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Streszczenie

Niniejsza rozprawa doktorska składa się z cyklu trzech powiązanych tematycznie publika-
cji. Celem pracy jest teoretyczne zbadanie wpływu fluktuacji w półprzewodnikowym ciele
stałym na widmo rezonansowej fluorescencji emitera osadzonego w materiale.

RF znalazła liczne zastosowania w badaniu właściwości emiterów na ciele stałym (w
szczególności kropek kwantowych) oraz w generowaniu światła o pożądanych właściwo-
ściach dla informatyki kwantowej. W szczególności RF jest wykorzystywana w zminia-
turyzowanych, scalonych kwantowych układach hybrydowych, w których modulowana
akustycznie kropka kwantowa pełni rolę przetwornika między sygnałem akustycznym a
optycznym. Niemniej jednak właściwości optyczne emitera – a co za tym idzie jego widmo
RF – znajdują się pod niekorzystnym wpływem szumu otoczenia, który jest nieunikniony
w układach ciała stałego. Zatem, aby tworzyć wysokiej jakości urządzenia kwantowe, nie-
zbędne jest ilościowe zbadanie tych wpływów na emiter.

W pierwszej kolejności zamodelowano szum telegraficzny oraz biały, obliczając wyni-
kające z nich zmiany w widmie RF oraz intensywności jego poszczególnych linii spektral-
nych. Następnie model szumu białego rozszerzono na przypadek emitera modulowanego
przez powierzchniowe fale akustyczne, co odpowiada warunkom w kwantowych układach
hybrydowych. Ilościowo wykazano, jak szum ogranicza efektywną akustyczną kontrolę
rozpraszania światła na emiterze, a także zdefiniowano wymagania dotyczące stabilności
sygnału akustycznego, niezbędne, aby jego właściwości pozostały możliwe do odczytania
w widmie RF. Ostatecznie zamodelowano szum otoczenia jako fonony akustyczne. W tym
przypadku w widmie RF odkryto profil Fano, którego istnienie zależy od temperatury
otoczenia oraz siły sprzężenia fonon–emiter.

Podsumowując, w niniejszej pracy doktorskiej zamodelowano rozmaite rodzaje szu-
mów, identyfikując charakterystyczne parametry, które mogą służyć do ilościowego opisu
wpływu danego rodzaju fluktuacji na kształt widma RF. Otrzymane wyniki będą przy-
datne w diagnozowaniu rodzajów szumu wpływających na eksperymentalnie badane emi-
tery półprzewodnikowe. W przypadku emitera modulowanego akustycznie, niniejsza roz-
prawa doktorska otwiera drogę do badań nad wpływem szumu na korelacje, w tym kore-
lację drugiego rzędu, między konkretnymi pasmami widmowymi. Z kolei model emitera
oddziałującego z fononami akustycznymi może zostać w przyszłości rozszerzony na inne
rodzaje fononów, na przykład te występujące w materiałach dwuwymiarowych.
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Abstract

This PhD thesis comprises a series of three thematically related publications. The aim of
this work is to theoretically investigate the impact of fluctuations in a solid-state semi-
conductor on the resonance fluorescence (RF) spectrum of an emitter embedded within
the material.

RF has found numerous applications in studying the properties of solid-state emit-
ters (particularly quantum dots) and in generating light with desirable properties for
quantum information science. Specifically, RF is used in miniaturized, on-chip quantum
hybrid systems, in which an acoustically modulated quantum dot acts as a transducer
between acoustic and optical signals. Nevertheless, the optical properties of the emitter,
and consequently its RF spectrum, are adversely affected by environmental noise, which
is inevitable in solid-state systems. Therefore, to develop high-quality quantum devices,
it is necessary to quantitatively study these influences on the emitter.

Firstly, telegraph and white noise were modeled, and the resulting changes in the RF
spectrum and the intensities of its individual spectral lines were calculated. Subsequently,
the white noise model was extended to the situation of an emitter modulated by surface
acoustic waves, as is the case in quantum hybrid systems. It has been quantitatively shown
how noise limits the effective acoustic control of light scattering on the emitter, and the
stability requirements for the acoustical signal to remain resolvable in the RF spectrum
have also been defined. Finally, the environmental noise was modeled as acoustic phonons.
In this case, a Fano profile was discovered in the RF spectrum, the existence of which
depends on the ambient temperature and the strength of the phonon–emitter coupling.

In conclusion, in this PhD thesis, various types of noise have been modeled, identifying
characteristic parameters that can be used to quantitatively describe the impact of a given
type of fluctuation on the shape of the RF spectrum. The obtained results will be useful in
diagnosing the types of noise affecting experimentally-tested semiconductor emitters. In
the case of an acoustically modulated emitter, this dissertation paves the way for research
on the impact of noise on correlations, including the second-order correlation, between
specific spectral bands. In turn, the model of the emitter interacting with acoustic phonons
can be extended in the future to other types of phonons, for instance, those occurring in
two-dimensional materials.
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1 Wstęp

Niniejsza rozprawa doktorska pt.: Rezonansowa fluorescencja emitera kwantowego w ciele

stałym z fluktuacjami energii przejścia jest pracą teoretyczną składającą się z cyklu trzech
tematycznie powiązanych publikacji [P1]-[P3]. Opisują one półprzewodnikową, samoro-
snącą kropkę kwantową (w [P3] rozszerzono również zagadnienie na centrum defektowe)
znajdującą się w ciele stałym, w którym występują fluktuacje. Szum otoczenia wpływa
na rozpraszanie światła w materiale, a tym samym na widmo rezonansowej fluorescencji
(RF) emitera. Celem rozprawy doktorskiej jest zbadanie i ilościowe opisanie tego wpływu.
Tematyka publikacji [P1]-[P3] dotyczy zatem fizyki ciała stałego, optyki kwantowej, teorii
układów otwartych oraz procesów stochastycznych.

RF [1, 2] jest rodzajem oddziaływania światła z materią intensywnie wykorzysty-
wanego w badaniu rozmaitych typów układów [3–7]. Ponadto RF umożliwia tworzenie
nieklasycznego światła o unikalnych właściwościach koherencji [8, 9] oraz generowanie
rozgrupowanych [10] i nierozróżnialnych [11] fotonów, co czyni ją atrakcyjną dla infor-
matyki kwantowej. Ostatnie dwie dekady rozwinęły zastosowania RF do charakterystyki
właściwości emiterów w ciele stałym, takich jak pojedyncze molekuły [12], nadprzewo-
dzące kubity [13, 14] czy półprzewodnikowe kropki kwantowe [11, 15, 16]. W przypadku
tych ostatnich emiterów RF wykorzystywana jest m. in. do odczytywania stanów spi-
nowych kropki kwantowej [17–19] (wraz z ich dynamiką [20, 21]), splątywania spinu z
pojedynczym fotonem [16, 22] oraz generowania pojedynczych [23] czy nierozróżnialnych
[11] fotonów.

Modulacja kwantowego emitera zwiększa kontrolę nad procesem rozpraszania świa-
tła [24–26]. Z drugiej strony, obserwacja RF z emitera sprzężonego z falowodem [27]
pokazuje, że można konstruować źródła pojedynczych fotonów w zminiaturyzowanych
układach. Szczególnym zastosowaniem, łączącym modulację kropki kwantowej i miniatu-
ryzację urządzenia, są akustooptyczne kwantowe układy hybrydowe [28–31]. Emiter pełni
tam funkcję przetwornika między sygnałem akustycznym i optycznym. Tym pierwszym
są fale powierzchniowe modulujące emiter z częstością rzędu GHz i mające długość nawet
o 5 rzędów wielkości mniejszą niż dla fali świetlnej [29], co czyni je dobrymi kandydatami
na nośnik informacji wewnątrz zminiaturyzowanego, półprzewodnikowego układu scalo-
nego. Drugim sygnałem (służącym do przesyłu informacji na duże odległości) jest widmo
RF, z którego kształtu da się odczytać właściwości fal akustycznych [30, 31]. Również
tutaj światło jest rozgrupowane [30, 32], co wskazuje na fakt, że kropka kwantowa jest
źródłem pojedynczych fotonów [23], które można zastosować do informatyki kwantowej
[33]. Mieszając dwa precyzyjnie dobrane mody fal akustycznych, da się kontrolować wła-
ściwości rozproszonego fotonu, zarówno w dziedzinie częstotliwości [30], jak i czasu [31].
Opis teoretyczny fal akustycznych można rozszerzyć do poziomu kwantowego, traktując
je jako fonony [34, 35], co otwiera perspektywę zaawansowanych zastosowań, takich jak
kodowanie w dziedzinie czasu i częstości [36, 37], kwantowa transdukcja akusto-optyczna
[38], kwantowe multipleksowanie [39] czy odtwarzanie statystyki fononów na podstawie
widma RF [35]. Niemniej jednak, istotnym ograniczeniem kropek kwantowych jest fakt,
że zachowują one wspomniane atrakcyjne właściwości światła jedynie dla temperatur bli-
skich 0 K. Obiecującym rozwiązaniem tego problemu jest inna grupa emiterów, takich
jak centra defektowe [40]. Przykładowo, pojedyncze defekty heksagonalnego azotku boru
generują światło antyzgrupowane również w temperaturze pokojowej [41–43], a nawet
znacznie wyższej (800 K) [44].

To, czy rozważany emiter będzie miał pożądane właściwości optyczne, zależy w dużej
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mierze od jego odporności na fluktuacje otoczenia, które zaburzają poziomy energetyczne
w układzie. W przypadku RF wiele prac zbadało wpływ fluktuacji amplitudy [45–47],
częstości [45, 48, 49] i fazy [45, 48, 50–52] wiązki laserowej. Natomiast mniej uwagi poświę-
cono szumowi pochodzącemu z ciała stałego, który może być spowodowany fluktuacjami
pochodzącymi od ładunku [53, 54], spinu [55] czy drgań sieci krystalicznej (fononów)
[56, 57]. Te ostatnie były intensywnie badane, ale w kontekście widm fotoluminescencyj-
nych [58, 59], absorpcyjnych [60] oraz spektroskopii mieszania czterech fal [61]. Wpływ
fononów na widmo RF zaprezentowano w [62], niemniej jednak praca dotyczy pobudzania
laserem impulsowym, a w niniejszej rozprawie doktorskiej skupiono się na laserze o pracy
ciągłej, który jest wykorzystywany w kwantowych układach hybrydowych [30, 31].

W publikacji [P1] opisano wpływ szumu telegraficznego i białego na kształt widma RF
oraz intensywność poszczególnych linii widma. Wyniki dla szumu białego zostały wykorzy-
stane do przypadku emitera modulowanego akustycznie [P2], gdzie określono maksymalne
natężenie szumu, dla którego akustyczna kontrola rozpraszania światła jest jeszcze efek-
tywna oraz podano warunek, jak długo sygnał akustyczny musi być stabilny, by można
było odczytać jego właściwości z widma RF. Natomiast wpływ fononów na widmo RF
zaprezentowano w [P3], gdzie odkryto profil Fano, którego istnienie zależy od temperatury
otoczenia i siły sprzężenia fononów z emiterem.

Układ niniejszego opracowania, wprowadzającego w tematykę publikacji [P1] - [P3],
jest następujący. W rozdziale 2 przywołano definicję półprzewodnika (z którego zbudo-
wany jest emiter), opisano jego oddziaływanie ze światłem oraz omówiono rodzaje emite-
rów rozważanych w doktoracie. Ponadto zdefiniowano zjawisko RF przy omawianiu reguł
wyboru dla półprzewodnikowego emitera. W rozdziale 3 zaprezentowano dwa podstawowe
czynniki otoczenia uwzględnione w publikacjach [P1] - [P3], które wpływają na właści-
wości optyczne emitera. Są to fluktuacje otoczenia oraz modulacja akustyczna. Następnie
przedstawiono model układu (rozdział 4). Podstawowe fakty na temat widma RF, wraz z
wpływem modulacji akustycznej i fononów, zostały omówione w rozdziale 5. W kolejnej
części opracowania znalazła się teoria niezbędna do wyznaczenia widma RF, tj. ewolucja
układu wraz z układem odniesienia oraz przybliżeniami, w jakich jest liczona (rozdział
6), zastosowanie kwantowego twierdzenia Laxa o regresji do wyznaczenia funkcji autoko-
relacji z otrzymanej ewolucji układu (rozdział 7) oraz teoria fotodetekcji, łączącą funkcję
autokorelacji z widmem RF (rozdział 8). Następnie zaprezentowano najważniejsze wyniki
otrzymane w publikacjach [P1]-[P3] oraz wnioski z pracy doktorskiej (odpowiednio roz-
działy 9 i 10). Ostatecznie podano szczegóły manuskryptów tworzących rozprawę, wraz z
opisem wkładu autora rozprawy w każdą z tych prac.
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2 Oddziaływanie światła z emiterem

2.1 Struktura pasmowa półprzewodnika

Półprzewodnik to jeden z najważniejszych rodzajów ciała stałego obok metali i izolatorów.
Zgodnie z zasadami mechaniki kwantowej, elektrony w materiale mają ściśle określone po-
ziomy energetyczne. Duża liczba takich poziomów o zbliżonych energiach tworzy pasmo,
między którymi powstaje przerwa energetyczna [63]. Najistotniejsze jest pasmo walen-
cyjne, dla którego elektrony są związane z jądrami atomowymi materiału oraz pasmo
przewodnictwa, zawierające elektrony swobodnie przemieszczające się po ciele stałym,
warunkujące właściwości elektryczne ciała stałego.

W temperaturze 0 K, półprzewodnikowe pasma walencyjne i przewodnictwa są odpo-
wiednio w całości zapełnione i puste [63]. Wówczas układ znajduje się w stanie podsta-
wowym, o najmniejszej możliwej energii. Niemniej jednak półprzewodnik, w odróżnieniu
od izolatora, ma na tyle małą przerwę energetyczną [63], że elektrony mogą zostać łatwo
wzbudzone do pasma przewodnictwa pod wpływem czynników zewnętrznych, takich jak
np. temperatura, światło czy ciśnienie. Ponadto liczbę elektronów swobodnych (a tym
samym ich właściwości elektryczne i optyczne) można precyzyjnie kontrolować za pomocą
wspomnianych czynników zewnętrznych [64–66], co czyni te materiały atrakcyjnymi w
rozmaitych dziedzinach techniki, m. in. informatyce, elektronice, energetyce czy automa-
tyce.

2.2 Optyka półprzewodników

W przypadku oświetlenia półprzewodnika zachodzi wiele rozmaitych zjawisk. Niemniej
jednak, w kontekście niniejszej rozprawy doktorskiej, szczegółowego omówienia wymaga
sekwencja absorpcji i emisji oraz rozpraszanie światła.

Absorpcja pojedynczego fotonu może skutkować przekazaniem jego energii elektronowi
z pasma walencyjnego, który przechodzi do innego poziomu w paśmie przewodnictwa. Aby
to przejście elektronu miało miejsce, różnica energii między poziomami musi być równa
energii zaabsorbowanego fotonu. Po wzbudzeniu elektronu do pasma przewodnictwa w
paśmie walencyjnym tworzy się puste miejsce. Efekt jest taki, jakby pojawiła się tam
dodatnio naładowana cząstka, zwana dziurą [67]. Wówczas powstaje para elektron-dziura
oddziałujących ze sobą Coulombowsko nośników ładunku (tzw. ekscyton). Niemniej jed-
nak po pewnym czasie ma miejsce rekombinacja, w wyniku której wzbudzony elektron
przechodzi z powrotem do pasma walencyjnego, a tym samym następuje emisja sponta-
niczna fotonu i anihilacja tego ekscytonu. Wówczas materiał świeci z powodu uprzedniego
oświetlenia, stąd zjawisko to nazywa się fotoluminescencją. Rekombinacja zachodzi po
czasie życia ekscytonu te, zależnym nie tylko od rodzaju półprzewodnika, lecz także od
czynników zewnętrznych, takich jak temperatura czy ciśnienie [68]. Ze względu na dłu-
gość średniego te fotoluminescencję historycznie podzielono na fosforescencję, dla której
te > 10 ns i fluorescencję (jest ona przedmiotem niniejszego doktoratu), dla której te < 10
ns.

W ogólności energie fotonu zaabsorbowanego (ℏω1) i wyemitowanego (ℏω2) przez pół-
przewodnik nie muszą być równe. W takiej sytuacji (rysunek 2.1a) elektron wzbudzony
do pasma przewodnictwa zajmuje tam poziom o niekoniecznie najniższej możliwej energii.
Następnie odbywa się proces relaksacji, w którym elektron przechodzi do niższego poziomu
w ramach pasma przewodnictwa, oddając część swojej energii do półprzewodnika i gene-
rując drgania sieci krystalicznej (mechanizm powstawania fononów w półprzewodniku
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Rysunek 2.1: Półprzewodnik oddziałujący z fotonem o częstości ω1. Pasmo przewod-
nictwa i walencyjne oznaczono odpowiednio jako PP i PW. (a) Sytuacja, w której wzbu-
dzony elektron podlega relaksacji (czerwona strzałka) do niższego poziomu. Analogiczny
proces zachodzi dla dziury (niebieska strzałka). Wyemitowany foton ma wówczas częstość
ω2 < ω1. (b) Sytuacja, w której zaabsorbowany i wyemitowany foton mają identyczne
częstości.

dominuje nad ich absorpcją w reżimie niskich temperatur [63, 69], który jest rozważany w
tej rozprawie doktorskiej). Analogiczna sytuacja może mieć miejsce dla dziury w paśmie
walencyjnym. Ostatecznie zachodzi rekombinacja ekscytonu, ale wyemitowany foton ma
mniejszą częstość niż zaabsorbowany. Może się jednak zdarzyć, że foton zaabsorbowany i
wyemitowany będą miały identyczne energie (rysunek 2.1b). Oprócz emisji spontanicznej
występuje jeszcze emisja wymuszona. Zachodzi ona pod wpływem fotonu o częstości ω2,
padającego na wzbudzony elektron. Wówczas wyemitowany foton ma identyczne właści-
wości i kierunek, co foton wymuszający emisję.

Kolejnym istotnym zjawiskiem towarzyszącym oddziaływaniu światła z materią jest
jego rozpraszanie, które na potrzeby rozprawy doktorskiej można rozważyć przy pomocy
falowej natury światła. W przeciwieństwie do sekwencji absorpcji i emisji, proces roz-
praszania jest procesem natychmiastowym. Ponadto, częstość fali świetlnej padającej na
półprzewodnik nie musi odpowiadać różnicy w poziomach energetycznych materiału (w
takiej sytuacji zjawisko rozpraszania w języku kwantowym wyjaśnia model stanów wirtu-
alnych). Jeżeli częstości fali rozproszonej i padającej są równe, to ma miejsce rozpraszanie
elastyczne. Rozważana wówczas fala elektromagnetyczna, pobudzająca elektrony i jądra
atomowe półprzewodnika do drgań w przeciwnych kierunkach, generuje dipole elektryczne,
będące źródłem światła rozproszonego. Ponieważ rozmiar emitera jest znacznie mniejszy
niż długość fali świetlnej (por. podrozdział 2.3), do opisu tego oddziaływania światła z
materią stosuje się model rozpraszania Rayleigha. Światło rozproszone tutaj jest zawsze
koherentne (jego własności są spójne ze światłem padającym), o ile rozważa się ten pro-
ces na pojedynczej cząstce. Jeżeli z kolei częstości światła padającego i rozproszonego
są różne, ma miejsce rozpraszanie nieelastyczne. Wówczas światło może, choć nie musi,
być koherentne. W sytuacji emitera rozważanego w pracy doktorskiej źródłem rozpra-
szania nieelastycznego jest fakt oddziaływania szumu otoczenia na dipole elektryczne w
materiale, co zmienia ich częstość drgań [P1].

W zjawisku RF emitera pobudzanego intensywnym światłem laserowym dominuje
mechanizm sekwencji absorpcji i emisji, natomiast dla słabego światła (jak w niniejszej
rozprawie doktorskiej) dominuje proces jego rozpraszania.
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Rysunek 2.2: Obraz kropki kwantowej InGaAs/GaAs wykonany za pomocą skaningowej
transmisyjnej mikroskopii elektronowej. Zdjęcie pochodzi z pracy [70] i zostało zaadapto-
wane na mocy licencji Creative Commons CC BY.

Rysunek 2.3: Struktura pasmowa kropki kwantowej, narysowana w oparciu o [71].
Pasmo przewodnictwa i walencyjne oznaczono tutaj odpowiednio jako PP i PW.

2.3 Emitery i układy dwupoziomowe

Popularnym półprzewodnikowym emiterem w ciele stałym są samorosnące kropki kwan-
towe [72], których rozmiary są rzędu kilkudziesięciu nanometrów [70, 71]. Można je wytwo-
rzyć, nanosząc (np. metodą epitaksji z wiązki molekularnej albo epitaksją z fazy gazowej
z użyciem związków metaloorganicznych) na warstwę podłoża pewnego półprzewodnika
(np. GaAs) inny materiał, którego przerwa wzbroniona nie wykracza (energetycznie) poza
przerwę wzbronioną podłoża (dla GaAs jest to np. InGaAs). Po nałożeniu kilku warstw
atomowych nowego półprzewodnika na skutek różnic w rozmiarach stałych sieciowych
tych dwóch materiałów tworzą się naprężenia, co prowadzi do podziału nowonaniesio-
nego materiału na warstwę zwilżającą (o jednoatomowej grubości, przylegającą do pod-
łoża) i wykształcające się na niej samorosnące kropki kwantowe, będące wyspami no-
wego półprzewodnika (rysunek 2.2, pochodzący z pracy [70]). Jest to tzw. mod wzrostu
Stranskiego-Krastanowa. Na koniec na tak powstałe kropki kwantowe nakłada się mate-
riał półprzewodnika stanowiącego podłoże. W obrębie samorosnącej kropki kwantowej na
skutek różnicy w przerwie energetycznej materiału emitera i otoczenia tworzy się studnia
potencjału, blokująca ruch elektronów i dziur we wszystkich trzech wymiarach. Wewnątrz
studni potencjału poziomy energetyczne nośników ładunku są skwantowane, podobnie jak
w atomie, natomiast stany energetyczne pochodzące od warstwy zwilżającej oraz otoczenia
tworzą pasma (rysunek 2.3). Wówczas elektrony wewnątrz studni potencjału zachowują
się podobnie jakby były związane z atomem, stąd kropka kwantowa, będąca strukturą
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Rysunek 2.4: Dozwolone przejścia między pasmem walencyjnym (PW) i przewodnictwa
(PP) dla polaryzacji prawoskrętnej (σ+, spin 1), lewoskrętnej (σ−, spin -1) i liniowej (π,
spin 0). Poziomy dla elektronów oraz dziur lekkich/ciężkich oznaczono literami odpowied-
nio e oraz ld/cd. Rysunek zaadaptowany z [75], za odpowiednim pozwoleniem.

kwazi-zerowymiarową, nazywana jest sztucznym atomem [72–74].
Nośniki ładunku w materiale oraz fotony posiadają orbitalny i spinowy moment pędu

(spin). Struktura pasmowa w półprzewodnikowych kropkach kwantowych skutkuje rozsz-
czepieniem poziomów dla dziur, dzieląc je na ciężkie i lekkie [75, 76]. Zatem foton, aby
wzbudzić elektron z kropki kwantowej do poziomów pasma przewodnictwa, musi mieć
nie tylko energię równą różnicy poziomów, lecz także zachować całkowity moment pędu
układu foton-elektron. Dozwolone przejścia, wraz ze spinami, jakie przyjmują elektrony i
dziury, są zdefiniowane przez tzw. reguły wyboru, przedstawione na rysunku 2.4, zaadop-
towanym z [75]. Widać zatem, że ograniczenie możliwych przejść w kropce kwantowej do
jednego (tj. zredukowanie emitera do układu dwupoziomowego) jest możliwe po użyciu
światła monochromatycznego o ustalonej częstotliwości (np. lasera) i polaryzacji kołowej.
Różnica energii między stanem podstawowym a wzbudzonym takiego emitera związana
jest z tzw. częstością przejścia fundamentalnego. Dla półprzewodnikowych kropek kwan-
towych energia przejścia jest rzędu 0.1–1 eV, co odpowiada częstości przejścia fundamen-
talnego rzędu 102–103 THz, czyli światło pobudzające emiter musi być z zakresu bliskiej
podczerwieni. Jeżeli częstość tego światła jest równa lub bardzo bliska tej częstości przej-
ścia, ma miejsce zjawisko RF [1, 2]. Przykładowo, w pracach [P1] i [P2] różnice między
częstością przejścia a częstością lasera pobudzającego emiter są rzędu GHz. Natomiast
w pracy [P3] sięgają rzędu THz, aczkolwiek tutaj częstość przejścia jest przesunięta z
powodu polaronów (por. podrozdział 6.3).

Z kolei przykładem centrów defektowych są wakancje (tj. puste przestrzenie w sieci
krystalicznej zamiast atomu) oraz domieszki innego atomu niż materiał otoczenia. Wów-
czas w przerwie energetycznej ciała stałego tworzą się dodatkowe zlokalizowane poziomy
energetyczne (zamiast skwantowanych poziomów wewnątrz studni potencjału), pułapku-
jące elektrony z pasma przewodnictwa oraz dziury z pasma walencyjnego. Istnieje wiele
sposobów na tworzenie tego typu emiterów. W przypadku wakancji można bombardować
próbkę półprzewodnika wysokoenergetycznymi elektronami [77] lub jonami [78], bądź wy-
grzewać próbkę do bardzo wysokiej temperatury (przykładowo, dla heksagonalnego azotku
boru jest to ponad 1100 K [43]). Jeśli z kolei chce się domieszkować półprzewodnik, można
to uczynić np. za pomocą implantacji jonów [79].
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3 Oddziaływanie emitera z otoczeniem

Na właściwości optyczne emitera znaczący wpływ ma jego interakcja z otoczeniem. Niniej-
szy doktorat skupia się na temacie występującego w każdym rzeczywistym ciele stałym
szumu, który zaburza energię przejścia emitera. Drugim czynnikiem jest modulacja aku-
styczna emitera przez fale powierzchniowe, rozchodzące się w sposób kontrolowany po
podłożu [28–31].

3.1 Szum

Fluktuacje w półprzewodniku mają rozmaite przyczyny. Jedną z nich są defekty, two-
rzące dodatkowe poziomy w przerwie energetycznej, pułapkujące elektrony z pasma prze-
wodnictwa [53]. Wówczas tak złapany nośnik ładunku jest dodatkowym źródłem pola
elektrycznego, które zmienia położenie poziomów energetycznych pobliskiego emitera, a
tym samym jego energię przejścia fundamentalnego. Naprzemiennie ładująca się i rozła-
dowująca pułapka ładunkowa przyczynia się zatem do szumu telegraficznego, dla którego
częstość przejścia przełącza się między dwiema wartościami. Z kolei dużą liczbę puła-
pek ładunkowych, szybkoprzełączających się (w porównaniu z czasem życia ekscytonu),
można modelować w przybliżeniu jako szum biały. Innym przykładem szumu są fluk-
tuacje spinu, znajdującego się w atomie magnetycznej domieszki wewnątrz emitera [55].
Dzięki oddziaływaniu wymiennemu między spinem a ekscytonem w emiterze, energia pary
elektron-dziura może przyjmować kilka dozwolonych wartości, pomiędzy którymi nastę-
puje przełączanie wraz z fluktuacjami spinu.

3.1.1 Fonony

Niezerowa temperatura powoduje drgania sieci krystalicznej podłoża zawierającego emi-
ter. Kwanty tych wibracji (fonony), analogicznie do fotonu (kwantu fali elektromagne-
tycznej), mają zdefiniowany wektor falowy k [63] (wyznaczający kierunek rozchodzenia
się tego zaburzenia w krysztale) oraz długość fali wynoszącą 2π/|k|.

Rozważmy trójwymiarowy kryształ (bulk) złożony z N komórek elementarnych, w
których występuje po r atomów drgających wokół swoich położeń równowagi. Analizując
układ równań ruchu dla każdej z cząstek, otrzymuje się 3r różnych rozwiązań dla poszcze-
gólnych modów fononów, których wektory falowe przyjmują N różnych wartości. Nieza-
leżnie od r, dla rozważanego kryształu zawsze wystąpi jeden mod fononów akustycznych
podłużnych (gdzie atomy drgają w kierunku zgodnym z rozchodzeniem się zaburzenia)
oraz dwa mody poprzeczne (kierunek drgań atomów jest prostopadły do propagacji za-
burzenia w sieci krystalicznej) [63]. Te trzy mody opisują fale dźwiękowe rozchodzące się
w ciele stałym, stąd kwanty tych wibracji nazywają się fononami akustycznymi.

Ponadto, jeśli r ≥ 2 (jak np. dla GaAs), to pojawi się 3(r − 1) modów dla fononów
optycznych [63], z czego r − 1 to mody podłużne, a 2(r − 1) to mody poprzeczne. W
przeciwieństwie do fononów akustycznych, gdzie wszystkie atomy wykonują drgania w tę
samą stronę względem ich położenia równowagi, dla fononów optycznych różne atomy z
tej samej bazy drgają w przeciwnych kierunkach [63].

Każdy z 3r modów fononów ma nieco inną zależność dyspersyjną, wiążącą częstość z
wektorem falowym. Rysunek 3.1 przedstawia tę zależność dla GaAs. W tym przypadku
r = 2, zatem występują tu po 3 gałęzie spektralne dla fononów akustycznych i optycznych.
W przypadku tych pierwszych częstość fononów w pobliżu punktu Γ strefy Brillouina
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Rysunek 3.1: Dyspersja energii poszczególnych modów fononów, na przykładzie GaAs,
dla określonych k z I strefy Brillouina. Częstość 1 cm−1 odpowiada energii w przybliżeniu
0.125 meV. Wynik teoretyczny (linia ciągła) pochodzi z obliczeń ab initio przedstawionych
w [80] i udostępnionych za stosownym pozwoleniem, natomiast wynik eksperymentalny
(kropki) przedstawiono w [81].

(gdzie k ≈ 0) wynosi w przybliżeniu

ωλ,k ≈ vλ|k|, (3.1)

gdzie vλ to prędkość rozchodzenia się w ciele stałym fali mechanicznej odpowiadającej
fononowi akustycznemu z modu o gałęzi spektralnej λ. Z kolei fononom optycznym od-
powiadają trzy gałęzie spektralne bliskie częstości około 300 cm−1 dla punktu Γ (rysunek
3.1).

Emiter na ciele stałym, rozważany w niniejszej pracy doktorskiej, znajduje się w reżi-
mie niskich temperatur (tj. rzędu kilku kelwinów). Wówczas w otoczeniu emitera dominują
fonony akustyczne i zakładamy, że tylko one oddziałują z emiterem, a ich częstości osiągają
wartość rzędu THz [P3]. Istnieją dwa mechanizmy interakcji tych fononów z emiterem.
Pierwszy z nich to sprzężenie potencjału deformacyjnego [71], polegające na tym, że atomy
półprzewodnika, odchylone z położenia równowagi za sprawą fononów akustycznych, mo-
dyfikują strukturę energetyczną emitera, a tym samym jego częstość przejścia. Drugim
mechanizmem jest sprzężenie piezoelektryczne [71], pochodzące od drgań akustycznych,
generujących polaryzację materiału piezoelektrycznego (np. GaAs), co skutkuje powsta-
niem dodatkowego, długozasięgowego pola elektrycznego.

3.2 Modulacja akustyczna

W przypadku modulacji akustycznej emitera podłoże jest pobudzane do drgań przez tzw.
przetwornik międzypalczasty. Składa się on z metalowych elektrod naprzemiennie pod-
łączonych do jednej z dwóch szyn (rysunek 3.2), które są zasilane napięciem przemien-
nym. Półprzewodniki tworzące kwantowy układ hybrydowy często należą do grupy III-V
[30, 31]. Mają one zatem właściwości piezoelektryczne, stąd podłoże w obszarze elektrod
wykonuje wibracje w kierunku osi OZ (niebieskie strzałki na rysunku 3.2) pod wpływem
przyłożonego napięcia elektrycznego (jest to tzw. odwrotny efekt piezoelektryczny). Tak
powstałe powierzchniowe fale akustyczne (o długościach rzędu µm, odpowiadających geo-
metrii elektrod) rozchodzą się w kierunku osi OX (zielona strzałka na rysunku 3.2). Dla
zwykłego przetwornika międzypalczastego wibracje rozchodzą się zarówno w dodatnim,
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Rysunek 3.2: (a) Przetwornik międzypalczasty (niebieski) generuje wibracje pod-
łoża piezoelektrycznego (niebieskie strzałki). Drgania rozchodzą się w kierunku zielonej
strzałki. Rysunek układu na podstawie [82], zaadaptowany za stosownym pozwoleniem.
(b) Drgania podłoża generują siły ściskające (góra) i rozciągające (dół) emiter.

jak i w ujemnym kierunku osi OX, niemniej jednak w celu zaoszczędzenia energii two-
rzy się tzw. jednofazowe przetworniki jednokierunkowe, aby wymusić tylko jeden kierunek
rozchodzenia się tych fal.

Tak wygenerowane fale akustyczne tworzą naprężenie, które naprzemiennie ściska i
rozciąga emiter znajdujący się na wibrującym podłożu (rysunek 3.2b), co skutkuje pe-
riodycznymi zmianami położenia poziomów energetycznych emitera, a tym samym jego
energii przejścia. W kwantowych układach hybrydowych częstość fal akustycznych mieści
się w przedziale od kilkuset MHz do kilku GHz [30].
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Rysunek 4.1: Schemat układu emitera modulowanego akustycznie. Szum otoczenia
wpływa na rozpraszane światło, które następnie przechodzi przez filtr, a na końcu dochodzi
do detektora. W publikacjach [P1]-[P3] analizowane są różne wersje tego układu.

4 Model układu

W pracy doktorskiej opisano emiter słabo pobudzany przez laser o fali ciągłej i często-
ści ωL (rysunek 4.1). Światło to jest spolaryzowane kołowo, dzięki czemu emiter można
rozważać jako układ dwupoziomowy (por. podrozdział 2.3) o stanach podstawowym |G⟩
i wzbudzonym |X⟩. Różnica energii między tymi stanami emitera wynosi ℏω0, gdzie ω0

to częstość przejścia fundamentalnego (rysunek 4.1). Dla półprzewodnikowych emiterów,
ω0 jest rzędu 102 - 103 THz, natomiast odstrojenie ∆, zdefiniowane jako

∆ = ωL −ω0, (4.1)

jest rzędu maksymalnie THz, a więc dużo mniejsze od ω0 (por. podrozdział 2.3), spełniając
tym samym warunek dla RF. Widma badane w rozprawie doktorskiej obejmują taki sam
(lub maksymalnie o jeden rząd większy) zakres częstości wokół ωL. Następnie światło
rozproszone przechodzi przez filtr (może być to np. interferometr Fabry–Perota [30, 83])
o szerokości spektralnej Γf , ustawiony na częstość ωf i ostatecznie jest wykrywane przez
detektor, który odtwarza widmo RF.

Przyjmujemy, że energie stanu podstawowego i wzbudzonego wynoszą odpowiednio
EG = 0 i EX = ℏω0, zatem hamiltonian emitera (zdefiniowany w przestrzeni Hilberta Hem

rozpiętej na wektorach bazy {|G⟩, |X⟩}), ma postać

Hem = ℏω0 |X⟩⟨X| . (4.2)

Do opisu oddziaływania światła z emiterem pasuje przybliżenie dipolowe, ponieważ
długość fali światła laserowego jest o kilka rzędów wielkości dłuższa niż wielkość emi-
tera (por. podrozdział 2.3). Wówczas hamiltonian tego oddziaływania ma postać energii
potencjalnej dipola elektrycznego, tj.

Hint(t) = −d ·E(t), (4.3)

gdzie (hermitowski) operator d momentu dipolowego jest równy

d = dGG |G⟩⟨G|+dGX |G⟩⟨X|+dXG |X⟩⟨G|+dXX |X⟩⟨X|, (4.4)

natomiast wektor pola elektrycznego lasera E(t) to

E(t) = E0e
−i ωL t +E

∗
0e

i ωL t. (4.5)

Dla uproszczenia rozważań zakładamy symetrię sferyczną emitera, tj. dGG = dXX = 0.

10



Modulację akustyczną emitera (por. podrozdział 3.2) uwzględniamy, dodając perio-
dyczny w czasie człon ∆ωac(t) do częstości przejścia ω0 [30, 31], którego amplituda jest
rzędu GHz, a więc znacznie mniejsza od ω0. Hamiltonian modulacji (należący również do
przestrzeni Hem) ma zatem postać

Hac(t) = ℏ∆ωac(t) |X⟩⟨X| . (4.6)

W rozprawie doktorskiej uwzględniamy maksymalnie dwa mody fal akustycznych [P2]

∆ωac(t) = AωA cos(ωA t) + B ωA cos(2ωA t+ ϕ), (4.7)

gdzie A,B to bezwymiarowe parametry amplitud poszczególnych modów fal, a ϕ to faza
między tymi modami.

Szum zaburzający częstość przejścia emitera (por. podrozdział 3.1) można modelować
klasycznie, dodając do ω0 losowo zmieniający się w czasie człon ∆ns(t), tak jak w pracach
[P1], [P2]. Wówczas hamiltonian fluktuacji również należy do przestrzeni Hem i ma postać

Hns(t) = ℏ∆ωns(t) |X⟩⟨X| . (4.8)

Z drugiej strony, szum da się zamodelować kwantowo jako fonony (por. podrozdział 3.1.1)
i wówczas, konstruując hamiltonian szumu, trzeba rozszerzyć przestrzeń Hilberta układu
o Hph. Ponieważ temperatura układu jest niska (por. podrozdział 3.1.1), energie fononów
są dalece niewystarczające, aby wzbudzić elektron ze stanu |G⟩ do |X⟩. Wówczas fonony
sprzęgają się z każdym z tych stanów niezależnie, tj. poprzez zmianę energii stanu wzbu-
dzonego względem stanu podstawowego (|G⟩ jest traktowany jako punkt odniesienia) i
można zastosować model niezależnych bozonów [84, 85], w którym hamiltonian szumu
jest równy

Hns(t) = Hph + ℏ |X⟩⟨X|
∑

λ,k

[

gλ,kb
†
λ,k + g∗λ,kbλ,k

]

, (4.9)

gdzie
Hph = ℏ

∑

λ,k

ωλ,kb
†
λ,kbλ,k. (4.10)

Operatory kreacji i anihilacji fononów akustycznych o wektorze falowym k z gałęzi spek-
tralnej λ (por. podrozdział 3.1.1) oznaczone są odpowiednio jako b†λ,k i bλ,k. Miarą sprzęże-
nia fononu w danym modzie z emiterem jest współczynnik gλ,k, zależny m. in. od rozmiaru
emitera oraz prędkości fononu w półprzewodniku. Po zdefiniowaniu gęstości spektralnej

J(ω) =
∑

λ,k

|gλ,k|
2 δ(ω − ωλ,k), (4.11)

można wprowadzić współczynnik Huanga-Rhysa [84]

FHR =

∫ ∞

0

dω
J(ω)

ω2
, (4.12)

będący parametrem określającym siłę sprzężenia całego rezerwuaru fononowego z emite-
rem.
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Rysunek 5.1: Widmo RF (w skali logarytmicznej) otrzymane eksperymentalnie dla
różnych mocy lasera pobudzającego rezonansowo kropkę kwantową z InAs. Częstość na
osi OX jest podana względem lasera. Wynik pochodzi z pracy [19] i został pokazany za
stosownym pozwoleniem.

5 Widmo RF – podstawowe fakty

Jeżeli emiter zostanie słabo pobudzony rezonansowo (lub prawie rezonansowo) laserem,
dojdzie do rozpraszania elastycznego światła. Widmo RF dla tego emitera zawiera wów-
czas linię centralną, zlokalizowaną w częstości lasera [1], a nie fundamentalnego przejścia
(jak ma to miejsce dla standardowej fotoluminescencji). Ponadto, dla RF linia centralna
jest nieposzerzona (poza wkładem od szerokości spektralnej filtra kolekcjonującego sygnał
optyczny), a w przypadku fotoluminescencji (gdzie dominuje proces absorpcji i emisji
światła nad rozpraszaniem, por. rozdział 2.2) szerokość połówkowa linii centralnej jest
odwrotnie proporcjonalna do czasu życia ekscytonu w emiterze.

W przypadku silnego, rezonansowego pobudzania laserem, w widmie RF pojawia się
jeszcze kolejna, poszerzona linia centralna (ma to związek z dominacją mechanizmu emisji
i absorpcji fotonu nad rozpraszaniem światła, por. rozdział 2.2) oraz dwie linie boczne,
zlokalizowane symetrycznie względem częstości lasera, tworząc tzw. tryplet Mollowa [86].
Wyniki teoretyczne z [86] odtworzono w eksperymencie dla kropki kwantowej z InAs [19],
gdzie pobudzano ją światłem o różnej intensywności (rysunek 5.1). Ostry pik widoczny dla
słabych mocy jest wspomnianą nieposzerzoną linią centralną, pochodzącą z elastycznego
rozpraszania światła. Dla lasera o mocy P ≥ 216 nW w widmie zaczynają się pojawiać
pasma boczne. Zgodnie z przewidywaniami teoretycznymi [1, 86], im większa moc lasera
pobudzającego, tym linie boczne są położone dalej od siebie. Oprócz [86], reżim silnego
pobudzania był intensywnie badany w licznych pracach [3, 45–47, 52, 87–95]. Z drugiej
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Rysunek 5.2: Uśrednione po czasie i znormalizowane widmo RF dla akustycznie modu-
lowanej (pojedynczym modem) kropki kwantowej z In(Ga)As pobudzanej rezonansowo.
Wynik pochodzi z pracy [30]. Częstość na osi poziomej liczona jest względem lasera.
Wyniki teoretyczne pokrywają się z eksperymentem. Rysunek został zaadaptowany na
podstawie licencji OSA Open Access.

Rysunek 5.3: Uśrednione po czasie i znormalizowane widmo RF dla kropki kwantowej z
In(Ga)As, pobudzanej rezonansowo, w przypadku mieszania fal akustycznych, dla różnych
faz (zaznaczonych na niebiesko) między modami. Częstość na osi OX została podana
względem lasera. Wynik pochodzi z pracy [30] i został zaadaptowany na podstawie licencji
OSA Open Access.

strony, mniej pozycji uwzględnia przypadek niskiej intensywności lasera [3, 49, 96–99], co
uzasadnia podjęcie pracy doktorskiej w reżimie słabego pobudzania emitera, tym bardziej
że występuje on w kwantowych układach hybrydowych [30, 31].

W przypadku modulacji akustycznej słabo pobudzanego emitera linia centralna w
widmie RF zostanie powielona o całkowite wielokrotności częstości modulacji względem
częstości lasera [30, 32, 100] (rysunek 5.2). Aby dało się rozróżnić poszczególne linie widma
(jest to istotne w kwantowych układach hybrydowych), szerokość widmowa filtra musi być
wyraźnie mniejsza od częstości modulacji. Wówczas ma miejsce tzw. reżim rozdzielonych
pasm bocznych. Pokazano, że fotony rozpraszane na akustycznie modulowanej kropce
kwantowej są rozgrupowane [30, 32], co pozwala interpretować intensywności poszczegól-
nych linii widma jako prawdopodobieństwo rozproszenia pojedynczego fotonu z kropki
kwantowej do wybranego kanału częstości, odpowiadającego tej linii. Prawdopodobień-
stwa te ewoluują periodycznie w czasie z okresem powierzchniowych fal akustycznych
[31].
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Rysunek 5.4: (a) Widmo absorpcyjne i (b) RF dla kropki kwantowej z GaAs pobu-
dzanej rezonansowo impulsem laserowym. W obu sytuacjach widać wąską linię centralną
(odpowiadającą rozpraszaniu elastycznemu) i szerokie fononowe pasmo boczne. Rysunki
(a) i (b) pochodzą odpowiednio z [60] i [62] oraz zostały przedstawione za stosownym
pozwoleniem.

Gdy dodatkowo wygeneruje się drugi mod fal akustycznych, o częstości różnej od
pierwszego modu i o ustalonej fazie między nimi, będzie miało miejsce zjawisko tzw. mie-
szania fal akustycznych. Regulując fazę między modami fal modulujących emiter, można
precyzyjnie kontrolować (uśrednione w czasie) intensywności poszczególnych linii widma
(niebieskie strzałki na rysunku 5.3). Innymi słowy, mierząc sygnał optyczny (liczbę fo-
tonów o ustalonej częstości padających na detektor), można odczytać informację o fazie
między modami [30]. Zjawisko to nosi nazwę akustycznej kontroli rozpraszania fotonów.

Fonony oddziałujące z emiterem w ciele stałym przyczyniają się do powstania pasma
bocznego w wielu widmach optycznych, jak np. fotoluminescencji [58, 59] czy spektrosko-
pii mieszania czterech fal [61]. Tzw. fononowe pasmo boczne (jego szerokość odpowiada
częstości rzędu THz, tj. o kilka rzędów wielkości więcej niż dla linii centralnej) widać
również dla widma absorpcyjnego [60] (rysunek 5.4a), będącego odbiciem widma RF (ry-
sunek 5.4b) względem częstości rezonansowej. Tę zależność widać szczególnie dla niskich
temperatur, gdyż wtedy w półprzewodniku dominuje emisja fononów nad ich absorpcją
(por. podrozdział 2.2). Wówczas w przypadku pochłaniania fotonów przez układ najczę-
ściej oddają one energię nie tylko na wzbudzenie elektronu, lecz także na wygenerowanie
fononu (stąd na rysunku 5.4a pasmo boczne leży po prawej stronie energii przejścia). Z
kolei dla widma emisji z rysunku 5.4b pasmo fononowe leży po lewej stronie, ponieważ
podczas deekscytacji elektronu część jego energii zostaje najczęściej oddana otoczeniu
jako fonony, a tym samym wyemitowany foton ma mniejszą częstość. W miarę wzrostu
temperatury intensywność emisji i absorpcji fononów się wyrównuje, stąd obydwa widma
z rysunku 5.4 stają się symetryczne. Podsumowując, kształt tego szerokiego pasma silnie
zależy od temperatury.
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6 Ewolucja układu

Oznaczmy układ jako S. Wówczas jego hamiltonian ma postać

HS(t) = Hem +Hac(t) +Hns(t) +Hint(t). (6.1)

Należy podkreślić, że układem jest tutaj emiter (w przypadku szumu klasycznego) oraz
fonony, jeżeli bierze się pod uwagę szum kwantowy. Układ S jest w ogólności otwarty
na otoczenie E, którym jest próżnia elektromagnetyczna (jej przestrzeń Hilberta to HE).
Po zdefiniowaniu HS(t) należy wyznaczyć ewolucję tego układu. Wówczas hamiltonian
całości jest równy

Htot(t) = HS(t) +HE(t) +HSE(t), (6.2)

gdzie HE(t) to hamiltonian otoczenia, natomiast HSE(t) to hamiltonian oddziaływania
otoczenie-układ [101].

Macierz gęstości całości, ρtot(t), ewoluuje według równania Liouville’a–von Neumanna

iℏ
d ρtot(t)

dt
= [Htot(t), ρtot(t)] . (6.3)

Dla tak zadanej ewolucji, od chwili ti do tf , otrzymujemy

ρtot(tf) = U(tf , ti) ρtot(ti)U
†(tf , ti), (6.4)

gdzie

U(tf , ti) = T→ exp

(

−
i

ℏ

∫ tf

ti

dsHtot(s)

)

. (6.5)

Symbol T→ (T←) oznacza uporządkowanie czasowe hamiltonianów z kolejnych rzędów
rozwinięcia eksponenty z (6.5) w kolejności malejących (rosnących) argumentów czasu,
idąc od lewej do prawej strony.

Z rozwiązania ρtot(t) interesuje nas tylko macierz gęstości układu

ρS(t) = TrE ρtot(t), (6.6)

gdzie ślad TrE przebiega po stanach z przestrzeni otoczenia. W ogólności wyznaczenie
ρtot(tf) jest bardzo trudne, stąd przyjmujemy, że oddziaływanie otoczenia z układem jest
słabe (tzw. przybliżenie Borna). Dzięki temu można założyć, że stan początkowy (dobrze
znany) jest separowalny, tj. ρtot(ti) = ρS(ti) ⊗ ρE(ti), gdzie ρE(t) to macierz gęstości oto-
czenia. Ponadto zakładamy, że otoczenie jest znacznie większe od układu, stąd wraca ono
do swojego stanu równowagi bardzo szybko w porównaniu z dynamiką ρS(t) [101], która
wówczas nie zależy od swoich stanów przeszłych. Jest to treść tzw. przybliżenia Markowa.
Wówczas można napisać, że dla każdej chwili czasu macierz gęstości ma postać

ρtot(t) = ρS(t)⊗ ρE . (6.7)

Trzecim istotnym założeniem jest tzw. przybliżenie wiekowe, polegające na pominięciu
wyrazów ρS(t) oscylujących znacznie szybciej niż dynamika układu. Pozwoli ono na za-
chowanie dodatniej określoności macierzy gęstości układu S. Wówczas, równanie ewolucji
dla ρS(t) ma postać [101]

d ρS(t)

dt
= −

i

ℏ
[HS(t), ρS(t)] + L(se) [ρS(t)] , (6.8)
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gdzie L(se) to tzw. dyssypator Lindblada, uwzględniający emisję spontaniczną w ewolucji
układu. Dla dowolnego operatora OS z tej samej przestrzeni co ρS(t), dyssypator Lindblada
jest równy

L(se)[OS(t)] = γ

(

|G⟩⟨X|OS(t) |X⟩⟨G| −
1

2
{|X⟩⟨X|, OS(t)}

)

, (6.9)

gdzie γ = 1/te to współczynnik zaniku ekscytonu, a {A,B} = AB +BA.
Ponieważ rozważamy reżim słabego pobudzania emitera, prawą stronę równania (6.8)

można podzielić na dwa człony, oznaczające ewolucję swobodną układu i optyczne wzbu-
dzenie, traktowane jako zaburzenie. Są one równe odpowiednio

L0 [OS(t)] =−
i

ℏ
[Hem +Hac(t) +Hns(t), OS(t)] + L(se)[OS(t)], (6.10a)

L1 [OS(t)] =−
i

ℏ
[Hint(t), OS(t)] . (6.10b)

Po zapisaniu macierzy gęstości w bazie stanów emitera,

ρS(t) = ρS,GG(t) |G⟩⟨G|+ρS,GX(t) |G⟩⟨X|+ρS,XG(t) |X⟩⟨G|+ρS,XX(t) |X⟩⟨X|, (6.11)

równanie (6.8) zamieni się w układ czterech równań dla każdej z części macierzy ρS(t).

6.1 Wirujący układ odniesienia

Po wyznaczeniu ρS,GX(t) i ρS,XG(t) widać, że największy wkład do zależności czasowej
wnosi tam nieistotny fizycznie i komplikujący obliczenia człon z ℏω0. Chcąc się go po-
zbyć, trzeba przejść w rachunkach równania (6.8) do wirującego (W) układu odniesienia.
Wówczas macierz gęstości transformuje się według

ρ
(W)
S (t) = W (t)ρS(t)W

†(t) (6.12)

dla
W (t) = ei |X⟩⟨X|ωL t = |G⟩⟨G|+ |X⟩⟨X| ei ωL t. (6.13)

Oczywiście, równanie ewolucji (6.8) musi być takie samo w obu układach odniesienia,
zatem w hamiltonianie emitera trzeba jeszcze odjąć człon ℏωL |X⟩⟨X|. Wówczas

H(W)
em (t) = W (t)HemW

†(t)− ℏωL |X⟩⟨X| = −ℏ∆ |X⟩⟨X| . (6.14)

6.2 Przybliżenie wirującej fali

O ile H
(W)
em (t) wyraża się przez (6.14), H(W)

ac (t) = Hac(t) i, niezależnie od tego, czy szum
rozważany jest jako klasyczny czy kwantowy, H(W)

ns (t) = Hns(t). Z kolei hamiltonian inte-
rakcji światła z emiterem (o symetrii sferycznej), po skorzystaniu z równań (4.3)-(4.5) i
zastosowaniu (6.12), ma w wirującym układzie odniesienia postać

H
(W)
int (t) = −dGX ·

(

E0e
−2i ωL t +E

∗
0

)

|G⟩⟨X| −dXG ·
(

E0 +E
∗
0e

2i ωL t
)

|X⟩⟨G| .

Tytułowe przybliżenie polega na założeniu, że ρ
(W)
S (t) ewoluuje znacznie wolniej niż

E(t). Przyjmuje się zatem, że exp(±2i ωL t) ≈ 0. Po zdefiniowaniu częstości Rabiego Ω
poprzez równanie dGX ·E∗0 = dXG ·E0 = ℏΩ/2, mamy wówczas, że

H
(W)
int (t) = −

ℏΩ

2
(|G⟩⟨X|+ |X⟩⟨G|) . (6.15)
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W reżimie słabego pobudzania hamiltonian optycznego wzbudzenia H
(W)
int (t) jest za-

burzeniem ewolucji układu, zatem ρ
(W)
S (t), wraz z poszczególnymi jej elementami (por.

równanie (6.11)), można rozłożyć w szereg względem Ω,

ρ
(W)
S (t) = ρ

(0,W)
S (t) + Ωρ

(1,W)
S (t) + Ω2ρ

(2,W)
S (t), (6.16)

i tym samym wyznaczyć ewolucję macierzy gęstości z dokładnością do Ω2.

6.3 Polaronowy układ odniesienia

W przypadku modelu emitera oddziałującego z fononami akustycznymi, interakcja ta
odbywa się poprzez mechanizm sprzężenia piezoelektrycznego oraz sprzężenia przez po-
tencjał deformacyjny (por. rozdział 3.1.1). Wówczas nośnik ładunku jest otoczony przez
chmurę fononów akustycznych (przemieszczającą się razem z tym nośnikiem) i tak po-
wstały układ wygodnie jest opisać jako pojedynczą fermionową kwazicząstkę, zwaną pola-
ronem akustycznym. Pozwala to na diagonalizację w przestrzeni Hph hamiltonianu szumu,
a tym samym ułatwia znalezienie ewolucji.

Transformację (unitarną) do polaronowego układu odniesienia dla dowolnego OS(t)
opisuje wzór [85]

O
(P)
S (t) = TPOS(t)T

†
P, (6.17)

gdzie
TP = |G⟩⟨G|+ |X⟩⟨X|D{gλ,k}. (6.18)

Operator przesunięcia (Weyla), D{gλ,k}, jest zdefiniowany jako

D{gλ,k} = exp
∑

λ,k

(

gλ,k
ωλ,k

b†λ,k −
g∗λ,k
ωλ,k

bλ,k

)

. (6.19)

Aby obliczyć H
(P,W)
ns (t), korzystamy z faktu, że H

(W)
ns (t) = Hns(t) i wówczas stosujemy

równanie (6.17) do hamiltonianu szumu z (4.9), otrzymując

H(P,W)
ns (t) = |G⟩⟨G|Hph + ℏ |X⟩⟨X|

∑

λ,k

ωλ,kD{gλ,k}b
†
λ,kbλ,kD

†{gλ,k}

+ ℏ |X⟩⟨X|
∑

λ,k

[

gλ,kD{gλ,k}b
†
λ,kD

†{gλ,k}+ g∗λ,kD{gλ,k}bλ,kD
†{gλ,k}

]

.

Następnie, używając reguł komutacji dla bozonowych operatorów kreacji i anihilacji, do-
stajemy

D{gλ,k}bλ,kD
†{gλ,k} =bλ,k − gλ,k/ωλ,k, (6.20a)

D{gλ,k}b
†
λ,kD

†{gλ,k} =b†λ,k − g∗λ,k/ωλ,k, (6.20b)

co po skorzystaniu z faktu, że D†{gλ,k}D{gλ,k} = 1 prowadzi do równania

H(P,W)
ns (t) = Hph − ℏ∆P |X⟩⟨X|, (6.21)

gdzie ∆P to tzw. przesunięcie polaronowe

∆P =
∑

λ,k

|gλ,k|
2 /ωλ,k. (6.22)
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Z równania (6.21) widać, że energia przejścia emitera zostaje zmieniona o ℏ∆P. Ma to
związek z energią wiązania polaronu. Przesunięcie energii przejścia emitera można inter-
pretować jako skutek zmiany stałej sieciowej półprzewodnika w pobliżu emitera. Wówczas
odstrojenie ∆′ jest określone względem przesuniętej częstości przejścia, tj.

∆′ = ωL −ω0 +∆P. (6.23)
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7 Kwantowa funkcja autokorelacji

Dysponując wyznaczoną ewolucją układu, następnym etapem niezbędnym do otrzymania
widma RF jest znalezienie kwantowej funkcji autokorelacji, równej

G(t, t+ τ) = ⟨σ+(t)σ−(t+ τ)⟩ = Trtot (σ+(t)σ−(t+ τ)ρ̃tot) . (7.1)

Ślad z (7.1), Trtot = TrS TrE, przebiega po wszystkich stanach układu S i otoczenia E.
Dotychczas rozważania były prowadzone w obrazie Schrödingera, gdzie operatory są stałe
w czasie, natomiast macierz gęstości ewoluuje zgodnie z (6.4). Z kolei wielkości w (7.1)
zapisane są w obrazie Heisenberga, gdzie macierz gęstości całości (oznaczona symbolem ∼,
dla odróżnienia od ρtot(t) z rozdziału 6) jest stała, a ewolucja czasowa została przeniesiona
do operatorów.

Dla dowolnego operatora Atot (z tej samej przestrzeni co ρtot(t)), zdefiniowanego w
obrazie Schrödingera, przejście do obrazu Heisenberga opisuje wzór

A
(H)
tot (t) = U †(t, ti)AtotU(t, ti) (7.2)

dla początkowej chwili ewolucji ti. Z kolei macierz gęstości całości (niezmieniająca się w
obrazie Heisenberga) jest równa ρ̃tot = ρtot(ti). Operatory z (7.1) można zapisać jako

σ+(t) =U †(t, ti) (σ+ ⊗ IE)U(t, ti), (7.3a)

σ−(t+ τ) =U †(t+ τ, ti) (σ− ⊗ IE)U(t+ τ, ti), (7.3b)

gdzie σ+ = σ†− = |X⟩⟨G|, natomiast IE to operator identycznościowy w przestrzeni oto-
czenia. Po skorzystaniu z addytywności operatora ewolucji, tj.

U(t3, t2)U(t2, t1) = U(t3, t1), (7.4)

otrzymujemy, że funkcja autokorelacji jest równa

G(t, t+ τ) = TrS TrE
(

U †(t, ti) [σ+ ⊗ IE]U
†(t+ τ, t) [σ− ⊗ IE]U(t+ τ, ti)ρtot(ti)

)

,

a po wykorzystaniu cykliczności śladu, addytywności U(t+ τ, ti) i wzoru (6.4) mamy

G(t, t+ τ) = TrS TrE
(

[σ− ⊗ IE]U(t+ τ, t)ρtot(t) [σ+ ⊗ IE]U
†(t+ τ, t)

)

. (7.5)

Równanie (7.5) pokazuje, że wyznaczenie autokorelacji składa się z dwóch etapów:
I) ewolucji macierzy gęstości ρtot od chwili początkowej ti do t,
II) ewolucji operatora ρtot(t) [σ+ ⊗ IE], od chwili t do t+ τ , identycznej jak dla ρtot.
Oczywiście, interesujące tutaj są wyniki tylko z obrębu przestrzeni Hilberta układu S,
zatem wprowadza się superoperator Ltf ,ti [OS(ti)] zwracający, w chwili tf , wynik ewolucji
(zaczynającej się w ti) dla operatora OS (z przestrzeni układu S), przebiegającej według
(6.8). Wówczas można napisać, że

Ltf ,ti [OS(ti)]⊗ ρE = U(tf , ti) [OS(ti)⊗ ρE]U
†(tf , ti). (7.6)

Po skorzystaniu z nowo wprowadzonego symbolu superoperatora, przybliżenia (6.7) i wła-
sności iloczynu tensorowego, wielkość pomiędzy operatorami U z (7.5) jest równa

ρtot(t)[σ+ ⊗ IE] = Lt,ti [ρS(ti)]σ+ ⊗ ρE,
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a po obłożeniu jej operatorami ewolucji, tak jak w (7.5), otrzymujemy

U(t+ τ, t) ρtot(t)[σ+ ⊗ IE]U
†(t+ τ, t) = Lt+τ,t[Lt,ti [ρS(ti)]σ+]⊗ ρE .

Funkcja autokorelacji z (7.5) przyjmuje zatem postać

G(t, t+ τ) = TrS TrE (σ−Lt+τ,t[Lt,ti [ρS(ti)]σ+]⊗ ρE) . (7.7)

Ostatecznie, po rozdzieleniu śladów, wiedząc, że TrE ρE = 1, otrzymujemy wzór na funkcję
autokorelacji

G(t, t+ τ) = ⟨σ+(t)σ−(t+ τ)⟩ = Tr (σ−Lt+τ,t [Lt,ti [ρS(ti)] σ+]) . (7.8)

Wyprowadzając równanie (7.8), milcząco skorzystano z kwantowego twierdzenia Laxa o
regresji, które stosuje się do układów z dynamiką Markowską (por. rozdział 6). Według
tego twierdzenia, ewolucja całej funkcji korelacji związana z czasem τ > 0 jest identyczna
jak dla ⟨σ−(t+τ)⟩ z warunkiem początkowym dla τ = 0 danym przez ⟨σ+(t)σ−(t)⟩. Innymi
słowy, kwantowe twierdzenie Laxa o regresji głosi, że

d

dτ
G(t, t+ τ) = L(se)[G(t, t+ τ)]. (7.9)

Ponieważ wszystkie rozważania, począwszy od podrozdziału 6.1, przeprowadzamy w
wirującym układzie odniesienia, warto zapisać w nim również funkcję autokorelacji. Przej-
ście zdefiniowane w (6.12) obowiązuje również w obrazie Heisenberga, stąd

σ
(W)
+ (t) =ei ωL tσ+(t), (7.10a)

σ
(W)
− (t+ τ) =e−i ωL(t+τ)σ−(t+ τ) (7.10b)

i tym samym funkcja autokorelacji w wirującym układzie odniesienia jest równa

G(W)(t, t+ τ) =
〈

σ
(W)
+ (t)σ

(W)
− (t+ τ)

〉

= e−i ωL τG(t, t+ τ). (7.11)
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8 Teoria fotodetekcji

W niniejszym rozdziale zostanie wyprowadzona, w oparciu o [1, 83], zależność między wid-
mem RF, S(ω), a funkcją autokorelacji z rozdziału 7, zarówno w przypadku z modulacją
akustyczną emitera, jak i bez niej.

8.1 Operator pola

Najpierw należy opisać światło oddziałujące z emiterem w sposób kwantowy, definiując
(w obrazie Heisenberga) operator pola w położeniu r,

ε(r, t) = ε
+(r, t) + ε

−(r, t), (8.1)

składający się z części ε+/−(r, t) o dodatniej/ujemnej częstości. Są one równe

ε
+(r, t) =

(

ε
−(r, t)

)†
=

∑

K,λ′

eK,λ′

√

ℏωK

2ε0V
aK,λ′(t)eiK·r, (8.2)

gdzie wielkości {K, λ′} charakteryzują fotonowe mody, odpowiadające światłu o częstości
ωK , wektorze falowym K i polaryzacji λ′. Bezwymiarowy wersor eK,λ′ jest równoległy do
kierunku drgań natężenia pola elektrycznego odpowiadającego modu, ε0 to przenikalność
elektryczna próżni, a V to objętość przestrzeni układu fotony–emiter. Operator anihilacji
fotonu w modzie {K, λ′} dla chwili t został oznaczony jako aK,λ′(t).

Na potrzeby tego modelu kwantowego zdefiniujmy hamiltonian układu emiter–fotony,
Hem−phot. Przestrzeń Hilberta dla tego układu należy rozszerzyć o Hphot, obejmującą stany
fotonów. W przybliżeniu wirującej fali i obrazie Heisenberga, taki hamiltonian wyraża się
wzorem

H
(H)
em−phot =H(H)

em + ℏ

∑

K,λ′

ωKa†
K,λ′(t)aK,λ′(t) (8.3)

− dXG

(

ε
+(r, t)σ+(t)e

−iK·(r−r0) + ε
−(r, t)σ−(t)e

iK·(r−r0)
)

.

W równaniu (8.3), oprócz znanego hamiltonianu emitera, występują jeszcze drugi i trzeci
człon, opisujący odpowiednio fotony oraz ich interakcję z emiterem.

Ewolucję czasową dla operatora anihilacji fotonów, a tym samym ε
+(r, t) z (8.2), opi-

suje równanie Heisenberga. Dla dowolnego operatora C(H) z przestrzeni Hilberta emitera,
fotonów oraz (opcjonalnie) fononów oddziałujących z emiterem, niniejsze równanie ruchu
ma postać

iℏ
dC(H)(t)

dt
=

[

C(H)(t), H
(H)
em−phot(t)

]

. (8.4)

Po zastosowaniu (8.4) do operatora anihilacji aK,λ′(t), otrzymujemy

daK,λ′(t)

dt
= −iωKaK,λ′(t) + i

dXG · eK,λ′

ℏ

√

ℏωK

2ε0V
σ−(t)e

−iK·r0 . (8.5)

Z kolei rozwiązaniem (8.5) jest

aK,λ′(t) =aK,λ′(ti)e
−iωK(t−ti) (8.6)

+ i
dXG · eK,λ′

ℏ

√

ℏωK

2ε0V
e−iK·r0

∫ t

ti

dt′σ−(t
′)e−iωK(t−t′).
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Pierwszy człon z (8.6) odpowiada ewolucji swobodnej pola, gdy nie ma interakcji z emite-
rem. Zatem wyznaczając widmo RF, uwzględniamy tylko drugi człon operatora anihilacji,
który po wstawieniu do (8.2) da częstość dodatnią pola rozproszonego, ε+sc(r, t). Korzy-
stając z faktu [1]

∑

λ′

eK,λ′ (dXG · eK,λ′) = dXG −
K (dXG ·K)

K2
(8.7)

oraz zamieniając sumę po K w całkę po trójwymiarowej przestrzeni wektorów K,

∑

K

... =
V

8π3

∫

d3K..., (8.8)

otrzymujemy

ε
+
sc(r, t) = i

∫

d3K
ωKeiK·(r−r0)

16π3ε0

(

dXG −
K (dXG ·K)

K2

)
∫ t

ti

dt′σ−(t
′)e−iωK(t−t′). (8.9)

Następnie liczymy całkę po przestrzeni wektorów K (szczegółowe rachunki znajdują się
w [1]) oraz przyjmujemy założenie, że |r − r0| ≫ 2πc/ωK dla każdego modu (tzw. przy-
bliżenie dalekiego pola). Wówczas operator pola ε

+
sc(r, t) wynosi

ε
+
sc(r, t) =

cd⊥XG

8π2ε0|r − r0|

∫ ∞

0

dK
(

eiK|r−r0| − e−iK|r−r0|
)

K2

∫ t

ti

dt′σ−(t
′)e−iωK(t−t′),

(8.10)
gdzie d

⊥
XG to składowa dXG prostopadła do r − r0. Stosując zależność K = ωK/c, a

następnie, zgodnie z teorią Weisskopfa-Wignera, rozszerzając przedział całkowania po ωK

na ujemne częstości [102], otrzymujemy

ε
+
sc(r, t) =

d
⊥
XG

8π2c2ε0|r − r0|
(8.11)

×

∫ ∞

−∞

dωK

(

eiωK

|r−r0|
c − e−iωK

|r−r0|
c

)

ω2
K

∫ t

ti

dt′σ−(t
′)e−iωK(t−t′).

Jako funkcje ωK , eksponenty z ±iωK |r − r0|/c zmieniają się znacznie szybciej niż ω2
K

,
zatem możemy przyjąć, że ω2

K
≈ ω2

0 =const, i wówczas ε
+
sc(r, t) wynosi

ε
+
sc(r, t) = α

∫ t

ti

dt′σ−(t
′)

[

δ

(

t− t′ −
|r − r0|

c

)

− δ

(

t− t′ +
|r − r0|

c

)]

(8.12)

dla stałej multiplikatywnej

α =
d
⊥
XGω

2
0

4πc2ε0|r − r0|
. (8.13)

Po przyjęciu założenia, że ct ≫ |r − r0| dostajemy ostatecznie

ε
+
sc(t) = ασ−(t), (8.14)

opuszczając nieistotne już w notacji położenie r.
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8.2 Filtr

Światło rozproszone na emiterze przechodzi przez filtr, którym może być np. interferometr
Fabry-Perota [30, 83]. Funkcję spektralną takiego filtra określa formuła Airy’ego [83, 103]

F(ω) =
(1− r2)eiωd/c

1− r2e2iωd/c
, (8.15)

gdzie c to prędkość wiązki światła we wnęce o długości d. Współczynnik odbicia r liczony
jest względem natężenia pola elektrycznego wiązki. Dla r → 1, filtr przepuszcza tylko te
częstości światła, które są bliskie całkowitej wielokrotności FSR = πc/d (ang. free spectral
range). Regulując zatem położenie jednej z płytek interferometru, można ustawiać częstość
środkową filtra ωf = n0· FSR (gdzie n0 ∈ N). Dla filtra używanego podczas eksperymentu
RF, FSR jest rzędu dziesiątek GHz [30], podczas gdy w pracach [P1] i [P2] interesują nas
częstości światła ω (a tym samym filtra) znajdujące się w obrębie kilku GHz od częstości
lasera ωL (por. ostatni akapit w rozdziale 2.3). Możemy zatem przyjąć, że częstość światła
ω ≈ ωf , co pozwala zmodyfikować wzór (8.15) do postaci [83]

F(ω, ωf) =
Γein0π

Γ− i(ω − ωf)
, (8.16)

którego szerokość spektralna wynosi Γ = c(1 − r2)/(2d) ≪ FSR (w pracy [P3], gdzie
zakres częstości ω jest większy, rozważamy teoretyczny, wyidealizowany przypadek filtra
o Γ = 0).

Po przejściu przez filtr ustawiony na rezonans w ωf operator pola dla częstości dodat-
niej jest splotem ε

+
sc(t) z transformatą Fouriera funkcji spektralnej filtra [83], tj.

ε
+
sc,f(t, ωf) =

∫ ∞

−∞

dt′Fωf
(t− t′)ε+sc(t

′), (8.17)

gdzie

Fωf
(t) =

1

2π

∫ ∞

−∞

dωe−iωtF(ω, ωf) = Γe−Γte−iωf tein0πθ(t) (8.18)

dla funkcji Heaviside’a oznaczonej jako θ(t).

8.3 Detektor

Po przejściu przez filtr ustawiony na częstość ωf , światło pada na detektor, którego współ-
czynnik zliczeń fotonów w chwili t wynosi [83]

C(t, ωf) =
〈

ε
−
sc,f(t, ωf)ε

+
sc,f(t, ωf)

〉

, (8.19)

co po wykorzystaniu (8.14) i (8.17) daje

C(t, ωf) = α2

∫ ∞

−∞

dt1

∫ ∞

−∞

dt2F
∗
ωf
(t− t1)Fωf

(t− t2) ⟨σ+(t1)σ−(t2)⟩ . (8.20)

Następnie zastępujemy t2 przez τ = t2 − t1, otrzymując

C(t, ωf) =α2

∫ ∞

−∞

dt1

∫ 0

−∞

dτF ∗ωf
(t− t1)Fωf

(t− t1 − τ) ⟨σ+(t1)σ−(t1 + τ)⟩ (8.21)

+ α2

∫ ∞

−∞

dt1

∫ ∞

0

dτF ∗ωf
(t− t1)Fωf

(t− t1 − τ) ⟨σ+(t1)σ−(t1 + τ)⟩ .
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Teraz, w pierwszej linijce (8.21), zamiast τ wprowadzamy τ̃ = −τ , a następnie, zamiast
t1 definiujemy t̃1 = t1 − τ̃ . Wówczas, pamiętając o (7.1), dostajemy

C(t, ωf) = 2α2 Re

∫ ∞

−∞

dt1

∫ ∞

0

dτF ∗ωf
(t− t1)Fωf

(t− t1 − τ)G(t1, t1 + τ), (8.22)

a po użyciu (8.18), wprowadzeniu zmiennej s = t− t1− τ w miejsce t1 oraz wykorzystaniu
faktu, że θ(s+ τ)θ(s) = θ(s) dla τ > 0, otrzymujemy

C(t, ωf) = 2Γ2α2 Re

∫ ∞

0

dse−2Γs
∫ ∞

0

dτe−ΓτeiωfτG(t− s− τ, t− s). (8.23)

8.4 Widmo RF

Widmo RF, mierzone w chwili t dla częstości filtra ωf , jest proporcjonalne do współczyn-
nika zliczeń detektora C(t, ωf).

W przypadku braku modulacji akustycznej chwila czasu t między włączeniem lasera
oświetlającego emiter a pomiarem musi być na tyle duża, by układ osiągnął stan stacjo-
narny. Wówczas,

S(ω) ∼ Re

∫ ∞

0

dse−2Γs
∫ ∞

0

dτe−Γτeiωτ lim
t→∞

G(t− s− τ, t− s). (8.24)

Dla stanu stacjonarnego, funkcja autokorelacji G(t1, t2) zależy tylko od różnicy t1 − t2,
stąd można napisać, że G(t1, t2) = G(t1 + t3, t2 + t3) dla dowolnego t3. Wykorzystując ten
fakt i obliczając całkę po s w (8.24) otrzymujemy, że widmo RF, z dokładnością do stałej
multiplikatywnej, wynosi

S(ω) = Re

∫ ∞

0

dτe−Γτeiωτ G̃(τ), (8.25)

gdzie
G̃(τ) = lim

t→∞
G(t, t+ τ). (8.26)

Z kolei dla przypadku modulacji akustycznej interesuje nas widmo uśrednione po okre-
sie TA fali akustycznej, modulującej emiter. Wówczas mamy

S(ac)(ω) ∼
1

TA

Re

∫ TA

0

dt

∫ ∞

0

dse−2Γs
∫ ∞

0

dτe−ΓτeiωτG(t− s− τ, t− s). (8.27)

Okazuje się, że jeżeli tylko szum będzie stacjonarny (tak jak w niniejszej pracy doktor-
skiej), to można napisać, że [P2]

1

TA

∫ TA

0

dtG(t− s− τ, t− s) =
1

TA

∫ TA

0

dtG(t− s− τ + t3, t− s+ t3) (8.28)

dla dowolnego t3, pomimo braku stacjonarności całego stanu układu z powodu modulacji
akustycznej. Wówczas widmo RF wynosi, z dokładnością do stałej multiplikatywnej,

S(ac)(ω) = Re

∫ ∞

0

dτe−ΓτeiωτG(τ), (8.29)

gdzie

G(τ) =
1

TA

∫ TA

0

dtG(t, t+ τ). (8.30)

W obu przypadkach, wynik widma dla wirującego układu odniesienia (por. równanie
(7.11)) polega na zastąpieniu ω przez ω − ωL odpowiednio w (8.25) i (8.29).
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Rysunek 9.1: Widmo RF, przedstawione w [P1], dla rezonansowego pobudzania emitera
(ωL = ω0). Przypadek (a) wolnego i (b) szybkiego szumu telegraficznego. Jednostka S0 =
Ω2/(γ2Γ) to wartość widma RF przy częstości lasera, bez szumu, dla ∆ = 0 [1]. Wyniki
obliczono dla γ = 4Γ = ∆0/50.

Rysunek 9.2: Widmo RF, zaprezentowane w [P1], w przypadku szumu białego dla
pobudzania (a) rezonansowego i dla (b) ωL = ω0 + 5γ. Dla szumu białego miarą jego
intensywności jest współczynnik dyfuzji D w dziedzinie częstości. Wyniki obliczono dla
γ = 4Γ.

9 Najważniejsze wyniki doktoratu

9.1 Publikacja [P1]

W pracy [P1] rozważono wpływ szumu telegraficznego i białego na widmo RF z emitera
bez modulacji akustycznej.

W przypadku szumu telegraficznego częstość przejścia emitera przełącza się między
dwiema wartościami, tj. ∆ωns ∈ {−∆0/2,∆0/2}. Zdefiniowano parametr β, określający
częstotliwość tego przełączania. Rysunek 9.1 przedstawia sytuacje dla wolnego (a) i szyb-
kiego (b), w porównaniu z czasem życia ekscytonu, przełączania się układu. Pomimo
słabego pobudzania układu, w przypadku uwzględnienia szumu telegraficznego pojawiają
się linie boczne, aczkolwiek nie jest to tryplet Mollowa. Lokalizacja dwóch bocznych linii
z rysunku 9.1a odpowiada częstościom przejścia, między którymi przełącza się układ (tj.
ω0±∆0/2). Jednak w miarę wzrostu szybkości przełączania linie boczne znajdują się coraz
bliżej ω0, by ostatecznie zlać się w jedną linię, zlokalizowaną w częstości ω0 (rysunek 9.1b).
Wówczas emiter zachowuje się tak, jakby miał z powrotem jeden poziom, zlokalizowany
w ω0 = ωL, co skutkuje znaczącym wzrostem intensywności widma. Poza przytoczonym
przypadkiem, w pracy [P1] rozważono sytuację asymetrycznego szumu (różne parametry
przełączania się ∆ωns(t) z −∆0/2 do ∆0/2 i z powrotem), jak i przypadek wielu źródeł
szumu telegraficznego.
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Rysunek 9.3: (a) Zależność uśrednionego po czasie widma RF S(ωL +ωA) od fazy ϕ
między dwoma modami (o amplitudach odpowiadających A = 1 i B = 2.76, por. równanie
(4.7)) modulującymi emiter przy różnym współczynniku dyfuzji D szumu białego. Przy-
padek rezonansowego pobudzania emitera (ωL = ω0). (b) Mapa kontrastu dla S(ωL +ωA)
przy różnych B oraz D dla A = 1. Wszystkie wyniki obliczono dla γ = 2Γ = 0.1ωA = 100
MHz i pochodzą one z pracy [P2].

Z kolei w przypadku szumu białego zdefiniowano współczynnik dyfuzji D dla częstości
przejścia. Wówczas

⟨∆ωns(t)∆ωns(t+ τ)⟩ = Dδ(τ). (9.1)

Wyniki przedstawiono na rysunku 9.2, dla rezonansowego (a) i nierezonansowego (b) po-
budzania. Z rysunku 9.2a widać, że szum biały zmniejsza intensywność widma RF. Jest
to spowodowane rozmyciem częstości przejścia, co osłabia efektywny rezonans z laserem.
Ponadto szum biały jest źródłem nowej linii (której szerokość zależy od D), będącej wy-
nikiem nieelastycznego rozpraszania światła oraz zlokalizowanej przy częstości przejścia
ω0 emitera (rysunek 9.2b).

9.2 Publikacja [P2]

Wyniki z pracy [P1] dla szumu białego zostały zastosowane do przypadku modulacji aku-
stycznej emitera [30, 31], a otrzymane rezultaty zaprezentowano w [P2]. Pokazano, że zbyt
intensywny szum (a więc zbyt duży wkład nieelastycznego rozpraszania do widma RF)
może zniszczyć reżim rozdzielonych pasm bocznych, niezbędny do prawidłowego funkcjo-
nowania kwantowych układów hybrydowych.

Dla przypadku mieszania dwóch modów fal akustycznych (por. równanie (4.7)) zde-
finiowano kontrast między maksymalną a minimalną (ze względu na fazę ϕ) wartością
widma RF dla jego pierwszego prawego pasma bocznego S(ωL +ωA). Im bardziej inten-
sywny szum, tym mniejszy kontrast, co utrudnia odczytanie fazy ϕ z sygnału optycz-
nego (rysunek 9.3a). Niemniej jednak, regulując amplitudę drugiego modu fali, można
zidentyfikować warunki, w których akustyczna kontrola będzie miała miejsce, nawet przy
nieznikającym, ale słabym szumie (rysunek 9.3b). Ponadto w pracy [P2] pokazano, że do
skutecznej kontroli akustycznej faza ϕ musi być stabilna przez ok. 104 - 105 okresu fali
modulującej emitera.

9.3 Publikacja [P3]

W ostatniej publikacji [P3] przedstawiono wpływ fononów na widmo RF z emitera bez
modulacji akustycznej. W przeciwieństwie do prac [60, 62], emiter był pobudzany laserem
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Rysunek 9.4: Widmo RF, pokazane w pracy [P3], dla emitera sprzężonego z fononami.
Wyniki dla (a,c) szerokiego i (b,d) wąskiego zakresu częstości względem lasera, przy róż-
nych odstrojeniach (a,b) i temperaturach (c,d). Obliczenia wykonano dla FHR = 0.1.
Ponieważ w pracy [P3] rozważano filtr idealny (Γ = 0), jednostką S0 jest tutaj Ω2/γ3.
Szary obszar dla częstości ωL symbolizuje linię centralną, będącą wówczas deltą Diraca, z
kolei linie przerywane prezentują wyniki widma RF dla reżimu słabego sprzężenia fono-
nów.

ciągłym. Niemniej jednak, również w [P3] widmo zawiera linię centralną i szerokie, fo-
nonowe pasmo boczne (rysunek 9.4a,c). Ponadto, jeśli przyjmiemy, że gęstość spektralna
rezerwuaru fononowego dla małych częstości ma zależność J(ω) ∼ ω3, to w pobliżu ωL

widmo będzie miało kształt podobny do profilu Fano [104] (rysunek 9.4b,d). W reżimie
słabego sprzężenia fononów z emiterem (gdzie mają miejsce wyłącznie procesy jednofono-
nowe) sygnał RF jest dokładnym profilem Fano, który rośnie liniowo z temperaturą, lecz
jego szerokość pozostaje niezmienna. Pokazano też, że im większy udział w rozpraszaniu
światła mają procesy multifononowe (na skutek podwyższonej temperatury lub większego
sprzężenia fononów z emiterem), tym widmo RF jest mniej podobne do profilu Fano.
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10 Wnioski i plany na przyszłość

W niniejszej pracy doktorskiej zamodelowano rozmaite rodzaje szumów zaburzających
energię przejścia układu dwupoziomowego, słabo pobudzanego ciągłym światłem z la-
sera. Dla każdej z fluktuacji z [P1] zdefiniowano charakterystyczne parametry, za pomocą
których można opisać ilościowo wpływ danego szumu na kształt widma RF. Niniejsze
wyniki mogą być przydatne m. in. w interpretacji eksperymentów z RF na półprzewodni-
kowych emiterach, gdzie szum otoczenia jest nieunikniony. W przyszłości można uogólnić
rozważania na model, w którym światło pobudzające emiter będzie traktowane jako fo-
tony o określonych właściwościach (np. stan splątany czy ścieśniony), co może znaleźć
zastosowanie w informatyce kwantowej.

Dla szumu białego uwzględniono dodatkowo proces modulacji akustycznej emitera
[P2], co pozwoliło określić dopuszczalną intensywność fluktuacji dla efektywnej akustycz-
nej kontroli w układzie hybrydowym. Dalszym możliwym kierunkiem jest zbadanie wpływu
szumu na korelacje, również drugiego rzędu, między poszczególnymi pasmami widma (np.
linią centralną i pierwszym pasmem bocznym).

Z kolei model emitera oddziałującego z fononami akustycznymi w półprzewodniku
[P3] można rozszerzyć na inne rezerwuary fononowe, które w odmienny sposób wpłyną na
kształt widma RF. Szczególnie interesujący wydaje się przypadek emitera na materiale
dwuwymiarowym, jak np. grafen czy heksagonalny azotek boru.
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Publikacje tworzące rozprawę doktorską

Niniejsza rozprawa doktorska ma formę zbioru trzech tematycznie powiązanych publikacji:

[P1] Rafał A. Bogaczewicz, Paweł Machnikowski, Resonance fluorescence of noisy sys-

tems, New Journal of Physics 25, 093057 (2023). DOI: 10.1088/1367-2630/acfb2f

Wkład doktoranta polegał na sformułowaniu we współpracy z Promotorem koncep-
cji zagadnienia teoretycznego i sposobu obliczenia widma RF wraz z intensywno-
ściami poszczególnych linii dla zaproponowanego modelu. Poza obliczeniami ana-
litycznymi doktorant opracował i przetestował oryginalny kod komputerowy w ję-
zyku C++, dostarczający numeryczne wyniki dla wspomnianych wielkości. Ponadto
doktorant zrealizował wizualizację otrzymanych wyników, korzystając z programu
Gnuplot, przygotował pierwotny szkic manuskryptu, a także brał aktywny udział w
realizacji ostatecznej wersji niniejszego artykułu.

[P2] Rafał A. Bogaczewicz, Paweł Machnikowski, Precision of the acoustic control of

single-photon scattering with semiconductor quantum dots, Optics Letters 50, 888
(2025). DOI: 10.1364/OL.539414

Wkład doktoranta polegał na określeniu we współpracy z Promotorem koncepcji i
modelu badanego zagadnienia i obliczeniu widma RF oraz kontrastu dla pojedynczej
linii widma. W tym celu doktorant zaimplementował program w C++, a otrzymane
numeryczne wyniki zwizualizował przy pomocy Gnuplota. Doktorant brał również
aktywny udział w stworzeniu pierwszej wersji tej publikacji, jak i kolejnych popra-
wek, sugerowanych przez Promotora.

[P3] Rafał Bogaczewicz, Paweł Machnikowski, Fano profile in the resonance fluorescence

spectrum of a solid-state quantum emitter coupled to phonons, arXiv:2512.19435
(2025), DOI: 2512.19435

Wkład doktoranta polegał na sformułowaniu we współpracy z Promotorem koncep-
cji zagadnienia, jego modelu oraz obliczeniu widma RF i intensywności poszcze-
gólnych składowych widma. Oprócz obliczeń analitycznych doktorant opracował
i przetestował kod komputerowy w C++ oraz zwizualizował (przy pomocy Gnu-
plota) otrzymane wyniki numeryczne. Doktorant przygotował pierwotny szkic ma-
nuskryptu oraz uczestniczył w jego ostatecznej redakcji.

Ponadto, doktorant składający rozprawę jest współautorem czwartej publikacji, niebędą-
cej jednak elementem studiów doktoranckich ani tym bardziej rozprawy:

[P4] Rafał A. Bogaczewicz, Ewa Popko, Katarzyna R. Gwóźdź, Determination of the

band structure diagram of semiconductor heterostructures applied in photovoltaics,
Optica Applicata 51, 135 (2021). DOI: 10.37190/oa210111
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Abstract
Light scattering from resonantly or nearly resonantly excited systems, known as resonance
fluorescence (RF), has been gaining importance as a versatile tool for investigating quantum states
of matter and readout of quantum information, recently including also the inherently noisy solid
state systems. In this work we develop a general theory of RF in the low excitation limit on systems
in which the transition energy is subject to noise for two important classes of noise processes: white
noise fluctuations that lead to phase diffusion and an arbitrary stationary Markovian noise process
on a finite set of states. We apply the latter to the case of random telegraph noise (TN) and a sum of
an arbitrary number of identical random TN contributions. We show that different classes of noise
influence the RF spectrum in a characteristic way. Hence, the spectrum carries information on the
characteristics of noise present in the physical system.

1. Introduction

Light–matter interaction is one of the main tools for studying various properties of physical systems. In
particular, resonant or nearly resonant light scattering, known as resonance fluorescence (RF) [1, 2] has been
used for a long time to characterize systems of various kinds [3–7]. More recently, the RF technique has
found a variety of applications in condensed matter systems, both in the physical investigation of quantum
emitters, as well as in manipulating and reading out the quantum information encoded in solid-state qubits
[8, 9]. It has been used to observe spin dynamics in semiconductor quantum dots (QDs) [10, 11], to interface
[12] and entangle [13] QD spins with single photons, to generate indistinguishable photons [14], to read out
spin states in QDs [10–12, 15, 16] and silicon defects [17] as well as to demonstrate quantum-optical effects
in macroscopic superconducting qubits [18, 19]. The recent observation of RF from a waveguide-coupled
solid-state emitter [20] opens a perspective of on-chip device integration.

The RF from a single unperturbed quantum emitter shows different properties under weak and strong
excitation. In the former case, energy conservation for each single-photon scattering event leads to a single
line with the broadening limited by the laser line width [1]. Under strong excitation, the modulation of the
system state due to Rabi rotations gives rise to a triplet of broadened lines separated by the Rabi frequency,
referred to as the Mollow triplet [1, 21].

No physical system is completely isolated from its environment. The environmental impact is of
particular importance in solid-state systems, where the optical properties are to a large extent influenced by
the coupling to charge [22, 23] or spin fluctuations (both nuclear [24] and electronic [25]), as well as to
lattice vibrations. The latter can be induced in a coherent way, leading to controllable modification of the
scattering spectrum [26, 27], but in most cases is a source of noise [28, 29]. When treated as a classical
background noise, the environmental fluctuations are often modeled using Gaussian distributions [22, 23].
However, it is generally believed that the underlying physics involves discrete state changes of nearby physical
objects, like nuclear or dopant spin flips, or charging and discharging of defects, and such dynamics is indeed
observed in certain experiments [25]. Therefore, a more fundamental model for the description of noise
needs to be based on telegraph-noise (TN) dynamics.
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While numerous studies considered fluctuations in the phase [30–34], amplitude [30, 35, 36], and
frequency [30, 32, 37] of the laser beam, much less attention has been devoted to the effect of the
environmental noise on RF. The existing studies include the particular case of interaction with phonons [38,
39] and the dynamics of inversion [40], coherence [41], entanglement [42], as well as non-linear
wave-mixing response [43] in two-level systems subject to environmental fluctuations. Apart from studying
the detrimental effects of noise on the dynamics of quantum systems, the latter can also be used as noise
sensors in order to determine the properties of the noise itself. Such noise characterization is crucial for the
robustness of quantum systems, hence considerable effort has recently been invested in the development of
noise spectroscopy techniques [44–47].

In this work, we generalize the recently proposed description of RF from a deterministically modulated
two-level system [26, 27] to systems subject to random fluctuations. We formulate a theory of low-excitation
RF (coherent Rayleigh scattering) spectra for a system with the transition energy subject to white noise or an
arbitrary Markovian random process that shifts the transition energy between a number of discrete spectral
positions. In particular, we consider single-source symmetric and asymmetric TN and multi-source TN.

By relating the scattering spectrum to the formal characteristics of the underlying noise process, we are
able to show that the spectrum bears clear fingerprints of the properties of noise: In the white noise (phase
diffusion) case, the noise leads to Lorentzian line broadening. In contrast, a slow discrete process on a small
set of states results in a multiple of Lorentzian lines that merge into a broad Gaussian feature when the
number of process states increases so that they become dense on the energy axis. This picture changes when
the process is fast. In this case a motional narrowing effect leads to the appearance of a single Lorentzian line.

The paper is organized as follows. In section 2 we describe the system and define its general model.
Section 3 contains the essential definitions and presents the general framework of our theoretical description;
here we also present the theory for the simplest case of white noise. Section 4 contains the central formal
result of the paper: the theory of the RF spectrum for a Markovian noise process. Section 5 presents the
results obtained by applying the theory to selected noise processes. The paper is concluded by section 6.

2. System andmodel

We consider light scattering on a two-level system which is subject to environmental fluctuations that
randomly shift the energy of the excited state. As in the standard model of RF [1], the system is driven by a
resonant or nearly resonant monochromatic laser light and undergoes spontaneous emission.

We denote the laser frequency by ωL and the system states by |0⟩ and |1⟩. Let h̄ω0(t) be the
time-dependent (fluctuating) energy difference between these states. The system is then described by the
Hamiltonian

H(t) = h̄ω0(t)|1⟩⟨1| − d · E(t) ,

where E(t) = (1/2)
(

E0e−iωLt + c.c.
)

is the laser field (treated classically) with the amplitude E0 and d is the
dipole moment operator. We assume ⟨0|d|0⟩= ⟨1|d|1⟩= 0. The system relaxation due to spontaneous
emission is accounted for by the Lindblad dissipator

L [ρ(t)] = γ

(

σ−ρ(t)σ+ − 1

2
{σ+σ−,ρ(t)}

)

,

where ρ is the density matrix of the system, {A,B}= AB+BA, and σ+ = σ†
− = |1⟩⟨0|. The system state in

the rotating frame is defined by

ρ̃(t) = eiωLt|1⟩⟨1|ρ(t)e−iωLt|1⟩⟨1|. (1)

The Hamiltonian in this rotating frame and in the rotating wave approximation is

H̃(t) =−h̄∆(t) |1⟩⟨1| − h̄Ω

2
(σ− +σ+) ,

where we define the detuning ∆(t) = ωL −ω0(t) and the Rabi frequency Ω= (E∗
0/h̄) · ⟨0|d|1⟩ that we assume

real. The Master equation describing the evolution of the system state has the form

dρ̃(t)

dt
=− i

h̄

[

H̃(t) , ρ̃(t)
]

+ L [ρ̃(t)] . (2)

The randomly changing detuning ∆(t), which reflects the environmental fluctuations, is the central
feature of our model. Formally, it is described by a stochastic process, the properties of which may depend on

2
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the physical situation. Here we assume that ∆(t) is a stationary Markov process with a unique stationary
probability distribution p(st) reached asymptotically in the long time limit. Two particular examples will be
discussed in the following.

3. The RF spectrum of a noisy system

In this section we define the formal quantities relevant to the RF spectrum, present the general framework of
the theoretical model and discuss the simplest case of phase diffusion due to white noise.

In the Markov approximation, the detected spectrum of scattered light can be related to the system
autocorrelation function G(t, t+ τ) = ⟨σ+(t)σ−(t+ τ)⟩ by [1]

F(ω) = Re

ˆ ∞

0
dτei(ω−ωL)τ e−ΓτG(t, t+ τ) . (3)

Here σ±(t) are operators in the Heisenberg picture relative to the rotating-frame evolution as defined by
equation (2) and Γ is the (Lorentzian) instrumental broadening accounting for the finite resolution of the
detection.

Let us formally denote the solution of equation (2) by ρ̃(t) = Lt0,t [ρ̃(t0)], where Lt1,t2 is the evolution
superoperator. The Lax quantum regression theorem then yields the autocorrelation function in the
form [2, 27]

G(t, t+ τ) = Tr (σ−Lt,t+τ [Lt0,t [ρ̃(t0)]σ+]) . (4)

Here t0 is the initial moment of the evolution, while t− t0 is a sufficiently long time for the system to reach its
steady state.

The total scattering intensity is Itot =
´∞
−∞ F(ω)dω. In the noise-free limit, the RF spectrum consists of a

Dirac delta (broadened by the instrumental resolution) corresponding to elastic light scattering, which
survives to various extent in the noisy case. Its intensity will be denoted by Iel. The remaining part of the
spectrum is due to inelastic scattering induced by the random fluctuations. Its intensity is Iinel.

The equations of motion for the elements ρ01, ρ10, ρ11 of the density matrix, following from equation (2),
have the form ρ̇jl = ajlρjl + iΩ

∑

mn bjl,mnρmn, where a11 =−γ, a01 = a∗10 = i∆− γ/2, and
b11,10 =−b11,01 = b10,11 =−b01,11 = 1/2. The same holds for an arbitrary matrix, not necessarily a density
matrix. Since equation (2) is trace-preserving, one has ρ00 = c0 − ρ11, where c0 is a constant determined by
the initial values (c0 = 1 for a density matrix). In the absence of the laser field (Ω= 0) the equation of
motion can be solved trivially to yield the zeroth-order propagation

ρ
(0)
jl (t) =

[

L
(0)
t0,tρ(t0)

]

jl
= e
´ t
t0

dsajl(s)ρjl (t0) .

In the weak excitation regime, one can then solve equation (2) iteratively in the subsequent orders r> 0 in Ω,

ρ
(r)
jl (t) =

[

L
(r)
t0,tρ(t0)

]

jl
= iΩ

ˆ t

t0

dse
´ t
s ds ′ajl(s ′)

∑

mn

bjl,mnρ
(r−1)
mn (s) .

These equations fully define the perturbative expansion of the evolution superoperator Lt1,t2 in powers of Ω.
Substituting this evolution into equation (4) one finds, in the leading order of Ω2, the autocorrelation
function for an arbitrary time-dependent energy shift ∆(t) in the form

G(t, t+ τ) =
Ω2

4
e−

γ
2 τ

ˆ 0

−∞
du

[
ˆ τ

0
du ′e

γ
2 (u+u ′)eiΦ(τ,u ′)−iΦ(0,u)

+

ˆ u

−∞
du ′e

γ
2 (u+u ′)eiΦ(τ,0)−iΦ(u,u ′) +

ˆ u

−∞
du ′e

γ
2 (u+u ′)eiΦ(τ,0)+iΦ(u,u ′)

]

, (5)

where

Φ(tb, ta) =

ˆ tb

ta

ds∆(s) . (6)

Here we changed the variables according to s= t+ u, set t− t0 →∞ (steady-state regime), averaged over the
realizations of the noise (denoted by a line above the averaged quantities) and used the fact that the noise is
stationary, hence

eiΦ(td+s,tc+s)±iΦ(tb+s,ta+s) = eiΦ(td,tc)±iΦ(tb,ta).

3
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The detailed derivation along with a graphical interpretation of the evolution paths contributing to the
RF signal can be found in the supplementary material to [27].

Before developing the theory for an arbitrary Markovian noise process on a discrete state space, we find
the explicit form of the correlation function in the case of simple phase diffusion. We assume that

∆(t) = ∆WN (t)+∆, (7)

where ∆WN(t) is a stationary white noise process with ⟨∆WN(t)⟩= 0 and ⟨∆WN(t)∆WN(t+ τ)⟩= Dδ(τ).
Then, the phase shift given in equation (6) has a normal distribution with the mean value ∆(tb − ta) and
variance D(tb − ta), hence D is the phase diffusion coefficient. With this Gaussian distribution, equation (5)
can easily be evaluated by using the statistical independence of phase shifts over non-overlapping periods of
time. This yields

G(t, t+ τ) =
Ω2

(

1+ D
γ e
[i∆−(γ+D)/2]τ

)

(γ+D)2
+ 4∆

2 . (8)

The RF spectrum obtained by substituting equation (8) to equation (3) is a sum of elastic and inelastic peaks
that are, respectively, given by

Fel (ω) =
Ω2

(γ+D)2
+ 4∆

2

Γ

(ω−ωL)
2
+Γ2

(9)

and

Finel (ω) =
Ω2

(γ+D)2
+ 4∆

2

D

γ

(γ+D)/2+Γ
(

ω+∆−ωL

)2
+ [(γ+D)/2+Γ]

2
. (10)

Thus, the elastic scattering line is located at the laser frequency, while the inelastic line appears at the average
system transition frequency.

By integrating we find the total intensity

Itot = I0
1+D/γ

(1+D/γ)2
+
(

2∆/γ
)2 , (11)

as well as the intensities of the elastic and inelastic components

Iel = I0
1

(1+D/γ)2
+
(

2∆/γ
)2 , Iinel =

D

γ
Iel. (12)

Here and in the following we relate the scattering intensities to the standard RF intensity in weak excitation
limit [1], I0 = πΩ2/γ2.

4. Theory of the RF spectrum for arbitrary Markovian noise

In this section we develop the theory of the RF spectrum for a system subject to noise that can be described
by a continuous-time stationary Markov process on a finite set of states {∆i}ki=1. This model can also be
used as an approximation to more general Markov processes, based on a physically motivated truncation and
discretization of the state space of the noise process.

The process is characterized by the transition probabilities Pm,n(τ) = P[∆(t+ τ) = ∆m|∆(t) = ∆n]
(with P denoting the conditional probability) forming the transition matrix P(τ) = exp(Cτ), with the
generator C= dP(τ)/dτ |τ=0. As shown in appendix, for such a process

eiΦ(td,tc)±iΦ(tb,ta) = TrP∞eB(td−tc)Ptc−tbe
B(∗)(tb−ta), (13)

where B= C+ idiag(∆1,∆2, . . . ,∆k), P∞ = limτ→∞Pτ = p(st)(1, . . . ,1), with p(st) representing the column
vector of stationary probabilities, and the conjugation in the last term refers to the ‘−’ sign on the left-hand
side.

4
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Substituting equation (13) to equation (5) one gets

G(t, t+ τ) =
Ω2

4
TrP∞

ˆ τ

0
du ′e(B−

γ
2 )(τ−u ′)Pu ′

ˆ 0

−∞
due(

γ
2 −B∗)u

+
Ω2

4
TrP∞e(B−

γ
2 )τ
ˆ 0

−∞
due

γ
2 uP−u2Re

ˆ u

−∞
du ′e

γ
2 u ′+B(u−u ′). (14)

Upon substituting to equation (3), the first term in equation (14) can be factorized by reordering the
integrals with respect to τ and u′ and then changing the variable according to τ = u ′ + s. The second term
can be evaluated directly. As a result one gets

F(ω) =
Ω2

4
ReTrP∞

ˆ ∞

0
dse(i(ω−ωL)−Γ+B− γ

2 )s

×
[
ˆ ∞

0
due(i(ω−ωL)−Γ+C)u

ˆ ∞

0
du ′e(B

∗− γ
2 )u

′

+

ˆ ∞

0
due(C−γ)u2Re

ˆ ∞

0
du ′e(B−

γ
2 )u

′

]

=−Ω2

4
ReTrP∞

(

i(ω−ωL)−Γ+B− γ

2

)−1

×
[

(i(ω−ωL)−Γ+C)−1
(

B∗ − γ

2

)−1
+ 2(C− γ)

−1 Re
(

B− γ

2

)−1
]

. (15)

While this closed analytical form may be convenient for evaluating the spectrum in the case of a small state
space of the process, much more insight is gained by relating the RF spectrum to the spectral properties of
the generator C. To this end, we transform C to the Jordan form (over the field of complex numbers) by the
similarity transformation

S−1CS=
⊕

j

Cj,

where Cj are Jordan blocks belonging to the respective eigenvalues λj of algebraic multiplicity dj. We then
apply the Jordan–Chevalley decomposition Cj = λjI

(dj) +Nj, where Nj is a nilpotent dj-dimensional matrix,
(

Nj

)

kl
= δk,l−1, and I

(d) is the d-dimensional unit matrix. Let Πj be the projector on the subspace supporting
Cj. Since

eCjτ = eλjτ

dj−1
∑

n=0

(

Nj

)n

n!
τ n,

one finds

Pτ = eCτ =
∑

j

eλjτ

dj−1
∑

n=0

Pjnτ
n

with

Pjn = SΠj

(

Nj

)n

n!
ΠjS

−1.

In the case of a diagonalizable matrix C, dj = 1 for all j, the above procedure reduces to simple
diagonalization, and λj become eigenvalues of C in the most common sense.

Using this result in the first term of equation (14), substituting to equation (3), and performing the
integrations one finds

F(ω) =
Ω2

4
ReTrP∞







∑

j

dj−1
∑

n=0

dn

dλn
j

(i(ω−ωL)−Γ+λj)
−1

(γ

2
−B+λj

)−1
Pjn

(

B∗ − γ

2

)−1

+
(

i(ω−ωL)+B−Γ− γ

2

)−1
×





∑

j

dj−1
∑

n=0

dn

dλn
j

(

B− γ

2
−λj

)−1
Pjn

(

B∗ − γ

2

)−1

+(C− γ)−12 Re
(γ

2
−B

)−1











. (16)

5
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The essential factors that describe the form of the spectrum are those depending on the
frequency ω.

The first term defines Lorentzian features and more general line shapes in the case of degenerate
eigenvalues (dj > 1), as well as the corresponding dispersive contributions, with central frequencies at
ωL + Imλj and broadened by −Reλj (here additionally broadened by the instrumental resolution Γ). The
existence of a stationary state implies that one of the eigenvalues (say, λ0) is zero and P00 = P∞. This
contribution leads to an unbroadened (apart from the instrumental broadening) elastic scattering peak
centered at ω = ωL. For λ0 there is no dispersive function. Each real non-zero eigenvalue leads to a
broadened spectral feature at ω = ωL.

The second term is a sum of simple Lorentzians and the corresponding dispersive contributions with
positions and widths determined by the spectrum of B and further broadened due to spontaneous emission.

The total and elastic scattering intensities, found by integrating equation (16), are respectively

Itot =− I0γ

2
TrP∞ Re

(

B− γ

2

)−1
(17)

and

Iel =
I0γ

2

4
ReTrP∞

(

B− γ

2

)−1
P∞

(

B∗ − γ

2

)−1
. (18)

As an application of this formalism, we study in detail the special case of N identical noise sources, each
generating TN.

A single noise source has two states that contribute ∆=± ∆0

2
√
N

to the system energy shift. The switching

rates between the two states of the noise are β↑ and β↓, leading to stationary probabilities β↓/(β↑ +β↓) and
β↑/(β↑ +β↓) for the two noise states. For N identical and additively contributing noise sources the space of
possible noise states is composed of N + 1 values of the total system detuning,

∆j =∆−
√
N
∆0

2
+

j√
N
∆0, j = 0, . . . ,N, (19)

corresponding to j sources in the ‘upper state’. Here ∆ is the mean detuning (the laser detuning from the
noise-free transition energy) and the renormalization by a factor 1/

√
N assures convergence in the limit of

N→∞.
For this case the generator C is a N + 1-dimensional tridiagonal matrix, where the non-zero elements are

Cj,j = ( j−N)β↑ − jβ↓, j = 0, . . . ,N,

Cj−1,j = jβ↓, j = 1, . . . ,N,

Cj,j−1 = (N+ 1− j)β↑, j = 1, . . . ,N. (20)

The stationary probability follows the binomial distribution

p(st)
j =

(

N

j

)

β
j
↑β

N−j
↓

(β↑ +β↓)
N . (21)

5. Results

In this section we present the results for the RF spectrum based on the theory developed in sections 3 and 4
for three noise models. For the white noise calculations we set Γ/γ = 0.25. For the discrete process we choose
γ = 4Γ = 0.02∆0. As a natural unit for presenting and comparing the RF spectra we will use the maximum
value of the spectrum for an unperturbed system under weak resonant excitation [1], F0 =Ω2/(γ2Γ), which
can be obtained from equation (9) with D=∆= 0 and ω = ωL. All the spectra presented in the following
will be related to this quantity.

5.1. White noise
We start the discussion with the case of a system affected by white noise. Figure 1 shows the results for this
case, calculated from equations (9) to (10), under resonant and detuned excitation in the left and right
columns, respectively. In both cases, the RF spectrum is composed of two Lorentzians. In the resonant case
they overlap, while for a detuned excitation they are split. As expected, the overall intensity is also lower in
the latter case.

6



New J. Phys. 25 (2023) 093057 R A Bogaczewicz and P Machnikowski

Figure 1. The RF spectra and the scattering intensities for uncorrelated noise under resonant excitation (left column) and detuned
excitation with ∆/γ = 5 (right column). (a), (b) Total spectrum; (c), (d) elastic contribution; (e), (f) inelastic contribution;
(g), (h) scattering intensities as a function of the phase diffusion coefficient, with line colors corresponding to (a)–(f).

The total spectrum, shown in figures 1(a) and (b), is decomposed into the elastic and inelastic
contributions in figures 1(c)–(f), respectively. While the positions of the spectral features do not change, the
evolution of their intensities and of the width of the non-elastic line are clearly visible. The width of the
inelastic contribution grows with D. The intensity of the elastic contribution starts to decrease when D∼ γ,
while the intensity of the inelastic one changes non-monotonically with D, reaching a maximum for D∼ γ.
The decrease of the inelastic contribution for weak noise is an obvious consequence of restoring the noise-free
limit of purely elastic scattering. For strong noise both components decrease because the increasing spread of
the transition energy reduces the effective overlap with the excitation frequency, which affects the excitation
intensity. The appearance of an additional broadened spectral line at a spectral position bound to the
transition energy in addition to the elastic line at the laser position can be understood by invoking the model
of a classical charged harmonic oscillator driven by a periodic force. This analogy is formally validated by the
fact that in the leading order in Ω, the whole emitted light is coherent, that is, originating from the transition
dipole induced coherently by the laser field. In its steady state, the classical system oscillates periodically with
the laser frequency, which gives rise to a sharp line at this spectral position. However, any perturbation of the
steady-state evolution leads to the appearance of a damped transient at the eigenfrequency of the system
renormalized by damping. Here the noise serves as a perturbation that permanently excites the transient
oscillations and simultaneously damps the coherence due to phase diffusion, leading to a broadened line.

A systematic study of the intensities as a function of the noise strength D is presented in figures 1(g) and
(h). As can also be seen directly from equation (12), the dependence has asymptotically a power-law
character. In the case of resonant excitation, ∆= 0, the absence of noise (D→ 0) leads to permanent
resonance condition, maximizing the total scattering intensity. For a sufficiently large detuning, ∆> γ/2,
the interplay of the decreasing elastic scattering and non-monotonic inelastic one leads to the appearance of

7
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Figure 2. Total intensity dependence on noise parameters: mean detuning ∆ and switching rate β.

a maximum of the total scattering intensity at D= 2∆− γ. In this case one observes a noise-induced
enhancement of scattering: At the maximum, the total intensity is larger than in the noise-free case by a

factor of (γ2 + 4∆
2
)/(4γ∆).

5.2. Single-source telegraph noise
In this section we discuss the results for the scattering spectra and line intensities for a single source of
random TN, depending on the characteristics of the noise dynamics (the switching rates β↑,↓) and laser
detuning ∆ from the average transition energy. In this case, the detuning takes randomly two values, hence
the set of states of the stochastic process is reduced to ∆=∆±∆0/2. The generator in equation (20)
reduces to

C=

(

−β↑ β↓
β↑ −β↓

)

. (22)

Its eigenvalues are λ0 = 0 and λ1 =−(β↑ +β↓). Both eigenvalues are non-degenerate, hence the spectrum is
composed of four simple Lorentzians and, possibly, the corresponding dispersive functions. For the sake of
presentation we set β↑ = β(1− x) and β↓ = β(1+ x), where x ∈ [−1,1]. We begin with the case of
symmetric noise (x= 0, that is, β↑ = β↓ = β) and then describe the effects of noise asymmetry.

5.2.1. Symmetric switching
We start our analysis by discussing the total scattering intensity Itot, depending on the spectral position of the
laser. The full RF intensity as a function of the laser detuning and noise switching rate in the case of
symmetric noise is shown in figure 2, where we plot the total scattering intensity obtained by numerical
evaluation of equation (17). At low switching rates (slow noise), the scattering intensity is the largest when
the laser is tuned to one of the two randomly alternating spectral positions of the optical transition, while at
high switching rates (fast noise) the strongest scattering occurs at the average value of the transition energy.

The slow-noise case is easily understood as the quasi-static limit of the random dynamics: over times
much longer than the characteristic time scale of the system evolution, 1/∆0, the system transition energy
remains constant at one of the two spectral positions, hence tuning the laser to one of these energies leads to
resonant scattering. The dependence on the detuning in this limiting case can be found by setting β= 0, i.e.
B= i[∆+ diag(−∆0/2,∆0/2)], which immediately yields

I(β=0)
tot

(

∆
)

=
1

2
I0

[

(γ/2)2

(

∆+∆0/2
)2

+(γ/2)2
+

(γ/2)2

(

∆−∆0/2
)2

+(γ/2)2

]

. (23)

Thus, in the limit of slow noise the scattering intensity reaches half of the noise-free resonant scattering
intensity at each of the two resonant spectral positions.

In the opposite limit of fast noise the random switching takes place many times during the characteristic
time 1/∆0, hence the accumulated dynamical phase slip with respect to the laser light depends only on the
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Figure 3. Positions of the spectral lines (a) and their widths (b) as a function of the switching rate in the case of symmetric noise,
x= 0 (solid lines), as well as for the asymmetric noise with x= 0.2 (dashed lines) and 0.7 (dotted lines). Panel (a) corresponds to
∆= 0. The inset in (b) shows in detail the line widths at very slow switching (β→ 0).

averaged transition energy, leading to the resonance condition at ∆= 0. By directly evaluating equation (17)
in the limit of β →∞ one finds in this case

I
(β→∞)

tot

(

∆
)

= I0
(γ/2)2

∆
2
+(γ/2)2

, (24)

hence the full standard intensity is recovered at the average spectral position. For moderate values of β one
can neglect γ in equation (17), hence the noise speed at which the transition between the slow and fast
regimes takes place can only depend on ∆0. Indeed, the scattering intensities at ∆=∆0/2 and ∆= 0
become equal for β/∆0 = 1/4+O(γ/∆0).

The particular form of the RF spectrum at a given spectral position of the laser is determined by the poles
of equation (16), which we denote by ωj, j = 0, . . . ,3, with

ω0 = ωL + iΓ, (25a)

ω1 = ωL + i(Γ+ 2β) , (25b)

ω2/3 = ωL −∆− i
(γ

2
+β+Γ

)

± ∆0

2

√

1− 4β2

∆2
0

+ i
4βx

∆0
. (25c)

Correspondingly, the Lorentzian features located at the spectral positions Reωj will be labeled by
L0, . . ., L3, respectively. Both ω0 −ωL and ω1 −ωL are purely imaginary, corresponding to resonant peaks.

The positions of the spectral features (Reωj) as a function of the switching rate β, calculated from
equations (25a)–(25c), are shown in figure 3(a) for ∆= 0. Currently, we focus on symmetric switching,
x= 0, represented by solid lines. Apart from the resonant (central) features L0 and L1 the system in the slow
switching limit shows two side peaks L2 and L3. Their positions evolve from ωL ±∆0/2 (the locations of the
transition energy) in the quasi-static limit towards ωL, undergoing a qualitative transition at β =∆0/2,
where the characteristic frequencies collapse to a single value of ω = ωL. Hence, at β =∆0/2 the RF
spectrum changes its form from three lines to a single line. This resembles the properties of a damped
harmonic system. Here, however, the transition is driven by the switching rate of the noise instead of the
damping magnitude, with the cases of slow and fast noise corresponding to the underdamped and
overdamped regimes, respectively. According to equations (25a)–(25c), changing the laser detuning does not
affect the spectral positions of the lines L2 and L3 (with respect to the fixed transition energy), while the lines
L0 and L1 follow the frequency of the laser. The broadening of the spectral features, |Imωj|, is presented in in
figure 3(b), where we set the instrumental broadening Γ = 0, keep the color coding from figure 3(a), and
omit the L0 peak that has zero width. It follows from equations (25a)–(25c) that the widths are independent
of the mean detuning ∆. As follows directly from equation (25b), the resonant peak is broadened by 2β and
becomes unbroadened (corresponding to purely elastic scattering) in the quasi-static limit. The side peaks
are symmetric in the slow switching regime, with the broadening decreasing to γ/2 in the quasi-static limit.
In the fast regime, when they take the same spectral location, one of them is narrowing asymptotically as
γ/2+O[(∆0/β)

2], while the other one is broadening asymptotically as 2β+ γ/2.
Obviously, the peak positions and widths do not provide the complete information about the spectrum,

as long as the intensities are not known. In order to fully analyze the spectra we evaluate F(ω) from
equation (15) and plot the result in figure 4. We start the discussion with the excitation frequency located
symmetrically, mid-way between the two positions of the fluctuating transition energy, i.e. ∆= 0. The
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Figure 4. (a), (b) and (e), (f): The RF spectrum for a single-source random telegraph noise, for the laser tuned to the averaged
transition energy (∆= 0) (a), (b) and to the upper position of the transition energy ∆=∆0/2 (e), (f). Panels (a), (e) and
(b), (f) group the spectra for the slow and fast switching regime, respectively. (c), (d) and (g), (h): The intensity of the particular
components of the RF spectra for the two excitation conditions, respectively, split into the slow (c), (g) and fast (d), (h) switching
case. In the intensity plots, we group certain lines and show only their total intensity in some cases, as explained in the text.

spectra for this case, for a few selected values of the switching rate β, are shown in figures 4(a) and (b) for
slow and fast switching, respectively. As the switching rate grows, the form of the spectrum evolves from a
single narrow line, via a triplet of broadened lines that eventually merge into a single line that subsequently
narrows down. The quasi-static limit of β→ 0 (figure 4(a), black line) corresponds to the standard result for
low-excitation RF from a two-level system, where the scattering spectrum consists exclusively of one narrow
line at the spectral position of the laser [1]. Since the laser is detuned from both positions of the transition
energy, the overall intensity is very weak. The subsequent evolution of the spectrum is consistent with the
structure of the poles discussed above. The appearance of a single line in the fast switching regime can be
interpreted again in terms of the averaging of the transition energy on time scales shorter than 1/∆0 and is
therefore the counterpart of the effect observed in figure 2. As the averaged energy level is resonant with the
laser, the scattering intensity considerably grows. The line width reduction when speeding up the noise
dynamics follows from self-averaging of the fluctuations and is an example of the motional narrowing effect,
by analogy to the narrowing of the nuclear magnetic resonance line for a particle that travels very fast
through regions of spatially inhomogeneous magnetic field [48, 49].

A quantitative understanding of the spectra is possible by combining the information on peak positions
and widths, presented in figure 3, with the peak intensities. The latter are extracted directly by evaluating the
pre-factors of the Lorentzian terms in equation (16) and are shown, for ∆= 0, as a function of the switching
rate in figures 4(c) and (d), where we split the result into the slow and fast noise regimes (β <∆0/2 and
β >∆0/2). Although the spectrum is always positive, its decomposition into individual peaks is to some
extent artificial and some of the components defined in this way may have negative amplitudes if the peaks
overlap. Therefore, in some cases we group a few lines that have the same position or the same physical
nature and show only the sum of their intensities, so that the presented intensities are positive. For β ≪∆0

the total scattering intensity is dominated by the nominally broadened contribution L1. However, as
discussed above, in the limit of β→ 0 its width decreases to zero, hence the fully elastic scattering is recovered
in the static limit. On the other hand, for β ≫∆0 total intensity reaches the value characteristic of resonant
scattering (figure 4(d), purple line) and is dominated by the elastic contribution L0 (blue line), which is
consistent with the resonance with the averaged transition energy, leading again to the situation known from
a two level system at resonance [1]. The exact limiting values of the intensities of all the spectral components
are collected in table 1.

We now turn to the case when the laser is tuned to one of the two possible transition frequencies,
∆=∆0/2. Figures 4(e) and (f) show the RF spectrum in this case for β <∆0/2 and β ⩾∆0/2, respectively.
In the quasi-static regime we again observe a single sharp line at laser frequency, but now the intensity is
much larger than for ∆= 0 (figure 4(e), black line). As the switching rate grows, this line is accompanied by
two broadened lines, that initially appear around the transition energies (one of which now coincides with
the laser frequency) and then merge around the central spectral position to disappear again for β ≫∆0

(figure 4(f), blue line) The position of the broadened features is the same as in the previous case (figures 4(a)
and (b)) with respect to the transition energies and the position of the sharp peak follows the laser frequency,
while the overall intensity now decreases as the switching rate grows. In this case the laser is tuned to
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Table 1. The limiting values of the intensities of the RF spectrum components in the static and ultrafast limit, for two spectral positions
of the exciting laser.

∆= 0 ∆=∆0/2

β→ 0 β →∞ β→ 0 β →∞

Itot/I0
γ

2

γ2+∆2
0

1
γ

2+2∆2
0

γ2+4∆2
0

γ
2

γ2+∆2
0

IL0/I0
γ

4

(γ2+∆2
0)

2 1
γ

2+∆2
0

γ2+4∆2
0

γ
2

γ2+∆2
0

IL1/I0
γ

2∆2
0

(γ2+∆2
0)

2 0
∆2

0

γ2+4∆2
0

0

IL2/I0 0 0 0 0
IL3/I0 0 0 0 0

resonance with one of the transition energies, leading to strong scattering in the quasi-static case, which
again reproduces the known result for resonant light scattering [1]. On the other hand, in the fast-switching
regime, the averaged transition energy is detuned from the laser, hence in this motionally narrowed limit the
spectrum corresponds to RF with strongly detuned excitation, showing a weak narrow line at the laser
frequency (figure 4(f), blue line).

A quantitative analysis of the intensity of the spectral features contributing to the RF spectrum for
∆=∆0/2 is shown in figure 4(g) (β <∆0/2) and figure 4(h) (β ⩾∆0/2). In the slow switching regime,
only the spectral lines at the laser position contribute, with L2 of negligible intensity (see table 1) and L1

becoming narrow, as discussed previously. Hence, the elastic scattering fully dominates, as expected for the
quasi-static limit. However, the total RF intensity is now lower than the standard resonant scattering intensity
I0 (roughly by half), because the probability that the laser is resonant to the transition is now only 50%. For
fast switching the intensities are consistent with the concept of detuned averaged transition energy, with
elastic light scattering (L0 contribution) dominating (figure 4(h), blue line) and low total intensity.

5.2.2. Asymmetric switching
In this section we extend our considerations to the case of asymmetric switching, that is, β↑ ̸= β↓, or x ̸= 0.
At the beginning we discuss the total scattering intensity Itot, obtained numerically from equation (17) and
now depending on the spectral position of the laser and on the degree of noise asymmetry,
x= (β↓ −β↑)/(β↓ +β↑). Figure 5, analogous to figure 2, shows the impact of the asymmetry of the noise.
As the preference for the upper position of the transition energy grows with increasing asymmetry, the
spectrum gradually evolves into a single line at this spectral position. For slow noise, this happens via
transferring the intensity to the right line, without changing the line positions. For fast noise, the position of
the line shifts to the right without changing the intensity. As a complementary view on the same parameter
dependence, figure 6 presents Itot as a function of ∆ and x for several values of β. At low switching rates
(figures 6(a) and (b)), the areas of high RF intensity extend around ∆=±∆0/2, i.e. when the laser is tuned
to one of the two randomly alternating spectral positions of the optical transition. As β increases
(figures 6(c)–(e)), high intensity areas merge, forming finally one diagonal line (figure 6(f)). The intensity in
the slow switching regime is a consequence of the quasi-static dynamics, with the two spectral positions of
the transition occurring with the probabilities p± = (1± x)/2. Indeed, equation (23) is generalized in this
case to

I(β=0)
tot

(

∆
)

= I0

[

p−
(γ/2)2

(

∆+∆0/2
)2

+(γ/2)2
+ p+

(γ/2)2

(

∆−∆0/2
)2

+(γ/2)2

]

.

In the opposite limit of fast noise, the resonance appears at the averaged transition energy, where the average
is now weighted by the probabilities p±, leading to the averaged energy level of x∆0/2. The total intensity in
this limit is given by

I
(β→∞)

tot

(

∆
)

= I0
(γ/2)2

(

∆− x∆0/2
)2

+(γ/2)2
,

with Itot reaching its maximum for ∆= x∆0/2.
We next analyze how the positions and widths of the spectral features change with noise asymmetry,

parametrized by the parameter x. As follows from equations (25a) and (25b), the positions and widths of the
two peaks L0 and L1, located at the laser frequency, are independent of the asymmetry. The other two peaks
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Figure 5. The total fluorescence intensity as a function of the average detuning and switching rate for a range of values of the
degree of asymmetry of the noise: x= 0.2 (a), 0.5 (b) and 1 (c).

Figure 6. The total fluorescence intensity as a function of the average detuning and the degree of asymmetry of the noise for a
range of values of the total switching rate: β/∆0 = 0.001 (a), 0.02 (b), 0.1 (c), 0.25 (d), 0.5 (e) and 2 (f).

are represented in figure 3 with dashed and dotted lines for two values of the asymmetry parameter x. The
spectral positions of these lines (figure 3(a)) are again bound to the actual spectral positions of the transition
at slow switching and converge towards the average frequency as the switching rate grows. However, contrary
to the case of symmetric switching, they do not overlap completely but remain separated by a splitting
proportional to the asymmetry parameter x. Indeed, from equation (25c) one finds for β ≫∆0 the peak
positions ω2,3 = ωL −∆± |x|∆0/2. The widths of the peaks L2 and L3 are shown with dashed and dotted
lines in figure 3(b) with Γ = 0. The asymptotics of the width of the peaks L2 and L3 for very slow and very
fast noise is the same as in the symmetric case but the behavior at intermediate switching rates is different.
For small asymmetry of the noise (dashed lines) the widths evolve with β in a way similar to the symmetric
case. As x grows (dotted lines), the picture changes considerably and one of these lines attains the broadening
close to 2β, while the other remains narrow in the whole range of β.

Figure 7 presents RF spectra for various values of the laser detuning ∆, noise switching rate β, and noise
asymmetry x. Each panel corresponds to a certain choice of ∆ and β, and compares the spectrum obtained
in the presence of symmetric noise (black lines) with spectra at asymmetric noise (green and blue lines),
showing how the intensities and positions of the spectral features evolve with asymmetry. In general, as the
asymmetry grows to the limiting values of x=±1, the static limit is achieved irrespective of the switching
rate β, so that the spectrum evolves towards a single narrow line at the spectral position of the laser.
Figures 7(a) and (b) show how this happens for the central spectral position of the laser (∆= 0). In this case
the spectra are mirror-symmetric under the change of the sign of x, so only the results for x> 0 are shown.
The initially symmetric first develops an asymmetry in favor of the most frequently visited spectral position,
followed by the decay of the side peaks. As discussed previously, for slow noise, figure 7(a), the overall
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Figure 7. The dependence of the RF spectrum on the asymmetry of the noise. Panels (a) and (b) show the spectra for ∆/∆0 = 0
in the case of slow noise, β/∆0 = 0.02, and moderately fast noise, β/∆0 = 0.5, respectively. Panels (c) and (d) present the
spectra for ∆=∆0/2, for the same two noise rates. The lines on each panel correspond to various values of the asymmetry
parameter x as shown.

Figure 8. RF intensity dependence on x for ∆=∆0/2 and β/∆0 = 0.02. (a) x< 0 (β↑ > β↓); (b) x> 0 (β↑ < β↓).

scattering intensity in the symmetric case is low, as the excitation is detuned from the two spectral positions
of the laser, while for faster noise, figure 7(b), the intensity is larger as the role of the averaged spectral
position increases. However, in the limit of x=±1 the noise rate becomes irrelevant and the spectra must
converge to the same limit. Hence, the intensity of the central elastic line increases in the former case and
decreases in the latter. In figure 7(c) we show the spectra for the excitation tuned to the upper spectral
position of the transition (∆=∆0/2) and for slow noise (β/∆0 = 0.02). The spectrum is dominated by the
spectral line at the position of the laser (composed of the lines L0, L1 and L2) that gains considerable intensity
as x evolves towards +1, which means that the excitation becomes resonant with an increasing probability.
The other spectral feature (line L3) is enabled dynamically and is always very weak when the noise dynamics
is slow (here we magnify it by a factor of 100). It has to vanish at x→±1 and reaches a maximum intensity at
x near 0. As can be deduced from equation (25c), the position of this line very weakly depends on x when β is
small. The scattering spectrum for the same spectral position of the laser but faster noise (β/∆0 = 0.5) is
shown in figure 7(d). Here not only the intensity but also the position of the off-resonant peak changes, in
accordance with equation (25c). As follows from figure 6(e), the overall intensity in this case gradually
increases as x changes from −1 to 1, which is reflected in the spectra, both for the resonant and off-resonant
peaks. Ultimately, in the static limit of x→ 1 (not shown), the intensity of the resonant lines increases by
many orders of magnitude and the spectra in figures 7(c) and (d) reach the same form of a single, narrow,
strong resonant line.

In figure 8 we analyze quantitatively the intensities of the individual spectral features as a function of the
noise asymmetry parameter x ∈ [−1,1]. We restrict our discussion to the excitation tuned to the upper
spectral position of the transition, i.e. ∆=∆0/2. For the sake of clarity of the presentation, we plot the
results for x< 0 and x> 0 in a logarithmic scale in figures 8(a) and (b), respectively, which reveals power-law
dependence as a function of 1− |x| as x approaches its limiting values. In the quasi-static limit of x→±1,
elastic light scattering (L0 spectral line) dominates, as discussed above (blue line in figure 8). Obviously the
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Figure 9. Total RF intensity for N identical noise sources as a function of mean detuning for β↑ = β↓ = β. (a) N= 5;
(b) N= 100.

Figure 10. RF spectrum for different numbers of noise sources at ∆= 0. (a) β/∆0 = 0.01; (b) β/∆0 = 1.

intensity of scattering differs by orders of magnitude in these two limits, as they correspond to strongly
detuned and resonant excitation, respectively. In particular, Itot → I0 when x→ 1 (figure 8(b)). In a wide
range of intermediate values of noise asymmetry, the noise-induced inelastic scattering dominates (red and
green lines in figure 8). The inelastic side line (L3, red line in figure 8) has its maximum for a slightly
asymmetric noise.

5.3.N-source telegraph noise
In this section we present the results for a system subject to noise originating from N identical additive
sources, restricting the discussion to symmetric switching. The total scattering intensity as a function of the
spectral position of the laser is shown in figure 9 for N = 5 and N = 100. These results were calculated by
numerical evaluation of equation (17). In the slow-switching regime, when scanning the laser frequency, we
observe N + 1 resonant frequencies (see figure 9(a)). For large N, these resonances form a broad spectral
feature, with the maximum intensity for the laser tuned centrally (∆= 0) (figure 9(b)). As the switching rate
grows, the resonances merge into a single motionally narrowed line. The appearance of multiple resonances
in the slow-noise regime is obviously related to the N + 1 positions of the transition energies in this case. In
the quasi-static limit (β→ 0), the matrix B becomes diagonal and equation (17) trivially yields a series of
Lorentzian features weighted by the probabilities p(st) that follow the binomial distribution according to
equation (21). As a result, the envelope of these resonances forms an approximately Gaussian line (by virtue
of the standard Gaussian approximation of the binomial distribution) with a width of ∆0, which is a
consequence of our choice to renormalize the noise amplitudes by

√
N in equation (19). For β ≫∆0 the

resonances merge, like in the previously discussed case of N = 1, forming a single narrow Lorentzian
resonance at the average transition energy.

The RF spectrum for different number of noise sources, calculated numerically from equation (15), is
shown in figure 10. For slow switching and small N, the RF spectrum has N + 1 visible side peaks and the
central peak (figure 10(a), black and red line). As N increases, the side peaks start to overlap and form a
broad feature centered at the laser frequency (blue line in figure 10(a)). At N = 50 the spectrum has reached
its asymptotic form and does not change when the number of sources is increased further (which is again
due to the normalization of noise amplitudes assumed here). In the fast noise regime, the side peaks are
merged into a single feature, as in the previously discussed case of a single source, and there is no visible
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dependence on N (figure 10(b)). The central feature corresponds to the first term in equation (16) and is
composed of N + 1 Lorentzians localized at the laser frequency with widths 2nβ, where n= 0,1,2, . . . ,N. In
the slow-switching regime, the remaining part of equation (16) yields N + 1 Lorentzian side peaks with an
approximately Gaussian envelope at small β. As in the single-source case, they can be related to the spectral
positions of the transition energy resulting from the states of the noise sources. For β ≈∆0 the spectrum is
restructured and all peaks are localized at the laser frequency.

6. Conclusions

In this paper we have studied RF from a two-level system subject to classical external noise that leads to
fluctuations of the transition energy. We have formulated the general theory of the RF spectrum in the
low-excitation regime in the presence of noise that can be described as a stationary Markovian random
process on a finite state space, which can approximate an even wider class of Markovian processes. We have
also described the RF spectrum under uncorrelated noise leading to phase diffusion. Our theory relates the
light scattering spectrum to the formal characteristic of the stochastic noise process.

We have applied our theory to the cases of a single two-state noise source (random TN) and an arbitrary
number of identical sources, where many characteristics can be extracted in an analytical form. Our results
show essential differences not only between the phase diffusion and random-telegraph-like processes but also
between the regimes of slow and fast dynamics of the random TN. Most remarkably, the RF spectrum
changes its form from multiple spectral features or a broad Gaussian feature (depending on the number of
noise sources) to a single motionally narrowed line as the noise dynamics gets faster. In this way, we have
demonstrated that light scattering on a two-level system in a noisy environment can yield information on the
character of the noise processes experienced by the system.

These findings may be useful in particular for interpreting experiments on the inherently noisy solid-state
systems, where RF finds a constantly growing range of applications. In these systems, the typical lifetimes γ−1

are in the nanosecond range, setting the limit on the field amplitudes for which our low-excitation theory is
valid (Ω≪ γ). The noise induced by electrical or spin environment [22, 24, 25], is typically slow compared
to the dynamical time scales of the system. On the other hand, a carefully designed optical experiment [23]
shows the coexistence of slow (nanosecond time scale) noise with a fast noise component, on picosecond or
shorter time scales, which may be due to lattice vibrations. This might open the path to direct verification of
our theory. One must note, however, that the transition between the slow and fast regimes in our theory is
controlled by the ratio of the noise dynamical rate β and noise amplitude ∆0. The former is an inherent
feature of the noisy environment, why the latter may only be modified by engineering the coupling between
the emitter and the environment. It may therefore turn out that the most straightforward way to validate the
theory would be to use artificially generated mechanical noise, taking advantage of the high flexibility of
mechanical signal generation and controllability of the acoustic coupling to solid-state emitters [26, 27].
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Appendix. Averaging over the random process

In this appendix we present the technical details of the averaging in equation (13). We start from the basic
formula for averaging an arbitrary function of the process state at a finite set of time instants,

f(∆(t1) , . . . ,∆(tn)) =
k

∑

j1=1

. . .

k
∑

jn=1

pjn,jn−1 (tn − tn−1)pj2,j1 (t2 − t1)p
(st)
j1

f
(

∆j1 , . . . ,∆jn

)

. (A.1)

Here we take advantage of the fact that the process is Markovian and stationary, hence the joint probability
can be written as a chain of conditional (transition) probabilities with the initial probability distribution
assumed to be the stationary probability distribution of the system and the transition probabilities
depending only on the time difference.
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To find expectation values of exponential terms, eiΦ(td,tc)+iηΦ(tb,ta), η =±1 we divide the time intervals
(ta, tb) and (tc, td) into N and N ′ pieces, respectively. Then

eiΦ(td,tc)+iηΦ(tb,ta) = lim
N,N ′→∞

eiδs
′
∑N ′

l=0 ∆(t ′l )+iηδs
∑N

j=1 ∆(tj), (A.2)

where Nδs= tb − ta, N ′δs ′ = td − tc, tj = ta +
(

j− 1
2

)

δs, and t ′l = tc +
(

l− 1
2

)

δs ′. Upon using
equation (A.1), one gets

eiΦ(td,tc)+iηΦ(tb,ta) = lim
N→∞

lim
N ′→∞

k
∑

lN ′=1

. . .
k

∑

l1=1

k
∑

jN=1

. . .
k

∑

j1=1

q(1)
lN ′ ,lN ′

−1
(δs ′) . . .q(1)

l2,l1
(δs ′)eiδs

′xl1

× pl1,jN

(

tc − tb +
δs

2
+

δs ′

2

)

q(η)jN,jN−1
(δs) . . .q(η)j2,j1

(δs)eiηδsxj1 p(st)
j1

,

where q(η)l,j (∆t) = eiηxl∆tpl,j(∆t). This formula can be rewritten in terms of a product of transition matrices

Pτ and k× k matrices Q(τ) with matrix elements q(1)
l,j (τ),

eiΦ(td,tc)+iηΦ(tb,ta) = lim
N,N ′→∞

(

1, . . . , 1
)

[Q(δs ′)]
N ′−1

e
iδs ′xl ′1 Ptc−tb+

δs
2 + δs ′

2
[Q∗ (δs)]N−1 eiηδsxj1 p(st). (A.3)

Keeping in mind that δs∼ 1/N and δs ′ ∼ 1/N ′ we have

lim
N ′→∞

e
iδs ′xl ′1 = lim

N→∞
eiηδsxj1 = 1, (A.4)

and

lim
N→∞

lim
N ′→∞

Ptc−tb+
δs
2 + δs ′

2
= Ptc−tb . (A.5)

We write Q(δt) = I+Bδt+O(δt2). Only terms up to the linear order survive in the limit N,N ′ →∞. For
δt= t/N we then obtain

lim
N→∞

[Q(δt)]N−1
= lim

N→∞

(

I+B
t

N

)N

= eBt. (A.6)

With the use of equations (A.4), (A.5), and equations (A.6), (A.3) takes the form

eiΦ(td,tc)±iΦ(tb,ta) =
(

1 . . . 1
)

eB(td−tc)Ptc−tbe
B(∗)(tb−ta)p(st),

where the conjugation in the last term corresponds to the ‘−’ sign on the left-hand side.
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Acoustic modulation of quantum dots (QDs) allows one to

control the scattering of photons. Here we theoretically char-

acterize the degree of this acoustic control in the frequency

domain. We formulate the theory of low-intensity resonance

fluorescence (RF) in the presence of white noise and show

that a high level of control is achievable with a two-tone

acoustic field for appropriate settings of modulation ampli-

tudes as long as the noise-induced phase diffusion coefficient

remains one order of magnitude smaller than the acoustic

frequency. In addition, using a quantitative model of optical

signal collection, we determine that the acoustic phase must

be stable over 104 to 105 acoustic periods for efficient con-

trol.
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Introduction. Resonance fluorescence (RF), which gives rise to

non-classical light with special coherence properties [1,2], has

recently found applications in solid-state systems [3–6]. Mod-

ulation of a quantum emitter offers additional control of the

light scattering process [7–9]. In the resolved sideband regime

[10,11], the RF spectrum of a weakly optically excited and

acoustically modulated semiconductor quantum dot (QD) con-

tains the usual central line, located at the laser frequency [12],

and a series of sidebands induced by modulation. The scattered

photons are antibunched [11,13], indicating the single-photon

nature of the scattering.

Surface acoustic wave (SAW) mixing has been shown to pro-

vide precise control over the scattering of photons to a particular

frequency channel [13], as well as in the time domain [14]. Two-

tone acoustic driving leads to quantum interference of different

pathways to a given scattering process that involves the two

acoustic harmonics in various combinations. This interference

is governed by the relative phase between the two acoustic waves,

which allows one to control the probability of photon scattering

to a given frequency sideband [13]. A theoretical description

has been extended to quantum acoustic modes [15,16], which

opens up a perspective for the implementation of frequency-

and time-bin encoding [17,18], quantum multiplexing [19], or

quantum acousto-optic transduction [20]. Short wavelengths of

acoustic waves in the GHz frequency range make them perfect

candidates for miniaturized devices that may lay the ground for

on-chip acousto-optic quantum hybrid systems [21,22].

Whether this acoustic control can be exploited in quantum

applications depends, to a large extent, on the resilience of the

observed coherent acousto-optic features against external noise

that leads to random fluctuations of the transition energy. In

addition, in view of the finite time required to collect the optical

signal originating from a single quantum emitter, phase stability

of the control fields becomes crucial.

In this paper, we theoretically analyze the achievable degree

of control (DOC) of photon scattering by coherent acoustic mod-

ulation of a QD. We develop a model of low-excitation RF of

a periodically modulated two-level system in the presence of

white noise. This allows us to determine the scattering spectrum

and to show that the relative contrast of phase-dependent inten-

sity oscillations at the optimal setting of modulation parameters

is weakly affected by noise as long as the strength of the latter

remains well below the acoustic frequency. Finally, we set the

minimum requirements for the stability of the acoustic frequency

in these coherent acousto-optic processes.

Model. We consider a self-assembled semiconductor QD

resonantly driven by a weak, monochromatic laser field. The

scattered photons are collected and their time-integrated spec-

trum is determined [13]. The QD transition energy is modulated

by a SAW via deformation-potential coupling to crystal strain

and is subject to random environmental noise. Our general model

can be applied, e.g., to a typical InGaAs QD with several meV

separation between the fundamental transition addressed here

and excited levels and the exciton lifetime of 1 ns. The doublet

of optically active transitions can be resolved by light polariza-

tion, leading to an effectively two-level system. Typical acoustic

frequencies used in experiments are in the range of hundreds

of MHz. In view of the relatively slow acoustic modulation and

exciton decay, we assume a Gaussian noise with a negligible cor-

relation time, i.e., white noise. This model corresponds to the

short-memory limit of a bath of oscillators with Ohmic spectral

density, as well as to a sum of a large number of fast tele-

graph noise sources, such as charge traps typical for solid-state

environments [23,24] (see Supplement 1). An approximation

of such a process could also, in principle, be generated artifi-

cially using radio frequency electronics. As a rough measure

of typical noise strengths, one could take the fluctuation-

induced single-QD linewidths, which are on the order

of 10 GHz [25].
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We model the QD as a two-level system with energy eigen-

states |0⟩ and |1⟩ and transition energy ℏω0(t), where the time

dependence results from SAW modulation and noise:

ω0(t) = ω0 + ∆ωac(t) + ∆ωns(t), (1)

where ω0 is the unperturbed transition energy, whereas ∆ωac(t)

and∆ωns(t) denote acoustic modulation and noise contributions,

respectively, both with zero average. We assume that ∆ωac(t) is

periodic with fundamental frequencyωA. The system undergoes

spontaneous emission with the rate γ.

The evolution is found by iteratively solving the Lind-

blad equation for the density matrix up to the second order

in the Rabi frequency, following Refs. [13,14]. The detector

response is described by the autocorrelation function G(t1, t2) =

⟨σ+(t1)σ−(t2)⟩, which is calculated using the quantum regres-

sion theorem [14,26]. In the leading order in the field amplitude

( Ω2), it reads for t2>t1 [13]:

G(t1, t2) =
Ω

2

4

∫ ∞

−∞

due−(
γ

2
+i∆)ue−iΦac(t1 ,t1−u)

×

∫ ∞

−∞

du′e−(
γ

2
−i∆)u′eiΦac(t2 ,t2−u′)D(u, u′, t2 − t1),

(2)

where Φac(t2, t1) =
∫ t2

t1
∆ωac(s)ds is the deterministic contribu-

tion to the accumulated phase, ∆ = ωL − ω0, with ωL denoting

the laser frequency, and

D(u, u′, τ) = eiΦns(0,−u)−iΦns(τ ,τ−u′)θ(u)θ(u′) (3)

encodes the complete information about the noise, which is

assumed stationary, with Φns(t2, t1) =
∫ t2

t1
∆ωns(s)ds, θ(u) denot-

ing the Heaviside step function and the bar representing

averaging over noise realizations. Note thatΦac(t2, t1) is periodic

in both arguments.

White noise leads to phase diffusion described by a Gaus-

sian distribution for Φns(t2, t1) with variance 2D(t2 − t1), t2>t1,

where D is the diffusion coefficient related to the noise

strength, ⟨ωns(t)ωns(t + τ)⟩ = 2Dδ(τ). For τ>0, we obtain (see

Supplement 1) D(u, u′, τ) = Del(u, u′, τ) +Dinel(u, u′, τ), where

Del(u, u′, τ) = e−D(u+u′)θ(u)θ(u′) (4)

and
Dinel(u, u′, τ) =e−Dτθ(u)θ(u′ − τ)

×
[

e−D|u+τ−u′ | − e−D(u+u′−τ)
]

.
(5)

Del does not depend on τ, resulting in a periodic autocorre-

lation function that leads to a series of unbroadened spectral

features. We refer to this contribution as elastic because the

narrow (laser-limited) lines mean no energy exchange with the

environment. Dinel is damped in τ, leading to broadened spec-

tral lines, corresponding to inelastic scattering, in which the

scattered photon loses or gains some energy. This contribution

vanishes as D → 0; hence, it is fully due to noise.

Substituting Eqs. (4) and (5) to Eq. (2), one gets the

corresponding elastic and inelastic contributions to the auto-

correlation function. A function periodic in its two arguments

is also periodic in their sum and difference. We can therefore

define functions φn(u) through the following expansion:

eiΦac(t−u′,t−u)
=

∑

n

φn(u − u′)einωA(t− u+u′

2 ). (6)

For the elastic term, we then immediately find the following:

Gel(t1, t2) =
Ω

2

γ2

∑

nm

cnc
∗
meiωA(nt1−mt2), t2>t1, (7)

where

cn =

γ

2

∫ ∞

0

due−(γ/2+D+i∆)ue−inωAu/2φn(u). (8)

The inelastic part can be written in the following form (see

Supplement 1):

Ginel(t1, t2) =
Ω

2

2γ2
e−(γ/2+D−i∆)(t2−t1)

×
∑

nmk

b∗
mbn−kdke

iωA(nt1−mt2), t2>t1,
(9)

where bn are the coefficients of the Fourier expansion:

e−iΦac(t2 ,t1)
=

∑

nm

b∗
mbne

iωA(nt1−mt2) (10)

and

dn =

2Dγ

(γ + D + inωA)2 − D2

(

cn + c∗−n

)

. (11)

Both components of the autocorrelation function, as functions of

τ, are sums of purely exponential contributions. Consequently,

the time-integrated RF spectrum, defined by

S(ω) = Re

∫ ∞

0

dτei(ω−ωL)τe−ΓτG(τ), (12)

where

G(τ) =
ωA

2π

∫ 2π/ωA

0

dtG(t, t + τ), (13)

has an elastic and inelastic part, both composed of a series of

Lorentzians (explicit formulas are given in Supplement 1). The

former is only broadened by the finite instrumental resolution Γ,

which we have included in the model. The spectral features of

the latter are not only broadened by γ/2 + D but also shifted by

∆, i.e., from the spectral position related to the laser frequency

to that bound to the unperturbed transition energy.

Results. We set γ/ωA = 2Γ/ωA = 0.1. RF spectra will be pre-

sented in natural units set by the maximum value of the spectrum

for an unperturbed system without modulation under weak res-

onant excitation S0 = Ω
2/(γ2

Γ) [12]. Similarly, the natural unit

for the intensity is I0 = πΩ
2/γ2, corresponding to the standard

RF of an unperturbed weakly excited two-level system.

RF spectrum under harmonic modulation and noise. Substi-

tuting Eqs. (7) and (9) to Eqs. (13) and (12), we find the spectrum

as a sum of Lorentzian contributions as well as dispersive terms

in the inelastic component. We start with the case of harmonic

modulation ∆ωac(t) = AωA cos(ωAt). Then,

b(1)
n = Jn(A), φ(1)n (u) = inJn [2A sin (ωAu/2)] , (14)

where Jn is the Bessel function of the first kind. From this, cn

and dn are calculated numerically using Eqs. (8) and (11).

Figure 1 presents the RF spectra in this case for resonant

(Fig. 1(a)) and slightly detuned (Fig. 1(b)) excitation for A = 2.

In the absence of noise (blue lines), the spectrum consists of a

series of lines separated from the laser frequency by an integer

multiple of ωA [13,14]. Upon including noise (orange and red

lines), the intensities of these peaks change. In addition, an

inelastic contribution appears at integer multiples of ωA from

https://doi.org/10.6084/m9.figshare.28121450
https://doi.org/10.6084/m9.figshare.28121450
https://doi.org/10.6084/m9.figshare.28121450
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Fig. 1. RF spectrum for acoustically modulated QD with noise.

Results for a single-SAW mode in case of (a) resonant excitation

and for (b) ωL = ω0 + 0.4ωA.

the unperturbed transition frequency, similar to the case without

modulation [26]. This is particularly well visible in Fig. 1(b),

where the laser is detuned by a fraction of acoustic frequency

and the two line series appear at different frequencies. A similar

inelastic contribution appears in the quantum regime, where

the spectral jitter is modeled as pure dephasing [16]. While

the elastic lines remain narrow, the width of the inelastic ones

grows, as discussed above until, for a sufficiently strong noise,

they merge into a broad feature that dominates the spectrum (red

lines).

The intensity of an elastic line located at ω = ωL + pωA is as

follows:

I
(p)

el
= I0 |cp |

2, (15)

while for an inelastic contribution at ω = ω0 + qωA, it is as

follows:

I
(q)

inel
= I0Reb∗

q

∑

k

bq−kdk/2. (16)

Note that the latter can be interpreted as a line intensity only

when D ≪ ωA; otherwise, the lines lose their identity. The inten-

sities of selected contributions are shown as functions of the

phase diffusion coefficient D in Fig. 2, where the green lines cor-

respond to the central line at resonant excitation, while the blue

lines represent the intensities of the first sideband of the laser

frequency and transition frequency for the elastic and inelastic

contributions, respectively. Figures 2(a) and 2(b) correspond to

the excitation conditions of Figs. 1(a) and 1(b), respectively.

One can see that the intensities have a power-law asymptotic

dependence on D. In the limit of vanishing noise, the inten-

sities of the elastic lines (solid lines in Fig. 2) reach a finite

value, corresponding to the D → 0 limit of cn. In this limit, the

intensities of the inelastic lines vanish proportionally to D, as fol-

lows from Eq. (11), restoring the purely elastic scattering of the

noise-free regime [13]. For strong noise (D ≫ γ,ωA,∆), all the

intensities decrease with D. From Eq. (8), one finds cn ∼ D−(n+1)

(see Supplement 1); hence, I
(p)

el
∼ D−2(p+1). On the other hand,

dk ∼ D−(k+1) and bn are independent of D; hence, the sum in

Eq. (9) is dominated by the term containing d0 and I
(q)

inel
∼ D−1

Fig. 2. Intensities of lines from elastic/inelastic series

(solid/dashed lines) for p = q = 0 (green lines) and p = q = 1 (blue

lines). (a) Resonant excitation; (b) ωL = ω0 + 0.4ωA.

Fig. 3. (a) Scattering intensity at the spectral position of the first

acoustic sideband for different noise strengths upon modulation with

two commensurate harmonic acoustic waves, as a function of the

relative phase between these acoustic harmonics. (b) Contrast of the

phase dependence as a function of the amplitude B and the noise

strength D. Here the QD is excited resonantly, A = 1, and B = 2.76

in (a).

for each q; therefore, inelastic scattering dominates in the strong

noise limit.

Two-tone acoustic control of photon scattering. In this sec-

tion, we study the RF spectra in the presence of the acoustic

modulation composed of two harmonics:

∆ωac(t) = AωA cos(ωAt) + BωA cos(2ωAt + ϕ). (17)

In the case of such a two-tone modulation, one finds the

following:

b(2)
n =

∑

k

Jn−2k(A)Jk (B/2) eikϕ , (18)

φ(2)n (u) =
∑

k

in−kJn−2k

(

2A sin
ωAu

2

)

Jk (B sinωAu) eikϕ . (19)

We will focus on the first acoustic sideband at ω = ωL + ωA

under resonant excitation (ωL = ω0). We will determine the scat-

tering intensity S(ωL + ωA), which corresponds directly to the

number of detector counts for the spectral filter set at the first

sideband.

We calculate the coefficients bn and cn numerically and obtain

the spectrum from Eq. (12). The amplitude of the first sideband

as a function of the relative phase ϕ is presented in Fig. 3(a) for

different noise strengths D. Clearly, noise reduces the amplitude

of phase-dependent oscillations of the scattering intensity, which

is related to the overall intensity reduction discussed above.

As an intensity-independent figure of merit characterizing the

DOC of the scattering intensity, we use the normalized contrast

η = (Smax − Smin)/(Smax + Smin), where Smax and Smin are the max-

imum and minimum scattering intensities as a function of the

phase ϕ. This is shown in Fig. 3(b) as a function of the amplitude

B and the noise strength D. The contrast approaches unity when

the intensity for a certain phase is close to zero. Whether this

happens depends on the interplay of various Fourier components

in Eq. (19). In general, for the intensity to reach zero, at least

two of these components must be of comparable order, which

occurs at certain values of B, corresponding to the red areas in

Fig. 3(b). The striking apparent periodicity of this picture as a

function of B follows from the oscillating character of Bessel

functions at large values of their argument. The direct depen-

dence on Jk(B/2) is explicit in Eq. (18), while in Eq. (19), it can

be shown by appropriately transforming the formula (see Sup-

plement 1). The detrimental effect of noise is stronger whenever

high relative contrast is due to a very low value of Smin, which

makes it more vulnerable to raising inelastic background.

Finally, we discuss the importance of the phase stability of

the acoustic modulation for the efficient control of photon scat-

tering. The optical signal from a single quantum emitter has

https://doi.org/10.6084/m9.figshare.28121450
https://doi.org/10.6084/m9.figshare.28121450
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Fig. 4. Impact of the acoustic phase instability on the DOC of

the phonon scattering at B = 2.76: (a) DOC as a function of the

integration time. (b) Maximum achievable DOC.

to be integrated over a finite time to obtain meaningful results,

and phase instability on this time scale affects the degree of the

acoustic phase control of the scattering. As a figure of merit that

captures both the accumulation of the physical signal in time

and the phase perturbation, we propose DOC defines as follows,

which quantifies the amount of phase information encoded in

scattered photons: The phase is randomly set to the value that

yields the maximum or minimum scattering rate to the first

sideband. This setting is to be determined on the basis of the

number of photons scattered during a time period t at the fre-

quency of the first sideband. The DOC is equal to the probability

of correctly determining the phase setting, with the value of

1/2 corresponding to the null information (random guessing).

The formal details are discussed in Supplement 1. For simplic-

ity, in this discussion, we assume that the background noise is

absent.

In a perfectly phase-stable setup, the DOC increases as the sig-

nal is integrated in time, asymptotically reaching the value of the

contrast η (blue line in Fig. 4(a)). With phase instability, which

we model as a phase diffusion with the diffusion constant Dϕ ,

the phase information initially grows as photons are collected

but then starts to decay since the phase diffusion blurs the initial

phase setting, suppressing the difference in the corresponding

scattering rates (orange and green lines in Fig. 4(a)). As a result,

the maximum achievable DOC decays very fast (see Fig. 4(b)).

To give a rough estimate of the absolute numbers, Ω ∼ 0.1γ to

ensure weak coupling limit and Γ ∼ 0.1ωA to select the desired

sideband. From Fig. 4(b), one can see that the Dϕ must be one

to two orders lower than S0 = Ω
2/(γ2

Γ) for DOC close to 1.

Therefore, Dϕ ≲ 10−4ωA, i.e., the acoustic phase must be sta-

ble over times four to five orders of magnitude longer than the

acoustic period (assuming a perfect detector), which highlights

the importance of the extremely high stability demonstrated in

Ref. [13].

Conclusion. We have developed the theory of light scatte-

ring on a single quantum emitter with periodically modulated

transition energy in the presence of external noise and phase

instability of the modulation. By applying this theory to a semi-

conductor QD modulated by an acoustic field composed of two

harmonics and subject to external white noise, we have shown

that the achievable degree of acoustic control of the photon scat-

tering in the spectral domain remains very high for appropriate

settings of the modulation amplitudes and for noise amplitudes

leading to phase diffusion coefficients well below the acoustic

modulation frequency. We have also highlighted the importance

of the acoustic phase stability over times four to five orders of

magnitude longer than the modulation period.

Our results set the limits for controlling single-photon scat-

tering by classical acoustic waves. In the future, they may offer

a starting point for the analysis of quantum information transfer

from mechanical to optical qubits in frequency-bin encoding.

Natural extensions of our work would be to include noise pro-

cesses with finite memory, in particular those with super-Ohmic

spectral density that precludes a nontrivial short-time limit.
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1. WHITE NOISE AS A LIMIT OF PHYSICAL NOISE PROCESSES

We present here formal arguments that allow us to understand the white-noise model considered
in the main text of the paper as a limiting case of certain noise processes of physical relevance.

Let us first consider the noise originating from a bath of oscillators in the classical limit. The
oscillators are labeled by k and couple to our two-level system via coupling constants gk, so that
the random shift of the upper level energy is

h̄∆ωns(t) = 2h̄ ∑
k

gk (Xk cos ωkt + Yk sin ωkt) ,

where the quadrature amplitudes Xk and Yk are independent Gaussian random variables with
zero mean and with the variance given by the equipartition of energy, σ2

k = h̄ωk/(2kBT), where
kB is the Boltzmann constant and T is the temperature. The autocorrelation function of the
fluctuations is then

〈

∆ωns(t)∆ωns(t
′)
〉

= ∑
k

(2gkσk)
2 cos ωk(t − t′) =

kBT

h̄

∫ ∞

0

J(ω)

ω
cos ω(t − t′) = R(t − t′),

where we introduce the spectral density

J(ω) = 4 ∑
k

g2
k δ(ωk − ω).

For a broad and regular spectral density, the autocorrelation function R(τ) is short-lived. If it
decays faster than any relevant dynamical time scales of the system (exciton decay and modulation
in our case) then it may be approximated by a Dirac delta, giving rise to white noise with

⟨∆ωns(t)∆ωns(t + τ)⟩ = 2Dδ(τ)

with

D =
1

2

∫ ∞

−∞
dτR(τ) = π

kBT

h̄
lim
ω→0

J(ω)

ω
.

This is a well-defined limit for an Ohmic reservoir with J(ω) ∝ ω. While such reservoirs are
commonly studied and even “paradigmatic” in the theory of open quantum systems, the lattice



(phonon) reservoir in three dimensions is super-Ohmic and therefore remains outside the scope of
the present study, even though it is indeed very fast (THz Debye or cut-off frequencies) compared
to the time scales relevant here.

As a second, more specific class of noise processes, we consider a cumulative Stark shift due
to a large number N of independent charge traps, quickly switching between their two charge
states,

∆ωns(t) =
N

∑
k=1

fkXk,

where Xk now represent independent two-state Markovian telegraph processes with zero mean
and unit variance, and fk are coupling constants that may depend, e.g., on the distance between
the system and the charge trap. We assume that all telegraph processes have the same switching
statistics with ⟨Xk(t)Xk(t + τ)⟩ = e−2λτ . Then

⟨∆ωns(t)∆ωns(t + τ)⟩ = ∑
k

f 2
k e−2λτ

and the process has a short memory if the switching rate λ is large. The limit of infinite number

of processes is reached by the scaling fk = f̃k/
√

N with fixed f̃k (like in the central limit theorem),
so that the physically relevant variance of the energy fluctuations, σ2

ω = ⟨[∆ωns(t)]2⟩ = ∑k f 2
k

remains finite. The process is Gaussian if, for any finite sequence of real numbers {sl},
〈

ei ∑l sl ∆ωns(tl)
〉

= e−∑l j sl σl jsj ,

where
σl j =

〈

∆ωns(tl)∆ωns(tj)
〉

= σ2
ω

〈

Xk(tl)Xk(tj)
〉

are the covariances of the process. For our process, using the independence of the telegraph
contributions and expanding in Taylor series, one finds

ln
〈

ei ∑l sl ∆ωns(tl)
〉

= ∑
k

ln



1 − 1

2N
f̃ 2
k ∑

l j

sl

〈

Xk(tl)Xk(tj)
〉

sj + O

(

1

N3/2

)





= −1

2 ∑
l j

slσl jsj + O

(

1

N1/2

)

.

This shows that the process is Gaussian in the limit of a large number of telegraph noise sources,
N → ∞, and can be approximated by white noise in the limit of fast switching.

2. AUTOCORRELATION FUNCTION

In this section we summarize the derivation of the correlation function given by Eq. (2) of the
main text.

The Hamiltonian of the system (in the rotating frame and using rotating wave approximation)
reads

H(t) = h̄ [ω0(t)− ωL] |1⟩⟨1| −
h̄Ω

2
(σ+ + σ−) ,

where Ω is the optical Rabi frequency and σ+ = σ†
− = |1⟩⟨0|. The system undergoes spontaneous

emission with the rate γ, described by the Lindblad superoperator

L[ρ] = γ

(

σ−ρσ+ − 1

2
{σ+σ−, ρ}

)

,

where ρ is the density matrix and {, } denotes the anticommutator. The Master Equation govern-
ing the evolution of the system has the form

dρ(t)

dt
= − i

h̄
[H(t), ρ(t)] + L [ρ(t)] . (S1)

Denote the solution of Eq. (S1) by ρ(t) = Lt0,t [ρ(t0)]. The Lax quantum regression theorem
then yields the autocorrelation function in the form

G(t1, t2) = Tr (σ−Lt1,t2 [Lt0,t1 [ρ̃(t0)] σ+]) . (S2)

2



Here t0 is the initial moment of evolution, while t1 − t0 is a sufficiently long time for the system
to reach its steady state. We find the evolution to the leading order in the Rabi frequency Ω

iteratively, following Refs. [1, 2]. Eq. (S1) yields the equations of motion for the elements ρ01,
ρ10, ρ11 of the density matrix in the form ρ̇jl = ajlρjl + iΩ ∑mn bjl,mnρmn, where a11 = −γ,
a01 = a∗10 = i∆ − γ/2, and b11,10 = −b11,01 = b10,11 = −b01,11 = 1/2. The same holds for an
arbitrary matrix, not necessarily a density matrix. Since Eq. (S1) is trace-preserving, one has
ρ00 = c0 − ρ11, where c0 is a constant determined by the initial values (c0 = 1 for a density matrix).
In the absence of the laser field (Ω = 0) the equation of motion can be solved trivially to yield the
zeroth-order propagation

ρ
(0)
jl (t) =

[

L
(0)
t0,tρ(t0)

]

jl
= e

∫ t

t0
dsajl(s)ρjl(t0).

In the subsequent orders r > 0 in Ω,

ρ
(r)
jl (t) =

[

L
(r)
t0,tρ(t0)

]

jl
= iΩ

∫ t

t0

dse
∫ t

s
ds′ajl(s

′) ∑
mn

bjl,mnρ
(r−1)
mn (s).

These equations define the perturbative expansion of the evolution superoperator Lt1,t2 in pow-
ers of Ω. Substituting this evolution into Eq. (S2) one finds, in the leading order of Ω2, the
autocorrelation function in the form [1]

G(t1, t2) =
Ω2

4

∫ ∞

0
due−

γ
2 ue−iΦ(t1,t1−u)

∫ ∞

0
du′e−

γ
2 u′

eiΦ(t2,t2−u′), (S3)

where

Φ(tb, ta) =
∫ tb

ta

ds [ωL − ω0(s)] = ∆(tb − ta)− Φac(tb, ta)− Φns(tb, ta). (S4)

Here

Φac(tb, ta) =
∫ tb

ta

ds∆ωac(s), Φns(tb, ta) =
∫ tb

ta

ds∆ωns(s),

we changed the variables according to s = t + u and set t − t0 → ∞ (steady-state regime).
Substituting the decomposition given by the rightmost form of Eq. (S4) to Eq. (S3) one arrives at
Eq. (3) from the main text upon using the fact that the noise is stationary, hence

eiΦ(td+s,tc+s)±iΦ(tb+s,ta+s) = eiΦ(td ,tc)±iΦ(tb ,ta).

3. NOISE FUNCTION FOR WHITE NOISE

Here we outline the calculations leading to the noise kernel D(u, u′τ) in the form of Eq. (4) and
Eq. (5) of the main text.

To evaluate the noise kernel given by Eq. (3) of the main text in the case of white noise (phase
diffusion), we need to split the two phases Φnc accumulated over the time intervals (−u, 0)
and (τ − u′, τ) into non-overlapping time intervals that will allow factorization based on the
independence of the corresponding increments of the diffusion process. This is done in different
ways in each of the areas (a)–(c) in the (u, u′) plane shown in the upper part of Fig. S1. We denote
the characteristic functions of these areas by Θi(u, u′; τ), i = a, b, c. In each of the areas, the phases
partly cancel in a particular way, which we represent graphically in the lower part of Fig. S1. Here
the positive phase is represented by a right-heading arrow above the time axis and the negative
phase is shown as a left-heading arrow below, so that each arrow represents an integral of ∆ωns

over the interval from its tail to head. The original phases are shown on the left, while the final
form after partial cancellation is on the right. For instance, in area (a), the noise kernel has the
form

Da(u, u′, τ) = e−iΦns(−u,τ−u′) e−iΦns(τ,0).

The phase Φns(t, t′) undergoes normal diffusion from time t′ to t induced by the white noise
∆ωns and is therefore normally distributed with zero mean and variance 2D(t − t′). Therefore

eiΦns(t,t′) = e−D(t−t′),

which leads to

D(u, u′, τ) = Da(u, u′, τ)Θa(u, u′, τ) +Db(u, u′, τ)Θb(u, u′, τ) +Dc(u, u′, τ)Θc(u, u′, τ)

3



(a)

(b)

(c)

(a)

(a)

(b)

(c)

(b)

(c)

Fig. S1. Upper: division of the (u, u′) plane into areas for the calculation of the noise kernel.
Lower: Graphical representation of the reduction of the phase evolution intervals into non-
overlapping parts.

with

Da(u, u′, τ) = e−D(u′−u), Db(u, u′, τ) = e−2Dτe−D(u−u′), Dc(u, u′, τ) = e−D(u+u′).

From this, we can extract a part that is undamped in τ,

Del(u, u′, τ) = Dc(u, u′, τ)
[

Θa(u, u′, τ) + Θb(u, u′, τ) + Θc(u, u′, τ)
]

= Dc(u, u′, τ)θ(u)θ(u′),

which is the contribution given by Eq. (4) of the main text. The remaining part

Dinel(u, u′, τ) =
[

Db(u, u′, τ)−Dc(u, u′, τ)
]

Θb(u, u′, τ)+
[

Da(u, u′, τ)−Dc(u, u′, τ)
]

Θa(u, u′, τ),

can be written in the form of Eq. (5) of the main text.

4. AUTOCORRELATION FUNCTION: INELASTIC PART

We present here some details of the derivation of Eq. (9) from the main text of the paper.
Since the phase Φac(t, t′) is defined as a definite integral, one can rearrange the phase factors in

Eq. (2) of the main text,

Φac(t1, t1 − u)− Φac(t2, t2 − u′) = −Φac(t2, t1) + Φac(t2 − u′, t1 − u).

Next, performing the change of variables u = (x + y)/2, u′ = t2 − t1 + (x − y)/2, −∞ < x < ∞,
|y| < x < ∞, and using the expansion from Eq. (6) in the main text, one can write Eq. (2) in the
form

Ginel(t1, t2) =
Ω2

8
e−(

γ
2 +D−i∆)(t2−t1)e−iΦac(t2,t1) ∑

k

eikωAt1

∫ ∞

−∞
dyφk(y)e

−i∆y

×
∫ ∞

|y|
dxe−

γ+ikωA
2 x

[

e−D|y| − e−Dx
]

. (S5)

Performing trivial integration over x, then employing Eq. (8) for the integration over y and using
Eq. (10) one finds the result in the form of Eq. (9) in the main text.

4



5. EXPLICIT FORM OF THE RESONANCE FLUORESCENCE SPECTRUM

The spectrum follows in a straightforward way from the exponential τ-dependence in Eq. (7). We
present the formulas here for completeness.

Substituting t1 = t, t2 = t + τ to Eq. (7), integrating over t according to Eq. (13) and then
substituting to Eq. (12) immediately yields the elastic part of the spectrum in the form

Sel(ω) = F0 Re ∑
n

Γ|cn|2
Γ − i(ω − ωL − nωA)

. (S6)

In the same way, using Eq. (9) we get the inelastic contribution to the spectrum,

Sinel(ω) =
F0

2
Re ∑

n,k

Γb∗nbn−kdk

Γ + γ
2 + D − i(ω − ω0 − nωA)

. (S7)

6. TWO-TONE AND SINGLE-TONE MODULATION; ASYMPTOTICS IN THE STRONG-

NOISE LIMIT

In this section we derive Eqs. (14), (18) and (19) from the main text. Then we explain how the
power-law exponents discussed in the final part of Sec. 3A can be derived.

For a two-tone modulation as in Eq. (16) of the main text, we write the phase in the form

iΦac(t − u′, t − u) = 2iA sin

[

ωA(u − u′)
2

]

cos

[

ωAt − ωA(u + u′)
2

]

+ iB sin
[

ωA(u − u′)
]

cos
[

2ωAt − ωA(u + u′) + ϕ
]

.

Using Jacobi-Anger expansion with respect to the cos terms, while treating the sin terms as
coefficients, leads to the expansion in Eq. (6) with the functions φn given by Eq. (19). The
expansion in Eq. (10) with the coefficients given by Eq. (18) is obtained by writing the definite
integral Φac(t2, t1) as a difference of originals at the final and initial points and directly applying
the Jacobi-Anger expansion. The results for a single-tone harmonic modulation are retrieved by
setting B = 0.

Functions φn(u) can be written in an alternative form. Let us focus on the factor dependent on
B in Eq. (19) (the argument is the same for the other factor). The Bessel function can be written in
terms of the defining integral

Jk (B sin ωAu) =
1

2π

∫ ∞

−∞
dteikte−iB sin ωAu sin t.

We write B sin ωAu sin t = B[cos(ωAu − t) + cos(ωAu + t)]/2, apply the Jacobi-Anger expansion
twice, and perform the resulting trivial integration over t. The result is

Jk (B sin ωAu) = i−k ∑
m

Jm+k(B/2)Jm(B/2)ei(2m+k)ωAu.

For moderate modulation amplitudes, only a few Bessel functions contribute. All of them oscillate
with the same period when B is sufficiently large. Hence, Jk (B sin ωAu) also oscillates in B
and so does φn(u). Upon substituting this expression, along with the analogous expression for
Jn−2k (2A sin ωAu/2), to Eq. (19) and then to Eq. (8), the integration can be performed analytically
and one obtains a summation formula that can be evaluated numerically much faster than the
original integral.

To obtain the asymptotic behavior of the scattering intensities for the single-tone modulation in
the limit of strong noise, as shown in Fig. 2 of the main text and discussed in Sec. 3A, we need to
extract the asymptotics of the coefficients cn and dn as D → ∞ (note that bn does not depend on

D). Substituting φ
(1)
n (u) from Eq. (14) to Eq. (8) and changing the variable to x = uD we obtain

c
(1)
n =

γin

2D

∫ ∞

0
dxe−

γ+2D
2D xe−i

∆+nωA/2

D x Jn

[

2A sin
(ωA

2D
x
)]

≈ γin

2D

∫ ∞

0
dxe−x Jn

(

AωA

D
x

)

,

where we assumed D ≫ γ, ωA, ∆ in the final expression. Substituting the leading term for the
Jacobi function, Jn(z) ≈ zn/(2nn!), z ≪ 1, we get

c
(1)
n ≈ γ

2D

(

iAωA

2D

)n

∼ D−(n+1).

Then, from Eq. (11), also dn ∼ D−(n+1).
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7. ACOUSTIC PHASE INFORMATION IN THE SCATTERING SPECTRUM

We want to develop a quantitative measure of the degree of control (DOC) of light scattering by the
relative phase between two harmonic components of acoustic modulation. Scattering is efficiently
controlled by this acoustic phase if the scattering intensity depends on the phase setting, which
means that the phase information is encoded in the scattering spectrum. We therefore propose
to quantify the DOC in terms of a single-shot attempt to determine the acoustic phase from the
accumulated scattering data. We choose the simplest scheme in which the detector is spectrally
tuned to the first spectral sideband and the phase is randomly set with equal probabilities to
one of the values ϕ1 or ϕ2, corresponding, respectively, to the maximum and minimum of the
scattering intensity at this spectral position (see Fig. 3 of the main text). Roughly speaking, the
scattering is controlled by the acoustic phase if the detection counts accumulated over a certain
period of time allow one to determine whether the scattering intensity is “high” or “low” and
thus correctly infer the initial setting of the phase with a high probability. More precisely, the
signal is integrated over a period of time T and one opts for ϕ1 if the number of counts N is above
a threshold value ν. The probability of wrong inference is then given by

Pe = p (N ≤ ν|ϕ = ϕ1) p (ϕ = ϕ1) + p (N > ν|ϕ = ϕ2) p (ϕ = ϕ2) (S8)

=
1

2
[p (N < ν|ϕ = ϕ1) + p (N > ν|ϕ = ϕ2)] .

The degree of phase control is defined as the probability of correctly determining the phase for an
optimal choice of ν.

DOC = sup
ν

(1 − Pe) .

For the sake of our discussion it is convenient to treat the measurement time as a parameter over
which the procedure needs to be optimized in the final step.

With absolutely stable acoustic phase, p(N = n|ϕ = ϕi), i = 1, 2, are given by Poisson
distribution with the distribution parameter (mean count number) λi(T) = wiT, where wi are the
scattering rates for the two phase settings, proportional to the scattering intensities I1 = Imax and
I2 = Imin. With phase instability, the phase diffuses so that at a time t it is distributed according to
the probability density fi(ϕ, t), fi(ϕ, t = 0) = δ(ϕ − ϕi). Here we will assume normal diffusion
with the diffusion constant Dϕ,

fi(ϕ, t) =
1

√

2πDϕt
e
− (ϕ−ϕi )

2

2Dϕ t .

As a result, while the count distribution remains Poissonian, the scattering rate becomes time-
dependent,

wi(t) =
∫ ∞

−∞
dϕw(ϕ) fi(ϕ, t), λi(T) =

∫ T

0
dτwi(τ),

where w(ϕ) is the scattering rate for the phase set to ϕ.
From Eq. (S8) one has

Pe =
1

2
e−λ1

⌊ν⌋
∑

n=0

λn
1

n!
+

1

2
e−λ2

∞

∑
n=⌊ν⌋+1

λn
2

n!
,

where ⌊ν⌋ denotes the largest integer not greater than ν. This has a minimum with respect to ν
when the two distributions are equal,

e−λ1
λn

1

n!
= e−λ2

λn
2

n!
for n = ν.

which yields

ν = 2λη

(

ln
1 + η

1 − η

)−1

, λ =
λ1 + λ2

2
, η =

λ1 − λ2

λ1 + λ2
.

The resulting DOC is

DOC =
1

2
+

1

2
e−λ

(

1 − η2
)ν/2 ∞

∑
n=⌊ν⌋+1

λn

n!

[

(1 + η)n−ν − (1 − η)n−ν
]

,

which depends on the measurement time via the quantities λ and η.
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We present a theory of resonance fluorescence (RF) of a solid-state quantum emitter in the
regime of weak optical excitation. The emitter is coupled to phonon modes of the surrounding bulk
semiconductor, described by a super-Ohmic spectral density. We show that the RF spectrum of this
system consists of a central elastic line, a broad phonon sideband known from other linear and non-
linear spectra of such systems, as well as a narrow inelastic contribution, which is characteristic of
scattering spectra and stems from noise-induced transient dynamics. At moderate phonon couplings
or low temperatures, the interplay between the broad sideband and the inelastic feature leads to a
Fano-like profile near the resonant energy with the Fano parameter determined by laser detuning. In
the weak-coupling limit (where only single-phonon processes are included), the spectrum becomes an
exact Fano shape and resonant light scattering is entirely suppressed. The amplitude of this spectral
feature grows linearly with temperature, while its width depends solely on the spontaneous emission
rate of the emitter. We relate the quantum character of the reservoir to the non-commutativity of
noise observables and show that Fano resonance persists in the classical limit. We also discuss how
the redistribution of optical coupling efficiency between the central line and the sidebands affects
the total scattering rate under various excitation conditions.

I. INTRODUCTION

Resonance fluorescence (RF) of a single quantum emit-
ter [1, 2] has found numerous applications in quantum
optics and quantum information processing due to the
nontrivial properties of the scattered light. Within the
RF scheme, it is possible, for instance, to generate non-
classical states of photons with unique coherence proper-
ties [3, 4] and create indistinguishable [5] or anti-bunched
[6] photons. The last decades have witnessed a rapid de-
velopment of RF as a tool to characterize the quantum
properties not only of atomic and molecular systems [7],
but also of various kinds of solid-state „artificial atoms”
[8–10].

In RF, semiconductor self-assembled quantum dots
(QDs) have been used as emitters for years. They allow
one to observe spin dynamics [11, 12], interface [13], and
entangle [14] QD spins with single photons or read out
spin states from the RF [15, 16]. Recently, QD emitters
have been used in acousto-optic quantum hybrid systems
as transducers between acoustical and optical signals [17–
21]. These QDs generate antibunched light [19], making
them perfect candidates for a single-photon source [22],
which opens the door to advanced applications in quan-
tum information processing, such as quantum multiplex-
ing [23], time and frequency bin encoding [24, 25], or
quantum acousto-optic transduction [26]. A QD can also
be used as a quantum sensor for an acoustic cavity, with
the fluorescence signal carrying sufficient information to
retrieve the phonon number statistics [27]. Another im-
portant family of solid-state quantum emitters in the op-
tical domain, which overcomes the low-temperature lim-
itations of QDs, is that of defect centers in various ma-
terial systems. These have been shown to exhibit pho-
ton antibunching up to room temperature [28–30] or far

above [31], making them a valuable complement of QDs
as emitters used in quantum information processing.

In a solid-state matrix, phonons are one of the main
sources of environmental noise that perturbs the transi-
tion energy of the emitter, even though they cannot in-
duce transitions because of substantial energy mismatch.
This noise may be detrimental to applications in quan-
tum technologies. A common signature of carrier-phonon
interactions in the spectra of solid-state quantum emit-
ters are the broad phonon sidebands surrounding the
central (“zero-phonon”) line: the exchange of acoustic
phonons accompanying an optical process modifies the
energy of the absorbed or emitted photon, leading to
spectral features on the high or low energy side of the
central line. Such features are observed in QD lumines-
cence [32, 33] and four-wave-mixing spectroscopy [34] and
have been predicted in absorption [35]. As the range of
efficiently coupled phonon wavelengths in QDs is lim-
ited from below by the QD size, the spectral width of
the resulting sidebands reaches a few meV. The coupling
strength between phonons and exciton is represented by a
Huang-Rhys factor [36], which reflects the spectral weight
accumulated in the phonon sidebands at null tempera-
ture. This experimentally accessible parameter may have
a wide range of values depending on the shape and size
of the emitter, the properties of the surrounding mate-
rial, or the coupling mechanism. For InAs/GaAs self-
assembled QDs, the Huang-Rhys factor is on the order
of 0.1 [33–35]. Defect centers show similar phonon side-
bands, but they are much wider due to the presumably
point-like nature of the defect, with the Huang-Rhys pa-
rameter one order of magnitude larger in the case of de-
fects in hBN [30, 37, 38]. The spectral weight of this
phonon feature increases with temperature.

Absorption or emission of an acoustic phonon can also
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take place during scattering of a photon, leading to vari-
ous effects under strong excitation or induced by optical
phonons [39–41]. In the case of a weakly excited sys-
tem coupled to acoustic phonons, as studied here, cor-
relation expansion modeling under pulsed excitation has
shown that sidebands indeed appear in the resonance flu-
orescence spectra [42], alongside the narrow central line
corresponding to elastic scattering, which is centered at
the laser frequency, as predicted by the standard, un-
perturbed model [1, 2]. On the other hand, classical
noise under cw excitation gives rise to inelastic scatter-
ing, manifested by a line at the QD transition frequency,
with its width dependent on the noise strength [43, 44].

In this work, we study theoretically RF of a single
weakly excited emitter coupled to phonons in a bulk ma-
terial. We develop a general description of the weak-
excitation RF that includes phonon effects exactly to
all orders. We apply this method to a two-level sys-
tem coupled to bulk acoustic phonons, analyzing both
the scattering spectra at resonant or nearly resonant ex-
citation, and the total scattering intensity as a function
of excitation frequency. For definiteness, we focus on a
self-assembled QD, but we cover both weak and strong
phonon coupling regimes to ensure a general scope of the
theory. We show that, in addition to a broad phonon
sideband, the inelastic scattering spectrum shows a nar-
row Fano feature with temperature-dependent intensity
but fixed width. Remarkably, in the independent-boson
model studied here, this feature appears in scattering al-
though it is known to be absent in absorption [35], un-
like in the more widely studied Fano-Anderson models
[45, 46]. In contrast to some previous works concern-
ing Fano resonances involving phonons, where a discrete
phonon mode couples to electronic continuum [47–53] or
to phonon bath [54], in our model the sharp resonance
pertains to electronic excitation, while the wide back-
ground stems from mechanical degrees of freedom.

The paper is structured as follows. In Sec. II we de-
fine the model of the system. Next, we present the the-
ory describing the evolution of the system (Sec. IIIA),
the system steady state (Sec. III B) the quantum auto-
correlation function (Sec. III C) and the RF spectrum
(Sec. III D). Sec. IV discusses the RF spectra and scat-
tering intensities under various conditions. The paper is
concluded in Sec. V.

II. SYSTEM AND MODEL

We consider an atomic-like solid-state quantum emit-
ter, weakly excited by a continuous-wave (cw) laser,
tuned resonantly or near resonantly to the emitter’s fun-
damental transition frequency. To facilitate presenta-
tion, we will think of a self-assembled semiconductor QD
[19, 22], in which the optically induced excitation is a
bound exciton (electron-hole pair). However, the pre-
sented approach does not depend on this physical picture
and is also valid for strong phonon coupling, so it can be

used, e.g., for defect centers [30, 55]. The lifetime of the
fundamental excitation of the system is limited as a result
of spontaneous emission (radiative recombination). We
assume that the frequency and polarization selectivity of
the exciting beam allow us to focus on a single transition.
The scattered light is spectrally resolved and integrated
in time, leading to the RF spectrum.

The exciton in the system interacts with the lattice
degrees of freedom, that is, with the phonon modes of
the bulk host material, which are assumed to be in a
thermal state. We assume that phonons have a typical
super-Ohmic spectral density with dependence ∝ ω3 at
low frequencies, which is typical for bulk solid-state en-
vironments [56, 57]. The phonon high-frequency cut-off,
which may be related to the Debye frequency or to meso-
scopic system size [55, 58], is the largest frequency scale
of the problem; hence, the time span of the phonon reser-
voir memory is short compared to typical time scales of
the problem. For a QD, this cut-off is at several ps−1,
which is indeed much larger than the exciton decay rate
or optical Rabi frequency in the weak excitation regime
(∼ ns−1).

The emitter is modeled as a two-level system driven
by a classical laser beam with the bosonic reservoir cou-
pled via an independent-boson Hamiltonian [36, 59]. The
ground and excited system states are denoted |G⟩ and
|X⟩, respectively, and the bare transition energy between
them is ℏω0. Phonon modes are labeled by their spec-
tral branch λ and wave vector k and described by the

creation and annihilation operators b†λ,k, bλ,k, with the
corresponding frequencies ωλ,k. The Hamiltonian of the
system is

H = H0 +Hint,

where H0 describes the system, the free phonon subsys-
tem and the system-phonon interaction, while Hint ac-
counts for the optical driving.

In the frame rotating with the laser frequency ωL, the
first part is

H0 = ℏ [ω0 − ωL] |X⟩⟨X|+Hph (1)

+ ℏ|X⟩⟨X|
∑

λ,k

(

gλ,kb
†
λ,k + g∗λ,kbλ,k

)

,

where gλ,k denotes the coupling constant between the
emitter and a phonon mode and

Hph =
∑

λ,k

ℏωλ,kb
†
λ,kbλ,k (2)

is the free-phonon Hamiltonian. The coupling to the
phonon reservoir is characterized by the spectral density,

J(ω) =
∑

λ,k

|gλ,k|
2
δ (ω − ωλ,k) , (3)
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or by the memory function

φ(t) =

∫ ∞

0

dω
J(ω)

ω2

(

e−iωt [n(ω) + 1] + eiωtn(ω)
)

(4)

=
∑

λ,k

∣

∣

∣

∣

gλ,k
ωλ,k

∣

∣

∣

∣

2
(

e−iωλ,kt [nλ,k + 1] + eiωλ,ktnλ,k

)

,

where n(ω) is the Bose distribution and nλ,k = n(ωλ,k)
is the number of phonons in the mode (λ,k).

The overall strength of the carrier-phonon coupling is
quantified by the Huang-Rhys parameter [36]

FHR =

∫ ∞

0

dω
J(ω)

ω2
=

∑

λ,k

∣

∣

∣

∣

gλ,k
ωλ,k

∣

∣

∣

∣

2

.

The second contribution to the Hamiltonian describes
the interaction between laser light and the emitter, where
the optical driving strength is characterized by the Rabi
frequency Ω. In the rotating frame and rotating wave
approximation, this reads

Hint = −
ℏΩ

2
(|G⟩⟨X|+ |X⟩⟨G|) . (5)

In addition, spontaneous emission is described by the
standard Lindblad dissipator,

L(se) [O] = γ

(

|G⟩⟨X|O|X⟩⟨G| −
1

2
{|X⟩⟨X|, O}

)

,

where γ is the emission rate, {A,B} = AB+BA, and O
denotes an arbitrary operator.

The system evolves according to the master equation

dρ(t)

dt
= L0 [ρ(t)] + L1 [ρ(t)] , (6)

where

L0 [O] = −
i

ℏ
[H0, O] + L(se) [O] (7)

represents the unperturbed (free) evolution of the system
and

L1 [O] = −
i

ℏ
[Hint, O]

accounts for the optical excitation and will be treated as
a perturbation in the weak excitation regime of interest.

The optical spectrum is given by

S(ω) = Re

∫ ∞

0

dτei(ω−ωL)τG(τ) (8)

with the steady-state first-order autocorrelation function

G(τ) = ⟨σ+(0)σ−(τ)⟩, (9)

where we use the fact that the system is stationary and

introduce the standard transition operators σ+ = σ†
− =

|X⟩⟨G| which are written here in the Heisenberg picture
and in the rotating frame. The total scattering intensity
is

Itot =

∫ ∞

−∞

dωS(ω) = πG(0). (10)

III. THEORY OF THE RF RESPONSE WITH

PHONONS

In this section, we present a method for calculating the
RF spectrum of a quantum emitter coupled to phonons
to the second order in the laser driving. Prior to this, we
introduce some formal definitions.

We denote the formal solution of Eq. (6) as

ρ(t+ τ) = Lτ [ρ(t)] ,

which, together with Eq. (6), defines the propagator Lτ

generated by L0 + L1. The propagator depends only
on the time interval because the system is stationary.
Although primarily defined for the density matrix, the
equation of motion, as well as the propagator, can be
extended to the entire Liouville space of operators on
the system (emitter and phonons) Hilbert space, which
we will exploit in the following. As is customary, we refer
to propagators and generators, that is, operators acting
on the Liouville space, as superoperators.

We will also use the decomposition of operators in the
emitter basis,

O =
∑

i,j=G,X

|i⟩⟨j|Oij , (11)

where Oij are operators on the Hilbert space of the
phonon subsystem.

A. System evolution and autocorrelation function

in the polaron picture

By applying the quantum regression theorem, Eq. (9)
can then be written in the form

G(τ) = Tr(|G⟩⟨X|Lτ

[

ρS|X⟩⟨G|
]

)

= Trph⟨X|Lτ

[

ρS|X⟩⟨G|
]

|G⟩, (12)

where ρS is the steady state of the system. In the final
step, we have split the total trace in Eq. (12) into par-
tial traces over the emitter and phonon degrees of free-
dom, Tr = TrS Trph, and explicitly taken the former. It
should be noted that the regression theorem is applied
only with respect to the optical reservoir (spontaneous
emission process) for which the Markovian approxima-
tion works perfectly, while the phonon reservoir is treated
exactly.

To evaluate the autocorrelation function to order Ω2,
the propagator is expressed as a second-order Born ex-
pansion

Ltf−ti
= L

(0)
tf−ti

+

∫

tf

ti

dt1L
(0)
tf−t1L1L

(0)
t1−ti

(13)

+

∫

tf

ti

dt1

∫ t1

ti

dt2L
(0)
tf−t1L1L

(0)
t1−t2L1L

(0)
t2−ti

+ . . .
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where the terms correspond to successive orders of Ω.

Here, L
(0)
τ denotes the propagator of the unperturbed

evolution, generated by L0, that is,

d

dt
L
(0)
t O = L0L

(0)
t O. (14)

Here and in the following, we adopt the convention that
all superoperators act on all terms to their right, so we
can omit brackets.

The emitter-phonon coupling in the Hamiltonian of
Eq. (1) is removed by the unitary transformation [59]

TP = |G⟩⟨G|+ |X⟩⟨X|D {gλ,k} , (15)

which defines the polaron frame of reference in which
the excited state of the emitter is dressed with a lattice
deformation restoring the lowest-energy configuration in
the presence of interaction. Here D is the displacement
(Weyl) operator, with {gλ,k} representing the full set of
coupling constants,

D {gλ,k} = exp
∑

λ,k

(

gλ,k
ωλ,k

b†λ,k −
g∗λ,k
ωλ,k

bλ,k

)

.

In addition, it is convenient to perform the calculations
in the interaction picture with respect to free phonon
Hamiltonian, defined by the usual transformation

V (t) = exp (iHpht/ℏ) . (16)

For an operator O(t), the transformed operator is

Õ(t) = V (t)TPO(t)T †
PV

†(t). (17)

The corresponding superoperator L̃tf ,ti that propagates
the state from ti to tf is, consistently, defined by

L̃tf ,tiÕ = (18)

V (tf)TP

(

Ltf−ti
T

†
PV

†(ti)ÕV (ti)TP

)

T
†
PV

†(tf).

The transformed free propagator is defined in the same
way,

L̃
(0)
tf ,tiÕ = V (tf)TP

(

L
(0)
tf−ti

T
†
PV

†(ti)ÕV (ti)TP

)

T
†
PV

†(tf).

By direct differentiation and using Eq. (15), Eq. (16),
and Eq. (7) one finds

d

dt
L̃
(0)
t,t′O = L̃0L̃

(0)
t,t′O (19)

with the generator

L̃0O = −
i

ℏ

[

H̃0, O
]

+ L̃(se)O, (20)

where H̃0 = −ℏ∆|X⟩⟨X| and

L̃(se)O = −
γ

2
{|X⟩⟨X|, O}

+ γ|G⟩⟨G|D†{gλ,k(t)}OXXD{gλ,k(t)}. (21)

Here

D{gλ,k(t)} = V (t)D{gλ,k}V
†(t), (22)

with gλ,k(t) = gλ,ke
iωλ,kt, and ∆ = ωL − (ω0 −∆PS)

is the detuning between the laser frequency and the
polaron-shifted transition frequency ω̃0 = ω0−∆PS, with
the polaron shift ∆PS =

∑

λ,k |gλ,k|
2/ωλ,k.

Note that H̃0 has become trivial, with the coupling and
free-phonon contribution removed by the polaron trans-
formation and interaction picture, respectively. The price
one pays for this simplification is, on the one hand, a triv-
ial time dependence in the displacement operator and, on
the other hand, a much more involved modification of the
dissipator. The latter is indeed reminiscent of the Franck-
Condon principle: spontaneous emission leaves the lat-
tice in a state adapted to the excited electronic state
(polaronic dressing), which is a displaced state with re-
spect to the lattice ground state in the absence of charge
excitation.

Eqs. (19)–(21) yield simple closed equations for three
components of an operator,

L̃t,t′ |X⟩⟨G|O = e(i∆−
γ
2 )(t−t′)|X⟩⟨G|O, (23a)

L̃t,t′ |G⟩⟨X|O = e(−i∆−
γ
2 )(t−t′)|G⟩⟨X|O, (23b)

L̃t,t′ |G⟩⟨G|O = |G⟩⟨G|O. (23c)

The fourth equation is more involved

L̃t,t′ |X⟩⟨X|O = e−γ(t−t′)|X⟩⟨X|O (23d)

+ γ|G⟩⟨G|

∫ t

t′
dτD†{gλ,k(τ)}OXXD{gλ,k(τ)}.

However, the last term does not contribute to the auto-
correlation function.

At the same time, the generator of the optical coupling
is transformed as

L̃1(t)Õ(t) = V (tf)TP

(

L1(t)T
†
PV

†(ti)ÕV (ti)TP

)

T
†
PV

†(tf)

= −
i

ℏ

[

H̃int(t), Õ(t)
]

, (24)

with

H̃int(t) =−
ℏΩ

2

(

|G⟩⟨X|D†{gλ,k(t)}+ h.c.
)

. (25)

These transformations preserve the form of the Born ex-
pansion, Eq. (13),

L̃tf ,ti ≈L̃
(0)
tf ,ti +

∫

tf

ti

dt1L̃
(0)
tf ,t1

L̃1(t1)L̃
(0)
t1,ti (26)

+

∫

tf

ti

dt1

∫ t1

ti

dt2L̃
(0)
tf ,t1

L̃1(t1)L̃
(0)
t1,t2L̃1(t2)L̃

(0)
t2,ti + . . .

Finally, inverting the definition in Eq. (18), we express

Lτ by L̃τ,0 in Eq. (12) and write the autocorrelation func-
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tion in terms of transformed quantities,

G(τ) = Trph

〈

X
∣

∣

∣
T

†
PV

†(τ) (27)

×
(

Ã(I)(τ) + Ã(II)(τ)
)

V (τ)TP

∣

∣

∣
G
〉

= Trph

[

D†{gk(τ)}
(

Ã
(I)
XG(τ) + Ã

(II)
XG(τ)

)]

,

where we define two contributions for further reference,

Ã(I)(τ) =L̃τ.0|X⟩⟨G|ρ̃SXX(0)D{gλ,k}, (28a)

Ã(II)(τ) =L̃τ,0|G⟩⟨G|ρ̃SGX(0)D{gλ,k}. (28b)

In the last step of Eq. (27) we use the explicit form of
the unitary operators TP and V given by Eqs. (15) and
(16), respectively, apply the identity D†{gλ,k}V

†(τ) =
V †(τ)D†{gλ,k(τ)}, following directly from Eq. (22), and
then take advantage of the cyclic property of the trace.
Note that, at this point, the autocorrelation function is
expressed in terms of phonon operators only.

B. Steady state in the polaron picture

The next step is to find the relevant XX and GX com-
ponents of the steady state density matrix ρ̃S, which ap-
pear in Eqs. (28). We find the steady state by formally
propagating the initial state of the system from the far
past. This is done up to the required second order in Ω
using the Born expansion given by Eq. (26). Note that
terms off-diagonal in the emitter basis (emitter coher-
ences) appear only in odd orders, while the diagonal ones
(emitter occupations) contribute only in even orders.

In zeroth order, i.e., without optical driving, the steady
state of the system is the emitter ground state and the
thermal equilibrium state of the phonon reservoir,

ρ̃(S,0)(t) = |G⟩⟨G|ρT.

This state is obviously invariant under the unperturbed
evolution L̃(0).

We write first order contribution, using the relevant
term of Eq. (26), in the form

ρ̃(S,1)(t) =

∫ t

−∞

dt1L̃
(0)
t,t1L̃1(t1)ρ̃

(S,0)(t1).

Then, we explicitly apply Eq. (24), Eq. (23a), and
Eq. (23b), which yields

ρ̃
(S,1)
GX (t) = ρ̃

(S,1)∗
XG (t) (29)

= −
iΩ

2

∫ t

−∞

dt1e
−( γ

2
+i∆)(t−t1)ρTD

† {gλ,k(t1)} ,

while ρ̃
(S,1)
GG (t) = ρ̃

(S,1)
XX (t) = 0.

The second-order term from Eq. (26), is

ρ̃(S,2)(t) =

∫ t

−∞

dt2L̃
(0)
t,t2L̃1(t2)ρ̃

(S,1)(t2).

Again, we apply Eq. (24) explicitly, which leads to
terms proportional to |G⟩⟨G| and |X⟩⟨X|. According to
Eq. (28a), only ρ̃SXX is needed for the correlation func-
tion up to the second order. This is given by Eq. (23d),
where only the simple first term contributes. Altogether,
we get

ρ̃
(S,2)
XX (t) =

Ω2

4

∫ t

−∞

dt1e
−γ(t−t1)

∫ t1

−∞

dt2e
−( γ

2
+i∆)(t1−t2)

×D {gλ,k(t1)} ρTD
† {gλ,k(t2)}+ h.c.,

which, after interchanging the variables in the “h.c.”
term, can be reduced to

ρ̃
(S,2)
XX (t) =

Ω2

4

∫ t

−∞

dt1e
−( γ

2
−i∆)(t−t1)

∫ t

−∞

dt2e
−( γ

2
+i∆)(t−t2)

×D {gλ,k(t1)} ρTD
† {gλ,k(t2)} . (30)

C. Autocorrelation function

The following evaluation of Eq. (27) proceeds in two

steps: First, we calculate the quantities Ã
(I,II)
XG to the

second order in Ω, and then we average over the phonon
reservoir.

In Eq. (28a), ρ̃SXX is already in the second order, so

L̃τ,0 must be taken in the zeroth order. This is given
again by Eq. (23a), which immediately yields

Ã
(I)
XG(τ) =

Ω2

4

∫ 0

−∞

dt1e
−( γ

2
−i∆)(τ−t1)

∫ 0

−∞

dt2e
( γ

2
+i∆)t2

×D {gλ,k(t1)} ρTD
† {gλ,k(t2)}D{gλ,k(0)}.

(31)

Eq. (28b) contains ρ̃SGX , which is of the first order in
Ω. Further evolution must, therefore, be evaluated to the
first order. Since the operator proportional to |G⟩⟨G| is

invariant under L̃(0) [see Eq. (23c)], applying the first-
order term from Eq. (26) again amounts to explicitly
applying L1 and propagating the resulting off-diagonal
terms via Eq. (23a). This yields

Ã
(II)
XG(τ) =

Ω2

4

∫ τ

0

dt1e
−( γ

2
−i∆)(τ−t1)

∫ 0

−∞

dt2e
( γ

2
+i∆)t2

×D{gλ,k(t1)}ρTD
†{gλ,k(t2)}D{gλ,k(0)}.

(32)

Eqs. (31) and (32) differ only by the integration limits
and can easily be combined. Substitution into Eq. (27)
yields

G(τ) =
Ω2

4

∫ ∞

0

du

∫ ∞

0

du′e−
γ
2
(u+u′)+i∆(u−u′) (33)

× C(τ, u, u′),
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where we introduced new variables u = τ − t1, u
′ = −t2

and defined a phonon correlation function

C(τ, u, u′) = (34)

=
〈

D†{gλ,k(−u′)}D{gλ,k(0)}D
†{gλ,k(τ)}D{gλ,k(τ − u)}

〉

,

with angular brackets denoting the thermal average,
⟨O⟩ = Trph ρTO.

To calculate the correlation function C(τ, u, u′) we first
iterate twice the Baker-Campbell-Hausdorff formula

eAeB = eA+Be
1

2
[A,B] for [A,B] = cI, c ∈ C

to pairs of displacement operators in Eq. (34), which
yields

C(τ, u, u′) = (35)

= ⟨D{−gλ,k(−u′) + gλ,k(0)− gλ,k(τ) + gλ,k(τ − u)}⟩

× exp







i Im
∑

λ,k

∣

∣

∣

∣

gλ,k
ωλ,k

∣

∣

∣

∣

2
[

eiωλ,ku
′

+ e−iωλ,ku

+eiωλ,kτ
(

1− eiωλ,ku
′

)

(

1− e−iωλ,ku
)

]}

.

The average is then calculated according to the relation
[59]

⟨D (Gλ,k)⟩ = e
∑

λ,k(nλ,k+
1

2 )
∣

∣

∣

Gλ,k
ωλ,k

∣

∣

∣

2

,

which for Gλ,k = −gλ,k(−u′)+gλ,k(0)−gλ,k(τ)+gλ,k(τ−
u), as in Eq. (35), yields

⟨D{−gλ,k(−u′) + gλ,k(0)− gλ,k(τ) + gλ,k(τ − u)}⟩

= exp

[

−
∑

λ,k

(

nλ,k +
1

2

)
∣

∣

∣

∣

gλ,k
ωλ,k

∣

∣

∣

∣

2

(36)

×
∣

∣

∣
1− e−iωλ,ku

′

− eiωλ,kτ + eiωλ,k(τ−u)
∣

∣

∣

2
]

.

By rearranging terms and invoking Eq. (4), Eq. (34)
finally takes the form

C(τ, u, u′) =

exp [−2φ(0) + φ(−u′)− φ(−τ − u′) (37)

+φ(u− τ − u′) + φ(−τ)− φ(u− τ) + φ(u)] .

As expected, the optical properties of a system interact-
ing with the phonon bath in a thermal state (which is
Gaussian) are fully characterized by the bath spectral
density or, equivalently, its memory function.

It is interesting to note that the imaginary parts of
the memory functions in Eq. (37) stem from the phase
factor in Eq. (35), which is a consequence of the non-
commutativity of the phonon operators in the BCH for-
mula. This means that we have captured the quantum-

ness of the noise originating from the bosonic reservoir in
the most fundamental sense. The corresponding classical

model would be defined by the Hamiltonian in Eq. (1)
in the interaction picture with respect to phonons and

with bλ,k, b
†
λ,k being a conjugate pair of complex random

variables. The same can be written in a more intuitive
manner by defining quadrature amplitudes

X1,λ,k =
1

2

(

bλ,ke
−iθλ,k + b†λ,ke

iθλ,k

)

, (38a)

X2,λ,k =
1

2i

(

bλ,ke
−iθλ,k − b†λ,ke

iθλ,k

)

, (38b)

where we have decomposed gλ,k = |gλ,k|e
iθλ,k . Then the

Hamiltonian with classical noise is

H ′
0 = ℏ [ω0 − ωL] |X⟩⟨X|+ ℏ∆ω(t)|X⟩⟨X|, (39)

where

∆ω(t) =
∑

λ,k

2 |gλ,k| [X1,λ,k cos(ωλ,kt) +X2,λ,k sin(ωλ,kt)]

describes classical random fluctuations of the energy
which are due to the coupling to the environment. For
the classical model to be equivalent to the quantum one,
we need to require that X1,λ,k, X2,λ,k are independent,
equally distributed Gaussian random variables with zero
mean and with variances

〈

X2
1,λ,k

〉

=
〈

X2
2,λ,k

〉

=
1

4
(2nλ,k + 1) ,

matching those of the quantum quadrature operators in
the thermal state. These variances are somewhat artifi-
cial as they do not follow from the most obvious physical
model of classical oscillators, which would result in clas-
sical statistics and energy equipartition. We opt for this
definition because we want to separate the consequences
of the fundamental non-commutativity of quantum noise
operators from the differences between the quantum and
classical statistics, which are, of course, also fundamental
but much more obvious. With this choice, the classical
memory function φ′(t) is consistent with the quantum
one, with the non-commutativity-related imaginary part
discarded, i.e., φ′(t) = Reφ(t).

The result for the classical (commutative) case can
alternatively be obtained by directly computing the
autocorrelation function from the evolution driven
by the parametrically time-dependent Hamiltonian in
Eq. (39) and then averaging over the random variables
X1,λ,k, X2,λ,k, which yields

C(τ, u, u′) =
〈

eiΦ(0,−u′)−iΦ(τ,τ−u)
〉

,

where

Φ(t1, t2) =

∫ t2

t1

dt∆ω(t).

This links the present result to our previous studies of
systems subjected to classical noise [43], where the noise
affects the optical response via the phase accumulated
due to random fluctuations of the transition energy.
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D. RF spectrum

The structure of the RF spectrum becomes clear if
we split the four-time correlation function from Eq. (37)
into three parts, C(τ, u, u′) = Cel(u, u

′)+Cpsb(τ, u, u
′)+

Clf(τ, u, u
′), where

Cel(u, u
′) = e−2φ(0)+φ(−u′)+φ(u), (40a)

Cpsb(τ, u, u
′) = e−2φ(0)+φ(−u′)+φ(u)

[

eφ(−τ) − 1
]

, (40b)

Clf(τ, u, u
′) = e−2φ(0)+φ(−u′)+φ(u)+φ(−τ) (40c)

×
[

eφ(u−τ−u′)−φ(u−τ)−φ(−τ−u′) − 1
]

.

These contributions lead to the corresponding decompo-
sition of the autocorrelation function and the RF spec-
trum, following Eq. (33) and Eq. (8), respectively.

The first component, Cel(u, u
′), is τ -independent and is

responsible for an unbroadened central line in the spec-
trum, Sel(ω), located at the laser frequency (which is
zero frequency in our rotating frame). This line corre-
sponds to elastic scattering of photons, reproducing a
standard result for a weakly excited system [1]. The in-
tensity of this line is obtained by substituting Cel(u, u

′)
into Eq. (33) and then to Eq. (10),

Iel =
πΩ2

4
|ξ|2e−2φ(0), (41)

where

ξ =

∫ ∞

0

dse−(γ/2−i∆)s+φ(s). (42)

The contribution Cpsb(τ, u, u
′), Eq. (40b), is short-

lived as a function of τ , because φ(−τ) → 0 as τ ≫ 1/ωc,
which is a picosecond time scale for a QD and even
shorter for atomically localized defects. Therefore, it
gives rise to a broad spectral feature Spsb (ω), which
is the phonon sideband predicted for RF in the pulsed-
excitation regime [42] and also known from other types
of spectroscopy on zero-dimensional structures. Here, the
low-frequency part corresponds to energy loss at photon
scattering, which means phonon emission, while the high-
frequency side reflects energy gain or phonon absorption.
Using Cpsb(τ, u, u

′) in Eq. (33) and substituting this into
Eq. (8), we get

Spsb(ω) =
Iel
2π

∫ ∞

−∞

dτe−i(ω−ωL)τ
[

eφ(τ) − 1
]

, (43)

where we used the symmetry φ∗(τ) = φ(−τ). The inten-
sity is, from Eq. (10),

Ipsb = Iel

(

eφ(0) − 1
)

. (44)

Note that the shape of the phonon sideband is the same
as in the absorption spectrum [35]. The total weight of
the sideband is also in the same relation to the inten-
sity of the central line. However, in the present case

both these features attain a scaling factor that reflects
the dependence of the total scattering intensity on the
spectral position of the laser with respect to the funda-
mental transition and phonon sideband, contained in the
factor |ξ|2.

To study the properties of the last contribution,
Eq. (40c), we focus on the expression in the final square
bracket for τ ≫ 1/ωc and u, u′ > 0 (cf. the limits of
integration in Eq. (33)). Then φ(−τ − u′) ≪ 1 but the
first two memory functions in the exponent have non-
zero values for arbitrary τ , along the lines u = τ and
u = τ + u′. This term is therefore long-lived, up to the
exponential cutoff at τ ∼ 1/γ. Thus, it will lead to a
narrow spectral feature of width ∆ω ∼ γ. Such a feature
does not appear in absorption or emission and is there-
fore unique for light scattering spectroscopy. It has not
been predicted in the previous works on resonance flu-
orescence of systems coupled to phonons [42], which we
attribute to the inherently low spectral resolution in that
study, where pulsed excitation was assumed. The narrow
feature is the quantum counterpart of the inelastic scat-
tering line that emerges in the scattering spectrum for a
system perturbed by classical noise [43, 44].

To gain more detailed insight into the low-frequency
part of the spectrum, we first note that the broad side-
band does not vary much in the relevant very narrow
range of frequencies and provides an essentially constant
background (“pedestal”), which can be approximated by

Spsb(ω) ≈ Spsb(0) (45)

=
Ω2

8
|ξ|2e−2φ(0)

∫ ∞

−∞

dτ
[

eφ(τ) − 1
]

.

On this background, the narrow spectral feature de-
scribed by Eq. (40c) develops. Here, the expression in
square brackets is nonzero only in narrow ranges of u
around τ and τ + u′ because the memory function is
short-lived compared to the effective span of the integral
over u, which is 1/γ. Moreover, except for a negligibly
narrow range of u′ near 0, these two parameter areas are
disjoint so that they contribute additively, and one may
write

eφ(u−τ−u′)−φ(u−τ)−φ(−τ−u′) − 1

≈ (A+B)δ(u− τ − u′)− (A−B)δ(u− τ),

where

A =

∫ ∞

−∞

ds sinhφ(s), B =

∫ ∞

−∞

ds[coshφ(s)− 1]. (46)

We neglect also the remaining memory functions in
Eq. (40c), which are non-zero only in a very narrow range
around zero time and therefore yield only a minor correc-
tion to the overall value of the spectral function at low
frequencies. The integrations in Eqs. (33) and (8) then
become trivial. Including the PSB “pedestal”, the result
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is

Slf(ω) + Spsb(0) = (47)

Iel
2π

{

A
(ω − ωL)

2

(γ/2)2 + (ω − ω̃0)2

+ B

[

2 +
γ2/2− (ω − ωL)

2

(γ/2)2 + (ω − ω̃0)2

]}

,

where we have approximated |ξ|2 ≈ 1/[(γ/2)2+∆2], con-
sistent with the above approximations. Note that the
width of these spectral features is always determined by
the lifetime of the excited state and depends neither on
the strength of the phonon couplings nor on the temper-
ature.

In the leading order in the phonon coupling (∼ |gλ,k|
2

or linear in φ(t)), one has B = 0 and

A =

∫ ∞

−∞

dsφ(s) =
2πkBT

ℏ
lim
ω→0

J(ω)

ω3
, (48)

which is non-zero and finite for the actual carrier-phonon
spectral density. Simultaneously, the neglected memory
functions in the exponents of Eq. (40c) lead to higher-
order corrections, hence Eq. (47) becomes the rigorous
lowest-order result. The form of the spectrum in this
limit therefore has a Fano shape,

Slf(ω) + Spsb(0) ∝
(qγ/2 + ω − ω̃0)

2

(γ/2)2 + (ω − ω̃0)2
, (49)

with the Fano factor q = −∆/(γ/2). It follows that
for weak phonon coupling the inelastic scattering is com-
pletely suppressed at the laser frequency. In this regime,
the magnitude of the spectrum in the low-frequency
range scales linearly with temperature. This limit cor-
responds to the single-phonon scattering regime.

For arbitrary phonon couplings, one finds the low-
temperature asymptotics of A again given by Eq. (48),
up to corrections on the order of T 3 and higher, while

B = πη

(

kBT

ℏ

)3 [

lim
ω→0

J(ω)

ω3

]2

,

up to corrections ∝ T 5, where η = 2π2/3, which means
that at sufficiently low temperatures the spectrum is
dominated by the Fano component. At high tempera-
tures, the integrands in Eq. (46) are dominated by the
largest values of φ(t) ≫ 1, when sinhφ(t) ≈ coshφ(t) ≈
exp[φ(t)]/2, so that A ≈ B and Eq. (47) yields a sim-
ple Lorentzian on a flat “pedestal”. The coincidence of
the low-temperature asymptotics with the single-phonon
limit allows us to interpret the low-temperature Fano-like
spectrum as resulting predominantly from single-phonon
processes, while the transition to the Lorentzian shape
is due to the growing contribution from multiple-phonon
scattering.

The intensity of the inelastic part of the RF spectrum
stemming from the contribution in Eq. (40c) is again ob-
tained directly from Eq. (10),

Ilf = Iele
φ(0)

(

2Re ξ

γ|ξ|2
− 1

)

. (50)

In general, this includes not only the narrow feature dis-
cussed above but also a broad correction to the phonon
sideband, which becomes important at strong phonon
coupling.

The total intensity of the scattered light, Itot, is there-
fore

Itot = Iel + Ipsb + Ilf =
πΩ2

2γ
e−φ(0) Re ξ. (51)

The parameter ξ, defined in Eq. (42), governs not only
the total scattering intensity, but also the intensities of
the three components that we have separated in our anal-
ysis, via Iel. This crucial parameter can be decomposed
into two parts, ξ = ξ′ + ξ′′, with

ξ′(∆) =

∫ ∞

0

dse−(γ/2−i∆)s =
1

γ/2− i∆
(52)

and

ξ′′(∆) =

∫ ∞

0

dse−(γ/2−i∆)s
(

eφ(s) − 1
)

. (53)

The first component yields

Re ξ′ =
γ/2

(γ/2)2 +∆2
=

γ

2
|ξ′|2.

This Lorentzian dependence on detuning is known from
the standard theory of resonance fluorescence and ac-
counts for the excitation via the central line (fundamen-
tal transition). The second contribution gives rise to

Re ξ′′ ≈
1

2

∫ ∞

−∞

dsei∆s
(

eφ(s) − 1
)

∝ Spsb(ωL −∆),

where we omitted the damping with the rate γ/2 in
view of the very strong localization of the integrand in
the range s ≪ 1/γ. Thus, this part reproduces the
phonon-sideband, but inverted with respect to the laser
frequency, i.e., absorption-like. It accounts for the pho-
ton scattering via phonon-assisted excitation.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results of numerical cal-
culations of the RF spectrum and discuss its properties.
For simplicity, we assume the phonon spectral density in
the form

J(ω) =
FHR

ω2
c

ω3e−ω2/(2ω2

c
), (54)

which accounts for the dependence ∝ ω3 at low frequen-
cies and a high-frequency cutoff at ω = ωc, while dis-
regarding structural details irrelevant to the discussed
phenomena. In the simulations, we set γ = 1 ns−1 and
ωc = 1 ps−1. We will present the spectra relative to
the characteristic magnitude of S0 = Ω2/(γ2ωc) and the
intensities related to I0 = Ω2/γ2.
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FIG. 1. RF spectrum at weak phonon coupling (FHR = 0.1),
in a broad (left) and narrow (right) spectral ranges around the
resonance (notice the different units on the frequency axes).
(a,b) Spectra at various detunings, as shown, at a fixed tem-
perature T = 4 K. (c,d) Spectra at various temperatures, as
shown in (c), for a fixed laser detuning ∆ = γ. Vertical gray
belts schematically show the position of the central elastic-
scattering line. Dashed lines with colors corresponding to
the respective solid lines present the RF spectra in the weak
coupling limit for the same parameters of temperature and
detuning. (e,f) As in (c,d) but for classical noise.

A. Moderate phonon coupling

Fig. 1 shows the RF spectra for a moderate phonon
coupling, where we set FHR = 0.1. Figs. 1a,b present the
results at a fixed temperature T = 4K. In Fig. 1a we see
the interplay between the broad PSB, the narrow inelas-
tic feature, and the central elastic-scattering line (marked
here and elsewhere as a vertical grey bar). Fig. 1b zooms
in on the narrow spectral range around the resonance,
where the PSB is essentially flat and together with the
narrow feature creates a Fano-like feature as predicted
in Sec. III D: As the detuning decreases, the RF spec-
trum evolves from a mostly absorptive shape (red line),
through dispersive (green line), to a spectral dip (inverted
Lorentzian) around the laser frequency (blue line) for res-
onant excitation. At the same time, the overall intensity
drops down as the excitation gets increasingly detuned,
which is simply due to reduced excitation efficiency, gov-
erned by the prefactor in Eq. (47). In the weak coupling
limit (dashed lines), the RF spectrum shows exact Fano
form with entirely suppressed scattering at the laser fre-
quency (ω = ωL).

Figs. 1c,d present the temperature dependence of the
RF spectra at slightly detuned excitation (∆ = γ), in
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FIG. 2. Total scattering intensity as a function of the excita-
tion detuning from the fundamental transition for broad (a)
and narrow (b) detuning ranges, for a weak phonon coupling
(FHR = 0.1) at different temperatures. Dashed lines corre-
spond to the weak coupling limit.

a broad and narrow spectral range, respectively. As the
temperature increases, the PSB grows and becomes more
symmetric due to enhanced phonon absorption, as is
known e.g. in absorption spectroscopy [35]. The growth
of scattering in the low-frequency sector (Fig. 1d) is ap-
proximately linear in temperature, in accordance with
Eq. (47) and Eq. (48). As predicted by our general the-
ory, the width of the inelastic profile remains constant.

Figs. 1e,f present the RF spectrum for classical Gaus-
sian noise, for the same parameters as in Figs. 1c,d. Clas-
sical noise generates a symmetric broad sideband, since
the difference between phonon absorption and emission
is not applicable in this case. Alternatively, one can say
that classical noise is a (renormalized) high-temperature
limit of the quantum case, where the sideband becomes
symmetric. Comparing Fig. 1f with Fig. 1d, one can see
that the inelastic feature is the same in the quantum and
classical regimes, showing Fano behavior in both these
cases. Fano resonances are known to be generic for sys-
tems in which a discrete transition is located on a broad
background and hence also to appear in purely classical
systems [46, 60–68] that may be as simple as coupled
damped oscillators [68–72]. The present result demon-
strates this feature for an inherently quantum two-level
system in which the spectral background originates from
environmental noise, the classical and quantum regimes
of which can be treated on equal footing, showing no
difference in the spectral properties between these two
cases.

Fig. 2 presents the total scattering intensity as a func-
tion of the detuning of the laser frequency from the
polaron-shifted fundamental transition. At small detun-
ings, Fig. 2a, a Lorentzian profile appears, in accordance
with Eq. (51) and Eq. (52). In a wider range of detun-
ings (Fig. 2b), the inverted broad phonon sideband is
reproduced, as predicted by Eq. (53). Note that the in-
tensity of this phonon-assisted scattering is three orders
of magnitude weaker than that at direct excitation. The
scattering intensities shown in Fig. 2 show temperature
dependence that reflects the transfer of spectral weight
from the central line to phonon sidebands: the scattering
intensity at nearly-resonant excitation decreases, while
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FIG. 3. RF spectrum for a strong phonon coupling (FHR =

5), in a broad (left) and narrow (right) spectral range around
the resonance. Results are shown at fixed temperatures T .
Vertical gray belts denote again the elastic-scattering, central
line.

at phonon-assisted excitation it increases as the temper-
ature grows. In addition, the increasing intensity at red-
detuned excitation reflects the growing contribution from
phonon absorption processes.

B. Strong phonon coupling

Fig. 3a,b shows the RF spectrum for a strong phonon
coupling (FHR = 5) at two different temperatures. In the
broad spectral range (Fig. 3a,c) the RF spectrum again
consists of a central, unbroadened line, a broad PSB,
and a narrow inelastic scattering feature, the structure
of which is better visible in the narrow spectral range
in Fig. 3b,d. Compared to the weak coupling case (Fig.
1), the overall amplitude of the RF spectrum is reduced
by several orders of magnitude (see also Fig. 5, discussed
below). This is a consequence of the strongly reduced
efficiency of nearly-resonant exciton due to transfer of
spectral weight from the fundamental to phonon-assisted
transitions. For strong coupling, this exponential effect
dominates over the relative enhancement of the phonon
sidebands. Moreover, there is a greater contribution of
multiphonon processes, which results in a broadening of
PSB. The most striking difference between the weak- and
strong- coupling cases is the disappearance of the Fano
profile, which is replaced by a Lorentzian at T = 4 K
(Fig. 3b). Indeed, at this temperature and for the se-
lected value of the H-R factor, the parameters A and B
in Eq. (46) become nearly equal, hence Eq. (47) yields
a Lorentzian, as discussed in Sec. IIID. As follows from
that discussion, at low temperatures single-phonon pro-
cesses dominate even for strong coupling and the Fano
line profile should be recovered, which is indeed the case,
as shown in Fig. 3d. One feature of the spectra in
Figs. 3a,c that may seem surprising is the increase of the
phonon sidebands with decreasing temperature. This is
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FIG. 5. Total intensity of the RF spectrum (Itot), as well
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at nearly-resonant excitation (∆ = γ). (a) Dependence on
temperature for a fixed FHR = 5. (b) Dependence on the
Huang-Rhys factor for a fixed temperature T = 4 K.

due to the double effect of the temperature-induced redis-
tribution of spectral weight between the central line and
the sidebands: On the one hand, the sidebands are rela-
tively weaker at lower temperatures, while on the other
hand, exactly for this reason, the excitation via the cen-
tral line becomes more efficient. The latter turns out to
dominate at strong phonon couplings. As we will see be-
low, the relative intensity of phonon-assisted scattering
decreases at lower temperatures, as expected. Finally,
we note that for a strong phonon coupling, the width
of the inelastic feature is again temperature-independent
and equal to γ/2.

The total scattering intensity at FHR = 5 is presented
in Fig. 4. The intensity at nearly resonant excitation, cor-
responding to excitation via central line, is much lower
than for a weak coupling, as most of the spectral weight
is transferred to sidebands. Strong temperature depen-
dence leads to suppression of scattering under such ex-
citation conditions already at T = 7 K. Excitation via
phonon sidebands leads to similar peak scattering in-
tensity as for weak coupling, although the maximum is
shifted to higher detunings and the range of detunings
leading to efficient scattering is considerably extended
due to multi-phonon processes. The slight decrease of
the scattering intensity at growing temperatures may be
attributed to redistribution of the spectral weight over
a growing range of frequencies enabled by multiphonon
processes at higher temperatures.

Fig. 5a shows the decomposition of the scattering in-
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tensity into elastic and inelastic (phonon-induced) com-
ponents, the latter comprising both the low-frequency
feature and the broad phonon sideband, as a function of
temperature at a nearly resonant excitation for strong
phonon-coupling. These results confirm that, at such
strong phonon couplings, the scattering is dominated by
the inelastic component and that the total intensity of the
RF spectrum drops with growing temperature in the sub-
Kelvin to few Kelvin range. The growth of the scattering
intensity at higher temperatures is due to the increasing
efficiency of phonon-assisted excitation, which become
the dominating excitation channel even in this nearly-
resonant regime. The cross-over between the regimes of
dominant elastic and inelastic scattering around FHR = 1
is visible in Fig. 5b, where we show the same decomposi-
tion at a fixed temperature as a function of the phonon
coupling strength.

Fig. 6 presents the intensity of the elastic line relative
to the total scattering intensity as a function of temper-
ature and H-R factor at nearly resonant excitation. As
expected, the transition to the regime where the scat-
tering to phonon sidebands strongly dominates over the
elastic contribution (Ic ≲ 0.01Itot, red area) shifts to
lower phonon couplings as the temperature grows, al-
though this change is not very strong.

V. CONCLUSIONS

We have shown that the low-excitation RF spectrum
of a two-level system coupled to a bosonic bath (e.g.
phonons) with a super-Ohmic spectral density shows a
Fano-like profile of inelastic scattering intensity near the
resonant energy for moderately strong phonon couplings.

The Fano profile in the independent-boson model de-
scribing this system is characteristic of the resonance
fluorescence and does not appear in other types of lin-
ear or nonlinear spectroscopy, where phonon effects are
manifested only by broad phonon sidebands, which exist
also in fluorescence. The amplitude of the Fano feature
grows linearly with temperature. However, because of
the super-Ohmic character of the phonon reservoir, its
width depends solely on the exciton life time. In the
weak-coupling limit (single-phonon processes), the spec-
tral profile becomes an exact Fano shape, where resonant
light scattering is totally suppressed. For strong phonon
couplings, the Fano profile disappears due to the growing
role of multi-phonon processes, unless the temperature is
very low.

Phonon effects are manifested also in the dependence of
the total scattering intensity on the excitation frequency,
where broad sidebands appear due to phonon-assisted
excitation. The total scattering intensity, as well as its
distribution into elastic and inelastic (phonon-assisted)
components, reflects the impact of phonons on both ex-
citation and scattering efficiency, leading to different be-
haviors in different spectral ranges and for different cou-
pling strengths. However, in general, the contribution of
phonon-assisted scattering grows with both the coupling
strength and the temperature, as expected.

We have also formally captured the quantumness of the
phonon noise by tracing it back to the non-commutativity
of noise observables. We have shown that the Fano fea-
ture persists in the classical (commutative) limit of clas-
sical Gaussian noise with an appropriate spectral density.

On the fundamental level, our results indicate the pres-
ence of a characteristic feature that appears only in the
particular type of spectroscopy of a solid-state quantum
emitter. The formalism itself relies on the description of
the reservoir via its spectral density and can easily be ap-
plied to any system described by the independent boson
model. From the perspective of applications, in view of
the growing role of resonance fluorescence in characteriz-
ing and exploiting the quantum properties of solid-state
emitters of light, the presented study may be important
for designing and optimizing quantum light sources.
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