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Abstract

This doctoral thesis develops robust electricity price forecasting techniques to aid decision-
making in power markets. The research focuses on five interconnected objectives, all
utilizing regularization techniques. Firstly, a LASSO-type regularization approach is em-
ployed to identify the most relevant explanatory variables. Secondly, a fully automated
approach is developed to average a pool of individual forecasts using PCA and LASSO.
Thirdly, quantile regression and regularization are utilized to construct more accurate al-
gorithms for probabilistic forecasting of electricity prices. Fourthly, a trading strategy is
designed to evaluate the economic value of probabilistic forecasts. Finally, a critical re-
view of forecasting in electricity markets is conducted, and an outlook for future research
is provided. The proposed solutions significantly outperform existing literature bench-
marks, and the thesis sets up directions for future research in the field.

Streszczenie

Niniejsza praca doktorska dotyczy opracowania odpornych technik prognozowania cen
energii elektrycznej na potrzeby wspomagania podejmowania decyzji na rynkach ener-
gii. Badania koncentrują się na pięciu celach, których wspólnym mianownikiem jest
technika regularyzacji: (i) wykorzystanie regularyzacji typu LASSO do identyfikacji naj-
ważniejszych zmiennych objaśniających, (ii) opracowanie w pełni zautomatyzowanego
podejścia do uśredniania puli indywidualnych prognoz za pomocą PCA oraz LASSO, (iii)
wykorzystanie regresji kwantylowej i regularyzacji do konstrukcji bardziej dokładnych
algorytmów probabilistycznego prognozowania cen energii elektrycznej, (iv) zaprojekto-
wanie strategii handlowej do oceny wartości ekonomicznej prognoz probabilistycznych,
(v) przeprowadzenie krytycznego przeglądu metod prognozowania na rynkach energii
elektrycznej oraz przedstawienie perspektyw przyszłych badań. Proponowane rozwiąza-
nia znacznie poprawiają dokładność prognoz cen w porównaniu z modelami istniejącymi
w literaturze, a praca doktorska wyznacza kierunki dla przyszłych badań w tym obszarze.
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Chapter 1

Introduction

1.1 Background

The electricity market is one of the most important, as well as one of the most unique
among all commodity markets. Since the deregulation of the government-controlled
power systems in the UK and Scandinavia in the early 1990s, electricity has been traded
under competitive rules in many countries worldwide (Mayer and Trück, 2018). Research
on electricity price forecasting (EPF) has become extremely important and valuable, as
price predictions are an essential input to decision support and risk management systems
in energy companies (Weron, 2014).

However, forecasting electricity prices is more challenging than those of other com-
modities or financial assets. The uniqueness of the power market is primarily due to the
lack of efficient ways to store large volumes of energy (Weron, 2006). Consequently, the
system has to be balanced at any given moment, i.e., all energy produced must be con-
sumed. Over the past few years, many authors have reported an increase in the share of
electricity generated from renewable energy sources (RES) (Papież et al., 2018), which is
more challenging to plan and manage (Kiesel and Paraschiv, 2017; Maciejowska, 2020).
This leads to non-intuitive situations when negative prices are recorded (Ziel and Stein-
ert, 2018). If due to inadequate planning or technical limitations, generators deliver more
energy than demanded, they may have to pay consumers for the collection of electricity.
Conversely, in the presence of an abnormal surge in demand or a power plant or transmis-
sion grid failure, back-up units with much higher marginal costs may be called upon to
match demand, leading to so-called price spikes (Karakatsani and Bunn, 2008; Sadowski
et al., 2012).

An additional factor that makes it difficult to accurately predict electricity prices is the
dependence of both production and consumption on weather and the intensity of human
activities (Bunn, 2000). Depending on the season, day of the week, and time of the day,
the demand for electricity changes. This means that, as Paraschiv (2013) and Weron
(2006) argue, when analyzing the time series of electricity prices, we should distinguish
three seasonal components at different levels – daily, weekly and annual.

Over the past few years, a market that was already volatile has become even more
unstable. Rapid changes in electricity supply and demand caused by the COVID-19 pan-
demic and, even more, by the unstable political situation in Europe keep market partici-
pants awake at night. The electricity market remains a dynamic and complex environment,
and forecasting prices is an ongoing challenge.

5



6 CHAPTER 1. INTRODUCTION

1.2 Aim and objectives
The aim of this thesis is to develop robust and efficient electricity price forecasting

techniques to support decision-making in power companies. To address this aim, five
objectives are set:

1. Use regularization to identify the most relevant predictors.

2. Develop a fully-automated approach to average a rich pool of individual forecasts
using regularization and principal component analysis.

3. Utilize quantile regression and regularization to construct more accurate algorithms
for probabilistic forecasting of electricity prices.

4. Design a trading strategy to evaluate the economic value of probabilistic forecasts.

5. Conduct a critical review of forecasting in the electricity markets and provide an
outlook for future research in this area.

These objectives are interesting not only from the point of view of basic research but
also from a managerial perspective. On the one hand, they develop and validate statistical
learning techniques. On the other hand, they yield trading strategies to support decision-
making.

Objective 1 is to identify the most important predictors of electricity prices using the
least absolute shrinkage and selection operator (LASSO), which helps to build well-
structured forecasting models without the need for expert knowledge. Objective 2 is to
develop a fully automated method for combining a large pool of forecasts using principal
component analysis PCA and LASSO. Objective 3 is to develop a novel, regularization-
based approach for constructing probabilistic predictions, which outperform existing bench-
marks.

The first three objectives have one more common factor. All of them use regular-
ization, a statistical learning technique, to solve a range of problems in forecasting. In
this thesis, I provide evidence that statistical learning techniques can be used to: iden-
tify the most relevant variables driving intraday prices (Objective 1), combine forecasts
(Objective 2), and obtain probabilistic predictions (Objective 3).

In the vast majority of the literature measures based on absolute or squared errors are
by far the most popular methods to evaluate forecasts. However, in practice, the aim is
to support decision-making and maximize profits. Hence, Objective 4 is concerned with
developing a new approach to evaluating forecasts, which focuses on the financial value
of the decisions based on price predictions.

It should be noted that the objectives are complementary. The three trends discussed
in the critical review (Objective 5) are visible in Objectives 1-4. To propose a solution
for each of the objectives, joint research with at least one of the supervisors was carefully
designed, performed, and reported in premier publishing outlets.

The remainder of the thesis is structured as follows. In Chapter 2 I discuss how my
thesis contributes to the discipline of Management and Quality Studies. Next, in Chapter
3, which is an excerpt from Paper 5, I describe the marketplace. In Chapter 4, I summarize
the introduced concepts, methods and models, as well as the results obtained in Papers 1-5
which constitute the core part of the thesis. The latter addresses the above five objectives.
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Namely, in Section 4.1, I emphasize the importance of regularization in the development
of automated variable selection models and in Section 4.2 I present the key finding in the
context of the combining forecasts. Next, in Section 4.3, I discuss the development of
probabilistic forecasting methods and in Section 4.4 I introduce a new approach to the
economic evaluation of probabilistic forecasts. Finally, in Section 4.5 I comment on the
forward-looking trends put forward in Paper 5. Next, in Chapter 5, I briefly discuss the ar-
ticles I have published in the course of my undergraduate and graduate studies that do not
constitute the core part of the thesis. Finally, in Chapter 6, I summarize the key findings
and conclude. The five core articles, i.e., Papers 1-5, can be found in the Appendix.



Chapter 2

Contribution to the discipline of
Management and Quality Studies

2.1 Forecasting as a decision support tool

To place this thesis in the discipline of Management and Quality Studies we have to
start by noting that forecasting electricity prices is a subfield of predictive analytics. The
latter, along with descriptive and prescriptive analytics, constitutes so-called business an-
alytics (Lepenioti et al., 2020). Business analytics lies at the intersection of data science
and operations research, and involves not only analysis but also synthesis and implemen-
tation (Delen and Ram, 2018; Rose, 2016).

When referring to decision-making, we usually think of the final act of choosing one
among several options. In fact, the decision-making process is a challenging task that
requires a number of activities (Elbanna, 2006). The initial stage of the decision-making
process is the definition of the problem. Subsequently, we identify the possible decisions
to be made, the uncertain future events (so-called chance events), and the associated im-
pacts of each alternative decision and each outcome of the chance event (Anderson et al.,
2015). According to the Noble Prize winner Herbert Alexander Simon (1960)1, any man-
agement decision is composed of three principal phases:

• intelligence activity, which involves searching for environment and conditions (op-
portunities) for making a decision,

• design activity, i.e., inventing, developing, and analyzing possible courses of action,

• choice activity, i.e., selecting one alternative from several options.

Actually, Simon (1960) suggested that the decision-making process is far more de-
manding than the proposed sequence – each phase itself requires a complex decision-
making process. He pointed out that dealing with a problem at any level of this sequence
generates another sub-problem that requires intelligence, design, and choice activity.
Kamiński et al. (2018) further elaborate that, in reality, managers must consider multi-
stage decisions, involving several consecutive actions (decisions) and note that company
profits depend not only on the actions of managers but also on exogenous events, which
are random.

1In 1978 for ’his pioneering research into the decision-making process within organizations’.

8



2.1. FORECASTING AS A DECISION SUPPORT TOOL 9

More recently, Heizer et al. (2004) stated that decision-making follows a process of
defining the problem, developing objectives, creating a model, evaluating alternatives,
selecting the best solution, and implementing the decision. This process requires data and
quantifiable variables, which can be difficult to obtain due to either lack or abundance of
data.

Although forecasting is not explicitly mentioned in the three decision-making phases
outlined by Simon (1960) or the six-step process outlined by Heizer et al. (2004), it is
involved in the design activity and evaluating alternatives stages. Forecasting plays a
critical role in assessing potential courses of action, rating considered options, and ulti-
mately selecting the best solution. The decision maker has to predict the outcome of each
possible option, which is a challenging task given the uncertain nature of the future. A
misjudgment of the situation can lead to wrong decisions and financial losses.

In a recent encyclopedic article, Petropoulos et al. (2022) emphasize that forecasting
has always been at the leading edge of decision-making. Nearly all decisions require
some form of forecasting to support the process (Slack et al., 2022). However, the im-
pact of forecasting on the decision-making process varies depending on the level of risk
associated with a particular choice. Heizer et al. (2004) describe three distinct types of
decision-making environments:

• decision-making under uncertainty,

• decision-making under risk,

• and decision-making under certainty.

Decision-making under uncertainty takes place when the set of alternatives is not fully
known and the decision-maker cannot assign risk to each of them. In practice, the most
common are decisions made under risk. Here, the potential payoffs or costs are associ-
ated with scenarios and can be described with probability distributions. Lastly, decision-
making under certainty occurs when there is certain information about the outcome (Heizer
et al., 2004).

In the context of power markets, decisions are typically made under risk. Market
participants face many decision-making problems related to power plant operations and
energy trading. For example, a company operating a conventional power plant has to
decide about the level of production at least a day before the delivery. A different problem
occurs when we consider the daily operation of renewable-energy power plants. In this
case, the level of production depends on the weather conditions, so it remains unknown
until a very short time before delivery. The power plant operator must predict the amount
of energy that will be produced in a given hour and decide how much and where to sell it,
such as through futures contracts or in the day-ahead (DA) or intraday (ID) market.

The decision-making process for the electricity market is even more challenging and
risk exposed compared to other markets (Weron, 2014). On the one hand, the extraor-
dinary variation of prices gives market participants the opportunity to make immense
profits. It is important to note, that the forward contracts in the electricity market are not
a remedy to the corresponding risk, as the actual demand remains unknown until a very
short time before delivery (Wilson, 2002).

The main focus of this thesis, and at the same time a key factor in decision-making
in power markets, is forecasting day-ahead electricity prices. This auction-based market
plays a crucial role in ensuring the reliability and efficiency of the electricity system. The
day-ahead market not only gives the opportunity to adjust the long-term position to the
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actual exposure (Kath and Ziel, 2018; Mayer and Trück, 2018; Maciejowska et al., 2019;
Janczura and Wójcik, 2022), but also is a reference point for over-the-counter (OTC)
trading and settlement.

Accurate day-ahead price forecasts are critical for market participants to make in-
formed decisions about their bidding strategies (Narajewski and Ziel, 2022). If partici-
pants have a reliable price forecast, they can adjust their bids accordingly and increase
their chances to execute profitable transactions. In addition, price forecasts can help par-
ticipants to estimate their costs and revenues more accurately, which is important for their
financial planning and risk management.

Each day, energy companies must make decisions and take actions that determine
whether they will succeed and make profits or fail and suffer losses. Recently, more
and more authors (Delarue et al., 2010; Zareipour et al., 2010; Maciejowska et al., 2019)
have been trying to capture the economic value of forecasts. Researchers understand
that forecasts, to be more useful, must better support decision-making and yield higher
profits or reduce losses rather than minimize some statistical error measures. Although
the economic impact of improving electricity price predictions is not easy to estimate,
Hong (2015) concluded that the savings from a 1% reduction of errors (in terms of mean
absolute percentage error) in short-term load and price forecasting translated into $600
thousand savings per year for a 1 GW peak load utility.

2.2 Improving forecast accuracy
In this thesis, the main focus is on the development of new statistical tools used for

forecasting electricity prices. In power markets, statistical methods such as regression
models are commonly used to forecast day-ahead electricity prices (Weron, 2014). These
models use historical prices and a combination of forecasts of consumption and produc-
tion figures, and weather variables to predict the future price. Regressors are selected
from a set of explanatory variables assumed to be correlated with electricity prices, based
on in-sample analysis. These models have the advantage of being able to provide an
interpretation of their components, allowing us to better understand their behavior.

The main factor determining the success of a predictive model is its structure, i.e., the
set of explanatory variables and the method used to estimate the weights corresponding to
each variable. Moreover, the EPF literature provides many tweaks and tricks to develop
more precise forecasting methods. Data preprocessing techniques, such as transforma-
tions (Schneider, 2011; Diaz and Planas, 2016; Uniejewski et al., 2018; Shi et al., 2021)
or deseasonalization (Paraschiv, 2013; Nowotarski and Weron, 2016a; Lisi and Pelagatti,
2018; Jȩdrzejewski et al., 2021), as well as careful selection of the model calibration win-
dow (Marcjasz et al., 2018; Hubicka et al., 2019; Fezzi and Mosetti, 2020) turn out to be
very useful.

The electricity price forecasting community is constantly coming up with new so-
lutions to improve forecasting accuracy and provide managers with even better tools to
support the decision-making process. Recently, approaches based on regularization have
gained a lot of attention. Regularization is a very general technique that can be used to
solve many research problems. The idea aims to improve the quality of parameter esti-
mators by imposing a penalty function on the original model (Tikhonov, 1963). It can
be used not only to predict prices (Ziel, 2016), but also to identify the most important
regressors (Ziel and Weron, 2018; Uniejewski and Weron, 2018). With the help of regu-
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larization, it is also possible to average forecasts obtained with different models (Diebold
and Shin, 2019). Finally, based on the idea of regularization, new methods can be cre-
ated by formulating original variants of the penalty function or by using known penalty
functions for other underlying models (Li and Zhu, 2008).

The rapid development of forecasting methods has led to the availability of countless
solutions for obtaining predictions. Therefore, it is common practice to use multiple
forecasting methods and combine their predictions to improve overall accuracy. The idea
of forecast averaging assigns weights to a set of individual forecasts and then takes the
weighted sum as the final prediction. In practice, the quality of predictions obtained with
a given forecasting model is unknown until the real price is observed, thus it is nearly
impossible to select the best-performing model ex-ante. The predictions obtained with
the combinations of forecasts are much more reliable compared to those obtained with
one selected model (Hibon and Evgeniou, 2005). With the abundance of data and the
improvement of forecasting models, averaging techniques must cope with a very large set
of possible inputs. One way to address this issue is to utilize PCA, which can successfully
reduce the dimensionality of the problem (Huang and Lee, 2010; Maciejowska et al.,
2020).

According to Sadowski (1980), decision-making involves uncertainty as the final out-
come of a decision. Forecasting factors that influence the decision can provide additional
information and reduce uncertainty. Moreover, it is important for decision-makers to un-
derstand the likelihood of the forecast in order to use it effectively. Recently, the field of
electricity price forecasting has shifted towards the use of probabilistic predictions. This
new approach offers a more powerful tool for decision-makers to manage risk. Instead
of predicting a single expected value for future prices, probabilistic forecasts provide the
whole distribution of the future price or at least an interval in which the price is likely to
fall with a specified probability. This allows for risk analysis in decision-making and helps
to prevent extreme price fluctuations and their associated costs (Morales et al., 2014).



Chapter 3

The marketplace1

As a result of the (. . .) liberalization and deregulation of the power sectors, two ba-
sic models for power markets have emerged: power pools – where trading, dispatch and
transmission are managed by the system operator (SO), and power exchanges – where
trading and initial dispatch are managed by an institution independent from the transmis-
sion system operator (TSO). Participation in power pools is limited to generators and is
typically mandatory. The market clearing price (MCP) is established through a one-sided
auction as the intersection of the supply curve constructed from aggregated supply bids
of the generators and the demand predicted by the system operator. Often a separate price
for each node in the network is calculated, so-called locational marginal price (LMP).
Such a system was adopted in highly meshed North American networks. On the other
hand, in Australia, where the network structure is simpler, zonal pricing was successfully
implemented, where for areas without grid limitations a unique price is settled.

In contrast to power pools, participation in power exchanges is – except for some
special cases – voluntary and open not only to generators, but also to wholesale consumers
and speculators. The price is established either through a two-sided auction (DA, ID)
as the intersection of the supply curve constructed from aggregated supply bids and the
demand curve constructed from aggregated demand bids or in continuous trading (ID).
Most market designs have adopted the uniform-price auction, where buyers who bid at
or above the MCP pay that price and sellers who bid at or below the MCP are paid this
price. Moreover, in auction markets the bids can be submitted until a certain time –
called gate closure – which is the same for all load periods, see the left panel in Fig. 3.1.
Hence, auction prices could be viewed as realizations of a multivariate random variable
and therefore prices for all load periods should be predicted simultaneously (Ziel and
Weron, 2018). On the other hand, some ID markets allow for continuous trading. They
run 24/7 from an afternoon hour on day d − 1 up until a few minutes before the delivery
of electricity during a particular load period on day d, see the right panel in Fig. 3.1.

In some countries (e.g., Germany, Ireland, Poland) the DA and ID markets are com-
plemented by the so-called balancing market. This technical market is used for pricing
differences between the market schedule and actual system demand for very short time
horizons before delivery. For instance, the TSO might instruct a generator to increase its
output to meet a sudden surge in demand. The producer then receives a premium via the
balancing market for the energy generated used to balance the grid.

The timeline of day-ahead and intraday trading activities in selected European coun-

1This Chapter is an excerpt from Section The Marketplace in Paper 5
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Day dDay d – 1

Bidding for day d

Prices for 24h of day d

Bidding for d + 1 Trading for day d starts

Day dDay d – 1

Hour 1

⁞

Hour 24

Figure 3.1: Illustration of bidding and price settlement in auction (left) and continuous trading (right) power
markets. In day-ahead auctions the bids for all load periods (here: hours) of day d can be submitted until
a certain hour on day d − 1. Intraday markets which admit continuous trading run 24/7 from an afternoon
hour on day d− 1 up until a few minutes before the delivery on day d. Source: Paper 5.

tries is illustrated in Fig. 3.2. As can be seen, the DA and ID markets complement each
other. Once the gate closes for day-ahead bids around noon, various intraday markets open
for adjusting these bids. They are particularly important for nondispatchable, stochastic
producers such as wind or solar farms, and include both auctions and continuous trading.
Note that both the ID and DA contracts can concern delivery during the same load period,
only the time the decision has to be made and the bid placed differs.

The presented sequence of events has important implications for study design. In the
DA market the forecasting horizons typically range from 12-14 hours for the first load
period of the next day to 36-38 hours for the last. However, at the time the predictions
are made, i.e., the morning hours of day d − 1, the DA prices for all load periods of this
day are already known (they were settled around noon on day d− 2). Generally, the TSO

Day d-1 Day d

Hourly 
day-ahead 

auction (CH)

Hourly day-ahead coupled 
auction (AT, BE, DE, DK, FI, 

FR, NL, NO, PL, SE)
Auction
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11:00 12:00
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Day-ahead market

Intraday market

Continuous
(DK, FI, NO, 
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14:00

Figure 3.2: The timeline of day-ahead (top) and intraday (bottom) trading activities for delivery of electricity
on day d in selected European countries: Austria (AT), Belgium (BE), Denmark (DK), Germany (DE),
Finland (FI), France (FR), the Netherlands (NL), Norway (NO), Poland (PL), Sweden (SE) and Switzerland
(CH). Source: Paper 5.
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day-ahead forecasts of the system load (≈ demand) and the system-wide generation from
renewable energy sources (RES) are also available to market participants at this time.

When the ID market is considered, the selection of the forecasting horizon depends on
the research question. Firstly, the predictions can be made on the morning of day d − 1,
when market participants need to decide how much electricity to bid in the DA market
and how much to buy/sell in the ID market or leave for the balancing market. Forecasts
of the price spread between DA and ID/balancing markets can provide valuable insights
for decision-making (Maciejowska et al., 2019, 2021).

Secondly, the predictions can be used for bidding in ID markets with continuous trad-
ing. Although the trading floor opens in the afternoon hours of day d − 1, the majority
of bids are placed during the last 3-4 hours before the delivery (Narajewski and Ziel,
2020a). Hence, the forecasting horizons considered typically range from a couple of min-
utes to 4 hours (Janke and Steinke, 2019; Uniejewski et al., 2019b; Narajewski and Ziel,
2020b). Note that different model specifications may be optimal for predicting ID prices
for different horizons (Maciejowska et al., 2020). Since the bidding behavior of market
participants is significantly influenced by RES generation forecasts which are available
at the time of trading (Kiesel and Paraschiv, 2017; Kulakov and Ziel, 2021), ID price
forecasts should not only exploit the short-term price dependencies but also updated pre-
dictions of wind and solar power generation. Interestingly, including self-exciting terms
in ID models allows to better capture the empirically observed trade clustering (Kramer
and Kiesel, 2021).



Chapter 4

Summary of results

4.1 Objective 1: Regularization and variable selection

4.1.1 Problem statement
In practical applications, a predictive model not only has to perform well in terms

of accuracy but also has to be relatively easy to interpret. Moreover, when it comes to
decision support, it is not just the accuracy of the prediction that matters, but also the
time it takes to get it. To address these issues, statistical learning techniques, such as
regularization, are deployed. They allow designing sparse models that are much easier to
interpret and faster to estimate than dense multi-parameter models without a significant
loss in forecast accuracy (James et al., 2013).

The idea of regularization is formally defined as follows:

β̂ = argmin {f(X;β) + g(β)} , (4.1)

where f(X) is the function minimized by the ’classic’ model, e.g., the residual sum of
squares (RSS) in a regression, g(β) is the penalty function (the so-called regularization
term), β is the parameter vector and β̂ is its estimator.

The variant of regularization most frequently used defines the penalty function as a
norm of order ℓq scaled by so-called tuning parameter λ. In this case, the coefficients of
a regularized linear regression model are estimated by (Hastie et al., 2015):

β̂ = argmin



(y − βX)2︸ ︷︷ ︸

RSS

+λ∥β∥qq



 = argmin

{
RSS + λ

n∑

i=1

|βi|q
}
. (4.2)

If we choose the penalty function appropriately, regularization becomes a tool for
identifying the most significant variables in the model. A regularization procedure fits
the full model with all predictors using an algorithm that shrinks coefficients of the less
important explanatory variables towards zero. If we take the norm of order ℓ1 as a reg-
ularization term, then we obtain the least absolute shrinkage and selection operator of
Tibshirani (1996). The value λ in Eq. 4.2 indicates how significant the variables have to
be to remain in the final model. While for λ = 0 the method reduces to ordinary least
squares (OLS), as the parameter increases, more and more variables are considered ir-
relevant and eliminated from the model. An advantage of using methods of automatic
variable selection is the almost unlimited size (number of explanatory variables) of the

15
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base model. Due to this property, the knowledge of experts, which is often not verified,
becomes less important (Uniejewski et al., 2016).

The key point in EPF is a careful selection of explanatory variables (Dudek, 2016).
Some of the first examples of formal variable selection in electricity price forecasting
include Karakatsani and Bunn (2008) and Misiorek (2008), who used stepwise regression
to eliminate statistically insignificant variables in parsimonious autoregressive (AR) and
regime-switching models for individual load periods. Regularization techniques appeared
in the next decade. In 2015, Ludwig et al. (2015) utilized the LASSO model as a feature
selection tool to select relevant weather stations from the total of 77 available stations.
The following year, Ziel (2016) employed the LASSO method to simplify very large sets
of model parameters, consisting of over 100. The author used time-varying coefficients
to capture the dependency structure within a day and employed a set of 24 regression
models for the 24 hours of the day. Uniejewski et al. (2016) conducted an extensive study
to compare automatic variable selection models and suggested that LASSO and elastic
nets (Zou and Hastie, 2015) significantly outperformed their competitors.

Automatic variable selection is particularly valuable when the goal is to forecast prices
in a market that has not yet been thoroughly studied. However, recently also for well-
researched markets variable selection methods came in handy. As more data becomes
available, models based on expert knowledge are no longer sufficient and more complex
ones are required to produce accurate forecasts (Jȩdrzejewski et al., 2022).

4.1.2 Understanding intraday electricity markets: Variable selection
and very short-term price forecasting using LASSO (Paper 1)

Knowledge of the market fundamentals and model-building experience are crucial in
constructing a well-performing predictive model. That is why dealing with a new market
setup is always a challenge for forecasters. In Paper 1 we study the German intraday
market. This paper was the first to predict prices in this market, to be more precise, predict
the so-called ID3 price index (Narajewski and Ziel, 2020a). To our best knowledge, at
the time, only two articles addressed forecasting intraday electricity prices in European
power markets. Both of them focused solely on the Iberian market (Andrade et al., 2017;
Monteiro et al., 2016).

In this paper, we use LASSO to identify the most relevant variables among 349 to 372
(depending on the forecasted hour) potential predictors. We consider 12 models: a naive
benchmark, a parsimonious structure inspired by a well-performing autoregressive EPF
model, and LASSO with ten different values of the tuning parameter λ. The performed
analysis yields tables with variables most frequently selected by LASSO (see Tables 3
and 4 in Paper 1). We also use regularization to build parsimonious, well-performing
autoregressive models with exogenous variables (ARX). For this purpose, we utilize an
additional 364-day rolling selection window and include in the final ARX model only
those variables that are selected more often than a certain threshold. We test five different
cut-off values ranging from 50% to 90%.

We rank the models on the basis of the mean absolute errors (MAE). To assess the
significance of differences in prediction accuracy, we use the Diebold and Mariano (1995)
test.

The key contribution of this paper is the development of the first model to forecast the
German ID3 price index and the identification of the most important predictors. The most
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recent ID3 value and the day-ahead (DA) price with the same delivery time turn out to
be the most important explanatory variables. In addition, intraday and day-ahead prices
for late evening hours appear to have a significant impact on future prices. Surprisingly,
unlike the forecasting models for the day-ahead, neither the price on the previous day nor
the weekly dummies are found to be important predictors. Finally, we show that LASSO
can be successfully used for variable selection. The parsimonious ARX model built using
variables that remain significant at least 70% of the time, performs equally well as the best
LASSO model. This result provides evidence that LASSO is a powerful tool for building
predictive models, especially when the market is not yet fully researched.
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4.2 Objective 2: Combining forecasts

4.2.1 Problem statement
The idea of combining or averaging forecasts appeared in the literature more than 50

years ago, with the pioneering papers of Bates and Granger (1969) and Crane and Crotty
(1967). Since then many authors have suggested the superiority of forecast combinations
over individual models (Timmermann, 2006; Nowotarski and Weron, 2016b; Berrisch
and Ziel, 2022). Taylor (2020) remarks that when competing forecasts are available,
their combination can provide a practical synthesis of the information contained in each
individual prediction. Moreover, Hibon and Evgeniou (2005) argue that the advantage of
combining forecasts is not that the best possible combinations perform better than the best
individual forecasts (i.e., ex-post), but that it is less risky in practice to combine forecasts
than to select an individual forecasting method (i.e., ex-ante).

Although many averaging schemes have been proposed in the literature, the simple
average (that is, the arithmetic average of individual forecasts) stands out as the most
popular and surprisingly reliable approach (Genre et al., 2013). The same applies to tak-
ing the median of forecasts, which in some cases can even outperform the average. Using
OLS to derive combination weights is another easy-to-implement approach in which in-
dividual forecasts are treated as explanatory variables in linear regression. Such weights,
however, may exhibit unstable behavior (so-called bouncing betas); even slight fluctua-
tions in the data can cause large changes in the final forecast Weron (2014). To prevent
this, Raviv et al. (2015) suggested using the constrained version of OLS, the so-called
constrained least squares (CLS) averaging, in which the weights are only positive and
add up to one.

The unwavering popularity of the simplest solutions is strong evidence of how difficult
it is to choose the right tools to average forecasts. Recently, Diebold and Shin (2019)
suggested that possibly we should turn the question around, and instead of wondering how
to average individual forecasts, we should rather develop tools to select which forecasts
we want to average in the first place. The authors introduce a new technique that combines
the two approaches. The proposed regularization-based method can select and average
forecasts from different models at once. Although their results were promising, there is
room for improvement.

Another challenge in combining forecasts emerges with the increasing popularity of
probabilistic forecasting methods. My thesis does not address this problem; however, it is
briefly discussed in Section 4.3.2.

4.2.2 LASSO principal component averaging – a fully automated ap-
proach for point forecast pooling (Paper 2)

Regularization is a very general idea that can be used to solve many research problems.
It can be used to increase the accuracy of future price forecasts, identify the most impor-
tant explanatory variables (as in Objective 1), and also average the predictions obtained
with various models. Principal component analysis, on the other hand, is a well-known
tool that has been successfully applied to reduce the dimensionality of large data panels.
Despite a few attempts (Chan et al., 1999; Huang and Lee, 2010) the potential of PCA
has not been fully utilized in forecast averaging.
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In Paper 2, we introduce LASSO principal component averaging (LPCA), a novel
approach for averaging point forecasts. It combines LASSO estimation with the principal
component (PC) averaging scheme proposed in our earlier study (Maciejowska et al.,
2020). PCA extracts a relatively small set of orthogonal components from a large panel of
forecasts, while LASSO selects the most important PCs and estimates the corresponding
weights. It should be noted that compared to the method proposed in Maciejowska et al.
(2020), the novel approach offers the advantage of being fully automated, meaning that
the selection of the most important PCs and the corresponding weight estimation are
carried out automatically.

The proposed approach is compared against nearly 20 LASSO- or PCA-based bench-
marks and evaluated in four major energy markets. The underlying point predictions used
for the pooling are obtained by estimating one model structure across different calibra-
tion windows ranging from 56 to 728 days, i.e., 673 different forecasts are obtained. In
addition, we compare three information criteria (IC) to optimize the number of principal
components used for PCA-based benchmarks and the value of the regularization parame-
ter for LASSO-based methods.

The averaged forecasts are evaluated in terms of MAE and with percentage change
of forecast accuracy relative to the results of a model with the longest considered cali-
bration window. Additionally, we used the Giacomini and White (2006) test to see if the
differences in the performance of the methods are statistically significant. The test is a
generalization of the commonly used Diebold and Mariano (1995) test for unconditional
predictive ability. The test uses information from the previous day to determine whether
differences in forecast ability are affected by factors such as the business cycle phase
(Giacomini and White, 2006).

Paper 2 confirms that averaging algorithms can substantially reduce forecast errors.
The simple average reduces MAE by ca. 6.6% compared to the non-averaged predic-
tion. The highest improvement (on average 10.3%) is achieved with the newly proposed
method. The combination of PCA and LASSO, i.e., the LPCA model significantly outper-
forms both the PCA-based and LASSO-based benchmarks. Finally, of the three informa-
tion criteria considered, the most robust performance is obtained for Bayesian information
criteria (BIC).
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4.3 Objective 3: Probabilistic forecasting

4.3.1 Problem statement

Compared to point predictions, probabilistic forecasts present much more information
about the future price. Instead of specifying an expected value, they assign the probability
that the future price will exceed a given level. Therefore, they provide a more compre-
hensive risk assessment and provide more information on possible unexpected or extreme
price changes, allowing energy companies to avoid costs caused by unexpected fluctua-
tions in the amount of electricity generation or consumption (Morales et al., 2014). Prob-
abilistic EPF is a concept closely related to decision-making (Petropoulos et al., 2022).
According to Taylor (2021), the availability of probabilistic predictions improves the
decision-making process. In power markets, good quality probabilistic price forecasts
can help producers, traders, and speculators determine optimal strategies for short-term
operations (Uniejewski and Weron, 2021). Probabilistic forecasts are also used in risk
management for derivative pricing, value-at-risk (VaR) calculations, hedging, and trading
(Bunn et al., 2016).

The most common way to go from point to probabilistic forecasts is to construct a
prediction intervals (PI). Instead of forecasting the expected value of the future price, we
predict the price range in which the future price will fall with a given probability (see the
left panel in Figure 4.1). If we extend this idea to multiple PIs, the final outcome will be a
set of quantiles with many different levels. In the literature, it is emphasized that a dense
grid of quantiles, e.g., 99 percentiles, is a sufficiently good approximation of the entire
distribution (see the right panel in Figure 4.1) (Hong et al., 2016).

If we assume that the point forecast is the expected value of the future price for day d
and hour h, that is, P̂d,h = E(Pd,h), then after observing the real value, we can calculate
the forecast error: εd,h = Pd,h − P̂d,h. As a result, we get:

FP (x) = Fε(x− P̂d,h),

where Fε is the distribution of errors corresponding to P̂d,h, and FP is the distribution
of Pd,h. This means that both the error distribution and the price distribution have iden-
tical shapes but with different means (Gneiting and Katzfuss, 2014). Consequently, the
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Figure 4.1: Example of probabilistic forecasts in the context of electricity price forecasting: quantiles of
forecasted distributions (left) and density forecast (right). Source: Weron and Ziel (2020)
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following relation applies to quantiles of distributions:

q̂α,P − P̂d,h = q̂α,ε for α ∈ (0, 1).

Using the quantile function, i.e., the inverse of the cumulative distribution function, we
can formulate the relationship between the error distribution and the probabilistic forecast:

F̂−1
P (α) = P̂d,h + F̂−1

ε (α).

One of the most popular probabilistic EPF methods is quantile regression averaging
(QRA), of Nowotarski and Weron (2015). It has gained attention in academia and in-
dustry after its unprecedented success at Global Energy Forecasting Competition (GEF-
Com2014), where the method was used by the two top-winning teams in the price track
(Gaillard et al., 2016; Maciejowska and Nowotarski, 2016). The idea underlying QRA is
to average individual point forecasts using quantile regression.

min
βα

[∑
(α− 1{Pd,h<βαXd,h})(Pd,h − βαXd,h)

]
, (4.3)

where α ∈ (0, 1) is the order of the predicted quantile, Xd,h is the vector of independent
variables and βα is the corresponding weight vector.

This approach has been reported to be successful not only in forecasting electricity
prices but also in areas ranging from load (Liu et al., 2017; Zhang et al., 2018; Wang
et al., 2019) to wind (Zhang et al., 2016) and solar power (Mpfumali et al., 2019).

In a recent study, (Marcjasz et al., 2020b) have revealed the vulnerability of QRA
to low-quality point predictions. The method is not robust when the number of input
forecasts is increased without any restrictions. To play safe Marcjasz et al. (2020a) rec-
ommend selecting as inputs in Eq. (4.3) only two or three different point forecasts. This is
a serious limitation. Since the quality of the point forecasts is only known after the actual
price is observed their selection is extremely difficult and at the same time crucial for the
correct operation of the method. A way to tackle this was proposed by Maciejowska et al.
(2016). However, their factor QRA (or FQRA) model yields only slightly more reliable
forecasts and does not fully solve the problem.

4.3.2 On the importance of the long-term seasonal component in day-
ahead electricity price forecasting. Part II - Probabilistic fore-
casting (Paper 3)

The long-term seasonal component (LTSC) of electricity prices is strongly influenced
by external factors, such as changes in consumption and weather conditions (Paraschiv,
2013) and fossil fuel prices (Papież and Śmiech, 2015). Although the existence of the
LTSC is generally accepted in the literature (Weron, 2014), most research on day-ahead
EPF ignores or pays little attention to this component. For instance, Dudek (2016) argues
that training models on the most recent data makes detrending of the time series or data
deseasonalization unnecessary. However, according to Nowotarski and Weron (2016a),
the seasonal component autoregressive (SCAR) modeling concept can significantly in-
crease the point forecasting accuracy compared to models fitted to non-deseasonalized
prices. The main purpose of Paper 3 is to validate whether the SCAR framework can also
be used to improve prediction accuracy in the context of probabilistic forecasts.
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Figure 4.2: Illustration of the averaging probabilities and averaging quantiles concepts. The average prob-
ability forecast is a vertical average of the two cdfs (left panel), while the average quantile forecast is a
horizontal average (center panel). Source: Figure 3 in Paper 3.

In this paper, we perform a comprehensive empirical study and consider a collection
of 20 point forecasting methods including models based on the SCAR framework. To es-
timate the seasonal component, we use wavelet decomposition and Hodrick and Prescott
(1997) filter, which, according to Rubaszek (2012), is the most commonly used filter that
allows decomposing a series into a long-term trend and cycle components. Having the set
of point forecasts, we apply one of three schemes for computing probabilistic forecasts
(historical simulation, bootstrapping, and QRA). As a result, we obtain a pool of 59 indi-
vidual probabilistic models. Furthermore, using two approaches to combine probabilistic
forecasts introduced by Lichtendahl et al. (2013) we generate a set of averaged predic-
tions and evaluate them using the pinball loss (see Section 5.1.2 in Paper 5). To draw
valid conclusions, we use the Diebold and Mariano (1995) test to assess the significance
of differences in the predictive accuracy.

The main contribution of Paper 3 is the introduction of a novel extension of the SCAR
approach to probabilistic forecasting. One of the key findings is that SCAR-based prob-
abilistic models nearly always significantly outperform the benchmarks. However, QRA
allows obtaining, on average, more accurate predictions than historical simulation and
bootstrap.

An additional contribution of Paper 3 is the development of methods to average prob-
abilistic predictions. Despite the importance of the concept, only a few papers have con-
sidered quantile forecast combinations (Taylor, 2020). To our best knowledge, this study
was the first to apply the averaging schemes proposed by Lichtendahl et al. (2013) to
electricity price forecasting. The first method, called Probability (F) averaging, utilizes
probabilities, which is equivalent to the vertical average of the cumulative distribution
functions (cdf), and the latter, called Quantile (Q) averaging, considers quantiles, which
is equivalent to the horizontal average of the cdfs, see Figure 4.2. In Paper 3, we ob-
serve that both averaging schemes significantly outperform both the benchmarks and the
proposed (non-combined) SCAR-based models. Interestingly, in contrast to other econo-
metric applications (Wang et al., 2022), we find that averaging over probabilities yields
more accurate predictions. Note, that these two combination schemes can be generalized
by considering averaging cdfs at different angles. As Taylor (2022) argued during last
year’s International Symposium on Forecasting, angular averaging could yield even bet-
ter predictive distributions than any of the marginal cases. Checking whether this is also
the case for EPF is left, however, for future research.
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4.3.3 Regularized quantile regression averaging for probabilistic elec-
tricity price forecasting (Paper 4)

Regularization is a very general idea that can be used to solve many research problems.
However, the vast majority of electricity price forecasting applications focus purely on
point forecasting. To address this literature gap in Paper 4 we introduce a new approach
to constructing probabilistic forecasts by applying the LASSO-type penalty function to
regularize the QRA model. The proposed model is defined as follows:

min
βα

{∑
d,h

(
α− 1Pd,h<Xd,hβα

)
(Pd,h −Xd,hβα)︸ ︷︷ ︸

Quantile regression

+λ
∑N

n=1

∣∣∣β(n)
α

∣∣∣
︸ ︷︷ ︸

LASSO penalty

}
, (4.4)

where Xd,h is the vector of independent variables, that is, the vector of point forecasts,
α ∈ (0, 1) is the order of the predicted quantile, and λ is the LASSO tuning parameter.

In this paper, we compare our approach with nearly 30 benchmarks. We consider a
pool of 25 point forecasts obtained by estimating the same model structure with different
amounts of data (similarly to Paper 2, see Section 4.2.2). In particular, we estimate the
underlying point forecasting model using calibration windows ranging from 8 weeks to
2 years. Then we apply various variants of the standard QRA and a newly proposed
regularized version of this model. In addition, we propose two automated techniques
to optimize the regularization parameter. The first is based on the BIC and the second
utilizes cross-validation (Stone, 1974).

In Paper 4, we test both the reliability and the sharpness of the obtained forecasts.
To evaluate the reliability, we perform the Kupiec (1995) test and report the prediction
interval coverage probability (PICP, Nowotarski and Weron (2018)). On the other hand,
to compare the sharpness, we compute the aggregate pinball score and, similarly to Paper
2, we use the Giacomini and White (2006) test to assess significance. In addition, we
evaluate the methods in terms of financial profits (for details, see Section 4.4).

One of the key findings is that our LASSO QRA (or LQRA) model outperforms all
considered benchmarks in terms of both reliability and sharpness. What is more, we
manage to overcome the issue of too narrow distributions, which can be a problem for
standard QRA (Marcjasz et al., 2020b). The new approach is capable of passing the
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unconditional Kupiec test for most hours and significantly outperforms (by ca. 2-3%
depending on the market) the QRA-based benchmarks in terms of pinball loss.
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4.4 Objective 4: Economic value of probabilistic fore-
casts

4.4.1 Problem statement
2

There are only a handful of papers which examine the economic impact of EPF errors
in a more systematic manner. Interestingly, most of these studies have been published
in engineering, not economic or financial journals. The likely reason is that at least a
basic knowledge is needed of how power markets, loads and generating units operate.
Moreover, there is no standardized test ground/procedure for evaluating the economic
impact. Nearly every EPF study considers a different setup.

Supply- and demand-side perspectives

In one of the earlier studies, Delarue et al. (2010) take the supply-side point of view
and quantify the profit loss that can be expected in a price based unit commitment prob-
lem, when incorrect price forecasts are used. Simulations reveal that a combined cycle
gas turbine (CCGT) is much more sensitive to EPF errors (the profit can easily lie 20%
below the optimal level for a perfect price forecast) than a classic coal fired unit (profit
loss rarely exceeds 10%). More interestingly, negatively biased forecasts (i.e., that pre-
dict prices lower than actual) typically yield much higher losses than positively biased
predictions.

On the other hand, Zareipour et al. (2010) take the demand-side perspective and con-
sider short-term operation scheduling of two typical loads (a process industry owning
on-site generation facilities and a municipal water plant with load-shifting capabilities).
They introduce the forecast inaccuracy economic impact index:

FIEI =
cost(P̂ )− cost(P )

cost(P̂ )
,

so that a positive value of FIEI indicates the percentage of the actual cost of buying elec-
tricity attributable to EPF errors. The authors report that a 1% improvement in the MAPE
in forecasting accuracy would result in about 0.1%–0.35% cost reductions from short-
term EPF, but also conclude that the MAPE is not a good measure.

An interesting concept is considered by Doostmohammadi et al. (2017), who compute
the financial loss/gain (FLG) time series, defined as the difference between expected profit
of a generator and the actual one. Then, based on the day-ahead forecasts of the FLG
series, they propose a bidding strategy. However, by doing so, they do not work with the
actual profits but with (another) estimate.

Maciejowska et al. (2019, 2021) take the perspective of a small RES utility (e.g., with
one wind turbine) which has to decide where to sell 1 MW of electricity during each hour
of the next day – in the day-ahead (DA) or the intraday (ID) market. Conditional on the
decision, summarized by the decision variable based on price forecasts:

Yd,h =

{
1 if P̂DA

d,h > P̂ ID
d,h ,

0 if P̂DA
d,h ≤ P̂ ID

d,h ,
(4.5)

2This Section is an excerpt from Section Trend #3: From Statistical to Economic Evaluation in Paper 5
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they compute the additional income over the benchmark, i.e., selling the production in the
DA market, as:

πd,h = Yd,hP
DA
d,h + (1− Yd,h)P

ID
d,h − PDA

d,h , (4.6)

where PDA
d,h and P ID

d,h are the electricity prices in the DA and ID markets, respectively.
While Maciejowska et al. (2019) utilize the load forecasts published by the German and
Polish system operators, Maciejowska et al. (2021) additionally improve the load fore-
casts for Germany by applying ARX-type models. In both papers, they measure the gains
from EPF as the sum of profits in the test period, π =

∑D
d=1

∑24
h=1 πd,h, and conclude that

the statistical measures of forecast accuracy – such as the percent of correct sign classifi-
cations of the price spread between the DA and ID markets – do not necessarily coincide
with economic benefits.

Trading strategies

Uniejewski et al. (2018) take a trading perspective (different from the supply- or
demand-side point of views and consider a naive spot-futures trading strategy in the Ger-
man market. With a perfect day-ahead forecast the buyer could always choose the lower
of the two – the day-ahead price (unknown when submitting bids) or the futures price.
Since this can never be achieved in reality, the authors bias (or perturb) the ‘crystal-ball’
forecast and show that a 0.20 EUR/MWh decrease in the MAE from using one model
instead of another would result in ca. 90,000 EUR profits, for a 1 GW baseload in 2016.

Chitsaz et al. (2018) propose a trading strategy applicable in Ontario’s real-time elec-
tricity market. The energy storage operator maximizes profits with optimal scheduling.
The schedule is set before the trading period begins, based on the available price forecasts
and then it is updated at the end of each hour with a newer price forecasts. The authors
conclude that such a strategy yields higher profits when using predictions generated by the
proposed ARX model with features selected via the Mutual Information technique (Am-
jady et al., 2011) – 62% of the potential saving for ‘crystal ball’ predictions, compared
with a number of other EPF approaches, e.g., using the so-called Pre-Dispatch Prices
(PDPs; publicly available price predictions published by the system operator IESO) –
43% of the potential saving.

Kath and Ziel (2018) propose a multivariate elastic net model for forecasting German
quarter-hourly electricity prices. They demonstrate that the “sell in the high and buy in
the low market” strategy performs well, leading to substantial benefits for both a net buyer
and a net seller. On the other hand, the mean-variance approach does not bring economic
benefits, but yields an optimal portfolio in terms of the Sharpe ratio:

SR =
π̄

σ
, (4.7)

where π̄ denotes the average level of an additional revenue (i.e., π̄ = π/24D; see also Eq.
(4.6)) and σ is the standard deviation of the time series of revenues. As such, the Sharpe
ratio can be used to assess the trade-off between revenue and uncertainty. However, there
are more performance measures (Eling and Schuhmacher, 2007; Auer, 2015), including
measures based on drawdowns (e.g., Calmar ratio, Sterling ratio), based on partial mo-
ments (e.g., omega ratio, Sortino ratio) and based on the Value-at-Risk (VaR; e.g., excess
return on VaR, conditional Sharpe ratio). Whether they will turn out to be useful in the
EPF context remains yet to be checked.
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4.4.2 Trading strategy as a way to evaluate forecasts (Paper 4 Revis-
ited)

In Paper 4, we propose a trading strategy that can be implemented by a company that
owns an energy storage system and participants in the Polish power market. In this three-
step strategy, probabilistic forecasts are used to support the bidding process. First, in step
I, before the day-ahead market prices are established for day d − 1, we select two hours.
Based on the quantile forecasts, we pick the hour with the lowest and the hour with the
highest price on day d, respectively h1 and h2 in Figure 4.3).

In step II we submit the bid to buy 1 MWh at hour h1 and simultaneously the offer
to sell 0.8 MWh (due to battery efficiency) at hour h2. A unique feature of the strategy
is that the bidding levels are established based on quantile forecasts. The price for which
we bid is equal to the upper bound of the PI at hour h1, i.e., Uα

d,h1, and the price at which
we offer to sell is equal to the lower bound of the PI at hour h2, i.e., Lα

d,h2.
Finally, in step III the profits, depending on whether our bid and offer were accepted,

are calculated according to Table 4.1. Note that whenever bids or offers are rejected, the
transactions are executed at the same hours in the balancing market.

Table 4.1: Presentation of profit calculations from the trading strategy. The prices of electricity on day d
and hour h are indicated by Pd,h for the day-ahead market and Bd,h for the balancing market.

Case 1 Case 2 Case 3 Case 4
Bid accepted accepted rejected rejected

Offer accepted rejected accepted rejected

Profit 0.8 Pd,h2 − Pd,h1 0.8 Bd,h2 − Pd,h1 0.8 Pd,h2 −Bd,h1 0

In Paper 4 we show that using LQRA-based predictions (see Section 4.3.3) and the
proposed strategy, we can gain around 20 000 PLN per year. We also provide evidence
that decisions based on probabilistic forecasts can lead to a better outcome compared to
those based on point forecasts. In particular, the averaged profits are 20% higher when the
strategy is executed based on the LQRA approach compared to the same strategy based
on point forecasts.
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Figure 4.3: Illustration of the trading strategy using Polish TGE data for two selected days (left panel –
12.10.2017, right panel – 4.10.2017). The α% prediction intervals are plotted in gray, the bid and offer
prices are indicated with black dots and the actual price trajectory is in orange. Note, that on the right panel,
the ask is not accepted because Pd,h2 < L̂α

d,h1.
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4.5 Objective 5: Critical literature review

4.5.1 Forecasting electricity prices (Paper 5)
Paper 5 identified three trends in electricity price forecasting. Firstly, the tendency to

consider not only point but also probabilistic and/or path (also called ensemble) forecasts.
Secondly, the shift from the relatively parsimonious econometric or statistical models
towards more complex, but potentially more accurate statistical learning/machine learning
approaches. Finally, the recent trend to evaluate model performance not only in terms of
statistical error measures (MAE, RMSE, pinball, CRPS, etc.), but also in terms of profits
from scheduling or trading strategies based on price forecasts obtained from different
models.

All three trends are addressed in this thesis. In particular, two methods to compute
probabilistic forecasting are proposed in Papers 3 and 4 (Objective 3). Papers 1, 2, and
4 use statistical learning methods, such as LASSO, to improve forecasting performance
(Objectives 1-3). Finally, in Paper 4 a trading strategy is proposed to assess the economic
value of probabilistic forecasts (Objective 4).

Publication details:

• Authors: K. Maciejowska, B. Uniejewski, R. Weron

• Invited chapter in: The Oxford Research Encyclopedia of Economics and Finance,
Accepted for publication

• DOI (arXiv): 10.48550/arXiv.2204.11735

• (Expected) publication year: 2023

• MEiN: 75 pts, assigned to the Management and Quality Studies (NZJ) discipline

• Contribution: 331
3
%, including literature review and co-editing of the paper



Chapter 5

Auxiliary results

In the course of my undergraduate and graduate studies, I have published 13 papers
related to electricity price forecasting (listed below in chronological order). Five of them
are an integral part of the thesis. The rest are either not directly related to the thesis
or were considered less important, and thus excluded from the core part of the thesis.
Nevertheless, for a complete picture of the research that I have conducted, below I briefly
summarize the key findings.

1. Uniejewski, B., Nowotarski, J., Weron, R., 2016. Automated variable selection and
shrinkage for day-ahead electricity price forecasting. Energies 9, 621.

2. Uniejewski, B., Weron, R., Ziel, F., 2018. Variance stabilizing transformations
for electricity spot price forecasting. IEEE Transactions on Power Systems 33,
2219–2229.

3. Uniejewski, B., Weron, R., 2018. Efficient forecasting of electricity spot prices
with expert and LASSO models. Energies 11, 2039.

4. Uniejewski, B., Marcjasz, G., Weron, R., 2019a. On the importance of the long-
term seasonal component in day-ahead electricity price forecasting: Part II – Prob-
abilistic forecasting. Energy Economics 79, 171–182 → Paper 3.

5. Marcjasz, G., Uniejewski, B., Weron, R., 2019. On the importance of the long-term
seasonal component in day-ahead electricity price forecasting with NARX neural
networks. International Journal of Forecasting 35, 1520–1532.

6. Uniejewski, B., Marcjasz, G., Weron, R., 2019b. Understanding intraday electricity
markets: Variable selection and very short-term price forecasting using LASSO.
International Journal of Forecasting 35, 1533–1547 → Paper 1.

7. Serafin, T., Uniejewski, B., Weron, R., 2019. Averaging predictive distributions
across calibration windows for day-ahead electricity price forecasting. Energies 12,
256.

8. Marcjasz, G., Uniejewski, B., Weron, R., 2020a. Beating the naive – combining
LASSO with naive intraday electricity price forecasts. Energies 13, 1667.

9. Maciejowska, K., Uniejewski, B., Serafin, T., 2020. PCA forecast averaging –
predicting day-ahead and intraday electricity prices. Energies 13, 3530.
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10. Marcjasz, G., Uniejewski, B., Weron, R., 2020b. Probabilistic electricity price fore-
casting with NARX networks: Combine point or probabilistic forecasts? Interna-
tional Journal of Forecasting 35, 466–479.

11. Uniejewski, B., Weron, R., 2021. Regularized quantile regression averaging for
probabilistic electricity price forecasting. Energy Economics 95, 105121 → Pa-
per 4.

12. Uniejewski, B., Maciejowska, K., 2022. Lasso principal component averaging – a
fully automated approach for point forecast pooling. International Journal of Fore-
casting, forthcoming, DOI: 10.1016/j.ijforecast.2022.09.004 → Paper 2.

13. Maciejowska, K., Uniejewski, B., Weron, R., 2023. Forecasting electricity prices.
Oxford research encyclopedia of economics and finance, forthcoming, DOI (arXiv):
10.48550/arXiv.2204.11735 → Paper 5.

Uniejewski et al. (2016) was my first published research article submitted when I
was still an undergraduate student. In this paper, we addressed the problem of selecting
significant explanatory variables in a linear regression setting. We compared several au-
tomated variable selection methods, such as stepwise regression and regularization-based
approaches. In particular, we were the first to apply the elastic net (Zou and Hastie, 2015)
in the context of electricity price forecasting. We showed that regularization techniques
such as LASSO or elastic net significantly outperform other competitors. As an additional
contribution, we presented tables with variable selection frequencies that could help build
well-performing parsimonious regression models.

In Uniejewski et al. (2018) we raised the issue of data preprocessing. We introduced
new functions aiming to stabilize the variance and showed that applying appropriate vari-
ance stabilizing transformations (VSTs) could significantly reduce forecasting errors. In
particular, we recommended the area hyperbolic sine (asinh) or normal probability in-
tegral transform (N-PIT) transformations, which in our setup improved the prediction
accuracy the most. This paper has had a visible impact on the electricity forecasting
community and, according to the Scopus database, is my most frequently cited article.

In Uniejewski and Weron (2018) we were searching for the optimal way to imple-
ment LASSO for electricity price forecasting. We addressed three open issues: variable
selection, the choice of the tuning parameter, and the choice of VST. We concluded that
selecting a fixed λ value for all days in the out-of-sample period is an acceptable option,
however, if computation efficiency is not a problem, re-selecting λ on a daily basis can
increase forecast accuracy. Finally, we showed that using VSTs significantly reduces the
forecasting error for LASSO model.

In Marcjasz et al. (2019) we addressed a similar problem as in Paper 3 but from a
different perspective. Both studies were inspired by Nowotarski and Weron (2016a) and
aimed at answering the question of whether it is beneficial to separately consider the long-
term seasonal component when forecasting electricity prices. The difference between this
article and Paper 3 is substantial. Here, we utilized neural networks and showed that
the benefits of using the seasonal component approach in a point forecasting concept are
significant also for non-linear models.

In Serafin et al. (2019) we addressed the problem of averaging forecasts of the same
model trained on different calibration windows. Motivated by the results of Hubicka et al.
(2019) and Marcjasz et al. (2018), we proposed two quantile regression-based extensions
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of this approach to probabilistic forecasts. Having a large panel of point forecasts, we
successfully applied Quantile Regression Averaging (QRA) of Nowotarski and Weron
(2015) and Quantile Regression Machine (QRM) of Uniejewski et al. (2019a) to obtain
probabilistic predictions. We showed that the more computationally efficient QRM ap-
proach outperforms QRA. In addition, we confirmed that the idea of combining forecasts
obtained for short and long calibration windows improves prediction accuracy also for
probabilistic forecasts.

Marcjasz et al. (2020a) is a continuation of Paper 1. The main objective was to im-
prove the accuracy of very short-term predictions in the German intraday market. The
proposed solution was a combination of the LASSO model developed in Paper 1 and the
naive model of Narajewski and Ziel (2020a). Additionally, we showed that, similarly to
forecasting day-ahead prices, exogenous variables such as load and wind power genera-
tion improve model performance.

Maciejowska et al. (2020) is another article on forecast combination. It has started
a series of articles on the use of principal component averaging, including Paper 2 and
further future research. In that paper, we used PCA to average a large panel of forecasts.
The proposed method appears to be very sensitive to the number of factors considered.
To overcome this problem, we use Bayesian information criteria to select the optimal
number of factors. Although the results were satisfactory, in Paper 2 we achieved even
better predictions using LASSO estimation.

The problem of averaging forecasts is also addressed in Marcjasz et al. (2020b). Hav-
ing a pool of point forecasts, we can proceed in two different ways to obtain probabilistic
forecasts via quantile regression. Firstly, we can average point forecasts to improve accu-
racy and use them to produce a probabilistic forecast. Secondly, we can produce a pool of
probabilistic forecasts, each corresponding to a different point forecast, and then average
them. The former approach turned out to yield more accurate predictions.
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Conclusions

The aim of this thesis was to make a significant contribution to the field of electricity
price forecasting (EPF) by developing robust predictive models for decision-making in
power markets. The advancement of EPF techniques is crucial as accurate price predic-
tions can aid power market participants in energy trading and risk management decisions,
thereby increasing the profits of energy companies.

To address this aim, five objectives have been set:

1. Use regularization to identify the most relevant explanatory variables: In this
objective, the goal is to identify the most important predictors of electricity prices
using statistical learning techniques. The LASSO-type regularization technique is
proposed as a solution to this problem. Empirical tests, including the rapidly grow-
ing German intraday market, indicate that LASSO-based models can successfully
recognize the most informative explanatory variables (Paper 1).

2. Develop a fully-automated approach to average a rich pool of individual fore-
casts using regularization and Principal Component Analysis (PCA): In this
objective, a novel approach is introduced to combine forecasts obtained from dif-
ferent models. The rapid development of EPF methods results in countless solu-
tions to obtain an accurate prediction, making it impossible to choose the overall
best forecasting model. The proposed approach incorporates the PCA and LASSO
methods to average a large pool of forecasts and provides a more accurate predic-
tion compared to individual models (Paper 2).

3. Utilize quantile regression and regularization to construct more accurate al-
gorithms for probabilistic forecasting of electricity prices: In this objective, a
preprocessing technique such as series decomposition is used in the context of prob-
abilistic forecasting (Paper 3), and a novel, LASSO-based approach is introduced to
construct probabilistic predictions (Paper 4). The proposed solutions significantly
outperform existing literature benchmarks in terms of accuracy and reliability.

4. Design a trading strategy to evaluate the economic value of probabilistic fore-
casts: In this objective, instead of a statistical measure we introduce a trading strat-
egy and use it to evaluate the economic value of probabilistic forecasts, illustrating
the importance of predictions in supporting decision-making processes and maxi-
mizing profits (Paper 4).

5. Conduct a critical review of forecasting in the electricity markets and provide
an outlook for future research in this area: In this objective, a comprehensive
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overview of the EPF research is provided, with a particular focus on three current
trends (Paper 5). The critical review helps to integrate and organize the primary
literature and sets the direction for future research in the EPF area.

The contribution of this thesis extends beyond the advancement of EPF techniques.
It also highlights the importance of considering the economic value of predictions in
decision-making processes and encourages future research in this area. The results of this
dissertation have significant implications for power market participants and academia,
providing them with valuable insights and tools to forecast electricity prices and support
decision-making.
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a b s t r a c t

We use a unique set of prices from the German EPEX market and take a closer look
at the fine structure of intraday markets for electricity, with their continuous trading
for individual load periods up to 30 min before delivery. We apply the least absolute
shrinkage and selection operator (LASSO) in order to gain statistically sound insights on
variable selection and provide recommendations for very short-term electricity price
forecasting.
© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Since the deregulation of government-controlled
power sectors in the 1990s and 2000s and the introduc-
tion of competitive markets in many countries world-
wide, electricity has been being traded under market
rules like any other commodity (Mayer & Trück, 2018).
The workhorse of power trading in Europe has been the
uniform price auction conducted a day before delivery,
and the vast majority of research studies and applica-
tions have concerned day-ahead (DA) electricity prices
(Weron, 2014). However, the expansion of renewable
generation (mostly wind and solar), the modernization
of power grids (including an increase in interconnector
capacity) and active demand-side management (smart
meters, smart appliances) have made the electricity de-
mand/supply and prices more volatile and less predictable
than ever before (Hong & Fan, 2016; Kiesel & Kusterman,
2016). This has amplified the importance of intraday
markets, which can be used to balance the deviations
resulting from differences between positions in day-ahead

∗ Corresponding author.
E-mail addresses: uniejewskibartosz@gmail.com (B. Uniejewski),

gelusz@hotmail.co.uk (G. Marcjasz), rafal.weron@pwr.edu.pl
(R. Weron).

contracts and the actual demand (Gianfreda, Parisio, &
Pelagatti, 2016; Märkle-Huß, Feuerriegel, & Neumann,
2018; Zaleski & Klimczak, 2015). As a result, the last few
years have observed a shifting of volume from the DA to
intraday markets across Europe (EPEX, 2018).

This article uses a unique set of prices from the Ger-
man EPEX market and takes a closer look at the fine struc-
ture of intraday markets, with their continuous trading
for individual load periods up to 30 min before deliv-
ery. We apply the least absolute shrinkage and selection
operator (LASSO) of Tibshirani (1996) in order to gain
statistically sound insights on variable selection and pro-
vide recommendations for very short-term electricity price
forecasting (EPF).1 Given that the literature on the fore-
casting of intraday prices in European power markets is
very scarce — being limited, to the best of our knowledge,
to only two papers dealing with Spanish data (Andrade,
Filipe, Reis, & Bessa, 2017; Monteiro, Ramirez-Rosado,
Fernandez-Jimenez, & Conde, 2016) — our study is a ma-
jor step towards understanding the intraday price dy-
namics and developing predictive models that perform

1 We use EPF as the abbreviation for both electricity price fore-
casting and electricity price forecast. The plural form, i.e., forecasts, is
abbreviated EPFs.

https://doi.org/10.1016/j.ijforecast.2019.02.001
0169-2070/© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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well for a market that many participants see as the fu-
ture of electricity trading. The importance of our study
is emphasized further by the fact that electricity price
forecasts are now fundamental inputs to energy com-
panies’ decision-making mechanisms, alongside weather
and demand predictions (Nowotarski & Weron, 2018).

The remainder of the paper is structured as follows.
Section 2 reviews the literature on intraday electricity
markets and on variable selection for EPF. Section 3 begins
by introducing the EPEX dataset and the rolling window
scheme, then discusses variance stabilization, and finally
describes the model structures considered. Section 4 first
compares the predictive performance in terms of two
commonly-used error measures and the Diebold and Mar-
iano (1995) test, then takes a closer look at the best
LASSO-estimated model in order to identify the most
important explanatory variables, and thus provide guide-
lines to the structuring of better-performing models for
intraday electricity markets. Finally, Section 5 wraps up
the results and concludes.

2. Literature review

2.1. Intraday markets for electricity

There is a small but growing body of literature on
intraday electricity markets. Most publications take a fun-
damental, market behavior or energy policy perspective.
For instance, Pape, Hagemann, and Weber (2016) investi-
gate the explanatory power of a fundamental modeling
approach in the German power market, explicitly ac-
counting for must-run operations of combined heat and
power plants (CHP) and intraday peculiarities such as a
shortened intraday supply stack. González-Aparicio and
Zucker (2015) analyze the influence of wind power fore-
casting errors in the time period between the closure of
the day-ahead market and the opening of the first intra-
day session in the Spanish market. Similarly, Ziel (2017)
studies the impact of wind and solar generation forecast
errors on price formation in the German intraday market.

Kiesel and Paraschiv (2017) investigate bidding behav-
iors in the intraday market by looking at both last prices
and continuous bidding, in the context of a reduced-form
econometric analysis. They find that intraday prices adjust
asymmetrically to both forecasting errors in renewables
and the volume of trades dependent on a threshold vari-
able that reflects the expected non-renewable generation
in the DA market. Aïd, Gruet, and Pham (2016) analyze
the trading in intraday electricity markets and develop an
optimal bidding strategy. They consider as their modeling
framework a continuous-time stochastic process for the
net position of sales and purchases of electricity. Märkle-
Huß et al. (2018) investigate the introduction of 15-min
contracts to the German EPEX market and argue that
these products are used to balance the intra-hour volatil-
ity of renewable energy sources. Finally, Maciejowska,
Nitka, and Weron (2019) take the perspective of a small
renewable energy generator that trades via a larger com-
pany and only has to decide how much electricity it will
sell in the DA market; the rest will be sold in either
the intraday market (Germany) or the balancing market

(Poland). They forecast the price spread between the DA
and intraday/balancing markets using autoregressive and
probit models and show that statistical measures of the
forecast accuracy, such as the percentage of correct sign
classifications, do not necessarily coincide with economic
benefits.

However, when it comes to the forecasting of intraday
electricity prices in European power markets, the litera-
ture is very scarce. To the best of our knowledge, only
two studies have addressed this important problem, and
these only in the context of the Iberian electricity market
(MIBEL), which features a very specific design with six
intraday sessions of between 9 and 27 delivery hours.
Monteiro et al. (2016) utilize neural networks (multi-
layer perceptron, one hidden layer) with up to 21 input
variables selected on an ad-hoc basis: dummies (hour-of-
the-day, day-of-the-week), hourly prices on previous days
(lags 1 and 7), price values of the daily session, price val-
ues of previous intraday sessions, and weather, demand
and wind power generation forecasts. They find that the
best models for intraday sessions #1 to #5 use only the
hourly prices of the daily session, the hourly prices of
previous intraday sessions and the seasonal dummies,
while the best model for intraday session #6 uses only
the hourly prices of previous intraday sessions #3–#5
and the seasonal dummies. Andrade et al. (2017) reach
similar conclusions by utilizing a linear quantile regres-
sion (LQR) model, namely that high quality point and
probabilistic forecasts of intraday prices can be obtained
by just exploring the prices from previous sessions (plus
deterministic variables for modeling the daily, weekly and
annual seasonalities), despite the fact that they consider
a large set of fundamental variables.

2.2. Variable selection for electricity price forecasting

The conclusions from these last two studies suggest
clearly that variable selection is a very important issue
in EPF, and that it may be even more critical for intraday
markets than for DA markets because of the vast amounts
of data available. In this context, high-dimensional statis-
tical modeling techniques that deal with large amounts of
data may come in handy.

The earliest known examples of statistically-sound
variable selection in day-ahead EPF include the studies
by Karakatsani and Bunn (2008) and Misiorek (2008),
who used stepwise regression to eliminate statistically
insignificant variables from parsimonious regression-type
models, and Amjady and Keynia (2009), who introduced a
feature selection algorithm based on mutual information.
We believe that Barnes and Balda (2013) were the first to
apply regularization in day-ahead EPF. In a study concern-
ing the profitability of battery storage, they utilized ridge
regression to compute EPFs for a model with more than
50 regressors. Ludwig, Feuerriegel, and Neumann (2015)
used random forests and the LASSO to choose which of
the 77 available weather stations were relevant, while Ke-
les, Scelle, Paraschiv, and Fichtner (2016) combined the
k-nearest-neighbor algorithm with backward elimination
to select the most appropriate inputs out of more than
50 fundamental parameters or lagged versions of these
parameters.
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A qualitative change came with the papers by Ziel
(2016) and Ziel, Steinert, and Husmann (2015), who used
LASSO to sparsify very large (100+) sets of model pa-
rameters, utilizing B-splines either in a univariate setting
or, more efficiently, within a multivariate framework.
In the first thorough comparative study, Uniejewski,
Nowotarski, and Weron (2016) evaluated six automated
selection and shrinkage procedures (single-step elimina-
tion, forward and backward stepwise regression, ridge
regression, LASSO, and elastic nets) applied to a baseline
model with 100+ regressors. They concluded that the
use of LASSO and elastic nets can achieve significant
accuracy gains relative to commonly-used EPF models. In
a study on the optimal model structure for day-ahead EPF,
Ziel and Weron (2018) considered autoregressive models
with 200+ potential explanatory (but not exogenous)
variables, and concluded that both uni- and multivari-
ate LASSO-implied structures outperform autoregressive
benchmarks significantly, and that combining their fore-
casts can achieve further improvements in predictive
accuracy. Finally, Uniejewski and Weron (2018) show
that using a complex regression model with nearly 400
explanatory variables, a well-chosen variance-stabilizing
transformation (asinh or N-PIT), and a procedure that
recalibrates the LASSO regularization parameter once or
twice a day leads to significant accuracy gains compared
to the EPF models that are considered typically.

This study follows the approach set forth in the last
three articles and considers LASSO models based on
hundreds of potential regressors and calibrated to asinh-
transformed prices. However, we do not consider recali-
brating the LASSO regularization parameter, as this slows
down the forecasting procedure considerably.

3. Methodology

3.1. The dataset

The main German ‘spot’ market is operated by EPEX
SPOT SE and allows the trading of power supply contracts
with hourly and quarter-hourly delivery. The participants
have the option of bidding on hourly products in the day-
ahead (DA) auction that is conducted at noon on the day
before delivery (i.e., d − 1), or trading hourly and quarter
hourly contracts in the continuous intraday market that
opens at 16:00 on day d − 1 and closes 30 min before
the delivery starts (since March 2017, five minutes for
transactions within the delivery zone; see EPEX, 2018).

The leading reference price for the intraday market is
the recently-introduced ID3 index for contracts with an
hourly delivery, which is also an underlying instrument
of exchange-traded derivative products (see https://www.
eex.com). The index is based exclusively on hourly and
15-min products traded in the German intraday continu-
ous market (i.e., intraday auction data are excluded), and
is computed as the volume-weighted average price of all
trades performed over the last three hours before the de-
livery starts. Moreover, cross-trades (i.e., trades with the
same entity selling on one side and buying on the other
side) are excluded, while cross-border trades with one
leg (buy/sell) in Germany are taken into account (EPEX,
2015).

The exchange publishes the index, but the period cov-
ered is too short for a proper evaluation of our models.
Thus, we have reconstructed an ID3-like time series from
the individual transactions. It differs slightly from the
actual index: (i) we have not excluded cross-trades (since
the data that we have access to are anonymized), and
(ii) we have not considered the trades conducted between
30 and 5 min before the delivery starts, because such
trades have been allowed only since March 2017. For each
hourly product, only the transactions with timestamps
between 180 and 30 min were chosen. For products with
no transactions in this period, the window was extended
to contain transactions conducted from the start of trad-
ing to 30 min before the delivery starts. There was no
product without transactions in the expanded window.

In addition to the ID3 index (actually its approxima-
tion), we are also using the DA prices as external re-
gressors. Both time series are of an hourly resolution
and span the 1216 days from 1.01.2015 to 30.04.2018,
see Fig. 1. Like many EPF studies, we consider a rolling
window scheme and use a 364-day window in order to
estimate our models on a sample which is a multiple
of the weekly seasonality and covers a full year; for a
discussion of calibration window lengths, see Hubicka,
Marcjasz, and Weron (2019). Initially, we fit our models to
data from 1.01.2015 h 1 to 30.12.2015 h 24, and compute
the price forecasts for the first hour of 31.12.2015. Next,
the window is rolled forward by one hour, the models are
re-estimated, and the predictions for the second hour of
31.12.2015 are generated. This procedure is repeated until
forecasts for the last hour in the 852-day out-of-sample
test period (i.e., 30.04.2018 h 24) have been made.

3.2. The forecasting framework

We denote the intraday and day-ahead electricity
prices at time (hour) t = 24d+h by Pt and St respectively,
where d = 0, 1, . . . , 1215 is the day in our sample and
h = 1, 2, . . . , 24 the hour of the day. For each hour t
in our out-of-sample test period we make a prediction
at time t − 4 of the closing value of the ID3 index
for that hour, i.e., Pt . This is illustrated in Fig. 2 using
actual transaction data for the period from 12.09.2016
16:00 to 13.09.2016 24:00. Observe the four-hour time
lag between the moment when the forecast is made and
the time when the delivery starts. For instance, at 12:00
on 13.09.2016 we are forecasting the price for 16:00
(denoted by −→). The most recent intraday price is for
12:00 (i.e., the hourly contract with delivery between
12:00 and 13:00 on 13.09.2016, denoted by ∗), while the
most ‘forward-looking’ (i.e., beyond the target hour) DA
price is for hour 24 on 13.09.2016. One hour later, at 13:00
on 13.09.2016, we are forecasting the price for 17:00 and
the most recent intraday price is for 13:00. However, since
the day-ahead auction results are known a few minutes
after 12:00, the most ‘forward looking’ DA price is for hour
24 on 14.09.2016.

Following the recommendations set forth by Uniejew-
ski, Weron, and Ziel (2018), we calibrate our models (ex-
cept for the Naive benchmark; see Section 3.3) not to raw
prices but to transformed; i.e., Xt = f (Pt ), where f (·) is



1536 B. Uniejewski, G. Marcjasz and R. Weron / International Journal of Forecasting 35 (2019) 1533–1547

Fig. 1. EPEX hourly intraday (top) and day-ahead (bottom) prices for the period 1.01.2015 to 30.04.2018. The vertical dashed lines mark the beginning
of the 852-day out-of-sample test period.

an appropriately chosen variance stabilizing transformation
(VST). The idea underlying a VST is that of reducing the
price variation. As was argued by Janczura, Trück, Weron,
and Wolff (2013), a lower variation and/or less spiky
behavior of the input data usually allows the forecasting
model to yield more accurate predictions.

For electricity markets with only positive prices, the
logarithm is the most popular choice for a VST. However,
the log-transform is not feasible in our case, since EPEX
prices exhibit negative values.2 Instead, we utilize the
area hyperbolic sine transformation:

Xt = asinh(pt ) ≡ log
(
pt +

√
p2t + 1

)
, (1)

where pt =
1
b (Pt − a) are ‘normalized’ prices, a is the

median of Pt in the calibration window, and b is the sam-
ple median absolute deviation (MAD) around the median;
the latter two parameters are recomputed every day, sep-
arately for the ID3 index and the DA prices. Note that
the median of all prices after applying the asinh trans-
formation is zero, and the variance is close to one. Note
also that this transformation can be used for negative

2 Note that negative prices are natural in electricity trading: since
plant flexibility is limited (especially for coal-fired power plants) and
costly, incurring a negative price for a few hours can actually be
economically optimal (Gianfreda, Parisio, & Pelagatti, 2018; Schneider,
2011; Weron, 2006).

data, and its implementation is straightforward. More-
over, it has been found to perform well in a number of
EPF studies (Schneider, 2011; Uniejewski & Weron, 2018;
Ziel & Weron, 2018). The inverse transformation is the
hyperbolic sine, i.e., pt = sinh(Xt ). After computing the
forecasts, we apply it to obtain the price predictions:

P̂t = b sinh(̂Xt ) + a. (2)

We transform the exogenous series analogously: Yt =

asinh(st ), where st is the normalized day-ahead price St .

3.3. Benchmark models

The first benchmark, denoted by Naive, is based on the
assumption that the day-ahead and intraday markets are
driven by similar data generating processes. It is defined
by P̂t = St , where St is the DA price for the same day and
hour (recall that it is set at noon on day d−1). The second
benchmark is a parsimonious autoregressive structure in-
spired by the well-performing expertDoW ,nl model of Ziel
and Weron (2018). In this model, denoted by ARX, the
VST-transformed price at time t is given by:

Xt = β1Xt−4 + β2Xt−24 + β3Xt−48 + β4Xt−168

+β5Yt +

7∑
i=1

β5+iDi + εt , (3)

where Xt−24, Xt−48 and Xt−168 account for the autoregres-
sive effects of the previous days (the same hour yesterday,
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Fig. 2. Illustration of the forecasting framework using actual transaction data for the period from 12.09.2016 16:00 to 13.09.2016 24:00. The black
step function indicates the time when the delivery starts (every hour of 13.09.2016), the circles refer to actual trades (the circle size represents the
traded volume, from 0.1 to 200 MWh, while the color represents the price, see the colorbar on the right), and the red step function represents the
time when the forecasts are made. For instance, when forecasting the price for 16:00 (−→) at 12:00 on 13.09.2016, the most recent intraday price
is for 12:00 (∗).

two days ago, and one week ago), Xt−4 is the last observed
intraday price, and Yt is the VST-transformed DA price
for the same day and hour. The seven dummy variables
D1, . . . ,D7 account for the weekly seasonality, and are
defined as Di = 1 for day of the week i and zero other-
wise. Finally, the εts are assumed to be independent and
identically distributed normal variables. The ARX model
is estimated via ordinary least squares (OLS).

3.4. LASSO-estimated models

One advantage of using automatic variable selection is
the ability to start out by considering an almost unlimited
number of explanatory variables. This study utilizes a
baseline model with between 349 (for hour 16) and 372
(for hour 17) potential regressors: seven dummy variables
(to account for the weekly seasonality, as in the ARX
benchmark), 165 last known prices from the intraday
market (i.e., nearly the whole week), 169 prices from the
DA market (i.e., one week of past prices) and between
8 (for hour 16) and 31 (for hour 17) ‘forward-looking’
prices from the DA market (i.e., Yt+1, . . . , Yt+31; see also
Table 4):

Xt =

7∑
k=1

βkDk  
weekday dummies

+

168∑
i=4

βi+4Xt−i  
past intraday prices

+

168∑
j=0

β173+jYt−j  
current and past DA prices

+

−1∑
j=−31

β373+jYt−j  
‘forward-looking’ DA prices

+ εt . (4)

Note that the price for each hour is predicted with a
four-hour time lag (which is why the second sum in the
formula above starts with i = 4) and using the most re-
cent information. Note also that Eq. (4) does not consider
any fundamental regressors. However, the results of An-
drade et al. (2017) and Monteiro et al. (2016) suggest that
fundamentals (historical and predicted demand, genera-
tion and weather) do not have much explanatory power
when forecasting intraday electricity prices. Perhaps the
DA price for the same day and hour already includes this
information.

In order to explain the LASSO scheme, let us rewrite
Eq. (4) in a more compact form:

Xt =

n∑
i=1

βiV i
t , (5)

where V i
t are the regressors and βi are the corresponding

coefficients.
The LASSO of Tibshirani (1996) can be treated as a

generalization of a linear regression, where instead of
minimizing only the residual sum of squares (RSS), we
minimize the sum of RSS and a linear penalty function of
the βis:

β̂
L
= min

β
{RSS + λ∥β∥1} = min

β

{
RSS + λ

n∑
i=1

|βi|

}
, (6)

where λ ≥ 0 is a tuning (or regularization) parameter.
Note that for λ = 0 we get the standard OLS estimator; for
large λs all βis become zero; and for intermediate values
of λ there is a balance between minimizing the RSS and
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Table 1
Mean absolute errors (MAE) and root mean squared errors (RMSE) for the two benchmarks (Naive, ARX) and the ten LASSO(λi) models, with
λi = 10−

19−i
6 , i = 1, . . . , 10, over the 852-day out-of-sample test period, see Fig. 1. A heat map is used to indicate better (→ green) and worse (→

red) performing models.

shrinking the coefficients towards zero (and each other),
and hence performing variable selection.

Selecting a ‘good’ value for λ is critical. Based on the
results of Uniejewski and Weron (2018), we have limited
our computations to a log-spaced grid of ten values: λi =

10−
19−i
6 for i = 1, . . . , 10. Since our dataset is relatively

short compared to that used by Uniejewski and Weron
(2018), we have not opted to select one optimal λ based
on the model’s performance in a validation period. Also,
we have not chosen the value of λ that maximizes an in-
sample information criterion (as per Ziel & Weron, 2018),
as this could lead to underperforming models. Since the
focus of this study is on variable selection, not on the
implementation of the LASSO, we have decided to show
the results for all ten λs instead. The models are denoted
later in the text by LASSO(λi), or simply by λi.

4. Empirical results

4.1. Forecast evaluation

We use the mean absolute error (MAE) and the root
mean squared error (RMSE) for the full out-of-sample test
period of D = 852 days (i.e., 31.12.2015 to 30.04.2018;
see Fig. 1) as the main evaluation criteria:

MAE =
1

24D

24D∑
t=1

|Et | and

RMSE =

√ 1
24D

24D∑
t=1

E2
t , (7)

where Et = Pt − P̂t is the prediction error at time
(hour) t . Recall that the RMSE is the optimal measure
for least square problems, but is more sensitive to out-
liers than the MAE. The MAE and RMSE values obtained
can be used to provide a ranking of models, but do not
allow us to draw statistically significant conclusions as
to the outperformance of the forecasts of one model by
those of another. Therefore, we use the (Diebold & Mar-
iano, 1995) test, which is simply an asymptotic z-test
of the hypothesis that the mean of the loss differential
series:

∆A,B,t = |EA,t |
i
− |EB,t |i (8)

is zero, where EZ,t is the prediction error of model Z
at time t and i = 1, 2 correspond to the absolute and

squared loss, respectively; here, ‘model Z ’ is used to refer
to one of the benchmarks or the LASSO-estimated models.
For each model pair and each dataset we compute the
p-values of two one-sided tests: (i) a test with the null
hypothesis H0 : E(∆A,B,t ) ≤ 0, i.e., the outperformance
of the forecasts of B by those of A, and (ii) the comple-
mentary test with the reverse null HR

0 : E(∆A,B,t ) ≥ 0,
i.e., the outperformance of the forecasts of A by those of
B. The loss differential series thus obtained are covariance
stationary.

Table 1 reports the MAE and RMSE errors for the
benchmarks and the LASSO models, while Fig. 3 depicts
the results of the DM tests. We use a heat map to in-
dicate the range of the p-values: the closer they are to
zero (→ dark green), the more significant the difference
between the forecasts of a set on the X-axis (better) and
the forecasts of a set on the Y -axis (worse). For instance,
the first row in both panels of Fig. 3 is green except for one
black square, indicating that — irrespective of whether we
are considering absolute or squared losses — the forecasts
of the Naive benchmark are outperformed significantly
by those of all other models except LASSO(λ1). On the
other hand, the column that corresponds to the LASSO(λ6)
model is green in the right panel, meaning that this model
leads to significantly better forecasts than all others when
considering squared losses.

Table 1 clearly shows that the Naive benchmark and
the LASSO(λ1) model are the worst predictors. Somewhat
surprisingly, the Naive benchmark even significantly out-
performs the worst LASSO model for absolute losses; see
the green square in the left panel of Fig. 3 in the Naive
column. Obviously, the DA price St is a good predictor of
the intraday price Pt for the same day and hour. However,
we can do better than that.

Indeed, even the reasonably parsimonious ARX model
with only 12 regressors, including seven weekday dum-
mies, significantly outperforms the naive benchmark and
one or two of the worst LASSO models, namely λ1 and
λ2 (for absolute losses only); see the green squares in
the columns labeled ARX in Fig. 3. Moreover, it is not
outperformed significantly by the naive benchmark or
the three worst LASSO models, i.e., λ1, λ2 and λ3 (for
absolute losses) or λ10 (for squared losses); see the black
squares in the rows labeled ARX. Now, comparing the
LASSO-estimated models among themselves, we can see
that the best predictions are obtained for λ7 (according to
MAE) and λ6 (according to RMSE). However, while λ6 is
a clear winner for squared losses, there are no significant
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Fig. 3. Results of the Diebold–Mariano (DM) test for the absolute (left) and squared (right) prediction errors, for the same models as in Table 1. A
heat map is used to indicate the range of p-values: the closer they are to zero (→ dark green), the more significant the difference is between the
forecasts of a model on the X-axis (better) and those of a model on the Y -axis (worse). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. MAE (left panel) and RMSE (right panel) errors for the two benchmarks (Naive, ARX) and the LASSO(λ6) model, separately for each day of
the week in the 852-day out-of-sample test period, see Fig. 1.

differences in predictive accuracy between λ6 and λ7 for
absolute losses, see Fig. 3. Overall, the picture is consistent
with other recent studies that have used the LASSO for
day-ahead EPF (Uniejewski et al., 2016; Uniejewski &
Weron, 2018; Ziel, 2016; Ziel & Weron, 2018).

4.2. Economic benefits from a simple trading strategy

We now give the error measures above a financial in-
terpretation by considering a simple trading strategy that
a participant in the German intraday market can execute.
Assume that we want to trade a unit of electricity, say
1 MWh, for each hourly delivery period throughout the
852-day out-of-sample test period; see Fig. 1. We take a
long position if the intraday price three hours before the
delivery starts (to be precise: the first transaction price
after the three hours to delivery time stamp) is lower than
our LASSO(λ6) forecast P̂t of the ID3 index, and a short

position otherwise. We close the position at the first price
that exceeds P̂t ; i.e., the first price that is higher than P̂t
in the case of a long position and the first price that is
lower than P̂t in the case of a short position. If our ID3
forecast is not breached, then we close the position at
the last traded price (to be precise: the last transaction
price before the 30 min to delivery time stamp), possibly
with a loss. Assuming that there are no transaction costs,
this simple strategy leads to a profit of 0.29 EUR/MWh
on average across the whole out-of-sample test period.
This result clearly shows the usefulness of our approach
relative to a profit of 0.03 EUR/MWh from using the ARX
model and a loss of 0.18 EUR/MWh from using the Naive
benchmark.

4.3. Performances across days of the week and price regimes

Let us now have a closer look at model performances
across days of the week. Fig. 4 plots the MAE (left panel)
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Table 2
MAE (top panel) and RMSE (bottom panel) values for the benchmarks (Naive, ARX) and the ten LASSO(λi) models with λi = 10−

19−i
6 , i = 1, . . . , 10,

in the 852-day out-of-sample test period, see Fig. 1. As in Table 1, a heat map is used to indicate better (→ green) and worse (→ red) performing
models.

and RMSE (right panel) values for the two benchmarks
(Naive, ARX) and the best LASSO model, namely λ6, sep-
arately for each day of the week in the 852-day out-
of-sample test period; see Fig. 1. Clearly, the LASSO(λ6)
model is better than the benchmarks across all days
of the week and for both error measures. As expected,
ARX outperforms the much simpler Naive benchmark,
except under the RMSE on Sundays (which is rather
surprising).

Following Uniejewski et al. (2018), we obtain a bet-
ter understanding of model performances across price
regimes by considering an evaluation conducted sepa-
rately for three subsamples defined using the 3σ -rule:
(i) a positive spike regime: µ + 3σ < Pt , (ii) the normal
range: µ − 3σ < Pt < µ + 3σ , and (iii) a negative spike
regime: Pt < µ − 3σ , where µ is the sample mean and
σ is the sample standard deviation of Pt in the 852-day
out-of-sample test period, see Fig. 1. Overall, there are
only 169 (0.83%) positive and 121 (0.59%) negative spikes,
and as many as 20,158 (98.58%) ‘normal’ prices in the test
period.

Table 2 reports the MAE and RMSE values for the
benchmarks and the LASSO models across the three price
regimes. According to both measures, the normal range
requires larger λs than the spike regimes, which cor-
responds to a smaller number of regressors. The best
predictions are obtained for λ7 (according to both error
measures), with λ6 following closely behind. On the other
hand, positive spikes are captured best by the model
with the smallest smoothing parameter, namely λ1, while
negative spikes are captured best by either λ2 or λ3.
Apparently, extreme prices require much more complex
models, utilizing dependencies among many regressors.
Finally, as expected, the MAE and RMSE values for the
normal range in Table 2 are smaller than those for the full
sample in Table 1.

4.4. Variable selection

Let us now comment on variable selection by looking
at the results of the model that performed best overall,

namely LASSO(λ6). Tables 3 and 4 report the mean oc-
currences (in %) of model parameters across the 852-day
out-of-sample test period. A heat map is used to indicate
more (→ green) and less (→ red) commonly selected
variables. Several interesting conclusions can be drawn:

• The most important variables are the most recent in-
traday price (i.e., Xt−4; see the bottom row in Table 3
with ‘100’ in all columns) and the DA price (i.e., Yt ;
see the row labeled ‘0’ in Table 4 with ‘100’ in nearly
all columns) that correspond to the predicted hour.
Interestingly, the DA prices for the nearby hours
(lags −2, −1 and 1) also tend to be selected by the
LASSO, which may be an indication that Yt is not
a perfect estimate of Xt and that the prices for the
neighboring hours include valuable information.

• Surprisingly, the impact of the previous day’s intra-
day price for the same hour is hardly visible. Hence,
there is no reason to have Xt−24 as an explanatory
variable in parsimonious expert models for the in-
traday market. This is in stark contrast to day-ahead
EPF models, where the previous day’s price for the
same hour is typically one of the most important
regressors (Amjady & Keynia, 2009; Karakatsani &
Bunn, 2008; Keles et al., 2016; Uniejewski et al.,
2016; Ziel & Weron, 2018).

• As was observed by Maciejowska and Nowotarski
(2016) and Ziel (2016), the prices for not only hour
24, but also the nearby evening hours, are important
predictors. This can be seen by the yellow-green
diagonals in Table 3. Note that the first full diagonal
(from the bottom, i.e., lags 4 to 27) corresponds to
hour 21 of day d−1, the second (lags 5 to 28) to hour
20 of day d− 1, etc. A similar effect can be observed
for DA prices; note the yellow-green diagonals start-
ing at the rows labeled ‘1’ (corresponding to hour 24)
and ‘2’ (corresponding to hour 23) in Table 4.

• Somewhat surprisingly, the ‘forward-looking’ DA
prices are rarely selected. A notable exception is the
price for hour 1 on day d + 1; see the mostly green



B. Uniejewski, G. Marcjasz and R. Weron / International Journal of Forecasting 35 (2019) 1533–1547 1541

Table 3
Mean occurrence (in %) of model parameters across the 852-day out-of-sample test
period. The columns represent the hours (h = 1, . . . , 24) for which the price predictions
are made and the rows represent the parameters of the LASSO(λ6) model, see Eq.
(4), that correspond to the seven daily dummies and to the past intraday prices Xt−i ,
i = 168, 167, . . . , 4. A heat map is used to indicate more (→ green) and less (→ red)
commonly-selected variables.

(continued on next page)
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Table 3 (continued).
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Table 4
Mean occurrence (in %) of model parameters across the 852-day out-of-sample test period. The columns
represent the hours (h = 1, . . . , 24) for which the price predictions are made and the rows represent
the parameters of the LASSO(λ6) model, see Eq. (4), that correspond to the past day-ahead (DA)
prices Yt−i , i = 168, 167, . . . , 1, the DA price for the target hour Yt , and the ‘forward-looking’ DA
prices Yt−i , i = −1, −2, . . . ,−31. A heat map is used to indicate more (→ green) and less (→ red)
commonly-selected variables.

(continued on next page)

‘half-diagonal’ in Table 4 starting at the row labeled
‘−8’ for the column (i.e., target hour) labeled ‘17’. A
plausible explanation is that the DA price for the first
hour of the next day includes important information
about the price evolution for the late night intraday
prices; it is known a few minutes after noon, and
hence is available for forecasting intraday prices for
deliveries starting at hour 17.

• Finally, which also comes as a surprise, the dum-
mies are usually removed by the LASSO (except for
two morning hours and one afternoon hour on Sun-
day), see the top seven rows in Table 3. Again, this
is in contrast to day-ahead EPF models, where the
weekday dummies are typically selected (Uniejewski
et al., 2016; Ziel & Weron, 2018).
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Table 4 (continued).

(continued on next page)

4.5. Using the LASSO to build parsimonious ARX-type models

Now that we know which variables are selected by
the LASSO, we can ask ourselves whether this information
can be used to build well-performing, parsimonious ARX-
type models. We address this question by computing the
frequency of selecting each of the 349 (for hour 16) to
372 (for hour 17) regressors of the LASSO(λ6) model,
see Eq. (4), in a 364-day rolling ‘selection’ window that
follows the 364-day calibration window directly. Then, we

forecast prices in the remaining 488-day out-of-sample
test period by building ARX-type models that include as
regressors only those variables that have been selected at
least x% = 50%, 60%, . . . , 90% of the time. The resulting
models are denoted by ARXx%.

The MAE and RMSE values are reported in Table 5.
Note that they differ from those reported for the bench-
marks and the LASSO(λ6) model in Table 1 because of
the much shorter out-of-sample test period (488 vs. 852
days). Surprisingly, some of the ARXx% models perform
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Table 4 (continued).

exceptionally well. In particular, ARX70% is slightly better
in terms of RMSE than LASSO(λ6), despite utilizing only
13.4 explanatory variables on average, i.e., about 27 times
fewer than the baseline LASSO model in Eq. (4) and nearly
3.5 times fewer than LASSO(λ6), which selects an average
of 46 regressors. However, the difference is not statisti-
cally significant, see the DM plots in Fig. 5. On the other
hand, the LASSO(λ6) model is the best in terms of MAE,
being significantly better than all of its competitors except
ARX70%.

5. Conclusions

We have used a unique set of electricity prices from
the German EPEX market to address the problem of the
optimal choice of explanatory variables for forecasting
intraday prices. Given that the literature on this topic is
very scarce, our study is a major step towards understand-
ing the intraday price dynamics and developing well-
performing predictive models for a market that many
participants see as the future of electricity trading.
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Table 5
MAE and RMSE values for the two benchmarks (Naive, ARX), the LASSO(λ6) model and five ARXx% models built on the
latter with cutoffs of x% = 50%, 60%, . . . , 90%, over the 488-day out-of-sample test period (see Section 4.5 for details).

Fig. 5. Results of the Diebold–Mariano (DM) test for the absolute (left) and squared (right) prediction errors, using the same models as in Table 5.
A heat map is used to indicate the range of the p-values: the closer they are to zero (→ dark green), the more significant the difference is between
the forecasts of a model on the X-axis (better) and the forecasts of a model on the Y -axis (worse). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

To this end, we have considered 12 models, namely
a naive benchmark, a parsimonious autoregressive struc-
ture inspired by the well-performing expertDoW ,nl model
of Ziel and Weron (2018), and a LASSO-estimated model
with 349 (for hour 16) to 372 (for hour 17) potential
regressors and ten different values of the tuning param-
eter. We have found that, for an appropriately chosen
value of λ, the LASSO model significantly outperforms its
competitors, as measured by the Diebold–Mariano test.

The most important explanatory variables turned out
to be the most recent intraday price and the day-ahead
(DA) price that corresponds to the same hour. The intra-
day and — to a lesser extent — DA prices for late evening
hours could also be considered as regressors. On the other
hand, in contrast to day-ahead EPF models, neither the
previous day’s price for the same hour nor weekday dum-
mies were found to be important predictors.

Finally, we have shown that the LASSO can be used
to build well-performing, parsimonious ARX-type models.
In particular, the performance of an OLS-estimated model
with regressors that have been selected by the LASSO
at least 70% of the time in a 364-day rolling ‘selection’
window is comparable to that of the best LASSO model.

At the same time, it utilizes an average of only 13.4
explanatory variables, i.e., about 27 times fewer than the
baseline model and nearly 3.5 times fewer than the best
LASSO model, LASSO(λ6).
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a b s t r a c t

This paper develops a novel, fully automated forecast averaging scheme which combines
LASSO estimation with principal component averaging (PCA). LASSO-PCA (LPCA) explores
a pool of predictions based on a single model but calibrated to windows of different
sizes. It uses information criteria to select tuning parameters and hence reduces the
impact of researchers’ ad hoc decisions. The method is applied to average predictions
of hourly day-ahead electricity prices over 650 point forecasts obtained with various
lengths of calibration windows. It is evaluated on four European and American markets
with an out-of-sample period of almost two and a half years and compared to other
semi- and fully automated methods, such as the simple mean, AW/WAW, LASSO, and
PCA. The results indicate that LASSO averaging is very efficient in terms of forecast error
reduction, whereas PCA is robust to the selection of the specification parameter. LPCA
inherits the advantages of both methods and outperforms other approaches in terms of
the mean absolute error, remaining insensitive to the choice of a tuning parameter.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electricity price forecasting (EPF) is nowadays per-
ceived as fundamental for decision making in energy
markets. As short-term transactions provide a tool for ad-
justing long-term positions and a benchmark in over-the-
counter trading, the day-ahead, intraday, and balancing
prices play a key role in day-to-day operations (Kath &
Ziel, 2018; Maciejowska, Nitka, & Weron, 2019; Mayer
& Trück, 2018; Weron, 2014). In the last decades, the
market share of renewable energy sources has rapidly
increased. As a result, intermittent changes in the gen-
eration level and structure have become more likely. This
leads to an increase in market imbalances and electric-
ity price volatility (Gianfreda, Parisio, & Pelagatti, 2016;
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Kowalska-Pyzalska, 2018; Maciejowska, 2020). Hence, re-
liable methods dedicated to EPF are essential for manag-
ing energy companies.

One way to increase the prediction accuracy is to
combine forecasts obtained with different models. The
idea of forecast averaging started about half a century
ago. The pioneering papers of Bates and Granger (1969)
and Crane and Crotty (1967) inspired many authors to
develop new methods and contribute to the area. Since
the late 1960s, hundreds of papers have suggested the
superiority of forecast combinations over individual mod-
els (Nowotarski & Weron, 2016; Timmermann, 2006;
Wallis, 2011). Hibon and Evgeniou (2005) state that the
main advantage of combining forecasts is the fact that, in
practice, it is less risky to combine forecasts than to select
an individual forecasting method.

Recently, experts have paid more attention to the se-
lection of the calibration window used for model estima-
tion (see Pesaran & Timmermann, 2007). Marcos, Bunn,
Bello, and Reneses (2020) claim that in rapidly devel-
oping markets, such as an energy market, researchers

https://doi.org/10.1016/j.ijforecast.2022.09.004
0169-2070/© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of Forecasters. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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should take into account structural breaks and adjust
model parameters to market changes. The simplest so-
lution to the issue is to work with short data, which
describe only the most recent events. This approach has
some severe drawbacks, as it decreases the estimation
accuracy and limits the complexity of applied models. On
the other hand, one may try to estimate the time of a
structural break and include it directly in a forecasting
model. The assumption of a discrete shift in model param-
eters is, however, unsuitable for more complex evolution
patterns (Marcos et al., 2020). In the literature, there is no
agreement on which solution is the best, so the majority
of research on EPF applies an arbitrarily chosen calibration
window length. In recent articles, Hubicka, Marcjasz, and
Weron (2019), Marcjasz, Serafin, and Weron (2018), Ser-
afin, Uniejewski, and Weron (2019) suggest using a pool
of different in-sample data sizes and averaging the re-
sulting forecasts. The outcomes presented in these papers
suggest that the choice of three ‘short’ and three ‘long’ cal-
ibration windows provides robust results that outperform
all individual predictions. This conclusion is questioned
by Maciejowska, Uniejewski, and Serafin (2020), who
show that the suggested solution is not valid for all the
electricity markets and has to be adjusted to a market
specification.

The estimation of a single model with various cali-
bration windows enables us to obtain a large number of
predictions. For example, in Maciejowska et al. (2020)
a panel of 673 forecasts is built. Moreover,it could be
observed that predictions in such a pool are very simi-
lar to each other,because a slight change in the estima-
tion window does not alter the model parameters much.
Thus, it is natural to search for methods that would help
to reduce the dimension of the problem, without losing
useful information. In this context, two approaches are
natural candidates: the principal component (PC) method,
which summarizes the panel with a small number of
components (see Bai & Ng, 2002; Stock & Watson, 2002);
and the least absolute shrinkage and selection operator
(LASSO, Tibshirani (1996)), which reduces the dimension
of a model by assigning a penalty to non-zero parameters.
Here, we propose a novel approach which combines these
two methods for forecast averaging. Principal components
is a well-known tool that has been successfully applied
for analyzing big panels of data. It has been used to
directly predict the variables of interest (Boivin & Ng,
2005; Stock & Watson, 2012) or to augment a small-
scale econometric model (Banerjee, Marcellino, & Mas-
ten, 2014). Factor models have been extended to account
for dynamic relationships (see Forni, Hallin, Lippi, & Re-
ichlin, 2000; Forni & Lippi, 2001) and used to create
economic indicators (Stock & Watson, 1998). Although
the potential of principal component averaging (PCA) for
forecast averaging was recognized by Chan, Stock, and
Watson (1999) and Huang and Lee (2010), there are only
a few papers that illustrate its performance. Stock and
Watson (2004) and Poncela, Rodriguez, Sanchez-Mangas,
and Senra (2011) used PCA to predict macroeconomic
variables. They estimated components from a panel of
forecasts coming from either different models or different
experts. In both cases, the panels were relatively small

and diversified. Maciejowska et al. (2020) proposed an al-
gorithm that extracts PCs from a large standardized panel
of predictions coming from a single model (as in Hubicka
et al. (2019), Marcjasz et al. (2018), and Serafin et al.
(2019)) and uses them to calculate the final forecasts via
linear regression. In their study, 1–4 components were
used. The results indicated that PCA is a robust method
for forecast pooling. The major issue with Maciejowska
et al. (2020) is that the number of PCs is either chosen
a priori or selected from a small number of alternatives.
Moreover, it is not clear how the approach performs if a
larger number of components are considered.

The literature proposes many methods of dealing with
a large set of potential explanatory variables. Two ma-
jor approaches could be distinguished: selecting an op-
timal model (Gaillard, Goude, & Nedellec, 2016; Ludwig,
Feuerriegel, & Neumann, 2015; Uniejewski, Nowotarski, &
Weron, 2016; Ziel, Steinert, & Husmann, 2015) or averag-
ing across models. Here, we adopt the first approach and
apply LASSO, which was introduced by Tibshirani (1996)
and is one of the most popular and important regular-
ization methods. Because of its linear penalty function,
the LASSO estimator shrinks the coefficients of the less
important explanatory variables to zero. It is a tool for
automated variable selection, as it identifies significant
variables and excludes redundant ones (Uniejewski et al.,
2016; Uniejewski & Weron, 2018). In the context of pre-
diction pooling, the LASSO technique has been success-
fully used in both point (Diebold & Shin, 2019) and prob-
abilistic (Bayer, 2018; Bracale, Carpinelli, & Falco, 2019;
Uniejewski & Weron, 2021) forecasting. To our knowl-
edge, LASSO averaging has not been applied to point
forecasting of electricity prices, and therefore there is a
need to evaluate its performance in this field.

The main novelty of this paper is a fully automated
forecast averaging scheme, called LPCA, that utilizes both
PCA and LASSO regularization techniques. We present an
algorithm that extends the approach described in Ma-
ciejowska et al. (2020) and allows for the use of an arbi-
trarily large number of components. Thanks to the LASSO
estimation method, irrelevant PCs are excluded and hence
the corresponding noise is reduced. Since LASSO depends
on a tuning parameter, information criteria are applied to
select its optimal value. Unlike in typical LASSO averaging,
the inputs in LPCA are orthogonal to each other. More-
over, although one could use all PCs, a smaller number
of components than individual forecasts should be suffi-
cient. Hence, LPCA should be much easier and faster to
compute than the full-panel LASSO. As a result, the pro-
posed methodology does not require any expert knowl-
edge or intuition to obtain predictions of future prices and
should be less computationally burdensome than existing
methods.

The paper is structured as follows. First, we present
the datasets that consist of day-ahead price series, as well
as the exogenous variables. At the end of Section 2, we
describe a data transformation. Next, in Section 3, we
present the methodology to obtain point forecasts and
to average them. In the same section, we introduce a
new algorithm for a fully automated approach designed
to combine forecasts. In Section 4, we present the results
of our study, and in Section 5, we conclude the research.
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Table 1
Exogenous variables.
Description Notation Availability

Load Ld,h EPEX, NP, OMIE, PJM
Zonal load Zd,h PJM
Wind power generation (WPG) Wd,h EPEX, NP, OMIE
Photovoltaic generation (PVG) Sd,h EPEX, OMIE

2. Datasets

The datasets used in this study cover five years and
describe four different markets: German (EPEX), Scandi-
navian (Nord Pool, NP), Spanish (OMIE), and American
(PJM). All time series have an hourly resolution and span
1826 days from 1.01.2015 to 31.12.2019 (the data are not
extended to 2020, as the COVID-19 pandemic changed
the market dynamics). Missing or ‘doubled’ values (corre-
sponding to the time change) are replaced by the average
of the closest observations, for the missing hours, and the
arithmetic mean of the two values, for ‘doubled’ hours.
Note that the data are double-indexed, with d denoting
the day and h the hour of an observation.

2.1. Day-ahead electricity prices

This research focuses on electricity prices from day-
ahead markets, which are established simultaneously
around noon on the day preceding the delivery. A more
detailed description of the day-ahead market design can
be found in Weron (2014). As a result, market participants
can utilize only the information available at the time of
bidding. This also impacts the forecasters, who should
include in their models only the data published before the
noon (see Huisman, Huurman, & Mahieu, 2007).

The following day-ahead prices, DAd,h, are considered:

• The German market EPEX spot (top panel in
Fig. 1(a)); the data are taken from the transparency
platform (https://transparency.entsoe.eu).

• The Scandinavian market Nord Pool (top panel in
Fig. 1(b)); the data are taken from the Nord Pool
website (https://www.nordpoolgroup.com).

• The Spanish market OMIE (top panel in Fig. 2(a));
the data are taken from the OMIE website (https:
//www.omie.es).

• The American market PJM COMED (top panel in
Fig. 2(b)); the data are taken from the PJM data
miner (https://dataminer2.pjm.com).

2.2. Exogenous variables

The literature indicates that various exogenous factors,
such as the generation structure and fuel prices, have an
important impact on electricity prices and can be used to
forecast these prices Following Maciejowska et al. (2020),
in this study, we consider day-ahead predictions of fun-
damental variables describing the demand and supply of
electricity provided by transmission system operators. A
description of the data can be found in Table 1. Notice that
the set of exogenous variables changes between markets
and depends on the data availability.

The day-ahead forecasts for all exogenous variables are
plotted in Figs. 1 and 2. The variables, in particular load
and solar generation, exhibit strong yearly seasonality,
with the load also following a weekly pattern.

2.3. Variance stabilizing transformation

As can be seen in Figs. 1 and 2, electricity prices ex-
hibit spiky behavior. Uniejewski, Weron, and Ziel (2018)
argue that it is possible to reduce the influence of such
extreme values on forecasts by using a variance stabilizing
transformation (VST). These findings are confirmed by the
literature (Marcjasz et al., 2018; Uniejewski & Weron,
2018). Here, we follow the recommendation of Uniejew-
ski et al. (2018) and apply the N-PIT transformation (to
all variables in the dataset). Let us recall that the N-
PIT transformation is based on the so-called probability
integral transform. Let us consider a time series Yd,h. Its
transformation, Ỹd,h, is given by:

Ỹd,h = N−1
(
F̂Y (Yd,h)

)
, (1)

where F̂Y (·) is the empirical cumulative distribution func-
tion of the in-sample Y , and N−1 is the quantile function
of the normal distribution. After the models are estimated
on the transformed time series, we apply the inverse
transformation to obtain the final forecast of electricity
prices:

Yd,h = F̂Y
(
N(Ỹd,h)

)
, (2)

where the time series Y corresponds to the price series
DA.

3. Methodology

3.1. Experiment design

The majority of research in EPF arbitrarily chooses
the length of a calibration window. In last years, various
research Hubicka et al. (see 2019), Maciejowska et al. (see
2020), Marcjasz et al. (see 2018), Serafin et al. (see 2019)
has shown that averaging predictions based on different
in-sample data lead to an improvement in forecast ac-
curacy. Here, we follow this idea and use a pool of 673
calibration window lengths, ranging from 56 days (around
two months) to 728 days (around two years). Unlike in
previous papers, this research focuses on automating the
averaging process in order to make it independent of the
ad hoc decisions of forecasters.

The pool of forecasts is obtained with a rolling window
procedure, a standard procedure in EPF literature (Weron,
2014). To be more specific, the first 728 days are used
for model estimation (for shorter windows, the calibration

3
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Fig. 1. Day-ahead prices and exogenous time series from 1 January 2015 to 31 December 2019. The vertical dashed lines respectively mark the
beginning of the out-of-sample test period for point forecasts (29 December 2016; also the beginning of the initial 182-day calibration window for
averaging forecasts) and the beginning of the out-of-sample test period for averaging forecasts (29 June 2017). The first 728 days constitute the
initial calibration window for point forecasts.
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Fig. 2. Day-ahead prices and exogenous time series from 1 January 2015 to 31 December 2019. The vertical dashed lines respectively mark the
beginning of the out-of-sample test period for point forecasts (29 December 2016; also the beginning of the initial 182-day calibration window for
averaging forecasts) and the beginning of the out-of-sample test period for averaging forecasts (29 June 2017). The first 728 days constitute the
initial calibration window for point forecasts.
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sample is left truncated, so it ends on the same day).
Next, 24 point forecasts are computed, one for each hour
of the day, and finally the window is moved one day
forward. The procedure is repeated until the last out-
of-sample day is reached. Once the pool of predictions
is created, a rolling window of 182 days (around half
a year) is used to calibrate the averaging methods (see
Section 3.3). The final predictions are evaluated using the
last 916 days of the sample. The divisions of the point
forecast, averaging, and out-of-sample periods are marked
by dashed lines in Figs. 1 and 2. The first line marks the
end of the initial 728-day calibration window for point
forecasts (i.e., 1 January 2015 to 28 December 2016). The
second indicates the end of the initial 182-day calibration
window for averaging forecasts (i.e., 28 June 2017), which
is also the beginning of the evaluation period.

3.2. Forecasting models

In this research, forecasts for all 24 h of the next day
are computed simultaneously a day in advance. Similarly
to Maciejowska et al. (2020), we consider a parsimonious
autoregressive structure used in a number of EPF stud-
ies (Uniejewski et al., 2016; Uniejewski & Weron, 2018;
Uniejewski et al., 2018; Ziel & Weron, 2018). The origi-
nally proposed setup is expanded to include the exoge-
nous variables presented in Section 2.2. The final model
is denoted by DA. The price DAd,h for day d and hour h is
described by the following formula:

DAd,h = βh,1DAd−1,h + βh,2DAd−2,h + βh,3DAd−7,h  
autoregressive effects

+

+ βh,4DAd−1,min + βh,5DAd−1,max  
non-linear effects

+ βh,6DAd−1,24  
midnight price

+

+

7∑
i=1

βh,6+iDi  
weekday dummies

+ θhXd,h  
exogenous variables

+εd,h, (3)

where DAd−1,h, DAd−2,h, and DAd−7,h are the lagged day-
ahead prices from one, two, and seven days before.
DAd−1,min and DAd−1,max respectively refer to the mini-
mum and the maximum price from day d − 1. DAd−1,24
is the last already-known price, corresponding to the pre-
vious day at midnight. D1, . . . ,D7 denote dummies that
capture weekly seasonality. Finally, vector Xd,h describes
the exogenous variables. As stated in Section 2.2, Xd,h
differs across markets. The day-ahead forecasts of the load
(Ld,h) are included in Xd,h for all the countries, whereas the
presence of other variables is restricted by their availabil-
ity. For example, Wd,h is used for all European countries
but is not included in Xd,h for the PJM market. Therefore,
in the case of the USA, the zonal load forecasts (Zd,h)
are added instead. Additionally, for Germany and Spain,
the photovoltaic generation Sd,h is included. Note that,
as in Maciejowska et al. (2019) and Maciejowska et al.
(2020), Sd,h is admitted in the model (3) only for hours
9–17, because during the night and early morning hours,
solar generation is too weak to impact the electricity
price.

3.3. Averaging methods

According to recent literature, the forecasting perfor-
mance of statistical models is sensitive to the choice of
the calibration window (Hubicka et al., 2019). Hence,
it may be beneficial to average forecasts based on win-
dows of different lengths (Hubicka et al., 2019; Pesaran
& Timmermann, 2007), as this allows us to explore both
the local and long-run behavior. Although estimating the
same model with different datasets seems straightfor-
ward, forecast averaging remains a demanding task. First,
a large number of predictions based on long windows are
almost identical. Extending the sample by one observation
from, for example, 727 to 728 days, does not alter the pa-
rameter estimates much. This feature impedes the usage
of typical regressions for choosing averaging weights, as
a large number of forecasts are almost co-linear. On the
other hand, there are relatively few predictions based on
short windows, which are distinct. Unfortunately, these
forecasts are also more variable and typically burdened
with a larger forecast error. Finally, it is not clear how to
balance the impact of the short and long windows on the
final prediction.

In this paper, we consider three types of forecast com-
bination methods. First, predictions are computed either
as a simple or weighted mean of individual forecasts.
Next, the weights are selected with the LASSO method,
which is a regression-based approach. LASSO allows us
to include a large number of input variables and shrinks
the parameters toward zero. Hence, it can help to select
the optimal window lengths. Finally, the information in-
cluded in the panel of forecasts is summarized by a set
of common factors (computed as principal components,
PCs), which are next used to compute the predictions of
interest.

3.3.1. Linear average (simple average, AW, and WAW)
We consider three methods based on a linear average.

The literature indicates that the arithmetic mean is a
simple but very efficient approach (Genre, Kenny, Meyler,
& Timmermann, 2004). Here, we compute the mean of
all considered window sizes ranging from 56 days to 728
days, called the simple average. Second, following Hu-
bicka et al. (2019), a subset of six calibration window
lengths is selected, which consists of three short (56-, 84-
, and 112-day) and three long (714-, 721-, and 728-day)
in-sample sizes. Forecasts based on these chosen window
sizes are then averaged. This approach is denoted AW(56,
84, 112, 714, 721, 728) or simply AW. Unfortunately,
both the simple average and AW assume that the weights
are equal and constant over time. Therefore, they cannot
adapt to changing market conditions, for example, a rising
share of renewable energy sources in the generation mix.

In order to overcome this problem, Marcjasz et al.
(2018) proposed to extend AW to allow for data-driven
weights. Similar to Hubicka et al. (2019), a small subset
of available forecasts is first selected. Then, instead of
taking a simple average, Marcjasz et al. (2018) use the
forecast errors from the previous day to assign weights
to each individual prediction. The forecasts are evalu-
ated with the mean absolute error (MAE), and those that
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are more accurate are assigned higher weights (for more
details, see Eq. (5) in Marcjasz et al. (2018)). Here, follow-
ing Maciejowska et al. (2020), we use the whole averaging
window (182 days) to compute the weights. Similar to
AW, the weighted AW is denoted as WAW(56, 84, 112,
714, 721, 728) or simply WAW.

An application of linear averages is associated with
some issues. First, when computing the simple average,
the majority of inputs come from long calibration win-
dows which provide very similar forecasts. Hence, the
long windows dominate and reduce the impact of local
behavior. This drawback is reduced in the AW and WAW
approaches, as they include the same number of short and
long windows and balance the impact of different win-
dow sizes. Unfortunately, AW/WAW, unlike the simple
average, requires pre-selecting the number and lengths of
calibration windows used for averaging. Hence, it cannot
be considered a robust approach, because a subset that
works well for one market may not be plausible for the
other.

3.3.2. LASSO averaging
The idea of the regularization of an estimation process

can be viewed as an optimization problem:

β̂ = argmin {f (X; β) + g(β)} , (4)

where β is a parameter vector, and X is a dataset. In
Eq. (4), f (X; β) denotes a loss function—e.g., the residual
sum of squares (RSS), as in the least squares estimation
method—while g(β) is the penalty function (Tikhonov,
1963).

In the literature, it is common to use a scaled ℓq norm
as g(β). The most popular variant of the regularization,
called LASSO, was introduced by Tibshirani (1996). It sets
q = 1 and f (X; β) = RSS (see (5)). Due to its properties, it
is a tool for automated variable selection and can success-
fully identify the most important variables (Uniejewski
et al., 2016; Uniejewski & Weron, 2018).

β̂ = argmin

{
RSS + λ

n∑
i=1

|βh,i|

}

≡ argmin

⎧⎨⎩∑
d,h

(
pd,h −

n∑
i=1

βh,iXd,h,i

)2

+ λ

n∑
i=1

|βh,i|

⎫⎬⎭ ,

(5)

LASSO is also one of the most popular solutions to
combine point forecasts. It has become a gold standard
in the literature, especially for high-dimensional problems
(i.e., when the number of individual predictions exceeds
the number of in-sample observations). It has the prop-
erty of selecting only a few individual point forecasts,
even in the case of rich pools, which improves the ac-
curacy. In a recent paper, Uniejewski and Weron (2021)
showed that linear penalty regularization also works in
probabilistic forecasting.

Here, LASSO regression is used to average all (673)
point forecasts from the pool (see Section 3.1). We con-
sider a log-scaled grid of 20 λ parameters (LASSO(λ))
and choose its optimal value via information criteria: the

Akaike information criterion (AIC), Bayesian information
criterion (BIC), and the Hannan–Quinn information crite-
rion (HQC). The procedure to select the tuning parameter
is taken from Ziel and Weron (2018) and its results are
denoted by LASSO(BIC), LASSO(AIC), and LASSO(HQC).

3.3.3. Principal component averaging (PCA)
Many forecast averaging methods strongly depend on

expert knowledge. For example, AW and WAW require
pre-selecting the window lengths used in the forecast
pooling. In order to overcome this issue, Maciejowska
et al. (2020) proposed principal component averaging
(PCA) to automate the procedure of averaging over a
rich pool of predictions. The authors applied the principal
component method to a panel of over 650 point forecasts
obtained with models calibrated with different in-sample
sizes. Next, they used the estimated components in a
linear regression to form the final predictions. In such
a way, they overcame the problem of the co-linearity
of forecasts stemming from the same model calibrated
on similar windows. Their results indicated that the PCA
forecast averaging leads to more accurate predictions of
electricity prices in terms of the MAE than the simple
average, AW, or WAW.

The step-by-step algorithm of PCA is described be-
low. In the algorithm, df denotes the forecasted day and
τ = 56, 57, . . . , 728 stands for the length (in days) of
a calibration window used to calculate the predictions.
Moreover, during the averaging, all the hourly predictions
are treated as time series and indexed with t . The av-
eraging window includes the predicted day df and 182
proceeding days: t ∈ {24d + h : df − 182 ≤ d ≤ df , 1 ≤

h ≤ 24}. In the following parts of the paper, P̂t,τ denotes
the predicted electricity prices for period t obtained with
a τ -day calibration window, whereas Pt stands for their
actual level.

1. For each time period, t , in an averaging window,
estimate the mean (µ̂t ) and standard deviation (σ̂t )
of forecasts (P̂t,τ ) across τ = 56, 57, . . . , 728.

2. Standardize the forecasts and the real price with
the previously estimated µ̂t and σ̂t :

Ẑt,τ =
P̂t,τ − µ̂t

σ̂t
, Zt =

Pt − µ̂t

σ̂t
. (6)

Notice that at the time of forecasting, the last 24
elements of Zt , corresponding to the predicted day
df , are not known.

3. Estimate the first K principal components,
(PCt,1, PCt,2, . . . , PCt,K ), of a panel {Ẑt,τ } using the
method described by Bai and Ng (2002), Stock
and Watson (2004). Notice that PCs include the
information of the price forecasts for all hours in
a 182-day averaging calibration window, as well as
for the forecasted day.

4. Estimate linear regression parameters with least
squares using observations from the averaging win-
dow (without day df ):

Zt = α +

K∑
k=1

βkPCt,k + εt . (7)
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5. Using estimated parameters, compute the predic-
tion of the normalized price Zt for t ∈

(
24df + 1,

24df + 24
)
corresponding to all hours in forecasted

day df :

Ẑt = α̂ +

K∑
k=1

β̂kPCt,k (8)

and transform it back into its original level

P̂t = Ẑt · σ̂t + µ̂t . (9)

Although PCA allows us to explore the information
included in the whole panel of forecasts, it still requires
selecting the number of components used in a regression,
K . Therefore, similar to Maciejowska et al. (2020), we
consider the method based on k-first PCs and denote them
by PCA(k). For illustrative purposes, we also choose the ex
post optimal (fixed) number of PCs taken for averaging,
denoted PCA(best).

Next, three variants of PCA are applied, which are
based on information criteria. This allows a data-driven
adjustment of the number of PCs used in the regression
(7). We consider the same information criteria, which
are used to select λ in the LASSO procedure. The re-
sults are denoted consecutively by PCA(BIC), PCA(AIC),
and PCA(HQC).

3.3.4. LASSO principal component averaging (LPCA)
In this paper, we propose a novel approach which

combines a PCA-based procedure with LASSO estimation.
First, similar to Maciejowska et al. (2020), K components
are extracted from the standardized panel of point pre-
dictions (see Section 3.3.3 for a detailed description of the
algorithm). Unlike in previous work, the number of PCs is
substantial (here, 20 components) and can be arbitrarily
big. Next, the PCs are used as input variables in the re-
gression (7). In order to estimate the model’s parameters,
the LASSO method is applied. This approach enables the
calibration of the model even when the number of PCs
is larger than the size of the averaging calibration win-
dow. Moreover, it shrinks the parameters toward zero and
hence reduces the noise induced by redundant compo-
nents. Finally, the predictions of all hours of day df are
calculated (8) and transformed back into the original units
(9).

The LASSO optimization algorithm depends on a pa-
rameter λ which specifies the impact of the penalty func-
tion. Similar to LASSO averaging, we consider a log-scaled
grid of 20 λ and select the optimal value via information
criteria. The outcomes are denoted either by LPCA(λ) or
by LPCA(BIC), LPCA(AIC), and LPCA(HQC).

The LPCA does not require any prior decision on the
size of the calibration windows used for averaging (as
in AW/WAW), and it is not restrictive in terms of the
number of PCs (as in PCA). As such, it can be perceived
as a fully automated method. Moreover, thanks to the
orthogonality of the PCs, the estimation algorithm is faster
than LASSO averaging.

4. Results

We use the mean absolute error (MAE) for the full out-
of-sample test period of D = 916 days (i.e., 29.06.2017
to 31.12.2019; see Fig. 1 or 2) as the main evaluation
criterion. The MAE is one of the most commonly used
measures for evaluating forecast accuracy. In the case of
electricity markets, it reflects the average deviation of the
revenue from selling 1 MWh from its expected level. We
consider two MAE-based measures:

MAE(i)
d =

1
24

24∑
h=1

|ε
(i)
d,h| (10)

MAE(i)
=

1
D

D∑
d=1

MAE(i)
d (11)

where ε
(i)
d,h = Pd,h − P̂ (i)

d,h is the forecast error for hour h
in day d, obtained with either different calibration win-
dow lengths, τ , or averaging methods. The first measure,
MAE(i)

d , describes the forecast accuracy for a single day
d and is used for a statistical comparison between in-
dividual approaches. Finally, MAE(i) describes the overall
performance in the whole out-of-sample period.

As an auxiliary measure, we define a percentage
change of forecast accuracy relative to the results of a
model with the longest considered calibration window,
the 728-day window (MAE(728)):

%chngi =
MAE(i)

− MAE(728)

MAE(728) × 100%. (12)

The relative change in the accuracy of a given model
shows how different the model is from the usual approach
of taking calibration windows that are as long as possible.
Note that a positive sign of the measure indicates that
a given model is worse than the benchmark, while a
negative value appears when a given model outperforms
the longest-window approach.

Given a number of datasets, it is hard to rank the
models’ accuracy. To solve this issue, we use a mean of
the %chngi over four datasets to obtain the final ranking:

m.p.d.b.i =
1
4

4∑
m=1

%chngmi , (13)

where m indicates one of four datasets (EPEX, NP, OMIE,
or PJM).

The obtained MAE values can be used to provide a
ranking of forecasts. Unfortunately, they do not allow us
to draw statistically significant conclusions on the outper-
formance of one prediction over another. Therefore, the
conditional predictive ability (CPA) test of Giacomini and
White (2006) is used to compare competitive outcomes.
The test statistic is computed using the vector of average
daily MAEd:

∆i,j,d = MAE(i)
d − MAE(j)

d . (14)

For each pair (i, j), the p-value of the CPA test is com-
puted.
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Fig. 3. Mean absolute errors (MAEs) for the EPEX, Nord Pool, OMIE, and PJM datasets for the period from 29.06.2017 to 31.12.2019 as a function of
the calibration window length ranging from 56 to 728 days.

4.1. Individual forecasts

The performance of individual forecasts is presented
in Fig. 3, which shows the MAE for different calibration
window lengths in the four analyzed markets. It can be
observed that the strategy for selecting the optimal size
of the calibration window differs between the datasets.
For some markets, such as EPEX, the longer the calibration
window we take, the worse the autoregressive model
performs. For others, such as PJM, it is beneficial to use
long samples to estimate the model parameters. Finally,
for Nord Pool and OMIE, the MAE plots are not monotonic
and it is difficult to make an optimal decision. Hence,
the results confirm the previous findings of Hubicka et al.
(2019) and Marcjasz et al. (2018) and prove that it is
impossible to ex ante choose the length of the optimal
calibration window size.

Table 2 presents the detailed results for three selected
window sizes: 56 days (8 weeks), 364 days (1 year), and
728 days (2 years). They are next compared with the
benchmark, which is the longest available calibration win-
dow. The outcomes are augmented with the results for the
optimal window size, which is selected ex post and hence
is not available for real-time usage. The results indicate
that the selection of the calibration window length may
have a great impact on the forecast accuracy. The gains
from its proper choice reach up to 12.527% (EPEX market).

4.2. Averaging results

Tables 3 and 4 present the MAE and %chng results
for the forecasts obtained with different averaging tech-
niques. Here, two approaches are evaluated separately:
semi-automated and fully automated. In the first group

of methods, arbitrary decisions of researchers about the
number of components to be averaged are allowed. More-
over, the penalty parameter λ in the LASSO method is
pre-defined for the whole sample. In the second group,
the methods are fully automated, which means that the
forecaster is not involved in the averaging process.

4.2.1. Semi-automated averaging methods
Let us first analyze the outcomes of semi-automated

approaches, in which the researcher decides a priori on
the selection of forecasts used for averaging. In all consid-
ered methods, the inputs are chosen once for the whole
evaluation period and do not adjust as the calibration
and averaging windows move. The results are reported in
Table 3. First, the outcomes of the AW and WAW methods
are presented based only on a small subset of individual
point forecasts (three short and three long windows). It
can be observed that both approaches yield results which
are far better than the benchmark. By averaging forecasts
stemming from just six different calibration windows, the
MAE is reduced by more than 10% for EPEX, NP, and
OMIE, and at least 3% for PJM. When both methods are
compared, it can be observed that the weighted approach
is better than AW, which assigns equal weights for all
predictions.

Next, the error measures for LASSO, PCA, and LPCA
with parameters selected ad hoc, based on existing lit-
erature and experience, are presented. For each method,
the first three rows show outcomes for exemplary speci-
fications described either by the number of components,
k, in PCA(k) or by λ in LASSO(λ) and LPCA(λ). The forth
row reports results for the best ex post value of these
parameters. The outcomes confirm that using forecast
averaging techniques is beneficial. Similar to AW/WAW,

9



B. Uniejewski and K. Maciejowska International Journal of Forecasting xxx (xxxx) xxx

Table 2
Mean absolute errors (MAEs) and the percentage change (%chng) compared to the simple average
benchmark of the price forecasts for the whole 916-day out-of-sample period from 29.06.2017 to
31.12.2019. The results are presented for selected calibration window lengths of 56, 364, and 728 days.
Calib. window
length

EPEX NP OMIE PJM

MAE %chng MAE %chng MAE %chng MAE %chng

56 5.339 −9.126% 2.210 −1.365% 3.181 −2.545% 3.674 11.075%
364 5.599 −4.695% 2.163 −3.450% 3.141 −3.767% 3.352 1.317%
728 5.875 0% 2.241 0% 3.264 0% 3.308 0%
best 5.139 −12.527% 2.159 −3.651% 3.100 −5.040% 3.299 −0.280%

Table 3
Mean absolute errors (MAEs) and the percentage change (%chng) compared to the simple average benchmark of the price forecasts for the
whole 916-day out-of-sample period from 29.06.2017 to 31.12.2019. In this panel, we report the results obtained with averaging setups that
depend on the forecaster’s knowledge/intuition. Note that in each column, the best result is shown in bold.
Averaging EPEX NP OMIE PJM

MAE %chng MAE %chng MAE %chng MAE %chng m.p.d.b.

AW 5.059 −13.895% 1.970 −12.101% 2.917 −10.629% 3.206 −3.099% −9.931%
WAW 5.014 −14.650% 1.966 −12.264% 2.913 −10.755% 3.204 −3.148% −10.204%

LASSO(10−2) 5.416 −7.822% 2.408 7.464% 3.029 −7.216% 3.657 10.534% 0.740%
LASSO(10−1) 4.954 −15.671% 2.018 −9.954% 2.886 −11.575% 3.255 −1.595% −9,699%
LASSO(100) 4.962 −15.536% 1.984 −11.458% 2.893 −11.356% 3.230 −2.372% −10.180%
LASSO(best) 4.924 −16.182% 1.963 −12.37% 2.872 −12.023% 3.200 −3.268% −10.961%

PCA(1) 5.030 −14.380% 2.025 −9.612% 2.963 −9.210% 3.269 −1.195% −8.599%
PCA(5) 5.007 −14.771% 1.980 −11.647% 2.913 −10.766% 3.220 −2.672% −9.964%
PCA(20) 5.080 −13.524% 2.069 −7.663% 2.944 −9.803% 3.278 −0.915% −7.976%
PCA(best) 4.965 −15.495% 1.969 −12.103% 2.913 −10.766% 3.210 −2.972% −10.334%

LPCA(10−3) 4.998 −14.930% 2.022 −9.745% 2.914 −10.728% 3.244 −1.942% −9.336%
LPCA(10−2) 4.979 −15.253% 1.970 −12.064% 2.904 −11.045% 3.202 −3.209% −10.393%
LPCA(10−1) 5.107 −13.066% 2.058 −8.151% 3.014 −7.663% 3.270 −1.149% −7.507%
LPCA(best) 4.970 −15.406% 1.961 −12.473% 2.893 −11.361% 3.197 −3.369% −10.652%

Table 4
Mean absolute errors (MAEs) and the percentage change (%chng) compared to the simple average benchmark of the price forecasts for the
whole 916-day out-of-sample period from 29.06.2017 to 31.12.2019. The results correspond to the fully automated approaches to averaging.
Note that in each column, the best result is shown in bold.
Fully automated EPEX NP OMIE PJM

MAE %chng MAE %chng MAE %chng MAE %chng m.p.d.b.

simple average 5.275 −10.221% 2.068 −7.706% 3.021 −7.448% 3.270 −1.149% −6.631%

LASSO(AIC) 5.853 −0.379% 2.304 2.810% 3.285 0.632% 3.998 20.866% 5.982%
LASSO(BIC) 5.005 −14.811% 1.989 −11.235% 2.898 −11.206% 3.259 −1.480% −9.683%
LASSO(HQC) 5.221 −11.131% 2.084 −6.971% 2.968 −9.071% 3.542 7.069% −5.026%

PCA(AIC) 5.012 −14.694% 2.014 −10.105% 2.949 −9.664% 3.249 −1.791% −9.064%
PCA(BIC) 5.018 −14.590% 1.987 −11.342% 2.953 −9.540% 3.252 −1.691% −9.291%
PCA(HQC) 5.005 −14.806% 2.004 −10.578% 2.945 −9.792% 3.251 −1.737% −9.228%

LPCA(AIC) 4.947 −15.796% 1.988 −11.260% 2.931 −10.200% 3.221 −2.626% −9.971%
LPCA(BIC) 4.923 −16.212% 1.979 −11.689% 2.924 −10.426% 3.217 −2.759% −10.271%
LPCA(HQC) 4.927 −16.137% 1.988 −11.292% 2.932 −10.182% 3.221 −2.624% −10.059%

all three methods enable a substantial reduction of the
MAE, with the following specifications being the best:
LASSO(100), PCA(5), and LPCA(10−2).

When the LASSO averaging scheme is considered, it
can be observed that the results depend strongly on the
parameter λ. There are substantial differences between
LASSO(10−2) and LASSO(100), which reach 18.922% of
the benchmark MAE for NP and 12.906% for PJM. More-
over, LASSO(10−2) is the worst of the averaging schemes
and provides predictions that are less accurate than the
two-year calibration window for the NP and PJM markets.

The performance of PCA is more robust to the selection
of the specification parameter, k. The relation between
the MAE of PCA and the number of components, k, is

non-monotonic. First, as the number of PCs increases, the
forecasts become more accurate. As it reaches the optimal
level of k, additional components introduce noise and
lead to a higher MAE. Hence, increasing the number of
components does not improve the overall performance of
the method.

When the results of LPCA are analyzed, it can be ob-
served that LPCA inherits the positive features of both PCA
and LASSO and reduces their weaknesses. Similar to PCA,
LPCA is robust to the choice of the tuning parameter, λ.
On the other hand, it allows us to use a large number of
components without a loss of efficiency, because LASSO
allows for a reduced parameter space.
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Finally, when LASSO(best), PCA(best), and LPCA(best)
are compared, LPCA and LASSO are both the best in two
out of four markets, with the PCA scheme never reach-
ing the top of the podium. The aggregated results, sum-
marized by m.p.d.b., confirm that LPCA yields the most
accurate predictions among the alternatives.

The results for the non-automated averaging
approaches can be summarized as follows:

• Almost all averaging approaches (except
LASSO(10−2) outperform the ‘longest-window’
model by a large margin, often by more than 10%.

• The most accurate forecast can be obtained with
LASSO and LPCA; both are the best for two out of
four datasets.

• The performance of LASSO depends strongly on λ,
whereas PCA and LPCA are more robust to the choice
of the specification parameters.

• The idea of AW and WAW, introduced by Hubicka
et al. (2019) and Marcjasz et al. (2018), performs
very well. However, it can be outperformed by more
sophisticated approaches.

4.2.2. Fully automated averaging methods
We considered four fully automated forecast averaging

methods. These are approaches that do not require any
expert knowledge to select the inputs used for forecast
averaging or to specify parameters such as the number of
components, k, in PCA and a value of the LASSO tuning
parameter, λ. The results are presented in Table 4, which
(similar to Table 3) shows the MAE forecast accuracy
measure and %chng.

The first method is a simple average. It is an automated
approach because it does not require any pre-selection of
the predictions used for pooling. This method provides
forecasts that are far better than the benchmark. It re-
duces the MAE by 1.149%–10.221%, which is slightly less
than in the case of AW/WAW.

Next, three methods are analyzed: LASSO, PCA, and
LPCA. Unlike in the previous section, here the tuning
parameters k and λ are selected with information criteria
(AIC, BIC, and HQ). This modification has two major ad-
vantages. First, it does not require a priori knowledge of
the specification of these methods in a particular applica-
tion. Hence, it can be easily used to predict the prices of
other commodities or for any other forecasting exercise.
Second, the parameters can evolve as new data arrive and
adjust to the market situation.

First, it can be noticed that the LASSO method is sensi-
tive to the choice of information criterion. For the AIC, it
provides forecasts which are less accurate than a bench-
mark in three out of four analyzed markets. For PJM, the
loss of accuracy exceeds 20%. Even for the EPEX mar-
ket, for which the gains are the highest, LASSO(AIC) is
only slightly better than the predictions obtained with
the longest calibration window. Moreover, LASSO(HQC),
although better than LASSO(AIC), does not provide satis-
factory results. It improves the predictions for EPEX, NP,
and OMIE but worsens them for PJM by more than 7%.
Only LASSO(BIC) gives results that are consistently better
than the benchmark.

Similar to LASSO, the performance of the LPCA ap-
proach depends on the choice of information criterion. In
this case, the differences between information criteria are
less pronounced, with LPCA(BIC) providing the most accu-
rate predictions. Hence, for the LPCA (as with the standard
LASSO), the BIC should be used to select the parameter λ.
It is worth noting that all three LPCA methods produce the
best forecasts in terms of the MAE for the EPEX, NP, and
PJM markets. They are outperformed only by LASSO(BIC)
in the case of OMIE.

In the case of the PCA method, it is hard to choose a
clear winner between different information criteria. For
each dataset, a different approach provides the most accu-
rate results. The differences, however, are not substantial,
so the optimal number of PCs can be successfully selected
via any of the considered information criteria. Although it
is the most robust, this approach is never the best choice
in terms of MAE accuracy, as it is outperformed by either
LPCA or LASSO.

The last column of Table 4 presents m.p.d.b., the aggre-
gated measure of forecast accuracy. The outcomes show
that well-designed averaging models can outperform the
most popular approach of an arithmetic mean. More-
over, they confirm previous findings obtained using semi-
automated methods and indicate that LPCA reduces the
MAE more than other averaging approaches.

To formally investigate the advantages of using our
newly proposed averaging method, we apply the condi-
tional predictive ability (CPA; see Giacomini and White
(2006)) test for significant differences in the forecasting
performance. The outcomes are presented in Fig. 4, where
a non-black square indicates that the forecasts of the
model on the x-axis are statistically more accurate than
the forecasts of a model on the y-axis. The results confirm
the previous findings and show the LPCA extension of
the standard PCA approach significantly outperforms the
other methods, in particular the simple mean and PCA, for
each considered dataset. What is more, two out of four
times, it is significantly better than the LASSO, and never
worse.

Finally, it can be noticed that the simple average is out-
performed by other averaging approaches almost every
time. This result shows that the arithmetic mean is useful
as a benchmark for the newly introduced methodology,
but it should not be treated as a gold standard.

To sum up:

• Almost all averaging approaches (except LASSO(AIC)
and LASSO(HQC)) can easily beat the ‘longest-
window’ model by a large margin.

• Among the forecasts based on LASSO or LPCA meth-
ods, the most accurate results are obtained with the
BIC.

• The PCA method is the most robust to the choice
of information criterion. None of the information
criteria dominates and all of them provide similar
results.

• Overall, the best result can be obtained with
LPCA(BIC).
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Fig. 4. Results of the conditional predictive ability (CPA) test of Giacomini and White (2006) for forecasts of selected models for the EPEX (left),
Nord Pool (left center), OMIE (right center), and PJM (right) datasets. A heatmap indicates the range of the p-values: the closer they are to zero (→
dark green), the more significant the difference between the forecasts of a model on the x-axis (better) and the forecasts of a model on the y-axis
(worse).

Table 5
Comparison of averaging methods based on m.p.d.b. across
different specifications: choice of tuning parameter, k or
λ, for semi-automated or information criteria for fully
automated approaches. MAD, mean absolute deviation.

Top Mean MAD

Semi-automated methods

LASSO −10.961% −5.981% 5.165%
PCA −10.334% −9.232% 0.614%
LPCA −10.652% −9.582% 0.802%

Fully automated methods

LASSO −9.683% −2.909% 5.927%
PCA −9.291% −9.194% 0.087%
LPCA −10.271% −10.100% 0.114%

4.3. Discussion

We analyzed the performance of different averaging
schemes based on forecasts obtained with different cal-
ibration windows. We found that it is beneficial to pool
predictions, even when they come from a single model. A
large number of individual forecasts available for averag-
ing becomes both an advantage and the main issue with
this idea, which makes it difficult to fully automate the
computations. Here, two approaches were explored based
on information and parameter-space reduction. The PCA
method can summarize the data described by a panel of
forecasts with a relatively small set of orthogonal compo-
nents, whereas LASSO shrinks the model’s parameters to-
ward zero and hence increases the estimation efficiency.
The study demonstrates that the application of both ap-
proaches can result in a substantial increase in forecast
accuracy. Unfortunately, the methods are burdened with
the uncertainty associated with the choice of tuning pa-
rameters. The dependence of the results on this selection
is illustrated in Table 5, which shows the best outcomes
in terms of m.p.d.b. together with the mean and the
mean absolute deviation (MAD) of m.p.d.b. across dif-
ferent specifications. The results indicate that although
LASSO(100) and LASSO(BIC) are among the best forecast
averaging approaches, the LASSO method is sensitive to

the selection of the tuning parameter and the informa-
tion criterion. Its average m.p.d.b. is slightly less than
6% and 3% for semi- and fully automated approaches,
respectively. At the same time, LPCA improves forecasts
by 9.582% and 10.1%, respectively. Moreover, the PCA and
LPCA methods are characterized by low values of MAD,
which are far smaller than in the case of LASSO.

The difference in performance of the LASSO, PCA, and
LPAC forecast averaging methods results from their con-
struction. When the PCA approach is considered, it should
be emphasized that the components used for averaging
are orthogonal to each other, which enables an efficient
estimation of (8) parameters. However, unlike LPCA, this
approach includes all PCs from 1 to k in the regression.
The application of LASSO to (8) can reduce the parame-
ter space. The method not only eliminates insignificant
components but also shrinks the weights corresponding
to less important variables. Uniejewski and Weron (2018)
compared LASSO with a two-step procedure including
variable selection via LASSO and estimating weights (of
selected variables) via ordinary least squares. It turned out
that LASSO significantly outperformed the two-step pro-
cedure. A similar situation was observed in our research.
The limited study presented in Table 6 shows that apply-
ing the two-step procedure does not improve (on average)
the forecast accuracy compared to PCA(BIC). This indicates
that shrinkage is even more important than selection
in our task. The regularization improves the averaging
accuracy not because it allows for a better selection of the
number of PCs, but because the LASSO shrunken weights
are better to use in this setup.

Finally, when the LASSO and LPCA methods are com-
pared, it can be noticed that LASSO has many more inputs
than LPCA. Extracting information from the panel of fore-
casts via PCs reduces the dimension of the regression.
Moreover, unlike with PCs, the individual forecasts are
highly correlated and almost co-linear. Due to these fea-
tures, LASSO is more sensitive to the specification of the
tuning parameter. Moreover, the CPU needed to compute
the forecast with LASSO is 900 times higher compared to
the time needed to perform LPCA.
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Table 6
Mean absolute errors (MAEs) and the percentage change (%chng) compared to the simple average benchmark of the price
forecasts for the whole 916-day out-of-sample period from 29.06.2017 to 31.12.2019. The results are presented to compare
LASSO with the two-step procedure proposed by Uniejewski and Weron (2018).
Averaging EPEX NP OMIE PJM

MAE %chng MAE %chng MAE %chng MAE %chng m.p.d.b

PCA(BIC) 5.018 −14.590% 1.987 −11.342% 2.953 −9.540% 3.252 −1.691% −9.291
LPCA(BIC) 4.923 −16.212% 1.979 −11.689% 2.924 −10.426% 3.217 −2.759% −10.272
2-step(BIC) 5.057 −13.919% 2.019 −9.901% 2.959 −9.348% 3.238 −2.125% −8.823

5. Conclusions

In this paper, a novel approach to point forecast pool-
ing was presented that combines LASSO estimation and
the PCA scheme introduced by Maciejowska et al. (2020).
PCA can summarize the information included in a panel
of forecasts with a relatively small set of orthogonal com-
ponents, whereas LASSO shrinks the model’s parameters
toward zero and hence increases the estimation effi-
ciency. The performance of the approach was evaluated
on datasets from four major energy markets. Follow-
ing Marcjasz et al. (2018) and Hubicka et al. (2019),
the point predictions used for pooling stemmed from a
single ARX-type model calibrated to windows of different
sizes. The forecasts were evaluated with the MAE, and the
results were presented relative to the outcomes obtained
with the longest available calibration window, which
included two years of observations.

The results confirmed previous findings of Marcjasz
et al. (2018) and Maciejowska et al. (2020) that the
longest estimation window does not necessarily lead to
the most accurate predictions. Hence, it is not possible
to select a prior optimal length of the sample used for
calibration. At the same time, averaging algorithms can
substantially reduce the MAE and improve the forecast ac-
curacy relative to the benchmark, by −6.631% for a simple
average and by −10.271% for the LPCA(BIC) approach.

When forecast averaging methods were considered,
the outcomes indicated that fully automated approaches,
which use information criteria to select an optimal speci-
fication, yielded significantly better results than the
benchmark or the simple average. The performance of
the presented pooling methods depended on the applied
information criterion, however. The results showed that
the BIC was the most robust choice, leading to the lowest
relative MAE for all approaches. Based on a comparison of
LASSO, PCA, and LPCA, we draw the following conclusions:

• The PCA method is the most robust to the choice of
information criterion. However, it reduces the MAE
less than the methods using LASSO.

• LASSO is extremely sensitive to the choice of the
tuning parameter and information criterion.

• Overall, LPCA outperforms other approaches: it im-
proves the forecast accuracy the most and is rela-
tively robust to the selection of the tuning parame-
ter.

The LPCA approach, which combines LASSO with PCA,
was shown to be successful at forecasting day-ahead elec-
tricity prices. This research could be viewed as a first step

in mixing PCA with automated variable selection meth-
ods. Future analysis may include more complex mod-
els, such as the elastic net, adaptive LASSO, or neural
network-based models. Moreover, the research may be
extended to interval and probabilistic forecasting and to
other commodity markets.
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A B S T R A C T

A recent electricity price forecasting study has shown that the Seasonal Component AutoRegressive (SCAR)
modeling framework, which consists of decomposing a series of spot prices into a trend-seasonal and a
stochastic component, modeling them independently and then combining their forecasts, can yield more
accurate point predictions than an approach in which the same autoregressive model is calibrated to the
prices themselves. Here, we show that further accuracy gains can be achieved when the explanatory vari-
ables (load forecasts) are deseasonalized as well. More importantly, considering a novel extension of the
SCAR concept to probabilistic forecasting and applying two methods of combining predictive distributions,
we find that (i) SCAR-type models nearly always significantly outperform the autoregressive benchmark but
are in turn outperformed by combined SCAR forecasts, (ii) predictive distributions computed using Quantile
Regression Averaging (QRA) outperform those obtained from historical simulation and bootstrap methods,
and (iii) averaging over predictive distributions generally yields better probabilistic forecasts of electricity
spot prices than averaging over quantiles. Given that probabilistic forecasting is a concept closely related to
risk management, our study has important implications for risk officers and portfolio managers in the power
sector.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most day-ahead electricity price forecasting (EPF) studies treat
the daily and weekly seasonalities as an inherent feature of any
EPF model, but ignore the long-term seasonal component (LTSC; also
called the trend-seasonal component, see Weron, 2014, for a recent
review). However, as Nowotarski and Weron (2016) have recently
shown, decomposing a series of spot prices into a LTSC and a stochas-
tic component, modeling them independently and then combining
their forecasts can yield more accurate point predictions than an
approach in which the same autoregressive model is calibrated to the
prices themselves. The authors have dubbed their approach/model
the Seasonal Component AutoRegressive (SCAR) model. They have also

* Corresponding author.
E-mail addresses: rafal.weron@pwr.edu.pl, rafal.weron@pwr.wroc.pl (R. Weron).

conjectured that by considering SCAR models with different LTSCs a
forecaster should be able to generate a pool of accurate, yet to a large
extent independent forecasts that could be combined to yield even
better predictions (an idea which is similar in spirit to combining
so-called sister forecasts in load forecasting, see Liu et al., 2017;
Nowotarski et al., 2016).

The main aim of this paper is to validate the latter conjecture
in the context of probabilistic forecasts. To this end we perform an
extensive empirical study which involves:

• two 1.5-year long, hourly resolution test periods from two
distinct power markets (GEFCom2014 and Nord Pool),

• a relatively well performing, parsimonious autoregressive
structure1 (denoted in the text by ARX), originally proposed

1 Since such models are built on some prior knowledge of experts, following
Uniejewski et al. (2016) and Ziel (2016), we refer to them as expert models.

https://doi.org/10.1016/j.eneco.2018.02.007
0140-9883/© 2018 Elsevier B.V. All rights reserved.
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by Misiorek et al. (2006) and later used in a number of EPF
studies (Gaillard et al., 2016; Kristiansen, 2012; Maciejowska
et al., 2016; Nowotarski and Weron, 2016; Nowotarski et al.,
2014; Serinaldi, 2011; Uniejewski et al., 2016; Weron, 2006;
Weron and Misiorek, 2008, Ziel, 2016),

• a range of Seasonal Component AutoRegressive (SCAR) type mod-
els introduced by Nowotarski and Weron (2016) and built
on the ARX structure (denoted in the text by SCARX with a
subscript representing the LTSC used),

• two well-performing LTSC model classes — the Hodrick-
Prescott and wavelet filters, as advocated for EPF by Janczura
et al. (2013), Lisi and Nan (2014), Nowotarski et al. (2013) and
Weron and Zator (2015),

• three methods of constructing probabilistic forecasts —
historical simulation, bootstrapping and Quantile Regression
Averaging (see Nowotarski and Weron, 2018, for a review),

• two approaches to combining probabilistic forecasts —
averaging quantiles and averaging predictive distributions (see
Lichtendahl et al., 2013, for a discussion),

• forecast evaluation in terms of the robust weekly-weighted mean
absolute error (WMAE; see Weron, 2014) for point forecasts,
the pinball loss function for probabilistic forecasts (Gneiting,
2011; Hong et al., 2016), and the Diebold and Mariano (1995)
test for significant differences in forecasting performance,

and draw statistically significant conclusions with far reaching con-
sequences for probabilistic EPF. Moreover, given that probabilistic
forecasting is a concept closely related to risk management, our
study provides producers, retailers and speculators with efficient
quantitative tools that can be used as an aid in determining opti-
mal strategies for short-term operations, Value-at-Risk calculations,
hedging and trading (Bunn et al., 2016).

We should also note that our study draws heavily on Nowotarski
and Weron (2016), but there are some important differences as well.
In particular, we use the same datasets, the same ARX structure and
the same collection of SCAR-type models built on the latter using a
Hodrick-Prescott or wavelet filter. On the other hand, the differences
include (i) using only one autoregressive structure (the mARX model
yielded similar conclusions at the qualitative level and its performance
is not reported here), consequently only one class of SCAR-type mod-
els (i.e., SCARX; mSCARX are not considered), (ii) utilizing system –
not zonal – loads for the GEFCom2014 dataset as they have turned
out to yield slightly better forecasts, (iii) using deseasonalized –
instead of original – exogenous variables in SCARX models, and –
most importantly – (iv) considering a whole plethora of algorithms
to construct, combine and evaluate probabilistic forecasts.

The remainder of the paper is structured as follows. In Section 2,
we present the datasets. Then in Section 3, we describe the tech-
niques considered for price forecasting: the baseline autoregressive
model structure, two LTSC model classes, the set of SCAR models, and
the methods of constructing and combining probabilistic forecasts.
In Section 4, we summarize the empirical findings and in Section 5
wrap up the results and conclude.

2. Datasets

The datasets considered in this empirical study include the same
two day-ahead time series as studied by Nowotarski and Weron
(2016). The first one comes from the Global Energy Forecasting Com-
petition 2014 (GEFCom2014) and includes three time series at hourly
resolution: locational marginal prices (LMPs), day-ahead predictions
of zonal loads and day-ahead predictions of system loads (avail-
able as supplementary material in Hong et al., 2016). It covers the

period from January 1, 2011 to December 16, 2013.2 In this paper, we
only use two subseries — LMPs and day-ahead predictions of system
loads, see Fig. 1. In contrast to Nowotarski and Weron (2016), we use
system, not zonal loads, as they have turned out to yield slightly bet-
ter forecasts. Note, that the origin of the data has never been revealed
by the organizers, but given its features it quite likely comes from the
U.S.

The second dataset comprises Nord Pool (NP) system prices and
consumption prognosis for four Nordic countries (Denmark, Finland,
Norway and Sweden) for every hour in the period January 1, 2013–
December 24, 2015, see Fig. 2. The time series were constructed using
data published by the Nordic power exchange Nord Pool (www.
nordpoolspot.com) and preprocessed to account for missing val-
ues and changes to/from the daylight saving time (like in Weron,
2006, Section 4.3.7). The missing data values were substituted by
the arithmetic average of the neighboring values. The ‘doubled’ val-
ues (corresponding to the changes from the daylight saving/summer
time) were substituted by the arithmetic average of the two values
for the ‘doubled’ hour.

Like in Nowotarski and Weron (2016), the day-ahead point fore-
casts of the hourly electricity price are determined within a rolling
window scheme, using a 360-day calibration window. First, all con-
sidered models (their short-term and long-term components) are
calibrated to data from the initial calibration period, i.e. January 1
to December 26 (year 2011 for GEFCom2014 and 2013 for Nord
Pool) and forecasts for all 24 h of the next day (December 27) are
determined. Then the window is rolled forward by one day and fore-
casts for all 24 h of December 28 are computed. This procedure is
repeated until the predictions for the last day in the 103-week (for
GEFCom2014) or 104-week (for Nord Pool) test sample are made.

Once the point predictions are made, they are used to provide
probabilistic forecasts. Due to the nature of the methods used, the
procedure is different for historical/QRA and bootstrapped forecasts,
see Section 3.3. The former two require a subsample of one-day
ahead prediction errors. Hereby, a 182-day (or 26-week) rolling
calibration window is used for computing quantiles of the error dis-
tribution (historical prediction intervals, PIs) or weights of the QRA
approach. On the other hand, the bootstrapped PIs are computed
directly from point forecasts in a 360-day rolling window. Formally,
the latter are available from December 27 (2011 for GEFCom2014
and 2013 for Nord Pool). However, to allow direct comparisons they
are computed only for the same test period as historical/QRA fore-
casts: June 26, 2012–December 16, 2013 for GEFCom (77 full weeks)
and June 27, 2014–December 24, 2015 for Nord Pool (78 full weeks).

3. Methodology

The modeling is implemented separately across the hours, lead-
ing to 24 sets of parameters for each day the forecasting exercise
is performed. This ‘multivariate’ approach is inspired by the fact
that each hour displays a rather distinct price profile (reflecting the
daily variation of demand, costs and operational constraints), by
the extensive research on demand forecasting (which has generally
favored the multi-model specification for short-term predictions)
and the results of a recent comparative study of Ziel and Weron
(2018) which concludes that on average the ‘multivariate’ approach
has a minor edge over ‘univariate’ models in predictive perfor-
mance (although it does not consistently outperform them across all
datasets, seasons of the year or hours of the day).

2 The last day in the GEFCom2014 dataset is actually December 17, 2013. However,
we end the analysis on December 16, 2013, so that the test period length is a multiple
of 7 days.
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Fig. 1. GEFCom2014 hourly locational marginal prices (LMP; top) and hourly day-ahead predictions of system load (bottom) for the period January 1, 2011–December 16, 2013.
The vertical dashed lines mark (i) the beginning of the initial calibration window for bootstrapped forecasts, (ii) the beginning of the initial calibration window for historical and
QRA forecasts (at the same time — the end of the initial calibration period for point forecasts and the beginning of the test period for point forecasts) and (iii) the beginning of the
test period for point and probabilistic forecasts.

Fig. 2. Nord Pool hourly system prices (top) and hourly consumption prognosis (bottom) for the period January 1, 2013–December 24, 2015. The vertical dashed lines mark (i) the
beginning of the initial calibration window for bootstrapped forecasts, (ii) the beginning of the initial calibration window for historical and QRA forecasts (at the same time — the
end of the initial calibration period for point forecasts and the beginning of the test period for point forecasts) and (iii) the beginning of the test period for point and probabilistic
forecasts.
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3.1. The benchmarks

Similarly to Nowotarski and Weron (2016), we consider bench-
mark models. The first one belongs to the class of similar-day tech-
niques. Most likely, it was introduced to the EPF literature by Nogales
et al. (2002) and dubbed the naïve method. It proceeds as follows:
hour h on Monday is similar to the same hour on Monday of the pre-
vious week, and the same rule applies for Saturdays and Sundays;
hour h on Tuesday is similar to the same hour on Monday, and the
same rule applies for Wednesdays, Thursdays and Fridays. As was
argued by Conejo et al. (2005) and Nogales et al. (2002), forecasting
procedures that are not calibrated carefully fail to pass this ‘naïve
test’ surprisingly often. We denote this benchmark by Naïve.

The second benchmark is a parsimonious autoregressive struc-
ture originally proposed by Misiorek et al. (2006) and later used in
a number of EPF studies (Gaillard et al., 2016; Kristiansen, 2012;
Maciejowska et al., 2016; Nowotarski and Weron, 2016; Nowotarski
et al., 2014; Serinaldi, 2011; Uniejewski et al., 2016; Weron, 2006;
Weron and Misiorek, 2008; Ziel, 2016). Within this model, the
demeaned natural logarithm of the electricity spot price on day d and
hour h, i.e., pd,h = log(Pd,h), is given by the following formula:

pd,h = bh,1pd−1,h + bh,2pd−2,h + bh,3pd−7,h︸ ︷︷ ︸
autoregressive effects

+ bh,4pmin
d−1︸ ︷︷ ︸

non-linear effect

+ bh,5zt︸ ︷︷ ︸
load forecast

+
∑3

i=1
bh,5+iDi

︸ ︷︷ ︸
Mon, Sat, Sun dummies

+ ed,h, (1)

where the lagged log-prices pd−1,h, pd−2,h and pd−7,h account for the
autoregressive effects of the previous days (the same hour yesterday,
two days ago and one week ago), while pmin

d−1 is the minimum of the
previous day’s 24 hourly log-prices, which creates a link between
bidding and price signals from the entire previous day. The vari-
able zt refers to the logarithm of hourly system load of a U.S.
utility or Nordic consumption (actually to forecasts made a day
before, see Section 2). The three dummy variables – D1, D2 and D3

(for Monday, Saturday and Sunday, respectively) – account for the
weekly seasonality. Finally, the et

′s refer to error terms for log-prices,
i.e., ed,h = pd,h − p̂d,h = log(Pd,h) − log(P̂d,h), and are assumed to be
independent and identically distributed (i.i.d.) normal variables. We
denote this autoregressive benchmark by ARX to reflect the fact that
the load (or consumption) forecast is used as the eXogenous variable
in Eq. (1). Note, that compared to Nowotarski and Weron (2016) we
use here an explicit day-hour ‘multivariate’ notation. Naturally, it is
linked to the ‘univariate’ notation via Pt = P24d+h = Pd,h.

3.2. Seasonal Component AutoRegressive (SCAR) models

Recall from Nowotarski and Weron (2016) that a Seasonal Compo-
nent AutoRegressive (SCAR) model consists of two elements — a LTSC
and an autoregressive structure3 that forms the backbone of a fam-
ily of SCAR models. The approach consists of (i) decomposing a series
of electricity log-prices into a LTSC and a stochastic component (or
residual), (ii) modeling them independently and (iii) combining their

3 Note, however, that the SCAR approach is not restricted to autoregressive struc-
tures. Neural network models can be used as well. In fact, as Marcjasz et al. (2018) have
shown recently in a point forecasting context, the gains from using the Seasonal Com-
ponent approach are even higher for NARX-type neural networks than for AR-type
models, though achieved at a much higher computational cost.

forecasts. We decompose the electricity spot log-price series pd,h into
a sum of two independent parts:

• qd,h = Xd,h + sd,h, i.e. the stochastic component Xd,h with
weekly periodicities sd,h,

• and Td,h, i.e. the long-term seasonal component.

Motivated by a series of recent articles on modeling and fore-
casting the LTSC of electricity spot prices (see Janczura et al., 2013;
Lisi and Nan, 2014; Nowotarski et al., 2013; Weron and Zator, 2015,
among others), we consider two well-performing model classes —
the Hodrick-Prescott (HP) and wavelet filters.

3.2.1. The Hodrick-Prescott (HP) filter
The Hodrick and Prescott (1997) filter was originally proposed

in macroeconomics for decomposing the series of GDP values into a
long-term growth component and the business cycle. However, the
mechanics of the HP filter are universal and it has been found to
perform well in EPF (Lisi and Nan, 2014; Weron and Zator, 2015).
When applied to electricity spot prices it splits the series into a smooth
part — the LTSC, and a volatile part — the stochastic component with
weekly (short-term) periodicities. For a ‘noisy’ input series of elec-
tricity log-prices pt, the HP filter returns a smoothed series Tt which
minimizes (here the ‘univariate’ notation, i.e., pt = p24d+h = pd,h
and Tt = T24d+h = Td,h, is more convenient):

min
Tt

{
t∑

t=1

(pt − Tt)2 + k

t−1∑

t=2

[(Tt+1 − Tt) − (Tt − Tt−1)]2

}
, (2)

where t is the number of observations (in this study:
360 × 24 = 8640 h of the calibration window) and k is a smoothing
parameter. To find the optimal value of k, we use a similar grid as in
Weron and Zator (2015), the only difference is that in this study the
price series are in hourly (not daily) resolution and the values of k
have to be larger. We use eight different ks: 108, 5 • 108, 109, 5 • 109,
1010, 5 • 1010, 1011 and 5 • 1011.

3.2.2. Wavelet smoothing
Recall, that any function or signal (here: the electricity log-

price series, pd,h) can be built up as a sequence of pro-
jections onto one father wavelet (the smooth component or
approximation) and a sequence of mother wavelets (or details):
pd,h = SJ + DJ + DJ−1 + . . . + D1, where 2J is the maximum scale sus-
tainable by the number of observations (Percival and Walden, 2000;
Weron, 2006). At the coarsest scale, the signal can be estimated by
SJ. At a higher level of refinement, the signal can be approximated
by SJ−1 = SJ + DJ. At each step, by adding a mother wavelet Dj

of a lower scale j = J − 1, J − 2,. . . , we obtain a better estimate of
the original signal. This procedure, known as wavelet smoothing or
lowpass filtering, yields a traditional linear smoother. Basing on the
results of Janczura et al. (2013) and Nowotarski et al. (2013), we
use the Daubechies family of order 24 as they make a reasonable
trade-off between how compactly they are localized in time and their
smoothness. To provide a comprehensive analysis, we consider ten
smoothing levels: J = 5, . . . , 14, respectively S5,. . . ,S14 approxima-
tions. This corresponds to a range of smoothers, roughly from daily
(25 = 32 h) to nearly biannual (214 h or ca. 683 days).

3.2.3. The original SCAR algorithm and an innovation
The original SCAR modeling framework, as proposed by

Nowotarski and Weron (2016), consists of the following four steps:

1. Decomposing the series of electricity log-prices pd,h from the
calibration window into a trend-seasonal component Td,h and a
stochastic component with short-term periodicities qd,h, using
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one of the ten wavelet smoothers (S5, . . . , S14) or one of the
eight HP filters ( k= 108,. . . ,5 • 1011). Then computing persis-
tent forecasts of the LTSC independently for each of the 24 h of
the next day, i.e., T̂d∗+1,h ≡ Td∗ ,h, where d∗ is the last day in the
calibration window and h = 1, . . . , 24.

2. Calibrating the ARX model defined by Eq. (1) to qd,h and com-
puting forecasts for the 24 h of the next day, i.e., q̂d∗+1,h. Note,
that unlike the seasonal decomposition in Step 1, which is
made for the whole 360 × 24 = 8640 hour long calibration
sample, here we split the data into 24 hourly series.

3. Adding forecasts of the ARX model computed in Step 2 to the
persistent forecasts of the LTSC to yield log-price forecasts, i.e.,
p̂d∗+1,h.

4. Taking the exponent of the log-price forecasts computed in
Step 3 to convert them into price forecasts of the SCARX
model: P̂d∗+1,h = exp(p̂d∗+1,h).

In this study, we add an additional step, say 1(b), in which the
exogenous variable (the logarithm of the system load or consump-
tion forecast) is deseasonalized using the same LTSC as prices prior
to using it in Eq. (1). As it turns out, this innovation significantly
improves the forecasting performance of the above algorithm (see
Table 1 and compare with Table 1 in Nowotarski and Weron, 2016).
Interestingly, it improves the SCARX models, but not the underly-
ing ARX model. For instance, for the GEFCom2014 dataset and ARX
models with system load deseasonalized using S8, S9 and S10 wavelet
smoothers, the WMAE errors are respectively 11.254, 11.277 and
11.282 (vs. 11.232 for the ARX benchmark, see Table 1), while for
the Nord Pool dataset and consumption prognosis deseasonalized
using the same three wavelet smoothers the errors are respec-
tively 8.528, 8.525 and 8.514 (vs. 8.500 for the ARX benchmark, see
Table 1).

One may wonder if using the same LTSC for loads (or consump-
tion) and prices is optimal or maybe a different LTSC should be used
for loads and a different for prices. To address this issue, we have
conducted an empirical study where each of the 19 (= 18 + 1; the
‘+1′ stands for ‘no LTSC’) price LTSCs was combined with each of the
19 possible load LTSCs to yield 361 LTSCprice–LTSCload pairs. For the
GEFCom2014 dataset the best combination turns out to be S10–HP1e8

with WMAE of 10.192. It is ca. 2.4% better than the best ‘identi-
cal LTSC’ pair, i.e., HP1e9–HP1e9 with WMAE of 10.437, see Table 1
and the discussion in Section 4.1. Generally, better combinations are
achieved for more fluctuating (or less stable) load than price LTSCs,

e.g., HP1e9–HP5e8 is better than HP1e9–HP1e9, while S10–HP1e8 is bet-
ter than S10–HP5e8 and S10–HP1e9. For the Nord Pool dataset, the
difference between the best combination, i.e., S9–HP5e9 with WMAE
of 8.101, and the best ‘identical LTSC’ pair, i.e., S9–S9 with WMAE of
8.147, is even smaller — only 0.6%. Interestingly, this time the best
combinations are achieved for similarly fluctuating load and price
LTSCs, but possibly from different classes, e.g., a wavelet price LTSC
and a HP-filter load LTSC as in the S9–HP5e9 pair. Although the results
for the Nood Pool dataset justify our approach of using ‘identical’
LTSCs for loads and prices, the results are not that clear cut for the
GEFCom2014 dataset. Nevertheless, the efficiency loss is not that
substantial and for the sake of parsimony we recommend to use the
same LTSC for prices and loads.

3.3. Probabilistic forecasting

With the introduction of smart grids and renewable integration
requirements, probabilistic load and price forecasting has become
more important to energy systems planning and operations (Hong
and Fan, 2016). And probabilistic forecasting has a lot to offer, in par-
ticular, improved assessment of future uncertainty, ability to plan
different strategies for the range of possible outcomes, increased
effectiveness of submitted bids and possibility of more thorough
forecast comparisons (Chatfield, 2000; Amjady and Hemmati, 2006;
Nowotarski and Weron, 2018). Last but not least, probabilistic fore-
casting is a concept closely related to risk management. Namely,
the most commonly used risk measure – the Value-at-Risk (VaR) –
is a quantile risk metric, i.e., the a% VaR is the a quantile of the
profit and loss (P&L) distribution of a portfolio. Hence, to estimate
the h-day ahead VaR, we need to find the a quantile of the h-
day ahead P&L distribution (Alexander, 2008). In other words, VaR
is nothing else but a quantile forecast, which lies at the heart of
probabilistic forecasting. The more accurate are the probabilistic
forecasts – especially for the extreme quantiles – the better is the
VaR estimate.

3.3.1. Constructing prediction intervals
The most common extension from point to probabilistic fore-

casts is to construct prediction intervals (PIs). A number of methods
can be used for this purpose, the most popular take into account
both the point forecast and the corresponding error (Weron and
Misiorek, 2008; Maciejowska et al., 2016): the center of the PI at the
(1 − a) confidence level is set equal to P̂d,h and its bounds are defined
by the a

2 th and (1 − a
2 )th quantiles of the distribution of ed,h. For

Table 1
Average WMAE (in percent) for all 103 weeks of the GEFCom2014 (upper half) or all 104 weeks of the Nord Pool (lower half) test period for point forecasts. WMAE errors for SCARX
models smaller (better) than those for the ARX benchmark are underlined. Emphasized in bold are the results for the best performing model in each of the two parts of the table.
Compare with Table 1 in Nowotarski and Weron (2016).

GEFCom2014

Benchmarks & SCARX with HP filter (k)
Naive ARX 108 5 • 108 109 5 • 109 1010 5 • 1010 1011 5 • 1011

14.716 11.232 10.519 10.447 10.437 10.495 10.559 10.798 10.897 11.060

SCARX with wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

12.917 12.226 11.106 10.849 10.732 10.776 10.843 10.824 11.096 11.072

Nord Pool

Benchmarks & SCARX with HP filter (k)
Naive ARX 108 5 • 108 109 5 • 109 1010 5 • 1010 1011 5 • 1011

9.661 8.500 8.475 8.512 8.536 8.601 8.621 8.655 8.663 8.670

SCARX with wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

9.834 9.761 8.411 8.205 8.147 8.169 8.319 8.351 8.484 8.389
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instance, the 5% and 95% quantiles of the error term yield the 90%
PI. We later denote such a PI of the spot price on day d and hour h
by

[
L̂d,h, Ûd,h

]
, where L̂d,h and Ûd,h are the lower and upper bounds,

respectively. We skip the nominal rate (1 − a) for simplicity. A fore-
caster may further extend her study and construct multiple PIs —
the final outcome may be a set of quantiles on many levels. Here,
like in the GEFCom2014 competition, we consider all 99 percentiles
(q = 1%, 2%, . . . , 99%). This is a reasonably accurate approximation
of the predictive distribution.

Moreover, we use three methods of constructing PIs (for more
detailed descriptions, see Nowotarski and Weron, 2018) :

1. Historical simulation, which is a model-independent approach
that consists of computing sample quantiles of the empirical
distribution of ed,h (Weron, 2014). Later in the text, we use
superscript H to denote probabilistic forecasts obtained using
historical simulation. EPF studies where PIs are obtained using
this approach include Misiorek et al. (2006), Nowotarski and
Weron (2015), Weron (2006) and Weron and Misiorek (2008)
among others.

2. Bootstrapping, which first generates pseudo-prices recursively
using sampled normalized residuals, then computes desired
quantiles of the bootstrapped prices. The advantage of the
bootstrap over historical simulation is that it takes into
account not only historical forecast errors but also parame-
ter uncertainty. The disadvantage is the significantly increased
computational burden. Later in the text, we use superscript
B to denote probabilistic forecasts obtained via the bootstrap.
EPF studies where this approach is used to compute PIs include
Alonso et al. (2011), Chen et al. (2012), Khosravi et al. (2013),
Wan et al. (2014) and Ziel and Steinert (2016) among others.

3. Quantile Regression Averaging (QRA), proposed by Nowotarski
and Weron (2015), which involves applying quantile regres-
sion to a pool of point forecasts of individual (i.e., not com-
bined) forecasting models. As such, it directly works with the
distribution of the electricity spot price, F̂Pd,h , without the need
to split the probabilistic forecast into a point forecast and the
distribution of the error term. Later in the text, we use super-
script Q to denote probabilistic forecasts obtained with QRA.
The very good forecasting performance of QRA has been veri-
fied by a number of authors (Gaillard et al., 2016; Maciejowska
and Nowotarski, 2016; Maciejowska et al., 2016), not only in
the area of EPF (Liu et al., 2017; Zhang et al., 2016). However,
its most spectacular success came during the GEFCom2014
competition — the top two winning teams in the price track
used variants of QRA (Gaillard et al., 2016; Maciejowska and
Nowotarski, 2016).

Note, that all three approaches require that one-day ahead pre-
diction errors, hence point predictions, are available in the cali-
bration window for probabilistic forecasts. Hereby, a 182-day (or
26-week) rolling calibration window that directly follows the 360-
day calibration window for point forecasts is used for computing
quantiles of the error distribution (historical prediction intervals, PIs)
or weights of the QRA approach. Consequently, the test periods start
on the 543rd (= 360 + 182 + 1) day in each sample, i.e., June 26,
2012 (for GEFCom2014) and June 27, 2014 (for Nord Pool). On the
other hand, the bootstrapped PIs are computed directly from point
forecasts in a 360-day rolling window, see Figs. 1 and 2.

3.3.2. Averaging probabilistic forecasts
Given a set of n probabilistic forecasts we can combine them in

one of two ways: by averaging either probabilities or quantiles (see
Lichtendahl et al., 2013, for a discussion). If we denote by F̂i(x) the
ith distributional forecast and by Q̂ i(x) = F̂−1

i (x) the ith quantile
forecast, then the average probability forecast F-Ave∗

n ≡ 1
n

∑n
i=1 F̂i(x)

can be regarded as a vertical average of the corresponding predictive
distributions while the average quantile forecast Q-Ave∗

n ≡ Q̂−1(x)
with Q̂(x) = 1

n

∑n
i=1 Q̂ i(x) as a horizontal average; the asterisk (*)

denotes here one of three methods of constructing PIs (H, B or Q;
see Section 3.3.1). This is illustrated in Fig. 3 for a sample day and
hour and the Nord Pool dataset. Note that the average quantile fore-
cast is always sharper, i.e., Q-Ave∗

n has lower variance than F-Ave∗
n.

While this feature is an advantage in many forecasting problems
(Lichtendahl et al., 2013), in EPF it may not necessarily be so. To check
this, in the empirical section we consider both averaging schemes.

4. Empirical results

We are now ready to present day-ahead forecasting results
for the two considered datasets: GEFCom2014 and Nord Pool. For
point forecasts, we use 2-year out-of-sample test periods, for prob-
abilistic — slightly shorter, 1.5-year test periods (for the reasons
discussed in Section 3.3.1). Recall from Section 2, that models are
re-estimated on a daily basis. Price forecasts P̂d∗+1,1, . . . , P̂d∗+1,24 for
all 24 h of the next day are determined at the same point in time
and the 360-day calibration window is rolled forward by one day:
d∗ → d∗ + 1.

4.1. Evaluation of point forecasts in terms of WMAE

Following Conejo et al. (2005), Weron and Misiorek (2008) and
Nowotarski and Weron (2016), we compare the models in terms
of the Weekly-weighted Mean Absolute Error (WMAE) loss function.
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Fig. 3. Illustration of the averaging probabilities and averaging quantiles concepts for the SCARXQ
H P 5 e 1 0 and SCARXQ

S 6 predictive distributions for Nord Pool data on June 27th,
2014, hour 17–18. The average probability forecast F-AveQ

2 is a vertical average of the two CDFs (left panel), while the average quantile forecast Q-AveQ
2 is a horizontal average

(center panel). The latter is always sharper, i.e., Q-AveQ
2 has lower variance than F-AveQ

2 (right panel).
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WMAE is a robust measure similar to the Mean Absolute Percent-
age Error (MAPE) but with the absolute error normalized by the
mean weekly price to avoid the adverse effect of negative and close
to zero electricity spot prices. We evaluate the forecasting perfor-
mance using weekly time intervals, each with 24 × 7 = 168 hourly
observations. For each week, we calculate the WMAE for model i as:

WMAEi =
1

168 • P̄168

∑168

t=1

∣∣∣Pt − P̂i
t

∣∣∣ , (3)

where P̄168 is the mean price for a given week, Pt (= P24d+h = Pd,h)
is the actual price at time t (i.e, for day d and hour h), not the log-price
pt, and P̂i

t is the predicted price obtained from model i. Note, that
WMAE requires the test period to be a multiple of a week (or 168 h).
Hence, when computing WMAE we consider 103 full weeks (Decem-
ber 27, 2011–December 16, 2013) for the GEFCom2014 dataset and
104 full weeks (December 27, 2013–December 24, 2015) for the Nord
Pool dataset.

In Table 1, we report the average WMAE (in percent) in the fore-
casting period for two benchmarks (Naïve, ARX) and two SCARX
model classes — SCARXHP* with HP-filter-based LTSCs and SCARXS*
with wavelet-based LTSCs. The asterisk (*) denotes here either k (for
the eight HP-filter LTSCs) or decomposition level (for the ten wavelet
LTSCs). Note, that the Naïve and ARX benchmarks are identical to
those in Nowotarski and Weron (2016), however, the WMAE errors
for the former model were mistakenly given in the cited article as
20.475 for GEFCom2014 and 12.663 for Nord Pool.

Comparing Table 1 with Table 1 in Nowotarski and Weron (2016),
we can clearly observe the improvement in forecasting accuracy
from using deseasonalized log-loads in the SCARX models in this
paper (see the discussion at the end of Section 3.2.3). Except for
one case (SCARXS13 for Nord Pool), all WMAE errors in this paper
are lower (better) than in Nowotarski and Weron (2016), sometimes
by as much as 11%. The improvement is mostly seen for the more
fluctuating LTSCs (HP1e8, 5e8, 1e9 and S6, S7, S8), i.e., 6–11% for GEF-
Com2014 and 2.1–2.2% for Nord Pool, while for the more stable LTSCs
the differences are much lower — only 0.7–2%. In particular, the best
performing wavelet-based LTSC is now S9 for both datasets. It is bet-
ter than the best SCARX model in Nowotarski and Weron (2016) by
ca. 3.4% for GEFCom2014 and ca. 2% for Nord Pool.

Interestingly, the performance of the HP-filter-based LTSCs has
improved more than of the wavelet-based. To the extent that the
best performing LTSC for GEFCom2014 data is now HP1e9 with an
improvement of ca. 6% over S12 in Nowotarski and Weron (2016). The
conjecture made in the cited study, that the variability at the edges
of the sample is the reason for the disappointing performance of HP-
filter-based LTSCs is not supported by the current results. When the
exogenous variable (load forecast) is deseasonalized, the SCARX HP*
models excel in forecasting, despite their susceptibility to a volatile
behavior at the edges.

4.2. Evaluation of probabilistic forecasts

As the primary focus of this paper is not on point predictions,
let us now consider probabilistic forecasts. Like in the GEFCom2014
competition (Hong et al., 2016), we use the pinball loss function to
measure the sharpness (i.e., concentration) of predictive distribu-
tions. Note, that although we formally do not compute density (or
distributional) forecasts, we approximate them pretty well by a set
of 99 quantile forecasts spanned on a grid of 99 percentiles of the
predictive distribution.

We consider a battery of probabilistic models built on 20 point
forecasting structures (see Table 1). Except for the Naïve bench-
mark, all point forecasting models lead to three types of probabilistic
predictions — with PIs obtained via historical simulation (modelH),

bootstrapping (modelB) and QRA (modelQ). In total, we consider 59
probabilistic models:

• Two based on the Naïve benchmark → NaïveH and NaïveQ

(note, that the bootstrap procedure relies on randomness,
while the Naïve method is purely deterministic),

• Three based on the ARX benchmark → ARXH, ARXB and ARXQ,
• 24 based on the SCARXHP family with a HP-filter LTSC →

SCARX∗
H P?, where the question mark denotes k= 108,5 •

108,. . . ,5 • 1011(i.e., ? = 1e8, 5e8, . . . , 5e11) and the asterisk one
of three methods of constructing PIs (i.e., ∗ = H, B, Q),

• 30 based on the SCARXS? family with a wavelet LTSC →
SCARX ∗

S?, where the question mark denotes the decomposition
level S5, S6, . . . , S14 (i.e., ? = 5, 6, . . . , 14) and the asterisk one
of three methods of constructing PIs (i.e., ∗ = H, B, Q).

Furthermore, following Lichtendahl et al. (2013), we consider two
ways of combining probabilistic forecasts: by averaging either proba-
bilities (denoted by F-Ave∗

n) or quantiles (denoted by Q-Ave∗
n), where

n is the number of averaged forecasts and ∗ = H, B, Q. Since the
number of all possible subsets of the listed above 59 probabilistic
models is too large, we use only one selection scheme. Namely, we
rank all point forecasting models in terms of WMAE in the ‘prob-
abilistic’ calibration window (to be precise: the 26-week window
preceding day d∗ + 1; naturally, we repeat this procedure for every
day in the test period), then combine the probabilistic forecasts of
the best n = 1, 2, . . . , 19 models, but only within each H, B or Q fam-
ily. For instance, F-AveQ

5 is the average probability forecast over the
best five models with PIs obtained via QRA, while Q-AveB

1 is simply
the best performing model in terms of WMAE with PIs obtained via
bootstrapping. Note, that we use the WMAE in the calibration win-
dow and not the pinball loss to rank the forecasts, because the latter
is not known at the time the forecast is made.

4.2.1. Sharpness and the pinball loss
Sharpness is a measure of concentration of the predictive dis-

tribution — the more concentrated the distribution the better.
Sharpness can be evaluated using so-called proper scoring rules, for
instance, the pinball loss (Gneiting, 2011; Hong et al., 2016):

Pinball
(

Q̂Pt (q), Pt , q
)

=

⎧
⎨
⎩

(1 − q)
(

Q̂ Pt (q) − Pt

)
, for Pt < Q̂ Pt (q),

q
(

Pt − Q̂ Pt (q)
)

, for Pt ≥ Q̂ Pt (q),

(4)

where Q̂Pt (q) is the price forecast at the q-th quantile and Pt is the
actually observed price. Naturally, a lower score indicates a better
probabilistic forecast. The pinball loss defined by Eq. (4) is a measure
of fit for one quantile only. However, to provide an aggregate score it
can be averaged (i) across a certain time period, e.g., all hours in the
test period (as we do here), and (ii) across different quantiles, e.g., all
99 percentiles (as in the GEFCom2014 competition and here) or only
the upper ten and lower ten percentiles (as we do here).

In Table 2, we summarize the sharpness of all 59 probabilistic
models across all 99 percentiles. We can observe that:

• The S9 clearly stands out as the best performing LTSC. For both
datasets, the SCARX∗

S9 models outperform all other within each
group (H, B and Q).

• The QRA implied predictions (Q) nearly always outperform
the two other techniques (H and B). The only two exceptions
are SCARXQ

S13 and SCARXQ
S14 for the Nord Pool dataset, which

are just barely outperformed by the respective bootstrapped
forecasts.

• Despite the much more sophisticated and computationally
intensive algorithm, the bootstrapped forecasts are not much
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Table 2
The pinball loss defined by Eq. (4) averaged across all 99 percentiles and all hours in the 1.5-year ‘probabilistic’ test period: 77 weeks for GEFCom2014 (upper half) or 78 weeks for
Nord Pool (lower half). Except for the Naïve benchmark, all models are in three variants — with probabilistic forecasts obtained via historical simulation (modelH), bootstrapping
(modelB) and QRA (modelQ). Scores smaller (better) than those for the ARXH benchmark are underlined. Emphasized in bold are the results for the best performing model in each
of the two parts of the table.

GEFCom2014

Benchmarks & SCARX with HP filter (k)
Naive ARX 108 5 • 108 109 5 • 109 1010 5 • 1010 1011 5 • 1011

Historical (H) 3.269 2.472 2.421 2.389 2.380 2.386 2.400 2.445 2.459 2.469
Bootstrap (B) – 2.468 2.427 2.390 2.380 2.385 2.402 2.447 2.462 2.475
QRA (Q) 3.189 2.431 2.340 2.322 2.321 2.340 2.360 2.425 2.450 2.467

SCARX with wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Historical (H) 2.772 2.694 2.487 2.410 2.371 2.381 2.390 2.388 2.456 2.440
Bootstrap (B) 2.998 2.810 2.526 2.425 2.368 2.380 2.386 2.372 2.496 2.482
QRA (Q) 2.702 2.615 2.420 2.349 2.313 2.333 2.366 2.343 2.450 2.418

Nord Pool

Benchmarks & SCARX with HP filter (k)
Naive ARX 108 5 • 108 109 5 • 109 1010 5 • 1010 1011 5 • 1011

Historical (H) 0.884 0.744 0.739 0.745 0.748 0.758 0.762 0.768 0.771 0.778
Bootstrap (B) – 0.742 0.738 0.743 0.747 0.756 0.759 0.764 0.766 0.766
QRA (Q) 0.859 0.739 0.721 0.721 0.723 0.732 0.735 0.735 0.735 0.731

SCARX with wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Historical (H) 0.842 0.835 0.731 0.713 0.712 0.718 0.735 0.741 0.744 0.734
Bootstrap (B) 0.874 0.852 0.731 0.709 0.708 0.714 0.734 0.733 0.736 0.727
QRA (Q) 0.832 0.826 0.723 0.700 0.696 0.703 0.714 0.720 0.740 0.731

better (if better at all) than the much simpler historical simula-
tion predictions. For the GEFCom2014 dataset they are actually
more often outperformed by the latter than not. However, for
both datasets the best bootstrapped model (SCARXB

S9) outper-
forms the best historical simulation model (SCARXH

S9).
• The point and probabilistic forecasts are not always consistent.

In particular, for the GEFCom2014 dataset the wavelet-based

LTSCs lead to generally better probabilistic but worse point
predictions (for the Nord Pool dataset the wavelet-based LTSCs
are better in both cases).

• Finally, the SCARX models – especially QRA-based – nearly
always significantly (as we will see in Section 4.2.2) outperform
the benchmarks (Naïve and ARX), which justifies the SCAR
modeling framework in EPF.

Table 3
The pinball loss defined by Eq. (4) averaged across 20 extreme percentiles (1, . . . , 10 and 90, . . . , 99, i.e., corresponding to confidence levels typically considered in risk management)
and all hours in the 1.5-year ‘probabilistic’ test period: 77 weeks for GEFCom2014 (upper half) or 78 weeks for Nord Pool (lower half). Except for the Naïve benchmark, all models
are in three variants — with probabilistic forecasts obtained via historical simulation (modelH), bootstrapping (modelB) and QRA (modelQ). Scores smaller (better) than those for
the ARXH benchmark are underlined. Emphasized in bold are the results for the best performing model in each of the two parts of the table.

GEFCom2014

Benchmarks & SCARX with HP filter (k)
Naive ARX 108 5 • 108 109 5 • 109 1010 5 • 1010 1011 5 • 1011

Historical (H) 1.690 1.211 1.202 1.178 1.173 1.178 1.183 1.188 1.185 1.173
Bootstrap (B) – 1.218 1.278 1.236 1.221 1.221 1.225 1.223 1.228 1.218
QRA (Q) 1.610 1.089 1.026 1.018 1.018 1.027 1.035 1.052 1.058 1.068

SCARX with wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Historical (H) 1.310 1.299 1.241 1.165 1.152 1.152 1.139 1.153 1.183 1.187
Bootstrap (B) 1.872 1.618 1.379 1.243 1.185 1.181 1.152 1.155 1.225 1.215
QRA (Q) 1.173 1.139 1.073 1.020 1.026 1.025 1.033 1.046 1.078 1.075

Nord Pool

Benchmarks & SCARX with HP filter (k)
Naive ARX 108 5 • 108 109 5 • 109 1010 5 • 1010 1011 5 • 1011

Historical (H) 0.483 0.380 0.379 0.375 0.374 0.373 0.373 0.375 0.377 0.383
Bootstrap (B) – 0.379 0.387 0.382 0.382 0.379 0.379 0.379 0.380 0.383
QRA (Q) 0.418 0.356 0.355 0.350 0.350 0.349 0.349 0.350 0.352 0.357

SCARX with wavelet approximation
S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Historical (H) 0.445 0.433 0.381 0.376 0.372 0.371 0.375 0.376 0.374 0.374
Bootstrap (B) 0.521 0.480 0.393 0.376 0.369 0.369 0.375 0.371 0.370 0.368
QRA (Q) 0.409 0.402 0.365 0.355 0.351 0.350 0.353 0.352 0.352 0.349
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In a risk management context, which concentrates on the tail
behavior of the P&L distribution, we would probably wish to consider
only those quantiles that corresponded to confidence levels used in
the financial sector, i.e., definitely above 90% and typically in the
range of 95–99 % (Alexander, 2008). Hence, let us now look at Table 3
and focus on the extreme quantiles only, i.e., on the lower ten and
the upper ten percentiles. We note that some of the observed above
features are even more pronounced than in Table 2. For instance, the
QRA-based predictions (Q) now significantly outperform the other
two techniques (H and B) across nearly all LTSCs. In particular, if we
exclude the two most volatile wavelet-based LTSCs (i.e., S5 and S6),
then all modelQ pinball scores are smaller (better) than all modelH

and modelB scores. On the other hand, the historical simulation and
bootstrapped distributional forecasts perform very much alike, with
the former being now consistently better for GEFCom2014 — the best
modelH outperforms the best modelB (both are based on the S11

LTSC).
In Fig. 4, we plot the pinball loss defined by Eq. (4) for selected

models and forecast combinations, averaged either across all 99 per-
centiles or 20 extreme percentiles. Three types of average quantile
forecasts (Q-Ave∗

n, with ∗ = H, B or Q) and three types of average
probability forecasts (F-Ave∗

n, with ∗ = H, B or Q) for n = 1 to
19 combined forecasts are compared against three ARX benchmarks
and the best performing (ex-post) in terms of the pinball loss SCARX
model. Note, that the latter is in general different than the ‘average’
quantile or probability forecast for n = 1, since it is selected ex-
post based the average pinball loss in the test period, while F-Ave∗

1 =
Q-Ave∗

1 is selected ex-ante as the best performing model in terms of
WMAE in the calibration period.

While for n = 1 the best performing SCARX models outperform
the average quantile or probability forecasts (which is clear), for n >
2, 3 the situation changes. The average probability forecasts – and

in most cases also the average quantile forecasts – for QRA-based
predictive distributions significantly outperform the ex-post selected
best performing individual, i.e., not combined, model. But there is
more to be noted:

• While for individual models the historical simulation and
bootstrap-based distributional forecasts perform very much
alike, for combined forecasts F/Q-AveB

n tend to outperform F/Q-
AveH

n (except for GEFCom2014 and the extreme percentiles).
This could justify undertaking the substantially higher compu-
tational burden related to the bootstrap procedure.

• In contrast to Lichtendahl et al. (2013), we observe that average
probability forecasts yield generally better predictions (in our
study: smaller pinball scores) than average quantile forecasts.
Recall from Section 3.3.2, that the latter are always sharper,
i.e., Q-Ave∗

n has lower variance than F-Ave∗
n (see Fig. 3 for an

illustration). It seems that in EPF this feature is a disadvantage,
possibly due to the extremely spiky price distributions.

• It is hard to decide ex-ante how many forecasts should be
combined. However, we may suggest n = 7 as a ‘rule of thumb’.

• We do not see qualitative differences when comparing pinball
scores across 20 extreme percentiles with scores for all 99 per-
centiles. Perhaps, only the differences between QRA-based and
historical simulation and bootstrap-based predictive distribu-
tions are more pronounced. But to formally check this (and
other observations made earlier), we resort to the Diebold and
Mariano (1995) test in Section 4.2.2.

4.2.2. Diebold-Mariano (DM) tests
The WMAE values analyzed in Section 4.1 or pinball scores

studied in Section 4.2.1 can be used to provide a ranking of models,
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n) for n = 1, 2, . . . , 19 combined forecasts are compared against three ARX benchmarks and

the best performing in terms of the pinball loss SCARX model.
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but not statistically significant conclusions on the outperformance
of the forecasts of one model by those of another. In this section,
we compute the Diebold and Mariano (1995) test (abbreviated ‘DM
test’), which takes into account the correlation structure of predic-
tion errors and performs a pairwise comparison.

In the EPF literature, the DM test is usually conducted sepa-
rately for each of the load periods of the day (Bordignon et al.,
2013; Nowotarski and Weron, 2016; Weron, 2014). However, Ziel
and Weron (2018) recently introduced a different approach, where
only one statistic for each pair of models is computed based on
the 24-dimensional vector of errors (or scores) for each day, and
called it the multivariate or vectorized DM test. If we denote by
pX,d = (pX,d,1, . . . ,pX,d,24)′ and pY,d = (pY,d,1, . . . ,pY,d,24)′ the vectors
of pinball scores for day d of models X and Y, respectively, then the
multivariate loss differential series in the ‖ •‖1-norm is given by:

DX,Y ,d =‖pX,d‖1− ‖pY ,d‖1, (5)

where ‖pX,d‖1 =
∑24

h=1 |pX,d,h|. For each model pair and each dataset,
we compute the p-value of two one-sided DM tests: (i) a test with

the null hypothesis H0 : E(DX,Y,d) ≤ 0, i.e., the outperformance of the
probabilistic forecasts of Y by those of X, and (ii) the complementary
test with the reverse null HR

0 : E(DX,Y ,d) ≥ 0, i.e., the outperformance
of the probabilistic forecasts of X by those of Y. As in the standard
DM test, we assume that the loss differential series is covariance
stationary.

In Fig. 5, we plot the results for the multivariate DM-test for
14 selected models, both datasets and separately across all 99
and across 20 extreme percentiles. The models include both Naïve
benchmarks, all three ARX benchmarks, the best ex-post SCARXH

* ,
SCARXB

* and SCARXQ
* models, the best ex-post Q-AveH

n , Q-AveB
n and Q-

AveQ
n average quantile forecasts, and the best ex-post F-AveH

n , F-AveB
n

and F-AveQ
n average probability forecasts.

In all four panels, we see the corresponding p-values of the con-
ducted pairwise comparisons: green and yellow squares indicate
statistical significance at the 5% level (with the darkest green cor-
responding to close to zero p-values), red squares indicate weak
significance with a p-value between 5% and 10%, while black denote
no significance (i.e., a p-value of 10% or more). For instance, we see
in the bottom right panel that the first row is dark green, so that
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B. Uniejewski et al. / Energy Economics 79 (2019) 171–182 181

the forecasts of every model significantly outperform those of the
NaïveH benchmark. In the same panel we see that the column which
corresponds to F-AveQ

18 is dark green, meaning that this combination
leads to significantly better forecasts than all other models. As can
be seen in all four panels, the model classes are ordered from the
worst to the best performing (on average). Within each class, models
with QRA-based distributional forecasts typically significantly out-
perform the H and B type forecasts. Overall, the best models are
F-AveQ

n and Q-AveQ
n as they significantly outperform nearly all com-

petitors. On the other hand, all benchmarks except ARXQ are always
significantly outperformed by the SCARX and combined models. The
latter clearly demonstrates the usefulness of the SCAR concept, and
forecast averaging in particular.

5. Conclusions

Most day-ahead electricity price forecasting (EPF) studies ignore
the long-term seasonal component (LTSC). However, as Nowotarski
and Weron (2016) have shown for point forecasts, the Seasonal
Component AutoRegressive (SCAR) modeling concept can bring
significant accuracy gains compared to models fitted to non-
deseasonalized prices. The main aim of this paper was to validate –
in the context of probabilistic forecasts – the conjecture made
by Nowotarski and Weron (2016) that combining forecasts of
SCAR-type models with different LTSCs should further improve the
predictive accuracy.

To this end, we have considered a collection of 20 point fore-
casting models: the Naïve benchmark, an autoregressive expert
model dubbed ARX and 18 SCARX models (i.e., SCAR-type mod-
els built on Hodrick-Prescott filter or wavelet-based LTSCs with an
exogenous variable). Then by applying one of three schemes for com-
puting probabilistic forecasts (historical simulation, bootstrapping
and QRA), we have obtained a battery of 59 individual (i.e., non-
combined) ‘probabilistic’ models and using one of two approaches to
combining probabilistic forecasts (averaging probabilities or averag-
ing quantiles) — a pool of averaged predictions. The point forecasts
have been then compared using the robust Weekly-weighted Mean
Absolute Error (WMAE) and the probabilistic forecasts using the
pinball loss function. The significance of differences in predictive
accuracy (in terms of the pinball loss) has been tested using the
Diebold and Mariano (1995) test. We should note at this point, how-
ever, that the study is based on two datasets which may not be
representative of all electricity markets in the world. Hence, there
is a possibility that some of our conclusions will not hold for some
markets. Testing this is left for future research.

The results of our comprehensive EPF study have been discussed
in detail in Section 4. Here, let us only briefly recap the most
important contributions and findings:

• In the original SCAR modeling framework, as proposed by
Nowotarski and Weron (2016), only the prices were deseason-
alized. We find that deseasonalizing the exogenous variable
(here: the system load or consumption forecast) using the same
LTSC as used to deseasonalize prices significantly enhances
the forecasting performance of the SCARX models. Interest-
ingly, this innovation does not improve the efficiency of the
underlying ARX model.

• We introduce a novel extension of the SCAR approach to prob-
abilistic forecasts by applying one of three schemes – historical
simulation, bootstrapping or QRA – to the residuals (i.e., day-
ahead prediction errors) of the SCARX models, and thus obtain
‘probabilistic’ SCARX models.

• We find that ‘probabilistic’ SCARX models – especially QRA-
based – nearly always significantly outperform the bench-
marks (Naïve and ARX), which further justifies the SCAR
approach in EPF.

• We observe that QRA-based ‘probabilistic’ SCARX models
nearly always significantly outperform historical simulation
and bootstrap-based models.

• To our best knowledge, we are the first to apply two alternative
averaging schemes – the average probability forecast (which is
a vertical average of the predictive distribution functions) and
the average quantile forecast (which is a horizontal average) –
to probabilistic EPFs.

• We observe that both averaging schemes generally signifi-
cantly outperform the benchmarks and the individual (i.e.,
non-combined) SCARX models.

• Finally, we find that averaging over probabilities generally
yields better probabilistic EPFs than averaging over quantiles.
This is in contrast to typically encountered economic forecast-
ing problems (Lichtendahl et al., 2013).
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Quantile Regression Averaging (QRA) has sparked interest in the electricity price forecasting community after its
unprecedented success in the Global Energy Forecasting Competition 2014, where the top twowinning teams in
the price track used variants of QRA. However, recent studies have reported the method's vulnerability to low
quality predictors when the set of regressors is larger than just a few. To address this issue, we consider a regu-
larized variant of QRA, which utilizes the Least Absolute Shrinkage and Selection Operator (LASSO) to automat-
ically select the relevant regressors. We evaluate the introduced technique – dubbed LASSO QRA or LQRA for
short– using datasets from the Polish andNordic powermarkets. By comparing against a number of benchmarks,
we provide evidence for its superior predictive performance in terms of the Kupiec test, the pinball score and the
test for conditional predictive accuracy, as well as financial profits for a range of trading strategies, especially
when the regularization parameter is selected ex-ante using the Bayesian Information Criterion (BIC). As such,
we offer an efficient tool that can be used to boost the profitability of energy trading activities, help with bidding
in day-ahead markets and improve risk management practices in the power sector.
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1. Introduction

The Global Energy Forecasting Competition 2014 (GEFCom2014)
has changed the landscape of energy forecasting. Instead of focusing
on point forecasts, with all their limitations, the organizers have advo-
cated computing probabilistic – more precisely – quantile forecasts and
using the pinball score to evaluate them. The electricity price forecasting
(EPF) literature has reacted lively, with the number of probabilistic EPF
papers growing steadily in the following years (Hong et al., 2020). This
has had the welcome effect of making the energy forecasting literature
more interesting for economists and the financial industry. After all, the
most commonly used risk measure – the Value-at-Risk (VaR) – is noth-
ing else but a quantile forecast. The better the probabilistic forecast, par-
ticularly for the extreme quantiles, the more accurate the VaR estimate
(Bunn et al., 2016; Uniejewski et al., 2019). And, obviously, this applies
also to energy portfolios. Yet, risk management is not the only applica-
tion of probabilistic energy forecasting. For instance, using predictive
distributions as a basis for trading imbalances in an electricity market

can be significantly more profitable and financially less risky than rely-
ing upon mean value-based point forecasts (Bunn et al., 2018). Hence
the need for a development of efficient probabilistic EPF techniques.

Formally introduced by Nowotarski andWeron (2015), Quantile Re-
gression Averaging (QRA) has sparked interest in the EPF community
after its unprecedented success in GEFCom2014, where the top two
winning teams in the price track used variants of QRA (Gaillard et al.,
2016; Maciejowska and Nowotarski, 2016). The idea underlying QRA
is to apply quantile regression (QR; see Koenker, 2005) to point – not
probabilistic – forecasts of a pool of models, i.e., use the individual
point predictions as regressors and the observed spot price as the pre-
dicted variable. This is of substantial practical value. QRA is able to lever-
age developments in point forecasting, which still ismuchmore popular
than its probabilistic counterpart, while offering an accurate approxi-
mation of the predictive distribution. Since it is a general forecasting
technique not limited to electricity prices, a number of authors have re-
ported its successful application in areas ranging from load (Liu et al.,
2017; Zhang et al., 2018; Wang et al., 2019) to wind power (Zhang
et al., 2016) and irradiance forecasting (Mpfumali et al., 2019).

However, a recent study of Marcjasz et al. (2020) has revealed the
method's vulnerability to low quality predictors when the set of regres-
sors is larger than just a few. The authors emphasize the importance of
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correctly selecting the individual point forecasts for QRA, whose perfor-
mance is known only ex post, and even recommend using only two or
three point forecasts as inputs. Away to tackle this problemvia principal
component analysis (PCA) has been proposed by Maciejowska et al.
(2016). However, their Factor QRA (or FQRA) model yields suboptimal
and nearly identical forecasts to the so-called Quantile Regression Ma-
chine (QRM) of Uniejewski et al. (2019), which first aggregates point
predictions of the individual methods, then runs quantile regression
on the combined forecasts.

Here, we introduce a different approach that significantly outper-
forms not only these two, but also a number of other benchmarks. It
can be regarded as a regularized variant of QRA, which utilizes the
Least Absolute Shrinkage and Selection Operator (LASSO) of Tibshirani
(1996) to select the relevant regressors. We evaluate the introduced
technique – dubbed LASSO QRA or LQRA for short – using datasets
from the Polish and Nordic powermarkets. By comparing against nearly
30 benchmarks, we provide evidence for its superior predictive perfor-
mance in terms of the Kupiec (1995) test, the pinball score (see,
e.g., Gneiting, 2011; Nowotarski andWeron, 2018) and the test for con-
ditional predictive accuracy of Giacomini and White (2006), especially
when the regularization parameter is selected ex-ante using the Bayes-
ian Information Criterion (BIC). As such, our study provides energy gen-
erators, retailers and brokers with a tool that can be used to boost the
profitability of their trading activities, help with bidding in day-ahead
markets and improve their risk management practices.

The remainder of the paper is structured as follows. In Section 2
we briefly describe the datasets and the forecasting scheme used in
this study. Then, in Section 3 we discuss data preprocessing, describe
the expert model used for computing the point forecasts and intro-
duce LQRA. In Section 4, we first evaluate the predictive performance
of the point forecasts, then discuss coverage and sharpness of the

obtained probabilistic forecasts. In particular, we report the results
for the 90% prediction intervals, which are based on quantiles that
correspond to confidence levels often used in risk management,
i.e., 5% and 95%. Given that electricity price forecasts, no matter
how accurate, are of limited value if they cannot be used to devise
a trading strategy that yields profits, in Section 4 we also evaluate a
range of strategies that involve buying electricity when it is cheap,
storing it and selling when it is expensive. Finally, in Section 5 we
wrap up the results and conclude.

2. Datasets

2.1. Two distinct markets

We consider datasets from two neighboring, but distinct
European power markets – the Polish Power Exchange (POLEX)
and Nord Pool (NP). The first one was downloaded from the websites
of POLEX (www.tge.pl) and the Polish Transmission SystemOperator
(TSO; www.pse.pl). It comprises three time series at hourly resolu-
tion (see Fig. 1):

• day-ahead electricity prices for the main auction at POLEX (so-called
‘Fixing #1’),

• day-ahead predictions of the system-wide load in Poland,
• day-ahead predictions of the generation of centrally dispatched gen-
erating units in Poland (denoted by JWCD),

and covers the period from 2 October 2014 to 31 December 2019.
The Polish market is fossil fuel dominated, with a slowly decreasing
share of hard coal and lignite (from ca. 86% in 2014 to ca. 75% in 2019).

Fig. 1.Polish Power Exchange (POLEX) day-aheadprices (top), day-ahead system load forecasts (middle) and day-ahead forecasts of the generation of centrally dispatched generating units
(bottom) from2October 2014 to 31December 2019. The vertical dashed linesmark respectively the beginning of the 1189-day out-of-sample test period for point forecasts (29 September
2016; also the beginning of the initial 364-day calibration window for probabilistic forecasts) and the beginning of the 825-day out-of-sample test period for probabilistic forecasts (28
September 2017). The first 728 days constitute the initial calibration window for point forecasts.
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The second dataset was downloaded from the Nord Pool website
(www.nordpoolgroup.com) and also includes three time series at
hourly resolution (see Fig. 2):

• day-ahead system prices for the whole Nordic region,
• day-ahead load forecasts (so-called consumption prognosis) aggre-
gated for Denmark, Finland, Norway and Sweden,

• day-ahead forecasts of wind power generation in Denmark,

and covers the period from 1 January 2013 to 31 December 2019. In
contrast to the Polish market, the Nordic one is hydro dominated (par-
ticularly Norway) with a large share of nuclear (Sweden, Finland) and
wind power generation (Denmark).

All time serieswere preprocessed to account for changes to/from the
daylight saving time. The missing values (corresponding to changes to
the summertime) were substituted by the arithmetic average of the ob-
servations from neighboring hours. The doubled values (corresponding
to the changes from the summertime) were replaced by their
arithmetic mean.

2.2. The forecasting scheme

The idea underlying QRA is to apply quantile regression to a pool of
point forecasts. Hence, our forecasting scheme is composed of two
stages. First, point forecasts of the so-called expert, regression-type
model defined in Section 3.1.2 are obtained via ordinary least squares
(OLS). Then they are used to construct probabilistic forecasts by running
quantile regression; the resulting models are described in Section 3.2.5.
Since both stages require calibration windows, the first probabilistic
predictions are obtained for the 1093rd day in each dataset, see the
rightmost vertical dashed lines in Figs. 1 and 2.

Like the majority of EPF studies, we use a rolling window scheme.
However, following Hubicka et al. (2019), Marcjasz et al. (2018) and
Maciejowska et al. (2020), we do not consider an arbitrarily chosen cal-
ibrationwindow length for computing point forecasts, but rather a pool
of 701 window lengths – ranging from 28 (ca. one month) to 728 days
(ca. two years) – and combine the obtained predictions. Initially, the
first 728 (=2 × 364) days are used for calibration of the expert model.
For shorter windows, the calibration sample is left-truncated, so that it
ends on the same day as the 728-day window. Then for each day be-
tween 29 September 2016 and 31 December 2018 for POLEX and be-
tween 30 December 2014 and 31 December 2019 for Nord Pool, we
simultaneously compute 24 point forecasts, one for each hour of the
day. These are the 1189-day (POLEX) and 1828-day (NP) out-of-
sample test periods for point forecasts, spanning from the leftmost ver-
tical dashed lines in Figs. 1–2 to the last day in the datasets. To obtain
probabilistic forecasts from point predictions, for each hour of the
days between 28 September 2017 and 31 December 2018 for POLEX
and between 29 December 2015 and 31 December 2019 for Nord
Pool, we use a rolling 364-day calibration window and one of the
models described in Section 3.2.5. The 825-day (POLEX) and 1464-day
(NP) out-of-sample test periods for probabilistic forecasts span from
the rightmost vertical dashed lines in Figs. 1-2 to the last day in the
datasets; the probabilistic forecasts themselves are evaluated in
Section 4.2.

3. Methodology

Since our forecasting scheme is composed of two stages, we first de-
scribe the point forecasting concepts in Section 3.1, then the probabilis-
tic ones in Section 3.2. Each of these Sections ends with a summary
which wraps up the discussed ideas and presents the models.

Fig. 2.Nord Pool (NP) system prices (top), day-ahead consumption prognosis (middle) and day-ahead forecasts of wind power generation (bottom) from 1 January 2013 to 31 December
2019. The vertical dashed linesmark respectively the beginning of the 1828-day out-of-sample test period for point forecasts (30 December 2014; also the beginning of the initial 364-day
calibration window for probabilistic forecasts) and the beginning of the 1464-day out-of-sample test period for probabilistic forecasts (29 December 2015). The first 728 days constitute
the initial calibration window for point forecasts.
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3.1. Point forecasts

3.1.1. Variance stabilizing transformations
The estimation of electricity price models via maximum likelihood

(ML) or ordinary least squares (OLS) is typically hampered by spikes.
These ‘outliers’ tend to pull model estimates towards values that yield a
better fit for the extreme observations, but at the same time increase
the in-sample errors for the non-spiky prices. A statistically soundmodel-
ing framework would either require robust estimation algorithms, as in
Grossi and Nan (2019), or models with explicit spike components, for a
review see Weron (2014). Neither of these are popular in the EPF litera-
ture. Instead the authors have resorted either to treating electricity
price series with a ‘reasonable’ filter (Janczura et al., 2013; Lisi and
Pelagatti, 2018; Afanasyev and Fedorova, 2019) and calibrating the
model to spike-filtered data or to transforming the original series, fitting
themodel to transformed prices and applying the inverse transformation
to obtain the forecasts (Diaz and Planas, 2016; Uniejewski et al., 2018;
Narajewski and Ziel, 2020); the latter approach has the advantage of
using spiky prices, though their impact on parameter estimates is re-
duced. For markets with only positive and distinctly different from zero
prices, the logarithmic transform can be used, which leads to popular in
finance models for log-prices. However, spikes come in all shapes and
sizes–historically they havebeenmostly positive, butwith the increasing
penetration of renewables significant price drops have started appearing
(Maciejowska, 2020). In some markets, like in Germany, negative spikes
are more common nowadays than positive ones (Hagfors et al., 2016b).
This has triggered the development of alternative transformations that
can handle negative and close to zero values. In an extensive empirical
study involving two model classes (regression models, neural networks)
and datasets from 12 diverse power markets, Uniejewski et al. (2018)
have evaluated 16 variance stabilizing transformations (VSTs), ranging
from simple threshold-type cutoffs, through generalized Box-Cox type
transforms, to the probability integral transform (PIT) based approaches.
Although there was no clear-cut winner, the N-PIT, the mirror-log and
the area hyperbolic sine (asinh) transforms performed reasonably well,
with theN-PIT having an edge over the competitors for the considered re-
gression model and asinh performing very well for the neural network.
Given that asinh is much simpler to compute, like Schneider (2011),
Ziel and Weron (2018) and Marcjasz (2020), we use it in our study.

Each time series (prices and exogenous variables) is first standard-
ized by subtracting the sample median and dividing by the sampleMe-
dian Absolute Deviation (MAD) corrected by the 75% quantile of the
standard normal distribution z0.75; note, that according to Uniejewski
et al. (2018), the (median, MAD) standardization yields better results
than the more commonly used in statistics (mean, standard deviation)
pair. For instance, for prices Pd,h we have:

pd,h ¼ Pd,h−a
b

≡
Pd,h−med Pd,h

� �
MAD Pd,hð Þ

z0:75

: ð1Þ

Then we asinh-transform the standardized series. For instance, for
prices we obtain:

Yd,h ¼ asinh pd,h
� � ¼ log pd,h þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2d,h þ 1

q� �
, ð2Þ

for each d and h. Once the transformed price forecast for day d and hour
h, i.e., bYd,h, is computed, we apply the inverse transformation to obtain
the price forecast itself. Here, we follow Narajewski and Ziel (2020)
and define the back-transformation as:

bPd,h ¼ aþ b
D
∑
D

i¼1
sinh bYd,h þ εi

� �
, ð3Þ

where D is the number of days in the calibration window, εi are the in-
sample residuals of the OLS procedure, and a and b are defined in
Eq. (1). Note, that the back-transformation proposed by Uniejewski

et al. (2018) is simpler, but may be less accurate when bYd,h is far
from zero.

3.1.2. The expert model
For computing point forecasts we use a parsimonious autoregressive

structure, inspired by the ARX model of Misiorek et al. (2006) and later
used in a number of EPF studies (see Ziel and Weron, 2018, for a re-
view). Following Uniejewski et al. (2016) and Ziel (2016), we refer to
it as an expert model, since it is built on some prior knowledge of ex-
perts. The model for the asinh-transformed price on day d and hour h
is given by:

Yd,h ¼ β1Yd−1,h þ β2Yd−2,h þ β3Yd−7,h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
autoregressive effects

þ β4Yd−1,24|fflfflfflfflfflffl{zfflfflfflfflfflffl}
end−of−day

þ β5Y
max
d−1 þ β6Y

min
d−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

non−linear effects

þβ7Z
1ð Þ
d,h þ β8Z

2ð Þ
d,h|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

exogenous variables

þ β9DSat þ β10DSun þ β11DMon|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weekday dummies

þ εd,h,

ð4Þ

where Yd−1,h, Yd−2,h and Yd−7,h account for the autoregressive effects
and correspond to prices from the same hour of the previous day, two
days before and a week before, Yd−1,24 is the last known price at the
time the prediction is made and provides information about the end-
of-day price level, Y d−1

max ≡ maxh=1, …, 24{Yd−1,h} and Yd−1
min ≡ minh=1, …,

24{Yd−1,h} represent previous day's variation in prices, Zd, h
(1) is the

asinh-transformed day-ahead system load forecast for day d and hour
h, Zd,h(2) is the asinh-transformed day-ahead forecast for day d and hour
h of either generation of centrally dispatched generating units (for
POLEX) or ofwind power generation (for Nord Pool),DSat,DSun andDMon

are respectively Saturday, Sunday and Monday dummies, and the εd,h’s
are assumed to be independent and identically distributed normal var-
iables. Themodel weights are estimated via OLS, independently for each
day and hour.

3.1.3. Point forecasting models
Summing up, for each day in the out-of-sample test period for point

forecasts, i.e., d = 1, 2,…, 1189 (for POLEX) and d = 1, 2, …, 1828 (for
NP), each hour of the day, i.e., h=1, 2,…, 24, and each calibration win-
dow length, i.e., T = 28, 29, …, 728 days (see Section 2 for details), we
follow the same routine:

Pd,h !standardize
pd,h !VST Yd,h !predict bYd,h !inverseVST bPd,h: ð5Þ

Namely, we (i) standardize the prices in the calibration window
using Eq. (1), (ii) VST-transform the standardized prices in the calibra-
tionwindowusing the areahyperbolic sinedefined inEq. (2), (iii) estimate
parameters of the expert model (4) via OLS and compute the one-step
ahead point predictions, and finally (iv) apply the inverse of the asinh
transformation given by Eq. (3) to obtain the price forecasts. Note, that
we also standardize and asinh-transform the exogenous variable time se-
ries prior to fitting the expert model in step (iii). As a result of this routine,
for each day d and hour h we obtain 701 different point forecasts of the
same expert model estimated on data from 701 calibration windows.
We can treat these forecasts as coming from 701 different ‘models’.

3.2. Probabilistic forecasts

3.2.1. Quantile Regression Averaging (QRA)
QRA, as introduced by Nowotarski and Weron (2015), is based on

averaging n = 1, …, N point predictions of electricity prices bP nð Þ
d,h using

quantile regression (QR; see Koenker, 2005):

q αjXd,h
� � ¼ Xd,hβα , ð6Þ

where q(α| ⋅) is the conditional αth quantile of the electricity price dis-
tribution, Xd,h is the vector of independent variables, i.e., bP nð Þ

d,h for
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n = 1, …, N, while βα = [βα
(1),…,βα

(N)]′ is the corresponding vector of
weights for given α. To obtain parameter estimates we minimize the
sum of the so-called check functions:

β̂α ¼ argminβα

∑
d,h

α � 1Pd,h<Xd,hβα

� �
Pd,h � Xd,hβα
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

check function

, ð7Þ

where 1x is the characteristic function of set X. Following the un-
precedented success in the Global Energy Forecasting Competition
2014, QRA became a popular technique for probabilistic energy fore-
casting (see, e.g., Maciejowska et al., 2016; Zhang et al., 2016; Liu
et al., 2017; Zhang et al., 2018; Kostrzewski and Kostrzewska, 2019;
Mpfumali et al., 2019; Serafin et al., 2019; Uniejewski et al., 2019;
Wang et al., 2019; Kath and Ziel, 2020). However, a recent study of
Marcjasz et al. (2020) has revealed the method's vulnerability to low
quality predictors when the set of regressors is larger than just a few.
To tackle this problem, in what follows we introduce a regularized (or
penalized) variant of QRA.

QRA is a special case of QR where the regressors are point (mean

value) forecasts of the predicted variable, i.e., bP nð Þ
d,h for n = 1, …, N.

Note, however, that QR is a general technique that can yield electricity
price forecasts also for more diverse sets of explanatory variables, in-
cluding past prices and/or fundamental variables, as in Bunn et al.
(2016) or Hagfors et al. (2016a), potentially also higher moments of
the predictive distribution or quantile forecasts. To our best knowledge,
the latter idea has not been utilized in the EPF context thus far.

3.2.2. Regularization
In simple terms the idea of regularization can be formulated as an

optimization problem:

bβ ¼ argminβ f X;βð Þ þ g βð Þf g, ð8Þ

where f(X;β) is the minimized function, g(β) is the penalty function
and β is the vector of parameters (Tikhonov, 1963). The most com-
monly used variant of regularization defines the penalty function as
an ℓq norm scaled with an additional tuning (or regularization) param-
eter λ. When q = 1 and f(X;β) is the Residual Sum of Squares (RSS)
we obtain the Least Absolute Shrinkage and Selection Operator (LASSO)
of Tibshirani (1996):

bβ ¼ argminβ ∑d,h Pd,h−Xd,hβ� �2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RSS

þ λ∑
n

i¼1
jβij

8><>:
9>=>;, ð9Þ

which not only shrinks theβ’s towards zero, but also eliminates some of
them. For λ=0 themethod is equivalent to the original formulation of
the problem, i.e., OLS. As λ increases, more andmore variables are elim-
inated. A clear advantage of LASSO is that it can handle an almost unlim-
ited number of explanatory variables. Hence, it can be used as an
automated variable selection tool (Gaillard et al., 2016; Uniejewski
et al., 2016; Ziel, 2016; Uniejewski and Weron, 2018; Ziel and Weron,
2018).

3.2.3. LASSO QRA
Regularization applied to quantile regression is not a completely

new idea (for a mathematical treatment of this topic see Li and Zhu,
2008). There are even a few forecasting papers where this approach
has been considered. On one hand, there are publications where
LASSO is combined with QR to construct probabilistic forecasts of eco-
nomic variables (Manzan, 2015), global radiation (Ben Bouallègue,
2017), electric demand (Lebotsa et al., 2018; He et al., 2019) or photo-
voltaic power (Agoua et al., 2019), for a pool of explanatory variables
(but not point forecasts as in QRA). On the other, there are studies
where penalized (via LASSO) QR is used to obtain a quantile of the

predictive distribution (e.g., Value at Risk at the 95% level) from a pool
of forecasts of this particular quantile (Bayer, 2018; Bracale et al.,
2019). However, to our best knowledge, there is no paper that combines
regularization with QRA, i.e., with mean value (not quantile) forecasts
taken as independent variables in Eq. (6).

The LASSO QRA or LQRA for short is constructed by applying the
check function defined in Eq. (7) to the ℓ1 regularization in Eq. (9):

β̂α ¼ argminβα

∑d,h α−1Pd,h<Xd,hβα

� �
Pd,h−Xd,hβα
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

check function, see Eqn: 7ð Þ

þ λ∑
N

n¼1
β nð Þ
α

��� ���|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
LASSO penalty

8>>><>>>:
9>>>=>>>;,

ð10Þ

where, as in Eq. (6), Xd,h is the vector of independent variables, i.e., bP nð Þ
d,h

for n= 1,…, N, for day d and hour h, and Xd,hβα ¼ ∑N
n¼1β

nð Þ
α
bP nð Þ
d,h. Note,

that Eq. (10) can be rewritten to fit into the definition of a linear prob-
lem, thus to estimate bβα we use a basic linear programming tool,
i.e., the Simplex algorithm (Dantzig et al., 1955).

Due to the linear penalty factor, LQRA selects the most informative
point forecasts, so there is no need for experts to select them a priori.
What is more, because of regularization, the final forecasts of different
quantiles may be constructed using different sets of point forecasts. Po-
tentially, thismay improve the predictive performance. Actually, we ex-
pect the model to be at least as accurate as QRA and at the same time
much more robust to a large number of point forecast (inputs). The
higher the λ, the fewer point forecasts will finally be used to construct
the quantile forecasts. Note, that λ may or may not depend on α. In
Section 4.2we present results formodels with one fixed λ for all 99 per-
centiles as well as a model which selects the optimal value of λ for each
percentile and each hour.

3.2.4. Selection of λ
To check the performance of LQRA we conduct empirical tests on a

logarithmic grid of 19 λ’s ranging from 10−1 to 103. We additionally in-
clude λ=0, which corresponds to the original QRAmethod; in total we
report results for 20 different values of λ. We also consider two proce-
dures for selecting the optimal value of λ. The first, denoted by LQRA
(BIC), utilizes the Bayesian Information Criterion (BIC) to select the
tuning parameter based on the in-sample fit and uses the formulation
proposed by Lee et al. (2014). Namely, for quantile α, day d and hour
h we select the λ that corresponds to the lowest BIC value:

BICα
d,h λð Þ ¼ log ∑

d

d⁎¼d−364
α−1

Pd⁎ ,h<P̂
α
d⁎ ,h

	 

Pd⁎ ,h−P̂

α
d⁎ ,h

� � !

þm
log nð Þ
2n

log pð Þ,
ð11Þ

where Pd, h is the observed price, bPα
d,h is the corresponding model-

predicted α-quantile of the price distribution (in-sample fit), m is the
number of non-zero parameters in the regularized model, n = 364 is
the number of observations in the calibrationwindow and p is the num-
ber of potential predictors (here: 25).

The second procedure, denoted by LQRA(CV), utilizes cross-
validation to select the optimal value of λ, see, e.g., Hastie et al. (2015)
for a discussion and examples. We divide the in-sample data into k =
7 disjunctive subsets of 364

7 ¼ 52 days; note, that the length of the cali-
brationwindow for probabilistic forecasts is 364 days. Thenwe calibrate
the model k times, each time we leave out one of the k subsets for test-
ing. Finally, we compare the performance for each λ by looking at the
Pinball Score, defined in Eq. (13) below, averaged across all days in
the calibrationwindow. The λwith the lowest score is chosen, indepen-
dently for each percentile.
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3.2.5. Probabilistic forecasting models
The probabilistic forecasts are obtained for QR-type models cali-

brated on a rolling window of 364 days; this is in contrast to point fore-
casts, which are fitted on 701 rolling windows of lengths ranging from
28 to 728 days. For example, in case of the Polish data, the initial calibra-
tion window for probabilistic forecasts covers the period from 29 Sep-
tember 2016 to 27 September 2017 and yields forecasts for all 24 h of
the next day (28 September). Afterwards, the window is rolled forward
by one day and the models are re-estimated to obtain forecasts for 29
September. This procedure is repeated until the predictions for 31 De-
cember 2019 are made.

To obtain probabilistic forecasts of the day-ahead price, we use
only 25 out of 701 individual point forecasts available (see
Section 4.1). Marcjasz et al. (2018) claim that it is not beneficial to
take into consideration models that are calibrated on windows of
fewer then 56 days. What is more, forecasts obtained for windows
of similar lengths provide almost identical results. Thus, as the po-
tential variables for LQRA we have selected point forecasts obtained
for models calibrated on windows of 56,84,112,…, 728 days; see the
black dots in Fig. 3. The resulting models are denoted by LQRA(λi),

where λi ¼ 10
2 i−1ð Þ

9 −1 for i = 1, …, 19 is a logarithmic grid of λ’s rang-
ing from 10−1 to 103.

Note, that λ = 0 in Eq. (10) corresponds to ‘pure’ or non-
regularized QRA. The latter is treated as the first benchmark and
denoted later in the text by QRA. The next 25 benchmarks use QR
applied to individual point forecasts; we denote them by QR(T),
where T = 56,84,112, …, 728. The last three benchmarks are moti-
vated by the results of Marcjasz et al. (2020). The authors report
that averaging probabilistic forecasts can further improve the accu-
racy. Thus, we additionally average probabilistic forecasts QR(T),
both ‘horizontally’ and ‘vertically’, see Section 3.3.2 in the cited arti-
cle. We denote them by Q-Ave and F-Ave, respectively. Finally, since
it may be beneficial to first average point forecasts and then apply QR
(instead of averaging predictions on the probabilistic level), we also
consider the Quantile Regression Machine (QRM) approach of
Uniejewski et al. (2019). In this model, denoted by QRM, all 25 indi-
vidual point forecasts are first averaged and the result is then used as
an input to the QR algorithm. Interestingly, QRM yields nearly iden-
tical forecasts to the Factor QRA (or FQRA) model of Maciejowska
et al. (2016), because the latter applies QR to the first factor (which
approximates the mean) extracted from a pool of forecasts.

Finally, note that in this study we forecast 99 percentiles, which can
be treated as a relatively good approximation of the entire distribution.
Due to a possible lack of monotonicity of the quantile forecasts, after
obtaining predictions of the 99 percentiles we sort the results, indepen-
dently for each day and hour.

4. Results

4.1. Point forecasts

The point forecasts are evaluated using the Mean Absolute Error:

MAE ¼ 1
24D

∑
D

d¼1
∑
24

h¼1
∣bPd,h−Pd,h∣,

where D is the number of days in the out-of-sample test period. The re-
sults are presented in Fig. 2. They are very similar to those reported in
Hubicka et al. (2019) andMarcjasz et al. (2018). As can be seen for both
datasets, the optimal (in terms of MAE) calibration window length is
around 100-days; this can hardly be selected ex-ante. For both datasets
the shortest windows are not recommended. What was also reported
by Marcjasz et al. (2018) for some of the analyzed markets, the longer
calibration window we take, the worse the autoregressive model per-
forms. We observe this behavior both for the POLEX and NP datasets.

4.2. Probabilistic forecasts

4.2.1. Error measures and testing for predictive ability
When evaluating probabilistic forecasts, we follow the paradigm of

‘maximizing sharpness subject to reliability’ (Gneiting and Katzfuss,
2014; Nowotarski and Weron, 2018). To check the reliability we com-
pute the empirical coverage:

Iαd:h ¼
1, for Pd,h∈ L̂

α
d,hÛ

α
d,h

h i
,

0, for Pd,h∉ L̂
α
d,hÛ

α
d,h

h i
,

8><>: ð12Þ

where L̂
α
d;h is the lower and Û

α
d;h the upper bound of the prediction inter-

val (PI), and compare it to the nominal coverage. To this end, we per-
form the Kupiec (1995) test for the 50% and 90% PIs.

Then, we use the Pinball Score (or Pinball Loss) to evaluate the
sharpness. It is a proper scoring rule and a special case of an asymmetric
piecewise linear loss function (Gneiting, 2011):

PS q̂α,P , Pd,h,α
� � ¼ 1−αð Þ q̂α,P−Pd,h

� �
for Pd,h<q̂α,P ,

α Pd,h−q̂α,P
� �

for Pd,h ≥ q̂α,P ,

(
ð13Þ

where q̂α;P is the price quantile of orderα∈ (0,1) and Pd,h is the observed
price for day d and hour h. The lower PS is, the more accurate are the
probabilistic forecasts for a given quantile. The Pinball Score can be av-
eraged across all percentiles, i.e., α = 0.01, 0.02, ...,0.99 as in the
GEFCom2014 competition, and all hours in the whole out-of-sample
test period. This yields the Aggregate Pinball Score (APS), which is

Fig. 3. TheMeanAbsolute Errors (MAE) for the POLEXdataset from the period 29 September 2016 to 31December 2019 (left panel) and the Nord Pool dataset from the period 30 December
2014 to 31December 2019 (right panel), as a function of the calibrationwindow length ranging from28 to 728 days. Black dots represent forecasts used as inputs for QR-based procedures,
gray dots – predictions for all considered window lengths.
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equivalent to computing the quantile representation of the so-called
Continuous Ranked Probability Score (CRPS), see Laio and Tamea
(2007).

Finally, to draw statistically significant conclusions on the
outperformance of forecasts of one model by those of another, we use
the Giacomini and White (2006) test for conditional predictive ability
(CPA). It can be regarded as a generalization of the commonly used
Diebold-Mariano test for unconditional predictive ability. Here, one sta-
tistic for each pair of models is computed based on the 24-dimensional
vector of Pinball Scores for each day:

ΔX,Y ,d ¼ ∥APSX,d∥−∥APSY ,d∥,

where ∥APSX,d∥ ¼ ∑24
h¼1∑

0:99
α¼0:01 PS bqα,P , Pd,h,α

� �
for model X. For each

pair of models and both datasets we compute the p-values of the CPA
test with null H0 : ϕ= 0 in the regression: ΔX,Y ,d ¼ ϕ0Xd−1 þ εd, where
Xd−1 contains information of day d− 1, i.e., a constant and lags ofΔX,Y,d.

4.2.2. Empirical coverage
In Fig. 4 we depict the so-called Prediction Interval Coverage Probabil-

ity (PICP; see, e.g., Nowotarski andWeron, 2018) or empirical coverage
of the 90% PIs constructed from the 5th and 95th percentiles, i.e., for
α = 0.05 and 0.95. Plotted are the results of empirical coverage aggre-
gated for all hours in the out-of-sample test period, i.e., 825 × 24 = 19
800 observations for POLEX and 1464× 24=35 136 for Nord Pool. Sev-
eral conclusions can be drawn:

• Firstly, we can observe that the dashed lines indicating the expected
level of 90% are rarely reached. This means that most of the PIs are
too narrow; the exceptions include F-Ave (for both markets) and
Q-Ave (for NP).

• As far as benchmarks are concerned, it is hard to formulate clear-cut
conclusions. For the Polish dataset, F-Ave and Q-Ave outperform QR
(T) for all T. However, for Nord Pool, Q-Ave and QR(T) perform simi-
larly and F-Ave yields too wide PIs; QRM yields similar coverage to
QR(T) for both datasets.

• As emphasized by Lichtendahl et al. (2013), vertical averaging of
probabilities (→ F-Ave) yields wider PIs than horizontal averaging of
quantiles (→ Q-Ave), leading to less sharp predictive distributions.
While this often helps in EPF (Uniejewski et al., 2019; Marcjasz
et al., 2020), for the considered Nord Pool dataset the F-Ave-implied
PIs are clearly too wide. Possibly this is a consequence of the much
less spiky prices in 2019 compared to the earlier years, see Fig. 2.

• LQRA strongly depends on λ. Rather larger values of the tuning pa-
rameter are preferable.

• Both methods for automated selection of λ, i.e., LQRA(BIC) and LQRA
(CV), are slightly outperformed by the best (ex-post) fixed λ values. At
the same time, for both markets they yield similar coverage to QRM
and QR(T).

• The most reliable results are obtained with F-Ave for POLEX and QR
(168) for Nord Pool. They yield a coverage of 90.45% and 89.67%,
respectively.

Similar conclusions can be drawn for the 50% PIs (not plotted here
for the sake of clarity).

4.2.3. The Kupiec test
The test is performed to check whether the obtained PIs are close

enough to the nominal values of PINC = 50% or 90%, or equivalently
whether the Average Coverage Errors, defined as ACE = PICP − PINC,
are close enough to zero. Recall, that the Kupiec (1995) test checks
whether the probability of an actual price falling into the PI (→ ‘hit’) is
equal to PINC, under the assumption that the ‘hits’ and ‘misses’ are inde-
pendent. The test rejects the null hypothesis of ACE equal to zero if the
actual fraction of ‘hits’ is statistically different from PINC (Nowotarski
and Weron, 2018). In what follows, we report the results for three
benchmarks (Q-Ave, F-Ave, QRM) and three LQRA models – one with
an ex-post selected, relatively well performing value of λ14 =
77.43 ≈ 77, denoted by LQRA(77), and two that utilize automated se-
lection of the tuning parameter, i.e., LQRA(BIC) and LQRA(CV).

Fig. 4. The PI Coverage Probability (PICP) of the probabilistic forecasts for the POLEX dataset from 29 September 2016 to 31 December 2019 (top panels) and theNord Pool dataset from 30
December 2014 to 31 December 2019 (bottom panels). The black dashed line corresponds to the PI Nominal Coverage (PINC) of 90%. Results are divided into two plots, the coverage for
benchmark models (left panels; see Section 3.2.5) and LQRA as a function of λ and the two automated procedures for λ selection (right panels; see Section 3.2.4).
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For both datasets, the Kupiec test is conducted for the whole out-of-
sample test period, but separately for each of the 24 hourly series. In
Fig. 4 we depict the ACE (in percent) for the 50% and 90% PIs generated
by the six selected probabilistic forecastingmethods. The filled symbols
indicate significance of the Kupiec test at the 1% level. The latter results,
also at the 5% level, are summarized in Table 1.We can draw the follow-
ing conclusions:

• Nearly in all cases the PIs for off-peak prices (i.e., night hours, early
mornings and late evenings) are too narrow (ACE <0), while for on-
peak prices they are usually too wide (ACE >0).

• As far as benchmarks are concerned, the best performing isQRM, par-
ticularly for on-peak hours. On the other hand, F-Ave seems to per-
form slightly better for off-peak hours.

• All three LQRA models outperform the benchmarks. They pass the
Kupiec test at the 1% significance level for nearly all on-peak hours,
and for as many as 17–22 h for the NP dataset. At the 5% significance

level the results are slightly less convincing, but still much better
than for the benchmarks.

• No significant differences between theperformance of LQRA(BIC) and
LQRA(CV) can be observed; interestingly, they are at par with LQRA

Fig. 5. TheAverage Coverage Errors (ACE=PICP− PINC; in percent) for the 50% and 90% PIs generated by the six selectedprobabilistic forecastingmethods, separately for eachhour of the
day and the POLEX (top six panels) and NP datasets (bottom six panels). Filled symbols indicate significance of the Kupiec test at the 1% level, compare with Table 1.

Table 1
The number of hours of the day (i.e., out of 24) for which the null of the Kupiec test is not
rejected at the 1% and 5% significance levels, for both datasets. Compare with Fig. 5.

POLEX Nord Pool

PI 90% 50% 90% 50%

Sig. level 1% 5% 1% 5% 1% 5% 1% 5%
Q-Ave 6 3 6 6 5 3 8 8
F-Ave 2 2 5 4 7 6 5 2
QRM 11 8 10 10 15 8 12 8
LQRA(77) 14 11 18 16 20 17 20 18
LQRA(BIC) 12 10 17 14 17 17 22 18
LQRA(CV) 12 10 19 16 17 17 21 18
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(77), for which λwas selected ex-ante. Given that LQRA(BIC) involves
a significantly lower computational cost than LQRA(CV), it can be rec-
ommended based on the results of the Kupiec test.

4.2.4. Sharpness
In Fig. 6 we depict the Aggregate Pinball Score (APS) defined in

Section 4.2.1, i.e., the PS averaged across all 99 percentiles and all days
and hours in the out-of-sample test period for probabilistic forecasts.
Like in Section 4.2.2, we present the results for all benchmarks and all
considered values of λ for LQRA. We can observe that:

• Both for the Polish and Nordic markets the best performing bench-
mark is F-Ave with an APS of 6.18 (for POLEX) and 0.73 (for NP).

• For the POLEX dataset, all results obtained for LQRAwith λ > 10 out-
perform the benchmarks by a large margin. The APS as function of λ
has a ‘minimum’ at 6.05, ca. 2.1% lower compared to the APS of the

best benchmark.
• For the Nordic market we can also conclude that most of the forecasts
obtained for LQRA outperform the benchmarks by a largemargin. The
APS as a function of λ takes its ‘minimum’ at 0.71, around 3% lower
compared to the best benchmark.

• Both for the Polish andNordicmarkets LQRA(BIC) and LQRA(CV) per-
form comparably well, with the former having a slight edge for the
POLEX dataset. Both are significantly better than all benchmarks and
essentially at par with LQRA(77), i.e., with the ex-post selected λ.

4.2.5. Testing conditional predictive ability
As in Section 4.2.3, we perform the CPA test of Giacomini andWhite

(2006) for three benchmarks (Q-Ave, F-Ave, QRM) and three LQRA
models – LQRA(77)with an ex-post selected λ and two that utilize auto-
mated selection of the tuning parameter, i.e., LQRA(BIC) and LQRA(CV).
In Fig. 7 we illustrate the obtained p-values using ‘chessboards’

Fig. 6. The Aggregate Pinball Score (APS) for the POLEX dataset from 29 September 2016 to 31 December 2019 (top panels) and the Nord Pool dataset from 30 December 2014 to 31
December 2019 (bottom panels), plotted separately for the benchmark (left panels) and LQRAmodels (right panels).

Fig. 7. Results of the conditional predictive ability (CPA) test of Giacomini andWhite (2006) for forecasts of selectedmodels for the POLEX (left) and Nord Pool (right) datasets. We use a
heatmap to indicate the range of the p-values – the closer they are to zero (→ dark green) themore significant is the difference between the forecasts of amodel on the X-axis (better) and
the forecasts of a model on the Y-axis (worse).

B. Uniejewski and R. Weron Energy Economics 95 (2021) 105121

9



(analogously as in Ziel andWeron, 2018; Serafin et al., 2019; Uniejewski
et al., 2019), i.e., we use a heat map to indicate the range of the p-values
– the closer they are to zero (→ dark green) the more significant is the
difference between the forecasts of a model on the X-axis (better) and
the forecasts of a model on the Y-axis (worse). Clearly, the CPA test re-
sults confirm and emphasize the observations made in Section 4.2.4. In
particular, F-Ave significantly outperforms all other benchmarks and for
both datasets the best performing model overall is LQRA(BIC), that is
never significantly outperformed by any other method. Given that
LQRA(BIC) is computationally less demanding than LQRA(CV), it is
the recommended option.

4.3. Measuring financial profits

Electricity price forecasts, no matter how accurate, are of limited
value if they cannot be used to devise a trading strategy that yields
profits. Hence, to put the above results in a different perspective, we
consider strategies that can be implemented by a company that pos-
sesses an energy-storage system, like the Virtual Power Plant analyzed
in Sikorski et al. (2019). Without loss of generality, let us assume that
the company owns a 1.25 MWh battery, for both economic and techni-
cal reasons it cannot be discharged below 0.25 MWh (or 20% of the
nominal capacity) and its efficiency is 80% for a single charge-
discharge cycle. We compare a range of quantile-based, intra-day trad-
ing strategies which aim at buying 1 MWh of electricity to charge the
battery when it is the cheapest (typically very early morning hours),
storing it and discharging the unit to sell 0.8 MWh, i.e., 80% of 1 MWh,
of electricity when it is the most expensive (typically in the afternoon).
We use data from the Polish day-ahead (see Section 2) and balancing
(source: www.pse.pl) markets to illustrate the strategies and evaluate
the financial value of different electricity price forecasts.

4.3.1. Quantile-based trading strategies
All considered quantile-based trading strategies consist of the same

three steps. In step (i), before bidding in the day-ahead market on day
d − 1, we select two hours – one with a low and one with a high ex-
pected price of electricity on day d. More precisely, the ‘low-price
hour’ h1 and the ‘high-price hour’ h2 are chosen such that h1 < h2 and
the price spread between the α-quantile of the price distribution for
hour h2 and the (1 − α)-quantile for hour h1 is maximized, see Fig. 8
for an illustration.

We consider six levels of α (1%, 5%, 10%, 15%, 20% and 25%) and for-
mulate the above as a linear integer programming problem with:

• decision variables xsellh and xbuy
h equal to one if we respectively sell or

buy at hour h and zero otherwise, satisfying xbuy
h∗ + ∑h=1

h∗ xsell
h ≤ 1 for

h ∗ = 1, 2, …, 24;
• and objective function:

max∑24
h¼1 0:8 bPα

d,h⋅x
h
sell−bP1−α

d,h ⋅xhbuy

	 

, ð14Þ

where bPα
d,h is themodel-predictedα-quantile of the price distribution on

day d and hour h. We use the intlinprog function from the Matlab Opti-
mization Toolbox to solve it.

In step (ii) we submit to POLEX the bid to buy 1 MWh for bP1−α
d,h1 at

hour h1 and simultaneously the offer to sell 0.8 MWh at bPα
d,h2 at hour

h2. For instance, when bidding for 29 September 2017 with α = 10%

the price spread is maximized for bP90%
d,4 ¼ 132:51 and bP10%

d,20 ¼ 204:23
PLN/MWh, see Fig. 8. Note, that the probability that each of our bids
will be accepted is 1 − α (independently); in this case it is 90%, both
for the bid to buy at h1 = 4 and the offer to sell at h2 = 20. Finally, in
step (iii):

• If both the bid and the offer are accepted, on day d and hour h1 we buy
1MWh in the day-aheadmarket for the auction settled price Pd,h1 and
charge the battery. Then at hour h2 > h1 we discharge the battery and
sell 0.8MWh in the day-aheadmarket at Pd,h2. The daily profit is 0.8 Pd,
h2 − Pd,h1 PLN.

• If both the bid and the offer are rejected, we do nothing; the daily
profit is 0 PLN.

• If only the offer is accepted, on day d and hour h1we buy 1MWh in the
balancingmarket for Bd,h1 and charge the battery. Then at hour h2 > h1
we discharge the battery and sell 0.8 MWh in the day-ahead market.
The daily profit is 0.8 Pd,h2 − Bd,h1 PLN.

• Analogously, if only the bid is accepted, on day d and hour h1 we buy 1
MWh in the day-ahead market and charge the battery. Then at hour
h2 > h1 we discharge the battery and sell 0.8 MWh in balancing mar-
ket at Bd,h2. The daily profit is 0.8 Bd,h2 − Pd,h1 PLN.

4.3.2. Benchmark strategies
To show that the probabilistic forecasts are worth considering

we compare the quantile-based strategies defined in Section 4.3.1
against two benchmarks. The first one is a naive strategy that al-
ways buys 1 MWh at hour 4 am and sells 0.8 MWh at 12 pm;
those are the hours with the – on average – lowest and highest
price in the Polish day-ahead market. The second, point forecasts-
based benchmark is constructed analogously to the quantile-

based strategies, but instead of using quantile forecasts bPα
d,h it uti-

lizes point forecasts bPd,h.

4.3.3. Results
In Table 2 we report the profits (in PLN) obtained when using one of

the benchmark or quantile-based strategies defined in Sections
4.3.1–4.3.2 in the POLEX market for the whole out-of-sample, 853-day
period, see Fig. 1. We can draw the following conclusions:

• For any considered quantile-based strategy the obtained profit is sig-
nificantly higher than for the naive or point forecasts-based bench-
marks.

• For all considered α’s the highest profits are obtained for one of the
LQRA-based probabilistic forecasts; see the underlined values in
each column.

• LQRA(BIC)withα=20% yields the highest profit overall. The value of
45,396.21 PLN for 853 days is equivalent to an average daily profit of
53.22 PLN (or ca. 12 EUR).

Fig. 8. Illustration of the quantile-based trading strategies discussed in Section 4.3.1.When
bidding for 29 September 2017, based on the 80% PIs available a day earlier, the price

spread is maximized for bP90%
d,4 ¼ 132:51 (left •) and bP10%

d,20 ¼ 204:23 PLN/MWh (right •).
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5. Conclusions

In this paper we have introduced a new technique for computing
probabilistic forecasts – LASSO QRA or LQRA for short. It is a regularized
variant of Quantile Regression Averaging, which utilizes the Least Abso-
lute Shrinkage and Selection Operator (LASSO) to select the valuable
and eliminate the redundant point forecasts used as inputs to quantile
regression. Although illustrated on datasets comprising day-ahead elec-
tricity prices, we believe that LQRA can be a useful approach also for
other forecasting applications, in particular, in risk management.

Wehave evaluated thenew technique using datasets from thePolish
and Nordic power markets, and compared against nearly 30 bench-
marks. Furthermore, we have introduced two automated techniques
for ex-ante selection of the regularization parameter – LQRA(BIC) that
uses the Bayesian Information Criterion to select λ based on the in-
sample fit, and a more computationally demanding procedure which
utilizes cross-validation. We provide evidence for the superior predic-
tive performance of LQRA(BIC) in terms of the Kupiec test for (uncondi-
tional) coverage, the pinball score and the test for conditional predictive
accuracy (CPA), as well as financial profits for a range of trading strate-
gies. Overall, we recommend LQRA(BIC) as an accurate and computa-
tionally efficient method for computing probabilistic forecasts that can
be used to boost the profitability of energy trading activities, help with
bidding in day-ahead markets and improve risk management practices
in the power sector.
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Summary

Forecasting electricity prices is a challenging task and an active area of research since
the 1990s and the deregulation of the traditionally monopolistic and government-controlled
power sectors. It is interdisciplinary by nature. It requires expertise in econometrics, statis-
tics or machine learning for developing well-performing predictive models, in finance for
understanding market mechanics, and in electrical engineering for comprehension of the fun-
damentals driving electricity prices.

Although electricity price forecasting aims at predicting both spot and forward prices,
the vast majority of research is focused on short-term horizons which exhibit dynamics unlike
in any other market. The reason is that power system stability calls for a constant balance
between production and consumption, while being weather (both demand and supply) and
business activity (demand only) dependent. The recent market innovations do not help in
this respect. The rapid expansion of intermittent renewable energy sources is not offset by the
costly increase of electricity storage capacities and modernization of the grid infrastructure.

On the methodological side, this leads to three visible trends in electricity price forecasting
research. Firstly, there is a slow, but more noticeable with every year, tendency to consider
not only point but also probabilistic (interval, density) or even path (also called ensemble)
forecasts. Secondly, there is a clear shift from the relatively parsimonious econometric (or
statistical) models towards more complex and harder to comprehend, but more versatile
and eventually more accurate statistical/machine learning approaches. Thirdly, statistical
error measures are regarded as only the first evaluation step. Since they may not necessarily
reflect the economic value of reducing prediction errors, more and more often, they are
complemented by case studies comparing profits from scheduling or trading strategies based
on price forecasts obtained from different models.

Keywords: price forecasting, electricity market, quantile regression, probabilistic forecast-
ing, statistical learning, deep learning, forecast evaluation, economic value, trading strategy

Introduction

Electricity price forecasting (EPF)1 as a research area of its own appeared in the early 1990s
with the liberalization and deregulation of the power sectors in the UK and Scandinavia. The
late 1990s and 2000s were marked by the widespread conversion from the traditionally monopo-
listic and government-controlled power sectors to competitive power markets in Europe, North
America, Australia and eventually in Asia (Mayer and Trück, 2018). Over the years, EPFs

1Here, EPF refers to both electricity price forecasting and electricity price forecast(s). The plural form, i.e.,
forecasts, is abbreviated EPFs.
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have become a fundamental input to companies’ decision-making mechanisms (Weron, 2014).
As Hong (2015) estimates, for a medium-sized utility with a 5-gigawatt annual peak load2, im-
proving the day-ahead demand forecasts by 1% leads to annual savings of ca. 1.5 million USD.
With the additional price forecasts, the savings double. Clearly, the time invested in developing
EPF models can pay off.

For newcomers to this research area it is important to realize that the literature has generally
focused on horizons of up to 48 hours, since short-term price dynamics is what makes electricity
special. In the longer term, prices are averaged across weekly, monthly or annual delivery periods
and lose much of their uniqueness. In the short-term, on the other hand, electricity prices exhibit
significant seasonality at different levels (daily, weekly and in many markets also annual), short-
lived and generally unanticipated price spikes (ranging up to two orders of magnitude), and in
some markets even negative values.

However, the “short-term” is not a particular horizon, but a whole spectrum of horizons
ranging from a few minutes ahead (real-time, intraday, ID; also called “spot” in North America)
to a day-ahead (DA; called “spot” in Europe). Note that from a financial perspective, both
the ID and DA contracts can be regarded as very short-term forwards, with delivery during a
particular hourly (half- or quarter-hourly) load period on the same or the next day. Since each
day can be divided into a finite number of load periods h = 1, 2, ...,H with H = 24, 48 or 96, it
is common to use double indexing when referring to the electricity price. Here, the price for day
d and load period h is denoted by Pd,h, its prediction by P̂d,h, and its predictive distribution by

F̂P or F̂Pd,h
.

To address the structural changes initiated by market liberalization and deregulation on one
hand and the rapid expansion of intermittent renewable energy sources on the other, the EPF
literature has evolved over the years. The relatively parsimonious linear regression and neural
network models of the 2000s and 2010s have been gradually replaced by techniques able to cope
with the increasing complexity of the data and inflated expectations of the market participants.
Three trends are clearly visible in the 2020s:

#1: increasing popularity of probabilistic (interval, density) and path (also called ensemble)
forecasts,

#2: a visible shift towards statistical/machine learning (SL/ML), and

#3: evaluating the economic value of price predictions.

A detailed discussion of these trends follows a brief description of the marketplace and the typical
forecasting tasks considered.

The Marketplace

As a result of the aforementioned liberalization and deregulation of the power sectors, two
basic models for power markets have emerged: power pools – where trading, dispatch and
transmission are managed by the system operator (SO), and power exchanges – where trading
and initial dispatch are managed by an institution independent from the transmission system

2The annual peak load is the highest electrical power demand in a (calendar) year. The power consumed or
generated is measured in multiples of the watt (W). Smaller power plants can generate tens of megawatts (1 MW
= 106 W), the largest tens of gigawatts (1 GW = 109 W). The amount of electricity consumed or generated over
a specific period of time is typically measured in megawatt-hours (MWh); it is also the basic unit used in trading
electricity.
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Figure 1: Illustration of bidding and price settlement in auction (left) and continuous trading
(right) power markets. In day-ahead auctions the bids for all load periods (here: hours) of day
d can be submitted until a certain hour on day d− 1. Intraday markets which admit continuous
trading run 24/7 from an afternoon hour on day d−1 up until a few minutes before the delivery
on day d.

operator (TSO). Participation in power pools is limited to generators and is typically mandatory.
The market clearing price (MCP) is established through a one-sided auction as the intersection
of the supply curve constructed from aggregated supply bids of the generators and the demand
predicted by the system operator. Often a separate price for each node in the network is
calculated, so-called locational marginal price (LMP). Such a system was adopted in highly
meshed North American networks. On the other hand, in Australia, where the network structure
is simpler, zonal pricing was successfully implemented, where for areas without grid limitations
a unique price is settled.

In contrast to power pools, participation in power exchanges is – except for some special cases
– voluntary and open not only to generators, but also to wholesale consumers and speculators.
The price is established either through a two-sided auction (DA, ID) as the intersection of the
supply curve constructed from aggregated supply bids and the demand curve constructed from
aggregated demand bids or in continuous trading (ID). Most market designs have adopted the
uniform-price auction, where buyers who bid at or above the MCP pay that price and sellers
who bid at or below the MCP are paid this price. Moreover, in auction markets the bids can be
submitted until a certain time – called gate closure – which is the same for all load periods, see
the left panel in Fig. 1. Hence, auction prices could be viewed as realizations of a multivariate
random variable and therefore prices for all load periods should be predicted simultaneously
(Ziel and Weron, 2018). On the other hand, some ID markets allow for continuous trading.
They run 24/7 from an afternoon hour on day d− 1 up until a few minutes before the delivery
of electricity during a particular load period on day d, see the right panel in Fig. 1.

In some countries (e.g., Germany, Ireland, Poland) the DA and ID markets are complemented
by the so-called balancing market. This technical market is used for pricing differences between
the market schedule and actual system demand for very short time horizons before delivery.
For instance, the TSO might instruct a generator to increase its output to meet a sudden surge
in demand. The producer then receives a premium via the balancing market for the energy
generated used to balance the grid.

The timeline of day-ahead and intraday trading activities in selected European countries is
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Figure 2: The timeline of day-ahead (top) and intraday (bottom) trading activities for delivery
of electricity on day d in selected European countries: Austria (AT), Belgium (BE), Denmark
(DK), Germany (DE), Finland (FI), France (FR), the Netherlands (NL), Norway (NO), Poland
(PL), Sweden (SE) and Switzerland (CH).

illustrated in Fig. 2. As can be seen, the DA and ID markets complement each other. Once the
gate closes for day-ahead bids around noon, various intraday markets open for adjusting these
bids. They are particularly important for nondispatchable, stochastic producers such as wind
or solar farms, and include both auctions and continuous trading. Note that both the ID and
DA contracts can concern delivery during the same load period, only the time the decision has
to be made and the bid placed differs.

The presented sequence of events has important implications for study design. In the DA
market the forecasting horizons typically range from 12-14 hours for the first load period of the
next day to 36-38 hours for the last. However, at the time the predictions are made, i.e., the
morning hours of day d − 1, the DA prices for all load periods of this day are already known
(they were settled around noon on day d − 2). Generally, the TSO day-ahead forecasts of the
system load (≈ demand) and the system-wide generation from renewable energy sources (RES)
are also available to market participants at this time.

When the ID market is considered, the selection of the forecasting horizon depends on the
research question. Firstly, the predictions can be made on the morning of day d − 1, when
market participants need to decide how much electricity to bid in the DA market and how
much to buy/sell in the ID market or leave for the balancing market. Forecasts of the price
spread between DA and ID/balancing markets can provide valuable insights for decision-making
(Maciejowska et al., 2019, 2021).

Secondly, the predictions can be used for bidding in ID markets with continuous trading.
Although the trading floor opens in the afternoon hours of day d − 1, the majority of bids
are placed during the last 3-4 hours before the delivery (Narajewski and Ziel, 2020a). Hence,
the forecasting horizons considered typically range from a couple of minutes to 4 hours (Janke
and Steinke, 2019; Uniejewski et al., 2019b; Narajewski and Ziel, 2020b). Note that different
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model specifications may be optimal for predicting ID prices for different horizons (Maciejowska
et al., 2020). Since the bidding behavior of market participants is significantly influenced by
RES generation forecasts which are available at the time of trading (Kiesel and Paraschiv,
2017; Kulakov and Ziel, 2021), ID price forecasts should not only exploit the short-term price
dependencies but also updated predictions of wind and solar power generation. Interestingly,
including self-exciting terms in ID models allows to better capture the empirically observed trade
clustering (Kramer and Kiesel, 2021).

Trend #1: From Point to Probabilistic and Ensemble Forecasts

By far point forecasts are the most popular. Despite a few early attempts, often inspired by
developments in wind forecasting (Hong et al., 2020), probabilistic forecasting was not part
of the mainstream EPF literature until 2014 and the Global Energy Forecasting Competition
(GEFCom2014; Hong et al., 2016). Probabilistic EPF quickly gained momentum and energy
analysts have become aware of its importance in energy systems planning and operations. A va-
riety of approaches have been considered, including bootstrapping (Chen et al., 2012), Quantile
Regression Averaging (QRA; Nowotarski and Weron, 2015), Bayesian statistics (Kostrzewski
and Kostrzewska, 2019) and deep learning (Mashlakov et al., 2021; Jȩdrzejewski et al., 2022).
Nevertheless, no more than 15% of Scopus-indexed articles concern interval or distributional
EPF. Path (also called ensemble) forecasts, which focus on the multidimensional temporal dis-
tribution, are even less popular. Yet, path-dependency is crucial for many optimization problems
arising in power plant scheduling, energy storage and trading, and this has been recognized in
the recent EPF literature (Janke and Steinke, 2020; Narajewski and Ziel, 2020b).

Error and Price Distributions

There are two main approaches to probabilistic forecasting: the more elegant one directly con-
siders the distribution of the electricity price, while the more popular one builds on the point
forecast and the distribution of errors associated with it. In both cases, the focus can be on pre-
diction intervals, selected quantiles or the whole predictive distribution. For reviews on short-
and medium-term probabilistic EPF see Nowotarski and Weron (2018) and Ziel and Steinert
(2018), respectively, while for a general treatment – the seminal review of Gneiting and Katzfuss
(2014).

Given the current information set and assuming that the point forecast is the expected price3

at a future time point, i.e, P̂d,h = E(Pd,h), the price can be written as4:

Pd,h = P̂d,h + εd,h, (1)

and the distribution Fε of errors associated with P̂d,h is identical to the distribution FP of prices,

except for a horizontal shift by P̂d,h:

FP (x) ≡ P(Pd,h ≤ x) = P(P̂d,h + εd,h ≤ x) = P(εd,h ≤ x− P̂d,h) ≡ Fε(x− P̂d,h).

3Although this is the most common assumption, the point forecast does not have to be the expected value.
For instance, it can be the median or any quantile of the predictive distribution.

4For notational brevity conditioning is not used here. More formally, in a typical day-ahead setup, forecasts
for all load periods of day d are made at hour h0 in the morning of day d− 1, using information available at that
time, see Fig 1. In this case, P̂d,h ≡ P̂d,h|d−1,h0

.
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This, however, implies that the inverse empirical cumulative distribution functions (also called
quantile functions) satisfy:

F̂−1
P (α) = P̂d,h + F̂−1

ε (α), (2)

i.e., they are identical except for a shift by P̂d,h, but this time on the vertical axis. Equation (2)
provides the basic framework for constructing probabilistic forecasts from prediction errors. If
a dense grid of quantiles is considered, e.g., 99 percentiles, then F̂P can be approximated pretty
well (Hong et al., 2016; Nowotarski and Weron, 2018; Uniejewski and Weron, 2021).

If FP has a density fP , then a density forecast f̂P can be provided as well. However, Ziel and
Steinert (2016) argue against using such an approach. Analyzing the fine structure of aggregated
supply and demand curves in the German market they found that FP was multimodal with
significant jumps (corresponding to point masses) at certain ‘round’ prices.

Quantile Regression Averaging

Quantile regression (QR; see Koenker, 2005) is one of the most popular methods for directly
modeling the distribution of a random variable. QR approximates the target quantile with a
linear function of a set of explanatory variables. In the EPF context, these variables typically
contain publicly available market information (load forecasts, generation structure, historical
electricity prices, etc.; Bunn et al., 2016; Maciejowska, 2020) and/or point predictions of elec-
tricity prices (Weron, 2014). The later case leads to the so-called Quantile Regression Averaging
(QRA) introduced by Nowotarski and Weron (2015) and originally developed for Team Poland’s
participation in the GEFCom2014 competition (Maciejowska and Nowotarski, 2016). It is a
forecast combination approach to the computation of quantile forecasts, which bridges the gap
between point and probabilistic forecasts. QRA involves applying QR to the point forecasts of
a small number of individual forecasting models or experts:

q(α|Xd,h) = Xd,hβα, (3)

where q(α|·) is the conditional αth quantile of FP , Xd,h is the vector of point forecasts and βα

is the corresponding vector of weights. The latter is estimated by minimizing the following sum
of check functions:

β̂α = argmin
βα

{∑
d,h

(
α− 1Pd,h<Xd,hβα

)
(Pd,h −Xd,hβα)

︸ ︷︷ ︸
check function

}
. (4)

The very good forecasting performance of QRA has been verified by a number of authors, not
only in the area of EPF (Liu et al., 2017; Kostrzewski and Kostrzewska, 2019; Kath and Ziel,
2021; Uniejewski and Weron, 2021). However, its most spectacular success came during the GEF-
Com2014 competition, when teams using variants of QRA (Gaillard et al., 2016; Maciejowska
and Nowotarski, 2016) were ranked in the top two places in the price track.

Paths and Ensembles

Although the concept of probabilistic EPF is much more general than of point forecasting, it is
not sufficient to support operational decisions that depend on future trajectories of electricity
prices. For instance, in Germany renewable energy producers can receive less subsidies if the
electricity price is negative for 6 hours in a row. Hence, instead of looking at the 24 hourly
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univariate price distributions FPd,1
, ..., FPd,24

, the focus should be on the multidimensional dis-
tribution FP of the 24-dimensional price vector Pd = (Pd,1, . . . , Pd,24)

′. However, many models
considered in the literature cannot output such a multidimensional forecast.

Ensemble forecasts provide a practical remedy. An ensemble is a collection of simulated price
paths, also called trajectories or scenarios. For a large number of paths the ensemble approxi-
mates the underlying distribution FP arbitrarily well (Weron and Ziel, 2020). In practice ‘large’
means thousands or millions of paths, which may be a computational challenge (Narajewski and
Ziel, 2020b). It should be noted that, on one hand, the same or similar concepts have been used
in different disciplines under different names, e.g., simultaneous prediction intervals, prediction
bands, spatio-temporal trajectories, numerical weather prediction ensembles. On the other, the
term ensemble is also used to refer to any averaging of – point or probabilistic – forecasts (Hong
et al., 2020).

Trend #2: From Regression to Statistical and Machine Learning

Until the mid 2010s, the EPF literature was dominated by relatively parsimonious linear regres-
sion and neural network models. They were characterized by a small number – a dozen or two
– of inputs (also called features, input features, explanatory variables, regressors, or predictors)
and complex data pre-/post-processing:

• replacing outliers, i.e., price spikes, by more ‘normal’ values before estimating the model
(Contreras et al., 2003; Bierbrauer et al., 2007; Janczura et al., 2013) or utilizing robust
estimation methods (Grossi and Nan, 2019);

• averaging forecasts, both across models (Nan, 2009; Bordignon et al., 2013; Nowotarski
et al., 2014) and across calibration windows for the same model (Marcjasz et al., 2018;
Hubicka et al., 2019), also in a probabilistic EPF setting (Serafin et al., 2019);

• using so-called variance stabilizing transformations (VSTs; Schneider, 2011; Diaz and
Planas, 2016; Uniejewski et al., 2018; Narajewski and Ziel, 2020a; Shi et al., 2021) to
make the marginal distributions less heavy-tailed (Box-Cox family, area hyperbolic sine)
or Gaussian (Probability Integral Transform);

• deseazonalizing the data with respect to the long-term seasonal component (LTSC) be-
fore estimating the model (Janczura et al., 2013; Nowotarski and Weron, 2016; Lisi and
Pelagatti, 2018; Afanasyev and Fedorova, 2019; Uniejewski et al., 2019a; Marcjasz et al.,
2020).

However, as more data and computational power became available, the models became more
complex to the extent that expert knowledge was no longer enough to handle them (Jȩdrzejewski
et al., 2022). This paved the way for statistical/machine learning in EPF. Arguably, statistical
learning (SL) and machine learning (ML) are synonyms.5 They have just originated in different
communities – computer science/artificial intelligence (Mitchell, 1997) or computational statis-
tics (James et al., 2021). Both SL and ML refer to a vast set of (computational, statistical)
tools for understanding data, both can improve “automatically” through training. In either
case, learning can be supervised or unsupervised. In EPF, the authors are typically interested

5Januschowski et al. (2020) even argue that the distinction between statistical and machine learning forecasting
is dubious, as this distinction does not stem from fundamental differences in the methods assigned to either class,
but rather is of a “tribal” nature.
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Figure 3: Visualization of a linear regression model (left) and a shallow neural network (right)
with identical inputs and output, i.e., the electricity price for day d and hour h. White squares
represent the inputs and u1, u2, ..., um the hidden nodes (or neurons). Arrows indicate the flow
of information.

in supervised learning, which involves building a model for predicting a known output or outputs
based on a set of inputs.

The Expert Benchmark

A class of commonly used EPF benchmarks is based on a parsimonious autoregressive (AR)
structure with exogenous variables and calendar effects, originally proposed by Misiorek et al.
(2006). Since expert knowledge is used to select the regressors, such benchmarks are often
called expert models (Ziel and Weron, 2018). One of the most popular structures represents the
electricity price for day d and hour h by:

Pd,h = β1Pd−1,h + β2Pd−2,h + β3Pd−7,h︸ ︷︷ ︸
autoregressive effects

+β4Pd−1,24︸ ︷︷ ︸
end-of-day

+β5P
max
d−1 + β6P

min
d−1︸ ︷︷ ︸

non-linear effects

+β7X
1
d,h + β8X

2
d,h︸ ︷︷ ︸

exogenous variables

+
∑7

j=1
βh,j+8Dj

︸ ︷︷ ︸
weekday dummies

+εd,h, (5)

where Pd−1,h, Pd−2,h and Pd−7,h account for the autoregressive effects and correspond to prices
from the same hour h of the previous day, two days before and a week before, Pd−1,24 is the last
known price at the time the prediction is made and provides information about the end-of-day
price level, Pmax

d−1 and Pmin
d−1 represent previous day’s maximum and minimum prices, X1

d,h and

X2
d,h are exogenous variables, D1, ..., D7 are weekday dummies and εd,h is the noise term (i.i.d.

variables with finite variance). The βi’s are estimated using ordinary least squares (OLS).
Autoregression or more generally linear regression is one of the two most commonly used

classes of EPF models (Weron, 2014). The other is the multi-layer perceptron (MLP). The
simplest neural network, a single-layer perceptron, contains no hidden layers (only inputs and
the output) and is equivalent to a linear regression – both represent Pd,h by a linear combination
of input features, see the left panel in Fig. 3. On the other hand, the MLP includes at least one
hidden layer and utilizes a feed-forward architecture – the outputs of the nodes (or neurons) in
one layer are inputs to the next one, see the right panel in Fig. 3. Since the output of a node
is a weighted sum of all of the inputs transformed by a typically nonlinear activation function,
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unlike in linear regression, NNs can tackle complex dependence structures encountered in power
market data (Keles et al., 2016).

Exogenous variables typically include day-ahead predictions of the system load and RES
generation (Lago et al., 2021). Days with high demand and low RES generation are characterized
by relatively high prices. On the other hand, high RES generation pulls prices down; in periods of
low demand – holidays and/or at night – even below zero (Zhou et al., 2016). Other fundamental
variables may possess explanatory power as well. For instance, fuel and CO2 allowance prices,
especially for medium-term EPF (Maciejowska and Weron, 2016; Ziel and Steinert, 2018). Due
to the merit order effect, i.e., dispatching units characterized by the lowest marginal cost of
production, the fuel–electricity price relationship changes throughout the day. Natural gas
prices impact mainly the peak hours, whereas coal prices influence the off-peak hours. Finally,
the day-of-the-week input feature visible in Fig. 3 can be a set of weekday dummies, as in Eq.
(5), or a single multi-valued variable, which is more common in NN models.

Regularization and the LEAR Model

Selecting regressors is a cumbersome task and expert knowledge does not always identify the
relevant ones. In a series of papers in the mid 2010s, Ludwig et al. (2015), Ziel et al. (2015),
Gaillard et al. (2016), Uniejewski et al. (2016) and Ziel (2016) introduced the concept of regu-
larization to EPF. In simple terms, the idea behind this approach is to add a penalty term to
the residual sum of squares (RSS) in OLS regression:

β̂ = argmin
β

{
RSS + λ

n∑

i=1

|βi|q
}
, (6)

where λ is the tuning or regularization hyperparameter. Note, that hyperparameters are model
parameters that cannot be optimized during the training (estimation) phase, but have to be set
or calibrated beforehand, e.g., using cross-validation (James et al., 2021). For q = 2 Equation
(6) yields ridge regression (Hoerl and Kennard, 1970) and for q = 1 the least absolute shrinkage
and selection operator (LASSO; Tibshirani, 1996). The latter can shrink βi’s not only towards
zero but actually to zero itself, thus effectively eliminating some regressors from the model. If
both terms, i.e., λ1

∑ |βi| + λ2
∑

β2
i , are admitted, then Eq. (6) yields the so-called elastic net

(Zou and Hastie, 2015).
In the EPF setting, all three variants were compared in Uniejewski et al. (2016). Ridge

regression easily outperformed expert models and stepwise regression techniques, but was signif-
icantly worse than the LASSO and the elastic net. At the cost of an additional parameter, the
elastic net generally yields more accurate predictions than the LASSO. Nevertheless, the latter
has become the golden standard in EPF (Uniejewski and Weron, 2018; Ziel and Weron, 2018;
Janke and Steinke, 2019; Narajewski and Ziel, 2020a; Marcjasz, 2020; Zhang et al., 2020; Özen
and Yıldırım, 2021). It was even utilized by Lago et al. (2021) to construct a well-performing
EPF benchmark – the LASSO-Estimated AutoRegressive (LEAR) model. The starting point for
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Figure 4: Mean occurrence of non-zero βh,i’s across datasets from 12 power markets. Columns
represent the predicted hours on day d and rows the first 24 variables, i.e.,

∑24
i=1 βh,iPd−1,i in

Eq. (7), of a LEAR-type model considered by Ziel and Weron (2018). A heat map is used to
indicate more (→ green) and less (→ red) commonly-selected variables.

the LEAR model is a parameter-rich regression:

Pd,h =

24∑

i=1

(βh,iPd−1,i + βh,i+24Pd−2,i + βh,i+48Pd−3,i + βh,i+72Pd−7,i)

+

24∑

i=1

(
βh,i+96X

1
d,i + βh,i+120X

1
d−1,i + βh,i+144X

1
d−7,i

)

+
24∑

i=1

(
βh,i+168X

2
d,i + βh,i+192X

2
d−1,i + βh,i+216X

2
d−7,i

)

+
7∑

k=1

βh,240+kDk + εd,h,

(7)

which differs from the expert model in Eq. (5) mainly by allowing for cross-hourly dependencies.
In general, the price for hour h may depend on the prices for all 24 hours yesterday, the day
before, etc. In practice, only a dozen or two of the potential 247 regressors turn out to be
relevant. However, they need not be the ones included in the expert model.

This is visualized in Figure 4 for the first 24 variables, i.e.,
∑24

i=1 βh,iPd−1,i, of a LEAR-type
model considered by Ziel and Weron (2018) and across datasets from 12 power markets.6 The
yellow-green diagonal indicates that the price for hour h on day d − 1 is a good predictor of
the price for the same hour on day d. The yellow-green bottom rows were a surprising finding

6BELPEX price for Belgium, EPEX prices for Switzerland, Germany–Austria and France, EXAA price for
Germany–Austria, GEFCom2014 competition data, Nord Pool prices for West Denmark, East Denmark and the
system price, OMIE prices for Spain and Portugal, and OTE price for the Czech Republic. The GEFCom2014
dataset covers a 3-year period (2011–2013; see Hong et al., 2016), the remaining datasets a 6-year period (July
2010 – July 2016; see Ziel and Weron, 2018).
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Figure 5: Visualization of the DNN model of Lago et al. (2018), i.e., a feed-forward neural
network with two hidden layers and 24 outputs. Like in Figure 3, white squares represent the
inputs, u1,1, ..., u1,m, u2,1, ..., u2,n the hidden nodes, and arrows indicate the flow of information.

at the time Ziel and Weron (2018) published their paper. They simply mean that late evening
prices for day d − 1 and particularly the last known price, i.e., Pd−1,24, are good predictors
for all hours of the next day. Since then, terms like β4Pd−1,24 in Eq. (5) have been added to
expert models. Interestingly, the performance of LEAR-type models can be further improved
by deseazonalizing the data with respect to the long-term seasonal component (LTSC) before
estimation (Jȩdrzejewski et al., 2021), just like in the case of parsimonious regression (Nowotarski
and Weron, 2016) and neural network models (Marcjasz et al., 2020).

Deep Learning and the DNN Model

Starting in the mid 2010s, the EPF research shifted towards models with a larger number
of inputs and automatic feature engineering, like the LEAR, and architectures that employ
deep learning (DL) to obtain better hidden data representations. Both families of models are
examples of a recent trend called data-centric ML, where emphasis is not put on the model,
but on input data quality and consistency. Both families use SL/ML methods as means to
increase the number of (potential) input features and to reduce the need for human interaction
during feature engineering and data processing. The difference is that the second family uses
deep architectures, e.g., neural networks with more than one hidden layer (see Goodfellow et al.,
2016, for an excellent introduction to DL).

Deep learning EPF models can be traced back to Wang et al. (2017), who proposed an archi-
tecture built on stacked denoising autoencoders that take a partially corrupted (or noisy) input
and are trained to recover the original undistorted input. The DL models that followed were
primarily based on the MPL with features modeled as hyperparameters. The most prominent
example is probably the DNN model of Lago et al. (2018) that has been shown to improve upon
parameter-rich linear regression models estimated via the LASSO.

The DNN is a feed-forward network with two hidden layers of m and n nodes, and 24 outputs,
i.e., it jointly predicts 24 hourly prices Pd,1, ..., Pd,24, see Fig. 5. Its hyperparameters and input
features are optimized using the tree-structured Parzen estimator (Bergstra et al., 2011). This is
achieved by modeling the features as hyperparameters, with each hyperparameter representing
a binary variable that selects whether or not a specific feature is included in the model. Other
hyperparameters include the number of neurons per layer, the activation function, the dropout
rate, the learning rate, etc. In practice, the model structure can be quite large, Lago et al. (2018)
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Figure 6: Visualization of the NBEATSx model of Olivares et al. (2022).

report the optimal values in their study of the Belgian market to be m = 239 and n = 162.
Given the optimal hyperparameters and features, the DNN is recalibrated on a daily basis

to provide next day’s electricity price forecasts. Although not strictly mandatory, periodic (e.g.,
monthly) recalibration of features and hyperparameters can be beneficial. The starting set of
input features is the same as for the LEAR model in Eq. (7), with the only difference that, for
the sake of simplicity, the day-of-the-week is modeled with a multi-valued variable, not a set of
7 dummies (Lago et al., 2021). The open-source Python codes for the DNN (and the LEAR)
model are available from GitHub (https://epftoolbox.readthedocs.io).

Interpretability and the NBEATSx Model

The architecture of the neural basis expansion analysis for time series (NBEATS) model intro-
duced by Oreshkin et al. (2020) has the ability to structurally decompose signals making the
outputs easily interpretable. A feature whose absence has made it difficult to apply neural net-
works in many contexts. Moreover, it has demonstrated state-of-the-art performance on multiple
large-scale datasets, including those used in the M4 competition (Makridakis et al., 2020), and
it is computationally efficient exhibiting a linear cost with respect to the input size. Recently,
it has been successfully applied in mid-term electricity load forecasting (Oreshkin et al., 2021).

In general, the decomposition in the NBEATS model is performed by projecting the objective
time series onto basis functions in the fundamental blocks of the network structure. Each
fundamental block (the dark red rectangles labeled “block 1”, ..., “block n” in Fig. 6) consists of
two parts: (i) a sequence of fully-connected layers (FC) ended with a fork that returns estimated
backward and forward expansion coefficients, and (ii) the backward and forward basis layers that
map these coefficients via the basis functions onto two block outputs called the backcast and
the forecast. The former is the best estimate of the block inputs given the functional space used
in the considered block, whereas the latter is the partial prediction that contributes to the final
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forecast.
The blocks are lined up so that the backcast of each is removed from its inputs, and the

residuals are passed to the following block as new inputs. Such a residual recursion is performed
consecutively over all blocks in the network. The block forecasts, on the other hand, are summed
up to produce the final prediction. The NBEATS architecture groups blocks into stacks that
specialize in different types of basis functions. Separate stacks can account for the trend and
seasonality by modelling these functions as polynomials and harmonic functions, respectively.
Consequently, the final forecasts can be decomposed into interpretable components returned by
individual stacks.

The NBEATSx model introduced by Olivares et al. (2022) adds to this structure a stack (light
red rectangle labeled “stack 3” in Fig. 6) that performs the projection onto exogenous variables.
Such an exogenous stack helps to predict the effects induced by holidays and fundamentals (like
electric load or RES generation forecasts), and is crucial for EPF. While Olivares et al. report
no significant differences between the NBEATS model and the exponential smoothing recurrent
neural network (ESRNN) of Smyl (2020) that has excelled in the M4 competition, the NBEATSx
architecture improves over NBEATS by nearly 20% and up to 5% over the LEAR and DNN
models.

The hyperparameters and the input features are optimized in the same way as for the DNN
model. However, compared to the DNN, the hyperparameter list also includes: the type and
the number of stacks, the number of blocks per stack, the degree of trend polynomials, and the
number of Fourier bases. The optimization algorithm also selects the best-performing order of
stacks. Open-source Python codes are available from PythonRepo (https://pythonrepo.com/
repo/cchallu-nbeatsx-python-deep-learning).

Trend #3: From Statistical to Economic Evaluation

Over the years a number of authors have criticized the exclusive use of statistical error measures
to evaluate and compare forecasts. However, a standardized test ground/procedure for evaluat-
ing the economic impact of predictions has not been developed, not only in EPF (Hong et al.,
2020), but in forecasting in general (Petropoulos et al., 2022). And this, despite the fact that
already three decades ago Murphy (1993) postulated that the “goodness” of a forecast can be
assessed in terms of consistency, quality, and value.

While quality can be readily quantified by commonly used error metrics, the other two char-
acteristics require an explanation. As Murphy (1993) defines it, consistency refers to the corre-
spondence between forecasters’ internal, i.e., recorded only in the forecaster’s mind, judgments
and their forecasts. Since such judgments are, by definition, unavailable to others, consistency
cannot be assessed directly. Yet, some authors explicitly mention using expert knowledge to
ex-post correct the results from a statistical or a ML model. For instance, Maciejowska and
Nowotarski (2016) ‘manually’ expanded or tightened the PIs in their top performing GEF-
Com2014 competition approach.

The third characteristic, i.e., value, refers to the (incremental) economic and/or other bene-
fits to decision makers from using the predictions. For instance, it may reflect additional revenue
resulting from improved forecasts or reduced uncertainty as measured by revenue volatility. As
Yardley and Petropoulos (2021) argue, it is a construct that not only incorporates considerations
of the utility to the forecaster, which is discussed in subsection Economic Measures, but also the
computational and opportunity costs. While numerous papers report them, the computational
costs are rarely used to compare different methods. One of a few exceptions is an article by
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Nikolopoulos and Petropoulos (2018), who study the trade-off between optimal versus subop-
timal (but less costly) solutions and find that choosing the latter does not necessarily reduce
forecast accuracy. Finally, the opportunity costs reflect the resources wasted on implementing a
complex method that eventually is not used, because the decision-makers do not have confidence
in a model they do not understand (Green and Armstrong, 2015). Yet, both cited papers do
not concern EPF.

Statistical Error Measures

Point Forecasts

The most commonly used error metrics for point forecasts include the mean absolute error
(MAE) and the root mean squared error (RMSE), typically across all H = 24 hours (48 half-
hours or 96 quarter-hours) in the test period:

MAE =
1

DH

D∑

d=1

H∑

h=1

|ε̂d,h|, RMSE =

√√√√ 1

DH

D∑

d=1

H∑

h=1

ε̂ 2
d,h, (8)

where ε̂d,h = Pd,h − P̂d,h and D is the number of days in the test period. It is advised to
report both absolute and squared errors, especially if regression and neural network models are
compared. The reason is that regression-type models are typically estimated using OLS or its
variants, as in Eq. (6), while NNs are often trained by minimizing absolute errors (Lago et al.,
2018; Smyl, 2020; Olivares et al., 2022).

Both MAE and RMSE are scale-dependent and hence hard to compare across different
datasets. The often used in other forecasting contexts mean absolute percentage error (MAPE)
and its “symmetric” variant (sMAPE; see, e.g., Makridakis et al., 2020) are sensitive to values
close to zero and may lead to absurd results in EPF. Hyndman and Koehler (2006) advocate
using the mean absolute scaled error (MASE) which is simply the MAE in Eq. (8) scaled by the
in-sample MAE of a naive7 forecast. However, the MASE is not recommended for comparisons
of models using different calibration windows, since for each model it will be based on a different
scaling factor. Instead, Lago et al. (2021) recommend using relative measures. For instance, the
relative MAE (rMAE) which normalizes the MAE by the out-of-sample (not in-sample) MAE
of a naive forecast.

The significance of differences in EPF accuracy is usually evaluated using the Diebold and
Mariano (1995) test for (unconditional) predictive ability or its generalization – the Giacomini
and White (2006) test for conditional predictive ability. Both tests can be used for nested and
non-nested models, as long as the calibration window does not grow with the sample size, but
only the latter accounts for parameter estimation uncertainty. However, energy forecasters are
not restricted to these two tests, there is a plethora of available approaches (for a review see,
e.g., Section 2.12.6 in Petropoulos et al., 2022).

The Diebold-Mariano (DM) test is an asymptotic z -test of the hypothesis that the mean of
the loss differential series is zero. It is based upon the observation that the DM statistic:

DM =
√
DH

µ̂

σ̂
, (9)

7E.g., a random walk forecast. Note that for seasonal time series of period τ , the time lag should be equal to
τ . For instance, in EPF it is common to take P̂naive

d,h = Pd−7,h.
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is asymptotically standard normal under the assumption of covariance stationarity of the loss
differential series:

∆d,h = L1,d,h − L2,d,h, (10)

where Li,d,h is the score or loss function of model i for day d and load period (e.g., hour) h, while
µ̂ and σ̂ are respectively the sample mean and standard deviation of ∆d,h. Covariance station-
arity may not be satisfied by forecasts in day-ahead electricity markets, since the H predictions
for the next day are made at the same time, using the same information set. Hence, either H
independent tests (one for each load period of the day; Bordignon et al., 2013; Nowotarski et al.,
2014; Uniejewski et al., 2016; Lago et al., 2018; Gianfreda et al., 2020) or a multivariate variant
proposed by Ziel and Weron (2018) are performed (Uniejewski et al., 2018; Hubicka et al., 2019;
Marcjasz et al., 2019; Maciejowska et al., 2021; Özen and Yıldırım, 2021). The latter jointly tests
forecasting accuracy across all H load periods using the ‘daily’ or ‘multivariate’ loss differential
series:

∆d = ||ε1,d||p − ||ε2,d||p, (11)

where εi,d is the H-dimensional vector of prediction errors of model i for day d, ||εi,d||p =

(
∑H

h=1 |εi,d,h|p)1/p is the p-th norm of that vector, with p = 1 for absolute or 2 for squared
losses.

Like in the DM test, also in the Giacomini-White (GW) test the object of interest is the loss
differential series – univariate or multivariate. Tested is the null H0 : ϕ = 0 in the following
regression (here in the multivariate variant):

∆d = ϕ′Xd−1 + ϵd, (12)

where Xd−1 contains elements from the information set on day d − 1, i.e., a constant and lags
of ∆d, and ϵd is an error term. Notice that ϵd ∈ R is not the 24-dimensional vector εi,d of
prediction errors from Eq. (11). Sample applications of the GW test in the context of EPF
include Marcjasz et al. (2018), Lago et al. (2021) and Olivares et al. (2022).

Probabilistic Forecasts

While defining error measures for point predictions is relatively straightforward, for probabilistic
ones this becomes tricky. The problem is that the true price distribution FP cannot be observed,
only a single draw from it can, i.e., the observed price Pd,h. Therefore, evaluation of probabilistic
forecasts relies on so-called scoring rules and the notions of reliability, sharpness and resolution.
A scoring rule – also, as in Eq. (10), called score or loss function – assigns a numerical score
S(F̂P , Pd,h) based on the predictive distribution F̂P and the observed price. A scoring rule is
(strictly) proper if it is (uniquely) optimized in expectation by the true distribution (Gneiting
and Raftery, 2007). Reliability (also called calibration or unbiasedness) refers to the statistical
consistency between F̂P and Pd,h. For instance, a 95% prediction interval (PI) is reliable if

it covers exactly 95% of the observed prices. Sharpness refers to how concentrated is F̂P .
Finally, resolution refers to how much the predicted density varies over time. Since sharpness
and resolution are equivalent when probabilistic forecasts have perfect reliability, evaluating
probabilistic predictions boils down to “maximizing sharpness subject to reliability” (Gneiting
and Katzfuss, 2014; Nowotarski and Weron, 2018).

The most intuitive approach to formally check the reliability of a prediction interval to
compute the empirical coverage based on the indicator series of ‘hits and misses’ defined as:
Id,h = 1 if Pd,h ∈ PI and zero otherwise. EPF studies typically report the empirical coverage
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itself (PI coverage probability, PICP) or the average coverage error : ACE = PICP − PINC,
where PINC = α is the PI nominal coverage. To formally check whether P(Id,h = 1) = α,
i.e., the so-called unconditional coverage (UC), the Kupiec (1995) test can be used; it verifies
whether Id,h is i.i.d. Bernoulli with mean α. Since the latter cannot distinguish between randomly
distributed and clustered PI exceedances, Christoffersen (1998) introduced the independence and
conditional coverage (CC) tests. The former is tested against a first-order Markov alternative
and the latter is a joint test for independence and UC; note, that both can be run for lags
larger than one (Berkowitz et al., 2011). In a continuous setting, i.e., when testing F̂P , not just
selected PIs, the most common approach is to use the Probability Integral Transform:

PITd,h = F̂P (Pd,h), (13)

which is independent and uniformly distributed if the distributional forecast is perfect. The PIT
can be assessed visually (Nowotarski and Weron, 2018) or formally evaluated using the approach
of Berkowitz (2001), which jointly tests for independence and normality, i.e., for conditional
coverage.

Unlike reliability, sharpness is a property of the forecasts only – the narrower the PI or
the more concentrated the predictive distribution the better. Consequently, the PI width itself
is a good measure of sharpness. A more elaborate approach relies on proper scoring rules,
which actually assess reliability and sharpness simultaneously (Gneiting and Katzfuss, 2014).
Among them, arguably the most popular is the pinball loss, also known as the linlin, bilinear or
newsboy loss (Elliott and Timmermann, 2016) and has become popular in EPF after the Global
Energy Forecasting (GEFCom2014) competition (Dudek, 2016; Hong et al., 2016; Maciejowska
and Nowotarski, 2016). It is defined by:

pinballα =





(1 − α)
(
P̂α
d,h − Pd,h

)
, for Pd,h < P̂α

d,h,

α
(
Pd,h − P̂α

d,h

)
, for Pd,h ≥ P̂α

d,h,
(14)

where P̂α
d,h is the αth quantile of the predictive distribution for day d and load period (e.g., hour)

h; note, that the pinball score is the function minimized in quantile regression, see Eq. (4). The
pinball can be averaged across different quantiles, e.g., 99 percentiles, and across load periods
of the target day, e.g., 24 hours, to provide the aggregate pinball score (APS). If the grid of
quantiles is arbitrarily dense, then the average converges to the Continuous Ranked Probability
Score (Gneiting and Raftery, 2007):

CRPS(F̂P , Pd,h) = E|P̂d,h − Pd,h|︸ ︷︷ ︸
reliability

− 1

2
E|P̂d,h − P̂ ∗

d,h|
︸ ︷︷ ︸
lack of sharpness

, (15)

where random variables P̂d,h and P̂ ∗
d,h are two independent F̂P -distributed copies. Probabilistic

forecasts can be tested for equal predictive performance using the DM and GW tests, just like
point forecasts. In this case Li,d,h is replaced by Si(F̂P , Pd,h) in Eq. (10). For sample EPF
applications see, e.g., Serafin et al. (2019), Abramova and Bunn (2020), Marcjasz et al. (2020),
Muniain and Ziel (2020) and Uniejewski and Weron (2021).

Path Forecasts

Compared to evaluating point or probabilistic predictions, evaluating path (also called ensemble)
forecasts constitutes a challenge – it requires utilizing scoring rules for multivariate distributions
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(Scheuerer and Hamill, 2015). The commonly used Dawid-Sebastiani and variogram scores
are not strictly proper in the multivariate setting, while the log-score requires forecasts of a
multivariate density, which may be not available. Hence, the recommended option is the energy
score proposed by Gneiting and Raftery (2007), which is a generalization of the pinball and
CRPS scores:

ESd,h =
1

M

M∑

i=1

||P i
d,h − Pd,h||2

︸ ︷︷ ︸
distance from the prices

− 1

2

1

M2

M∑

i=1

M∑

j=1

||P i
d,h − P j

d,h||2
︸ ︷︷ ︸

distance between paths

, (16)

where P i
d,h for i = 1, . . . ,M is the i-th price path forecast and ||·||2 is the Euclidean norm. When

minimizing the energy score, the average distance between the simulated paths and the actual
price trajectory is minimized and at the same time the average distance between the paths is
maximized. Its use in EPF is limited, though, probably due to the much higher complexity of
the problem (Muniain and Ziel, 2020; Narajewski and Ziel, 2020b).

Economic Measures

There are only a handful of papers which examine the economic impact of EPF errors in a more
systematic manner. Interestingly, most of these studies have been published in engineering, not
economic or financial journals. The likely reason is that at least a basic knowledge is needed
of how power markets, loads and generating units operate. Moreover, there is no standardized
test ground/procedure for evaluating the economic impact. Nearly every EPF study considers
a different setup.

Supply- and Demand-Side Perspectives

In one of the earlier studies, Delarue et al. (2010) take the supply-side point of view and quantify
the profit loss that can be expected in a price based unit commitment problem, when incorrect
price forecasts are used. Simulations reveal that a combined cycle gas turbine (CCGT) is much
more sensitive to EPF errors (the profit can easily lie 20% below the optimal level for a perfect
price forecast) than a classic coal fired unit (profit loss rarely exceeds 10%). More interestingly,
negatively biased forecasts (i.e., that predict prices lower than actual) typically yield much higher
losses than positively biased predictions.

On the other hand, Zareipour et al. (2010) take the demand-side perspective and consider
short-term operation scheduling of two typical loads (a process industry owning on-site genera-
tion facilities and a municipal water plant with load-shifting capabilities). They introduce the
forecast inaccuracy economic impact index: FIEI = [cost(P̂ )− cost(P )]/cost(P̂ ), so that a posi-
tive value of FIEI indicates the percentage of the actual cost of buying electricity attributable to
EPF errors. The authors report that a 1% improvement in the MAPE in forecasting accuracy
would result in about 0.1%–0.35% cost reductions from short-term EPF, but also conclude that
the MAPE is not a good measure.

An interesting concept is considered by Doostmohammadi et al. (2017), who compute the
financial loss/gain (FLG) time series, defined as the difference between expected profit of a
generator and the actual one. Then, based on the day-ahead forecasts of the FLG series, they
propose a bidding strategy. However, by doing so, they do not work with the actual profits but
with (another) estimate.
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Maciejowska et al. (2019, 2021) take the perspective of a small RES utility (e.g., with one
wind turbine) which has to decide where to sell 1 MW of electricity during each hour of the
next day – in the day-ahead (DA) or the intraday (ID) market. Conditional on the decision,
summarized by the decision variable based on price forecasts:

Yd,h =

{
1 if P̂DA

d,h > P̂ ID
d,h ,

0 if P̂DA
d,h ≤ P̂ ID

d,h ,
(17)

they compute the additional income over the benchmark, i.e., selling the production in the DA
market, as:

πd,h = Yd,hP
DA
d,h + (1 − Yd,h)P ID

d,h − PDA
d,h , (18)

where PDA
d,h and P ID

d,h are the electricity prices in the DA and ID markets, respectively. While
Maciejowska et al. (2019) utilize the load forecasts published by the German and Polish system
operators, Maciejowska et al. (2021) additionally improve the load forecasts for Germany by
applying ARX-type models. In both papers, they measure the gains from EPF as the sum of
profits in the test period, π =

∑D
d=1

∑24
h=1 πd,h, and conclude that the statistical measures of

forecast accuracy – such as the percent of correct sign classifications of the price spread between
the DA and ID markets – do not necessarily coincide with economic benefits.

Trading Strategies

Uniejewski et al. (2018) take a trading perspective (different from the supply- or demand-side
point of views and consider a naive spot-futures trading strategy in the German market. With
a perfect day-ahead forecast the buyer could always choose the lower of the two – the day-ahead
price (unknown when submitting bids) or the futures price. Since this can never be achieved in
reality, the authors bias (or perturb) the ‘crystal-ball’ forecast and show that a 0.20 EUR/MWh
decrease in the MAE from using one model instead of another would result in ca. 90,000 EUR
profits, for a 1 GW baseload in 2016.

Chitsaz et al. (2018) propose a trading strategy applicable in Ontario’s real-time electricity
market. The energy storage operator maximizes profits with optimal scheduling. The schedule
is set before the trading period begins, based on the available price forecasts and then it is
updated at the end of each hour with a newer price forecasts. The authors conclude that such
a strategy yields higher profits when using predictions generated by the proposed ARX model
with features selected via the Mutual Information technique (Amjady et al., 2011) – 62% of the
potential saving for ‘crystal ball’ predictions, compared with a number of other EPF approaches,
e.g., using the so-called Pre-Dispatch Prices (PDPs; publicly available price predictions published
by the system operator IESO) – 43% of the potential saving.

Kath and Ziel (2018) propose a multivariate elastic net model for forecasting German quarter-
hourly electricity prices. They demonstrate that the “sell in the high and buy in the low market”
strategy performs well, leading to substantial benefits for both a net buyer and a net seller. On
the other hand, the mean-variance approach does not bring economic benefits, but yields an
optimal portfolio in terms of the Sharpe ratio:

SR =
π̄

σ
, (19)

where π̄ denotes the average level of an additional revenue (i.e., π̄ = π/24D; see also Eq.
(18)) and σ is the standard deviation of the time series of revenues. As such, the Sharpe ratio
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Figure 7: Illustration of the trading strategy considered by Uniejewski and Weron (2021) using
German EPEX data for Friday, July 14th (left panel) and Sunday, July 9th (right panel) 2017.
The day-ahead forecast of the PI is plotted in gray, the bids for the selected hours are indicated
with black dots and the actual price trajectory is in orange. Note, that on July 9th the buy
order is not accepted because Pd,h1 > Ûα

d,h1.

can be used to assess the trade-off between revenue and uncertainty. However, there are more
performance measures (Eling and Schuhmacher, 2007; Auer, 2015), including measures based
on drawdowns (e.g., Calmar ratio, Sterling ratio), based on partial moments (e.g., omega ratio,
Sortino ratio) and based on the Value-at-Risk (VaR; e.g., excess return on VaR, conditional
Sharpe ratio). Whether they will turn out to be useful in the EPF context remains yet to be
checked.

Uniejewski and Weron (2021) propose a strategy for market participants having access to
storage capacity. They consider a realistic setup, inspired by the Virtual Power Plant analyzed
in Sikorski et al. (2019), in which the company owns a 1.25 MW battery with an efficiency
of 80% per charge and discharge cycle, that cannot be discharged below 20% of the nominal
capacity (i.e., 0.25 MW) due to technical limitations. The strategy is straightforward: each
day buy energy and charge the battery when the price is low (generally in the early morning
hours) and discharge and sell when the price is high (generally in the afternoon hours). Using
probabilistic forecasts of the DA prices in the Polish market, the authors determine both the
time (buy h1 and sell h2 hours) and the prices of limit orders submitted to the power exchange.
They formulate and solve the following maximization problem:

max
{h1,h2}

(
0.8 L̂α

d,h2 − Ûα
d,h1

)
subject to h1 < h2. (20)

The optimizer selects the lowest price of a given day based on the upper quantile forecast Ûα
d,h1

and the highest price based on the lower quantile forecast L̂α
d,h2. The company then submits

the bid to buy 1 MW for Ûα
d,h1 at hour h1 and simultaneously the offer to sell 0.8 MW at L̂α

d,h2

at hour h2; two sample solutions for the German EPEX market are depicted in Fig. 7. If both
offers are accepted in the day-ahead market, as in the left panel of Fig. 7, the profit for a given
day equals 0.8Pd,h2 −Pd,h1. However, the probability of each offer to be accepted in the market
is equal to 1−α

2 . If one of them is rejected, as in the right panel of Fig. 7 for hour h1, the energy
has to be bought or sold in the balancing market.
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This strategy is further modified by Uniejewski (2022), who restricts all trading to the day-
ahead market. In such a setting, a twice larger energy storage capacity (2.5 MW) is required
to trade the same volume (0.8-1 MW). The idea is to always remain in an intermediate state of
the battery, for which both charging and discharging 1 MW is possible. When the bid or the
ask is rejected, Uniejewski proposes to close the position the next day by submitting a market
order (i.e., with no price limit). He concludes that the proposed Smoothing Quantile Regression
Averaging (SQRA) approach outperforms the benchmarks in terms of statistical error metrics
(Kupiec test, GW test for the pinball score) in all four considered markets (German EPEX,
Scandinavian Nord Pool, Iberian OMIE, North American PJM). However, when the trading
strategy is executed, SQRA forecasts lead to higher profits only in two markets (EPEX, PJM).
The author hypothesizes that the poor performance for NP and OMIE is due to a twice lower
average intraday price spread, i.e., the gap between the maximum and the minimum hourly
price for a given day.

Further Reading

The review literature on EPF is not very rich. A couple of publications touch upon this topic,
however, they usually concentrate on modeling the price dynamics for derivatives valuation and
risk management purposes. In the context of day-ahead price forecasting the following are worth
recommending.

In one of the first reviews, Bunn (2000) writes that “the forecasting of loads and prices are
mutually intertwined activities” and that game theory and the economic perspective cannot be
“an accurate basis for daily forecasts”. He recommends using methods which involve variable
segmentation (separate models for each load period), neural networks (for modeling the nonlinear
behavior) and averaging forecasts.

The first comprehensive review and a standard reference for EPF is Weron (2014). The article
not only explains the strengths and weaknesses of the available techniques, but also postulates
the need for objective comparative studies and speculates on the future research directions.

The first thorough treatments of probabilistic EPF – Nowotarski and Weron (2018) and Ziel
and Steinert (2018) – present much needed guidelines for the rigorous use of methods, measures
and tests, in line with the paradigm of maximizing sharpness subject to reliability (Gneiting
and Katzfuss, 2014). The former concentrates on short-term horizons, while the latter on mid-
and long-term.

Hong et al. (2020) review energy (load, price, wind and solar generation) forecasting and
discuss two challenging problems that deserve rigorous investigation – close-loop forecasting and
(economic) valuation of forecasts.

Lago et al. (2021) is the first thorough review of deep learning in EPF. It also provides a set
of guidelines/best practices and introduces the epftoolbox8 with Python codes for two highly
competitive benchmark models (LEAR, DNN).

Finally, Jȩdrzejewski et al. (2022) is a popular science article on the evolution of machine
learning models in EPF. It is recommended for less research-oriented readers who want a light
introduction to the fascinating world of electricity price forecasting.

8Freely available for download from: https://epftoolbox.readthedocs.io/en/latest.
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