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ABSTRACT

This thesis aims to establish the static and dynamic properties of the multiorbital Hub-
bard model in low dimensions. Inspired by the 123 family of iron-based ladders, the
objective is to provide a global view on the intriguing properties exhibited by various
low-dimensional multiorbital compounds with strong correlations.

This goal is realized by uncovering four distinct properties of the model via numer-
ical calculations using the density-matrix renormalization group method. First, the
investigation into the magnetism of a multiorbital ladder reveals a remarkable array of
exotic magnetic patterns, including blocks, block spirals, and a spin-flux state. Second,
through examining the interplay between the block-spiral order and superconductiv-
ity, this thesis demonstrates the emergence of topological Majorana zero modes, facil-
itated by an interaction-induced topological phase transition. Third, a similar transi-
tion is observed in a two-orbital Hubbard chain at half filling, leading to the emergence
of the topological Haldane phase. Fourth, by investigating spectral functions, a generic
feature called the Hund band is unveiled, which coexists with the familiar Hubbard
bands in multiorbital spectra. These findings are presented in the form of four articles,
to which the author of this thesis actively contributed.

Overall, this thesis emphasizes the wealth of exotic phenomena in low-dimensional
multiorbital systems, providing motivation for further exploration and contributing to
the broader understanding of multiorbital correlated physics.
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STRESZCZENIE

Niniejsza praca doktorska ma na celu określenie statycznych i dynamicznych właści-
wości niskowymiarowego wielopasmowego modelu Hubbarda. Chociaż główną mo-
tywacją pracy są materiały na bazie żelaza z rodziny 123, cel rozprawy jest ogólniejszy
i obejmuje wnikliwą analizę intrygujących zjawisk, które mogą występować także w in-
nych silnie skorelowanych materiałach wielopasmowych o niskowymiarowej struktu-
rze krystalicznej.

Cel pracy został zrealizowany poprzez odkrycie czterech właściwości badanego
modelu przy wykorzystaniu obliczeń numerycznych metodą grupy renormalizacji ma-
cierzy gęstości. Po pierwsze, praca przedstawia bogaty wachlarz niekonwencjonalnych
faz magnetycznych wykazywanych przez układ wielopasmowy w geometrii drabiny,
m.in. bloki magnetyczne, blok-spirale i tzw. stan “strumienia magnetycznego”. Po dru-
gie, niniejsza praca odkrywa, że wzajemne oddziaływanie między blokowo-spiralnym
porządkiem magnetycznym a nadprzewodnictwem prowadzi do pojawienia się topo-
logicznych modów Majorany w wyniku indukowanego przez oddziaływanie topolo-
gicznego przejścia fazowego. Po trzecie, podobne przejście fazowe jest obserwowane
w dwupasmowym łańcuchu Hubbarda przy połowicznym wypełnieniu, gdzie prowa-
dzi ono do pojawienia się topologicznej fazy Haldane’a. Po czwarte, poprzez badanie
funkcji spektralnych, niniejsza praca ujawnia tzw. podpasma Hunda, które powinny
powszechnie występować w widmach układów wielopasmowych obok dobrze zna-
nych podpasm Hubbarda. Powyższe wyniki przedstawione zostały w formie czterech
artykułów, które powstały przy aktywnym udziale autora niniejszej rozprawy.

Podsumowując, niniejsza praca doktorska uwydatnia bogactwo egzotycznych zja-
wisk w niskowymiarowych układach wielopasmowych, motywując do dalszych badań
w tym obszarze i przyczyniając się do szerszego zrozumienia fizyki układów wielopa-
smowych z silnymi korelacjami.
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1
INTRODUCTION

Modern condensed matter physics celebrates the concept of emergence, the idea that
“More is different” [1] and that not all properties of a complex system can be directly
predicted from the knowledge of its constituents. This is what makes condensed mat-
ter research exciting. There are always new phenomena lurking behind the corner,
waiting for empirical discovery, be it in the lab or in a computer simulation. P. W. An-
derson, a Nobel laureate and legend in the field, argues [1] that emergence makes con-
densed matter as fundamental as elementary particle physics, whose laws it obeys.

Emergence is embodied by strongly correlated systems [2,3], in which it is driven by
the interactions between the constituents. In these systems, the constituent particles,
most often the electrons, cannot be treated as independent anymore. The interaction
glues them together, correlates them with each other, and entirely transforms their be-
havior. Such interacting electrons can develop long-range order (magnetic systems),
they can get over a thousand times heavier than in the vacuum (heavy-fermion com-
pounds [4,5]), or they can form an incompressible liquid with fractionalized quasipar-
ticles (fractional quantum Hall systems [6]). Of course, this is not an exhaustive list,
nor is such a list feasible. As new degrees of freedom are added, the possibility for ex-
otic phenomena grows even further. This is precisely the topic of the present thesis:
What new properties emerge when strong correlations meet multiorbital degrees of
freedom, as happens, for instance, in iron-based materials?

As exciting as strongly correlated systems are, our understanding of their prop-
erties is still very poor. There is no universal, analytical or numerical, approach that
fits all aspects of the problem. The reason is that in strongly correlated systems the
strength of the interaction is on par with the kinetic energy. One cannot rely on pertur-
bation theory, the workhorse of analytical many-body theory, because there is no small
parameter in which one could attempt the perturbative expansion. Instead, there is a
subtle competition of many energy scales, all of which need to be treated on an equal
footing. Although brute-force numerics facilitates such a treatment, it quickly hits the
wall. The Hilbert space of a many-body problem grows exponentially with the system
size, limiting the calculations to tiny systems plagued by the uninteresting finite-size
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2 1. INTRODUCTION

effects. There are methods which work around this so-called exponential wall, but they
have their own limitations. Density-matrix renormalization group [7,8] works best for
one-dimensional systems, dynamical mean-field theory [9,10] is exact only in the limit
of infinite dimensions, and quantum Monte Carlo [11–13] suffers from the infamous
sign problem limiting its application in fermionic systems.

The prime example of how hard strongly correlated systems are is the phenomenon
of high-critical-temperature (high-Tc) superconductivity [2,3,14–20]. Despite years of
intensive work and strong technological motivation, the mechanism behind this effect
is unknown. There is still no clear procedure to engineer superconductors with higher
critical temperatures. The renowned condensed matter theorist M. Büttiker remarks
that “it took almost 50 years for the BCS theory to appear after superconductivity was
first discovered, so we should not expect a satisfactory theory of high-Tc superconduc-
tivity until at least 50 years after its discovery” [21]. We are getting dangerously close
to this limit. Still, this is not a defeat. If it were not for high-temperature superconduc-
tivity, the field of strongly correlated systems would hardly reach its today’s popularity.
Nor would this thesis be properly motivated.

Therefore, a discussion of the properties of high-Tc superconductors, focusing on
the most famous cuprates, is in order. This discussion shall put the thesis into a wider
context and set the ground for the later introduction to superconducting iron-based
ladders (Chap. 2), which are the multiorbital systems motivating the present work.

1.1 Overview of copper-based superconductors

Historically, heavy-fermion systems were the first materials to deny the conventional
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [22]. However, their crit-
ical temperatures were low: from 2 K to 18 K in some cases. It was not until the 1986
discovery of superconductivity at ∼ 30 K in copper oxide LaBaCuO [23] that the high-
temperature craze began. This critical temperature shattered the previous record of
23 K [24,25], which for decades seemed unbreakable [18]. It also hit the 25–40 K mark
which was believed to be the limit of the BCS paradigm [22,26]. Thus, the race be-
gan to synthesize new high-Tc compounds, measure their properties with all possible
experiments, and come up with a theory. The excitement was so high that the nick-
name “Woodstock of Physics” was given to the session on high-temperature supercon-
ductors at the 1987 American Physical Society March Meeting [27,28]. Two thousand
physicists filled the room (and the hallway), and the session lasted well into the night,
finally coming to a close after 3 am. With such an intense effort, it quickly became clear
that one needs to go beyond the standard BCS theory to explain the new discoveries.
However, progress on the theoretical front has been rather sluggish.

Despite this, experimentalists and crystal growers continued to push the bound-
aries, steadily increasing the maximum attainable critical temperatures. Presently, the
highest Tc’s reach above 77 K, e.g., in the so-called YBCO compounds [29], with a
record-breaking 133 K (at atmospheric pressure) achieved by HgBa2Ca2Cu3O8+x [30].
This is above the boiling point of nitrogen and YBCO systems have already found ap-
plication in SQUID (superconducting quantum interference device) magnetometers
[31,32]. The overarching motivation for further research is clear: room-temperature
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superconductivity. Finding such a superconductor could revolutionize the world, ad-
dressing issues as important as climate change by improvements in energy storage and
transmission.

Crystal structure and electronic configuration

The common properties of Cu-based superconductors are well illustrated by La2CuO4

(which superconducts when doped, lending it the name parent compound). Figure 1.1
illustrates the compound’s tetragonal crystal structure. The crucial structural motif are
the CuO2 square planes, which are about 6.6 Å [16] apart and are separated by two
LaO planes. The CuO2 planes are conducting, while most of the interplane material
is insulating and serves as a charge reservoir (it simply provides charge carriers). Al-
though each Cu atom is surrounded by 6 oxygens (4 in plane and 2 above and below),
the in-plane Cu-O bond is much stronger than the out-of-plane one [16]. Therefore,
one treats cuprates as quasi-two-dimensional, believing that the mystery of high-Tc

superconductivity is confined to the CuO2 layer. This is expressed by Dogma I of the
famous P. W. Anderson’s six central dogmas for the high-Tc problem [33,34]: “All the
relevant carriers of both spin and electricity reside in the CuO2 planes”. Interestingly,
the majority of iron-based superconductors also crystallize in two-dimensional forms
(see Chap. 2).

The electronic configurations of the elements forming La2CuO4 are Cu: [Ar] 3d 104s,
La: [Xe] 5d 6s2, and O: [He] 2s22p4. Inside the crystal, oxygen acquires two electrons,
resulting in the O2− valence state, whereas lanthanum loses three electrons, becoming
La3+. Both of these ions have a closed-shell configuration. To balance the charge, Cu
must be in the Cu2+ state, hence it loses the 4s electron and a d electron, ending up in
the 3d 9 configuration. There is thus one hole in the d shell per copper ion, i.e., per unit
cell on the plane. The Cu ion carries also a spin 1

2 due to the one unpaired electron.
Naively applied band theory predicts La2CuO4 to be a metal due to the odd num-

ber of electrons per unit cell (which gives a partially filled band). However, band theory
neglects Coulomb interactions. The d orbital, occupied by the hole, is highly localized
around the nucleus [5,36,37]. This leads to a narrow bandwidth, which is comparable
with the strength of the Coulomb interaction. Therefore, La2CuO4 is a strongly cor-
related material, which for one hole per unit cell (and sufficiently strong interaction)
becomes a Mott insulator1. Due to the repulsive interaction, the energy cost to put two
holes on the same ion (hence also two electrons elsewhere) is so large that the hole
motion is completely arrested. Each hole becomes effectively confined to its own unit
cell and the system becomes gapped. Moreover, the insulator becomes antiferromag-
netic (AFM), because when the neighboring Cu2+ spins are antiparallel, the interaction
energy is lowered through virtual hopping (here, in the so-called superexchange mech-
anism). Inelastic-neutron scattering (INS) experiments confirm [38–41] that La2CuO4

is an insulating antiferromagnet2, well described by the AFM Heisenberg model. The
same holds for the majority of the cuprate family.

1To be precise, La2CuO4 and other cuprates are actually charge-transfer insulators, where the
charge-transfer gap (the energy difference between copper and oxygen orbitals) is smaller than the Mott
gap [16,17].

2Long-range antiferromagnetic order is possible because of the weak interlayer coupling, which al-
lows cuprates (and iron-based systems, see Chap. 2) to escape the Mermin-Wagner theorem.
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Figure 1.1: Crystal structure of cuprates on the example of La2CuO4. When the space
is filled with the shown tetragonal unit cell, the Cu atoms form two-dimensional lay-
ers separated by interplane La and O. Inside these CuO2 layers, each copper atom sits
on the corner of a square and the oxygen atoms sit between the coppers (in “side-
centered” positions). The light gray lines mark the octahedra characteristic of the per-
ovskite structure. REPRINTED WITH PERMISSION FROM [35]. COPYRIGHT (2006) BY THE AMERICAN PHYSICAL SOCIETY.

Superconducting phase diagram

To become superconducting, La2CuO4 needs to be doped. Doping is possible by sub-
stituting some of La3+ with Sr2+, resulting in La2−xSrxCuO4. In the process, an average
of x holes per unit cell are donated to the CuO2 plane. This type of doping is aptly
named hole doping (other cuprate systems can be also electron doped).

The right-hand side of Fig. 1.2 presents the temperature-doping phase diagram
of a generic hole-doped cuprate, applicable also to La2−xSrxCuO4. The undoped sys-
tem is an antiferromagnetic insulator with the Néel temperature TN ∼ 300 K [16,18].
Upon doping, the antiferromagnetic order is strongly suppressed and vanishes already
at about x ∼ 0.05. Just as antiferromagnetism vanishes, superconductivity emerges
and persists in the doping range 0.05. x . 0.27. The Tc(x) dependence encloses the
superconducting phase in a peculiar dome shape, which is intrinsic to all hole-doped
cuprates [18]. Importantly, the superconducting order parameter has d-wave symme-
try [42,43], i.e., it changes sign for 90◦ rotations, unlike BCS superconductors which
display isotropic s-wave symmetry. Maximal Tc ∼ 40 K occurs at x ∼ 0.16, which is
therefore called the optimal doping.

The regime to the left of the optimal doping, x < 0.16, is called underdoped. Here,
the normal state (above Tc) is metallic with transport properties following the tem-
perature and frequency dependence of a Fermi liquid [45,46]. However, this regime is
unlike any other metal studied before due to the appearance of a partial gap, the so-
called pseudogap, reported by spectroscopy experiments. By “partial” one means that
some regions in the Brillouin zone are gapped (despite the lack of superconducting
long-range order [22]), while the other remain ungapped. This stands in contrast to the



1.1. Overview of copper-based superconductors 5

Figure 1.2: Temperature-doping phase diagram of a generic cuprate superconductor.
Left and right sides correspond to electron and hole doping, respectively. Between the
pseudogap, strange-metal and normal-metal regimes one expects a crossover and not
a phase transition. For the hole-doped La2−xSrxCuO4, the superconducting Tc reaches
a maximum of 40K, in contrast to the ∼ 100K marked on the diagram. Moreover, the
hole doping axis should be understood as the concentration x. REPRODUCED FROM [44].

standard closed-loop Fermi surface of a normal metal. These ungapped open-ended
sections of the Fermi surface bear the name Fermi arcs [47]. One view on the pseudo-
gap regime is that of the preformed pairs [22,48]: The Cooper pairs start to form above
Tc but the phase-coherent order cannot emerge unless the temperature is lowered be-
low it. Moreover, the pseudogap regime is highly “frustrated”. There is large evidence
that many types of order (stripes, charge order, orbital currents, pair-density wave etc.)
compete with superconducting fluctuations [48,49].

The least understood part of the phase diagram is the “strange metal” regime. It
extends for T > Tc at the optimal doping. Here, the properties strongly deviate from
the Fermi liquid, e.g., quasiparticles are absent, resistivity is linear in temperature T ,
and the Hall coefficient depends on temperature [18,48,50,51]. By contrast, the most
normal part of the phase diagram appears in the overdoped regime (for x À 0.16) and
is marked as “normal metal”. The system behaves here like a textbook Fermi liquid
[18,22] with, e.g., the resistivity depending on temperature as T 2.

The phase diagram shown in Fig. 1.2 highlights an important dilemma of the high-
Tc problem. The superconductivity appears as an instability of the strange metal [48],
or the antiferromagnet (see the next section), and not of a Fermi liquid as the BCS
theory assumes. A very similar diagram will be discussed in Chap. 2 for the case of
superconducting iron-based ladders, whose properties motivate this thesis.

Pairing and magnetism

One of the most widely discussed candidates for the pairing glue of cuprates is the
spin-fluctuation mechanism [20,52]. A quick look on Fig. 1.2 explains why: the prox-
imity of the superconducting and antiferromagnetic phases is rather suggestive. One



6 1. INTRODUCTION
Topical Review R757

rr
rr rr

2

Figure 1. Snapshot of a resonating valence bond (RVB) configuration showing singlet pairs of
electrons and, in addition, a fraction x of doped holes. The many-body ground state wavefunction
is a linear superposition of such configurations with the spatial dependence of the singlet pairing
amplitudes determined by the function ϕ(r − r ′) defined in equation (4).

For over a decade and a half a number of theorists have been trying to implement this
suggestion along a bewildering variety of routes. One main avenue has resulted from the
proposal by several authors (Kotliar and Liu 1988, Suzumura et al 1988, Gros 1988, Yokoyama
and Shiba 1988, Affleck et al 1988, Zhang et al 1988) that Anderson’s original s-wave BCS be
replaced by an exotic, d-wave state. The d-wave approach in the early days was quantitatively
carried through by Gros (1989) using variational Monte Carlo methods and by Zhang et al
(1988) on a simplified model, and using very rough approximation methods. Recently the
Gutzwiller-RVB wavefunction approach was revived by Paramekanti et al (2001, 2003) who
used careful numerical methods to calculate many quantities of direct experimental relevance.
Their results turn out to correspond remarkably well to the experimental phenomena observed
in the cuprates across a very broad spectrum of types of datum, a spectrum that was simply
not available in 1987–88 when the original work was done. It may be because of this absence
of data at the time that the original paper was for so long not followed up.

All of this work relies on one basic assumption, an assumption which has gone
unquestioned among a large fraction of those theorists concerned with this problem from
the beginning. This is the assumption that the physics of these materials is dominated by the
strong repulsive interactions of a single non-degenerate band of electrons on the CuO2 planes,
and is specifically not at all similar to that of the conventional BCS superconductors. In the
latter the direct electron interactions are heavily screened, and the lattice vibrations play the
dominant role. We feel that the demonstration of d-wave superconductivity in particular makes
phonons as major players difficult to support, even though there are some notable physicists,
such as Mott et al, who disagree. The phonon mechanisms are local in space, extended
in time, making the dynamic screening mechanism emphasized by Schrieffer and Anderson
relevant and leading to s-wave pairing (Schrieffer 1964). This mechanism works better the
more electrons there are per unit cell, and fails for monovalent metals. d-wave pairing, on the
other hand, is essentially non-local in space and deals with strong repulsions by conventional

Figure 1.3: A single resonating valence bond (RVB) configuration formed by singlet
pairs of electrons and a fraction x of doped holes. The full many-body ground state is
a superposition of such configurations. REPRODUCED WITH PERMISSION FROM [57]. COPYRIGHT (2004) IOP

PUBLISHING. ALL RIGHTS RESERVED.

advantage of this mechanism is that it generically produces the correct d-wave pairing
symmetry [22,42]. Moreover, the conventional electron-phonon pairing mechanism is
rather convincingly ruled out by, e.g., the absence of the isotope effect [22] (Tc appears
to be independent of the mass of the lattice ions). Still, the spin-fluctuation ideas do
not depart too far from the BCS theory, but rather try to salvage it. The hope is that one
can get away with treating the normal state as a Fermi liquid but changing the source
of the attraction from phonons to spins.

An alternative perspective embraces Mottness [53]. It rests on the idea that physics
of high-Tc superconductors is the physics of doped Mott insulators. One should thus
drop the tenets of conventional metal physics, including the Fermi liquid [54]. The
main advocate for this strong-correlation point of view was P. W. Anderson himself [55].
In 1987, Anderson proposed the resonating valence bond (RVB) liquid state [56,57] as
an explanation of pairing in cuprates. This state (Fig. 1.3) is a superposition (hence
“resonating”) of all possible tilings of the lattice with spins bound in singlets (i.e., “va-
lence bonds”). Upon doping, the singlets become itinerant and develop into the super-
conducting Cooper pairs. The pairing is thus generated by the antiferromagnetic su-
perexchange of the original Mott insulator [57]. It should be noted, however, that there
is no definitive evidence that the RVB state is realized in any cuprate [53]. Nonethe-
less, modern experiments [58] do indicate that the superexchange magnetic interac-
tion plays a significant role in pair formation.

Although the RVB theory did not solve the high-Tc puzzle, Anderson’s thinking in
terms of strongly correlated spins and holes became a paradigm for the entire field. Be
it spin-fluctuation, superexchange, or some other pairing mechanism, there is now no
doubt that magnetism and high-Tc superconductivity are intimately related (Ander-
son’s Dogma II [33,34]). This view is also relevant for the superconducting iron-based
ladders, and the investigation of their magnetism is one of the primary contributions
of this thesis (Chap. 3).
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Single-band Hubbard model

According to Anderson [54,56], and largely accepted nowadays, the minimal model of
cuprate physics is the single-band Hubbard model. But which band does it describe?
In the crystal environment, the degenerate 3d orbitals of Cu2+ are split. The 3dx2−y2 or-
bital becomes the highest in energy, hence it “catches” the 3d 9 hole, becoming singly
occupied. Due to its shape, the 3dx2−y2 orbital strongly hybridizes with the fully occu-
pied 2pσ orbitals of the neighboring oxygens. This hybridization3 produces bonding
and antibonding 2pσ−3dx2−y2 bands. The antibonding one is pushed to higher ener-
gies, thus keeping the Cu hole and crossing the Fermi level. In this way, the antibond-
ing band becomes the partially-filled single band of the Hubbard model [36,54,59]. See
Fig. 1.4 for a schematic summarizing this process.

8 1 Introduction

Fig. 1.6 (a) Schematic of the real-space Cu-O plane, in which large solid circles are copper atoms
and small circles are oxygen atoms. (b) The corresponding first Brillouin Zone and a represen-
tative Fermi surface in the reciprocal space. The area near (π /2, π /2) (solid circle) is nodal re-
gion, and the (0,0)–(π,π) direction is the nodal direction. The area near (π , 0) and (0, π ) is
referred to as the antinodal region (solid rectangles). The black solid lines show a schematic Fermi
surface

Fig. 1.7 Bonding in Cu-O plane [28]

d-orbitals and the O 2p-orbitals, there is a strong hybridization between them. As a
result, the topmost energy level involves the feature of both Cu dx2−y2 and O 2px,y

orbitals.

Figure 1.4: Bonding in the CuO2 plane. The left (red) and right (blue) atomic levels
correspond to Cu and O, respectively. The bonding can be understood through the
following stages, progressing from left to middle: (i) atomic Cu2+ levels, (ii) crystal-
field splitting, (iii) distortion of the apical oxygens from the perfect octahedron, (iv)
Cu-O hybridization. σ∗ marks the resulting antibonding 2pσ−3dx2−y2 band. The X ,
Y arrows mark the in-plane direction, whereas Z marks the out-of-plane direction.
Note the typographical error in the label of one of the eg states, which should read
as 3Z 2 −R2. USED WITH PERMISSION OF SPRINGER, FROM [60]; PERMISSION CONVEYED THROUGH COPYRIGHT CLEARANCE

CENTER, INC. SIMILAR FIGURE WAS ORIGINALLY PUBLISHED IN IBM JOURNAL OF RESEARCH AND DEVELOPMENT [61].

3This hybridization is explicitly included in a three-band model, consisting of one Cu 3dx2−y2 and
two O 2px , 2py orbitals. Some believe that this is the actual minimal model of cuprates. See, e.g., [16,
36] for an extended discussion of the one- and three-band models. Importantly, the possibility for a
three-band description does not mean that cuprates are multiorbital. In cuprates, the orbitals belong to
different atoms, hence the three-band model does not include the atomic Hund exchange, the main
driver of multiorbital physics. In genuine multiorbital systems, studied in this thesis, the transition
metal itself has an electronic configuration with many active orbitals.
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The Hamiltonian reads

H =−t
∑
i jσ

c†
iσc jσ+U

∑
i

ni↑ni↓. (1.1)

Here, c†
iσ (ciσ) creates (annihilates) an electron with spin σ ∈ {↑,↓} at site i . niσ = c†

iσciσ

is the electron density operator. For cuprates, the sum over i j is restricted to the near-
est neighbors in the square lattice, modeling the CuO2 plane. t is the hopping ampli-
tude and U > 0 is the on-site Coulomb repulsion. The filling (electron density) is de-
fined as n = N /L, with N being the total number of electrons and L the total number of
lattice sites. The half filling n = 1 is equivalent to x = 0, i.e., an undoped cuprate, such
as La2CuO4. In Chap. 2, this model will be extended to the case of (low-dimensional)
multiorbital systems, which are the subject of this thesis.

The essence of the Hubbard model is to capture the tight-binding characteristic of
narrow d orbitals. The addition of U incorporates strong-correlation effects and en-
sures that the undoped phase of cuprates is correctly reproduced. That is, for n = 1,
a sizable U opens a so-called Mott gap at the Fermi level, between the well-known
lower and upper Hubbard bands, and the system becomes an AFM insulator. Specifi-
cally, for n = 1 and U À t , the low-energy description of Eq. (1.1) is the simple Heisen-
berg Hamiltonian J

∑
i j Si ·S j with the AFM (super)exchange J = 4t 2/U . In principle,

long-range part of the Coulomb interaction should also be present in Eq. (1.1), but it
is assumed to be negligible due to screening effects [16,36]. Although the single-band
description misses the charge-transfer character of cuprates, one can treat U as an
effective parameter inducing a Mott gap of the same magnitude as the actual charge-
transfer gap [16]. In such a case, the lower Hubbard band can be thought of as the
“oxygen” band of the real material.

Despite its apparent simplicity, the Hamiltonian (1.1) captures much of the normal-
state properties of cuprates. These properties include, but are not limited to, antifer-
romagnetism (and its vanishing upon doping), nematic correlations, d-wave pairing
correlations, stripes, pseudogap physics, and the existence of many competing states
separated by small energy scales. See Refs. [16,20,49,62–64] for a review of these results.

The long-standing problem is whether the Hubbard model captures the long-range
superconducting order of cuprates. This question has been waiting for a satisfactory
answer for over 30 years. Interestingly, there is some answer, but in the wrong limit—
the weak coupling, U /t → 0. In this regime, controlled perturbation-theory analyses
do find a d-wave superconducting ground state upon doping [65–68]. This provides
a proof of concept that the Hubbard model can generate the correct d-wave supercon-
ductivity. But, of course, cuprates occupy a different parameter space. They exhibit
moderate to large interactions, U /t ∼ 6−8, and, here, the situation changes. Pertur-
bation theory no longer applies, so the alternative are large-scale numerical calcula-
tions using, primarily, the density-matrix renormalization group and various flavors of
quantum Monte Carlo. In the recent years, new insight has flown from such studies.
Refs. [69,70] claim that the Hubbard model, as written in Eq. (1.1), does not display
long-range superconductivity in the ground state for the physically important param-
eters. There is, however, a tendency for short-range d-wave pairing. The acceptance
of these bold conclusions seems to be slowly growing across the community, as ex-
pressed, e.g., in the recent review [64]. Assuming that these results are reliable, one



1.2. Motivation, objective, and structure of the thesis 9

needs to look for extensions of the Hubbard model to find superconductivity. The most
common extension is the addition of the next-nearest-neighbor hopping t ′. Some ar-
gue that it is actually necessary in the single-band description [71]. Upon the addition
of t ′, Refs. [72,73] do find quasi-long-range4 superconducting correlations in the Hub-
bard model. Similar results are reported [74,76,77] when t ′ is added to the t-J model,
which is the effective description of the Hubbard model at strong coupling [78–80].

At this point, one cannot conclusively say that the (extended) Hubbard model cap-
tures the cuprate superconductivity. Nevertheless, the recent developments rekindle
the hope that computational study of model Hamiltonians will help resolve the high-
Tc problem.

1.2 Motivation, objective, and structure of the thesis

The preceding discussion used cuprate superconductivity as an illustrative example
to introduce the fundamental principles of strongly correlated physics. This led us
smoothly into the topic of this thesis, situating it within a broader context. However,
this thesis does not study cuprates; rather, it is motivated by the discovery of high-
temperature superconductivity in iron-based systems. A more comprehensive discus-
sion of their properties is deferred to Chap. 2, while here I summarize the key points
that motivate this thesis.

The discovery of iron-based superconductivity was a huge breakthrough for the
field of strongly correlated physics. The existence of a new material platform restored
hope for a universal explanation for the mechanism of superconductivity. Indeed,
iron-based superconductors share many characteristics of their cuprate counterparts.
For example, they have similar temperature-doping phase diagrams, with antiferro-
magnetism in close proximity to superconductivity [20]. However, unlike cuprates,
iron-based systems are characterized by a multiorbital Fermi surface, as will be dis-
cussed at length in Chap. 2. The interplay between these additional multiorbital de-
grees of freedom and strong correlations induces new phenomena beyond what is
possible in cuprates. Importantly, these phenomena are not restricted to the super-
conducting phase, but arise already in the normal state. An in-depth understanding
of these new effects, even without directly addressing the superconducting state, is a
necessary prerequisite to resolve the issue of iron-based superconductivity, and maybe
also shed some light on the copper-based superconductors. This is the overarching
problem to which the present thesis contributes. Specifically, this thesis identifies four
novel multiorbital phenomena: the exotic magnetism of the iron-based ladders, its
topological properties (Majorana modes), the Haldane phase in two-orbital chains,
and the Hund bands (a generic spectral feature of multiorbital systems). These phe-
nomena are predominantly revealed in the context of a specific family of iron-based
compounds.

Most studies of iron-based systems focused on layered compounds, e.g., pnic-
tides LaOFeAs, BaFe2As2, and chalcogenides FeSe, FeTe [20]. These compounds pos-

4These calculations employ the density-matrix renormalization group method, which models the
two-dimensional geometry by an elongated cylinder. In such a geometry, the true long-range order is
impossible and is represented by power-law quasi-long-range correlations [74,75].
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sess crystal structures that are similar to the canonical cuprates, with Fe ions forming
two-dimensional planes. However, similar to cuprates, iron-based materials also ex-
ist in distinct reduced forms, referred to as low-dimensional. For instance, there is a
prominent family of quasi-one-dimensional two-leg ladders, known as the 123 family,
with the chemical formula AFe2X3 (A = Ba,K,Rb,Cs,Tl metals, X = S,Se,Te chalcogens).
Recent studies have revealed intriguing properties of these ladders, such as pressure-
induced superconductivity [81–84], nontrivial magnetism [85–88], and also other char-
acteristic properties of iron-based systems, e.g., orbital selectivity [85,89–91]. There are
also iron-based compounds which have a reported (or predicted) chain-like structure
[92–103]. These materials are far less explored than their higher-dimensional counter-
parts, especially from the theoretical perspective. The main reason for this is precisely
the low dimensionality. The dynamical mean-field theory (DMFT), the workhorse in
the study of multiorbital systems, is unsuitable to one-dimensional geometry. In fact,
all mean-field approaches suffer from this problem, including also, e.g., the Hartree-
Fock or slave-spin methods. Moreover, even in high-dimensional systems, DMFT does
not account for the spatial many-body correlations. Similarly, the density-functional
theory calculations only approximately incorporate the correlation effects. This means
that long-distance properties, such as magnetism, might be underestimated in the cur-
rent theoretical works on multiorbital systems. In contrast, experimental studies con-
sistently highlight the significance of magnetism, particularly in the low-dimensional
123 compounds, where unexpected orders were discovered [85–88]. Taking these con-
siderations into account, it is reasonable to anticipate that a multiorbital system in a
ladder or chain geometry, such as the 123 family, harbors a rich array of unanticipated
phenomena still waiting to be unveiled. Consequently, it becomes necessary for the-
ory to delve into the fundamental physics of this context, not necessarily by fixating on
specific compounds or the superconducting properties, but rather by exploring the fas-
cinating new physics and providing guidance and inspiration for future experiments.

Objective

In this thesis, I thus aim to establish the static and dynamic (energy-resolved) prop-
erties of the low-dimensional multiorbital Hubbard model. For this purpose, the 123
family of iron-based ladders serves as a crucial motivation and a starting point to ex-
plore realistic parameter regimes of the model. However, rather than reproducing the
properties of particular compounds in an ab initio manner, I focus on the general prin-
ciples governing low-dimensional multiorbital materials with strong correlations. By
doing so, I intend to broaden the applicability of my research beyond the 123 ladders
and other currently synthesized materials.

To achieve my goal, I embrace the low dimensionality and base my calculations on
the powerful density-matrix renormalization group method. This method performs
best precisely when the dimensionality is lowered to a ladder or a chain, and it fully
incorporates the many-body correlations, both short- and long-range (see the discus-
sion in Sec. 2.5). This allows me to accurately describe the magnetic, topological and
electronic properties. The magnetic properties, as it turns out, play a significant role
in the physics of the low-dimensional multiorbital Hubbard model. Not only are they
rich and interesting in their own right, but they also drive an interaction-induced topo-
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logical phase transition, in which Majorana modes emerge. Interestingly, the poten-
tial for intriguing topological effects extends beyond Majorana physics, as a similar
interaction-induced topological phase transition in different parameter regimes gives
rise to the Haldane phase. Furthermore, the single-particle spectra of multiorbital sys-
tems reveal an unexpected spectral feature driven only by the Hund’s coupling. This
feature, dubbed the Hund band, turns out to be generic and is not restricted to the low
dimensionality.

Structure

This thesis consists of a collection of four articles [O1–O4] that I coauthored during my
doctoral course. To enhance readability, I included an introductory chapter on iron-
based ladders, and supplemented each article with a concise introduction discussing
its results and its specific context. Specifically, the thesis has the following structure.

Chapter 2 presents essential information on iron-based superconductors, parallel-
ing the above discussion on cuprates, and focusing mostly on the 123 family of iron-
based ladders. The idea is not to be exhaustive, which would be a formidable task, but
rather to provide basic facts, motivation, and knowledge base relevant to this thesis.
The chapter begins by briefly addressing the historical context of iron-based supercon-
ductivity. Subsequently, the chapter delves into key aspects such as the crystal struc-
ture, with emphasis on the low-dimensional nature of the 123 family, and the super-
conducting phase diagram. Next, it explores the electronic configuration and Hund’s
rules, leading to the derivation of the three-orbital Hubbard-Kanamori model. Lastly,
the chapter examines the orbital-selective Mott phase, its presence in iron-based lad-
ders, and the corresponding generalized Kondo-Heisenberg Hamiltonian.

Chapter 3 begins the discussion of the original findings by examining the mag-
netism of the orbital-selective Mott phase in the ladder geometry, as relevant to the
123 family. The main result is the doping n vs interaction U magnetic phase diagram,
revealing robust magnetic patterns including blocks, block spirals, incommensurate
antiferromagnetism, phase separation, and a quantum spin-flux state.

Chapter 4 explores the interplay between the block-spiral order and superconduc-
tivity. It reveals that placing a multiorbital chain within the orbital-selective Mott phase
in proximity to an s-wave superconductor facilitates an interaction-induced topologi-
cal phase transition. The transition manifests itself as the simultaneous development
of spiral spin order, spin-triplet pairing amplitudes, and the emergence of Majorana
zero modes at the edges of the system.

Chapter 5 focuses on a different parameter regime and explores the behavior of the
two-orbital Hubbard chain at half filling. Here, another sharp and interaction-driven
topological phase transition is revealed, this time into the Haldane phase. Remarkably,
this transition occurs at relatively modest values of the Hubbard repulsion U , prior to
the formation of fully developed magnetic moments. These findings thus extend the
concept of Haldane phases to the realm of delocalized electrons.

In Chapter 6, the focus shifts to the spectral properties of the multiorbital Hubbard
model. This chapter identifies a generic spectral feature of multiorbital systems, the
Hund band, with energy exclusively determined by the Hund’s coupling JH and inde-
pendent of the interaction strength U . Extensive calculations confirm the generality
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of these findings beyond the 123 ladders, pointing to applicability in any multiorbital
system with significant Hund’s coupling and charge fluctuations.

The thesis concludes with Chapter 7, which provides a summary, discusses con-
clusions, and explores future directions. Additionally, Appendix A aids the readers by
providing essential knowledge on the inner workings of the density-matrix renormal-
ization group algorithm.
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SUPERCONDUCTING

IRON-BASED LADDERS

This chapter comprises an introduction to the selected properties of iron-based super-
conductors. This discussion parallels the discussion on copper-based materials given
in Sec. 1.1. The aim is not to be exhaustive, but rather lay down the basic knowledge
relevant to the context of this thesis. Therefore, the layered iron-based compounds are
only briefly touched upon, and the focus lies on the low-dimensional compounds, the
so-called 123 ladders. This thesis is concerned precisely with the properties of the low-
dimensional multiorbital Hubbard model realized in these ladders or similar systems.

The chapter opens with a brief historical perspective on iron-based superconduc-
tivity. Next, the crystal structure and the superconducting phase diagrams are de-
scribed, with the focus shifting to the low-dimensional 123 family. Then, the discus-
sion moves to the multiorbital electronic configuration, the associated Hund’s rules,
and the resulting microscopic model, the three-orbital Hubbard-Kanamori Hamilto-
nian. Finally, the chapter ends with a description of the orbital-selective Mott phase,
its relevancy to the ladder materials, and its effective model.

In this chapter and hereafter, the terms iron-based compounds or iron-based mate-
rials refer to materials which either exhibit high-temperature superconductivity them-
selves, or their properties are close to their superconducting counterparts. Moreover,
the term low-dimensional denotes dimensionality below two dimensions, i.e., a ladder
or a chain.

2.1 Discovery of iron-based superconductivity

In 2008, physicists got a new set of toys—the iron-based high-temperature supercon-
ductors. Although a range of superconducting materials containing iron was known
earlier, their critical temperatures were rather low, Tc ∼ 2−8 K [104]. The first super-
conducting iron pnictide LaFePO also had an unremarkable Tc of about 5 K [105]. Iron

13
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is simply not your first pick when looking for a potential high-Tc superconductor. This
is why in 2008 physicists were taken by surprise with the discovery of superconductivity
at 26 K in F-doped iron pnictide LaFeAsO [106]. A wave of excitement swept through-
out the field, similar to the one when cuprates emerged, with the press dubbing it the
“new iron age” [107]. Preprints were appearing on arXiv at a blistering rate of 2.5 per
day [108]. By subjecting LaFeAsO1−xFx to a high pressure of 4 GPa, the record critical
temperature was quickly increased to 43 K [109]. This validated the claim of achieving
“high-temperature” superconductivity. Subsequently, entire classes of new iron-based
superconductors were identified. The most prominent being the 1111 family (e.g., the
original F-doped LaFeAsO), the 122 family (e.g., K-doped BaFe2As2 [110]), the 111 fam-
ily (e.g., LiFeAs [111]) or the iron chalcogenide 11 family (e.g., FeSe [112]). For a wider
perspective, see, e.g., [20,104].

The current record Tc stands at 55− 56 K in bulk systems, such as SmFeAsO0.85

[113] or Sr0.5Sm0.5FeAsF [114], and at about 40− 65 K (or possibly even above 100 K
[115]) in monolayer FeSe deposited on SrTiO3 [116]. These values rank iron-based sys-
tems just behind cuprates when it comes to the highest recorded Tc’s1. This is one link
between the iron- and copper-based systems. The other important link is the struc-
ture: Fe atoms in iron-based systems are arranged into stacked square-lattice planes,
similarly to Cu in cuprates. Moreover, the phase diagrams are captivatingly similar,
with superconductivity in iron-based systems also arising after magnetism of the par-
ent compound is suppressed by doping or pressure. Due to this and similar premises,
it is widely believed that phonons are unlikely to be responsible for the iron-based su-
perconductivity, with some type of magnetic mechanism being the typical alternative
[20,104,118]. These shared properties make the iron-based systems a true counterpart
of the cuprates. With this in mind, one needs to be aware that there are also important
differences. For instance, the parent state of iron-based systems is typically a (bad)
metal and not an insulator [52,119]. Furthermore, the iron-based materials need to
be described with a multiorbital Hubbard model, and not a single-orbital one, as will
become clear below. Reconciling the differences and painting a coherent picture of
iron- and copper-based superconductivity requires much more work despite the ini-
tial explosion of knowledge. Especially that the iron-based superconductors are rather
young compared to the more mature cuprates.

In the context of this thesis, the most important development happened in 2015,
when superconductivity at 14 K and 11 GPa was discovered in BaFe2S3 iron-based lad-
der [81]. This was the first report of an iron-based superconductor without the lay-
ered square-lattice motif, but with a low-dimensional double-chain (ladder) motif in-
stead2. Superconducting ladders were already known in the context of cuprates, e.g.,
(La, Sr, Ca)14Cu24O41 [120–124], which, interestingly, also need high pressure for the
stabilization of the superconducting phase. Therefore, this new finding established an-
other connection between iron- and copper-based materials. Subsequent experiment
on BaFe2S3 confirmed the emergence of superconductivity and reported higher criti-
cal temperature 24 K, at a similar pressure 11.6 GPa [82]. Later, superconductivity was

1At the time of writing, there appeared a new preprint [117] that reports bulk superconductivity with
Tc of 80 K in the nickelate compound La3Ni2O7. This finding might overthrow iron-based systems and
place nickelates as the second-best to cuprates.

2See Sec. 2.2 for a description of the crystal structure.
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found at 11 K and 10.2−15 GPa in BaFe2Se3 [83], where S was replaced by Se. In this way,
the 123 series of compounds joined the privileged label of iron-based superconduc-
tors, with the ladder structure as the defining characteristic. Other isomorphic mem-
bers include, e.g., (K, Rb, Cs, Tl)Fe2S3, (K, Rb, Cs)Fe2Se3, and (Rb, Cs, Ba)Fe2Te3 [89,125–
131], whose similarity to BaFe2(S, Se)3 points to their potential superconductivity. Cru-
cially, the 123 family not only shares the main properties of the layered iron-based
compounds, but it also puts its own twist on the physics. For instance, while the layered
compounds are usually metallic in the parent state, the ladders are insulating, with
metallicity emerging only after the pressure is increased [81–84,132]. Furthermore, in
ladders, the magnetism seems to be a bigger player than in the layered systems. This is
evidenced, e.g., by the emergence of the block-magnetic state

· · · ↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓ · · · ,

which forms on the long iron ladders within the crystal structure of BaFe2Se3 [85–89]
(see the original results in Chap. 3 for more detailed sketches and a theoretical descrip-
tion). In this context, the low dimensionality is especially important because it en-
hances the quantum effects, which are responsible for such frustrated behaviors. This
in turn requires special theoretical treatment, one that does not miss the short- and
long-range quantum correlations and goes beyond the usual mean-field approaches
to multiorbital systems. The main topic of the present thesis is precisely an accurate
theoretical modelling of the magnetism and seeking for hitherto undiscovered novel
properties of the low-dimensional multiorbital systems. With the superconductivity in
iron-based ladders discovered only recently, there is still much to be understood, even
with respect to the normal-state properties.

The remainder of this chapter shall focus mostly on characterizing these 123 lad-
ders from the point of view of their crystal and electronic structure, and the multi-
orbital physics. In addition, it shall discuss what theoretical models and techniques
should be applied to understand them. The original results predicting the novel prop-
erties which might be realized in the 123 ladders (or other low-dimensional multior-
bital materials) are presented in Chaps. 3–6.

2.2 Low-dimensional crystal structure

The fundamental motif in the crystal structure of iron-based superconductors is the
FeX4 tetrahedron, where X represents a pnictogen (e.g., As) or a chalcogen (e.g., Se).
Figure 2.1 shows the crystal structures of several layered iron-based systems. In each
of them, the FeX4 tetrahedra are joined by edges, forming the Fe2X2 layers. In this way,
the Fe atoms are arranged into a square lattice, while the X atoms sit at the centers of
the Fe squares, protruding above and below the Fe lattice. Thus, the whole Fe2X2 layer
acquires a corrugated shape. The simplest possible arrangement of such layers is re-
alized in Fe(Se, Te), which is basically just a stack of them. Other compounds contain
also (mostly insulating) spacer layers, whose composition and structure differentiates
the various families. Crucially, the Fe2X2 planes are metallic and are believed to host all
the interesting physics [119], particularly the supercurrent flow [108]. There is thus a
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Figure 1. The schematic view of the crystal structures for several typical types of iron-based superconductors, in which A, Ae, Ln, and M stand for
alkali, alkali-earth, lanthanide, and transition metal atoms.

Table 1.Maximum temperatures of the SC transition under ambient pressure and lat-
tice parameters of undoped compounds for some typical iron pnictides.

Compound Maximum Tc (K) Space group a (Å) c (Å) Ref.

LiFeAs 18 P4/nmm 3.775 6.353 [4]
BaFe2As2 38 I4/mmm 3.963 13.017 [13]
LaOFeAs 41 P4/nmm 4.035 8.740 [24]
CeOFeAs 41 P4/nmm 3.996 8.648 [24]
PrOFeAs 52 P4/nmm 3.926 8.595 [24]
NdOFeAs 51.9 P4/nmm 3.940 8.496 [24]
SmOFeAs 55 P4/nmm 3.940 8.496 [24]
GdOFeAs 53.5 P4/nmm 3.915 8.435 [24]
TbOFeAs 48.5 P4/nmm 3.898 8.404 [24]

(or Fe2As) structure. AFeAs has the space group of
P4/nmm and each unit cell includes two chemical
formula, that is 2A, 2Fe, and 2As. Fe and As are
arranged in anti-PbO-type layers with double Li/Na
planes located between the layers in square-based
pyramidal coordination by As.

With additional atoms added into the anti-
PbFCl-type structure, we can achieve ZrCuSiAs-
type 1111 superconductors. Up to now, the highest
Tc ∼ 55K in iron-based superconductors has been
achieved in !uorine-doped or oxygen-de"cient Ln-
FeAsO compounds (Ln represents rare-earth metal
atoms) [6], which are usually brie!y wri#en as
1111 phase. LnFeAsO compounds have a tetrag-
onal layered structure at room temperature, with
space group P4/nmm. $e schematic view of their
crystal structure is shown in Fig. 1. $e earliest

discovered 1111 compound with relatively high Tc
is LaFeAsO [3], with la#ice constants at room tem-
perature a= 4.032 68(1) Å, c= 8.741 11(4) Å. For
these 1111 compounds, their structure consists of al-
ternate stackingofFeAs layers and!uorite-typeLnO
layers. For LaFeAsO, the distance between the adja-
cent FeAs and LaO layers is 1.8 Å. $e la#ice con-
stants a and c decrease with reducing the ion radii
of the rare-earth metals. With the decreasing radii
of the rare-earth metal ions, the optimal Tc "rst in-
creases rapidly, reaching the highest Tc (= 55K)
in the doped SmFeAsO system [6,29], and then
decreases slightly with further reducing the radii
of the rare-earth metal ions. Besides LnFeAsO sys-
tems, there are other types of 1111 FeAs-based com-
pounds, AeFFeAs (Ae = Ca, Sr, and Ba) [30,31]
andCaHFeAs [32]. AeFFeAs (Ae=Ca, Sr, and Ba)
and CaHFeAs are also parent compounds of super-
conductors [33–35]. Very recently, a new1111-type
FeSe-derived superconductor, LiFeO2Fe2Se2 with
Tc ≈ 43K, was synthesized by Lu et al. [36].

$e other typical type of compounds,$Cr2Si2-
type iron arsenides, possess only single layers of sep-
arating spacer atoms between Fe2X2 (so-called 122
structure), which is adopted byAeFe2As2 (Ae=Ca,
Sr, Ba, Eu, K, etc.) [10,37–39] and AxFe2−ySe2
(A = K, Rb, Cs, Tl/K, and Tl/Rb) [40–43].
AeFe2As2 adopts body-centered tetragonal la#ice
and has space group of I4/mmm. In FeAs-122, the
highest Tc ∼ 49K can be achieved in Pr-doped
CaFe2As2 [44]. However, some recent reports re-
vealed that such superconductivity with Tc higher
than 40K should be ascribed to a new structural
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Figure 2.1: The crystal structures of several families of iron-based superconductors. A,
Ae, Ln, and M stand for alkali, alkaline-earth, lanthanide, and transition metal atoms,
respectively. The common structural motif, the Fe2X2 layer, is highlighted across all
structures. Note also that each Fe atom is coordinated by 4 pnictogens/chalcogens in
a tetrahedral arrangement. REPRODUCED FROM [133].

compelling similarity between the structures of the iron- and copper-based supercon-
ductors (see Chap. 1).

The structure of the low-dimensional 123 family is closely related to that of the
layered compounds. For this class, the general chemical formula reads AFe2X3, where
A = Ba,K,Rb,Cs,Tl are metals (alkaline-earth or alkali, except for Tl), and X = S,Se,Te
are chalcogens. Here, the Fe2X2 planes are “cut” into long two-leg ladders. Every third
Fe atom of the plane is removed, resulting in Fe2X3 double chains (Fig. 2.2), which
keep the substructure of the edge-sharing FeX4 tetrahedra. These double chains run
along one crystallographic axis, giving the compounds their quasi-one-dimensional
(quasi-1D) character. The A atoms act as spacers between the ladders, resulting in the

and Petrovic, 2011; Saparov et al., 2011; Caron et al., 2012;
Nambu et al., 2012) in the study of selenides with the
geometry of two-leg ladders (sometimes also referred to as
double chains) are reviewed. A typical compound in this
context is BaFe2Se3 containing building blocks made of
½Fe2Se3"2# that when assembled along a particular direction
lead to an array of two-leg ladder structures, as sketched in
Fig. 18.

The ladders in BaFe2Se3 can be considered as cutouts of
the layers of edge-sharing FeSe4 tetrahedra of the two-
dimensional selenides (see Fig. 19). Each ladder has a long
direction (‘‘legs’’) and a short direction involving two Fe
atoms (‘‘rungs’’). A field of research involving similar ladder
structures, but with spin-1=2 copper instead of iron, is also
very active since in that context two interesting effects were
found: a spin gap and superconductivity upon doping
(Dagotto, Riera, and Scalapino, 1992; Dagotto and Rice,
1996). For instance, SrCu2O3 is a material analogous to
BaFe2Se3 (Dagotto, 1999).

BaFe2Se3 is an insulator with a gap 0:14–0:18 eV (Lei,
Ryu, Frenkel, and Petrovic, 2011; Nambu et al., 2012). This
material has long-range AFM order at $250 K, low-
temperature magnetic moments $2:8!B, and short-range
AFM order (presumably along the leg directions) at higher
temperatures (Caron et al., 2011; Lei, Ryu, Frenkel, and
Petrovic, 2011; Saparov et al., 2011). Establishing an inter-
esting analogy with the alkali metal iron selenides, neutron

diffraction studies (Caron et al., 2011; Nambu et al., 2012)
reported a dominant order involving 2% 2 blocks of ferro-
magnetically aligned iron spins, with these blocks antiferro-
magnetically ordered, as shown in Fig. 20 (lower panel).
These building blocks are the same as in the block-AFM

state of the
ffiffiffi
5

p
%

ffiffiffi
5

p
iron-vacancy arrangement. Thus, under-

standing one case may lead to progress in the other. When the
Ba atoms of BaFe2Se3 are replaced by K, eventually arriving
at KFe2Se3, the magnetic order changes to that in Fig. 20
(upper panel), with spins along the rungs coupled ferromag-
netically, and with an AFM coupling along the legs (Caron
et al., 2012).

B. Theory

The theoretical study of selenide ladders is only at an early
stage. First-principles calculations and spin model studies
(W. Li, Setty et al., 2012) showed the dominance of the
block-AFM state found experimentally. The band structure
calculation in this magnetic state was presented by W. Li,
Setty et al. (2012) [see also Saparov et al. (2011)] and it
contains a gap of 0.24 eV (see Fig. 21).

FIG. 18 (color online). The two-leg ladder substructures of
BaFe2Se3, with their legs oriented perpendicular to the figure.
From Lei, Ryu, Frenkel, and Petrovic, 2011.

b

-1/3 Fe

FeSe Fe2Se3

FIG. 19 (color online). Relation between a complete FeSe layer
and the structure of the ladders. The dark spheres are the Se atoms
and the light spheres are the Fe atoms. The ladders simply amount to
the removal of every third iron atom from the layers. From Saparov
et al., 2011.

FIG. 21 (color online). Electronic band structure of the block-
AFM state of the two-leg ladder BaFe2Se3. The gap is 0.24 eV.
From W. Li, Setty et al., 2012.

2 3

2 3

FIG. 20 (color online). Magnetic order of the two-leg ladders for
the cases of KFe2Se3 and BaFe2Se3 obtained using neutron diffrac-
tion. From Caron et al., 2012.
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Figure 2.2: Schematic showing how the structures of layered and ladder compounds
are related on the example of X = Se. The ladder is created by removing every third
Fe atom from the layer. Purple circles mark Se atoms and cyan circles mark Fe atoms.
REPRINTED WITH PERMISSION FROM [119,134]. COPYRIGHT (2011) BY THE AMERICAN PHYSICAL SOCIETY.
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Figure 2.3: (a) Crystal structure exhibited by the 123 family of iron-based ladders. A =
Ba,K,Rb,Cs,Tl are metals. The fundamental Fe(S, Se, Te)4 tetrahedra are highlighted
in gray. (b), (c) View along the ladder direction for: (b) BaFe2S3 with the space group
Cmcm and (c) BaFe2Se3 with the space group Pnma. (d) Ladder structure for each
orthorhombic space group Cmcm, Pnma, Pmn21. Here, X = S,Se,Te. PANELS (A)-(C) TAKEN

FROM [135] AND REPRODUCED WITH PERMISSION FROM SPRINGER NATURE. PANEL (D) REPRINTED WITH PERMISSION FROM [132];

COPYRIGHT (2020) BY THE AMERICAN PHYSICAL SOCIETY.

three-dimensional geometry displayed in Fig. 2.3. This three-dimensional structure
is orthorhombic, with the most common space group being Cmcm [132,135], shown
in Fig. 2.3(b). An exception is BaFe2Se3, where the ladders are tilted with respect to
(w.r.t.) each other, leading to the space group Pnma [Fig. 2.3(c),(d)] or possibly even
the noncentrosymmetric Pmn21 [Fig. 2.3(d)], according to more recent experiments
[136,137]. However, increased pressure or temperature drive BaFe2Se3 into the higher-
symmetry and more stable structure Cmcm [86,132,138,139].

Finally, there are also iron-based compounds that were reported or predicted to
possess a chain-like structure [92–103]. For example, the structure of BaFe2Se4 [97]
closely resembles that of BaFe2Se3, but with ladders replaced by single chains (also
separated by Ba atoms). However, the iron atoms in these chain compounds often
exhibit a distinct valence state, setting them apart from the two-dimensional or ladder
superconductors with the Fe2+ valence (see Sec. 2.4). Moreover, there are no reports
of superconductivity in the chain compounds. Nonetheless, studying these materials
offers valuable insights, and many of the findings from this thesis should be applicable
to these systems as well.

2.3 Superconducting phase diagram

The generic phase diagram of a (layered) iron-based superconductor can be discussed
on the example of BaFe2As2. Figure 2.4(a) shows the temperature-doping phase dia-
gram compiled from several experimental studies. At a glance, this diagram is very sim-
ilar to that of a typical cuprate (see Chap. 1), which captivated the interest of physicists
since the initial 2008 discovery. The parent compound initially exhibits an antiferro-
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Figure 1 | Experimental phase diagrams of the BaFe2As2 system.
a, Chemical-substitution phase diagram of the BaFe2As2 system, shown for

K (ref. 7), Co (ref. 8) and P (ref. 9) substitutions, with the amount of

chemical substitution (x) normalized to overlap the descent of the AFM

transition for simplified comparison of the relative position of the SC phase.

The dotted line indicates the structural transition between tetragonal (T)

and orthorhombic (O) crystallographic phases observed for Co

substitution, which is coincident with the paramagnetic (PM) to AFM

transition in the parent compound BaFe2As2 (ref. 8). b, Applied-pressure

phase diagram for BaFe2As2 as a function of external pressure applied

under various levels of hydrostaticity, using diamond anvil cell
17

,

Bridgman
18,19

and cubic anvil cell
20,21

techniques. Note that the pressure

axis is normalized to overlap the descent of the antiferromagnetic

transitions for each experiment for simplified comparison.

in Fig. 1a, composed of coupled AFM and structural transitions
that are suppressed with substitution and an SC phase that is more
or less centred near the critical concentration where AFM order is
destroyed. This is somewhat different from the known behaviour
of fluorine-doped ‘1111’ systems such as LaFeAsO1�xFx (ref. 5),
where AFM and SC phases are completely separated as a function of
doping and do not overlap. However, the coexistence of AFM and
SC phases such as reported for SmFeAsO1�xFx (ref. 6) is believed
to probably be the more intrinsic property of the generic FeSC
phase diagram, motivating efforts to study the 122-type systems
in great detail. The quantitative similarity between phase diagrams
produced by substitutions involving both obvious (that is, K1+ for
Ba2+; ref. 7) and subtle (that is, Co-3d7 for Fe-3d6; ref. 8) charge
doping, as well as nominally isovalent (P-3p3 for As-4p3; ref. 9)
substitutions, is enticing owing to the implied versatility of chemical
tuning parameters available to experimentalists for studying these

systems. Furthermore, it promotes the idea that simple charge
doping is not the sole factor in determining the phase boundaries of
these systems and that structural tuningmay play a role.

However, subtleties in the electronic structure of thesematerials,
as discussed below, make the situation more complex than that
of a simple structural tuning effect. This is highlighted by the
sensitivity of the superconducting phase to the particular choice
of ion substituent. For example, superconductivity in the 122-
type materials, first shown to occur by Co substitution for Fe in
SrFe2As2(ref. 10) and BaFe2As2 (ref. 11), can be stabilized by several
types of d-metal substitution. This includes the use of any elements
in the Fe, Co and Ni columns (except, so far, Os; ref. 12), but
excludes Cr (ref. 13), Mn (ref. 14) and Cu (ref. 15), which all act
to suppress magnetism without stabilizing a high-Tc SC phase. It is
thought that these latter anomalous cases arise for varying reasons
to do with the unfavourable manipulation of Fe bonding and
magnetism, giving clues regarding the correct distinction between
charge doping and chemical substitution.

Pressure tuning is less well understood. In some cases this pow-
erful control parameter is aligned with its chemical-substitution
counterpart. For instance, in Ba1�xKxFe2As2 a good overlap ex-
ists between lattice-parameter variation by applied pressure or
K substitution16, enabling conclusions about the roles of lattice
structure versus charge doping to be made. In contrast, in pressure
experiments on BaFe2As2, differing experimental conditions im-
pose variations from true hydrostatic conditions, making it difficult
to generically compare phase diagrams obtained through applied
pressure versus chemical substitution. Figure 1b presents a com-
parison of five studies17–21 on our model 122 system using differing
techniques, showing that AFM order is suppressed in a manner
similar to chemical substitution in all cases shown but with differing
rates. Moreover, the pressure range where the superconducting
dome is located also varies for each experiment. This is probably due
to the fact that the compressibility of the 122-typematerials is highly
anisotropic, imposing a sensitivity to non-hydrostatic pressure
conditions that may alter the evolution of the phase diagram under
differing experimental conditions. Such a scenario was recently
shown conclusively in a comparison of pressure experiments using
the same crystals but different levels of hydrostaticity22. Moreover,
a structural phase transition (T0) — from tetragonal at high tem-
peratures to orthorhombic at low temperatures — is consistently
found to be coupled to the AFM transition at TN , and is either
pinned directly to TN or is separated in temperature on chemical
substitution, as shown by the dashed line in Fig. 1a. Although this
feature may be a key element in understanding, for instance, the
nature of magnetic order as discussed below, it also poses problems
in controlling hydrostaticity in a pressure experiment.

In one extreme case involving pressure-tuning of CaFe2As2, an
instability to another structural phase transition (to the so-called
collapsed-tetragonal phase) imposes a more severe sensitivity to
anisotropic strain conditions, with a pressure-induced SC phase
only present when non-hydrostatic conditions are imposed23.
Although it remains unclear what role structure plays in stabilizing
superconductivity in CaFe2As2, some theoretical ideas24 suggest
interlayer As–As bonding to be the key ingredient. The sensitivity
to hydrostaticity certainly implies that a strain mechanism is at
work, possibly similar to what causes the intermittent appearance
of 20K superconductivity in undoped, unpressurized 122-type
parent compounds25. Indeed, strain effects have been identified
in studies of twin domain boundaries of BaFe2�xCoxAs2 using
scanning superconducting quantum interference device (SQUID)
microscopy, where an enhanced susceptibility at twin boundaries
has been associated with an enhanced superfluid density26. More
generally, one of the distinguishing features of the FeSCmaterials is
the fact that the generic phase diagram can be experimentally tuned
by any of several different means that allow for a precise control
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in Fig. 1a, composed of coupled AFM and structural transitions
that are suppressed with substitution and an SC phase that is more
or less centred near the critical concentration where AFM order is
destroyed. This is somewhat different from the known behaviour
of fluorine-doped ‘1111’ systems such as LaFeAsO1�xFx (ref. 5),
where AFM and SC phases are completely separated as a function of
doping and do not overlap. However, the coexistence of AFM and
SC phases such as reported for SmFeAsO1�xFx (ref. 6) is believed
to probably be the more intrinsic property of the generic FeSC
phase diagram, motivating efforts to study the 122-type systems
in great detail. The quantitative similarity between phase diagrams
produced by substitutions involving both obvious (that is, K1+ for
Ba2+; ref. 7) and subtle (that is, Co-3d7 for Fe-3d6; ref. 8) charge
doping, as well as nominally isovalent (P-3p3 for As-4p3; ref. 9)
substitutions, is enticing owing to the implied versatility of chemical
tuning parameters available to experimentalists for studying these

systems. Furthermore, it promotes the idea that simple charge
doping is not the sole factor in determining the phase boundaries of
these systems and that structural tuningmay play a role.

However, subtleties in the electronic structure of thesematerials,
as discussed below, make the situation more complex than that
of a simple structural tuning effect. This is highlighted by the
sensitivity of the superconducting phase to the particular choice
of ion substituent. For example, superconductivity in the 122-
type materials, first shown to occur by Co substitution for Fe in
SrFe2As2(ref. 10) and BaFe2As2 (ref. 11), can be stabilized by several
types of d-metal substitution. This includes the use of any elements
in the Fe, Co and Ni columns (except, so far, Os; ref. 12), but
excludes Cr (ref. 13), Mn (ref. 14) and Cu (ref. 15), which all act
to suppress magnetism without stabilizing a high-Tc SC phase. It is
thought that these latter anomalous cases arise for varying reasons
to do with the unfavourable manipulation of Fe bonding and
magnetism, giving clues regarding the correct distinction between
charge doping and chemical substitution.

Pressure tuning is less well understood. In some cases this pow-
erful control parameter is aligned with its chemical-substitution
counterpart. For instance, in Ba1�xKxFe2As2 a good overlap ex-
ists between lattice-parameter variation by applied pressure or
K substitution16, enabling conclusions about the roles of lattice
structure versus charge doping to be made. In contrast, in pressure
experiments on BaFe2As2, differing experimental conditions im-
pose variations from true hydrostatic conditions, making it difficult
to generically compare phase diagrams obtained through applied
pressure versus chemical substitution. Figure 1b presents a com-
parison of five studies17–21 on our model 122 system using differing
techniques, showing that AFM order is suppressed in a manner
similar to chemical substitution in all cases shown but with differing
rates. Moreover, the pressure range where the superconducting
dome is located also varies for each experiment. This is probably due
to the fact that the compressibility of the 122-typematerials is highly
anisotropic, imposing a sensitivity to non-hydrostatic pressure
conditions that may alter the evolution of the phase diagram under
differing experimental conditions. Such a scenario was recently
shown conclusively in a comparison of pressure experiments using
the same crystals but different levels of hydrostaticity22. Moreover,
a structural phase transition (T0) — from tetragonal at high tem-
peratures to orthorhombic at low temperatures — is consistently
found to be coupled to the AFM transition at TN , and is either
pinned directly to TN or is separated in temperature on chemical
substitution, as shown by the dashed line in Fig. 1a. Although this
feature may be a key element in understanding, for instance, the
nature of magnetic order as discussed below, it also poses problems
in controlling hydrostaticity in a pressure experiment.

In one extreme case involving pressure-tuning of CaFe2As2, an
instability to another structural phase transition (to the so-called
collapsed-tetragonal phase) imposes a more severe sensitivity to
anisotropic strain conditions, with a pressure-induced SC phase
only present when non-hydrostatic conditions are imposed23.
Although it remains unclear what role structure plays in stabilizing
superconductivity in CaFe2As2, some theoretical ideas24 suggest
interlayer As–As bonding to be the key ingredient. The sensitivity
to hydrostaticity certainly implies that a strain mechanism is at
work, possibly similar to what causes the intermittent appearance
of 20K superconductivity in undoped, unpressurized 122-type
parent compounds25. Indeed, strain effects have been identified
in studies of twin domain boundaries of BaFe2�xCoxAs2 using
scanning superconducting quantum interference device (SQUID)
microscopy, where an enhanced susceptibility at twin boundaries
has been associated with an enhanced superfluid density26. More
generally, one of the distinguishing features of the FeSCmaterials is
the fact that the generic phase diagram can be experimentally tuned
by any of several different means that allow for a precise control
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Figure 2.4: (a) Chemical-substitution (doping) phase diagram of BaFe2As2, shown for
K, Co, and P substitutions. To facilitate simple comparison between different experi-
mental results, the chemical-substitution axis is normalized to collapse the lines mark-
ing the transition to the antiferromagnet (AFM). PM, SC stand for the paramagnetic
and the superconducting phases, respectively. The dotted line marks the structural
transition between tetragonal (T) and orthorhombic (O) phases. (b) Pressure phase
diagram of BaFe2As2 for various techniques (diamond anvil cell, Bridgman anvil cell,
cubic anvil cell). The pressure axis is normalized similarly as in (a). Here, the struc-
tural transition is coincident with the paramagnet to antiferromagnet transition. TAKEN

FROM [140] AND REPRODUCED WITH PERMISSION FROM SPRINGER NATURE. REFER TO THE CITED WORK FOR REFERENCES TO THE

EXPERIMENTAL RESULTS FROM WHICH THE PHASE DIAGRAMS WERE CONSTRUCTED.

magnetic (or spin-density-wave) non-superconducting state at low temperatures and
goes superconducting only after the magnetism is suppressed. Also, the shape of the
superconducting dome resembles that of cuprates closely. Moreover, there is a possi-
bility for coexistence of magnetic, superconducting and orthorhombic orders in some
parts of the phase diagram [20,140], which again brings to mind the many competing
states encountered in cuprates.

The differences with respect to cuprates lie in the details. For instance, here, the
antiferromagnetic phase is a (bad) metal instead of an insulator [110,141]. The anti-
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ferromagnetism is not of a standard Néel type [ordering vector q = (π,π)] but rather of
a striped pattern [q = (π,0)]. That is, the moments are oriented antiferromagnetically
along one direction and ferromagnetically along the other [20,52,140]. Moreover, the
striped antiferromagnetic phase emerges upon a transition to an orthorhombic struc-
ture, while the paramagnetic phase is tetragonal (and so is most of the superconduct-
ing phase) [142]. Another interesting feature is that the tetragonal-to-orthorhombic
structural transition can occur separately from the paramagnetic-to-antiferromagnetic
transition [Fig. 2.4(a)]. The region in between the two transitions is called the elec-
tronically-driven nematic phase [118,143,144]. Here, one finds a substantial breaking
of the discrete C4 rotational symmetry in the orbital degree of freedom (beyond the
effect of structural distortion), without the breaking of the translational symmetry3.
The normal-state properties above the superconducting Tc are also interesting, with
prominent orbital selectivity linked to the correlations driven by the Hund’s physics
[118,144]. Finally, the pairing symmetry of iron-based superconductors is not d-wave
as in cuprates. Instead, current evidence suggests the s±-wave symmetry, where the
gap remains almost isotropic, but acquires different signs (phases) on the electron and
hole pockets of the Fermi surface [118]. The pairing mechanism in iron-based super-
conductors is not well understood, as in cuprates, and remains the subject of intensive
study [20,145].

It is instructive to note that Fig. 2.4(a) compares not only the electron- (Co) and
hole- (K) doping of BaFe2As2, but also the isovalent doping by P. The latter does not
add or remove carriers, but introduces “chemical pressure” due to the different ionic
radii of P and As [146]. From Fig. 2.4(a), it is clear that such an effect also suppresses
antiferromagnetism in favor of superconductivity, and it produces analogous diagram
as charge doping. This raises the question whether a direct application of physical
pressure would also yield superconductivity. The answer is affirmative, as evidenced
by Fig. 2.4(b), which shows the pressure-temperature phase diagram of BaFe2As2.

Pressure is also the control parameter responsible for the emergence of supercon-
ductivity in the low-dimensional 123 family. Figure 2.5 shows the pressure-temperature
phase diagram for the BaFe2S3 and BaFe2Se3 iron-based ladders. The general features
clearly agree with the phase diagram of the layered compounds. Again, by suppressing
the antiferromagnetism of the parent compound, one “uncovers” the superconducting
dome. However, there are some interesting differences. For example, the parent state
of BaFe2(S, Se)3 exhibits a more insulating behavior, being an antiferromagnetic Mott
insulator or possibly an orbital-selective Mott state (see Sec. 2.6.1). This means that the
ladder systems are more correlated than their layered counterparts, agreeing well with
the intuition that quantum effects are enhanced in low dimensions. In this respect,
Ref. [91] shows that the density-functional theory gives a metal at ambient pressure
and the insulating behavior sets in only after the correlations are included (within the
dynamical mean-field theory).

Due to the insulating parent state, superconductivity in Fe ladders emerges only
after an insulator-metal transition takes place, and, in fact, immediately after it occurs
[82,83]. Here, the effect of pressure in driving the insulator-metal transition is usu-

3This feature explains the name of this phase, which follows from the field of liquid crystals. In a
nematic liquid crystal, the molecules are arranged randomly (thus keeping the translational invariance),
but they orient themselves along a preferred direction (thus breaking the rotational symmetry) [143].
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(a) (b)

Fig. 10 Summarized pressure-temperature (P-T) phase diagram for
the a BaFe2S3 and b BaFe2Se3 [93]. In panel a, the Néel tran-
sition temperature (TN) as a function of pressure is obtained
from the neutron diffraction [69, 70] (black) , µSR [70] (blue),
Mössbauer[71] (green), and resistivity [40] (orange) measurements.
Insulator-metal transition as well as the superconducting phase are
uncovered from reference [48]. In panel b, the TN (black symbols)
and estimated order moment (red symbols) are plotted from the

literature [93]. The green dashed line mark the structural transition at
3.7 GPa. The horizontal lines for 5.5 and 6.8 GPa represent the lowest
measured temperature 120 K, where we observed block-type short-
range magnetic correlation, with a dashed line running vertically below
it to indicate the upper limit for the onset of long-range order. The
empty dots denoting the Tc and black line marking the insulator-metal
transition are inferred from the reference [49]

states proposed theoretically [74] or other electronic phase
is still an open question.

4 Influence of Chemical Substitution on the
Structural, Magnetic, and Electronic
Properties of Fe-based Ladder Materials

4.1 Carrier Doping

Tuning the electronic phases and phase transitions can be
also be achieved by chemical substitution, either in the
form of carrier doping or isoelectronic chemical pressure.
Carrier doping has been attempted in several hole-doped
and electron-doped Fe-based spin ladder materials [42, 75–
78] to try to drive the material into the superconducting
state. However, all reported compositions exhibit insulating
behavior. Electron doping through 20% Co substitution at
the Fe site (Ba(Fe1−yCoy)2S3) preserves the stripe-type AF
ordering, while the antiferromagnetic transition temperature
decreases rapidly and collapses to zero with hole doping
through 10% K substitution at the Ba site (Ba1−xKxFe2S3)
[78]. Above 10% substitution, the system displays a
spin-glass (SG) phase. The electron-hole asymmetry for
the magnetic phase resembles that of the copper-based
superconductors. Electron doping in Ba(Fe1−yCoy)2Se3
shows that the magnetic phase is gradually suppressed and
a SG phase emerges above the y = 0.125 doping level
[77]. The system remains insulating upon the application of
pressure up to 8 GPa with y = 0.15.

Because of the unique block-type order in BaFe2Se3,
studies of the evolution of magnetic and structural properties
have been carried out in hole-doped Ba1−xKxFe2Se3 [42]
and Ba1−xCsxFe2Se3 [75] compounds in an attempt to
tune between block and stripe orders. The corresponding
magnetic phase diagrams as a function of K/Cs substitution
ratio are shown in Fig. 11. By substituting 10% of K on
the Ba site, the block AF order is dramatically suppressed,
indicated by the rapid decrease in the transition temperature.
Stripe AF order appears at x > 0.9 after crossing through an
intermediate spin-glass region. Local Fe-Fe displacements
from PDF analysis confirm that the structural block state
for x = 0 is reduced upon K substitution and that the
structural change in the space group from Pnma to Cmcm
occurs around x = 0.9. In the case of Cs substitution, the
magnetic phase diagram (Fig. 11c) shares many similarities
to that of K substitution in general: a small (5%) Cs
doping destabilizes the long-range order of the block-type
order in BaFe2Se3 and a spin-glass region exists in an
intermediate doping range. The discrepancy is the change of
structure from Pnma toCmcm occurs almost simultaneously
once the block state is suppressed. An additional stripe-II
magnetic phase with moments perpendicular to the ladder
direction (like BaFe2S3), emerges preceding the stripe-I
magnetic phase. For both Cs and K substitution, the value of
(kBT0)−1—representing the 1D variable range hopping—
exhibits first an increase upon more hole doping followed by
a downturn close to the full substitution. This is consistent
with the addition of carriers upon doping in systems with
less localized electrons. However, additional carriers have
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Figure 2.5: Pressure vs temperature phase diagrams for (a) BaFe2S3 and (b) BaFe2Se3

iron-based ladders. AFM, PM, SC denote the antiferromagnetic, paramagnetic, and su-
perconducting phases, respectively. (a) The Néel temperature as a function of pressure
was obtained from several studies employing different techniques (neutron diffraction,
muon spin spectroscopy µSR, Mössbauer spectroscopy, resistivity measurements; see
the legend). (b) The antiferromagnetic transition temperature is represented by black
symbols on the left axis, with the µSR and neutron diffraction results indicated by filled
circles and triangles, respectively. The estimated ordered moment is represented by
red symbols on the right axis. The green dashed line marks the structural transition
at 3.7 GPa. The horizontal bars at 5.5 and 6.8 GPa indicate the lowest measured tem-
perature 120 K, at which block-type short-range magnetic correlations were observed,
while the dashed lines running below indicate the upper limit for the onset of the long-
range order. The open circles near the SC dome denote the critical temperature Tc,
while the black solid line marks the insulator-metal transition. TAKEN FROM [135] AND REPRO-

DUCED WITH PERMISSION FROM SPRINGER NATURE. REFER TO THE CITED WORK FOR REFERENCES TO THE EXPERIMENTAL RESULTS

FROM WHICH THE PHASE DIAGRAMS WERE CONSTRUCTED.

ally attributed to broadening of the electronic bandwidth, the so-called bandwidth-
controlled Mott transition [81,82,91,147]. However, an alternative view is offered by ab
initio calculations of (Ba, K)Fe2S3 [148]. These calculations suggest that pressure can
lead to self -doping of electrons into the iron network by inducing an additional elec-
tron transfer from S to Fe without chemical substitution. This fits nicely with model
calculations which find that lightly doped BaFe2S3 develops a tendency to supercon-
ducting pair formation [149,150]. Importantly, the proximity of the insulator-metal and
superconducting transitions highlights the significance of electronic correlations for
inducing superconductivity in these systems [132,135]. Accordingly, it was suggested
that the antiferromagnetic fluctuations are the driving force behind superconductiv-
ity in the 123 materials [83,84,130,135]. Another interesting feature of Figs. 2.5(a) and
2.5(b) is the initial increase of the Néel temperature with pressure. This is not observed
in the layered compounds and was interpreted to indicate strong magnetoelastic cou-
pling [86,135].
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Finally, the 123 ladders display unexpected magnetic orders. While BaFe2S3 shows
the stripe-like magnetism4, common to layered compounds, BaFe2Se3 displays an ex-
otic block-magnetic pattern of ↑↑↓↓↑↑↓↓

↑↑↓↓↑↑↓↓ . Surprisingly, the block pattern survives well
above the structural Pnma-to-Cmcm transition at 3.7 GPa [84,86], indicating that its
origin is not simply structural but may lie in the electronic and orbital degrees of free-
dom. Interestingly, ab initio calculations find that only at elevated 12 GPa block mag-
netism should finally give way to the standard stripe magnetism [84]. This coincides
with the superconducting dome, suggesting that superconductivity in BaFe2Se3 might
be related to the competition between the block and stripe states [84]. However, a more
recent experiment [151] reports that the transition from the block to stripe magnetism
actually occurs at 3−4 GPa, i.e., at the same pressure as the structural Pnma-to-Cmcm
transition. The work [151] then proposes that the stripe magnetism is the universal
precursor of superconductivity in 123 ladders. This challenges the earlier interpreta-
tion and motivates further work to reconcile these conflicting results. A thorough ex-
ploration of exotic magnetism in multiorbital ladders is one of the main achievements
of this thesis. See Chap. 3 for a discussion of magnetism in iron-based systems and the
original results.

2.4 Electronic configuration and Hund’s rules

The generic electronic configuration of Fe in an iron-based system can be described
on the example of BaFe2S3. The configurations of the individual elements are as fol-
lows Fe: [Ar] 3d 6 4s2, Ba: [Xe] 6s2, S: [Ne] 3s2 3p4. Inside the crystal, sulfur acquires two
electrons, becoming S2−, whereas barium loses two electrons, becoming Ba2+. Both
of these ions have a closed-shell configuration. To balance the charge, Fe needs to be
in the Fe2+ state, hence it loses two 4s electrons and ends up in the 3d 6 configura-
tion. There are thus 6 valence electrons distributed over 5 orbitals on each Fe2+ ion.
Such a situation is encountered in most iron-based superconductors [118,142]. This
is clearly different from the cuprates, where Cu2+ has a configuration 3d 9, i.e., all or-
bitals are filled except one, leading to a single-orbital model (see Chap. 1). By contrast,
iron-based systems are intrinsically multiorbital—the Fe atom itself has a configura-
tion with several active orbitals5. Indeed, experiments and ab initio calculations con-
firm that there are multiple bands at the Fermi level which originate in the 3d orbitals
of Fe [118,144,152–158]. These bands have a two- [153–155] or one-dimensional-like
dispersion [91,130,131,159], agreeing with the notion that the (super)current flows in
the Fe2X2 planes or the Fe2X3 ladders, respectively. The multiorbital nature of iron-
based systems is crucial, as it brings forth a captivating richness of phenomena that
surpasses that of cuprates. This sparked heightened interest in studying multiorbital
models within the condensed-matter community. The present thesis serves as a testa-

4Here, the spins are aligned antiferromagnetically along the legs and ferromagnetically along the
rungs of the ladder, ↑↓↑↓↑↓↑↓

↑↓↑↓↑↓↑↓ .
5Throughout the thesis, the term multiorbital is used to distinguish precisely this: systems where the

transition metal itself has an electronic configuration with several active orbitals. In such systems, the
Hund’s rules play a crucial role in determining the physics. By contrast, the term multiband could refer,
e.g., to a system with two inequivalent atoms in the unit cell. See a relevant footnote in the discussion of
the single-band Hubbard model in Chap. 1.
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Other compounds, such as FeSe, exhibit no magnetic order at ambient 
pressure (Fig. 1b). More ubiquitously, magnetic fluctuations at the 
stripe-order wavevectors are commonly observed for superconducting 
compositions. The observation, by neutron scattering, of an associated 
resonance in the magnetic spectrum at this specific wavevector18,19 has 
been widely interpreted as evidence for a sign-changing superconduct-
ing gap and for magnetic fluctuations playing a key role in the pairing 
interaction2.

Another common feature in the FeSC phase diagrams is a 
tetragonal-to-orthorhombic phase transition. It often occurs either 
concurrently or at a higher temperature than the magnetic transition 
(Fig. 1a), although in FeSe it occurs in the absence of magnetic order 
at ambient pressure (Fig. 1b). A variety of experiments have revealed 
that lattice strain is not the primary order parameter for this phase 

transition20. Borrowing language from liquid crystals, the state is 
referred to as an electronic nematic phase21, in which interactions 
among electronic degrees of freedom drive the breaking of (discrete) 
rotational symmetry, while translational symmetry is unaffected. 
Experiments have indicated that nematic fluctuations extend far across 
the phase diagram22–24, motivating the question of what role nematicity 
has in these materials.

The most recent surprise is the realization that several representative 
FeSC compounds can show topologically non-trivial band structures25. 
They have been proposed to promote various topological phenom-
ena, such as spin-momentum-locked surface states and semi-metallic 
Dirac bulk states. Owing to their intrinsic fully gapped unconventional 
superconductivity, they have become prime candidates in the search 
for robust topological superconducting states and their associated 
Majorana excitations.

The above brief overview showcases an important feature of the 
FeSCs. After 14 years of research, there is a wide consensus as to the 
nature of the various states found in the phase diagrams. In the Landau 
paradigm, these phases are characterized by the symmetries that they 
break, and there has been little, if any, disagreement about them. Yet, 
knowing what these states are is different from understanding how 
they arise and inter-relate with each other. This enables a series of well 
posed questions that are, in some sense, better defined than what can 
currently be asked for the other family of unconventional high-Tc super-
conductors, the cuprates1. In this review, we outline what is well under-
stood about FeSCs and pose a series of open challenges that we believe 
are central to understanding the origins of their superconductivity.

Electronic structure and correlations
All FeSCs are characterized by a common structural motif compris-
ing tetrahedrally coordinated Fe atoms arranged on a square lattice 
(Fig. 1c). The coordinating ligands are typically from group V (the pnic-
togens phosphorus (P) and arsenic (As)) or group VI (the chalcogens 
sulfur (S), selenium (Se) and tellurium (Te)). Parent compounds have a 
formal valence of Fe2+, corresponding to a 3d6 electronic configuration 
for an isolated atom. Bond angles vary somewhat between compounds, 
differing from the perfect tetrahedral angle of 109.5°, thus leading to 
additional orbital splittings (Fig. 1d).

From a band theory perspective, the FeSCs are compensated semi-
metals with the same number of electron-like and hole-like carriers26. A 
widely used, simplified model features a Brillouin zone corresponding 
to the unit cell of the square Fe lattice (shaded beige area in Fig. 1c). 
The low-lying bands form the electron and hole Fermi-surface pockets 
shown in Fig. 1e and coloured according to the orbitals that contribute 
the largest spectral weight6. More realistic models include the pucker-
ing of the As/Se atoms above and below the Fe plane, which introduces 
a glide plane symmetry and implies a crystallographic unit cell (and 
corresponding Brillouin zone) containing two Fe atoms (blue shaded 
areas in Fig. 1c, f)27,28. Additional effects include the spin–orbit cou-
pling29, which splits the intersecting electron pockets in Fig. 1f, the 
three-dimensional dispersion of the bands27 and the hybridization 
between the As/Se p band and Fe d band30, which is the root of several 
topological phenomena.

In the FeSCs, the charge and orbital degrees of freedom appear to be 
itinerant, as most compounds are metallic at all temperatures. Moreo-
ver, the X-ray absorption spectrum of the unoccupied Fe d states is in 
good agreement with density functional theory (DFT) calculations31. At 
low temperatures, in most cases, the normal state of the FeSCs is well 
described by the Fermi liquid theory. This does not imply the absence 
of electronic correlations, which can strongly renormalize the Fermi 
liquid parameters, making them deviate from DFT-based expectations. 
Indeed, the qualitative features of the quasiparticles dispersion, pre-
dicted by DFT and sketched in Fig. 1e, are often similar to those detected 
experimentally using angle-resolved photoemission spectroscopy 

As/Se
c Energy

e

d

f

x2–y2

xy
xz, yz
z2

a b
FeSe

SC

SC SC SCN
em

at
ic

S
D

W Double 
stripe

N
em

atic

Hole doping Electron doping

P substitution

S substitution

SDW

Te substitution
Pressure

ky

kx

k

x′

y′

a

a√2

Y

XΓ Γ
dd d

M′

k

Fe

xy yz xz

M (π, π)

 (π, 0)

BaFe2As2

C4 phase

t2g

eg

Fig. 1 | General structural and electronic properties. a, b, Phase diagrams of 
two families of FeSCs: BaFe2As2 (ref. 80; a) and FeSe (refs. 32,51,104; b). The different 
electronic phases are schematically shown: nematic, spin density wave (SDW, 
where nematic order remains present), double-stripe, C4 magnetic phase and 
superconductivity (SC). The tuning parameter can be electron doping or hole 
doping, isoelectronic substitution (As/P or Se/S, Se/Te) or applied pressure.  
c, The common structure of the FeSCs consists of Fe planes and pnictogens (As) 
or chalcogens (Se) outside the plane. A simplified representation considering a 
single Fe per unit cell is shown in beige and the crystallographic unit cell 
containing two Fe atoms is shown in blue. d, A schematic representation of the 
crystal field levels of an isolated Fe2+ ion (d6) inside a distorted FeAs4 
tetrahedron9. The spins’ alignment corresponds to the high-spin state, but 
other configurations are possible. e, f, Schematic Fermi surface in the 
tetragonal phase. It consists of hole pockets at the centre and of electron 
pockets at the corner of the 1-Fe (e) and 2-Fe (f) Brillouin zone. In f, the two 
electron pockets fold along the diagonal wavevector in e. The colours indicate 
the dominant orbital character of each band6. An additional dxy-dominated 
hole pocket (dashed) is shown centred at M = (π, π) in the 1-Fe zone ((0, 0) in the 
2-Fe zone). The size of this pocket, which is absent in some materials, varies 
widely across compounds. The momenta k in e are in units of the inverse lattice 
constant 1/a.

Figure 2.6: (a) Tetrahedral coordination of an isolated Fe2+ ion (magenta) by X ligands
(white). The result is the crystal-field splitting of the 3d orbitals of Fe2+ into the t2g

manifold (higher in energy) and the eg manifold (lower in energy). (b) Additional split-
ting of the t2g and eg manifolds due to typical distortions of the FeX4 tetrahedron. The
arrows mark the high-spin electron configuration over the 3d orbitals. PANEL (A) ADAPTED

FROM [160,161]. PANEL (B) TAKEN FROM [118] AND REPRODUCED WITH PERMISSION FROM SPRINGER NATURE.

ment to this sentiment, as the effects unveiled in Chaps. 3–6 would not be possible in
a single-orbital setting.

In iron-based systems, the Fe atoms are tetrahedrally coordinated by pnictogens or
chalcogens, as marked in Fig. 2.3(a). The crystal field due to the tetrahedral coordina-
tion splits the 3d levels of Fe into two manifolds. These are the t2g manifold of dxz , dy z ,
dx y orbitals and the eg manifold of dx2−y2 , dz2 orbitals; see Fig. 2.6(a) for a graphical
representation. Further distortion of the FeX4 tetrahedron leads to additional splittings
within the manifolds, resulting in the hierarchy of orbitals shown in Fig. 2.6(b). The
electrons are distributed among the orbitals so as to form the high-spin state, which is
common in the tetrahedral complex [162,163]. This high-spin state is a manifestation
of the well-known atomic Hund’s rules6. They assert the ground-state configuration
for a multielectron shell of an isolated atom or ion in terms of the quantum numbers
S, L, J .

The three Hund’s rules read:

1. First, maximize the total spin S.

2. Then, for a given S, maximize the total angular momentum L.

3. Finally, favor the total angular momentum J = |L − S| for a less-than-half-filled
shell, and favor J = L+S for a more-than-half-filled shell.

6For an isolated ion in free space, the Hund’s rules apply directly. However, in a crystal, the in-
teractions behind the Hund’s rules compete with the crystal field [162,164]. This competition decides
whether it is more beneficial to (i) first pair up electrons in low-energy orbitals and then maximize spin
only in the higher-energy orbitals (if the crystal-field splitting is large), or (ii) avoid pairing at all costs and
maximize spin across all nondegenerate orbitals (if the crystal-field splitting is small). The tetrahedral
complexes fall into the second scenario.
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These rules are conventionally ascribed to the minimization of the local Coulomb re-
pulsion. For instance, for two electrons, the first rule favors the S = 1 state over the S = 0
one, since the former has an antisymmetric spatial part of the wave function where
the electrons are further apart. The energy gain thus follows from the intra-atomic ex-
change7. Colloquially, the first rule is called the “bus-seat rule”: the orbitals are initially
filled one-by-one with electrons of parallel spin before any double occupation occurs.
Clearly, the configuration of Fig. 2.6(b) conforms to this rule and maximizes S. The
third rule is due to the spin-orbit coupling, which, albeit interesting, is not the subject
of the present thesis.

The first and the second Hund’s rules are the key ingredients for the physics of
the multiorbital systems. They provide a new route to induce strong correlations also
away from a metal-insulator Mott transition [165,166], leading to the correlated metal-
lic state dubbed the Hund’s metal [165,167,168] (see Chap. 6 for a longer discussion).
These rules are also essential to the original results reported in this thesis. Further dis-
cussion of Hund’s rules is left for the next section, where they will become apparent
within a model Hamiltonian. Chapters 3–6 shall present my original results for which
the Hund’s physics plays the key role.

2.5 Three-orbital Hubbard-Kanamori model

As discussed above, the electronic configuration of iron-based systems is multiorbital.
The valence electrons originate from the 3d 6 orbitals of Fe2+. Therefore, in princi-
ple, one should incorporate all 5 3d orbitals in the theoretical models, and fill these
orbitals with 6 electrons. This was done, for example, using the mean-field Hartree-
Fock [103,169–171], density functional theory (DFT) [84,130,131,148,170,172,173], and
slave-spin mean-field [37,168,174,175] analyses. These methods can be useful to in-
vestigate some gross effects, or even the specific electronic and structural properties
(in the case of the DFT), but they incorporate the electronic correlations in a lim-
ited manner. As such, they cannot elucidate the more subtle features of the quan-
tum phases, particularly in the low-dimensional 123 ladders, in which quantum ef-
fects are enhanced (see Sec. 2.3). A common choice in modelling correlated multior-
bital systems is the dynamical mean-field theory (DMFT) [9,10,165], which accurately
treats the local quantum fluctuations. However, this is insufficient for the quasi-one-
dimensional systems, where also spatial correlations are essential. A proper descrip-
tion of both local and spatial correlations necessitates the use of a more sophisticated
method, such as the density-matrix renormalization group (DMRG). Nevertheless, al-
ready for the DMFT, the accurate treatment of 5 correlated orbitals is a challenge, and
this challenge becomes even more formidable within the DMRG. To address this lim-
itation and preserve the precise treatment of correlations, it is necessary to explore
alternative approaches that reduce the number of orbitals without compromising the
essential physics.

One such approach is the utilization of a three-orbital model of the t2g orbitals
(dxz , dy z , dx y ). This model was shown to accurately capture the physics of iron-based
compounds, on the example of pnictides [156,176]. An illustrative, but simplistic, ar-

7However, there are other important contributions; see, e.g., [165] and references therein.



24 2. SUPERCONDUCTING IRON-BASED LADDERS

gument justifying the choice of three orbitals is based on the tetrahedral crystal-field
splittings [Fig. 2.6(b)]. The t2g and eg manifolds are separated in energy, hence only
one of them should cross the Fermi level. It is, however, not obvious that this would
be the t2g manifold, and one cannot forget that, e.g., orbital hybridization complicates
this picture. Thus, the more robust evidence for this model comes from the band-
structure calculations and photoemission experiments, which find that the dxz , dy z ,
dx y orbitals indeed dominate at the Fermi level; see [118,144,156,158] and references
therein. Another important issue in constructing the reduced model is the choice of
the electronic density. Taking the high-spin state of the 3d 6 electrons [Fig. 2.6(b)], the
t2g manifold should be half-filled with 3 electrons on 3 orbitals. On the other hand, if
one were to fill the 3d orbitals from the bottom up, disregarding the Hund’s rule, the
t2g manifold should host only 2 electrons (on the dxz , dy z orbitals). Both of these pos-
sibilities turn out to be unsatisfactory. Instead, Ref. [156] argues that the appropriate
density is actually above half filling, i.e., 4 electrons on 3 orbitals. For this density, the
three-orbital model accurately reproduces the behavior of the 6-electron Fe2+ valence
state in pnictides [156,176,177]. For example, the Fermi surface from the local density
approximation is reproduced well [156,177]. In addition, more recent works success-
fully applied this density to three-orbital models of chalcogenide chains8 with Fe2+

valence [93,96,101,102].
In the case of the iron-based ladders, recent band-structure calculations suggest

that the admixture of the dx2−y2 and/or dz2 orbitals is substantial near the Fermi level
[91,130,131]. However, a three-orbital model had already been successful in capturing
the physics of the ladder materials [178–180]. In particular, such a model was used to
predict [178] and confirm [179] the neutron-scattering result on BaFe2Se3 [85]. The
same model was also used to qualitatively reproduce the spectra of resonant inelastic
x-ray scattering on BaFe2Se3 [180]. In both of these cases, the model was applied in
a more phenomenological approach, meaning that it was not derived from ab initio
calculations but instead drew inspiration from the above considerations for pnictides
[156,178]. Nonetheless, its success in addressing the experiments a posteriori justifies
its use. The following subsection provides a more detailed description of this three-
orbital model.

The reader should be aware that the aim of this thesis is not to describe a specific
compound, but rather to provide a global view on the properties of the 123 ladders
through the lens of the multiorbital Hubbard model. To take it even further, the 123
ladders are, in fact, used only as a motivation and a starting point to explore the low-
dimensional multiorbital systems with strong correlations. It is only natural that the
approach is phenomenological, with an approximate choice of the parameters, as the
focus is on the underlying physics and not on the mundane details of the band struc-
tures etc. Accordingly, in Sec. 2.6, even the three-orbital model will be reduced to its
“bare-bones” variant. This new version will, however, still retain the key physics, and
even allow one to better appreciate it. The refinement of the properties found in this
work to a particular compound would be the next logical step, which is left for future
investigations.

8The iron-based chains received less attention than ladders due to the lack of experimental reports
of superconductivity. Moreover, the conventional knowledge says that long-range superconductivity
should be impossible in a truly one-dimensional system.
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2.5.1 Definition of the Hamiltonian

The original parametrization of the Coulomb interactions within a 3d shell is due to
Kanamori [181]. The resulting (three-orbital) Hubbard-Kanamori Hamiltonian [165]
reads

H = Hkin +Hint , (2.1)

Hkin =− ∑
i jσγγ′

tγγ′c
†
iσγc jσγ′ +

∑
iγ
∆γniγ , (2.2)

Hint =U
∑
iγ

ni↑γni↓γ+
(
U ′− JH/2

) ∑
i ,γ<γ′

niγniγ′

−2JH
∑

i ,γ<γ′
Siγ ·Siγ′ + JH

∑
i ,γ<γ′

(
P †

iγPiγ′ +H.c.
)

,
(2.3)

where the full Hamiltonian H was separated into the kinetic and interaction parts,
Hkin, Hint, respectively. Here, c†

iσγ (ciσγ) creates (annihilates) an electron with spin
σ= {↑,↓} at orbital γ= {0,1,2} of site i . For the 123 ladders, the three orbitals γ can be
imagined as belonging to the t2g manifold9. In Hkin, tγγ′ denotes the hopping matrix

elements, ∆γ denotes the crystal-field splitting, and niγ = ∑
σniσγ = ∑

σ c†
iσγciσγ is the

electron density at (i ,γ). The total density (filling) of the system is denoted by n = N /L
where N is the total number of electrons and L the number of lattice sites. Impor-
tantly, individual ladders are relatively well isolated from one another within the three-
dimensional crystal structure. Hence, it suffices to consider only one double-chain lat-
tice of Fe atoms, i.e., the sum over i j in Eq. (2.2) can be restricted to the nearest neigh-
bors in the so-called quasi-1D ladder geometry (· · ·�������� · · · ). Indeed, density-
functional-theory calculations predict one-dimensional-like electronic dispersion in
the ladder compounds [91,130,131,159]. To reduce the computational effort, some
model studies even choose the simpler chain geometry, which should still capture the
main physics. Nevertheless, one of the main results of this thesis, Chap. 3, relies on
using the proper ladder geometry and also identifies for which regimes the chain ap-
proximation should be accurate.

The interaction part Hint introduces the effects of strong correlations, crucial to
correctly capture the physics of the 123 ladders (see Sec. 2.3). The first term in Hint

is the standard intraorbital Hubbard repulsion U > 0, the second is the interorbital
repulsion U ′ − JH/2, the third is the ferromagnetic Hund exchange JH (which cou-
ples spins Siγ on different orbitals γ), and the fourth is the interorbital pair hopping
(Piγ = ci↑γci↓γ). Each term of the Hamiltonian is graphically represented in Fig. 2.7. All
the interaction terms follow directly from the matrix elements of the fundamental 1/r
Coulomb interaction; see [37,181–184] for a discussion on how they arise. The rota-
tional symmetry is imposed by the condition U ′ =U −2JH [165]. The Hund coupling
JH is usually fixed to JH =U /4, a value widely accepted to be experimentally relevant
for iron-based materials [176,185,186]. The original results of this thesis are mostly

9The parametrization of the interactions in Eq. (2.3) is actually exact only in cubic symmetry and
when the t2g or eg manifolds are considered separately [165,175]. In practice, however, this form of the
Hamiltonian is a common approximation for any multiorbital system with any number of orbitals, e.g.,
for the full five-orbital 3d shell [37,175].
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Figure 2.7: Graphical representation of the Hamiltonian (2.1). For clarity, only two
orbitals are shown (as parallel lines with green and indigo dots) and the geometry is
simplified from a ladder to a chain. The kinetic part Hkin is shaded in green, while the
interacting part Hint in red.

obtained by varying U and n. Intuitively, this could be viewed as changing the pres-
sure and doping the system, respectively. The kinetic-energy parameters are fixed and
are discussed briefly below and also in the appropriate Chaps. 3–6. Importantly, the
Hamiltonian (2.1) is useful not only to study the iron-based compounds, but also other
multiorbital systems, e.g., ruthenates, iridates, etc. [165]. Often, this model is simply
referred to as the “multiorbital Hubbard model”.

The key difference in the above Hubbard Hamiltonian w.r.t. the single-orbital ver-
sion (1.1) is the addition of the Hund coupling JH. But does Eq. (2.3) actually enforce
the Hund’s rules discussed in Sec. 2.4? This can be checked through a simple exercise.
One can rearrange the interaction terms so that the interorbital term differentiates be-
tween antiparallel and parallel spins, U ′∑

i ,γ6=γ′ ni↑γni↓γ′ + (U ′− JH)
∑

iσ,γ<γ′ niσγniσγ′

[165]. This form shows that a configuration of parallel spins in different orbitals is
energetically favored over antiparallel spins (and also over double occupancies, since
U ′ <U ). This agrees with the conventional understanding that the Hund’s rules origi-
nate in the minimization of the local Coulomb repulsion. Next, to see where the quan-
tum numbers S and L come into play, one needs to rewrite Hint using the local electron
number, spin, and orbital angular momentum operators. These operators read, re-
spectively,

n̂ =∑
σγ

c†
σγcσγ , S = 1

2

∑
σσ′γ

c†
σγσσσ′cσ′γ , L = ∑

σγγ′
c†
σγ`γγ′cσγ′ , (2.4)

where σσσ′ is a vector of the Pauli matrices, `γ
γ′γ′′ = −iεγγ′γ′′ are the generators of ro-

tations, and the site index i was suppressed for simplicity. Using the above, one finds
that [165,184]

Hint = (U −3JH)
n̂(n̂ −1)

2
−2JHS2 − JH

2
L2 + 5

2
JHn̂ . (2.5)

This form of the local interaction clearly shows that maximizing first S then L reduces
the energy and is favored in the local state, enforcing the Hund’s rules. Although from
the point of view of atomic physics the Hund’s rules are a textbook concept, they reveal
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a surprising capacity to drive entirely new physics when applied to strongly correlated
lattice systems. This thesis showcases the best and most novel examples of that in
Chaps. 3–6, where original results are presented. In contrast, Section 2.6 discusses a
more established concept in Hund’s physics, the orbital-selective Mott phase.

The specific kinetic-energy parameters used in the model (2.1) (and derived mod-
els) will be specified explicitly when numerical results are discussed, i.e., in Sec. 2.6.2
and in Chaps. 3–6. Here, it is useful to stress that for the 123 ladders these parameters
are chosen phenomenologically, using pnictides as a guide, and originate in the works
[178–180]. This approach aims to emphasize the generic physics of Eq. (2.1) in low di-
mensions and not the specifics of a given compound. The noninteracting band struc-
ture roughly reflects the generic crystal-field splitting expected within the t2g manifold
of the distorted tetrahedra forming the 123 ladder compound; compare Fig. 2.6(b) and
the inset of Fig. 2.10(c). The electronic density used is n = 4 electrons on 3 orbitals.
This is the density argued above as appropriate to model the Fe2+ valence state in a
three-orbital model. Note that the integer density n = 4 allows for the emergence of a
Mott insulator at large U [178,187]. Therefore, this choice of density can capture the in-
sulating behavior of the 123 ladders at ambient pressures (see Fig. 2.5). Furthermore,
for n = 4, also the selective localization of some of the orbitals, the orbital-selective
Mott phase, is possible for slightly decreased U . This phase was argued to be the ac-
tual parent state of the 123 ladders either at ambient [85,180] or increased pressure10

[90,91]; see Sec. 2.6.1 for further discussion. Therefore, a three-orbital Hubbard model
at n = 4 seems to cover a major part of the physics of the ladders, and, indeed, this
was found to be true in previous investigations [178–180]. In this thesis, also different
n shall be explored in order to find new physics which could be realized upon dop-
ing. The discussion of the orbital-selective Mott phase and its relevancy for the normal
state of ladders will be continued in Sec. 2.6.

In this thesis, the ground states of the Hamiltonians are studied predominantly
via the density-matrix renormalization group method. As pointed out several times
already, this is the only method that enables an accurate treatment of a strongly corre-
lated multiorbital systems in one dimension. Mean-field methods are inappropriate,
as they miss the quantum fluctuations crucial in reduced dimensionality. In particular,
the dynamical mean-field theory captures only the local and not the spatial correla-
tions responsible for the development of magnetism and topological properties (stud-
ied in Chaps. 3–5). In principle, the exact-diagonalization method could be used, as it
is capable of capturing all the correlation effects. However, the exponential growth of
the Hilbert space strongly limits the accessible system sizes, especially in the multior-
bital setting. For the three-orbital model, already the dimension of the on-site Hilbert
space is huge, 43 = 64, hence the total dimension for L sites scales as 64L . The maxi-
mum reachable size with Lanczos exact diagonalization is thus L ∼ 4. Such a cluster
size is too small for reliable investigation of long-range properties (e.g., magnetism)
and it cannot capture the shape of the ladder. Therefore, the DMRG method is the only
viable choice. It fulfills all the criteria: (i) it incorporates all correlation effects, (ii) it
performs best precisely in one dimension, (iii) it allows for reaching system sizes of
the order of L ∼ 50 or more, (iv) it is based on a general entanglement-based ansatz

10Consistently, increased pressure means decreased U in the model situation (or increased electronic
bandwidth).
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and does not involve any uncontrolled approximations. This method was essential to
discover the exotic correlation-driven quantum phases of my original results (e.g., the
block-spiral and spin-flux magnetism in Chap. 3, or the interaction-induced topologi-
cal phases in Chaps. 4 and 5). To avoid obstructing the discussion of physics, a descrip-
tion of the DMRG method is located in Appendix A. The reader will learn there both the
inner workings of the DMRG algorithm and compelling arguments showcasing how it
effectively fulfills the above criteria.

Finally, one should be aware that, even for the DMRG, the calculations of a three-
orbital model are extremely expensive. This means that accurate simulations of three-
orbital systems are mostly restricted to the chain geometry, with ladders being largely
out of reach. This is why the previous studies of the 123 family actually used the simpli-
fied chain geometry [178–180]. In contrast, in Chap. 3, this thesis explicitly investigates
the ladder geometry. The objective is twofold: to determine the regimes or conditions
where the chain approximation holds and to reveal novel phases inaccessible in the
chain system. To facilitate accurate calculations in the ladder geometry, a simplified
“two-orbital” model is employed in this thesis, designed to faithfully reproduce the
orbital-selective Mott phase observed in the three-orbital case. The subsequent sec-
tion provides a detailed description of this phase and the derivation of the effective
model. Notably, the simplified model not only streamlines computations but also en-
hances the understanding and appreciation of the fundamental physics.

2.6 Orbital-selective Mott phase

Orbital selectivity, or orbital differentiation, is a common trend across the families of
iron-based systems [118,144,158,165]. This concept highlights that despite the dif-
ferent 3d orbitals share the same interactions, their degree of correlation can vary.
This is manifested, e.g., by orbital-selective mass enhancements [174] or bandwidth
renormalizations [144], shown to be quite universal via extensive surveys of experi-
mental results (see, e.g., [144,175] and references therein). In particular, it was found
that out of the three dominant orbitals dxz , dy z , dx y , the last one, dx y , is usually the
most correlated [144]. The simultaneous presence of weakly and strongly correlated
electrons might explain several inconsistencies in experimental reports on iron-based
compounds [37,175]. This ties into a heated debate on whether Fe-based supercon-
ductors are strongly or weakly correlated materials and establishes a perspective that
they are actually both simultaneously. Finally, orbital selectivity is directly relevant
for the superconducting properties, at least for FeSe, in which experiments discovered
orbital-selective quasiparticles [188] and pairing [189].

Orbital selectivity has its roots in the effects that lift the orbital degeneracy, i.e.,
crystal fields and/or inequivalent bandwidths. However, it would not be that robust
if it were not for the Hund’s coupling [165,174,190–192]. The Hund’s coupling, in the
presence of the interaction U , acts as an orbital decoupler by suppressing interorbital
charge fluctuations11. As a result, the degree of correlation of each orbital is deter-

11This reads as a paradox: something called Hund’s “coupling” actually “decouples” the orbitals. But
note that the decoupling refers to the charge fluctuations which become independent, while the spins
between the orbitals are coupled (or correlated) in that they maximize the on-site spin S.
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Fig. 7: Delocalization of charge excitations. In the absence of Hund’s coupling (J = 0) all
6 configurations with 2 electrons on a given site are degenerate (see eq. (3)). Thus both hopping
channels between two sites (light blue arrows) are allowed without an extra energy cost. For
finite J instead the only hopping allowed is in the channel where the extra electron was created,
since hopping in the other channel would produce a two-electron configuration with a doubly
occupied orbital, which has now a higher energy.

removes the degeneracy, spreading the states over a range roughly the bandwidth W, in analogy
with the case of a non-interacting electron.

It should be noticed that at J = 0 in a multi-orbital model (take for simplicity only diagonal
hopping in the orbital index) the spread is actually larger [16], of order ⇠

p
MW , where M is

the number of orbitals. Indeed (see Fig. 7) from the site where the extra electron is created, say
in orbital 1 – and that thus hosts 3 electrons – not only hopping from orbital 1 but also hopping
from orbital 2 connects this state with another state of the same energy. This second hopping
process leaves behind a site with a doubly occupied orbital and the other empty, which at J = 0

is degenerate with all the other configurations of two electrons on a site.

However when J is nonzero this extra degeneracy is removed. Indeed the two-electron configu-
ration with orbital 1 doubly occupied left behind by the second hopping process at finite J is no
longer degenerate with the high-spin configurations of the atomic ground state. Thus an extra
electron created in orbital 1 can only delocalize through the hopping process in its own chan-
nel, i.e., the charge excitation cannot take advantage of the multi-orbital nature of the system to
delocalize and the width of the Hubbard bands becomes of order ⇠ W again. This shrinking
was also verified within dynamical mean-field theory, where the spectral function for a Mott
insulator can be directly calculated and the width of the Hubbard bands measured [8].

All in all this means that the gap between the two Hubbard bands, which are �at apart is
� ' �at � W = U + J � W . This gap will then close at interaction strength Uc ' W � J ,
which is of size of order of the bandwidth or less, and decreasing with increasing J , perfectly
in line with what is found numerically [8].

This argument can be generalized to any number of orbitals and explains why the half-filled
Mott insulating state is favored by Hund’s coupling. Indeed the half-filled sector is the one with
a larger number of spare spins to align in order to gain exchange energy. Its distance in energy

Figure 2.8: A toy example of the orbital-decoupling effect of Hund’s coupling. This
figure uses the notation J ≡ JH. Consider a half-filled two-orbital system, in which a
charge excitation was created on orbital 1. In the absence of Hund’s coupling (JH = 0,
left), the charge excitation can delocalize in two ways. It can either hop within its own
orbital (top arrow), or it can also gain kinetic energy due to hopping of another particle
within orbital 2 (bottom arrow). Both processes cost the same energy: they produce
equivalent final states on the right lattice site, while the final states of the left lattice
site, |orbital 1,orbital 2〉 = |↓,↑〉 , |↑↓,0〉, are degenerate for JH = 0. For JH 6= 0, on the
other hand, one can easily check using Eq. (2.3) that the latter states are no longer
degenerate. The final state |↑↓,0〉 will cost more energy than the alternative state |↓,↑〉.
Hence, the bottom process is suppressed, and the charge excitation delocalizes only
within its own orbital. The orbitals are effectively decoupled. REPRODUCED FROM [168].

mined by its individual filling, bandwidth, band structure etc. For a simple example of
how this comes about, see Fig. 2.8 and its caption, whereas a more thorough explana-
tion of the orbital-decoupling mechanism is given in Ref. [192].

The culmination of orbital selectivity is the orbital-selective Mott phase (OSMP)
[165,190,193–195]. In this phase, a subset of orbitals becomes Mott-insulating, while
the others remain metallic. This is, of course, driven by the above orbital decoupling ef-
fect of the Hund’s coupling [191,192], which allows the different orbitals to have such a
contrasting response to the same interactions U . The resulting metal-insulator mixture
leads to unusual properties, e.g., it is a non-Fermi liquid [165,190,191], and it exhibits
exotic magnetism beyond simple ferro- or antiferromagnetic patterns [178,196]. Cru-
cially, this thesis contributes to the discovery of new magnetic structures in the OSMP
in the ladder geometry (see Chap. 3).

There are a few different scenarios in which the OSMP can arise [165,175,190]. As
mentioned above, the orbital degeneracy needs to be lifted, hence OSMP arises, e.g.,
in systems where orbitals have different bandwidths [194,195] or are split in energy by
the crystal-field splittings [190,191]. Here, it is instructive to discuss the latter case, as
outlined in Ref. [190]. Figure 2.9 shows the U vs JH phase diagram of the three-orbital
Hubbard model (2.1) at filling n = 4 but in infinite dimensions12. The kinetic-energy
parameters are chosen so that the orbitals are of equal bandwidths, but one of them
is split off to higher energies. By tuning the splitting, one may reduce the population

12While in Sec. 2.5.1, the three-orbital model was discussed from the perspective of the low-
dimensional ladders, here, it is applied to a general high-dimensional multiorbital system. Such systems
were the ones for which the mechanism of the OSMP was first elucidated, hence the discussion of such
results is appropriate here. The particular choice of infinite dimensions is convenient for the mean-field
methods, e.g., the slave-spin mean-field technique and the dynamical mean-field theory.
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follows simply from theMott transitions in each individual band,which happen for distinct values
ofU (see Figure 9c). The band decoupling accounts also for the behavior under doping: TheOSMP
is stable (37, 108), until the chemical potential exits from the widest gap (see also References 105,
109, and 111).

The spin degrees of freedom become strongly interdependent when approaching the orbital-
selective phase (112), however. Indeed, in the OSMP, the system is appropriately described by
a double-exchange model and behaves as a non-Fermi liquid, due to the scattering of the itinerant
electrons on the localized ones (80, 113).

The model studies mentioned above aimed at unveiling the basic mechanism of OSMT and
disregarded the possibility of long-range ordering. However, at low temperature, the local
moments present in the OSMP carry extensive entropy and will tend to order (100). Interband
hybridization, which can favor a singlet ground state and replace an OSMP with a heavy Fermi
liquid at low temperature (106, 110, 114), offers another possibility for the system to reduce the
entropy. However, the coherence temperature of this metallic phase will be very low if hybrid-
ization is small, and a selectively localized phase will be restored at finite temperature. Likewise,
even on the Fermi-liquid side of the OSMT, the state at finite temperature might resemble
the OSMP. Hence, although the occurrence of an OSMP as a stable zero-temperature phase is
questionable, the general concept has relevance to situations in which an extended finite-
temperature regime with strong orbital differentiation is observed.

To conclude our brief survey of OSMT, we turn to materials in which orbital-selective physics
may be relevant. The concept of OSMT was initially proposed (104) to explain the properties of
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Figure 9

Orbital-selective Mott physics promoted by Hund’s coupling. (a) Phase diagram of a three-band Hubbard model populated by four
electrons, as a functionof interaction strengthU/D andHund’s coupling strength J/U. The crystal field lifts the threefold degeneracy so that
the upper band is half-filled and the lower two bands that remain degenerate contain three electrons. An orbital-selective Mott phase, in
which the half-filled band has a gap, is stabilized by J. Panel a is reproduced fromReference 108. (b) Propagation of a charge excitation in
two half-filled bands. The lower process leads to a state with energy larger by 2J and is therefore suppressed (109, 110). (c) As the
interaction strength in the two-bandmodel with unequal bandwidths is increased (top), the narrower band localizes first, and the orbital-
selective Mott phase results (middle). A Mott insulator (bottom) is found at a still larger interaction strength only.
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The situation we consider is indeed very general, mak-
ing our OSMT probably the most common in nature. It is
well known that, e.g., a cubic crystal field splits the five d
obitals in two groups, t2g and eg, respectively, originating
three and two bands. Further lowering of the symmetry can
induce further splittings.

We investigate the simplest realization of such a mecha-
nism, namely, a system of three bands (the minimal situ-
ation in order to have manifolds of different degeneracy
after the splitting, i.e., two degenerate bands and one lifted
by the crystal field) of equal bandwidth with 4 electrons per
site. In absence of the crystal-field splitting each band will
be populated by 4=3 electrons. If we continuously lift one
of the bands to higher energy, the electrons will gradually
move to the lower levels. Therefore the density of the lifted
band will decrease from 4=3 eventually reaching 1, becom-
ing half filled. Then, if the interaction strength is enough to
localize the half-filled band, but it is smaller than the
critical value for the remaining three electrons hosted by
the lower two bands, we can expect an OSMT.

A first step in this direction has been taken in Ref. [9],
where an OSMT has been reported for twowide degenerate
bands and a narrower one lifted in energy, with 4 electrons
per site. Unfortunately in that model both the difference in
bandwidth and the lifted degeneracy are at work and none
could be singled out as the driving one.

The electrons in the three bands are coupled via a local
SUð2Þ invariant interaction. The Hamiltonian reads

H ¼ $t
X

hiji;m!

ðdyim!djm! þ H:c:Þ þ
X

i;m!

"md
y
im!dim!

þU
X

i;m

nim"nim# þ
!
U0 $ J

2

" X

i;m>m0
nimnim0

$ J
X

i;m>m0
½2Sim ' Sim0 þ ðdyim"d

y
im#dim0"dim0# þ H:c:Þ(:

(1)

Here di;m! is the destruction operator of an electron of spin

! at site i in orbital m, and nim! ) dyim!dim!, nim )P
!d

y
im!dim!, Sim is the spin operator for orbital m at site

i, t is the nearest-neighbor hopping (denoted in the sum by
h i), "m is the bare energy level in orbital m. U and U0 ¼
U$ 2J are intra- and interorbital repulsions and J is the
Hund’s coupling. The densities of states of the three bands
are semicircular of half-bandwidth D.

We study this three-band model assuming that two bands
have the same energy ("2 ¼ "3) and one is lifted by a
crystal-field splitting ! ) "1 $ "2 > 0. The !< 0 case,
which is believed to be relevant to Sr2$xCaxRuO4 has been
studied in [10] and does not lead to an OSMT. Yet, it has
been recently proposed that a similar mechanism to what
we present here applies in Sr0:2Ca1:8RuO4 even if !< 0
thanks to a doubling of the unit cell [11].

We use two local mean-field approximations: the faster
and computationally inexpensive slave-spin mean-field
[5,23] (SSMF) for surveying the phase diagram and

DMFT, solved with exact diagonalization (ED), for more
accurate and aimed calculations. In Fig. 1 we show the
SSMF phase diagram obtained adjusting ! to have 1 elec-
tron in the lifted band, and 1.5 electrons in each of the
degenerate ones. Indeed, an orbitally selective Mott phase
(OSMP) is found for a large zone of the parameters U and
J. It is worth noting that a finite Hund’s coupling is
needed to stabilize the OSMP, while for small J a direct
transition from a metal to a Mott insulator is found. The
indications of SSMF are confirmed by the more accurate
DMFT, as shown in Fig. 2, where we plot Z# ¼
ð1$ Im"#ði!0Þ=!0Þ$1 ["#ð!Þ being the self-energy for
the band #], which measures the low-frequency spectral
weight associated with metallic behavior. Z1 for the lifted
band vanishes at a critical U, signaling the localization of
this band, while the same quantity is still finite for the two
lower bands. We notice that ED calculations suffer from
truncation effects. Analyzing these effects we find that the
actual Uc will be higher than what shown in the figure and
we estimate the DMFT value of Uc ’ 2:5D, for J=U ¼
0:25. Comparison with SSMF confirms the reliability of
the latter approach, which only slightly overestimates Uc.
The phase diagram clearly shows that increasing J=U

increases the region of the OSMP. We can gain more
insight analyzing the orbital fluctuations hn1n2i$ hn1i*
hn2i. In order to have an OSMT this quantity should be
small, signaling a decoupling of the bands which opens the
way for a different behavior between them, and the local-
ization of the half-filled one. As shown in the inset of
Fig. 2, for J ¼ U ¼ 0 the orbitals are uncorrelated.
Increasing the two quantities, U initially prevails, leading
to an increased orbital correlation. Further increasing U
and J makes the electrons more and more localized. In this
regime the effect of J becomes predominant [24], and it
reduces the orbital correlations. The role of J can be
understood in the atomic limit: increasing J enhances the
distance between the lowest-lying high-spin state in which

FIG. 1 (color online). Phase diagram for fixed populations
nm ¼ ð1; 1:5; 1:5Þ (obtained by adjusting the crystal field !)
within Slave-spin mean-field. Inset: phase diagram for fixed total
filling n ¼ 4 as a function of U and ! at J=U ¼ 0:25. Dashed
lines: modification of this diagram under a small splitting
(+0:4=D) of the two degenerate bands.
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Figure 2.9: Phase diagram of a three-orbital Hubbard model at filling n = 4, as a func-
tion of the interaction strength U /D and the Hund’s coupling JH/U . The figure uses
the label J ≡ JH. D is the half-bandwidth of the assumed semicircular density of states,
corresponding to a system in infinite dimensions, convenient for mean-field methods.
The crystal field breaks the threefold degeneracy in a way that the upper orbital be-
comes half-filled while the lower two orbitals are still degenerate and host three elec-
trons in total. The presence of JH stabilizes an orbital-selective Mott phase (OSMP),
where a gap opens in the half-filled orbital (sketched at the top). The phase diagram
was obtained within the slave-spin mean-field approach and corroborated with the
dynamical-mean field theory. Inset: phase diagram as a function of U and the crys-
tal field ∆̃ at fixed JH/U = 0.25. SKETCH AT THE TOP USED WITH PERMISSION OF ANNUAL REVIEWS, INC., FROM

[165]; PERMISSION CONVEYED THROUGH COPYRIGHT CLEARANCE CENTER, INC. PHASE DIAGRAM AT THE BOTTOM REPRINTED WITH

PERMISSION FROM [190]; COPYRIGHT (2009) BY THE AMERICAN PHYSICAL SOCIETY.

of the shifted orbital, until it becomes exactly half-filled. The remaining 3 electrons
are then shared by the lower two degenerate orbitals. In this case, one expects that
there exists a value of the interaction U that is enough to localize the half-filled orbital,
but is too small to localize the other two orbitals, which have a larger kinetic energy
due to the degeneracy and have a fractional filling ∼ 1.5. Indeed, this is possible, lead-
ing to a robust region of the OSMP, as seen in Fig. 2.9. However, it is required that
JH is large enough to suppress the interorbital fluctuations and decouple the orbitals.
Otherwise, particularly for JH = 0, the system simply undergoes a complete full Mott
localization upon increasing U . This scenario clearly highlights the key role of JH in
inducing the OSMP [191]. Crucially, while this simplified example assumed that the
crystal field tunes one orbital exactly to half filling, this is not actually a requirement.
The OSMP is in fact stable across a range of crystal fields, as demonstrated in the in-
set of Figure 2.9. Ref. [190] also highlights that the OSMP is quite robust w.r.t. doping.
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Furthermore, it is expected that the OSMP can withstand small degeneracy lifting in
the lower orbitals and weak orbital hybridization, as long as Hund’s coupling is the
dominant energy scale that quenches the interorbital fluctuations [37,184]. Despite
that, it was suggested that orbital hybridization might ultimately disrupt the OSMP at
low temperatures (in particular at T = 0), transforming it into a very heavy Fermi liq-
uid [165], in which strongly and weakly correlated electrons coexist in the conduction
bands [37]. This issue, however, remains unresolved and is subject to ongoing investi-
gation [197–200].

A similar phase diagram to Fig. 2.9 will be presented in Sec. 2.6.2 for a different
three-orbital model relevant to the 123 iron-based ladders. There, the density-matrix
renormalization group calculations will be discussed which suggest that the OSMP is
stable. Within the specific model, one of the orbitals will have narrower bandwidth
than the others, along with the energy offset, making it more susceptible to localiza-
tion. Subsequently, the model will be simplified to a “bare-bones” description of the
OSMP, retaining only the key degrees of freedom. Before discussing that further, it is
valuable to first establish the presence of the OSMP in the Fe-based ladders based on
experimental findings.

2.6.1 Orbital-selective Mott phase in iron-based ladders

Several experimental works point to the orbital-selective Mott phase (OSMP) as the
potential parent state of the 123 ladders [85,89,90,201–203]. For example, the experi-
mental work [90] argues that the OSMP is the “true” parent state of superconductiv-
ity at higher pressures. This perspective is supported by recent ab initio investiga-
tions [91,204], combining density-functional theory and dynamical mean-field theory
(DFT+DMFT) methods. These studies report the presence of complete Mott insulator
at ambient pressure in BaFe2(S, Se)3, with an orbital-selective Mott phase manifest-
ing at higher pressures. For BaFe2Se3, Ref. [91] faithfully reproduces the experimental
resistivity-vs-temperature curve at 12.7 GPa, which is the pressure at which supercon-
ductivity emerges (see the phase diagram, Fig. 2.5). Thus, this result recognizes the
OSMP as the high-pressure normal state of the 123 ladders, above the superconduct-
ing Tc.

An alternative, or complementary, conclusion can be drawn from calculations us-
ing the density-matrix renormalization group method [178–180]. These calculations
also invoked the OSMP, but to address the experimental results for ambient pressure.
Using a phenomenological three-orbital Hubbard model (Sec. 2.5), the DMRG simu-
lations predicted [178] and confirmed [179] the neutron-scattering result on BaFe2Se3

[85], and also qualitatively reproduced [180] the spectra of resonant inelastic x-ray scat-
tering on the same compound [202]. Note that the assumption of the OSMP at ambi-
ent pressure is still consistent with the experimental reports of the insulating behavior.
The DMRG studies report the presence of a small pseudogap even in the, in princi-
ple, metallic OSMP [180], and this gap aligns with the activation energy of resistivity,
0.13−0.18 eV, reported experimentally for BaFe2Se3 [88,205].

The above discussion highlights the undeniable significance of the OSMP in un-
derstanding the behavior of the 123 ladders. Whether it exists in the high-pressure
regime, ambient-pressure regime, or both, its impact on the system’s properties is evi-
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dent. Moreover, exploring the properties of the OSMP offers valuable insights not only
for explaining the experimental results but is also of interest in its own right, especially
in low dimensions. This shall become clear from the original results of Chaps. 3 and 4.

2.6.2 Effective model of the orbital-selective Mott phase: the
generalized Kondo-Heisenberg Hamiltonian

As discussed in Sec. 2.5.1, performing calculations within the three-orbital Hubbard
model can be computationally demanding, particularly in the ladder geometry. There-
fore, it becomes necessary to employ a simplified version of the model. Depending
on the problem at hand, this thesis employs either the original three-orbital Hubbard
model utilized in the aforementioned DMRG studies [178–180] or its streamlined ver-
sion. Since the simpler model is specifically tailored to capture the OSMP, it is useful to
first explore how the OSMP arises in the full three-orbital setting studied via DMRG.

Figure 2.10(a) shows the U vs JH phase diagram of the three-orbital Hubbard model
(2.1) on a chain geometry for filling n = 4 [178,180]. The kinetic-energy parameters are
phenomenologically chosen to model the physics of the 123 ladders. They are explic-
itly given in the figure’s caption, whereas the resulting noninteracting bandwidth is
shown in the inset of Fig. 2.10(c). The key result is the emergence of the OSMP, which is
established once the value of JH surpasses a threshold determined by the crystal-field
splittings. Note the striking similarity between the diagram Fig. 2.10(a) and Fig. 2.9,
despite the different dimensionalities and different methods used. Here, the OSMP en-
compasses the regime with JH/U ∼ 0.25 and intermediate U /W , which is considered
to be realistic for actual materials [176,185,186]. Crucially, in the OSMP, one orbital
γ= 2 (also labeled c) opens a gap, while the other two orbitals are apparently metallic,
albeit with a small pseudogap13; see the density of states in Fig. 2.10(b). The OSMP is
also characterized by interesting magnetism, which is further studied in Chap. 3.

It is interesting to zoom in on the properties that helped in identifying the above
OSMP. Figure 2.10(c) displays the orbital occupancies

〈
nγ

〉
vs U /W for the typical value

JH/U = 0.25. In the metallic regime at small U , the occupancies
〈

nγ
〉

gradually evolve
from the noninteracting limit. Interestingly, at a critical U /W , the occupancy of the
γ = 2 orbital “locks” at 1 for a wide range of interactions, while the other two orbitals
have occupancies ∼ 1.5. The obtained results are robust w.r.t. variations in the system
size, supporting the existence of an OSMP, which persists until a second critical value of
U /W is reached, marking the transition to the Mott-insulator regime. Moreover, within
the OSMP, a robust magnetic moment develops, as shown in Fig. 2.10(d). This moment
reaches the maximum possible value 〈S2〉 ' 2 already at an intermediate U /W ∼ 1.
This is usually a feature of an insulator, whereas, here, the system still remains (bad)
metallic.

The OSMP in the three-orbital chain is also stable w.r.t. doping. In Fig. 2.11(a),
one observes that upon doping the occupancies of the itinerant orbitals increase lin-
early, while the occupancy of the localized orbital is unaffected and stays locked to 1.
Fig. 2.11(b), on the other hand, shows the intraorbital charge fluctuations, which are

13Despite the presence of the small pseudogap, the orbitals γ = 0,1 are hereafter called metallic or
itinerant.
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Model.—The Hamiltonians used are multiorbital
Hubbard models composed of kinetic energy and interact-
ing terms: H ¼ HK þHint. The kinetic contribution is
written as

HK ¼ −
X

iσγγ0
tγγ0ðcþiσγciþ1σγ0 þ H:c:Þ þ

X

iσγ

Δγniσγ; (1)

where tγγ0 denotes a (symmetric) hopping amplitude
defined in orbital space fγg connecting the lattice sites i
and iþ 1 (γ ¼ 0, 1, 2) of a one-dimensional lattice of
length L. The hopping amplitudes used here are (eV units):
t00 ¼ t11 ¼ −0.5, t22 ¼ −0.15, t02 ¼ t12 ¼ 0.1, and
t01 ¼ 0, with an associated total bandwidth W ¼ 4.9jt00j
(the individual orbital bandwidths Wγ=jt00j are 3.69, 3.96,
and 1.54, for γ ¼ 0, 1, and 2, respectively). Both hoppings
and W are comparable in magnitude to those used in more
realistic pnictides models [33]. Only hybridizations
between orbitals 0 and 2, and 1 and 2, are considered.
Δγ defines a crystal-field splitting which is orbital depen-
dent with values Δ0 ¼ −0.1, Δ1 ¼ 0, and Δ2 ¼ 0.8. All
these parameters are phenomenological, i.e., not derived
from ab initio calculations. Their values were chosen so
that the band structure [shown in the inset of Fig. 2(a)]
qualitatively resembles that of higher dimensional pnic-
tides, with a hole pocket at k ¼ 0 and electron pockets at
k ¼ %π. This model will be referred to as “Model 1” while
a “Model 2” with slightly different parameters will be
discussed in the Supplemental Material [34]. The
Coulombic repulsion interacting portion of the
Hamiltonian is

Hint¼U
X

iγ

ni↑γni↓γþðU0−J=2Þ
X

iγ<γ0
niγniγ0 −2J

X

iγ<γ0
Siγ ·Siγ0

þJ
X

iγ<γ0
ðPþ

iγPiγ0 þH:c:Þ; (2)

containing the standard intraorbital Hubbard repulsion U,
and Hund’s rule coupling J. For SU(2) symmetric systems,
the relation U0 ¼ U − 2J holds. ciσγ annihilates an electron
with spin σ at orbital γ and site i, and niσγ counts electrons
at i with quantum numbers (σ, γ) The operator Siγ (niγ) is
the spin (total electronic density) at orbital γ and site i, and
the definition Piγ ¼ ci↓γci↑γ was introduced. The electronic
density per orbital is fixed to n ¼ 4=3, i.e., four electrons
every three orbitals, in analogy with the filling used in the
modeling of iron superconductors with three orbitals [33].
As a many-body technique, the DMRG method [30–32]
was used, with technical details provided in the
Supplemental Material [34].
Results.—In Fig. 1, the phase diagram of Model 1 is

shown, based on the DMRG measurements of the orbital
occupancies nγ and the square of the spin operator at every
site (see Fig. 2). Two phases are obvious: a metallic weakly
interacting state M at small U and a MI regime at large U,

where n0¼2, n1¼n2¼1 minimize the double-occupancy
energy penalization and J induces a spin 1 state at each site
(orbital 0 is doubly occupied because of the small but
nonzero split between orbitals 1 and 0). Naturally, the spin
order is staggered in the MI phase. Less obvious are the
other two phases in Fig. 1. For example, a correlated “band
insulator” (BI) with n0 ¼ n1 ¼ 2 and n2 ¼ 0 is found in a
region bounded by J less than the crystal-field splittingsΔγ ,
so that the low-spin state is favored, andU=W not too large,
so that double occupancy is not heavily suppressed by U.
At J exactly 0.0, the BI state survives for any value ofU=W
because in this line U ¼ U0. But at large U=W, a tiny J is
sufficient to destabilize the BI state into the MI state. The
related BIþM state has n0 ∼ n1 ∼ 2 and n2 ∼ 0: a metallic
state with characteristics close to the BI [35]. Clearly,
increasing J=U the BI=BIþM phases are suppressed. In
fact, with increasing U=W the M state is the most stable at
J=U ∼ 0.075 because of the competition J vs Δγ . Since the
BI=BIþM states are not our main focus, additional
properties are in the Supplemental Material [34].
Our most important result in Fig. 1 is the presence of a

prominent OSMP regime, stabilized after J becomes larger
than a threshold that depends on Δγ . The OSMP contains
the region J=U ∼ 1=4 at intermediate U=W believed to be
realistic [36–39]. For the prototypical value J=U ¼ 1=4, in
the small-U metallic regime the nγ values evolve smoothly
from the noninteracting limit. However, at a critical U=W,
the γ ¼ 2 orbital population reaches 1 and stays there in a
wide window of couplings, while the other two densities
develop a value ∼1.5 [Fig. 2(a)]. These results are robust
against changes in L and they are compatible with the
presence of an OSMP, that eventually ends at a second
critical U=W when the transition to the MI regime occurs.
In the Supplemental Material [34], results similar to
Fig. 2(a) but adding two holes are shown: while n2 remains
at 1 in the OSMP regime, now n0 ∼ n1 ∼ 1.37, showing that
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FIG. 1 (color online). Phase diagram of the three-orbital Model
1 for n ¼ 4=3. The different phases are labeled as follows: metal
(M), band insulator (BI), a metallic state resembling the BI state
(BIþM), Mott insulator (MI), and orbital-selective Mott phase
(OSMP). Within the OSMP regime, it is possible to distinguish
between block (B) and FM states.

PRL 112, 106405 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 MARCH 2014

106405-2

Figure 2.10: Orbital-selective Mott phase studied via DMRG for the three-orbital Hub-
bard model (2.1) applied to 123 ladders. To facilitate DMRG calculations for three
orbitals, the geometry is reduced from the ladder to a chain. The parameters are
phenomenological and follow from [178–180]; see Sec. 2.5 for an exhaustive discus-
sion. Explicitly, in eV units, t00 = t11 = −0.5, t22 = −0.15, with a small hybridization
t02 = t12 = 0.1, t01 = 0 (tγγ′ is symmetric). The crystal-field splittings are ∆0 = −0.1,
∆1 = 0, ∆2 = 0.8. The resulting noninteracting band structure is shown in the inset of
panel (c), where the dashed line marks the Fermi level at n = 4 (the density chosen
here to model the Fe2+ valence). The orbitals γ= 0,1,2 can be attributed to the realistic
dxz , dy z , dx y orbitals, respectively; compare the band structure and the crystal-field
splitting shown in Fig. 2.6(b). The bandwidth, W = 2.45 eV, is used as the energy unit.
Note that the same kinetic-energy parameters are used in some of the original results
of Chaps. 3–6. In this figure, J ≡ JH. (a) Phase diagram as a function of the interac-
tion strength U /W and the Hund’s coupling JH/U . The labels stand for: a metal (M),
a band insulator (BI), a metallic state resembling the BI state (BI+M), Mott insulator
(MI). Within the OSMP, one distinguishes block-magnetic (B) and ferromagnetic (FM)
states; see Chap. 3 for an investigation of magnetism. (b) The density of states within
the OSMP (U /W = 0.8, JH/U = 0.25). Here, the orbitals are labeled as γ = a,b,c, cor-
responding to γ = 0,1,2, respectively. The numbered P labels are irrelevant for the
present discussion. (c) Average occupancy nγ ≡

〈
nγ

〉
of each orbital vs the interaction

U /W at Hund coupling JH/U = 0.25 (d) Average local magnetic moment
〈

S2
〉

vs the
interaction U /W for various Hund couplings JH/U . PANELS (A), (C), (D) REPRINTED WITH PERMISSION

FROM [178]; COPYRIGHT (2014) BY THE AMERICAN PHYSICAL SOCIETY. PANEL (B) ADAPTED FROM [180].
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Figure 2.11: Stability of the OSMP with respect to doping for the same model as in
Fig. 2.10. The interactions are U /W = 0.8, JH/U = 0.25. Here, the orbitals are labeled as
γ= a,b,c, corresponding to γ= 0,1,2 on Fig. 2.10. (a) Average occupancy

〈
nγ

〉
of each

orbital vs total filling n. The inset shows the total static spin structure factor, which
is irrelevant for the present discussion, but shall be addressed in Chap. 3. (b) Average
charge fluctuations 〈δN 2

γ〉 = 〈n2
γ〉−〈nγ〉2 for each orbital vs the total filling n. ADAPTED FROM

[180].

vanishing in the localized orbital, while substantial in the itinerant ones, and this situ-
ation is again unaffected by doping. In summary, the DMRG data confirms the emer-
gence of the OSMP with both local and spatial correlation effects included, with the
presence of the magnetic order (see Chap. 3), and even with small interorbital hy-
bridization. As expected, the OSMP is gradually suppressed as JH/U decreases [Fig.
2.10(a)]. At small interaction strengths U /W , this suppression arises due to compe-
tition with the crystal-field splitting that promotes the metallic and band-insulating
states. On the other hand, at large interaction strengths U /W , the suppression occurs
as a result of competition with the Mott-insulating state.

The above properties of the OSMP enable the derivation of an effective model
[196,206]. The derivation starts with the observation that the two itinerant orbitals are
very close to degeneracy; see the inset of Fig. 2.10(c). Therefore, when the occupancy
of the localized orbital is locked to 1, the other two orbitals behave very similarly w.r.t.
several different observables [Fig. 2.10(c) and Fig. 2.11]. They also have nearly identi-
cal occupancies ∼ 1.5. To reduce the number of degree of freedoms, the idea is thus
to simply drop one of the orbitals and consider a two-orbital model14. The rationale is
that the essential characteristics of the OSMP should be primarily determined by the
inherent coexistence of the localized and metallic orbitals, rather than the details and
the precise number of the orbitals. Still, this is just an educated guess, which, however,
turns out to be a good one. It was shown that the two-orbital model correctly repro-
duces both the static [196,207] and dynamic [206] properties of the OSMP found in the
three-orbital chains.

The next step in the derivation is the observation that the reduced two-orbital
model within the OSMP still contains degrees of freedom unnecessary for a low-energy

14This two-orbital model keeps the orbitals γ = 1,2 of the three-orbital model parametrized in
Fig. 2.10. In the two-orbital case, also the interorbital hybridization was neglected, as it was found that
it does not affect the physics appreciably [196]. However, the values of the hopping amplitudes and the
crystal-field splittings were retained.
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description. That is, similarly as the single-orbital Hubbard model reduces to the spin-
only Heisenberg model for large U and half filling, here, one can eliminate the charge
degrees of freedom on the localized orbital. The result would be a model that retains
one itinerant orbital, described by the standard Hubbard model and one localized or-
bital, described by the Heisenberg model. Crucially, the two subsystems should be
coupled via the Hund’s coupling. Rigorously, to arrive at such a model from the full
two-orbital Hamiltonian, one needs to use the Schrieffer-Wolff transformation [208].

The specific Schrieffer-Wolff procedure is outlined in the Supplemental Material
of Ref. [196]. Here, only the final result is provided, dubbed the generalized Kondo-
Heisenberg (gKH) Hamiltonian,

HK =− t11
∑
i jσ

c†
iσ1c jσ1 +U

∑
i

ni↑1ni↓1

+K
∑
i j

Si 2 ·S j 2 −2JH
∑

i
Si 1 ·Si 2 .

(2.6)

Figure 2.12 shows a graphical representation of the Hamiltonian. In the above, the
notation is kept consistent with Eq. (2.1). The subscripts γ= 1,2 mark the itinerant and
localized orbitals15, respectively. K = 4t 2

22/U is the Heisenberg-like exchange between
spins on the localized orbital. For the 123 ladders, the sums over i j are restricted to
the nearest-neighbors in the ladder (or chain) geometry. The electronic density of the
gKH model nK is obtained from the original density n by subtracting the occupancy
of the localized orbital, i.e., nK = n − 1. Alternatively, one can also choose nK = 3−
n, due to the particle-hole symmetry of Eq. (2.6). Importantly, for JH/U = 0.25, the
description (2.6) is valid even at what might be considered a not too large U /W ∼ 0.8
[196]. This is because from the point of view of the narrow orbital γ= 2, such a value of
the interaction is already quite large; note the wide gap in Fig. 2.10(b). The interested
reader is referred to [196,206,207] (and their Supplemental Materials) for a thorough
comparison of different properties between the gKH, the two- and the three-orbital
Hamiltonians.

From the physical point of view, the effective Hamiltonian (2.6) reveals that the
OSMP naturally favors exotic magnetism. This magnetism follows from the competi-
tion between the superexchange mechanism, known from Hubbard-like models, and

Figure 2.12: Graphical representation of the generalized Kondo-Heisenberg Hamilto-
nian, Eq. (2.6). SIMILAR FIGURE WAS PUBLISHED IN [O1].

15Phenomenologically, the itinerant orbital can be attributed to one of the dxz , dy z orbitals, while the
localized to dx y . This is consistent with the ab initio study on BaFe2Se3 [91].
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the double-exchange mechanism, known from Kondo lattice models, which generates
a unique form of frustration [207]. The exploration of the magnetism in the ladder ge-
ometry is the topic of the original results of the next chapter, Chap. 3. On the other
hand, Chap. 4 shows how this magnetism leads to the emergence of topological Majo-
rana modes.

From a different, say “technical”, point of view, an important feature of the Hamil-
tonian (2.6) is its relatively modest Hilbert space dimension, 8L . Although still more
challenging than the single-orbital Hubbard model with 4L , it is much less complex
than the two-orbital model with 16L , let alone the three-orbital model with its vast
64L-dimensional space. This property allows for an accurate treatment of the gKH
model using the DMRG method on relatively large clusters of size L ∼ 50 − 70, en-
abling precise calculations for sizable ladders such as 2× 36. Additionally, even the
exact-diagonalization methods can be employed here, reaching usable clusters of size
L ∼ 12−16. Finally, note that the DMRG method’s applicability in the ladder geometry
is slightly compromised due to the increased entanglement compared to the truly one-
dimensional chains. Without the application of the gKH model, the computational
cost of simulating a multiorbital ladder would be prohibitively high. Hence, the gKH
model plays a pivotal role in the results presented in this thesis, being utilized in most
of the original works (Chaps. 3, 4, 6), and being particularly essential for the results of
Chap. 3.
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QUANTUM MAGNETISM OF

IRON-BASED LADDERS:
BLOCKS, SPIRALS, AND SPIN FLUX

Having outlined the essential background, in this chapter, I present the first of my orig-
inal works [O1]. This work explores the magnetic properties of multiorbital systems,
setting the stage for the later investigation of electronic and topological effects.

My main achievement here is charting the doping n vs interaction U magnetic
phase diagram of the generalized Kondo-Heisenberg model. This model is relevant
to the description of the 123 ladders (see Sec. 2.5 and, particularly, Sec. 2.6.2). While
previous studies primarily focused on the simpler chain geometry [196,207], I explic-
itly construct the phase diagram in the ladder configuration. The diagram reveals that
the rich magnetic patterns of the orbital-selective Mott phase (OSMP), such as blocks
and spirals, remain surprisingly robust as the dimensionality is increased from a chain
to a ladder. This establishes a closer connection between the theory, the experiment,
and the real materials. Crucially, I also reveal that the ladder supports phases absent in
its chain counterpart. For example, I discover incommensurate antiferromagnetism,
a robust regime of phase separation (discussed recently in Refs. [209,210]), and a novel
quantum spin-flux state (possibly relevant to the results of Ref. [211]). To enhance the
reader’s understanding and appreciation of these findings, I will now more broadly dis-
cuss the previous investigations into magnetism in iron-based systems.

As discussed in Chap. 2, most iron-based materials are magnetically ordered in the
parent state, with the typical pattern being the stripe antiferromagnetism [ordering
vector q = (π,0)]. However, the magnetic patterns, as realized, for instance, in pnic-
tides, can go beyond the stripes. Perturbations, including pressure, doping, and isova-
lent chemical substitution, have the potential to induce previously undiscovered forms
of magnetism [118]. For example, electron-doping of BaFe2As2 with Co replaces the
commensurate stripe order with an incommensurate spin-density wave [212]. Instead,
hole-doping of the same compound leads to double-q (or, equivalently, C4) magnetic
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phases [213]. These phases are superpositions of patterns with two different stripe or-
dering vectors q, allowing to preserve the tetragonal C4 symmetry [118,213,214]. There
are two realizations of such phases [118,214]. One is the charge-spin density wave, with
a nonuniform magnetization that vanishes at even sites and is staggered along the odd
sites (realized in hole-doped SrFe2As2 [213]). The other is the spin-vortex crystal, char-
acterized by noncollinear (but coplanar) magnetization forming spin vortices that are
staggered across the plaquettes (realized in electron-doped CaKFe4As4 [215]).

Unexpected magnetic orders arise also in iron chalcogenides. For instance, in
FeTe, a double-stripe magnetic order is observed [216–218]. Unlike the typical single-
stripe pattern, this order features double stripes of parallel spins within each Fe layer.
Upon doping the compound with additional Fe, resulting in Fe1+xTe, the double-stripe
order transforms into an incommensurate (yet collinear) spin-density wave and, with
further doping, into noncollinear helical order [219]. In the family of the 245 com-
pounds, e.g., (K, Rb)2Fe4Se5, a so-called block-magnetic order emerges, stabilized in
the presence of ordered

p
5×p5 iron vacancies [220–224]. This magnetic order consists

of ferromagnetically aligned 2×2 blocks, separated by the vacancies, and antiferromag-
netically coupled from block to block. Additionally, in compounds like KxFe2−y Se2,
phase separation between magnetic iron-vacancy and superconducting regions was
observed at nanometer scales (see [119] and references therein).

The chalcogenide ladders of the 123 family inherit the tendency to rich magnetism
of their higher-dimensional cousins. Although the standard (π,0)-stripe magnetism
remains the most common, there are notable exceptions. For instance, BaFe2Se3 ex-
hibits the block magnetism [85–89], similar to (K, Rb)2Fe4Se5, but without the need for
iron vacancies. Here, the pattern is composed of 2×2 ferromagnetic blocks, ordered
along the ladder in a staggered fashion, ↑↑↓↓↑↑↓↓

↑↑↓↓↑↑↓↓ . In the case of CsFe2Se3, recent mea-
surements report some type of incommensurate order to be present [211].

Within the theory department, the magnetic states of the 123 ladders were studied
via the Hartree-Fock [170] and density-functional theory [84,130,131,148,173] analyses.
Although these methods can answer which magnetic order minimizes the energy, they
cannot reliably discover previously unanticipated orders. Moreover, they only approx-
imately capture the crucial electronic correlations. This can lead to overlooking some
subtle frustration effects, thus missing the microscopic mechanism behind the origin
of a particular magnetic tendency. To mitigate this problem, complementary studies
relied on the density-matrix renormalization group method [178,179,196,207]. How-
ever, these studies focused on the simplified chain geometry and not the true ladder
configuration. Although such an approximation is reasonable, as the ladders are quasi-
one-dimensional systems where intrachain coupling should be the most relevant, tak-
ing into account the proper ladder geometry permits more orders to emerge. This is
clearly found in the original results below. Additionally, these results determine the
regimes where the chain approximation holds, e.g., in the block or block-spiral phases.
The subsequent Chaps. 4–6 shall leverage that and employ the computationally less
demanding chain geometry, which is sufficient for the concepts discussed there.

With the above perspective in mind, it becomes evident that exploring magnetism
in correlated multiorbital models in the ladder geometry is a timely task. This is partic-
ularly significant due to the prevailing notion that magnetism is important for high-Tc

superconductivity (see Chaps. 1 and 2).
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Motivated by increasing experimental evidence of exotic magnetism in low-dimensional iron-based materials,
we present a comprehensive theoretical analysis of magnetic states of the multiorbital Hubbard ladder in the
orbital-selective Mott phase (OSMP). The model we used is relevant for iron-based compounds of the AFe2X3

family (where A = Cs, Rb, Ba, K are alkali metals and X = S, Se are chalcogenides). To reduce computational
effort, and obtain almost exact numerical results in the ladder geometry, we utilize a low-energy description
of the Hubbard model in the OSMP—the generalized Kondo-Heisenberg Hamiltonian. Our main result is the
doping vs interaction magnetic phase diagram. We reproduce the experimental findings on the AFe2X3 materials,
especially the exotic block magnetism of BaFe2Se3 (antiferromagnetically coupled 2 × 2 ferromagnetic islands
of the ↑↑↓↓ form). As in recent studies of the chain geometry, we also unveil block magnetism beyond the 2 × 2
pattern (with block sizes varying as a function of the electron doping) and also an interaction-induced frustrated
block-spiral state (a spiral order of rigidly rotating ferromagnetic islands). Moreover, we predict new phases
beyond the one-dimensional system: a robust regime of phase separation close to half filling, incommensurate
antiferromagnetism for weak interaction, and a quantum spin-flux phase of staggered plaquette spin currents
at intermediate doping. Finally, exploiting the bonding/antibonding band occupations, we provide an intuitive
physical picture giving insight into the structure of the phase diagram.

DOI: 10.1103/PhysRevB.104.045128

I. INTRODUCTION

The lattice geometry plays an important role in quantum
many-body systems, especially if the problem is reduced to
one (1D) or two (2D) dimensions. For example, the crossover
from 1D chains to 2D planes of the spin-1/2 Heisenberg
model shows that the system behaves fundamentally differ-
ently if one considers an even or odd number of coupled
chains [1]. Consequently, in the last three decades, there was
a tremendous effort devoted to understanding the physics of
quantum ladders, i.e., the systems at the crossroads between
1D and 2D worlds. Furthermore, while unbiased analytical or
numerical calculations are often not possible in 2D, the 1D
chains and quasi-1D ladders—due to the possibility of an ac-
curate treatment via quasiexact numerical simulations—have
become a playground for condensed-matter physicists to test
various theoretical scenarios.

The interest in the physics of the ladder systems goes
beyond a toy model investigation. There are many materials
whose lattice structure is of the ladder geometry. The unique
interplay between theory and experiment in low-dimensional
systems allows for an in-depth understanding of various
complex phenomena. For example, within cuprates the
so-called telephone-number two-leg ladder compounds
(La, Sr, Ca)14Cu24O41 were extensively studied motivated by
the presence of pressure-induced high-critical-temperature
superconductivity [2–4]. Interestingly, the latter was

numerically predicted [5,6], showing the power of theoretical
investigation of low-dimensional systems. Another series
of cuprate materials, SrxCuyOz, allows one to study the
differences between various lattice geometries, from chains
(Sr2CuO3), through two- (SrCu2O3) and three-leg (Sr2Cu2O5)
ladders, to 2D planes (SrCuO2). The first of these compounds
is one of the best realizations of a 1D system, with the intra-
chain exchange integral being four orders of magnitude larger
than the interchain one [7]. Despite that the hole doping nec-
essary for superconductivity is hard to achieve, the next two
exhibit a large contribution of magnons [8,9] to the thermal
conductivity, in agreement [10,11] with the thermal current
being a constant of motion of 1D quantum spin systems.

Iron-based ladders are far less explored, especially from
the theoretical perspective. Recent experimental investiga-
tions have shown that the two-leg ladder materials from the
so-called 123 family, i.e., AFe2X3 where A are alkali metals
and X chalcogenides, become superconducting under pressure
[12–14], as in the Cu-based equivalents. Canonical (π, 0)
order, i.e., staggered antiferromagnetic (AFM) ordering along
the legs and ferromagnetic (FM) along the rungs, was identi-
fied in (Ba, K)Fe2S3 [15] and (Cs, Rb)Fe2Se3 [16–18]. More
recent measurements on CsFe2Se3 [19] suggest that an in-
commensurate order emerges in this compound instead of the
AFM.

Interestingly, the magnetic orders identified in AFe2X3 lad-
ders display more variety than those found in cuprates. In a

2469-9950/2021/104(4)/045128(15) 045128-1 ©2021 American Physical Society
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series of experiments on the BaFe2Se3 compound, an exotic
block-magnetic order was reported, with the spins forming
FM islands which are then AFM coupled ↑↑↓↓↑↑↓↓ (on
the ladder this takes the form of 2 × 2 FM blocks which are
AFM coupled). This unusual magnetic state was identified
with the help of inelastic neutron scattering (INS) [20], x-ray
[21] and neutron powder diffraction [21–23], and muon spin
relaxation [21]. Remarkably, yet again, the block-magnetic
order was predicted by numerical calculations [24]. It can be
argued that the spin arrangement of the BaFe2Se3 ladder is a
low-dimensional equivalent of the magnetic state found in 2D
iron-based systems, i.e., the double stripe or staggered dimer
ordering found in FeSe [25], the

√
5 × √

5 iron vacancies
ordering in (K, Rb)0.8Fe1.6Se2 [26–29], or the blocklike mag-
netism found in the family of 245 iron-based superconductors
(K, Rb)2Fe4Se5 [30,31]. Also, similar block magnetism was
predicted in a 1D iron selenide compound Na2FeSe2 [32].

The theoretical analysis of iron-based systems is a chal-
lenging task due to their multiorbital nature. While the
single-orbital Hubbard model is often sufficient to describe
the Cu-based parent compounds (with the charge density close
to one electron per site), the Fe-based materials need (in
principle) five orbitals filled with six electrons; i.e., they have
to be described by the multiorbital Hubbard model with intra-
and interorbital interactions treated on an equal footing. As
a consequence, exact-diagonalization many-body calculations
are challenging to achieve due to the exponential growth of
the Hilbert space of the Hamiltonian—dim(H) = 4�L with
� the number of active orbitals and L the number of sites
in the system. In order to study the physics of such sys-
tems, we must rely on some form of approximations. For
example, the full five-orbital Hubbard model was investigated
via the mean-field Hartree-Fock analysis [33–36], revealing
a complex filling-Hund/Hubbard interaction magnetic phase
diagram with many competing phases. Many of such phases
were also confirmed by density functional theory [34,37–
42]. Moreover, the electronic properties of the multiorbital
Hubbard model were extensively investigated via the dynami-
cal mean-field theory [43–45], especially the orbital-selective
Mott phase (OSMP), namely the possibility of the localization
of a fraction of the conduction electrons (on one or more
orbitals) [46–49]. The latter phase is regarded as a promising
candidate for the parent state of iron-based superconduc-
tors [50–53] and, most relevantly, of the 123-family ladders
[18,47,49,54–56].

Despite their value, the aforementioned theoretical ap-
proaches are limited in that they cannot properly incorporate
the effects of quantum fluctuations over long distances. This
issue is particularly important for low-dimensional systems,
where it is well known that quantum fluctuations must be
treated accurately, thereby requiring full many-body calcu-
lations. In order to facilitate the latter, an alternative route
has to be taken, such as decreasing the number of considered
orbitals. For instance, it was shown [57] that the three-orbital
Hubbard model can accurately describe the physics of iron-
based materials. In the latter, the eg orbitals (dx2−y2 and dz2 )
are far enough from the Fermi level to be neglected, rendering
only the t2g orbitals (dxy, dxz, dyz) active. Importantly, the
three-orbital model was used to predict [24,58] and confirm

FIG. 1. Schematic representation of (a) the ladder geometry,
(b) density of states in the orbital-selective Mott phase, (c) the
generalized Kondo-Heisenberg model, (d)–(i) the unveiled exotic
magnetic orders.

[59] the INS result on BaFe2Se3 [20] related to the block-
magnetic order, while also tracing its origin to the presence
of the OSMP. Nevertheless, it should be noted that accurate
many-body simulations of three-orbital systems are mostly
restricted to the chain geometry, with ladders being largely
out of reach. Recently, it was realized that one may further
reduce the number of degrees of freedom captured within
minimal models by noting that the dyz and dxz orbitals are
close to being degenerate in tetragonal systems of the 123
family [49,54]. As a result, two-orbital models were designed,
which, within the OSMP, were found to correctly reproduce
both the static [60,61] and dynamic [62] properties of the
three-orbital chains.

In this work, we use such a minimal approach to go beyond
the chain geometry—bridging the gap between theory and
experiment—and perform a comprehensive analysis of the
magnetic phases within the OSMP of a multiorbital Hubbard
ladder. To facilitate numerically exact many-body calcula-
tions, we focus on a two-orbital model, which we further
map onto an accurate low-energy description, the generalized
Kondo-Heisenberg Hamiltonian. We unveil a rich variety of
exotic magnetic phases [see Figs. 1(d)–1(i) for sketches],
summarized in our central result: the doping vs interaction
magnetic phase diagram. In particular, we reproduce the
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experimental finding on BaFe2Se3, i.e., the ↑↑↓↓
↑↑↓↓ block phase,

and predict the possibility of experimentally realizing larger
blocks, e.g., ↑↑↑↓↓↓

↑↑↑↓↓↓ , by doping this or related compounds.
Furthermore, we report a highly unusual block-spiral state
(with the blocks rigidly rotating throughout the system), dis-
covered first using a chain geometry [61], and predict this
spiral to be stable also on the experimentally relevant ladder.
Surprisingly, we reveal that the ladder supports also phases
absent in its chain counterpart. For example, in the vicinity
of half filling, we discover incommensurate AFM order as
well as a robust regime of phase separation (relating our effort
to previous works on cuprates and manganites, respectively).
Last but not least, we report the emergence of a novel quantum
spin flux state at intermediate doping, with staggered spin
currents circulating around 2 × 2 plaquettes. Our magnetic
phase survey is supplemented by an intuitive physical picture
involving the bonding/antibonding ladder bands, which ex-
plains the observed magnetic tendencies and generalizes our
conclusions to models with more orbitals.

The paper is organized as follows. In Sec. II, we intro-
duce the two-orbital Hubbard ladder relevant for the AFe2X3

compounds and simplify this formalism into the generalized
Kondo-Heisenberg Hamiltonian. Then, we describe the com-
putational method used to solve the many-body problem. In
Sec. III, we present the main result: the doping vs interaction
magnetic phase diagram. Each reported phase is discussed in
detail within three subsections III A, III B, III C, addressing
the cases of large, low, and intermediate doping, respectively.
Finally, in Sec. IV, we give a summary and draw conclusions.
In the Appendix, we discuss additional details regarding the
computational accuracy.

II. MODEL AND METHOD

We aim to establish the magnetic properties, within the
OSMP, of a two-orbital Hubbard model on a two-leg ladder.
In the generic SU(2)-symmetric form, the Hamiltonian reads

HH =
∑

γ 〈r m〉σ
tγ c†

γ rσ cγ mσ +
∑
γ r

�γ nγ r

+ U
∑
γ r

nγ r↑nγ r↓ + (U − 5JH/2)
∑

r

n0rn1r

− 2JH

∑
r

S0r · S1r + JH

∑
r

(P†
0rP1r + H.c.). (1)

Here, c†
γ rσ (cγ rσ ) creates (annihilates) an electron with spin

σ = {↑,↓} at orbital γ = {0, 1} of site r = (�‖, �⊥), where
�‖ = {1, . . . , L‖} and �⊥ = {1, 2} enumerate the sites in di-
rections parallel and perpendicular to the legs, respectively.
The total number of sites is L = 2 × L‖. The 〈r m〉 brackets
indicate summation over nearest-neighbor (NN) sites in the
ladder geometry [see the sketch in Fig. 1(a)]. The first two
terms of the Hamiltonian constitute the kinetic energy part,
with tγ denoting the hopping matrix elements, �γ denoting
the crystal-field splitting, and nγ r = ∑

σ nγ rσ = ∑
σ c†

γ rσ cγ rσ
being the total electron density at (γ , r). The remaining four
terms form the interaction part: the first is the standard intraor-
bital Hubbard repulsion U > 0, the second is the interorbital
repulsion U − 5JH/2, the third is the ferromagnetic Hund

exchange JH (which couples spins Sγ r on different orbitals
γ ), and the fourth is the interorbital pair hopping (Pγ r =
cγ r↑cγ r↓). Note that all the interaction terms follow directly
from the matrix elements of the fundamental 1/r Coulomb
interaction [63–65].

We adopt the following set of hopping amplitudes (eV
units): t0 = 0.5 and t1 = 0.15. The interorbital hybridiza-
tion is neglected, as it was shown that a realistically small
hybridization leaves the overall physics unaffected [60].
Moreover, here, we choose equal hoppings along the legs
and the rungs, i.e., t‖

γ = t⊥
γ = tγ , although density-functional

theory [34] and spin-wave theory [20] analyses suggest that
this is only an approximation for real materials. Nevertheless,
below we shall argue that such a choice does not compromise
the generality of our results. The crystal-field splittings are
assumed as (eV units) �0 = 0, �1 = 1.6, where the latter is
taken large enough to energetically separate the two orbitals.
The rationale behind the above values of tγ and �γ is to
reproduce the essential feature of the band structure of the
123-family materials—the coexistence of nondegenerate wide
and narrow orbitals [24,34,43,46,56,57]—and, in this sense,
these values are generic. The total kinetic-energy bandwidth
W = 3.55 eV is here the energy unit throughout the paper. To
further reduce the number of free parameters in the model, we
also fix the Hund exchange to JH = U/4, a value widely ac-
cepted to be experimentally relevant for iron-based materials
[66–70]. Finally, we note that our choice of model parameters
ensures that for a wide region of electronic fillings, 2 < nH <

3, and Hubbard interaction strengths, U � W , the ground state
is in the OSMP [60,62], where the narrow (γ = 1) orbital
undergoes Mott localization while the wide (γ = 0) orbital
remains itinerant [see Fig. 1(b)]. In the following, we shall
vary both nH and U to produce a rich variety of magnetic
phases [see Figs. 1(d)–1(i)].

The selective localization implies that the charge degrees
of freedom in the narrow orbital are essentially frozen out and
should no longer play a role in low-energy processes. Let us
consider the single-particle spectral function of the two-orbital
Hubbard ladder (1) defined as

Aγ (q, ω) = − 1

π
√

L

∑
r

eiq(r−c) Im

〈
c†
γ r

1

ω++(H − εGS)
cγ c

〉

− 1

π
√

L

∑
r

eiq(r−c) Im

〈
cγ r

1

ω+−(H − εGS)
c†
γ c

〉
,

(2)

where c†
γ r = ∑

σ c†
γ rσ , c = (L‖/2, 1), q = (q‖, q⊥), ω+ =

ω + iη, and 〈·〉 ≡ 〈GS| · |GS〉 with |GS〉 being the ground-
state vector with energy εGS. In Fig. 2, as an example we show
the case of Aγ (q, ω) for γ = 0, 1, nH = 2.75, and U/W = 1.
Several conclusions can be drawn from the results. (i) The
interaction U heavily modifies the dispersion relation which in
the U → 0 limit would have a simple cosine form (see also the
discussion in the next section). (ii) As expected in the OSMP
regime, already at U/W � 1 the electrons at the γ = 1 orbital
localize, which can be deduced from the flat (momentum-
independent) spectral function A1(q, ω). The two modes of
the latter, separated by a wide charge gap, resemble the lower
and upper Hubbard subbands of a Mott insulator. Similar
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FIG. 2. Single-particle spectral function Aγ (q, ω) of the two-
orbital Hubbard model (1) in the vicinity of the Fermi level εF. The
itinerant (γ = 0) orbital is presented as blue-green color, whereas
the localized (γ = 1) as dark purple. Both q⊥ = 0, π components
of each orbital are displayed. The frequency resolution was chosen
to be �ω = 0.02 eV with the broadening η = 2�ω. The results
were obtained for a ladder of L = 72 sites, filling nH = 2.75, and
interaction U/W = 1.

properties of the OSMP were also identified in 1D systems
[61,62].

The charge gap of the localized orbital is robust enough
to result in vanishing charge fluctuations already for U � W .
Correspondingly, the double occupancy of the latter orbital
can be traced out via the standard Schrieffer-Wolff transfor-
mation [71], leaving only the spin degrees of freedom active.
Such a procedure results [60] in the generalized Kondo-
Heisenberg (gKH) Hamiltonian

HK = t0
∑

〈r m〉σ
c†

0rσ c0mσ + U
∑

r

n0r↑n0r↓

+ K
∑
〈r m〉

S1r · S1m − 2JH

∑
r

S0r · S1r, (3)

where K = 4t2
1 /U is a Heisenberg-like exchange between the

localized γ = 1 spins. See Fig. 1(c) for a graphical represen-
tation of the Hamiltonian. The electronic filling nK of the gKH
model is obtained from the original filling nH by subtracting
the occupancy of the γ = 1 orbital, i.e., nK = nH − 1. How-
ever, it is noteworthy that due to the particle-hole symmetry of
(3), one could equivalently choose nK = 3 − nH. The effective
description (3) reveals that the OSMP naturally favors exotic
magnetism due to the coexistence of itinerant electrons and
well-developed local magnetic moments. In particular, within
the OSMP, the Hund exchange induces a remarkably complex
correlated behavior where the total on-site magnetic moment
〈S2

r〉 (Sr = ∑
γ Sγ r) is completely maximized [24,58,60] as in

an insulator, despite the system remaining metallic.
Previous comparisons between models (1) and (3) con-

cluded that the latter not only qualitatively but also quanti-
tatively reproduces both the static [60,61] and dynamic [62]
properties of the former (provided that the system is in the
OSMP). Accordingly, hereafter, in our numerical calculations,
we exclusively use the model (3), utilizing its considerably
smaller Hilbert space to perform extensive simulations with
feasible computational cost. The many-body ground state

(temperature T = 0) of the system is studied via the density
matrix renormalization group (DMRG) method within the
single-center site approach [72,73]. Throughout the DMRG
procedure, we typically keep up to M = 1200 states and
perform 20–30 full sweeps in the finite-size algorithm, main-
taining the truncation error below 10−6. We focus on the
subspace with zero total spin projection and a fixed particle
number N , which sets the filling nK = N/L. Open boundary
conditions are assumed. All results are obtained using the
DMRG++ computer program developed at Oak Ridge Na-
tional Laboratory [73,74], and the input scripts are available
online [75]. Additional details regarding the computational
accuracy are discussed in the Appendix.

The key observables used to identify the magnetic orders
are the total spin-spin correlation function 〈Sr · Sm〉 (viewed
as a function of distance or on NN bonds) and its Fourier
transform—the spin structure factor, defined as S(q) = 〈Sq ·
S−q〉, where Sq = (1/

√
L)

∑
r exp(iqr) Sr. These two quanti-

ties, albeit very useful, cannot distinguish between all possible
magnetic orders. Therefore, we supplement our analysis with
the chirality correlation function, which is explicitly defined
in the next section. Note that the exotic magnetic patterns we
observe are not static (as would be the case for a combination
of domain walls or a spin density wave), but exhibit significant
quantum fluctuations. For example, in the case of the block
pattern ↑↑↓↓ (whose extended version we report), exact di-
agonalization studies confirm [59] that the many-body ground
state is in at least 50% of the singlet form |↑↑↓↓〉 − |↓↓↑↑〉.
Accordingly, the individual magnetic blocks should be con-
sidered as regions with strong FM correlations, as opposed to
domains with finite magnetization.

III. RESULTS

To better understand the general structure of the magnetic
phase diagram reported below, it is instructive to recall the
properties of a noninteracting (U = 0) ladder system. In such
a case, the Hamiltonian (3) retains only the kinetic-energy
term which can be easily diagonalized by first introducing
the bonding and antibonding (symmetric and antisymmetric,
respectively) combinations of the rung states and then Fourier
transforming along the leg direction (here, we assume periodic
boundary conditions). In the general case of unequal leg and
rung hoppings, one obtains the dispersion relation ε(q) =
2t‖

0 cos(q‖) + t⊥
0 cos(q⊥), consisting of two bands (bonding

q⊥ = 0 and antibonding q⊥ = π ) separated by the energy 2t⊥
0

[see Fig. 3(a)]. The respective fillings are denoted by nb
K, na

K.
Since these bands can host at most 2L‖ electrons, the max-
imum possible filling is max{nb

K} = max{na
K} = 1, and thus

nb
K, na

K ∈ [0, 1], consistent with the relation nK = nb
K + na

K.
Note that this dispersion corresponds only to the γ = 0 or-
bital, as the γ = 1 orbital is completely localized within the
model (3). To avoid any confusion, hereafter, we reserve the
term band to denote the latter bonding/antibonding bands and
not the underlying orbitals.

Owing to the band structure, the behavior of the ladder
system is nontrivial even in the noninteracting case. The
Fermi level εF can cross either one or both bands [see the
sketches in Fig. 3(c)], giving rise to qualitatively different
Fermi “surfaces” with two (±kb

F) or four (±kb
F, ±ka

F) Fermi
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FIG. 3. Properties of the band structure. (a) Noninteracting (U =
0) band structure of (3) for t⊥

0 = t‖
0 . The dispersion concerns only the

itinerant γ = 0 orbital, as the γ = 1 orbital is completely localized.
The dashed line marks the Fermi level εF at half filling, nK = 1.
(b) nK-t⊥

0 phase diagram of the noninteracting ladder. The dashed
line marks the point where the Fermi level touches the tip of the
antibonding (q⊥ = π ) band, while the dot marks the phase boundary
between the one- and two-band regimes for t⊥

0 = t‖
0 . (c) DMRG

results for the antibonding band filling na
K vs the interaction U and

the total filling nK at fixed t⊥
0 = t‖

0 . The plot is composed of 37 × 40
data points obtained for the generalized Kondo-Heisenberg ladder
of L = 72 sites. The sketches show the one-band (na

K � 1) and two-
band (both bands fractionally occupied) regimes. The dashed line is
a contour at na

K � 1.

points, respectively. Whenever convenient, we will use the
abbreviated notation kF = {kb

F, ka
F} to collectively refer to both

wave vectors. To tune between the one- and two-band regimes,
one may use both the filling nK (to shift the Fermi level)
and/or the rung hopping t⊥

0 (to vary the band separation). This
is summarized in the nK-t⊥

0 phase diagram [76], Fig. 3(b),
where one clearly recognizes the complementary role of the
two parameters in deciding whether one or two bands are
fractionally occupied.

The picture of one- and two-band regimes can be extended
also beyond the U = 0 case. Here, although finite U inevitably
renormalizes the band fillings, the latter retain their physical
meaning and can be calculated in a straightforward manner. In
Fig. 3(c), we show the antibonding band filling na

K (with na
K =

nK − nb
K) as a function of the total filling nK and the interaction

strength U at fixed t⊥
0 = t‖

0 . We observe that there exists a
robust region where na

K � 1; i.e., the antibonding band is com-
pletely filled. This condition provides a convenient definition
of the one-band regime for a general U = 0. Starting from
U = 0, the boundary between the one- and two-band regimes
occurs at three-quarter filling nK = 1.5 [in agreement with
Fig. 3(b)] and shifts rightward with increasing U . Notably,
although the width of the one-band regime decreases with

the interaction, it does not vanish up to the largest considered
U/W = 4.

The significance of the above discussion lies in the fact
that the block magnetism of the gKH chain was shown to be
controlled by the Fermi wave vector of the itinerant orbital
[60], even though U � W . In the following, we shall see that
this insight remains meaningful also on the ladder, where the
distinct Fermi surfaces of the one- and two-band regimes will
necessarily come into play. In particular, we are already in
a position to argue that the main influence of varying t⊥

0 on
the magnetic properties of our system should come precisely
from tuning between the one- and two-band regimes. Con-
sider first the one-band regime. Here, as long as t⊥

0 is varied
in a range that will not push the system into the two-band
regime, there is only one Fermi wave vector kb

F available,
whose position does not depend on t⊥

0 . This suggests that the
magnetism, which depends on the Fermi wave vector, shall
remain mostly unaffected. At a few points within the one-band
regime, we checked (not shown) that this indeed holds true, at
least for a modest perturbation of the t⊥

0 /t‖
0 ratio (since one

expects that for t⊥
0 � t‖

0 the system will behave as uncoupled
rung dimers and our argument will eventually break). In the
two-band regime, the situation becomes more complicated, as
here varying t⊥

0 at a fixed filling nK does change the values
of kF. Nevertheless, judging by Fig. 3(b), it is reasonable to
assume that the latter change of Fermi wave vectors—and
the resulting impact on magnetism—will be complementary
to that achievable by tuning nK at fixed t⊥

0 . In that sense,
although in the following we fix t⊥

0 = t‖
0 , we do not expect

a qualitatively different magnetic phase diagram for other
t⊥
0 /t‖

0 ratios, but rather a similar diagram with renormalized
magnetic phase boundaries, originating in the renormalization
of the one- and two-band regimes. Finally, let us stress that it
is the one-band regime where we reproduce the experimen-
tally reported block magnetism, and clearly this is the regime
which is least affected by the perturbation of t⊥

0 .
The central result of this work, shown in Fig. 4, is the

nK-U magnetic phase diagram of the gKH model on a lad-
der geometry, relevant for the low-dimensional 123-family
iron-based superconductors within the OSMP. The details on
each reported magnetic phase are provided in the following
three sections: Sec. III A discusses the one-band regime, i.e.,
nK � 1.6, whereas Secs. III B and III C discuss the two-band
regime at low (nK � 1.3) and intermediate fillings (nK ∼ 1.5),
respectively. Here, let us first focus on a few generic phases.
(i) For all considered electronic fillings nK, the system is a
paramagnet at small values of the interaction strength U/W �
0.5. Note that in this regime our effective description (3) only
approximately depicts the behavior of the full multiorbital
Hubbard model. This stems from the fact that the latter is
not yet within the OSMP and the magnetic moments 〈S2

r〉 are
not yet fully developed. (ii) In the other extreme, when U �
W , the system is a ferromagnet for all noninteger fillings,
1 < nK < 2, due to the dominance of the double-exchange
mechanism (favored by a large value of the Hund exchange
JH). This phase is also present at moderate interaction strength
U � W in the proximity of nK = 2. (iii) For special values of
the electron density nK = 1 and nK = 2, i.e., at half filling and
in the case of a band insulator, respectively, the usual (π, π )
(staggered along the legs and rungs) AFM order develops.
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FIG. 4. Schematic nK-U magnetic phase diagram of the gen-
eralized Kondo-Heisenberg ladder of L = 72 sites. The vertical
lines within the phase-separation regime mark special fillings nK =
1.17, 1.25, where perfect block order is recovered (see the discussion
in Sec. III B). The phase diagram was inferred from extensive DMRG
calculations performed at 37 × 40 data points uniformly distributed
over the range of the plot. The phase boundaries are necessarily
approximate as they cannot be exactly determined from finite-size
calculations.

A. Block and block-spiral magnetism (one-band regime)

As follows from Fig. 3(c), the spatially isotropic (t⊥
0 = t‖

0 )
system is in the one-band regime for nK � 1.6. In the rest of
this subsection, we shall argue that this is the most exper-
imentally relevant region hosting the block-magnetic phase
found in BaFe2Se3. It is important to note that the filling nK

of the OSMP effective model (3) does not correspond to the
electronic density of the real materials or to the full five-orbital
Hubbard model. However, as we will argue below, it is the
position of the Fermi wave vectors kF that is crucial for the
magnetism within the block phase (as well as strongly influ-
ences the behavior of the other phases, even in the two-band
regime). This remains true also beyond the noninteracting
U → 0 limit where the kF become, in principle, a nontriv-
ial function of the electronic density. As a consequence, we
believe that our findings are generic provided that the mul-
tiorbital system is in the OSMP and has similar values of the
Fermi points kF, irrespective of the precise densities necessary
to attain them or the number of active orbitals.

Previous efforts [24,59,60] showed that the magnetic order
of the ↑↑↓↓ form can be stabilized on the chain lattice in
the U ∼ O(W ) region of the phase diagram. In such a case,
the block magnetism follows twice the Fermi wave vector
of the noninteracting limit 2kF = π (2 − nK) (recall that we
work above half filling, nK > 1). On the ladder geometry, in
the one-band regime, the latter is given by 2kb

F = π (2 − 2nb
K),

where the additional factor of 2 arises due to max{nb
K} = 1.

Our results shown in Fig. 5 support that the latter predicts also
the block-magnetic order of the two-leg ladder for U/W �
1 → 2. Namely, in Fig. 5(a), we present the spin-spin cor-
relation function 〈SL‖/2,1 · Sr〉 between the sites on the same
or different legs (lines and symbols, respectively). Clearly,
both correlation functions lie on top of each other and ex-
hibit a characteristic steplike pattern. This indicates that the

FIG. 5. Block-magnetic order. (a) Spin-spin correlations
〈SL‖/2,1 · Sr〉 as a function of distance with r = (�‖, 1) (intraleg)
or r = (�‖, 2) (interleg). Top to bottom: π/2 block (nK = 1.75,
U/W = 1), π/3 block (nK = 1.83, U/W = 1.1), mixed block
(nK = 1.81, U/W = 1). (b) Spin structure factor S(q) being the
Fourier transform of the correlations shown in (a). (c) Bond
correlations 〈Sr · Sr+1〉 corresponding to (a) and (b). 1 connects the
nearest-neighbor sites on the ladder. All results were obtained for a
generalized Kondo-Heisenberg ladder of L = 72 sites.

spins are arranged in, e.g., AFM-coupled 2 × 2 FM blocks for
nK = 1.75 [sketched in Fig. 1(e)], i.e., the so-called π/2-block
pattern ↑↑↓↓

↑↑↓↓ . This unusual magnetic order can be also iden-
tified via the spin structure factor S(q); see Fig. 5(b). Here,
the bonding component S(q‖, 0) (along the legs) has a well-
pronounced maximum at (2kb

F, 0) for all considered fillings
nK. On the other hand, the antibonding component S(q‖, π )
has only a weak momentum dependence. We again stress that
the observed alternating FM block patterns are inferred from
the spin-spin correlations and not the static magnetization
〈Sz

r〉.
On our finite lattice of L = 72 sites, the largest perfect (i.e.,

AFM-coupled FM) block that we have stabilized is of 3 × 2
size, the so-called π/3 block ↑↑↑↓↓↓

↑↑↑↓↓↓ [sketched in Fig. 1(f)],
present at nK = 1.83. However, it was shown [60] that a
small spin anisotropy can be used to stabilize even larger FM
islands, possibly accessible here using larger L. The block
nature of the correlations can be also seen in the NN bond
correlations 〈Sr · Sr+1〉 shown in Fig. 5(c) (here, 1 connects
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the NN sites on the ladder geometry). Interestingly, the block-
magnetic order is not restricted to perfect blocks of the same
size, as those above, but can also involve complicated patterns
of differently sized blocks. This is the case of nK = 1.81, for
which the real-space and bond correlation functions indicate
a repeating motif of a large 5 × 2 magnetic unit cell, within
which smaller blocks can be nevertheless still discerned. The
unusual periodicity of the latter pattern leads to a strong
maximum in S(q‖, 0) at q‖/π � 0.4, in agreement with the
2kb

F prediction. This finding is consistent with the analysis of
the block-magnetic orders in 1D systems [60,62]. There, the
perfect block order can be found for 2kF = π/m with m ∈ Z.
On the other hand, for 2kF = π/m, complex block patterns
are stabilized. It is important to note that these are not phase-
separated regions but true complicated spin arrangements in
an overall spatially isotropic system (see also the discussion
in the next section).

As already discussed, for U � W , the system orders
ferromagnetically due to the double-exchange mechanism
dominating for large Hund exchange JH. Furthermore, it was
recently shown in 1D systems [61] that between the block and
the FM phases another order exists: the frustrated block-spiral
state. In Fig. 6(a), we show the evolution of the spin structure
factor S(q) starting from the block phase at U/W = 1, for
the important special case of nK = 1.75, i.e., the π/2 block
of ↑↑↓↓

↑↑↓↓ form. Upon increasing U , the maximum of S(q‖, 0)
smoothly interpolates from q‖ = π/2 toward q‖ → 0, taking
incommensurate values in between. However, the real-space
correlations [shown in Fig. 6(b)] reveal that this order dif-
fers significantly from a “simple” block pattern. To gain an
understanding of this behavior, let us focus on the chirality
correlation function along the legs, i.e., 〈κr · κm〉 with

κr = Sr × Sr+1. (4)

Here, 1 connects NN sites along the legs (in Sec. III C we
shall generalize it to involve also NN sites along the rungs).
Since the above operator is proportional to the angle φ be-
tween NN spins, κr ∝ sin(φ), it is evident that if NN bond
correlations are of FM (φ = 0) or AFM (φ = π ) kind, the
operator vanishes. On the other hand, if NN spins are ro-
tated by 0 < φ < π , the 〈κr · κm〉 correlation can detect the
spiral order. In Fig. 6(c), we present the spatially resolved
〈κL‖/2,1 · κr〉 vs the interaction strength U for nK = 1.75. As
expected, in the block phase (U/W = 1) the chirality corre-
lation function vanishes. In this phase, spin correlations are
alternating between FM and AFM [see Figs. 5(c) and 6(b)].
Surprisingly, at U/W � 2, 〈κr · κm〉 takes finite values even at
distances as long as L‖/2, and exhibits a zigzag-like decaying
pattern. Such behavior continues until U/W � 2.6, when the
system enters the FM phase with φ = 0.

The above behavior was identified [61] as the block-spiral
phase: upon increasing the strength of the Hubbard interaction
U , the FM islands of the block phase start to rigidly rotate with
respect to each other. The zigzag (small-large) pattern reflects
the fact that within the 〈κr · κm〉 correlation the κr operators
act between the blocks (large value) or within the block (small
value). Here, we establish that such a phase is also stable on
the ladder geometry, where—in the particular case of the π/2
block at nK = 1.75—all four spins of the block start to rotate

FIG. 6. Block-spiral magnetic order. (a) Interaction U evolu-
tion of the spin structure factor S(q‖, 0) for the 2 × 2 block spiral
(nK = 1.75). (b) Spin-spin correlations 〈SL‖/2,1 · Sr〉 as a function of
distance corresponding to (a). (c) Chirality correlations 〈κL‖/2,1 · κr〉
as a function of distance corresponding to (a). In (a) and (b), both the
intraleg [r = (�‖, 1)] and interleg [r = (�‖, 2)] components are pre-
sented (as lines and symbols, respectively). All results were obtained
for a generalized Kondo-Heisenberg ladder of L = 72 sites.

↑↑↗↗→→↘↘↓↓
↑↑↗↗→→↘↘↓↓ [see also the sketch in Fig. 1(h)]. As marked
on the phase diagram, Fig. 4, the block spiral is not restricted
to nK = 1.75, but develops also for the other block patterns
at different nK. The unique block modulation of our spiral is
expected to be visible also in the Fourier decomposition, i.e.,
in the spin structure factor S(q). In Fig. 7(a), we present a
zoom-in plot of S(q) for the 2 × 2 block spiral. Apart from the
standard strong peak at q‖ � π/3 related to the spiral’s pitch,
there is an additional weaker peak at q‖ � π − π/3, which
is precisely the fingerprint of the block structure persisting
during the spiral rotation [61]. In the same plot, Fig. 7(a), we
point out that the perfect blocks with 2kb

F = π/m also exhibit
a unique secondary Fourier peak inherent to their steplike
structure [61,62].
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FIG. 7. Special features of the block-spiral phase. (a) Secondary
Fourier mode (arrows) being a fingerprint of the block and block-
spiral order. Shown are the representative cases of π/3 block (nK =
1.83, U/W = 1.1) and 2 × 2 block spiral (nK = 1.75, U/W = 2.2).
(b) Spectral function of the itinerant orbital A0(q, ω) corresponding
to the 2 × 2 block spiral of (a). The frequency resolution was chosen
to be �ω = 0.02 eV with the broadening η = 2�ω. All results were
obtained for a generalized Kondo-Heisenberg ladder of L = 72 sites.

Finally, let us briefly comment on another unique feature of
the block-spiral phase which can be observed in the behavior
of the itinerant orbital γ = 0. Since the OSMP system is in
an overall metallic state, the spiral-like arrangement of the
spins heavily modifies the single-particle spectral function
A0(q, ω), Eq. (2). In Fig. 7(b), we present the bonding (q⊥ =
0) and antibonding (q⊥ = π ) components of A0(q, ω) near
the Fermi level εF (evaluated within the gKH model). Both
components develop an additional two branches which can be
associated with parity-breaking quasiparticles; i.e., q‖ → −q‖
changes the character (branch) of the particles. We want to
note that this phase was proposed [19] as a possible mag-
netic order of the CsFe2Se3 ladder compound. Furthermore,
a superconducting OSMP system with the parity-breaking
quasiparticles was recently predicted [77] to exhibit nontriv-
ial topological properties with Majorana modes emerging at
the edges of the system. We refer the interested reader to
Refs. [61] and [77] for details of this exotic phase.

B. Incommensurate antiferromagnet and phase separation
(two-band regime at low doping)

We now move to discuss the two-band regime. Here, we
find that the four-point Fermi surface makes this regime host
qualitatively different magnetic phases than those present in
the one-band case. Based on the magnetic phases found, we
will split this region into two parts: low and intermediate
doping. The latter will be discussed in the next section.

In Fig. 8(a), we show the spin structure factor S(q) for
an intermediate interaction strength U/W = 1 and a range

FIG. 8. Incommensurate antiferromagnet. (a) The filling nK evo-
lution of the spin structure factor S(q) within the two-band regime
at U/W = 1. The main panel (inset) shows the antibonding S(q‖, π )
[bonding S(q‖, 0)] component. (b) The filling nK evolution of the
bond correlations 〈Sr · Sr+1〉 corresponding to the structure factors
shown in (a). 1 connects the nearest-neighbor sites on the ladder.
Note the evident amplitude modulation of the AFM correlations. All
results were obtained for a generalized Kondo-Heisenberg ladder of
L = 72 sites.

of fillings 1 < nK < 1.3 in the vicinity of half filling. Here,
in contrast to the block phase of the one-band regime, the
antibonding component S(q‖, π ) (main panel) exhibits a well-
defined maximum and dominates the bonding part S(q‖, 0)
(inset), indicating that the rungs are predominantly AFM
coupled. As expected, the half-filled (nK = 1) system is a
two-orbital Mott insulator with a (π, π ) AFM order. Upon
doping, the S(q‖, π ) maximum shifts to smaller wave vectors.
In contrast to the one-band regime, here, the latter max-
imum does not correspond to magnetic blocks, as clearly
evidenced by the bond correlations [Fig. 8(b)] which do not
show any alternating FM/AFM pattern. Instead, for all nK

in this region, the bond correlations are AFM with an ad-
ditional amplitude modulation. Clearly, it is the periodicity
of the latter modulation that is responsible for shifting the
S(q‖, π ) peak away from (π, π ). Moreover, the evolution
of the S(q‖, π ) peak also follows the (noninteracting) Fermi
wave vectors kF of the itinerant orbital. Being deep in the
two-band regime, both Fermi wave vectors play a role and the
maximum occurs at (kb

F + ka
F, π ) � (2π − πnK, π ), a result

recognized already on a single-orbital Hubbard ladder [76].
Indeed, this type of exponentially decaying (short-range) in-
commensurate AFM is not an exclusively multiorbital feature,
but relates to the long-standing problem of charge stripes,
studied extensively in the doped single-orbital Hubbard model
beyond 1D [76,78–84], as relevant in the context of cuprate
high-Tc superconductors [85–87]. These stripes are a combi-
nation of codirectional charge-density waves and modulated
AFM correlations (or spin-density waves in the case of a
symmetry-broken state), wherein the region of maximum
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FIG. 9. Phase separation. (a), (b) Bond correlations 〈Sr · Sr+1〉 for two fillings (a) nK = 1.11 ∈ [1, 1.17], (b) nK = 1.19 ∈ [1.17, 1.25]
lying within the intervals of unstable densities. 1 connects the nearest-neighbor sites on the ladder and the system size is L = 72 sites. (c)–(e)
Grand-canonical electron density 〈〈nK〉〉 vs μ for different values of the interaction U/W = 1, 2, 3 and three system sizes L = 24, 72, 96. The
horizontal lines mark 〈〈nK〉〉 = 1.17 (π/3 block) and 〈〈nK〉〉 = 1.25 (π/2 block). All results were obtained for a generalized Kondo-Heisenberg
ladder.

charge density coincides with a domain wall in the AFM
[82]. In other words, the AFM correlations experience a π -
phase shift across each charge-density peak, explaining the
incommensurate tendencies [78,81]. We checked (not shown)
that the spin correlations of Fig. 8 are indeed accompanied
by striped charge-density waves and exhibit the appropriate
phase shift. For completeness, we also verified that the chi-
rality correlation 〈κr · κm〉 is zero in this phase. Finally, let us
comment that incommensurate AFM was also reported before
in the context of the multiorbital Hubbard model [88,89].

Intuitively, the single-orbital behavior is recovered in
the above since in the vicinity of half filling the double-
exchange mechanism requires larger Hund exchange JH to
fully develop. Correspondingly, upon increasing U (hence
also increasing JH = U/4), we find that the double exchange
starts to play an important role. The bond correlations change
drastically: the incommensurate AFM is lost in favor of the
returning block formation tendencies; see Figs. 9(a) and 9(b).
At special fillings nK = 1.17, 1.25, the system again develops
π/3-block ↑↑↑↓↓↓

↑↑↑↓↓↓ and π/2-block ↑↑↓↓
↑↑↓↓ orders, respectively.

However, in contrast to the block phase of the one-band
regime—where at arbitrary fillings nK also other (more com-
plicated) block-magnetic patterns emerged—here, the system
coexists in spatially separated regions of the π/3-block (nK =
1.17), π/2-block (nK = 1.25), and the π -AFM (nK = 1) cor-
relations instead. For example, at nK = 1.11 ∈ [1, 1.17] the
system is divided into regions with AFM and π/3-block-like
correlations for all presented values of U [Fig. 9(a)]. The
closer the density is to nK = 1.17, the more the π/3-block
regions grow at the cost of the AFM regions, and vice versa
when moving closer to nK = 1. At nK = 1.19 ∈ [1.17, 1.25],
on the other hand, the system shows first AFM-π/2 sepa-
ration for U/W � 1.3, and then a π/3-π/2 separation for
U/W � 2.7 [Fig. 9(b)]. Such irregular local correlations are

also reflected in an irregular behavior of the structure fac-
tor S(q) which does not show any pronounced maximum or
shows maxima that appear at seemingly random wave vectors
for different values of U .

In order to truly identify the above behavior as phase
separation, one usually analyzes whether the compressibil-
ity acquires negative values, which signals the system being
unstable [90,91]. However, this can be troublesome, as it
involves the evaluation of a second-order derivative, which
is highly prone to the smallest numerical errors. Therefore,
we opt to use another observable—we investigate the 〈〈nK〉〉
vs μ curves, where 〈〈nK〉〉 is the (grand-canonical) electron
density at a given chemical potential μ. If 〈〈nK〉〉(μ) exhibits a
discontinuity, then there are densities that cannot be stabilized,
irrespective of the value of μ. For calculations within the
canonical ensemble, as performed here, this means that if the
system is initialized with a density in the unstable interval,
it will spontaneously separate into two regions of different
densities [90–92], i.e., the behavior implied by Figs. 9(a) and
9(b).

Although, in principle, 〈〈nK〉〉(μ) needs to be calculated in
the grand-canonical ensemble, it is possible to obtain it from
the fixed-density DMRG results by searching for the particle
number N that minimizes the expectation value 〈HK − μN̂〉 =
εGS(N, L) − μN at each μ [90,93], where N̂ is the total
particle number operator and εGS(N, L) is the ground-state
energy for a fixed density nK = N/L. In this way, we are able
to study large system sizes, as presented in Figs. 9(c)–9(e),
enabling us to distinguish a true discontinuity from one be-
ing a finite-size effect. One may observe that for U/W = 1
and the smallest size L = 24 [Fig. 9(c)], the 〈〈nK〉〉(μ) curve
is manifestly discrete. However, this discreteness disappears
for larger sizes L = 72, 96, where the 〈〈nK〉〉(μ) curves col-
lapse and become smooth. This is the standard nonseparated
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behavior. Contrarily, for U/W = 2 [Fig. 9(d)], there are sev-
eral clear discontinuities at 1 < 〈〈nK〉〉 � 1.4, which persist
despite the increasing system size. In particular, there is a dis-
continuity between 〈〈nK〉〉 = 1 and 〈〈nK〉〉 = 1.17 (AFM-π/3
separation), and another between 〈〈nK〉〉 = 1.17 and 〈〈nK〉〉 =
1.25 (π/3-π/2 separation), in perfect agreement with the
bond correlation results [Figs. 9(a) and 9(b)]. Figure 9(e) leads
to the same conclusions, but for U/W = 3. Therefore, we
conclude that a clear tendency to phase-separate exists in our
model for relatively low fillings nK, close to half filling.

Finally, from Figs. 9(c)–9(e) it also follows that the phase
separation is absent in the one-band regime; in particular,
even the complicated block patterns [e.g., the one shown in
Fig. 5(c) at nK = 1.81] are robust uniform phases with no
phase separation. Curiously, here, in the two-band regime, the
blocks with complicated unit cells are in fact entirely absent,
as we only see phase separation between AFM, π/3, and π/2
blocks. It is possible that larger system sizes would need to be
accessed to find separation between the blocks with unusual
periodicities. We do, however, find the signatures of block
spirals at the special points nK = 1.17, 1.25, which appear
before FM for excessively large values of U . We have also
checked (not shown) that phase separation is not present in
the chain geometry. This is consistent with the picture that the
chain can approximate the ladder well but only in the one-
band regime, while the two-band regime cannot be captured
(as the Fermi surface is closer to 2D). It is also worth noting
that phase separation tendencies were reported experimentally
in a layered iron superconductor K0.8Fe1.6Se2 [94], albeit
they concern separation between magnetic and nonmagnetic
regions of different lattice constants.

C. Spin flux (two-band regime at intermediate doping)

Let us now describe the last region of our phase diagram—
the two-band regime at intermediate doping, i.e., in the
vicinity of three-quarter filling nK ∼ 1.5. We find this region
to behave surprisingly very differently from the low-doping
case, despite the same (noninteracting) Fermi surface. We
shall attribute this difference to the strong renormalization of
the Fermi surface due to the simultaneous competition of all
energy scales at this intermediate parameter regime.

In the inset of Fig. 10(a), we present the spin structure
factor S(q) at nK = 1.5 and at an intermediate interaction
strength U/W = 1. We observe a dominant maximum in
the bonding component S(q‖, 0) at wave vector (π, 0) and
a rather structureless antibonding part S(q‖, π ). This result
corresponds to the case of FM rungs and AFM legs, ↑↓↑↓

↑↓↑↓ , i.e.,
the canonical magnetic order found experimentally in several
iron-based ladders (see the introduction) and also widely be-
lieved to be the parent state of 2D iron-based superconductors
[25,95]. Surprisingly, with increasing U , we find that this
order is suppressed (albeit does not vanish) in favor of a max-
imum in the antibonding S(q‖, π ) developing at (0, π ) [main
panel of Fig. 10(a)]. Similar behavior was recently reported
in Ref. [89], which studied the pairing-related properties of
the two-leg ladder BaFe2S3. Figure 10(b) shows that this
behavior is not restricted to nK = 1.5, but occurs consistently
at other fillings in the entire 1.3 � nK � 1.6 interval and also
in a wider range of interactions 1 � U/W � 4. The dominant

FIG. 10. Spin structure factor and momentum distribution func-
tion in the spin-flux region. (a) Spin structure factor S(q) at nK = 1.5
and U/W = 1 (inset), U/W = 2 (main panel). (b) The same as in
(a) but at nK = 1.47 (lines), nK = 1.53 (symbols), and U/W = 2.
The inset shows the bond correlations 〈Sr · Sr+1〉 corresponding to
nK = 1.47. Here, red (blue) color marks AFM (FM) bonds and 1
connects the nearest-neighbor sites on the ladder. (c) Momentum
distribution function n(q) at nK = 1.47, 1.5, 1.53 and U/W = 2. All
results were obtained for a generalized Kondo-Heisenberg ladder of
L = 72 sites.

peak at (0, π ) leads to the bond correlations taking now the
form of AFM rungs and FM legs [inset of Fig. 10(b)].

Although in the bond correlations there is no discernible
pattern related to the weak S(q‖, 0) features present in both
Figs. 10(a) and 10(b), further analysis offers a useful insight.
In particular, from Fig. 10(b) it follows that the structure factor
S(q) behaves identically at both nK = 1.47 and nK = 1.53,
pointing to a symmetry around the nK = 1.5 point, quite un-
expected in the two-band regime. Crucially, here, we are in
fact at the crossroads between the one- and two-band regimes,
as the latter is enforced solely due to the finite interaction U
[Fig. 3(c)]. In the noninteracting case, we would have two
Fermi wave vectors for nK < 1.5, but only one for nK > 1.5,
meaning that neither the noninteracting 2kb

F prediction from
Sec. III A nor the kb

F + ka
F prediction from Sec. III B can be

meaningfully applied to the apparent symmetry in the struc-
ture factors.

To elucidate this issue, we investigate the momentum dis-
tribution function defined as n(q) = 〈n0q〉 = 〈∑σ c†

0qσ c0qσ 〉,
where c†

0qσ = (1/
√

L)
∑

r exp(iqr) c†
0rσ . The results are
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FIG. 11. Spin flux. (a)–(d) Chirality correlations 〈κL‖/2,1 · κr〉 at nK = 1.5, U/W = 2 as a function of distance. Shown are all possible
components: (a) intraleg, (b) interleg, (c) rung-rung, (d) leg-rung. The sketches show the proposed magnetic order and also highlight the bonds
which are involved in the calculation. (e) Comparison of the distance-dependent rung-rung chirality 〈κ⊥

L‖/2,1 · κ⊥
r 〉 between the flux (nK = 1.5,

U/W = 2) and the 2 × 2 block spiral (nK = 1.75, U/W = 2.2). (f) Rung-rung chirality in the flux phase with nK = 1.53, U/W = 2. The dark
symbols correspond to cos(2k̃b

F �‖) fit using the effective Fermi wave vector k̃b
F obtained from Fig. 10(c). (g) Interaction U evolution of the

rung-rung chirality for the spin flux with nK = 1.5. All results were obtained for a generalized Kondo-Heisenberg ladder of L = 72 sites.

presented in Fig. 10(c) for the three fillings nK =
1.47, 1.5, 1.53 and the interaction U/W = 2. One immedi-
ately notices that the momentum distribution of the antibond-
ing band (q⊥ = π ) is highly renormalized with respect to the
U = 0 case, where it would be a step function centered at ka

F.
Here, it is strongly flattened instead, and its shape seems to be
weakly dependent on the filling nK. The bonding band (q⊥ =
0), on the other hand, acts as though it was the only one being
filled: Adding (removing) particles shifts its effective Fermi
wave vector k̃b

F [taken here as the inflection point of n(q‖, 0)],
and the function n(q‖, 0) appears relatively sharp despite the
large interaction U . Remarkably, the weak peak in S(q‖, 0)
corresponds to (2k̃b

F, 0), explaining why the structure factors
at the two fillings nK = 1.47, 1.53 are identical [Fig. 10(b)].
This is precisely due to the symmetric behavior of n(q‖, 0)
around the nK = 1.5 point. Therefore, although both bands are
fractionally filled, as follows from both Figs. 3(c) and 10(c),
the interaction U promotes an emergent one-band behavior.
This stands in contrast to the low-doping case (deep within
the two-band regime), where such a behavior is absent.

The strong (0, π ) peak and the bond correlations with
FM legs and AFM rungs suggest that this order could be
a ladder analog of 2D patterns argued [25] to be relevant
for the layered compounds Fe(Se,Te). However, the analysis
of chirality correlations offers a different interpretation. In
Fig. 11(a), we present the intraleg chirality correlation func-
tion 〈κr · κm〉 at nK = 1.5 and U/W = 2.0. Remarkably, we
observe significant and slowly decaying chirality correlations,
indicating that the spins are noncollinear. This is quite unex-
pected considering the commensurate structure factors shown
in Fig. 10(a). Moreover, the chirality displays an intriguing
staggered pattern, which is present not only in the intraleg

correlations but also in the interleg case [Fig. 11(b)], and the
highly nontrivial rung-rung and leg-rung cases [Figs. 11(c)–
11(d)]. It is hard to imagine a (quantum) spin ordering
which would lead to all the chirality correlation functions
simultaneously showing the same staggered pattern. The so-
lution to this conundrum can be found by noticing that the
z component of the chirality correlation function is in fact
equal to the spin-current correlation function, κz

r = Sx
r Sy

r+1 −
Sy

rSx
r+1 = i/2 (S+

r S−
r+1 − S−

r S+
r+1). Indeed, we checked that the

z component has a significant contribution to the presented
chirality values. Therefore, we propose that the system re-
alizes a novel quantum spin-flux phase, wherein the spin
currents circulate around 2 × 2 plaquettes and are staggered
from plaquette to plaquette [see the sketches in Figs. 11(a)–
11(d) and 1(i)], with no net current flow.

Since all the chirality functions behave in the same manner,
in the following we discuss only the representative rung-rung
case 〈κ⊥

r · κ⊥
m〉, which corresponds to spin currents flowing

along the rungs. In Fig. 11(e), we compare the spin flux to the
other chiral phase of our model—the block spiral. Clearly, in
the latter the rung-rung (and also leg-rung) chirality vanishes,
highlighting that it is indeed unique to the flux. Moreover,
this unique chirality is not restricted to the nK = 1.5 filling,
but appears also for nK = 1.5 in the entire regime being
discussed in this section, i.e., for 1.3 � nK � 1.6 and 1 �
U/W � 4. Variation of the filling introduces an additional
modulation of the staggered pattern, as shown in Fig. 11(f) for
nK = 1.53. Furthermore, the latter modulation is controlled
by the effective Fermi wave vector k̃b

F, i.e., 〈κ⊥
r · κ⊥

r+d〉 ∝
cos(2k̃b

F d ) [96]. This “hidden” periodicity—which is readily
seen in the chirality correlations but not in the real-space spin
correlations—elucidates the origin of the (2k̃b

F, 0) maximum
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we earlier noted in S(q‖, 0), which accompanies the strong
(0, π ) peak [Figs. 10(a)–10(b)]. In particular, at nK = 1.5, we
have (2k̃b

F, 0) = (π, 0). This understanding is consistent with
the results for the 2D FM Kondo lattice of classical spins,
where the similar-weight structure factor maxima at (π, 0)
and (0, π ) were recognized as the hallmark of the spin flux
[97–99]. The latter spin configuration cannot be specified by
only one wave vector [97]. In our case, the spin-flux phase
emerges within a fully quantum model and, moreover, it is
promoted by the interaction U , as follows from Fig. 11(g).
Consistently, the structure factor peak at (0, π ) [Fig. 10(a)]
acquires significant weight only when the staggered chirality
correlations are well developed. From this perspective, we
treat the canonical (π, 0) order of AFM legs and FM rungs,
↑↓↑↓
↑↓↑↓ , present at U/W = 1 [inset of Fig. 10(a)], as an under-
developed flux, rather than a separate phase, and we do not
mark it individually on the phase diagram, Fig. 4.

IV. CONCLUSIONS

To summarize, using an accurate computational tech-
nique we have studied the magnetic phase diagram of
the two-leg multiorbital ladder in the orbital-selective Mott
phase. Although our effective model, the generalized Kondo-
Heisenberg Hamiltonian, describes the electron densities of
the iron-based systems in an approximate manner, it properly
captures the symmetric and antisymmetric bands (bonding
and antibonding, respectively). The latter are crucial to a
proper description of the magnetic order.

The magnetic phase diagram of the ladder OSMP is domi-
nated by tendencies to form magnetic blocks of various shapes
and sizes. At large fillings, nK � 1.6, where the antibond-
ing band (q⊥ = π ) is fully filled and only the bonding band
(q⊥ = 0) carries the Fermi wave vectors, the system devel-
ops perfect blocks of ↑↑↓↓

↑↑↓↓ form at U ∼ W . Increasing the
strength of the interaction U leads to the uniform rotation
of the blocks, i.e., to the formation of the exotic block-spiral
phase with nontrivial properties. In the opposite limit, close
to half filling nK ∼ 1, the four Fermi wave vectors present
in two bands drive the system toward phase separation with
(predominantly) π/2 and π/3 blocks. Finally, when nK ∼ 1.5,
the ladder system develops a quantum spin flux originating in
the competing energy scales inherent to the OSMP. This phase
can be naively viewed as staggered spin currents circulating
within 2 × 2 plaquettes (however, no plaquette carries net
current due to its quantum nature in a finite system).

Our phase diagram indicates that the magnetism of iron-
based ladders, due to the presence of charge, spin, and
orbital degrees of freedom, combines phenomena known from
cuprates with those found in manganites [100,101]. Namely,
at small interaction U and close to half filling nK ∼ 1, we
have found the striped incommensurate antiferromagnetism—
the challenging and still not fully understood magnetic order
relevant for 2D cuprate superconductors. On the other hand,
increasing the interaction strength U , one can find the
phase-separated region known from the manganites. Most
importantly, our results indicate that the family of iron-
based AFe2X3 compounds lies within the one-band regime,
where the block and block-spiral orders can be found (also
experimentally). We believe that our comprehensive study

provides motivation and theoretical guidance for crystal grow-
ers and experimentalists to discover new iron-based ladder
compounds that may display the highly unusual magnetic
properties reported here.
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APPENDIX: COMPUTATIONAL ACCURACY REGARDING
THE SU(2) SYMMETRY

It is well-known that within DMRG implementations
which exploit only the U(1) spin symmetry, and not the full
SU(2) symmetry, it is possible to converge to a state with finite
local magnetization 〈Sz

r〉, even though a finite system cannot
break the SU(2) symmetry. This effect is more pronounced
in simulations beyond 1D and is a recurring issue in the
studies of 2D Hubbard and t-J models [79,80,83,102,103].
Although here we discuss a two-leg ladder, its two-orbital
nature makes it effectively a four-leg problem, and in some
cases our DMRG indeed ends up in a state with nonvanishing
〈Sz

r〉. This issue can be mitigated by drastically increasing
the number of states kept [79,83,103], but then the already
demanding computational effort would quickly become pro-
hibitively expensive. Still, where feasible, we did verify that
increasing M in our DMRG procedure does drive 〈Sz

r〉 to zero,
while preserving the spin-spin correlations and introducing
a minimal adjustment of the ground-state energy. Moreover,
sometimes a slight perturbation of the model parameters (e.g.,
changing U by as little as 5%) was enough to tip the algorithm
toward a final state which respects the SU(2) symmetry, but
appears otherwise unchanged with respect to other quanti-
ties. These observations suggest that the finite 〈Sz

r〉 arises
because the DMRG selects a subset of states (with a partic-
ular direction of the order parameter) from the macroscopic
superposition present within the true ground state [79,104].
Since the states in the latter superposition are expected to
be (nearly) degenerate, the difference in the final energy is
minimal, making it hard to completely converge. Nonetheless,
such a spurious “partial” symmetry breaking within the final
state should not lead to a misrepresentation of the magnetic
order existing in our system, nor should it affect the behavior
of itinerant carriers doped into those states (see the discussion
in Ref. [79]). We therefore conclude that the occasional pres-
ence of finite 〈Sz

r〉 is insignificant for our study and does not
invalidate our results. That being said, the nondecaying nature
of the static magnetization can make the maxima in S(q) ap-
pear excessively sharp. To avoid the misinterpretation of S(q),
while plotting the latter we discard the fictitious spin-density
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contribution; i.e., we define 〈Sr · Sm〉 ≡ 〈Sr · Sm〉 − 〈Sz
r〉〈Sz

m〉.
The fact that this does not reduce 〈Sr · Sm〉 to zero confirms
that our ground state retains most, if not all, quantum fluctua-
tions on top of the artificial magnetization.

The issue described above is especially troublesome in the
intermediate-doping (nK ∼ 1.5) region discussed in Sec. III C,
which seems to be the most demanding for the DMRG
method. There, all the energy scales are simultaneously at

play, making it hard to fully stabilize the system within current
computational limitations. As a consequence, a more detailed
analysis focusing solely on the latter region is called for,
involving also a systematic study of the t⊥

0 influence, which is
however beyond the scope of the present, more general, survey
of the magnetic phases. Our already interesting findings re-
ported here provide motivation for such a more in-depth study
of the intermediate-doping region in the near future.
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4
INTERACTION-INDUCED TOPOLOGICAL

PHASE TRANSITION AND MAJORANA EDGE

STATES IN LOW-DIMENSIONAL

ORBITAL-SELECTIVE MOTT INSULATORS

Previous chapter discovered a wealth of rich magnetic phases within the OSMP of a
multiorbital ladder. One prominent magnetic order is the noncollinear block-spiral
state, characterized by magnetic blocks that rigidly rotate along the ladder. Building
upon these findings, this chapter presents the original research [O2], revealing that the
interplay between the block-spiral order and superconductivity induces topological
properties.

The key result is the discovery of an interaction-induced topological phase transi-
tion upon placing a generalized Kondo-Heisenberg chain (Sec. 2.6.2) in proximity to an
s-wave superconductor. To reduce computational effort, hereafter, the chain geometry
is used in place of the ladder, an approximation validated by my calculations of the spin
structure factor. The topological transition manifests itself as the emergence of mutu-
ally correlated edge modes, the Majorana zero modes. Their presence is indicated by
peaks in the local density of states, the sudden growth of entanglement throughout the
system, and the appearance of spin-triplet pairing amplitudes. Crucially, the topologi-
cal phase transition is driven by the change in magnetic properties: the spiral emerges
together with the Majorana modes at a critical interaction U . To confirm that the edge
states are indeed of Majorana origin, I independently cross-checked the analytical pre-
dictions for the nonlocal spectral functions, which were then verified numerically. This
work proposes the 123 iron ladders as a potential platform to host Majorana states,
which are of relevancy to quantum computing. For the convenience of the reader, a
brief discussion now follows that enhances the appreciation of these findings.

The concept of Majorana fermions originates in elementary particle physics. It
denominates a real-valued solution to the Dirac equation, that is, a particle which
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is its own antiparticle [225]. To date, no experiment has conclusively reported such
a particle. However, an intriguing manifestation of this concept emerges in the field of
condensed-matter physics. Specifically, after the seminal works of A. Kitaev [226,227],
the condensed-matter community put a tremendous effort to realize a particular fla-
vor of Majoranas, the so-called Majorana zero modes (MZM). These are in-gap states at
zero excitation energy (i.e., at the Fermi level) bound to a defect in a topological super-
conductor (a kind of “spinless” superconductor that realizes topological phases [228]).
In one dimension (1D), MZM end up on the system’s edges, whereas in two dimensions
(2D) they form, e.g., inside vortex cores [228].

The interest in MZM stems from their potential for achieving fault-tolerant quan-
tum computing [227]. The key principles are as follows. Two unpaired MZM, e.g., at
the ends of a 1D topological superconductor, constitute a single fermion, which can be
in an empty or occupied state. The latter two states are degenerate and can be used to
define a qubit1. Crucially, quantum information encoded in this qubit is stored non-
locally due to the spatial separation between the MZM. This property makes the infor-
mation resilient against decoherence caused by local noise [230]. In order to alter the
fermionic state, a disturbance must act nonlocally and coherently on both MZM, an
unlikely scenario in any environment [228]. Furthermore, the gap between the MZM
and the rest of the spectrum shields the qubit against hybridization with higher-energy
nontopological excited states, which could corrupt the stored information [231]. These
two properties are the crux of topological protection. Once the noise-resistant qubit is
realized, the next step is to manipulate it in a topologically-protected manner in order
to perform quantum computation. Here, the non-Abelian statistics of the MZM comes
into play [230,231]. An MZM is neither a fermion nor a boson but rather a non-Abelian
anyon. This property allows for so-called braiding operations, in which adiabatically
exchanging the positions of the MZM implements unitary transformations within the
degenerate ground-state manifold. By braiding, one can thus implement quantum
gates and perform topologically-protected quantum computations. One caveat is that
not every gate can be realized in this manner. Therefore, a topological quantum com-
puter would still need to incorporate some “unprotected” operations [228,231]. How-
ever, in principle, these unprotected operations should be less susceptible to errors
compared to their counterparts in nontopological platforms [231]. As such, a topo-
logical quantum computer emerges as a promising possibility in the race for reliable
quantum computation.

There are several routes to realize Majorana zero modes in the condensed-matter
setting [228,230]. In 1D, which is relevant to the original results presented below, all
of these approaches involve engineering the conditions elucidated in the prototyp-
ical Kitaev chain, namely, spinless-fermion behavior combined with spin-triplet (p-
wave) superconductivity [226,228,230,232]. To achieve this, one prepares a so-called
heterostructure, i.e., an intentional arrangement of multiple distinct materials, such as
superconductors, semiconductors, etc. One such popular setup is the semiconducting
quantum wire with strong spin-orbit coupling, subjected to a uniform magnetic field,
and proximitized to a conventional s-wave superconductor [233,234]. The first two in-
gredients alter the band structure of the wire to achieve the desired “spinless” behavior,

1To be precise, four MZM are actually necessary for a single qubit due to the selection rules dictated
by parity symmetry [229].
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while also enabling the third ingredient, the proximity-induced superconductivity, to
become effectively p-wave [230]. See Ref. [232] for a discussion showing that the ef-
fective low-energy Hamiltonian of this setup takes the form of the Kitaev chain. An
alternative configuration consists of a chain of magnetic adatoms deposited on an s-
wave superconductor [235–243]. Crucially, the adatoms are assumed to have a classical
noncollinear spiral spin texture, which has an equivalent effect on the band structure
as the combination of the spin-orbit coupling and the uniform magnetic field. This
equivalence can be shown rigorously via a gauge transformation [244], and one can
also show here that the effective low-energy Hamiltonian is the Kitaev chain [235]. Both
the semiconducting-wire [245–252] and the magnetic-adatom setups [253–259] were
experimentally realized in numerous works. Despite such a tremendous experimental
effort, an unambiguous report of MZM that demonstrates their topological properties
is still missing.

Recently, topological properties have gained experimental relevance in the con-
text of 2D iron-based superconductors [260–265]. Notably, scanning tunneling mi-
croscope measurements on the surface of FeTe1−xSex have revealed the presence of
both zero-energy bound states and higher-energy discrete levels within vortex cores
[260,262,263]. These zero-energy bound states manifest as zero-bias peaks in conduc-
tivity, which do not split when moving away from a vortex center for a wide range of
magnetic fields. This lends strong support to their identification as MZM. Moreover,
in the same material, there is evidence for linearly dispersing Majorana modes that
propagate along crystalline domain walls [264]. These findings hold great promise due
to the unique nature of this iron-based platform. In contrast to the setups discussed
above, this particular platform does not necessitate any heterostructure engineering.
It is a single material where topologically nontrivial bands and (high-Tc) superconduc-
tivity naturally emerge, providing all the necessary ingredients for MZM [263].

The work presented below establishes the iron-based ladders of the 123 family
as another promising platform for MZM. As discussed above, a spiral magnetic or-
der plus s-wave superconductivity has proven to be a reliable recipe for generating
MZM. Nevertheless, only a handful of studies focusing on magnetic-adatom config-
urations [258,259] have effectively achieved the desired spiral spin texture within the
adatom chain. The majority of these experiments, however, have predominantly re-
alized a conventional ferromagnetic pattern instead, which is comparatively easier
to stabilize but still necessitates the presence of spin-orbit coupling provided by the
superconducting substrate [253,266]. On the other hand, it seems reasonable that a
multiorbital ladder within OSMP has the potential to embody a quantum variant of
this recipe, where the spiral order arises spontaneously from intricate interactions (see
Chap. 3) and the superconductivity can either be an intrinsic property of the material
itself, rendering the platform self-contained, or be induced by the usual proximity ef-
fect. By assuming proximity-induced superconductivity, the following work confirms
this hypothesis and establishes the emergence of the MZM through an interaction-
induced topological phase transition. Notably, the proposed multiorbital framework
could offer a solution to mitigate the experimental challenges.
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Topologically protected Majorana fermions—the elusive
particles which are their own antiparticles—are exciting
because of their potential importance in fault-resistant

quantum computation. From the experimental perspective,
heterostructure-based setups were proposed as the main candi-
dates to host the Majorana zero-energy modes (MZM). For
example, the topologically protected gapless surface states of
topological insulators can be promoted to MZM by the
proximity-induced pairing caused by an underlying super-
conducting (SC) substrate1. However, the large spin–orbit cou-
pling required to split the doubly degenerated bands due to the
electronic spins, renders such a setup hard to engineer. Another
group of proposals utilizes magnetic atoms (e.g., Gd, Cr, or Fe)
arranged in a chain structure on a BCS superconductor2–12.
These important efforts have shown that creating MZM in real
condensed-matter compounds is challenging and only rare
examples are currently available.

Interestingly, a series of recent works have shown that doped
high critical temperature iron-based superconductor Fe(Se,Te)
can host MZM13–17. Although the electron–electron interaction is
believed to be relevant for the pairing, its role in the stabilization
of MZM is unknown. In fact, in most theoretical proposals to
realize MZM, these zero-energy modes are a consequence of
specific features in the non-interacting band structure, with the
electron–electron interaction playing only a secondary role (and
often even destabilizing the MZM)18,19. By contrast, here we will
show that a SC system with orbital degrees of freedom can be
driven into a topologically nontrivial phase hosting MZM via
increasing Hubbard interactions; see illustrative sketch in Fig. 1a.
We will focus on a generic model with coexisting wide and
narrow energy bands, relevant to low-dimensional iron-based
materials20. It was previously shown21–23 that the multi-orbital
Hubbard model can accurately capture static and dynamical
properties of iron selenides, especially the block-magnetic order24

of the 123 family AFe2X3 of iron-based ladders (with A alkali
metals and X chalcogenides). For example, the three- and two-

orbital Hubbard model on a one-dimensional (1D) lattice23,25

successfully reproduces the inelastic neutron scattering spin
spectrum, with nontrivial optical and acoustic modes. The
aforementioned models exhibit21,26 the orbital-selective Mott
phase (OSMP), with coexistent Mott-localized electrons in one
orbital and itinerant electrons in the remaining orbitals. The
system is then in an exotic state with simultaneously metallic and
insulating properties. Furthermore, the localized orbitals have
vanishing charge fluctuations, simplifying the description26 into
an OSMP effective model, i.e. the generalized Kondo–Heisenberg
model (gKH)

HgKH ¼ ti ∑
‘;σ

cy‘;σc‘þ1;σ þH:c:
� �

þ U ∑
‘
n‘;"n‘;#

þ μ∑
‘;σ

n‘;σ � 2JH ∑
‘
S‘ � s‘ þ K∑

‘
S‘ � S‘þ1:

ð1Þ

The first three terms in the above Hamiltonian describe the
itinerant electrons: cy‘;σ (c‘;σ) creates (destroys) an electron with
spin projection σ= {↑, ↓} at site ℓ= {1,…, L}, ti is their hopping
amplitude, U is the repulsive Hubbard interaction, and μ= ϵF is
the Fermi energy set by the density of itinerant electrons
n ¼ ∑‘ðn‘;" þ n‘;#Þ=L.

The double occupancy of the localized orbital can be elimi-
nated by the Schrieffer–Wolff transformation and the remaining
degrees of freedom, the localized spins Sℓ in the above model,
interact with one another via a Heisenberg term with spin-
exchange K ¼ 4t2l =U [tl is the hopping amplitude within the
localized band]. Finally, JH stands for the on-site interorbital
Hund interaction, coupling the spins of the localized and itinerant
electrons, Sℓ and sℓ, respectively. Figure 1b contains a sketch of
the model. Here, we consider a 1D lattice and use ti= 0.5 [eV]
and tl= 0.15 [eV], with kinetic energy bandwidthW= 2.1 [eV] as
a unit of energy27. Furthermore, to reduce the number of para-
meters in the model, we set JH/U= 1/4, a value widely used when
modeling iron superconductors. Systems with open boundary

Fig. 1 Orbital-selective Mott phase and Majoranas. a Sketch of the chain edge density-of-states as a function of the electron–electron Hubbard interaction
strength. Magnetic orders (depicted by arrows) in the trivial and the topological superconducting (SC) phases are also presented. b Schematic
representation of the generalized Kondo–Heisenberg model studied here, with localized and itinerant electrons and simultaneously active Hubbard U and
superconducting ΔSC couplings. c and d Interaction U dependence of the static structure factor S(q) for c ΔSC= 0, d ΔSC/W≃ 0.5 (calculated for L= 36
and n ¼ 0:5).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23261-2

2 NATURE COMMUNICATIONS |         (2021) 12:2955 | https://doi.org/10.1038/s41467-021-23261-2 | www.nature.com/naturecommunications

59



conditions are studied via the density-matrix renormalization
group (DMRG) method (see the “Methods” section).

The key ingredient in systems expected to host the MZM28 is
the presence of an SC gap, modeled typically by an s-wave pairing
field. Such a term represents the proximity effect29 induced on the
magnetic system by an external s-wave superconductor. However,
it should be noted that the SC proximity effect has to be con-
sidered with utmost care. For example, recent experimental
investigations30 showed that although the interface between Nb
(BCS s-wave SC) and Bi2Se3 film (topological metal) leads to
induced SC order, the same setup with (Bi1−xSbx)2Se3 (another
topological insulator) displays massive suppression of proximity
pairing. On the other hand, in the class of systems studied here
(low-dimensional OSMP iron-based materials), the pairing ten-
dencies could arise from the intrinsic superconductivity of
BaFe2S3 and BaFe2Se3 under pressure31–33 or doping22,34.

In order to keep our discussion general, we will make minimal
assumptions on the SC state, and consider only the simplest on-
site pairing. The reader should consider it either as the intrinsic
pairing tendencies of the iron-based SC material or as the pairing
field induced by the proximity to an s-wave SC substrate, e.g., Pb
or Nb. Independently of its origin, the SC in the 1D OSMP
system studied here must be investigated beyond the 1D lattice
since the quantum fluctuations would inevitably destroy any
long-range order. Therefore, let us first consider the OSMP chain
placed atop the center of a two-dimensional (2D) BCS

superconductor (see Fig. 2a for a sketch) and the total system
described by the Hamiltonian

Htot ¼ HgKH þ HBCS � V ∑
h‘;‘0i

ðcy‘;"cy‘;#a‘0;#a‘0;" þH:c:Þ: ð2Þ

Here, ‘0 represents the single site within the 2D BCS system HBCS

which is closest to the site ℓ in the OSMP chain, and ai;σ ; a
y
i;σ

stand for fermionic operators within the BCS superconductor (see
the “Methods” section). The interaction between the subsystems
[last term in Eq. (2)] is studied within the BCS-like decoupling
scheme, where we introduce the pairing amplitudes ΔBCS

‘0 ¼
ha‘0;#a‘0;"i and ΔOSMP

‘ ¼ hc‘;#c‘;"i for the BCS superconductor
and the OSMP chain, respectively. In order to fully take into
account the many-body nature of the OSMP system, we have
developed a hybrid algorithm, the details of which are given in the
“Methods” section. In summary: we iteratively solve the OSMP
chain and the BCS system by means of the DMRG and the
Bogoliubov–de Gennes (BdG) equations, respectively. This back-
and-forth computational setup is costly but important to gain
confidence in our result.

We monitor the landscapes of pairing fields in both systems
and exemplary results are presented in Fig. 2b (for more results
see Supplementary Note 1). Initially, only the BCS system has
finite, spatially uniform, pairing amplitudes ΔBCS

‘0 (left column in
Fig. 2b), which are then used in the DMRG procedure applied to

Fig. 2 BdG self-consistent solution. a Sketch of the hybrid DMRG–BdG algorithm. The OSMP chain is placed in the middle of a 2D BCS superconductor
and coupled to it via the pairing field amplitudes present in both systems. b Iteration dependence of the ΔBCS

i profiles for the case with the OSMP chain
placed in the middle. The left (right) column depicts results initialized without (with random) pairing fields in the 1D OSMP system (calculated for U/W=
2). See the “Methods” sections for details.
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the OSMP Hamiltonian

H ¼ HgKH þ∑
‘
Δ‘ cy‘;"c

y
‘;# þH:c:

� �
; ð3Þ

where Δ‘ ¼ �VΔBCS
‘0 . Next, the ΔOSMP

‘ set is calculated from
DMRG and returned to the BdG equations relevant for the BCS
system. The procedure is repeated until convergence is estab-
lished. The results presented in Fig. 2b show that already after ~4
iterations the landscape of ΔBCS

‘0 stabilizes to an interaction U-
dependent value. We found that the resulting amplitude Δ‘ ¼
�VΔBCS

‘0 is almost uniform within the OSMP chain. Furthermore,
we have also confirmed that using extended s-wave pairing
(creating pairs on nearest-neighbor sites) does not influence our
conclusions. Therefore, in the remainder of the paper, we use
spatially uniform Δℓ= ΔSC in Eq. (3). Also, in order to emphasize
the role of interaction, in the main text, we fix the pairing field to
ΔSC/W≃ 0.5. The detailed ΔSC-dependence of our findings is
discussed in Supplementary Note 1.

Results
Magnetism of OSMP. Previous work has shown that the OSMP
(with ΔSC= 0) has a rich magnetic phase diagram26. (i) At small
U the system is paramagnetic. (ii) At n ¼ 1 and n ¼ 0 standard
antiferromagnetic (AFM) order develops, ↑↓↑↓, with total on-site
magnetic moment 〈S2〉= S(S+ 1)= 2 and 3/4, respectively. (iii)
For 0 < n < 1 and U≫W the system is a ferromagnet (FM)
↑↑↑↑. Interestingly, in the always challenging intermediate
interaction regime U � OðWÞ the AFM- and FM-tendencies
(arising from superexchange and double-exchange, respectively)
compete and drive the system towards novel magnetic phases
unique to multi-orbital systems. (iv) For U ~W, the system
develops a so-called block-magnetic order, consisting of FM
blocks that are AFM coupled, e.g. ↑↑↓↓, as sketched in Fig. 1c.
The block size appears controlled by the Fermi vector kF, i.e., the
propagation wavevector of the block-magnetism is given by
qmax ¼ 2kF (with 2kF ¼ πn for the chain lattice geometry). In this
work, we choose n ¼ 0:5 (adjusted via the chemical potential μ),
as the relevant density for BaFe2Se3 π/2-block magnetic order24.
Then, the latter order can be identified via the peak position of
the static structure factor S(q)= 〈T−q ⋅ Tq〉 at qmax ¼ π=2 or via a
finite dimer order parameter Dπ/2=∑ℓ(−1)ℓ〈Tℓ ⋅ Tℓ+1〉/L, where
we introduced the Fourier transform Tq ¼ ∑‘ expðiq‘Þ T‘=

ffiffiffi
L

p
of

the total spin operator Tℓ= Sℓ+ sℓ. In Fig. 1c S(q) is shown at

moderate interaction: at U/W < 1.6 it displays a maximum at
qmax ¼ π=2, consistent with ↑↑↓↓ the order.

Remarkably, it has been shown recently27 that there exists an
additional unexpected phase in between the block- and FM-
ordering. Namely, upon increasing the interaction (1.6 <U/W <
2.4), the maximum of S(q) in Fig. 1c shifts towards incommen-
surate wavevectors (while for U/W > 2.4 the system is a
ferromagnet). This incommensurate region reflects a novel
magnetic spiral where the magnetic islands maintain their
ferromagnetic character (with Dπ/2 ≠ 0) but start to rigidly rotate,
forming a so-called block-spiral (see sketch Fig. 1c). The latter
can be identified by a large value27 of the long-range chirality
correlation function 〈κℓ ⋅ κm〉 where κℓ= Tℓ × Tℓ+N and N is the
block size. It is important to note that the spiral magnetic order
appears without any direct frustration in the Hamiltonian (1), but
rather is a consequence of hidden frustration caused by
competing energy scales in the OSMP regime. Finally, it should
be noted that the block-spiral OSMP state is not limited to 1D
chains. In Supplementary Note 2, we show similar investigations
for the ladder geometry and find rigidly rotating 2 × 2 FM islands.
These results are consistent with recent nuclear magnetic
resonance measurements on the CsFe2Se3 ladder compound
which reported the system’s incommensurate ordering35.

Interestingly, an interaction-induced spiral order is also present
when SC pairing is included in the model, as evident from Fig. 1d.
However, the spiral mutates from block- to canonical-type with
Dπ/2= 0 (see the sketch in Fig. 1d), indicating unusual back-and-
forth feedback between magnetism and superconductivity. As
discussed below, the pairing optimizes the spiral profile to
properly create the Majoranas. The competition between many
energy scales (Hubbard interaction, Hund exchange, and SC
pairing) leads to novel phenomena: an interaction-induced
topological phase transition into a many-body state with MZM,
unconventional SC, and canonical spiral.

Majorana fermions. Figure 3 shows the effect of ΔSC/W≃ 0.5 on
the single-particle spectral function A(q, ω) (see the “Methods”
section) for the two crucial phases in our study, the block-
collinear and block-spiral magnetic orders (U/W= 1 and U/W=
2, respectively). As expected, in both cases, a finite SC gap opens
at the Fermi level ϵF (~0.5 [eV] for U/W= 1 and ~0.1 [eV] for
U/W= 2). Remarkably, in the block-spiral phase, an additional
prominent feature appears: a sharply localized mode inside the
gap at ϵF, displayed in Fig. 3b. Such an in-gap mode is a

Fig. 3 Spectral functions. Effect of the finite pairing field ΔSC/W≃ 0.5 on the single-particle spectral function A(q,ω) for a U/W= 1 and b U/W= 2
calculated for L= 36, n ¼ 0:5, and δω= 0.02 [eV]. Majorana zero-energy modes are indicated in b. c Local density-of-states (LDOS) in the in-gap
frequency region (δω= 0.002 [eV]) vs. chain site index. The sharp LDOS peaks at the edges represent Majorana edge states, while the bulk of the system
exhibits gapped behavior.
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characteristic feature of a topological state, namely the bulk of the
system is gapped, while the edge of the system contains the in-gap
modes. To confirm this picture, in Fig. 3c, we present a high-
resolution frequency data of the real-space local density-of-states
(LDOS; see the “Methods” section) near the Fermi energy ϵF. As
expected, for the topologically nontrivial phase, the zero energy
modes are indeed confined to the system’s edges. It is important
to note that this phenomenon is absent for weaker interaction
U/W= 1. Furthermore, one cannot deduce this behavior from the
U→∞ or JH→∞ limits, where the system has predominantly
collinear AFM or FM ordering, leading again to a trivial SC
behavior. However, as shown below, at moderate U the com-
peting energy scales present in the OSMP lead to the topological
phase transition controlled by the electron–electron interaction.

Let us now identify the induced topological state. The size
dependence of the LDOS presented in Fig. 3c reveals zero-energy
edge modes, namely peaks at frequency ω≃ ϵF localized at the
edges of the chain with open ends. While such modes are a
characteristic property of the MZM, finding peaks in the LDOS
alone is insufficient information for unambiguous identification.
To demonstrate that the gKH model with superconductivity
indeed hosts Majorana modes, we have numerically checked three
distinct features of the MZM:

(i) Since the Majorana particles are their own antiparticles, the
spectral weight of the localized modes should be built on an
equal footing from the electron and hole components.
Figure 4a shows that this is indeed the case.

(ii) The total spectral weight present in the localized modes can
be rigorously derived from the assumption of the MZM’s
existence (see the “Methods” section), and it should be
equal to 0.5. Integrating our DMRG results in Fig. 3c over a
narrow energy window and adding over the first few edge
sites gives≃ 0.47, very close to the analytical prediction.
Note that the Majoranas are not strictly localized at one
edge site ℓ∈ {1, L}, as evident from Fig. 4a. Instead, the
MZM is exponentially decaying over a few sites (see

Fig. 5c), and we must add the spectral weight accordingly
(separately for the left and right edges).

(iii) The MZM located at the opposite edges of the system form
one fermionic state, namely the edge MZM is correlated
with one another over large distances. To show such
behavior, consider the hole- and electron-like centrosym-

metric spectral functions, hhc‘ cyL�‘þ1ii
h

ω
and hhcy‘ cL�‘þ1ii

e

ω,
respectively. These functions represent the probability
amplitude of creating an electron on one end and a hole
at the opposite end (or vice-versa) at a given energy ω (see
the “Methods” section for detailed definitions and Supple-
mentary Note 3 for further discussion). Figure 4b shows

hhc‘ cyL�‘þ1ii
h

ω
and hhcy‘ cL�‘þ1ii

e

ω at the Fermi level ω= ϵF,
namely in the region where the MZM should be present. As
expected, the bulk of the system behaves fundamentally
different from the edges. In the former, crudely when L/2
≲ ℓ≲ 3L/4, the aforementioned spectral functions vanish
reflecting the gapped (bulk) spectrum with lack of states at
the Fermi level. However, at the boundaries (ℓ≪ L/2 and
ℓ≫ L/2) the values of the centrosymmetric spectral
functions are large, with a maximum at the edges ℓ∈
{1, L}. The long-range (across the system) correlations of
the edge states strongly support their topological nature.

Finally, let us discuss the physical mechanism causing the onset
of MZM. In Fig. 5a we present the Hubbard U interaction
dependence of the edge-LDOS (ℓ= 1) in the vicinity of the Fermi

Fig. 4 Correlation functions of Majorana fermions. a Site ℓ dependence of
the local density-of-states (LDOS) at the Fermi level (ω= ϵF) together with
its hole hhc‘ cy‘ ii

h

ϵF
and electron hhcy‘ c‘ii

e

ϵF
contributions. b Site dependence

of the centrosymmetric spectral function hhc‘ cyL�‘þ1ii
h

ϵF
and hhcy‘ cL�‘þ1ii

e

ϵF
.

Sketches represent the calculated process: the probability of creating the
electron on one end of the system (site ℓ) and a hole at the opposite end
(site L− ℓ+ 1), or vice-versa, at given energy ω. The pairs of sites where
the spectral function is evaluated are represented by the same colors. All
results were calculated for L= 36, U/W= 2, ΔSC/W≃ 0.5, and n ¼ 0:5.

Fig. 5 Interaction dependence of the MZM. Dependence on the Hubbard
interaction U of a the edge-LDOS at site ℓ= 1 (near the Fermi level ϵF) and
b the chirality correlation function 〈κL/2 ⋅ κℓ〉. All results calculated for ΔSC/
W≃ 0.5, n ¼ 0:5, L= 36. c Spatial decay of the local density-of-states at
the Fermi level (LDOS at ϵF) and the chirality correlation function 〈κℓ ⋅ κℓ+r〉
for U/W= 2. Red solid lines indicate exponential decay expð�r=lαÞ with
lMZM= 3 and ls= 15, for the MZM and the spiral order, respectively.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23261-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2955 | https://doi.org/10.1038/s41467-021-23261-2 | www.nature.com/naturecommunications 5

62 4. INTERACTION-INDUCED TOPOLOGICAL PHASE TRANSITION . . .



level, ω ~ ϵF. It is evident from the presented results that the
edge-LDOS acquires a finite value quite abruptly for U >Uc≃ 1.5.
To further clarify this matter, let us return to the magnetic states in
the OSMP regime. Figure 5b shows the chirality correlation
function 〈κL/2 ⋅ κℓ〉 (with κℓ=Tℓ ×Tℓ+1) for increasing value of the
Hubbard U strength. We observe a sudden appearance of the
chirality correlation exactly at Uc, a behavior similar to that of the
edge LDOS. Interestingly, in the system without the pairing field,
ΔSC= 0, at a similar value of U≃ 1.6 the system enters the block-
spiral phase with rigidly rotating FM islands. However, in our setup,
the tendencies of OSMP to create magnetic blocks26 are highly
suppressed by empty and doubly occupied sites favored by the finite
pairing field ΔSC. As a consequence, the block-spiral order is
reshaped to a canonical type of spiral without dimers Dπ/2= 0. This
behavior is similar to the MZM observed when combining s-wave
SC with a classical magnetic moment heterostructure2,4–6. In the
latter, the Ruderman–Kittel–Kasuya–Yosida (RKKY) mechanism
stabilizes a classical long-range spiral with 2kF pitch (where kF / n
is the Fermi wavevector). Within the OSMP, however, the pitch is,
on the other hand, controlled by the interaction U (at fixed n), as
evident from the results presented in Fig. 1b, c.

Furthermore, analysis of the chirality correlation function 〈κℓ ⋅
κℓ+r〉 indicates that the spiral order decays with the distance r (see
Fig. 5c), as expected in a 1D quantum system. Note, however, that
the MZM decay length scale, lMZM, and that of the spiral, ls, differ
substantially. The Majoranas are predominantly localized at the
system edges, thus yielding a short localization length lMZM≃ 3.
The spiral, although still decaying exponentially, has a robust
correlation length ls≃ 13, of the same magnitude as the ΔSC= 0
result27. Then, for large but finite chains the overlap between the
edge modes is negligible while the magnetic correlations on
the distance L are still large enough to promote triplet pairing and
the Majorana modes. In addition, we have observed that smaller
values of ΔSC than considered here also produce the MZM.
However, since the Majoranas have an edge localization length
inversely proportional to ΔSC, reducing the latter leads to overlaps
between the left and right Majorana states in our finite
systems28,36, thus distorting the physics we study. After
exploration, ΔSC/W≃ 0.5 was considered an appropriate com-
promise to address qualitatively the effects of our focus given our
practical technical constraints within DMRG (see Supplementary
Note 4 for details).

Conceptually, it is important to note that the interaction-
induced spiral at U/W= 2 is not merely frozen when ΔSC

increases. Specifically, the characteristics27 of the chirality
correlation function 〈κi ⋅ κj〉 qualitatively differ between the trivial
(ΔSC= 0) and topological phases (ΔSC ≠ 0): increasing ΔSC

suppresses the dimer order and leads to a transformation from
block spiral to a standard canonical spiral with Dπ/2= 0 in the
topologically nontrivial phase. As a consequence, the proximity to
a superconductor influences on the magnetic order to optimize the
spin pattern needed for MZM. Surprisingly, ΔSC influences on the
collinear spin order as well. In fact, at U/W= 1, before spirals are
induced, the proximity to superconductivity changes the block
spin order into a more canonical staggered spin order to optimize
the energy (see Fig. 3b). This is a remarkable, and unexpected,
back-and-forth positive feedback between degrees of freedom that
eventually causes the stabilization of the MZM.

Discussion
Our main findings are summarized in Fig. 6: upon increasing the
strength of the Hubbard interaction U within the OSMP with
added SC pairing field, the system undergoes a topological phase
transition. The latter can be detected as the appearance of edge
modes which are mutually correlated in a finite system. This in

turn leads to, e.g., the sudden increase of the entanglement, as
measured by the von Neumann entanglement entropy SvN (see
the “Methods” section). The transition is driven by the change in
the magnetic properties of the system, namely by inducing a finite
chirality visible in the correlation function 〈κℓ ⋅ κm〉. The above
results are consistent with the appearance of the MZM at the
topological transition. It should be noted that the presence of
those MZM implies unconventional p-wave superconductivity8.
As a consequence, for our description to be consistent, the
topological phase transition ought to be accompanied by
the onset of triplet SC amplitudes ΔT. To test this nontrivial
effect, we monitored the latter, together with the singlet SC
amplitude ΔS (related to a nonlocal s-wave SC; see the “Methods”
section for detailed definitions). As is evident from the results in
Fig. 6, for U <Uc we observe only the singlet component ΔS

canonical for an s-wave SC, while for U ≥Uc the triplet amplitude
ΔT develops a robust finite value. It is important to stress that
ΔT ≠ 0 is an emergent phenomenon, induced by the correlations
present within the OSMP, and is not assumed at the level of the
model (we use a trivial on-site s-wave pairing field as input).

In summary, we have shown that the many competing energy
scales induced by the correlation effects present in SC multi-
orbital systems within OSMP lead to a topological phase transi-
tion. Differently from the other proposed MZM candidate setups,
our scheme does not require frozen classical magnetic moments
or, equivalently, FM ordering in the presence of the Rashba
spin–orbit coupling3. All ingredients necessary to host Majorana
fermions appear as a consequence of the quantum effects induced
by the electron–electron interaction. The pairing filed can be
induced by the proximity effect with a BCS superconductor, or it
could be an intrinsic property of some iron superconductors
under pressure or doping. It is important to note that the

Fig. 6 Phase diagram. a Hubbard interaction U dependence of the (i) von
Neumann entanglement entropy SvN, (ii) edge local density-of-states at the
Fermi level (eLDOSϵF ), (iii) the value of chirality correlation function at
distance L/2 (i.e. 〈κL/4 ⋅ κ3L/4〉), as well as (iv) nonlocal singlet ΔS and
triplet ΔT pairing amplitudes. See text for details. All results were calculated
for L= 36, ΔSC/W≃ 0.5, and n ¼ 0:5. b, c Spatial dependence of the singlet
and triplet SC amplitudes, ΔS,ℓ and ΔT0,ℓ, respectively (see the “Methods”
section for details), with b the trivial phase (U/W= 1,ΔSC/W≃ 0.5) and
c the topological phase (U/W= 2,ΔSC/W≃ 0.5). In the latter, the
oscillations of the triplet component are related to the pitch of the
underlying spiral magnetic order.
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coexistence of SC and nontrivial magnetic properties is mostly
impossible in single-orbital systems. Here, the OSMP provides a
unique platform in which this constraint is lifted by, on the one
hand, spatially separating such phenomena, and, on the other
hand, strongly correlating them with each other. Furthermore,
our proposal allows to study the effect of quantum fluctuations on
the MZM modes. There are only a few candidate materials that
may exhibit the behavior found here. The block-magnetism (a
precursor of the block-spiral phase) was recently argued to be
relevant for the chain compound Na2FeSe237, and was already
experimentally found in the BaFe2Se3 ladder24. Incommensurate
order was reported in CsFe2Se335. Also, the OSMP38–40 and
superconductivity31–33 proved to be important for other com-
pounds from the 123 family of iron-based ladders.

Our findings provide also a new perspective to the recent
reports of topological superconductivity and Majorana fermions
found in two-dimensional compounds Fe(Se,Te)13–17. Since
orbital-selective features were observed in clean FeSe41,42, it is
reasonable to assume that OSMP is also relevant for doped Fe(Se,
Te)43. Regarding magnetism, the ordering of FeSe was mainly
studied within the classical long-range Heisenberg model44,
where block-like structures (e.g., double stripe or staggered
dimers) dominate the phase diagram for realistic values of the
system parameters. Note that the effective spin model of the
block-spiral phase studied here was also argued to be long-
ranged27. The aforementioned phases of FeSe are typically
neighboring (or are even degenerate with) the frustrated spiral-
like magnetic orders44, also consistent with the OSMP magnetic
phase diagram26. In view of our results, the following rationale
could be used to explain the behavior of the above materials: the
competing energy scales present in multi-orbital iron-based
compounds, induced by changes in the Hubbard interaction due
to chemical substitution or pressure, lead to exotic magnetic spin
textures. The latter, together with the SC tendencies, lead to
topologically nontrivial phases exhibiting the MZM45,46. Also,
similar reasoning can be applied to the heavy-fermion metal
UTe2. It was recently shown that this material displays spin-
triplet superconductivity47 together with incommensurate
magnetism48.

Methods
DMRG method. The Hamiltonians and observables discussed here were studied
using the density matrix renormalization group (DMRG) method49,50 within the
single-center site approach51, where the dynamical correlation functions are
evaluated via the dynamical-DMRG52,53, i.e., calculating spectral functions directly
in frequency space with the correction-vector method using Krylov
decomposition53. We have kept up to M= 1200 states during the DMRG proce-
dures, allowing us to accurately simulate system sizes up to L= 48 and L= 60 with
truncation errors ~10−8 and ~10−6, respectively.

We have used the DMRG++ computer program developed at Oak Ridge
National Laboratory (https://g1257.github.io/dmrgPlusPlus/). The input scripts for
the DMRG++ package to reproduce our results can be found at https://bitbucket.
org/herbrychjacek/corrwro/ and also on the DMRG++ package webpage.

Hybrid DMRG–BdG algorithm. We consider a 2D, s-wave, BCS superconductor at
half-filling,

HBCS ¼ �tBCS ∑
hi;ji;σ

ayi;σaj;σ � VBCS ∑
i

ΔBCS
i ayi;"a

y
i;# þ H:c:

� �
: ð4Þ

Here 〈i, j〉 denotes summation over nearest-neighbor sites of a square lattice and
ayi;σ (ai;σ ) creates (destroys) an electron with spin projection σ= {↑, ↓} at site i. The
BCS system is coupled to the OSMP chain, as described by the last term of
Hamiltonian (2) in the main text. At the BCS level, the latter term emerges as an
additional (external) pairing field to the OSMP region

HV ¼ �V ∑
‘0

ΔOSMP
‘ ay

‘0 ;"a
y
‘0 ;# þ H:c:

� �
: ð5Þ

Here, the summation is restricted to the sites of the BCS system which are coupled
to the OSMP chain. In numerical calculations, we set the hopping integral tBCS= 2
[eV], fix the system size to Lx= 54 and Ly= 27 (with 1D OSMP system coupled to
the ‘0 ¼ 14 row of sites), use the BCS attractive potential VBCS/tBCS= 2 and the

coupling strength V/tBCS= 2. Although we assume periodic boundary conditions
for the BCS system, the translational invariance is broken by the coupling to the
OSMP chain.

Our procedure consists of two alternating steps:

1. BdG calculations: In the first step, we assume an initial set ΔOSMP
‘ and

diagonalize the Hamiltonian HBCS+HV, as defined in Eqs. (4) and
(5). To this end, we use the standard BdG equations at zero
temperature. They yield self-consistent results for the pairing
amplitude, ΔBCS

i ¼ hai;#ai;"i, for all sites i within the BCS system.
From among the latter results, we single out the amplitudes ΔBCS

‘0 on
the sites i ¼ ‘0 which are coupled to the OSMP chain.

2. DMRG calculations: The OSMP system within Eq. (3) is evaluated using the
DMRG approach. The spatially dependent amplitudes ΔOSMP

‘ are
calculated providing a new set of external fields for the subsequent
BdG calculations.

The above procedure is repeated iteratively until we obtain converged results. In
the main text (see Fig. 2) we presented results of the above algorithm starting from
ΔOSMP
‘ ¼ 0. However, the procedure can also start from arbitrary pairing fields

ΔOSMP
‘ in the first step. The right column of Fig. 2b depicts results obtained using a

random initial profile ΔOSMP
‘ 2 ½0; 1�. It is evident from the presented results that

the converged result is independent of the initial configuration (at least for the
couplings studied here). See Supplementary Note 1 for further discussion and
additional results.

Spectral functions. Let us define the site-resolved frequency (ω)-dependent
electron (e) and hole (h) correlation functions

hhA‘ Bmiie;hω ¼ � 1
π
Im gs

� ��A‘

1
ωþ � ðH � ϵ0Þ

Bm gs
�� �

; ð6Þ

where the signs + and − should be taken for hh:::iieω and hh¼iihω, respectively.
Here, gs

�� �
is the ground-state, ϵ0 the ground-state energy, and ω+= ω+ iη with η

a Lorentzian-like broadening. For all results presented here, we choose η= 2δω,
with δω/W= 0.001 (unless stated otherwise).

The single-particle spectral functions A(q, ω)= Ae(q, ω)+ Ah(q, ω), where Ae

(Ah) represent the electron (hole) part of the spectrum, have a standard definition,

Ahðq;ωÞ ¼ ∑
‘
e�iqð‘�L=2Þ hhc‘ cyL=2ii

h

ω
;

Aeðq;ωÞ ¼ ∑
‘
eþiqð‘�L=2Þ hhcy‘ cL=2ii

e

ω
;

ð7Þ

with c‘ ¼ ∑σc‘;σ . Finally, the LDOS is defined as

LDOSð‘;ωÞ ¼ hhc‘ cy‘ ii
h

ω þ hhcy‘ c‘ii
e

ω:
ð8Þ

Spectral functions of Majorana edge-states. For simplicity, in this section, we
suppress the spin index σ and assume that the lattice index j contains all local
quantum numbers. The many-body Hamiltonian is originally expressed in terms of
fermionic operators c yð Þ

j , but it may be equivalently rewritten using the Majorana
fermions (not to be confused with the MZM):

γ2j�1 ¼ cj þ cyj ; γ2j ¼ �iðcj � cyj Þ; ð9Þ

where γyl ¼ γl and {γi, γj}= 2δij. The latter anticommutation relation is invariant
under orthogonal transformations, thus we can rotate the Majorana fermions
arbitrarily with

Γa ¼ ∑
j
V̂ajγj; ð10Þ

where V̂ are real, orthogonal matrices V̂
>
V̂ ¼ V̂V̂

> ¼ 1. If the system hosts a pair
of Majorana edge modes, ΓL and ΓR, then we can find a transformation V̂ such that
the following Hamiltonian captures the low-energy physics

H ’ i
ε

2
ΓL ΓR þH0: ð11Þ

It is important to note that H0 does not contribute to the in-gap states. It contains
all Majorana operators, Γa, other than the MZM (ΓL and ΓR). The first term in Eq.
(11) arises from the overlap of the MZM in a finite system, while in the thermo-
dynamic limit ε→ 0 both ΓL and ΓR become strictly the zero modes. While the
ground state properties obtained from the zero temperature DMRG do not allow us
to formally construct the transformation V̂ , we demonstrate below that the com-
puted local and non-local spectral functions are fully consistent with the MZM. In
fact, we are not aware of any other scenario that could explain the spectral func-
tions reported in this work.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23261-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2955 | https://doi.org/10.1038/s41467-021-23261-2 | www.nature.com/naturecommunications 7

64 4. INTERACTION-INDUCED TOPOLOGICAL PHASE TRANSITION . . .



Let us investigate the retarded Green’s functions

Gh cj; c
y
l

� �
¼ �i

R1
0
dt eiωt gs

� ��cjðtÞcyl gs
�� �

;

Ge cj; c
y
l

� �
¼ �i

R1
0
dt eiωt gs

� ��cyl cjðtÞ gs
�� �

;

ð12Þ

which are related to the already introduced spectral functions

hhcjcyl ii
h

ω
¼ � 1

π Im Gh cj; c
y
l

� �
;

hhcyl cjii
e

ω
¼ � 1

π Im Ge cj; c
y
l

� �
:

ð13Þ

Using the transformations (9) and (10) one may express Ge;h cj; c
y
l

� �
as a linear

combination of the Green’s functions defined in terms of the Majorana fermions
Ge;h Γa; Γb

� 	
. However, the only contributions to the in-gap spectral functions come

from the zero-modes, i.e., from a, b∈ {L, R}, and the corresponding functions can
be obtained directly from the effective Hamiltonian (11),

Gh ΓL; ΓL
� 	 ¼ Gh ΓR; ΓR

� 	 ¼ 1
ω�jεjþiη ;

Ge ΓL; ΓL
� 	 ¼ Ge ΓR; ΓR

� 	 ¼ 1
ωþjεjþiη :

ð14Þ

The Green’s functions determine the in-gap peak in the left part of the system

Gα cj; c
y
j

� �
¼

V2
L;2j þ V2

L;2j�1

4
Gα ΓL; ΓL

� 	
; ð15Þ

with α ∈ {e, h}, and a similar expression holds for the peak on its right side.
Utilizing the orthogonality of V̂ , one may explicitly sum up the Green’s functions
over the lattice sites

∑
j
Gα cj; c

y
j

� �
¼ 1

4
Gα ΓL; ΓL

� 	
; ð16Þ

where the sum over j contains few sites at the edge of the system due to the
exponential decay of the V̂ elements. The result Eq. (16) explains why the total spectral
weights originating from ∑jGα equal 1/4, while the total spectral weights of the peaks
in LDOS equal 1/2. A similar discussion of the nonlocal centrosymmetric spectral

functions hhc‘ cyL�‘þ1ii
h

ϵF
and hhcy‘ cL�‘þ1ii

e

ϵF
can be found in Supplementary Note 3.

Von Neumann entanglement entropy. SvN(ℓ) measures entanglement between
two subsystems containing, respectively, ℓ and L−ℓ sites, and can be easily cal-
culated within DMRG via the reduced density matrix ρℓ, i.e., SvNð‘Þ ¼ �Trρ‘ln ρ‘ .
The results presented in Fig. 6 depict the system divided into two equal halves, ℓ=
L/2. The full spatial dependence of SvN(ℓ) is presented in Supplementary Note 5.

SC amplitudes. The s-wave and p-wave SC can be detected with singlet ΔS and
triplet ΔT amplitudes, respectively, defined as

ΔS ¼ ∑
3L=4

‘¼L=4
ΔS;‘

�� ��;

ΔT ¼ ∑
3L=4

‘¼L=4
ΔT0;‘

�� ��þ ΔT#;‘
�� ��þ ΔT#;‘

�� ��� �
;

ð17Þ

with

ΔS;‘ ¼ cy‘;"c
y
‘þ1;# � cy‘;#c

y
‘þ1;"

D E
;

ΔT0;‘ ¼ cy‘;"c
y
‘þ1;# þ cy‘;#c

y
‘þ1;"

D E
;

ΔT";‘ ¼ cy‘;"c
y
‘þ1;"

D E
; ΔT#;‘ ¼ cy‘;#c

y
‘þ1;#

D E
:

ð18Þ

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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Supplementary Note 1. Stability of the hybrid BdG-DMRG algorithm

In the main text, we have presented how the spatial profiles of the pairing fields (PF) in the BCS system �BCS
i

converge in subsequent steps of the iteration procedure. Here, as supplementary information, we will discuss the
convergence of PF �OSMP

` obtained for the 1D OSMP system. Furthermore, we will test the stability of the introduced
procedure and demonstrate that the obtained results are independent of the initial choice of the PF.

From the results presented in the main text, it is evident that the PF converge to almost uniform (spatially
independent) values within the 1D OSMP system. Consequently, to simplify the presentation of the results, we will
discuss only the behaviour of the average PF,

P
` �OSMP

` /L. In Supplementary Figure 1 we present the iteration
dependence of the latter for various initial starting points. As explained in the Methods section of the main text, our
DMRG-BdG algorithm can be started from arbitrary amplitudes in the 1D OSMP system. We have considered: (1)
zero PF (the result discussed in the main text), (2) constant PF �OSMP

` = 0.1 and �OSMP
` = 1.0, and (3) random PF

drawn from a box distribution of widths [0.0 , 0.1], [0.0 , 1.0], [�0.1 , 0.1], and [�1.0 , 0.1]. Several conclusions can be
obtained directly from the results for U/W = 1 (trivial phase, Supplementary Figure 1a) and U/W = 2 (topological
phase, Supplementary Figure 1b): (i) For all considered cases, the converged spatial profiles are almost uniform within
the OSMP chain. This is best exemplified by the results presented in the right column of Fig. 2b of the main text,
where we show the convergence of the hybrid procedure for the case when iterations are initialized by random PF,
i.e., �OSMP

` 2 [0, 1]. (ii) For all considered initial PF, the results converge to the same - interaction dependent -
value. This nontrivial result shows that the hybrid BdG-DMRG procedure is numerically very stable. (iii) The quick
convergence of the hybrid procedure holds true for the entire range of the Coulomb repulsion considered in the present
studies: see results for

P
` �OSMP

` /L shown in Supplementary Figure 1c and Supplementary Figure 1d.
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c depicts the interaction U dependence of the convergence for the case of an initial �OSMP
` = 1 [eV]. The asymptotic value ofP

` �
OSMP
` /L as function of U is given in d.
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Supplementary Note 2. Ladder geometry considerations

In the main text, we have shown that the generalized Kondo-Heisenberg (gKH) model on the chain geometry can
support Majorana zero-energy modes (MZM) when in the presence of a superconducting (SC) pairing field �SC. Here,
we will show that the key ingredients necessary to support the MZM in the gKH model are also present in the ladder
geometry, i.e. the block-spiral magnetic state (see Supplementary Figure 2a for a sketch) and single-particle spectra
with parity-breaking quasi-particles. We will consider a spatially isotropic ladder with tk = t? ⌘ ti, the latter hopping
defined in the main text, and choose filling n = 1.75, which supports block-magnetism at U ⇠ W [1, 2]. Although
accurate calculations within the grand-canonical ensemble (needed with finite pairing field �SC 6= 0) are numerically
too demanding (due to the doubling of the lattice sites on the ladder of L rungs), precise canonical calculations of the
static structure factor can still be performed, i.e.,

S(qk, q?) =
X

`,`0

X

r,r0

e+iq?(r�r0)e+iqk(`�`0)hT`,r · T`0,r0i , (1)

where T`,r = S`,r +s`,r, and (`, r) represent the leg and rung number, respectively. Our results in Supplementary Fig-
ure 2b reveal that the S(qk, q?) lies at incommensurate values of the wavevectors, the one of the block-spiral magnetic
state signatures [3]. Another feature of the latter is the existence of two cosine-like bands in the single-particle spectral
(see also the discussion in the next section) A(qk, q?,!) = Ae(qk, q?,!) + Ah(qk, q?,!) near the Fermi level ! ⇠ ✏F,
where

Ae(qk, q?, ,!) =
X

`

X

r,r0

e+iq?(r�r0)e�iqk(`�L/2) hhc`,r c†
L/2,r0iie! ,

Ah(qk, q?, ,!) =
X

`

X

r,r0

e+iq?(r�r0)e+iqk(`�L/2) hhc†
`,r cL/2,r0iih! . (2)

The results presented in Supplementary Figure 2c (for L = 36 rungs, U/W = 2.2, JH/U = 0.25, and n = 1.75) are
consistent with this scenario and resemble the chain geometry results. Consequently, it is reasonable to assume that
the influence of a finite pairing field �SC 6= 0 will lead to a topological superconducting state and the emergence of
the MZM also on the ladder lattice.
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Supplementary Figure 2. Block-spiral state on the ladder geometry. a Sketch of the block-spiral state on the ladder
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Supplementary Note 3. Spectral functions

In Fig. 4 of the main text, we have shown the spatial dependence of the local density-of-states (LDOS) at the
Fermi level, together with equal contributions of the electron and hole components, as expected for MZM. Here, in
Supplementary Figure 3, we show that the same holds in frequency ! space. Furthermore, in the same figure we show
that both spin components contribute equally (within our numerical precision).
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Supplementary Figure 3. Components of the Majorana edge states. Frequency ! dependence of the edge-LDOS (` = 1)
near the Fermi level ! ⇠ ✏F Panel a depicts electron and hole contributions, while panel b the #- and "-spin component.
Calculated for L = 36, U/W = 2, �SC/W ' 0.5, and n = 0.5.

The same reasoning used for the LDOS in the main text can also be applied to the o↵-diagonal functions G↵
⇣
cj , c

†
l

⌘

where sites j and l belong to the left j < L/2 and the right l > L/2 portions of the system. Then, it can be shown
that

G↵
⇣
cj , c

†
l

⌘
=

VL,2j�1VR,2l�1 + VL,2jVR,2l

4
G↵ (�L, �R) ,

+ i
VL,2jVR,2l�1 � VL,2j�1VR,2l

4
G↵ (�L, �R) , (3)

with

Gh (�L, �R) = �Gh (�R, �L) =
i sgn(")

! � |"| + i⌘
,

Ge (�L, �R) = �Ge (�R, �L) =
�i sgn(")

! + |"| + i⌘
. (4)

Since the considered Hamiltonian is real, the spectral functions hhcjc
†
l iih! and hhc†

jcl iie! should be real as well. Given
that the weights of hh�L�Rii↵! are purely imaginary [see Supplementary Eq. (4)], the upper line in Supplemen-
tary Eq. (3) should vanish. Indeed, for real Hamiltonians, �L (and also �R) contains �j with only even or odd j. In
other words, �L contains only �2j and �R contains only �2j�1 or vice versa. Without losing generality, we may choose
the former possibility,

G↵
⇣
cj , c

†
l

⌘
= i

VL,2jVR,2l�1

4
G↵ (�L, �R)

G↵
⇣
cl , c

†
j

⌘
= �i

VR,2l�1VL,2j

4
G↵ (�R, �L) = G↵

⇣
cj , c

†
l

⌘
, (5)

and obtain the spectral functions shown in Supplementary Figure 4 and Fig. 4b of the main text

hhcl c
†
L�l+1iih! = �1

4

⇢
VL,2lVR,2L�2l+1 for l < L/2

VL,2L�2l+2VR,2l�1 for l > L/2

�
sgn(") �(! � |"|) ,

hhc†
l cL�l+1iie! = +

1

4

⇢
VL,2lVR,2L�2l+1 for l < L/2

VL,2L�2`+2VR,2l�1 for l > L/2

�
sgn(") �(! + |"|) , (6)

where the electron and hole contributions arise with opposite signs, as it is also visible in Supplementary Figure 4
and Fig. 4b of the main text. Finally, it is reasonable to assume that the spatial profiles of the MZMs at both
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system edges are mutually symmetric, i.e., |VR,2L�2l+1| ' |VL,2l|. Then, comparing Eq. 15 of the main text and
Supplementary Eq. (6) we obtain a mirroring of the diagonal (local) and o↵-diagonal spectral functions

|hhcl c
†
L�l+1iih!| ' |hhcl c

†
l iih!|,

|hhc†
L�l+1cl iie!| ' |hhc†

l cl iie!| , (7)

which is reasonably well reproduced by the numerical results.
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Supplementary Figure 4. O↵-diagonal spectral functions. Frequency dependence of centrosymmetric spectral functions,
Supplementary Eq. (6), at the edge of the system ` = 1 (solid points). We also present spatially integrated, according to Eq. 16
of the main text, spectral functions as colored area. Results shown were calculated for L = 36, U/W = 2, �SC/W ' 0.5, and
n = 0.5.
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Supplementary Note 4. Parameter dependence

In this section, we will discuss the pairing field �SC dependence of our results. Let us first focus on the single-particle
spectral function A(q,!) [see Eq. 7 of the main text]. In Supplementary Figure 5a and Supplementary Figure 5b we
show A(q,!) for systems (at electronic filling n = 0.5) without pairing field �SC = 0 for two representative values of
the interaction: U/W = 1 and U/W = 2, i.e., in the block-collinear and block-spiral magnetic phases. Both spectra
exhibit a finite density-of-states (DOS) at the Fermi level ✏F. In the case of the block-spiral phase at U/W = 2,
Supplementary Figure 5b, one can observe two bands of quasiparticles: left and right movers reflecting the two
possible rotations of the spirals. It is obvious from these results that the quasiparticles break the parity symmetry;
i.e., going from q ! �q momentum changes the quasiparticle character, as expected for a spiral state. It is also worth
noting that for the block-magnetic order (U/W = 1 and �SC = 0) one can observe [3] the V-like shape of DOS in
the vicinity of ✏F. The latter indicates a semiconductor-like behaviour which was also experimentally found [4] in the
2 ⇥ 2 block-magnetic ladder compound BaFe2Se3. This result shows our model’s strength and relevance for realistic
investigations of the iron-based materials from the 123 family.
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Supplementary Figure 5. Single-particle spectra for block-collinear and block-spiral magnetism. Single-particle
spectra A(q,!) of the gKH model using L = 36 sites and electronic filling n = 0.5 for a U/W = 1 ,�SC = 0, b U/W =
2 ,�SC = 0, c, U/W = 1 ,�SC/W ' 0.5, and d U/W = 2 ,�SC/W ' 0.5.

The pairing field �SC 6= 0 has a striking e↵ect on these two phases, see Supplementary Figure 5c and Supplemen-
tary Figure 5d where we present results for �SC/W ' 0.5. As discussed in detail in the main text, the pairing field
leads to the appearance of MZM in the spiral phase (U/W = 2, Supplementary Figure 5d), with the flat �-mode
inside the superconducting gap. On the other hand, for the collinear block-magnetic phase (U/W = 1, Supplemen-
tary Figure 5c) we observe only a trivial opening of the SC gap, without any in-gap states. These results indicate
that the Hubbard interaction strength U , as the main driver between the two magnetic states, plays a crucial role in
the stabilization of the MZM.

In order to investigate all these aspects in more detail, in Supplementary Figure 6 we present the pairing field �SC

dependence of the quantities discussed in the main text, i.e.: (i) value of edge-LDOS at the Fermi level ✏F (eLDOS),
(ii) chirality correlation function hL/4 · 3L/4i at L/2 distance (L/2), and (iii) amplitudes of extended (non-local)
SC singlet and triplet amplitudes, �S and �T0, respectively [see Eq. 17 of the main text]. Furthermore, in the same
figure we present the value of the on-site pairing amplitude

�0 =
2

L

3L/4X

`=L/4

��c†
`,"c

†
`,#
�� . (8)

For the collinear block-magnetic phase (U/W = 1, Supplementary Figure 6a) we observe that the �SC does not
induce any topological phase transitions. For all considered values of the pairing field, 0 < �SC/W <⇠ 0.7, the eLDOS,

71



7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

00000

eL
D

O
S
✏
F

�
0

�
S

�
T

0


L
/
2

1
9

0
.3

6
0
.3

6
0
.0

9
0
.1

3

a block phase

(U/W = 1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

b block-spiral phase

(U/W = 2)

�SC/W

eLDOS✏F
�0

�S

�T0

L/2

�SC/W

eLDOS✏F
�0

�S

�T0

L/2

Supplementary Figure 6. Phase diagram. Pairing field �SC dependence of: (i) the value of edge-LDOS at the Fermi level
✏F (eLDOS), (ii) chirality correlation function hL/4 ·3L/4i at L/2 distance (L/2), (iii) amplitudes of local and non-local SC
singlet amplitudes, �0 and �S, respectively, together with triplet component �T0. Panel a shows results for the block-collinear
magnetic phase (U/W = 1), while panel b for the block-spiral phase (U/W = 2). All results were calculated for L = 36 and
n = 0.5.

L/2, and �T are zero. Only the singlet SC amplitudes, local �0 and non-local �S, take a finite value. The behaviour
of the U/W = 2 case is strikingly di↵erent (see Supplementary Figure 6b). The chirality correlation function L/2 has
a finite value already at �SC = 0, reflecting the block-spiral ordering at this interaction strength, and weakly changes
till �SC/W ⇠ 0.6, after which it decays to zero. Simultaneously, the triplet SC amplitude �T0 increases smoothly
with the pairing-field �SC (together with singlet components �0 and �S). It is worth noting that this behaviour
is strikingly di↵erent from the U variation presented in the main text, where we observed a sudden appearance of
L/2 and �T0 at a specific value of Uc/W = 1.51. Moreover, we remark again that the pairing field influences on the
characteristics of the spiral, optimizing its shape from block to canonical, to better host the MZM.

The behaviour of the edge-LDOS in the spiral phase needs special attention. As evident from the results presented
in Supplementary Figure 6b, the value of the latter becomes finite for �SC/W >⇠ 0.25 and vanishes for �SC/W ⇠ 0.7
(together with the already discussed L/2 and �T0). In order to explain the missing weight of edge LDOS for

�SC/W <⇠ 0.25 let us investigate the frequency dependence of the hole hhc1c
†
1iih! and electron hhc†

1c1iie! contributions
to the edge-LDOS. As it is evident from the results in Supplementary Figure 7a, upon increasing �SC the peaks in
the electron- and hole-like spectral functions approach each other (Supplementary Figure 7b shows in more detail
the positions of both maxima). Within the accessible frequency resolution, both peaks are easily distinguishable for
�SC/W ' 0.25, while they merge into a single peak for �SC/W > 0.3.
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Supplementary Figure 7. Pairing field dependence of the edge local density-of-states. a Frequency ! dependence of
edge (` = 1) local density-of-states (LDOS) as a function of the pairing field �SC/W ' {0.0 , 0.05 , . . . , 0.7}, as calculated for
L = 36, n = 0.5, and U/W = 2. b Pairing field dependence of the maximum position [i.e., o↵set energy ", see Eq. 14 of the

main text] of the hole hhc1c
†
1iih! and electron hhc†

1c1iie! contributions to edge-LDOS, see Eq. 8 of the main text (based on the
data presented in panel a).

The behaviour described above is characteristic of systems hosting the MZM, i.e., despite the Majorana modes being
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located at the opposite edges of the studied chain, they overlap in any finite-L system [5, 6]. Due to this overlap, the
peaks arise at a nonzero frequency ! = ±", see Eq. 14 of the main text. The clear splitting in the former case allows
for a systematic finite-size study, shown in Supplementary Figure 8. In order to obtain well merged Majorana modes
for �SC/W ' 0.25, one needs to consider chains with at least L ⇠ 60 sites (see Supplementary Figure 8c), whereas
systems half that size are su�cient for the case that is primarily studied in the present work, i.e., for �SC/W ' 0.5
(see Supplementary Figure 8d). Furthermore, it is worth noting that if the chain is too short, then the remnants of the
peaks become visible also in the middle of the system, as it is visible from results for L = 24 in Supplementary Figure 8a
and Supplementary Figure 8c. On the other hand, a clear single peak at the system’s edge always coincides with
a well-developed gap in the bulk, as shown in Supplementary Figure 8b and Supplementary Figure 8d. All these
results consistently support the scenario that the nonzero splitting " originates from the overlap of the edge modes.
In Supplementary Figure 8e we explicitly show that " decays exponentially with L, as expected for systems hosting
the MZM [5, 6].
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Supplementary Figure 8. Finite-size analysis. System lengths L = {12 , 24 . . . , 60} dependence of the local density-of-states
a-b in the middle of the chain representing the bulk (` = L/2) and c,d at the edge (` = 1) of the system, as calculated for
U/W = 2, a,c �SC/W ' 0.25 and b,d �SC/W ' 0.5. e System size L dependence of the o↵set energy " [see Eq. 14 of the
main text] for �SC/W ' {0.25, 0.5} (based on the data presented in panels c and d).

Finally, we discuss the robustness of our results to modifications in the localized orbital interaction strength UK .
Within our model, the latter manifests as a change in the spin exchange integral K = 4t2l /UK . Our results, presented
in Supplementary Figure 9a, indicate that when the system is in the trivial phase, U/W = 1 and �SC/W ' 0.5, only a
singlet SC amplitude is present for all considered values of UK/W 2 [0.2, 3.0]. For the topological phase at U/W = 2,
the results (the presence of the triplet SC amplitude) do not depend on UK as long as the spiral nature of magnetism
is not destroyed, i.e., for UK/W >⇠ 0.8. On the other hand, when the spin exchange integral K / 1/UK dominates as
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an energy scale, the AFM ordering of the spins becomes energetically favorable [see Supplementary Figure 9b for the
analysis of static structure factor S(q)] and, consequently, the system goes away from the topological phase. These
results highlight the importance of the competing energy scales present in the multi-orbital OSMP system.
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Supplementary Figure 9. Spin exchange analysis. a Dependence of the singlet �S and triplet �T SC amplitudes on the
localized orbital interaction strength UK , calculated for L = 36, U/W = 1, 2, n = 0.5, and �SC/W ' 0.5. b Static spin
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Supplementary Note 5. Entropy and dimer order

In this section, we demonstrate that the interaction-induced topological phase transition at Uc may be identified via
studying the entanglement entropy. Supplementary Figure 10a shows the dependence of the von Neumann entropy
SvN(`) on the subsystem size, `  L, in the vicinity of the transition, i.e., for 1.4 < U/W < 1.6. Two characteristic
behaviours emerge: for U < Uc ' 1.51W SvN(`) displays an oscillatory behaviour, while for U > Uc the entropy
increases abruptly and becomes a smooth function of `. This sudden change in the entropy behaviour signifies the
interaction-induced topological phase transition and the appearance of MZM.

We also argue that the topological transition in the OSMP chain is accompanied by a rapid change of the dimer
order D⇡/2 (see Supplementary Figure 10b). In Supplementary Figures 10c and 10d we have shown the entanglement
entropy, respectively for the trivial and nontrivial phases, where SvN(`) displays clear oscillations in the former case. To
explain the physical origin of such oscillations we have also plotted the static spin-spin correlation function hT` ·T`+1i.
We can observe that the maxima of |hT` · T`+1i| and SvN(`) coincide. Recall to calculate the entanglement entropy,
we split the system into two subsystems cutting the bond between sites ` and ` + 1. Whenever a bond with a large
spin-spin correlation is cut, also the entanglement entropy is large. Therefore, we expect that the oscillatory behaviour
of SvN(`) is a direct manifestation of the dimer order. Indeed, in the topological phase the spin dimerization persists
only at the very edges of the system, as shown in Supplementary Figure 10d, so that the (bulk) dimer order vanishes
presumably as 1/L, see Supplementary Fig. 10b. Due to the absence of bulk dimer order, the entanglement entropy
smoothly changes with `, as demonstrated also in Supplementary Figure 10a.
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Supplementary Figure 10. Entropy SvN and dimer order D⇡/2. a Interaction U 2 {1.41, 1.42, . . . , 1.59, 1.60} dependence of
the von Neumann entanglement entropy SvN(`) of the subsystem of size `. Calculated for L = 36, n = 0.5, and �SC/W ' 0.5.
b Interaction dependence of the dimer order parameter D⇡/2 as calculated for L = 24, 36, 38, n = 0.5, and �SC/W ' 0.5.
c-d Site ` dependence of von Neumann entanglement entropy SvN and local spin-spin correlation function hT` · T`+1i (where
T` = S` +s` is the total on-site spin) c below (U/W = 1.4) and d above (U/W = 1.6) the topological phase transition. Results
calculated for L = 36, �SC/W ' 0.5, and n = 0.5.

Furthermore, the vanishing of the dimer order can also be observed in the behaviour of the chirality correlation
function hL/2 ·`i shown in Supplementary Figure 11. As expected in the �SC ! 0 limit (for which D⇡/2 6= 0), the
hL/2 · `i correlation displays a clear zig-zag–like pattern, reflecting the ⇡/2-block nature of the spiral (for details
see Ref. [3]). It is evident from the presented results that the decay length of the -correlation is not a↵ected by the
pairing field strength. On the other hand, the spatial details of hL/2 ·`i change from a zig-zag to a smooth function
of distance. The latter is consistent with the D⇡/2 ! 0 result in this region.
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TRANSITION TO THE HALDANE PHASE

DRIVEN BY ELECTRON-ELECTRON

CORRELATIONS

This chapter further explores the topological properties of low-dimensional multior-
bital systems with strong correlations. While the previous chapter focused on Ma-
jorana modes in the orbital-selective Mott phase away from half filling, this chapter
investigates another topological effect that occurs specifically at half filling. This ef-
fect corresponds to the well-known topological Haldane phase of the S = 1 Heisenberg
chain. However, here, it is examined from the perspective of the two-orbital Hubbard
chain. Although this work [O3] deviates slightly from the context of the 123 ladders, it
remains within the scope of low-dimensional correlated multiorbital systems, main-
taining its relevance to this thesis.

Here, the central finding is the identification of yet another sharp and interaction-
driven topological phase transition. Namely, upon increasing the Hubbard repulsion
U and Hund exchange JH, the two-orbital Hubbard chain transitions into the Haldane
phase, accompanied by the emergence of spin-1/2 edge modes. Remarkably, this tran-
sition occurs at relatively modest values of U , when the magnetic moments are not
yet fully formed and the system is far from the limit of the spin-1 Heisenberg chain.
Therefore, this work expands Haldane’s concepts for spin chains into an uncharted
territory of delocalized electrons. Furthermore, the results indicate that the topolog-
ical regime can be effectively described by a valence-bond liquid state, which main-
tains its character even at interaction strengths on the order of the bare kinetic energy.
In the scope of this work, my task was to independently implement the calculations
of the string order parameter using the density-matrix renormalization group method
in the matrix-product state implementation. This task served as a crucial cross-check
of earlier calculations and of the proposed conclusions, giving further evidence to the
Haldane character of the observed transition. Appropriately, a short discussion of the
string order parameter and its relevance to the Haldane phase shall now follow.
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In 1983, Haldane put forth a conjecture that the Heisenberg chain with an integer
spin, in particular S = 1, possesses a gap and exhibits exponentially decaying correla-
tion functions [267,268]. This conjecture challenged the prevailing expectation derived
from the extensively studied spin-1/2 chain, which suggested that all spin chains are
gapless and have (quasi-)long-range correlations. However, Haldane’s conjecture was
soon confirmed to be true and found to be linked to remarkable topological properties,
laying the foundation for the tremendous interest in this field today. In recognition of
his contributions, Haldane was awarded the Nobel Prize in 2016 “for theoretical dis-
coveries of topological phase transitions and topological phases of matter” [269]. The
distinct topological characteristics exhibited by the S = 1 Heisenberg chain are now
commonly referred to as the Haldane phase.

In the aftermath of Haldane’s initial work, it was discovered that although the Hal-
dane phase has no usual (quasi-)long-range antiferromagnetic order, it has a hidden
nonlocal long-range order [270–272]. This is markedly different from the usual classi-
fication of phases of matter, which is based on spontaneous symmetry breaking and
local order parameters, e.g., magnetization. Instead, the topological nonlocal order is
related to a hidden symmetry breaking. To reveal it, Kennedy and Tasaki [271,272] in-
voked a nonlocal unitary transformation of the spin-1 chain, upon which the hidden
order manifests itself as explicit breaking of the Z2 × Z2 symmetry in the transformed
Hamiltonian. The transformed system has a fourfold degenerate set of ferromagnetic
ground states, which correspond to the fourfold degeneracy of the edge modes in the
original spin-1 chain [271,273]. While in the transformed form the order parameter is
trivial, from the perspective of the original Hamiltonian, it is the nonlocal string order
[270]

Os = lim
|m−n|→∞

−
〈

Sz
m exp

(
iπ

n−1∑
k=m+1

Sz
k

)
Sz

n

〉
, (5.1)

where 〈. . .〉 is taken in the ground state. A perfect order of this type is realized in the
so-called Affleck-Kennedy-Lieb-Tasaki (AKLT) state [274,275]. This state is a simple
valence-bond solid, and is well established to qualitatively capture the physics of the
Haldane phase of the spin-1 chain [276,277]. While in a spin-1 system a general spin
configuration has the form |. . . ,↓,0,↑,↑,0,↓,0, . . .〉, in every component of the AKLT wave
function, one can erase the sites with Sz = 0 to reveal a perfect antiferromagnetic order
|. . . ,↓,↑,↓,↑, ...〉 [273–275]. The parameter Os measures precisely this type of “diluted”
antiferromagnetic order, interlaced by the Sz = 0 states. Although such an order is not
perfect in the ground state of the spin-1 Heisenberg chain, the string correlation Os is
robust, indicating the presence of the Haldane phase.

In the following work, the reader will discover an interesting result: the string order
parameter can have robust nonzero values not only in spin chains but also in systems
with delocalized electrons. Specifically, this occurs in a correlated multiorbital chain,
where it signals the interaction-driven emergence of the Haldane phase. This finding
is further supported by analyzing other observables, as discussed below.
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One of the most famous quantum systems with
topological properties, the spin S = 1 antifer-
romagnetic Heisenberg chain, is well-known to
display exotic S = 1/2 edge states. However,
this spin model has not been analyzed from the
more general perspective of strongly correlated
systems varying the electron-electron interaction
strength. Here we report the numerical investi-
gation of the emergence of the Haldane state and
its edge modes in a system of interacting electrons
– the two-orbital Hubbard model – with increas-
ing repulsion strength U . We show that these in-
teractions not only form the magnetic moments
but also form a topologically nontrivial fermionic
many-body ground-state with zero-energy edges
states that only at very large U converge to the
Haldane chain model. Specifically, upon increas-
ing the strength of the Hubbard repulsion and
Hund exchange, we identify a novel sharp tran-
sition point separating topologically trivial and
nontrivial ground-states. Surprisingly, the latter
appears already at rather small values of the in-
teraction U , in a regime where the magnetic mo-
ments are barely developed, thus generalizing the
ideas of Haldane for S = 1 spin Heisenberg mod-
els into previously unexplored territory involving
delocalized electrons. Furthermore, our results
indicate that the topological regime can be de-
scribed by a liquid valence bonds state down to
interaction strength of the order of the bare ki-
netic energy.

The precise role of the electron-electron interaction
in many condensed matter systems is still under much
debate. From the high critical temperature supercon-
ductivity of copper- and iron-based compounds to the
magnetic properties of idealized spin models, strong cor-
relations appear crucial for our understanding of ma-
terials physics. In parallel, topology in various com-
pounds has been typically realized and investigated at
the level of non-interacting band structures in the pres-
ence of spin-orbit coupling. However, the detailed study
of the Coulomb correlation effects intertwined with topo-
logical physics has barely started and represents one of
the grand challenges of present-day theoretical and ex-
perimental physics.

In particular, in one of the most famous topologically
nontrivial systems, i.e., the S = 1 antiferromagnetic
(AFM) Heisenberg model HS = J

∑
ℓ Sℓ · Sℓ+1 on a one-

dimensional (1D) lattice geometry, the spin-spin interac-
tions are necessary to form the zero-energy edge states,
which is the hallmark of topological states. In his semi-
nal work [1, 2], Haldane showed that integer S = 1, 2, . . .
and half-integer S = 1/2, 3/2, . . . spin systems behave
fundamentally different: the latter are gapped while the
former are gapless. Affleck, Kennedy, Lieb, and Tasaki
(AKLT) proved [3] that the ground-state of S = 1 chains
when generalized including biquadratic interactions, can
be expressed as a valence bond state (VBS) composed
of interacting S = 1/2-like singlets. In this picture, the
AKLT state, when defined on an open chain, has two un-
paired S = 1/2 spins at the edges of the system forming
zero-energy modes.

The existence of topologically protected edge states in
S = 1 chains have been shown by extensive theoretical
[4–9] and experimental [10–15] studies. Also, the road to
the Haldane states from well-formed S = 1/2 spins has
been studied. The AKLT VBS state initiated various in-
vestigations of ladder-like S = 1/2 systems where special
constraints, such as ferromagnetic rung exchange or un-
paired sites at the edges of overall AFM systems, lead
to the topological S = 1 Haldane phase. Such systems
are not only a playground for theoretical investigations
but were also realized using cold atoms in optical lattice
setups [13]. In this context, the extended Bose Hub-
bard model (containing nearest-neighbour interactions)
can also host the Haldane phase [16, 17].

However, in real low-dimensional materials [18], the
S = 1 moments arise due to the electron-electron corre-
lations in a multi-orbital Hubbard model setup, which is
technically challenging. Because the S = 1/2 moments
themselves are already an effective description of some
fermionic systems, such analysis is usually unjustified for
many compounds. But in more refined descriptions, the
Coulomb repulsion and Hund’s coupling not only coop-
erate but also can compete [19, 20]. Depending on their
specific values, the Mott localization of electrons and the
formation of well-developed spins can occur in portions of
the phase diagram. As an example, in the largest family
of S = 1 chains, the nickel-based compounds [18], the two
eg electrons of Ni+2 ions are necessary to form the S = 1
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Figure 1. Spin excitations. A Evolution of the spin excitations, as measured by the dynamical spin structure factor S(q, ω),
with increasing strength of electron-electron interaction U for a system of L = 80 sites and JH/U = 0.25. The frequency scale
was renormalized by the effective spin exchange J = 2t2/(U + JH). White lines in the left top panel represent the two-spinon
continuum of U = 0 Hubbard model, while the line in the bottom right panel depicts the magnon dispersion of the S = 1
Heisenberg model. In the open boundary systems considered here, the zero energy Haldane edge states are expected at ω = 0.
However, the latter’s large intensity can blur the spectra’s details. To avoid this issue, we have evaluated the spin excitations
only in the bulk of the system. B Total magnetic moment per site T2 = S(S + 1) and charge fluctuations δn vs. interaction
strength U . Note T2 starts at 0.75 for noninteracting U = 0 electrons.

spins due to the Hund’s rule that maximizes the on-site
magnetic moment. For AgVP2S6 or Tl2Ru2O7 the latter
occurs on the t2g orbitals of V

+3 or Ru+4, respectively. In
all the previously mentioned compounds, the emergence
of the topological states is unknown when described from
the more fundamental perspective of quantum mechan-
ically fluctuating individual mobile electrons, including
electron-electron interaction.

To fully understand how the topological state in S = 1
chains emerges from a fermionic description, one has
to focus on the effects of electron interaction within
the multi-orbital systems in which Hubbard and Hund’s
couplings are crucial ingredients. Here we demonstrate
that the latter are sufficient for the onset of the topo-
logically nontrivial phase. Specifically, upon increasing
the strength of the Coulomb repulsion, we identify a
clear transition between topologically trivial and non-
trivial ground-states. Our analysis unveils the thresh-
old value of the interaction Uc where the Haldane gap
opens. Although at Uc we also identify the emergence
of zero-energy edge states and finite string order correla-
tions (the signature properties of S = 1 Haldane phase),
surprisingly, the magnetic moments are far from being
fully developed, and spin excitations still resemble those
in the regime of weak U → 0. Consequently, we here
report that the Haldane phase is not limited by having
S = 1 moments. Specifically, its generalized existence
can be shown to extend to unexpectedly small values of
the interaction U ∼ W , with W being the kinetic energy
half-bandwidth.

From two-orbital to Heisenberg model. We em-
ploy the zero-temperature density-matrix renormaliza-
tion group method [4, 21, 22] (DMRG) to solve the 1D
two-orbital Hubbard model (2oH) at half electronic fill-
ing (n = 2, i.e., two particles per site; one particle per
orbital) and zero total magnetization Sz

tot = 0, relevant
for Ni+2-based compounds. The 2oH is given by

HH = t
∑

γγ′ℓσ

(
c†γℓσcγ′ℓ+1σ +H.c.

)
+ U

∑

γℓ

nγℓ↑nγℓ↓

+ U ′∑

ℓ

n0ℓn1ℓ − 2JH
∑

ℓ

S0ℓ · S1ℓ

+ JH
∑

ℓ

(
P †
0ℓP1ℓ +H.c.

)
. (1)

Although challenging, the above model contains the most
generic many-body interactions found in multiorbital sys-
tems: U and U ′ = U − 5JH/2 represent the intra- and
inter-orbital electron-electron Coulomb repulsion, respec-
tively, while JH accounts for the Hund rule, i.e., ferro-
magnetic exchange between spins at different orbitals; fi-

nally, P †
0ℓP1ℓ with P †

γℓ = c†γ↑ℓc
†
γ↓ℓ represents the doublon-

holon exchange. We will focus on degenerate bands with
t = 0.5 [eV], and in the following, we will use the half-
bandwidth of kinetic energy as a unit, i.e., W = 2t =
1[eV]. While we will mostly consider the JH/U = 0.25
case, other values of Hund exchange will also be inves-
tigated [23]. Note that the Sγℓ operators represent the
spin-1/2 of electrons and that the above model preserves
the SU(2) symmetry provided that U ′ = U − 5JH/2 and
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Figure 2. Spin gaps. A Finite-size scaling of ∆S = 1
(left panel) and ∆S = 2 (right panel) spin excitations for
JH/U = 0.25 and L ∈ {10, 20, . . . , 100}. Line color-code rep-
resents the value of the interaction U . B U dependence of
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JH/U = 0.05, 0.10, . . . , 0.40. Inset depicts the same data but
renormalized by the effective spin exchange J . The saturation
to the Haldane gap ∆S/J ≃ 0.41 is clearly visible (red dashed
line).

the doublon-holon exchange term is included.

The standard probe of spin excitations is the momen-
tum q and energy ω resolved dynamical spin structure
factor S(q, ω), which is the Fourier transform of the non-
local Green’s functions ⟨⟨TℓTℓ′⟩⟩ω [23], with Tℓ as the
total on-site spin Tℓ =

∑
γ Sγℓ. The calculated S(q, ω)

is routinely compared to inelastic neutron scattering or
resonant inelastic X-ray scattering data, also in the case
of S = 1 compounds. With increasing strength of inter-
action U , the 2oH spectrum (Fig. 1A) develops from a
continuum of S = 1/2-like excitations at U = 0 [24, 25]
to the well-established magnon-like excitations [26, 27] of
the S = 1 Heisenberg model at large U ≫ W . Renor-
malizing the frequency by the effective spin exchange,
J = 2t2/(U + JH) [19], yields qualitative agreement be-
tween the models at U/W ≃ 4. As expected, for such
value of interaction U , the average total magnetic mo-
ment is almost maximized T2 = S(S + 1) ≃ 2 and
the charge fluctuations δn = ⟨n2⟩ − ⟨n⟩2 are vanishing
(Fig. 1B).

The artificial broadening needed in the dynamical-
DMRG method [28, 29] prevents us from extracting accu-

rate values of the magnon gap directly from the spectrum
of S(q, ω). Instead, the gaps can be obtained from the
difference in ground-state energies of two magnetization
sectors with different Sz

tot (with ∆S being the magneti-
zation difference) at fixed electron density n. It is im-
portant to note that working on a finite-size lattice, the
∆S = 1 excitations of 2oH are always gapless when ex-
trapolated to the thermodynamic limit L → ∞ (Fig. 2A).
For U → 0, the gapless spin excitations manifest the
physics of noninteracting fermions, with a inverse-linear
dependence on the system size O(1/L) of the gap accord-
ing to Lieb-Schultz-Mattis theorem [30]. In the opposite
limit of the S = 1 Heisenberg model at U ≫ W , the
gapless ∆S = 1 excitation originates in a four-fold de-
generate ground-state (two-fold in the Sz

tot = 0 sector)
with two S = 1/2 edge states [27, 31]. For a finite L, the
latter are split due to their overlap [32], which decays
exponentially with increasing system size. See large-U
data in Fig. 2A. Thus, within the open boundary condi-
tion system with edge states, the true magnon gap ∆S

can be extracted from ∆S = 2 excitations [4, 33, 34].
Still, for U → 0, the magnons are gapless with O(1/L)
size dependence of the gap. On the other hand, increas-
ing the strength of U changes the nature of the scaling.
At large U , we observe a saturation to a finite value in
the L → ∞ limit. This saturation is to the well-known
Haldane gap ∆S/J ≃ 0.41 for U >∼ 4, confirming the
accuracy of our procedure. Crucially, the finite-size scal-
ing varying U reveals a novel critical (Hund JH depen-
dent [23]) value of the interaction Uc = Uc(JH) where the
gap opens (Fig. 2B). For example, for JH/U = 0.25 the
magnons become gapped at Uc/W ≃ 0.9.
It is worth noting that the magnon gap ∆S opens at

a value of the interaction U = Uc for which the over-
all spin excitations are far from the S = 1 Heisenberg
model magnon-like spectrum. In fact, for U/W ∼ 1, the
spin excitations still visually resemble the noninteracting
continuum of S = 1/2-like moments, though with redis-
tributed spectral weights (Fig. 1A).

Zero-energy edge modes. As mentioned, the expo-
nential in the system size dependence of the ∆S = 1
gaps (Fig. 2A) indicates the presence of edge states. To
quantify them, we analyze (Fig. 3) the zero-frequency
ω = 0 dynamical spin-spin correlation functions be-
tween the edge and the bulk of the system, i.e., the
non-local Green’s functions (−1)ℓ⟨⟨T z

1 T
z
ℓ ⟩⟩ω=0, capable

of capturing zero-energy modes. Here, the (−1)ℓ pref-
actor removes the AFM staggered pattern. At small U ,
the spin correlations decay exponentially with distance
ℓ (Fig. 3A), as expected for a paramagnetic region. In-
creasing U leads to a slower, although still exponential,
decay. At U ≃ Uc, the ω = 0 correlations are approx-
imately site-independent. Note that the latter does not
originate in any long-range order because the value of
spin correlations decays with the system size (see Fig. 3B
and the discussion below).
Interestingly, a characteristic V-shape of correlations

develops above Uc. The latter is the manifestation of
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Figure 3. Edge spin correlations. A Distance ℓ dependence of the zero frequency ω = 0 dynamical spin-spin correlations
(−1)ℓ⟨⟨T z

1 T
z
ℓ ⟩⟩ω=0 for various values of interaction U (denoted by color-code). The results are normalized by the ℓ = 1 value

of the correlation function [23]. B Edge-edge |⟨⟨T z
1 T

z
L⟩⟩ω=0| (left panel) and edge-bulk |⟨⟨T z

1 T
z
L/2⟩⟩ω=0| (right panel) dynamical

spin correlations vs. interaction strength U . At Uc, we observe the appearance of finite edge-edge correlations, saturating at
U ≫ W to the value given by the S = 1 Heisenberg model (red dashed line). C Extracted, Eq. (2), edge correlation length ξe
vs. interaction strength U . Insets depict examples of spin-spin correlations for two system sizes (L = 60 and L = 80, together
with fitted exponentials ∝ exp(−ℓ/ξe). All data are calculated at JH/U = 0.25. D Interaction U/W – Hund exchange JH/U
phase diagram on the basis of inverse edge correlation length 1/ξe for L = 60. White points depict Uc obtained from the spin
gap ∆S opening, while the white line represents JH = t2/U .

the edge states present at the (open) boundaries of the
system [5]. In the S = 1 Heisenberg model, the zero-
energy modes are not localized at a single edge site but
decay exponentially with the correlation length ξS ≃ 6.1.
The latter leads to finite (exponentially suppressed) AFM
spin correlations up to half ℓ ∼ L/2 of the system. The
increase of ⟨⟨T z

1 T
z
ℓ ⟩⟩ω=0 for ℓ > L/2 is exactly a con-

sequence of correlated edge states: the edge-edge cor-
relations are finite, while the edge-bulk correlations are
vanishing.

To assess the development of spin-spin correlations in
the 2oH system, especially the correlated edge states, we
can monitor the behaviour of the edge-edge and edge-
bulk (Fig. 3B) values vs. the interaction U . The former
acquires a nonzero value at Uc [23] and displays small
finite-size effects. On the other hand, the finite value of
the edge-bulk correlations decreases with system size L

and vanishes in the L → ∞ limit.
Furthermore, we can extract the interaction depen-

dence of the edge correlation length (Fig. 3C) by fitting
ℓ < L/2 data of the 2oH to

(−1)ℓ⟨⟨T z
1 T

z
ℓ ⟩⟩ω=0 ∝ exp(−ℓ/ξe) . (2)

For U/W > 4 we reproduce ξe ≃ ξS ≃ 6.1, consistent
with dynamical spin structure factor S(q, ω) investiga-
tions of the S = 1 Heisenberg model physics. Interest-
ingly, the extracted ξ diverges at Uc. The latter reflects
the site-independent correlations in this region [23].

Topological phase transition. The opening at Uc of
a spin gap ∆S, the emergence of edge-edge correlations
⟨⟨T z

1 T
z
L⟩⟩ω=0, and the diverging edge correlation length ξe

all consistently indicate the existence of an interaction-
induced topological phase transition. The latter is be-
tween topologically trivial and nontrivial regions, with
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Figure 4. Topological phase transition. A Interaction U
dependence of the entanglement spectrum −2 lnλα, obtained
at JH/U = 0.25 using a L = 140 site system partitioned in
half. Color code depicts the number of occurrences of a given
eigenvalue (number of degeneracies). The values for the S = 1
Heisenberg model are also displayed (red dashed lines). B
Analysis of the largest gap in the entanglement spectrum for
various system sizes L = 60, 80, 100, 120, 140 [23].

the emergence of the Haldane edge states at Uc. The
topological phases can be identified by investigating the
entanglement spectrum of the system [35, 36], i.e., the
Schmidt coefficients λα of left/right (|L⟩/|R⟩) decom-
posed ground-state |gs⟩ =∑α λα|L⟩α|R⟩α, with λ2

α be-
ing the eigenvalues of the reduced density matrix of the
partition. In the topologically nontrivial region, all λα’s
are evenly degenerate. Consequently, the entanglement
entropy SvN = −∑α λ2

α lnλ2
α cannot drop below the ln 2

value for any cut of the system, consistent with the pres-
ence of entangled S = 1/2 edge states. The analysis of
the 2oH model indicates that this condition is fulfilled for
U >∼ Uc (Fig. 4A). Detailed investigation of the largest
gap [23] in the entanglement spectrum (Fig. 4B) shows
that the trivial region U < Uc does not have any appar-
ent structure in the λα eigenvalues. On the other hand,
the largest gap decays exponentially with system size for
any U > Uc (though, with slower decay in the proximity
of Uc) and vanishes in the thermodynamic limit L → ∞.

In the context of the S = 1 Heisenberg model, the
topological Haldane phase can also be detected by study-

ing the non-local string order parameter [31, 37, 38]

Os(ℓ) = −
〈
Am exp

(
iθ

m+ℓ−1∑

n=m+1

An

)
Am+ℓ

〉
, (3)

which for θ = π and Aℓ = Sz
ℓ measures the breaking

of the discrete Z2 × Z2 hidden symmetry (i.e., the di-
hedral group of π rotations). It is important to note
that the phase θ = π was obtained via the valence bond
state structure of the AKLT state. For a generic spin-S
Heisenberg model, the string order phase becomes spin-
dependent θ = θ(S), i.e., it has to reflect the properties
of a given VBS ground-state [39–42].
In the case of the 2oH model, for U > Uc, the π-string

orderOs does not decay (Fig. 5), as expected in the S = 1
Haldane phase. However, it is important to note that
the total spin operator of 2oH, Aℓ = T z

ℓ , involves not
only S = 1 but also S = 1/2 degrees of freedom and
that for U ≃ Uc the magnetic moment deviates strongly
from S = 1 (Fig. 1B). Nevertheless, we observe a finite
string order all the way down to U = Uc ∼ W showing
that this type of order can exist in a fermionic system as
well, even without well defined moments. Interestingly,
consistent with the topological phase transition at Uc,
for U < Uc the string order vanishes, and the system
size dependence changes from weakly increasing with L
(for U > Uc) to weakly decreasing with L (for U < Uc).
The latter is consistent with the slow scaling of Os for
S = 1/2 moments [43].

Discussion and conclusion. Investigating systems on
finite lattices, especially with many-body interactions in-
corporated, is always a challenge: are we observing a true
phase transition or a very rapid crossover? Furthermore,
interaction-induced transitions in one dimension are rare
due to the Mermin-Wagner theorem.
The non-local character of the topological phases al-

lows for such phenomenon even in 1D. Our numerical
results indicate that the correlated one-dimensional two-
orbital Hubbard model has a sharp transition at Uc ∼ W
between a topologically trivial region and a generalized
fermionic Haldane phase with edge states. Surprisingly,
the magnetic moments are not yet fully developed in
a vast region of the topological phase (Fig. 1B), and
thus the S = 1 Heisenberg model-like description can-
not be applied directly. Actually, our analysis shows that
the gapped ground-state with finite string order survives
down to U ∼ W ∼ O(t). Consequently, the latter indi-
cates that a VBS-like state, similar to the AKLT state,
could be formulated [44] even with mobile fermions. It
seems true despite the fact that the length scale of spin-
spin correlations indicate the spatially extended charac-
ter of the ground-state, although with moments small in
value. Our detailed interaction U and Hund exchange JH
investigation (Fig. 3D) indicates that the SU(2) symmet-
ric system undergoes the transition at JH ≃ t2/U , and
consequently a finite U ∼ W is necessary for the onset of
the non-topological–topological phase transition in real
materials.
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Figure 5. String order. Interaction U dependence of the string order parameter Oc(ℓ) with θ = π phase at ℓ = L/2 distance
in the bulk (m = L/4). Upper insets depicts Oc(ℓ) vs. distance ℓ for U = 0.5, 1.0, 3.0, 8.0 (left to right). The lower inset depicts
a zoom to the proximity of the phase transition Uc, with the shaded region depicting the trivial phase. All data are evaluated
at JH/U = 0.25 using L = 40, 60, 80, L = 100 site systems.

Also, one could expect that for JH ≫ U (i.e., when the
system always has well developed on-site triplets formed
by electrons), even small interaction will induce the Hal-
dane phase. However, such region of parameter space is
unrealistic because for JH/U > 0.4 the inter-orbital in-
teraction U ′ = U − 5JH/2 becomes attractive U ′ < 0.
It is therefore evident that setups with coupled S = 1/2
triplets represent, from the electron system perspective,
broken spin rotation with U ′ ̸= U − 5JH/2. Previous
analysis of the Haldane phase in such setups indicate its
fragility with respect to charge fluctuations [6, 7]. Our
results indicate that within a two-orbital setup, the Hal-
dane phase is robust down to rather small values of the
interaction U , in a regime where the magnetic moments
are barely developed, thus generalizing the ideas of Hal-
dane for S = 1 spin Heisenberg models into previously
unexplored territory involving delocalized electrons.
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METHODS for

Transition to the Haldane phase driven by electron-electron correlations

by A. Jażdżewska, M. Mierzejewski, M. Środa, A. Nocera, G. Alvarez, E. Dagotto, and J. Herbrych

DMRG METHOD.

The Hamiltonians and observables discussed here were studied using the zero-temperature density matrix renor-
malization group (DMRG) method [4, 22] within the single center site approach [21], where the dynamical correlation
functions are evaluated via the dynamical-DMRG [28, 29], i.e., calculating spectral functions directly in frequency space
with the correction-vector method using the Krylov decomposition [29]. We have kept up to M = 3072 states, per-
formed at least 15 sweeps, and used A = 0.001 vector-offset in the single-site DMRG approach, allowing to accurately
simulate system sizes up to L <∼ 140 sites of the two-orbital Hubbard model. We have used the DMRG++ computer
program developed at Oak Ridge National Laboratory (https://code.ornl.gov/gonzalo 3/dmrgpp). The input scripts
for the DMRG++ package to reproduce our results can be found at https://bitbucket.org/herbrychjacek/corrwro/
and on the DMRG++ webpage.

DYNAMICAL SPIN STRUCTURE FACTOR.

The dynamical spin structure factors are evaluated as

S(q, ω) =
2

L+ 1

L∑

ℓ=1

cos [(ℓ− L/2)q] ⟨⟨TℓTL/2⟩⟩ω , (S1)

where q = nπ/(L+ 1), n = 0, . . . , L, and non-local Green’s function is given by

⟨⟨TmTn⟩⟩ω = − 1

π
Im ⟨gs|Tm

1

ω + iη −H + ϵ0
Tn|gs⟩ . (S2)

Here |gs⟩ represents the ground-state with energy ϵ0. The S(q, ω) spectra presented in Fig. 1A of the main text were
calculated with the frequency resolution δω/J ≃ 0.03 and broadening η = 2δω [note the U -dependence of the spin
exchange J = 2t2/(U + JH)].

LARGEST GAP IN THE ENTANGLEMENT SPECTRUM.

In order to find the largest gap in the entanglement spectrum, first we have calculated consecutive gaps
δn = min(lnλn − lnλn−1; lnλn+1 − lnλn). The largest gap is then obtained from max(δ1, δ2, . . .).
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S2

SUPPLEMENTAL MATERIAL for

Transition to the Haldane phase driven by electron-electron correlations

by A. Jażdżewska, M. Mierzejewski, M. Środa, A. Nocera, G. Alvarez, E. Dagotto, and J. Herbrych

GAP ANALYSIS.

In Fig. S1, we present the finite-size 1/L and interaction U dependence of the ∆S = 2 gap (the magnon gap
∆S/J) for various values of the Hund exchange JH/U = 0.05, 0.10, . . . , 0.40. The main text displays the results of
1/L extrapolations of this data in Fig. 2B.
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Supplementary Figure S1. Spin gaps. Finite-size scaling of ∆S = 2 excitations (magnon gaps) for JH/U = 0.05, 0.10, . . . , 0.40
and L ∈ {10, 20, . . . , 100}. Line color-code represents the value of interaction U . All data in units of spin exchange J =
2t2/(U + JH). The saturation to the finite value (to the Haldane gap ∆S/J ≃ 0.41) is clearly visible in all panels.

STATIC AND DYNAMIC SPIN CORRELATIONS.

In the main text, we have described how the dynamical spin-spin correlation, i.e., the non-local Green’s function
⟨⟨T z

1 T
z
ℓ ⟩⟩ω=0, behave vs. distance ℓ and strength of the interaction U . Here, we present additional results for the

static spin correlations, ⟨T z
1 T

z
ℓ ⟩ = ⟨gs|T z

1 T
z
ℓ |gs⟩.

In Fig. S2, we present the analysis of the static ⟨T z
1 T

z
ℓ ⟩, similar to the one presented in Fig. 3 of the main text.

As evident from panels (a-d), the overall behaviour of ⟨T z
1 T

z
ℓ ⟩ is almost identical to the zero-frequency ω = 0 data.

The main difference between the static and the dynamic correlation function can be observed in the extracted edge
correlation length ξe close to the transition U ∼ Uc [compare Fig. 3C of the main text and Fig. S2(d)]. I.e., the edge
correlation length extracted from ⟨⟨T z

1 T
z
ℓ ⟩⟩ω=0 data is much sharper than the one extracted from the static ⟨T z

1 T
z
ℓ ⟩.
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Supplementary Figure S2. Static spin correlations. (a) Distance ℓ dependence of static spin-spin correlations (−1)ℓ⟨T z
1 T

z
ℓ ⟩

for various values of interaction U (denoted by color code). The results are normalized by the ℓ = 1 value of the correlation
function. (b) Edge-edge |⟨T z

1 T
z
L⟩| and (c) edge-bulk |⟨T z

1 T
z
L/2⟩| spin correlations vs. interaction strength U/W . At Uc, one

observes the appearance of finite edge-edge correlations, saturating at U ≫ W to the value given by the S = 1 Heisenberg
model (red dashed line). (d) Edge correlation length ξe vs. interaction U strength, extracted from (−1)ℓ⟨T z

1 T
z
ℓ ⟩ = a exp(−ℓ/ξe)

for ℓ < L/2. (e) System-size dependence of the position of (blue points, left y-axis) and the value (red points, right y-axis) of
the maximum edge correlation length. All data calculated for JH/U = 0.25.

Nevertheless, the scaling with the system size [see Fig. S2(e)] of the position of the maximum of ξe as well as the value
itself indicate a transition at Uc.

To understand the difference between static and dynamic results, consider the sum rule relating (at zero tempera-
ture) both of these quantities, i.e.,

⟨T z
mT z

n⟩ =
∞∫

0

dω ⟨⟨T z
mT z

n⟩⟩ω . (S3)

It is evident that both approaches would yield the same behaviour if ⟨⟨T z
mT z

n⟩⟩ω = δ(ω). However, our analysis
presented in Fig. S3 indicates that the behaviour of the non-local Green’s function ⟨⟨T z

mT z
n⟩⟩ω strongly depends on

the pair of sites (m,n) considered. Note that, in the presented analysis, we have used finite broadening η [see Eq. (S2)].
Consequently, all sharp features of the spectrum are broadened by a Lorentzian.

Within the fermionic Haldane phase, U > Uc, the spectrum of the bulk of the system, m ∼ n ∼ L/2, has only
the incoherent part ω > 0, and it is gapped; see Fig. S3(a,b). Such behaviour is expected because (m,n) elements
contribute (via the Fourier transform) to the overall dispersion relation presented in Fig. 1 of the main text. On the
other hand, the correlation between the edge m = 1 and the rest of the system needs more attention: (i) consistent
with the phenomenology of zero-energy edge modes, the edge-edge (m,n) = (1, L) dynamical correlations contain
only the ω = 0 δ-function (broaden by the Lorentzian in our numerical investigation), see Fig. S3(c,d). Consequently
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z
ℓ ⟩ ≃ ⟨⟨T z

1 T
z
ℓ ⟩⟩ω=0. (ii) Edge-bulk correlation (1,∼ L/2) vanishes, again, consistent with the presence of the edge

states (not shown). (iii) However, in the proximity of the edges (for m ∼ n ∼ 1), the dynamical correlations contain
both coherent ω ∼ 0 (edge mode) and incoherent ω > 0 parts [see Fig. S3(e,f)], and ⟨T z

1 T
z
m∼1⟩ ≠ ⟨⟨T z

1 T
z
m∼1⟩⟩ω=0.

Finally, in Fig. S4, we present additional evidence for the topological phase transition at U = Uc ≃ 0.9W (for
JH/U = 0.25) from spin correlation data.
(1) In panel (a), we compare the local Green’s function n = m = 1 and non-local edge-edge correlations n = 1 ,m = L
at zero-frequency ω = 0. The change in the local value is related to the development of the magnetic moment S. On
the other hand, the non-local (edge-edge) probes only the appearance of edge zero-modes (as discussed in the main
text). It is evident from the presented results that both quantities merge at U = Uc, consistent with the presence of
the zero frequency edge modes for U > Uc.
(2) In panels (b) and (c), we present the same data as in Fig. 3B of the main text and Fig. S2(b), respectively, in
a log-y scale. Evidently, for U > Uc, the non-zero correlation functions do not originate from finite-size effects. On
the other hand, for U < Uc, the values of edge-edge correlations (both static and dynamic) decay exponentially with
system size.

ENTANGLEMENT SPECTRUM.

Figure S5 depicts additional results for the entanglement spectrum −2 lnλα. Consistent with the discussion pre-
sented in the main text, the value of the interaction U for which the spectrum is evenly degenerate moves to Uc with
increasing system size L (see also Fig. 4 of the main text). Furthermore, it is evident from the presented results that
the λα spectrum does not contain any apparent structure for U < Uc, and the condition [i.e., lnλi+1 − lnλi ≤ 0.01]
of evenly degenerate entanglement spectrum is not fulfilled.
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HUND BANDS IN SPECTRA OF

MULTIORBITAL SYSTEMS

The investigation of Majorana modes two chapters ago, in Chap. 4, focused on study-
ing the spectral functions near the Fermi level. However, a closer examination of the
higher energy spectrum unveils an unexpected feature—an additional dispersive band
that emerges alongside the well-known Hubbard bands. This particular band had been
underestimated in the existing literature, thus prompting further investigation. The
work [O4] presented in this chapter is devoted to a detailed exploration of this finding.

The most important result here is recognizing that this additional band, hence-
forth called Hund band, is a generic spectral feature of multiorbital systems that oc-
curs at energies given only by the Hund’s coupling JH. This is markedly different from
the Hubbard satellites, which also follow the interaction U . To establish this conclu-
sion, I conducted extensive calculations of spectral functions using the density-matrix
renormalization group method for two multiorbital models: the generalized Kondo-
Heisenberg model and the three-orbital Hubbard model. Through this analysis, it be-
came evident that the Hund bands emerge whenever the single-particle removal or ad-
dition processes arrive at higher multiplets of the dominant valence subspace. This is
possible provided that the following conditions are met: (i) the higher multiplets exist,
(ii) these multiplets are allowed by the selection rules for particle addition or removal,
and (iii) the charge fluctuations are substantial. All of these prerequisites are satisfied
in what are commonly referred to as Hund’s metals (see below). Furthermore, it should
be noted that the emergence of Hund bands does not depend on the presence of the
orbital-selective Mott phase, nor on the system’s dimensionality. This is supported by
the dynamical mean-field theory results for an orbitally-symmetric model in infinite-
dimensional and quasi-two-dimensional settings. Hence, the findings of the present
chapter go beyond the context of the 123 ladders, but should apply to any multiorbital
system with appreciable Hund coupling. Accordingly, the simpler chain geometry is
preferred here in the density-matrix renormalization group calculations. To assist the
reader, a concise discussion on Hund’s metals and related concepts will follow.
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The presence of sizable Hund’s coupling in multiorbital models gives rise to a new
perspective on strong correlations. Within this context, significant attention has been
devoted to studying the Hund’s metals (see, e.g., [165,168] for reviews), a term intro-
duced in [167]. Roughly speaking, a Hund’s metal is a correlated (bad) metallic state
induced by substantial Hund’s coupling JH at a moderate Coulomb interaction U , char-
acterized by strong correlation effects but not in immediate proximity to a Mott insula-
tor. This state was argued to be relevant for various materials, e.g., ruthenates [165,278–
281] and, particularly, the iron-based systems [165,168]. Despite its importance, a pre-
cise definition of the Hund’s metal has proven to be elusive [37,168].

One approach to more precisely define the Hund’s metals is phenomenological in
nature and points to the specific features that arise consistently in realistic simulations
and in experimental data [168]. The three crucial features are: (i) enhanced electron
correlations and masses, (ii) the prevalence of high-spin atomic multiplets leading to
large local magnetic moments, and (iii) orbital selectivity. These characteristics be-
come more prominent as the system undergoes a crossover from a “normal” metal to
the Hund’s metal, which occurs with an increase in the strength of the interaction or
the proximity to half-filling [168]. Moreover, these features are quite robust and gen-
eral as they arise from local many-body physics, making the details of the bare band
structure less important [168]. Note that if the orbital selectivity is enhanced via a sig-
nificant lifting of the orbital symmetry, the orbital-selective Mott phase (see Sec. 2.6)
may emerge from the Hund’s metal [282].

The alternative characterization of the Hund’s metal aims to zoom in on its mi-
croscopic origin [283–285]. It is motivated by the unexpected observation that, at any
integer filling different from half filling, a finite JH actually increases the critical U nec-
essary for Mott localization. This is peculiar as one would naturally expect that both
these interactions restrict the motion of electrons. The persistence of the metallic solu-
tion can be attributed to the competition between two incompatible insulator states:
the conventional Mott insulator (U À JH) and the Hund’s insulator (JH À U ) [283].
While the former wants to minimize double occupancies, the latter favors predom-
inantly high-spin local configurations. Consider, for example, a three-orbital system.
When there are three electrons in three orbitals per site (half filling), both requirements
are satisfied by a uniform charge distribution, such as | . . . ,↑↑↑,↑↑↑,↑↑↑, . . .〉. This con-
figuration simultaneously minimizes double occupancies and maximizes the on-site
magnetic moment, S = 3/2. However, for two electrons in three orbitals1, the Mott in-
sulator still favors a uniform charge distribution | . . . ,↑↑,↑↑,↑↑, . . .〉, while the Hund’s in-
sulator seeks to maintain S = 3/2 by distributing the charge as | . . . ,↑↑↑,0,↑↑↑, . . .〉. When
these two insulating solutions are nearly degenerate, large fluctuations between the
atomic configurations characterizing each state result in persistent metallicity, giving
rise to the Hund’s metal behavior. In the case of the Kanamori interaction (Sec. 2.5.1),
this occurs around the experimentally relevant ratio JH/U ' 1/3 [283].

In the context of the original findings presented in this chapter, the relevance of
Hund’s metals lies precisely in the significant charge fluctuations associated with them.
These charge fluctuations are the culprit behind the possibility of the U -independent
excitations, as the reader shall learn below.

1Analogous situation should occur for any integer filling away from half filling.
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Spectroscopy experiments are routinely used to characterize the behavior of strongly correlated systems. An
in-depth understanding of the different spectral features is thus essential. Here, we show that the spectrum of the
multiorbital Hubbard model exhibits unique Hund bands that occur at energies given only by the Hund coupling
JH, as distinct from the Hubbard satellites following the interaction U . We focus on experimentally relevant
single-particle and optical spectra that we calculate for a model related to iron chalcogenide ladders. The
calculations are performed via the density-matrix renormalization group and Lanczos methods. The generality
of the implications is verified by considering a generic multiorbital model within dynamical mean-field theory.

Introduction. Strongly correlated systems are at the heart
of modern condensed matter physics. The celebrated single-
band Hubbard model, describing (doped) Mott insulators,
is still extensively studied in the context of Cu-based high-
temperature superconductivity [1–3]. Equally exciting case
is that of iron-based superconductors where the presence of
several active orbitals leads to novel effects beyond the “stan-
dard” Mott physics [4–6]. A nontrivial example is the orbital-
selective Mott phase (OSMP) [5, 7–10], where Mott-localized
and itinerant electrons coexist.

A key probe of electronic excitations is the single-particle
spectral function A(k, ω), characterizing the excitations’ dis-
persion. It is experimentally accessible by angle-resolved
photoemission spectroscopy (ARPES) [11, 12]. To under-
stand the origin of different spectral features, it is convenient
to consider idealized models that can be studied theoretically
and monitor how the signatures of correlations (e.g., the Hub-
bard bands) evolve with increasing Coulomb interaction U .
This is especially true for quantum systems of reduced dimen-
sionality, for which quasiexact numerical methods [13, 14], or
even closed analytical solutions [15], provide unbiased infor-
mation on the elementary excitations. However, even in re-
duced dimensionality obtaining accurate results for the mul-
tiorbital Hubbard model remains challenging. The difficulty
lies in the exceptionally large Hilbert space. Because of that,
the spectral functions are often calculated using the dynami-
cal mean-field theory (DMFT) [16–19]. This approach, that
strictly applies at large dimensionality, avoids the finite-size
limitation, but often relies on solvers in Matsubara frequen-
cies and hence the resulting spectral functions are blurred due
to analytical continuation (see Ref. [20] that discusses this and
introduces a method to alleviate the problem).

In this Letter, we numerically investigate the spectral func-
tions of several multiorbital models. Our main result is sum-
marized in Fig. 1(a). The electronic spectrum of a single-

orbital model (without the Hund coupling JH → 0) consists
of the usual upper and lower Hubbard bands (UHB and LHB,
respectively) that develop with U . In multiorbital systems,
the finite JH gives rise to additional excitations. Some of
these states can appear at energies between UHB and LHB
that depend exclusively on JH (i.e., are independent of U ),
paving the way to measure JH directly. Since such exci-
tations occur due to the Hund coupling and have a robust
dispersion [see Fig. 1(b,c) and [21] for the full spectrum of
A(k, ω)], we call them Hund bands. We recognize that the
Hund bands arise whenever single-particle removal/addition
processes yield a higher multiplet of the dominant valence
subspace. This can occur provided: (i) the higher multiplets
exist, (ii) these multiplets are allowed by the selection rules
upon adding/removing a particle, and (iii) the charge fluc-
tuations are significant. All these requirements are met for
Hund’s metals. Earlier work documented multiplet splittings
in the Hubbard bands [20, 22, 23], in the fully occupied or-
bital [24], found additional “holon-doublon” peaks [25–30],
and analyzed the energy-level structure, revealing multiplets
that violate the Hund’s rules [31]. Here, we stress that charge
excitations independent of U are a generic consequence of the
multiorbital systems.

To reach these conclusions, we use the density-matrix
renormalization group method (DMRG) [32–37] and Lanczos
diagonalization [2, 38]. To show that our findings are generic,
we study both the two- and three-orbital Hubbard model.
Furthermore, we supplement our analysis with the effective
model of the OSMP - the generalized Kondo-Heisenberg
Hamiltonian. Finally, we confirm our findings with DMFT
calculations. Our results apply to many experiments investi-
gating the spectral properties of multiorbital materials, partic-
ularly iron-based compounds [39, 40], ruthenates [24, 41–43],
iridates [44, 45], and nickel oxides [46–50].
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Figure 1. (a) Sketch of the Hund band accompanying the standard Hubbard bands. (b), (c) Orbital- and momentum-resolved spectral function
Aγ(k, ω) in the two-orbital Hubbard model for n = 2.5, U/W = 1.3, JH/U = 0.25, L = 48 sites, and orbitals (b) γ = 2 and (c) γ = 1.
The horizontal line marks the chemical potential µ. (d) Orbital-resolved density-of-states Aγ(ω). Points depict the corresponding effective
generalized Kondo-Heisenberg model (gKH); see the text for details. The arrow points at the Hund band in the itinerant orbital. Results
obtained with DMRG using broadening η = 0.04.

Model. We focus on the SU(2)-symmetric multiorbital
Hubbard-Kanamori chain,

HH =−
∑

γγ′ℓσ

tγγ′

(
c†γℓσcγ′ℓ+1σ +H.c.

)
+
∑

γℓ

∆γnγℓ

+ U
∑

γℓ

nγℓ↑nγℓ↓ + (U − 5JH/2)
∑

γ<γ′,ℓ

nγℓnγ′ℓ

− 2JH
∑

γ<γ′,ℓ

Sγℓ · Sγ′ℓ + JH
∑

γ<γ′,ℓ

(
P †
γℓPγ′ℓ +H.c.

)
.

(1)

Here, c†γℓσ creates an electron with spin σ at orbital γ of site
ℓ. tγγ′ is the symmetric hopping matrix in orbital space. ∆γ

denotes the crystal-field splitting. nγℓ =
∑

σ nγℓσ repre-
sents the total density of electrons. U is the standard repul-
sive Hubbard interaction. JH is the Hund coupling between
spins Sγℓ at different orbitals γ. The last term P †

γℓPγ′ℓ de-
notes interorbital pair hopping, Pγℓ = cγℓ↑cγℓ↓. We assume
open boundary conditions, as required by DMRG. For the
two-orbital model, γ ∈ {1, 2}, we used (in eV): t11 = −0.5,
t22 = −0.15, t12 = t21 = 0, ∆1 = 0, ∆2 = 0.8; whereas
for the three-orbital model: γ ∈ {0, 1, 2}, t00 = t11 = −0.5,
t22 = −0.15, t02 = t12 = 0.1, t01 = 0, ∆0 = −0.1, ∆1 = 0,
∆2 = 0.8. These values were previously used to study the
iron-based ladders of 123 family [9, 10, 51–54]. The band-
width of the two-orbital model, W = 2.1, is used as the en-
ergy unit [55]. All energy labels given throughout the text are
independent of the JH/U ratio.

We also study the minimal model of the OSMP: the gener-
alized Kondo-Heisenberg model (gKH). This model was de-
rived [10, 53, 54] to capture the static and dynamic properties
of BaFe2Se3 iron-based ladder [56–58]. It describes interact-
ing itinerant electrons (with spin si) coupled via Hund cou-

pling to the localized spins Sl,

HK =− ti
∑

ℓσ

(
c†ℓσcℓ+1σ +H.c.

)
+ U

∑

ℓ

nℓ↑nℓ↓

+K
∑

ℓ

Slℓ · Slℓ+1 − 2JH
∑

ℓ

siℓ · Slℓ .
(2)

For the gKH model: ti = −0.5, K = 4t2l /U , tl = −0.15,
matching the OSMP of our two-orbital Hubbard model [10].

Hund bands. Let us study the orbital-resolved single-
particle spectral function Aγ(k, ω) and the density-of-
states (DOS) Aγ(ω) ∝ ∑

σ(⟨⟨c
†
γ,L/2,σ; cγ,L/2,σ⟩⟩hω +

⟨⟨cγ,L/2,σ; c
†
γ,L/2,σ⟩⟩eω) [21]. Here, k is the momentum, ω the

energy, and ⟨⟨. . . ⟩⟩h,eω represent the hole and electron compo-
nents.

The origin of the Hund bands can be clearly illustrated in
an OSMP system. Figure 1(b)-(d) presents data for the two-
orbital Hubbard model (2oH) at electron filling n = 2.5 and
interaction U ≃ W . Clearly, the narrow orbital γ = 2
[Fig. 1(b)] has a gap at the Fermi level µ, while the orbital
γ = 1 [Fig. 1(c)] is metallic with a finite DOS at µ. This be-
havior is consistent with the OSMP [10], the narrow orbital is
Mott-localized with the electron density equal to 1. However,
instead of two excitation bands (UHB and LHB), expected
from the Mott physics, we observe a prominent three-peak
structure [see also the DOS in Fig. 1(d)]. This structure is
also visible in the itinerant orbital (γ = 1), Fig. 1(c), with
an electron density equal to 1.5. Note that the itinerant or-
bital’s spectrum is accurately reproduced by the effective gKH
model.

Let us take a closer look at how the three-peak spectrum
develops with the interaction U . Figure 2(a) shows A1(ω) for
the gKH model at noninteger filling n = 1.5. In the U → 0
limit, we recover the noninteracting behavior: a single metal-
lic band. However, already at U/W ≃ 0.8, i.e., close to the
OSMP transition [9, 10], the three-peak structure is visible in
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Figure 2. (a) Interaction U dependence of the itinerant orbital’s
density-of-states (DOS) A1(ω) obtained for the gKH model with
L = 48 sites, JH/U = 0.25, and n = 1.5. Results obtained with
DMRG using η = 0.04 broadening. The solid lines represent the
atomic-limit transitions. Inset depicts the results for half electron
filling n = 1. (b) Atomic excitation spectrum. For clarity, we mark
only the hole-like (electron removal) excitations and show only one
spin projection. D, T, S, H labels stand for doublon, triplet, singlet,
and holon, respectively. (c)-(e) DOS A1(ω) projected on the specific
final configurations: (c) parallel spins, (d) antiparallel spins, and (e)
on the holon; see the text for details. Results obtained with Lanczos
diagonalization of L = 8 lattice with broadening η = 0.05.

A1(ω), and becomes clearer the larger the interaction U be-
comes. Since the three-peak structure is most pronounced
for U ≫ W , it is instructive to examine the atomic limit
U, JH → ∞ of the gKH model; see Fig. 2(b). The atom real-
izes the noninteger filling n = 1.5 provided the ground states
(gs) of the 1- and 2-electron sectors are degenerate, which is
achieved at µ = U+JH/2. Then, the gs consists of a local in-
terorbital triplet, denoted as |T⟩, which is degenerate with an
itinerant doublon with localized spin, denoted as |D⟩. By re-
moving an electron from the triplet, one creates a holon in the
itinerant orbital (|T⟩ → |H⟩), with the cost of energy U + JH.
Interestingly, from the doubly occupied state, one can remove
an electron in two different ways. Depending on the spin pro-
jection of the removed electron, one can arrive at a local triplet
or singlet, |D⟩ → |T⟩ or |D⟩ → |S⟩, respectively. The former
is a zero-energy transition between degenerate states of the gs,
while the latter costs an energy 2JH as it breaks the Hund’s
rule. In Fig. 2(a), we plot the relevant energy scales of the

atomic limit (U + JH and 2JH) and find good agreement with
the full many-body calculations of the gKH chain.

Projections on the atomic configurations. To make a
stronger case for the atomic-limit interpretation of the three-
peak spectrum, we decompose the spectral function of the
full many-body calculation into individual transitions [29].
To this end, we use the projector P onto specific config-
urations of the on-site Ising basis |γ = 1, γ = 2⟩, i.e.,
⟨⟨c†γ,L/2,σ;Pcγ,L/2,σ⟩⟩hω [21]. For clarity, we discuss only
the hole part (below µ), as the electron part can be de-
scribed analogously. Upon removing an electron from the
itinerant orbital, we distinguish three contributions. (i) In
Fig. 2(c), we project onto the parallel-spin configuration,
P = |↑, ↑⟩⟨↑, ↑| + |↓, ↓⟩⟨↓, ↓|. The resulting weight forms
a band of excitations close to the Fermi level ω ≃ µ. This
transition is responsible for the metallic properties of the lat-
tice. (ii) In Fig. 2(d), we instead project onto the antiparal-
lel configuration, P = |↑, ↓⟩⟨↑, ↓| + |↓, ↑⟩⟨↓, ↑|. We observe
large weight in the middle band and some smaller weight at
ω ≃ µ. The middle band represents the interorbital singlet
which breaks the Hund’s rule: this is the 2JH Hund excita-
tion. The band at ω ≃ µ represents the Sz = 0 component
of the triplet (|↑, ↓⟩ + |↓, ↑⟩), costing zero energy to excite.
(iii) Finally, in Fig. 2(e), we project onto the holon configu-
ration, P = |0, ↑⟩⟨0, ↑| + |0, ↓⟩⟨0, ↓|. This gives the energet-
ically lowest band of excitations, which we recognize as the
LHB, arising from triplet to holon transitions. The starting
state needs to be a triplet because singlets are excluded from
the gs by the Hund’s rule.

Noninteger vs integer filling. As shown above, for non-
integer filling (doped system), the atomic limit is enough to
explain the Hund bands. When the atomic gs of adjacent
particle-number subspaces, say n and n− 1, are degenerate,
there is no cost U for the transition from the gs of subspace
n to the gs of subspace n − 1. The excitation cost is zero; it
is compensated by µ which is tuned to cause the degeneracy.
However, if the n − 1 subspace contains not only the gs but
also higher multiplets, these multiplets can be accessed in the
photoemission process n → n− 1 with just the energy ∝ JH.
Analogous reasoning applies to inverse transitions n−1 → n.
Thus, remarkably, this results in U -independent Hund bands.

Consider now this behavior in a more general system, host-
ing more atomic configurations with different n. In Fig. 3 we
present the three-orbital Hubbard model (3oH) results [59] for
various electron fillings. For n = 4.5, the atomic limit of our
setup [21] predicts one Hund excitation (between states with 5
and 4 electrons) with energy 2JH [60], along with several U -
dependent Hubbard excitations. We pinpoint the Hund band
using the projector analysis, shown in Fig. 3(b). We differen-
tiate transitions arriving at |↑↓, ↑, ↑⟩ and |↑↓, ↓, ↑⟩. Similarly,
for the n = 3.5 filling, the atomic limit implies Hund bands in
photoemission at 3JH and 5JH. They are shown in Fig. 3(c).
The 3JH band is a transition to a low-spin S = 1/2 state [P
onto |↑, ↓, ↑⟩; see Fig. 3(a)]. The 5JH band originates in states
of the form |↑↓, 0, ↑⟩ ± |0, ↑↓, ↑⟩, where “−” is degenerate
with the 3JH excitation while “+” forms the 5JH peak. The
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Figure 3. Density-of-states A1(!) of the three-orbital Hubbard model
[29] in the itinerant orbital (� = 1) for U/W = 2, JH/U = 0.25
and: (a) n = 4.5, (b) n = 4, (c) n = 3.5. Each panel highlights
projections onto those final configurations that contribute to the Hund
excitations. The arrows point at the Hund bands [28, 38], with quo-
tation marks denoting the peaks observable only in the lattice. For
clarity, the legend shows representative configurations (while the data
are summed over several configurations of the same type) and the lines
in (c) are given a vertical offset. Results obtained with DMRG on
L = 4 lattice will be L = 8 in final version. See [28] for additional
data.

direct Hund excitations), but in the lattice we find significant
on-site fluctuations to 5- and 3-electron states [39]+cite Jernej
histogram. In Fig. 3(b), we project onto the same configura-
tions as for n = 4.5 and again find the Hund-singlet excitation.
However, for n = 4, only half of the peak is exhausted by
the projection onto |"#, #, "i. The excitation persists but it ad-
mixes several weaker transitions, which together contribute the
remaining weight (alongside the dominant |"#, #, "i). More-
over, the excitation develops a weak U dependence in addition
to the 2JH energy cost.

Finally, we discuss the noninteger filling n = 3.5. The
atomic limit predicts two new Hund excitations with energies
3JH and 5JH, both of which we show in Fig. 3(c). The first one
(3JH) is a transition to low-spin 1/2 state (P onto |", #, "i),
split from the high-spin 3/2 state (P onto |", ", "i); see the
legend in Fig. 3. The second one (5JH) is a transition to
holon-doublon states |"#, 0, "i± |0, "#, "i [35], of which “+”
is degenerate with the spin-1/2 excitation whereas “�” forms
the 5JH peak. Surprisingly, the 2JH excitation persists even
for n = 3.5 (as implied by smaller but nonvanishing weight of
|"#, #, "i), inducing a third Hund peak which would be absent
in the atomic spectrum.

Optical spectra. We have shown that the Hund excitations
are clearly visible in the single-particle spectra A�(!) and,
consequently, are directly relevant for the ARPES experiments
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Figure 4. Optical conductivity !�(!) vs the interaction U . The lines
mark the atomic-limit energy scales. Inset: data for U/W = 1.5.
Results obtained via DMRG for the gKH model [27] with n = 1.5,
JH/U = 0.25, and L = 24 sites.

[21]. However, the Hund excitations can be also detected by
frequency dependent optical conductivity, as relevant for the
reflectivity/transmission measurements [40–43]. Within the
open system natural to DMRG, we obtain the optical spec-
trum �(!) by taking the long-wavelength k ! 0 limit of the
dynamical density-density correlations N(k,!) via the conti-
nuity relation, �(!) = limk!0 !N(k,!)/(k/2)2 [28, 44].

In Fig. 4, we present how the optical conductivity evolves
with the interaction U for the gKH model at n = 1.5. To
highlight the features at finite !, we plot !�(!) instead of
�(!). One clearly observes that the additional peak appears
already for U/W > 0.8, which is consistent with the results
shown in Fig. 2(a). The finite spectral weight at ! ! 0
reflects the metallic character (finite dc conductivity) of the
OSMP, while the weight at the largest frequencies ! ' U +JH

describes the transition to the UHB (see also the inset of Fig. 4).
Finally, we observe Hund excitations at! ' 2JH, in agreement
with the spectral functions A�(!).

Conclusions. We have shown that the finite Hund exchange
present in the multiorbital Hubbard model causes the forma-
tion of unique bands of excitations. These bands are formed
by the energetically costly low-angular-momentum states (i.e.,
on-site configurations which break the Hund’s rules) and are
independent of the Hubbard interaction U . Our results are
generic: They originate in the atomic-limit multiplets, hence
they do not strongly depend on the system’s dimensionality
nor on the presence of the orbital-selective Mott phase (see
[28] for additional discussion). Furthermore, our findings are
relevant for all experiments that probe the system’s spectrum,
e.g., ARPES, resonant inelastic x-ray scattering (RIXS) [45],
Raman spectroscopy [46, 47], reflectivity/transmission mea-
surements, and even nonequlibrium considerations [48–50].
Often, additional features in the spectra of multiorbital sys-
tems are attributed to direct orbital hybridization present in
real materials, i.e., to transitions due to hopping between dif-
ferent orbitals. Here, we have shown that additional modes
can originate in the Hund exchange and, consequently, can be
used to estimate the value of JH.
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projections onto those final configurations that contribute to the Hund
excitations. The arrows point at the Hund bands [28, 38], with quo-
tation marks denoting the peaks observable only in the lattice. For
clarity, the legend shows representative configurations (while the data
are summed over several configurations of the same type) and the lines
in (c) are given a vertical offset. Results obtained with DMRG on
L = 4 lattice will be L = 8 in final version. See [28] for additional
data.

direct Hund excitations), but in the lattice we find significant
on-site fluctuations to 5- and 3-electron states [39]+cite Jernej
histogram. In Fig. 3(b), we project onto the same configura-
tions as for n = 4.5 and again find the Hund-singlet excitation.
However, for n = 4, only half of the peak is exhausted by
the projection onto |"#, #, "i. The excitation persists but it ad-
mixes several weaker transitions, which together contribute the
remaining weight (alongside the dominant |"#, #, "i). More-
over, the excitation develops a weak U dependence in addition
to the 2JH energy cost.

Finally, we discuss the noninteger filling n = 3.5. The
atomic limit predicts two new Hund excitations with energies
3JH and 5JH, both of which we show in Fig. 3(c). The first one
(3JH) is a transition to low-spin 1/2 state (P onto |", #, "i),
split from the high-spin 3/2 state (P onto |", ", "i); see the
legend in Fig. 3. The second one (5JH) is a transition to
holon-doublon states |"#, 0, "i± |0, "#, "i [35], of which “+”
is degenerate with the spin-1/2 excitation whereas “�” forms
the 5JH peak. Surprisingly, the 2JH excitation persists even
for n = 3.5 (as implied by smaller but nonvanishing weight of
|"#, #, "i), inducing a third Hund peak which would be absent
in the atomic spectrum.

Optical spectra. We have shown that the Hund excitations
are clearly visible in the single-particle spectra A�(!) and,
consequently, are directly relevant for the ARPES experiments
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[21]. However, the Hund excitations can be also detected by
frequency dependent optical conductivity, as relevant for the
reflectivity/transmission measurements [40–43]. Within the
open system natural to DMRG, we obtain the optical spec-
trum �(!) by taking the long-wavelength k ! 0 limit of the
dynamical density-density correlations N(k,!) via the conti-
nuity relation, �(!) = limk!0 !N(k,!)/(k/2)2 [28, 44].

In Fig. 4, we present how the optical conductivity evolves
with the interaction U for the gKH model at n = 1.5. To
highlight the features at finite !, we plot !�(!) instead of
�(!). One clearly observes that the additional peak appears
already for U/W > 0.8, which is consistent with the results
shown in Fig. 2(a). The finite spectral weight at ! ! 0
reflects the metallic character (finite dc conductivity) of the
OSMP, while the weight at the largest frequencies ! ' U +JH

describes the transition to the UHB (see also the inset of Fig. 4).
Finally, we observe Hund excitations at! ' 2JH, in agreement
with the spectral functions A�(!).

Conclusions. We have shown that the finite Hund exchange
present in the multiorbital Hubbard model causes the forma-
tion of unique bands of excitations. These bands are formed
by the energetically costly low-angular-momentum states (i.e.,
on-site configurations which break the Hund’s rules) and are
independent of the Hubbard interaction U . Our results are
generic: They originate in the atomic-limit multiplets, hence
they do not strongly depend on the system’s dimensionality
nor on the presence of the orbital-selective Mott phase (see
[28] for additional discussion). Furthermore, our findings are
relevant for all experiments that probe the system’s spectrum,
e.g., ARPES, resonant inelastic x-ray scattering (RIXS) [45],
Raman spectroscopy [46, 47], reflectivity/transmission mea-
surements, and even nonequlibrium considerations [48–50].
Often, additional features in the spectra of multiorbital sys-
tems are attributed to direct orbital hybridization present in
real materials, i.e., to transitions due to hopping between dif-
ferent orbitals. Here, we have shown that additional modes
can originate in the Hund exchange and, consequently, can be
used to estimate the value of JH.
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projections onto those final configurations that contribute to the Hund
excitations. The arrows point at the Hund bands [28, 38], with quo-
tation marks denoting the peaks observable only in the lattice. For
clarity, the legend shows representative configurations (while the data
are summed over several configurations of the same type) and the lines
in (c) are given a vertical offset. Results obtained with DMRG on
L = 4 lattice will be L = 8 in final version. See [28] for additional
data.

direct Hund excitations), but in the lattice we find significant
on-site fluctuations to 5- and 3-electron states [39]+cite Jernej
histogram. In Fig. 3(b), we project onto the same configura-
tions as for n = 4.5 and again find the Hund-singlet excitation.
However, for n = 4, only half of the peak is exhausted by
the projection onto |"#, #, "i. The excitation persists but it ad-
mixes several weaker transitions, which together contribute the
remaining weight (alongside the dominant |"#, #, "i). More-
over, the excitation develops a weak U dependence in addition
to the 2JH energy cost.

Finally, we discuss the noninteger filling n = 3.5. The
atomic limit predicts two new Hund excitations with energies
3JH and 5JH, both of which we show in Fig. 3(c). The first one
(3JH) is a transition to low-spin 1/2 state (P onto |", #, "i),
split from the high-spin 3/2 state (P onto |", ", "i); see the
legend in Fig. 3. The second one (5JH) is a transition to
holon-doublon states |"#, 0, "i± |0, "#, "i [35], of which “+”
is degenerate with the spin-1/2 excitation whereas “�” forms
the 5JH peak. Surprisingly, the 2JH excitation persists even
for n = 3.5 (as implied by smaller but nonvanishing weight of
|"#, #, "i), inducing a third Hund peak which would be absent
in the atomic spectrum.

Optical spectra. We have shown that the Hund excitations
are clearly visible in the single-particle spectra A�(!) and,
consequently, are directly relevant for the ARPES experiments
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[21]. However, the Hund excitations can be also detected by
frequency dependent optical conductivity, as relevant for the
reflectivity/transmission measurements [40–43]. Within the
open system natural to DMRG, we obtain the optical spec-
trum �(!) by taking the long-wavelength k ! 0 limit of the
dynamical density-density correlations N(k,!) via the conti-
nuity relation, �(!) = limk!0 !N(k,!)/(k/2)2 [28, 44].

In Fig. 4, we present how the optical conductivity evolves
with the interaction U for the gKH model at n = 1.5. To
highlight the features at finite !, we plot !�(!) instead of
�(!). One clearly observes that the additional peak appears
already for U/W > 0.8, which is consistent with the results
shown in Fig. 2(a). The finite spectral weight at ! ! 0
reflects the metallic character (finite dc conductivity) of the
OSMP, while the weight at the largest frequencies ! ' U +JH

describes the transition to the UHB (see also the inset of Fig. 4).
Finally, we observe Hund excitations at! ' 2JH, in agreement
with the spectral functions A�(!).

Conclusions. We have shown that the finite Hund exchange
present in the multiorbital Hubbard model causes the forma-
tion of unique bands of excitations. These bands are formed
by the energetically costly low-angular-momentum states (i.e.,
on-site configurations which break the Hund’s rules) and are
independent of the Hubbard interaction U . Our results are
generic: They originate in the atomic-limit multiplets, hence
they do not strongly depend on the system’s dimensionality
nor on the presence of the orbital-selective Mott phase (see
[28] for additional discussion). Furthermore, our findings are
relevant for all experiments that probe the system’s spectrum,
e.g., ARPES, resonant inelastic x-ray scattering (RIXS) [45],
Raman spectroscopy [46, 47], reflectivity/transmission mea-
surements, and even nonequlibrium considerations [48–50].
Often, additional features in the spectra of multiorbital sys-
tems are attributed to direct orbital hybridization present in
real materials, i.e., to transitions due to hopping between dif-
ferent orbitals. Here, we have shown that additional modes
can originate in the Hund exchange and, consequently, can be
used to estimate the value of JH.
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Figure 3. (a) Sketch of the transitions to final configurations that con-
tribute to the Hund bands of the three-orbital Hubbard model (3oH).
For clarity, we present only the representative configurations (while
the results are summed over several configurations of the same type).
The labeling of the arrows follows Fig. 2. (b)-(d) DOS A1(ω) of the
itinerant orbital (γ = 1) of 3oH with JH/U = 0.25. Left panels de-
pict A1(ω) as function of the interaction U , while right panels show
detailed spectra with projections for U/W = 2. (b), (c), and (d)
depict results for n = 4.5, n = 3.5, and n = 4, respectively. The
arrows on the right panels point at the Hund bands [60], with “. . . ”
denoting the peaks observable only on a lattice. The solid lines in
the left column mark the −2JH, −3JH, and −5JH slopes. The un-
labeled peaks are Hubbard bands which have a U dependence [21].
Results obtained with DMRG on an L = 8 lattice with broadening
η = 0.1.

latter are the holon-doublon states [25–30]. Their origin was
discussed in [25, 27] but without realizing they are a partic-
ular example of the generic physics of Hund bands revealed
here. Surprisingly, the 2JH band persists even for n = 3.5 (as
implied by the smaller but nonvanishing weight of |↑↓, ↓, ↑⟩),
inducing a third Hund peak, absent in the atomic spectrum.
The intensity of this mode decreases with U .

By contrast, for integer filling n ∈ {1, 2, 3, . . .}, the atomic
limit alone does not predict the Hund bands. The atom lacks
the necessary charge fluctuations as its gs does not span ad-
jacent particle-number subspaces. Thus, only the “standard”
Hubbard bands should be observed [5, 61]. However, in the
lattice, the charge fluctuations are possible provided the inter-
action U is not too large at a given filling n. For half filling,
the fluctuations vanish already for U ∼ W and the Hubbard
bands are well developed [see, e.g., the inset of Fig. 2(a)].
Away from half filling, U ∼ W does not suppress the fluctu-
ations. They are significant even at integer n, and vanish only
at elevated U ∼ 10W [5, 52, 62]. Consequently, the many-
body gs has significant contribution of states with neighbor-
ing local occupations, |n− 1⟩ and |n+ 1⟩. Adding/removing
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Figure 4. (a) Aγ(ω) calculated with the DMFT method for an
orbitally degenerate three-orbital Hubbard model with semicircu-
lar DOS, integer filling n = 4, U/D = 3.8, and JH/D =
0.20, . . . , 0.40. The half bandwidth D = 1 is used as the energy
unit; see [21] for details. Triangles mark ω = −2JH with a constant
shift of −0.1 [60]. (b) Optical conductivity ωσ(ω) vs. the interac-
tion U . The lines mark the atomic-limit energy scales. Notice the
2JH peak appearing for U/W > 0.8. Inset: data for U/W = 1.5.
Results obtained via DMRG for the gKH model with n = 1.5,
JH/U = 0.25, L = 24 sites, and broadening η = 0.1.

particles in these states allows reaching the higher multiplets
of the atomic ground-state subspace |n⟩, and the Hund bands
emerge.

Consider the n = 4 case, i.e., one electron above half-filling
for 3oH. In the atom, the gs has only 4-electron configura-
tions, but in the lattice we find significant on-site fluctuations
to 5- and 3-electron states [4, 63]. In Fig. 3(d), we project
onto the same configurations as for n = 4.5 and again find the
2JH Hund band (originating in the n = 5 → 4 transitions).
We should notice only half of the peak is exhausted by the
projection onto |↑↓, ↓, ↑⟩ and our results also indicate a weak
U dependence. We could not discern Hund bands correspond-
ing to electron addition processes from 3-electron states: For
a high-spin initial configuration n = 3, S = 3/2 the selection
rules forbid reaching the low-spin n = 4, S = 0 state [64].

Conclusions. We showed that the charge fluctuations and
finite Hund exchange present in the multiorbital Hubbard
model cause the formation of unique bands of excitations.
These Hund bands are formed by the energetically costly low-
angular-momentum states (i.e., on-site configurations which
break the Hund’s rules) and they do not depend on Hubbard
U . The latter makes them distinct from the Hubbard-band
multiplet splittings. Among the Hund bands the canonical
spin-singlet mode (ω ≃ 2JH) is especially prevalent.

Our results are a generic consequence of multiorbital sys-
tems. They originate in the existence of higher multiplets,
hence they do not depend on the presence of the orbital-
selective Mott phase (see [21] for additional discussion), nor
on the system’s dimensionality. To confirm this, in Fig. 4(a),
we present DMFT calculations in infinite dimensions. We

100 6. HUND BANDS IN SPECTRA OF MULTIORBITAL SYSTEMS



5

focus on generic rather than material-specific features and
consider a semicircular density of states and orbital degen-
eracy [21]. The DMFT results clearly show the 2JH mode. In
Supplemental Material [21], we repeat the calculations for a
typical t2g DOS and also find the Hund band.

Our findings are relevant for ARPES, resonant inelastic x-
ray scattering [65], Raman spectroscopy [66, 67], nonequi-
librium investigations [68–70], and reflectivity/transmission
measurements [71–74]. Figure 4(b) demonstrates the last: it
presents how the optical conductivity [21] evolves with U for
the gKH model at n = 1.5. Crucially, we observe the Hund
band at ω ≃ 2JH. Often, such additional spectral features are
attributed to the interband transitions. Here, we showed that
additional modes can also originate in the Hund exchange and,
consequently, can be used to estimate the value of JH.

M.Ś. and J.H. acknowledge grant support by the Polish Na-
tional Agency of Academic Exchange (NAWA) under contract
PPN/PPO/2018/1/00035 and by the National Science Centre
(NCN), Poland via project 2019/35/B/ST3/01207. J.M. ac-
knowledges support by Slovenian research agency under Pro-
gram No. P1-0044, J1-2458, J1-2456, J1-2463. G.A. was sup-
ported in part by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by the U.S. DOE, Of-
fice of Science, Advanced Scientific Computing Research and
BES, Division of Materials Sciences and Engineering. E.D.
was supported by the US Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and Engi-
neering Division. Part of the calculations has been carried out
using resources provided by Wroclaw Centre for Networking
and Supercomputing (http://wcss.pl).

[1] D. J. Scalapino, “A common thread: The pairing interaction
for unconventional superconductors,” Rev. Mod. Phys. 84, 1383
(2012).

[2] E. Dagotto, “Correlated electrons in high-temperature super-
conductors,” Rev. Mod. Phys. 66, 763 (1994).

[3] S. M. O’Mahony, W. Ren, W. Chen, Y. X. Chong, X. Liu,
H. Eisaki, S. Uchida, M. H. Hamidian, and J. C. S. Davis,
“On the electron pairing mechanism of copper-oxide high tem-
perature superconductivity,” Proc. Natl. Acad. Sci. U.S.A. 119,
e2207449119 (2022).

[4] Z. Yin, K. Haule, and G Kotliar, “Kinetic frustration and the
nature of the magnetic and paramagnetic states in iron pnictides
and iron chalcogenides,” Nat. Matter. 10, 932 (2011).

[5] A. Georges, L. Medici, and J. Mravlje, “Strong Correlations
from Hund’s Coupling,” Annu. Rev. Condens. Matter Phys. 4,
137 (2013).

[6] M. Yi, Y. Zhang, Z.-X. Shen, and D. Lu, “Role of the orbital
degree of freedom in iron-based superconductors,” npj Quan-
tum Mater. 2, 57 (2017).

[7] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, “Orbital-
Selective Mott Transitions in the Degenerate Hubbard Model,”
Phys. Rev. Lett. 92, 216402 (2004).

[8] L. de’Medici, A. Georges, and S. Biermann, “Orbital-selective
mott transition in multiband systems: Slave-spin representation
and dynamical mean-field theory,” Phys. Rev. B 72, 205124

(2005).
[9] J. Rincón, A. Moreo, G. Alvarez, and E. Dagotto, “Exotic mag-

netic order in the orbital-selective mott regime of multiorbital
systems,” Phys. Rev. Lett. 112, 106405 (2014).

[10] J. Herbrych, J. Heverhagen, N. D. Patel, G. Alvarez,
M. Daghofer, A. Moreo, and E. Dagotto, “Novel magnetic
block states in low-dimensional iron-based superconductors,”
Phys. Rev. Lett. 123, 027203 (2019).

[11] A. Damascelli, Z. Hussain, and Z.-X. Shen, “Angle-resolved
photoemission studies of the cuprate superconductors,” Rev.
Mod. Phys. 75, 473 (2003).

[12] Y. Wang, Y. He, K. Wohlfeld, M. Hashimoto, E. W. Huang,
D. Lu, S.-K. Mo, S. Komiya, C. Jia, B. Moritz, Z.-X. Shen,
and T. P. Devereaux, “Emergence of quasiparticles in a doped
Mott insulator,” Commun. Phys. 3, 210 (2020).

[13] H. Benthien, F. Gebhard, and E. Jeckelmann, “Spectral func-
tion of the one-dimensional hubbard model away from half fill-
ing,” Phys. Rev. Lett. 92, 256401 (2004).

[14] A. E. Feiguin and G. A. Fiete, “Spin-incoherent behavior in the
ground state of strongly correlated systems,” Phys. Rev. Lett.
106, 146401 (2011).

[15] F. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Ko-
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B. Büchner, “Direct observation of dispersive lower Hubbard
band in iron-based superconductor FeSe,” arXiv:1612.02313.

[41] T. Hotta and E. Dagotto, “Prediction of orbital ordering in

single-layered ruthenates,” Phys. Rev. Lett. 88, 017201 (2001).
[42] D. Sutter, M. Kim, C. E. Matt, M. Horio, R. Fittipaldi, A. Vec-

chione, V. Granata, K. Hauser, Y. Sassa, G. Gatti, M. Grioni,
M. Hoesch, T. K. Kim, E. Rienks, N. C. Plumb, M. Shi, T. Neu-
pert, A. Georges, and J. Chang, “Orbitally selective breakdown
of Fermi liquid quasiparticles in Ca1.8Sr0.2RuO4,” Phys. Rev.
B 99, 121115(R) (2019).

[43] H. Gretarsson, H. Suzuki, Hoon Kim, K. Ueda, M. Kraut-
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[77] R. Žitko and T. Pruschke, “Energy resolution and discretization
artifacts in the numerical renormalization group,” Phys. Rev. B
79, 085106 (2009).

[78] R. Žitko, “NRG Ljubljana,” (2021).

[79] H. Wadati, J. Mravlje, K. Yoshimatsu, H. Kumigashira, M. Os-
hima, T. Sugiyama, E. Ikenaga, A. Fujimori, A. Georges,
A. Radetinac, K. S. Takahashi, M. Kawasaki, and Y. Tokura,
“Photoemission and DMFT study of electronic correlations in
SrMoO3: Effects of Hund’s rule coupling and possible plas-
monic sideband,” Phys. Rev. B 90, 205131 (2014).

[80] D. Stricker, J. Mravlje, C. Berthod, R. Fittipaldi, A. Vecchione,
A. Georges, and D. van der Marel, “Optical Response of
Sr2RuO4 Reveals Universal Fermi-Liquid Scaling and Quasi-
particles Beyond Landau Theory,” Phys. Rev. Lett. 113, 087404
(2014).

[81] K. M. Stadler, Z. P. Yin, J. von Delft, G. Kotliar, and
A. Weichselbaum, “Dynamical mean-field theory plus numeri-
cal renormalization-group study of spin-orbital separation in a
three-band hund metal,” Phys. Rev. Lett. 115, 136401 (2015).
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SUPPLEMENTAL MATERIAL for
Hund bands in spectra of multiorbital systems

by M. Środa, J. Mravlje, G. Alvarez, E. Dagotto, and J. Herbrych

Supplemental Note 1
Definition of the single-particle spectral function

The orbital-resolved single-particle spectral function is de-
fined as

Aγ(k, ω) =
1√
L

∑

ℓσ

eik(ℓ−c)
(
⟨⟨c†γℓσ; cγcσ⟩⟩hω + ⟨⟨cγℓσ; c†γcσ⟩⟩eω

)
,

⟨⟨A;B⟩⟩h,eω = − 1

π
Im ⟨gs|A 1

ω+ ± (H − ϵgs)
B|gs⟩ .

(S1)
Here, k denotes the momentum, the + and − signs correspond
to the hole ⟨⟨. . .⟩⟩hω and electron ⟨⟨. . .⟩⟩eω components, respec-
tively, ω+ = ω + iη with ω being the energy, c = L/2, and
|gs⟩ is the ground state (gs) with energy ϵgs. The density of
states (DOS) is obtained as Aγ(ω) = (1/L)

∑
k Aγ(k, ω).

The origin of c = L/2 is the so-called central-site trick.
In the Fourier transform, Eq. (S1), we replace the expensive
double sum over two sites with a single sum over just one site.
In other words, the distances are measured w.r.t. the center of
the lattice. This trick is exact for periodic boundary conditions
(where each site c is equivalent) and introduces only minor
quantitative corrections in the open boundary case.

Supplemental Note 2
Three-orbital results for the momentum-dependence of the

spectral function

In the main text, we used the two-orbital Hubbard model
(2oH) to show that the Hund excitations form robust disper-
sive bands. Here, we show that the same holds true for the
three-orbital Hubbard model (3oH).

Figure S1 presents the momentum-resolved single-particle
spectral function Aγ(k, ω) in the itinerant orbital γ = 1 of
the 3oH. Panels (a) and (b) show the fillings n = 4.5 and n =
4.0, respectively. Clearly, in the momentum-resolved function
Aγ(k, ω) the spectral features are much better separated than
in the density of states Aγ(ω). In particular, one observes
that the Hund excitations (arrows) have robust dispersion and
indeed form individual bands. This is particularly interesting
for the integer filling n = 4.0 [Fig. S1(b)], where the Hund
excitation is not a consequence of the atomic limit but is still
possible due to intersite particle fluctuations.

Supplemental Note 3
Two- and three-orbital results for fixed JH

In this Supplemental Note, we show that the Hund bands
are U independent. To this end, we fix JH = W/2 and vary
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Supplemental Figure S1. Momentum-resolved single-particle spec-
tral function Aγ(k, ω) of the itinerant orbital γ = 1 of the three-
orbital Hubbard model for (a) n = 4.5, U/W = 2.0 and (b) n =
4.0, U/W = 1.3. The Hund coupling is JH/U = 0.25. The right
column shows the corresponding momentum-integrated spectra, i.e.,
the densities of states Aγ(ω). The arrows point at the Hund bands,
as identified in the main text. Results obtained with DMRG on a
L = 32 lattice with broadening η = 0.04.

only U . The remaining parameters of the models are kept the
same as in the main text.

Figure S2(a) presents the density of states A1(ω) of the
itinerant orbital of the two-orbital Hubbard model (2oH) at
n = 2.5. Unlike the leftmost peak, which has a clear U depen-
dence, the middle peak does not shift when the interaction U
is varied. This is the Hund-singlet excitation with the atomic
energy 2JH, identified in Fig. 1(d) and Fig. 2 of the main text.
Here, it can be clearly seen that its energy is fully independent
of the JH/U ratio.

Similar behavior is observed in the three-orbital Hubbard
model (3oH). Figure S2(b) shows the data for the filling
n = 4.5, where one expects the same Hund-singlet excitation
as above. Among several U -dependent excitations (Hubbard
excitations), one observes a prominent peak whose position
and shape are not affected by the change in U . Again, this is
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the Hund-singlet excitation identified in Fig. 3(b) of the main
text.

(a) 2-orbital Hubbard at = = 2.5

(b) 3-orbital Hubbard at = = 4.5
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Supplemental Figure S2. (a) Aγ(ω) of the itinerant orbital (γ = 1)
for the two-orbital Hubbard model (n = 2.5, L = 48) with fixed
JH = W/2 and varying U . Clearly, the Hund band depends only on
JH and is U independent. (b) The same as in (a) but for the three-
orbital Hubbard model with n = 4.5 and L = 32 sites. The arrows
point at the Hund bands, as identified in the main text. The unlabeled
peaks are Hubbard bands which clearly have a U dependence. Re-
sults obtained with DMRG using broadening η = 0.04.

Supplemental Note 4
Atomic-limit excitation energies for the three-orbital model

In the orbitally degenerate case of the 3oH, tγγ′ ∝ δγγ′ ,
∆γ = 0, and for an atom, the Hubbard-Kanamori model
[Eq. (1) of the main text] can be brought to a simple form [5]

H = (U−3JH)
N̂(N̂ − 1)

2
−2JHS

2−JH
2
L2+

5

2
JHN̂ , (S2)

where N̂ is the total particle number operator, S the total
spin operator, L the total orbital angular momentum opera-
tor. In this form the rotational symmetry is readily appar-
ent. Moreover, this form allow us to classify all eigenstates
(and their energies) in terms of the quantum numbers N , S,
L. This is shown in Table SI, where we show both ‘bare’
energies and also energies w.r.t. the atomic gs for fillings
n = 4.5, 4.0, 3.5, 3.0. To obtain the energies of the excita-
tions, we need to subtract the energies of the gs and the tar-
get state with a sign appropriate for the electron- or hole-like
single-particle excitation.

To conduct the projector analysis, we also need to know
how the eigenstates appear in the Ising-configuration basis
|Γγ=0,Γγ=1,Γγ=2⟩, where Γ ∈ {|0⟩, |↑⟩, |↓⟩, |↑↓⟩}. Since
the eigenstate superpositions are rather lengthy, in Table SI
we list only up to two example eigenstates per each N , S, L
subspace.

Naturally, a finite crystal field (∆γ ̸= 0) modifies the spec-
trum shown in Table SI. The effect of the crystal field is

twofold: (i) it modifies the energies and (ii) it may exclude
certain configurations from the gs (more generally, it induces
splittings in the spectrum). Regarding (i), if JH, U ≫ ∆γ ,
the change in energies is marginal and one can still use Ta-
ble SI to investigate the excitations. This is the case for the
3oH parameters of the itinerant orbitals, which we used in
the main text. Namely, the slopes of the unlabeled excita-
tions in Fig. 3 of the main text (left column) are accurately
reproduced by Table SI. The example of effect (ii) is that in
Fig. 3(b), showing n = 4.5, one cannot observe the Hund ex-
citation with energy 5JH (N,S, L = 4, 0, 0). To see it, the
configuration |↑↓, ↑, ↑↓⟩ would need to be present in the gs,
so that the photoemission from γ = 1 could reach |↑↓, 0, ↑↓⟩.
However, the former configuration is excluded from the gs by
∆2 = 0.8 (and/or OSMP), as it has a doublon in the orbital
γ = 2. In contrast, such a configuration is present for the or-
bitally degenerate system, where the 5JH excitation becomes
observable (see the next Supplemental Note).
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Figure 3. Density-of-states A1(!) of the three-orbital Hubbard model
[29] in the itinerant orbital (� = 1) for U/W = 2, JH/U = 0.25
and: (a) n = 4.5, (b) n = 4, (c) n = 3.5. Each panel highlights
projections onto those final configurations that contribute to the Hund
excitations. The arrows point at the Hund bands [28, 38], with quo-
tation marks denoting the peaks observable only in the lattice. For
clarity, the legend shows representative configurations (while the data
are summed over several configurations of the same type) and the lines
in (c) are given a vertical offset. Results obtained with DMRG on
L = 4 lattice will be L = 8 in final version. See [28] for additional
data.

direct Hund excitations), but in the lattice we find significant
on-site fluctuations to 5- and 3-electron states [39]+cite Jernej
histogram. In Fig. 3(b), we project onto the same configura-
tions as for n = 4.5 and again find the Hund-singlet excitation.
However, for n = 4, only half of the peak is exhausted by
the projection onto |"#, #, "i. The excitation persists but it ad-
mixes several weaker transitions, which together contribute the
remaining weight (alongside the dominant |"#, #, "i). More-
over, the excitation develops a weak U dependence in addition
to the 2JH energy cost.

Finally, we discuss the noninteger filling n = 3.5. The
atomic limit predicts two new Hund excitations with energies
3JH and 5JH, both of which we show in Fig. 3(c). The first one
(3JH) is a transition to low-spin 1/2 state (P onto |", #, "i),
split from the high-spin 3/2 state (P onto |", ", "i); see the
legend in Fig. 3. The second one (5JH) is a transition to
holon-doublon states |"#, 0, "i± |0, "#, "i [35], of which “+”
is degenerate with the spin-1/2 excitation whereas “�” forms
the 5JH peak. Surprisingly, the 2JH excitation persists even
for n = 3.5 (as implied by smaller but nonvanishing weight of
|"#, #, "i), inducing a third Hund peak which would be absent
in the atomic spectrum.

Optical spectra. We have shown that the Hund excitations
are clearly visible in the single-particle spectra A�(!) and,
consequently, are directly relevant for the ARPES experiments
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Figure 4. Optical conductivity !�(!) vs the interaction U . The lines
mark the atomic-limit energy scales. Inset: data for U/W = 1.5.
Results obtained via DMRG for the gKH model [27] with n = 1.5,
JH/U = 0.25, and L = 24 sites.

[21]. However, the Hund excitations can be also detected by
frequency dependent optical conductivity, as relevant for the
reflectivity/transmission measurements [40–43]. Within the
open system natural to DMRG, we obtain the optical spec-
trum �(!) by taking the long-wavelength k ! 0 limit of the
dynamical density-density correlations N(k,!) via the conti-
nuity relation, �(!) = limk!0 !N(k,!)/(k/2)2 [28, 44].

In Fig. 4, we present how the optical conductivity evolves
with the interaction U for the gKH model at n = 1.5. To
highlight the features at finite !, we plot !�(!) instead of
�(!). One clearly observes that the additional peak appears
already for U/W > 0.8, which is consistent with the results
shown in Fig. 2(a). The finite spectral weight at ! ! 0
reflects the metallic character (finite dc conductivity) of the
OSMP, while the weight at the largest frequencies ! ' U +JH

describes the transition to the UHB (see also the inset of Fig. 4).
Finally, we observe Hund excitations at! ' 2JH, in agreement
with the spectral functions A�(!).

Conclusions. We have shown that the finite Hund exchange
present in the multiorbital Hubbard model causes the forma-
tion of unique bands of excitations. These bands are formed
by the energetically costly low-angular-momentum states (i.e.,
on-site configurations which break the Hund’s rules) and are
independent of the Hubbard interaction U . Our results are
generic: They originate in the atomic-limit multiplets, hence
they do not strongly depend on the system’s dimensionality
nor on the presence of the orbital-selective Mott phase (see
[28] for additional discussion). Furthermore, our findings are
relevant for all experiments that probe the system’s spectrum,
e.g., ARPES, resonant inelastic x-ray scattering (RIXS) [45],
Raman spectroscopy [46, 47], reflectivity/transmission mea-
surements, and even nonequlibrium considerations [48–50].
Often, additional features in the spectra of multiorbital sys-
tems are attributed to direct orbital hybridization present in
real materials, i.e., to transitions due to hopping between dif-
ferent orbitals. Here, we have shown that additional modes
can originate in the Hund exchange and, consequently, can be
used to estimate the value of JH.
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Figure 3. Density-of-states A1(!) of the three-orbital Hubbard model
[29] in the itinerant orbital (� = 1) for U/W = 2, JH/U = 0.25
and: (a) n = 4.5, (b) n = 4, (c) n = 3.5. Each panel highlights
projections onto those final configurations that contribute to the Hund
excitations. The arrows point at the Hund bands [28, 38], with quo-
tation marks denoting the peaks observable only in the lattice. For
clarity, the legend shows representative configurations (while the data
are summed over several configurations of the same type) and the lines
in (c) are given a vertical offset. Results obtained with DMRG on
L = 4 lattice will be L = 8 in final version. See [28] for additional
data.

direct Hund excitations), but in the lattice we find significant
on-site fluctuations to 5- and 3-electron states [39]+cite Jernej
histogram. In Fig. 3(b), we project onto the same configura-
tions as for n = 4.5 and again find the Hund-singlet excitation.
However, for n = 4, only half of the peak is exhausted by
the projection onto |"#, #, "i. The excitation persists but it ad-
mixes several weaker transitions, which together contribute the
remaining weight (alongside the dominant |"#, #, "i). More-
over, the excitation develops a weak U dependence in addition
to the 2JH energy cost.

Finally, we discuss the noninteger filling n = 3.5. The
atomic limit predicts two new Hund excitations with energies
3JH and 5JH, both of which we show in Fig. 3(c). The first one
(3JH) is a transition to low-spin 1/2 state (P onto |", #, "i),
split from the high-spin 3/2 state (P onto |", ", "i); see the
legend in Fig. 3. The second one (5JH) is a transition to
holon-doublon states |"#, 0, "i± |0, "#, "i [35], of which “+”
is degenerate with the spin-1/2 excitation whereas “�” forms
the 5JH peak. Surprisingly, the 2JH excitation persists even
for n = 3.5 (as implied by smaller but nonvanishing weight of
|"#, #, "i), inducing a third Hund peak which would be absent
in the atomic spectrum.

Optical spectra. We have shown that the Hund excitations
are clearly visible in the single-particle spectra A�(!) and,
consequently, are directly relevant for the ARPES experiments
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[21]. However, the Hund excitations can be also detected by
frequency dependent optical conductivity, as relevant for the
reflectivity/transmission measurements [40–43]. Within the
open system natural to DMRG, we obtain the optical spec-
trum �(!) by taking the long-wavelength k ! 0 limit of the
dynamical density-density correlations N(k,!) via the conti-
nuity relation, �(!) = limk!0 !N(k,!)/(k/2)2 [28, 44].

In Fig. 4, we present how the optical conductivity evolves
with the interaction U for the gKH model at n = 1.5. To
highlight the features at finite !, we plot !�(!) instead of
�(!). One clearly observes that the additional peak appears
already for U/W > 0.8, which is consistent with the results
shown in Fig. 2(a). The finite spectral weight at ! ! 0
reflects the metallic character (finite dc conductivity) of the
OSMP, while the weight at the largest frequencies ! ' U +JH

describes the transition to the UHB (see also the inset of Fig. 4).
Finally, we observe Hund excitations at! ' 2JH, in agreement
with the spectral functions A�(!).

Conclusions. We have shown that the finite Hund exchange
present in the multiorbital Hubbard model causes the forma-
tion of unique bands of excitations. These bands are formed
by the energetically costly low-angular-momentum states (i.e.,
on-site configurations which break the Hund’s rules) and are
independent of the Hubbard interaction U . Our results are
generic: They originate in the atomic-limit multiplets, hence
they do not strongly depend on the system’s dimensionality
nor on the presence of the orbital-selective Mott phase (see
[28] for additional discussion). Furthermore, our findings are
relevant for all experiments that probe the system’s spectrum,
e.g., ARPES, resonant inelastic x-ray scattering (RIXS) [45],
Raman spectroscopy [46, 47], reflectivity/transmission mea-
surements, and even nonequlibrium considerations [48–50].
Often, additional features in the spectra of multiorbital sys-
tems are attributed to direct orbital hybridization present in
real materials, i.e., to transitions due to hopping between dif-
ferent orbitals. Here, we have shown that additional modes
can originate in the Hund exchange and, consequently, can be
used to estimate the value of JH.
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Figure 3. Density-of-states A1(!) of the three-orbital Hubbard model
[29] in the itinerant orbital (� = 1) for U/W = 2, JH/U = 0.25
and: (a) n = 4.5, (b) n = 4, (c) n = 3.5. Each panel highlights
projections onto those final configurations that contribute to the Hund
excitations. The arrows point at the Hund bands [28, 38], with quo-
tation marks denoting the peaks observable only in the lattice. For
clarity, the legend shows representative configurations (while the data
are summed over several configurations of the same type) and the lines
in (c) are given a vertical offset. Results obtained with DMRG on
L = 4 lattice will be L = 8 in final version. See [28] for additional
data.

direct Hund excitations), but in the lattice we find significant
on-site fluctuations to 5- and 3-electron states [39]+cite Jernej
histogram. In Fig. 3(b), we project onto the same configura-
tions as for n = 4.5 and again find the Hund-singlet excitation.
However, for n = 4, only half of the peak is exhausted by
the projection onto |"#, #, "i. The excitation persists but it ad-
mixes several weaker transitions, which together contribute the
remaining weight (alongside the dominant |"#, #, "i). More-
over, the excitation develops a weak U dependence in addition
to the 2JH energy cost.

Finally, we discuss the noninteger filling n = 3.5. The
atomic limit predicts two new Hund excitations with energies
3JH and 5JH, both of which we show in Fig. 3(c). The first one
(3JH) is a transition to low-spin 1/2 state (P onto |", #, "i),
split from the high-spin 3/2 state (P onto |", ", "i); see the
legend in Fig. 3. The second one (5JH) is a transition to
holon-doublon states |"#, 0, "i± |0, "#, "i [35], of which “+”
is degenerate with the spin-1/2 excitation whereas “�” forms
the 5JH peak. Surprisingly, the 2JH excitation persists even
for n = 3.5 (as implied by smaller but nonvanishing weight of
|"#, #, "i), inducing a third Hund peak which would be absent
in the atomic spectrum.

Optical spectra. We have shown that the Hund excitations
are clearly visible in the single-particle spectra A�(!) and,
consequently, are directly relevant for the ARPES experiments
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[21]. However, the Hund excitations can be also detected by
frequency dependent optical conductivity, as relevant for the
reflectivity/transmission measurements [40–43]. Within the
open system natural to DMRG, we obtain the optical spec-
trum �(!) by taking the long-wavelength k ! 0 limit of the
dynamical density-density correlations N(k,!) via the conti-
nuity relation, �(!) = limk!0 !N(k,!)/(k/2)2 [28, 44].

In Fig. 4, we present how the optical conductivity evolves
with the interaction U for the gKH model at n = 1.5. To
highlight the features at finite !, we plot !�(!) instead of
�(!). One clearly observes that the additional peak appears
already for U/W > 0.8, which is consistent with the results
shown in Fig. 2(a). The finite spectral weight at ! ! 0
reflects the metallic character (finite dc conductivity) of the
OSMP, while the weight at the largest frequencies ! ' U +JH

describes the transition to the UHB (see also the inset of Fig. 4).
Finally, we observe Hund excitations at! ' 2JH, in agreement
with the spectral functions A�(!).

Conclusions. We have shown that the finite Hund exchange
present in the multiorbital Hubbard model causes the forma-
tion of unique bands of excitations. These bands are formed
by the energetically costly low-angular-momentum states (i.e.,
on-site configurations which break the Hund’s rules) and are
independent of the Hubbard interaction U . Our results are
generic: They originate in the atomic-limit multiplets, hence
they do not strongly depend on the system’s dimensionality
nor on the presence of the orbital-selective Mott phase (see
[28] for additional discussion). Furthermore, our findings are
relevant for all experiments that probe the system’s spectrum,
e.g., ARPES, resonant inelastic x-ray scattering (RIXS) [45],
Raman spectroscopy [46, 47], reflectivity/transmission mea-
surements, and even nonequlibrium considerations [48–50].
Often, additional features in the spectra of multiorbital sys-
tems are attributed to direct orbital hybridization present in
real materials, i.e., to transitions due to hopping between dif-
ferent orbitals. Here, we have shown that additional modes
can originate in the Hund exchange and, consequently, can be
used to estimate the value of JH.
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Supplemental Figure S3. (a) Sketch of the transitions to final config-
urations that contribute to the Hund bands of the three-orbital Hub-
bard model (3oH). For clarity, we present only the representative
configurations (while the results are summed over several configu-
rations of the same type). (b)-(d) DOS A1(ω) of the orbitally degen-
erate 3oH (see the text for details) with JH/U = 0.25. Left panels
depict A1(ω) as a function of the interaction U , while right panels
show detailed spectra with projections for U/W = 2. (b), (c), and
(d) depict results for n = 4.5, n = 3.5, and n = 4, respectively. The
arrows on the right panels point at the Hund bands [60], with “. . . ”
denoting the peaks observable only in the lattice. The solid lines in
the left column mark the −2JH, −3JH, and −5JH slopes. The U
and JH dependence of the unlabeled peaks follows Table SI. Results
obtained with DMRG on an L = 8 lattice with broadening η = 0.1.
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Table SI. Eigenstates and eigenvalues of the Hamiltonian (S2). For brevity, in the column ‘Ising basis’ we show only up to two representative
eigenstates from a given N , S, L subspace, whereas the remaining eigenstates consist of similar Ising configurations. The shown energies are
independent of the JH/U ratio. In the last four columns, we show the energies w.r.t. the gs for fillings n = 4.5, 4.0, 3.5, 3.0 and we restrict
ourselves only to the states with Ngs ± 1, where Ngs is the number of particles in the gs. The chemical potentials corresponding to the latter
fillings are µn=4.5 = 4U − 7JH, µn=4.0 = 1

2
(7U − 11JH), µn=3.5 = 3U − 4JH, µn=3.0 = 5

2
U − 5JH, respectively. The gs of each fixed

N sector is given in the first row of that sector.

N,S, L Degeneracy Ising basis Energy Energy (ϵN,S,L − µN)− (ϵgs − µNgs)

ϵN,S,L n = 4.5 n = 4.0 n = 3.5 n = 3.0

0, 0, 0 1 |0, 0, 0⟩ 0

1, 1
2
, 1 6 |↑, 0, 0⟩ 0

2, 1, 1 9
|↑, ↑, 0⟩,

1√
2
|↑, ↓, 0⟩+ 1√

2
|↓, ↑, 0⟩ U − 3JH U + 2JH

1
2
(U + 2JH)

2, 0, 2 5
1√
2
|↑, ↓, 0⟩ − 1√

2
|↓, ↑, 0⟩,

1√
6
|↑↓, 0, 0⟩+ 1√

6
|0, ↑↓, 0⟩ −

√
2
3
|0, 0, ↑↓⟩

U − JH U + 4JH
1
2
(U + 6JH)

2, 0, 0 1 1√
3
|↑↓, 0, 0⟩+ 1√

3
|0, ↑↓, 0⟩+ 1√

3
|0, 0, ↑↓⟩ U + 2JH U + 7JH

1
2
(U + 12JH)

3, 3
2
, 0 4

|↑, ↑, ↑⟩,
1√
3
|↑, ↑, ↓⟩+ 1√

3
|↑, ↓, ↑⟩+ 1√

3
|↓, ↑, ↑⟩ 3U − 9JH U − 3JH

1
2
(U − 3JH) 0 0

3, 1
2
, 2 10

1√
6
|↑, ↑, ↓⟩+ 1√

6
|↑, ↓, ↑⟩ −

√
2
3
|↓, ↑, ↑⟩,

1√
2
|↑↓, 0, ↑⟩ − 1√

2
|0, ↑↓, ↑⟩

3U − 6JH U 1
2
(U + 3JH) 3JH 3JH

3, 1
2
, 1 6 1√

2
|↑↓, 0, ↑⟩+ 1√

2
|0, ↑↓, ↑⟩ 3U − 4JH U + 2JH

1
2
(U + 7JH) 5JH 5JH

4, 1, 1 9
|↑↓, ↑, ↑⟩,

1√
2
|↑↓, ↑, ↓⟩+ 1√

2
|↑↓, ↓, ↑⟩ 6U − 13JH 0 0 0 1

2
(U + 2JH)

4, 0, 2 5
1√
2
|↑↓, ↑, ↓⟩ − 1√

2
|↑↓, ↓, ↑⟩,

1√
6
|↑↓, ↑↓, 0⟩+ 1√

6
|↑↓, 0, ↑↓⟩ −

√
2
3
|0, ↑↓, ↑↓⟩

6U − 11JH 2JH 2JH 2JH
1
2
(U + 6JH)

4, 0, 0 1 1√
3
|↑↓, ↑↓, 0⟩+ 1√

3
|↑↓, 0, ↑↓⟩+ 1√

3
|0, ↑↓, ↑↓⟩ 6U − 8JH 5JH 5JH 5JH

1
2
(U + 12JH)

5, 1
2
, 1 6 |↑↓, ↑↓, ↑⟩ 10U − 20JH 0 1

2
(U − 3JH) U − 3JH

6, 0, 0 1 |↑↓, ↑↓, ↑↓⟩ 15U − 30JH U − 3JH

Supplemental Note 5
Hund bands in an orbitally degenerate three-orbital system

In this Supplemental Note, we study an orbitally degener-
ate 3oH (tγγ′ = −0.5 δγγ′ , ∆γ = 0 and other parameters the
same as in the main text) via the same projector analysis as in
Fig. 3 of the main text. Our main conclusion is that the Hund
bands emerge also without the OSMP.

In Fig. S3(b), we show the results for filling n = 4.5. Ac-
cording to Table SI, we expect two Hund excitations with en-
ergy costs 2JH, 5JH and we detect both of these using ap-
propriate projections. Surprisingly, two Hubbard excitations
with energy costs U − 3JH and U + 2JH, which were vis-
ible in Fig. 3 of the main text, are not visible here. There is
also an additional weak gap forming at the chemical potential.
These two features could be related to the fact that without the
OSMP the system is further away from the Mott-insulating
state, where the atomic limit should work best. The spectrum
of the orbitally degenerate system is thus more strongly renor-
malized. Nonetheless, the crucial Hund excitations are clearly
visible.

Figures S3(c),(d) display the data for fillings n = 3.5

and n = 4.0, respectively. Here, apart from the peaks be-
ing broader, the spectra closely resemble Fig. 3(c),(d) of the
main text and the same conclusions follow. Note that for
n = 3.5, 4.0, the energy of the 2JH Hund excitation agrees
with Table SI only if one treats the fluctuating 5-electron con-
figuration as being part of the gs (i.e., as having energy ϵgs).
For n = 4.0 [Fig. S3(d)], we also observe a small weight of
the fluctuating n = 5 → 4 Hund excitation with energy 5JH,
but for our choice of JH/U = 0.25, it overlaps with the Hub-
bard excitation 1

2 (U + 7JH) (the slopes are very similar).

Supplemental Note 6
Hund bands for orbital-dependent interactions

In many materials the interactions of the Hamiltonian (1)
of the main text can be orbital-differentiated. To give a com-
prehensive answer on the fate of the Hund bands in such a
case, we present additional result for the spectral functions
Aγ=1(ω). We study a system where the Hund coupling de-
pends on the orbitals involved, i.e., JH ≡ Jγγ′ . In summary,
two scenarios are possible: (i) the Hund band can be simply
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Supplemental Figure S4. Density of states Aγ=1(ω) of the γ = 1 orbital in the three-orbital Hubbard model. The system is orbitally degenerate
and close to the atomic limit: tγγ′ = 0.2δγγ′ , ∆γ = 0, and L = 4, with n = 4.5. (a) Symmetric, orbitally independent Hund couplings.
(b) Orbitally dependent Hund couplings, but with the interorbital repulsion kept independent. The dashed orange line corresponds to “unsplit”
2JH excitation of panel (a). (c) All interactions orbitally dependent. The lines in panels (a)-(c) correspond to excitation energies from Table SI.
Results obtained with DMRG for broadening η = 0.05.

split (if the orbital occupancies remain symmetric) or (ii) the
spectrum can be more strongly modified (if the occupancies
become orbital-dependent).

In Fig. S4, we show the density of states Aγ=1(ω) of the
γ = 1 orbital in the three-orbital Hubbard model. For the sake
of clarity, we choose a simple orbital-degenerate system close
to the atomic limit: tγγ′ = 0.2δγγ′ , ∆γ = 0, and L = 4, at the
n = 4.5 filling. In Fig. S4(a), we show the symmetric (orbital-
independent) case, where all Hund couplings are the same,
JH = 0.25U . This case serves as a reference to the results
in the main text (e.g., Fig. 3) and the Supplemental Material
(Fig. S3). Table SI accounts for all observed excitations: there
is one 2JH line (in orange).

Next, we differentiate only the pair hopping and the direct
Hund exchange: JH ≡ Jγγ′ with γ = 0, 1, 2 denoting the
orbitals. We choose J01 = 0.20U , J02 = 0.25U and J12 =
0.30U . In Fig. S4(b), we show the scenario (i), where the 2JH
band splits into two bands 2J01 and 2J12 (solid orange lines).
The 2J02 band is not visible, because we remove an electron
only from the γ = 1 orbital. Thus, there are only two possible
transitions giving 2Jγγ′ bands, schematically shown as

|↑, ↑↓, ↑↓⟩ → |
2J01

↑̃, ↓, ↑↓⟩ ,

|↑↓, ↑↓, ↑⟩ → |↑↓,
2J12

↓̃, ↑⟩ .

Besides the 2J01 and 2J12 excitations, the remaining part of
the spectrum still follows Table SI, albeit with small split-
tings in its lower part. Crucially, although above we made the
pair hopping and exchange interactions orbital-dependent, we
still kept the interorbital repulsion orbital-independent. The
rationale was to keep the on-site orbital occupancies intact,
⟨n0⟩ = ⟨n1⟩ = ⟨n2⟩ = 1.5, thus keeping both on-site states
|↑, ↑↓, ↑↓⟩, |↑↓, ↑↓, ↑⟩ in the ground state.

In Fig. S4(c), on the other hand, all interaction terms are
orbital-dependent. Due to the now asymmetric interorbital re-
pulsion, the system lowers its energy by unequal orbital oc-
cupancies: ⟨n0⟩ = 1, ⟨n1⟩ = 1.5, and ⟨n2⟩ = 2. Thus,
the ground state keeps only the |↑, ↑↓, ↑↓⟩ configuration from
the two possibilities discussed above. As a result, only the
2J01 band is observable in photoemission from γ = 1 orbital,
whereas 2J12 is absent. Similarly, a few other bands, which
were visible in Fig. S4(a) and Fig. S4(b), are not present in
Fig. S4(c). Their initial configurations are now excluded from
the ground state. This is scenario (ii): the spectrum of a single
orbital does not include splittings and is more strongly modi-
fied due to the orbital-dependent Jγγ′ . Still, if one would re-
move an electron from γ = 2, it should be possible to observe
the 2J02 band. Therefore, experimentally, when one looks at
the combined spectrum of all orbitals, the splitting should be
observable also in scenario (ii).

Supplemental Note 7
Details of the DMFT results for the semicircular DOS

We also considered the three-orbital problem within the
DMFT method, where we used the numerical renormalization
group (NRG) method [77, 78] to solve the impurity problem.
We used Λ = 4, averaged over 4 different realizations of Z
and kept up to 4000 states in the diagonalization. We checked
that the results remain consistent if these technical parameters
are varied.

In Fig. 4(a) of the main text and Fig. S5, we show the cal-
culated spectral functions for several JH. Due to the loga-
rithmic discretization of NRG, which leads to larger broad-
ening of the high-energy features, the Hund excitation at en-
ergy 2JH is best visible when it lies between the quasiparticle
peak and the inner edge of the Hubbard band. This occurs for
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Supplemental Figure S5. DMFT-NRG results for Aγ(ω) for an
orbitally degenerate three-orbital Hubbard model with semicircular
DOS of half bandwidth D = 1 and U/D = 3.8, n = 4. The
values of JH in units of D are indicated on the plot. The curves
are given a vertical offset for clarity. Symbols ■, •, ▼, ♦ mark the
atomic-limit excitations − 1

2
(U + 7JH)− δ, − 1

2
(U + 3JH)− δ,

− 1
2
(U − 3JH)− δ, and 1

2
(U − 3JH) + δ, respectively. Atomic-

limit excitations are shifted by δ = D/2; see the text for details.
Symbol ▲ marks the Hund excitation −2JH. Finally, all symbols are
also shifted by −0.1.

JH/D = 0.2− 0.3, where D = 1 is the half bandwidth, used
as the unit of energy. In the plot, we also indicate the values of
the atomic and Hund excitations. For the atomic excitations,
we additionally introduce an outward shift of δ = D/2. The
rationale for this shift is that the lower Hubbard band predom-
inantly consists of the occupied states that have momenta be-
low the Fermi surface (band energies in the window [−D, ϵF])
whereas the upper Hubbard band consists of the empty states
with energies above the Fermi energy. Note that we could not
discern the 5JH Hund band in the DMFT data, possibly due
to a combination of its small weight (it is represented by only
one multiplet) and the large broadening.

Let us also stress here that the Hund-band excitation en-
ergy grows with JH and is hence distinct from the side-peak
within the quasiparticle spectrum [79–83] that is also charac-
teristic of multiorbital physics. The energy of the latter fea-
ture, present in the quasiparticle peak in Hund’s metals, is
lower and drops with increasing JH.

Supplemental Note 8
DMFT results for a typical t2g DOS

It is of interest to investigate whether the Hund bands can
be resolved also for realistic DOS. For this reason, we repeat
DMFT-NRG calculations for the case of a typical t2g DOS
(the same that was used in calculations of Ref. [5]), shown in
Fig. S6. One finds that the Hund bands indeed occur: the 2JH
band is clearly present.

Similarly as in the main text, it is advantageous to look at
quite small values of JH so that the peak occurs where there is
no other DOS. Notice that NRG is based on logarithmic dis-
cretization, and spectra at the energies corresponding to Hub-
bard bands are overbroadened. If one used a solver with bet-
ter resolution at higher frequencies, such as the approach of
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Supplemental Figure S6. DMFT-NRG results for Aγ(ω) for an or-
bitally degenerate three-orbital Hubbard model with typical t2g DOS
(inset) of half bandwidth D = 1. The interaction and filling are
U/D = 3, n = 4, respectively. The values of JH in units of D are
indicated on the plot. The curves are given a vertical offset for clar-
ity. Symbol ▲ marks the energy of the Hund band −2JH + δ with
the constant shift δ = −0.1.

Ref. [20], the Hund bands should be visible also when over-
lapping with the Hubbard bands.

Supplemental Note 9
Definition of the optical conductivity

The calculation of the optical conductivity σ(ω) proved to
be the most computationally demanding part of our effort.
To calculate dynamical correlation functions with DMRG, we
used the Krylov-space approach for correction vectors [36].
With this method and for our system, we achieved the best
results by calculating σ(ω) indirectly, i.e., from the limit of
density-density correlations.

The (complex) dynamical density-density correlation func-
tion is defined as

CN (k, ω+) = − 1

π
⟨gs|nγk

1

ω+ − (H − ϵgs)
nγk|gs⟩ , (S3)

where ω+ = ω+ iη, nγk =
√

2
L+1

∑
ℓ sin(kℓ) (nγℓ − ⟨nγℓ⟩)

with ⟨nγℓ⟩ being the average local electron density and k =
Z π

L+1 (Z = 1, . . . , L), as appropriate for open boundary con-
ditions. The imaginary part of Eq. (S3) is the dynamical den-
sity structure factor N(k, ω) = ImCN , which can be mea-
sured experimentally.

Using the continuity equation, we obtain σ(ω) from
the long-wavelength part of the density structure factor
N(k, ω) [76]

σ(ω) = lim
k→0

π

4 sin2(k/2)
ωN(k, ω). (S4)

Since in our DMRG procedure we compute both real and
imaginary parts of CN , we make use of both [75] and cal-
culate the optical conductivity as

σ(ω) = lim
k→0

π

4 sin2(k/2)
Im
(
ω+CN (k, ω+)

)
. (S5)
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The k → 0 limit is achieved by performing the calcula-
tion for the smallest possible k, i.e., by calculating CN (k =
π

L+1 , ω
+).

Note that for a given system size, the above method may
show larger finite-size effects than calculating σ(ω) directly
from the current-current correlations. Still, we found it to
be more computationally efficient, even though we needed a

much larger bond dimension to converge σ(ω) than to con-
verge the density of states Aγ(ω). Therefore, although our
DMRG results for σ(ω) are qualitatively correct (they were
compared to Lanczos diagonalization in small lattices), their
quantitative accuracy could be further improved in future ef-
forts.
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7
SUMMARY AND CONCLUSIONS

In this thesis, I aimed to establish the static and dynamic properties of the multior-
bital Hubbard model in low dimensions (the ladder or chain geometry). This objective
was strongly inspired by the 123 family of iron-based ladders, which defined a starting
point for exploring the realistic parameter regimes of the model. However, my inten-
tion was not to replicate the properties of specific compounds in an ab initio manner.
Rather, I adopted a broader perspective, aiming to provide a global view on the fas-
cinating properties displayed not only by the 123 family but potentially by other low-
dimensional multiorbital compounds with strong correlations.

I am confident that this thesis satisfactorily achieved the above goal by unveiling
four distinct properties of the low-dimensional Hubbard model. Specifically, this the-
sis revealed: (i) rich magnetism of the ladder geometry, (ii) topological Majorana zero
modes, (iii) topological Haldane state, and (iv) prominent Hund bands in the electronic
spectra. These properties were presented in the form of four articles [O1–O4], to which
I actively contributed as a coauthor. The primary approach I used to characterize these
properties involved extensive numerical calculations via the density-matrix renormal-
ization group method. A short summary of the discovered properties is in order. It is
followed by a discussion of conclusions and future directions.

The first property I investigated in this thesis was the magnetism of the orbital-
selective Mott phase (Chap. 3). While previous studies of magnetism of the 123 fam-
ily focused mainly on the simpler chain configuration, I extended the analysis to the
ladder setup, bringing the theory closer to experiment. My main achievement was
charting the doping n vs interaction U magnetic phase diagram. This phase diagram
demonstrated surprising robustness of rich magnetic patterns observed first in the
chain, such as blocks and block spirals, as the dimensionality was increased to the lad-
der. Additionally, I revealed that the ladder geometry hosts new phases absent in the
chain counterpart, including incommensurate antiferromagnetism, phase separation,
and a novel quantum spin-flux state.

Building upon the discovery of rich magnetism, I explored the interplay between
the block-spiral order and superconductivity (Chap. 4). This investigation revealed that
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112 7. SUMMARY AND CONCLUSIONS

placing a low-dimensional multiorbital system within the OSMP in proximity to an s-
wave superconductor facilitates the emergence of topological Majorana zero modes.
These modes emerge in an interaction-induced topological phase transition, driven
by the change of the magnetic properties. That is, above a critical value of the interac-
tion U the system simultaneously develops spiral spin order, spin-triplet pairing am-
plitudes, and robust peaks in the local density of states at the edges of the system.
In this work, I independently cross-checked the analytical derivations for the nonlo-
cal spectral functions. The latter results provided strong evidence for the edge modes
being indeed of Majorana character. These findings suggest that the 123 iron ladders
could potentially serve as a novel platform for experimentally realizing the Majorana
modes.

I continued the investigation of topological properties in Chap. 5, focusing on a
different parameter regime of the multiorbital models. Specifically, I explored the be-
havior of the two-orbital Hubbard chain at half filling. The results revealed that this
system can be driven into the Haldane phase through another sharp and interaction-
driven topological phase transition. Remarkably, the transition occurred at relatively
modest values of the Hubbard repulsion U , before the system reached the fully formed
magnetic moments characteristic of the spin-1 Heisenberg chain. While the Haldane
phase and its associated spin-1/2 edge states are well-known in the latter system, the
original findings presented here extended the concept of Haldane phases to the realm
of delocalized electrons. To further validate the Haldane nature of this topological
phase, I conducted benchmark calculations of the string order parameter within the
density-matrix renormalization group method.

To finish my exploration of the multiorbital Hubbard model, I delved into the in-
vestigation of its spectral properties (Chap. 6). My central finding in this regard is
the identification of a generic spectral feature in multiorbital systems, referred to as
the Hund band. Unlike the Hubbard satellites, the energy of the Hund band is exclu-
sively determined by the Hund coupling JH and remains independent of the interac-
tion strength U . To demonstrate this, I performed extensive calculations of the spectral
functions across various multiorbital models. Importantly, these findings transcend
the specific context of the 123 ladders. They are generic and applicable to any multi-
orbital system with significant Hund’s coupling and charge fluctuations, regardless of
the presence of the orbital-selective Mott phase or the system’s dimensionality.

Allow me to share two intriguing conclusions that can be drawn from my findings.
First and foremost, it is evident that low-dimensional multiorbital systems harbor a re-
markable wealth of exotic phenomena. Most likely, the results presented in this thesis
merely scratch the surface of what may lie beneath. This observation should serve as
strong motivation for crystal growers and experimentalists to dedicate more attention
to investigating multiorbital chains and ladders. Taking another perspective, a com-
plementary conclusion arises, highlighting the broader applicability of my findings.
While the specific details of the properties I uncovered are unquestionably tied to the
low-dimensional geometry, there are indications of general tendencies towards these
properties even in high-dimensional systems. For instance, nontrivial magnetic ten-
dencies were observed in some higher-dimensional pnictides and chalcogenides (see
the introduction to Chap. 3). Furthermore, there are experimental observations con-
sistent with the emergence of Majorana zero modes in the vortex cores of FeTe1−xSex
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compounds (see the introduction to Chap. 4). Finally, the Hund bands are expected
to be a generic feature in a multiorbital system regardless of dimensionality. The only
property that seems to be constrained to the low dimensionality is the Haldane phase.
My thesis thus leads to the interesting conclusion that low-dimensional multiorbital
models are not only useful for describing compounds with a low-dimensional crys-
tal structure but also shed light on higher-dimensional physics. While this conclusion
may seem like an obvious conjecture, providing actual evidence to support it is a chal-
lenging endeavor. In this thesis, I presented such evidence through an intensive com-
putational effort.

Looking ahead, there are several future directions to explore. One avenue involves
refining the properties discovered in this work to a specific compound. This could be
accomplished by utilizing an ab initio approach, such as density functional theory, to
determine the parameters of the multiorbital Hubbard model, which would then be
solved for the ground state using the density-matrix renormalization group. By follow-
ing this approach, it becomes possible to offer more precise guidance to crystal growers
and experimentalists. A more exciting future direction involves investigating nonequi-
librium problems. While significant progress was made for higher-dimensional sys-
tems using the nonequilibrium dynamical mean-field theory, this method does not
allow for the tracking of time-dependent dynamics with spatial resolution. To achieve
spatial resolution, the density-matrix renormalization group can be used, shifting the
focus to the complementary limit of low dimensions. Drawing upon the findings of
my thesis, an intriguing investigation would involve exploring how the propagation of
photocarriers disrupts the magnetic background and gives rise to Hund excitations in
both time and space.
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Although very simple in its formulation, the Hubbard model is notoriously difficult to
solve. Due to the strong correlations, the most reliable methods to solve it are numeri-
cal. In the single-orbital case, much was uncovered by applying the brute-force meth-
ods of exact and Lanczos diagonalization [16,62]. However, the complexity of these
methods scales exponentially in system size. This limits the attainable system sizes to
∼ 16 sites, which arranged into a two-dimensional lattice result in a 4×4 cluster. Such a
cluster cannot escape strong finite-size effects, prohibiting the study of long-distance
correlations and the access to the thermodynamic limit. Fortunately, there exist super-
conducting cuprates, whose dimensionality is lower than that of planes, for example,
the (La, Sr, Ca)14Cu24O41 family [120–123]. Their main structural motif are two cou-
pled chains, often called two-leg ladders. Such a geometry is much more forgiving for
brute-force numerics. For instance, the Lanczos method was successful in predicting
superconductivity in such ladders [286] and in studying their spin excitation spectrum
[287]. The materials motivating this thesis are also ladders, but their multiorbital de-
grees of freedom inflate the size of the Hilbert space, restricting the applicability of
exact and Lanczos diagonalization. A more powerful method is thus necessary.

Today, it is the density-matrix renormalization group (DMRG) method [7,8] that
takes the central place in the numerical study of the Hubbard model. DMRG does not
suffer from the sign problem, the bane of quantum Monte Carlo, and its accuracy, at
least in one dimension, is on par with exact diagonalization. At the same time, it beats
exact diagonalization by orders of magnitude regarding the accessible system sizes.
The method’s first big triumph was the calculation of the Haldane excitation gap in
the S = 1 Heisenberg chain to an unprecedented accuracy [288]. Since then, DMRG
has been successfully applied to various interacting systems and has become a crucial
addition to the numerical toolbox of a condensed-matter physicist. Due to its accu-
racy, high performance in low-dimensional systems, and reliable treatment of elec-
tronic correlations, DMRG is also the method of choice for the present thesis. A short
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discussion of its concepts is thus beneficial. For in-depth reviews, see, e.g., [289,290],
which, however, go beyond what is necessary to follow the results of this thesis.

Matrix-product states

DMRG was first formulated in the renormalization-group language and this is where
it got its name. In this context, the key insight made by S. White was to keep D most
probable eigenstates of the (reduced) density matrix during the renormalization-group
scheme, instead of D lowest-energy eigenstates as done in Wilson’s numerical renor-
malization group [8]. While Wilson’s scheme relied on the energy scale separation of
impurity problems, White’s new scheme could be applied to general many-body prob-
lems. Later, it was realized that the wave function produced by DMRG has the partic-
ular form of the so-called matrix-product state [291,292]. This led to the reformulation
of the algorithm by explicitly taking advantage of this form [290,293]. In modern un-
derstanding, DMRG is viewed as a variational method in the space of matrix-product
states.

A matrix-product state (MPS) is the following parametrization of the many-body
wave function∣∣ψ〉= ∑

σ1,...,σL

ψσ1,...,σL |σ1, . . . ,σL〉

= ∑
σ1,...,σL

∑
m1,...,mL−1

Mσ1
m0,m1

Mσ2
m1,m2

· · ·MσL
mL−1,mL

|σ1, . . . ,σL〉 .
(A.1)

The first line is the standard expression for the many-body wave function in the tensor-
product basis. Here,

∣∣ψ〉
is a general quantum state, ψσ1,...,σL is its wave function, and

|σi 〉 are the basis states of the d-dimensional local Hilbert spaces attributed to each
site i = 1, . . . ,L of the lattice. For example, |σi 〉 ∈ {|↑〉 , |↓〉} for the Heisenberg model.
The second line is the MPS parametrization. For each site and each local state σi ,
there is a matrix Mσi with elements Mσi

mi−1,mi
, so that each M is actually a rank-3 ten-

sor1. The indices mi are called virtual or bond indices, whereas σi are physical indices
which correspond to the on-site configuration. Although each bond can have a dif-
ferent number of indices, mi = 1, . . . ,Di , the name bond dimension2 usually refers to
the maximal dimension across all bonds D = maxi Di . By performing the matrix mul-
tiplication (the so-called contraction) represented by the sum

∑
m1,...,mL−1 , one recovers

the wave-function coefficient3 ψσ1,...,σL . Figure A.1 shows a graphical representation of
Eq. (A.1).

The number of parameters specifying an MPS scales linearly in system size, LD2d .
This is better than the exponential (d L) scaling of the number of coefficients ψσ1,...,σL .
However, the decomposition of ψσ1,...,σL into an MPS is exact only if one lets D grow
exponentially [290]. Hence, although the MPS parametrization achieves linearity in L,
it is still exponential in D , which seems to be of little benefit. The usefulness of the MPS
ansatz relies on truncation. One restricts D to a modest number D ∼ 102−104, making

1It has three indices: σi , mi−1, mi .
2The bond dimension is called “the number of states kept” in the old DMRG language.
3The matrix product evaluates to a scalar provided that the boundary matrices Mσ1 , MσL are actu-

ally vectors, i.e., the indices m0, mL are trivial, m0 = mL = 1.
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Figure A.1: Graphical representation of the decomposition into a matrix-product state.
INSPIRED BY A FIGURE FROM [294].

the MPS decomposition approximate, but requiring much less information than spec-
ifying allψσ1,...,σL . This does not mean discarding any of the |σ1, . . . ,σL〉 configurations.
An approximate MPS is still a linear combination of all basis states, only the form of
the superposition is restricted [290]. Instead, fixing Di of a particular bond amounts
to keeping only the Di largest eigenvalues (and eigenstates) of a reduced density ma-
trix obtained by bipartitioning the system at this bond [290,294]. This will control the
amount of entanglement an MPS can capture. For instance, D = 1 corresponds to an
unentangled product state, i.e., the reduced density matrix at each bond keeps only
one eigenvalue. If a state is weakly entangled, then only a few eigenstates of the re-
duced density matrix contribute appreciably and are needed for a faithful represen-
tation. One can then safely truncate with a small loss of accuracy. The latter loss is
conveniently quantified by the sum of the discarded eigenvalues, the so-called trunca-
tion error.

The success of the MPS ansatz rests on the fact that the ground states of physical
Hamiltonians are weakly entangled. This has been rigorously quantified for the ground

(a)

SciPost Phys. Lect. Notes 5 (2018)

Figure 1: (a): Bipartition of a 1D system into two half chains. (b): Significant quan-
tum fluctuations in gapped ground states occur only on short length scales. (c): 1D
area law states make up a very small fraction of the many-body Hilbert space but
contain all gapped ground states. (d): Comparison of the largest Schmidt values of
the ground state of the transverse field Ising model (g = 1.5) and a random state for
a system consisting of N = 16 spins. The index ↵ labels different Schmidt values.

If there is no entanglement between the two subsystems, S = 0, the Schmidt decompositions
consists only of a single term with ⇤1 = 1. The entanglement spectrum {✏↵} [49] is defined in
terms of the spectrum {⇤2

↵} of the reduced density matrix by ⇤2
↵ = exp(�✏↵) for each ↵.

2.1 Area law

A “typical” state in the Hilbert space shows a volume law, i.e., the entanglement entropy grows
proportionally with the volume of the partitions. In particular, it has been shown in Ref. [50]
that in a system of N sites with on-site Hilbert space dimension d, a randomly drawn state
| randomi has an entanglement entropy of S ⇡ N/2 log d � 1/2 for a bipartition into two parts
of N/2 sites.

In contrast, ground states | 0i of gapped and local Hamiltonians follow instead an area
law, i.e., the entanglement entropy grows proportionally with the area of the cut [51]. For a
cut of an N-site chain as shown in Fig. 1(a) this implies that S(N) is constant for N ¶ ⇠ (with
⇠ being the correlation length). This can be intuitively understood from the fact that a gapped
ground state contains only fluctuations within the correlation length ⇠ and thus only degrees
of freedom near the cut are entangled, as schematically indicated in Fig. 1(b). A rigorous proof
of the area law in 1D is given in Ref. [10]. In this respect, ground states are very special states
and can be found within a very small corner of the Hilbert space, as illustrated in Fig. 1(c).

In slightly entangled states, only a relatively small number of Schmidt states contribute
significantly. This is demonstrated in Fig. 1(d) by comparing the largest 20 Schmidt values of
an area law and a volume law state for a bipartition of an N = 16 chain into two half chains.

As an example of an area law state, we considered here the ground state of the transverse
field Ising model

H = �
X

n

�z
n�

z
n+1 + g�x

n , (4)

with�x
n and�z

n being the Pauli operators and g > 0. ThisZ2 symmetric model with a quantum

4

(b)

Figure A.2: (a) Sketch showing that in gapped ground states the entanglement involves
only a few states within the correlation length ξ near the bipartition boundary. (b) The
eigenspectrum of the reduced density matrix obtained by bipartitioning the ground
state of the transverse-field Ising model (g = 1.5) and a random state. The Hamiltonian
reads H =−∑

i σ
z
i σ

z
i+1 + g

∑
i σ

x
i , where σz,x

i are Pauli matrices and the system consists
of L = 16 spins. The index α enumerates the eigenvalues. ADAPTED FROM [294].



118 A. DENSITY-MATRIX RENORMALIZATION GROUP

states of gapped one-dimensional (1D) Hamiltonians [295–298] and is connected to
the so-called area laws for the entanglement entropy (see [299] for a review). In the
ground state of a gapped system, the entanglement entropy between a subsystem and
its complement grows only as the area of the boundary enclosing that subsystem. Since
the entanglement does not depend on the volume of the subsystem, it should be con-
centrated only in a few sites located close to the boundary [see Fig. A.2(a)].

In 1D, the area of the boundary is constant for any subsystem and the MPS de-
scription becomes extremely efficient. Figure A.2(b) shows a typical behavior of the
eigenspectrum of a reduced density matrix for a ground state in 1D. The eigenvalues
decay exponentially and a modest D is enough to guarantee an accurate description of
this state via an MPS. In fact, for a gapped 1D system, the bond dimension guarantee-
ing accurate results is constant in the system size L [290], whereas it is only polynomial
in L for a gapless one [296]. In the two-dimensional (2D) case, the bond dimension
must grow exponentially to capture the entanglement properties given by the area law
[290,300]. This is why the DMRG method is mostly restricted to the 1D geometry, i.e., to
chains and narrow ladders. Still, accurate calculations in finite 2D systems are possible,
e.g., by assuming cylindrical geometry [300] or by extending the MPS ansatz [297].

The DMRG algorithm

The DMRG algorithm aims to find the ground state of the Hamiltonian H within the
space of MPS by varying the matrix elements Mσi

mi−1,mi
. Starting with an initial MPS∣∣ψ〉

of a fixed bond dimension D , DMRG aims to solve the minimization problem

E = min|ψ〉
〈
ψ

∣∣H
∣∣ψ〉〈

ψ
∣∣ψ〉 , (A.2)

where E is the energy. This is equivalent to minimizing
〈
ψ

∣∣H
∣∣ψ〉

under the constraint〈
ψ

∣∣ψ〉 = 1. In the simplest case, the initial MPS is random or is a product state. In-
stead of an unfeasible global update of all Mσi matrices, the optimization problem is
decomposed into a set of local problems. Two neighboring matrices are updated at a
time, while the others are kept fixed4. This needs to be done in a sequence, called a
sweep5, starting from one end of the lattice and progressing towards the other. Each
local update minimizes

〈
ψ

∣∣H
∣∣ψ〉

by solving a local eigenvalue problem given by an
effective two-site Hamiltonian Heff [294], i.e., the full eigenvalue problem is projected
to the local MPS environment. Solving the local eigenproblem is the most computa-
tionally expensive part of the algorithm. The dimension of the effective Hamiltonian is
D2d 2 ×D2d 2, which is usually too large for full diagonalization [290], especially in the
multiorbital setting. Fortunately, since one aims to minimize the energy, only the low-
est eigenvalue and eigenstate is needed. To find it, one can use an iterative solver, e.g.,
the Lanczos or Jacobi-Davidson method. The eigenvector found by, say, the Lanczos

4Here, for the purpose of the presentation, the most basic two-site version of DMRG is assumed.
The calculations in this thesis were actually performed using a one-site approach [301], which reduced
the computational cost. Nonetheless, both schemes proceed very similarly and there are only small
technical differences.

5Usually one sweep is composed of two half sweeps, so that it involves traversing the system from
left to right and back.
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method is split by a singular value decomposition, the result is truncated to a fixed D
and used to update the Mσi matrices. The sweeping continues until the energy does
not decrease anymore (or some other convergence criterion is satisfied). Importantly,
the variational search should not be performed in only one class of MPS with a prede-
termined bond dimension D . One should increase D progressively during sweeping, so
that it is possible to find the maximal D beyond which the ground state stops improv-
ing. Naturally, the larger D , the more costly the calculation, so that there is a trade-off
between accessible system sizes L, bond dimensions D , the local Hilbert-space dimen-
sions d , and the complexity of the Hamiltonian terms. After finding the ground state,
one can use efficient MPS algorithms to calculate virtually any observable, including
but not limited to local expectation values, correlation functions, and spectral func-
tions.

Although DMRG is variational, its ansatz is very general and its efficiency relies
only on general entanglement properties [290]. The ansatz is not tailored to a partic-
ular physical situation. Moreover, due to the existence of the well-defined accuracy
parameter (the bond dimension) and the error measure (truncation error), DMRG is
often referred to as a quasi-exact method. In principle, an MPS ansatz with unlimited
resources D →∞ allows for an exact, even if inefficient, representation for the ground
state of any Hamiltonian. As a result, DMRG is capable of faithfully capturing all corre-
lation effects present within the ground state, both local and nonlocal. However, being
variational, DMRG still suffers from the possibility to get stuck in local minima. This
is especially true for gapless systems and/or beyond 1D. One thus needs to be careful
when judging the convergence of the calculations. One well known issue is that DMRG
can spontaneously break a symmetry, resulting in, e.g., non-zero magnetization in a fi-
nite system. A detailed discussion of this problem can be found in the Supplementary
Material of Ref. [76].

Finally, a comment on the choice of boundary conditions is in order. Most numer-
ical studies on finite-size systems use the periodic boundary conditions (PBC), with
the aim to avoid edge effects. By contrast, in DMRG, open boundary conditions (OBC)
are often the most convenient. There are several reasons for that, one being that the
standard MPS definition, Eq. (A.1), is actually specialized to OBC. When this definition
is used for PBC, the entanglement between the first and last sites is encoded across
all inner bonds, increasing the complexity as D → D2 [290,297]. Although one can re-
define an MPS to better capture PBC [293], one then needs to deal with generalized
eigenvalue problems [290,297], and other inconveniences in defining the algorithms
(e.g., the lack of a so-called mixed canonical form [294,297]). Because DMRG often fa-
cilitates the study of systems large enough for edge effects to become unimportant, it
is usually most convenient to simply use OBC.
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