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Streszczenie

Niniejsza rozprawa doktorska sktada sie z cyklu trzech powigzanych tematycznie publika-
cji. Celem pracy jest teoretyczne zbadanie wptywu fluktuacji w potprzewodnikowym ciele
stalym na widmo rezonansowej fluorescencji emitera osadzonego w materiale.

RF znalazta liczne zastosowania w badaniu wlasciwosci emiteréw na ciele statym (w
szczegolnosei kropek kwantowych) oraz w generowaniu $wiatta o pozadanych wlasciwo-
Sciach dla informatyki kwantowej. W szczegolnosci RF jest wykorzystywana w zminia-
turyzowanych, scalonych kwantowych uktadach hybrydowych, w ktérych modulowana
akustycznie kropka kwantowa pelni role przetwornika miedzy sygnatem akustycznym a
optycznym. Niemniej jednak wlasciwosci optyczne emitera — a co za tym idzie jego widmo
RF - znajduja si¢ pod niekorzystnym wpltywem szumu otoczenia, ktory jest nieunikniony
w uktadach ciata statego. Zatem, aby tworzy¢ wysokiej jakosci urzadzenia kwantowe, nie-
zbedne jest iloSciowe zbadanie tych wplywéw na emiter.

W pierwszej kolejnosci zamodelowano szum telegraficzny oraz biaty, obliczajac wyni-
kajace z nich zmiany w widmie RF oraz intensywnosci jego poszczegolnych linii spektral-
nych. Nastepnie model szumu biatego rozszerzono na przypadek emitera modulowanego
przez powierzchniowe fale akustyczne, co odpowiada warunkom w kwantowych uktadach
hybrydowych. Ilosciowo wykazano, jak szum ogranicza efektywna akustyczng kontrole
rozpraszania §wiatla na emiterze, a takze zdefiniowano wymagania dotyczace stabilnosci
sygnatu akustycznego, niezbedne, aby jego wlasciwosci pozostaly mozliwe do odczytania
w widmie RF. Ostatecznie zamodelowano szum otoczenia jako fonony akustyczne. W tym
przypadku w widmie RF odkryto profil Fano, ktérego istnienie zalezy od temperatury
otoczenia oraz sily sprzezenia fonon—emiter.

Podsumowujac, w niniejszej pracy doktorskiej zamodelowano rozmaite rodzaje szu-
moéw, identyfikujac charakterystyczne parametry, ktére moga stuzy¢ do ilosciowego opisu
wplywu danego rodzaju fluktuacji na ksztaltt widma RF. Otrzymane wyniki beda przy-
datne w diagnozowaniu rodzajow szumu wplywajacych na eksperymentalnie badane emi-
tery potprzewodnikowe. W przypadku emitera modulowanego akustycznie, niniejsza roz-
prawa doktorska otwiera droge do badan nad wplywem szumu na korelacje, w tym kore-
lacje drugiego rzedu, miedzy konkretnymi pasmami widmowymi. Z kolei model emitera
oddziatujacego z fononami akustycznymi moze zosta¢ w przyszlosci rozszerzony na inne
rodzaje fonondéw, na przyktad te wystepujace w materiatach dwuwymiarowych.






Abstract

This PhD thesis comprises a series of three thematically related publications. The aim of
this work is to theoretically investigate the impact of fluctuations in a solid-state semi-
conductor on the resonance fluorescence (RF) spectrum of an emitter embedded within
the material.

RF has found numerous applications in studying the properties of solid-state emit-
ters (particularly quantum dots) and in generating light with desirable properties for
quantum information science. Specifically, RF is used in miniaturized, on-chip quantum
hybrid systems, in which an acoustically modulated quantum dot acts as a transducer
between acoustic and optical signals. Nevertheless, the optical properties of the emitter,
and consequently its RF spectrum, are adversely affected by environmental noise, which
is inevitable in solid-state systems. Therefore, to develop high-quality quantum devices,
it is necessary to quantitatively study these influences on the emitter.

Firstly, telegraph and white noise were modeled, and the resulting changes in the RF
spectrum and the intensities of its individual spectral lines were calculated. Subsequently,
the white noise model was extended to the situation of an emitter modulated by surface
acoustic waves, as is the case in quantum hybrid systems. It has been quantitatively shown
how noise limits the effective acoustic control of light scattering on the emitter, and the
stability requirements for the acoustical signal to remain resolvable in the RF spectrum
have also been defined. Finally, the environmental noise was modeled as acoustic phonons.
In this case, a Fano profile was discovered in the RF spectrum, the existence of which
depends on the ambient temperature and the strength of the phonon—emitter coupling.

In conclusion, in this PhD thesis, various types of noise have been modeled, identifying
characteristic parameters that can be used to quantitatively describe the impact of a given
type of fluctuation on the shape of the RF spectrum. The obtained results will be useful in
diagnosing the types of noise affecting experimentally-tested semiconductor emitters. In
the case of an acoustically modulated emitter, this dissertation paves the way for research
on the impact of noise on correlations, including the second-order correlation, between
specific spectral bands. In turn, the model of the emitter interacting with acoustic phonons
can be extended in the future to other types of phonons, for instance, those occurring in
two-dimensional materials.
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1 Wstep

Niniejsza rozprawa doktorska pt.: Rezonansowa fluorescencja emitera kwantowego w ciele
statym z fluktuacjamsi energii przejscia jest praca teoretyczng sktadajaca sie z cyklu trzech
tematycznie powigzanych publikacji [P1|-[P3]. Opisuja one poélprzewodnikowa, samoro-
snaca kropke kwantowa (w [P3| rozszerzono réwniez zagadnienie na centrum defektowe)
znajdujaca sie w ciele stalym, w ktéorym wystepuja fluktuacje. Szum otoczenia wplywa
na rozpraszanie $wiatta w materiale, a tym samym na widmo rezonansowej fluorescencji
(RF) emitera. Celem rozprawy doktorskiej jest zbadanie i ilosciowe opisanie tego wplywu.
Tematyka publikacji [P1]|-|[P3| dotyczy zatem fizyki ciala statego, optyki kwantowej, teorii
uktadow otwartych oraz proceséw stochastycznych.

RF [1, 2] jest rodzajem oddzialywania $wiatta z materia intensywnie wykorzysty-
wanego w badaniu rozmaitych typow uktadow [3-7]. Ponadto RF umozliwia tworzenie
nieklasycznego $wiatta o unikalnych wlasciwosciach koherencji [8, 9| oraz generowanie
rozgrupowanych [10] i nierozroznialnych [11] fotonéw, co czyni ja atrakcyjna dla infor-
matyki kwantowej. Ostatnie dwie dekady rozwinely zastosowania RF do charakterystyki
wlasciwosci emiterow w ciele statym, takich jak pojedyncze molekuly [12]|, nadprzewo-
dzace kubity [13, 14] czy potprzewodnikowe kropki kwantowe [11, 15, 16]. W przypadku
tych ostatnich emiterow RF wykorzystywana jest m. in. do odczytywania stanéw spi-
nowych kropki kwantowej [17-19]| (wraz z ich dynamiks [20, 21|), splatywania spinu z
pojedynczym fotonem |16, 22| oraz generowania pojedynczych [23] czy nierozréznialnych
[11] fotonow.

Modulacja kwantowego emitera zwieksza kontrole nad procesem rozpraszania $wia-
tta [24-26]. Z drugiej strony, obserwacja RF z emitera sprzezonego z falowodem [27]
pokazuje, ze mozna konstruowaé¢ zrodta pojedynczych fotonéw w zminiaturyzowanych
uktadach. Szczegolnym zastosowaniem, taczacym modulacje kropki kwantowej i miniatu-
ryzacje urzadzenia, sa akustooptyczne kwantowe uktady hybrydowe [28-31]. Emiter petni
tam funkcje przetwornika miedzy sygnalem akustycznym i optycznym. Tym pierwszym
sg fale powierzchniowe modulujace emiter z czestoscia rzedu GHz i majace dtugosé nawet
o 5 rzedow wielkoSci mniejsza niz dla fali $wietlnej [29], co czyni je dobrymi kandydatami
na nosnik informacji wewnatrz zminiaturyzowanego, pétprzewodnikowego uktadu scalo-
nego. Drugim sygnatem (stuzacym do przesytu informacji na duze odlegtosci) jest widmo
RF, z ktorego ksztaltu da sie odezyta¢ whasciwosci fal akustycznych [30, 31]. Rowniez
tutaj $wiatto jest rozgrupowane [30, 32|, co wskazuje na fakt, ze kropka kwantowa jest
zrodtem pojedynczych fotonow [23], ktore mozna zastosowaé do informatyki kwantowej
[33]. Mieszajac dwa precyzyjnie dobrane mody fal akustycznych, da sie kontrolowa¢ wta-
Sciwosci rozproszonego fotonu, zaréwno w dziedzinie czestotliwosci [30], jak i czasu [31].
Opis teoretyczny fal akustycznych mozna rozszerzy¢ do poziomu kwantowego, traktujac
je jako fonony [34, 35|, co otwiera perspektywe zaawansowanych zastosowari, takich jak
kodowanie w dziedzinie czasu i czestosci |36, 37|, kwantowa transdukcja akusto-optyczna
[38], kwantowe multipleksowanie [39] czy odtwarzanie statystyki fononéw na podstawie
widma RF [35]. Niemniej jednak, istotnym ograniczeniem kropek kwantowych jest fakt,
ze zachowujg one wspomniane atrakcyjne wlasciwosci $wiatta jedynie dla temperatur bli-
skich 0 K. Obiecujacym rozwiazaniem tego problemu jest inna grupa emiteréow, takich
jak centra defektowe [40|. Przyktadowo, pojedyncze defekty heksagonalnego azotku boru
generuja Swiatlo antyzgrupowane réwniez w temperaturze pokojowej [41-43|, a nawet
znacznie wyzszej (800 K) [44].

To, czy rozwazany emiter bedzie miat pozadane wtasciwosci optyczne, zalezy w duzej



mierze od jego odpornosci na fluktuacje otoczenia, ktore zaburzaja poziomy energetyczne
w ukladzie. W przypadku RF wiele prac zbadalo wptyw fluktuacji amplitudy [45-47],
czestoscl [45, 48, 49] i fazy [45, 48, 50-52| wiazki laserowej. Natomiast mniej uwagi poswie-
cono szumowi pochodzacemu z ciata statego, ktory moze by¢ spowodowany fluktuacjami
pochodzacymi od tadunku [53, 54|, spinu [55] czy drgan sieci krystalicznej (fononow)
[56, 57]. Te ostatnie byty intensywnie badane, ale w kontekscie widm fotoluminescencyj-
nych [58, 59|, absorpcyjnych [60] oraz spektroskopii mieszania czterech fal [61]. Wplyw
fononéw na widmo RF zaprezentowano w [62|, niemniej jednak praca dotyczy pobudzania
laserem impulsowym, a w niniejszej rozprawie doktorskiej skupiono sie na laserze o pracy
ciaglej, ktory jest wykorzystywany w kwantowych uktadach hybrydowych [30, 31].

W publikacji [P1] opisano wptyw szumu telegraficznego i biatego na ksztalt widma RF
oraz intensywnos¢ poszczegolnych linii widma. Wyniki dla szumu bialego zostaly wykorzy-
stane do przypadku emitera modulowanego akustycznie [P2|, gdzie okreslono maksymalne
natezenie szumu, dla ktorego akustyczna kontrola rozpraszania $wiatta jest jeszcze efek-
tywna oraz podano warunek, jak dlugo sygnal akustyczny musi by¢ stabilny, by mozna
bylto odeczytaé jego wlasciwosci z widma RF. Natomiast wplyw fononéw na widmo RF
zaprezentowano w |P3|, gdzie odkryto profil Fano, ktérego istnienie zalezy od temperatury
otoczenia i sity sprzezenia fononéw z emiterem.

Uktad niniejszego opracowania, wprowadzajacego w tematyke publikacji [P1]| - [P3],
jest nastepujacy. W rozdziale 2 przywotano definicje potprzewodnika (z ktorego zbudo-
wany jest emiter), opisano jego oddzialtywanie ze $wiattem oraz omoéwiono rodzaje emite-
row rozwazanych w doktoracie. Ponadto zdefiniowano zjawisko RF przy omawianiu regut
wyboru dla potprzewodnikowego emitera. W rozdziale 3 zaprezentowano dwa podstawowe
czynniki otoczenia uwzglednione w publikacjach [P1] - |[P3|, ktore wplywaja na wlasci-
wosci optyczne emitera. Sa to fluktuacje otoczenia oraz modulacja akustyczna. Nastepnie
przedstawiono model ukladu (rozdzial 4). Podstawowe fakty na temat widma RF, wraz z
wpltywem modulacji akustycznej i fononéw, zostaly oméwione w rozdziale 5. W kolejnej
czesci opracowania znalazta sie teoria niezbedna do wyznaczenia widma RF, tj. ewolucja
uktadu wraz z uktadem odniesienia oraz przyblizeniami, w jakich jest liczona (rozdzial
6), zastosowanie kwantowego twierdzenia Laxa o regresji do wyznaczenia funkcji autoko-
relacji z otrzymanej ewolucji uktadu (rozdzial 7) oraz teoria fotodetekcji, taczaca funkcje
autokorelacji z widmem RF (rozdziat 8). Nastepnie zaprezentowano najwazniejsze wyniki
otrzymane w publikacjach |P1]-[P3] oraz wnioski z pracy doktorskiej (odpowiednio roz-
dziaty 91 10). Ostatecznie podano szczegdly manuskryptow tworzacych rozprawe, wraz z
opisem wktadu autora rozprawy w kazda z tych prac.



2 Oddzialywanie swiatla z emiterem

2.1 Struktura pasmowa polprzewodnika

Potprzewodnik to jeden z najwazniejszych rodzajow ciala stalego obok metali i izolatorow.
Zgodnie z zasadami mechaniki kwantowej, elektrony w materiale maja $cisle okreslone po-
ziomy energetyczne. Duza liczba takich pozioméw o zblizonych energiach tworzy pasmo,
miedzy ktérymi powstaje przerwa energetyczna [63]. Najistotniejsze jest pasmo walen-
cyjne, dla ktorego elektrony sg zwiazane z jadrami atomowymi materialu oraz pasmo
przewodnictwa, zawierajace elektrony swobodnie przemieszczajace sie po ciele statym,
warunkujace wtasciwosci elektryczne ciata statego.

W temperaturze 0 K, potprzewodnikowe pasma walencyjne i przewodnictwa sa odpo-
wiednio w calosci zapehione i puste [63]. Wowczas uklad znajduje sie¢ w stanie podsta-
wowym, o najmniejszej mozliwej energii. Niemniej jednak potprzewodnik, w odréznieniu
od izolatora, ma na tyle mala przerwe energetyczna [63|, ze elektrony moga zostac tatwo
wzbudzone do pasma przewodnictwa pod wplywem czynnikéw zewnetrznych, takich jak
np. temperatura, swiatlo czy cisnienie. Ponadto liczbe elektronéw swobodnych (a tym
samym ich wlasciwosci elektryczne i optyczne) mozna precyzyjnie kontrolowaé za pomoca
wspomnianych czynnikow zewnetrznych [64-66], co czyni te materiaty atrakcyjnymi w
rozmaitych dziedzinach techniki, m. in. informatyce, elektronice, energetyce czy automa-
tyce.

2.2 Optyka pétprzewodnikow

W przypadku o$wietlenia potprzewodnika zachodzi wiele rozmaitych zjawisk. Niemniej
jednak, w kontekscie niniejszej rozprawy doktorskiej, szczegblowego omoéwienia wymaga
sekwencja absorpcji i emisji oraz rozpraszanie swiatta.

Absorpcja pojedynczego fotonu moze skutkowaé przekazaniem jego energii elektronowi
z pasma walencyjnego, ktory przechodzi do innego poziomu w pasmie przewodnictwa. Aby
to przejscie elektronu mialo miejsce, réznica energii miedzy poziomami musi byé rowna
energii zaabsorbowanego fotonu. Po wzbudzeniu elektronu do pasma przewodnictwa w
pasmie walencyjnym tworzy sie puste miejsce. Efekt jest taki, jakby pojawila sie tam
dodatnio natadowana czastka, zwana dziura [67]. Wowczas powstaje para elektron-dziura
oddziatujacych ze soba Coulombowsko nosnikéw tadunku (tzw. ekscyton). Niemniej jed-
nak po pewnym czasie ma miejsce rekombinacja, w wyniku ktorej wzbudzony elektron
przechodzi z powrotem do pasma walencyjnego, a tym samym nastepuje emisja sponta-
niczna fotonu i anihilacja tego ekscytonu. Wowczas material Swieci z powodu uprzedniego
o$wietlenia, stad zjawisko to nazywa sie fotoluminescencja. Rekombinacja zachodzi po
czasie zycia ekscytonu t., zaleznym nie tylko od rodzaju poétprzewodnika, lecz takze od
czynnikow zewnetrznych, takich jak temperatura czy ci$nienie [68]. Ze wzgledu na dtu-
gosé sredniego t, fotoluminescencje historycznie podzielono na fosforescencje, dla ktorej
te > 10 ns i fluorescencje (jest ona przedmiotem niniejszego doktoratu), dla ktorej ¢, < 10
ns.

W ogolnosci energie fotonu zaabsorbowanego (hw;) 1 wyemitowanego (hws) przez pol-
przewodnik nie musza by¢ rowne. W takiej sytuacji (rysunek 2.1a) elektron wzbudzony
do pasma przewodnictwa zajmuje tam poziom o niekoniecznie najnizszej mozliwej energii.
Nastepnie odbywa si¢ proces relaksacji, w ktoérym elektron przechodzi do nizszego poziomu
w ramach pasma przewodnictwa, oddajac cze$é swojej energii do potprzewodnika i gene-
rujac drgania sieci krystalicznej (mechanizm powstawania fononéw w potprzewodniku
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Rysunek 2.1: Poélprzewodnik oddziatujacy z fotonem o czestosci w;. Pasmo przewod-
nictwa i walencyjne oznaczono odpowiednio jako PP i PW. (a) Sytuacja, w ktorej wzbu-
dzony elektron podlega relaksacji (czerwona strzatka) do nizszego poziomu. Analogiczny
proces zachodzi dla dziury (niebieska strzatka). Wyemitowany foton ma wowczas czestosé
wy < wi. (b) Sytuacja, w ktorej zaabsorbowany i wyemitowany foton maja identyczne
czestosci.

dominuje nad ich absorpcja w rezimie niskich temperatur [63, 69], ktory jest rozwazany w
tej rozprawie doktorskiej). Analogiczna sytuacja moze mie¢ miejsce dla dziury w pasmie
walencyjnym. Ostatecznie zachodzi rekombinacja ekscytonu, ale wyemitowany foton ma
mniejsza czesto$é niz zaabsorbowany. Moze sie jednak zdarzy¢, ze foton zaabsorbowany i
wyemitowany beda mialy identyczne energie (rysunek 2.1b). Oprocz emisji spontanicznej
wystepuje jeszcze emisja wymuszona. Zachodzi ona pod wplywem fotonu o czestosci wo,
padajacego na wzbudzony elektron. Wéwcezas wyemitowany foton ma identyczne wtasci-
wosci i kierunek, co foton wymuszajacy emisje.

Kolejnym istotnym zjawiskiem towarzyszacym oddzialywaniu §wiatta z materia jest
jego rozpraszanie, ktore na potrzeby rozprawy doktorskiej mozna rozwazy¢ przy pomocy
falowej natury swiatta. W przeciwienstwie do sekwencji absorpcji i emisji, proces roz-
praszania jest procesem natychmiastowym. Ponadto, czestosé¢ fali $wietlnej padajacej na
polprzewodnik nie musi odpowiada¢ roznicy w poziomach energetycznych materiatu (w
takiej sytuacji zjawisko rozpraszania w jezyku kwantowym wyjasnia model stanéw wirtu-
alnych). Jezeli czestosci fali rozproszonej i padajacej sa rowne, to ma miejsce rozpraszanie
elastyczne. Rozwazana wowczas fala elektromagnetyczna, pobudzajaca elektrony i jadra
atomowe potprzewodnika do drgan w przeciwnych kierunkach, generuje dipole elektryczne,
bedace zrodtem Swiatta rozproszonego. Poniewaz rozmiar emitera jest znacznie mniejszy
niz dtugosé fali swietlnej (por. podrozdzial 2.3), do opisu tego oddzialywania $wiatta z
materig stosuje sic model rozpraszania Rayleigha. Swiatto rozproszone tutaj jest zawsze
koherentne (jego wlasnosci sa spojne ze $wiattem padajacym), o ile rozwaza sie ten pro-
ces na pojedynczej czastce. Jezeli z kolei czestosci §wiatta padajacego i rozproszonego
sa rozne, ma miejsce rozpraszanie nieelastyczne. Wowcezas $wiatto moze, cho¢ nie musi,
by¢ koherentne. W sytuacji emitera rozwazanego w pracy doktorskiej zrodtem rozpra-
szania nieelastycznego jest fakt oddzialywania szumu otoczenia na dipole elektryczne w
materiale, co zmienia ich czestosé¢ drgan [P1].

W zjawisku RF emitera pobudzanego intensywnym swiattem laserowym dominuje
mechanizm sekwencji absorpcji i emisji, natomiast dla stabego $wiatta (jak w niniejszej
rozprawie doktorskiej) dominuje proces jego rozpraszania.



kropka kwantowa

Rysunek 2.2: Obraz kropki kwantowej InGaAs/GaAs wykonany za pomoca skaningowej
transmisyjnej mikroskopii elektronowej. Zdjecie pochodzi z pracy [70] i zostato zaadapto-
wane na mocy licencji Creative Commons CC BY.
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Rysunek 2.3: Struktura pasmowa kropki kwantowej, narysowana w oparciu o [71].
Pasmo przewodnictwa i walencyjne oznaczono tutaj odpowiednio jako PP i PW.

2.3 Emitery i uktady dwupoziomowe

Popularnym poétprzewodnikowym emiterem w ciele stalym sg samorosnace kropki kwan-
towe [72], ktorych rozmiary sa rzedu kilkudziesieciu nanometrow |70, 71|. Mozna je wytwo-
rzy¢, nanoszac (np. metoda epitaksji z wigzki molekularnej albo epitaksja z fazy gazowej
z uzyciem zwiazkow metaloorganicznych) na warstwe podloza pewnego potprzewodnika
(np. GaAs) inny material, ktérego przerwa wzbroniona nie wykracza (energetycznie) poza
przerwe wzbroniona podloza (dla GaAs jest to np. InGaAs). Po natozeniu kilku warstw
atomowych nowego potprzewodnika na skutek réznic w rozmiarach statych sieciowych
tych dwoch materialow tworza sie naprezenia, co prowadzi do podzialu nowonaniesio-
nego materiatu na warstwe zwilzajaca (o jednoatomowej grubosci, przylegajaca do pod-
loza) i wyksztalcajace sie na niej samorosnace kropki kwantowe, bedace wyspami no-
wego potprzewodnika (rysunek 2.2, pochodzacy z pracy [70]). Jest to tzw. mod wzrostu
Stranskiego-Krastanowa. Na koniec na tak powstate kropki kwantowe naktada si¢ mate-
rial polprzewodnika stanowiacego podtoze. W obrebie samorosnacej kropki kwantowej na
skutek roznicy w przerwie energetycznej materiatu emitera i otoczenia tworzy sie studnia
potencjatu, blokujaca ruch elektronéw i dziur we wszystkich trzech wymiarach. Wewnatrz
studni potencjalu poziomy energetyczne nosnikow tadunku sa skwantowane, podobnie jak
w atomie, natomiast stany energetyczne pochodzace od warstwy zwilzajacej oraz otoczenia
tworza pasma (rysunek 2.3). Wowczas elektrony wewnatrz studni potencjatu zachowuja
sie podobnie jakby byly zwiazane z atomem, stad kropka kwantowa, bedaca struktura
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Rysunek 2.4: Dozwolone przejscia miedzy pasmem walencyjnym (PW) i przewodnictwa
(PP) dla polaryzacji prawoskretnej (o, spin 1), lewoskretnej (o_, spin -1) i liniowej (,
spin 0). Poziomy dla elektronéw oraz dziur lekkich /ciezkich oznaczono literami odpowied-
nio e oraz ld/cd. Rysunek zaadaptowany z [75], za odpowiednim pozwoleniem.

kwazi-zerowymiarowa, nazywana jest sztucznym atomem |[72-74].

No$niki tadunku w materiale oraz fotony posiadajg orbitalny i spinowy moment pedu
(spin). Struktura pasmowa w potprzewodnikowych kropkach kwantowych skutkuje rozsz-
czepieniem poziomoéw dla dziur, dzielac je na ciezkie i lekkie |75, 76]. Zatem foton, aby
wzbudzi¢ elektron z kropki kwantowej do pozioméw pasma przewodnictwa, musi mieé
nie tylko energie réwna réznicy poziomoéw, lecz takze zachowaé catkowity moment pedu
uktadu foton-elektron. Dozwolone przejécia, wraz ze spinami, jakie przyjmuja elektrony i
dziury, sa zdefiniowane przez tzw. reguty wyboru, przedstawione na rysunku 2.4, zaadop-
towanym z |75]. Wida¢ zatem, ze ograniczenie mozliwych przej$¢ w kropce kwantowej do
jednego (tj. zredukowanie emitera do uktadu dwupoziomowego) jest mozliwe po uzyciu
$wiatta monochromatycznego o ustalonej czestotliwosci (np. lasera) i polaryzacji kotowe;j.
Roéznica energii miedzy stanem podstawowym a wzbudzonym takiego emitera zwigzana
jest z tzw. czestoscig przejscia fundamentalnego. Dla poétprzewodnikowych kropek kwan-
towych energia przejscia jest rzedu 0.1-1 eV, co odpowiada czestosci przejscia fundamen-
talnego rzedu 10%-10% THz, czyli §wiatto pobudzajace emiter musi by¢ z zakresu bliskiej
podczerwieni. Jezeli czesto$é tego Swiatta jest rowna lub bardzo bliska tej czestosci przej-
Scia, ma miejsce zjawisko RF [1, 2|. Przyktadowo, w pracach [P1]| i [P2| réznice miedzy
czestoscig przejscia a czestoscig lasera pobudzajacego emiter sg rzedu GHz. Natomiast
w pracy |P3| siegaja rzedu THz, aczkolwiek tutaj czesto$é¢ przejscia jest przesunieta z
powodu polaronéw (por. podrozdziat 6.3).

Z kolei przyktadem centrow defektowych sa wakancje (tj. puste przestrzenie w sieci
krystalicznej zamiast atomu) oraz domieszki innego atomu niz material otoczenia. Wow-
czas w przerwie energetycznej ciata statego tworza sie dodatkowe zlokalizowane poziomy
energetyczne (zamiast skwantowanych pozioméw wewnatrz studni potencjatu), putapku-
jace elektrony z pasma przewodnictwa oraz dziury z pasma walencyjnego. Istnieje wiele
sposob6w na tworzenie tego typu emiterow. W przypadku wakancji mozna bombardowaé
probke potprzewodnika wysokoenergetycznymi elektronami [77] lub jonami [78], badZz wy-
grzewa¢ probke do bardzo wysokiej temperatury (przyktadowo, dla heksagonalnego azotku
boru jest to ponad 1100 K [43]). Jesli z kolei chce sie domieszkowaé potprzewodnik, mozna
to uczyni¢ np. za pomoca implantacji jonow [79].



3 Oddzialywanie emitera z otoczeniem

Na wtlasciwosci optyczne emitera znaczacy wplyw ma jego interakcja z otoczeniem. Niniej-
szy doktorat skupia sie na temacie wystepujacego w kazdym rzeczywistym ciele statym
szumu, ktéry zaburza energie przejscia emitera. Drugim czynnikiem jest modulacja aku-
styczna emitera przez fale powierzchniowe, rozchodzace sie w sposoéb kontrolowany po
podlozu [28-31].

3.1 Szum

Fluktuacje w potprzewodniku maja rozmaite przyczyny. Jedna z nich sa defekty, two-
rzace dodatkowe poziomy w przerwie energetycznej, putapkujace elektrony z pasma prze-
wodnictwa [53]. Wowcezas tak zlapany nosnik tadunku jest dodatkowym zrodlem pola
elektrycznego, ktore zmienia potozenie pozioméw energetycznych pobliskiego emitera, a
tym samym jego energie przejscia fundamentalnego. Naprzemiennie tadujaca sie i rozta-
dowujaca putapka tadunkowa przyczynia sie zatem do szumu telegraficznego, dla ktérego
czestosé przejscia przetacza sie miedzy dwiema wartosciami. Z kolei duza liczbe puta-
pek tadunkowych, szybkoprzetaczajacych sie (w poréwnaniu z czasem zycia ekscytonu),
mozna modelowa¢ w przyblizeniu jako szum bialy. Innym przyktadem szumu sg fluk-
tuacje spinu, znajdujacego sie w atomie magnetycznej domieszki wewnatrz emitera [55].
Dzieki oddzialywaniu wymiennemu miedzy spinem a ekscytonem w emiterze, energia pary
elektron-dziura moze przyjmowaé kilka dozwolonych wartos$ci, pomiedzy ktérymi naste-
puje przelaczanie wraz z fluktuacjami spinu.

3.1.1 Fonony

Niezerowa temperatura powoduje drgania sieci krystalicznej podloza zawierajacego emi-
ter. Kwanty tych wibracji (fonony), analogicznie do fotonu (kwantu fali elektromagne-
tycznej), maja zdefiniowany wektor falowy k [63] (wyznaczajacy kierunek rozchodzenia
sie tego zaburzenia w krysztale) oraz dtugosé fali wynoszaca 27/|k|.

Rozwazmy trojwymiarowy krysztal (bulk) ztozony z N komorek elementarnych, w
ktorych wystepuje po r atomoéw drgajacych wokolt swoich potozen réwnowagi. Analizujac
uktad réwnan ruchu dla kazdej z czastek, otrzymuje sie 3r réznych rozwiazan dla poszcze-
gblnych modéw fonondw, ktorych wektory falowe przyjmuja N réznych wartosci. Nieza-
leznie od r, dla rozwazanego krysztatu zawsze wystapi jeden mod fononéw akustycznych
podtuznych (gdzie atomy drgaja w kierunku zgodnym z rozchodzeniem sie zaburzenia)
oraz dwa mody poprzeczne (kierunek drgan atoméw jest prostopadly do propagacji za-
burzenia w sieci krystalicznej) [63]. Te trzy mody opisuja fale dzwiekowe rozchodzace sie
w ciele stalym, stad kwanty tych wibracji nazywaja si¢ fononami akustycznymi.

Ponadto, jesli » > 2 (jak np. dla GaAs), to pojawi sie 3(r — 1) modéw dla fononéw
optycznych [63], z czego r — 1 to mody podluzne, a 2(r — 1) to mody poprzeczne. W
przeciwienistwie do fononéw akustycznych, gdzie wszystkie atomy wykonuja drgania w te
sama strone wzgledem ich polozenia réownowagi, dla fononéw optycznych rézne atomy z
tej samej bazy drgaja w przeciwnych kierunkach [63].

Kazdy z 3r modéw fononéw ma nieco inng zalezno$é dyspersyjng, wigzaca czestosé z
wektorem falowym. Rysunek 3.1 przedstawia te zaleznosé dla GaAs. W tym przypadku
r = 2, zatem wystepuja tu po 3 galezie spektralne dla fononéw akustycznych i optycznych.
W przypadku tych pierwszych czestosé fononéw w poblizu punktu I' strefy Brillouina
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Rysunek 3.1: Dyspersja energii poszczegolnych modéw fononéw, na przyktadzie GaAs,
dla okreslonych k z I strefy Brillouina. Czestos¢ 1 cm™! odpowiada energii w przyblizeniu
0.125 meV. Wynik teoretyczny (linia ciggta) pochodzi z obliczeni ab initio przedstawionych
w [80] i udostepnionych za stosownym pozwoleniem, natomiast wynik eksperymentalny
(kropki) przedstawiono w [81].

(gdzie k ~ 0) wynosi w przyblizeniu
Wik ~ ’U)\’k‘, (31)

gdzie vy to predkosé rozchodzenia sie w ciele stalym fali mechanicznej odpowiadajacej
fononowi akustycznemu z modu o galezi spektralnej . Z kolei fononom optycznym od-
powiadaja trzy galezie spektralne bliskie czestosci okoto 300 cm ™! dla punktu I' (rysunek
3.1).

Emiter na ciele staltym, rozwazany w niniejszej pracy doktorskiej, znajduje sie w rezi-
mie niskich temperatur (tj. rzedu kilku kelwinéw). Woéwczas w otoczeniu emitera dominuja,
fonony akustyczne i zaktadamy, ze tylko one oddziatuja z emiterem, a ich czestosci osiggaja
wartos$¢ rzedu THz [P3|. Istnieja dwa mechanizmy interakcji tych fononéw z emiterem.
Pierwszy z nich to sprzezenie potencjatu deformacyjnego [71], polegajace na tym, ze atomy
poltprzewodnika, odchylone z potozenia réwnowagi za sprawa fononéw akustycznych, mo-
dyfikuja strukture energetyczna emitera, a tym samym jego czestos¢ przejscia. Drugim
mechanizmem jest sprzezenie piezoelektryczne [71], pochodzace od drgan akustycznych,
generujacych polaryzacje materiatu piezoelektrycznego (np. GaAs), co skutkuje powsta-
niem dodatkowego, dtugozasiegowego pola elektrycznego.

3.2 Modulacja akustyczna

W przypadku modulacji akustycznej emitera podtoze jest pobudzane do drgan przez tzw.
przetwornik miedzypalczasty. Sktada sie on z metalowych elektrod naprzemiennie pod-
taczonych do jednej z dwoch szyn (rysunek 3.2), ktore sa zasilane napieciem przemien-
nym. Poétprzewodniki tworzace kwantowy uktad hybrydowy czesto naleza do grupy III-V
[30, 31]. Maja one zatem wlasciwosci piezoelektryczne, stad podloze w obszarze elektrod
wykonuje wibracje w kierunku osi OZ (niebieskie strzatki na rysunku 3.2) pod wptywem
przylozonego napiecia elektrycznego (jest to tzw. odwrotny efekt piezoelektryczny). Tak
powstale powierzchniowe fale akustyczne (o dlugosciach rzedu pum, odpowiadajacych geo-
metrii elektrod) rozchodza sie w kierunku osi OX (zielona strzatka na rysunku 3.2). Dla
zwyktego przetwornika miedzypalczastego wibracje rozchodza sie zar6wno w dodatnim,
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Rysunek 3.2: (a) Przetwornik miedzypalczasty (niebieski) generuje wibracje pod-
loza piezoelektrycznego (niebieskie strzatki). Drgania rozchodza sie w kierunku zielonej
strzatki. Rysunek uktadu na podstawie [82], zaadaptowany za stosownym pozwoleniem.
(b) Drgania podloza generuja sity $ciskajace (gora) i rozciagajace (dot) emiter.

jak 1 w ujemnym kierunku osi OX, niemniej jednak w celu zaoszczedzenia energii two-
rzy sie tzw. jednofazowe przetworniki jednokierunkowe, aby wymusié tylko jeden kierunek
rozchodzenia si¢ tych fal.

Tak wygenerowane fale akustyczne tworza naprezenie, ktére naprzemiennie Sciska i
rozcigga emiter znajdujacy sie na wibrujacym podiozu (rysunek 3.2b); co skutkuje pe-
riodycznymi zmianami polozenia pozioméw energetycznych emitera, a tym samym jego
energii przejscia. W kwantowych uktadach hybrydowych czestos$é fal akustycznych miesci
sie w przedziale od kilkuset MHz do kilku GHz [30].



1G>

Wo

filtr  getektor

— X}
o emiter
laser >N D
|

(modulacja akustyczna) szum otoczenia > wr, It

Rysunek 4.1: Schemat ukladu emitera modulowanego akustycznie. Szum otoczenia
wplywa na rozpraszane $wiatto, ktére nastepnie przechodzi przez filtr, a na konicu dochodzi
do detektora. W publikacjach [P1]-|P3| analizowane sa rozne wersje tego uktadu.

4 Model uktadu

W pracy doktorskiej opisano emiter stabo pobudzany przez laser o fali ciagtej i czesto-
§ci wy, (rysunek 4.1). Swiatlo to jest spolaryzowane kolowo, dzicki czemu emiter mozna
rozwazaé jako uktad dwupoziomowy (por. podrozdzial 2.3) o stanach podstawowym |G)
i wzbudzonym |X). Réznica energii miedzy tymi stanami emitera wynosi fiwy, gdzie wy
to czestosé przejscia fundamentalnego (rysunek 4.1). Dla potprzewodnikowych emiterow,
wo jest rzedu 10% - 103 THz, natomiast odstrojenie A, zdefiniowane jako

A = wy, —wy, (4.1)

jest rzedu maksymalnie THz, a wiec duzo mniejsze od wy (por. podrozdzial 2.3), spetiajac
tym samym warunek dla RF. Widma badane w rozprawie doktorskiej obejmuja taki sam
(lub maksymalnie o jeden rzad wiekszy) zakres czestosci wokol wy,. Nastepnie $wiatto
rozproszone przechodzi przez filtr (moze by¢ to np. interferometr Fabry—Perota |30, 83|)
o szerokosci spektralnej I's, ustawiony na czestos¢ wy i ostatecznie jest wykrywane przez
detektor, ktory odtwarza widmo RF.

Przyjmujemy, ze energie stanu podstawowego i wzbudzonego wynosza odpowiednio
Eg = 01 Ex = hwy, zatem hamiltonian emitera (zdefiniowany w przestrzeni Hilberta Hep
rozpietej na wektorach bazy {|G),|X)}), ma posta¢

Hem — ha‘)O |X><X| : (42)

Do opisu oddzialywania swiatta z emiterem pasuje przyblizenie dipolowe, poniewaz
dtugosé fali swiatta laserowego jest o kilka rzedéw wielkosci dhuzsza niz wielko$é emi-
tera (por. podrozdziat 2.3). Wowczas hamiltonian tego oddzialywania ma postaé¢ energii
potencjalnej dipola elektrycznego, tj.

Hy(t) = —d- E(t), (4.3)
gdzie (hermitowski) operator d momentu dipolowego jest rowny
d = dac |G) (Gl +dax | G) (X] +dxa [ X) (G] +dxx [ X) (X], (4.4)
natomiast wektor pola elektrycznego lasera E(t) to
E(t) = Ege "“t! 4 Ejet“rt, (4.5)

Dla uproszczenia rozwazan zakltadamy symetrie sferyczng emitera, tj. dog = dxx = 0.
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Modulacje akustyczna emitera (por. podrozdziat 3.2) uwzgledniamy, dodajac perio-
dyczny w czasie czlon Aw,.(t) do czestoscel przejscia wy [30, 31|, ktorego amplituda jest
rzedu GHz, a wiec znacznie mniejsza od wy. Hamiltonian modulacji (nalezacy réwniez do
przestrzeni Hep,) ma zatem postac

Hoe(t) = hAwae(t) | X)(X] . (4.6)
W rozprawie doktorskiej uwzgledniamy maksymalnie dwa mody fal akustycznych [P2]
Aw,e(t) = Awp cos(wa t) + Bwa cos(2wat + @), (4.7)

gdzie A, B to bezwymiarowe parametry amplitud poszczegélnych modéw fal, a ¢ to faza
miedzy tymi modami.

Szum zaburzajacy czestos¢ przejscia emitera (por. podrozdzial 3.1) mozna modelowaé
klasycznie, dodajac do wy losowo zmieniajacy sie w czasie czton A4(t), tak jak w pracach
|P1], [P2]. Wowczas hamiltonian fluktuacji rowniez nalezy do przestrzeni Hep, 1 ma postac

Hus(t) = hAwns(t) | X)(X] . (4.8)

Z drugiej strony, szum da sie zamodelowaé¢ kwantowo jako fonony (por. podrozdzial 3.1.1)
i wowczas, konstruujac hamiltonian szumu, trzeba rozszerzy¢ przestrzen Hilberta uktadu
0 Hpn. Poniewaz temperatura uktadu jest niska (por. podrozdziat 3.1.1), energie fononéw
sa dalece niewystarczajace, aby wzbudzi¢ elektron ze stanu |G) do | X). Wowcezas fonony
sprzegaja sie z kazdym z tych stanéw niezaleznie, tj. poprzez zmiane energii stanu wzbu-
dzonego wzgledem stanu podstawowego (|G) jest traktowany jako punkt odniesienia) i
mozna zastosowa¢ model niezaleznych bozonéw [84, 85|, w ktorym hamiltonian szumu
jest rowny

Hyo(t) = Hyn + 01X (X [gnabl s+ 05brk] (4.9)
Ak
gdzie
th = hzwk,kbf\,kbk,h (410)
Ak

Operatory kreacji i anihilacji fononéw akustycznych o wektorze falowym k z gatezi spek-
tralnej A (por. podrozdzial 3.1.1) oznaczone sa odpowiednio jako b;’ 10 k. Miarg sprzeze-
nia fononu w danym modzie z emiterem jest wspotczynnik gy g, zalezny m. in. od rozmiaru
emitera oraz predkosci fononu w potprzewodniku. Po zdefiniowaniu gestosci spektralne;j

J(w) =) lgawl® 6(w — wak), (4.11)

mozna wprowadzi¢ wspotezynnik Huanga-Rhysa [84]

> JW)
FHR:/; dw o2 s (412)

bedgcy parametrem okreslajacym site sprzezenia calego rezerwuaru fononowego z emite-
rem.
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Rysunek 5.1: Widmo RF (w skali logarytmicznej) otrzymane eksperymentalnie dla
roznych mocy lasera pobudzajacego rezonansowo kropke kwantowa z InAs. Czestos¢ na
osi OX jest podana wzgledem lasera. Wynik pochodzi z pracy [19] i zostal pokazany za
stosownym pozwoleniem.

5 Widmo RF — podstawowe fakty

Jezeli emiter zostanie stabo pobudzony rezonansowo (lub prawie rezonansowo) laserem,
dojdzie do rozpraszania elastycznego $wiatta. Widmo RF dla tego emitera zawiera wow-
czas linie centralna, zlokalizowana w czestosci lasera [1], a nie fundamentalnego przejscia
(jak ma to miejsce dla standardowej fotoluminescencji). Ponadto, dla RF linia centralna
jest nieposzerzona (poza wkladem od szerokosci spektralnej filtra kolekcjonujacego sygnat
optyczny), a w przypadku fotoluminescencji (gdzie dominuje proces absorpcji i emisji
$wiatta nad rozpraszaniem, por. rozdzial 2.2) szerokos$¢ potéwkowa linii centralnej jest
odwrotnie proporcjonalna do czasu zycia ekscytonu w emiterze.

W przypadku silnego, rezonansowego pobudzania laserem, w widmie RF pojawia sie
jeszcze kolejna, poszerzona linia centralna (ma to zwiazek z dominacja mechanizmu emisji
i absorpcji fotonu nad rozpraszaniem $wiatta, por. rozdzial 2.2) oraz dwie linie boczne,
zlokalizowane symetrycznie wzgledem czestosci lasera, tworzac tzw. tryplet Mollowa [86].
Wyniki teoretyczne z [86] odtworzono w eksperymencie dla kropki kwantowej z InAs [19],
gdzie pobudzano ja $wiattem o r6znej intensywnosci (rysunek 5.1). Ostry pik widoczny dla
stabych mocy jest wspomniana nieposzerzona linia centralna, pochodzaca z elastycznego
rozpraszania $wiatta. Dla lasera o mocy P > 216 nW w widmie zaczynaja sie pojawiaé
pasma boczne. Zgodnie z przewidywaniami teoretycznymi [1, 86|, im wieksza moc lasera
pobudzajacego, tym linie boczne sa potozone dalej od siebie. Oprocz [86], rezim silnego
pobudzania byt intensywnie badany w licznych pracach [3, 45-47, 52, 87-95|. Z drugiej
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Rysunek 5.2: Usrednione po czasie i znormalizowane widmo RF dla akustycznie modu-
lowanej (pojedynczym modem) kropki kwantowej z In(Ga)As pobudzanej rezonansowo.
Wynik pochodzi z pracy [30]. Czesto$¢ na osi poziomej liczona jest wzgledem lasera.
Wyniki teoretyczne pokrywaja sie z eksperymentem. Rysunek zostal zaadaptowany na
podstawie licencji OSA Open Access.

1

o
(&)
!

o
(8,3}
1

normal. emission intens. (arb. u.)
—

5-4-3-2-10 1 2 3 4 5

frequency shift ws (w,)
Rysunek 5.3: Usrednione po czasie i znormalizowane widmo RF dla kropki kwantowe;j z
In(Ga)As, pobudzanej rezonansowo, w przypadku mieszania fal akustycznych, dla réznych
faz (zaznaczonych na niebiesko) miedzy modami. Czestos¢ na osi OX zostala podana
wzgledem lasera. Wynik pochodzi z pracy [30] i zostal zaadaptowany na podstawie licencji
OSA Open Access.

strony, mniej pozycji uwzglednia przypadek niskiej intensywnosci lasera [3, 49, 96-99], co
uzasadnia podjecie pracy doktorskiej w rezimie stabego pobudzania emitera, tym bardziej
ze wystepuje on w kwantowych uktadach hybrydowych [30, 31].

W przypadku modulacji akustycznej stabo pobudzanego emitera linia centralna w
widmie RF zostanie powielona o catkowite wielokrotnosci czestosci modulacji wzgledem
czestoscel lasera 30, 32, 100] (rysunek 5.2). Aby dalo si¢ rozréznié poszezegolne linie widma
(jest to istotne w kwantowych uktadach hybrydowych), szerokos¢ widmowa filtra musi by¢
wyraznie mniejsza od czestosci modulacji. Woéwcezas ma miejsce tzw. rezim rozdzielonych
pasm bocznych. Pokazano, ze fotony rozpraszane na akustycznie modulowanej kropce
kwantowej sa rozgrupowane [30, 32|, co pozwala interpretowac intensywnosci poszczegol-
nych linii widma jako prawdopodobienistwo rozproszenia pojedynczego fotonu z kropki
kwantowej do wybranego kanatu czestosci, odpowiadajacego tej linii. Prawdopodobien-
stwa te ewoluuja periodycznie w czasie z okresem powierzchniowych fal akustycznych
[31].
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Rysunek 5.4: (a) Widmo absorpcyjne i (b) RF dla kropki kwantowej z GaAs pobu-
dzanej rezonansowo impulsem laserowym. W obu sytuacjach widaé¢ waska linie centralng
(odpowiadajaca rozpraszaniu elastycznemu) i szerokie fononowe pasmo boczne. Rysunki
(a) i (b) pochodza odpowiednio z [60] i [62] oraz zostaly przedstawione za stosownym
pozwoleniem.

Gdy dodatkowo wygeneruje sie drugi mod fal akustycznych, o czestosci réznej od
pierwszego modu i o ustalonej fazie miedzy nimi, bedzie miato miejsce zjawisko tzw. mie-
szania fal akustycznych. Regulujac faze miedzy modami fal modulujacych emiter, mozna
precyzyjnie kontrolowa¢ (usrednione w czasie) intensywnosci poszczegdlnych linii widma
(niebieskie strzatki na rysunku 5.3). Innymi stowy, mierzac sygnal optyczny (liczbe fo-
tonéw o ustalonej czestosci padajacych na detektor), mozna odczytaé informacje o fazie
miedzy modami [30]. Zjawisko to nosi nazwe akustycznej kontroli rozpraszania fotonow.

Fonony oddziatujace z emiterem w ciele staltym przyczyniaja sie do powstania pasma
bocznego w wielu widmach optycznych, jak np. fotoluminescencji [58, 59| czy spektrosko-
pii mieszania czterech fal [61]. Tzw. fononowe pasmo boczne (jego szerokosé odpowiada
czestosci rzedu THz, tj. o kilka rzedow wielkosci wiecej niz dla linii centralnej) widaé
rowniez dla widma absorpcyjnego [60] (rysunek 5.4a), bedacego odbiciem widma RF (ry-
sunek 5.4b) wzgledem czestosci rezonansowej. Te zaleznosé widaé szczegolnie dla niskich
temperatur, gdyz wtedy w polprzewodniku dominuje emisja fononéw nad ich absorpcja
(por. podrozdzial 2.2). Woéwezas w przypadku pochtaniania fotonéw przez ukltad najcze-
Sciej oddaja one energie nie tylko na wzbudzenie elektronu, lecz takze na wygenerowanie
fononu (stad na rysunku 5.4a pasmo boczne lezy po prawej stronie energii przejscia). Z
kolei dla widma emisji z rysunku 5.4b pasmo fononowe lezy po lewej stronie, poniewaz
podczas deekscytacji elektronu czesé jego energii zostaje najczesciej oddana otoczeniu
jako fonony, a tym samym wyemitowany foton ma mniejsza czestosé. W miare wzrostu
temperatury intensywnos$é emisji i absorpcji fononéw sie wyréwnuje, stad obydwa widma
z rysunku 5.4 staja sie symetryczne. Podsumowujac, ksztalt tego szerokiego pasma silnie
zalezy od temperatury.
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6 Ewolucja ukladu
Oznaczmy uktad jako S. Wowcezas jego hamiltonian ma postac
Hs(t) = Hem + Hac(t) + Hus(t) + Hing(2). (6.1)

Nalezy podkreslié, ze ukladem jest tutaj emiter (w przypadku szumu klasycznego) oraz
fonony, jezeli bierze sie pod uwage szum kwantowy. Uktad S jest w ogdlnosci otwarty
na otoczenie E, ktorym jest proznia elektromagnetyczna (jej przestrzeni Hilberta to Hg).
Po zdefiniowaniu Hg(t) nalezy wyznaczy¢ ewolucje tego ukladu. Wowezas hamiltonian
catodci jest rowny

Htot(t) = HS(t) + HE<t) + HSE(t)a (62)

gdzie Hg(t) to hamiltonian otoczenia, natomiast Hgg(t) to hamiltonian oddzialywania
otoczenie-uktad [101].
Macierz gestosci calosei, piot(t), ewoluuje wedtug rownania Liouville’a—von Neumanna

d prot (t)
dt

ih = [Hiot (1), prot (1)) - (6.3)

Dla tak zadanej ewolucji, od chwili ¢; do t¢, otrzymujemy

Ptot(tf) - U(tfa tl) ptot(ti)UT (tf7 ti)7 (64>
gdzie

Ultt) = T, oxp (-% /t ) dsHtot(s)> | (6.5)

Symbol T_, (T..) oznacza uporzadkowanie czasowe hamiltonianéw z kolejnych rzedow
rozwiniecia eksponenty z (6.5) w kolejnosci malejacych (rosnacych) argumentéw czasu,
idac od lewej do prawej strony.

Z rozwiazania py(t) interesuje nas tylko macierz gestosci uktadu

ps(t) = Tre peot(t), (6.6)

gdzie slad Trg przebiega po stanach z przestrzeni otoczenia. W ogélnosci wyznaczenie
prot(tr) jest bardzo trudne, stad przyjmujemy, ze oddzialywanie otoczenia z ukladem jest
stabe (tzw. przyblizenie Borna). Dzieki temu mozna zalozy¢, ze stan poczatkowy (dobrze
znany) jest separowalny, tj. piot(ti) = ps(t;) ® p(ti), gdzie pg(t) to macierz gestosci oto-
czenia. Ponadto zakladamy, ze otoczenie jest znacznie wieksze od uktadu, stad wraca ono
do swojego stanu rownowagi bardzo szybko w poréwnaniu z dynamika ps(t) [101], ktora
wowcezas nie zalezy od swoich stanow przesztych. Jest to tresé tzw. przyblizenia Markowa.
Woéwcezas mozna napisaé, ze dla kazdej chwili czasu macierz gesto$ci ma postaé

Prot(t) = ps(t) @ px - (6.7)

Trzecim istotnym zalozeniem jest tzw. przyblizenie wiekowe, polegajace na pominieciu
wyrazow ps(t) oscylujacych znacznie szybciej niz dynamika uktadu. Pozwoli ono na za-
chowanie dodatniej okreslonosci macierzy gestosci uktadu S. Wéwcezas, rownanie ewolucji
dla ps(t) ma postac¢ [101]

dp;t(t) = —% [Hs(t), ps(t)] + L&) [ps(t)] (6.8)
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gdzie L) to tzw. dyssypator Lindblada, uwzgledniajacy emisje spontaniczng w ewolucji
uktadu. Dla dowolnego operatora Os z tej samej przestrzeni co pg(t), dyssypator Lindblada
jest rowny

L0 (t)] =~ (|G><X| Os(1) 1X)(6] 5 {1X)(X], os<t)}) , (6.9)

gdzie v = 1/t to wspolezynnik zaniku ekscytonu, a {A, B} = AB + BA.

Poniewaz rozwazamy rezim stabego pobudzania emitera, prawa strone rownania (6.8)
mozna podzieli¢ na dwa czlony, oznaczajace ewolucje swobodng uktadu i optyczne wzbu-
dzenie, traktowane jako zaburzenie. Sa one rowne odpowiednio

Lo [O05(0)] = = 1 [ + Haclt) + Hisl0), O5(0)] + L [Os(1)), (6.10a)
L [05(0)] = = 1 [ (1), Os(1)]. (6.10b)

Po zapisaniu macierzy gestosci w bazie stanéw emitera,

ps(t) = ps.aa(t) |G)(Gl +ps.ax(t) |G)(X] +ps xa(t) [X) (Gl +ps xx () [X)(X],  (6.11)

rownanie (6.8) zamieni si¢ w uktad czterech rownan dla kazdej z czesci macierzy ps(t).

6.1 Wirujacy uktad odniesienia

Po wyznaczeniu psax(t) 1 psxa(t) widaé, ze najwiekszy wktad do zaleznosci czasowe]
wnosi tam nieistotny fizycznie i komplikujacy obliczenia czton z hwy. Chcac sie go po-
zby¢, trzeba przej$¢ w rachunkach rownania (6.8) do wirujacego (W) uktadu odniesienia.
Wowcezas macierz gestosci transformuje sie wedtug

P8 (1) = W (t)ps() W' (2) (6.12)

dla
W(t) = et X (Xlwnt — |G) (G| + | X) (X] e*“rt. (6.13)

Oczywiscie, rownanie ewolucji (6.8) musi by¢ takie samo w obu uktadach odniesienia,
zatem w hamiltonianie emitera trzeba jeszcze odja¢ czton hwy, | X)(X|. Wowcezas

HW () = W (t)Heu W (t) — hop | X)(X] = —RA | X)(X]. (6.14)

em

6.2 Przyblizenie wirujacej fali

O ile HY (1) wyraza sie przez (6.14), HY(t) = H,c(t) i, niezaleimie od tego, czy szum
rozwazany jest jako klasyczny czy kwantowy, HiY" (t) = Hys(t). Z kolei hamiltonian inte-
rakcji §wiatta z emiterem (o symetrii sferycznej), po skorzystaniu z rownan (4.3)-(4.5) i
zastosowaniu (6.12), ma w wirujacym uktadzie odniesienia postac

HY () = —dax - (Boe v + E3) |G)(X] —dxq - (Eo + Eje® ) | X)(G).

int

Tytulowe przyblizenie polega na zalozeniu, ze p(SW) (t) ewoluuje znacznie wolniej niz

E(t). Przyjmuje sie zatem, ze exp(£2iwpt) ~ 0. Po zdefiniowaniu czestosci Rabiego 2
poprzez rownanie dgx - Ef = dx¢ - Ey = h§)/2, mamy wowczas, ze

(1) = -6+ 1@, (6.15)

int

16



W rezimie stabego pobudzania hamiltonian optycznego wzbudzenia Hi(n\iv)(t) jest za-
burzeniem ewolucji ukladu, zatem péw) (t), wraz z poszczegolnymi jej elementami (por.

rownanie (6.11)), mozna roztozy¢ w szereg wzgledem €,

P8 (1) = p§™ (1) + ol () + 2 (1), (6.16)

i tym samym wyznaczy¢ ewolucje macierzy gestosci z doktadnoscia do 2.

6.3 Polaronowy uklad odniesienia

W przypadku modelu emitera oddziatujacego z fononami akustycznymi, interakcja ta
odbywa sie poprzez mechanizm sprzezenia piezoelektrycznego oraz sprzezenia przez po-
tencjal deformacyjny (por. rozdziat 3.1.1). Wowcezas nosnik tadunku jest otoczony przez
chmure fononow akustycznych (przemieszczajaca sie razem z tym nosnikiem) i tak po-
wstaly uktad wygodnie jest opisaé¢ jako pojedynczg fermionowa kwaziczastke, zwang pola-
ronem akustycznym. Pozwala to na diagonalizacj¢ w przestrzeni Hp, hamiltonianu szumu,
a tym samym utatwia znalezienie ewolucji.

Transformacje¢ (unitarna) do polaronowego uktadu odniesienia dla dowolnego Og(t)
opisuje wzor [85]

Oy (t) = TrOs(1)TY, (6.17)
gdzie
Te = |G)(G| + | X)(X] D{grux}- (6.18)
Operator przesuniecia (Weyla), D{gx}, jest zdefiniowany jako
D{gax} =exp ) (“C“—”“b;k - ‘qA—”“bA,k) . (6.19)
Nk Wik Wik

Aby obliczyé aEw (1), korzystamy z faktu, ze W (t) = Hps(t) 1 wowcezas stosujemy
rownanie (6.17) do hamiltonianu szumu z (4.9), otrzymujac

HEW () = | G) (Gl Hpn + 7|1 X)(X] Y wrkD{grr}bh xbrs D {grk}
Nk

+ R X)X [QA,kD{gA,k}bT/\,kDT{gA,k} + gr kD{grk oAk D { gk} -

Mk

Nastepnie, uzywajac regut komutacji dla bozonowych operatoréw kreacji i anihilacji, do-
stajemy

D{g 30> £ D" {grk} =brk — Grk/Wr ks (6.20a)
D{gax}bl e D {grk} =D\ 1, — T/ Wrk (6.20b)

co po skorzystaniu z faktu, ze DT{g\x}D{grx} = 1 prowadzi do réwnania

HEW)(t) = Hy, — hAp | X)(X], (6.21)

ns

gdzie Ap to tzw. przesuniecie polaronowe

AP = Z |g)\,k:|2 /w)\k. (622)
Ak
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Z roéwnania (6.21) widaé, ze energia przejScia emitera zostaje zmieniona o hAp. Ma to
zwiazek z energia wiazania polaronu. Przesuniecie energii przejScia emitera mozna inter-
pretowac jako skutek zmiany statej sieciowej pétprzewodnika w poblizu emitera. Wowczas
odstrojenie A’ jest okreslone wzgledem przesunietej czestosci przejscia, tj.

A/ = WL, —Wo + AP. (623)
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7 Kwantowa funkcja autokorelacji

Dysponujac wyznaczong ewolucja uktadu, nastepnym etapem niezbednym do otrzymania
widma RF jest znalezienie kwantowe] funkcji autokorelacji, réwnej

G(t,t+7) = (o (t)o_(t + 7)) = Triot (04 (t)o—(t + T)prot) - (7.1)

Slad z (7.1), Try, = Trg Trg, przebiega po wszystkich stanach ukladu S i otoczenia E.
Dotychczas rozwazania byty prowadzone w obrazie Schrodingera, gdzie operatory sa state
w czasie, natomiast macierz gestosci ewoluuje zgodnie z (6.4). Z kolei wielkosci w (7.1)
zapisane s w obrazie Heisenberga, gdzie macierz gestosci catosci (oznaczona symbolem ~,
dla odréznienia od pyo(t) z rozdziatu 6) jest stata, a ewolucja czasowa zostata przeniesiona
do operatorow.

Dla dowolnego operatora Ay (z tej samej przestrzeni co pyo(t)), zdefiniowanego w
obrazie Schrodingera, przejscie do obrazu Heisenberga opisuje wzor

AR () = Ul (t, 1) AU (8, 1) (7.2)

dla poczatkowej chwili ewolucji ¢;. Z kolei macierz gestosci calosci (niezmieniajaca sie w
obrazie Heisenberga) jest rowna pioy = prot(t;). Operatory z (7.1) mozna zapisaé jako

o, (t) =UM(t, 1) (0, @Ig) U(L, t;), (7.3a)
o_(t+7)=Ult+7t) (o @Ig) Ut + 1,t), (7.3b)
gdzie 0, = o' = |X)(G], natomiast Iy to operator identycznosciowy w przestrzeni oto-

czenia. Po skorzystaniu z addytywnosci operatora ewolucji, t;j.
Ults, t2)U(to, t1) = Ults, t1), (7.4)
otrzymujemy, ze funkcja autokorelacji jest rowna
Gt,t+7)=Trs Trg (U'(t, ) [0y @ Ig| UT(t + 7, 8) [o- @ Ig] U(t + 7, t:) pros(t1)) ,
a po wykorzystaniu cyklicznosei $ladu, addytywnosci U(t + 7,¢;) 1 wzoru (6.4) mamy
Gt,t+71) = Trs Trg ([o- @ Ig] U(t + 7, t) prot (t) [0+ @ Le] U (¢ + 7.,1)) . (7.5)

Rownanie (7.5) pokazuje, ze wyznaczenie autokorelacji sktada sie z dwoch etapow:

I) ewolucji macierzy gestosci pyor 0d chwili poczatkowej ¢; do ¢,

IT) ewolucji operatora pyo(t) [0y ® Ig], od chwili ¢ do t + 7, identycznej jak dla piot.
Oczywiscie, interesujace tutaj sa wyniki tylko z obrebu przestrzeni Hilberta uktadu S,
zatem wprowadza sie superoperator Ly, ., [Os(ti)] zwracajacy, w chwili ¢¢, wynik ewolucji
(zaczynajacej sie w t;) dla operatora Og (z przestrzeni uktadu S), przebiegajacej wedtug
(6.8). Wowcezas mozna napisac, ze

Ly.1,10s(t:)] @ pg = U(te, 1) [Os(t:) @ pe) U (te, 1) (7.6)

Po skorzystaniu z nowo wprowadzonego symbolu superoperatora, przyblizenia (6.7) i wta-
snosci iloczynu tensorowego, wielko$é pomiedzy operatorami U z (7.5) jest rowna

prot (D) o4 @ Ig] = Ly [ps(ti)]os ® pg,
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a po oblozeniu jej operatorami ewolucji, tak jak w (7.5), otrzymujemy
U(t +7,t) prot (t) o @ IR)UT(t +7,8) = Loyri[Los [ps(ti)]or] © pr .
Funkcja autokorelacji z (7.5) przyjmuje zatem postaé
G(t,t+ 1) = Trs Trg (0-Liiri[Lis[ps(ti)]os] @ pr) - (7.7)

Ostatecznie, po rozdzieleniu §ladow, wiedzac, ze Trg pg = 1, otrzymujemy wzor na funkcje
autokorelacji

Gt t+7) = (o)t +7)) = Tr (0 Ligry [Lo [ps(t)] o4]) (7.8)

Wyprowadzajac rownanie (7.8), milczaco skorzystano z kwantowego twierdzenia Laxa o
regresji, ktore stosuje sie do uktadéow z dynamika Markowska (por. rozdzial 6). Wedlug
tego twierdzenia, ewolucja catej funkcji korelacji zwiazana z czasem 7 > 0 jest identyczna
jak dla (o_(t+7)) z warunkiem poczatkowym dla 7 = 0 danym przez (o (t)o_(t)). Innymi
stowy, kwantowe twierdzenie Laxa o regresji gtosi, ze

%a@, t+7) = LGt t +7)]. (7.9)

Poniewaz wszystkie rozwazania, poczawszy od podrozdzialu 6.1, przeprowadzamy w
wirujacym uktadzie odniesienia, warto zapisa¢ w nim rowniez funkcje autokorelacji. Przej-
Scie zdefiniowane w (6.12) obowiazuje rowniez w obrazie Heisenberga, stad

OSFW) (t) =e'“to, (1), (7.10a)
o) (t+7) —etwL(t4T) 5 (t+7) (7.10b)

i tym samym funkcja autokorelacji w wirujacym uktadzie odniesienia jest rowna

GW(t,t+7) = <a(+W)(t)a(_W)(t + T)> = e TGt 4 7). (7.11)
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8 Teoria fotodetekcji

W niniejszym rozdziale zostanie wyprowadzona, w oparciu o |1, 83|, zaleznos¢ miedzy wid-
mem RF, S(w), a funkcja autokorelacji z rozdziatu 7, zaréwno w przypadku z modulacja
akustyczna emitera, jak i bez niej.

8.1 Operator pola

Najpierw nalezy opisa¢ swiatto oddziatujace z emiterem w sposoéb kwantowy, definiujac
(w obrazie Heisenberga) operator pola w potozeniu r,

e(r,t) =e"(r,t) + e (r,t), (8.1)

sktadajacy sie z czesci €t/ (7, t) o dodatniej/ujemnej czestosci. S one réwne

et(rt) = (s‘(’r,t))T = Z ex i/ Qh:)I‘{/aK,X(t)eiK'r, (8.2)

KN

gdzie wielkosci { K, \'} charakteryzuja fotonowe mody, odpowiadajace $wiattu o czestosci
wik, wektorze falowym K i polaryzacji . Bezwymiarowy wersor ek y jest rownolegty do
kierunku drgan natezenia pola elektrycznego odpowiadajacego modu, €y to przenikalnosé
elektryczna prézni, a V' to objetosé przestrzeni uktadu fotony—emiter. Operator anihilacji
fotonu w modzie { K, \'} dla chwili ¢ zostal oznaczony jako ax v (1).

Na potrzeby tego modelu kwantowego zdefiniujmy hamiltonian uktadu emiter—fotony,
Hem—phot- Przestrzen Hilberta dla tego uktadu nalezy rozszerzy¢ o Hpnot, oObejmujaca stany
fotonow. W przyblizeniu wirujacej fali i obrazie Heisenberga, taki hamiltonian wyraza sie
wzorem

HGY o =HE + 1Y wieale  (tag o (t) (8.3)
K,

—dxc (s‘*’(r’ t)o-+(t)e—iK.(r—ro) + 6_(1‘, t)O'_ (t)eiK'(r_TO)) .

W réwnaniu (8.3), oprocz znanego hamiltonianu emitera, wystepuja jeszcze drugi i trzeci
czton, opisujacy odpowiednio fotony oraz ich interakcje z emiterem.

Ewolucje czasowa dla operatora anihilacji fotonéw, a tym samym e (r,t) z (8.2), opi-
suje rownanie Heisenberga. Dla dowolnego operatora C!) z przestrzeni Hilberta emitera,
fotonow oraz (opcjonalnie) fononéw oddzialujacych z emiterem, niniejsze rownanie ruchu
ma postac
dCM(t)

dt
Po zastosowaniu (8.4) do operatora anihilacji ax x(t), otrzymujemy

dagn(t) . dxc-exy [hwk —iK-ro
T = TWKaK X (t) “+1 2 250V0_ (t)e . (85)

Z kolei rozwiazaniem (8.5) jest

i — |, B (1)) (8.4)

ag v (1) =ag y(t;)e s (8.6)

dxc-exy [hwk _k. /t , N —iwone (ft!
y, ) e Ko dt'o_ (e iwg (t t).
o V2V | dto-(t)

1
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Pierwszy czton z (8.6) odpowiada ewolucji swobodnej pola, gdy nie ma interakeji z emite-
rem. Zatem wyznaczajac widmo RF, uwzgledniamy tylko drugi czlon operatora anihilacji,
ktory po wstawieniu do (8.2) da czestos¢ dodatnia pola rozproszonego, €7 (r,t). Korzy-
stajac z faktu [1]

K (dxe- K
Z EK N (dXG : eK,,\') =dxg — % (8-7)
)\l
oraz zamieniajac sume po K w caltke po trojwymiarowej przestrzeni wektorow K,
4 3
d o= o3 | TK- (8.8)
K
otrzymujemy
K- (r—ro) K (d K t ]
+ s 3~ WKE ( XG ) / N —iwg (t—t")
ESC('I",t) = Z/d KTB’EO (dXG — T) /tl dt 0'_<t )6 K . (89)

Nastepnie liczymy caltke po przestrzeni wektorow K (szczegotowe rachunki znajduja sie
w [1]) oraz przyjmujemy zalozenie, ze |r — ro| > 2nc/wk dla kazdego modu (tzw. przy-
blizenie dalekiego pola). Wowczas operator pola e (7, t) wynosi

L
cdx

& ¢
E;’;(T‘,t) = dK (eiK|r—’l‘o\ _ e—iK\'r‘—rg|) K2/ dt/o__(t,)e_in(t_t/)7

8n2eo|r — 1ol Jo .
(8.10)

gdzie dx to skladowa dy¢ prostopadla do r — ry. Stosujac zaleznos¢ K = wg/c, a
nastepnie, zgodnie z teoria Weisskopfa-Wignera, rozszerzajac przedzial catkowania po wg
na ujemne czestosei [102], otrzymujemy

L
dXG

:87r20250|r — 7|

[e§) t
. |r—7rgl . |r—7rgl . Y,
X/ dwg (e“"K o —e WK >w§</ dt'o_(t')e wrt=t),

[e.o]

el(r,t)

sC

(8.11)

Jako funkcje wg, eksponenty z +iwg|r — 7|/c zmieniaja si¢ znacznie szybciej niz wi,

zatem mozemy przyjac, ze wi &~ wi =const, i wowezas el (r,t) wynosi

elf(r,t) = af dt'o_(t) {5 <t -t — @) -9 (t —t'+ @)} (8.12)

1

dla statej multiplikatywnej
oo Ixeh (8.13)
Amceg|r — 7o

Po przyjeciu zalozenia, ze ct > |r — ry| dostajemy ostatecznie
el(t) =ao_(t), (8.14)

sC

opuszczajac nieistotne juz w notacji potozenie r.
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8.2 Filtr

Swiatto rozproszone na emiterze przechodzi przez filtr, ktérym moze by¢ np. interferometr
Fabry-Perota [30, 83]. Funkcje spektralng takiego filtra okresla formuta Airy’ego [83, 103|

(1 _ 7,.2)€iwd/c
1 — y2e2iwd/c’

F(w) = (8.15)
gdzie ¢ to predkosé wiazki swiatta we wnece o dtugosci d. Wspoélczynnik odbicia r liczony
jest wzgledem natezenia pola elektrycznego wiazki. Dla r — 1, filtr przepuszcza tylko te
czestosci swiatta, ktore sa bliskie catkowitej wielokrotnosci FSR = me/d (ang. free spectral
range). Regulujac zatem potozenie jednej z plytek interferometru, mozna ustawiaé czestosé
srodkows filtra wg = ng- FSR (gdzie ny € N). Dla filtra uzywanego podczas eksperymentu
RF, FSR jest rzedu dziesiatek GHz [30], podczas gdy w pracach [P1] i [P2] interesuja nas
czestoscl Swiatta w (a tym samym filtra) znajdujace sie w obrebie kilku GHz od czestosci
lasera wy, (por. ostatni akapit w rozdziale 2.3). Mozemy zatem przyjac, ze czestos¢ Swiatta
w & wg, co pozwala zmodyfikowaé wzor (8.15) do postaci [83]

Feinoﬂ'

Flw,we) = m,

(8.16)
ktorego szeroko$¢ spektralna wynosi I' = ¢(1 — r?)/(2d) < FSR (w pracy [P3|, gdzie
zakres czestodci w jest wickszy, rozwazamy teoretyczny, wyidealizowany przypadek filtra
ol'=0).

Po przejsciu przez filtr ustawiony na rezonans w wy operator pola dla czestosci dodat-
niej jest splotem &7 (t) z transformata Fouriera funkcji spektralnej filtra [83], tj.

el e(t,wp) = / dt'F,, (t — t)el(t), (8.17)
gdzie
1 [ , S
F,.(t) = 2—/ dwe ™ F(w,wp) = De e ™rteinomg (i) (8.18)
™ — 0o

dla funkcji Heaviside’a oznaczonej jako 60(t).

8.3 Detektor

Po przejsciu przez filtr ustawiony na czestos$é we, $wiatto pada na detektor, ktérego wspot-
czynnik zliczen fotonéw w chwili ¢ wynosi [83]

C(t,wr) = < scf(t w)€ scf(t wf)> (8.19)

co po wykorzystaniu (8.14) i (8.17) daje

O(t,wr) = / dt, / a2 (E— 1) Fly (t — t2) {04 (1) 0 (£2)) . (8.20)

Nastepnie zastepujemy t, przez 7 = to — t1, otrzymujac
C(t, wr) / dt, / drF), (t —t1) o (t —t1 —7) (o (t1)o_(t1 + 7)) (8.21)
+ « / dtl/ dTF* 1)wa(t—t1 —T) <O'+(t1)0',<t1+7')>.
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Teraz, w pierwszej linijee (8.21), zamiast 7 wprowadzamy 7 = —7, a nastepnie, zamiast
t; definiujemy t; = t; — 7. Wowcezas, pamietajac o (7.1), dostajemy

C(t.wr) = 20° Re / dt, /0 JrF (t— t)Fult —t — 1)G(ht + 1), (8.22)

a po uzyciu (8.18), wprowadzeniu zmiennej s = t —t; — 7 w miejsce t; oraz wykorzystaniu
faktu, ze (s 4+ 7)0(s) = 0(s) dla 7 > 0, otrzymujemy

C(t,wr) = 2I'%a? Re/ dseQFs/ dre e TGt — s — 1,1 — 5). (8.23)
0 0

8.4 Widmo RF

Widmo RF, mierzone w chwili ¢ dla czestosci filtra wg, jest proporcjonalne do wspotczyn-
nika zliczenn detektora C(t,ws).

W przypadku braku modulacji akustycznej chwila czasu ¢ miedzy wlaczeniem lasera
o$wietlajacego emiter a pomiarem musi by¢ na tyle duza, by ukltad osiggnal stan stacjo-
narny. Woéwczas,

t—o00

S(w) ~ Re/ dse_2rs/ dre 7™ lim G(t — s — 7,t — 5). (8.24)
0 0

Dla stanu stacjonarnego, funkcja autokorelacji G(ty,ts) zalezy tylko od rézmicy ¢, — to,
stad mozna napisa¢, ze G(t1,t2) = G(t1 +t3,ts +t3) dla dowolnego t3. Wykorzystujac ten
fakt i obliczajac catke po s w (8.24) otrzymujemy, ze widmo RF, z doktadnoscia do stalej
multiplikatywnej, wynosi

S(w) = Re / dre T TG (T, (8.25)
0
gdzie )
G(r) = tlim G(t,t+ 7). (8.26)

7 kolei dla przypadku modulacji akustycznej interesuje nas widmo usrednione po okre-
sie Ty fali akustycznej, modulujacej emiter. Woéwcezas mamy

1 Ta &8} o .
S (W) ~ A Re/o dt/o dse_2F5/0 dre TGt — s — 1,1 — 5). (8.27)

Okazuje sie, ze jezeli tylko szum bedzie stacjonarny (tak jak w niniejszej pracy doktor-
skiej), to mozna napisa¢, ze |P2]
Ta

1 [T
x dtG(t—s—T,t—s)——/ UGl —s—7+1st—s+1s)  (8.29)
T 0 A Jo

dla dowolnego t3, pomimo braku stacjonarnoéci catego stanu uktadu z powodu modulacji
akustycznej. Wowcezas widmo RF wynosi, z doktadnoscia do statej multiplikatywnej,

S(ac)(w) = Re/ dTe_FTe“”a(T), (8.29)
0
gdzie
— 1 [Ta
G(r) = —/ dtG(t,t + 7). (8.30)
Ta Jo

W obu przypadkach, wynik widma dla wirujacego ukladu odniesienia (por. réwnanie
(7.11)) polega na zastapieniu w przez w — wy, odpowiednio w (8.25) i (8.29).
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Rysunek 9.1: Widmo RF, przedstawione w [P1], dla rezonansowego pobudzania emitera
(W, = wyp). Przypadek (a) wolnego i (b) szybkiego szumu telegraficznego. Jednostka Sy =
0?/(7°T) to wartos¢ widma RF przy czestosci lasera, bez szumu, dla A = 0 [1]. Wyniki
obliczono dla v = 41" = A(/50.

1 w 0.01 .
D/y= (a) D/y= (b)
o 2 — 2 —
2 (1).0 - (1).0 -
S05F 20 -- 10005 | 50 ..
= | A
| ’I“ " ~ l"‘
r (RSN e i * -
O . [ O C | = = I
-5 0 -5 0
(o-ap) !y (o-w) /!y
Rysunek 9.2: Widmo RF, zaprezentowane w |[P1|, w przypadku szumu biatego dla

pobudzania (a) rezonansowego i dla (b) wy, = wy + 57. Dla szumu bialego miara jego
intensywnosci jest wspolczynnik dyfuzji D w dziedzinie czestosci. Wyniki obliczono dla
v =4I

9 Najwazniejsze wyniki doktoratu

9.1 Publikacja [P1]

W pracy |P1] rozwazono wplyw szumu telegraficznego i biatlego na widmo RF z emitera
bez modulacji akustyczne;j.

W przypadku szumu telegraficznego czesto$é przejécia emitera przelacza sie miedzy
dwiema wartosciami, tj. Awys € {—Ag/2,Ag/2}. Zdefiniowano parametr /3, okreslajacy
czestotliwo$é tego przetaczania. Rysunek 9.1 przedstawia sytuacje dla wolnego (a) i szyb-
kiego (b), w poréwnaniu z czasem zycia ekscytonu, przelaczania sie uktadu. Pomimo
stabego pobudzania uktadu, w przypadku uwzglednienia szumu telegraficznego pojawiaja
sie linie boczne, aczkolwiek nie jest to tryplet Mollowa. Lokalizacja dwoch bocznych linii
z rysunku 9.1a odpowiada czestosciom przejscia, miedzy ktorymi przelacza sie uktad (tj.
wotAg/2). Jednak w miare wzrostu szybkosci przetaczania linie boczne znajduja sie coraz
blizej wy, by ostatecznie zlaé sie w jedna linie, zlokalizowana w czestosci wy (rysunek 9.1b).
Woéwezas emiter zachowuje sie tak, jakby mial z powrotem jeden poziom, zlokalizowany
W wy = wr, co skutkuje znaczacym wzrostem intensywnosci widma. Poza przytoczonym
przypadkiem, w pracy |P1] rozwazono sytuacje asymetrycznego szumu (rézne parametry
przetaczania si¢ Awys(t) z —Ag/2 do Ay/2 i z powrotem), jak i przypadek wielu zrodet
szumu telegraficznego.
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Rysunek 9.3: (a) Zaleznos¢ usrednionego po czasie widma RF S(wp, +wa) od fazy ¢
miedzy dwoma modami (o amplitudach odpowiadajacych A =11 B = 2.76, por. r6wnanie
(4.7)) modulujacymi emiter przy réoznym wspotczynniku dyfuzji D szumu biatego. Przy-
padek rezonansowego pobudzania emitera (wy, = wp). (b) Mapa kontrastu dla S(wp, +wa)
przy roznych B oraz D dla A = 1. Wszystkie wyniki obliczono dla v = 2I' = 0.1ws = 100
MHz i pochodzg one z pracy |P2|.

Z kolei w przypadku szumu biatego zdefiniowano wspoétezynnik dyfuzji D dla czestosci
przejscia. Wowczas
(Awns(t)Awys(t + 7)) = DS(T). (9.1)

Wyniki przedstawiono na rysunku 9.2, dla rezonansowego (a) i nierezonansowego (b) po-
budzania. Z rysunku 9.2a wida¢, ze szum bialy zmniejsza intensywnos¢ widma RF. Jest
to spowodowane rozmyciem czestosci przejécia, co ostabia efektywny rezonans z laserem.
Ponadto szum biaty jest Zrodlem nowej linii (ktorej szerokosé zalezy od D), bedacej wy-
nikiem nieelastycznego rozpraszania $wiatta oraz zlokalizowanej przy czestosci przejscia
wp emitera (rysunek 9.2b).

9.2 Publikacja [P2]

Wyniki z pracy [P1| dla szumu biatego zostaly zastosowane do przypadku modulacji aku-
stycznej emitera [30, 31], a otrzymane rezultaty zaprezentowano w [P2|. Pokazano, ze zbyt
intensywny szum (a wiec zbyt duzy wklad nieelastycznego rozpraszania do widma RF)
moze zniszczy¢ rezim rozdzielonych pasm bocznych, niezbedny do prawidlowego funkcjo-
nowania kwantowych uktadéw hybrydowych.

Dla przypadku mieszania dwoch modow fal akustycznych (por. rownanie (4.7)) zde-
finiowano kontrast miedzy maksymalna a minimalna (ze wzgledu na faze ¢) wartoscia
widma RF dla jego pierwszego prawego pasma bocznego S(wp, + wa). Im bardziej inten-
sywny szum, tym mniejszy kontrast, co utrudnia odczytanie fazy ¢ z sygnalu optycz-
nego (rysunek 9.3a). Niemniej jednak, regulujac amplitude drugiego modu fali, mozna
zidentyfikowa¢ warunki, w ktorych akustyczna kontrola bedzie miata miejsce, nawet przy
nieznikajacym, ale stabym szumie (rysunek 9.3b). Ponadto w pracy |[P2| pokazano, ze do
skutecznej kontroli akustycznej faza ¢ musi by¢ stabilna przez ok. 10* - 10° okresu fali
modulujgcej emitera.

9.3 Publikacja [P3]

W ostatniej publikacji [P3| przedstawiono wptyw fononéw na widmo RF z emitera bez
modulacji akustycznej. W przeciwienstwie do prac [60, 62|, emiter byl pobudzany laserem
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Rysunek 9.4: Widmo RF, pokazane w pracy [P3|, dla emitera sprzezonego z fononami.
Wyniki dla (a,c) szerokiego i (b,d) waskiego zakresu czestosci wzgledem lasera, przy roz-
nych odstrojeniach (a,b) i temperaturach (c,d). Obliczenia wykonano dla Fyr = 0.1.
Poniewaz w pracy |P3| rozwazano filtr idealny (I = 0), jednostka Sy jest tutaj Q2/~3.
Szary obszar dla czestosci wy, symbolizuje linie centralna, bedaca wowczas delta Diraca, z
kolei linie przerywane prezentuja wyniki widma RF dla rezimu stabego sprzezenia fono-
now.

ciaglym. Niemniej jednak, rowniez w [P3| widmo zawiera linie centralng i szerokie, fo-
nonowe pasmo boczne (rysunek 9.4a,c). Ponadto, jesli przyjmiemy, ze gestos¢ spektralna
rezerwuaru fononowego dla malych czgstosci ma zaleznosé J(w) ~ w?, to w poblizu wr,
widmo bedzie miato ksztalt podobny do profilu Fano [104] (rysunek 9.4b,d). W rezimie
stabego sprzezenia fononéw z emiterem (gdzie maja miejsce wylacznie procesy jednofono-
nowe) sygnal RF jest dokladnym profilem Fano, ktory rosnie liniowo z temperatura, lecz
jego szerokos¢ pozostaje niezmienna. Pokazano tez, ze im wiekszy udzial w rozpraszaniu
swiatta maja procesy multifononowe (na skutek podwyzszonej temperatury lub wiekszego
sprzezenia fononéw z emiterem), tym widmo RF jest mniej podobne do profilu Fano.
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10 Wnioski i plany na przysztosé

W niniejszej pracy doktorskiej zamodelowano rozmaite rodzaje szumoéw zaburzajacych
energie przejscia uktadu dwupoziomowego, stabo pobudzanego ciaglym swiatltem z la-
sera. Dla kazdej z fluktuacji z [P1| zdefiniowano charakterystyczne parametry, za pomoca
ktorych mozna opisaé¢ ilosciowo wplyw danego szumu na ksztalt widma RF. Niniejsze
wyniki moga by¢ przydatne m. in. w interpretacji eksperymentéow z RF na potprzewodni-
kowych emiterach, gdzie szum otoczenia jest nieunikniony. W przyszto$ci mozna uogélnic¢
rozwazania na model, w ktorym swiatto pobudzajace emiter bedzie traktowane jako fo-
tony o okreslonych wtasciwosciach (np. stan splatany czy $ciesniony), co moze znalezé
zastosowanie w informatyce kwantowej.

Dla szumu bialego uwzgledniono dodatkowo proces modulacji akustycznej emitera
[P2], co pozwolito okresli¢ dopuszcezalng intensywnosé fluktuacji dla efektywnej akustycz-
nej kontroli w uktadzie hybrydowym. Dalszym mozliwym kierunkiem jest zbadanie wptywu
szumu na korelacje, rowniez drugiego rzedu, miedzy poszczegolnymi pasmami widma (np.
linig centralng i pierwszym pasmem bocznym).

Z kolei model emitera oddziatujacego z fononami akustycznymi w potprzewodniku
[P3] mozna rozszerzy¢ na inne rezerwuary fononowe, ktore w odmienny sposoéb wptyna na
ksztalt widma RF. Szczegélnie interesujacy wydaje sie przypadek emitera na materiale
dwuwymiarowym, jak np. grafen czy heksagonalny azotek boru.
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Publikacje tworzace rozprawe doktorska

Niniejsza rozprawa doktorska ma forme zbioru trzech tematycznie powigzanych publikacji:

[P1]

[P2]

[P3]

Rafal A. Bogaczewicz, Pawel Machnikowski, Resonance fluorescence of noisy sys-
tems, New Journal of Physics 25, 093057 (2023). DOI: 10.1088/1367-2630/acth2f

Wktad doktoranta polegal na sformutowaniu we wspotpracy z Promotorem koncep-
cji zagadnienia teoretycznego i sposobu obliczenia widma RF wraz z intensywno-
Sciami poszczegodlnych linii dla zaproponowanego modelu. Poza obliczeniami ana-
litycznymi doktorant opracowal i przetestowal oryginalny kod komputerowy w je-
zyku C++, dostarczajacy numeryczne wyniki dla wspomnianych wielkosci. Ponadto
doktorant zrealizowal wizualizacje otrzymanych wynikéw, korzystajac z programu
Gnuplot, przygotowal pierwotny szkic manuskryptu, a takze brat aktywny udzial w
realizacji ostatecznej wersji niniejszego artykutu.

Rafal A. Bogaczewicz, Pawet Machnikowski, Precision of the acoustic control of
single-photon scattering with semiconductor quantum dots, Optics Letters 50, 888
(2025). DOI: 10.1364/01.539414

Wktad doktoranta polegal na okresleniu we wspoétpracy z Promotorem koncepcji i
modelu badanego zagadnienia i obliczeniu widma RF oraz kontrastu dla pojedyncze;j
linii widma. W tym celu doktorant zaimplementowal program w C++-, a otrzymane
numeryczne wyniki zwizualizowal przy pomocy Gnuplota. Doktorant brat réwniez
aktywny udzial w stworzeniu pierwszej wersji tej publikacji, jak i kolejnych popra-
wek, sugerowanych przez Promotora.

Rafal Bogaczewicz, Pawel Machnikowski, Fano profile in the resonance fluorescence
spectrum of a solid-state quantum emitter coupled to phonons, arXiv:2512.19435
(2025), DOIL: 2512.19435

Wktad doktoranta polegal na sformutowaniu we wspotpracy z Promotorem koncep-
cji zagadnienia, jego modelu oraz obliczeniu widma RF i intensywnosci poszcze-
golnych skladowych widma. Oprocz obliczen analitycznych doktorant opracowat
i przetestowal kod komputerowy w C++ oraz zwizualizowal (przy pomocy Gnu-
plota) otrzymane wyniki numeryczne. Doktorant przygotowal pierwotny szkic ma-
nuskryptu oraz uczestniczyt w jego ostatecznej redakc;ji.

Ponadto, doktorant sktadajacy rozprawe jest wspotautorem czwartej publikacji, niebeda-
cej jednak elementem studiow doktoranckich ani tym bardziej rozprawy:

[P4]

Rafal A. Bogaczewicz, Ewa Popko, Katarzyna R. Gwo6zdz, Determination of the
band structure diagram of semiconductor heterostructures applied in photovoltaics,
Optica Applicata 51, 135 (2021). DOI: 10.37190/0a210111
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Abstract

Light scattering from resonantly or nearly resonantly excited systems, known as resonance
fluorescence (RF), has been gaining importance as a versatile tool for investigating quantum states
of matter and readout of quantum information, recently including also the inherently noisy solid
state systems. In this work we develop a general theory of RF in the low excitation limit on systems
in which the transition energy is subject to noise for two important classes of noise processes: white
noise fluctuations that lead to phase diffusion and an arbitrary stationary Markovian noise process
on a finite set of states. We apply the latter to the case of random telegraph noise (TN) and a sum of
an arbitrary number of identical random TN contributions. We show that different classes of noise
influence the RF spectrum in a characteristic way. Hence, the spectrum carries information on the
characteristics of noise present in the physical system.

1. Introduction

Light—-matter interaction is one of the main tools for studying various properties of physical systems. In
particular, resonant or nearly resonant light scattering, known as resonance fluorescence (RF) [1, 2] has been
used for a long time to characterize systems of various kinds [3—7]. More recently, the RF technique has
found a variety of applications in condensed matter systems, both in the physical investigation of quantum
emitters, as well as in manipulating and reading out the quantum information encoded in solid-state qubits
[8, 9]. It has been used to observe spin dynamics in semiconductor quantum dots (QDs) [10, 11], to interface
[12] and entangle [13] QD spins with single photons, to generate indistinguishable photons [14], to read out
spin states in QDs [10-12, 15, 16] and silicon defects [17] as well as to demonstrate quantum-optical effects
in macroscopic superconducting qubits [18, 19]. The recent observation of RF from a waveguide-coupled
solid-state emitter [20] opens a perspective of on-chip device integration.

The RF from a single unperturbed quantum emitter shows different properties under weak and strong
excitation. In the former case, energy conservation for each single-photon scattering event leads to a single
line with the broadening limited by the laser line width [1]. Under strong excitation, the modulation of the
system state due to Rabi rotations gives rise to a triplet of broadened lines separated by the Rabi frequency,
referred to as the Mollow triplet [1, 21].

No physical system is completely isolated from its environment. The environmental impact is of
particular importance in solid-state systems, where the optical properties are to a large extent influenced by
the coupling to charge [22, 23] or spin fluctuations (both nuclear [24] and electronic [25]), as well as to
lattice vibrations. The latter can be induced in a coherent way, leading to controllable modification of the
scattering spectrum [26, 27], but in most cases is a source of noise [28, 29]. When treated as a classical
background noise, the environmental fluctuations are often modeled using Gaussian distributions [22, 23].
However, it is generally believed that the underlying physics involves discrete state changes of nearby physical
objects, like nuclear or dopant spin flips, or charging and discharging of defects, and such dynamics is indeed
observed in certain experiments [25]. Therefore, a more fundamental model for the description of noise
needs to be based on telegraph-noise (TN) dynamics.

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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While numerous studies considered fluctuations in the phase [30-34], amplitude [30, 35, 36], and
frequency [30, 32, 37] of the laser beam, much less attention has been devoted to the effect of the
environmental noise on RE The existing studies include the particular case of interaction with phonons [38,
39] and the dynamics of inversion [40], coherence [41], entanglement [42], as well as non-linear
wave-mixing response [43] in two-level systems subject to environmental fluctuations. Apart from studying
the detrimental effects of noise on the dynamics of quantum systems, the latter can also be used as noise
sensors in order to determine the properties of the noise itself. Such noise characterization is crucial for the
robustness of quantum systems, hence considerable effort has recently been invested in the development of
noise spectroscopy techniques [44—47].

In this work, we generalize the recently proposed description of RF from a deterministically modulated
two-level system [26, 27] to systems subject to random fluctuations. We formulate a theory of low-excitation
RF (coherent Rayleigh scattering) spectra for a system with the transition energy subject to white noise or an
arbitrary Markovian random process that shifts the transition energy between a number of discrete spectral
positions. In particular, we consider single-source symmetric and asymmetric TN and multi-source TN.

By relating the scattering spectrum to the formal characteristics of the underlying noise process, we are
able to show that the spectrum bears clear fingerprints of the properties of noise: In the white noise (phase
diffusion) case, the noise leads to Lorentzian line broadening. In contrast, a slow discrete process on a small
set of states results in a multiple of Lorentzian lines that merge into a broad Gaussian feature when the
number of process states increases so that they become dense on the energy axis. This picture changes when
the process is fast. In this case a motional narrowing effect leads to the appearance of a single Lorentzian line.

The paper is organized as follows. In section 2 we describe the system and define its general model.
Section 3 contains the essential definitions and presents the general framework of our theoretical description;
here we also present the theory for the simplest case of white noise. Section 4 contains the central formal
result of the paper: the theory of the RF spectrum for a Markovian noise process. Section 5 presents the
results obtained by applying the theory to selected noise processes. The paper is concluded by section 6.

2. System and model

We consider light scattering on a two-level system which is subject to environmental fluctuations that
randomly shift the energy of the excited state. As in the standard model of RF [1], the system is driven by a
resonant or nearly resonant monochromatic laser light and undergoes spontaneous emission.

We denote the laser frequency by wy, and the system states by |0) and |1). Let fiwy (¢) be the
time-dependent (fluctuating) energy difference between these states. The system is then described by the
Hamiltonian

H(t) = hwo(1)|1)(1| —d- E(¥),

where E(t) = (1/2) (Eje™ ™' 4 c.c.) is the laser field (treated classically) with the amplitude E, and d is the
dipole moment operator. We assume (0|d|0) = (1|d|1) = 0. The system relaxation due to spontaneous
emission is accounted for by the Lindblad dissipator

o] = (o-p(00s 3 (a0 (0] ).

where p is the density matrix of the system, {A,B} = AB+ BA, and o, = o = [1)(0|. The system state in
the rotating frame is defined by

5(H) = eithI1>(1|p(t) et (1] (1)

The Hamiltonian in this rotating frame and in the rotating wave approximation is

. hQ

H(t) = —hA (1) [1)(1] - N (0-+o4),
where we define the detuning A(#) = wi, — wy(#) and the Rabi frequency 2 = (Ej /#) - (0|d|1) that we assume
real. The Master equation describing the evolution of the system state has the form

a0 _ i

= L (B, 5(0)] + L), @

The randomly changing detuning A(t), which reflects the environmental fluctuations, is the central
feature of our model. Formally, it is described by a stochastic process, the properties of which may depend on

2
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the physical situation. Here we assume that A(t) is a stationary Markov process with a unique stationary
probability distribution p*Y reached asymptotically in the long time limit. Two particular examples will be
discussed in the following.

3. The RF spectrum of a noisy system

In this section we define the formal quantities relevant to the RF spectrum, present the general framework of
the theoretical model and discuss the simplest case of phase diffusion due to white noise.

In the Markov approximation, the detected spectrum of scattered light can be related to the system
autocorrelation function G(t,t+7) = (o4 (f)o_(t+ 7)) by [1]

o0
F(w) = Re/ dre @I TG (14 7). (3)
0

Here o4 (¢) are operators in the Heisenberg picture relative to the rotating-frame evolution as defined by
equation (2) and I' is the (Lorentzian) instrumental broadening accounting for the finite resolution of the
detection.

Let us formally denote the solution of equation (2) by 5(¢) = £, ,[p(t)], where £, ,, is the evolution
superoperator. The Lax quantum regression theorem then yields the autocorrelation function in the
form [2, 27]

G(t,t47) = Tr (0-Liir [C10,1 [P (0)] 04]).- (4)

Here t, is the initial moment of the evolution, while ¢ — #; is a sufficiently long time for the system to reach its
steady state.

The total scattering intensity is Iy = | fooo F(w)dw. In the noise-free limit, the RF spectrum consists of a
Dirac delta (broadened by the instrumental resolution) corresponding to elastic light scattering, which
survives to various extent in the noisy case. Its intensity will be denoted by Ij. The remaining part of the
spectrum is due to inelastic scattering induced by the random fluctuations. Its intensity is Iy

The equations of motion for the elements pg;, p10, p11 of the density matrix, following from equation (2),
have the form pj = ajpj + i), bit jinPmn> Where a; = —v, ag) = ajy = iA —v/2,and
bi1,10 = —bi1,01 = b1o,11 = —bo1,11 = 1/2. The same holds for an arbitrary matrix, not necessarily a density
matrix. Since equation (2) is trace-preserving, one has pgy = ¢p — p11, where ¢y is a constant determined by
the initial values (¢o = 1 for a density matrix). In the absence of the laser field (€2 = 0) the equation of
motion can be solved trivially to yield the zeroth-order propagation

" dsa
oy (1) = [Eiﬁ)tp(to)}ﬂ:ej‘o " i (t0).

In the weak excitation regime, one can then solve equation (2) iteratively in the subsequent orders r > 0 in €1,
p}lr) ()= [250 )t/) to IQ/ dsels & ai(s Z by, mnpgnfn—l)

These equations fully define the perturbative expansion of the evolution superoperator £, ;, in powers of 2.
Substituting this evolution into equation (4) one finds, in the leading order of 22, the autocorrelation
function for an arbitrary time-dependent energy shift A(t) in the form

QZ ol 0 T x N N ox AN
G(t,tJrT):Ze’?T/ du U du’ e (") g (ru") =i®(0,u)

—o0 0
+/ du/e%(wru’)E@(T,o)—@(u,u/)+/ dy' e (wtu") i@ (.0 +id (uyu”) : (5)
— 00 — 00
where
ty
B (15, 1,) = / dsA (s). ©)
t,

Here we changed the variables according to s = t+ u, set t — fy — 0o (steady-state regime), averaged over the
realizations of the noise (denoted by a line above the averaged quantities) and used the fact that the noise is
stationary, hence

ei@(td+s,t[+s)j:i@(th+s,tﬂ+s) — ei@(td,t[)iié(th,ta).

3
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The detailed derivation along with a graphical interpretation of the evolution paths contributing to the
RF signal can be found in the supplementary material to [27].

Before developing the theory for an arbitrary Markovian noise process on a discrete state space, we find
the explicit form of the correlation function in the case of simple phase diffusion. We assume that

A() = Aun () + A, 7)

where Ayn(?) is a stationary white noise process with (Awn(#)) = 0 and (Awn () Awn(t+ 7)) = DI (7).
Then, the phase shift given in equation (6) has a normal distribution with the mean value A(#, —t,) and
variance D(t, — t,), hence D is the phase diffusion coefficient. With this Gaussian distribution, equation (5)
can easily be evaluated by using the statistical independence of phase shifts over non-overlapping periods of
time. This yields

02 (1 T %e[izf('erD)/Z}‘r)

(y+D)? +4A°

G(tt+71)= (8)

The RF spectrum obtained by substituting equation (8) to equation (3) is a sum of elastic and inelastic peaks
that are, respectively, given by

Fo(w) = & L (9)
T D 4R (=) + 17
and
Fy () = (222 729 _ (7+2D)/2+r 5 (10)
(v+D) +4A™ 7 (w+A—w) +[(y+D)/2+T]

Thus, the elastic scattering line is located at the laser frequency, while the inelastic line appears at the average
system transition frequency.
By integrating we find the total intensity

1+D
Itot: 0 ) /fyi 2 (11)
(1+D/v)" + (2A/7)
as well as the intensities of the elastic and inelastic components
1 D
la=1 2 - 2 finet = —Ia. (12)
(1+D/y)"+ (2A/7) gl

Here and in the following we relate the scattering intensities to the standard RF intensity in weak excitation
limit [1], Iy = Q% /~2.

4. Theory of the RF spectrum for arbitrary Markovian noise

In this section we develop the theory of the RF spectrum for a system subject to noise that can be described
by a continuous-time stationary Markov process on a finite set of states {A;}X_ . This model can also be
used as an approximation to more general Markov processes, based on a physically motivated truncation and
discretization of the state space of the noise process.

The process is characterized by the transition probabilities Py, ,(7) = P[A(t+T) = Apu|A(2) = A,
(with P denoting the conditional probability) forming the transition matrix P(7) = exp(Cr), with the
generator C = dP(7)/d7|,—¢. As shown in appendix, for such a process

Pt F(tta) = Ty Py Pla=tp, B (=t (13)
where B= C+idiag(A1,A,,...,A), Poo = lim, o Py = p(Y(1,...,1), with p(*Y representing the column

vector of stationary probabilities, and the conjugation in the last term refers to the ‘—’ sign on the left-hand
side.
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Substituting equation (13) to equation (5) one gets

G(tt+71) = ZTrPoo/ du’e(B=3)(7—x )Pu// due(F =)
0

— 00

Qz 0 u
+ ZTrPooe(B_%)T/ due%“P_uZRe/ du'e3 +B(u—u’) (14)

— 00 —00

Upon substituting to equation (3), the first term in equation (14) can be factorized by reordering the
integrals with respect to 7 and #’ and then changing the variable according to 7 = u’ 4 s. The second term
can be evaluated directly. As a result one gets

02 <G
F(w)= ZReTrPOO/ dselilw—w)—T+B=3)s

0

> / due(i(wwa)fF%»C)u/ du/e(B*_%)u/_i_/ due(cffy)u,ZRe/ du/e(B—;V)u’:l
0 0 0 0

2

9] —1
=~ ReTrPy ((w wi) — F+B—%)

X :(i(w —w)-T+0)7! (B* - %)_1 +2(C—7) " 'Re (Bf Z)_l] . (15)

While this closed analytical form may be convenient for evaluating the spectrum in the case of a small state
space of the process, much more insight is gained by relating the RF spectrum to the spectral properties of
the generator C. To this end, we transform C to the Jordan form (over the field of complex numbers) by the
similarity transformation

s~'cs=Epa;,
j

where C; are Jordan blocks belonging to the respective eigenvalues \; of algebraic multiplicity d;. We then
apply the Jordan—Chevalley decomposition Cj = A\I(¥) + Nj, where N; is a nilpotent d;-dimensional matrix,
(N j) 4 = Oki—1,and I is the d-dimensional unit matrix. Let IT; be the projector on the subspace supporting

C;. Since
dj—l n
N.
eCj‘r —_ e/\j‘r E ( ]) Tn,
n!
n=0
one finds
dj
DD
j n=
with

N;)"
P, = SHj( nJ!) ;s

In the case of a diagonalizable matrix C, d; = 1 for all j, the above procedure reduces to simple
diagonalization, and ); become eigenvalues of C in the most common sense.

Using this result in the first term of equation (14), substituting to equation (3), and performing the
integrations one finds

F(w)fg—ReTrP sz)\n w—wy) =T+ N)" ( B+)\) lpjn(B*7%>_l

n

—i—(z(w wL) +B— F——) sz/\n< —E—)\j)ilpjnog*_%)il

+(C—7)’12Re(g—3)_1 . (16)
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The essential factors that describe the form of the spectrum are those depending on the
frequency w.

The first term defines Lorentzian features and more general line shapes in the case of degenerate
eigenvalues (d; > 1), as well as the corresponding dispersive contributions, with central frequencies at
w, + ImA; and broadened by — Re ); (here additionally broadened by the instrumental resolution I'). The
existence of a stationary state implies that one of the eigenvalues (say, \o) is zero and Pyy = P~ This
contribution leads to an unbroadened (apart from the instrumental broadening) elastic scattering peak
centered at w = wr. For A there is no dispersive function. Each real non-zero eigenvalue leads to a
broadened spectral feature at w = wy.

The second term is a sum of simple Lorentzians and the corresponding dispersive contributions with
positions and widths determined by the spectrum of B and further broadened due to spontaneous emission.

The total and elastic scattering intensities, found by integrating equation (16), are respectively

I —1
Lot = — Y Tr P Re (B—l) (17)
2 2
and
1 2 —1 -1
Iy =L ReTrPs, (B - l) Poo (B* - 1) : (18)
4 2 2

As an application of this formalism, we study in detail the special case of N identical noise sources, each
generating TN.

A single noise source has two states that contribute A = + 2% to the system energy shift. The switching
rates between the two states of the noise are 5+ and 3, leading to stationary probabilities 3, / (84 + 3,) and
B+/ (B4 + By ) for the two noise states. For N identical and additively contributing noise sources the space of
possible noise states is composed of N + 1 values of the total system detuning,

_ A i
Aj:Af\/le—‘#LNAO, j=0,....N, (19)

2 TUR

corresponding to j sources in the ‘upper state’ Here A is the mean detuning (the laser detuning from the
noise-free transition energy) and the renormalization by a factor 1/1/N assures convergence in the limit of
N — oo.

For this case the generator Cis a N + 1-dimensional tridiagonal matrix, where the non-zero elements are

Gij=(—N)Br—jBy, j=0,...,N,
Ci—1=Jby, j=1,...,N,
Gij1=N+1-j)Bs, j=1,...,N. (20)

The stationary probability follows the binomial distribution

j GN—j
) = (N) B (21)

! i) B+

5. Results

In this section we present the results for the RF spectrum based on the theory developed in sections 3 and 4
for three noise models. For the white noise calculations we set I' /v = 0.25. For the discrete process we choose
~v = 4" = 0.02A. As a natural unit for presenting and comparing the RF spectra we will use the maximum
value of the spectrum for an unperturbed system under weak resonant excitation [1], Fy = Q*/(¥*T"), which
can be obtained from equation (9) with D = A = 0 and w = wy.. All the spectra presented in the following
will be related to this quantity.

5.1. White noise

We start the discussion with the case of a system affected by white noise. Figure 1 shows the results for this
case, calculated from equations (9) to (10), under resonant and detuned excitation in the left and right
columns, respectively. In both cases, the RF spectrum is composed of two Lorentzians. In the resonant case
they overlap, while for a detuned excitation they are split. As expected, the overall intensity is also lower in
the latter case.
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Figure 1. The RF spectra and the scattering intensities for uncorrelated noise under resonant excitation (left column) and detuned
excitation with A /v = 5 (right column). (a), (b) Total spectrum; (c), (d) elastic contribution; (e), (f) inelastic contribution;
(g), (h) scattering intensities as a function of the phase diffusion coefficient, with line colors corresponding to (a)—(f).

The total spectrum, shown in figures 1(a) and (b), is decomposed into the elastic and inelastic
contributions in figures 1(c)—(f), respectively. While the positions of the spectral features do not change, the
evolution of their intensities and of the width of the non-elastic line are clearly visible. The width of the
inelastic contribution grows with D. The intensity of the elastic contribution starts to decrease when D ~ v,
while the intensity of the inelastic one changes non-monotonically with D, reaching a maximum for D ~ 7.
The decrease of the inelastic contribution for weak noise is an obvious consequence of restoring the noise-free
limit of purely elastic scattering. For strong noise both components decrease because the increasing spread of
the transition energy reduces the effective overlap with the excitation frequency, which affects the excitation
intensity. The appearance of an additional broadened spectral line at a spectral position bound to the
transition energy in addition to the elastic line at the laser position can be understood by invoking the model
of a classical charged harmonic oscillator driven by a periodic force. This analogy is formally validated by the
fact that in the leading order in €2, the whole emitted light is coherent, that is, originating from the transition
dipole induced coherently by the laser field. In its steady state, the classical system oscillates periodically with
the laser frequency, which gives rise to a sharp line at this spectral position. However, any perturbation of the
steady-state evolution leads to the appearance of a damped transient at the eigenfrequency of the system
renormalized by damping. Here the noise serves as a perturbation that permanently excites the transient
oscillations and simultaneously damps the coherence due to phase diffusion, leading to a broadened line.

A systematic study of the intensities as a function of the noise strength D is presented in figures 1(g) and
(h). As can also be seen directly from equation (12), the dependence has asymptotically a power-law
character. In the case of resonant excitation, A = 0, the absence of noise (D — 0) leads to permanent
resonance condition, maximizing the total scattering intensity. For a sufficiently large detuning, A > ~/2,
the interplay of the decreasing elastic scattering and non-monotonic inelastic one leads to the appearance of

7
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Figure 2. Total intensity dependence on noise parameters: mean detuning A and switching rate 3.

a maximum of the total scattering intensity at D = 2A — +. In this case one observes a noise-induced
enhancement of scattering: At the maximum, the total intensity is larger than in the noise-free case by a

factor of (2 + 4A%) /(4vA).

5.2. Single-source telegraph noise

In this section we discuss the results for the scattering spectra and line intensities for a single source of
random TN, depending on the characteristics of the noise dynamics (the switching rates 3; | ) and laser
detuning A from the average transition energy. In this case, the detuning takes randomly two values, hence
the set of states of the stochastic process is reduced to A = A 4 A,/2. The generator in equation (20)

reduces to
-6+ By )
C= . 22
( Br =B 22
Its eigenvalues are Ao = 0 and A\; = — (04 + /3, ). Both eigenvalues are non-degenerate, hence the spectrum is

composed of four simple Lorentzians and, possibly, the corresponding dispersive functions. For the sake of
presentation we set 34 = (1 —x) and 3, = (1 + x), where x € [—1, 1]. We begin with the case of
symmetric noise (x =0, that is, 84 = §; = ) and then describe the effects of noise asymmetry.

5.2.1. Symmetric switching
We start our analysis by discussing the total scattering intensity I, depending on the spectral position of the
laser. The full RF intensity as a function of the laser detuning and noise switching rate in the case of
symmetric noise is shown in figure 2, where we plot the total scattering intensity obtained by numerical
evaluation of equation (17). At low switching rates (slow noise), the scattering intensity is the largest when
the laser is tuned to one of the two randomly alternating spectral positions of the optical transition, while at
high switching rates (fast noise) the strongest scattering occurs at the average value of the transition energy.
The slow-noise case is easily understood as the quasi-static limit of the random dynamics: over times
much longer than the characteristic time scale of the system evolution, 1/A, the system transition energy
remains constant at one of the two spectral positions, hence tuning the laser to one of these energies leads to
resonant scattering. The dependence on the detuning in this limiting case can be found by setting 5 =0, i.e.

B =1i[A + diag(—Ay/2,A/2)], which immediately yields

1= (&) = 21, (/2 + 02y : (23)
2 B+ 802 + (/2" (B-D0/2)" +(7/2)

Thus, in the limit of slow noise the scattering intensity reaches half of the noise-free resonant scattering
intensity at each of the two resonant spectral positions.

In the opposite limit of fast noise the random switching takes place many times during the characteristic
time 1/A, hence the accumulated dynamical phase slip with respect to the laser light depends only on the

8
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Figure 3. Positions of the spectral lines (a) and their widths (b) as a function of the switching rate in the case of symmetric noise,
x=0 (solid lines), as well as for the asymmetric noise with x = 0.2 (dashed lines) and 0.7 (dotted lines). Panel (a) corresponds to
A = 0. The inset in (b) shows in detail the line widths at very slow switching (3 — 0).

averaged transition energy, leading to the resonance condition at A = 0. By directly evaluating equation (17)
in the limit of 5 — oo one finds in this case

) (R) = [y (7/2)*

Itot - (24)
A +(v/2)

hence the full standard intensity is recovered at the average spectral position. For moderate values of 3 one
can neglect v in equation (17), hence the noise speed at which the transition between the slow and fast
regimes takes place can only depend on A. Indeed, the scattering intensities at A = Ay/2 and A = 0
become equal for /A =1/44 O(y/Ay).

The particular form of the RF spectrum at a given spectral position of the laser is determined by the poles
of equation (16), which we denote by wj, j =0, ..., 3, with

wo = wp +1I, (25a)
wy =wr+i(['+2p), (25b)

. ~ (7 Ay [ 4B*  4px

Correspondingly, the Lorentzian features located at the spectral positions Rew; will be labeled by
Ly, ..., L3, respectively. Both wy — wy and wy — wy. are purely imaginary, corresponding to resonant peaks.

The positions of the spectral features (Rew;) as a function of the switching rate /3, calculated from
equations (25a)—(25c¢), are shown in figure 3(a) for A = 0. Currently, we focus on symmetric switching,
x =0, represented by solid lines. Apart from the resonant (central) features Ly and L; the system in the slow
switching limit shows two side peaks L, and L;. Their positions evolve from wy & Ag/2 (the locations of the
transition energy) in the quasi-static limit towards wy, undergoing a qualitative transition at § = A,/2,
where the characteristic frequencies collapse to a single value of w = wy.. Hence, at § = A,/2 the RF
spectrum changes its form from three lines to a single line. This resembles the properties of a damped
harmonic system. Here, however, the transition is driven by the switching rate of the noise instead of the
damping magnitude, with the cases of slow and fast noise corresponding to the underdamped and
overdamped regimes, respectively. According to equations (25a)—(25¢), changing the laser detuning does not
affect the spectral positions of the lines L, and L; (with respect to the fixed transition energy), while the lines
Ly and L, follow the frequency of the laser. The broadening of the spectral features, |Imwj|, is presented in in
figure 3(b), where we set the instrumental broadening I' = 0, keep the color coding from figure 3(a), and
omit the Ly peak that has zero width. It follows from equations (25a4)—(25¢) that the widths are independent
of the mean detuning A. As follows directly from equation (25b), the resonant peak is broadened by 23 and
becomes unbroadened (corresponding to purely elastic scattering) in the quasi-static limit. The side peaks
are symmetric in the slow switching regime, with the broadening decreasing to /2 in the quasi-static limit.
In the fast regime, when they take the same spectral location, one of them is narrowing asymptotically as
v/2+ O[(Ay/B)?], while the other one is broadening asymptotically as 23 + /2.

Obviously, the peak positions and widths do not provide the complete information about the spectrum,
as long as the intensities are not known. In order to fully analyze the spectra we evaluate F(w) from
equation (15) and plot the result in figure 4. We start the discussion with the excitation frequency located
symmetrically, mid-way between the two positions of the fluctuating transition energy, i.e. A = 0. The

9
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Figure 4. (a), (b) and (e), (f): The RF spectrum for a single-source random telegraph noise, for the laser tuned to the averaged
transition energy (A =0) (a), (b) and to the upper position of the transition energyz = Ay /2 (e), (). Panels (a), (e) and

(b), (f) group the spectra for the slow and fast switching regime, respectively. (c), (d) and (g), (h): The intensity of the particular
components of the RF spectra for the two excitation conditions, respectively, split into the slow (c), (g) and fast (d), (h) switching
case. In the intensity plots, we group certain lines and show only their total intensity in some cases, as explained in the text.

spectra for this case, for a few selected values of the switching rate /3, are shown in figures 4(a) and (b) for
slow and fast switching, respectively. As the switching rate grows, the form of the spectrum evolves from a
single narrow line, via a triplet of broadened lines that eventually merge into a single line that subsequently
narrows down. The quasi-static limit of 5 — 0 (figure 4(a), black line) corresponds to the standard result for
low-excitation RF from a two-level system, where the scattering spectrum consists exclusively of one narrow
line at the spectral position of the laser [1]. Since the laser is detuned from both positions of the transition
energy, the overall intensity is very weak. The subsequent evolution of the spectrum is consistent with the
structure of the poles discussed above. The appearance of a single line in the fast switching regime can be
interpreted again in terms of the averaging of the transition energy on time scales shorter than 1/A and is
therefore the counterpart of the effect observed in figure 2. As the averaged energy level is resonant with the
laser, the scattering intensity considerably grows. The line width reduction when speeding up the noise
dynamics follows from self-averaging of the fluctuations and is an example of the motional narrowing effect,
by analogy to the narrowing of the nuclear magnetic resonance line for a particle that travels very fast
through regions of spatially inhomogeneous magnetic field [48, 49].

A quantitative understanding of the spectra is possible by combining the information on peak positions
and widths, presented in figure 3, with the peak intensities. The latter are extracted directly by evaluating the
pre-factors of the Lorentzian terms in equation (16) and are shown, for A = 0, as a function of the switching
rate in figures 4(c) and (d), where we split the result into the slow and fast noise regimes (5 < Ay /2 and
B > Ay/2). Although the spectrum is always positive, its decomposition into individual peaks is to some
extent artificial and some of the components defined in this way may have negative amplitudes if the peaks
overlap. Therefore, in some cases we group a few lines that have the same position or the same physical
nature and show only the sum of their intensities, so that the presented intensities are positive. For 5 < Ay
the total scattering intensity is dominated by the nominally broadened contribution L;. However, as
discussed above, in the limit of 5 — 0 its width decreases to zero, hence the fully elastic scattering is recovered
in the static limit. On the other hand, for 5 > A, total intensity reaches the value characteristic of resonant
scattering (figure 4(d), purple line) and is dominated by the elastic contribution Ly (blue line), which is
consistent with the resonance with the averaged transition energy, leading again to the situation known from
a two level system at resonance [1]. The exact limiting values of the intensities of all the spectral components
are collected in table 1.

We now turn to the case when the laser is tuned to one of the two possible transition frequencies,

A = Ay/2. Figures 4(e) and (f) show the RF spectrum in this case for 3 < Ay/2 and 8 > Ag/2, respectively.
In the quasi-static regime we again observe a single sharp line at laser frequency, but now the intensity is
much larger than for A = 0 (figure 4(e), black line). As the switching rate grows, this line is accompanied by
two broadened lines, that initially appear around the transition energies (one of which now coincides with
the laser frequency) and then merge around the central spectral position to disappear again for 8 > Ag
(figure 4(f), blue line) The position of the broadened features is the same as in the previous case (figures 4(a)
and (b)) with respect to the transition energies and the position of the sharp peak follows the laser frequency,
while the overall intensity now decreases as the switching rate grows. In this case the laser is tuned to
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Table 1. The limiting values of the intensities of the RF spectrum components in the static and ultrafast limit, for two spectral positions
of the exciting laser.
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Ia/Io 0 0 0 0
L3/ Io 0 0 0 0

resonance with one of the transition energies, leading to strong scattering in the quasi-static case, which
again reproduces the known result for resonant light scattering [1]. On the other hand, in the fast-switching
regime, the averaged transition energy is detuned from the laser, hence in this motionally narrowed limit the
spectrum corresponds to RF with strongly detuned excitation, showing a weak narrow line at the laser
frequency (figure 4(f), blue line).

A quantitative analysis of the intensity of the spectral features contributing to the RF spectrum for
A = Ay/2 is shown in figure 4(g) (8 < Ay/2) and figure 4(h) (3 > A¢/2). In the slow switching regime,
only the spectral lines at the laser position contribute, with L, of negligible intensity (see table 1) and L,
becoming narrow, as discussed previously. Hence, the elastic scattering fully dominates, as expected for the
quasi-static limit. However, the total RF intensity is now lower than the standard resonant scattering intensity
Iy (roughly by half), because the probability that the laser is resonant to the transition is now only 50%. For
fast switching the intensities are consistent with the concept of detuned averaged transition energy, with
elastic light scattering (Lo contribution) dominating (figure 4(h), blue line) and low total intensity.

5.2.2. Asymmetric switching

In this section we extend our considerations to the case of asymmetric switching, that is, 84 # 3, or x # 0.
At the beginning we discuss the total scattering intensity I;or, obtained numerically from equation (17) and
now depending on the spectral position of the laser and on the degree of noise asymmetry,

x= (8, — Bt)/ (B, + B+). Figure 5, analogous to figure 2, shows the impact of the asymmetry of the noise.
As the preference for the upper position of the transition energy grows with increasing asymmetry, the
spectrum gradually evolves into a single line at this spectral position. For slow noise, this happens via
transferring the intensity to the right line, without changing the line positions. For fast noise, the position of
the line shifts to the right without changing the intensity. As a complementary view on the same parameter
dependence, figure 6 presents I as a function of A and x for several values of 3. At low switching rates
(figures 6(a) and (b)), the areas of high RF intensity extend around A = 44 /2, i.e. when the laser is tuned
to one of the two randomly alternating spectral positions of the optical transition. As /3 increases

(figures 6(c)—(e)), high intensity areas merge, forming finally one diagonal line (figure 6(f)). The intensity in
the slow switching regime is a consequence of the quasi-static dynamics, with the two spectral positions of
the transition occurring with the probabilities p = (1 4 x)/2. Indeed, equation (23) is generalized in this
case to

2 2
—0) [~ v/2 v/2
If(ﬁO)(A):Iopfi (/2> — P (/2) .
(A+20/2)" +(v/2) (A—20/2)"+(v/2)
In the opposite limit of fast noise, the resonance appears at the averaged transition energy, where the average

is now weighted by the probabilities p., leading to the averaged energy level of xAy/2. The total intensity in
this limit is given by

(B 00) @) =1 (7/2)? ,
(A —x00/2)" + (7/2)*

with I reaching its maximum for A =x/, /2.

We next analyze how the positions and widths of the spectral features change with noise asymmetry,
parametrized by the parameter x. As follows from equations (254) and (25b), the positions and widths of the
two peaks Ly and L,, located at the laser frequency, are independent of the asymmetry. The other two peaks
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Figure 5. The total fluorescence intensity as a function of the average detuning and switching rate for a range of values of the
degree of asymmetry of the noise: x=0.2 (a), 0.5 (b) and 1 (c).
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Figure 6. The total fluorescence intensity as a function of the average detuning and the degree of asymmetry of the noise for a
range of values of the total switching rate: 3/A, = 0.001 (a), 0.02 (b), 0.1 (c), 0.25 (d), 0.5 (e) and 2 (f).

are represented in figure 3 with dashed and dotted lines for two values of the asymmetry parameter x. The
spectral positions of these lines (figure 3(a)) are again bound to the actual spectral positions of the transition
at slow switching and converge towards the average frequency as the switching rate grows. However, contrary
to the case of symmetric switching, they do not overlap completely but remain separated by a splitting
proportional to the asymmetry parameter x. Indeed, from equation (25¢) one finds for 8 > A, the peak
positions w; 5 = wi, — A =4 |x| A /2. The widths of the peaks L, and L3 are shown with dashed and dotted
lines in figure 3(b) with I' = 0. The asymptotics of the width of the peaks L, and L for very slow and very
fast noise is the same as in the symmetric case but the behavior at intermediate switching rates is different.
For small asymmetry of the noise (dashed lines) the widths evolve with 3 in a way similar to the symmetric
case. As x grows (dotted lines), the picture changes considerably and one of these lines attains the broadening
close to 23, while the other remains narrow in the whole range of 3.

Figure 7 presents RF spectra for various values of the laser detuning A, noise switching rate 3, and noise
asymmetry x. Each panel corresponds to a certain choice of A and 3, and compares the spectrum obtained
in the presence of symmetric noise (black lines) with spectra at asymmetric noise (green and blue lines),
showing how the intensities and positions of the spectral features evolve with asymmetry. In general, as the
asymmetry grows to the limiting values of x = +1, the static limit is achieved irrespective of the switching
rate /3, so that the spectrum evolves towards a single narrow line at the spectral position of the laser.

Figures 7(a) and (b) show how this happens for the central spectral position of the laser (A = 0). In this case
the spectra are mirror-symmetric under the change of the sign of x, so only the results for x > 0 are shown.
The initially symmetric first develops an asymmetry in favor of the most frequently visited spectral position,
followed by the decay of the side peaks. As discussed previously, for slow noise, figure 7(a), the overall
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Figure 7. The dependence of the RF spectrum on the asymmetry of the noise. Panels (a) and (b) show the spectra for A/A = 0
in the case of slow noise, 8/Ag = 0.02, and moderately fast noise, 3/A¢ = 0.5, respectively. Panels (c) and (d) present the
spectra for A = A /2, for the same two noise rates. The lines on each panel correspond to various values of the asymmetry
parameter x as shown.
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Figure 8. RF intensity dependence on x for A = Ay /2 and 5/ = 0.02. (a) x <0 (B > B1) (b)) x>0 (B < By).

scattering intensity in the symmetric case is low, as the excitation is detuned from the two spectral positions
of the laser, while for faster noise, figure 7(b), the intensity is larger as the role of the averaged spectral
position increases. However, in the limit of x = £1 the noise rate becomes irrelevant and the spectra must
converge to the same limit. Hence, the intensity of the central elastic line increases in the former case and
decreases in the latter. In figure 7(c) we show the spectra for the excitation tuned to the upper spectral
position of the transition (A = A, /2) and for slow noise (3/A = 0.02). The spectrum is dominated by the
spectral line at the position of the laser (composed of the lines Ly, L1 and L) that gains considerable intensity
as x evolves towards +1, which means that the excitation becomes resonant with an increasing probability.
The other spectral feature (line L3) is enabled dynamically and is always very weak when the noise dynamics
is slow (here we magnify it by a factor of 100). It has to vanish at x — %1 and reaches a maximum intensity at
x near 0. As can be deduced from equation (25¢), the position of this line very weakly depends on x when [ is
small. The scattering spectrum for the same spectral position of the laser but faster noise (5/A = 0.5) is
shown in figure 7(d). Here not only the intensity but also the position of the off-resonant peak changes, in
accordance with equation (25¢). As follows from figure 6(e), the overall intensity in this case gradually
increases as x changes from —1 to 1, which is reflected in the spectra, both for the resonant and off-resonant
peaks. Ultimately, in the static limit of x — 1 (not shown), the intensity of the resonant lines increases by
many orders of magnitude and the spectra in figures 7(c) and (d) reach the same form of a single, narrow,
strong resonant line.

In figure 8 we analyze quantitatively the intensities of the individual spectral features as a function of the
noise asymmetry parameter x € [—1, 1]. We restrict our discussion to the excitation tuned to the upper
spectral position of the transition, i.e. A = A,/2. For the sake of clarity of the presentation, we plot the
results for x < 0 and x > 0 in a logarithmic scale in figures 8(a) and (b), respectively, which reveals power-law
dependence as a function of 1 — |x| as x approaches its limiting values. In the quasi-static limit of x — +1,
elastic light scattering (L, spectral line) dominates, as discussed above (blue line in figure 8). Obviously the
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Figure 9. Total RF intensity for N identical noise sources as a function of mean detuning for 8y = 3| = . (a) N=5;
(b) N = 100.
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Figure 10. RF spectrum for different numbers of noise sources at A = 0. (a) 3/A¢ = 0.01; (b) 3/A¢ = 1.

intensity of scattering differs by orders of magnitude in these two limits, as they correspond to strongly
detuned and resonant excitation, respectively. In particular, [;oy — Iy when x — 1 (figure 8(b)). In a wide
range of intermediate values of noise asymmetry, the noise-induced inelastic scattering dominates (red and
green lines in figure 8). The inelastic side line (L3, red line in figure 8) has its maximum for a slightly
asymmetric noise.

5.3. N-source telegraph noise

In this section we present the results for a system subject to noise originating from N identical additive
sources, restricting the discussion to symmetric switching. The total scattering intensity as a function of the
spectral position of the laser is shown in figure 9 for N =5 and N = 100. These results were calculated by
numerical evaluation of equation (17). In the slow-switching regime, when scanning the laser frequency, we
observe N + 1 resonant frequencies (see figure 9(a)). For large N, these resonances form a broad spectral
feature, with the maximum intensity for the laser tuned centrally (A = 0) (figure 9(b)). As the switching rate
grows, the resonances merge into a single motionally narrowed line. The appearance of multiple resonances
in the slow-noise regime is obviously related to the N + 1 positions of the transition energies in this case. In
the quasi-static limit (8 — 0), the matrix B becomes diagonal and equation (17) trivially yields a series of
Lorentzian features weighted by the probabilities p(**) that follow the binomial distribution according to
equation (21). As a result, the envelope of these resonances forms an approximately Gaussian line (by virtue
of the standard Gaussian approximation of the binomial distribution) with a width of A, which is a
consequence of our choice to renormalize the noise amplitudes by v/N in equation (19). For 3> A, the
resonances merge, like in the previously discussed case of N = 1, forming a single narrow Lorentzian
resonance at the average transition energy.

The RF spectrum for different number of noise sources, calculated numerically from equation (15), is
shown in figure 10. For slow switching and small N, the RF spectrum has N + 1 visible side peaks and the
central peak (figure 10(a), black and red line). As N increases, the side peaks start to overlap and form a
broad feature centered at the laser frequency (blue line in figure 10(a)). At N = 50 the spectrum has reached
its asymptotic form and does not change when the number of sources is increased further (which is again
due to the normalization of noise amplitudes assumed here). In the fast noise regime, the side peaks are
merged into a single feature, as in the previously discussed case of a single source, and there is no visible
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dependence on N (figure 10(b)). The central feature corresponds to the first term in equation (16) and is
composed of N + 1 Lorentzians localized at the laser frequency with widths 2n/3, where n =0,1,2,...,N.In
the slow-switching regime, the remaining part of equation (16) yields N + 1 Lorentzian side peaks with an
approximately Gaussian envelope at small 3. As in the single-source case, they can be related to the spectral
positions of the transition energy resulting from the states of the noise sources. For 5 ~ A the spectrum is
restructured and all peaks are localized at the laser frequency.

6. Conclusions

In this paper we have studied RF from a two-level system subject to classical external noise that leads to
fluctuations of the transition energy. We have formulated the general theory of the RF spectrum in the
low-excitation regime in the presence of noise that can be described as a stationary Markovian random
process on a finite state space, which can approximate an even wider class of Markovian processes. We have
also described the RF spectrum under uncorrelated noise leading to phase diffusion. Our theory relates the
light scattering spectrum to the formal characteristic of the stochastic noise process.

We have applied our theory to the cases of a single two-state noise source (random TN) and an arbitrary
number of identical sources, where many characteristics can be extracted in an analytical form. Our results
show essential differences not only between the phase diffusion and random-telegraph-like processes but also
between the regimes of slow and fast dynamics of the random TN. Most remarkably, the RF spectrum
changes its form from multiple spectral features or a broad Gaussian feature (depending on the number of
noise sources) to a single motionally narrowed line as the noise dynamics gets faster. In this way, we have
demonstrated that light scattering on a two-level system in a noisy environment can yield information on the
character of the noise processes experienced by the system.

These findings may be useful in particular for interpreting experiments on the inherently noisy solid-state
systems, where RF finds a constantly growing range of applications. In these systems, the typical lifetimes v~!
are in the nanosecond range, setting the limit on the field amplitudes for which our low-excitation theory is
valid (2 < ). The noise induced by electrical or spin environment [22, 24, 25], is typically slow compared
to the dynamical time scales of the system. On the other hand, a carefully designed optical experiment [23]
shows the coexistence of slow (nanosecond time scale) noise with a fast noise component, on picosecond or
shorter time scales, which may be due to lattice vibrations. This might open the path to direct verification of
our theory. One must note, however, that the transition between the slow and fast regimes in our theory is
controlled by the ratio of the noise dynamical rate 3 and noise amplitude A,. The former is an inherent
feature of the noisy environment, why the latter may only be modified by engineering the coupling between
the emitter and the environment. It may therefore turn out that the most straightforward way to validate the
theory would be to use artificially generated mechanical noise, taking advantage of the high flexibility of
mechanical signal generation and controllability of the acoustic coupling to solid-state emitters [26, 27].
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Appendix. Averaging over the random process

In this appendix we present the technical details of the averaging in equation (13). We start from the basic
formula for averaging an arbitrary function of the process state at a finite set of time instants,

k k

FAWM) - AG) =D > Pivius (b= ta1) P (2 — fl)P;ft)f(Ajl s ) - (A1)

a=l =1

Here we take advantage of the fact that the process is Markovian and stationary, hence the joint probability
can be written as a chain of conditional (transition) probabilities with the initial probability distribution
assumed to be the stationary probability distribution of the system and the transition probabilities
depending only on the time difference.
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To find expectation values of exponential terms, ¢/®(t:t)+n®(t:ta) 1 = 41 we divide the time intervals
(t2,1p) and (,24) into N and N’ pieces, respectively. Then

. ’ .
2i® (ta,t) +in® (ty,ta) — Nll’i’nj)ooelés/ f’zOA(tl')eréstA’:lA(tj), (A.2)

where Nos =1, — 1, N'6s" =ty —to, tj=t, + (j —
equation (A.1), one gets

i® (t,1)+in®(ty,ta) — 1 : (1) ’ (1) i6s’ x,
et Hind I}g*;oNllggoZ ZZ Z%N, oo, (057) a1, (35)e

Iy =1 =ljy=1 ji=I

(55 s .
Ph (”‘ bty 2) A, (05)...q,) (3)1 i,

1)és,and t] = t.+ (I— 1) &s’. Upon using

where ql (At) = ¢"%2p, (At). This formula can be rewritten in terms of a product of transition matrices

P, and k X k matrices Q(7) with matrix elements ql(’ j) (1),

T T N Lodmlr ) . NN =1 i8s”x;, * N—1 indsx: t
i@ (ta,t) T in® (1, ta) :N,z}zllrgoo (1, ..., 1)[Q(ds")] e P prsys [Q* (8s)N " e pY) - (A3)

Keeping in mind that ds ~ 1/N and ds’ ~ 1/N’ we have

. i6s %,/
lim €% = lim &% =1, (A.4)
N’'— o0 N—)oo

and

lim lim P / :Ptcftb' (A.5)

s S
N—3ooN/—o0 L=t 5+%

We write Q(6t) = [+ Bdt+ O(6#*). Only terms up to the linear order survive in the limit N, N’ — oc. For
dt = t/N we then obtain

lim [Q(67)]V" = lim (]I+BI\%)N:eBt. (A.6)

N— oo N—o0

With the use of equations (A.4), (A.5), and equations (A.6), (A.3) takes the form
i@ (ta,t) £i® (y,ta) — (1 o 1) eB(td—t:)pt ,,beB(*>(t”_t“)p(St),
where the conjugation in the last term corresponds to the ‘-’ sign on the left-hand side.
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Acoustic modulation of quantum dots (QDs) allows one to
control the scattering of photons. Here we theoretically char-
acterize the degree of this acoustic control in the frequency
domain. We formulate the theory of low-intensity resonance
fluorescence (RF) in the presence of white noise and show
that a high level of control is achievable with a two-tone
acoustic field for appropriate settings of modulation ampli-
tudes as long as the noise-induced phase diffusion coefficient
remains one order of magnitude smaller than the acoustic
frequency. In addition, using a quantitative model of optical
signal collection, we determine that the acoustic phase must
be stable over 10* to 10° acoustic periods for efficient con-
trol.

Published by Optica Publishing Group under the terms of the Cre-
ative Commons Attribution 4.0 License. Further distribution of this
work must maintain attribution to the author(s) and the published arti-
cle’s title, journal citation, and DOI.
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Introduction. Resonance fluorescence (RF), which gives rise to
non-classical light with special coherence properties [1,2], has
recently found applications in solid-state systems [3—6]. Mod-
ulation of a quantum emitter offers additional control of the
light scattering process [7-9]. In the resolved sideband regime
[10,11], the RF spectrum of a weakly optically excited and
acoustically modulated semiconductor quantum dot (QD) con-
tains the usual central line, located at the laser frequency [12],
and a series of sidebands induced by modulation. The scattered
photons are antibunched [11,13], indicating the single-photon
nature of the scattering.

Surface acoustic wave (SAW) mixing has been shown to pro-
vide precise control over the scattering of photons to a particular
frequency channel [13], as well as in the time domain [14]. Two-
tone acoustic driving leads to quantum interference of different
pathways to a given scattering process that involves the two
acoustic harmonics in various combinations. This interference
is governed by the relative phase between the two acoustic waves,
which allows one to control the probability of photon scattering
to a given frequency sideband [13]. A theoretical description
has been extended to quantum acoustic modes [15,16], which
opens up a perspective for the implementation of frequency-
and time-bin encoding [17,18], quantum multiplexing [19], or
quantum acousto-optic transduction [20]. Short wavelengths of

0146-9592/25/030888-04 Journal © 2025 Optica Publishing Group

acoustic waves in the GHz frequency range make them perfect
candidates for miniaturized devices that may lay the ground for
on-chip acousto-optic quantum hybrid systems [21,22].

Whether this acoustic control can be exploited in quantum
applications depends, to a large extent, on the resilience of the
observed coherent acousto-optic features against external noise
that leads to random fluctuations of the transition energy. In
addition, in view of the finite time required to collect the optical
signal originating from a single quantum emitter, phase stability
of the control fields becomes crucial.

In this paper, we theoretically analyze the achievable degree
of control (DOC) of photon scattering by coherent acoustic mod-
ulation of a QD. We develop a model of low-excitation RF of
a periodically modulated two-level system in the presence of
white noise. This allows us to determine the scattering spectrum
and to show that the relative contrast of phase-dependent inten-
sity oscillations at the optimal setting of modulation parameters
is weakly affected by noise as long as the strength of the latter
remains well below the acoustic frequency. Finally, we set the
minimum requirements for the stability of the acoustic frequency
in these coherent acousto-optic processes.

Model. We consider a self-assembled semiconductor QD
resonantly driven by a weak, monochromatic laser field. The
scattered photons are collected and their time-integrated spec-
trum is determined [13]. The QD transition energy is modulated
by a SAW via deformation-potential coupling to crystal strain
and is subject to random environmental noise. Our general model
can be applied, e.g., to a typical InGaAs QD with several meV
separation between the fundamental transition addressed here
and excited levels and the exciton lifetime of 1 ns. The doublet
of optically active transitions can be resolved by light polariza-
tion, leading to an effectively two-level system. Typical acoustic
frequencies used in experiments are in the range of hundreds
of MHz. In view of the relatively slow acoustic modulation and
exciton decay, we assume a Gaussian noise with a negligible cor-
relation time, i.e., white noise. This model corresponds to the
short-memory limit of a bath of oscillators with Ohmic spectral
density, as well as to a sum of a large number of fast tele-
graph noise sources, such as charge traps typical for solid-state
environments [23,24] (see Supplement 1). An approximation
of such a process could also, in principle, be generated artifi-
cially using radio frequency electronics. As a rough measure
of typical noise strengths, one could take the fluctuation-
induced single-QD linewidths, which are on the order
of 10 GHz [25].
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We model the QD as a two-level system with energy eigen-
states |0) and |1) and transition energy fwy(t), where the time
dependence results from SAW modulation and noise:

wo(t) = Wy + Awye(t) + Awy(1), (1)

where w, is the unperturbed transition energy, whereas Aw,.(f)
and Aw,(t) denote acoustic modulation and noise contributions,
respectively, both with zero average. We assume that Aw,() is
periodic with fundamental frequency w,. The system undergoes
spontaneous emission with the rate y.

The evolution is found by iteratively solving the Lind-
blad equation for the density matrix up to the second order
in the Rabi frequency, following Refs. [13,14]. The detector
response is described by the autocorrelation function G(¢,, t,) =
(o.(t;)o_(t,)), which is calculated using the quantum regres-
sion theorem [14,26]. In the leading order in the field amplitude
(Q?), it reads for t,>1, [13]:

2 )
G([] t2) — Q_ / due—(%ﬂg)uefi(bac(nJ]fu)
5 4 i
- (2
Y_iNV i ’
X / duze— 7—1A)u eld)ag(fsz—l.l )D(u, I/{,, tz _ tl),

where @,.(t,,1,) = /1 :2 Aw,(s)ds is the deterministic contribu-

tion to the accumulated phase, A= wy, — Wy, With wy denoting
the laser frequency, and

D(l/l, M’, T) — ei‘Dm(0,7L4)7i(1>ns(‘r,‘rfu’)e(u)e(u’) (3)

encodes the complete information about the noise, which is
assumed stationary, with @, (t,,#,) = -/n " Awy(s)ds, 6(u) denot-
ing the Heaviside step function and the bar representing
averaging over noise realizations. Note that ®,.(1,, t,) is periodic
in both arguments.

White noise leads to phase diffusion described by a Gaus-
sian distribution for ®,(z,,¢;) with variance 2D(t, — t,), t,>t,,
where D is the diffusion coefficient related to the noise
strength, (wy(Hwy(t + 7)) = 2DS(1). For 7>0, we obtain (see
Supplement 1) D(u, v, 7) = Dg(u, w', 7) + Dina(u, ', 7), where

Dy, o, 7) = e 0o (u') (4)

and
Do, 1, 7) =7 0()0(u’ — 1)

% [efD\quTfu\ _ e*D(uﬂt 77)] .

®)

D, does not depend on 7, resulting in a periodic autocorre-
lation function that leads to a series of unbroadened spectral
features. We refer to this contribution as elastic because the
narrow (laser-limited) lines mean no energy exchange with the
environment. D, is damped in 7, leading to broadened spec-
tral lines, corresponding to inelastic scattering, in which the
scattered photon loses or gains some energy. This contribution
vanishes as D — 0; hence, it is fully due to noise.

Substituting Eqgs. (4) and (5) to Eq. (2), one gets the
corresponding elastic and inelastic contributions to the auto-
correlation function. A function periodic in its two arguments
is also periodic in their sum and difference. We can therefore
define functions ¢,(u) through the following expansion:

o uclt=ul =) _ Z ¢n(u _ M’)einwA(t_ b ) (6)
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For the elastic term, we then immediately find the following:

Q? ,
Gel(tl’ t2) = ? Z Cncjne,wA(ml_mIZ), t2>t1, (7)

where .
c = Z/ duef(y/ZJrDﬂ'Z)ue*inwAu/Z¢ (M) (8)
n 2 0 n .
The inelastic part can be written in the following form (see
Supplement 1):

Q2 X
Gina(t1, 1) = —272 e 0/2+P-inh)

. (9)
X Z B byyd @XM g
nmk
where b, are the coefficients of the Fourier expansion:
e*i‘l’ac(lel) — Z b;bneiw/\(m]fmrz) (1 0)
nm
and D
Y *
d, = (ca+cty). (11)

(y + D + inwy)? — D?

Both components of the autocorrelation function, as functions of
7, are sums of purely exponential contributions. Consequently,
the time-integrated RF spectrum, defined by

S(w) = Re/ dre Ve TTG(1), (12)
0
where
27 [wa
— [N
G(t)= — / drG(t,t + 1), (13)
2r Jo

has an elastic and inelastic part, both composed of a series of
Lorentzians (explicit formulas are given in Supplement 1). The
former is only broadened by the finite instrumental resolution I,
which we have included in the model. The spectral features of
the latter are not only broadened by y/2 + D but also shifted by
A, i.e., from the spectral position related to the laser frequency
to that bound to the unperturbed transition energy.

Results. We set y/w, = 2T'/w, = 0.1. RF spectra will be pre-
sented in natural units set by the maximum value of the spectrum
for an unperturbed system without modulation under weak res-
onant excitation S, = Q?/(y?I') [12]. Similarly, the natural unit
for the intensity is I, = 7Q?/y?, corresponding to the standard
RF of an unperturbed weakly excited two-level system.

RF spectrum under harmonic modulation and noise. Substi-
tuting Egs. (7) and (9) to Egs. (13) and (12), we find the spectrum
as a sum of Lorentzian contributions as well as dispersive terms
in the inelastic component. We start with the case of harmonic
modulation Aw,.(f) = Aw, cos(w,t). Then,

b =1,A). ¢ W) =1, [24sin (wau/2)]. (1)

where J, is the Bessel function of the first kind. From this, ¢,
and d, are calculated numerically using Eqgs. (8) and (11).
Figure | presents the RF spectra in this case for resonant
(Fig. 1(a)) and slightly detuned (Fig. 1(b)) excitation for A = 2.
In the absence of noise (blue lines), the spectrum consists of a
series of lines separated from the laser frequency by an integer
multiple of w, [13,14]. Upon including noise (orange and red
lines), the intensities of these peaks change. In addition, an
inelastic contribution appears at integer multiples of w, from
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Fig. 1. RF spectrum for acoustically modulated QD with noise.
Results for a single-SAW mode in case of (a) resonant excitation
and for (b) wy, = Wy + 0.4wx.

the unperturbed transition frequency, similar to the case without
modulation [26]. This is particularly well visible in Fig. 1(b),
where the laser is detuned by a fraction of acoustic frequency
and the two line series appear at different frequencies. A similar
inelastic contribution appears in the quantum regime, where
the spectral jitter is modeled as pure dephasing [16]. While
the elastic lines remain narrow, the width of the inelastic ones
grows, as discussed above until, for a sufficiently strong noise,
they merge into a broad feature that dominates the spectrum (red
lines).

The intensity of an elastic line located at w = wy, + pwa, is as
follows:

17 = Llc, | (15)

while for an inelastic contribution at w = Wy + qwa,, it is as
follows:

19, = IiReb, > by idy/2. (16)
k

Note that the latter can be interpreted as a line intensity only
when D < w,; otherwise, the lines lose their identity. The inten-
sities of selected contributions are shown as functions of the
phase diffusion coefficient D in Fig. 2, where the green lines cor-
respond to the central line at resonant excitation, while the blue
lines represent the intensities of the first sideband of the laser
frequency and transition frequency for the elastic and inelastic
contributions, respectively. Figures 2(a) and 2(b) correspond to
the excitation conditions of Figs. 1(a) and 1(b), respectively.
One can see that the intensities have a power-law asymptotic
dependence on D. In the limit of vanishing noise, the inten-
sities of the elastic lines (solid lines in Fig. 2) reach a finite
value, corresponding to the D — 0 limit of c,. In this limit, the
intensities of the inelastic lines vanish proportionally to D, as fol-
lows from Eq. (11), restoring the purely elastic scattering of the
noise-free regime [13]. For strong noise (D > v, wA,Z), all the
intensities decrease with D. From Eq. (8), one finds ¢, ~ D~¢*!
(see Supplement 1); hence, Ig’) ~ D™2*D_ On the other hand,
di ~ D™D and b, are independent of D; hence, the sum in
Eq. (9) is dominated by the term containing dy and I, ~ D!

inel

Fig. 2. Intensities of lines from elastic/inelastic series
(solid/dashed lines) for p = ¢ = 0 (green lines) and p = g = 1 (blue
lines). (a) Resonant excitation; (b) wy, = wy + 0.4w,.
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Fig. 3. (a) Scattering intensity at the spectral position of the first
acoustic sideband for different noise strengths upon modulation with
two commensurate harmonic acoustic waves, as a function of the
relative phase between these acoustic harmonics. (b) Contrast of the
phase dependence as a function of the amplitude B and the noise
strength D. Here the QD is excited resonantly, A = 1, and B = 2.76
in (a).

for each g; therefore, inelastic scattering dominates in the strong
noise limit.

Two-tone acoustic control of photon scattering. In this sec-
tion, we study the RF spectra in the presence of the acoustic
modulation composed of two harmonics:

Aw, (1) = Awp cos(wat) + Bwy cosRwat + ). 17

In the case of such a two-tone modulation, one finds the
following:

b= 3 Tl (B/2) 6, (18)

O (2A sin #) Jo Bsinwsu) €. (19)
k
We will focus on the first acoustic sideband at w = w; + wy
under resonant excitation (w;, = w,). We will determine the scat-
tering intensity S(wy + w,), which corresponds directly to the
number of detector counts for the spectral filter set at the first
sideband.

We calculate the coefficients b, and ¢, numerically and obtain
the spectrum from Eq. (12). The amplitude of the first sideband
as a function of the relative phase ¢ is presented in Fig. 3(a) for
different noise strengths D. Clearly, noise reduces the amplitude
of phase-dependent oscillations of the scattering intensity, which
is related to the overall intensity reduction discussed above.

As an intensity-independent figure of merit characterizing the
DOC of the scattering intensity, we use the normalized contrast
N = (Smax — Smin)/ (Smax + Smin)> Where Sy and S, are the max-
imum and minimum scattering intensities as a function of the
phase ¢. This is shown in Fig. 3(b) as a function of the amplitude
B and the noise strength D. The contrast approaches unity when
the intensity for a certain phase is close to zero. Whether this
happens depends on the interplay of various Fourier components
in Eq. (19). In general, for the intensity to reach zero, at least
two of these components must be of comparable order, which
occurs at certain values of B, corresponding to the red areas in
Fig. 3(b). The striking apparent periodicity of this picture as a
function of B follows from the oscillating character of Bessel
functions at large values of their argument. The direct depen-
dence on J,(B/2) is explicit in Eq. (18), while in Eq. (19), it can
be shown by appropriately transforming the formula (see Sup-
plement 1). The detrimental effect of noise is stronger whenever
high relative contrast is due to a very low value of S,;,, which
makes it more vulnerable to raising inelastic background.

Finally, we discuss the importance of the phase stability of
the acoustic modulation for the efficient control of photon scat-
tering. The optical signal from a single quantum emitter has
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Fig. 4. Impact of the acoustic phase instability on the DOC of
the phonon scattering at B = 2.76: (a) DOC as a function of the
integration time. (b) Maximum achievable DOC.

to be integrated over a finite time to obtain meaningful results,
and phase instability on this time scale affects the degree of the
acoustic phase control of the scattering. As a figure of merit that
captures both the accumulation of the physical signal in time
and the phase perturbation, we propose DOC defines as follows,
which quantifies the amount of phase information encoded in
scattered photons: The phase is randomly set to the value that
yields the maximum or minimum scattering rate to the first
sideband. This setting is to be determined on the basis of the
number of photons scattered during a time period ¢ at the fre-
quency of the first sideband. The DOC is equal to the probability
of correctly determining the phase setting, with the value of
1/2 corresponding to the null information (random guessing).
The formal details are discussed in Supplement 1. For simplic-
ity, in this discussion, we assume that the background noise is
absent.

In a perfectly phase-stable setup, the DOC increases as the sig-
nal is integrated in time, asymptotically reaching the value of the
contrast i (blue line in Fig. 4(a)). With phase instability, which
we model as a phase diffusion with the diffusion constant D,
the phase information initially grows as photons are collected
but then starts to decay since the phase diffusion blurs the initial
phase setting, suppressing the difference in the corresponding
scattering rates (orange and green lines in Fig. 4(a)). As a result,
the maximum achievable DOC decays very fast (see Fig. 4(b)).
To give a rough estimate of the absolute numbers, Q ~ 0.1y to
ensure weak coupling limit and I' ~ 0.1w, to select the desired
sideband. From Fig. 4(b), one can see that the D, must be one
to two orders lower than S, = Q2/(y*T’) for DOC close to 1.
Therefore, D, < 10w,, i.e., the acoustic phase must be sta-
ble over times four to five orders of magnitude longer than the
acoustic period (assuming a perfect detector), which highlights
the importance of the extremely high stability demonstrated in
Ref. [13].

Conclusion. We have developed the theory of light scatte-
ring on a single quantum emitter with periodically modulated
transition energy in the presence of external noise and phase
instability of the modulation. By applying this theory to a semi-
conductor QD modulated by an acoustic field composed of two
harmonics and subject to external white noise, we have shown
that the achievable degree of acoustic control of the photon scat-
tering in the spectral domain remains very high for appropriate
settings of the modulation amplitudes and for noise amplitudes
leading to phase diffusion coefficients well below the acoustic
modulation frequency. We have also highlighted the importance
of the acoustic phase stability over times four to five orders of
magnitude longer than the modulation period.
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Our results set the limits for controlling single-photon scat-
tering by classical acoustic waves. In the future, they may offer
a starting point for the analysis of quantum information transfer
from mechanical to optical qubits in frequency-bin encoding.
Natural extensions of our work would be to include noise pro-
cesses with finite memory, in particular those with super-Ohmic
spectral density that precludes a nontrivial short-time limit.
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1. WHITE NOISE AS A LIMIT OF PHYSICAL NOISE PROCESSES

We present here formal arguments that allow us to understand the white-noise model considered
in the main text of the paper as a limiting case of certain noise processes of physical relevance.

Let us first consider the noise originating from a bath of oscillators in the classical limit. The
oscillators are labeled by k and couple to our two-level system via coupling constants g, so that
the random shift of the upper level energy is

hAwns(t) = 2k ng (Xg cos wit + Y sinwyt),
k

where the quadrature amplitudes Xj and Yj are independent Gaussian random variables with
zero mean and with the variance given by the equipartition of energy, (7,3 = hwy/(2kgT), where
kg is the Boltzmann constant and T is the temperature. The autocorrelation function of the
fluctuations is then

(Bt () ccns(#)) = ¥ (2gi00)2 cosaay(t — #) = T [7 )

cosw(t—1t)=R(t—t),
k 0

where we introduce the spectral density
J(w) =4)gid(wy — w).
k

For a broad and regular spectral density, the autocorrelation function R(7) is short-lived. If it
decays faster than any relevant dynamical time scales of the system (exciton decay and modulation
in our case) then it may be approximated by a Dirac delta, giving rise to white noise with

(Awns (1) Awns(t + T)) = 2D(7)

with

D== / dTtR(T kBTlmM.
h wo0 w

This is a well-defined limit for an Ohmic reservoir with J(w) o« w. While such reservoirs are
commonly studied and even “paradigmatic” in the theory of open quantum systems, the lattice



(phonon) reservoir in three dimensions is super-Ohmic and therefore remains outside the scope of
the present study, even though it is indeed very fast (THz Debye or cut-off frequencies) compared
to the time scales relevant here.

As a second, more specific class of noise processes, we consider a cumulative Stark shift due
to a large number N of independent charge traps, quickly switching between their two charge
states,

N
Awns(t) = kaXkr
k=1

where X; now represent independent two-state Markovian telegraph processes with zero mean
and unit variance, and fy are coupling constants that may depend, e.g., on the distance between
the system and the charge trap. We assume that all telegraph processes have the same switching
statistics with (Xi(t) X (t + 7)) = e~ 2. Then

(Awns(t)Awns(t + 1)) = Y fRe AT
%

and the process has a short memory if the switching rate A is large. The limit of infinite number
of processes is reached by the scaling f; = fi/+/N with fixed f; (like in the central limit theorem),
so that the physically relevant variance of the energy fluctuations, 02, = ([Awns(t)]?) = Y f7
remains finite. The process is Gaussian if, for any finite sequence of real numbers {s; },

<gi Y s1Awns(ty) > —e L s108;

where
0y = ( Beons (1) Bcwns (1) ) = 02 ( X () Xi(t;) )

are the covariances of the process. For our process, using the independence of the telegraph
contributions and expanding in Taylor series, one finds

In <ez’21 s,Awns(t1)> — Zln
k

1— Z;\If"‘z,zj:sl <Xk(tz)Xk(fj)> sj+0 (N;/z)]

1 1
=5 ;slmjsj +0 (W) .
]

This shows that the process is Gaussian in the limit of a large number of telegraph noise sources,
N — o0, and can be approximated by white noise in the limit of fast switching.

2. AUTOCORRELATION FUNCTION

In this section we summarize the derivation of the correlation function given by Eq. (2) of the
main text.

The Hamiltonian of the system (in the rotating frame and using rotating wave approximation)
reads

H(E) = fwo(t) — ] 1)(1] - 22 (0 +0),

where Q) is the optical Rabi frequency and ¢y = ¢t = [1)(0|. The system undergoes spontaneous
emission with the rate vy, described by the Lindblad superoperator

Llpl =7 (e-pee = 3 oosp) )

where p is the density matrix and {, } denotes the anticommutator. The Master Equation govern-
ing the evolution of the system has the form

df?T(tt) - _% [H(t),p(t)] + L [p(t)] - b

Denote the solution of Eq. (S1) by p(t) = £, [o(t0)]- The Lax quantum regression theorem
then yields the autocorrelation function in the form

G(t ta) = Tr (0-L4, 1, [Lar, [p(t0)] 0]) - (S2)



Here tg is the initial moment of evolution, while ¢; — £ is a sufficiently long time for the system
to reach its steady state. We find the evolution to the leading order in the Rabi frequency Q)
iteratively, following Refs. [1, 2]. Eq. (S1) yields the equations of motion for the elements py;,
p10, P11 of the density matrix in the form p; = ajpj; + iQ Y, bj1 yuPmn, where a1y = —7,
apgp = IZTO = iA— ’)’/2, and bll,lO = *b11/01 = blO,ll = 71701,11 = 1/2. The same holds for an
arbitrary matrix, not necessarily a density matrix. Since Eq. (S1) is trace-preserving, one has
Poo = Co — p11, Where ¢ is a constant determined by the initial values (co = 1 for a density matrix).
In the absence of the laser field (() = 0) the equation of motion can be solved trivially to yield the
zeroth-order propagation

fd .
p]('lo)(t) = [Eggip(fo)}ﬂ = cho sH”(S)sz(to).

In the subsequent orders r > 0in (),

p](lr)(t) = [ gg)tp tO ZQ/ dse[ ds'a (s ijl mnpmn

These equations define the perturbative expansion of the evolution superoperator £;, 1, in pow-
ers of (). Substituting this evolution into Eq. (S2) one finds, in the leading order of 2, the
autocorrelation function in the form [1]

tl,fz 4 / due™ 2” —i®(t,t—u / du'e E” iD(ty,tp— u), (53)

where ,
b —
D(ty, ta) = /t ds w1, — wo(s)] = Bty — ta) — Dac(tp, ta) — Ons(ty, ta)- (S4)

Here ; ,
b b
Doc(tp, ta) = A AsAwac(s), Pns(tp, ta) = t dsAwns(s),
we changed the variables according to s = t + u and set t — tg — oo (steady-state regime).
Substituting the decomposition given by the rightmost form of Eq. (54) to Eq. (53) one arrives at
Eq. (3) from the main text upon using the fact that the noise is stationary, hence

ei@(td+s,tc+s)iid>(tb+s,ta+s) — el‘@(h{,&)ﬂ:l’@(tm%) .

3. NOISE FUNCTION FOR WHITE NOISE

Here we outline the calculations leading to the noise kernel D(u, u’'7) in the form of Eq. (4) and
Eq. (5) of the main text.

To evaluate the noise kernel given by Eq. (3) of the main text in the case of white noise (phase
diffusion), we need to split the two phases ®n. accumulated over the time intervals (—u,0)
and (7 — ', T) into non-overlapping time intervals that will allow factorization based on the
independence of the corresponding increments of the diffusion process. This is done in different
ways in each of the areas (a)—(c) in the (1, u’) plane shown in the upper part of Fig. S1. We denote
the characteristic functions of these areas by ©;(u, 1; T), i = a, b, c. In each of the areas, the phases
partly cancel in a particular way, which we represent graphically in the lower part of Fig. S1. Here
the positive phase is represented by a right-heading arrow above the time axis and the negative
phase is shown as a left-heading arrow below, so that each arrow represents an integral of Awns
over the interval from its tail to head. The original phases are shown on the left, while the final
form after partial cancellation is on the right. For instance, in area (a), the noise kernel has the
form

Da(u, u/,T) = ¢~ i®Pns(—1,T—1') p—iPns(T,0)

The phase @ns(t,t') undergoes normal diffusion from time # to t induced by the white noise
Awns and is therefore normally distributed with zero mean and variance 2D (t — t'). Therefore

(1) — g~ D(t—t)
which leads to

D(u,u’,7) = Da(u,u',7)®;(u, 1, T) + Dy (u,u’, T)Oy (u, u’, T) + De(u, v/, T)O(u, v/, T)



u A
@) Da(u,,7) = e~ P =) @ u>u+r
(b) Dy(u,u',7) = e 2D ,~D(u-v) (b) u+7>u >71
,
(c) De(u, v/, 7) = e~ Plwtw) () 7>u' >0
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Fig. S1. Upper: division of the (1, ") plane into areas for the calculation of the noise kernel.
Lower: Graphical representation of the reduction of the phase evolution intervals into non-
overlapping parts.

with

D(u+u")

! !
D(u —u), —2DTe—D(u—u ), De (u, M/,T) — )

Da(u, v/, 1) =€ Dy(u,u',7) =¢
From this, we can extract a part that is undamped in T,

Dey(u,u',7) = De(u, ', 7) [@a(u, 1, T) + Op (1, T) + Oc(u, 1, 7)] = De(u,u', 7)0(1)0(u”),
which is the contribution given by Eq. (4) of the main text. The remaining part

Diner(u,1',7) = [Dyp(u,u',7) = De(u,u’,7)] Op (u,u', 7) + [Dalu,u', T) — De(u, 1/, 7)] @a(u, 1, 7),

can be written in the form of Eq. (5) of the main text.

4. AUTOCORRELATION FUNCTION: INELASTIC PART

We present here some details of the derivation of Eq. (9) from the main text of the paper.
Since the phase @, (#, ') is defined as a definite integral, one can rearrange the phase factors in
Eq. (2) of the main text,

(bac(tl/tl - u) - q)ac(tZr fr — u/> = —q)ac(tzl tl) + q)ac(t2 - u// t1 — ”)-

Next, performing the change of variables u = (x +y)/2,u' =t) —t; + (x —y) /2, —00 < x < o0,
ly] < x < 00, and using the expansion from Eq. (6) in the main text, one can write Eq. (2) in the
form

2 —~ . . o0 .
Gine1(t1,t2) = %@_(%+D_ZA)<tz_tl>371¢“(t2’t1) ZelkwAtl/ dyi(y)e ™
k —00

00 ikw
) /\ | dxe™ T2 [€7D|y‘ —e DY (s5)
v

Performing trivial integration over x, then employing Eq. (8) for the integration over y and using
Eq. (10) one finds the result in the form of Eq. (9) in the main text.



5. EXPLICIT FORM OF THE RESONANCE FLUORESCENCE SPECTRUM

The spectrum follows in a straightforward way from the exponential T-dependence in Eq. (7). We
present the formulas here for completeness.

Substituting t; = t, t» = t + T to Eq. (7), integrating over f according to Eq. (13) and then
substituting to Eq. (12) immediately yields the elastic part of the spectrum in the form

T|cy|?
=FR .
Salw) = FRe L=t — (56)
In the same way, using Eq. (9) we get the inelastic contribution to the spectrum,
1" *
Sinel(w Re Z bl (S7)

“T+ 3 +D—i(w—awy—nwa)

6. TWO-TONE AND SINGLE-TONE MODULATION; ASYMPTOTICS IN THE STRONG-
NOISE LIMIT

In this section we derive Eqgs. (14), (18) and (19) from the main text. Then we explain how the
power-law exponents discussed in the final part of Sec. 3A can be derived.
For a two-tone modulation as in Eq. (16) of the main text, we write the phase in the form

walutu)
2
+iBsin [wa (u — u')] cos [2wat — wa(u+u') + ¢] .

!
i@ (t—u',t —u) = 2iAsin {W} cos {wAt —

Using Jacobi-Anger expansion with respect to the cos terms, while treating the sin terms as
coefficients, leads to the expansion in Eq. (6) with the functions ¢, given by Eq. (19). The
expansion in Eq. (10) with the coefficients given by Eq. (18) is obtained by writing the definite
integral ®,c(ty, t1) as a difference of originals at the final and initial points and directly applying
the Jacobi-Anger expansion. The results for a single-tone harmonic modulation are retrieved by
setting B = 0.

Functions ¢, () can be written in an alternative form. Let us focus on the factor dependent on
B in Eq. (19) (the argument is the same for the other factor). The Bessel function can be written in
terms of the defining integral

1 o . . .
]k (B sinwAu) _ T / dtelkte—zB sinwau smt.
7T J—

We write Bsinwpu sint = Blcos(wau —t) + cos(wau + t)] /2, apply the Jacobi-Anger expansion
twice, and perform the resulting trivial integration over t. The result is

Jx (Bsinwau) =i~ Z]m+k B/2)Jyn(B/2)e3m+R)wan

For moderate modulation amplitudes, only a few Bessel functions contribute. All of them oscillate
with the same period when B is sulfficiently large. Hence, J; (Bsinwau) also oscillates in B
and so does ¢, (). Upon substituting this expression, along with the analogous expression for
Ju_or (2Asinwau/2), to Eq. (19) and then to Eq. (8), the integration can be performed analytically
and one obtains a summation formula that can be evaluated numerically much faster than the
original integral.

To obtain the asymptotic behavior of the scattering intensities for the single-tone modulation in
the limit of strong noise, as shown in Fig. 2 of the main text and discussed in Sec. 3A, we need to
extract the asymptotics of the coefficients ¢, and d;; as D — oo (note that b;, does not depend on

D). Substituting 475,1) (1) from Eq. (14) to Eq. (8) and changing the variable to x = uD we obtain

(1) . Lln /00 7@)( A+nwA/2 % ~ / —x A(UA
Ch =20 o dxe” 2D T [2Asm(2Dx 2D dxe ', | —==x ),

where we assumed D >> 7, wa, A in the final expression. Substituting the leading term for the
Jacobi function, J,(z) &~ 2"/ (2"n!), z < 1, we get

HONNNE (iAwA)" ~ D~ (1),

" 72D\ 2D
Then, from Eq. (11), also d, ~ D~ ("+1).



7. ACOUSTIC PHASE INFORMATION IN THE SCATTERING SPECTRUM

We want to develop a quantitative measure of the degree of control (DOC) of light scattering by the
relative phase between two harmonic components of acoustic modulation. Scattering is efficiently
controlled by this acoustic phase if the scattering intensity depends on the phase setting, which
means that the phase information is encoded in the scattering spectrum. We therefore propose
to quantify the DOC in terms of a single-shot attempt to determine the acoustic phase from the
accumulated scattering data. We choose the simplest scheme in which the detector is spectrally
tuned to the first spectral sideband and the phase is randomly set with equal probabilities to
one of the values ¢; or ¢;, corresponding, respectively, to the maximum and minimum of the
scattering intensity at this spectral position (see Fig. 3 of the main text). Roughly speaking, the
scattering is controlled by the acoustic phase if the detection counts accumulated over a certain
period of time allow one to determine whether the scattering intensity is “high” or “low” and
thus correctly infer the initial setting of the phase with a high probability. More precisely, the
signal is integrated over a period of time T and one opts for ¢, if the number of counts N is above
a threshold value v. The probability of wrong inference is then given by

Pe=p(N<vip=9g1)p(p=¢1)+p(N>vip=92)p(¢=¢2) (S8)
:%[p(N<VI<P:qvl)+p(N>VIsv:¢z)]-

The degree of phase control is defined as the probability of correctly determining the phase for an
optimal choice of v.
DOC =sup (1 —Pe).
v

For the sake of our discussion it is convenient to treat the measurement time as a parameter over
which the procedure needs to be optimized in the final step.

With absolutely stable acoustic phase, p(N = n|¢ = ¢;), i = 1,2, are given by Poisson
distribution with the distribution parameter (mean count number) A;(T) = w;T, where w; are the
scattering rates for the two phase settings, proportional to the scattering intensities I; = Imax and
I = Iin. With phase instability, the phase diffuses so that at a time ¢ it is distributed according to
the probability density fi(¢,t), fi(¢,t = 0) = §(¢ — ¢;). Here we will assume normal diffusion
with the diffusion constant D,

1 (p—9i)?

filg,t) = \/?Dq,t -

e gt
As a result, while the count distribution remains Poissonian, the scattering rate becomes time-
dependent,

wit) = [ dgo(@)filot), A1) = [ dru),

where w(¢) is the scattering rate for the phase set to ¢.
From Eq. (S8) one has

1o M e A
Pe=ge ™ Lortas ™t L
n=0 n=|v]+1

where |v] denotes the largest integer not greater than v. This has a minimum with respect to v
when the two distributions are equal,

Al Al
e ML — M2 for =y,
n! n!

which yields
_ 147\ _ Mt _M—A
V—ZAn(nl_U) , A= B U_A1+A2'
The resulting DOC is
— 1 1 —A 2 v/2 = AT n—v n—v

which depends on the measurement time via the quantities A and 7.
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We present a theory of resonance fluorescence (RF) of a solid-state quantum emitter in the
regime of weak optical excitation. The emitter is coupled to phonon modes of the surrounding bulk
semiconductor, described by a super-Ohmic spectral density. We show that the RF spectrum of this
system consists of a central elastic line, a broad phonon sideband known from other linear and non-
linear spectra of such systems, as well as a narrow inelastic contribution, which is characteristic of
scattering spectra and stems from noise-induced transient dynamics. At moderate phonon couplings
or low temperatures, the interplay between the broad sideband and the inelastic feature leads to a
Fano-like profile near the resonant energy with the Fano parameter determined by laser detuning. In
the weak-coupling limit (where only single-phonon processes are included), the spectrum becomes an
exact Fano shape and resonant light scattering is entirely suppressed. The amplitude of this spectral
feature grows linearly with temperature, while its width depends solely on the spontaneous emission
rate of the emitter. We relate the quantum character of the reservoir to the non-commutativity of
noise observables and show that Fano resonance persists in the classical limit. We also discuss how
the redistribution of optical coupling efficiency between the central line and the sidebands affects
the total scattering rate under various excitation conditions.

I. INTRODUCTION

Resonance fluorescence (RF) of a single quantum emit-
ter [1, 2] has found numerous applications in quantum
optics and quantum information processing due to the
nontrivial properties of the scattered light. Within the
RF scheme, it is possible, for instance, to generate non-
classical states of photons with unique coherence proper-
ties [3, 4] and create indistinguishable [5] or anti-bunched
[6] photons. The last decades have witnessed a rapid de-
velopment of RF as a tool to characterize the quantum
properties not only of atomic and molecular systems [7],
but also of various kinds of solid-state ,artificial atoms”
[8-10].

In RF, semiconductor self-assembled quantum dots
(QDs) have been used as emitters for years. They allow
one to observe spin dynamics [11, 12], interface [13], and
entangle [14] QD spins with single photons or read out
spin states from the RF [15, 16]. Recently, QD emitters
have been used in acousto-optic quantum hybrid systems
as transducers between acoustical and optical signals [17—
21]. These QDs generate antibunched light [19], making
them perfect candidates for a single-photon source [22],
which opens the door to advanced applications in quan-
tum information processing, such as quantum multiplex-
ing [23], time and frequency bin encoding [24, 25|, or
quantum acousto-optic transduction [26]. A QD can also
be used as a quantum sensor for an acoustic cavity, with
the fluorescence signal carrying sufficient information to
retrieve the phonon number statistics [27]. Another im-
portant family of solid-state quantum emitters in the op-
tical domain, which overcomes the low-temperature lim-
itations of QDs, is that of defect centers in various ma-
terial systems. These have been shown to exhibit pho-
ton antibunching up to room temperature [28-30] or far

above [31], making them a valuable complement of QDs
as emitters used in quantum information processing.

In a solid-state matrix, phonons are one of the main
sources of environmental noise that perturbs the transi-
tion energy of the emitter, even though they cannot in-
duce transitions because of substantial energy mismatch.
This noise may be detrimental to applications in quan-
tum technologies. A common signature of carrier-phonon
interactions in the spectra of solid-state quantum emit-
ters are the broad phonon sidebands surrounding the
central (“zero-phonon”) line: the exchange of acoustic
phonons accompanying an optical process modifies the
energy of the absorbed or emitted photon, leading to
spectral features on the high or low energy side of the
central line. Such features are observed in QD lumines-
cence [32, 33| and four-wave-mixing spectroscopy [34] and
have been predicted in absorption [35]. As the range of
efficiently coupled phonon wavelengths in QDs is lim-
ited from below by the QD size, the spectral width of
the resulting sidebands reaches a few meV. The coupling
strength between phonons and exciton is represented by a
Huang-Rhys factor [36], which reflects the spectral weight
accumulated in the phonon sidebands at null tempera-
ture. This experimentally accessible parameter may have
a wide range of values depending on the shape and size
of the emitter, the properties of the surrounding mate-
rial, or the coupling mechanism. For InAs/GaAs self-
assembled QDs, the Huang-Rhys factor is on the order
of 0.1 [33-35]. Defect centers show similar phonon side-
bands, but they are much wider due to the presumably
point-like nature of the defect, with the Huang-Rhys pa-
rameter one order of magnitude larger in the case of de-
fects in hBN [30, 37, 38]. The spectral weight of this
phonon feature increases with temperature.

Absorption or emission of an acoustic phonon can also
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take place during scattering of a photon, leading to vari-
ous effects under strong excitation or induced by optical
phonons [39-41]. In the case of a weakly excited sys-
tem coupled to acoustic phonons, as studied here, cor-
relation expansion modeling under pulsed excitation has
shown that sidebands indeed appear in the resonance flu-
orescence spectra [42], alongside the narrow central line
corresponding to elastic scattering, which is centered at
the laser frequency, as predicted by the standard, un-
perturbed model [1, 2]. On the other hand, classical
noise under cw excitation gives rise to inelastic scatter-
ing, manifested by a line at the QD transition frequency,
with its width dependent on the noise strength [43, 44].

In this work, we study theoretically RF of a single
weakly excited emitter coupled to phonons in a bulk ma-
terial. We develop a general description of the weak-
excitation RF that includes phonon effects exactly to
all orders. We apply this method to a two-level sys-
tem coupled to bulk acoustic phonons, analyzing both
the scattering spectra at resonant or nearly resonant ex-
citation, and the total scattering intensity as a function
of excitation frequency. For definiteness, we focus on a
self-assembled QD, but we cover both weak and strong
phonon coupling regimes to ensure a general scope of the
theory. We show that, in addition to a broad phonon
sideband, the inelastic scattering spectrum shows a nar-
row Fano feature with temperature-dependent intensity
but fixed width. Remarkably, in the independent-boson
model studied here, this feature appears in scattering al-
though it is known to be absent in absorption [35], un-
like in the more widely studied Fano-Anderson models
[45, 46]. In contrast to some previous works concern-
ing Fano resonances involving phonons, where a discrete
phonon mode couples to electronic continuum [47-53] or
to phonon bath [54], in our model the sharp resonance
pertains to electronic excitation, while the wide back-
ground stems from mechanical degrees of freedom.

The paper is structured as follows. In Sec. II we de-
fine the model of the system. Next, we present the the-
ory describing the evolution of the system (Sec. IITA),
the system steady state (Sec. IIIB) the quantum auto-
correlation function (Sec. IIIC) and the RF spectrum
(Sec. TIID). Sec. IV discusses the RF spectra and scat-
tering intensities under various conditions. The paper is
concluded in Sec. V.

II. SYSTEM AND MODEL

We consider an atomic-like solid-state quantum emit-
ter, weakly excited by a continuous-wave (cw) laser,
tuned resonantly or near resonantly to the emitter’s fun-
damental transition frequency. To facilitate presenta-
tion, we will think of a self-assembled semiconductor QD
[19, 22], in which the optically induced excitation is a
bound exciton (electron-hole pair). However, the pre-
sented approach does not depend on this physical picture
and is also valid for strong phonon coupling, so it can be

used, e.g., for defect centers [30, 55]. The lifetime of the
fundamental excitation of the system is limited as a result
of spontaneous emission (radiative recombination). We
assume that the frequency and polarization selectivity of
the exciting beam allow us to focus on a single transition.
The scattered light is spectrally resolved and integrated
in time, leading to the RF spectrum.

The exciton in the system interacts with the lattice
degrees of freedom, that is, with the phonon modes of
the bulk host material, which are assumed to be in a
thermal state. We assume that phonons have a typical
super-Ohmic spectral density with dependence o< w? at
low frequencies, which is typical for bulk solid-state en-
vironments [56, 57]. The phonon high-frequency cut-off,
which may be related to the Debye frequency or to meso-
scopic system size [55, 58], is the largest frequency scale
of the problem; hence, the time span of the phonon reser-
voir memory is short compared to typical time scales of
the problem. For a QD, this cut-off is at several ps™1,
which is indeed much larger than the exciton decay rate
or optical Rabi frequency in the weak excitation regime
(~ns™1).

The emitter is modeled as a two-level system driven
by a classical laser beam with the bosonic reservoir cou-
pled via an independent-boson Hamiltonian [36, 59]. The
ground and excited system states are denoted |G) and
| X), respectively, and the bare transition energy between
them is hwy. Phonon modes are labeled by their spec-
tral branch A\ and wave vector k and described by the
creation and annihilation operators b;k, bk, with the
corresponding frequencies wy . The Hamiltonian of the
system is

H = Ho + Hint,

where H, describes the system, the free phonon subsys-
tem and the system-phonon interaction, while Hi,; ac-
counts for the optical driving.

In the frame rotating with the laser frequency wr,, the
first part is

Ho = hlwo — wi] |X)(X] + Hp (1)
+ BX) (XY (90 + 95600k ) -
Ak

where gy denotes the coupling constant between the
emitter and a phonon mode and

Hpn = > hwx kb) bk (2)
Ak

is the free-phonon Hamiltonian. The coupling to the
phonon reservoir is characterized by the spectral density,

J) = lgrkl” 0 (w—wrk), (3)
Ak



or by the memory function

o(t) = /OOO dw Ju()o;) (e_i”t [n(w) +1] 4+ ei“tn(w)) (4)
5>
Nk

where n(w) is the Bose distribution and ny x = n(wx k)
is the number of phonons in the mode (A, k).

The overall strength of the carrier-phonon coupling is
quantified by the Huang-Rhys parameter [36]

FHR:‘/OOOdeLS’;) :Z

2k

I\ Ek

2
(e—iw/\,kt [nak + 1]+ ei“’*”“tn,\,k) )
W,k

2
I\ k

Wk

The second contribution to the Hamiltonian describes
the interaction between laser light and the emitter, where
the optical driving strength is characterized by the Rabi
frequency €. In the rotating frame and rotating wave
approximation, this reads

=~ L (16X + X)) o)

In addition, spontaneous emission is described by the
standard Lindblad dissipator,

£ [0] = (16)/XI01X)(61 - 5 (10(x.0} ) ,

where + is the emission rate, {A, B} = AB+ BA, and O
denotes an arbitrary operator.
The system evolves according to the master equation

H;

where
Lo[O) = — [Ho, O] + L&) 0] (M)

represents the unperturbed (free) evolution of the system
and

L (0) = 5 (Hiu.O)

accounts for the optical excitation and will be treated as
a perturbation in the weak excitation regime of interest.
The optical spectrum is given by

S(w) = Re /O " dreieenT () (s)

with the steady-state first-order autocorrelation function

G(1) = (04(0)o (7)), 9)

where we use the fact that the system is stationary and

introduce the standard transition operators o, = ol =

|X) (G| which are written here in the Heisenberg picture
and in the rotating frame. The total scattering intensity

1S

Lot = / h dwS(w) = 7G(0). (10)

— 00

III. THEORY OF THE RF RESPONSE WITH
PHONONS

In this section, we present a method for calculating the
RF spectrum of a quantum emitter coupled to phonons
to the second order in the laser driving. Prior to this, we
introduce some formal definitions.

We denote the formal solution of Eq. (6) as

pt+7) =L [p(t)],

which, together with Eq. (6), defines the propagator L.
generated by Lo + Li. The propagator depends only
on the time interval because the system is stationary.
Although primarily defined for the density matrix, the
equation of motion, as well as the propagator, can be
extended to the entire Liouville space of operators on
the system (emitter and phonons) Hilbert space, which
we will exploit in the following. As is customary, we refer
to propagators and generators, that is, operators acting
on the Liouville space, as superoperators.

We will also use the decomposition of operators in the
emitter basis,

0= > [0y, (11)

i,j=G,X

where O;; are operators on the Hilbert space of the
phonon subsystem.

A. System evolution and autocorrelation function
in the polaron picture

By applying the quantum regression theorem, Eq. (9)
can then be written in the form

G(1) = Tr(|G)(X|L, [p°|X)(G])
= Trph<X|£‘r [pS|X><GH |G>’ (12)

where p is the steady state of the system. In the final
step, we have split the total trace in Eq. (12) into par-
tial traces over the emitter and phonon degrees of free-
dom, Tr = Trg Trpn, and explicitly taken the former. It
should be noted that the regression theorem is applied
only with respect to the optical reservoir (spontaneous
emission process) for which the Markovian approxima-
tion works perfectly, while the phonon reservoir is treated
exactly.

To evaluate the autocorrelation function to order QZ2,
the propagator is expressed as a second-order Born ex-
pansion

te
Lomy = £+ [ ancl 1ag (13)
t

te t1
+ / dt / dto L, 0L 1L, 4
t t



where the terms correspond to successive orders of 2.

Here, E(TO) denotes the propagator of the unperturbed
evolution, generated by Lg, that is,

%c,ﬁ‘”o =Loc"0. (14)

Here and in the following, we adopt the convention that
all superoperators act on all terms to their right, so we
can omit brackets.

The emitter-phonon coupling in the Hamiltonian of
Eq. (1) is removed by the unitary transformation [59]

Tp = |G)(G| + [ X)(X]D {grk} , (15)

which defines the polaron frame of reference in which
the excited state of the emitter is dressed with a lattice
deformation restoring the lowest-energy configuration in
the presence of interaction. Here D is the displacement
(Weyl) operator, with {gx r} representing the full set of
coupling constants,

g
D{grx} —expz (giibik—wiib k)

In addition, it is convenient to perform the calculations
in the interaction picture with respect to free phonon
Hamiltonian, defined by the usual transformation

V(t) = exp (¢Hpnt/h) . (16)
For an operator O(t), the transformed operator is
O(t) = V(&) TeO) TV (1). (17)

The corresponding superoperator /jtf,ti that propagates
the state from ¢ to ¢ is, consistently, defined by

th’tio - (18)
V() To (Lo TRV (B)OV(8) Tr ) THV (1),

The transformed free propagator is defined in the same
way,

ET(fg)tiO =V(t)Tp (Eg)zti TLVI(#)OV ()T ) TLV (%)

By direct differentiation and using Eq. (15), Eq. (16),
and Eq. (7) one finds

d - _o
ZL0 = LoL{0 (19)
with the generator

LoO = 7% [HO, 0} + L9, (20)
where Hy = —hA|X)(X] and

LE90 = —2{|X)(X], 0}
+9|G(GIDHgr (1) }OxxD{grk()}. (21)

Here
D{gxk(t)} = V() D{gr s}V (#), (22)

with g\ k(t) = grre™ ', and A = wy, — (wo — Aps)
is the detuning between the laser frequency and the
polaron-shifted transition frequency @y = wg — Apg, with
the polaron shift Aps = 37, AR

Note that Hy has become trivial, with the coupling and
free-phonon contribution removed by the polaron trans-
formation and interaction picture, respectively. The price
one pays for this simplification is, on the one hand, a triv-
ial time dependence in the displacement operator and, on
the other hand, a much more involved modification of the
dissipator. The latter is indeed reminiscent of the Franck-
Condon principle: spontaneous emission leaves the lat-
tice in a state adapted to the excited electronic state
(polaronic dressing), which is a displaced state with re-
spect to the lattice ground state in the absence of charge
excitation.

Egs. (19)—(21) yield simple closed equations for three
components of an operator,

Lip|X0(GlO = A= 2 D x)(Glo,  (23w)
Lop|GYXO = (T2 6y X0,  (23b)
L:y|G){G|O = |G)(G|O. (23c)

The fourth equation is more involved
Ly v X)(X]O = e[ X)(X]O (23d)

#2166l [ 7D (g (1)}Oxx Dlgralr).

However, the last term does not contribute to the auto-
correlation function.

At the same time, the generator of the optical coupling
is transformed as

Li)O(t) = V(t) Te (L) TV ()OV(6) Te ) THV (1)
= 2 [Hua(0),000)] (24)
with

~ _ h

Hi(t) = = = (IGHXID {gr (D)} +hoc.) . (25)

These transformations preserve the form of the Born ex-
pansion, Eq. (13),

te
Lo =LY, + / dt, £, Ly () LY, (26)
173 _ B
/ dtl/ dto L0, L (t1) L, L1 (8) L0, + ...
t

Finally, inverting the definition in Eq. (18), we express
L; by L, in Eq. (12) and write the autocorrelation func-



tion in terms of transformed quantities,
G(r) = Trgn (X | THVI(7) (27)
X (;10) (r) + A (T)) V(r) Tp‘ G>
= Trpn [DHgr(n)} (A¥6 () + A52(0)] |
where we define two contributions for further reference,

AD (1) =L+.0|X)(G|% x (0) D{gr x },
AUD(7) =L50| G) (Gl x (0)D{grk}-

In the last step of Eq. (27) we use the explicit form of
the unitary operators Tp and V given by Egs. (15) and
(16), respectively, apply the identity DT {g\x}VT(7) =
VT(7)D {gr x(7)}, following directly from Eq. (22), and
then take advantage of the cyclic property of the trace.
Note that, at this point, the autocorrelation function is
expressed in terms of phonon operators only.

(28a)
(28Db)

B. Steady state in the polaron picture

The next step is to find the relevant XX and GX com-
ponents of the steady state density matrix 5%, which ap-
pear in Egs. (28). We find the steady state by formally
propagating the initial state of the system from the far
past. This is done up to the required second order in {2
using the Born expansion given by Eq. (26). Note that
terms off-diagonal in the emitter basis (emitter coher-
ences) appear only in odd orders, while the diagonal ones
(emitter occupations) contribute only in even orders.

In zeroth order, i.e., without optical driving, the steady
state of the system is the emitter ground state and the
thermal equilibrium state of the phonon reservoir,

FS0() = |G)(Clpr.

This state is obviously invariant under the unperturbed
evolution £(©)

We write first order contribution, using the relevant
term of Eq. (26), in the form

t
pED() =/ dt L1, L (1) 550 (1)
—0o0

Then, we explicitly apply Eq. (24), Eq. (23a), and
Eq. (23b), which yields
~(S,1 ~(S,1)*
ORI 0 (29)
i [t (24in)
DY dtre~(FHA) 1) 50 DT (g, k(1))

— 00

q (S, (s,
while p(GG)( t) = pg(;)(t) = 0.
The second-order term from Eq. (26), is

t
P00 = [l L) h).

Again, we apply Eq. (24) explicitly, which leads to
terms proportional to |G)(G| and |X)(X]. According to
Eq. (28a), only %y is needed for the correlation func-
tion up to the second order. This is given by Eq. (23d),
where only the simple first term contributes. Altogether,
we get

QQ t ty

pex ()= / dye 1) /
— 00 — 00
x D{grx(t1)} prD' {gx r(t2)} + h.c.,

dtze—(%-i-iA)(h—tz)

which, after interchanging the variables in the “h.c.”
term, can be reduced to

2 t t
_%/ dtle—(%—iA)(t—h)/ dtze—(%-‘riA)(t—tQ)

x D{gak(t1)} prD" {gax(t2)} . (30)

C. Autocorrelation function

The following evaluation of Eq. (27) proceeds in two
steps: First, we calculate the quantities flgg ) to the
second order in 2, and then we average over the phonon
reservoir.

In Eq. (28a), p%y is already in the second order, so
/37,0 must be taken in the zeroth order. This is given
again by Eq. (23a), which immediately yields

2
I) Q / dt e~ 7—zA (7— t1) / dt 6 +1A

x D{gxx(t1)} prD' {grr(t2)} D{gr(0)}.
(31)

Eq. (28b) contains gy, which is of the first order in
Q. Further evolution must, therefore, be evaluated to the
first order. Since the operator proportional to |G)(G| is
invariant under £ [see Eq. (23c)|, applying the first-
order term from Eq. (26) again amounts to explicitly
applying L; and propagating the resulting off-diagonal
terms via Eq. (23a). This yields

AL (r) = T/OT dtle—(l—m)(r—tl)/_ooo diye(FHid)tz
><D{Q/\,k(tl)}PTDT{g,\,k(fz)}D{g,\,k(O)}t )
32

Egs. (31) and (32) differ only by the integration limits
and can easily be combined. Substitution into Eq. (27)

yields
Q2 ’ : ’
/ du/ du e~ 2 (wtu)+iA(u—u’) (33)

xCTuu)



where we introduced new variables u = 7 — t1, v = —t
and defined a phonon correlation function

C(r,u,u') = (34)

= (D{gr (=)} D{gx x(0)} D {gr k(7)} D{gr k(T — u)}) ,

with angular brackets denoting the thermal average,
<O> = TI‘ph pTO.

To calculate the correlation function C(7, u,u") we first
iterate twice the Baker-Campbell-Hausdorff formula

edeB = eAtBezlABl for [A,B] =, c€ C

to pairs of displacement operators in Eq. (34), which
yields

C(r,u,u’) = (35)
= (D{=gr k(=) + 9r k(0) — g & (7) + gr k(T —w)})

2
X exp ilmz

[eiwkﬁku/ _|_ e—iwkku
Ak

+eiw,\,k‘r (1 _ 61;(.«))\7ku/) (1 _ efiwx,ku):| } .

The average is then calculated according to the relation
[59]

I\ k
Wk

Gk ’2

(D (Gap)) = Sl B[S

which for Gy x = —gx k(—t')+9xk(0) —gx k(T)+ 916 (T—
u), as in Eq. (35), yields

(D{=gxa k(=) + gr(0) — gr k(7)) + gr (T —w)})

1 2
= exp [Z (nA7k+2> ‘W
2]

W Wk
By rearranging terms and invoking Eq. (4), Eq. (34)
finally takes the form

(36)

— "N ET + 6lwx,k(’f*u)

C(r,u,u') =
exp [~2¢(0) + ¢(—u') — ¢(—1 — ) (37)
+o(u—T7—u') + ¢(=7) = p(u —7) + ¢(u)].

As expected, the optical properties of a system interact-
ing with the phonon bath in a thermal state (which is
Gaussian) are fully characterized by the bath spectral
density or, equivalently, its memory function.

It is interesting to note that the imaginary parts of
the memory functions in Eq. (37) stem from the phase
factor in Eq. (35), which is a consequence of the non-
commutativity of the phonon operators in the BCH for-
mula. This means that we have captured the quantum-
ness of the noise originating from the bosonic reservoir in
the most fundamental sense. The corresponding classical

model would be defined by the Hamiltonian in Eq. (1)
in the interaction picture with respect to phonons and
with by i, b; , being a conjugate pair of complex random
variables. The same can be written in a more intuitive
manner by defining quadrature amplitudes

1 . )

Xiae = 3 (b,\,keﬂe*v’c + b:r\,kew““) , (38a)
1 . .

Xoak = 5 (Bae B e ) (38b)

where we have decomposed g = |g>\,k|ei9*v’“. Then the
Hamiltonian with classical noise is

Hpy = hlwo — wi] [ X)(X] + hAw(t)| X) (X], (39)
where
Aw(t) = Z 219k [X1,2 k cOS(wx kt) + Xo g sin(wy kt)]
Nk

describes classical random fluctuations of the energy
which are due to the coupling to the environment. For
the classical model to be equivalent to the quantum one,
we need to require that X ) g, X2 ) r are independent,
equally distributed Gaussian random variables with zero
mean and with variances

1
(XTan) = (X3 \p) = 1 (2nye +1),

matching those of the quantum quadrature operators in
the thermal state. These variances are somewhat artifi-
cial as they do not follow from the most obvious physical
model of classical oscillators, which would result in clas-
sical statistics and energy equipartition. We opt for this
definition because we want to separate the consequences
of the fundamental non-commutativity of quantum noise
operators from the differences between the quantum and
classical statistics, which are, of course, also fundamental
but much more obvious. With this choice, the classical
memory function ¢'(t) is consistent with the quantum
one, with the non-commutativity-related imaginary part
discarded, i.e., ¢'(t) = Re ¢(t).

The result for the classical (commutative) case can
alternatively be obtained by directly computing the
autocorrelation function from the evolution driven
by the parametrically time-dependent Hamiltonian in
Eq. (39) and then averaging over the random variables
Xl,/\,ka X27,\’k, which yields

O(T7 Uu, u/) = <67'.¢'(O,7u')7i<1>(7-77-7u)> )

where

t2
q)(tl,tz) = / thw(t)
ty
This links the present result to our previous studies of
systems subjected to classical noise [43], where the noise
affects the optical response via the phase accumulated
due to random fluctuations of the transition energy.



D. RF spectrum

The structure of the RF spectrum becomes clear if
we split the four-time correlation function from Eq. (37)
into three parts, C(7,u,u’) = Cei(u, u’) + Cpep (7, u, u') +
Cy¢ (7, u,u’), where

Ca(u, ') = e~ 20O Fo(—u)+e(w)

(
Copsp (T, u, 1) = e~ 200 Fe(=u)+o(u) [8¢(_7) - 1} , (40b)

Cie(r,u,u') = e~ 20(0)+o(—u)+o(u)+(-7) (40c)

« [epu=T—u)=p(u=7)=¢(—T—u’) _ 1} ,

These contributions lead to the corresponding decompo-
sition of the autocorrelation function and the RF spec-
trum, following Eq. (33) and Eq. (8), respectively.

The first component, Cej(u, v’), is 7-independent and is
responsible for an unbroadened central line in the spec-
trum, Se(w), located at the laser frequency (which is
zero frequency in our rotating frame). This line corre-
sponds to elastic scattering of photons, reproducing a
standard result for a weakly excited system [1]. The in-
tensity of this line is obtained by substituting Cy(u,u’)
into Eq. (33) and then to Eq. (10),

702 _
Iel = T|§|26 2¢(0)7 (41)
where

¢ = /0 dse—(1/2=i8)s+(s) (42)

The contribution Cleb(7,u,u’), Eq. (40b), is short-
lived as a function of 7, because ¢(—7) — 0 as 7 > 1/w,
which is a picosecond time scale for a QD and even
shorter for atomically localized defects. Therefore, it
gives rise to a broad spectral feature Spep, (w), which
is the phonon sideband predicted for RF in the pulsed-
excitation regime [42] and also known from other types
of spectroscopy on zero-dimensional structures. Here, the
low-frequency part corresponds to energy loss at photon
scattering, which means phonon emission, while the high-
frequency side reflects energy gain or phonon absorption.
Using Cpsh(T, u,u’) in Eq. (33) and substituting this into
Eq. (8), we get

Spsb (w)

_ ICl > —t(w—wr)T o(7)
7%/700&@ [e 71}, (43)

where we used the symmetry ¢*(7) = ¢(—7). The inten-
sity is, from Eq. (10),

Lo = I (e¢(°) . 1) . (44)
Note that the shape of the phonon sideband is the same
as in the absorption spectrum [35]. The total weight of

the sideband is also in the same relation to the inten-
sity of the central line. However, in the present case

both these features attain a scaling factor that reflects
the dependence of the total scattering intensity on the
spectral position of the laser with respect to the funda-
mental transition and phonon sideband, contained in the
factor |]?.

To study the properties of the last contribution,
Eq. (40c), we focus on the expression in the final square
bracket for 7 > 1/w. and u,u’ > 0 (cf. the limits of
integration in Eq. (33)). Then ¢(—7 — «’) < 1 but the
first two memory functions in the exponent have non-
zero values for arbitrary 7, along the lines u = 7 and
u =7 + u'. This term is therefore long-lived, up to the
exponential cutoff at 7 ~ 1/v4. Thus, it will lead to a
narrow spectral feature of width Aw ~ . Such a feature
does not appear in absorption or emission and is there-
fore unique for light scattering spectroscopy. It has not
been predicted in the previous works on resonance flu-
orescence of systems coupled to phonons [42], which we
attribute to the inherently low spectral resolution in that
study, where pulsed excitation was assumed. The narrow
feature is the quantum counterpart of the inelastic scat-
tering line that emerges in the scattering spectrum for a
system perturbed by classical noise [43, 44].

To gain more detailed insight into the low-frequency
part of the spectrum, we first note that the broad side-
band does not vary much in the relevant very narrow
range of frequencies and provides an essentially constant
background (“pedestal”), which can be approximated by

Spsb(w) = Spsb(0) (45)

0?2 o
= §|§|2672¢(0)\/ dr |:6¢(T) — 1} .

— 00

On this background, the narrow spectral feature de-
scribed by Eq. (40c) develops. Here, the expression in
square brackets is nonzero only in narrow ranges of u
around 7 and 7 + ' because the memory function is
short-lived compared to the effective span of the integral
over u, which is 1/4. Moreover, except for a negligibly
narrow range of v’ near 0, these two parameter areas are
disjoint so that they contribute additively, and one may
write

pPlumr—u )= pu—r)=g(—r—u') _q
~(A+B)j(u—7—1u')— (A—B)o(u—T1),

where
A= /OO dssinh ¢(s), B = /OO ds[cosh ¢(s) — 1]. (46)

We neglect also the remaining memory functions in
Eq. (40c), which are non-zero only in a very narrow range
around zero time and therefore yield only a minor correc-
tion to the overall value of the spectral function at low
frequencies. The integrations in Eqgs. (33) and (8) then
become trivial. Including the PSB “pedestal”, the result



Sit(w) 4 Spsb(0) = (47)

L
2T

+B{2+

(w—w)?
(7/2)* + (w — @o)?
/2 — (w—wr)? ]}
(/2 + (w—@0)? ]}’

where we have approximated |£|? ~ 1/[(y/2)? + A?], con-
sistent with the above approximations. Note that the
width of these spectral features is always determined by
the lifetime of the excited state and depends neither on
the strength of the phonon couplings nor on the temper-
ature.

In the leading order in the phonon coupling (~ |gx &|?
or linear in ¢(t)), one has B = 0 and

A= /00 ds¢(s) = 27T];BT lim I (w)

w—0 w3 ’

(48)

—0o0
which is non-zero and finite for the actual carrier-phonon
spectral density. Simultaneously, the neglected memory
functions in the exponents of Eq. (40c) lead to higher-
order corrections, hence Eq. (47) becomes the rigorous
lowest-order result. The form of the spectrum in this
limit therefore has a Fano shape,

(97/2 +w — @)?
(7/2)% + (w — @)
with the Fano factor ¢ = —A/(vy/2). It follows that
for weak phonon coupling the inelastic scattering is com-
pletely suppressed at the laser frequency. In this regime,
the magnitude of the spectrum in the low-frequency
range scales linearly with temperature. This limit cor-
responds to the single-phonon scattering regime.

For arbitrary phonon couplings, one finds the low-
temperature asymptotics of A again given by Eq. (48),
up to corrections on the order of 7% and higher, while

B ksT\>[.. J(w)]?
B‘”"(n) [ili% i

up to corrections o< 7°, where n = 272/3, which means
that at sufficiently low temperatures the spectrum is
dominated by the Fano component. At high tempera-
tures, the integrands in Eq. (46) are dominated by the
largest values of ¢(t) > 1, when sinh ¢(t) ~ cosh ¢(t) ~
exp[o(t)]/2, so that A ~ B and Eq. (47) yields a sim-
ple Lorentzian on a flat “pedestal”. The coincidence of
the low-temperature asymptotics with the single-phonon
limit allows us to interpret the low-temperature Fano-like
spectrum as resulting predominantly from single-phonon
processes, while the transition to the Lorentzian shape
is due to the growing contribution from multiple-phonon
scattering.

The intensity of the inelastic part of the RF spectrum
stemming from the contribution in Eq. (40c) is again ob-
tained directly from Eq. (10),

2Re¢
Ilf = Iele¢(0) < ’y|£‘2 - 1) . (50)

Slf(w) + Spsb(O) oxX (49)

In general, this includes not only the narrow feature dis-
cussed above but also a broad correction to the phonon
sideband, which becomes important at strong phonon
coupling.

The total intensity of the scattered light, Ii.¢, is there-
fore

T 0
Lot = Lol + Ipsb + L = We Reg (51)

The parameter &, defined in Eq. (42), governs not only
the total scattering intensity, but also the intensities of
the three components that we have separated in our anal-
ysis, via I. This crucial parameter can be decomposed
into two parts, £ = &' + £”, with

/A — d 7(V/272A)8:7 2
€)= [ dse o )

and
£(A) = / dse= 02780 (90 1) (59)
0

The first component yields

’ 7/2 77 112
et =Gy ar =210

This Lorentzian dependence on detuning is known from
the standard theory of resonance fluorescence and ac-
counts for the excitation via the central line (fundamen-
tal transition). The second contribution gives rise to

Re¢” =~ %/ dse'™s <6¢(8) - 1) X Spsh(wr, — A),

where we omitted the damping with the rate v/2 in
view of the very strong localization of the integrand in
the range s <« 1/74. Thus, this part reproduces the
phonon-sideband, but inverted with respect to the laser
frequency, i.e., absorption-like. It accounts for the pho-
ton scattering via phonon-assisted excitation.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results of numerical cal-
culations of the RF spectrum and discuss its properties.
For simplicity, we assume the phonon spectral density in
the form

F
J(w) = —HQR wle W20, (54)

we

which accounts for the dependence x w? at low frequen-
cies and a high-frequency cutoff at w = w., while dis-
regarding structural details irrelevant to the discussed
phenomena. In the simulations, we set v = 1 ns~! and
we = 1 ps™'. We will present the spectra relative to
the characteristic magnitude of Sy = Q2/(v%w.) and the
intensities related to Iy = Q%/~2.
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FIG. 1. RF spectrum at weak phonon coupling (Fur = 0.1),
in a broad (left) and narrow (right) spectral ranges around the
resonance (notice the different units on the frequency axes).
(a,b) Spectra at various detunings, as shown, at a fixed tem-
perature 7' = 4 K. (c,d) Spectra at various temperatures, as
shown in (c), for a fixed laser detuning A = . Vertical gray
belts schematically show the position of the central elastic-
scattering line. Dashed lines with colors corresponding to
the respective solid lines present the RF spectra in the weak
coupling limit for the same parameters of temperature and
detuning. (e,f) As in (c,d) but for classical noise.

A. Moderate phonon coupling

Fig. 1 shows the RF spectra for a moderate phonon
coupling, where we set Fyr = 0.1. Figs. 1la,b present the
results at a fixed temperature T = 4K. In Fig. 1a we see
the interplay between the broad PSB, the narrow inelas-
tic feature, and the central elastic-scattering line (marked
here and elsewhere as a vertical grey bar). Fig. 1b zooms
in on the narrow spectral range around the resonance,
where the PSB is essentially flat and together with the
narrow feature creates a Fano-like feature as predicted
in Sec. IIID: As the detuning decreases, the RF spec-
trum evolves from a mostly absorptive shape (red line),
through dispersive (green line), to a spectral dip (inverted
Lorentzian) around the laser frequency (blue line) for res-
onant excitation. At the same time, the overall intensity
drops down as the excitation gets increasingly detuned,
which is simply due to reduced excitation efficiency, gov-
erned by the prefactor in Eq. (47). In the weak coupling
limit (dashed lines), the RF spectrum shows exact Fano
form with entirely suppressed scattering at the laser fre-
quency (w = wr,).

Figs. 1c,d present the temperature dependence of the
RF spectra at slightly detuned excitation (A = «), in
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FIG. 2. Total scattering intensity as a function of the excita-
tion detuning from the fundamental transition for broad (a)
and narrow (b) detuning ranges, for a weak phonon coupling
(Far = 0.1) at different temperatures. Dashed lines corre-
spond to the weak coupling limit.

a broad and narrow spectral range, respectively. As the
temperature increases, the PSB grows and becomes more
symmetric due to enhanced phonon absorption, as is
known e.g. in absorption spectroscopy [35]. The growth
of scattering in the low-frequency sector (Fig. 1d) is ap-
proximately linear in temperature, in accordance with
Eq. (47) and Eq. (48). As predicted by our general the-
ory, the width of the inelastic profile remains constant.

Figs. le,f present the RF spectrum for classical Gaus-
sian noise, for the same parameters as in Figs. 1c,d. Clas-
sical noise generates a symmetric broad sideband, since
the difference between phonon absorption and emission
is not applicable in this case. Alternatively, one can say
that classical noise is a (renormalized) high-temperature
limit of the quantum case, where the sideband becomes
symmetric. Comparing Fig. 1f with Fig. 1d, one can see
that the inelastic feature is the same in the quantum and
classical regimes, showing Fano behavior in both these
cases. Fano resonances are known to be generic for sys-
tems in which a discrete transition is located on a broad
background and hence also to appear in purely classical
systems [46, 60—-68] that may be as simple as coupled
damped oscillators [68-72]. The present result demon-
strates this feature for an inherently quantum two-level
system in which the spectral background originates from
environmental noise, the classical and quantum regimes
of which can be treated on equal footing, showing no
difference in the spectral properties between these two
cases.

Fig. 2 presents the total scattering intensity as a func-
tion of the detuning of the laser frequency from the
polaron-shifted fundamental transition. At small detun-
ings, Fig. 2a, a Lorentzian profile appears, in accordance
with Eq. (51) and Eq. (52). In a wider range of detun-
ings (Fig. 2b), the inverted broad phonon sideband is
reproduced, as predicted by Eq. (53). Note that the in-
tensity of this phonon-assisted scattering is three orders
of magnitude weaker than that at direct excitation. The
scattering intensities shown in Fig. 2 show temperature
dependence that reflects the transfer of spectral weight
from the central line to phonon sidebands: the scattering
intensity at nearly-resonant excitation decreases, while
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FIG. 3. RF spectrum for a strong phonon coupling (Fur =

5), in a broad (left) and narrow (right) spectral range around
the resonance. Results are shown at fixed temperatures T'.
Vertical gray belts denote again the elastic-scattering, central
line.

at phonon-assisted excitation it increases as the temper-
ature grows. In addition, the increasing intensity at red-
detuned excitation reflects the growing contribution from
phonon absorption processes.

B. Strong phonon coupling

Fig. 3a,b shows the RF spectrum for a strong phonon
coupling (Fygr = 5) at two different temperatures. In the
broad spectral range (Fig. 3a,c) the RF spectrum again
consists of a central, unbroadened line, a broad PSB,
and a narrow inelastic scattering feature, the structure
of which is better visible in the narrow spectral range
in Fig. 3b,d. Compared to the weak coupling case (Fig.
1), the overall amplitude of the RF spectrum is reduced
by several orders of magnitude (see also Fig. 5, discussed
below). This is a consequence of the strongly reduced
efficiency of nearly-resonant exciton due to transfer of
spectral weight from the fundamental to phonon-assisted
transitions. For strong coupling, this exponential effect
dominates over the relative enhancement of the phonon
sidebands. Moreover, there is a greater contribution of
multiphonon processes, which results in a broadening of
PSB. The most striking difference between the weak- and
strong- coupling cases is the disappearance of the Fano
profile, which is replaced by a Lorentzian at T = 4 K
(Fig. 3b). Indeed, at this temperature and for the se-
lected value of the H-R factor, the parameters A and B
in Eq. (46) become nearly equal, hence Eq. (47) yields
a Lorentzian, as discussed in Sec. IIID. As follows from
that discussion, at low temperatures single-phonon pro-
cesses dominate even for strong coupling and the Fano
line profile should be recovered, which is indeed the case,
as shown in Fig. 3d. One feature of the spectra in
Figs. 3a,c that may seem surprising is the increase of the
phonon sidebands with decreasing temperature. This is
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FIG. 4. Total scattering intensity for a strong coupling
(Far = 5) as a function of the detuning A in broad (a) and
narrow (b) spectral ranges.
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FIG. 5. Total intensity of the RF spectrum ([iot), as well
as intensity of the elastic (Io1) and inelastic (Ipsp + Lif) parts
at nearly-resonant excitation (A = ). (a) Dependence on
temperature for a fixed Fur = 5. (b) Dependence on the
Huang-Rhys factor for a fixed temperature T' = 4 K.

due to the double effect of the temperature-induced redis-
tribution of spectral weight between the central line and
the sidebands: On the one hand, the sidebands are rela-
tively weaker at lower temperatures, while on the other
hand, exactly for this reason, the excitation via the cen-
tral line becomes more efficient. The latter turns out to
dominate at strong phonon couplings. As we will see be-
low, the relative intensity of phonon-assisted scattering
decreases at lower temperatures, as expected. Finally,
we note that for a strong phonon coupling, the width
of the inelastic feature is again temperature-independent
and equal to /2.

The total scattering intensity at Fyr = 5 is presented
in Fig. 4. The intensity at nearly resonant excitation, cor-
responding to excitation via central line, is much lower
than for a weak coupling, as most of the spectral weight
is transferred to sidebands. Strong temperature depen-
dence leads to suppression of scattering under such ex-
citation conditions already at T = 7 K. Excitation via
phonon sidebands leads to similar peak scattering in-
tensity as for weak coupling, although the maximum is
shifted to higher detunings and the range of detunings
leading to efficient scattering is considerably extended
due to multi-phonon processes. The slight decrease of
the scattering intensity at growing temperatures may be
attributed to redistribution of the spectral weight over
a growing range of frequencies enabled by multiphonon
processes at higher temperatures.

Fig. ba shows the decomposition of the scattering in-
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FIG. 6. Map of the relative contribution of I. to Iio for
different Huang-Rhys factors and temperatures. Results for
A = ~. Dashed vertical and horizontal black lines at corre-
spond to the situations from Fig. 5 (a) and (b), respectively.

tensity into elastic and inelastic (phonon-induced) com-
ponents, the latter comprising both the low-frequency
feature and the broad phonon sideband, as a function of
temperature at a nearly resonant excitation for strong
phonon-coupling. These results confirm that, at such
strong phonon couplings, the scattering is dominated by
the inelastic component and that the total intensity of the
RF spectrum drops with growing temperature in the sub-
Kelvin to few Kelvin range. The growth of the scattering
intensity at higher temperatures is due to the increasing
efficiency of phonon-assisted excitation, which become
the dominating excitation channel even in this nearly-
resonant regime. The cross-over between the regimes of
dominant elastic and inelastic scattering around Fyr = 1
is visible in Fig. 5b, where we show the same decomposi-
tion at a fixed temperature as a function of the phonon
coupling strength.

Fig. 6 presents the intensity of the elastic line relative
to the total scattering intensity as a function of temper-
ature and H-R factor at nearly resonant excitation. As
expected, the transition to the regime where the scat-
tering to phonon sidebands strongly dominates over the
elastic contribution (I. < 0.017¢, red area) shifts to

lower phonon couplings as the temperature grows, al-
though this change is not very strong.

V. CONCLUSIONS

We have shown that the low-excitation RF spectrum
of a two-level system coupled to a bosonic bath (e.g.
phonons) with a super-Ohmic spectral density shows a
Fano-like profile of inelastic scattering intensity near the
resonant energy for moderately strong phonon couplings.
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The Fano profile in the independent-boson model de-
scribing this system is characteristic of the resonance
fluorescence and does not appear in other types of lin-
ear or nonlinear spectroscopy, where phonon effects are
manifested only by broad phonon sidebands, which exist
also in fluorescence. The amplitude of the Fano feature
grows linearly with temperature. However, because of
the super-Ohmic character of the phonon reservoir, its
width depends solely on the exciton life time. In the
weak-coupling limit (single-phonon processes), the spec-
tral profile becomes an exact Fano shape, where resonant
light scattering is totally suppressed. For strong phonon
couplings, the Fano profile disappears due to the growing
role of multi-phonon processes, unless the temperature is
very low.

Phonon effects are manifested also in the dependence of
the total scattering intensity on the excitation frequency,
where broad sidebands appear due to phonon-assisted
excitation. The total scattering intensity, as well as its
distribution into elastic and inelastic (phonon-assisted)
components, reflects the impact of phonons on both ex-
citation and scattering efficiency, leading to different be-
haviors in different spectral ranges and for different cou-
pling strengths. However, in general, the contribution of
phonon-assisted scattering grows with both the coupling
strength and the temperature, as expected.

We have also formally captured the quantumness of the
phonon noise by tracing it back to the non-commutativity
of noise observables. We have shown that the Fano fea-
ture persists in the classical (commutative) limit of clas-
sical Gaussian noise with an appropriate spectral density.

On the fundamental level, our results indicate the pres-
ence of a characteristic feature that appears only in the
particular type of spectroscopy of a solid-state quantum
emitter. The formalism itself relies on the description of
the reservoir via its spectral density and can easily be ap-
plied to any system described by the independent boson
model. From the perspective of applications, in view of
the growing role of resonance fluorescence in characteriz-
ing and exploiting the quantum properties of solid-state
emitters of light, the presented study may be important
for designing and optimizing quantum light sources.
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