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Streszczenie rozprawy doktorskiej „On Generalization and
Robustness of Audio DeepFake Detection”

Piotr Kawa

W niniejszej rozprawie przedstawiono rozwiązania mające na celu poprawę metod detekcji
wygenerowanej komputerowo mowy tzw. dźwiękowych manipulacji DeepFake. Zaproponowane
usprawnienia dotyczą problemów dziedzinowych: poprawy generalizacji detektorów, zwiększenia
wydajności algorytmów, poprawy odporności detektorów na ataki oraz eksploracji metod repre-
zentacji danych w oparciu o głębokie sieci neuronowe.

Rozprawa doktorska oparta jest na następujących publikacjach:

1. Kawa, P., Plata, M., Syga, P. Attack Agnostic Dataset: Towards Generalization and Stabili-
zation of Audio DeepFake Detection, Interspeech 2022,

2. Kawa, P., Plata, M., Syga, P. SpecRNet: Towards Faster and More Accessible Audio Deep-
Fake Detection, TrustCom 2022,

3. Kawa, P., Plata, M., Syga, P. Defense Against Adversarial Attacks on Audio DeepFake
Detection, Interspeech 2023,

4. Kawa, P., Plata, M., Czuba, M., Szymański, P., Syga, P. Improved DeepFake Detection Using
Whisper Features, Interspeech 2023.

Generalizacja detektorów DeepFake jest powszechnym i wciąż nierozwiązanym problem niż-
szej skuteczności modeli na danych testowych, których rozkład różni się od danych treningowych.
Jednym z powodów jest nadmierne dopasowanie (ang. overfitting) — modele zamiast nauczyć
się ogólnych wzorców charakteryzujących próbki DeepFake, uczą się artefaktów poszczególnych
generatorów. Ponadto, aktualnie wykorzystywane zbiory treningowe, często nie zawierają pró-
bek stworzonych z użyciem najnowszych generatorów. W celu poprawy generalizacji i stabilności
metod detekcji, określanych przez efektywność na danych spoza zbioru treningowego, zapropo-
nowano podejście Attack Agnostic Dataset. Metoda ta polega na rozłącznym podziale ataków
pomiędzy zbiory treningowe, walidacyjne i testowe. Wyniki omawiane w rozprawie oparte są na
trzech zbiorach: WaveFake, FakeAVCeleb oraz ASVspoof 2019 LA. Metody podziału ataków po-
między podzbiory mają na celu symulowanie różnych scenariuszy np. trening na zbiorze opartym
tylko na podobnych metodach generowania DeepFake. Analiza wyników poszczególnych podziałów
pozwala wybrać modele o najlepszej generalizacji na danych spoza zbioru treningowego. Metoda
Attack Agnostic Dataset może być w łatwy sposób rozszerzona o kolejne zbiory i podziały. W
ramach prac zaproponowano nową reprezentację danych opartą na połączeniu spektrogramu me-
lowego oraz parametrów liniowo-cepstralnych w wyniku czego uzyskano wyniki EER o 5% niższe
niż w przypadku pojedynczych reprezentacji.

Globalna natura problemu manipulacji DeepFake, której wynikiem jest duża ilość wygenero-
wanej treści wymaga istnienia nisko-kosztowych metod detekcji zapewniających wysoki poziom
efektywności. Pozwala to zarówno na użycie wyżej wymienionych metod w celu analizy treści
umieszczanej np. na portalach społecznościowych, jak również, zwiększa dostępność tych rozwią-
zań pozwalając zwykłym obywatelom na samodzielną weryfikację treści. W tym celu stworzono
sieć neuronową SpecRNet. Jest to rekurencyjny model przetwarzający dwuwymiarowe reprezenta-
cje sygnału dźwiękowego. Architektura rozwiązania zainspirowana została popularnym modelem
anti-spoofingowym RawNet2 przetwarzającym sygnał dźwiękowy przy użyciu 60 razy większej
liczby parametrów. Architektura SpecRNet pozwala na 40% obniżenie czasu przetwarzania próbek
w porównaniu do modelu LCNN uważanego ówcześnie za jeden z najszybszych i najskuteczniej-
szych metod detekcji. SpecRNet odznacza się porównywalnymi wynikami, co zostało dodatkowo
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potwierdzone na podstawie zaproponowanych przez nas testów dotyczących m.in. scenariuszy ma-
łej ilości danych treningowych czy krótkich próbek dźwiękowych.

W celu zmniejszenia szansy wykrycia wygenerowanej próbki, adwersarz jest w stanie wyko-
rzystać różne rodzaje modyfikacji by ukryć artefakty charakteryzujące sztuczne dane. Jedną z
najbardziej efektywnych metod są ataki adwersarialne, które poprzez niezauważalne modyfikacje
danych wejściowych są w stanie w skuteczny sposób zaburzyć działanie sieci neuronowych. W
rozprawie przedstawiono pierwszą analizę wpływu wyżej wymienionych ataków na detektory De-
epFake. W ramach badań przeprowadzono analizę wpływu dwóch typów scenariuszy — white-box
oraz transferability różniących się zakresem wiedzy adwersarza na temat atakowanego systemu.
Wykorzystując trzy różne rodzaje ataków (FGSM, PGD oraz FAB) zwiększono EER od wyjściowej
wartości 0.0221, do 0.9905 w przypadku scenariusza white-box oraz do 0.4867 w przypadku scena-
riusza transferability. Następnie zaproponowano nową metodę adaptatywnego treningu adwersa-
rialnego mającego na celu zwiększenie odporności sieci na ataki. Wykorzystanie zaproponowanej
metody pozwala na obniżenie EER do 0.0982 w scenariuszu white-box oraz 0.1091 w scenariuszu
transferability.

Reprezentacja sygnału dźwiękowego przetwarzanego przez klasyfikatory DeepFake ma istotny
wpływ na ich efektywność. Coraz większa liczba proponowanych rozwiązań oparta jest na danych
uzyskiwanych z sieci neuronowych trenowanych w ramach metod uczenia self-supervised (SSL).
Reprezentacje te pozwalają na osiągnięcie lepszych wyników w porównaniu do standardowych
algorytmów przetwarzania sygnałów. W ramach rozprawy jako alternatywę dla rozwiązań SSL
zaproponowano wykorzystanie modelu rozpoznawania mowy Whisper. Architektura ta została
wytrenowana na największym zbiorze przetwarzania mowy składającym się z ponad 860.000 godzin
nagrań. Przeprowadzono analizę wykorzystania modelu zarówno jako samodzielny ekstraktor cech,
jak również jako integralną część detektorów używaną w procesie dostrajania. Zaproponowana
reprezentacja danych składająca się z danych z modelu Whisper połączonych z parametrami mel-
cepstralnymi pozwala na poprawę wyjściowego wyniku na zbiorze In-The-Wild o 26%.
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Abstract of the doctoral dissertation ”On Generalization
and Robustness of Audio DeepFake Detection”

Piotr Kawa

In the following dissertation, we present solutions to improve methods for detecting computer-
generated speech — a problem referred to as audio DeepFake detection. The proposed impro-
vements address the following domain problems: improving the generalization of the detectors,
increasing the speed of the solutions, improving detector robustness to the attacks, and exploring
methods of data representation based on deep neural networks.

The dissertation is based on the following scientific publications:

1. Kawa, P., Plata, M., Syga, P. Attack Agnostic Dataset: Towards Generalization and Stabili-
zation of Audio DeepFake Detection, Interspeech 2022,

2. Kawa, P., Plata, M., Syga, P. SpecRNet: Towards Faster and More Accessible Audio Deep-
Fake Detection, TrustCom 2022,

3. Kawa, P., Plata, M., Syga, P. Defense Against Adversarial Attacks on Audio DeepFake
Detection, Interspeech 2023,

4. Kawa, P., Plata, M., Czuba, M., Szymański, P., Syga, P. Improved DeepFake Detection Using
Whisper Features, Interspeech 2023.

Generalization of DeepFake detectors is a common, and still unsolved, problem of lower model
performance on test data with the distribution differing from training data. One of the reasons is
overfitting — models, instead of learning the general patterns characterizing DeepFake samples,
learn the artifacts of the individual generating methods. Moreover, the currently used training
datasets often do not contain samples created with the latest synthesis methods. To improve the
generalization and stability of detectors (determined by efficiency on data outside the training
dataset), we propose the Attack Agnostic Dataset framework. This method is based on the disjo-
int division of attacks between training, validation, and test subsets. The results discussed in the
dissertation are based on three datasets: WaveFake, FakeAVCeleb and ASVspoof 2019 LA. The
presented techniques of splitting the attacks between subsets are designed to simulate different
scenarios, e.g. training using a dataset based only on similar DeepFake generation methods. Ana-
lyzing the results of the particular splits allows us to select models with the best generalization on
data outside the training set. Attack Agnostic Dataset can be easily extended to include additional
datasets and splits. We propose a new representation based on a combination of mel spectrogram
and linear-frequency cepstral coefficients, and as a result, we obtain EER 5% lower than in the
case of single representations.

The global nature of the DeepFake phenomenon, resulting in a large volume of artificially
generated content, requires low-cost, high-efficiency detection methods. Such solutions enable not
only the analysis of the content posted on social networks but also increase the availability of such
methods, allowing ordinary citizens to verify the content themselves. We present the neural network
SpecRNet. It is a recurrent model that processes two-dimensional representations of a raw audio
signal. Its architecture was inspired by the popular RawNet2 anti-spoofing model that processes
the audio signal using 60 times more parameters. SpecRNet’s inference speed is 40% faster in
comparison to the LCNN model, considered one of the fastest and best-performing detectors at
the time. SpecRNet provides similar performance, which we confirm by introducing and performing
benchmarks covering scenarios such as small volumes of training data or short utterances.

To reduce the possibility of detecting a generated sample, an adversary can utilize various mo-
difications to hide artifacts characterizing the fake samples. One of the most effective methods is
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adversarial attacks, which, through imperceptible modifications of the input data, can effectively
decrease the performance of neural networks. In the dissertation, we present the first analysis of
the impact of the attacks mentioned above on the DeepFake detectors. We analyze the impact of
two types of scenarios — white-box and transferability differing in the degree of the adversary’s
knowledge of the system under attack. Using three different types of attacks (FGSM, PGD and
FAB), we can increase the EER from the initial value of 0.0221 to 0.9905 for the white-box sce-
nario and to 0.4867 for the transferability scenario. Next, we propose a new method of adaptive
adversarial training aimed at increasing the network’s robustness to the attacks. Using the pro-
posed method, the EER can be decreased to 0.0982 in the white-box scenario and 0.1091 in the
transferability scenario.

The representation of the audio signal processed by DeepFake classifiers significantly impacts
their effectiveness. An increasing number of proposed solutions are based on data from neural
networks trained by self-supervised learning (SSL) methods. These representations provide better
performance compared to standard signal processing algorithms. As part of the dissertation, we
propose using the Whisper speech recognition model as an alternative to SSL methods. This model
has been trained on the largest speech-processing dataset consisting of more than 860,000 hours of
content. We are analyzing using the model both as a standalone feature extractor and as an integral
part of the detectors used in the fine-tuning process. Our proposed data representation consisting of
the hidden state of the Whisper model combined with mel-frequency cepstral coefficients improves
the baseline results on the In-The-Wild dataset by 26%.
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Chapter 1

Introduction

This dissertation focuses on the implementation of artificial intelligence (AI)
solutions to address specific problems of impersonating someone’s voice or
attempting to denigrate a victim by putting false utterances into circulation.
In particular, we address the problem of audio DeepFake manipulations —
utterances created using AI generative models. Due to the high quality of
these materials and the ease with which they can be produced, they pose
a significant threat [1]. The most prominent examples include money ex-
tortion [2, 3], or spreading fake news [4]. The following dissertation focuses
on methods of determining the authenticity of utterances — a task referred
to as audio DeepFake detection.

The subsequent chapters of the dissertation cover various aspects of
detecting audio DeepFake manipulations. Chapter 2 describes the defini-
tions and motivations for the problems presented in the dissertation. It also
contains information about the current state of the field of audio DeepFake
detection and covers the research questions addressed in the dissertation.
Chapter 3 focuses on the generalization of the DeepFake detection solu-
tions. In this chapter, we propose a novel benchmark called the Attack
Agnostic Dataset, which allows in-depth evaluation of the generalization
and stability properties of DeepFake detectors and, therefore, choosing the
detector that might perform best on out-of-domain data. Chapter 4 intro-
duces a novel detection neural network — SpecRNet. The model achieves
comparable results in detecting audio DeepFake manipulations while pro-
viding a 40% improvement in processing speed compared to related work.
Additionally, we introduce three novel benchmarks which are later used to
evaluate the detection system. Chapter 5 covers adversarial attacks on au-
dio DeepFake detection methods, where we first show that these attacks
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2 CHAPTER 1. INTRODUCTION

can successfully decrease the performance of the detectors, making them
ineffectual, and later, we introduce a novel training technique that signifi-
cantly increases the robustness against such attacks without compromising
much of performance on non-adversarial data. Chapter 6 explores the topic
of the audio representations used in detecting DeepFakes. We are first to
extract information stored in the hidden layers of the state-of-the-art Whis-
per automatic speech recognition (ASR) model [5] and use it in tasks other
than ASR. Thanks to this, we obtain a 26% reduction of the Equal Error
Rate metric (refer to Section 2.3.3) on one of the most demanding DeepFake
detection datasets. Chapter 7 provides a concise summary of the findings
presented in this thesis.

The majority of the content in this dissertation derives from previously
published scientific articles, which were later expanded by additional ex-
periments. The following list comprises these manuscripts, accompanied by
a brief description of their most significant outcomes:

1. Attack Agnostic Dataset: Towards Generalization and Stabilization
of Audio DeepFake Detection — [6] was written jointly with Marcin
Plata and Piotr Syga and presented at the INTERSPEECH 2022
conference. The main contributions of this work include introduc-
ing a benchmark to examine the generalization of DeepFake detec-
tion models and proposing a novel audio representation leading to
more generalized and stable results. In this research, the disserta-
tion’s author was responsible for preparing source code, conducting
experiments and was involved in writing the paper.

2. SpecRNet: Towards Faster and More Accessible Audio DeepFake De-
tection — [7] was written jointly with Marcin Plata and Piotr Syga
and presented at The 21st IEEE International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom
2022). In this work, we introduced a novel architecture of a Deep-
Fake detector called SpecRNet, which provided a significant speed
enhancement with no significant decrease in performance. We backed
the results based on the three novel benchmarks we introduced, in par-
ticular low-resource and short utterances scenarios and limited attacks
benchmark providing in-depth analysis of the influence of particular
attacks on the models’ final performance. The author’s contribution
included introducing the SpecRNet’s architecture, conducting the ex-
periments, and co-writing the article.
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3. Defense Against Adversarial Attacks on Audio DeepFake Detection —
[8] was written jointly with Marcin Plata and Piotr Syga and presented
at the INTERSPEECH 2023 conference. In this work, we conducted
the first-ever analysis of the influence of adversarial attacks on audio
DeepFake detectors. We later increased their robustness against the
attacks thanks to our new method for adaptive adversarial training. In
this research, the thesis author was responsible for preparing training
pipelines, conducting adversarial attacks, and related training and was
involved in writing the manuscript.

4. Improved DeepFake Detection Using Whisper Features — [9] was writ-
ten jointly with Marcin Plata, Michał Czuba, Piotr Szymański and
Piotr Syga and presented at the INTERSPEECH 2023 conference.
Our main contribution was enhancing the performance on the In-
The-Wild dataset by 26%. We achieved that by utilizing the Whisper
ASR model, which, in this work, was the first-ever used for a task other
than automatic speech recognition. In this research, the dissertation’s
author was responsible for introducing the concept of using Whisper
as a front-end, was involved in designing and conducting experiments,
and co-wrote the manuscript.

In addition, during the Ph.D., the dissertation’s author (co-)authored
the following manuscripts:

1. Verify It Yourself: A Note on Activation Functions’ Influence on Fast
DeepFake Detection. [10] was written jointly with Piotr Syga and pre-
sented at the 18th International Conference on Security and Cryptog-
raphy (SECRYPT 2021). This work focused on enhancing computa-
tionally undemanding methods for visual DeepFake detection. We im-
proved the performance of MesoNet neural network [11] by replacing
its activation functions and achieving over 1% performance improve-
ment along with increased stability. The work introduced a novel
activation function — Pish, which provided enhanced performance on
specific datasets at the cost of a slight time overhead. In this re-
search, the author was responsible for preparing and conducting the
experiments and was involved in the writing process.

2. MLAAD: The Multi-Language Audio Anti-Spoofing Dataset [12] was
written jointly with Nicolas M. Müller, Wei Herng Choong, Edres-
son Casanova, Eren Gölge, Thorsten Müller, Piotr Syga, Philip Sperl
and Konstantin Böttinger and was accepted at the International Joint



4 CHAPTER 1. INTRODUCTION

Conference on Neural Networks 2024 (IJCNN 2024) conference. The
main contribution was presenting the first-ever multi-language Deep-
Fake detection dataset, solving one of the most prominent research
gaps in the field — the scarcity of differently distributed datasets
and lack of datasets in languages other than English, Chinese, and
Japanese. The dataset comprised over 160 hours of synthetic speech
in 23 languages created using 52 Text-To-Speech models. The au-
thor’s contribution to this work included preparing the TTS genera-
tion pipelines and co-writing the article.

3. A New Approach to Voice Authenticity [13] was written jointly with
Nicolas M. Müller, Shen Hu, Matthias Neu, Jennifer Williams, Philip
Sperl and Konstantin Böttinger and was accepted at the INTER-
SPEECH 2024 conference. We proposed a conceptual shift away from
the binary paradigm of audio being either real (genuine human speech)
or fake (produced by TTS or VC systems). Instead, we introduced
a paradigm of pinpointing particular voice edits. Apart from TTS
and VC speech manipulations, the edits include various digital signal
processing manipulations like speed or pitch alteration, which were
reported to be used for deceiving the audiences [14, 15, 16]. We intro-
duced a novel benchmark dataset based on the M-AILABS dataset [17]
comprising 20 voice edits grouped into six categories. The author’s
contribution to this work covered preparing the voice edits creation
pipelines and co-writing the article.

During the Ph.D. studies the author was supported under the grant
funded by Polish National Science Center (pol. Narodowe Centrum Nauki)
Information concealment and privacy in (mostly) distributed systems (pol.
Ukrywanie informacji i prywatność w systemach (głównie) rozproszonych)
from 01.06.2022 to 30.11.2022 (project number 2018/29/B/ST6/02969).

Moreover, the author took part in the following R&D projects funded
by The National Centre for Research and Development (pol. Narodowe
Centrum Badań i Rozwoju) and The Polish Agency for Enterprise Devel-
opment (pol. Polska Agencja Rozwoju i Przedsiębiorczości) and was a part
of the scientific teams working on various computer vision problems includ-
ing image watermarking, biometrics (facial anti-spoofing) and virtual object
placement:

• Vestigium - a platform using intelligent video content watermarking
algorithms enabling fast identification and blocking of the source of
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illegal transmissions (pol. Vestigium — platforma wykorzystująca
inteligentne algorytmy znakowania treści wideo umożliwiające szybką
identyfikację i blokowanie źródła nielegalnych transmisji) from 05.06.2020
to 30.11.2020, project number: POIR.01.01.01-00-1032/18,

• Adspective - The platform automating the creation of high-quality ad-
vertising in multimedia content using AI (pol. Adspective - Platforma
automatyzująca tworzenie wysokiej jakości reklamy w treściach mul-
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Chapter 2

Related work

The following chapter contains definitions and motivations related to the
problem addressed in the dissertation.

2.1 Speech synthesis

Speech synthesis is a field of study that focuses on the exploration of algo-
rithms, models, and techniques aimed at generating artificial speech.

2.1.1 History

We trace the early development of speech synthesis back to the late 18th
century [18]. In 1779, Christian Gottlieb Kratzenstein created a mechani-
cal device composed of acoustic resonators that mimicked the human vocal
tract by activating the resonators with vibrating reeds. His apparatus could
artificially produce the vowels /a/, /e/, /i/, /o/, and /u/. Some of the ear-
liest attempts at electrical-based speech synthesis were made in the 1930s
when Homer W. Dudley invented a mechanical device called ”Voder” [19].
This keyboard-operated electronic mechanism was able to synthesize in-
telligible speech. The first computer-based speech generation techniques
emerged in the 1950s and 60s — in 1961, John Larry Kelly Jr. and his
team in Bell Labs used an IBM 704 computer to synthesize speech in the
song Daisy Bell. It was later used in the screenplay of 2001: A Space Odd-
ysey [20]. The advancements in the 1980s and 1990s were achieved mainly
using a technique called Linear Predictive Coding (LPC) [21], which be-
came a standard for computer-generated speech. This technology became
widely known through products such as Speak & Spell [22]; the devices,
based on Texas Instruments LPC Speech Chips, were hand-held educational

7
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computers for children, which, by synthesizing words, helped them learn
proper pronunciation. In the 90s, the development emphasized improving
the synthesized voices regarding naturalness and speech intelligibility. At
that time, the first female speech synthesizer was developed [23], marking
a shift from the previously developed systems that exclusively featured mas-
culine voices. The popularity of TTS systems rose as they were included in
multiple computer programs — e.g., in 2000, Microsoft released Microsoft
Narrator [24], a screen reader accessibility feature bundled with every ver-
sion of their operating system. The rise in popularity of speech synthesis
tools has also resulted in the development of products for languages other
than English. One of them was Ivona Software, the Polish TTS system,
which was later used to create the Alexa assistant [25] and is still used in
public spaces like railway stations [26]. In recent years, progress in artificial
intelligence has profoundly influenced the development of speech synthesis
techniques. The neural network-based approaches have increased the qual-
ity and naturalness of the generated speech and made this technology far
more accessible. Current approaches enable voice synthesis using several
minutes of source material or synthesis of low-resource languages [27] —
applications that were earlier not possible. Thanks to these results, deep
learning became the current standard for generating artificial speech [28] —
both in academic work but also in industry applications (see Sections 2.1.2
and 2.1.3).

In this dissertation, we cover various speech synthesis methods, as the
means of creating new utterances will be considered possible attacks we
detect.

2.1.2 Applications

Speech synthesis methods have many applications, making them essential
in many aspects of contemporary human life. One of its most significant
benefits is its ability to help people with speech impairments. Products like
Google Parrotron [29], via the use of TTS systems, can improve the intelligi-
bility of speech of deaf speakers. Such methods are also used in accessibility
features. Synthesizing text can provide individuals with visual impairments
access to content such as e-books or websites. Visual interfaces can be-
come accessible by describing information on the screen using audio (e.g.,
by telling which button the user is currently hovering over) [24]. Speech
synthesis is an increasingly popular method for creating audiobooks [30].
TTS has allowed products such as voice assistants to emerge. Siri [31],
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Alexa [32] or Google Assistant [33] use synthesized speech to respond and
engage in natural language interactions with users. They can deliver in-
formation and control devices responding to the user’s commands. Voice
feedback is also used in navigation systems [34, 35]. Users are presented
with visual information about routes or traffic situations and receive au-
dio feedback, which helps improve safety due to not having to look at the
navigation screen. In education, speech synthesis can be used in language
learning applications. By listening to the speech created using the voices
of native speakers, learners can improve their pronunciation and language
skills [36, 37, 22]. Customer service also benefits from speech synthesis. The
menu for selecting the conversation topic is often automated using synthe-
sized speech before connecting callers to a human agent, resulting in lower
operational costs. Moreover, some hotlines utilize chatbots communicating
using synthesized speech, enabling performing certain operations without
a human operator †.

2.1.3 Products and toolkits

At the time of writing the dissertation, there exists a variety of compa-
nies offering products addressing particular demands of the market, e.g.,
Coqui.ai [38], Resemble.ai [39], ElevenLabs [40] or Respeecher [41]. In
addition to these startups, major industry leaders such as Amazon [42],
Baidu [43], Google [44] or Microsoft [45] provide their own cloud-based
TTS services. The open-source voice synthesis community is also thriving
— academia and open-source fields are supported by several free toolkits
like Coqui-TTS [46], ESPNet [47], Hugging Face [48] or SpeechBrain [49]
which contain open-source implementations of many of the state-of-the-art
methods. The quality of the implemented methods is often comparable to
the closed-source products [50]. The multitude of these solutions has signif-
icantly facilitated access to speech synthesis technology. Nowadays, these
methods are no longer reserved only for research or industrial centers —
more and more people can benefit from these technologies.

2.1.4 Taxonomy

We distinguish two main speech-generating approaches: Text-To-Speech
(TTS) and Voice Conversion (VC). Text-To-Speech refers to the algorithms
that generate artificial speech based on the provided text inputs (see Fig-

†Example: Max, the voice assistant of Orange https://www.orange.pl/view/max.
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Figure 2.1: In the general pipeline of a Text-To-Speech (TTS) system,
speech is synthesized based on provided input text. Modern TTS systems
enable the synthesis of multiple voices, languages, emotions, and prosody
based on additional information. Figure depicts system based on speaker
embeddings — information extracted from the reference samples that allow
generation of multiple voices using a single model.

ure 2.1). Such models are trained on the speech samples and their corre-
sponding transcripts. They use the provided text to generate (mel-)spectrogram
of the corresponding utterance [51, 52, 53, 54, 55], which is later converted
into an audio signal using neural vocoders [56, 57, 58, 59, 60, 61, 62]. As
a result, TTS models can generate arbitrary utterances based on the input
transcript provided by the user. Recent TTS solutions perform this process
end-to-end using a single model [63, 50]. Moreover, novel solutions support
generating multiple voices [64, 65, 50, 63, 66, 67, 68, 69], languages [50, 67]
or emotive speech [38].

Figure 2.2: The general pipeline of a Voice Conversion (VC) system —
speech is synthesized based on two utterances used for extracting linguistic
information and voice characteristics.

Voice Conversion covers the algorithms transforming one voice to an-
other person’s voice without changing the utterance’s linguistic content (re-
fer to Figure 2.2). By disentangling the content and the speaker information
of a given utterance, these methods retrieve source content data from one
utterance and speaker information from the other. As a result, they can
reconstruct the original statement spoken by someone else. Similarly to
the TTS methods, VC models can be either two-stage (synthesizer and
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vocoder) [70, 71], or end-to-end [72, 50, 63]. Due to their nature, classic VC
methods are limited by the content of the original utterances. They cannot
generate new statements (i.e., they do not contain any further text informa-
tion). However, while a clear distinction exists between the TTS and VC
algorithms, multiple methods incorporating both TTS and VC overcome
these obstacles — they are referred to as Voice Cloning [50].

2.2 Audio Representations

The following subsection describes selected, popular, representations of au-
dio signals used in speech processing. One uses different representations
due to the features they emphasize (or dismiss) and due to the decreased
dimensionality of the represented data. For more examples of audio repre-
sentations, please refer to [73].

2.2.1 Waveform representation

Waveform representation is the most basic way to represent the audio sig-
nal. It uses a sequence of numbers xt describing a relative air pressure
(amplitude) with respect to a given time point t ∈ N. This digital represen-
tation of the analog phenomena of sound waves is obtained using pulse-code
modulation (PCM) technique [74].

Figure 2.3: Waveform representation of sample LJ001-0001 of LJSpeech
dataset [75].
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The accuracy of a sound waveform’s reconstruction is mainly affected
by sampling rate and bit depth. The sampling rate determines the fre-
quency at which a continuous signal (sound wave) is sampled to create its
discrete representation (waveform) — higher values enable a more precise
representation. Sampling rates of 16,000 Hz, 22,050 Hz, and 44,100 Hz are
standard for speech processing (higher values are typically considered for
non-speech audio). According to the Nyquist-Shannon sampling theorem,
to properly represent a signal, its frequency should be below the Nyquist
frequency (calculated as fn = fs

2 , where fs is a sampling rate of a signal)
as such audio does not contain distortions known as aliasing [19].

The bit depth specifies the number of bits used to represent the ampli-
tude of a signal, which can be interpreted as the resolution of the signal’s
loudness. A higher bit depth increases the dynamic range, allowing for
a more precise representation of sound. Most speech processing applica-
tions typically employ a bit depth of 16 bits or higher [74].

2.2.2 Spectrograms

Spectrograms are another way to visually represent audio signals by dis-
playing the frequency information over time. Creating this representation
starts with dividing the waveform into small (e.g., 400 values) overlapping
(e.g., 160 values) segments called frames. We then perform windowing —
multiplication of the signal values by a window function (e.g., Hann, Ham-
ming). This operation aims to reduce spectral leakage, resulting in inaccu-
racies in representing frequency components of the original signal. We then
perform Short Time Fourier Transform (STFT) by applying Fast Fourier
Transform (FFT) on each window separately to shift from time to frequency
domain (input signal xn and window wn).

STFTxn(h, k) = X(h, k) =
N−1∑
n=0

xn+hwne−i2π kn
N

The results are aggregated into a matrix of complex numbers com-
prised of magnitude and phase information Xk. Final representation is
obtained by computing magnitude (|Xk|, where k ∈ {0, ..., K − 1} are FFT
coefficients), or square magnitude (|Xk|2), however the most commonly we
compute 20 log10 |Xk| — the spectrum that is described in decibels allows
easy interpretation [74]. Visualizing the obtained real-valued matrix as
a heatmap provides us with a spectrogram. Spectrograms and other 2D
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audio representations are often referred to as front-ends — features that
are later processed by various speech-related solutions.

Figure 2.4: The x-axis of the spectrogram represents time, whereas the
y-axis is the frequency (e.g. in Hz). The color denotes the frequency’s
amplitude (or power) and is measured in decibels. Sample LJ001-0001 of
LJSpeech dataset [75].

Humans do not perceive frequencies on a linear scale — the differences in
lower frequencies are much more noticeable than those from higher frequen-
cies. Mel-scale is a non-linear transformation that reflects human response
to different frequencies. To convert frequency f to a mel-scale, we use the
following equation:

fmel = 2595 · log10

(
1 + f

700

)
Mel transformation is used to create representations like mel-spectrograms,

which are utilized in tasks that require better alignment with human per-
ception of a sound, e.g., speech processing or music genre classification.
Mel-spectrogram is created by applying mel filter banks to a standard spec-
trogram.

2.2.3 Linear and mel frequency cepstral coefficients

Mel frequency cepstral coefficients (MFCC) are a representation used in
tasks like the speaker or speech recognition [76, 77]. MFCC are based on
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mel-spectrograms — we first compute its logarithm, apply a Discrete Cosine
Transform (DCT) and compute amplitudes of the obtained spectrum. This
representation is more abstract than (mel-)spectrograms, which makes it
more difficult to interpret. However, as they can capture essential speech-
related information [74, 76], they became a standard for speech processing.

Figure 2.5: An example of a MFCC representation (13-coefficients) based
on the LJ001-0001 sentence from LJSpeech dataset [75].

Linear frequency cepstral coefficients (LFCC) are features created sim-
ilarly to MFCC, but instead of using mel-filter banks, they utilize a linear
scale. Despite being less commonly used, some research shows that us-
ing LFCC in some speech-related tasks (e.g. speaker recognition or baby
crying detection) provides similar or even better results over mel-scaled fea-
tures [78, 79], which makes it an interesting alternative to MFCC. Apart
from MFCC and LFCC, there exist other cepstral coefficient representa-
tions [80, 81].

2.3 DeepFakes

The field of speech synthesis is not the only branch of generative AI currently
experiencing rapid and dynamic development. Deep learning techniques [82]
primarily led to enhancements over the traditional algorithmic methods in
fields like image, video and text processing. This new era has resulted in
high-quality modified and synthetically generated content.
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Synthetic content created using deep learning methods is called Deep-
Fakes (DF). The term deep denotes using deep learning as a creation tech-
nique, whereas fake highlights the falsity of the generated content. Deep-
Fakes initially referred to algorithms for manipulating facial images to create
fake identities [83, 84]. The original algorithm [85] swapped the face of the
person in the video with the face of the arbitrary individual. The result-
ing image kept the mimics and illumination of the source while depicting
another person. The initial method is based on two autoencoder neural net-
works [86]; this technology has been significantly enhanced in the following
years. The improvements were both in the context of expanding the original
idea itself through modification of individual components (e.g. increasing
output sizes [87]), as well as through the use of new, different technologies
such as Generative Adversarial Networks [88, 89, 90] (with their extensions
like CycleGANs [91, 92]) or Diffusion Models [93, 94, 95].

The advancements also introduced new DeepFake generation tasks such
as facial reenactment. The idea covers manipulating the mimics of the orig-
inal person in an image based on some external input (mimics of another
individual) [96, 97, 90, 98, 99]. The output contains the original individual
but with the changes in their facial and head movement. The results are
often realistic and convincing (see Figure 2.6). Nowadays, the name Deep-
Fake is often used to describe various methods related to the generation or
modification of biometric features [100, 84] including topics like face editing
(modification of the features such as hairstyle, age, facial expression [101])
or face synthesis (creating faces of non-existent individuals [102, 103]).

Figure 2.6: Originally, DeepFakes refers to the set facial manipulation algo-
rithms that include both identity swap and expression (facial) reenactment.
Source: [98].
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Term DeepFakes also refers to a phenomenon existing in audio and
speech processing. Generating utterances using Text-To-Speech and Voice
Conversion (described in Section 2.1.4) is referred to as generating audio
DeepFakes. The recent development of these methods significantly lowered
the quantity of data required for generating realistic utterances. The end-
to-end nature of the majority of the DeepFake generation techniques (both
audio and video) significantly facilitates the creation of forged materials —
preparing them no longer requires specialized knowledge and many hours
of tedious work [28]. Nowadays, systems like Personal Voice in iOS smart-
phones [104] require about 15 minutes of speech to mimic the voice of the
owner realistically. In addition, many services offering voice synthesis func-
tionalities (see Section 2.1.3) make creating this type of content even more
widely available.

Multi-modal DeepFakes is another branch of DeepFakes that is currently
becoming increasingly popular. These solutions combine different modal-
ities, such as vision and audio, creating spoofed materials consisting of
consistent faces and voices. The most notable approach to combining these
modalities is talking heads. They are videos featuring faces with expressions
driven by audio input [105, 106]. This technology is currently employed in
AI avatar solutions [107].

Audio DeepFake algorithms, despite having numerous beneficial appli-
cations (see Section 2.1.2), also pose significant security threats due to their
ability to produce high-quality fake content that can be difficult to distin-
guish from genuine recordings. These malicious applications are a cause for
concern.

One of the most concerning applications of audio DeepFakes is the cre-
ation of fake news. By impersonating authoritative figures such as politi-
cians or celebrities, fake materials can damage their reputations and mislead
the recipients of such content [108]. Moreover, their ability to influence po-
litical or military decisions by, for example, creating a DeepFake of the pres-
ident ordering troops to surrender highlights the potential for widespread
chaos and misinformation.

Another malicious scenario involves bypassing automatic speaker veri-
fication systems. Voice biometrics is increasingly popular and is currently
used as an authentication measure in many systems like telecommunications
or banking services. Positive verification of the spoofed utterance provided
by an adversary grants them access to the system [109].

Extortion is another possible attack vector — audio DeepFake methods
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were successfully used to impersonate the transaction participants to order
wire transfers to the adversary’s account, resulting in millions of dollars in
loss [2, 3]. Moreover, synthesized speech can also be used to fool family
members by asking for immediate financial help.

Furthermore, DeepFakes can also be used for blackmailing and defama-
tion. By creating ridiculing materials, someone can threaten to release the
fake content publicly and tarnish someone’s reputation [4].

2.3.1 Human perception of audio DeepFakes

Despite their high quality, modern speech synthesis methods are still un-
able to perfectly imitate every aspect of human speech. They face problems
such as imperfect reproduction of the characteristics of someone’s voice or
inconsistencies in the prosody of speech. Despite that, the examples high-
lighted in the previous paragraphs show that DeepFakes, if used in bad
faith, pose a great danger to various aspects of human life. They are not
isolated cases: in recent years, studies have been done to determine an
average citizen’s capabilities to distinguish real and spoofed speech.

The authors of [110] created a game-like challenge in which participants
competed with DeepFake detectors in distinguishing DeepFake and bona fide
utterances. The reported results were based on 472 participants. The group
was diverse in terms of spoken language (105 of them were English native
speakers), age (20-100), and IT skills (self-reported on a scale from 1 to
5). Each participant listened to several recordings that they could replay
multiple times — once they were ready, they were supposed to choose if
the given sample was fake. After each decision, they were informed of the
correct answer.

While the models detected 95% of fake utterances, humans were only
able to detect 80% of them. This level of performance is weak and alarm-
ing, which the authors support with the following observations. Primarily
— the participants were aware of the task and could replay the recordings
multiple times. Such a controlled environment is much easier than a real-life
scenario when a victim may not be aware of the malicious activity. More-
over, the recordings presented to the participants came from the ASVspoof
2019 Challenge [111] — in the last couple of years, the progress in speech
synthesis has been profound, and utterances generated with current tech-
nology sound even more convincing. The scientists additionally observed
that the performance of detecting DeepFakes declined with age and that
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there exists no significant correlation between IT skills and the capability
to detect spoofed speech — DeepFakes are a threat to everyone.

The human ability to recognize DeepFakes was also covered in [112].
The authors conducted a survey where the participants were presented with
several recordings as a part of the survey on the usability of voice messages
in chat apps. This was a cover-up story, as the true nature of the experiment
was the assessment of human DeepFake detection capabilities. Participants
were supposed to select one out of three recordings containing false informa-
tion. Moreover, they were instructed to report anything unusual about the
audio files they listened to. The participants were, however, unaware that
some of the presented recordings were artificially generated using state-of-
the-art speech synthesis systems.

The research was performed on 31 respondents, with the majority of
them being younger than 23 years old, about 40% working in IT and 85%
aware of, or even interested in, the topic of DeepFakes. Out of all partici-
pants, only one suspected that some of the utterances were artificially gener-
ated; 13 respondents mentioned that some of the samples were of a slightly
worse quality, but their answers did not indicate their suspicion about the
genuineness of the speech. The authors point out that the reason for such
weak results is that the participants were focused on analyzing the informa-
tion in the recordings and were unaware of the presence of DeepFakes. As
the participants did not suspect such manipulations, they ignored the in-
terferences related to the existence of DeepFakes. Once they were informed
about the true nature, 84% of them could correctly identify spoofed samples
— performance comparable to the one presented in previous research [110].

Both experiments confirm that the malicious use of DeepFake tech-
niques should be treated as a significant threat. The experiments show that
people often cannot distinguish between real and fabricated samples. The
performance is much worse when they do not expect that a given recording
may be fabricated. Synthesized speech is often used to create controversial
and shocking statements and can be presented (replayed) to the individuals
under the influence of emotion (e.g., stress). The materials are often dissem-
inated on social media or during phone calls during stressful situations —
the compression of the uploaded recordings or environmental noises during
the call are the factors that further reduce detection capabilities.
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2.3.2 DeepFake detection

Due to the seriousness of the aforementioned threats posed by DeepFake
technology, the scientific community began research on the topic of assess-
ment if a given utterance was artificially modified. This task is referred to
as audio DeepFake detection. The problem of detecting DeepFakes is a no-
reference task, which means that one has to assess the validity of the sample
based only on the analyzed material with no access to reference utterances
(refer to Figure 2.7).

Figure 2.7: DeepFake detection task determines the genuineness of the audio
sample. The process aims to find the artifacts introduced in the synthesis
process.

A variety of factors influence the difficulty of the Deepfake detection
task. The quality of the generated utterances is among the most significant.
Samples of lower quality typically contain more artifacts that can be used
to distinguish spoofed and bona fide speech. In systems like two-stage TTS
or VC methods (see Section 2.1.4), the imperfections can be introduced
either at the spectrogram synthesis stage or during the vocoding step. In
the spectrogram synthesis, that aspect can be the quality of the phoneme
mapping — how well the spectrogram created by the synthesizer module
of TTS reflects the words included in the input transcript. The vocoding
part of the process refers to transforming the synthesized spectrogram to
the speech — the vocoding quality can suffer from the artifacts, including
robotic (metallic) voice, muffled (or blurred) speech, or clicking (popping).

Other factors concern environmental interferences like distortions in
telephony systems or background noises like traffic, white noise, or back-
ground music. The DeepFake manipulations are mostly spread through the
Internet — the samples are often compressed when uploaded to social media
platforms. Such manipulations strongly affect the final results of the pre-
diction as the analyzed samples differ significantly from those seen by the
model in the training pipeline. In addition, such degradation can effectively
hide the artifacts used to distinguish bona fide and fake utterances [113].
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2.3.3 Performance metrics

The problem of DeepFake detection is most often considered in the context
of a binary classification task. In order to determine the performance of
the detection methods, we typically use metrics known from the biomet-
rics field. The following convention is used in the dissertation: bona fide
samples are referred to as positive samples, while manipulated samples are
referred to as negative. Therefore, we interpret True Positive (TP) and True
Negative (TN) predictions as consecutively properly predicted pristine and
DeepFake examples. Analogously, False Positive (FP) and False Negative
(FN) samples are incorrectly assigned bona fide and DeepFake labels.

The most widely utilized metric is the Equal Error Rate (EER) [114].
It is commonly used in biometric tasks such as face recognition, speaker
verification, or DeepFake detection. It comprises two quality factors: False
Acceptance Rate (FAR) and False Rejection Rate (FRR) [114]. For the
sake of completeness, let us recall them.

FAR (type I error) — refers to the percentage of the fake inputs incor-
rectly accepted as bona fide:

FAR = FP

FP + TN
.

FRR (type II error) — measures the percentage of bona fide samples
incorrectly classified as fake:

FRR = FN

FN + TP
.

EER denotes the point where the values of FAR and FRR errors are
equal (see Figure 2.8). EER values range from 0 to 1, where 0 denotes
perfect performance with no false acceptances or false rejections, 0.5 denotes
random choice, and 1 denotes completely wrong predictions.

In addition to EER, another used binary classification metric is the
Area Under the ROC Curve. ROC Curve is a graphical representation of the
performance of classification models considering all classification thresholds.
ROC curve is created by plotting two metrics — True Positive Rate (TPR)
and False Positive Rate (FPR).

TPR = TP

TP + FN
,

FPR = FP

FP + TN
.
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Figure 2.8: Visualization of Equal Error Rate. Changing the classification
threshold influences False Acceptance and False Rejection Rates — choosing
the right threshold value depends on the characteristics of the system.

Figure 2.9: ROC curve and Area Under the ROC curve allow us to analyze
the classifiers’ performance concerning the used thresholds. Dashed diago-
nal line refers to the random predictions.
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With the ROC curve, it is possible to determine how different decision
threshold values affect the model’s performance. Area Under the ROC
curve (AUC) is the area under the ROC curve used to assess the classifier’s
quality (see Figure 2.9). AUCs take values ranging from 0 to 100%, where
100 means 100% TPR and 100% FPR; an AUC of 0 means no correct
prediction at all, while 50% is random prediction. Alternatively, AUC can
be expressed using [0, 1] range.

All of the results presented in the dissertation follow the range of values
[0, 1] for EER and [0, 100] for AUC.

2.3.4 Voice authenticity taxonomy

Within the field of voice authenticity attacks, we distinguish three primary
categories (scenarios): physical access spoofing, logical access spoofing, and
DeepFakes. Spoofing and DeepFakes differ in their intended targets. Deep-
fakes are artificial utterances deceiving human listeners and used, for in-
stance, to spread disinformation, e.g. via social media, whereas spoofing
seeks to compromise biometric identification (automatic speaker verifica-
tion) systems. Distinct attack methods are characteristic of each field,
highlighting the differentiation between them as separate areas of study.

We further divide spoofing into logical and physical access spoofing.
Physical access spoofing primarily involves deceiving physical automatic
speaker verification (ASV) systems through replay attacks. In these at-
tacks, utterances are initially recorded and subsequently replayed to the
system using various devices in different acoustic and location environ-
ments [115, 116, 117, 111, 118]. Logical access spoofing involves remote
attacks targeting ASV systems. In these scenarios, spoofed audio, gener-
ated through Text-To-Speech and Voice Conversion methods, is directly
injected into the communication channel, thereby circumventing the micro-
phone [115, 119, 111, 118].

2.3.5 Detection methods

The task of audio DeepFake detection is a rapidly growing field of study. In
the following section, we provide information on the most commonly used
solutions.

Gausian Mixture Model (2018) The first methods for detecting fake utter-
ances were based, among others, on the algorithmic (statistical) approaches,
e.g. Gaussian Mixture Models [120]. Gaussian Mixture Model assumes that
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the signal may be represented as a sum of simple signals with Gaussian
distribution, each with possibly different parameters (mean and standard
deviation). Hence, the composed signal can be approximated and classified
by the sum of such simple Gaussians. DeepFake detection systems are typi-
cally trained using two GMMs — one to model the distribution of bona fide
samples, the other for the spoofed data. The data is presented to GMMs
using front-end features like LFCC [121].

Recently, both the DeepFake generation and detection techniques are
based on deep neural networks.

MesoNet (2018) [11] is a neural network architecture originally created
for visual DeepFake detection; when applied to audio processing, this model
processes front-end representations. The authors introduced two variants
— Meso–4 and MesoInception–4. Meso–4 starts with four blocks composed
of 2D convolution, ReLU activation, batch normalization and max pooling.
It is followed by a fully–connected layer with a Leaky ReLU activation,
a dropout, and a final output layer. MesoInception–4 is a variation that
replaces two first blocks with inception modules [122]. Despite the minimal
number of parameters — 27,977 and 28,615 for respectively Meso–4 and
MesoInception–4, this family of networks achieves appropriate performance
in many tasks. All work described in the following dissertation is based on
the MesoInception–4 architecture.

LCNN (2021) is an architecture of neural network originally published as
a face recognition method [123], which was later adapted to the problem of
speech anti-spoofing [124] and is currently one of the most popular classi-
fiers. Several versions of this architecture differ in number of blocks and use
of recurrent layers. The general scheme of the recurrent-LCNN looks as fol-
lows: it operates on 2D features (front-ends), which are later processed by
several blocks composed of convolutions, Max-Feature-Map layers, batch,
normalization and max pooling. The signal is later passed to two bidi-
rectional LSTM layers, and a fully connected layer then processes the final
information. Instead of using typical activation functions like ReLU, the au-
thors expand the concept of max out activation function [125] and introduce
the Max-Feature-Map (MFM) operation. The operation aims to select the
optimal feature map at each location learned by the convolutional filters.
For that, MFM uses element-wise maximum providing a binary gradient to
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”excite or suppress one neuron during back propagation” [123] as a part of
the feature selection process.

RawNet2 (2021) is a neural network architecture originally used in speaker
verification [126]. It was adapted to the task of the audio DeepFake detec-
tion in [127]. The model processes the raw audio signal. The architecture
starts with a SincConv module [128] — signal is first filtered with sinc func-
tions [129] and later processed by a convolutional layer. The model is later
composed of two groups of residual blocks: signal is first processed by two
groups of batch normalization and LeakyReLU activation and ends with
downsampling the information with max pooling and feature map scaling
(FMS) [126] (used as an attention mechanism). Both residual block groups
differ only in the number of convolutions (128 in the first one and 512 in
the second one). The extracted information is later processed using a Gated
Recurrent Unit (GRU) module [130] and passed to a fully connected layer,
and the final output layer is comprised of two neurons. SpecRNet, a neural
network introduced in Chapter 4, is based on RawNet2 archicture.

The following list includes other notable audio DeepFake detection meth-
ods that are not directly utilized in the later chapters.

RawGAT-ST (2021) [131] is a raw audio spectro-temporal graph atten-
tion network (GAT). The architecture utilizes the research indicating that
spoofing artifacts are present in specific sub-bands or temporal segments of
audio files [132, 133, 134]. Thanks to the fusion of the spectral and tempo-
ral graphs at the model level, the network can learn relationships between
spectral and temporal artifacts, leading to high performance. RawGAT-ST
operates on raw audio waveform and contains about 440,000 parameters.

AASIST (2022) [135] is an extension to the RawGAT-ST architecture.
Similarly to its predecessor, it focuses on the spectral and temporal na-
ture of audio spoofs. The authors propose a series of enhancements to the
processing and fusion of spectral and temporal information, including het-
erogeneous stacking graph attention layer and max graph operation. The
default version of AASIST comprises around 297,000 parameters, whereas
the lightweight version (AASIST-L) contains only 85,000 parameters.

wav2vec2.0 DF (2022) [136] is an extension of the AASIST architecture by
replacing the original front-end of sinc-layer [128] with wav2vec2.0 [137] Self-
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Supervised Learning model [138]. Authors additionally trained the models
using the RawBoost data-augmentation technique [139], which, in summary,
resulted in up to 90% performance improvement in relation to the original
AASIST architecture.

2.4 DeepFake detection datasets

The problem of detecting audio DeepFakes started to be widely investi-
gated significantly later than its visual counterpart. Since the introduction
of visual DeepFakes in 2017, many new detection datasets have been intro-
duced. Throughout the years and iterations of the datasets, many issues
were addressed. They included problems like a small number of generation
methods, gender, age, or ethnicity bias, or unclear legal matters of the sam-
ples in the dataset. Despite the dynamic growth of the audio DeepFake
detection field, during our work on Attack Agnostic Dataset: Towards Gen-
eralization and Stabilization of Audio DeepFake Detection [6], the only data
commonly used by the scientific community was found in ASVspoof Chal-
lenges (2017 and 2019 [116, 111]). In recent years, several new datasets
emerged (see Table 2.1), showing the community’s significant interest in
detecting artificial speech.

2.4.1 ASVspoof

ASVspoof [140, 119, 116, 111, 118] is a community-driven initiative that
started in 2013; from 2015, it is a bi-yearly challenge focused on detecting
audio spoofing. The competition is one of the most notable initiatives in
the speech processing community, setting the standard in anti-spoofing and
DeepFake detection — the datasets introduced in the challenges are a golden
standard in the field. The initial installment, ASVspoof 2015 [119], concen-
trated on investigating countermeasures to detect TTS and VC attacks.
In ASVspoof 2017 [116], the focus shifted to replay spoofing attacks and
the corresponding countermeasures. Notably, the ASVspoof 2019 [111] was
the first to include all three types of spoofing attacks in a single challenge.
These attacks were generated from the same source database and adhered to
the same underlying protocol, but they were examined within two distinct
usage scenarios: samples from the logical access (LA) subset were created
using cutting-edge TTS and VC techniques. Conversely, controlled simula-
tions in real physical spaces were used to generate replay spoofing attacks of
a physical access (PA) scenario. ASVspoof 2021 [118] introduced a new task
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of DeepFake speech detection (DF) — a collection of utterances processed
using different lossy codecs to reflect the scenario of media access through
the Internet. This installment was the first that did not include any new
training and validation data. The reason for that was to reflect real-life
scenarios of not being able to predict the nature of spoofed data with high
confidence.

The following part details the subsets of various ASVspoof installments
used throughout the dissertation.

ASVspoof 2019 LA

The samples of logical access scenario of ASVspoof 2019 [111] are derived
from VCTK [141] base corpus. The dataset consists of 12,483 bona fide and
108,978 fake English samples — generated using 19 systems (labeled A01-
A19). The attacks include text-to-speech (TTS), voice conversion (VC),
and hybrid algorithms (VC with synthetic speech as input). The samples
are split into training, development, and evaluation subsets comprising of
respectively ”20 (8 male, 12 female), 10 (4 male, 6 female), and 48 (21 male,
27 female) speakers”’ [111].

ASVspoof 2021 LA Eval

The 2021 installment of the ASVspoof challenge did not contain any new
training or development data — the participants were expected to utilize
the 2019 dataset. The evaluation data was split into three types: progress
(used for intermediate assessment), evaluation (used for final evaluation)
and hidden subsets (for additional evaluation). The progress and evalua-
tion subsets were composed in summary of 16,464 real and 148,148 fake
samples containing 37 female and 30 male English speakers. The origin
data was the VCTK database. The samples underwent processing through
various telephony systems, including voice-over-IP (VoIP) and the public
switched telephone network (PSTN). The authors specified that multiple
codecs, including alaw and G.722, would be used. Fakes were generated
using A07-A19 attacks from ASVspoof 2019.

ASVspoof 2021 DF

Similar to LA evaluation data, the DeepFake subset contained no new train-
ing data and was split into progress, evaluation, and hidden subsets. The
dataset is comprised of 59,325 bona fide and 533,928 fake samples. The
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progress subset was composed of 37 females and 30 males, an evaluation of
50 females and 42 male English speakers. The origin samples were derived
from the VCTK database and included 2018 [142] and 2020 Voice Con-
version Challenges [143]. The fake samples were generated using over 100
different spoofing techniques [144]. The samples were created using one of
nine various ”codec conditions” with C1 being no codec, C2 and C3 created
using mp3, C4 and C5 using m4a, C6 and C7 using ogg and C8, C9 being
undisclosed.

2.4.2 WaveFake

WaveFake [145], at the time of its release (November 2021), was one of the
largest audio DeepFake datasets. The audio clips featured utterances in En-
glish (LJSpeech containing 13,100 clips) and Japanese (5,000 clips of JSUT
dataset). This corresponds to 18,100 pristine samples. The dataset contains
117,985 generated fake audio clips. The authors used eight methods: Wave-
Glow [56], Parallel-WaveGAN [61], HiFi-GAN [57], Multi-band MelGAN
(with Full-band Mel-GAN) [62], MelGAN (with MelGAN Large) [60] and
pipeline composed of a conformer [146] followed by the fine-tuned Parallel-
WaveGAN (referred to as TTS). Please note that, except for WaveGlow, all
the solutions are based on Generative Adversarial Networks (GANs). Fur-
thermore, certain architectures are variations of others. For instance, Mel-
GAN Large is an expanded version of MelGAN that incorporates a larger
receptive field, while Full-band MelGAN is a variant of MB-MelGAN with
differences in the computation of their auxiliary loss function.

2.4.3 FakeAVCeleb

FakeAVCeleb [147] is a multi-modal (audio-video) DeepFake detection dataset.
It comprises samples composed of both generated speech and facial spoof-
ing DeepFake techniques (see Figure 2.10). While facial spoofs are gen-
erated using three visual DF methods: FSGAN [90], FaceSwap [148] and
Wav2Lip [149], the speech is generated using one voice cloning algorithm
SV2TTS [150]. The authors state that each fake utterance is unique because
they clone each of the real audio clips of their bona fide samples — first,
the bona fide audio is transcribed using IBM Watson STT service [151],
and then the voice is cloned with SV2TTS. FakeAVCeleb is also the first
dataset that provides information on the ethnic background of the speakers
— they distinguish five groups of ”Black, South Asian, East Asian, Cau-
casian (American) and Caucasian (European)” [147]. The dataset we refer
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to in the dissertation as FakeAVCeleb is composed solely of this dataset’s
audio tracks, corresponding to 500 real and 11,357 fake audio clips in En-
glish.

Figure 2.10: FakeAVCeleb dataset [147] is an example of multi-modal ap-
proach to the problem of DeepFakes containing both audio and visual ma-
nipulations. It is one of the first audio DF datasets providing information
on the ethnicity of the participants. Source [147].

2.4.4 In-The-Wild

In-The-Wild dataset, introduced in [152], is a commonly used evaluation
dataset. The main purpose of this dataset is to serve as benchmark data
and to assess the generalization of DeepFake detection methods on real-
life data. It comprises a total of 37.9 hours of English audio clips, with
20.7 hours consisting of bona fide clips and 17.2 hours of fake clips, which,
in summary, corresponds to approximately 31,779 16 kHz audio samples
of an average length of 4.3 s. The utterances come from openly accessible
platforms, including social networks and multimedia video-sharing websites.

The samples feature recordings of English-speaking celebrities and politi-
cians. The fake clips were generated by segmenting 219 publicly available
video and audio files that state they are DeepFakes. The real samples were
collected from publicly available sources such as podcasts, interviews, and
speeches and featured the same speakers as in the spoofed part. The authors
of the dataset took care to minimize the differences between the classes by
selecting samples with a similar style, emotion and quality (e.g. background
noise) to the fake ones. The DeepFake detector results on the data collected
by the authors differ significantly from those reported in the literature. The
best EER presented in the original paper is equal to 0.3394, making In-The-
Wild one of the most difficult datasets for DeepFake detection today.
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2.4.5 Other datasets

The following section describes audio DeepFake detection datasets that are
not covered in the later chapters. Since the start of the author’s Ph.D. in
2020, many new audio DeepFake detection datasets were introduced. How-
ever, many of the datasets described here were either available only for the
challenges participants or released after the publication of the manuscripts
upon which this dissertation is based [6, 7, 8, 9].

Audio Deep synthesis Detection challenge (ADD)

ADD [153, 154] is a series of challenges started in 2022. The authors aim to
cover many real-life attack scenarios not included in ASVspoof 2021. They
address three main issues: lack of background and real-life noises in the
samples, small fake clips hidden in real utterances (partially spoofed audio)
and use of cutting-edge synthesis algorithms. The 2022 installment [153]
consists of three tracks: Low-quality fake audio detection (LF) contain-
ing samples with various background noises, Partially fake audio detection
(PF) with partially spoofed utterances, Audio fake game (FG) where the
participants (depending on the sub-track) either try to detect spoofed ut-
terances or create samples to fool the detectors. The dataset comprises
493,123 utterances, with no information on the number of DF generators.
The 2023 instalment [154] contains three tracks as well: Audio fake game
(FG), Manipulation region location (RL) and Deepfake algorithm recogni-
tion. The FG track is similar to 2022; RL covers locating the exact spoofed
regions in partially fake data, and AR addresses recognizing the algorithms
that generated particular samples. The total number of samples is equal to
517,068.

Fake or Real (FoR)

FoR [155] is a dataset comprising 195,541 English utterances. The artificial
speech was comprised of 33 voices generated using seven methods, including
Amazon [42], Baidu [43], Google [44] and Microsoft TTS services [45]. The
bona fide samples include the utterances gathered from the Internet, as
well as well-known speech datasets like Arctic Dataset [156], LJSpeech [75],
VoxForge [157].
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FMFCC-A

FMFCC-A [158] is a dataset created to promote the development of anti-
spoofing methods for the Mandarin language. It comprises 50,000 Mandarin
utterances (10,000 bona fide and 40,000 fake) of 58 male and 73 female
speakers. The synthetic utterances were created using thirtheen methods
(11 TTS and 2 VC systems), including technologies like Baidu TTS [43],
IBM Watson TTS [159], FastSpeech [54], Tacotron [52] or Medium VC [160].

Table 2.1: The comparison of available DeepFake and anti-spoofing
datasets.

Dataset name # methods # utterances # languages Year
ASVspoof 2015 [119] 10 263,151 1 2015
ASVspoof 2017 [116] 19 18,030 1 2017
ASVspoof 2019 LA [111] 19 121,461 1 2019
FoR [155] 7 195,541 1 2019
ASVspoof 2021 LA [118] 13 164,612 1 2021
ASVspoof 2021 DF [118] 100+ 593,253 1 2021
FakeAVCeleb [147] 1 11,857 1 2021
FMFCC-A [158] 13 50,000 1 2021
HAD [161] 2 160,836 1 2021
WaveFake [145] 9 136,085 2 2021
ADD 2022 [153] N/A 493,123 1 2022
CFAD [162] 12 347,400 1 2022
In-The-Wild [152] N/A 31,779 1 2022
ADD 2023 [154] N/A 517,068 1 2023
PartialSpoof [163] 19 121,461 1 2023
Voc.v [164] 8 82,048 1 2023
MLAAD [12] 52 74,000 23 2024

Half-truth Audio Detection (HAD)

HAD [161] is the first anti-spoofing dataset that addressed the problem of
partially spoofed utterances. This subproblem of DeepFake detection fo-
cuses on the utterances where only a part of the speech was altered; the
task of the detection methods, instead of binary assessment of the authen-
ticity, is to localize spoofed fragments. The dataset comprises two subsets of
partially and fully spoofed audio and contains 160,836 Mandarin utterances.
The artificial utterances are generated using Tacotron-GST synthesizer [165]
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and vocoded by LPCNet [166] vocoder (authors utilize two versions of this
vocoder depending on the subset of the data).

Chinese Dataset for Fake Audio Detection (CFAD)

CFAD [162] is a dataset comprised of 347,400 Chinese utterances, including
1023 real and 279 fake speakers. Authors provide 12 types of spoofed au-
dio — 11 of which are fully-spoofed utterances generated using systems like
LPCNet [166], WaveNet [58], PWG [61], HiFiGAN [57], MelGAN [60]. They
additionally provide partially spoofed audio. The authors provide three
versions of the data: clean, under noisy conditions and after the transcod-
ing process to achieve greater robustness of the models trained using the
dataset.

PartialSpoof

PartialSpoof [163] is another dataset that focuses on the problem of partially
spoofed data. The dataset is built using the ASVspoof 2019 LA challenge
data and comprises 12,483 bona fide and 108,978 fake samples (generated
using all 19 ASVspoof 2019 attacks). The authors consider six temporal
resolutions of spoofed speech ranging from 20 ms to 640 ms.

Voc. v

The authors of [164] point out that creating voice DeepFake datasets is de-
manding and time-consuming. Instead of using full TTS or VC pipelines,
they create a database of utterances vocoded using neural-network-based
vocoders. The copy-synthesis of the bona fide samples enables the gener-
ation of a large volume of artificial data. The dataset comprises 82,048
English utterances created using eight commonly-used vocoders includ-
ing [57, 62, 61, 167, 56]. The bona fide samples were extracted from
ASVspoof 2019 [111]. Authors report that using only the vocoded data pro-
vides results similar to standard TTS and VC-based datasets, which makes
it a promising technique in creating or enhancing new detection databases.

Multi-Language Audio Anti-Spoofing Dataset (MLAAD)

MLAAD [12] is the first multi-language DeepFake detection dataset and was
co-created by the dissertation’s author. It comprises 74,000 utterances with
a total duration of 160 hours. MLAAD contains samples in 23 languages,
being the first openly available multi-language DeepFake detection dataset.
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The dataset covers popular languages like English, Arabic, Hindi, Russian,
and Spanish, as well as local ones, including Polish, Czech, Estonian, Irish,
Maltese, Swahili, and Ukrainian. The samples were generated using 52
state-of-the-art TTS models (22 different architectures) from Coqui.ai [38]
and Hugging Face [48].

2.5 Adversarial Attacks

Adversarial attacks is a commonly used term describing the techniques for
deceiving machine learning systems. They decrease their performance by
adding superficial (difficult to spot by a human) changes to input data or
inputting specially crafted samples. Typically, the manipulated samples
are prepared using some information extracted from the neural network,
e.g. gradient values or leveraging the knowledge obtained by querying the
targeted model. Using such adversarial examples results in the incorrect
predictions of models, often making the entire system ineffectual. Adver-
sarial attacks threaten the systems of all domains, i.e. one can create these
examples for problems such as computer vision, audio processing, natural
language processing, or reinforcement learning.

Figure 2.11: Adversarial attacks can result in faulty predictions without
compromising much of the quality of the inputs.

Since introducing the concept [168], the field has been widely explored,
resulting in various methods and attack models. One of the main distinc-
tions of adversarial attacks is their objective: non-targeted or targeted.
Non-targeted attacks achieve faulty prediction without specifying the de-
sired output class, i.e., the primary objective is misclassification in any
form. In targeted attacks, the adversary manipulates the input data so the
model classifies it as a chosen, specific target class [169].
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Figure 2.12: Many tasks like audio classification are threatened by adver-
sarial attacks, which significantly decrease their performance. Source: [170]

Adversarial attacks are additionally divided according to the knowl-
edge the adversary has: we distinguish between white-box and black-box
attacks. In white-box attacks, the adversary can access the model architec-
ture and its parameters. In such a scenario, the adversarial example can
be, for instance, prepared using gradients of the corresponding sample. In
a black-box attack, the adversary has limited (or no) information about
the system under attack. To create adversarial samples, the adversary is
forced to query the system and prepare adversarial samples based on input,
output and confidence scores. Because of the high-level distinction between
black- and white-box attacks, related work provides exact information on
the data the adversary has access to, e.g., in a black-box setting, one may
have information on the training set. The degree of the perturbations cre-
ated using the adversarial attacks is bounded by L-norms. We follow the
most commonly approaches of L2 and L∞ [171].

All adversarial attacks used in the dissertation are based on the gradient
of differentiable functions defined over the model.

2.5.1 Fast Gradient Sign Method

Fast Gradient Sign Method (FGSM) [172] is one of the earliest algorithms
for generating adversarial examples. The perturbation added to a sample
is computed based on the gradients of the loss function with respect to
the input. The adversary uses the sign of the gradients to create a sample
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that maximizes the loss. Formally, we describe the adversarial sample η as
follows:

η = x + ϵsign (∇xJ(θ, x, y)) ,

where θ denotes model’s parameters, x — the input to the model (x ∈ Rn),
y — corresponding target, J(θ, x, y) is a loss function, and ϵ is a scaling
factor describing the strength of the perturbation (it should be simultane-
ously large enough to cause faulty prediction and small enough that the
perturbation would be imperceptible). The algorithm uses a L∞ norm.

2.5.2 Projected Gradient Descent

Projected Gradient Descent (PGD) [173] adversarial attack expands on the
concept of FGSM. This white-box attack, instead of preparing the pertur-
bation as a one-step scheme, computes the noise using multiple iterations:

xt+1 = Πx+S

(
xt + α · sign(∇xL(θ, x, y))

)
,

where θ denotes model’s parameters, x — the input to the model, xt — input
after t perturbation steps, y — corresponding target and S is a perturbation.
L(θ, x, y) is a loss function, and α is a scaling factor. PGD works for both
L2 and L∞ norms.

2.5.3 Fast Adaptive Boundary

Fast Adaptive Boundary (FAB) [174] adversarial attack is another example
of a white-box method. The algorithm is an iterative adaptive approach; the
essential part is the box-constrained projections based on the linearization
of the attacked classifier. It aims to produce minimally distorted adversarial
examples and works for Lp norms of p ∈ {1, 2,∞}. Unlike FGSM or PGD,
FAB does not have a step size parameter.

2.6 Research goals

The following list contains research goals addressed in the dissertation:

1. Assessment of the detectors’ generalization capabilities based on the
differences of DeepFake generators in particular training subsets, ad-
dressed in Chapter 3 based on our paper [6]. Generalization is a com-
mon and still unsolved problem that many research groups address.
It is often associated with overfitting, where models learn artifacts
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of individual methods instead of the high-level features that charac-
terize DeepFakes. This results in significantly lower performance on
out-of-distribution data. Methods for assessing generalization during
the training procedure may improve performance in real-life settings.

2. Decreasing computational requirements of the methods without sacri-
ficing the performance, addressed in Chapter 4 based on our paper [7].
The global nature of the DeepFake phenomenon requires analysis of a
large volume of audio-visual content. Therefore, solutions are needed
to classify audio recordings with high performance while maintaining
low processing time and hardware requirements. These models allow
the democratization of anti-spoofing technology, thus increasing its
accessibility to ordinary citizens.

3. Assessment of the robustness of DF classifiers against the adversarial
attacks and its influence on the generalization capabilities; enhance-
ment of the defense methods against adversarial attacks, addressed in
Chapter 5 based on our paper [8]. Adversarial examples are among
the most effective methods of attacks on anti-spoofing systems. In-
vestigating their impact on DeepFake audio detectors and proposing
methods of defense will help improve the security of these methods
and start a discussion around this particular task.

4. Introduction and evaluation of the detectors’ generalization using front-
ends based on large, non-SSL-based neural networks, addressed in
Chapter 6 based on our paper [9]. Recent studies show that the use
of representations obtained from Self-Supervised Learning methods
(trained on large-scale datasets) improves the generalization of Deep-
Fake detection. Investigating the idea of using other architectures
(e.g., dedicated to the topic of ASR) trained on large-scale datasets
may improve generalization even further, increasing the number of the
front-end methods used in the detection task.





Chapter 3

Evaluating generalization of detection models

Generalization of deep learning solutions concerns the performance the mod-
els achieve on the data outside of training distribution. Training data is
often scarce and does not always capture all the nuances of the addressed
problem. As a result, when the distributions of real-life and training data
differ, deep learning models often perform weakly. While poor performance
in the production environment is often an universal issue, it becomes criti-
cal in security-related tasks including DeepFake detection. Due to its young
age, this field has a small, yet increasing, number of open-source datasets
(see Chapter 2.4). The dynamic development of TTS and VC methods
adds to the fact that these datasets do not contain the newest voice syn-
thesis methods, which further limits the generalization capabilities of the
detectors trained using these datasets.

3.1 Attack Agnostic Dataset

In this chapter, we propose a new approach of evaluating the generaliza-
tion and stabilization of DeepFake detection models. We call it the Attack
Agnostic Dataset (AAD) and use it to compare popular detection mod-
els and their front-end algorithms showing their influence on performance
and generalization. Ultimately, we introduce a LCNN model trained on
the concatenation of two popular front-ends: LFCC and a mel-spectrogram
(see Section 6.10). Our architecture provides an enhancement in terms of
generalization, stability, and performance. The following chapter is based
on our manuscript [6].

The source code related to this research is available here: https://github.com/
piotrkawa/attack-agnostic-dataset.
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The anti-spoofing community has addressed the generalization issue in
the past using various techniques. The subsets of ASVspoof 2019 chal-
lenge [111] utilized different attack settings to promote that the solutions
generalize well. Authors of [175] proposed a generalization enhancement
technique for detecting utterances spoofed by replay attacks — it was based
on the specific divisions of training and testing data. The splits were con-
ducted regarding the quality of the attacking device (replaying the utter-
ance) and based on the distance to the microphone. In [145], the authors
provided a limited analysis by preparing the training data by either includ-
ing only one generation method or excluding one algorithm. This way, they
evaluated the performance on the out-of-domain data.

The introduced Attack Agnostic Dataset benchmark addresses the anal-
ysis of both problems of generalization and stability. The classifier se-
lected using this benchmark is characterized by the best possible and stable
performance on the out-of-domain data — traits required from a reliable
anti-spoofing system. We assess the generalization by considering multi-
ple datasets and performing the pipelines using different folds of the data
(samples are split across subsets differently, based on the method used for
generating them). The idea of using splits is that the models with a small
variance of the results on the different folds (i.e., trained and tested on an-
other data split) are much more stable. Furthermore, they are less likely
to fail in the case of the samples generated using new, unknown synthesis
methods which means that they generalize better. Exposing the models to
the varied generation methods (due to joining multiple datasets) allows us
to capture the general DeepFakes properties to a much greater degree. We
assess the stability of the methods by performing multiple runs with dif-
ferent randomness seeds and subsets of the data — models with a smaller
deviation of the performance across the runs are considered more stable.
The introduced framework is attack-agnostic, meaning it can be easily ex-
tended with other datasets and speech generation methods by incorporating
other (more) data folds.

We based AAD on three distinct datasets — ASVspoof 2019 (LA sub-
set) [111], which is a notable anti-spoofing dataset, as well as two new
DeepFake detection datasets — WaveFake [145] and FakeAVCeleb [147].
To the best of our knowledge, this was, at the time, the most diverse and
numerous audio DF detection dataset. It was comprised of 31,083 real and
222,035 fake utterances generated using 27 distinct methods.

Splitting utterances into different folds is essential to Attack Agnos-
tic Dataset. It covers distributing the available generation methods across
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Figure 3.1: Distributing the attacks across different folds based on the ex-
ample of WaveFake subset. Fold #1 depicts information limitation scenario
— similar Full-band and Multi-band MelGAN models are split into train
and test subsets. Fold #2 applies limitation scenario to train and test sub-
sets. Fold #3 covers both information limitation (for MelGAN and Mel-
GAN Large), as well as information joining for FB-GAN and MB-GAN —
similar methods are in the same subset.

train, validation and test subsets. AAD can be compared to the cross-
validation technique; however, the samples in AAD are distributed not in
a random order but across generation methods concerning various criteria
to expose models to different scenarios. By analyzing the differences across
the folds’ results, we can point out which models do not generalize well —
such networks are less stable and, therefore, more likely to fail in the face
of attacks outside of the training distribution.

In each fold, we allocated approximately 70% of the attack methods for
the training subsets, i.e. five WaveFake attacks, twelve from ASVspoof, and
70% of the fake utterances for FakeAVCeleb. We distributed the remaining
methods evenly between the validation and test subsets. We divided bona
fide samples using the same proportion of 70:15:15 across all three subsets.

As our objective was to examine multiple scenarios, we chose the meth-
ods in each subset; some folds included several similar methods in the train-
ing subset, e.g. Multi-band MelGAN [62] in training and Full-band Mel-
GAN [62] (its modification with another approach in computing auxiliary
loss function) in the validation set (see Figure 3.1). Meanwhile, other folds
were designed to restrict the presence of similar methods, e.g., only one of
the five voice cloning methods from the ASVspoof dataset is included in the
training subset.

We include the analysis of the training process’ stability by looking at
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the accuracy after each epoch. The desired result is that the performance on
the validation subsets grows monotonically. The variations in these values
might indicate that the model does not accumulate knowledge about the
artifacts used to distinguish between bona fide and fake samples. Instead,
it learns different artifacts in each epoch.

3.2 Preprocessing procedure

The databases of which AAD was comprised differed not only in generation
methods but also in the length of the samples, the files extensions and
sampling rates. We applied the preprocessing used in the WaveFake dataset
to address these differences. Their technique was based on the operations
commonly used in spoofing and DeepFake works [145, 127]. Preprocessing
started with the resampling to 16 kHz mono-channel, erasing the silence
longer than 0.2s, and then standardizing the duration by trimming the file
or padding (by repeating the sample) to about 4 seconds (64,600 frames).

3.3 Evaluated architectures

Our benchmark employed various solutions, covering most commonly used
methods for detecting the validity of the utterances. The models differed in
complexity, the representation of the analyzed data and even the initial pur-
pose of these architectures. We tested LCNN [123], RawNet2 [127], Gausian
Mixture Models (GMM) [176], MesoNet (MesoInception-4 variant) [11] and
XceptionNet [177]. The first three models are commonly used in both tasks
of spoofing and DF detection [118]. MesoNet and XceptionNet models are
notable architectures used for assessing visual DeepFakes — we added them
to the benchmark following FakeAVCeleb authors.

With the exception of RawNet2, which analyzes raw audio signals, all
other models process 2-dimensional data (created using different front-end
methods). For these features, we selected the most popular representa-
tions used in tasks related not only to DeepFake and spoofing detection but
also speech recognition: mel-spectrogram, MFCC and LFCC (refer to Sec-
tion 2.2). We aimed to provide models with features that are respectively
perceivable to humans (mel-spectrogram and MFCC) or extend beyond the
range of human hearing range (LFCC). The mel-spectrogram front-end was
constructed by applying the Short-Time Fourier Transform (STFT) followed
by the mel scale. Our calculations include the absolute value and the angle
of the feature. The parameters of the used front-ends followed the ones used



3.4. BENCHMARK 41

in FakeAVCeleb paper [147] — we used the Hann windowing function with
the size of 400 frames (25 ms), window shift of 10 ms (160 frames), 512
FFT points and 80 cepstral coefficients.

3.4 Benchmark

The pipeline covered training and testing, each using a different fold out
of three available. The procedure covered training for five epochs — each
ended with validation on a test set. Audio DeepFake detection pipelines
typically use a number of epochs of ten or greater. Our choice was moti-
vated by the large size of the dataset compared to the related work. The
checkpoint that scored the highest validation accuracy was later selected for
the final testing procedure on the test set. Training and testing procedures,
as well as data respresentation of Gaussian Mixture Models followed [145].
To ensure the results are reproducible, we ran each procedure thrice, each
time using a different randomness seed. The seeds were as follows: {42,
1234, 4321}. Apart from using training and validation accuracy for select-
ing models for final tests, we reported an Equal Error Rate (EER) for the
final model’s performance (see Section 2.3.3).

Our training procedure used binary cross-entropy loss function, and we
optimized models (using batches of 128 samples) with Adam [178] algorithm.
To ensure reliable results, we used the original hyperparameters of the mod-
els whenever provided: a constant learning rate of 10−4 for RawNet2 [127]
and LCNN [123], 10−3 for GMM [176] and 10−5 for MesoInception-4 and
XceptionNet [177]. RawNet2 architecture additionally utilized regulariza-
tion by decaying weights with a factor of 10−4.

In Table 3.1, we report the test EERs for the evaluated models. We
additionally provide a standard deviation of these results across all folds
— the result of each fold is an average of repetitions on different seeds. In
summary, for each model, the table contains the results of nine runs (three
runs per each of the three folds).

There exists a significant difference in the results across different folds
— all the models, apart from XceptionNet, provided the best EER on the
third fold. This lets us conclude that opting out of some of the attacks
significantly influences the performance of the models, which means one of
two things: that some combination of the attacks in training and validation
sets allowed the model to learn more general features and, therefore, detect
DeepFakes to a better degree; or that some of the attacks are much more
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Table 3.1: The results of evaluating the main architectures on the test sub-
set. The front-end models are based on the LFCC front-end. The reported
values are the mean and standard deviation of the EER for each fold. We
average them across the result for three randomness seeds.

Fold LCNN XceptionNet
EER STD EER STD

1 0.0953 0.0073 0.1621 0.0148
2 0.0952 0.0072 0.1277 0.0117
3 0.0237 0.0049 0.1306 0.0322

Fold MesoInception–4 RawNet2
EER STD EER STD

1 0.3858 0.0666 0.1944 0.0136
2 0.3638 0.0594 0.2379 0.0205
3 0.1765 0.0562 0.1414 0.0089

Fold GMM
EER STD

1 0.2514 0.0072
2 0.3438 0.0144
3 0.2518 0.0067

difficult to detect and therefore their presence in the test set negatively
influenced the final score.

LCNN was the method that provided the best results across all folds
and, therefore, showed the best generalization. It achieved EERs of re-
spectively 0.0953, 0.0952 and 0.0237. In addition, its performance was the
most stable, i.e., it was characterized by the lowest standard deviation —
on average 0.0065. The second best model was XceptionNet which scored
EERs of 0.1621, 0.1277, 0.1306. XceptionNet is a robust classifier capable
of capturing features that may suggest fake speech; its results suggest that
models previously used in detecting spoofed faces may be used to detect
DeepFake utterances. Nevertheless, the results were, on average, almost 2
times worse than the results of LCNN. RawNet2 provided the third best re-
sults — they deviated from the ones typically reported in related work and
were equal to EER of 0.1944, 0.2379 and 0.1414. The model, however, was
characterized by a much smaller deviation than XceptionNet — on average
0.0143 vs. 0.0196 of the results, as the stability of the results is a desired
feature of the detection system.
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3.5 Front-ends comparison

Additionally, we provide an extensive comparison of the commonly used
representations of the audio signal (front–ends) and their influence on both
the generalization and stability of the models. We performed the study using
LCNN, as it provided the best and most stable results in the first benchmark
— the discussed benchmark was conducted similarly to the previous one.

Table 3.2: Test results of LCNN models based on the different front–ends
(LFCC, MFCC, mel-spectrogram) and their concatenation. The results
were obtained analogously to Table 3.1.

Fold LFCC MFCC Spec
EER STD EER STD EER STD

1 0.0953 0.0073 0.1530 0.0014 0.3870 0.0161
2 0.0952 0.0072 0.0873 0.0042 0.3044 0.0138
3 0.0237 0.0049 0.0507 0.0062 0.3009 0.0049

Fold LFCC+Spec MFCC+LFCC MFCC+Spec
EER STD EER STD EER STD

1 0.0914 0.0032 0.1344 0.0128 0.1502 0.0048
2 0.0916 0.0064 0.0826 0.0052 0.0755 0.0060
3 0.0313 0.0034 0.0318 0.0072 0.0472 0.0024

The results presented in Table 3.2 are much less conclusive than the
ones shown in the original benchmark. Due to the differences across folds,
one can not select a universally superior front-end. When treating LFCC
as a baseline, we observe that all front-ends, apart from the standard mel-
spectrogram, provide improvements in at least one fold. Front-ends of LFCC
and LFCC+Spectrogram yielded similar results, with the latter showcasing
improved Equal Error Rate (EER) in two out of three folds. Moreover,
LFCC+Spectrogram provided enhanced stability by the standard deviations
of the results equal to 0.0032, 0.0064, and 0.0034.

The least stable front-end was MFCC — the choice of the methods in
training and testing subsets highly influenced its results. The situation was
similar in the case of the concatenation of MFCC and LFCC, which, despite
providing better results in relation to MFCC, was still worse than the LFCC
front-end. Using only the mel-spectrogram front-end resulted in the worst
results across all front-ends. However, concatenating it with other features
enhanced all but one fold (fold three of LFCC+Spectrogram).
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The provided results show that there often exist significant differences
in the results depending on the methods used as the training and test-
ing data. In most cases (except for XceptionNet) third fold provided the
best EER scores. The ASVspoof subset comprised A02, A09 and A10 at-
tacks, all neural network-based systems. A02 and A09 attacks based on
statistical parametric speech synthesis (SPSS) framework [179] vocoded by
respectively WORLD [180] (A02) and Voicaine [181] (A09) vocoders. A10
system was based on Tacotron2 synthesizer [53] vocoded by WaveRNN net-
work [59]. The WaveFake subset was composed of samples vocoded by
HiFi-GAN network [57], whereas FakeAVCeleb data consisted of 15% of the
samples.

We conclude the presence of SPSS framework based models might be
the one of the reasons for the best results on the third fold making these
attacks easiest to detect. As SPSS is a method introduced in 2013 and the
quality of these audio samples is worse in relation to other solutions, we
hypothesize that these utterances contained the artifacts that are easier to
spot.

3.6 Ablation study

In order to further investigate the influence of the front-ends in the task
of DeepFake detection, we conducted an ablation study. In this study, we
looked closely at the results obtained by mel- and linear-scaled frequency
cepstral coefficient front-ends with respect to the particular subsets of the
Attack Agnostic Dataset. Table 3.3 contains the results of the LCNN model
trained using the LFCC and MFCC model for each subset of AAD. We
report the results for each fold separately.

Table 3.3: Ablation study of the impact of front-end algorithms on the
performance of individual subsets. The results are based on the test subset
(and one seed). All the results were obtained by LCNN model with LFCC
or MFCC frontend.

Dataset ASVspoof WaveFake FakeAVCeleb
Fold no. LFCC MFCC LFCC MFCC LFCC MFCC

1 0.1877 0.1364 0.0211 0.2440 0.0595 0.0747
2 0.1654 0.1643 0.0030 0.0040 0.0293 0.0685
3 0.0325 0.0673 0.0038 0.0088 0.0606 0.0732
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Based on the results presented in Table 3.3, it is evident that the input
of the LFCC front-end contributed to better results for DeepFake subsets
(WaveFake and FakeAVCeleb). Most DeepFake generators prioritize creat-
ing realistic utterances that can deceive human perception, often neglecting
other artifacts imperceptible to humans. For this reason, standard Deep-
Fake methods can be relatively easily detected using appropriate signal
features, such as LFCC.

The results of the ASVspoof subset are similar in the case of both front-
ends. As the mel-scale is used to reduce high-range frequencies and bring out
the features of human hearing range, we conclude that the fake samples of
the ASVspoof 2019 LA subset did not have that many high-range frequency
artifacts.

The lowest EER characterizes the results on the WaveFake subset. We
conclude that the reason for that is that they are generated using similar
methods: out of the eight available solutions, seven are based on GAN net-
works. Moreover, some of them are interdependent (e.g. MelGAN Large
being a variant of MelGAN), resulting in only four unique generation archi-
tectures.

The results of FakeAVCeleb subset, apart from an evident outlier in
Fold 1 of the MFCC model, are worse than WaveFake’s. These results are
also much more stable across all folds. FakeAVCeleb is composed of only one
generation method — SV2TTS [150]; the results indicate that the choice of
the methods in training and validation subsets did not significantly impact
the detection of this method.

Based on Figure 3.2, it is evident that the training stability of DeepFake
detection was generally poor. While the accuracy consistently improved for
the training subsets, there were considerable fluctuations in accuracy for the
test subsets. This suggests that the training of these models was generally
unstable — the reason for that is the utilization of various methods and
attacks. However, the stability greatly improved when using LFCC front-
ends.

3.7 Conclusion

The research described in this chapter covers the problem of generalization
and stabilization of the models used in audio DeepFake detection addressing
the Research Goal 1 (refer to Section 2.6). We proposed a framework for
assessing the aforementioned traits — Attack Agnostic Dataset. It consisted
of three DeepFake and spoofing datasets — ASVspoof 2019 LA, WaveFake
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Figure 3.2: Training and validation accuracy (along with standard devia-
tion) after each of the training epochs. The presented results cover LCNN
model with three selected front-ends. Source: [6].

and FakeAVCeleb. Using the training based on the disjoint division of the
attacks, allows for the assessment of the generalization and stabilization
capabilities and later selection of the best performing model. Due to its
framework-like nature, the solution is easily extendable and can be adapted
to other new databases. We used AAD to thoroughly benchmark the most
popular DeepFake detection architectures from both audio and visual do-
mains. The concatenation of the datasets we used, at the time, was one of
the largest audio DeepFake detection databases. Our contribution addition-
ally covered research on the influence of different front-ends. By introducing
a novel front-end composed of LFCC and mel-spectrogram and using it with
the LCNN model, we achieved an average EER of 0.0714, which is an im-
provement of 5% in relation to the sole LFCC front-end.



Chapter 4

Fast and reliable detection using SpecRNet

The following chapter focuses on fast and reliable methods for detecting
audio DeepFakes. We describe the method with severely limited parameters
that achieves results comparable to those proposed in Chapter 3. The main
motivation is that multimedia platforms and VOD services are increasingly
popular, e.g. 720,000 hours of content is uploaded to YouTube on a daily
basis [182]. These websites, as well as other social media platforms, often
struggle with the problem of fake news [183] — misleading content in text,
audio or video domains. The threat of misinformation constantly grows
as the generation methods in all these domains are constantly enhanced
and are becoming more popular [184, 185]. New state-of-the-art speech
generation methods not only improve on the quality of speech, but also
decrease the quantity of the material required for its creation. Nowadays,
several minutes of someone’s speech is enough to generate convincing fake
utterances [40].

As a countermeasure against such threats, regulations like the European
Union’s Strengthened Code of Practice on Disinformation [186] are being
introduced. It obliges content providers (such as online multimedia plat-
forms) to implement self-regulations to counter disinformation, including
DeepFakes. The scientific community must remedy this problem by creat-
ing fast and reliable DeepFake detection methods. Such solutions can later
be used at a large scale to constantly process the uploaded materials and
filter out misleading content. Such lightweight algorithms can also be used
to equip average citizens with means to defend themselves against misinfor-
mation by checking the content on their own. As neural networks typically
require high-end Graphic Processing Units (GPUs), their high costs finan-
cially exclude many from independently verifying the materials. Thanks to
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methods with low computational complexity, such systems can be run on
local devices like laptops, personal computers or even smartphones.

In this chapter, we introduce a novel neural network architecture called
SpecRNet. We evaluate it by comparing it to reliable, contemporary DF de-
tection architectures: RawNet2 [126] and LCNN [123], which were the most
popular at the time of the research. We train the models using the Wave-
Fake dataset. Apart from the efficacy, we compare the processing speeds of
the models with respect to the used device (CPU or GPU) and the batch
size. We additionally propose and conduct three new benchmarks. Their
main aim is to evaluate models in different scenarios: the scarcity of the
training samples and in the case of short utterances. The last evaluation
prodives more in-depth information on the difficulty of the attacks available
in the dataset used.

4.1 SpecRNet

We propose SpecRNet — a neural network for fast and reliable DeepFake
detection. Its architecture was inspired by RawNet2, a model known for
its good performance in speech processing tasks like speaker recognition
or spoofing and DeepFake detection. RawNet2 operates on the raw audio
signal, i.e., processes one-dimensional data, whereas SpecRNet operates on
two-dimensional speech signal representations. This enables use of vari-
ous front-ends like spectrograms, linear-frequency or mel-frequency cepstral
coefficients (LFCC or MFCC described in Section 2.2). In this work, we
preprocessed audio using LFCC. The reason behind such a choice is its
superior performance observed in Chapter 3.

The architecture of SpecRNet is presented in Table 4.1. The exact
(hyper-)parameters were established in the course of the conducted ex-
periments. The network’s input first undergoes the initial normalization
with two-dimensional batch normalization [187] followed by SeLU activa-
tion function introducted in [188]. The information is later processed by
three residual blocks — their task is to perform feature extraction, empha-
sizing the properties important for the given task. Each block comprises
two 2-dimensional convolution layers preceded by the batch-normalization
and LeakyReLU activation function. Note that the initial normalization
and activation layers are skipped only in the first residual block, as the
preceding normalization and activation layers are already processing the in-

The source code related to this research is available here: https://github.com/
piotrkawa/specrnet.

https://github.com/piotrkawa/specrnet
https://github.com/piotrkawa/specrnet
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put. The input signal to the residual block (called residual identity path) is
then added to the result of the blocks mentioned above to enhance the pro-
cessed information. The identity path’s task is to expose the model to the
original information and facilitate the flow of gradients during backprop-
agation (originally introduced in ResNet networks [189]). To ensure the
synchronization of channel numbers between the identity and main paths,
we process the original information using an extra convolutional layer with
a kernel size of one. Akin to RawNet2, SpecRNet contains two types of
residual blocks differing in the number of convolution channels. Due to
the constant number of 64 channels in the third residual block, there is no
synchronization between the identity and main paths. Consequently, the
additional convolution layer is not employed in this scenario. The output of
each residual block is processed by the 2D max-pooling layer, followed by
Feature Map Scaling (FMS) attention [126] and another 2D max-pooling.
Figure 4.2 depicts the residual block and FMS attention structures.

The signal processed by the residual blocks is later normalized using
batch normalization followed by the SeLU activation function and passed
to two bidirectional GRU layers to provide temporal analysis of the given
embedding. The architecture ends with two fully connected layers. The
second outputs a single value from the range [0, 1], which after thresholding,
denotes the final prediction.

4.2 Pipeline description

The pipeline in the conducted experiments was based on the WaveFake
dataset. At this time, this was one of the first DeepFake-oriented detection
datasets. More information on the dataset can be found in Section 2.4. The
utterances used the preprocessing procedure introduced by the dataset’s
authors. It covered first resampling the samples to 16 kHz one-channel
audio and then deleting the silence intervals longer than 0.2 s. All samples
underwent duration normalization to about 4 s (64,600 frames). It was done
by either trimming too long or repeating too short utterances.

Unless specified otherwise, all benchmarks included three architectures:
LCNN [123], RawNet2 [127] and SpecRNet. The reason for this choice of
solutions was as follows: RawNet2 was the basis for developing the SpecR-
Net architecture and represented models based on the raw audio. LCNN
is a widely used architecture in the literature which is based on front-end
features. In addition, both models score highly on many benchmarks.
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Table 4.1: The architecture of SpecRNet model. The convolution layers
use the following convention: Conv2D(kernel size, input channels, output
channels). Convolutions listed below the dotted lines refer to operations
performed on identity paths before summation. The table design was in-
spired by the original RawNet2 work [126]. The table adapted from the
source manuscript [7].

Layer Input Output shape
LFCC 64,600 1 × 80 × N

preliminary
normalization

BN2D
SELU 1 × 80 × N

Residual Block

Conv2D(3, 1, 20)
BN2D

LeakyReLU(0.3)
Conv2D(3, 20, 20)

· · · · · · · · · · · · · · ·
Conv2D(1, 1, 20)

20 × 80 × N

FMS Attention
Maxpool(2)

FMS
Maxpool(2)

20 × 20 × N
4

Residual Block

BN2D
LeakyReLU(0.3)

Conv2D(3, 20, 64)
BN2D

LeakyReLU(0.3)
Conv2D(3, 64, 64)

· · · · · · · · · · · · · · ·
Conv2D(1, 20, 64)

64 × 20 × N
4

FMS Attention
Maxpool(2)

FMS
Maxpool(2)

64 × 5 × N
16

Residual Block

BN2D
LeakyReLU(0.3)

Conv2D(3, 64, 64)
BN2D

LeakyReLU(0.3)
Conv2D(3, 64, 64)

· · · · · · · · · · · · · · ·
-

64 × 5 × N
16

FMS Attention
Maxpool(2)

FMS
Maxpool(2)

64 × 1 × N
64

pre-recurrent
normalization

BN2D
SELU 64 × 1 × N

64

GRU GRU(64, bi) 128
GRU GRU(128, bi) 128
FC 128 128
FC 128 1

4.3 Baseline comparison on a full dataset

The baseline training procedure, denoted in this chapter as full dataset
training, was the basis for all other benchmarks. The pipeline covered train-
ing the models for ten epochs on the full dataset. Each epoch ended with
the validation using the entire validation subset. The checkpoints with the
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(a) Bona fide spectrogram.

(b) Spectrograms of MelGAN-Large, MelGAN and Parallel WaveGAN.

(c) Differences between bona fide spectrogram and the vocoders’ outputs.

Figure 4.1: Spectrograms of the bona fide sample (LJSpeech dataset) along
with corresponding WaveFake manipulations and the absolute differences
between spoofed and bona fide spectrograms. The figure adapted from the
source manuscript [7].

highest validation scores were later evaluated using the test set.
We performed the optimization using Adam optimizer [178] on the

batches of 128 samples. LCNN and RawNet2 used originally reported learn-
ing rates of 10−4 with no scheduling procedure. The same value was used
for the SpecRNet training. SpecRNet and LCNN underwent additional
regularization using the weight decay of 10−4. Both front-end-based models
were processing LFCC created using the parameters of 10 ms window shift
with 5 ms Hann windowing, 512 FFT points and 80 coefficients.

The samples of the WaveFake dataset were split into three disjoint sub-
sets of training, validation and testing using the ratio of 70:15:15. The
performances were reported using EER and AUC metrics along with their
standard deviations (refer to Section 2.3.3). We ensured that the reported
results were reproducible and generalizable — each processes was repeated
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Figure 4.2: Schemes of the residual block (denoted as ResBlock) along
with the FMS Attention block. The figure adapted from the source
manuscript [7].

three times, each time using a different randomness seed {42, 1234, 4321}.

Table 4.2: The test results of the baseline benchmark using the full dataset.
We report the average Equal Error Rate (EER) and Area Under Curve
(AUC), along with their standard deviations (Std) as a mean of runs with
three different randomness seeds.

Model EER (±Std) AUC (±Std)
LCNN 0.001399 (± 0.000325) 99.9952 (± 0.0031)

RawNet2 0.045973 (± 0.002742) 99.1254 (± 0.0670)
SpecRNet 0.001549 (± 0.000283) 99.9941 (± 0.0015)

Table 4.2 presents the baseline benchmark results. LCNN demon-
strated the best performance in both metrics — 0.001399 (EER) and 99.9952
(AUC). SpecRNet closely followed by achieving EER of 0.001549 and AUC
of 99.9941. Please note that the results obtained by SpecRNet exhibited
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greater consistency — as evidenced by a smaller standard deviation. This
feature is crucial in security systems, where we expect the consistent per-
formance of the classifiers. RawNet2 exhibited the weakest performance,
with an EER of 0.045973 and an AUC of 99.1254. The difference between
RawNet2 and other models indicates that models based on 2-dimensional
data (in particular LFCC) can perform significantly better than the raw-
signal-processing architectures.

4.4 Time benchmark

The number of parameters is one of the most important factors when it
comes to the speed of the neural networks. As our main task was to provide
a lightweight architecture for the settings of big-data processing and in-
house computations, the number of parameters should be significantly lower
in relation to other architectures. In this section, we present the number of
trainable parameters for each of the evaluated models and provide an in-
depth analysis of inference times concerning the used device and the batch
size.

Table 4.3: Number of the trainable parameters in evaluated architectures.
SpecRNet is almost twofold smaller than LCNN.

Model name Trainable parameters
SpecRNet 277,963

LCNN 467,425
RawNet2 17,620,385

Table 4.3 contains a number of trainable parameters of each model.
SpecRNet contains significantly fewer parameters — up to two times fewer
than LCNN and 60 times fewer than RawNet2. This also contributes to
smaller VRAM usage: processing a batch of 32 samples lasting 4 s requires
1025.34 MB and 1135.36 MB for respectively LCNN and RawNet2. Mean-
while, SpecRNet requires only 826.72 MB. This means that it is much more
accessible due to fitting on a much more significant number of GPUs.

We additionally compare the inference speed conducted on randomly
drawn samples and present an average of 1,000 trials. To cover a wide
range of scenarios (i.e., both big-data and personal PC settings), we ran the
experiments using GPU (NVIDIA Tesla P40) and CPU (2 GHz Quad-Core
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Intel Core i5). DeepFake samples (unlike spoofing) can often be long — for
this reason, we provide timings for various batch sizes. By breaking down
the utterances into smaller audio chunks, it is possible to analyze the entire
material in a single forward pass using batched input.

Table 4.4: Inference times (milliseconds) in relation to the batch size (BS)
and the used device (CPU and GPU). Larger batch sizes result in more
significant differences between SpecRNet and other models.

Model CPU
Name BS 1 BS 16 BS 32
LCNN 41.632 451.745 944.672

RawNet2 151.913 1386.375 2637.200
SpecRNet 27.358 370.843 706.300

Model GPU
Name BS 1 BS 16 BS 32
LCNN 3.713 11.764 20.088

RawNet2 11.934 43.317 56.787
SpecRNet 3.669 7.1492 13.244

Table 4.4 presents the results, for CPU and GPU, showing that a larger
batch size naturally results in a much longer inference time. The inference
time per sample is, however, decreasing. With the increasing batch size,
the results on GPU show that differences between models become more
significant — while on a single element batch, they are negligible, they
become more prominent when the batch size is increased to 16 or 32. The
results also confirm the intuition related to the number of the parameters —
RawNet2, which contains the largest number of parameters, has the most
extended inference times, taking up to six times longer than SpecRNet.

The times in Table 4.4 concern only the forward pass through the
networks. This duration covers the whole procedure only in the case of
RawNet2, as the model uses raw audio and, therefore, does not require any
additional computations. One should consider the preparation of front-end
features to fully measure the time required for the inference for LCNN and
SpecRNet. The additional computations take a similar time on a GPU for
both networks and are equal to 0.9779 ms, 7.2666 ms, and 13.6549 ms for
batch sizes 1, 16, and 32, respectively. We observe similar tendencies in the
results on the CPU.
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4.5 Limited attacks benchmark

In this section, we present the limited attacks benchmark, which explores
the relations between particular generation methods (attacks) and the per-
formance of detecting them. There exists multiple methods of generating
audio DeepFakes, which differ in the quality of their outputs. This quality
is influenced, among others, by the types and quantity of the artifacts in
the generated waveforms. Intuitively, the greater number of the artifacts,
the easier it is to detect such fake utterances.

The idea for the benchmark was the following: we performed a full train-
ing and testing pipeline N times, where N is the number of the generation
methods in the training dataset (here: N = 8). Each time, we omited, in
all steps, one of the DF generation methods. The results obtained through
such a scenario can be interpreted in the following manner: if the scored
EER was higher than the baseline (see Section 4.3), the omitted attack con-
tributed positively to the baseline results, i.e. it was detected correctly, and
due to its absence, the results decreased. One can think of such an attack
as easy to detect. Enhancement of the results (i.e. decrease in EER) sug-
gests that a particular attack was not predicted correctly in the baseline, its
presence had a negative influence on the results and omitting it resulted in
the enhancement of the results — it was a difficult attack. Limited attacks
setting can be compared to out-of-distribution approach used in WaveFake
paper [145]. However, the primary objective of their scenario was to test
the models’ generalization abilities, whereas our benchmark aims to evalu-
ate the difficulty level posed by specific attacks. Despite similarities in the
training procedures, i.e. omitting one of the attacks, their evaluation parts
differ — WaveFake runs the evaluation on all the attacks, whereas we did
it only on N − 1.

For this pipeline we chose LCNN and SpecRNet due to their better
performance in relation to RawNet2. All the training details, apart from not
using all attacks simultaneously, were the same as in the baseline approach
(refer to Section 4.3).

The results in Tables 4.5 and 4.6 show that there exist differences in the
performance in relation to the used attacks. While some attacks improved
the performance of the classifiers, others reduced it. LCNN’s results show
that MelGAN was the most challenging attack for this classifier, with its
absence improving the EER from 0.00140 (full dataset) to 0.00087. The only
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Table 4.5: EER results and standard deviations of limited attacks bench-
mark. Particular columns correspond to the test results when omitting
a generation method in the whole training and testing procedure. We in-
clude the results on the full dataset (denoted as Full DS) for reference. The
best performance for each of the models is displayed in bold.

Model Full DS HifiGAN FB–MelGAN
LCNN 0.00140 (± 0.00033) 0.00097 (± 0.00008) 0.00101 (± 0.00026)

SpecRNet 0.00155 (± 0.00028) 0.00137 (± 0.00022) 0.00144 (± 0.00066)
Model MelGAN–Large PWG MB–MelGAN
LCNN 0.00148 (± 0.00016) 0.00122 (± 0.00023) 0.00123 (± 0.00023)

SpecRNet 0.00157 (± 0.00083) 0.00181 (± 0.00038) 0.00146 (± 0.00062)
Model WaveGlow MelGAN TTS
LCNN 0.00119 (± 0.00031) 0.00087 (± 0.00012) 0.00094 (± 0.00030)

SpecRNet 0.00168 (± 0.00075) 0.00136 (± 0.00030) 0.00140 (± 0.00083)

attack contributing to the result’s decline was MelGAN-Large (increase in
EER to 0.00148). Similarly to LCNN, we observed the highest EER in the
results of SpecRNet for MelGAN — the decrease in EER from 0.00155 to
0.00136. The easiest to detect was Parallel WaveGAN [61], which scored
the EER of 0.00180 — we conclude that the utterances generated using this
method were detected best in the baseline.

SpecRNet demonstrated stable and comparable performance to LCNN.
Notably, both classifiers could differentiate between all types of attacks
rather than learning to identify only one and ignoring others. Additionally,
the lower standard deviation of the EER achieved by SpecRNet, compared
to LCNN, suggests that our architecture has superior generalization proper-
ties and is likely to perform reliably when faced with novel attack methods.

4.6 Short utterances scenario

Synthesis quality and the sample degradation e.g. through noises or back-
ground audio, are one of the most important factors that influence the
difficulty of the detection task. The duration of the generated sample is
yet another significant factor. When generating extended audio segments
comprising entire sentences, many TTS and VC models are prone to exhibit
greater imperfections such as inconsistencies, artificiality in pronunciation
and prosody, or abrupt changes in tone or frequency.
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Table 4.6: AUC results with standard deviation of limited attacks bench-
mark. The best performance for each of the models is displayed in bold.

Model Full DS HifiGAN FB–MelGAN
LCNN 99.9952 (± 0.0031) 99.9994 (± 0.0003) 99.9989 (± 0.0008)

SpecRNet 99.9941 (± 0.0015) 99.9949 (± 0.0039) 99.9960 (± 0.0016)
Model MelGAN–Large PWG MB–MelGAN
LCNN 99.9976 (± 0.0022) 99.9991 (± 0.0003) 99.9972 (± 0.0023)

SpecRNet 99.9961 (± 0.0044) 99.9960 (± 0.0018) 99.9965 (± 0.0015)
Model WaveGlow MelGAN TTS
LCNN 99.9970 (± 0.0034) 99.9986 (± 0.0008) 99.9973 (± 0.0033)

SpecRNet 99.9955 (± 0.0020) 99.9987 (± 0.0006) 99.9971 (± 0.0033)

The objective of this benchmark was to assess the effectiveness of the
models on short sequences. This setting emulates a scenario when an at-
tacker replaces or adds specific keywords to a sentence using generated con-
tent instead of spoofing an entire utterance. Swapping the entity, action, or
negating a sentence, can result for instance in politicians denouncing their
ally rather than criticizing their opponent. This way, the utterance can
preserve, to a great degree, the naturalness of the original while altering the
intended meaning.

The discussed benchmark differed from the baseline only in the length
of the processed samples. Instead of using the utterances of around 4 s,
a standard for the task of DF detection, all utterances were truncated to
1 s. Such a period is long enough to contain a keyword that will be swapped
in altered utterance while short enough to show as little inconsistencies and
imperfections as possible.

Table 4.7: The results of EER and AUC scored in Short utterances bench-
mark, along with their standard deviations. Instead of using standard du-
ration of 4 s, models were trained and tested using the samples of 1 s.

Model name EER (Std) AUC (Std)
LCNN 0.00996 (± 0.00374) 99.9486 (± 0.0324)

RawNet2 0.14450 (± 0.00842) 93.4013 (± 0.7183)
SpecRNet 0.01178 (± 0.00095) 99.9322 (± 0.0324)

Table 4.7 contains the benchmark results using four times shorter sam-
ples. Even though we performed trimming of the silences, assuring that
all the samples contained speech, the performances degraded significantly.
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LCNN provided the results most consistent in regards to the baseline bench-
mark and scored EER and AUC of respectively 0.00996 and 99.9486. SpecR-
Net was characterized by lower robustness against less data by providing
an EER of 0.01178 and AUC of 99.9322. RawNet2 achieved the least stable
performance — EER of 0.14450 and AUC of 93.4013.

The over fourfold reduction of the data volume was the primary factor
influencing the decline in the performance. Such reduction in the available
information resulted in fewer potential features (imperfections) used to dis-
tinguish bona fide and fake utterances. Despite the handicap of a much more
difficult task resulting in a performance’s decline, smaller, front-end-based
architectures demonstrated robustness and yielded satisfactory results —
scoring the EER of around 0.01. These architectures can still successfully
spot targeted substitution of keywords. The larger architecture of RawNet2
could not capture the nuances of the data — we conclude that the reason
for that was a much smaller volume of the dataset: bigger architectures
requires a much greater quantity of samples to converge.

4.7 Data scarcity scenario

The next benchmark we introduce addressed the problem of the continous
introduction of new DeepFake manipulation methods. Many DeepFake gen-
eration techniques are open-sourced or available as a web service. By using
a considerably smaller volume of the data in relation to the baseline bench-
mark, we mimicked a situation when some new audio DeepFakes emerged.
However, there is no information on the creation procedure or the algorithm.

To prepare against such a new attack, a detection classifier should be
trained on the samples created using this new method. However, due to
a lack of an access to this synthesis model, one can perform the training
using only the available samples — e.g. gathered from the Internet. This
however results in a much smaller quantity than typically used for the train-
ing. The presented problem can be considered an assessment of the gen-
eralization capabilities of the detection architectures. Typically, the term
generalization concerns the robustness against unseen methods [6, 145], but
in this particular sense, one can consider it as the evaluation of how much of
the data a model needs to learn the essential features required to distinguish
fake and bona fide samples.

The benchmark, once again, was derived from the procedure introduced
in Chapter 3. To mimic the scarcity of the data, we reduced training and
validation subsets to 10% of their original size. Moreover, we reduced the
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number of epochs from ten to four to avoid overfitting this smaller dataset.
We performed a testing procedure on the original number of samples.

Table 4.8: The results of data scarcity benchmark — using 10% of the
training data resulted in the performance decline.

Model EER (Std) AUC (Std)
LCNN 0.00631 (± 0.00126) 99.9599 (± 0.0148)

RawNet2 0.24082 (± 0.01912) 84.3158 (± 2.0555)
SpecRNet 0.00800 (± 0.00192) 99.9390 (± 0.0290)

Table 4.8 shows that the smaller volume of the training data negatively
impacted the classifier’s performance. LCNN and SpecRNet showed the
performance of an EER of 0.00631 and 0.00800 and an AUC of 99.9599 and
99.9390, respectively. Despite using ten times less training data resulting
in the decline in relation to the baseline benchmark (0.00140→0.00631 for
LCNN and 0.00155→0.00800 for SpecRNet), we still consider them as ac-
ceptable. On the other hand, RawNet2 showed a much greater decline by
scoring the EER of 0.240821 and AUC of 84.3158. Such results of a Deep-
Fake detection model indicate that a classifier is ineffectual — while such
AUC score can be considered promising, there exists a significant differ-
ence between FAR and FRR results leading to the high EER value. We
conclude that the reason for such high EER score is the data shortage and
the architecture size — RawNet2 contains roughly 17 million parameters
and therefore requires more data and more steps to converge than LCNN
and SpecRNet, which both contain less than 0.5 million parameters.

The performance reported in this benchmark suggests that smaller ar-
chitectures of LCNN and SpecRNet are much more robust against the data
shortage. They showed good generalization capabilities, as only 10% of
the original data was sufficient to capture the meaningful features. We
conclude that newly introduced DF detection datasets should, instead of
focusing on the number of utterances in the dataset, emphasize the variety
of generation techniques, as this factor mainly influences the performance
of the detectors.

The results obtained in both data scarcity and short utterances bench-
marks prove the robustness of SpecRNet architecture. Despite being ex-
posed to a much smaller quantity of data by a smaller number of samples
and shorter utterances, the architecture maintained satisfying results, which
can lead to the conclusion that the model can successfully be used in real-life
DeepFake detection systems.
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4.8 Conclusions

In this chapter, we addressed Research Goal 2 (refer to Section 2.6) by
introducing a fast and efficient solution for detecting audio DeepFakes —
a novel neural network architecture called SpecRNet. It achieves a 40%
boost in inference speed compared to the LCNN model, which is consid-
ered one of the fastest DeepFake detection methods. Despite the increased
speed, SpecRNet maintained comparable detection results, showcasing its
efficiency without compromising much of the performance.

SpecRNet, thanks to its speed and efficiency, has broad applications
that cover using it in a big-data environment like online multimedia plat-
forms or as a classifier running on local consumer-grade devices. We sup-
ported this claim by evaluating our architecture with four benchmarks:
baseline, limited attacks, short utterances and data scarcity. The last three
benchmarks are novel — introduced in this chapter. We compared our
model with two state-of-the-art DeepFake detection architectures of RawNet2
and LCNN using one of the largest, available at the time, DeepFake datasets:
WaveFake [145]. In the basic benchmark, the proposed architecture exhib-
ited only a marginal 0.001% decrease in AUC performance compared to
the LCNN model. Furthermore, when assessing the reduced datasets of
trimmed samples and reduced sample numbers, the performance difference
did not exceed 0.02%.



Chapter 5

Adversarial attacks and defense against them

Current audio DeepFake detectors provide satisfying performance on many
benchmark datasets [111, 118, 145]. While these results may indicate that
with the current detection methods, DeepFakes do not pose much of a
threat, this may not reflect real-life scenarios. As highlighted in Chap-
ters 2, 3, 4, one of the main issues of the detectors is their generalization
— the ability to perform well on the utterances generated using methods
outside of training distribution.

The generated samples can be further modified using various digital
signal processing algorithms to further deviate their characteristics from
the features observed in the training sets. Such manipulations may include
pitch or speed alteration, encoding (telephony, lossy, etc.) or adding vari-
ous background noises (see Section 2.3.2). Most currently used DeepFake
detection methods are based on deep neural networks and, therefore, are
vulnerable to adversarial attacks (AA). These small, imperceptible changes
in the audio tracks result in incorrect predictions of the neural networks,
effectively decreasing their performance (see Section 2.5).

In this chapter, we cover the topic of adversarial attacks on audio Deep-
Fake detectors. Previously, these attacks were addressed in the fields of
audio spoofing [190, 191], speaker and speech recognition [192, 193] and
adversarial training in ASR environment [194, 195]. To our knowledge, we
were the first to address adversarial attacks on DeepFake detection. Our
contribution covers the analysis of three classifiers (LCNN [124], SpecR-
Net [7] and RawNet3 [196]), which we successfully compromised with the
use of three commonly used methods for generating adversarial examples:
FGSM, PGDL2 and FAB (cf. Section 2.5). We consider two attack sce-
narios: white-box and using a transferability mechanism. As a result, we
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demonstrate that even with limited knowledge of the attacked system, the
adversary can successfully target the model, leading to the decreased perfor-
mance of the predictions and, therefore, compromising the system. Then,
we introduce a novel method of adaptive adversarial training to increase
the robustness against such attacks. We analyze this training algorithm
in-depth in an ablation study.

5.1 Included scenarios

In our experiments, we addressed two scenarios of adversarial attacks: white-
box and transferability [169]. These methods differ in the amount of knowl-
edge about the system which is known to the adversary. The white-box
scenario assumes that an adversary has access to the targeted model — the
adversarial samples are prepared using the very same network that will be
later targeted.

On the other hand, the transferability scenario involves adversarial at-
tacks using models that differ from the target model, i.e. it does not require
access to the targeted model or its weights. The scenario is highly similar
to the black-box attack; however, these two have fundamental differences.
Audio DeepFakes is a relatively new domain with limited available datasets
and detection architectures. Moreover, due to their quality and popularity,
architectures like LCNN [124] or datasets like ASVspoof [111] are highly
probable to be used in deployed systems. Additionally, the preprocessing
procedures applied to the analyzed samples are standardized — they involve
resampling to 16 kHz and standardizing the duration. As a result, an adver-
sary, despite no exact knowledge about the system, could effectively launch
an attack using similar methods. However, since the exact parameters are
not disclosed, the adversary is only aware of the preprocessing operations
and datasets; one can compare this approach to a black-box setting. Typi-
cally, related work refers to this exact setting as a black box. However, we
decided to comply with computer security nomenclature, naming it trans-
ferability scenario.

5.2 Adversarial attacks

Due to the novelty of our research on AA in the domain of audio DeepFakes,
we selected the most popular attacks, which were extensively studied in

The source code related to this research is available here: https://github.com/
piotrkawa/audio-deepfake-adversarial-attacks.

https://github.com/piotrkawa/audio-deepfake-adversarial-attacks
https://github.com/piotrkawa/audio-deepfake-adversarial-attacks
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other fields like audio processing or computer vision: Fast Gradient Signed
Method (FGSM) [172], Projected Gradient Descent (PGD) [173], and Fast
Adaptive Boundary (FAB) [174] attacks. FGSM and FAB attacks were
based on a L∞ norm, whereas PGDL2 was on L2. For more details on these
attacks, please refer to Section 2.5.

We present each of the attacks above in three variants based on the levels
of their parameters. They correspond to the degree of the degradation of the
processed sample (visibility of the manipulation) and are often correlated
with the performance of the attack. DeepFakes aim to trick people into
believing that a given utterance is genuine, so their quality should be as close
to human speech as possible. Meanwhile, the adversary should degrade the
audio file significantly to increase the possibility of a successful attack. This
means that the proper adversarial attack on the DF detection system should
comply with two mutually exclusive properties — the attacked utterance
should be as least distorted as possible to still sound convincing to humans
and contain enough distortions to trick the classifier successfully.

In order to comply with these requirements, we selected the parameters
of the attacks based on the evaluation of ten volunteers. The participants
consisted of five women and five men aged 20-50. Six of them had technical
backgrounds, but none of the individuals were professionally involved in
speech or audio processing. By asking about their opinion on the quality
of the adversarially attacked samples, we selected the parameters where
the introduced distortions were imperceptible. We then considered two
following levels of distortions where the artifacts were hearable; however,
the utterances were still illegible, and the participants could successfully
identify content and speakers. The selected parameters for the attacks were
as follows: for FGSM, we used ε ∈ {0.0005, 0.00075, 0.001}, we performed
PGDL2 for ten steps using ε ∈ {0.1, 0.15, 0.20}, whereas for FAB we applied
parameters η ∈ {10, 20, 30}.

We additionally provide a quantitative analysis of the influence of the
attacks as mentioned above. To do so, we reported mel-cepstral distortion
(MCD) [197] (also referred to as mel-cepstral distance) which is an algo-
rithm often used in speech-related tasks to assess the similarity (quality) of
the generated samples compared to the source utterance. The MCD score
indicates the similarity between MFCC obtained from the source and target
utterances. The lower the value of MCD, the more significant the similar-
ity between the two, which can be interpreted as a closer resemblance of
these signals in terms of spectral characteristics. The MCD value computed
between two identical signals is equal to 0.
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Table 5.1: The mel-cepstral distortion (MCD) values between original and
attacked samples. We report values on the samples that successfully fooled
the classifiers.

FGSM
ε = 0.0005 ε = 0.00075 ε = 0.001

2.602 3.460 4.182
PGDL2

ε = 0.1 ε = 0.15 ε = 0.20
2.445 3.637 4.450

FAB
η = 10 η = 20 η = 30
2.311 3.508 4.469

The data in Table 5.1 indicates that more powerful attacks contributed
to more significant differences between altered and original samples. The
most remarkable differences can be observed in the case of the FAB (η = 30).
Figure 5.1 depicts a spectrogram of a successfully spoofed sample along with
its original.

5.3 Models

In our experiments, we considered three neural networks: LCNN [123],
SpecRNet [7] and RawNet3 [196]. The reasoning behind this choice was
the following: LCNN is among the most popular and effective methods,
SpecRNet is an example of a small architecture providing reliable results,
whereas RawNet3 is the next version of RawNet2 [127], another state-of-
the-art DF detection architecture, initially used in speaker recognition [126].
The newer version significantly improves over its predecessor. Therefore, we
concluded that this would allow us to build on generalization aspects which
were problematic in some of our research (see Section 3 and Section 4).
Please note that, to the best of our knowledge, this work was the first to
adapt RawNet3 to DF detection.

One can further divide the presented methods based on their approaches
to representing the audio data: RawNet3 processes raw waveforms, whereas
LCNN and SpecRNet are based on front-end representations. For this re-
search, we selected linear frequency cepstral coefficients (LFCC) front-end
due to the satisfying results we obtained using it in our previous works (re-
fer to Section 3 and 4). The exact parameters were: frequency of 16 kHz,
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Figure 5.1: The comparison of the spectrograms of an utterance before
(above) and after (below) applying adversarial noise (FGSM ε = 0.001).
Presented utterance is a synthesized sample that successfully fooled one of
the evaluated classifiers.

512 FFT points, Hann windowing algorithm (25 ms) with 10 ms window
shift and 80 cepstral coefficients. The used architectures also differ in
their complexity, containing 467,425 (LCNN), 15,496,197 (RawNet3), and
277,963 (SpecRNet) trainable parameters. To process 32 samples in a batch,
RawNet3 requires 11,766 MB of VRAM, LCNN —– 2,300 MB and SpecR-
Net —– 1,299 MB. This also corresponded to the inference duration — with
SpecRNet as a baseline, LCNN takes 52%, and RawNet3 — 608%, more
processing time.
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5.4 Datasets and preprocessing

The data used in our experiments was composed of three DeepFake datasets
— ASVspoof 2021 (DF) [118], WaveFake [145] and FakeAVCeleb [147]. The
reason for combining these datasets was the generalization issue raised in
Section 2.5 and [152]. The combined datasets comprised 41,217 bona fide
and 702,269 fake utterances. Spoofed clips were generated using over a
hundred generation methods: one from FakeAVCeleb, eight from WaveFake
and ”over hundred” [118] from ASVspoof. The discussed experiments were
based on the subset of this dataset — 100,000 training and 10,000 validation
and test samples. The bona fide and fake classes were distributed in 50:50
proportion. This resulted in about 500 training and 50 validation and test
samples per each DeepFake method. Bona fide samples were first divided
across subsets using the same proportion (10:1:1). Then, we oversampled
the training utterances to balance the classes. Please note that despite
using only a subset of the combined datasets, our quantity surpassed recent
works [194].

The preprocessing used in the training and testing complied with the
community standard [145, 127, 6, 7] and was composed of resampling to
16 kHz mono, trimming silences longer than 0.2 s, followed by trimming
or padding to about 64,600 frames (which corresponded to the duration of
about 4 s). We did not use any data augmentation techniques (e.g. addi-
tive noises or compression), as they might have influenced the adversarial
attacks.

5.5 White–box benchmark

The general pipeline looked as follows: detection models were first trained,
then tested on pristine (not altered) data and finally evaluated using the ad-
versarially altered samples. The discussed attacks were performed directly
on the raw audio.

We trained the detection models for ten epochs, with a validation step
performed after each. We selected the checkpoint for the subsequent test-
ing stage based on the highest validation accuracy. The learning rates were
set to 10−4 for LCNN and SpecRNet, and to 10−3 for RawNet3. SpecRNet
and RawNet3 were additionally regularized using weight decay: respectively
10−4 and 5·10−5. Moreover, to comply with the original training pipeline, we
employed Stochastic Gradient Descent with Warm Restarts (SGDR) [198]
procedure for the RawNet3. SGDR is a learning rate scheduling technique
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Table 5.2: The EER results on the original test set of the data (before
performing the adversarial attacks).

Model EER
LCNN 0.0227

SpecRNet 0.0258
RawNet3 0.0180

extending the standard Stochastic Gradient Descent (SGD) optimization al-
gorithm to train neural networks. While SGD involves updating model pa-
rameters based on a mini-batch of training data, SGDR extends this concept
by using warm restarts. This involves first applying learning rate decaying
— a popular technique whose value decreases with successive steps [199]. In
SGDR, after several steps (or epochs), the algorithm returns to the original
learning rate by starting the annealing procedure again. As a result, conver-
gence during training can be noticeably accelerated. Please note that our
restarting frequency differed from the originally used in RawNet3 training,
where the authors had eighty training epochs and restarted every sixteen
epochs. By having ten epochs, we restarted after each of them.

We trained the models using binary cross-entropy loss function and
batch sizes of 128 samples. To ensure the reproducibility of our results, we
applied the same randomness seed of 42 in each process. We report the
results using Equal Error Rate (EER).

When tested in the default (non-attack) scenario (see Table 5.2), all
models achieved a good performance comparable to the results reported
in the related work — EERs of 0.0227 (LCNN), 0.0258 (SpecRNet), and
0.0180 (RawNet3). Meanwhile, as presented in Table 5.3, using adversar-
ial attacks abruptly decreased the classifiers’ performance, making them
ineffectual and, in most cases, worse than random guessing. The most dev-
astating attack was performed with PGDL2 (ε = 0.20) on SpecRNet, which
resulted in an EER of 0.9905. Table 5.3 also shows the disparity of the
attacks’ effectiveness on different architectures: PGDL2 (ε = 0.20) was the
most destructive for LCNN and SpecRNet, whereas FAB(η = 30) was for
RawNet3. This shows the absence of a universally superior model. More-
over, FAB(η = 30) exhibited the lowest level of effectiveness among the
remaining models. Another discrepancy related to the efficiency with the
increasing parameter values. While this was the case for FAB and PGD, it
was not observed for FGSM, where the efficiency either decreased with the
increase of the parameter or fluctuated.
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Table 5.3: The EER values of the detection on the samples attacked using
the white-box scenario. The bolded values represent the highest EERs for
each of the attacks.

FGSM
Model ε = 0.0005 ε = 0.00075 ε = 0.001
LCNN 0.8126 0.7686 0.7072

SpecRNet 0.9676 0.9386 0.8716
RawNet3 0.2118 0.2095 0.2112

PGDL2
Model ε = 0.1 ε = 0.15 ε = 0.20
LCNN 0.9501 0.9716 0.9791

SpecRNet 0.9803 0.9865 0.9905
RawNet3 0.3102 0.4567 0.5499

FAB
Model η = 10 η = 20 η = 30
LCNN 0.6305 0.6315 0.6321

SpecRNet 0.6833 0.7394 0.7614
RawNet3 0.7430 0.8265 0.8549

The observations based on these results indicate that the successful
execution of adversarial attacks requires the adversary’s careful choice of
the method and its parameters to perform maximum damage. Moreover, a
simple heuristic of increasing the value of the parameters does not always
correspond to the best results.

5.6 Transferability benchmark

Next, we evaluated the transferability scenario. Its pipeline differed from
the white-box approach only in terms of the models used for preparing the
attack — they were different from the targeted models. The presented
results are based on the models trained in the previous steps, i.e. no new
models were trained for this stage.

The results presented in Table 5.4 show a decrease in the effectiveness of
transferability attacks when compared to the white-box approach. This is
the expected outcome due to the different difficulties of these two scenarios.
The lowest EERs can be observed in the experiments concerning RawNet3
— both as the target and as an attack model. This suggests that the model
was robust to the attacks conducted with other architectures, but, at the
same time, the artifacts created with its use did not harm other models.
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Table 5.4: The results of the transferability scenario (spectrogram models
based on LFCC front-end). We report parameter values in increasing order.
The bold results denote EERs between smaller models.

FGSM
Target Model Attack Model ε1 ε2 ε3

LCNN SpecRNet 0.2500 0.2560 0.2530
LCNN RawNet3 0.0680 0.0984 0.1352

SpecRNet RawNet3 0.1039 0.1683 0.2061
SpecRNet LCNN 0.2542 0.2835 0.2993
RawNet3 LCNN 0.0795 0.0948 0.1082
RawNet3 SpecRNet 0.0750 0.0901 0.1003

PGDL2
Target Model Attack Model ε1 ε2 ε3

LCNN SpecRNet 0.1625 0.2375 0.2908
LCNN RawNet3 0.0322 0.0444 0.0630

SpecRNet RawNet3 0.0746 0.1267 0.1916
SpecRNet LCNN 0.3526 0.4429 0.4867
RawNet3 LCNN 0.0368 0.0813 0.1124
RawNet3 SpecRNet 0.0294 0.0549 0.0839

FAB
Target Model Attack Model η1 η2 η3

LCNN SpecRNet 0.0591 0.1207 0.1710
LCNN RawNet3 0.0228 0.0228 0.0228

SpecRNet RawNet3 0.0249 0.0249 0.0249
SpecRNet LCNN 0.2129 0.2778 0.3025
RawNet3 LCNN 0.1010 0.1149 0.1270
RawNet3 SpecRNet 0.0257 0.0408 0.0525

Although no model achieved the EER worse than random guessing, the
highest EER was 0.4867 for PGDL2 (ε = 0.20), and many of the combina-
tions were successfully compromised. The attacks on LCNN prepared with
SpecRNet and vice versa scored, on average, EERs of 0.2001 and 0.3236, re-
spectively, resulting in over eight and twelve times worse results than in the
baseline scenario. This indicates that transferability attacks can effectively
damage the classifiers.

To further investigate the transferability between LCNN and SpecRNet,
the experiments should be performed using another front-end instead of
LFCC — e.g. MFCC. We assumed that the results were related to the
same front-end of the models — they both used LFCC and due to the
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Table 5.5: Transferability scenario results with spectrogram models using
MFCC front-end. The bold results denote the most devastating attacks per
architecture.

FGSM
Target Model Attack Model ε1 ε2 ε3

LCNN (MFCC) LCNN 0.1132 0.1562 0.1967
SpecRNet (MFCC) LCNN 0.1511 0.2074 0.2482
RawNet3 (MFCC) LCNN 0.0824 0.1012 0.1107

PGDL2
Target Model Attack Model ε1 ε2 ε3

LCNN (MFCC) LCNN 0.1613 0.2904 0.3820
SpecRNet (MFCC) LCNN 0.2305 0.3300 0.4220
RawNet3 (MFCC) LCNN 0.0309 0.0569 0.0847

FAB
Target Model Attack Model η1 η2 η3

LCNN (MFCC) LCNN 0.1606 0.2226 0.2484
SpecRNet (MFCC) LCNN 0.1659 0.1502 0.1324
RawNet3 (MFCC) LCNN 0.1155 0.0984 0.0757

vast differences in the architectures, that was their only common module.
The preliminary results presented in Table 5.5 show the performance of the
attacks prepared using LCNN with the MFCC front-end. The results are
comparable to the ones reported in Table 5.4, and therefore, we conclude
that the similarity of the networks’ sizes is the main reason behind the
good transferability between these models. Architectures of different sizes
tend to capture different patterns. Therefore, an attack prepared with a
model of vastly different size and construction may produce artifacts that
are not crucial for the attacked model and, therefore, effectively decrease
the performance of the prepared attacks.

5.7 Adversarial Training

The following section contains our research on making the DeepFake detec-
tion models more robust against adversarial attacks. We chose LCNN as a
model for our experiments. The main reason for that was the low robust-
ness exposed in Section 5.5 and Section 5.6. Moreover, LCNN is one of the
most popular detection architectures, making it very likely to be used in
deployed detection systems.

Currently used methods for circumventing adversarial attacks cover
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preprocessing input by, e.g. removing perturbations using JPEG com-
pression [200], denoising or random input transformations [201]. How-
ever, the most popular and effective-proven approach is adversarial train-
ing [168, 202]. This term covers a set of training strategies involving various
use cases of adversarial samples in the training process. The original idea
concerns training the models using the original dataset and later fine-tuning
them using only adversarial data [168]. This approach, however, addresses
only one type of attack. In other procedures, batches of training data are
constructed using different attacks (and even the original, non-altered sam-
ples). These adversarial samples can also be prepared using an ensemble of
different parameters and models [203]. This approach, however, does not
consider the complexities of particular attacks — artifacts like background
noise can make the attacks simpler to detect and, therefore, easier to learn.

Another branch of the adversarial training is adaptive adversarial train-
ing. These solutions do not apply the same strategies to every sample;
instead, they adapt according to the characteristics of the particular sam-
ples. In [204], authors got rid of uniform perturbation margins (distances
from inputs to a decision boundary) for every training sample for the sake
of sample-specific perturbation margins. They hypothesized that applying
one strategy to all samples results in weaker generalization capabilities.

This section presents our method of adaptive adversarial training. The
motivation for this was the limited robustness we achieved during standard
adversarial training approaches. We propose a novel adaptive approach to
address the AAs robustness issue and circumvent phenomena like catas-
trophic overfitting [205] or generalization issues. We analyzed standard
adversarial training strategies — starting with fine-tuning using adversari-
ally modified samples, then using a batch of original and modified data (in
a 50:50 ratio) and ending with populating a batch using random sampling.
From our observations, the models tended to focus on only a subset of the
attacks and, as a result, were resistant only to them.

We addressed these issues, as our adaptive approach involves continuous
analysis of the difficult types of samples, where the difficulty is assessed by
the loss value for a particular (non-)attack — the greater the loss, the more
difficult the type. The decision on the construction of the training batch
(whether a particular attack is included or skipped) is based on a sampling
vector w = (w0, . . . , wN) ∈ R+

N+1, that ∑N
i=0 wi = 1, where N is the

number of attacks, and w0 is a non-attack scenario. We assess the model’s
performance based on a loss of a previous iteration. The pseudocode for
our approach is shown in Algorithm 1.
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Algorithm 1: Adaptive update of the sampling weights vector.
Input : w — N + 1-dimensional sampling vector,

lossi — loss result,
i ∈ {0, . . . , N} — (non-)attack index,
c — clip value (default: 1),
m — momentum (1

5),
p — non-attack proportion (1

3).
Output : updated sampling vector w
wi ← m ·min(lossi, c) + (1−m) · wi

sw ←
∑N

k=0 wk

for k ← 0 to N do
if k = 0 then

r ← p
else

r ← 1−p
N

end
wk ← 1

2 ·
wk
sw

+ 1
2 · r

end

Choosing the ”easy” attacks can be formalized as follows: the sampling
vector’s elements (wi) are wi ≫ wj for j ∈ {0, . . . , N} \ {i} resulting in
choosing only them w.h.p. To counteract it, we employ two control mecha-
nisms. Firstly, instead of updating wi with loss value, we constrain it using
clipping constant c. Furthermore, we average the whole sampling vector w

with a constant ratio r. The reason for that is to prevent outliers. Secondly,
we utilize a constant parameter p, which denotes the proportion of sampling
original (non-altered) samples. Using it to compute constant ratio r allows
us to keep the model robust in the non-AA scenario.

The presented experiments covered fine-tuning the baseline model for
ten epochs with the same training hyper-parameters (cf. Section 5.5). The
reason behind this approach was a problem with convergence when training
from the start (a similar approach was used in [194]). To prevent catas-
trophic overfitting, after each epoch, we validate the models’ performance
using the formula:

e∗ = argmax
e∈{1,...,10}

(N + 1)∏N
i=0 ae

i∑N
i=0 ae

i

, (5.1)

where ae
i is an accuracy of the i-th (non-)attack index after e-th epoch.

This allows us to select for further evaluations a checkpoint from such an
epoch e∗, where, on average, a performance across all (non-)attacks is the
best.



5.7. ADVERSARIAL TRAINING 73

Table 5.6: The EER results on white-box attacks of the classifiers trained
using adaptive adversarial training. All the results are enhanced in relation
to the baseline (cf. Table 5.3.)

FGSM
Model ε = 0.0005 ε = 0.00075 ε = 0.001
LCNN 0.0985 0.1079 0.1144

PGDL2
Model ε = 0.1 ε = 0.15 ε = 0.20
LCNN 0.1245 0.1511 0.1870

FAB
Model η = 10 η = 20 η = 30
LCNN 0.0982 0.1116 0.1246

The results presented in Table 5.6 show that fine-tuning using our adap-
tive adversarial training can significantly enhance the robustness of the
model in a white-box scenario — all of the combinations provided bet-
ter detection performance in relation to the baseline scenario. At the same
time, the enhancement in the performance in the transferability scenario
was observed in 50% of all cases (refer to Table 5.7).

Table 5.7: The results of transferability attacks on models trained using
adversarial training. Bold cells refer to the enhanced results (cf. Table 5.4).

FGSM
TM AM ε1 ε2 ε3

LCNN SpecRNet 0.1472 0.1515 0.1560
LCNN RawNet3 0.0994 0.1064 0.1091

PGDL2
TM AM ε1 ε2 ε3

LCNN SpecRNet 0.1162 0.1247 0.1434
LCNN RawNet3 0.0876 0.0920 0.0945

FAB
TM AM η1 η2 η3

LCNN SpecRNet 0.1018 0.1158 0.1229
LCNN RawNet3 0.0901 0.0902 0.0904

In addition to the tests on the attacked data, we evaluated the adver-
sarially trained model on the initial, non-altered dataset: the EER of the
fine-tuned LCNN was equal to 0.0882, in relation to 0.0227 scored before
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adversarial training. We consider this a satisfying result, which proves that
the DeepFake detection models can become more robust against AAs with-
out sacrificing much performance on the standard (non-altered) samples.
The performance decline, however, exists — the system owners should as-
sess if adversarial attacks are a significant threat in their scenario and how
much performance they are willing to sacrifice for this resilience. The degree
of resilience (inversely proportional to performance on normal data) can be
controlled by the parameters of adversarial training, such as the number of
epochs or learning rate.

5.8 Ablation study

The following section contains an ablation study of our adaptive adversarial
training method. For demonstration and deeper analysis of this strategy,
we compared four training approaches. Starting from the proposed adap-
tive method (A), we removed further components in the adaptive without
non-attack proportion p (A−p), and adaptive without non-attack proportion
and momentum (A−p−m) methods, ending up with the random sampling
method (random). It is worth mentioning that this ablation study followed
our steps in creating the final algorithm — due to the poor performance of
the default adversarial training methods, we added multiple control mech-
anisms, resulting in the final solution.

The A method is an adaptive method presented in Section 5.7. The
A−p method differs from the Algorithm 1 in lines 6-10, where the sampling
vector is updated via wk

wk

sw
. Moreover, the A − p − m method does not

contain a momentum introduced in line 1 (its value is m = 1). In the
random method, we selected the next attack based on the random selection
with uniform distribution out of the set of supported adversarial attacks
and non-altered data. We apply value clipping for all the algorithms. Our
experiments showed that its absence caused the convergence of the sampling
vector to the one dominant element that was then chosen most frequently,
resulting in the poor overall performance of the models.

Figure 5.2 shows the results of the ablation study. Our main goal was
to achieve general robustness against adversarial attacks while providing
acceptable performance for non-attacked data. We proposed an evaluation
metric similar to the Equation 5.1 — multi-class F1 score calculated using
(non-)attack accuracies to achieve that. It promoted a scenario where a
small variance characterizes the performance results. The results of the A−
p−m method were worse than those of the random method. The presence
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Figure 5.2: Our adaptive method provides the best F1 score among all of
the four training methods covered in the ablation study. Source: [8].

of both momentum m and non-attack proportion p is crucial, especially
in the early phase of the training, as the starting loss values for scenarios
were relatively high and with no control mechanisms, they quickly became
unbalanced (far from uniform). As a result, sampling used only a subset
of the cases, resulting in overall weak generalization — training focused
only on a subset of the attacks. To prevent this, we added the mechanisms
of clipping and momentum. While this contributed to the performance
enhancement, it was poor, only slightly overperforming the random strategy.
Ultimately, by introducing non-attack proportion, we achieved the adaptive
algorithm as presented in our work. It significantly enhanced the F1 scores
compared to the other methods, resulting in superior performance. This
ensured that the model retained its ability to differentiate between fake and
bona fide samples.

5.9 Conclusions

In this chapter, we covered the topic of adversarial attacks on audio Deep-
Fake detection methods. By introducing subtle, typically difficult-to-notice
perturbations into input data, these samples can lead to erroneous predic-
tions by the neural network. Using white-box and transferability attack
scenarios, we showed that adversarial samples severely threaten the detec-
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tion systems. As a result, even with limited knowledge about the system,
the adversary can significantly decrease the systems’ performance, often
making them ineffectual. The average EER performance for the baseline
models was equal to 0.0221, which we later degraded to up to 0.9905 (for
white-box attack) and 0.4867 (for transferability attack).

In order to increase the robustness of these models, we introduced a
novel method of adaptive adversarial training. Selecting training examples
using our adaptive sampling strategy allowed the architectures to generalize
well across multiple attacks and resist overfitting, decreasing EER down to
0.0982 for the white-box. In the transferability scenario, we managed to
reduce EER to 0.1091. In this case, The best model’s performance was
equal to EER of 0.0876, as not all of the results were improved by the
adversarial training.

Our ablation study proves that the introduced components are crucial
for successful training. As a result of our adversarial training, the perfor-
mance of the attacks significantly decreased, leading to acceptable results
on the adversarially altered samples without compromising much of the per-
formance on the non-altered data, which fulfils the Research Goal 3 (refer to
Section 2.6) and proves that while adversarial attacks successfully degrade
the classifiers’ performance, this can be mitigated by the use of adversarial
training.



Chapter 6

Using Whisper in detecting DeepFakes

Self-supervised learning (SSL) is an increasingly popular paradigm of deep
learning [206]. This concept relies on training the neural networks using
large amounts of unstructured and unlabeled data. The goal is to train the
model meaningful structures, patterns, and relationships between data with-
out costly human annotation. It is accomplished using general tasks such
as autoencoding, image rotation prediction and contrastive learning [206].
Models trained on a large volume of data using a general task, later fine-
tuned for a specific problem, often achieve much better results than the
solutions based on standard supervised learning paradigms [206, 138, 207].

In the field of speech processing, the most prominent examples of SSL
architectures include WavLM [208], wav2vec [209], wav2vec2.0 [137] and
HuBERT [210]. Models fine-tuned for specific tasks achieve high perfor-
mance in speech recognition or speaker identification [138, 207]. Features
obtained using SSL architectures can also benefit tasks like audio DeepFake
detection. Works such as [211] and [212] have shown that using the informa-
tion provided by SSL-based front-ends leads to performance improvement
and better generalization of the detectors in relation to the commonly used
DSP-based front-ends (see Section 2.2). This suggests that exploring front-
ends based on the information provided by the architectures trained on
the large datasets may be an essential part of the research focusing on the
generalization of DeepFake detection.

This chapter presents a novel front-end based on the Whisper automatic
speech recognition model [5]. We show that by using the representations ob-
tained from the encoder of the Whisper model, we enhance DeepFake detec-
tion results and show the improvement on a novel In-The-Wild dataset [152]
by decreasing the baseline EER by 21%. We achieve that by using only

77
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125,000 samples of the ASVspoof 2021 DF dataset without employing data
augmentation techniques. Moreover, to the best of our knowledge, we were
among the first to use the Whisper model successfully in tasks other than
automatic speech recognition (ASR).

6.1 Whisper ASR model

Whisper [5] is a state-of-the-art automatic speech recognition (ASR) model
developed by OpenAI. It was trained on 680,000 hours of multilingual and
multitask speech in a weakly-supervised fashion. The paradigm refers to
training models using noisy, inaccurate labels (e.g. imperfect transcripts),
which, thanks to the volume of the data, can outperform fully-supervised
approaches. The main similarity between Whisper and other SSL architec-
tures is the large dataset used for their training procedures. The dataset
used in the training of Whisper comprises 98 languages, with most content
(54%) being English. The diversity and magnitude of the dataset surpassed
each ASR dataset to date and allowed for robustness against environmental
interferences like background noises, providing sufficient performance for
many languages and accents.

The name Whisper refers to the whole family of architectures differing
in their sizes (e.g. by width and sizes of layers) — from tiny (39 million
trainable parameters) to large (1550 million parameters). The authors ad-
ditionally provided separate models based only on the English language —
denoted *.en e.g. tiny.en. Besides the general speech recognition task (for
which multiple languages are supported), Whisper enables language iden-
tification and translation from the supported languages to English. The
high performance achieved across multiple tasks makes this model one of
the most commonly used speech-processing models nowadays.

Whisper architecture is based on the default encoder-decoder Trans-
former [214] (cf. Figure 6.1). In our experiments, we focused on the capa-
bilities of its encoder. The module first comprises two blocks of a GeLU
activation function [215] and a convolutional layer. The signal is later modi-
fied by adding position embeddings [214]. The architecture ends with blocks
of the pre-activation residual attention blocks [216], followed by the normal-
ization layer.

In this chapter, we use the encoder of the pre-trained Whisper not to
extract features relevant to speech recognition but to capture features rel-

The source code related to this research is available here: https://github.com/
piotrkawa/deepfake-whisper-features.

https://github.com/piotrkawa/deepfake-whisper-features
https://github.com/piotrkawa/deepfake-whisper-features
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Figure 6.1: The architecture of Whisper is based on an off-shelf Transformer
model. Source: [213].

evant to the problem of audio DeepFake detection. We treat the encoder
output as an input to three front-end-based detectors and show that these
features can be meaningful in DeepFake detection, thus enhancing perfor-
mance. We selected Whisper for this task for multiple reasons: first and
foremost, it was trained using a vast amount of data — the training set is
more than 16x larger than the one used to train for wav2vec2.0 [209]. The
data was diverse, containing 98 languages and including many different ac-
cents. In addition, Whisper is robust to natural noise and interferences
occurring within the analyzed utterances [5]; hence, we conclude that the
features will be more meaningful in identifying artificially generated speech.
This, in turn, can help with the generalization problem — the poor quality
of results on samples on out-of-distribution data, which is one of the main
problems we address in the dissertation.

We conducted experiments using the smallest version of Whisper —
tiny.en. Detecting DeepFakes is a global problem; therefore, by adding
a minimal possible overhead, we want to make the presented solution as
accessible as possible. Please note that we use the *.en version of Whisper,
which was trained using only the English subset of the training dataset.
The reason is that English is currently the most widely used language in DF
detection datasets (however, recent datasets introduce other languages [12]).

Please note that larger versions of Whisper have demonstrated even
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Table 6.1: Configuration parameters of Whisper’s tiny.en encoder used in
the experiments.

Name Value
Mel dimensionality 80

Temporal dimension 1,500
Hidden state dimension 384
Attention heads number 6

Residual attention blocks number 4

more impressive performance across various tasks. For example, the large
model outperforms the tiny.en model by up to threefold in tasks such as
speech recognition and translation [5]. This indicates that the presented
results can be enhanced further.

6.2 Models

In our study, we evaluated four architectures. Three of the models pro-
cessed front-end features: LCNN [124], MesoNet [11] (MesoInception-4),
and SpecRNet [7]. We additionally included RawNet3 [196], which, on the
contrary, analyzes raw audio — this model took the place of RawNet2 due
to the high performance achieved in Chapter 5. The parameter counts for
these models are 467,425 (LCNN), 28,486 (MesoNet), 277,963 (SpecRNet),
and 15,496,197 (RawNet3), respectively. We based on the encoder of tiny.en
version of Whisper, which contains 7,632,384 trainable parameters. One can
easily note that even with the Whisper front-end, the architectures are com-
prised of nearly 50% fewer parameters than RawNet3. For more details on
the architectures, please refer to Section 2.3.5.

6.3 Front-ends

For the front-end-based models, we used the following representations: MFCC,
LFCC and the output of Whisper’s encoder. We compared Whisper with
mel- and linear-frequency features due to their popularity and well-established
position in many audio tasks, including DeepFake detection [176, 124].
Please note that our research additionally included constant Q-cepstral co-
efficients (CQCC) [81], a popular anti-spoofing front-end [217, 212]. We
initially included the LCNN + CQCC model in our comparison. However,
the training procedure based on parameters as for other feature extrac-
tors provided unsatisfactory results, resulting in around 60% accuracy on
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the ASVspoof 2021 DF dataset. Low performance was the reason for the
ceasing the further evaluation.

We based LFCC and MFCC (referred to as non-trainable front-ends)
on the following parameters: sampling rate of 16 kHz, a window size of
400 frames, hop length of 160 frames and 128 coefficients. We enriched
the non-trainable front-ends by providing their delta and double delta fea-
tures [74]. These representations are widely used in speech-processing tasks
to express the dynamics of the audio signal properties over time. Delta
features are the differences between signal features. These transformations
can be intuitively compared to discrete image derivatives, e.g. Sobel fil-
ters, which highlight particular features. For given feature f (e.g. LFCC or
MFCC) at time-instant k, the delta feature is defined as:

∆k = fk − fk−1

Analogously, double delta features are the differences between delta
feature vectors:

∆∆k = ∆k −∆k−1

Whisper analyzes audio chunks of 30 s. To equalize the sizes of all
front-ends used throughout the experiments, we also decided to base on
this duration in the non-trainable front-ends. As a result, their size was
equal to 376× 3000, where 376 was the number of front-ends’ components
concatenated with its delta and double delta features, whereas 3000 was the
number of frames. As mentioned, we used a tiny.en version of Whisper. Its
encoder returns data in the shape of 376×1500. To conform to the shape of
MFCC and LFCC features, we replicated the second dimension, resulting in
a tensor of size 376×3000. We state that such an operation should not have
a negative influence, as we expose a model to the same features twice. Please
note that the encoders in different Whisper architectures return tensors of
other (larger) shapes, and to use them with our models, one should modify
network parameters accordingly.

The shapes of the presented front-ends were larger than the ones used
in our previous research — the standard architectures of the models could
not process these inputs. We adapted them to make processing this higher-
dimensional data possible. In the SpecRNet model, we included a layer
of adaptive 2D average pooling right after the ultimate SeLU layer. In
MesoNet, we introduced an adaptive 1D average pooling before the penul-
timate fully connected layer. Adaptation of LCNN included increasing the
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number of input features and hidden features of two bi-LSTM layers, as
well as the input features of the last linear layer, from 160 to 768.

6.4 Setup

The baseline setup for all the experiments was the following: each model
was first trained on the same randomly selected subset of 100,000 training
and 25,000 validation samples from the ASVspoof 2021 DF dataset [118].
Checkpoint, which scored the highest validation accuracy, was chosen for
the testing procedure on all utterances of the In-The-Wild dataset (refer to
Section 2.4.4).

Since we aimed for the most accessible solution (in terms of train-
ing and inference), we have chosen the smallest architecture of Whisper
and performed training using only a subset of the data available in the
ASVspoof dataset. 125,000 training samples still exceeded some of the re-
lated work, moreover, such quantity allowed a model’s training using a
single GPU (NVIDIA TITAN RTX GPU, 24 GB VRAM) in about a day.
Please note that using bigger and more diverse (e.g. through augmentation
techniques [139]) datasets can lead to even better performance.

The random selection of samples for the training and validation sets
resulted in a disproportionate number of samples per class, which we ad-
dressed using an oversampling procedure.

We conducted each training procedure for ten epochs and validated
models using the entire validation subset at the end of each. We used a
batch size of eight, which differed from the previous chapters due to the
increased input size. Models were optimized using the binary cross-entropy
loss function. We used a learning rate of 10−4 and a weight decay of 10−4 for
all front-end-based models. RawNet3 was trained using a learning rate of
10−3 and a weight decay of 5 ·10−5, additionally involving SGDR scheduling
with a restart after each epoch (see Section 5.5). We ran each process with
a fixed randomness seed of 42 to ensure our results were reproducible.

6.5 Preprocessing

Each audio sample used throughout our experiments underwent a prepro-
cessing procedure based on the standard approaches commonly used in the
relevant literature (cf. Section 3, Section 4 and [145, 127]). It consisted
of resampling to 16 kHz mono, removing silences longer than 0.2 s and
padding (repeating) or trimming content to the predefined duration. As
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stated above, instead of using a default duration of about 4 s, we used
30 s due to the requirements of the Whisper model. The official imple-
mentation [218] pads shorter utterances with zeros, whereas we repeated
the data. In our opinion, exposing models several times to the same in-
formation would allow more reliable comparison, as no new information is
provided, and the whole audio file, similarly to 4 s samples, is filled with
speech. Moreover, works like [152] show that analyzing longer sequences
benefits performance. For this reason, we standardized the durations for
all front-ends — a longer input to the Whisper front-end might contain a
larger number of artifacts, making the comparison of front-ends unreliable.

Figure 6.2: Standard Whisper preprocessing pads the input with zeros to
chunks of 30 s (top). Instead, we repeat (or trim) the processed samples
(bottom).

6.6 Baseline comparison

As our baseline comparison, we considered LCNN, SpecRNet, MesoNet,
and RawNet3 models and tested LFCC, MFCC, and Whisper front-ends.
Please note that during the training procedure, the weights of Whisper’s
encoder were not optimized (i.e., were frozen). We treated this model as a
feature extractor using the information obtained from its original training
procedure on a large-scale dataset.

The test results obtained on the In-The-Wild dataset, presented in Ta-
ble 6.2, significantly diverge from the low EERs reported in the earlier
chapters of the dissertation. The reason for that is the controlled manner
in which related work is mostly based during the creation of the datasets
— even though it is a result of the community-based effort of dozens of
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Table 6.2: The EER results of the models tested on the In-The-Wild dataset.
The front-end, composed of Whisper’s encoder, significantly enhances the
results for SpecRNet and LCNN networks. The lowest reported EER is
presented in bold.

Model Front-end EER
SpecRNet LFCC 0.5184
SpecRNet MFCC 0.6897
SpecRNet Whisper 0.3644

LCNN LFCC 0.7756
LCNN MFCC 0.6762
LCNN Whisper 0.3567

MesoNet LFCC 0.5451
MesoNet MFCC 0.3132
MesoNet Whisper 0.3856
RawNet3 - 0.5199

distinct teams like ASVspoof and contains additional postprocessing pro-
cedures. In-The-Wild is composed of real-world samples of not only the
unknown generation method but also unknown processing algorithms, in-
cluding artifacts from the compression during upload to social media. This
results in the distribution of features vastly different from the ones seen
(and learned) in the training procedure. As the models cannot generalize
sufficiently, the detection capabilities deteriorate significantly when exposed
to different data.

Of the ten presented models, six performed worse than random guessing
(EER=0.5). The models that scored unsatisfactory results on the In-The-
Wild test dataset at the same time provided satisfying efficacy on the vali-
dation part (taken from ASVspoof), e.g. LCNN with LFCC and SpecRNet
with MFCC (two worst architectures on In-The-Wild), achieved EERs of
0.0149 and 0.0218, respectively.

The best EER of 0.3132 was obtained using the MesoNet based on the
MFCC front-end. The architecture achieved similar results in the original
work (EER=0.3741) [152] and was among the best front-end-based models.
Please remember that in the original In-The-Wild work, this model was
trained on ASVspoof 2019 and based on a log spectrogram considering the
entire duration of analyzed utterances. We conclude that the reason be-
hind these results is a small number of model parameters. MesoNet, which
contains roughly 30k parameters, learns the artifacts from the ASVspoof to
a smaller degree than the other architectures and, therefore, is character-
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ized by better generalization on other datasets. SpecRNet was the model
that scored, on average across front-ends, the second-best results. The re-
sults in Table 6.2 also show the positive impact of Whisper-based features
on the generalization of the models. Using LFCC as a baseline, SpecR-
Net achieved an enhancement of 29.71%, LCNN 54% and MesoNet 29.26%.
The enhancements were even greater for MFCC in the case of the two first
models.

6.7 Concatenated features

The following section covers our evaluation of the models based on concate-
nated front-end features. We motivate this with the results we presented
in Chapter 3, where we showed that using front-ends composed of several
algorithms can increase performance. Our second aim of these experiments
was to investigate the relations between the front-ends. In this section,
we consider models based on the concatenation of Whisper-features and
non-trainable front-ends.

Table 6.3: The test results of the models based on concatenations of front-
end features. Including Whisper improves the results of non-trainable front-
ends and meanwhile degrades them in relation to using Whisper only (for
all but two architectures – presented in bold).

Model Front-end EER
SpecRNet Whisper + LFCC 0.3485
SpecRNet Whisper + MFCC 0.4116

LCNN Whisper + LFCC 0.6270
LCNN Whisper + MFCC 0.6117

MesoNet Whisper + LFCC 0.8029
MesoNet Whisper + MFCC 0.3822

Table 6.3 presents the test results of the concatenation of front-end
features. No model achieved EER better than the best reported in the
first benchmark (0.3132). However, using Whisper with other front-ends
enhanced the results for SpecRNet and LCNN by up to 40.32% and 19.15%

If we look at the results from the perspective of non-trainable front-
ends, joining them with Whisper indicated a positive synergy between them,
leading to the gain of additional knowledge and enhancing the results. De-
spite alleged gains, only two of the architectures outperformed the results
of Whisper-only models. The reason for that could be the phenomena of
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Figure 6.3: Visualization of concatenated features — we join non-trainable
front-end (MFCC or LFCC with its delta and double delta features) and
Whisper embedding in a channel dimension. The dimensionality of a single
sample is equal to 2× 376× 3000.

covering some vital Whisper features by the features of spectrogram front-
ends.

Conversely, looking at the results from the perspective of the Whisper
front-end, using other features degraded the results for all but two archi-
tectures — the decrease was not substantial for MFCC but significant for
LFCC. We conclude that this negative synergy came from architecture’s
details and compression of the provided information, which resulted in the
classification based on the noised information rather than an enhanced set
of features. We investigate this phenomenon further in Section 6.10.

6.8 Fine-tuning

In the benchmarks described above, we treated Whisper’s encoder as a
front-end algorithm — a predefined function returning specific audio rep-
resentations. In the following section, we describe the process of adapting
Whisper’s encoder to the problem of DeepFake detection by fine-tuning. We
based on the following intuition: Whisper was trained on a dataset where
the vast majority of speech was non-generated, which should be consid-
ered biased in terms of the DeepFake detection problem; moreover, it was
trained for different purposes: speech recognition and language identifica-
tion. The fact that the provided features significantly increased performance
over other algorithms (cf. Table 6.2) is a rationale for the assumption that
fine-tuning Whisper may result in even further improvements.
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In the following benchmark, we used the models trained during the
experiments described in Section 6.6 and Section 6.7. We considered only
architectures using Whisper or concatenated with another front-end. We
fine-tuned these architectures for an additional five epochs with the unfrozen
Whisper weights using the learning rate of 10−6.

Table 6.4: Results of the Whisper-based architectures. EER (frozen) refers
to the Table 6.2 and Table 6.3 results and EER (tuned) to the results of fine-
tuning Whisper-based models. The lowest EER for each of the approaches
is presented in bold.

Model Front-end EER (frozen) EER (tuned)
SpecRNet Whisper + LFCC 0.3485 0.3795
SpecRNet Whisper + MFCC 0.4116 0.3769
SpecRNet Whisper 0.3644 0.3338

LCNN Whisper + LFCC 0.6270 0.6270
LCNN Whisper + MFCC 0.6117 0.5899
LCNN Whisper 0.3567 0.3290

MesoNet Whisper + LFCC 0.8029 0.5526
MesoNet Whisper + MFCC 0.3822 0.2672
MesoNet Whisper 0.3856 0.3362

Table 6.4 compares the results achieved in the first two benchmarks
and the ones obtained after fine-tuning. Fine-tuning enhanced the results
for all models except for SpecRNet with Whisper+LFCC front-end (the
results degraded by less than 9%). We improved the previously best result
of MFCC-based MesoNet by 14.69% — the best architecture was based on
MFCC and Whisper with MesoNet network and achieved an EER of 0.2672.
This also improves the original work [152], where RawNet2 [127] achieved
an EER of 0.3394. Please note that the model was trained on 4 s samples
from ASVspoof 2019 [111].

The results indicated that utilizing the features obtained with the Whis-
per model, trained on a vast amount of data, and later fine-tuned to the
downstream task may significantly improve performance. Note that the
large training set used for Whisper is particularly important due to the
scarcity of DeepFake-specific training data, as it is magnitudes larger than
all DeepFake datasets combined.



88 CHAPTER 6. USING WHISPER IN DETECTING DEEPFAKES

6.9 ASVspoof 2021 DF tests

Apart from the tests on the In-The-Wild dataset (refer to Sections 6.6,
6.7 and 6.8), we additionally tested every presented model on a subset of
100,000 randomly selected samples from the ASVspoof2021 DF dataset.

Table 6.5: The comparison of test EER results obtained on In-The-Wild
(ITW) dataset and on the additional 100,000 random samples of ASVspoof
2021 DF (ASV21 DF) dataset. The used samples were outside of training
and validation subsets. The lowest reported EERs for each of the datasets
are presented in bold.

Model Front-end EER (ASV21 DF) EER (ITW)
Baseline

SpecRNet LFCC 0.0208 0.5184
SpecRNet MFCC 0.0299 0.6897
SpecRNet Whisper 0.0407 0.3644

LCNN LFCC 0.0140 0.7756
LCNN MFCC 0.0099 0.6762
LCNN Whisper 0.0212 0.3567

MesoNet LFCC 0.1242 0.5451
MesoNet MFCC 0.1941 0.3132
MesoNet Whisper 0.1234 0.3856
RawNet3 - 0.0136 0.5199

Concatenated features
SpecRNet Whisper + LFCC 0.0187 0.3485
SpecRNet Whisper + MFCC 0.0264 0.4116

LCNN Whisper + LFCC 0.0091 0.6270
LCNN Whisper + MFCC 0.0101 0.6117

MesoNet Whisper + LFCC 0.1552 0.8029
MesoNet Whisper + MFCC 0.1580 0.3822

Finetuning
SpecRNet Whisper + LFCC 0.0192 0.3795
SpecRNet Whisper + MFCC 0.0105 0.3769
SpecRNet Whisper 0.0105 0.3338

LCNN Whisper + LFCC 0.0106 0.6270
LCNN Whisper + MFCC 0.0091 0.5899
LCNN Whisper 0.0019 0.3290

MesoNet Whisper + LFCC 0.0455 0.5526
MesoNet Whisper + MFCC 0.0072 0.2672
MesoNet Whisper 0.0036 0.3362

Table 6.5 shows a significant disparity between the performances on
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In-The-Wild and ASVspoof 2021 DF datasets. Most EERs obtained on
ASVspoof are below 0.03, whereas those achieved on In-The-Wild are in
the [0.3, 0.5] range. This again shows that the artifacts present in the
ASVspoof dataset are similar across different subsets and vastly different
from those present in the In-The-Wild samples. The Table also contains
other interesting information about the MesoNet architecture. The model
provides the weakest performance in the case of baseline and concatenated
features benchmarks, i.e. when the front-ends were not fine-tuned. However,
the performance significantly increases once the whole model is fine-tuned.
This phenomenon is investigated further in Section 6.10.

6.10 Features comparison

Due to the inconsistent results provided by the concatenation of the front-
ends, we decided to investigate the influence of particular parts of the input
data on the final decision of neural networks. For the analysis, we chose the
neural networks differing in structure: SpecRNet, based on a recurrent layer
(in particular Gated Recurrent Unit [130]) and MesoNet, mainly composed
of max-pooling and convolution layers. We investigated by calculating and
analyzing the gradient on the input data — the technique commonly used
in adversarial attacks [173].

Figure 6.4: Gradient calculated on a spoofed signal for the SpecRNet models
(LFCC and Whisper without fine-tuning). Note that the y-axis ranges
differ.

(a) LFCC (b) Whisper (frozen)

We observed that the model’s architecture significantly influences the
processing of front-end inputs. Figure 6.4 shows the gradients of the spoofed
signal with respect to the audio frames analyzed by the two SpecRNet archi-
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tectures (Whisper and LFCC). Even though the whole utterance is spoofed,
the decision was made based only on some particular parts of this signal —
as SpecRNet processes information using a GRU layer, the final decision is
largely influenced by the latter part of the signal (refer to Figure 6.4a). Ad-
ditionally, models based on Whisper features often rely on certain attributes
extracted from specific narrow signal segments — as evidenced by the two
peaks around frames 220,000 and 360,000 in Figure 6.4b. These peaks have
much greater values than the gradients of the LFCC signal (please refer to
the Y-axis of the plots). We conjecture that Whisper works effectively in
conjunction with recurrent layers because it captures prominent features
that tend not to be concealed traversing through the recurrent sequence.

Figure 6.5: Saliency map of bona fide utterance processed using MesoNet
with different front-ends. Concatenating front-ends and fine-tuning a model
discards some of the previously important information. Source: [9].

(a) LFCC (b) MFCC

(c) Whisper (frozen)
(d) MFCC + Whisper (tuned)
[MFCC channel]
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Figure 6.5 contains the saliency maps [219] of the bona fide samples pro-
cessed by MesoNet architecture. Saliency maps are visual representations
that highlight the most important regions within a given representation,
e.g., an image or a spectrogram. They can be used to interpret the deci-
sions of deep learning models in classification tasks — typically, the higher
(the brighter) the values of a given region, the more important it is for the
decision.

Figure 6.6: The comparison of saliency maps displayed in Figure 6.5. The
area marked in green shows the part of the MFCC front-end that is con-
sidered important (due to its high values). As a result of the fine-tuning
process, Whisper forces focus on the data that previously contributed less to
the outcome, effectively discarding previously important information. We
hypothesize that the reason for these positional features is due to the con-
volutions used in the model.

(a) MFCC
(b) MFCC + Whisper (tuned)
[MFCC channel]

MesoNet comprises four max-pooling layers — the ultimate linear lay-
ers receive information that has been max-pooled from spatially distributed
blocks measuring 32× 32. In Figure 6.5, we show four different front-ends:
LFCC, MFCC, Whisper (frozen weights) and Whisper (fine-tuned) con-
catenated with MFCC. The saliency maps have the same dimensions as the
front-ends they are derived from: 376 × 3000, where 376 is the dimension-
ality of the parameters, and 3000 refers to the temporal dimension (the
number of frames). Due to the concatenation of the Whisper features and
MFCC in the channel dimension, we display only the MFCC part of this
front-end. The areas with higher values, shown using brighter colours, are
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interpreted as the ones contributing to a greater degree to the final decision
of the models due to the greater values of the gradient there.

As mentioned, we use the non-trainable front-ends along with their
delta and double delta features — they are displayed in the following order:
the lower band of the first 128 rows are either LFCC (cf. Figure 6.5a) or
MFCC (cf. Figure 6.5b), whereas the next 256 are their first, and second
derivatives. Saliency maps show that the areas with the highest values,
contributing to the final results most significantly, were the initial front-
end representations (LFCC and MFCC) — delta and double-delta features
seem less important. We hypothesize the reason for that is the redundancy
within the representation — model relied on the original information in the
decision-making and disregarded delta and double-delta features. At the
same time, standard, non-optimized Whisper features (see Figure 6.5c) did
not manifest similar properties — the decision was made based on a full
band, focusing on the middle.

This changed in the case of fine-tuning the front-end composed of Whis-
per and MFCC (refer to Figure 6.5d). The fine-tuning process resulted in
performance improvement, and surprisingly, the importance of previously
relevant MFCC decreased for the sake of the remaining part of the signal
(delta and double-deltas). We assume that the Whisper front-end efficiently
captures speech characteristics, and incorporating deltas could improve out-
comes by adding extra coefficients to depict spectral dynamics. Addition-
ally, please note the differences in the magnitudes of the gradients — the
Whisper (frozen) features had a significantly greater gradient than MFCC
or LFCC. We conclude that as we do not include any spatially independent
processing mechanism to process a combination of the front-ends, the nega-
tive impact of Whisper features on other front-ends comes from its enforced
locality.

The results in Section 6.8 show that using combined features can benefit
the model’s performance. On the other hand, we also show that combining
such features can result in hiding previously considered important features.
One could employ spatially independent processing mechanisms like atten-
tion [214] to enable greater synergy between the features.

6.11 Conclusions

In this chapter, we addressed Research Goal 4 (cf. Section 2.6) by intro-
ducing a novel front-end based on the Whisper [5] ASR model. Using it
as a feature extractor and applying it to the task of DeepFake detection
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improved the performance of not only ASVspoof 2021 DF (used as a valida-
tion set) but, more importantly, on the In-The-Wild dataset, characterized
by the significantly different distribution of the artifacts and known for
its difficulty. By using a front-end composed of a fine-tuned Whisper, we
achieved an EER of 0.33 ± 0.01 for all three front-end-based architectures
(LCNN, SpecRNet, MesoNet). Moreover, using a fine-tuned model com-
prised of Whisper and MFCC features with a MesoNet back-end enabled us
to achieve EER as low as 0.2672. We showed that even the smallest version
of Whisper (tiny.en) can positively contribute to the generalization of the
detection architectures and allow for achieving state-of-the-art results on
the In-The-Wild dataset.

It is important to note that concurrently, a method with higher efficacy
has been developed [164]. It achieved an EER of 0.0755 on the In-The-Wild
dataset. However, these results were obtained using three different compo-
nents, each of them separately increasing the results significantly: by using
a larger front-end architecture (wav2vec2.0 [137], version XLSR-53 with 300
million parameters), applying RawBoost data augmentation [139] and us-
ing the different dataset (vocoded bona fide utterances) [164]. The Whisper
results can be further enhanced by the number of components: using larger
Whisper architectures, using multilingual variants of the model, employing
additional front-end processing mechanisms (e.g. attention), using a larger
training dataset and applying data augmentation techniques.





Chapter 7

Summary

The dissertation presents solutions to improve methods for detecting computer-
generated speech, a problem known as audio DeepFake detection. The de-
velopment of artificial intelligence methods has contributed to significant
improvements in the field of speech synthesis in recent years. Despite posi-
tive applications such as voice assistants [31, 32, 33] or helping people with
speech impariments [29], the methods can pose a threat due to many mali-
cious applications. These include creating fake news [4], circumventing ASV
systems [109], impersonation [108], or extortion [2, 3]. The content of this
dissertation is based on four scientific articles published at peer-reviewed
conferences. The content was further expanded to include additional ex-
periments and analyses. Research conducted in the scope of each of the
manuscripts comprises separate chapters.

We first focused on improving the generalization of DeepFake detec-
tion models. The corresponding content is described in Chapter 3, which
is based on the work Attack Agnostic Dataset: Towards Generalization and
Stabilization of Audio DeepFake Detection. The chapter addresses Research
Goal 1 — we introduced a test framework based on specific TTS and VC
methods splits. Using different strategies to divide the DeepFake generators
among subsets allows in-depth verification of the generalization and stabil-
ity of models. In addition, we showed that the concatenation of different
front-ends (LFCC and mel-spectrogram) improved the results by 5% over
standard front-ends composed of a single algorithm (refer to Section 3.5).

The speed and complexity of detection models are other problems in
this field since they prevent the general public from verifying suspicious
audio samples independently. Therefore, we focused on fast and reliable
DeepFake detection methods. The related research is presented in Chap-

95
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ter 4 and is based on the manuscript SpecRNet: Towards Faster and More
Accessible Audio DeepFake Detection. There, we address Research Goal 2
— the proposed SpecRNet architecture, despite approximately 40% lower
computational requirements, can achieve results comparable to similarly
sized architectures. SpecRNet shows a marginal 0.001% decrease in AUC
performance compared to the LCNN model. The performance of our model
is further evaluated by three novel benchmarks focusing on the influence
of the particular DF generators (cf. Section 4.5), short utterances (cf. Sec-
tion 4.6) and data scarcity (cf. Section 4.7).

Specific manipulations, including adversarial attacks, can further hinder
the DeepFake detection. We investigate the impact of adversarial attacks
on DeepFake detectors and the means of defense against them. This re-
search is described in Chapter 5 and is based on the paper Defense Against
Adversarial Attacks on Audio DeepFake Detection. The chapter addresses
Research Goal 3 and shows that adversarial attacks effectively degrade de-
tectors’ performance. The experiments show that the attacks decrease the
performance by up to EER of 0.9905 for white-box attacks and up to EER
of 0.4867 for transferability attacks — the results which make the models
ineffectual (see Sections 5.5 and 5.6). To address this, we proposed a novel
adaptive adversarial training (refer to Section 5.7), effectively improving
robustness by decreasing an EER to 0.0982 for white-box and 0.1091 for
transferability attacks.

Recently, there has been a significant improvement in many speech-
processing tasks thanks to the use of architectures trained on large datasets.
We decided to leverage tools provided by automatic speech recognition,
a different speech processing task, to utilize Whisper for its significant
dataset and use it as a feature extractor for DeepFake detection. We de-
scribe it in Chapter 6, based on the manuscript Improved DeepFake Detec-
tion Using Whisper Features. It covers enhancing the performance of Deep-
Fake detection models by using front-ends based on other neural networks.
The chapter addresses Research Goal 4: the use of information obtained
from the encoder of the Whisper neural network (designed for the ASR
task) can significantly increase the performance of models, leading to their
increased generalization. The best of the proposed architectures improved
the baseline results on the In-The-Wild dataset by 26% (see Section 6.8).

The research conducted in the dissertation not only enhanced the cur-
rent state of audio DeepFake detection but also introduced ideas that can be
successfully used in other fields of machine learning. The proposed attack
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agnostic dataset is a general framework (strategy) that can be used for the
assessment and choice of the architecture that has the best generalization
capabilities in anti-spoofing tasks. By preparing the dataset splits to cover
many scenarios, e.g., grouping similar generation methods in testing sub-
sets, one can assess the classifiers’ performance in out-of-domain scenarios.

SpecRNet is a lightweight architecture that can quickly process large
amounts of data without compromising much of the performance. The pro-
posed solution shows an important trend of sharing technological innova-
tions with the community: low model requirements increase the accessibility
of DeepFake detection tools.

Our research on adversarial attacks was among the first works focused
on attacking the DeepFake detectors. The reason for this research is that
adversaries can intentionally degrade the quality of the samples under the
guise of standard artifacts resulting from compression, etc. Contrary to
the related anti-spoofing work, we focused on the fact that these samples
primarily target human listeners. Moreover, our strategy of adaptive adver-
sarial training can be successfully implemented in other classification tasks
endangered by adversarial attacks.

Using features obtained from the Whisper ASR model in the tasks
DeepFake detection, we were among the first to show that this seemingly
unrelated architecture provided meaningful features beneficial in a vastly
different problem. This approach is an alternative to the currently inves-
tigated state-of-the-art front-ends based on Self-Supervised Learning mod-
els. The improvements provided by using the Whisper model indicate that
the other speech-processing architectures, preferably trained using large
datasets, should be investigated in terms of feature extraction for the task
of DeepFake detection.

Future work in DeepFake detection should focus primarily on addressing
the most important challenges of the audio DeepFake detection field. The
generalization of the audio DeepFake detectors, i.e. their performance on
previously unseen types of recordings, is one of such tasks. Although current
DeepFake detection methods achieve satisfying results on many datasets,
this performance significantly degrades for in-the-wild samples [152]. This
is out-of-distribution data that differs from one found in training datasets
— it is created using newer synthesis models, altered in the course of attacks
(using background noises or adversarial noises, compression), or modified
unintentionally (standard compression resulting from upload to social me-
dia). The results provided using embedding- [9] or SSL-based [?] indicate
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that future work in this matter should focus on obtaining relevant features
using such architectures.

Interpretability of detector results is another important aspect of future
DeepFake detection research. Determining the exact information used by
the detector for the classification allows for better interpretability of the re-
sults. Increasing the reliability of such technologies will enable them to be
used in a court of law, where the DeepFake phenomenon may soon become
an important issue. Careful analysis of classifier decisions will also help
in improving the methods, making them more resistant to so-called short-
cuts [220] — artifacts not directly related to the problem task at hand,
which allow very good results on training and test sets leading to a poor
generalization of models on out-of-distribution data [221].

To this date, the DeepFake datasets and related research have focused
on English and Chinese languages. However, current voice synthesis meth-
ods support many other languages. Therefore, the scientific community’s
attention should also be directed to creating datasets and analyzing the
impact of different languages on the issues of audio DeepFake detection.
The first steps in this direction were made in our research [12], where we
proposed the first multi-lingual DeepFake database. However, this issue
requires not only support for additional languages and generation methods
but also a thorough analysis of the relations between the synthesis methods
in different languages.

In addition to developing DeepFake detection methods, other approaches
should also be considered to counteract these technologies’ malicious use ef-
fectively. Many of these utterances are created using easily accessible web
services (cf. Section 2.1.3). In order to facilitate the detection of their
content, the providers could employ audio watermarking techniques [222].
These methods embed additional information in the recordings at the ex-
pense of a slight, often unnoticeable, drop in the quality. During subsequent
analysis, the information in the sample can provide intel about the system
or users that created the particular DeepFake sample [223]. However, this
approach does not solve the issue of DeepFakes — the attacks can target the
watermarked recordings to remove or significantly degrade the embedded in-
formation [222]. Such attacks include various types of postprocessing, e.g.
additive noises, compression, time shifting. In addition, watermarks can
be applied only to samples created by the services that have implemented
such functionality. When using open-source implementations containing
watermarking, the malicious user can modify the source code to skip such
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a step.
Another crucial aspect of effectively combating DeepFakes is educating

the public about their existence and its dangers. The primary motivation
behind it is that the main goal of DeepFakes is to create samples recognized
by people as spoken by a real person. Research presented in Section 2.3.1
shows that the ability to spot fake samples is significantly worse when peo-
ple do not expect that the utterance may be generated — even when they
are aware of the DeepFake phenomenon. Increasing awareness can instil
scepticism in people about the source of the presented content — expectant
listeners can notice the manipulation much more effectively. However, this
solution also does not solve the issue for several reasons. First, not everyone
may be informed about such manipulation methods despite the potential
social actions. Moreover, emotional or controversial situations can nega-
tively influence awareness. The problem of educating the public also does
not solve the other vector of the DeepFake attack — bypassing ASV sys-
tems (see Section 2.3). Educating people about the issue of DeepFakes is
also essential, as even with omnipresent detection algorithms, it is not help-
ful without personnel who can perform meaningful interpretations of the
results.

As none of the presented ways to combat DeepFake, such as detection,
watermarking, and educating society, can currently completely solve the
presented problem, they should be considered complementary. Together,
the methods represent a serious impediment to the misuse of speech syn-
thesis and minimize the scale of the problem as much as possible.
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