-white-3 _vs 7 0.105 0.911 0.092
yeast-1-2-8-9 vs 7 0.326 0.553 0.276
yeast-0-2-5-6_vs_ 3-7-8-9 0.431 0.307 0.229
flare-F 0.809 0.647 0.450
kr-vs-k-zero_vs_ eight 0.435 0.348 0.352
poker-8 vs 6 0.281 0.397 0.390
winequality-white-3-9 _vs 5 0.320 0.684 0.210
yeast3 0.284 0.263 0.167
poker-8-9 vs_ 6 0.399 0.391 0.345
yeast6 0.531 0.478 0.366
yeasth 0.586 0.444 0.257
yeast4 0.719 0.538 0.429
winequality-red-4 0.387 0.805 0.340
abalone-19 vs 10-11-12-13 0.000 0.874 0.081
abalone-20_vs_8-9-10 0.258 0.689 0.201
poker-8-9 vs 5 0.000 0.602 0.020
abalone-17 vs_7-8-9-10 0.679 0.662 0.477
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It can be noticed in tables 8.14 and 8.18 that the cross-validation protocol has the lowest
average distance from train to test score for every but one dataset in the case of the
CART classifier. For the KNN model, the scores obtained with test on train are sometimes
closer. Nevertheless, cross-validation estimations are better for most of the datasets, and
when not, its performance is still close to the best. As for the hold-out and testing on
training set protocols, there is no clear pattern with the first being better with some
examples and the second with the others. It has to be highlighted that some average

distances are really high, around 1, indicating significant overfitting of the classifier.

5.3.3.3 Classifiers performance

Lastly, even if the estimations are not accurate and overly optimistic, in the end, one
of the most important aspects is the quality of the model’s prediction. So to answer
RQ3, the third experiment compares the quality of classifiers obtained by selecting three
solutions for each protocol. The detailed results can be found in Tables 8.12 - 8.19 in
the Appendix, while the summary and statistical evaluation can be seen in Figures 5.5 -

5.8.

The results show that, in general, solutions optimised via cross-validation obtained higher
metric scores, followed by testing on training set and hold-out being the worst. There is
also more significant diversification in cross-validation solutions, as the models selected
based on each objective have the highest values of precision and recall, respectively, while
ranking last in the opposite measure. The difference is especially apparent for the CART
classifier. The distinction is less significant in the case of testing on training set and
hold-out. However, this might be due to the selection of one solution for each of the
three instances, as optimisation diverged into a single point. The models based on cross-
validation obtained the best results in all metrics in the case of the CART classifier, often
being statistically better than most other estimators. It must be noticed that for almost
all assessment measures, the cross-validation solution selected by the highest recall came
first, though it was the worst in the case of precision. However, the balanced solution
always obtained the second-best results. The situation is a little bit more interesting
for the KNN estimator, since the advantage of cross-validation appears smaller, with
testing on training set achieving comparable results. In both cases, however, the hold-
out protocol is distinguished by the worst results. Nevertheless, there are examples of

problems where each of the protocols seems superior, sometimes by a big margin.
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Figure 5.5: Awverage rank of models based on solutions obtained from different objective calculation
protocols (CART)
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5.4 Lessons learnt

In this chapter, the analysis of three different objective calculation protocols was con-
ducted. The experiments were dedicated to assessing proposed methods in the context
of the quality of generated Pareto fronts, estimation of the actual (test) scores and the
prediction abilities. The first study showed the dominance of solutions obtained by hold-
out and testing on training set protocols over cross-validation, while the latter resulted
in wider and more numerous fronts. Second experiment determined that even if hold-
out and testing on training set have a high training objective score, it might be due to
overfitting, as criteria calculated on a separate test set were significantly different, with
a high distance measure between respective points. Moreover, solutions with the same
values of objectives would correspond to multiple significantly different scores in the test
space. Cross-validation test solutions’ scores were closer to the training counterparts.
However, there was still a problem with test solutions not forming Pareto fronts and
not corresponding directly to the order in train space. Lastly, the third analysis was
dedicated to comparing particular solutions from each optimisation type. Results show
that, in general, models based on cross-validation, especially those selected according
to the highest recall and the smallest difference between criteria, achieve higher scores
than the rest of the protocols. The difference was prominent in the case of the CART
classifier. Nevertheless, for the KNN testing on training set also obtained close results.
This might indicate that the properties of the classification algorithm have an influence

on the optimisation and assessment approach.

It must be highlighted that there is a difference in computational complexity between
each of the protocols, with hold-out being the fastest, testing on training computations
taking a few times more time, since it employs a bigger validation set, and cross-validation
being the slowest due to its repetitions. On this account, the fact that there was a
dataset for each of the approaches, where it was superior, and the classification algorithm
dependency, the user could consider adding protocol comparison to the development
process. Moreover, depending on the type of employment of MOO in classifier training, it
might be difficult or even impossible to utilise some protocols in objective calculation. For
example, in the method proposed in Chapter 3, weights are being optimised for specific
estimators trained on bootstrapped data. Hence, without some complex measures, it is
infeasible to assess them with cross-validation (since it requires multiple training and

testing).



Chapter 6

Surrogate criteria for gradient

optimisation

This chapter answers the fourth research question - Is it possible to
employ MOO gradient methods for the imbalanced data problem? To
accomplish this, a surrogate criteria will be proposed that substitutes
popular objectives employed in metaheuristic algorithms - recall and
specificity. The surrogate criteria will be evaluated utilising three dif-
ferent gradient optimisation methods - MGDA, ParetoMTL and COSMOS.
The proposed objectives will be assessed based on their similarity dur-
ing training and final estimation of the Pareto front, as well as the
overall quality of the resulting sets in the context of MOO and pattern

recognition.
6.1 Motivation

Previous research showed that metrics dedicated to assessing the recognition quality
of the specific classes are appropriate as objectives for the MOO application in the im-
balanced data task. Employing, for example, recall and precision in the parameter
optimisation results in more balanced models with better generalisation capabilities.
Nevertheless, calculating such criteria involves training a classifier, which may be very
time-consuming depending on the selected algorithm and the data size. Utilisation of an
estimation protocol based on repetition, such as cross-validation, additionally prolongs
the process time. Moreover, the mechanisms in the popular genetic algorithms, such as
mutations and crossovers, meant to improve the population and avoid converging into
local optima, include randomness, generating many individuals that need assessment.

While in general this methodology aims at finding potentially the best possible solution,
88
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this also results in numerous costly computations, many of which do not factor into the
final quality [186].

The solution to this problem could be employing a different type of optimisation method,
for example, the ones that are characterised by a high rate of convergence. One of these
groups of algorithms is gradient-based methods, usually employed in neural network
training. There are several proposed multi-objective gradient algorithms that use dif-
ferent techniques to search in several directions, either by conducting optimisation from
different starting points, segmenting the search space, or including a preferred direction
vector in the training process. The problem with this approach is that previously used
criteria cannot be utilised, as to calculate the gradient, the objective (loss) function needs
to be differentiable, which metrics based on the confusion matrix are not. For this rea-
son, the application of different optimisation criteria should be proposed, such that they
would fit the imbalanced data problem and substitute for the class prediction quality

measures in the sense of similar trends in training and final Pareto front estimations.

6.2 Proposed criteria

The most significant advantage of using criteria such as precision, recall (true positive
rate), and specificity (true negative rate) is that their utilisation allows for the consider-
ation of trade-offs of all classes’ prediction quality. To emulate this feature in a gradient
algorithm, the application of the cross-entropy loss function with weights enhancing

individual classes was proposed.

exp (pn,yn )
c
> o1 6Xp(Pnc)

where y,, is the class of the n-th sample, wy, is its weight, C' is a number of classes and

In(Tn, yn) = —wy, log (6.1)

Pn.c is a support of sample z,, belonging to the c-th class. To achieve the value for the

whole learning set, a weight-oriented mean is used:

N

L) =Y =t — (6.2)

N
n=1 anl Wy,

The number of objectives of MOO equals the number of classes, and the weights differ

for each criterion. For the i-th objective, weights take the form of:
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l—a ife=1
o ifc#i
The « parameter is meant to control the importance of the specific class recognition and
the influence of the remaining classes.
In this research, only binary classification problems were considered. Hence, there were
two objectives:
e cross-entropy minority - where the biggest weight was assigned to the minority
class

e cross-entropy majority - analogically for the majority class.

6.3 Experimental study

To exhaustively test the proposed surrogate criteria, they were applied to three gradient-
based algorithms - MGDA [142], paretoMTL [143| and cOSMOS [144], and evaluated pri-
marily in terms of their consistency with recall and specificity, but also in the context of

the quality of the Pareto front estimation and pattern recognition.

6.3.1 Objectives

The conducted set of experiments aims to prove the proposed surrogate criteria’s utility

by answering the following research questions:
RQ1 What is the influence of the o parameter on the properties of the surrogate objec-
tives?

RQ2 What is the quality of the approximation of the Pareto fronts obtained utilising

the proposed optimisation criteria?
RQ3 How well do solutions from surrogate space translate into the target space?

RQ4 How do optimisation methods using the proposed surrogate criteria perform com-

pared to single-objective optimisation methods?
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Table 6.1: Description of datasets. #S denotes the number of samples, #F stands for the number of
features, and 1R indicates the imbalance ratio

DATASET #$ #F IR [70)]
adult 32561 14 31.71
page-blocks0 5472 9 11.38
bank additional 41188 20 12.70
MiniBooNE PID 130064 50 39.00
ecolil 336 7 29.73
ecoli3 336 7 11.63
glassO 214 9 48.61
glassl 214 9 55.07
haberman 306 3 36.00
pima 768 8 53.60
yeast-0-2-5-6 _vs_ 3-7-8-9 1004 8 10.94
yeast-0-3-5-9 vs_7-8 506 8 10.96
yeast-0-5-6-7-9 _vs 4 528 8 10.69
yeast3 1484 8 12.24
yeast4 1484 8 3.55
6.3.2 Setup

Choice of benchmark datasets. Experiments were run on 15 datasets, which can be
found on UCI [176] and KEEL [175] repositories. For analysis purposes, the datasets
were divided into two categories: a) big datasets, with sizes exceeding 5000 samples,
and b) small datasets, with sizes less than 5000 samples. The datasets also presented
different imbalance ratio levels, i.e., the proportion between minority and majority class
examples (from 3.55% to 55.07%)) and numbers of features (from 3 to 50). The data

characteristic is presented in Table 6.1.

Experimental protocol. For comparison, each method used the same neural network
architecture: three layers with rectified linear unit activation function and Adam opti-
miser with a learning rate of 0.001. The batches have sizes of 256 samples for big datasets
and the whole data for small datasets. All experiments were conducted utilising a 5x2

cross-validation protocol with stratified data splits.
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Implementation and reproducibility. The methods and evaluation were imple-
mented using the Python programming language, modules such as Pytorch [187] and
scikit-learn [177].

6.3.3 «a hyperparameter analysis

To assess the influence of the « on the optimisation process, 10 values of the parameter
ranging from 0.0 to 0.45 were tested on all datasets employing the COSMOS method.
The range was selected due to the symmetric nature of both criteria. Resulting Pareto
front estimations calculated on separate test sets (in both optimised - surrogate objec-
tives space, as well as the target - recall and specificity space) were then compared and

analysed. The example of such comparisons can be seen in Fig. 6.1.

Table 6.2: Average hypervolume measure for different o values in surrogate space

DATASET 0.00 005 010 015 020 025 030 035 040 045

adult 0.378 0.354 0.336 0.322 0.312 0.304 0.299 0.295 0.292 0.292
page-blocks0 0.439 0.415 0.414 0416 0.417 0.420 0.422 0421 0.422 0.420
bank additional 0.401 0.363 0.357 0.351 0.349 0.344 0.346 0.350 0.354 0.357
MiniBooNE PID 0.434 0.421 0.412 0403 0.397 0.391 0.388 0.386 0.383 0.383
ecolil 0.395 0.381 0.371 0.361 0.351 0.348 0.347 0.345 0.345 0.346
ecoli3 0.376 0.366 0.367 0.368 0.371 0.376 0.377 0.379 0.379 0.379
glassO 0.331 0.312 0.295 0.280 0.269 0.260 0.254 0.249 0.246 0.245
glassl 0.295 0.283 0.269 0.254 0.240 0.227 0.215 0.208 0.205 0.203
haberman 0.255 0.224 0.214 0.203 0.196 0.192 0.187 0.183 0.183 0.184
pima 0.317 0.298 0.280 0.262 0.243 0.227 0.213 0.208 0.203 0.202
yeast-0-2-5-6_vs_3-7-8-9 | 0.328 0.287 0.305 0.331 0.348 0.359 0.367 0.373 0.378 0.380
yeast-0-3-5-9 _vs T7-8 0.257 0.237 0.263 0.291 0.314 0.331 0.342 0.349 0.356 0.359
yeast-0-5-6-7-9 _vs_ 4 0.319 0.279 0.289 0.311 0.326 0.337 0.344 0.352 0.358 0.361
yeast3 0.402 0.381 0.382 0.386 0.390 0.395 0.397 0.399 0.401 0.402
yeast4 0.233 0.310 0.358 0.380 0.388 0.398 0.410 0.417 0.422 0.425

The most noticeable trend is that the smaller the a, and thus the more focus on a single
class, the broader the resulting Pareto front is. With a higher « parameter, solutions are
relatively compact. However, they also have better criteria values across all the results.
Hypervolume values of surrogate (optimised) estimations of the Pareto front (Table 6.2)
show that in the cases of some smaller datasets, the dominance is very prominent (as
it significantly influences the scale of hypervolume). Nevertheless, in the case of bigger
datasets (and some smaller ones), the dominance is not significant enough to translate

into higher hypervolume scores. Moreover, this tendency seems not to cross to the target
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Figure 6.1: Comparision of different o values

recall-specificity space (Table 6.3), where solutions obtained from bigger « values do
not dominate the rest. The other observation is that, together with the lower range of
objective values, solutions obtained from higher a parameters tend to be slightly more

biased towards majority class criteria, both in surrogate and target space.

As the goal of the multi-objective optimisation is to generate a wide set of solutions, which
are furthermore not focused on one class recognition, for the rest of the experiments,

alpha = 0.0 was selected. This also intuitively corresponds to the prerogatives of the

target objectives, which only focus on the quality of one class recognition.
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Table 6.3: Average hypervolume measure for different o values in recall-specificity space

DATASET 0.00 005 010 0.15 020 025 030 035 040 0.45

adult 0.886 0.867 0.840 0.814 0.777 0.739 0.693 0.650 0.610 0.584
page-blocks0 0.955 0.915 0.896 0.868 0.844 0.826 0.805 0.772 0.736 0.700
bank additional 0.907 0.844 0.809 0.750 0.686 0.599 0.548 0.513 0.490 0.472
MiniBooNE PID 0.953 0.946 0.938 0.926 0.914 0.899 0.884 0.871 0.852 0.838
ecolil 0.888 0.878 0.854 0.835 0.807 0.779 0.757 0.727 0.713 0.688
ecoli3 0.849 0.830 0.826 0.777 0.744 0.724 0.681 0.610 0.592 0.582
glassO 0.803 0.790 0.767 0.746 0.718 0.687 0.653 0.621 0.600 0.583
glassl 0.763 0.755 0.743 0.720 0.695 0.639 0.579 0.548 0.521 0.511
haberman 0.665 0.664 0.640 0.584 0.509 0.456 0.382 0.303 0.260 0.215
pima 0.800 0.785 0.761 0.730 0.684 0.632 0.583 0.554 0.520 0.498
yeast-0-2-5-6_vs_3-7-8-9 | 0.793 0.642 0.570 0.553 0.531 0.500 0.476 0.472 0.471 0.455
yeast-0-3-5-9 vs T7-8 0.673 0.572 0.476 0.442 0.429 0.371 0.295 0.248 0.228 0.212
yeast-0-5-6-7-9 _vs_ 4 0.778 0.648 0.535 0.471 0.410 0.407 0.328 0.294 0.299 0.291
yeast3 0.888 0.846 0.811 0.783 0.758 0.750 0.725 0.710 0.700 0.693
yeast4 0.722 0.467 0.404 0.336 0.141 0.000 0.000 0.000 0.000 0.000

6.3.4 Pareto Front generation

To answer RQ2, the ability to generate Pareto fronts of the models utilising the proposed
criteria was investigated. Firstly, the experiment was conducted to determine a relation
between both objectives, as interconnected or dependent functions are not suited for the
MOO process since they could result in a narrow Pareto front, in the worst case, reduced
to a single point. Table 6.4 presents correlations of both criteria for all investigated
methods. For big datasets, a strong negative correlation (usually above 0.90) may be
noticed, meaning the objectives contradict each other and the optimisers can correctly
approximate Pareto fronts. This is also true for most small datasets for COsSMOS and
pParetoMTL models. The negative correlation is not as strong in the case of MGDA, which
is probably caused by its tendency to create narrower nondominated sets with dispersed

dominated solutions due to the lack of data to train the model properly.

Secondly, it was assessed what the relationship is between training estimation Pareto
fronts, where the optimisations have taken place, and the resulting Pareto fronts calcu-
lated on a separate test set. The example of such Pareto fronts can be seen in Fig. 6.2.
Tables 6.7 and 6.8 present the average correlation between the proposed criteria on the
training and test sets. The results showcase an almost ideal correlation in the case of

ParetoMTL and COSMOS algorithms. The situation is more complex for the MGDA model,
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Figure 6.2: Examples of training and test Pareto fronts

Table 6.4: Awverage correlation of both criteria on testing data

DATASET MGDA ParetoMTL COSMOS
adult -0.976 -0.953 -0.894
MiniBooNE _PID -0.918 -0.977 -0.824
page-blocks0 -0.023 -0.382 -0.864
bank additional -0.956 -0.878 -0.878
ecolil -0.471 -0.822 -0.995
ecoli3 -0.415 -0.809 -0.953
glassO -0.488 -0.914 -0.958
glassl -0.736 -0.956 -0.946
haberman -0.390 -0.977 -0.963
pima -0.165 -0.881 -0.943
yeast-0-2-5-6 _vs_ 3-7-8-9 -0.684 -0.962 -0.933
yeast-0-3-5-9 _vs_7-8 -0.658 -0.975 -0.932
yeast-0-5-6-7-9 _vs_ 4 -0.535 -0.872 -0.920
yeast3 -0.705 -0.852 -0.940
yeast4 -0.303 -0.925 -0.996

where there is a high correlation between train and test results for some datasets (no-

tably the bigger examples), while for some, the relation seems not to have a very strong

pattern. The reason for that could be the characteristics of the model, especially the fact

that it does not learn to create a wide Pareto front. The algorithm tends to result in a

denser set of solutions, where small changes might have a big impact on the correlation

score. Nevertheless, other models demonstrate that usually there is a good translation

between optimised criteria and their quality on unseen data, making it possible to select

a solution from the Pareto front and precisely forecast its properties.

Next, the quality of the generated solution sets was investigated. Tables 6.9 and 6.10 show



Chapter 6. Surrogate criteria for gradient optimisation 96

Table 6.5: Average correlation between train- Table 6.6: Average correlation between train-
ing (optimised) and test majority weighted cross- ing (optimised) and test minority weighted cross-
entropy entropy

DATASET ‘ MGDA ‘ ParctoM'l‘L‘ COSMOS ~ DATASET ‘ MGDA ‘ ParctoMTL‘ COSMOS
adult 0.987 1.000 1.000 adult 0.939 0.990 1.000
MiniBooNE PID 0.993 1.000 1.000 MiniBooNE PID 0.998 0.996 1.000
page-blocks0 0.617 1.000 0.999 page-blocks0 -0.171 0.509 0.994
bank additional 0.988 1.000 1.000 bank _additional 0.395 0.989 0.995
ecolil 0.292 0.995 0.994 ecolil -0.698 0.972 0.984
ecoli3 0.635 0.998 0.999 ecoli3 -0.146 0.986 0.996
glassO 0.172 0.984 0.999 glassO 0.213 0.981 0.959
glassl 0.311 0.993 0.999 glassl -0.154 0.990 0.995
haberman 0.543 0.998 0.999 haberman 0.211 0.991 0.999
pima 0.330 0.999 0.997 pima 0.062 0.992 0.994
yeast-0-2-5-6_vs_ 3-7-8-9 0.836 1.000 0.998 yeast-0-2-5-6 _vs_ 3-7-8-9 0.617 0.989 0.998
yeast-0-3-5-9_vs_ 7-8 0.515 0.998 0.999 yeast-0-3-5-9_vs_ 7-8 -0.224 0.985 0.990
yeast-0-5-6-7-9_vs_4 0.913 0.998 0999  yeast-0-5-6-7-9 vs_4 0.446 0.971 0.993
yeast3 0.902 0.999 0.996 yeast3 -0.333 0.993 0.993
yeast4 0.830 1.000 1.000 yeast4 0.037 0.942 1.000

proportions of nondominated solutions (Pareto front) on both training, on which optimi-
sation was performed, and testing data. For both partitions, the cOsSMOS method results
in almost entirely nondominated sets, which was to be expected because of its ability
to learn generating Pareto fronts. In the case of algorithms without such a mechanism,
the number of nondominated solutions is much smaller, around one-third for ParetoMTL
and between 10 and 20 % for MGDA. Especially in the case of MGDA, there may be a
difference in order of magnitude between proportions on small and big datasets, which
might indicate difficulty learning from too few samples. Moreover, the MGDA generates

much more limited Pareto fronts, resulting in a few nondominated solutions.

Although not all solutions form the Pareto front, dominated solutions could still be in
its proximity (Fig. 6.3). Tables 6.11 and 6.12 present average distances of dominated
points to the closest point in the Pareto front, normalised to the maximum Pareto front’s
values. For most datasets, the mean relative distance may not exceed 2%, proving that

the solutions are primarily focused around Pareto fronts.

The above results show that the proposed criteria are suitable for multi-objective op-
timisation, creating diverse Pareto fronts. Nonetheless, the final quality of solutions is
highly dependent on the employed optimisation algorithm, which is demonstrated pri-
marily by comparing the resulting sets of methods with diversification mechanisms, such

as COSMOS, to others like MGDA.
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Table 6.7: Awverage correlation between train- Table 6.8: Awverage correlation between train-
ing (optimised) and test majority weighted cross- ing (optimised) and test minority weighted cross-
entropy entropy

DATASET ‘ MGDA ‘ ParetoMTL‘ COSMOS ~ DATASET ‘ MGDA ‘ l’aretOMTL‘ COSMOS
adult 0.987 1.000 1.000 adult 0.939 0.990 1.000
MiniBooNE_PID 0.993 1.000 1.000 MiniBooNE _PID 0.998 0.996 1.000
page-blocks0 0.617 1.000 0.999 page-blocks0 -0.171 0.509 0.994
bank additional 0.988 1.000 1.000 bank additional 0.395 0.989 0.995
ecolil 0.292 0.995 0.994 ecolil -0.698 0.972 0.984
ecoli3 0.635 0.998 0.999 ecoli3 -0.146 0.986 0.996
glass0 0.172 0.984 0.999 glass0 0.213 0.981 0.959
glassl 0.311 0.993 0.999 glassl -0.154 0.990 0.995
haberman 0.543 0.998 0.999 haberman 0.211 0.991 0.999
pima 0.330 0.999 0.997 pima 0.062 0.992 0.994
yeast-0-2-5-6 _vs_ 3-7-8-9 0.836 1.000 0.998 yeast-0-2-5-6_vs_ 3-7-8-9 0.617 0.989 0.998
yeast-0-3-5-9 _vs_7-8 0.515 0.998 0.999 yeast-0-3-5-9 _vs_7-8 -0.224 0.985 0.990
yeast-0-5-6-7-9_vs_4 0.913 0.998 0.999  yeast-0-5-6-7-9 vs_4 0.446 0.971 0.993
yeast3 0.902 0.999 0.996 yeast3 -0.333 0.993 0.993
yeast4 0.830 1.000 1.000 yeast4 0.037 0.942 1.000

Table 6.9: Awverage proportion [%] of nondomi- Table 6.10: Average proportion [%] of nondomi-

nated solutions on training data nated solutions on testing data

DATASET ‘ MGDA ‘ Pal’etOMTL‘ COSMOS ~ DATASET ‘ MGDA ‘ ParetOMTL‘ COSMOS
adult 42.80 66.00 100.00 adult 45.60 57.20 100.00
MiniBooNE _PID 42.80 43.60 100.00 page-blocks0 16.00 36.40 99.60

page-blocks0 24.80 26.80 100.00 bank_additional 28.75 54.00 100.00
bank _additional 26.40 62.80 100.00 MiniBooNE _PID 50.00 40.80 98.40

ecolil 21.20 39.20 100.00 ecolil 17.60 32.00 100.00
ecoli3 17.20 35.60 100.00 ecoli3 12.80 17.20 98.80

glass0 12.00 46.40 100.00 glass0 16.80 42.40 100.00
glassl 16.80 46.00 100.00 glassl 16.80 40.40 100.00
haberman 16.00 63.20 100.00 haberman 26.00 41.60 100.00
pima 17.60 44.80 100.00 pima 19.20 35.20 100.00
yeast-0-2-5-6_vs_ 3-7-8-9 16.40 56.40 100.00 yeast-0-2-5-6_vs_ 3-7-8-9 17.20 13.20 96.80

yeast-0-3-5-9_vs_7-8 10.80 52.00 100.00 yeast-0-3-5-9_vs_ 7-8 17.20 25.20 100.00
yeast-0-5-6-7-9_vs_4 18.80 40.40 100.00 yeast-0-5-6-7-9_vs_4 19.60 31.20 100.00
yeast3 13.20 38.40 100.00 yeast3 17.20 29.60 98.40

yeast4 14.00 36.80 100.00 yeast4 21.60 41.20 100.00
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Figure 6.3: Example of solutions obtained from MGDA algorithm with denoted Pareto front and distances

to dominated points

Table 6.11: Average distance to Pareto front on
training data

Table 6.12: Average distance to Pareto front on
testing data

DATASET ‘ ‘ ParctoMTL‘ COSMOS

DATASET ‘ ‘ ParctoMTL‘ COSMOS

MGDA MGDA
adult 0.005 0.001 0.000 adult 0.003 0.001 0.000
MiniBooNE_PID 0.003 0.000 0.000 MiniBooNE_ PID 0.003 0.000 0.000
page-blocks0 0.005 0.010 0.000 page-blocks0 0.004 0.011 0.000
bank _additional 0.009 0.002 0.000 bank _additional 0.003 0.001 0.000
ecolil 0.010 0.023 0.000 ecolil 0.014 0.021 0.000
ecoli3 0.008 0.022 0.000 ecoli3 0.009 0.023 0.000
glass0 0.031 0.011 0.000 glass0 0.018 0.012 0.000
glassl 0.028 0.009 0.000 glassl 0.033 0.008 0.000
haberman 0.017 0.003 0.000 haberman 0.010 0.003 0.000
pima 0.019 0.009 0.000 pima 0.016 0.008 0.000
yeast-0-2-5-6_vs_ 3-7-8-9 0.020 0.006 0.000 yeast-0-2-5-6_vs_ 3-7-8-9 0.013 0.006 0.000
yeast-0-3-5-9_vs_7-8 0.036 0.007 0.000 yeast-0-3-5-9_vs_7-8 0.022 0.006 0.000
yeast-0-5-6-7-9_vs_4 0.017 0.017 0.000 yeast-0-5-6-7-9_vs_4 0.023 0.017 0.000
yeast3 0.008 0.022 0.000 yeast3 0.005 0.020 0.000
yeast4 0.012 0.017 0.000 yeast4 0.012 0.012 0.000
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6.3.5 Surrogate and target criteria relation

The aim of the second set of experiments was to answer RQ3 - How well do solutions
from surrogate space translate into the target space and thus investigate whether it is
appropriate to employ the proposed criteria to emulate target objectives, namely recall
and specificity, where cross-entropy minority corresponds to recall, as it focuses on mi-
nority class correct prediction, while analogically cross-entropy majority substitutes for
specificity. Firstly, it was examined whether the behaviour of the surrogate functions
matches the behaviour of the quality metrics, both during the training process and in
the final Pareto front estimations. Tables 6.13 and 6.14 show the correlation between
surrogate and target criteria during training, while 6.15 and 6.16 present their correlation
in the resulting Pareto fronts. In the case of training, it has to be pointed out that for al-
most all datasets, there is a strong (> 0.7) correlation between corresponding objectives.
This indicates that the proposed loss functions appropriately substitute for recall and
specificity, as the improvement of surrogate criteria directly influences the progression of
the target measure. The examples of weaker correlations were always related to smaller
datasets, which could be attributed to fewer possible values of quality measures (meaning

that the same value of recall would represent different values of minority cross-entropy).

As for the final solution sets correspondence, it may be noticed that for the big datasets,
all three models have an almost perfect negative correlation, meaning that their course
is almost exactly opposite, as surrogate ones need to be minimised and the targets
maximised. The same could be said about the smaller datasets, especially in the case
of the COSMOS algorithm, as in only a few examples, the correlation totals to less
than 0.7. Moreover, it is worth noting that decreases in correlation values are connected
to individual methods, as in all instances of a weaker relation, there is at least one
other model with a correlation value above 0.9. These results indicate that the values
and solutions placements are tightly related to the target space, meaning it is possible
to select solutions aiming at specific target properties based on characteristics in the

surrogate space.

The following experiment was intended to test whether the quality of the Pareto front in
the surrogate space translates into the target space. For this purpose, it was investigated
how many optimised Pareto front solutions are nondominated based on recall and speci-
ficity (Fig. 6.4). Tables 6.17 and 6.18 show the proportion of such cases compared to
all solutions. Further, it was examined what the mean distance between solutions that
are nondominated in surrogate space to the target space Pareto front is (Tables 6.19
and 6.20). Even though the solution is no longer part of the estimated Pareto front in
the target space, it still could be placed sufficiently close to other nondominated points.

Results indicate that not only are nondominated surrogate solutions close to the target
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Table 6.13: Awverage correlation of cross-entropy Table 6.14: Awverage correlation of cross-entropy
magjority and specificity during training on test minority and recall during training on test data
data

DATASET ‘ MGDA ‘ ParetoMTL‘ COSMOS  DATASET ‘ MGDA ‘ ParetoMTL‘ COSMOS
adult -0.939 -0.997 -0.999 adult -0.983 -0.962 -0.999
MiniBooNE PID -0.997 -0.997 -0.978 MiniBooNE PID -0.999 -1.000 -0.958
page-blocks0 -0.726 -0.756 -0.880 page-blocks0 -0.683 -0.880 -0.941
bank _additional -0.993 -0.999 -1.000 bank _additional -0.997 -0.992 -0.999
ecolil -0.603 -0.814 -0.081 ecolil -0.467 -0.663 -0.639
ecoli3 -0.713 -0.766 0.056 ecoli3 -0.296 -0.576 -0.505
glass0 -0.694 -0.673 -0.527 glass0 -0.403 -0.623 -0.806
glassl -0.808 -0.608 -0.702 glassl -0.312 -0.636 -0.822
haberman -0.479 -0.560 -0.835 haberman -0.497 -0.637 -0.810
pima -0.677 -0.639 -0.912 pima -0.273 -0.648 -0.891
yeast-0-2-5-6 _vs_3-7-8-9 -0.746 -0.752 -0.918 yeast-0-2-5-6 _vs_3-7-8-9 -0.457 -0.691 -0.837
yeast-0-3-5-9_vs_7-8 -0.602 -0.700 -0.876 yeast-0-3-5-9_vs_ 7-8 -0.602 -0.705 -0.904
yeast-0-5-6-7-9 _vs 4 -0.715 -0.764 -0.862 yeast-0-5-6-7-9 _vs_4 -0.538 -0.650 -0.827
yeast3 -0.642 -0.852 -0.922 yeast3 -0.338 -0.635 -0.373
yeast4 -0.751 -0.771 -0.873 yeast4 -0.581 -0.584 -0.201
Table 6.15: Correlation between majority Table 6.16: Correlation between minority

weighted cross-entropy and specificity on train weighted cross-entropy and recall on test data
data

DATASET ‘ MGDA ‘ ParetoMTL ‘ COSMOS DATASET ‘ MGDA ‘ ParetoMTL ‘ COSMOS
adult -0.997 -1.000 -1.000 adult -0.996 -1.000 -1.000
MiniBooNE PID -0.998 NaN -1.000 MiniBooNE PID -0.998 NaN -1.000
page-blocks0 -0.633 -0.984 -0.999 page-blocks0 -0.716 NaN -0.995
bank _additional -0.999 -1.000 -1.000 bank _additional -0.997 -1.000 -1.000
ecolil -0.209 -0.896 -0.982 ecolil -0.793 -0.713 -0.950
ecoli3 -0.586 -0.942 -0.974 ecoli3 -0.697 NaN -0.875
glassO -0.761 -0.867 -0.989 glassO -0.887 -0.181 -0.992
glassl -0.942 -0.827 -0.986 glassl -0.919 -0.567 -0.990
haberman -0.447 NaN -0.995 haberman -0.615 NaN -0.990
pima -0.733 -0.943 -0.999 pima -0.728 -0.540 -0.995
yeast-0-2-5-6_vs_3-7-8-9 -0.619 -0.938 -0.995 yeast-0-2-5-6_vs_ 3-7-8-9 -0.567 -0.848 -0.989
yeast-0-3-5-9_vs_7-8 -0.838 -0.936 -0.999 yeast-0-3-5-9_vs_ 7-8 -0.783 -0.855 -0.984
yeast-0-5-6-7-9_vs_4 -0.859 -0.969 -0.997 yeast-0-5-6-7-9_vs_4 -0.890 -0.551 -0.992
yeast3 -0.788 -0.985 -0.995 yeast3 -0.625 -0.761 -0.978
yeast4 -0.921 -0.983 -0.998 yeast4 -0.883 -0.807 -0.681
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Table 6.17: Average proportion [%] of nondomi-  Table 6.18: Average proportion [%] of nondomi-

nated surrogate solutions which are also nondom- nated surrogate solutions which are also nondom-
inated in target space (train data) inated in target space (test data)

DATASET ‘ MGDA ‘ ParctoM'l‘L‘ COSMOS ~ DATASET ‘ MGDA ‘ ParctoMTL‘ COSMOS
adult 80.20 71.01 100.00 adult 80.15 73.41 100.00
MiniBooNE PID 85.38 100.00 100.00 MiniBooNE _PID 82.32 100.00 100.00
page-blocks0 45.07 15.31 70.80 page-blocks0 47.95 21.20 79.20

bank _additional 87.20 65.17 98.00 bank _additional 89.00 67.91 100.00
ecolil 42.43 17.48 38.00 ecolil 32.10 27.20 36.00

ecoli3 46.76 12.22 15.60 ecoli3 38.11 17.31 19.60

glassO 45.33 7.87 35.60 glassO 34.38 17.83 45.60

glassl 44.21 16.33 42.80 glassl 63.33 18.36 53.20

haberman 31.50 81.84 66.00 haberman 16.96 90.09 72.00

pima 44.74 31.72 84.80 pima 59.83 32.89 92.00

yeast-0-2-5-6_vs_ 3-7-8-9 35.36 30.44 59.20 yeast-0-2-5-6 _vs_ 3-7-8-9 30.94 36.82 58.40

yeast-0-3-5-9_vs_ 7-8 38.33 12.86 41.20 yeast-0-3-5-9_vs_ 7-8 26.29 22.66 45.60

yeast-0-5-6-7-9 vs_4 42.19 21.21 33.60  yeast-0-5-6-7-9 vs_4 45.33 28.55 45.60

yeast3 36.00 23.37 35.20 yeast3 25.30 24.51 42.80

yeast4 27.33 18.66 12.80 yeast4 35.56 26.65 12.80

Pareto fronts, but fairly often, they are also nondominated according to quality metrics,
which means that Pareto fronts translate fairly well into the target space. It should
be noted that the proportions are usually higher for the bigger datasets, especially for
the paretoMTL and COSMOS algorithms. Lower values for smaller data might be caused
by the phenomenon of confusion matrix Pareto fronts being less diverse and sparse for
smaller datasets, as small numbers of minority class samples result in fewer possible

values of quality measures [180] and the tendency to overfitting.

The obtained results show a strong relation between proposed cross-entropy-based cri-
teria and desired quality measures, not only individually but also in multi-objective

optimisation, which answers RQ3.
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Table 6.19: Average distance of nondominated
surrogate solutions to the Pareto front in target

space (train data)

Table 6.20: Average distance of nondominated
surrogate solutions to the Pareto front in target

space (test data)

DATASET ‘

‘ ParetoMTL‘ COSMOS

DATASET ‘

‘ ParetoMTL‘ COSMOS

MGDA MGDA
adult 0.001 0.025 0.000 adult 0.001 0.002 0.000
MiniBooNE _PID 0.000 0.000 0.000 MiniBooNE_PID 0.000 0.000 0.000
page-blocks0 0.002 0.095 0.003 page-blocks0 0.001 0.084 0.002
bank__additional 0.000 0.046 0.000 bank__additional 0.000 0.014 0.000
ecolil 0.005 0.058 0.011 ecolil 0.009 0.046 0.012
ecoli3 0.004 0.074 0.018 ecoli3 0.008 0.056 0.019
glassO 0.011 0.086 0.034 glassO 0.019 0.045 0.020
glassl 0.015 0.062 0.032 glassl 0.010 0.049 0.019
haberman 0.015 0.007 0.011 haberman 0.026 0.005 0.008
pima 0.005 0.045 0.005 pima 0.005 0.053 0.002
yeast-0-2-5-6_vs_3-7-8-9 0.006 0.054 0.014 yeast-0-2-5-6_ vs_ 3-7-8-9 0.009 0.038 0.010
yeast-0-3-5-9_vs_7-8 0.008 0.136 0.035 yeast-0-3-5-9_vs_7-8 0.021 0.061 0.018
yeast-0-5-6-7-9_vs_4 0.006 0.087 0.023 yeast-0-5-6-7-9_vs_4 0.017 0.053 0.014
yeast3 0.003 0.102 0.008 yeast3 0.005 0.071 0.005
yeast4 0.005 0.088 0.025 yeast4 0.008 0.055 0.038
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Figure 6.4: Example of translation of nondominated solutions from surrogate to target space



Chapter 6. Surrogate criteria for gradient optimisation 103

6.3.6 Single objective optimization comparison

Finally, the last study was conducted to answer RQ4 - How do optimisation methods
using the proposed surrogate criteria perform compared to single-objective optimisation
methods?. The experiment was executed on all 15 datasets using six models with the
same architecture but different objective functions to compare MOO methods using the
proposed criteria with standard single-objective algorithms. For the single-objective

problems, the following losses were used:

e focal loss function with two different v parameter values (y = 0 and v = 2)

e binary cross-entropy loss with positive (minority) class weight inversely propor-

tional to the ratio of minority class size to majority class size (%)

As the cosMos method presented the best ability to generate diverse Pareto fronts with
the best translation from the surrogate to the target space, it was selected as the MOO
representative. For clarity purposes, three solutions from the Pareto set will be compared

with SOO methods:

e two extreme solutions from the Pareto front (COSMOS MIN and COSMOS MAX

e the solution from the middle of the Pareto front (COSMOS BAL)

The methods were assessed using previously employed imbalanced data performance
measures - precision, recall, BAC, F1 score, and Gmean. The results were checked for

statistical significance using the Friedman ranking test with the Nemenyi post hoc test.

As shown both in Figure 6.5 and Tables 8.25 - 8.24 (in the Appendix), very often the
SO0 methods were dominated by solutions from the Pareto front, and if not, there was
at least one COSMOS solution better in the chosen metric. When the model optimised by
a single criterion was superior according to one measure, there was always a different one
where the MOO solutions were favourable. None of the compared models came first for
all of the quality metrics. However, almost always, it was possible to choose a solution
from a Pareto front with the best or close to the best performance, and sometimes the
difference in quality was statistically significant (Fig. 6.7). Moreover, as presented in
Fig. 6.6, utilising the MOO method with the proposed criteria allows the user to decide
whether to select a solution favouring the preferred metrics or balancing all the measures.
In contrast, the SOO solutions are usually biased towards one performance aspect (i.e.,
both focal loss functions lean towards precision). They are hard to control the direction
of optimisation without excessive parameter testing. All of this proves the usability of

the proposed criteria paired with adequate MOO method, thereby answering RQ4.
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6.4 Lessons learnt

This chapter proposed the employment of weighted cross-entropy loss as a surrogate
for recall and specificity quality metrics in multi-objective optimisation. The research
was conducted to determine the best way of weighting the loss functions, investigate
a relation, and thereby adequateness, between proposed and target criteria, as well as

assess its usefulness in comparison to single objective gradient optimisation.

The first experiment showed that using smaller «, which translated to smaller (or even
no) influence of the opposite class recognition, resulted in wider Pareto fronts, which
were also less biased towards the majority class. The second experiment was conducted
to assess the proposed loss functions as the criteria of the MOO algorithm. The outcome
indicated that appropriately weighted cross entropies are not strictly dependent on each
other, which consequently results in, depending on the algorithm, a non-dominated set
of diverse solutions. Then it was determined that there is a strong correlation between
optimised and test Pareto fronts, making it possible to select adequate solutions based on
their training properties. The following experiment showcased the relationship between
the surrogate and target criteria. The proposed objectives were highly correlated with the
recall and specificity both during the training process, as well as the final Pareto fronts.
The dominance relation between solutions also translated well from the surrogate and
target spaces. These results showcase that it is feasible to train a neural network model
aiming for good recall and specificity scores, but also to select the solutions based on their
weighted cross-entropy loss values. Lastly, the experiment was conducted to compare the
MOO model employing the proposed criteria to the model’s training, utilising a single
objective appropriate for imbalanced data learning. The results presented the advantage
of employing multiple objectives, as they offer a broad selection of models with different

properties, similar or better than the neural networks trained on single objective.

To conclude, the experimental evaluation proves that it is appropriate to employ weighted
cross-entropy in place of recall and specificity in a multi-objective gradient optimisation
algorithm, and it is beneficial for the imbalanced data classification problem compared
to standard optimisation with a single loss function. Nevertheless, it must be noticed
that this type of optimisation is limited to the methods using gradients for calculating

parameters and thus is not model agnostic.



Chapter 7

Pareto front solutions analysis

This chapter considers the last research question on evaluating the di-
versity of classifiers that form the Pareto front. The explainable artifi-
ctal intelligence technique is proposed to help the user make a conscious
decision, i.e., choose the tailored solution. Considerations were limited
to a pool of interpretable models, and the visualisations used to show
the importance of individual features based on the location of classifiers
in the Pareto front. The limitations of the proposed method is also

discussed.
7.1 Motivation

Previous research demonstrated some difficulties with employing multi-objective optimi-
sation in the imbalanced data problem, such as quality criteria estimation and computa-
tional complexity. However, there is also one challenge related intrinsically to the nature
of optimising according to multiple criteria, which is the selection of the final solution.
The problem is not trivial even in the case of the typical multi-objective optimisation
employment, where the criteria are deterministic. Multiple methods have been proposed
to aid the user in making a decision|[147]. Nevertheless, they might be insufficient in the
case of an imbalanced pattern recognition task. Firstly, these algorithms usually assume
that the decision maker can give particular preferences about each criterion’s importance.
However, it is often difficult to clearly determine the cost of class recognition. Moreover,
the differences between solutions are sometimes minimal and hard to appraise without
factors other than optimisation objectives. Secondly, because the quality metrics are es-
timated and not deterministic, there can always be some differences between the scores
obtained by the optimisation algorithm and their real values. It is especially prominent

in the case of imbalanced and small data, where estimations are limited, due to few

107
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possible unique scores, and of high variance [21]. The results showed that the solution
arrangement does not always directly transfer into the test space, meaning it is essential

to consider alternatives to the assessment of solutions besides their criteria values.

7.2 Solution selection based on the interpretable model

The easiest method to analyse the models resulting from the MOO solutions is to employ
a classifier that is interpretable by nature, such as decision trees. In chapter 3, the
sampling method employing the CART was proposed. Since each solution represented
parameters for the sampler, resulting in data used to train each classifier, they can be
differentiated based on the generated models. The example of such interpretation is

presented in Figure 7.1.

1.05
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0.90

0850 0.85 0.90 0.95 1.00 1.05
precision

Figure 7.1: Example of the tree solutions analysis

Utilising interpretable models allows the user to understand the mechanism behind their
prediction completely and to assess whether learned dependencies are accurate, by con-
trast to employing XAI, which may not explain the decisions correctly [188|. Moreover, it
is pretty straightforward and does not require additional tools. However, there are also
some significant disadvantages to this approach. Firstly, this technique is limited to the
methods where the optimisation process results in (directly or indirectly) a single clas-
sifier. Furthermore, the prediction model needs to be interpretable, further restricting
the algorithm selection. Otherwise, some explainability approach needs to be employed.

Secondly, depending on the number of solutions, the analysis might be very complex and
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time-consuming. Moreover, even when interpretable, models might be very complex, for

example, in the case of the very deep decision trees.

7.3 Feature importance analysis

Another approach would be to analyse solutions from the Pareto front without depen-
dence on the model’s structure. It is possible to employ a model-agnostic XAl technique
to explain the resulting classifier’s decision. However, it is important to select an appro-
priate one. To simplify the analysis of the Pareto front, the chosen algorithm should offer
the aggregated breakdown of the solutions, by, for example, determining the influence
of each attribute on the final prediction. With this knowledge, the expert might elim-
inate the solutions where some features weigh more on the selected class, which might
be caused by some bias or known false dependencies. It would also be beneficial in the
context of fairness in a prediction model, as classifiers where sensitive attributes have

too much influence might be discarded.

The method allowing for assessing the importance of each variable/feature was presented
in [189] and is based on permutation testing. The version of the procedure conducted in

this research is presented in Algorithm 3:

The premise of the method is that the more important the feature is, the bigger the
impact it has on the prediction quality. Because of it, when the attribute’s value does
not match the real sample, the recognition of the objects degrades. To measure that
decrease in quality, for each problem’s feature the algorithm permutes the values be-
tween the samples and calculate the difference between chosen metric scores of model’s
prediction on original and permuted data. Usually, the final importance value equals
either L° — L*J or % However, since the idea is to compare solutions from the Pareto
front with different base quality, the terms were merged to show the magnitude of the
feature’s influence. Furthermore, since the algorithm involves randomness (by randomly
permuting the values of one feature), the steps should be repeated multiple times [189).

In the case of the following analyses, the procedure was conducted 100 times for each

feature, and the values were averaged.
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Algorithm 3 Permutation based test to assess given feature importance

Input: ¥ - trained classifier
X7s - test set matrix
y7s - test set labels
[ - loss function/quality measure
j - assessed feature index

k - number of comparison iterations

Output: vip; - importance of the feature

Irs « ¥(X7s)

I° < Uyrs, 975)

vipj + 0

for i< 1tok do
Xfrjs < test set matrix with randomly perturbed j column
s  W(XF)
19— Ulyrs, §7s)
vipj = vip; U{"5}

end for

vipj <= lvip; || Z’Ul'p*jevipj UtPxj

The benefit of employing only two criteria is that the solutions can be explicitly sorted
in direct proportion to one objective (and in descending order to the other). Making
advantage of that property, the plot presenting the influence of the feature based on
the Pareto front placement can be proposed. The example of the plot, obtained by the
cosMos method with weighted cross-entropy on the dataset Bank Marketing [190], is

presented in Figure 7.2.

The plot separately presents the change of each feature’s importance based on the spe-
cific Pareto front solutions, where solutions are sorted in increasing order from the first
objective. The importances are shown twofold. Firstly, the line of each plot indicates
local changes of the attributes’ influence on the final predictions, and it ranges between
the smallest and largest value of the solutions’ feature importance. It allows for deter-
mining trends in Pareto front solutions and limiting ranges based on selected variables.
Secondly, the colours of the plot show the global importance, to assess which of the fea-
tures influences the quality of prediction the most. In the example, it can be noticed that
the importances of some attributes change correspondingly to the Pareto front solutions
(duration, pdays, cons.price.idz, etc.), while only in some cases (mainly duration and

emp.var.rate) this trend is significant to the final result.
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Importance of each feature in classifier predictions, based on balanced_accuracy_score
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Figure 7.2: Ezxample of Pareto front features importance plot based on BAC measure

The presented plot may be utilised in different ways:

1. Aiding solution selection - As mentioned before, a user with expert knowledge

may take into consideration the importance of each feature while choosing the
final model. For example, in the Figure 7.2, the feature with the most significant
influence on the final prediction is duration. However, this variable accounts for the
time of the phone call and is not known before the prediction (while being highly
correlated to the label), so that a big importance might mean lower predictive
abilities of the model. Furthermore, in the case of sensitive attributes, such as

gender or race, the solutions with strong bias could also be eliminated.
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2. Analysis of the model - In this thesis, MOO was usually employed to deter-

mine the set of parameters of a specific model/algorithm. Because of that, the

feature importance plot allows analysis of the underlying method, since it shows

the change in the behaviour based on different attributes. For example, in Figure

7.2, some solutions obtained negative importances in the case of features like pout-

come, cons.price.idx. This might indicate that the features’ influence is negative for

the final prediction for solutions optimised more towards the second objective (in

the example, minority class recognition). Moreover, importance might be assessed

according to different quality metrics, meaning it could be analysed whether the

algorithm is generally biased towards any of the classes (Figure 7.3).
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Figure 7.3: Ezxample of Pareto front features importance plot based on precision measure
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The downside of the proposed feature importance plot is its reliance on the base impor-
tance measure selection. As presented in Figures 7.2 and 7.3, the importances and even
the trends of feature influence might vary significantly depending on what quality metric
is chosen. Furthermore, the plot is mainly limited to the two objectives optimisation, as
the visualisation of more criteria could be ambiguous and trends could also be hard to

determine.

7.4 Lessons learnt

This chapter raised the subject of aiding the selection of the solution from the Pareto
front, presenting concerns and difficulties with choice based only on objective values. The
proposed approach was to employ XAI techniques that would allow deeper analysis and
differentiation of the classifiers resulting from the optimisation. The most direct method
was to explicitly utilise interpretable models, such as decision trees, to understand the
basis of the prediction completely. However, this approach severely limited possible
classification algorithms and required a long and complex breakdown of the solutions,
as well as specific knowledge about the problem that might not be even feasible to
obtain (such as particular dependencies of the problem’s attributes). The alternative
was the proposed feature importance plot, which presents the influence of the attribute
on the final prediction quality, utilising a permutation test. The plot allows analysis
of the solutions from the Pareto front, both in the context of model selection, where
classifiers might be discarded when the feature weights are not appropriate, and the
general algorithm behaviour breakdown. Its disadvantage is its reliance on two objectives

and the selection of an importance measure.
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Conclusion and Future Works

This dissertation considered the application of multi-objective optimisation in creating
methods dedicated to imbalanced data. Imbalanced data classification is a challenging
and important task, which, if left unaddressed, has a significant impact on the correct
recognition of rare samples. One of the difficulties of the problem is its assessment and
optimisation goal, as usually utilised solutions based on a single criterion have their limi-
tations on performance improvement. For this reason, the employment of multi-objective

optimisation techniques was proposed, and the following hypothesis was formulated:

Incorporating MOO in training imbalanced data classifiers allows obtaining

customised solutions whose quality is no worse than using soo

To substantiate the hypothesis, several additional research questions were formulated

and answered in consecutive dissertations’ chapters.

Is it feasible to employ MOO in the process of training of the ensemble
classifier, and how does it compare to the ensembles optimised using a

single criterion?

In the chapter 3, the ensemble method utilising MOO was proposed. The committee
consisted of several classification algorithms, which were trained on different subsets of
the original data, obtained by stratified bootstrapping, to further ensure the diversity of
the estimator pool. The NSGA 11 method was utilised to optimise the weights of clas-
sifiers being part of the ensemble, which are used during the final model’s prediction
via weighted majority voting. The selected objectives of the optimisation were precision
and recall, so as to balance the influence of both classes’ recognition quality. The con-

ducted research proved the feasibility of employing MOO techniques with the proposed

114
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criteria. However, the difficulties with a variety of Pareto front solutions for the smaller
datasets were also exposed, arising from the limited possible values of utilised quality
measures. The method was compared with ensembles created from the same estimator
pool, where weights were optimised using sOO with different popular imbalanced data
assessment metrics as objectives. The MOO-based models achieved results which were
better or comparable to the ones obtained by ensembles based on aggregated measures,
while also being more balanced in terms of recall and precision, in comparison to methods
optimised specifically according to those metrics. The study confirmed the applicability

of MOO in imbalanced data and its advantages over using a single criterion.

Is it possible to employ M0OO in the preprocessing stage, and how does

it improve the quality of a classification model

In the chapter 4, the sampling method utilising MOO was proposed. Data-based algo-
rithms are very popular, since they are independent of a classifying model. Nevertheless,
MOO is very rarely utilised in sampling approaches aside from feature and instance se-
lection, even though it proved beneficial to the imbalanced data classification. The
proposed algorithm determined minority class neighbourhoods from majority class sam-
ples and populated areas with synthetic minority class objects. The NSGA 11 algorithm
was employed to optimise the sizes of the neighbourhoods (in the form of spheres) and
the number of newly created samples. The method was compared to the most common
baselines, as well as a classifier trained on original, not sampled data. The proposed algo-
rithm outperformed most of the baselines and was marked by balanced results, achieving

high scores for both classes recognition.

What is the best approach to estimate the quality criteria of the clas-
sifiers built using M00O?

In the chapter 5, the research was conducted to analyse different protocols of obtaining
previously utilised optimisation objectives - precision and recall. Three methodologies
were studied: hold-out, testing on training set and 5x2 cross-validation, with respect to
the quality of estimated Pareto fronts, the estimation of the assessment on the test data
and actual predictive abilities of the resulting models. The experiment showed that even
though Pareto fronts generated by hold-out and testing on the training set dominated
solutions by cross-validation, it was at the cost of smaller diversity and a bigger gap
between training and validation scores. Furthermore, models generated by the latter
had overall better prediction quality, although each of the protocols was superior for

some datasets. In conclusion, cross-validation seems in general to be the best choice
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of objective estimation, although for some tasks choosing a different approach could be

beneficial or even necessary.

Is it possible to employ M0OO gradient methods for the imbalanced data

problem?

In the chapter 6, it was considered whether MOO gradient methods could be employed in
place of the previously used genetic algorithm. The utilisation of weighted cross-entropy
for objectives was proposed, with weights influencing the magnitude of influence of spe-
cific class recognition, while others had less of an impact. In results, two objectives were
utilised - cross entropy minority and cross entropy majority, which aimed to substitute
for respectively recall and specificity. Research was conducted to determine the best
weights, the quality of Pareto fronts resulting from the proposed objective optimisation,
their relation with target criteria and the quality of prediction of the method in com-
parison with a model optimised with a single loss function. The experiment proved the

applicability of the proposed objectives and thus the MOO gradient approaches.

What is the diversity of classifiers from the Pareto front?

Finally, the chapter 7 considered the diversity of the Pareto front solutions and the ap-
proaches of their exploration. Previous research uncovered the importance of analysis of
the classifiers resulting from multi-objective optimisation, so as to be able to consciously
select an appropriate model. Two ways of exploring Pareto fronts were proposed - first
based on utilising interpretable classification algorithms and second employing the XAl
technique to determine a relationship between the problem’s feature importance and
placement of the solution. The examples showed possible trends in attribute importance
variability, enabling both model analysis and solution selection based on their focus on

specific variables.

To conclude, the conducted research resulted in answering the formulated research ques-

tion and substantiating the research thesis.

Future work

During the preparation of this dissertation, a few new possible research directions were

identified.
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Application of multi-objective optimisation in multi-class problems, which would
also entail a necessity of developing new approaches of solution selection and anal-

ysis;

Research on different MOO algorithms utilisation, for example, methods based on

decomposition;

Employment of different objectives suitable to imbalanced data, especially mea-
sures not based on prediction quality, to bypass classifier training and reduce com-

putational complexity of the optimisation process;

Research on new areas of MOO employment in imbalanced data classification tasks,

for example, in feature selection or cost-sensitive learning;
Application of MOO in new types of data, for example, imbalanced data streams;

Incorporation of additional criteria, for example, related to diversity or problem

constraints;
Development of the method assisting decision making;

Application of other techniques, i.e. XAI, in the imbalance data problem.

It can be noted that the last idea resulted in the project plan and receiving Grant no

2024/53/N/ST6/03667 (Preludium) funded by the Polish National Center.
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A Additional results for application of the multi-objective

optimisation in ensemble learning
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Table 8.1: Precision results of compared ensembles
MOO S00
2 <
DATASET g g o % é >
: gz 2 B3 E|& & & §8 & g |¢g &
z & & ¥ o £ 3 = R
S =

abalone9-18 0.811 0.811 0.811 0.811 0.811| 0.672 0.763 0.538 0.661 0.691 0.59 | 0.485 0.586
aps failure 0.850 0.448 0.738 0.850 0.448| 0.469 0.882 0.208 0.740 0.506 0.436| 0.764 0.867
covid 0.925 0.419 0.425 0.925 0.419| 0.129 0.826 0.021 0.478 0.130 0.121| 0.624 0.674
credit card 0.951 0.900 0.900 0.951 0.900| 0.887 0.970 0.434 0.894 0.884 0.907| 0.823 0.914
diabetes 0.426 0.147 0.185 0.426 0.147| 0.140 0.269 0.112 0.143 0.167 0.142| 0.472 0.407
ecolil 0.765 0.706 0.761 0.765 0.706| 0.738 0.731 0.674 0.728 0.715 0.741| 0.759 0.793
ecoli2 0.855 0.852 0.852 0.855 0.852| 0.846 0.869 0.795 0.836 0.880 0.838| 0.805 0.840
ecoli3 0.693 0.695 0.695 0.693 0.695| 0.662 0.646 0.601 0.665 0.653 0.645| 0.511 0.711
flare-F 0.271 0.327 0.331 0.271 0.327| 0.310 0.318 0.132 0.307 0.271 0.272| 0.409 0.172
glass0 0.700 0.692 0.690 0.700 0.692| 0.676 0.687 0.608 0.665 0.685 0.690| 0.730 0.779
glass1 0.732 0.727 0.727 0.732 0.727| 0.696 0.704 0.564 0.693 0.692 0.695| 0.669 0.768
glassy 0.499 0.499 0.499 0.499 0.499| 0.440 0.525 0.473 0.352 0.257 0.467| 0.734 0.695
glassd 0.088 0.088 0.088 0.088 0.088| 0.000 0.000 0.000 0.000 0.000 0.000| 0.69 0.621
haberman 0.514 0.537 0.537 0.514 0.537| 0.550 0.540 0.491 0.515 0.543 0.512| 0.391 0.391
hand positions | 0.990 0.900 0.912 0.990 0.900| 0.934 0.991 0.874 0.963 0.938 0.932| 0.805 0.970
miniboone 0.917 0.362 0.875 0.917 0.362| 0.806 0.982 0.282 0.854 0.807 0.808| 0.847 0.886
mitbih 0.964 0.948 0.948 0.964 0.948| 0.738 0.962 0.576 0.946 0.827 0.783| 0.865 0.953
page-blocks 0.900 0.887 0.887 0.900 0.887| 0.888 0.906 0.806 0.883 0.877 0.889| 0.834 0.882
pima 0.678 0.664 0.664 0.678 0.664| 0.691 0.701 0.667 0.684 0.685 0.678| 0.647 0.656
vehiclel 0.594 0.570 0.578 0.594 0.570| 0.584 0.604 0.438 0.570 0.590 0.574| 0.568 0.618
vehicle3 0.604 0.554 0.576 0.604 0.554| 0.559 0.614 0.436 0.561 0.552 0.538| 0.594 0.604
yeast! 0.647 0.366 0.569 0.647 0.366| 0.559 0.654 0.299 0.572 0.544 0.565| 0.612 0.621
yeast3 0.787 0.693 0.772 0.787 0.693| 0.758 0.797 0.216 0.767 0.754 0.716| 0.751 0.777
yeasts 0.527 0.358 0.394 0.527 0.358| 0.464 0.475 0.138 0.456 0.416 0.441| 0.332 0.530
yeastd 0.711 0.625 0.668 0.711 0.625| 0.633 0.737 0.531 0.664 0.670 0.640| 0.711 0.757
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Table 8.2: Recall results of compared ensembles
MOO S00
2 <

DATASET g g o % é >

- 2 g 3 3] 3 . = Q Y ol

Ty 2 F o ElE 2 L o5 o2 f|F &

> s & ¢ = |° g = 3 " & |§ &

g = |

S =

abalone9-18 0.176 0.176 0.176 0.176 0.176| 0.081 0.138 0.205 0.152 0.133 0.152| 0.357 0.229
aps failure 0.581 0.868 0.736 0.581 0.868| 0.860 0.496 0.918 0.725 0.848 0.866| 0.647 0.695
covid 0.060 0.326 0.325 0.060 0.326| 0.778 0.007 0.999 0.416 0.804 0.748| 0.234 0.296
credit card 0.587 0.746 0.746 0.587 0.746| 0.740 0.304 0.854 0.745 0.739 0.716| 0.682 0.775
diabetes 0.002 0.345 0.174 0.002 0.345| 0.219 0.001 1.000 0.436 0.290 0.549| 0.013 0.04
ecolil 0.738 0.805 0.769 0.738 0.805| 0.788 0.777 0.832 0.803 0.800 0.767| 0.749 0.741
ecoli2 0.815 0.823 0.823 0.815 0.823| 0.823 0.812 0.854 0.812 0.800 0.815| 0.735 0.735
ecoli3 0.544 0.549 0.549 0.544 0.549| 0.548 0.567 0.636 0.590 0.533 0.543| 0.522 0.557
flare-F 0.079 0.251 0.242 0.079 0.251| 0.154 0.093 0.702 0.201 0.173 0.213| 0.164 0.126
glass0O 0.743 0.797 0.774 0.743 0.797| 0.809 0.771 0.840 0.800 0.789 0.794| 0.686 0.746
glass1 0.542 0.610 0.610 0.542 0.610| 0.563 0.460 0.666 0.547 0.566 0.582| 0.637 0.655
glassy 0.202 0.202 0.202 0.202 0.202| 0.126 0.112 0.19 0.148 0.098 0.205| 0.624 0.448
glassd 0.125 0.125 0.125 0.125 0.125| 0.000 0.000 0.000 0.000 0.000 0.000| 0.620 0.420
haberman 0.254 0.304 0.304 0.254 0.304| 0.272 0.26 0.329 0.262 0.274 0.257| 0.267 0.294
hand positions | 0.783 0.852 0.851 0.783 0.852| 0.851 0.778 0.858 0.839 0.848 0.849| 0.589 0.880
miniboone 0.712 0.999 0.874 0.712 0.999| 0.940 0.156 1.000 0.898 0.937 0.936| 0.837 0.857
mitbih 0.589 0.600 0.600 0.589 0.600| 0.643 0.591 0.691 0.600 0.628 0.637| 0.431 0.582
page-blocks 0.777 0.800 0.800 0.777 0.800| 0.789 0.738 0.821 0.797 0.798 0.790| 0.790 0.842
pima 0.552 0.558 0.558 0.552 0.558| 0.548 0.540 0.569 0.558 0.554 0.558| 0.590 0.565
vehiclel 0.423 0.504 0.497 0.423 0.504| 0.491 0.414 0.637 0.472 0.480 0.505| 0.432 0.431
vehicle3 0.400 0.516 0.488 0.400 0.516| 0.465 0.386 0.611 0.473 0.497 0.499| 0.425 0.380
yeast! 0.435 0.949 0.604 0.435 0.949| 0.627 0.418 0.987 0.586 0.638 0.622| 0.466 0.454
yeast3 0.763 0.836 0.792 0.763 0.836| 0.799 0.761 0.961 0.778 0.810 0.835| 0.730 0.697
yeasts 0.201 0.423 0.368 0.201 0.423| 0.298 0.184 0.679 0.309 0.361 0.274| 0.203 0.224
yeastd 0.586 0.668 0.65 0.586 0.668| 0.691 0.523 0.755 0.636 0.659 0.673| 0.682 0.550
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Table 8.3: BAC results of compared ensembles
MOO S00
2 <

DATASET g g o % é >

s & £ 2 £, F z =7 , 2|EB F

s 3 ¢ F §E |85 gz & § F §|§ &

z & & ¥ o £ 3 = R

S =

abalone9-18 0.585 0.585 0.585 0.585 0.585| 0.540 0.566 0.592 0.571 0.563 0.572| 0.666 0.609
aps failure 0.790 0.924 0.866 0.790 0.924| 0.921 0.747 0.770 0.860 0.916 0.922| 0.822 0.846
covid 0.530 0.658 0.657 0.530 0.658| 0.831 0.504 0.500 0.703 0.844 0.815| 0.615 0.647
credit card 0.793 0.873 0.873 0.793 0.873| 0.870 0.652 0.748 0.872 0.869 0.858| 0.841 0.888
diabetes 0.501 0.519 0.539 0.501 0.519| 0.538 0.500 0.500 0.548 0.549 0.565 0.505 0.516
ecolil 0.834 0.852 0.848 0.834 0.852| 0.851 0.845 0.854 0.856 0.852 0.842| 0.838 0.840
ecoli2 0.894 0.897 0.897 0.894 0.897| 0.897 0.894 0.906 0.891 0.889 0.893| 0.850 0.854
ecoli3 0.757 0.760 0.760 0.757 0.760| 0.757 0.766 0.792 0.777 0.749 0.753| 0.732 0.765
flare-F 0.534 0.612 0.608 0.534 0.612| 0.566 0.541 0.725 0.588 0.576 0.591| 0.577 0.552
glass0O 0.791 0.810 0.800 0.791 0.810| 0.809 0.798 0.784 0.799 0.803 0.808| 0.779 0.819
glass1 0.716 0.740 0.740 0.716 0.740| 0.711 0.675 0.674 0.700 0.713 0.716| 0.733 0.771
glassy 0.597 0.597 0.597 0.597 0.597| 0.561 0.554 0.592 0.570 0.544 0.599| 0.802 0.714
glassd 0.560 0.560 0.560 0.560 0.560| 0.500 0.500 0.500 0.500 0.500 0.500| 0.803 0.705
haberman 0.585 0.603 0.603 0.585 0.603| 0.594 0.588 0.599 0.586 0.594 0.583| 0.559 0.566
hand positions | 0.891 0.915 0.916 0.891 0.915| 0.919 0.888 0.914 0.916 0.917 0.917| 0.778 0.937
miniboone 0.842 0.646 0.913 0.842 0.646| 0.925 0.578 0.503 0.919 0.925 0.924| 0.889 0.907
mitbih 0.794 0.800 0.800 0.794 0.800| 0.816 0.795 0.666 0.800 0.810 0.814| 0.715 0.791
page-blocks 0.883 0.894 0.894 0.883 0.894| 0.889 0.864 0.895 0.892 0.893 0.889| 0.886 0.915
pima 0.705 0.703 0.703 0.705 0.703| 0.707 0.707 0.708 0.709 0.708 0.708| 0.708 0.702
vehiclel 0.661 0.686 0.686 0.661 0.686| 0.685 0.660 0.659 0.674 0.682 0.686 0.659 0.668
vehicle3 0.655 0.688 0.683 0.655 0.688| 0.670 0.652 0.651 0.674 0.680 0.677| 0.664 0.648
yeast! 0.668 0.639 0.708 0.668 0.639| 0.709 0.663 0.523 0.701 0.708 0.712 0.673 0.670
yeast3 0.869 0.892 0.881 0.869 0.892| 0.883 0.868 0.676 0.874 0.888 0.895 0.850 0.836
yeasts 0.596 0.691 0.672 0.596 0.691| 0.642 0.589 0.690 0.648 0.671 0.629| 0.594 0.607
yeastd 0.789 0.827 0.820 0.789 0.827| 0.838 0.758 0.857 0.813 0.824 0.830| 0.836 0.772
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Table 8.4: F1 score results of compared ensembles
MOO S00
2 <
DATASET g g o % é >
i 3 2 B & |z z & 8§ & §|§g =
z & & ¥ o £ 3 = R
s 7 g 3
@ g,
S =
abalone9-18 0.249 0.249 0.249 0.249 0.249| 0.138 0.202 0.236 0.208 0.193 0.194| 0.399 0.316
aps failure 0.687 0.587 0.737 0.687 0.587| 0.606 0.628 0.307 0.732 0.631 0.577| 0.700 0.771
covid 0.111 0.362 0.365 0.111 0.362| 0.221 0.014 0.041 0.443 0.223 0.208| 0.340 0.411
credit card 0.720 0.815 0.815 0.720 0.815| 0.804 0.430 0.424 0.811 0.802 0.799| 0.745 0.839
diabetes 0.003 0.169 0.178 0.003 0.169| 0.149 0.002 0.201 0.211 0.192 0.225 0.025 0.072
ecolil 0.747 0.750 0.762 0.747 0.750| 0.758 0.751 0.741 0.762 0.752 0.750| 0.750 0.762
ecoli2 0.830 0.832 0.832 0.830 0.832| 0.830 0.835 0.821 0.821 0.833 0.824| 0.762 0.781
ecoli3 0.600 0.604 0.604 0.600 0.604| 0.590 0.594 0.598 0.621 0.572 0.580| 0.511 0.619
flare-F 0.112 0.243 0.244 0.112 0.243| 0.161 0.131 0.210 0.219 0.192 0.198| 0.226 0.141
glass0O 0.710 0.738 0.723 0.710 0.738| 0.735 0.722 0.702 0.723 0.729 0.736| 0.703 0.757
glass1 0.619 0.660 0.660 0.619 0.660| 0.616 0.548 0.597 0.603 0.619 0.625| 0.650 0.704
glassy 0.271 0.271 0.271 0.271 0.271| 0.187 0.179 0.250 0.196 0.132 0.264| 0.642 0.509
glassd 0.102 0.102 0.102 0.102 0.102| 0.000 0.000 0.000 0.000 0.000 0.000| 0.583 0.442
haberman 0.337 0.383 0.383 0.337 0.383| 0.358 0.344 0.381 0.343 0.358 0.334| 0.315 0.332
hand positions | 0.874 0.874 0.880 0.874 0.874| 0.891 0.872 0.865 0.897 0.891 0.888| 0.680 0.923
miniboone 0.78 0.529 0.875 0.786 0.529| 0.867 0.260 0.440 0.875 0.867 0.867| 0.842 0.871
mitbih 0.731 0.735 0.735 0.731 0.735| 0.646 0.732 0.458 0.734 0.687 0.668| 0.575 0.723
page-blocks 0.833 0.840 0.840 0.833 0.840| 0.835 0.813 0.801 0.837 0.834 0.836| 0.810 0.862
pima 0.607 0.604 0.604 0.607 0.604| 0.609 0.608 0.613 0.613 0.611 0.611| 0.616 0.606
vehiclel 0.490 0.530 0.531 0.490 0.530| 0.528 0.486 0.506 0.510 0.521 0.530| 0.489 0.501
vehicle3 0.476 0.532 0.527 0.476 0.532| 0.503 0.472 0.498 0.511 0.519 0.515| 0.494 0.465
yeast! 0.515 0.528 0.584 0.515 0.528| 0.585 0.506 0.459 0.575 0.585 0.590 0.528 0.523
yeast3 0.773 0.748 0.779 0.773 0.748| 0.776 0.777 0.327 0.771 0.779 0.765| 0.739 0.734
yeasts 0.255 0.331 0.353 0.255 0.331| 0.341 0.249 0.193 0.359 0.370 0.317| 0.248 0.289
yeastd 0.633 0.623 0.646 0.633 0.623| 0.641 0.588 0.576 0.630 0.658 0.646| 0.684 0.626
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Table 8.5: AuUC results of compared ensembles
MOO S00
2 <
DATASET g g o % é >
: gz 2 B3 E|& & & §8 & g |¢g &
z & & ¥ o £ 3 = R
S =

abalone9-18 0.585 0.585 0.585 0.585 0.585| 0.540 0.566 0.592 0.571 0.563 0.572| 0.666 0.609
aps failure 0.790 0.924 0.866 0.790 0.924| 0.921 0.747 0.770 0.860 0.916 0.922| 0.822 0.846
covid 0.530 0.658 0.657 0.530 0.658| 0.831 0.504 0.500 0.703 0.844 0.815| 0.615 0.647
credit card 0.793 0.873 0.873 0.793 0.873| 0.870 0.652 0.748 0.872 0.869 0.858| 0.841 0.888
diabetes 0.501 0.519 0.539 0.501 0.519| 0.538 0.500 0.500 0.548 0.549 0.565 0.505 0.516
ecolil 0.834 0.852 0.848 0.834 0.852| 0.851 0.845 0.854 0.856 0.852 0.842| 0.838 0.840
ecoli2 0.894 0.897 0.897 0.894 0.897| 0.897 0.894 0.906 0.891 0.889 0.893| 0.850 0.854
ecoli3 0.757 0.760 0.760 0.757 0.760| 0.757 0.766 0.792 0.777 0.749 0.753| 0.732 0.765
flare-F 0.534 0.612 0.608 0.534 0.612| 0.566 0.541 0.725 0.588 0.576 0.591| 0.577 0.552
glass0O 0.791 0.810 0.800 0.791 0.810| 0.809 0.798 0.784 0.799 0.803 0.808| 0.779 0.819
glass1 0.716 0.740 0.740 0.716 0.740| 0.711 0.675 0.674 0.700 0.713 0.716| 0.733 0.771
glassy 0.597 0.597 0.597 0.597 0.597| 0.561 0.554 0.592 0.57 0.544 0.599| 0.802 0.714
glassd 0.560 0.560 0.560 0.560 0.560| 0.500 0.500 0.500 0.500 0.500 0.500| 0.803 0.705
haberman 0.585 0.603 0.603 0.585 0.603| 0.594 0.588 0.599 0.586 0.594 0.583| 0.559 0.566
hand positions | 0.891 0.915 0.916 0.891 0.915| 0.919 0.888 0.914 0.916 0.917 0.917| 0.778 0.937
miniboone 0.842 0.646 0.913 0.842 0.646| 0.925 0.578 0.503 0.919 0.925 0.924| 0.889 0.907
mitbih 0.794 0.800 0.800 0.794 0.800| 0.816 0.795 0.666 0.8 0.81 0.814| 0.715 0.791
page-blocks 0.883 0.894 0.894 0.883 0.894| 0.889 0.864 0.895 0.892 0.893 0.889| 0.886 0.915
pima 0.705 0.703 0.703 0.705 0.703| 0.707 0.707 0.708 0.709 0.708 0.708| 0.708 0.702
vehiclel 0.661 0.686 0.686 0.661 0.686| 0.685 0.66 0.659 0.674 0.682 0.686 0.659 0.668
vehicle3 0.655 0.688 0.683 0.655 0.688| 0.670 0.652 0.651 0.674 0.680 0.677| 0.664 0.648
yeast! 0.668 0.639 0.708 0.668 0.639| 0.709 0.663 0.523 0.701 0.708 0.712 0.673 0.670
yeast3 0.869 0.892 0.881 0.869 0.892| 0.883 0.868 0.676 0.874 0.888 0.895 0.850 0.836
yeasts 0.596 0.691 0.672 0.596 0.691| 0.642 0.589 0.69 0.648 0.671 0.629| 0.594 0.607
yeastd 0.789 0.827 0.82 0.789 0.827| 0.838 0.758 0.857 0.813 0.824 0.83 | 0.836 0.772
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Table 8.6: Gmean results of compared ensembles
MOO S00
:
DATASET g g o 5 é >
o+ 2 o = & g _, = ) o o~}
¥ - & E E|g§g & § =z & £ |& &
g g g o 8 2 g B g - g =
& = a = = = e z &
S - g 8
@. =
S =
abalone9-18 0.393 0.393 0.393 0.393 0.393| 0.243 0.341 0.396 0.345 0.337 0.311| 0.583 0.466
aps failure 0.687 0.587 0.737 0.687 0.587| 0.606 0.628 0.307 0.732 0.631 0.577| 0.803 0.833
covid 0.241 0.568 0.567 0.241 0.568| 0.829 0.075 0.004 0.641 0.843 0.811| 0.483 0.543
credit card 0.763 0.863 0.863 0.763 0.863| 0.859 0.520 0.596 0.863 0.859 0.845| 0.825 0.880
diabetes 0.038 0.343 0.395 0.038 0.343| 0.350 0.018 0.002 0.521 0.455 0.564 0.112 0.198
ecolil 0.827 0.850 0.843 0.827 0.850| 0.847 0.841 0.853 0.854 0.849 0.838| 0.832 0.833
ecoli2 0.889 0.893 0.893 0.889 0.893| 0.892 0.889 0.904 0.886 0.883 0.888| 0.840 0.845
ecoli3 0.722 0.726 0.726 0.722 0.726| 0.723 0.732 0.767 0.751 0.711 0.718| 0.696 0.733
flare-F 0.240 0.450 0.445 0.240 0.450| 0.325 0.277 0.710 0.423 0.389 0.424| 0.393 0.321
glassO 0.783 0.809 0.796 0.783 0.809| 0.808 0.795 0.780 0.798 0.801 0.807| 0.772 0.813
glassl 0.691 0.727 0.727 0.691 0.727| 0.692 0.633 0.661 0.679 0.695 0.699| 0.724 0.761
glass4 0.363 0.363 0.363 0.363 0.363| 0.247 0.255 0.323 0.263 0.193 0.342| 0.771 0.649
glassh 0.148 0.148 0.148 0.148 0.148| 0.000 0.000 0.000 0.000 0.000 0.000| 0.716 0.578
haberman 0.477 0.521 0.521 0.477 0.521] 0.495 0.483 0.526 0.485 0.496 0.476| 0.473 0.489
hand positions | 0.884 0.912 0.914 0.884 0.912| 0.916 0.881 0.913 0.912 0.915 0.915| 0.754 0.935
miniboone 0.824 0.522 0.912 0.824 0.522| 0.925 0.381 0.081 0.918 0.925 0.924| 0.887 0.905
mitbih 0.767 0.775 0.775 0.767 0.775| 0.796 0.769 0.575 0.774 0.789 0.794| 0.656 0.763
page-blocks 0.877 0.889 0.889 0.877 0.889| 0.883 0.855 0.891 0.887 0.887 0.884| 0.880 0.912
pima 0.687 0.686 0.686 0.687 0.686| 0.688 0.686 0.693 0.692 0.690 0.691| 0.697 0.688
vehiclel 0.613 0.658 0.656 0.613 0.658| 0.652 0.608 0.643 0.638 0.645 0.658 0.617 0.621
vehicle3 0.600 0.664 0.654 0.600 0.664 0.635 0.593 0.631 0.642 0.653 0.651| 0.618 0.589
yeast1 0.623 0.555 0.699 0.623 0.555| 0.701 0.613 0.235 0.690 0.703 0.705 0.640 0.634
yeast3 0.862 0.889 0.876 0.862 0.889| 0.879 0.861 0.584 0.868 0.884 0.892 0.840 0.824
yeast4 0.425 0.614 0.587 0.425 0.614| 0.532 0.390 0.662 0.546 0.586 0.510| 0.438 0.449
yeastd 0.758 0.805 0.797 0.758 0.805| 0.821 0.709 0.845 0.787 0.805 0.811| 0.818 0.734
yeast6 0.557 0.613 0.577 0.557 0.613| 0.582 0.561 0.735 0.592 0.528 0.574| 0.617 0.575
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B Additional results for application of multi-objective op-

timisation in data sampling

Table 8.7: Precision results of compared algorithms for CART model.

8 . 8 > g ¢ 8
DATASET 5 8 § (E: g § g E- %

5 ® g 2 & o) )

e 3 E] -

E

page-blocks-1-3 vs 4 0.885 | 0.933 0915 0.774 0.925 0.826 | 0.842 0.864  0.845
yeast-0-5-6-7-9 vs 4 0.360 | 0.370 0.320 0.359  0.35  0.362 | 0.363 0.399  0.373
yeast-1-2-8-9 vs 7 0.204 | 0.182  0.094 0.177 0.096 0.221 | 0.167 0.167 0.176
yeast-1-4-5-8 vs 7 0.114 | 0.116 0.077 0.099 0.087 0.104 | 0.092 0.107 0.113
yeast-1 vs 7 0.318 | 0.294 0180 0225 0.185 0.294 | 0.314 0.322  0.293
yeast-2 vs 4 0.683 | 0.711 0.683 0.618 0.651 0.720 | 0.668 0.716  0.678
yeast-2 vs 8 0.507 | 0533 0418 0.476  0.343 0.536 | 0.438  0.453  0.395
yeast) 0.260 | 0.290 0.214  0.209 0.208 0.298 | 0.252  0.227  0.269
yeast5 0.642 | 0.673 0.658 0.531  0.666  0.601 | 0.596  0.589  0.609
yeast6 0.367 | 0.454 0.283  0.341  0.286 0.361 | 0.398  0.383  0.330
ecoli-0-1-4-7 vs 2-3-5-6 0.583 | 0.656 0.488 0596  0.520 0.592 | 0.603  0.598  0.600
ecoli-0-1 vs 2-3-5 0.727 | 0.723 0624 0.741 0.611 0593 | 0.689  0.68  0.713
ecoli-0-2-6-7 vs 3-5 0.629 | 0.665 0.586 0.557 0.579  0.634 | 0.653  0.642  0.630
ecoli-0-6-7 vs 3-5 0.708 | 0.668 0.569 0.583  0.541  0.697 | 0.631  0.599  0.691
ecoli-0-6-7 vs 5 0.791 | 0.770  0.686 0.656  0.589  0.781 | 0.755  0.747  0.755
yeast-0-2-5-6 vs 8-7-8-9 0.465 | 0.509 0.385  0.402  0.356  0.445 | 0.442 0439  0.454
yeast-0-8-5-9 vs 7-8 0.343 | 0.320 0.224 0248 0204 0328 | 0306 0292  0.298
abalone-17 vs 7-8-9-10 0.271 | 0263 0.161 0196 0.180 0.180 | 0.228  0.259  0.158
abalone-19 vs 10-11-12-13  0.074 | 0.082  0.055 0.044  0.052 0.066 | 0.073  0.075  0.060
abalone-20 vs 8-9-10 0.229 | 0261 0.168 0.228 0.166 0.173 | 0.191 0202  0.136
flare-F 0.233 | 0.140 0.196 0.156 0.179  0.151 | 0.228  0.226  0.219
kr-vs-k-zero vs eight 0.910 | 0.871 0907 0.843 0.877 0.894 | 0.859 0.836  0.878
poker-8-9 vs 5 0.086 | 0.104 0.071  0.074 0.066 0.097 | 0.105 0.068  0.080
poker-8-9 vs 6 0.190 | 0.109 0285 0.170 0.262 0.469 | 0.827 0.746  0.741
poker-8 vs 6 0.309 | 0.389 0513 0.297 0.502 0.476 | 0.667 0.746  0.697
winequality-red-4 0.105 | 0.091 0101  0.103 0.065 0.101 | 0.092 0.113 0.102
winequality-white-3-9 vs 5 0.197 | 0.073  0.044  0.164 0.036 0.073 | 0.158 0.131  0.118
winequality-white-3 vs 7 0.304 | 0.164 0.068 0.314 0.056 0.105 | 0.281  0.253  0.169
ecolil 0.708 | 0.721  0.707  0.700  0.713  0.724 | 0.715 0.731  0.692
ecoli 0.718 | 0.747 0.723 0.713  0.674 0.757 | 0.716  0.740  0.719
ecoli3 0.591 | 0.448  0.459  0.517 0507 0.502 | 0.547  0.575  0.493
glass0 0.628 | 0.691 0.665 0.642 0.651 0.667 | 0.667 0.691  0.628
glass1 0.649 | 0.641  0.625 0.634 0581 0.637 | 0.630 0.639  0.611
haberman 0.357 | 0.343  0.346  0.364  0.357 0.399 | 0.375  0.353  0.337
pima 0.573 | 0.559  0.563  0.543  0.538 0.575 | 0.546  0.541  0.563
yeast3 0.697 | 0.697 0.660 0.656  0.658 0.718 | 0.679  0.687  0.687
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Table 8.8: Recall results of compared algorithms for CART model.

; ] .

8 . g . g s 8
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L] r—r] =
page-blocks-1-3 vs 4 0.871 0.979 0.979 0.821 0.964 0.957 0.936 0.957 0.943
yeast-0-5-6-7-9 vs 4 0.401 0.400 0.489 0.478 0.538 0.395 0.436 0.448 0.451
yeast-1-2-8-9 vs 7 0.247 0.180 0.220 0.247 0.233 0.273 0.247 0.247 0.267
yeast-1-4-5-8 vs 7 0.14 0.107 0.173 0.127 0.193 0.133 0.133 0.140 0.173
yeast-1 vs 7 0.373 0.273 0.300 0.307 0.313 0.340 0.42 0.413 0.380
yeast-2 vs 4 0.691 0.663 0.757 0.683 0.749 0.753 0.71 0.698 0.705
yeast-2 vs 8 0.500 0.480 0.610 0.500 0.550 0.560 0.500 0.510 0.490
yeasts 0.286 0.284 0.393 0.302 0.382 0.329 0.373 0.326 0.404
yeastd 0.614 0.632 0.732 0.641 0.750 0.691 0.691 0.705 0.750
yeastb 0.436 0.420 0.505 0.476 0.521 0.522 0.515 0.526 0.573
ecoli-0-1-4-7 vs 2-3-5-6 0.608 0.578 0.668 0.635 0.660 0.641 0.660 0.695 0.676
ecoli-0-1 vs 2-3-5 0.550 0.583 0.608 0.575 0.650 0.642 0.692 0.708 0.708
ecoli-0-2-6-7 vs 3-5 0.627 0.573 0.655 0.527 0.664 0.655 0.664 0.700 0.636
ecoli-0-6-7 vs 3-5 0.664 0.627 0.682 0.700 0.709 0.664 0.691 0.718 0.664
ecoli-0-6-7 vs 5 0.670 0.620 0.700 0.580 0.590 0.750 0.720 0.750 0.770
yeast-0-2-5-6 vs 3-7-8-9 0.496 0.465 0.505 0.481 0.501 0.491 0.514 0.511 0.554
yeast-0-3-5-9 vs 7-8 0.336 0.308 0.368 0.332 0.316 0.360 0.344 0.340 0.344
abalone-17 vs 7-8-9-10 0.317 0.245 0.352 0.279 0.400 0.328 0.290 0.314 0.479
abalone-19 vs 10-11-12-13 0.100 0.062 0.206 0.069 0.194 0.081 0.138 0.144 0.294
abalone-20 vs 8-9-10 0.269 0.231 0.423 0.285 0.423 0.331 0.285 0.308 0.362
flare-F 0.163 0.261 0.201 0.242 0.182 0.303 0.218 0.205 0.209
kr-vs-k-zero vs eight 0.954 0.830 0.946 0.813 0.878 0.909 0.962 0.910 0.962
poker-8-9 vs 5 0.105 0.096 0.185 0.088 0.158 0.099 0.134 0.079 0.198
poker-8-9 vs 6 0.174 0.079 0.315 0.209 0.338 0.432 0.855 0.849 0.801
poker-8 vs 6 0.210 0.210 0.389 0.229 0.417 0.404 0.631 0.629 0.629
winequality-red-4 0.127 0.097 0.257 0.135 0.166 0.211 0.139 0.163 0.288
winequality-white-3-9 vs 5 0.169 0.073 0.137 0.178 0.119 0.137 0.194 0.178 0.194
winequality-white-3 vs 7 0.220 0.120 0.150 0.240 0.120 0.160 0.260 0.220 0.170
ecolil 0.723 0.728 0.760 0.778 0.780 0.744 0.77 0.775 0.793
ecoli2 0.712 0.750 0.758 0.704 0.769 0.769 0.781 0.758 0.762
ecoli3 0.556 0.453 0.589 0.594 0.624 0.584 0.657 0.675 0.713
glass0 0.686 0.711 0.726 0.731 0.726 0.711 0.783 0.774 0.780
glass1 0.661 0.655 0.666 0.692 0.616 0.676 0.687 0.700 0.708
haberman 0.368 0.331 0.422 0.410 0.412 0.484 0.506 0.481 0.587
pima 0.58 0.584 0.604 0.598 0.565 0.613 0.578 0.589 0.581
yeast3 0.692 0.687 0.747 0.710 0.765 0.726 0.756 0.756 0.774
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Table 8.9: BAC results of compared algorithms for CART model.

; ] .

8 . g . g s 8
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page-blocks-1-3 vs 4 0.932 0.987 0.986 0.903 0.980 0.971 0.962 0.973 0.965
yeast-0-5-6-7-9 vs 4 0.662 0.663 0.689 0.693 0.715 0.660 0.677 0.687 0.685
yeast-1-2-8-9 vs 7 0.607 0.576 0.573 0.603 0.582 0.620 0.604 0.604 0.613
yeast-1-4-5-8 vs 7 0.545 0.534 0.538 0.535 0.548 0.540 0.536 0.544 0.557
yeast-1 vs 7 0.659 0.613 0.600 0.616 0.607 0.641 0.677 0.674 0.655
yeast-2 vs 4 0.827 0.816 0.859 0.817 0.852 0.860 0.835 0.833 0.834
yeast-2 vs 8 0.738 0.729 0.783 0.737 0.749 0.768 0.735 0.741 0.726
yeasty 0.629 0.630 0.671 0.630 0.666 0.651 0.666 0.642 0.681
yeastd 0.801 0.811 0.860 0.812 0.869 0.838 0.838 0.844 0.867
yeastb 0.708 0.704 0.735 0.727 0.744 0.750 0.748 0.752 0.772
ecoli-0-1-4-7 vs 2-3-5-6 0.783 0.774 0.800 0.797 0.799 0.799 0.810 0.824 0.816
ecoli-0-1 vs 2-3-5 0.763 0.778 0.783 0.775 0.798 0.796 0.827 0.836 0.836
ecoli-0-2-6-7 vs 3-5 0.791 0.770 0.801 0.738 0.802 0.803 0.810 0.827 0.794
ecoli-0-6-7 vs 3-5 0.812 0.793 0.804 0.820 0.812 0.812 0.818 0.830 0.810
ecoli-0-6-7 vs 5 0.823 0.798 0.826 0.770 0.770 0.860 0.846 0.856 0.870
yeast-0-2-5-6 vs 3-7-8-9 0.716 0.707 0.708 0.700 0.700 0.712 0.721 0.720 0.739
yeast-0-3-5-9 vs 7-8 0.632 0.618 0.612 0.610 0.589 0.639 0.629 0.624 0.625
abalone-17 vs 7-8-9-10 0.647 0.614 0.652 0.624 0.677 0.644 0.632 0.645 0.705
abalone-19 vs 10-11-12-13 0.538 0.523 0.569 0.520 0.562 0.527 0.551 0.555 0.600
abalone-20 vs 8-9-10 0.628 0.611 0.697 0.635 0.697 0.654 0.634 0.645 0.664
flare-F 0.57 0.598 0.584 0.593 0.574 0.616 0.593 0.587 0.588
kr-vs-k-zero vs eight 0.976 0.914 0.972 0.905 0.938 0.954 0.979 0.953 0.979
poker-8-9 vs 5 0.546 0.544 0.578 0.537 0.566 0.544 0.56 0.531 0.584
poker-8-9 vs 6 0.581 0.535 0.650 0.595 0.659 0.701 0.925 0.921 0.898
poker-8 vs 6 0.601 0.602 0.691 0.609 0.704 0.699 0.813 0.812 0.812
winequality-red-4 0.545 0.533 0.589 0.548 0.542 0.574 0.547 0.560 0.600
winequality-white-3-9 vs 5 0.577 0.529 0.541 0.579 0.532 0.554 0.586 0.579 0.582
winequality-white-3 vs 7 0.603 0.553 0.552 0.613 0.539 0.567 0.621 0.601 0.572
ecolil 0.816 0.822 0.832 0.837 0.842 0.829 0.837 0.843 0.843
ecoli2 0.829 0.850 0.850 0.824 0.848 0.860 0.860 0.853 0.851
ecoli3 0.755 0.694 0.754 0.763 0.776 0.757 0.796 0.808 0.813
glass0 0.741 0.775 0.771 0.764 0.765 0.768 0.789 0.797 0.771
glass1 0.730 0.722 0.719 0.733 0.685 0.729 0.731 0.739 0.728
haberman 0.565 0.552 0.570 0.576 0.571 0.610 0.600 0.582 0.586
pima 0.674 0.668 0.676 0.663 0.652 0.684 0.659 0.66 0.669
yeast3 0.827 0.825 0.849 0.832 0.858 0.845 0.856 0.856 0.865
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Table 8.10: F1 score results of compared algorithms for CART model.

: ] .

8 . g . g s 8
DATASET ;; 3 § CE: % 5 ;;T é‘ %

;{S S % z 2 é g

L] r—r] =
page-blocks-1-3 vs 4 0.865 0.954 0.944 0.790 0.943 0.879 0.875 0.897 0.880
yeast-0-5-6-7-9 vs 4 0.376 0.381 0.383 0.408 0.420 0.371 0.392 0.416 0.403
yeast-1-2-8-9 vs 7 0.218 0.177 0.130 0.204 0.136 0.236 0.195 0.191 0.210
yeast-1-4-5-8 vs 7 0.124 0.106 0.105 0.108 0.117 0.115 0.108 0.120 0.136
yeast-1 vs 7 0.339 0.279 0.222 0.256 0.230 0.312 0.355 0.356 0.321
yeast-2 vs 4 0.681 0.682 0.714 0.639 0.694 0.733 0.682 0.699 0.687
yeast-2 vs 8 0.486 0.480 0.474 0.477 0.412 0.526 0.455 0.469 0.426
yeasts 0.268 0.282 0.275 0.242 0.267 0.309 0.298 0.265 0.319
yeastd 0.619 0.642 0.68 0.575 0.696 0.634 0.634 0.633 0.661
yeastb 0.391 0.423 0.351 0.392 0.362 0.423 0.444 0.434 0.415
ecoli-0-1-4-7 vs 2-3-5-6 0.590 0.608 0.560 0.607 0.573 0.611 0.626 0.631 0.629
ecoli-0-1 vs 2-3-5 0.602 0.637 0.604 0.630 0.613 0.607 0.675 0.688 0.695
ecoli-0-2-6-7 vs 3-5 0.614 0.606 0.610 0.520 0.602 0.624 0.639 0.658 0.618
ecoli-0-6-7 vs 3-5 0.666 0.634 0.599 0.623 0.591 0.663 0.638 0.644 0.655
ecoli-0-6-7 vs &5 0.704 0.673 0.663 0.584 0.576 0.742 0.723 0.719 0.747
yeast-0-2-5-6 vs 3-7-8-9 0.476 0.483 0.436 0.434 0.413 0.465 0.473 0.471 0.494
yeast-0-3-5-9 vs 7-8 0.336 0.311 0.277 0.282 0.246 0.342 0.322 0.313 0.318
abalone-17 vs 7-8-9-10 0.286 0.251 0.218 0.227 0.246 0.231 0.250 0.280 0.234
abalone-19 vs 10-11-12-13 0.084 0.070 0.085 0.053 0.082 0.069 0.094 0.097 0.098
abalone-20 vs 8-9-10 0.245 0.240 0.239 0.248 0.237 0.225 0.224 0.234 0.194
flare-F 0.189 0.182 0.194 0.189 0.176 0.200 0.218 0.209 0.208
kr-vs-k-zero vs eight 0.928 0.838 0.921 0.819 0.872 0.897 0.905 0.862 0.916
poker-8-9 vs 5 0.091 0.095 0.100 0.078 0.091 0.097 0.115 0.069 0.111
poker-8-9 vs 6 0.180 0.085 0.290 0.182 0.289 0.435 0.823 0.783 0.754
poker-8 vs 6 0.248 0.254 0.418 0.254 0.423 0.425 0.638 0.661 0.627
winequality-red-4 0.114 0.092 0.144 0.117 0.093 0.136 0.109 0.132 0.149
winequality-white-3-9 vs 5 0.177 0.072 0.066 0.164 0.055 0.092 0.171 0.145 0.139
winequality-white-3 vs 7 0.237 0.134 0.093 0.256 0.076 0.125 0.252 0.209 0.155
ecolil 0.711 0.720 0.728 0.730 0.741 0.729 0.736 0.747 0.736
ecoli2 0.712 0.741 0.730 0.702 0.711 0.757 0.740 0.743 0.731
ecoli3 0.568 0.449 0.514 0.549 0.558 0.535 0.592 0.617 0.578
glass0 0.652 0.698 0.689 0.680 0.682 0.685 0.709 0.722 0.689
glass1 0.651 0.644 0.642 0.659 0.596 0.653 0.655 0.665 0.654
haberman 0.361 0.336 0.379 0.385 0.381 0.435 0.426 0.404 0.427
pima 0.575 0.57 0.583 0.568 0.549 0.591 0.561 0.563 0.571
yeast3 0.694 0.691 0.699 0.681 0.706 0.721 0.714 0.719 0.726
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Table 8.11: Gmean results of compared algorithms for CART model.

; ] .

8 . g . g s 8
DATASET ;; 3 § CE: % 5 ;;T é‘ %

;{S S % z 2 é g

B r—]r =
page-blocks-1-3 vs 4 0.924 0.986 0.986 0.895 0.979 0.971 0.958 0.970 0.962
yeast-0-5-6-7-9 vs 4 0.605 0.606 0.652 0.654 0.689 0.596 0.628 0.641 0.638
yeast-1-2-8-9 vs 7 0.479 0.392 0.440 0.481 0.456 0.499 0.469 0.466 0.501
yeast-1-4-5-8 vs 7 0.335 0.296 0.382 0.317 0.386 0.326 0.317 0.334 0.367
yeast-1 vs 7 0.586 0.483 0.516 0.524 0.524 0.557 0.621 0.617 0.58
yeast-2 vs 4 0.813 0.800 0.851 0.802 0.844 0.852 0.823 0.819 0.822
yeast-2 vs 8 0.691 0.679 0.758 0.692 0.719 0.731 0.690 0.697 0.678
yeasts 0.517 0.512 0.604 0.522 0.591 0.558 0.596 0.557 0.620
yeastd 0.775 0.788 0.845 0.789 0.858 0.822 0.822 0.828 0.856
yeastb 0.648 0.633 0.692 0.676 0.706 0.709 0.707 0.713 0.742
ecoli-0-1-4-7 vs 2-3-5-6 0.760 0.746 0.786 0.775 0.782 0.782 0.791 0.809 0.801
ecoli-0-1 vs 2-3-5 0.718 0.750 0.758 0.743 0.781 0.776 0.810 0.822 0.822
ecoli-0-2-6-7 vs 3-5 0.767 0.740 0.784 0.696 0.785 0.784 0.788 0.812 0.772
ecoli-0-6-7 vs 3-5 0.794 0.773 0.791 0.807 0.802 0.795 0.803 0.817 0.793
ecoli-0-6-7 vs &5 0.803 0.774 0.812 0.73 0.738 0.849 0.833 0.844 0.860
yeast-0-2-5-6 vs 3-7-8-9 0.679 0.663 0.677 0.663 0.669 0.675 0.689 0.688 0.714
yeast-0-3-5-9 vs 7-8 0.554 0.529 0.559 0.539 0.517 0.572 0.556 0.553 0.555
abalone-17 vs 7-8-9-10 0.552 0.485 0.575 0.518 0.613 0.558 0.524 0.552 0.665
abalone-19 vs 10-11-12-13 0.272 0.202 0.416 0.208 0.417 0.260 0.336 0.340 0.508
abalone-20 vs 8-9-10 0.510 0.459 0.633 0.519 0.630 0.563 0.521 0.541 0.583
flare-F 0.395 0.478 0.426 0.470 0.406 0.528 0.454 0.442 0.444
kr-vs-k-zero vs eight 0.974 0.905 0.970 0.898 0.933 0.951 0.978 0.905 0.978
poker-8-9 vs 5 0.298 0.250 0.408 0.259 0.384 0.229 0.336 0.247 0.408
poker-8-9 vs 6 0.339 0.191 0.535 0.436 0.529 0.608 0.920 0.913 0.887
poker-8 vs 6 0.355 0.335 0.579 0.403 0.612 0.578 0.781 0.781 0.777
winequality-red-4 0.333 0.262 0.480 0.348 0.384 0.430 0.357 0.388 0.508
winequality-white-3-9 vs 5 0.397 0.201 0.312 0.402 0.308 0.336 0.423 0.380 0.405
winequality-white-3 vs 7 0.456 0.300 0.367 0.479 0.235 0.321 0.463 0.429 0.378
ecolil 0.809 0.814 0.827 0.832 0.838 0.822 0.833 0.839 0.840
ecoli2 0.820 0.842 0.842 0.813 0.842 0.854 | 0.854 0.846 0.844
ecoli3 0.726 0.646 0.733 0.741 0.759 0.734 0.779 0.793 0.804
glass0 0.737 0.771 0.767 0.761 0.762 0.764 0.784 0.793 0.767
glass1 0.724 0.717 0.715 0.730 0.679 0.726 0.728 0.736 0.727
haberman 0.526 0.503 0.545 0.550 0.547 0.593 0.586 0.568 0.583
pima 0.666 0.662 0.672 0.659 0.644 0.678 0.653 0.656 0.662
yeast3 0.816 0.813 0.843 0.823 0.852 0.837 0.850 0.850 0.860
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C Additional results for analysis of the fitness calculation

protocols
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Table 8.12: Average precision scores for CART classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.611 | 0.600 | 0.609 | 0.611 | 0.591 | 0.602 | 0.618| 0.606 | 0.618
bank additional 0.516 | 0.508 | 0.517 | 0.520 | 0.498 | 0.519 | 0.526 | 0.517 | 0.527
page-blocks0 0.815 | 0.795 | 0.794 | 0.825 | 0.794 | 0.807 | 0.845| 0.794 | 0.808
glassl 0.602 | 0.618 | 0.617 | 0.621 | 0.621 | 0.621 | 0.678| 0.533 | 0.643
glassO 0.659 | 0.668 | 0.672 | 0.683 | 0.683 | 0.683 | 0.717 | 0.587 | 0.744
ecoli-0-6-7_vs_5 0.807 | 0.807 | 0.807 | 0.804 | 0.804 | 0.804 | 0.870| 0.757 | 0.796
ecoli-0-6-7_vs_3-5 0.815| 0.815 | 0.815 | 0.687 | 0.687 | 0.687 | 0.784 | 0.753 | 0.751
ecoli-0-2-6-7_vs_3-5 0.724 | 0.724 | 0.724 | 0.671 | 0.671 | 0.671 | 0.811| 0.709 | 0.760
ecoli-0-1 vs_2-3-5 0.689 | 0.689 | 0.689 | 0.691 | 0.691 | 0.691 | 0.720| 0.543 | 0.621
haberman 0.348 | 0.370 | 0.351 | 0.359 | 0.357 | 0.358 | 0.362 | 0.371 | 0.392
ecolil 0.743 | 0.748 | 0.748 | 0.725 | 0.720 | 0.722 | 0.908| 0.691 | 0.787
ecoli2 0.773 | 0.773 | 0.773 | 0.729 | 0.729 | 0.729 | 0.782| 0.684 | 0.770
ecoli3 0.563 | 0.546 | 0.563 | 0.523 | 0.523 | 0.523 | 0.727| 0.481 | 0.613
ecoli-0-1-4-7 vs_ 2-3-5-6 0.535 | 0.535 | 0.535 | 0.602 | 0.613 | 0.613 | 0.729| 0.606 | 0.704
yeast-1_vs 7 0.307 | 0.255 | 0.234 | 0.307 | 0.307 | 0.307 | 0.453| 0.304 | 0.287
page-blocks-1-3 _vs_4 0.799 | 0.799 | 0.799 | 0.909 | 0.909 | 0.909 | 0.836 | 0.891 | 0.930
yeast-2_vs_ 8 0.685 | 0.685 | 0.685 | 0.472 | 0.486 | 0.486 | 0.831| 0.556 | 0.600
yeast-0-3-5-9_vs_7-8 0.349 | 0.333 | 0.345 | 0.266 | 0.281 | 0.282 | 0.532| 0.307 | 0.398
yeast-2_vs 4 0.713 | 0.722 | 0.723 | 0.708 | 0.708 | 0.708 | 0.846 | 0.635 | 0.694
yeast-0-5-6-7-9 _vs 4 0.474 | 0.455 | 0.474 | 0.363 | 0.363 | 0.356 | 0.521| 0.358 | 0.485
yeast-1-4-5-8 vs 7 0.124 | 0.117 | 0.108 | 0.099 | 0.114 | 0.114 | 0.099 | 0.074 | 0.082
pima 0.576 | 0.551 | 0.555 | 0.575 | 0.571 | 0.580 | 0.617 | 0.562 | 0.591
winequality-white-3 _vs 7 0.553| 0.553 | 0.553 | 0.259 | 0.259 | 0.259 | 0.342 | 0.319 | 0.320
yeast-1-2-8-9 vs 7 0.225 | 0.226 | 0.226 | 0.235 | 0.231 | 0.230 | 0.414 | 0.168 | 0.194
yeast-0-2-5-6 _vs_3-7-8-9 0.524 | 0.466 | 0.477 | 0.516 | 0.428 | 0.458 | 0.679| 0.469 | 0.569
flare-F 0.213 | 0.204 | 0.204 | 0.212 | 0.186 | 0.211 | 0.274 | 0.303 | 0.266
kr-vs-k-zero_vs_eight 0.715 | 0.715 | 0.715 | 0.898| 0.898 | 0.898 | 0.873 | 0.749 | 0.832
poker-8 vs 6 0.714 | 0.714 | 0.714 | 0.838 | 0.744 | 0.744 | 1.000| 0.872 | 0.872
winequality-white-3-9_vs_5 | 0.093 | 0.100 | 0.094 | 0.243| 0.243 | 0.243 | 0.159 | 0.146 | 0.166
yeast3 0.734 | 0.730 | 0.735 | 0.673 | 0.650 | 0.646 | 0.800| 0.695 | 0.734
poker-8-9 vs_6 0.657 | 0.668 | 0.657 | 0.668 | 0.668 | 0.668 | 0.879| 0.630 | 0.630
yeast6 0.352 | 0.326 | 0.352 | 0.392 | 0.379 | 0.379 | 0.397 | 0.365 | 0.432
yeast5 0.633 | 0.633 | 0.633 | 0.620 | 0.620 | 0.620 | 0.608 | 0.625 | 0.674
yeast4 0.303 | 0.279 | 0.279 | 0.261 | 0.260 | 0.268 | 0.447| 0.262 | 0.306
winequality-red-4 0.139 | 0.088 | 0.088 | 0.112 | 0.092 | 0.116 | 0.180| 0.120 | 0.118
abalone-19 vs 10-11-12-13 | 0.045 | 0.058 | 0.058 | 0.112 | 0.101 | 0.122| 0.086 | 0.053 | 0.060
abalone-20 vs 8-9-10 0.171 | 0.159 | 0.162 | 0.263 | 0.234 | 0.242 | 0.244 | 0.234 | 0.226
poker-8-9 vs_5 0.080 | 0.080 | 0.080 | 0.135 | 0.151 | 0.120 | 0.247| 0.057 | 0.076
abalone-17 vs_7-8-9-10 0.285 | 0.220 | 0.255 | 0.291| 0.264 | 0.268 | 0.272 | 0.216 | 0.224
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Table 8.13: Awverage recall scores for CART classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.621 | 0.635 | 0.624 | 0.602 | 0.639 | 0.620 | 0.626 | 0.643| 0.627
bank additional 0.538 | 0.556| 0.540 | 0.511 | 0.551 | 0.529 | 0.541 | 0.552 | 0.541
page-blocks0 0.781 | 0.801 | 0.799 | 0.759 | 0.814 | 0.804 | 0.771 | 0.841| 0.818
glassl 0.603 | 0.618 | 0.613 | 0.658 | 0.658 | 0.658 | 0.508 | 0.776 | 0.634
glassO 0.674 | 0.680 | 0.671 | 0.734 | 0.734 | 0.734 | 0.660 | 0.857| 0.694
ecoli-0-6-7_vs_5 0.660 | 0.660 | 0.660 | 0.690 | 0.690 | 0.690 | 0.620 | 0.760| 0.760
ecoli-0-6-7_vs_3-5 0.591 | 0.591 | 0.591 | 0.655 | 0.655 | 0.655 | 0.582 | 0.727| 0.718
ecoli-0-2-6-7_vs_3-5 0.545 | 0.545 | 0.545 | 0.673 | 0.673 | 0.673 | 0.618 | 0.682 | 0.691
ecoli-0-1 vs_ 2-3-5 0.542 | 0.542 | 0.542 | 0.583 | 0.583 | 0.583 | 0.450 | 0.650| 0.567
haberman 0.318 | 0.370 | 0.323 | 0.370 | 0.375 | 0.378 | 0.276 | 0.635| 0.443
ecolil 0.770 | 0.787 | 0.787 | 0.731 | 0.746 | 0.744 | 0.608 | 0.881| 0.754
ecoli2 0.692 | 0.692 | 0.692 | 0.719 | 0.719 | 0.719 | 0.654 | 0.804 | 0.742
ecoli3d 0.548 | 0.554 | 0.548 | 0.521 | 0.521 | 0.521 | 0.408 | 0.738 | 0.585
ecoli-0-1-4-7 vs_ 2-3-5-6 0.587 | 0.587 | 0.587 | 0.628 | 0.634 | 0.634 | 0.476 | 0.657 | 0.698
yeast-1 _vs 7 0.267 | 0.313 | 0.273 | 0.420| 0.420 | 0.420 | 0.247 | 0.420 | 0.420
page-blocks-1-3 _vs_4 0.871 | 0.871 | 0.871 | 0.936 | 0.936 | 0.936 | 0.829 | 0.993| 0.986
yeast-2_ vs 8 0.590| 0.590 | 0.590 | 0.500 | 0.530 | 0.530 | 0.550 | 0.560 | 0.560
yeast-0-3-5-9_vs_7-8 0.272 | 0.320 | 0.300 | 0.292 | 0.316 | 0.312 | 0.244 | 0.416| 0.400
yeast-2_vs 4 0.560 | 0.634 | 0.626 | 0.679 | 0.679 | 0.679 | 0.564 | 0.820| 0.718
yeast-0-5-6-7-9 _vs 4 0.399 | 0.399 | 0.399 | 0.389 | 0.424 | 0.404 | 0.366 | 0.550| 0.479
yeast-1-4-5-8 vs 7 0.100 | 0.127 | 0.107 | 0.107 | 0.120 | 0.120 | 0.107 | 0.160| 0.120
pima 0.505 | 0.565 | 0.531 | 0.526 | 0.621 | 0.569 | 0.565 | 0.707| 0.614
winequality-white-3 _vs 7 0.220 | 0.220 | 0.220 | 0.200 | 0.200 | 0.200 | 0.250 | 0.290 | 0.290
yeast-1-2-8-9 vs 7 0.227 | 0.227 | 0.227 | 0.287 | 0.300| 0.293 | 0.153 | 0.233 | 0.220
yeast-0-2-5-6 _vs_3-7-8-9 0.479 | 0.469 | 0.469 | 0.465 | 0.513 | 0.477 | 0.506 | 0.616 | 0.554
flare-F 0.236 | 0.250 | 0.250 | 0.164 | 0.267 | 0.234 | 0.183 | 0.506 | 0.332
kr-vs-k-zero_vs_eight 0.792 | 0.792 | 0.792 | 0.917 | 0.917 | 0.917 | 0.605 | 0.931| 0.858
poker-8 vs 6 0.281 | 0.281 | 0.281 | 0.642| 0.604 | 0.604 | 0.342 | 0.364 | 0.364
winequality-white-3-9 _vs_5 | 0.120 | 0.137 | 0.128 | 0.216| 0.216 | 0.216 | 0.145 | 0.215 | 0.190
yeast3 0.699 | 0.719 | 0.720 | 0.658 | 0.692 | 0.651 | 0.669 | 0.875| 0.755
poker-8-9 vs 6 0.326 | 0.342 | 0.326 | 0.629| 0.629 | 0.629 | 0.446 | 0.361 | 0.361
yeast6 0.358 | 0.369 | 0.358 | 0.463 | 0.457 | 0.457 | 0.413 | 0.557| 0.533
yeast5 0.605 | 0.605 | 0.605 | 0.564 | 0.564 | 0.564 | 0.555 | 0.768| 0.691
yeast4 0.247 | 0.247 | 0.247 | 0.310 | 0.310 | 0.314 | 0.271 | 0.456 | 0.302
winequality-red-4 0.114 | 0.098 | 0.098 | 0.105 | 0.116 | 0.131 | 0.094 | 0.185| 0.143
abalone-19 vs 10-11-12-13 | 0.038 | 0.050 | 0.050 | 0.119 | 0.150| 0.131 | 0.081 | 0.062 | 0.069
abalone-20 vs 8-9-10 0.192 | 0.215 | 0.215 | 0.277 | 0.285 | 0.300 | 0.208 | 0.408 | 0.292
poker-8-9 vs_5 0.072 | 0.072 | 0.072 | 0.160 | 0.193| 0.160 | 0.096 | 0.088 | 0.113
abalone-17 vs_7-8-9-10 0.228 | 0.224 | 0.214 | 0.248 | 0.290 | 0.255 | 0.169 | 0.300| 0.245
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Table 8.14: Average BAC scores for CART classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.747 | 0.750 | 0.748 | 0.740 | 0.749 | 0.745 | 0.752 | 0.755| 0.752
bank additional 0.737 | 0.744| 0.738 | 0.726 | 0.740 | 0.733 | 0.739 | 0.743 | 0.740
page-blocks0 0.880 | 0.889 | 0.887 | 0.870 | 0.895 | 0.891 | 0.877 | 0.908 | 0.898
glassl 0.686 | 0.699 | 0.697 | 0.718| 0.718 | 0.718 | 0.684 | 0.700 | 0.711
glassO 0.751 | 0.755 | 0.754 | 0.780 | 0.780 | 0.780 | 0.764 | 0.770 | 0.784
ecoli-0-6-7_vs_5 0.816 | 0.816 | 0.816 | 0.833 | 0.833 | 0.833 | 0.804 | 0.866 | 0.868
ecoli-0-6-7_vs_3-5 0.787 | 0.787 | 0.787 | 0.807 | 0.807 | 0.807 | 0.781 | 0.849| 0.844
ecoli-0-2-6-7_vs_3-5 0.752 | 0.752 | 0.752 | 0.815 | 0.815 | 0.815 | 0.800 | 0.824 | 0.832
ecoli-0-1 vs_2-3-5 0.756 | 0.756 | 0.756 | 0.777 | 0.777 | 0.777 | 0.715 | 0.790| 0.765
haberman 0.555 | 0.575 | 0.555 | 0.566 | 0.566 | 0.567 | 0.556 | 0.620| 0.597
ecolil 0.843 | 0.852 | 0.852 | 0.823 | 0.828 | 0.827 | 0.794 | 0.880| 0.845
ecoli2 0.827 | 0.827 | 0.827 | 0.834 | 0.834 | 0.834 | 0.809 | 0.865| 0.849
ecoli3 0.749 | 0.749 | 0.749 | 0.732 | 0.732 | 0.732 | 0.692 | 0.821| 0.771
ecoli-0-1-4-7 vs_2-3-5-6 0.767 | 0.767 | 0.767 | 0.794 | 0.798 | 0.798 | 0.730 | 0.806 | 0.834
yeast-1_vs 7 0.611 | 0.625 | 0.607 | 0.676| 0.676 | 0.676 | 0.607 | 0.674 | 0.671
page-blocks-1-3 _vs_4 0.928 | 0.928 | 0.928 | 0.965 | 0.965 | 0.965 | 0.909 | 0.991| 0.990
yeast-2_ vs 8 0.786| 0.786 | 0.786 | 0.736 | 0.751 | 0.751 | 0.772 | 0.769 | 0.770
yeast-0-3-5-9_vs_7-8 0.606 | 0.623 | 0.617 | 0.601 | 0.613 | 0.612 | 0.609 | 0.655 | 0.661
yeast-2 vs 4 0.767 | 0.803 | 0.799 | 0.824 | 0.824 | 0.824 | 0.776 | 0.883| 0.840
yeast-0-5-6-7-9 _vs 4 0.675 | 0.672 | 0.675 | 0.658 | 0.673 | 0.663 | 0.664 | 0.720| 0.711
yeast-1-4-5-8 vs 7 0.526 | 0.538| 0.530 | 0.530 | 0.537 | 0.537 | 0.533 | 0.535 | 0.534
pima 0.653 | 0.659 | 0.651 | 0.658 | 0.684 | 0.673 | 0.686 | 0.705| 0.693
winequality-white-3 vs 7 0.606 | 0.606 | 0.606 | 0.593 | 0.593 | 0.593 | 0.620 | 0.635 | 0.636
yeast-1-2-8-9 vs 7 0.600 | 0.600 | 0.600 | 0.627 | 0.632| 0.629 | 0.571 | 0.595 | 0.594
yeast-0-2-5-6 _vs_3-7-8-9 0.715 | 0.704 | 0.704 | 0.708 | 0.718 | 0.706 | 0.738 | 0.769| 0.753
flare-F 0.601 | 0.605 | 0.605 | 0.569 | 0.607 | 0.598 | 0.582 | 0.728| 0.648
kr-vs-k-zero_vs_eight 0.893 | 0.893 | 0.893 | 0.958 | 0.958 | 0.958 | 0.801 | 0.962| 0.926
poker-8 vs 6 0.638 | 0.638 | 0.638 | 0.819| 0.799 | 0.799 | 0.671 | 0.681 | 0.681
winequality-white-3-9 _vs_5 | 0.551 | 0.559 | 0.555 | 0.601| 0.601 | 0.601 | 0.567 | 0.597 | 0.587
yeast3 0.834 | 0.843 | 0.844 | 0.809 | 0.823 | 0.803 | 0.824 | 0.914| 0.860
poker-8-9 vs_6 0.659 | 0.668 | 0.659 | 0.812| 0.812 | 0.812 | 0.722 | 0.677 | 0.677
yeast6 0.670 | 0.674 | 0.670 | 0.722 | 0.719 | 0.719 | 0.699 | 0.766 | 0.757
yeast5 0.797 | 0.797 | 0.797 | 0.777 | 0.777 | 0.777 | 0.772 | 0.877| 0.840
yeast4 0.613 | 0.612 | 0.612 | 0.639 | 0.639 | 0.642 | 0.628 | 0.705| 0.638
winequality-red-4 0.543 | 0.531 | 0.531 | 0.538 | 0.538 | 0.548 | 0.538 | 0.568 | 0.553
abalone-19 vs 10-11-12-13 | 0.513 | 0.518 | 0.518 | 0.550 | 0.561| 0.556 | 0.533 | 0.517 | 0.522
abalone-20 _vs_8-9-10 0.589 | 0.600 | 0.600 | 0.633 | 0.635 | 0.643 | 0.599 | 0.695| 0.639
poker-8-9 vs_5 0.530 | 0.530 | 0.530 | 0.573 | 0.589| 0.572 | 0.544 | 0.535 | 0.548
abalone-17 vs_7-8-9-10 0.607 | 0.602 | 0.599 | 0.616 | 0.634 | 0.618 | 0.579 | 0.635| 0.611
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Table 8.15: Average F'1 score scores for CART classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 E B 3 2 B g
adult 0.616 | 0.617 | 0.616 | 0.607 | 0.614 | 0.611 | 0.622 | 0.623| 0.623
bank additional 0.526 | 0.531 | 0.528 | 0.516 | 0.523 | 0.524 | 0.533 | 0.534| 0.533
page-blocks0 0.796 | 0.796 | 0.795 | 0.789 | 0.803 | 0.804 | 0.805 | 0.816| 0.812
glassl 0.594 | 0.608 | 0.606 | 0.636| 0.636 | 0.636 | 0.577 | 0.631 | 0.630
glassO 0.663 | 0.669 | 0.668 | 0.701 | 0.701 | 0.701 | 0.682 | 0.689 | 0.710
ecoli-0-6-7_vs_5 0.688 | 0.688 | 0.688 | 0.722 | 0.722 | 0.722 | 0.701 | 0.741 | 0.757
ecoli-0-6-7_vs_3-5 0.668 | 0.668 | 0.668 | 0.656 | 0.656 | 0.656 | 0.656 | 0.734| 0.727
ecoli-0-2-6-7_vs_3-5 0.591 | 0.591 | 0.591 | 0.659 | 0.659 | 0.659 | 0.688 | 0.684 | 0.711
ecoli-0-1 vs_2-3-5 0.589 | 0.589 | 0.589 | 0.623| 0.623 | 0.623 | 0.541 | 0.559 | 0.575
haberman 0.326 | 0.364 | 0.331 | 0.362 | 0.364 | 0.365 | 0.308 | 0.464 | 0.412
ecolil 0.749 | 0.759 | 0.759 | 0.722 | 0.728 | 0.727 | 0.724 | 0.771| 0.763
ecoli2 0.726 | 0.726 | 0.726 | 0.717 | 0.717 | 0.717 | 0.707 | 0.729 | 0.750
ecoli3 0.547 | 0.541 | 0.547 | 0.520 | 0.520 | 0.520 | 0.494 | 0.575 | 0.594
ecoli-0-1-4-7 vs_ 2-3-5-6 0.548 | 0.548 | 0.548 | 0.613 | 0.622 | 0.622 | 0.557 | 0.615 | 0.689
yeast-1 _vs 7 0.267 | 0.274 | 0.246 | 0.351| 0.351 | 0.351 | 0.291 | 0.346 | 0.333
page-blocks-1-3_vs_4 0.821 | 0.821 | 0.821 | 0.919 | 0.919 | 0.919 | 0.815 | 0.934 | 0.956
yeast-2_vs_8 0.602 | 0.602 | 0.602 | 0.465 | 0.484 | 0.484 | 0.648| 0.546 | 0.563
yeast-0-3-5-9_vs_7-8 0.301 | 0.321 | 0.316 | 0.274 | 0.293 | 0.292 | 0.327 | 0.351 | 0.385
yeast-2_vs 4 0.597 | 0.667 | 0.660 | 0.688 | 0.688 | 0.688 | 0.670 | 0.706| 0.697
yeast-0-5-6-7-9 _vs 4 0.428 | 0.416 | 0.428 | 0.374 | 0.386 | 0.375 | 0.420 | 0.426 | 0.476
yeast-1-4-5-8 vs 7 0.091 | 0.113 | 0.100 | 0.102 | 0.116| 0.116 | 0.101 | 0.097 | 0.097
pima 0.536 | 0.557 | 0.542 | 0.547 | 0.594 | 0.573 | 0.585 | 0.624 | 0.601
winequality-white-3 _vs 7 0.279| 0.279 | 0.279 | 0.220 | 0.220 | 0.220 | 0.261 | 0.271 | 0.273
yeast-1-2-8-9 _vs 7 0.215 | 0.216 | 0.216 | 0.250 | 0.251| 0.248 | 0.204 | 0.186 | 0.198
yeast-0-2-5-6 _vs_3-7-8-9 0.491 | 0.453 | 0.457 | 0.485 | 0.459 | 0.462 | 0.567 | 0.530 | 0.557
flare-F 0.214 | 0.218 | 0.218 | 0.180 | 0.215 | 0.219 | 0.211 | 0.373| 0.284
kr-vs-k-zero vs_eight 0.729 | 0.729 | 0.729 | 0.905| 0.905 | 0.905 | 0.681 | 0.819 | 0.824
poker-8 vs 6 0.396 | 0.396 | 0.396 | 0.716| 0.658 | 0.658 | 0.484 | 0.460 | 0.460
winequality-white-3-9_vs_5 | 0.104 | 0.114 | 0.107 | 0.217| 0.217 | 0.217 | 0.141 | 0.167 | 0.166
yeast3 0.713 | 0.722 | 0.726 | 0.663 | 0.669 | 0.646 | 0.726 | 0.774| 0.743
poker-8-9 vs 6 0.424 | 0.437 | 0.424 | 0.640| 0.640 | 0.640 | 0.571 | 0.443 | 0.443
yeast6 0.339 | 0.327 | 0.339 | 0.418 | 0.409 | 0.409 | 0.395 | 0.435 | 0.465
yeast5 0.613 | 0.613 | 0.613 | 0.581 | 0.581 | 0.581 | 0.573 | 0.679| 0.676
yeast4 0.263 | 0.257 | 0.257 | 0.278 | 0.279 | 0.286 | 0.319 | 0.329| 0.295
winequality-red-4 0.116 | 0.089 | 0.089 | 0.106 | 0.101 | 0.120 | 0.110 | 0.143| 0.126
abalone-19 vs 10-11-12-13 | 0.039 | 0.051 | 0.051 | 0.113 | 0.119 | 0.125| 0.081 | 0.056 | 0.062
abalone-20 vs 8-9-10 0.174 | 0.176 | 0.178 | 0.265 | 0.252 | 0.263 | 0.219 | 0.293 | 0.249
poker-8-9 vs_5 0.069 | 0.069 | 0.069 | 0.141 | 0.163| 0.133 | 0.118 | 0.068 | 0.089
abalone-17 vs_7-8-9-10 0.249 | 0.216 | 0.228 | 0.261 | 0.268| 0.254 | 0.201 | 0.243 | 0.231
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Table 8.16: Average Gmean scores for CART classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.737 | 0.741 | 0.738 | 0.727 | 0.741 | 0.734 | 0.741 | 0.747| 0.742
bank additional 0.709 | 0.719| 0.711 | 0.693 | 0.716 | 0.704 | 0.712 | 0.718 | 0.712
page-blocks0 0.875 | 0.884 | 0.883 | 0.863 | 0.891 | 0.886 | 0.871 | 0.905| 0.894
glassl 0.676 | 0.688 | 0.686 | 0.713| 0.713 | 0.713 | 0.659 | 0.694 | 0.703
glassO 0.745 | 0.749 | 0.747 | 0.775 | 0.775 | 0.775 | 0.755 | 0.758 | 0.776
ecoli-0-6-7_vs_5 0.790 | 0.790 | 0.790 | 0.816 | 0.816 | 0.816 | 0.773 | 0.854 | 0.855
ecoli-0-6-7_vs_3-5 0.756 | 0.756 | 0.756 | 0.789 | 0.789 | 0.789 | 0.750 | 0.838| 0.833
ecoli-0-2-6-7_vs_3-5 0.716 | 0.716 | 0.716 | 0.798 | 0.798 | 0.798 | 0.774 | 0.807 | 0.815
ecoli-0-1 vs_ 2-3-5 0.717 | 0.717 | 0.717 | 0.747 | 0.747 | 0.747 | 0.657 | 0.761| 0.721
haberman 0.483 | 0.525 | 0.495 | 0.527 | 0.529 | 0.531 | 0.467 | 0.614| 0.572
ecolil 0.837 | 0.846 | 0.846 | 0.815 | 0.822 | 0.821 | 0.771 | 0.879| 0.837
ecoli2 0.814 | 0.814 | 0.814 | 0.823 | 0.823 | 0.823 | 0.792 | 0.860 | 0.841
ecoli3 0.712 | 0.715 | 0.712 | 0.696 | 0.696 | 0.696 | 0.618 | 0.814| 0.744
ecoli-0-1-4-7 vs_2-3-5-6 0.740 | 0.740 | 0.740 | 0.774 | 0.779 | 0.779 | 0.670 | 0.788 | 0.818
yeast-1 _vs 7 0.480 | 0.527 | 0.484 | 0.619| 0.619 | 0.619 | 0.476 | 0.614 | 0.616
page-blocks-1-3 _vs_4 0.921 | 0.921 | 0.921 | 0.963 | 0.963 | 0.963 | 0.890 | 0.991| 0.990
yeast-2_ vs 8 0.756 | 0.756 | 0.756 | 0.688 | 0.710 | 0.710 | 0.736 | 0.737 | 0.738
yeast-0-3-5-9_vs_7-8 0.501 | 0.539 | 0.526 | 0.510 | 0.532 | 0.529 | 0.484 | 0.608| 0.603
yeast-2_vs 4 0.720 | 0.780 | 0.773 | 0.809 | 0.809 | 0.809 | 0.742 | 0.877| 0.828
yeast-0-5-6-7-9 _vs 4 0.612 | 0.610 | 0.612 | 0.597 | 0.618 | 0.607 | 0.585 | 0.694| 0.667
yeast-1-4-5-8 vs 7 0.266 | 0.319 | 0.277 | 0.275 | 0.293 | 0.293 | 0.292 | 0.365| 0.293
pima 0.634 | 0.651 | 0.639 | 0.643 | 0.681 | 0.664 | 0.672 | 0.703| 0.687
winequality-white-3 _vs 7 0.442 | 0.442 | 0.442 | 0.438 | 0.438 | 0.438 | 0.432 | 0.519 | 0.520
yeast-1-2-8-9 vs 7 0.453 | 0.453 | 0.453 | 0.520 | 0.531| 0.525 | 0.381 | 0.457 | 0.448
yeast-0-2-5-6 _vs_3-7-8-9 0.669 | 0.655 | 0.656 | 0.662 | 0.684 | 0.666 | 0.697 | 0.753| 0.725
flare-F 0.453 | 0.474 | 0.474 | 0.392 | 0.494 | 0.469 | 0.390 | 0.688| 0.541
kr-vs-k-zero vs_eight 0.879 | 0.879 | 0.879 | 0.954 | 0.954 | 0.954 | 0.766 | 0.958| 0.920
poker-8 vs 6 0.463 | 0.463 | 0.463 | 0.750| 0.714 | 0.714 | 0.563 | 0.579 | 0.579
winequality-white-3-9_vs_5 | 0.296 | 0.317 | 0.305 | 0.450| 0.450 | 0.450 | 0.299 | 0.442 | 0.412
yeast3 0.822 | 0.833 | 0.834 | 0.793 | 0.812 | 0.788 | 0.808 | 0.913| 0.853
poker-8-9 vs 6 0.502 | 0.519 | 0.502 | 0.744| 0.744 | 0.744 | 0.663 | 0.590 | 0.590
yeast6 0.565 | 0.578 | 0.565 | 0.673 | 0.668 | 0.668 | 0.625 | 0.733| 0.720
yeast5 0.769 | 0.769 | 0.769 | 0.739 | 0.739 | 0.739 | 0.721 | 0.866 | 0.824
yeast4 0.482 | 0.485 | 0.485 | 0.535 | 0.541 | 0.544 | 0.509 | 0.655| 0.537
winequality-red-4 0.322 | 0.291 | 0.291 | 0.292 | 0.298 | 0.342 | 0.267 | 0.416 | 0.367
abalone-19 vs 10-11-12-13 | 0.134 | 0.169 | 0.169 | 0.335 | 0.357 | 0.331 | 0.245 | 0.218 | 0.214
abalone-20 vs 8-9-10 0.420 | 0.443 | 0.444 | 0.516 | 0.518 | 0.537 | 0.426 | 0.624| 0.528
poker-8-9 vs 5 0.221 | 0.221 | 0.221 | 0.361 | 0.418]| 0.381 | 0.272 | 0.259 | 0.311
abalone-17 vs_7-8-9-10 0.460 | 0.455 | 0.447 | 0.484 | 0.524 | 0.487 | 0.394 | 0.535| 0.486
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Table 8.17: Awverage precision scores for KNN classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.649 | 0.645 | 0.645 | 0.657 | 0.631 | 0.632 | 0.663 | 0.640 | 0.640
bank additional 0.586 | 0.581 | 0.586 | 0.586 | 0.579 | 0.581 | 0.588 | 0.580 | 0.588
page-blocks0 0.852 | 0.849 | 0.849 | 0.864 | 0.815 | 0.815 | 0.892| 0.798 | 0.798
glassl 0.662 | 0.646 | 0.671 | 0.684 | 0.610 | 0.640 | 0.732| 0.488 | 0.611
glassO 0.615 | 0.575 | 0.585 | 0.636 | 0.602 | 0.665 | 0.681| 0.520 | 0.617
ecoli-0-6-7_vs_5 0.851 | 0.851 | 0.851 | 0.854 | 0.836 | 0.836 | 0.796 | 0.781 | 0.739
ecoli-0-6-7_vs_3-5 0.812 | 0.812 | 0.812 | 0.862| 0.850 | 0.850 | 0.794 | 0.722 | 0.755
ecoli-0-2-6-7_vs_3-5 0.824 | 0.824 | 0.824 | 0.885 | 0.887| 0.887 | 0.872 | 0.758 | 0.770
ecoli-0-1 vs_ 2-3-5 0.945 | 0.945 | 0.945 | 0.949| 0.949 | 0.949 | 0.862 | 0.848 | 0.848
haberman 0.443 | 0.437 | 0.437 | 0.452| 0.383 | 0.400 | 0.434 | 0.307 | 0.386
ecolil 0.714 | 0.708 | 0.708 | 0.826 | 0.719 | 0.768 | 0.905| 0.725 | 0.812
ecoli2 0.808 | 0.808 | 0.808 | 0.848 | 0.849 | 0.848 | 0.896 | 0.848 | 0.859
ecoli3 0.538 | 0.538 | 0.538 | 0.631| 0.537 | 0.619 | 0.621 | 0.556 | 0.621
ecoli-0-1-4-7 vs_2-3-5-6 0.877 | 0.877 | 0.877 | 0.907| 0.858 | 0.869 | 0.828 | 0.792 | 0.797
yeast-1 _vs 7 0.434 | 0.434 | 0.434 | 0.781| 0.734 | 0.734 | 0.642 | 0.445 | 0.445
page-blocks-1-3 _vs_4 0.703 | 0.703 | 0.703 | 0.835 | 0.838| 0.838 | 0.788 | 0.695 | 0.741
yeast-2_vs_8 0.649 | 0.649 | 0.649 | 0.822 | 0.922| 0.922 | 0.912 | 0.912 | 0.912
yeast-0-3-5-9_vs_7-8 0.637| 0.637 | 0.637 | 0.540 | 0.516 | 0.516 | 0.559 | 0.400 | 0.394
yeast-2 vs 4 0.890| 0.890 | 0.890 | 0.882 | 0.882 | 0.882 | 0.856 | 0.809 | 0.809
yeast-0-5-6-7-9 _vs 4 0.541 | 0.541 | 0.541 | 0.537 | 0.532 | 0.532 | 0.535 | 0.430 | 0.458
yeast-1-4-5-8 vs 7 0.153 | 0.153 | 0.153 | 0.142 | 0.142 | 0.142 | 0.144 | 0.156 | 0.156
pima 0.633 | 0.630 | 0.630 | 0.633 | 0.567 | 0.594 | 0.706 | 0.548 | 0.610
winequality-white-3 _vs 7 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
yeast-1-2-8-9 vs 7 0.233 | 0.233 | 0.233 | 0.578 | 0.603| 0.603 | 0.335 | 0.340 | 0.340
yeast-0-2-5-6 _vs_3-7-8-9 0.672 | 0.679 | 0.679 | 0.753| 0.697 | 0.697 | 0.722 | 0.643 | 0.640
flare-F 0.309 | 0.356 | 0.356 | 0.141 | 0.301 | 0.311 | 0.420| 0.280 | 0.284
kr-vs-k-zero vs_eight 0.730 | 0.730 | 0.730 | 0.744 | 0.742 | 0.742 | 0.759| 0.687 | 0.687
poker-8 vs 6 0.400 | 0.400 | 0.400 | 0.900| 0.900 | 0.900 | 0.567 | 0.567 | 0.567
winequality-white-3-9 _vs_5 | 0.000 | 0.000 | 0.000 | 0.133| 0.133 | 0.133 | 0.075 | 0.075 | 0.075
yeast3 0.822 | 0.821 | 0.821 | 0.786 | 0.770 | 0.769 | 0.834 | 0.748 | 0.753
poker-8-9 vs 6 0.340 | 0.340 | 0.340 | 0.950| 0.950 | 0.950 | 0.890 | 0.890 | 0.890
yeast6 0.568 | 0.568 | 0.568 | 0.606 | 0.537 | 0.551 | 0.583 | 0.509 | 0.529
yeasth 0.682 | 0.671 | 0.671 | 0.690 | 0.602 | 0.633 | 0.778| 0.550 | 0.638
yeast4 0.440 | 0.440 | 0.440 | 0.504 | 0.491 | 0.491 | 0.526 | 0.344 | 0.353
winequality-red-4 0.201 | 0.201 | 0.201 | 0.189 | 0.149 | 0.149 | 0.225| 0.197 | 0.197
abalone-19 vs 10-11-12-13 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-20 vs_8-9-10 0.000 | 0.000 | 0.000 | 0.300| 0.250 | 0.250 | 0.133 | 0.133 | 0.133
poker-8-9 vs_5 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-17 vs_7-8-9-10 0.150 | 0.150 | 0.150 | 0.388| 0.367 | 0.367 | 0.350 | 0.355 | 0.355
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Table 8.18: Average recall scores for KNN classifier
hold-out train cv

DATASET E ] g E ] g :% . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.567 | 0.577 | 0.577 | 0.556 | 0.608 | 0.608 | 0.574 | 0.621| 0.621
bank additional 0.372 | 0.381 | 0.372 | 0.374 | 0.399 | 0.385 | 0.392 | 0.403| 0.392
page-blocks0 0.689 | 0.691 | 0.691 | 0.695 | 0.763 | 0.763 | 0.662 | 0.776| 0.776
glassl 0.521 | 0.589 | 0.558 | 0.542 | 0.721 | 0.671 | 0.392 | 0.884 | 0.692
glassO 0.554 | 0.606 | 0.591 | 0.523 | 0.766 | 0.671 | 0.514 | 0.926| 0.683
ecoli-0-6-7_vs_5 0.570 | 0.570 | 0.570 | 0.720 | 0.740 | 0.740 | 0.740 | 0.780| 0.780
ecoli-0-6-7_vs_3-5 0.564 | 0.564 | 0.564 | 0.655 | 0.655 | 0.655 | 0.700 | 0.709| 0.700
ecoli-0-2-6-7_vs_3-5 0.545 | 0.545 | 0.545 | 0.618 | 0.618 | 0.618 | 0.700 | 0.718| 0.709
ecoli-0-1 vs_2-3-5 0.675 | 0.675 | 0.675 | 0.675 | 0.675 | 0.675 | 0.725| 0.725 | 0.725
haberman 0.282 | 0.294 | 0.294 | 0.215 | 0.383 | 0.368 | 0.171 | 0.726 | 0.413
ecolil 0.746 | 0.748 | 0.748 | 0.671 | 0.789 | 0.704 | 0.567 | 0.816| 0.725
ecoli2 0.858 | 0.858 | 0.858 | 0.835 | 0.877 | 0.865 | 0.765 | 0.892| 0.869
ecoli3d 0.484 | 0.484 | 0.484 | 0.433 | 0.715 | 0.674 | 0.492 | 0.841| 0.713
ecoli-0-1-4-7 vs_2-3-5-6 0.673 | 0.673 | 0.673 | 0.627 | 0.723 | 0.723 | 0.737 | 0.758| 0.758
yeast-1 _vs 7 0.113 | 0.113 | 0.113 | 0.227 | 0.220 | 0.220 | 0.273 | 0.307 | 0.307
page-blocks-1-3 _vs_4 0.457 | 0.464 | 0.464 | 0.771 | 0.757 | 0.757 | 0.586 | 0.814| 0.721
yeast-2_ vs 8 0.340 | 0.340 | 0.340 | 0.440 | 0.550| 0.550 | 0.550 | 0.550 | 0.550
yeast-0-3-5-9_vs_7-8 0.240 | 0.240 | 0.240 | 0.184 | 0.292 | 0.292 | 0.304 | 0.480| 0.464
yeast-2_vs 4 0.635 | 0.635 | 0.635 | 0.678 | 0.678 | 0.678 | 0.695 | 0.738| 0.738
yeast-0-5-6-7-9 _vs 4 0.333 | 0.333 | 0.333 | 0.239 | 0.310 | 0.310 | 0.254 | 0.502| 0.455
yeast-1-4-5-8 vs 7 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.033 | 0.053 | 0.060| 0.060
pima 0.530 | 0.546 | 0.546 | 0.474 | 0.656 | 0.592 | 0.405 | 0.790| 0.642
winequality-white-3 _vs 7 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
yeast-1-2-8-9 vs 7 0.027 | 0.027 | 0.027 | 0.087 | 0.093| 0.093 | 0.087 | 0.093 | 0.093
yeast-0-2-5-6 _vs_3-7-8-9 0.358 | 0.404 | 0.404 | 0.354 | 0.509 | 0.509 | 0.364 | 0.586 | 0.588
flare-F 0.103 | 0.130 | 0.130 | 0.061 | 0.294 | 0.276 | 0.237 | 0.465| 0.455
kr-vs-k-zero vs_eight 0.546 | 0.546 | 0.546 | 0.607 | 0.584 | 0.584 | 0.634 | 0.648 | 0.648
poker-8 vs 6 0.057 | 0.057 | 0.057 | 0.175| 0.175 | 0.175 | 0.126 | 0.126 | 0.126
winequality-white-3-9 _vs_5 | 0.000 | 0.000 | 0.000 | 0.016 | 0.016 | 0.016 | 0.017 | 0.017 | 0.017
yeast3 0.659 | 0.665 | 0.665 | 0.631 | 0.682 | 0.682 | 0.630 | 0.753| 0.751
poker-8-9 vs 6 0.047 | 0.047 | 0.047 | 0.247| 0.247 | 0.247 | 0.217 | 0.217 | 0.217
yeast6 0.470 | 0.470 | 0.470 | 0.425 | 0.441 | 0.441 | 0.532 | 0.658| 0.618
yeastd 0.473 | 0.486 | 0.486 | 0.414 | 0.641 | 0.618 | 0.405 | 0.818 | 0.741
yeast4 0.118 | 0.118 | 0.118 | 0.176 | 0.246 | 0.246 | 0.207 | 0.395| 0.372
winequality-red-4 0.023 | 0.023 | 0.023 | 0.030 | 0.030 | 0.030 | 0.064 | 0.068| 0.068
abalone-19 vs 10-11-12-13 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-20 vs_8-9-10 0.000 | 0.000 | 0.000 | 0.038 | 0.054| 0.054 | 0.015 | 0.015 | 0.015
poker-8-9 vs_5 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-17 vs_7-8-9-10 0.007 | 0.007 | 0.007 | 0.055| 0.055 | 0.055 | 0.048 | 0.055 | 0.055
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Table 8.19: Average BAC scores for KNN classifier
hold-out train cv
DATASET E § g E § g E § g
= & =1 =N =1 =)

adult 0.735 | 0.738 | 0.738 | 0.732 | 0.748 | 0.748 | 0.741 | 0.755 | 0.755
bank additional 0.669 | 0.673 | 0.669 | 0.670 | 0.681 | 0.675 | 0.678 | 0.683| 0.679
page-blocks0 0.837 | 0.839 | 0.839 | 0.841 | 0.871 | 0.871 | 0.827 | 0.877| 0.877
glassl 0.682 | 0.701 | 0.695 | 0.700 | 0.729 | 0.730| 0.654 | 0.678 | 0.723
glass0 0.691 | 0.683 | 0.684 | 0.688 | 0.756| 0.751 | 0.697 | 0.754 | 0.738
ecoli-0-6-7_vs_5 0.779 | 0.779 | 0.779 | 0.852 | 0.861 | 0.861 | 0.859 | 0.878| 0.876
ecoli-0-6-7_vs_3-5 0.774 | 0.774 | 0.774 | 0.820 | 0.820 | 0.820 | 0.838 | 0.834 | 0.836
ecoli-0-2-6-7_vs_3-5 0.763 | 0.763 | 0.763 | 0.803 | 0.803 | 0.803 | 0.843 | 0.844 | 0.840
ecoli-0-1 vs_2-3-5 0.835 | 0.835 | 0.835 | 0.835 | 0.835 | 0.835 | 0.855| 0.854 | 0.854
haberman 0.576 | 0.577 | 0.577 | 0.555 | 0.577 | 0.583 | 0.545 | 0.567 | 0.588
ecolil 0.825 | 0.825 | 0.825 | 0.813 | 0.848 | 0.820 | 0.773 | 0.861| 0.836
ecoli2 0.909 | 0.909 | 0.909 | 0.903 | 0.923 | 0.918 | 0.874 | 0.931| 0.921
ecoli3 0.718 | 0.718 | 0.718 | 0.700 | 0.820 | 0.812 | 0.728 | 0.881| 0.831
ecoli-0-1-4-7 vs_ 2-3-5-6 0.831 | 0.831 | 0.831 | 0.810 | 0.856 | 0.856 | 0.861 | 0.869 | 0.869
yeast-1_vs 7 0.552 | 0.552 | 0.552 | 0.610 | 0.606 | 0.606 | 0.631 | 0.637| 0.637
page-blocks-1-3 _vs_4 0.722 | 0.725 | 0.725 | 0.880 | 0.873 | 0.873 | 0.787 | 0.896 | 0.852
yeast-2_vs_ 8 0.669 | 0.669 | 0.669 | 0.719 | 0.774| 0.774 | 0.774 | 0.774 | 0.774
yeast-0-3-5-9_vs_7-8 0.610 | 0.610 | 0.610 | 0.584 | 0.631 | 0.631 | 0.638 | 0.699| 0.691
yeast-2 vs 4 0.813 | 0.813 | 0.813 | 0.834 | 0.834 | 0.834 | 0.841 | 0.859| 0.859
yeast-0-5-6-7-9 _vs 4 0.650 | 0.650 | 0.650 | 0.607 | 0.639 | 0.639 | 0.614 | 0.715| 0.698
yeast-1-4-5-8 vs 7 0.514 | 0.514 | 0.514 | 0.513 | 0.512 | 0.512 | 0.519 | 0.520| 0.520
pima 0.682 | 0.686 | 0.686 | 0.662 | 0.693 | 0.686 | 0.656 | 0.720| 0.709
winequality-white-3 vs 7 0.500| 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500
yeast-1-2-8-9 vs 7 0.513 | 0.513 | 0.513 | 0.542 | 0.545 | 0.545 | 0.542 | 0.545| 0.545
yeast-0-2-5-6 _vs_3-7-8-9 0.669 | 0.691 | 0.691 | 0.670 | 0.742 | 0.742 | 0.674 | 0.774 | 0.775
flare-F 0.546 | 0.559 | 0.559 | 0.525 | 0.632 | 0.624 | 0.611 | 0.707| 0.703
kr-vs-k-zero vs_eight 0.770 | 0.770 | 0.770 | 0.801 | 0.790 | 0.790 | 0.815 | 0.821| 0.821
poker-8 vs 6 0.528 | 0.528 | 0.528 | 0.588| 0.588 | 0.588 | 0.563 | 0.563 | 0.563
winequality-white-3-9 _vs_5 | 0.500 | 0.500 | 0.500 | 0.508 | 0.508 | 0.508 | 0.508 | 0.508 | 0.508
yeast3 0.821 | 0.824 | 0.824 | 0.805 | 0.828 | 0.828 | 0.807 | 0.861| 0.860
poker-8-9 vs 6 0.523 | 0.523 | 0.523 | 0.623| 0.623 | 0.623 | 0.608 | 0.608 | 0.608
yeast6 0.730 | 0.730 | 0.730 | 0.709 | 0.716 | 0.716 | 0.761 | 0.821| 0.802
yeast5 0.732 | 0.739 | 0.739 | 0.703 | 0.814 | 0.803 | 0.700 | 0.898| 0.863
yeast4 0.556 | 0.556 | 0.556 | 0.585 | 0.618 | 0.618 | 0.600 | 0.684 | 0.673
winequality-red-4 0.510 | 0.510 | 0.510 | 0.513 | 0.512 | 0.512 | 0.528 | 0.529| 0.529
abalone-19 vs 10-11-12-13 | 0.500| 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500
abalone-20 vs_8-9-10 0.500 | 0.500 | 0.500 | 0.519 | 0.526| 0.526 | 0.507 | 0.507 | 0.507
poker-8-9 vs_5 0.500| 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500
abalone-17 vs_7-8-9-10 0.503 | 0.503 | 0.503 | 0.527| 0.526 | 0.526 | 0.523 | 0.526 | 0.526
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Table 8.20: Average F'1 score scores for KNN classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

2 B 3 £ B 3 E B g
adult 0.605 | 0.609 | 0.609 | 0.602 | 0.620 | 0.620 | 0.616 | 0.630 | 0.631
bank additional 0.455 | 0.460 | 0.455 | 0.456 | 0.472 | 0.463 | 0.470 | 0.476 | 0.470
page-blocks0 0.761 | 0.761 | 0.761 | 0.769 | 0.787 | 0.788| 0.759 | 0.786 | 0.786
glassl 0.551 | 0.607 | 0.594 | 0.600 | 0.657| 0.653 | 0.505 | 0.626 | 0.646
glassO 0.569 | 0.566 | 0.568 | 0.564 | 0.670| 0.662 | 0.575 | 0.665 | 0.645
ecoli-0-6-7_vs_5 0.655 | 0.655 | 0.655 | 0.773 | 0.777| 0.777 | 0.755 | 0.773 | 0.754
ecoli-0-6-7_vs_3-5 0.639 | 0.639 | 0.639 | 0.734| 0.730 | 0.730 | 0.732 | 0.693 | 0.713
ecoli-0-2-6-7_vs_3-5 0.607 | 0.607 | 0.607 | 0.712 | 0.712 | 0.712 | 0.761| 0.718 | 0.718
ecoli-0-1 vs_ 2-3-5 0.782| 0.782 | 0.782 | 0.782 | 0.782 | 0.782 | 0.779 | 0.772 | 0.772
haberman 0.336 | 0.342 | 0.342 | 0.283 | 0.380 | 0.381 | 0.240 | 0.429| 0.394
ecolil 0.720 | 0.717 | 0.717 | 0.735 | 0.751 | 0.732 | 0.688 | 0.766 | 0.761
ecoli2 0.827 | 0.827 | 0.827 | 0.835 | 0.858 | 0.851 | 0.819 | 0.868 | 0.861
ecoli3 0.476 | 0.476 | 0.476 | 0.493 | 0.609 | 0.642 | 0.544 | 0.667 | 0.661
ecoli-0-1-4-7 vs_2-3-5-6 0.737 | 0.737 | 0.737 | 0.728 | 0.780 | 0.785| 0.770 | 0.766 | 0.769
yeast-1_vs 7 0.165 | 0.165 | 0.165 | 0.343 | 0.327 | 0.327 | 0.377| 0.350 | 0.350
page-blocks-1-3 _vs_4 0.517 | 0.525 | 0.525 | 0.779| 0.763 | 0.763 | 0.627 | 0.740 | 0.699
yeast-2_ vs 8 0.444 | 0.444 | 0.444 | 0.552 | 0.683| 0.683 | 0.679 | 0.679 | 0.679
yeast-0-3-5-9_vs_7-8 0.328 | 0.328 | 0.328 | 0.264 | 0.366 | 0.366 | 0.387 | 0.433| 0.423
yeast-2_vs 4 0.737 | 0.737 | 0.737 | 0.760 | 0.760 | 0.760 | 0.762 | 0.768| 0.768
yeast-0-5-6-7-9 _vs 4 0.401 | 0.401 | 0.401 | 0.319 | 0.385 | 0.385 | 0.329 | 0.460| 0.454
yeast-1-4-5-8 vs 7 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.072 | 0.078| 0.078
pima 0.574 | 0.583 | 0.583 | 0.539 | 0.607 | 0.592 | 0.512 | 0.647| 0.624
winequality-white-3 _vs 7 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
yeast-1-2-8-9 vs 7 0.047 | 0.047 | 0.047 | 0.142 | 0.152| 0.152 | 0.130 | 0.139 | 0.139
yeast-0-2-5-6 _vs_3-7-8-9 0.460 | 0.501 | 0.501 | 0.470 | 0.584 | 0.584 | 0.475 | 0.607 | 0.607
flare-F 0.140 | 0.177 | 0.177 | 0.083 | 0.291 | 0.287 | 0.295 | 0.345 | 0.345
kr-vs-k-zero vs_eight 0.613 | 0.613 | 0.613 | 0.662 | 0.647 | 0.647 | 0.684| 0.664 | 0.664
poker-8 vs 6 0.099 | 0.099 | 0.099 | 0.287| 0.287 | 0.287 | 0.202 | 0.202 | 0.202
winequality-white-3-9 _vs_5 | 0.000 | 0.000 | 0.000 | 0.028 | 0.028 | 0.028 | 0.027 | 0.027 | 0.027
yeast3 0.731 | 0.734 | 0.734 | 0.696 | 0.722 | 0.722 | 0.716 | 0.750 | 0.751
poker-8-9 vs_6 0.079 | 0.079 | 0.079 | 0.383| 0.383 | 0.383 | 0.343 | 0.343 | 0.343
yeast6 0.506 | 0.506 | 0.506 | 0.479 | 0.473 | 0.480 | 0.552 | 0.569 | 0.560
yeastd 0.525 | 0.534 | 0.534 | 0.504 | 0.608 | 0.612 | 0.498 | 0.652 | 0.675
yeast4 0.177 | 0.177 | 0.177 | 0.253 | 0.316 | 0.316 | 0.290 | 0.362| 0.356
winequality-red-4 0.038 | 0.038 | 0.038 | 0.051 | 0.048 | 0.048 | 0.096 | 0.098| 0.098
abalone-19 vs 10-11-12-13 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-20 vs_8-9-10 0.000 | 0.000 | 0.000 | 0.065 | 0.087| 0.087 | 0.027 | 0.027 | 0.027
poker-8-9 vs_5 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-17 vs_7-8-9-10 0.013 | 0.013 | 0.013 | 0.094| 0.093 | 0.093 | 0.083 | 0.093 | 0.093
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Table 8.21: Average Gmean scores for KNN classifier
hold-out train cv

DATASET E ] g E ] g E . g

= 2 | E | 2| 2| E | & | & | ¢

S I N - S O N - A
adult 0.715 | 0.720 | 0.720 | 0.710 | 0.735 | 0.735 | 0.722 | 0.743 | 0.743
bank additional 0.599 | 0.606 | 0.600 | 0.601 | 0.620 | 0.609 | 0.615 | 0.623 | 0.615
page-blocks0 0.824 | 0.825 | 0.825 | 0.828 | 0.865 | 0.865 | 0.810 | 0.871| 0.871
glassl 0.633 | 0.686 | 0.673 | 0.679 | 0.726 | 0.726 | 0.597 | 0.639 | 0.719
glassO 0.666 | 0.657 | 0.659 | 0.660 | 0.753| 0.743 | 0.665 | 0.732 | 0.732
ecoli-0-6-7_vs_5 0.737 | 0.737 | 0.737 | 0.841 | 0.851 | 0.851 | 0.847 | 0.870| 0.868
ecoli-0-6-7_vs_3-5 0.730 | 0.730 | 0.730 | 0.801 | 0.801 | 0.801 | 0.824 | 0.821 | 0.822
ecoli-0-2-6-7_vs_3-5 0.710 | 0.710 | 0.710 | 0.778 | 0.778 | 0.778 | 0.827 | 0.831| 0.826
ecoli-0-1 vs_ 2-3-5 0.818 | 0.818 | 0.818 | 0.817 | 0.817 | 0.817 | 0.844 | 0.843 | 0.843
haberman 0.487 | 0.494 | 0.494 | 0.434 | 0.542 | 0.539 | 0.388 | 0.531 | 0.555
ecolil 0.818 | 0.818 | 0.818 | 0.799 | 0.846 | 0.811 | 0.742 | 0.859| 0.827
ecoli2 0.906 | 0.906 | 0.906 | 0.898 | 0.921 | 0.915 | 0.864 | 0.930| 0.918
ecoli3 0.645 | 0.645 | 0.645 | 0.636 | 0.813 | 0.799 | 0.683 | 0.879| 0.821
ecoli-0-1-4-7 vs_ 2-3-5-6 0.805 | 0.805 | 0.805 | 0.784 | 0.843 | 0.844 | 0.848 | 0.858 | 0.859
yeast-1 _vs 7 0.274 | 0.274 | 0.274 | 0.468 | 0.460 | 0.460 | 0.512 | 0.542| 0.542
page-blocks-1-3 _vs 4 0.650 | 0.656 | 0.656 | 0.864 | 0.851 | 0.851 | 0.740 | 0.885| 0.827
yeast-2_vs_ 8 0.486 | 0.486 | 0.486 | 0.615 | 0.738| 0.738 | 0.737 | 0.737 | 0.737
yeast-0-3-5-9_vs_7-8 0.473 | 0.473 | 0.473 | 0.393 | 0.522 | 0.522 | 0.540 | 0.663| 0.652
yeast-2 vs 4 0.792 | 0.792 | 0.792 | 0.816 | 0.816 | 0.816 | 0.826 | 0.849| 0.849
yeast-0-5-6-7-9 _vs 4 0.559 | 0.559 | 0.559 | 0.470 | 0.545 | 0.545 | 0.489 | 0.679| 0.652
yeast-1-4-5-8 vs 7 0.098 | 0.098 | 0.098 | 0.114 | 0.114 | 0.114 | 0.160 | 0.185| 0.185
pima 0.662 | 0.670 | 0.670 | 0.633 | 0.691 | 0.679 | 0.604 | 0.715| 0.705
winequality-white-3 vs 7 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
yeast-1-2-8-9 vs 7 0.088 | 0.088 | 0.083 | 0.255 | 0.280| 0.280 | 0.218 | 0.225 | 0.225
yeast-0-2-5-6 _vs_3-7-8-9 0.588 | 0.627 | 0.627 | 0.586 | 0.703 | 0.703 | 0.594 | 0.750 | 0.751
flare-F 0.273 | 0.331 | 0.331 | 0.185 | 0.527 | 0.507 | 0.473 | 0.658| 0.652
kr-vs-k-zero vs_eight 0.734 | 0.734 | 0.734 | 0.771 | 0.758 | 0.758 | 0.789 | 0.798| 0.798
poker-8 vs 6 0.149 | 0.149 | 0.149 | 0.389| 0.389 | 0.389 | 0.271 | 0.271 | 0.271
winequality-white-3-9 _vs_5 | 0.000 | 0.000 | 0.000 | 0.057 | 0.057 | 0.057 | 0.058| 0.058 | 0.058
yeast3 0.804 | 0.808 | 0.808 | 0.784 | 0.815 | 0.815 | 0.787 | 0.854| 0.853
poker-8-9 vs_6 0.135 | 0.135 | 0.135 | 0.486| 0.486 | 0.486 | 0.460 | 0.460 | 0.460
yeast6 0.678 | 0.678 | 0.678 | 0.639 | 0.653 | 0.653 | 0.724 | 0.803| 0.778
yeast5 0.671 | 0.682 | 0.682 | 0.637 | 0.788 | 0.775 | 0.621 | 0.893| 0.853
yeast4 0.317 | 0.317 | 0.317 | 0.412 | 0.488 | 0.488 | 0.448 | 0.617| 0.599
winequality-red-4 0.105 | 0.105 | 0.105 | 0.121 | 0.121 | 0.121 | 0.234 | 0.240| 0.240
abalone-19 vs 10-11-12-13 | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-20 _vs_8-9-10 0.000 | 0.000 | 0.000 | 0.139 | 0.178]| 0.178 | 0.055 | 0.055 | 0.055
poker-8-9 vs_5 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
abalone-17 vs_7-8-9-10 0.037 | 0.037 | 0.037 | 0.211| 0.211 | 0.211 | 0.193 | 0.206 | 0.206
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D Additional results for surrogate criteria for gradient op-

timisation

Table 8.22: Precision measure values of all compared methods

DATASET COSMOS | COSMOS | COSMOS focal focall bce
MIN BAL MAX loss 0 loss 2
adult 0.89 0.553 0.383 0.683 0.699 0.566
page-blocks0 0.796 0.644 0.374 0.861 0.869 0.713
bank additional 0.65 0.428 0.331 0.561 0.587 0.463
MiniBooNE PID 0.995 0.974 0.869 0.956 0.95 0.931
ecolil 0.802 0.675 0.584 0.802 0.785 0.719
ecoli3 0.603 0.483 0.415 0.647 0.633 0.53
glass0 0.717 0.618 0.495 0.700 0.697 0.645
glassl 0.698 0.593 0.467 0.637 0.651 0.621
haberman 0.577 0.458 0.265 0.447 0.450 0.411
pima 0.774 0.613 0.432 0.633 0.609 0.603
yeast-0-2-5-6_vs_3-7-8-9 0.730 0.428 0.151 0.692 0.673 0.451
yeast-0-3-5-9 _vs_7-8 0.577 0.245 0.141 0.567 0.489 0.278
yeast-0-5-6-7-9 vs 4 0.641 0.375 0.220 0.551 0.576 0.439
yeast3 0.777 0.632 0.482 0.782 0.753 0.655
yeast4 0.180 0.130 0.092 0.462 0.489 0.309
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Table 8.23: Recall measure values of all compared methods
DATASET COSMOS | COSMOS | COSMOS focal focall bce
MIN BAL MAX loss 0 loss 2
adult 0.309 0.856 0.980 0.615 0.605 0.810
page-blocks0 0.831 0.932 0.985 0.815 0.800 0.916
bank additional 0.406 0.901 0.971 0.516 0.519 0.806
MiniBooNE PID 0.736 0.892 0.979 0.952 0.951 0.970
ecolil 0.735 0.888 0.967 0.780 0.751 0.858
ecoli3 0.789 0.880 0.931 0.601 0.601 0.829
glass0 0.340 0.851 0.954 0.706 0.717 0.806
glassl 0.229 0.745 0.945 0.624 0.621 0.700
haberman 0.215 0.596 0.995 0.284 0.303 0.504
pima 0.299 0.725 0.969 0.606 0.587 0.693
yeast-0-2-5-6_vs_3-7-8-9 0.451 0.667 0.881 0.477 0.461 0.617
yeast-0-3-5-9 _vs_7-8 0.264 0.588 0.808 0.260 0.268 0.480
yeast-0-5-6-7-9 _vs 4 0.350 0.698 0.859 0.349 0.369 0.592
yeast3 0.758 0.866 0.919 0.726 0.733 0.827
yeast4 0.756 0.843 0.855 0.262 0.290 0.525
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Table 8.24: BAC measure values of all compared methods
DATASET COSMOS | COSMOS | COSMOS focal focall bce
MIN BAL MAX loss 0 loss 2

adult 0.648 0.818 0.739 0.762 0.761 0.806
page-blocks0 0.904 0.937 0.896 0.900 0.893 0.937
bank additional 0.689 0.874 0.861 0.732 0.736 0.844
MiniBooNE PID 0.863 0.915 0.799 0.919 0.910 0.893
ecolil 0.840 0.880 0.880 0.860 0.843 0.878
ecoli3 0.864 0.885 0.888 0.781 0.779 0.872
glass0 0.633 0.795 0.738 0.773 0.779 0.792
glassl 0.585 0.727 0.675 0.713 0.716 0.730
haberman 0.579 0.668 0.501 0.578 0.586 0.621
pima 0.626 0.739 0.642 0.708 0.692 0.723
yeast-0-2-5-6_vs_3-7-8-9 0.716 0.784 0.668 0.726 0.718 0.766
yeast-0-3-5-9 _vs_ 7-8 0.621 0.694 0.632 0.618 0.618 0.670
yeast-0-5-6-7-9 _vs 4 0.664 0.784 0.756 0.659 0.669 0.754
yeast3 0.866 0.902 0.896 0.851 0.851 0.886
yeast4 0.816 0.821 0.777 0.625 0.639 0.740
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Table 8.25: F1 score values of all compared methods
DATASET COSMOS | COSMOS | COSMOS focal focall bce
MIN BAL MAX loss 0 loss 2

adult 0.456 0.672 0.551 0.645 0.648 0.666
page-blocks0 0.813 0.761 0.541 0.837 0.832 0.801
bank additional 0.497 0.580 0.493 0.537 0.549 0.588
MiniBooNE PID 0.846 0.931 0.920 0.954 0.950 0.950
ecolil 0.765 0.766 0.726 0.786 0.764 0.780
ecoli3 0.683 0.623 0.574 0.620 0.613 0.645
glass0 0.444 0.713 0.650 0.692 0.701 0.711
glassl 0.339 0.657 0.625 0.628 0.633 0.657
haberman 0.310 0.512 0.419 0.345 0.359 0.449
pima 0.429 0.663 0.597 0.618 0.597 0.644
yeast-0-2-5-6_vs_3-7-8-9 0.544 0.518 0.257 0.558 0.543 0.516
yeast-0-3-5-9 _vs_ 7-8 0.358 0.345 0.240 0.349 0.342 0.349
yeast-0-5-6-7-9 _vs 4 0.444 0.483 0.345 0.421 0.443 0.495
yeast3 0.766 0.729 0.629 0.752 0.742 0.729
yeast4 0.29 0.226 0.167 0.326 0.353 0.381
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Table 8.26: Gmean measure values of all compared methods
DATASET COSMOS | COSMOS | COSMOS focal focall bce
MIN BAL MAX loss 0 loss 2

adult 0.551 0.817 0.699 0.747 0.745 0.806
page-blocks0 0.901 0.936 0.892 0.896 0.888 0.936
bank additional 0.626 0.873 0.853 0.699 0.702 0.843
MiniBooNE PID 0.854 0.915 0.779 0.919 0.909 0.889
ecolil 0.833 0.880 0.875 0.855 0.837 0.877
ecoli3 0.860 0.884 0.887 0.757 0.757 0.869
glass0 0.550 0.791 0.704 0.765 0.773 0.788
glassl 0.460 0.724 0.616 0.706 0.708 0.729
haberman 0.446 0.659 0.044 0.495 0.508 0.606
pima 0.532 0.738 0.550 0.700 0.683 0.722
yeast-0-2-5-6_vs_3-7-8-9 0.658 0.774 0.632 0.679 0.668 0.749
yeast-0-3-5-9 _vs_ 7-8 0.504 0.685 0.602 0.499 0.503 0.640
yeast-0-5-6-7-9 _vs 4 0.580 0.778 0.743 0.578 0.593 0.732
yeast3 0.859 0.901 0.895 0.841 0.843 0.884
yeast4 0.813 0.820 0.772 0.504 0.531 0.705
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