Faculty of Information and Communication Technology

SUBJECT CARD

Name in Polish: Hurtownie Danych Name in English: Data Warehouses

Main field of study (if applicable): Applied Computer Science

Specialization (if applicable):

Level and form of studies: 1st level, full-time

Kind of subject: obligatory

Subject code: W04IST-SI4013W, W04IST-SI4013L

Group of courses: NO

	Lecture	Classes	Laboratory	Project	Seminar
Number of hours of organized classes in University (ZZU)	30		30		
Number of hours of total student workload (CNPS)	60		60		
Form of crediting		Examination / crediting with grade*	crediting with grade*	Examination / crediting with grade*	Examination / crediting with grade*
For group of courses mark final course with (X)					
Number of ECTS points	2		2		
including number of ECTS points for practical (P) classes			2		
including number of ECTS points corresponding to classes that require direct participation of lecturers and other academics (BU)	-,-		1,2		

*delete as applicable

PREREQUISITES RELATING TO KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of database system, with a particular focus on the relational model.
- 2. At least basic knowledge of SQL query language

SUBJECT OBJECTIVES

- C1. Has basic knowledge and skills of using SQL grouping operators, and SQL aggregation and grouping functions.
- C2. Has basic knowledge and skills in the area of transaction oriented processing (OLTP) and analytic oriented processing (OLAP).
- C3. Has basic knowledge and skills of using data warehouses.
- C4. Has basic knowledge and skills in data integration, reporting and visualization.

SUBJECT EDUCATIONAL EFFECTS

relating to knowledge:

PEU_W01 has basic knowledge on data warehouse usage and data warehouse organization – logical and physical

PEU_W02 has basic knowledge on ETL process, reporting and data analysis

relating to skills:

PEU_U01 can use SQL grouping operators and SQL grouping and aggregating functions

PEU_U02 can design and implement a ETL process

PEU_U03 can design and implement a simple data warehouse and use it to generate basic reports, using different data visualization methods

PEU_U04 can use basic MDX queries

	PROGRAMME CONTENT				
	Lecture				
Lec 1	Course details. Introduction to Data Warehouses and Business Intelligence.	2			
Lec 2	SQL grouping operators. SQL aggregating and grouping functions.	2			
Lec 3	Transaction vs analytic needs, processes and data sources	2			
Lec 4	Multidimensional data model – conceptual organization	2			
Lec 5	Multidimensional data model – logical organization	4			
Lec 6	Multidimensional data model – physical organization	2			
Lec 7	ETL proces	4			
Lec 8	Data warehouses – architecture	2			
Lec 9	MDX queries	4			
Lec 10	Reporting	2			
Lec 11	Data visualisation. Web dashboards	4			
	Total hours	30			

Laboratory		Number of hours
Lab 1	Course details (Health and Safety Training, Course requirements). Pivot tables and pivot graphs	2
Lab 2	SQL aggregation and SQL grouping functions. SQL grouping operators	4
Lab 3	Data cleansing	4
Lab 4	Data integration	4
Lab 5	Multidimentional model	4
Lab 6	Data Warehouses design and implementation	4
Lab 7	MDX queries	4

Lab 8	Reporting	2
Lab 9	Data visualisation	2
	Total hours	30

TEACHING TOOLS USED

- N1. Lecture traditional method with multimedia content
- N2. Consultations
- N3. To get to know with basic items and expanded literature by the student
- N4. Project exercises in the computer laboratory
- N5. Student's own work preparation for laboratory classes
- N6. Develop reports of project

EVALUATION OF SUBJECT LEARNING OUTCOMES ACHIEVEMENT				
Evaluation (F – forming (during semester), P – concluding (at semester end)	Educational effect number	Way of evaluating educational effect achievement		
F- laboratory	PEU_U01 – PEU_U03	Student assessment – individual discussion including result presentation, conclusions, etc.		
P - lecture	PEU_W01 PEU_W02	Exam		
P - laboratory	PEU_U01 – PEU_U03	Average note from part notes		

PRIMARY AND SECONDARY LITERATURE

PRIMARY LITERATURE:

- [1] Kimball R., Ross M., The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley Publishing, 2013.
- [2] Kimball R., Caserta J., The Data Warehouse ETL Toolkit: Practical Techniques for Extracting, Cleaning, Conforming, and Delivering Data. Wiley Publishing, 2004.
- [3] Inmon W., Building the Data Warehouse, John Wiley & Sons, New York 2005.
- [4] Jensen C.S., Pedersen T.B., Thomsen C., Multidimensional Databases and Data Warehousing, Morgan & Claypool Publishers series Synthesis Lectures On Data Management, 2010.
- [5] Rainardi V., Building a Data Warehouse With Examples in SQL Server, Apress, 2014.

[6] Harinath S., Pihlgren R., Lee D.G.-Y., Sirmon J., Bruckner R.M., Professional Microsoft® SQL Server® 2016 Analysis Services With MDX And DAX, John Wiley & Sons, Inc., 2016.

SECONDARY LITERATURE:

- [1] Bhatia P., Data Mining and Data Warehousing. Principles and Practical Techniques. Cambridge University Press, 2019.
- [2] Imhoff C., Galemmo N., Geiger J. G., Mastering Data Warehouse Design, Wiley Publishing, Inc., 2003.
- [3] Dela J., Implementing Business Intelligence with SQL Server 2019. Packt Publishing, 2019.

SUBJECT SUPERVISOR (NAME AND SURNAME, E-MAIL ADDRESS)

Bernadetta Maleszka, bernadetta.maleszka@pwr.edu.pl