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Abstract

Neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, affect 50
million people worldwide, reducing the quality of life of patients and their families. Many
neurodegenerative diseases are associated with amyloid proteins, which can form stable
and insoluble fibrillar structures and are the main focus of research on these pathologies.
The ongoing transformation of the age structure in developed countries will triple the
population of patients with neurodegeneration by 2050. Despite the high importance and
prevalence of neurodegeneration, no effective treatment is available, raising the need for
novel ways to study these pathologies.

Finding novel drug targets and uncovering disease mechanisms is possible with protein-
protein interaction networks (PPINs). PPINs may be interpreted as disease roadmaps,
whose detailed analysis can provide new high-level information on the pathology. This
work discusses the application of available PPINs in neurodegeneration, showing that
current PPIN datasets are biased by our scientific interests, which harness their biologi-
cal interpretation. The published research regarding Parkinson’s and Alzheimer’s disease
discusses mostly amyloid proteins and their interactions, hindering the generalisation of
protein-protein interactions in these disorders on a proteome-wide scale. Therefore, to
better understand neurodegeneration, studies on the understudied groups of proteins are
needed.

Microbial amyloids, including bacterial functional amyloids, are a great example of
understudied topics in neurodegenerative diseases with the potential to shed light on the
onset and progression of neurodegeneration. Such proteins are purposefully produced by
an organism, e.g. to serve as biofilm scaffolding. Previous studies have shown that bac-
terial functional amyloid proteins may be present in the human microbiome and affect
the rates of amyloid deposition in the brains of patients with neurodegeneration. In this
thesis, bacterial functional amyloids are analysed in detail. Examination of sequences of
these proteins reveals that their aggregation propensity might be regulated by charac-
teristic sequence repeats. Structural analysis of bacterial functional amyloids is not yet
possible, as AlphaFold is generally shown to struggle with amyloid proteins. This is the
result of the low abundance of amyloid structures in the AlphaFold training dataset,
which leads to frequent prediction of high-quality globular models instead of fibrillar
structures for amyloid proteins. The presence of bacterial functional amyloids in the hu-
man microbiome is analyzed to give grounds for discussion about their potential clinical
importance. Through a designed pipeline, 805 such proteins, potentially produced by a
broad spectrum of bacterial species, are identified in the microbiome proteome. Predic-
tions of interactions between human proteins and functional bacterial amyloids suggest
that bacterial functional amyloids could affect multiple molecular pathways, including
inflammatory response, cell transport and signalling, and even harness the functioning of
cell junctions responsible for intestinal permeability.

This thesis demonstrates that current research on neurodegeneration is biased by sci-
entific interests in this topic. Studying different protein groups, such as bacterial functional
amyloids, can shed new light on the pathology and extend our biological knowledge. The
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quality and quantity of the experimental data are always a limit for the computational
analysis. Hence, future research on neurodegeneration may greatly benefit from general
high-throughput experiments that provide information on a proteome-wide scale, enabling
big data analysis approaches to uncover biological patterns in these disorders. Until such
high-throughput experiments on amyloid proteins become a very common practice, reach-
ing beyond the most studied group of proteins can make an impact.



Streszczenie

Około 50 mln ludzi na całym świecie cierpi z powodu chorób neurodegeneracyjnych,
takich jak choroba Parkinsona, czy Alzheimera. Oba schorzenia istotnie obniżają jakość
życia pacjentów, czyniąc ich w pełni zależnymi od opiekunów. Wiele chorób neurodegener-
acyjnych jest związanych z białkami amyloidowymi, które mogą tworzyć stabilne i nieroz-
puszczalne struktury fibrylarne. Takie amyloidy patologiczne są głównym przedmiotem
badań nad chorobami neurodegeneracyjnymi. W wyniku zmian socjoekonomicznych, które
powodują obserwowany wzrost populacji seniorów, do 2050 roku liczba pacjentów z neu-
rodegeneracją ulegnie potrojeniu. Mimo tego, że choroby neurodegeneracyjne są powszech-
nie spotykane i uniemożliwiają pacjentom normalne funkcjonowanie, do dziś nie dysponu-
jemy terapiami w pełni leczącymi te patologie. Dlatego nowe podejścia do badania tych
schorzeń są wciąż bardzo potrzebne.

Identyfikacja nowych celów terapeutycznych i analiza mechanizmów molekularnych
stojących za obserowowanym fentoypem choroby jest możliwa przy użyciu sieci interakcji
białko-białko (PPIN). PPIN mogą być interpretowane jako molekularna mapa jednostki
chorobowej, której szczegółowa analiza może dostarczyć nowych oraz bardziej ogólnych
informacji o patologii. Niniejsza praca omawia zastosowanie dostępnych PPIN w neurode-
generacji, pokazując, że obecne zbiory danych PPIN są efektem zaintersowań naukowych,
a nie jednorodną próbką wiedzy biologicznej, co powoduje, że interpretacja biologiczna
PPIN jest znacząco utrudniona. Dostępne i opublikowane badania dotyczące choroby
Parkinsona i choroby Alzhei-mera omawiają głównie wspomniane patologiczne amyloidy
i ich interakcje, co utrudnia uogólnienie interakcji białko-białko w tych zaburzeniach na
skalę całego proteomu. Dlatego, żeby lepiej zrozumieć choroby neurodegeneracyjne potrze-
bujemy wyjść poza zbiór popularnie badanych białek w tych patologiach.

Amyloidy mikrobiologiczne, w tym bakteryjne amyloidy funkcjonalne, są doskonałym
przykładem niedostatecznie zbadanych tematów w chorobach neurodegeneracyjnych. Różne
organizmy celowo produkują takie białka, np. do budowy biofilmu. Poprzednie bada-
nia wykazały, że bakteryjne amyloidy funkcjonalne mogą być obecne w ludzkim mikro-
biomie i wpływać na tempo odkładania się złogów amyloidowych w mózgach pacjen-
tów. W niniejszej pracy bateryjne amyloidy funkcjonalne są szczegółowo analizowane.
Badanie sekwencji tych białek ujawnia, że ich skłonność do agregacji może być reg-
ulowana przez charakterystyczne powtórzenia sekwencyjne. Analiza strukturalna bak-
teryjnych amyloidów funkcjonalnych nie jest jeszcze możliwa ponieważ, jak zostało wykazane
w tej pracy, AlphaFold ma ogólne trudności z białkami amyloidowymi. Wynika to z małej
liczby rozwiązanych struktur amyloidowych w zbiorze treningowym AlphaFolda, która
prowadzi do częstego przewidywania wysokiej jakości modeli globularnych zamiast oczeki-
wanych struktur fibrylarnych dla białek amyloidowych. Skala występowania bakteryjnych
amyloidów funkcjonalnych w ludzkim mikrobiomie jest szacowana w celu omówienia ich
potencjalnego znaczenia klinicznego. Zaprojektowany protokół identyfikacji bakteryjnych
amyloidów funkjconalnych wykazał 805 takich białek w proteomie ludzkiego mikrobiomu,
które są potencjalnie produkowane przez szerokie spektrum gatunków bakterii. Przewidy-
wania interakcji między białkami ludzkimi, a bakteryjnymi amyloidami funkcjonalnymi
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sugerują, że białka te mogą wpływać na wiele ścieżek molekularnych, w tym odpowiedź za-
palną, transport i sygnalizację komórkową, a nawet wpływać na funkcjonowanie połączeń
komórkowych odpowiedzialnych za przepuszczalność jelitową.

Niniejsza praca pokazuje, że dotychczas dostępne dane na temat neurodegeneracji są
zaburzone zainteresowaniami naukowców w tej dziedzinie. Badanie innych grup białek,
takich jak bakteryjne amyloidy funkcjonalne, może rzucić nowe światło na nasz sposób
postrzegania tych schorzeń. Każda analiza obliczeniowa jest niestety ograniczona danymi
eksperymentalnymi. Dlatego, wysokoprzepustowe eksperymenty na skalę proteomu, które
w sposób jednorodny próbkują naszą wiedzę biologiczną są rozwiązaniem, które umożliwia
dokładną analizę obliczeniową z potencjałem do odkrywania nowych wzorców rządzących
neurodegeneracją. Zanim to się stanie bardzo powszechnie stosowaną praktyką, badania
wykraczające poza najczęściej analizowane grupy białek, takie jak amyloidy patologiczne,
mogą rozszerzyć naszą ogólną wiedzę na temat neurodegeneracji.
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Introduction

Around 300,000 years ago, somewhere in a seemingly boundless, vivid savanna, history
changed as we left the safe trees and started exploring the world beyond them. Despite
the primitive life-threatening dangers that made us more prey than predator, surprisingly,
we survived and prospered. All because of a risky bet of evolution, when everything was
put on one card, intelligence.

It is undeniable that our brains distinguish us from other species. 100 billion neurons,
more than stars in our galaxy, connected by 100 trillion connections, build the universe
of our consciousness [1]. Thanks to this complexity, as no other animal on the planet, we
can contemplate abstract concepts like ’science’ or ’PhD dissertations’, solve complicated
puzzles left by nature, and finally use the idea of language to communicate about them.
But the risky bet of evolution has a very high price that must be paid as we age.

More than 1 in 10 people aged 65 and above suffer from Alzheimer’s disease [2], and
1 in 100 from Parkinson’s disease [3]. The prevalence of both diseases increases dra-
matically in older populations. At the age of 85 years or older, 1 in 4 people live with
neurodegeneration [4, 3, 2]. Although we share multiple characteristics with other pri-
mates, neurodegenerative disorders seem to be the plagues that reap the harvest only in
our population, as no other animal has been found to have the full clinical phenotype of
Alzheimer’s or Parkinson’s disease [5, 6]. This remarkable vulnerability of the human brain
to neurodegeneration has been hypothesized to be related to subtle changes that increase
our cognitive abilities but at the cost of a higher risk of brain-related disorders [7, 8]. One
of our species-specific traits is a structural, functional, and vascular reorganization of the
parietal lobe, a brain region responsible for abstract thinking. This relatively novel idea of
evolution posed a significant increase in metabolic demands in this region, which could be
difficult to meet as our cells age and experience declines in their metabolic performance
[9]. As a result, a bottleneck appeared in the parietal lobe, the common starting point for
Alzheimer’s disease. A similar story can be told about Parkinson’s disease. Humans are
characterized by multiple connections in the cortical-subcortical regions that are highly
demanding at the bioenergetic level but give us a cognitive advantage. As in the case of
the hypothesis on the origin of Alzheimer’s disease, the metabolic needs in this region are
difficult to meet as we age and, consequently, the weak point in the structure of the brain
emerges [10, 11]. To our detriment, there is no evolutionary pressure to eliminate these
disorders as they appear in the post-reproductive age.

In some cases, neurodegeneration may be heritable and directly related to genetics.
Approximately 5% of all patients with Alzheimer’s disease suffer from a heritable Early
Onset Familial Alzheimer’s Disease. The occurrence of Early Onset Familial Alzheimer’s
Disease is directly related to pathogenic mutations in at least one of three important
genes: PS1, PS2 or APP [12]. These patients experience symptoms of Alzheimer’s disease
earlier in life, and the course of the disease is often more aggressive. Parkinson’s disease
can also have a familial character, although it occurs only in around 10% of the cases.
Until now, 20 different genes have been associated with familial Parkinson’s disease [13].
The rest of the Parkinson’s and Alzheimer’s disease cases have an idiopathic character.
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Today, it is estimated that 50 million people worldwide suffer from neurodegenera-
tion, and the future is not filled with optimism. By 2050, this number will triple and
neurodegenerative diseases will become the second most common disease at the time of
death, overtaking cancer [14]. At first sight, this seems an inevitable consequence of the
socioeconomic changes that result in longer life expectancy and an increase in the human
population. However, this is only part of the story.

Cases of severe cognitive impairment were rare in ancient times, even though these
disorders were already known [15]. Even more interestingly, lifestyle changes, which ap-
peared between ancient Greece and the more industrialized Roman era, were correlated
with an increase in the incidence of neurodegeneration, suggesting the role of environ-
mental factors in the prevalence of these disorders. Studies of the Tsimane population
in Bolivia, who live a primitive life with a high dose of physical activity, support these
hypotheses. Among Tsimane people, mild cognitive impairment occurs but incomparably
rarely to the epidemiological statistics observed in modern societies [15].

The contemporary lifestyle and environment seem to be important ingredients in the
recipe for neurodegenerative plagues. We start our day breathing the ’fresh’ city air, full
of harmful particles that form air pollution. These particles can cross our blood-brain
barrier, altering the fragile homeostasis of our brain, increasing inflammation and oxida-
tive stress and finally resulting in the overall neurotoxic effect [16]. Next, we eat breakfast
rich in simple sugars and saturated fatty acids, building a good foundation for metabolic
syndrome that is another risk factor for neurodegeneration [17]. We go to work and sit
for hours, although physical activity, even in low doses, decreases the chances of getting
Alzheimer’s and Parkinson’s disease [18, 19]. The western diet and low physical activity
increase the risk of cardiovascular diseases, which in turn increase the risk of Alzheimer’s
[20]. A history of strokes is more common in patients with Alzheimer’s disease or Parkin-
son’s disease than in healthy groups [21, 22]. Furthermore, genetic factors can interact
with environmental ones, further modulating the risk, e.g. genetically determined high
systolic blood pressure increases the risk of Alzheimer’s disease [23]. Our lifestyle is of-
ten characterized by high levels of stress, typical of the modern fast-paced world. The
pro-inflammatory properties of stress also affect our brains, and hence, stress-related dis-
orders are risk factors for neurodegeneration [24, 25]. Sleep disorders, which even one in
ten people experience [26], pose another heavy burden on our health. Patients suffering
from them are more likely to also suffer from Parkinson’s and Alzheimer’s disease, and
other types of dementia [27]. The full list of lifestyle factors influencing the risk of neu-
rodegeneration is still not exhaustive, as our mental health, microbiome, smoking, alcohol
consumption, pesticide exposures, and others also matter.

Behind the numbers raising our awareness of the prevalence and risk of Alzheimer’s
and Parkinson’s diseases, patients experience the disease symptoms. Both diseases start
imperceptibly. The first signs of Alzheimer’s disease include a minor memory loss that
progresses as days pass. The person loses initiative, can get lost in the areas they know,
struggles to solve tasks that used to be easy, and can experience personality changes, e.g.
more aggressive behavior. Once the disease reaches its full potential, people are incapable
of communicating, have little or no awareness of their surroundings, suffer physical deteri-
oration, and lose control over basic physiological activities [28]. Patients with Parkinson’s
disease share many of these symptoms. This disorder is also characterized by memory
loss, mental health deterioration, and general cognitive decline. However, Parkinson’s dis-
ease usually starts with tremors and shaking. The other motor symptoms include slowed
movement, muscle stiffness, loss of balance, and struggle to perform automatic motions
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[29].
At the molecular level, the hallmarks of neurodegeneration are amyloid plaques that

are visible in the human brain scans of patients with Alzheimer’s and Parkinson’s diseases.
Amyloids, by definition, are proteins or peptides that can aggregate to form stable fibrillar
structures with a characteristic cross-beta pattern detectable by X-ray diffraction. Fibrils
are made up of protofilaments that are formed of in-pairs associated beta sheets. The side
chains of the mating beta sheets are tightly packed and form a so-called steric zipper.
The core of the amyloid fibril is often hydrophobic; meanwhile, its surface is rich in polar
residues [30]. The amyloid fibrils emerge via an aggregation mechanism that starts with
the formation of a nucleus. As other monomers join the nucleus, it becomes an oligomer
and then a fibril. Other mechanisms contributing to the aggregation may include, e.g.
fibril fragmentation. The amyloid formation is characterized by a slow nucleation phase
and rapid fibril elongation that ends in the stationary phase [31]. The aggregation is highly
dependent on environmental conditions, including concentration or pH.

The amyloid deposits in the case of Alzheimer’s disease consist of aggregated forms of
the Aβ peptide and phosphorylated tau protein [32]. Aβ is the product of a proteolytic
cleavage of the Amyloid-beta precursor protein (APP) - a cell-surface receptor. APP
promotes synaptogenesis and is involved in cell mobility. APP may be cleaved in two
modes: non-amyloidogenic (cleavage occurs within Aβ) and amyloidogenic ones (cleavage
occurs on the N- and C-terminal of Aβ and results in secretion). Heritable mutations in
APP and presenilins, which occur in Early Onset Familial Alzheimer’s Disease, negatively
alter the production of Aβ [33]. The microtubule-associated protein tau is a large neuronal
protein that promotes microtubule assembly and stability. When phosphorylated, tau
forms cytotoxic tangles built of amyloid fibrils [34]. In Parkinson’s disease, the deposits,
the so-called Lewy bodies, are made of α-synuclein, a neuronal protein associated with
synaptic activity. Some mutations in α-synuclein are known to cause familial Parkinson’s
disease [35]. Tau and α-synuclein are two-sided proteins [32]. In their native state, they
perform their functions that contribute to cellular well-being. However, under certain
environmental conditions or mutations, they can change their form and create fibrils.

The current consensus in the field argues that the formation of amyloid fibrils present
in Alzheimer’s and Parkinson’s disease is harmful to humans. Hence, Aβ, tau, α-synuclein
and similar amyloid proteins associated with other diseases (e.g. amylin in type II dia-
betes), shall be called ’pathological amyloids’. Several factors support the hypotheses
about the negative impact of pathological amyloids. In the first place, once pathological
amyloids start to aggregate, they stop executing their primary functions in the cell due to
loss of the intrinsic structure. Secondly, aggregates of pathological amyloids, and especially
oligomers that precede the emergence of fibrils, can disrupt cellular membranes [36, 37].
This property is one of the most fundamental aspects that support the view on the cyto-
toxicity of pathological amyloids. Pathological amyloid formation is also associated with
the immune response and induction of oxidative stress. The Aβ and α-synuclein oligomers
can activate certain cell surface receptors, such as toll-like receptors, which in turn re-
lease pro-inflammatory cytokines and chemokines that promote neuroinflammation and
cell damage [38, 39, 40]. Finally, pathological amyloids can negatively affect endothelial
cells, consequently leading to blood-brain barrier permeability [41, 42, 43, 44].

We are tempted to see neurodegeneration through amyloid lenses in light of these ob-
servations. One of the common views places the “amyloid seeding” at the centre of these
disorders. In this mechanism, once one protein misfolds and recruits others to form a seed-
ing oligomer, the structural template propagates and causes the misfolding cascade. This

3



Chapter 1 Faculty of Fundamental Problems of Technology

process lies at the foundation of prion diseases, like Creutzfeldt-Jakob disease (CJD). In
CJD, misfolded proteins act as ’infectious agents’ - they induce normal proteins to mis-
fold. One can contract CJD, e.g. through the consumption of a sick animal with misfolded
proteins. In the prion-like hypothesis of neurodegeneration, amyloid propagation occurs
between cells, leading to the expansion of misfolding to further brain areas [45]. Several
studies support this hypothesis. Amyloid fibrils, e.g. of tau or α-synuclein can appear once
an amyloid seed is introduced to the cell [46, 47, 48] . Certain amyloid pathologies, like
Aβ plaque pathology, were observed to be even transmissible between humans via neuro-
logical surgery [47]. Even more convincing is the fact that the spatiotemporal distribution
of amyloid plaques in neurodegeneration is related to spatial connectivity (in the case of
α-synuclein [49]) or proximity (in the case of Aβ [50]) in the brain.

Pathological amyloids alone cannot tell the whole story of neurodegeneration. The
recent trials of anti-amyloid drugs in Alzheimer’s disease provided controversial results
that did not meet the great hopes associated with them. Although they remove the aggre-
gates of Aβ, patients do not experience the expected significant cognitive improvement
[51, 52]. It can be argued that the drug was administered too late and did not target the
most toxic amyloid oligomers that appear first; hence, it simply did not work spectacu-
larly. On the other hand, tangles of tau proteins appear to be more correlated with the
disease symptoms than Aβ aggregates, thus, drugs targeting tau proteins could be more
effective. Similarly, antibodies designed to clear aggregates of α-synuclein in Parkinson’s
disease do not seem promising. Although clinical trials are ongoing, so far, no effect on
disease progression has been demonstrated [53]. Current treatment of Parkinson’s dis-
ease only attempts to alleviate some symptoms, e.g., by administering drugs that mimic
dopamine. Unfortunately, with time, the organism’s response to therapy decreases signif-
icantly [54, 55]. The struggles of the mentioned clinical trials clearly illustrate that our
understanding of neurodegeneration is far from complete. This marks the new line for
scientific exploration.

Recent developments in a relatively new field of network science can shed new light
on how we conceptualize human diseases. Network science, in its essence, aims to capture
complex relations occurring between different entities. This framework can easily be ap-
plied to modelling a neurodegenerative disorder. We can identify all proteins known to be
involved in a pathological process, such as Parkinson’s disease, and the interactions that
exist between them. In such a way, we build a protein-protein interaction network - a map
for the molecular process of choice. Then, research is limited only by our imagination. We
can attempt to identify the most important proteins in the network (potential drug tar-
gets), model the spread of the information (e.g., cell signalling), or examine if a network
disintegrates after the removal of certain proteins (effect of the protein inhibitors). The
network approach proved useful in gene prioritization in Parkinson’s and Alzheimer’s dis-
eases, revealing new drug targets [56, 57, 58, 59], supported the construction of a dataset
of gene risk factors dataset in both diseases [60], highlighted the molecular pathways dis-
turbed in these disorders [61, 62], helped to identify proteins responsible for neurotoxicity
in neurodegeneration [63], and provided us with a map of interactions between amyloid
proteins [64, 65], to name a few applications. Despite these successes, we must keep in
mind that understanding molecular crosstalk in neurodegeneration requires reliable maps
of the disease.

How authentic are available data regarding protein-protein interactions, and can they
provide faithful information regarding neurodegeneration? These questions are a starting
point for this thesis. Before heading out into the wide waters of the Ph.D. journey, we
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discuss the utility of the relatively novel and promising network approach. The topological
structures of various protein-protein interaction networks representing human disorders
are assessed. A set of measures that can help a researcher in diagnosing the network utility
is provided. Finally, an online tool for the diagnosis of the topology is available to every-
one. The first chapter demonstrates that the protein-protein interaction data, especially
in the context of neurodegeneration, are not always reliable and require individual exam-
ination. Otherwise, false conclusions about the disease mechanism can be made. Interests
of the scientific community frequently result in data biases that hamper proper in-silico
modelling of human disorders. This, in turn, makes protein-protein interaction networks
a method with limited applicability. The analysis of human protein-protein interaction
networks also has one more drawback - it ignores 20 million nonhuman proteins that are
present in our gut.

The human microbiome is often called a vital meta-organ. It produces substances
of critical importance for our health, such as folate, riboflavin (vitamin B12), or short-
chain fatty acids [66, 67], regulates our immune response by influencing the production
of cytokines and the activation of lymphocytes [68, 69], and participates in maintaining
metabolic homeostasis [70]. Although our microbes constitute only 2-3% of our mass, they
dictate our well-being. The microbiome changes throughout our lifetime. We are born
with a restricted community that rapidly expands and plays a critical role in shaping
our immune system in those early years. As years pass and we enter the fall of our lives,
the microbiome transforms to support us in healthy ageing. Some genera become less
abundant in our intestine, such as Prevotella or Bifidobacterium; meanwhile, colonies of
Akkermansia or Butyricimonas grow [71]. In unhealthy ageing, changes also occur, but
are quite distinct.

Multiple studies revealed a vast array of microbiome-related factors associated with
the presence and/or progression of neurodegeneration. Different microbiome composition,
increased lipopolysaccharide secretion, decreased presence of bacteria producing short-
chain fatty acids, increased presence of pro-inflammatory bacteria, such as Proteobacteria,
and increased gut permeability linked to inflammation were observed in diseased patients
[72, 73, 74]. Despite these efforts to understand microbiome alterations in neurodegen-
eration, multiple issues remain unsolved. How do changes in the microbiome affect the
gut-brain axis in these disorders, and what are the detailed molecular mechanisms of this
crosstalk?

It could be that metabolites, frequently capable of crossing the blood-brain barrier,
are crucial in this interplay. Short-chain fatty acids received particular attention in this
context. Parkinson’s disease patients have lower levels of butyrate, and mice with induced
Alzheimer’s disease, when given butyrate, experience cognitive improvement and a de-
crease in amyloid plaques in the brains [75]. Other studies point to lipopolysaccharides
that are potent microbiome-derived neurotoxins capable of activating multiple immune-
related pathways. Lipopolysaccharides are abundant in the brains of Alzheimer’s patients,
with a prominent presence in the most impaired regions [76]. Another hypothesis focuses
on the set of interesting proteins, so-called bacterial functional amyloids, suggesting that
these microbial entities could be triggers for neurodegeneration.

Bacterial functional amyloids belong to a wider group of so-called functional amyloids
discovered more than 20 years ago. Functional amyloids share crucial structural charac-
teristics with previously mentioned pathological amyloids: they form regular, stable, and
insoluble fibrils with a cross-beta structure via the aggregation process. However, they
fundamentally differ in their cellular role. Functional amyloids, as the name suggests,
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are purposely produced by an organism to perform certain functions. Such proteins exist
across different branches of life, including humans, other mammals, insects, fungi, bacte-
ria, and even viruses. A prominent example of functional amyloid in humans is Pmel17.
Its fibril formation has an impact on the condensation of melanin pigment [77]. Some
hormones also take advantage of the stable amyloid form, as it provides the most dense
packing possible, and can serve as a material for hormone storage [78]. The protective
character of amyloid fibrils, arising from their stability and insolubility, also makes them
a great material for eggshells. Silkmoth oocytes are protected by a shield built of chorion
protein amyloid fibrils [79]. In fungi, amyloids are used in signalling processes that control
non-self-recognition [80]. Viral amyloids are widespread and can regulate viral gene ex-
pression, inhibit necroptosis and participate in virion budding [81]. In bacteria, functional
amyloids are frequently involved in biofilm formation [78]. The stable amyloid structures
formed outside of bacterial cells provide a scaffold for a biofilm matrix that protects the
bacterial community from environmental dangers. The most well-known example of such
proteins is curli (CsgA, produced, e.g. by E. coli), which forms degradation-resistant fibrils
on the cell surface [82]. Although beneficial for bacteria, CsgA-mediated biofilm formation
can be an important virulence factor that increases antibiotic resistance [83, 84]. Other
biofilm-related amyloids include Bap and Esp, which are long proteins from Staphylo-
coccus aureus and Enterococcus faecalis, respectively, FapC protein from Pseudomonas
or TasA from Bacillus subtilis [85, 86, 87, 88]. The formation and stabilization of the
biofilm is not the only possible function of bacterial functional amyloids. They can also
be involved in the binding of DNA and RNA. For example, the Hfq protein, found in
around half of the bacterial species, has multiple functions related to its amyloid forma-
tion, including the pairing of sRNAs with mRNAs, regulating mRNA stability and DNA
compaction [89, 90].

Bacterial functional amyloids are produced by bacteria that inhabit our intestinal
tract, and their prominent structural similarity to pathological amyloids inspired an in-
teresting hypothesis about the emergence of Parkinson’s disease. In the first place, we
must view Parkinson’s disease in light of Braak’s hypothesis, which postulates, based on
observation of the pathology expansion pattern, that this disorder starts in the enteric
nervous system and then propagates to the brain via the vagus nerve [91]. The aggregates
of α-synuclein in the enteric nervous system were shown to appear in the early stages of
the disease and are correlated with its severity, supporting the view that the intestine
is the starting point [92, 93]. These considerations may now go further. If Parkinson’s
disease launches outside of the central nervous system, what could be the trigger in the
intestine?

There is notable evidence supporting the hypothesis that bacterial functional amyloids
could directly or indirectly influence the onset and progression of Parkinson’s disease [94,
95]. In the first place, it was widely demonstrated that the presence of bacterial functional
amyloids can affect the aggregation process of pathological amyloids due to mechanisms
of molecular mimicry [65]. The so-called cross-seeding implies that the aggregation of one
protein is catalyzed by the addition of preformed fibrils of the same protein or another.
Cross-seeding is specific, to some extent, as not all proteins can impact the aggregation of
another [96]. Curli protein, although different in sequence from α-synuclein, can accelerate
its aggregation in biochemical assays. Furthermore, colonization of the intestinal tract of
mice with CsgA-producing bacteria promotes the pathology of α-synuclein in the intestine
and brain, and its inhibition decreases aggregation of α-synuclein in the brain [97]. CsgA
also interacts with Aβ and promotes Alzheimer’s pathology in C. elegans models [98].
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FapC has similar properties and can accelerate the aggregation of both α-synuclein and
Aβ [99, 100]. Very recent work revealed that biofilm-related bacterial functional amyloids
(Bap) are more abundant in patients with Parkinson’s disease [101]. Importantly, the
same study showed that Bap proteins can co-localize with α-synuclein in neurons and
increase its aggregation.

Bacterial functional amyloids could have a broader effect on neurodegeneration than
only affecting the rates of aggregation of pathological amyloids. Patients suffering from
Parkinson’s disease and Alzheimer’s disease often have a dysbiotic gut that experiences
chronic inflammation [73, 102]. Pathological amyloids, as mentioned previously, have cyto-
toxic effects and affect multiple immune-related pathways. Reasoning based on molecular
mimicry leads to the hypothesis that bacterial functional amyloids, similarly to patho-
logical ones, could have pro-inflammatory properties, especially during dysbiosis, acti-
vating the same immune-related pathways and hence worsening the disease [103, 104].
Phenol-soluble modulins (PSM), microbial amyloids secreted by Staphylococcus, acti-
vate the formyl-peptide receptor 2, which leads to the attraction of neutrophils. Interest-
ingly, the secretion of these bacterial functional amyloids was even correlated with bacte-
rial pathogenicity, suggesting that differentiation between pathogenic and nonpathogenic
Staphylococcus could be related to PSM identification by the immune system [105]. Fur-
thermore, both microbial and human amyloids have been shown to stimulate a range of
toll-like receptors that are part of human innate immunity [106]. Curli fibrils can acti-
vate the NLRP3 inflammasome pathway that plays an important role in inflammatory
signaling [107].

These observations highlight the potential importance of bacterial functional amyloids
in neurodegeneration and lead us to the next topic considered in this thesis. When this
work started, no full dataset of all known bacterial functional amyloids was available.
Hence, the second chapter starts by answering this need via literature mining. Then, I
move to sequence analysis of a created dataset, in order to better understand the role of
bacterial functional amyloids in neurodegeneration, we must get to know these proteins
better.

Current methods for computational studies of amyloids are often focused on identi-
fication of aggregation-prone regions that are drivers of nucleation. In normally folded
proteins, aggregation-prone regions are frequently buried inside the protein, but when ex-
posed to solvent, they can trigger the amyloid formation process [108]. Many algorithms
predicting aggregation-prone regions search for characteristic motifs in the sequence. A
classic example is Waltz [109]. The Waltz authors experimentally screened a wide ar-
ray of hexapeptides to identify the amyloidogenic ones. Then, a tool was built based on
a calculated position-specific scoring matrix. Aggrescan has a similar philosophy [110].
Firstly, a range of mutational experiments on Aβ were performed. Then, they developed
a method that screens the sequence and scores its fragments for their amyloidogenicity. To
account for the fact that aggregation-prone regions can be buried and never activated in
the globular protein, Zambrano and colleagues developed a newer version of the algorithm
- Aggrescan 3D [111]. It combines information about the accessibility of the residue to the
solvent and its aggregation propensity. Archcandy, instead of identifying the aggregation-
prone regions, searches for potential information about formation of beta-arches in the
sequence, as this motif can be found in the majority of disease-related amyloids [112].
Many recent software take advantage of machine learning. Amylogram combines n-gram
sequence analysis with a random forest model, [113]. PATH uses template-based mod-
elling to derive energy terms that are used as an input to a machine learning model, [114].
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FishAmyloid relies on correlated occurrences of sequence elements and machine learning
classification [115]. AggBERT uses embeddings from a large language model adjusted to
proteins, ProtBERT, to predict aggregation-driving hexapeptides [116].

Many of the presented methods, and similar ones, are based on sliding windows that
screen the sequence for aggregation-prone regions. The false positive ratio is often low,
only 5-10% per test. However, we should keep in mind that, in the case of longer proteins,
the tool will perform many tests and almost always identify some false aggregation-prone
regions in the sequence. Hence, even if the sequence is entirely not amyloidogenic but long
enough, by statistics, the approach with the sliding window will almost always yield at
least one false positive result. For example, if a sequence is 100 amino acids long, and the
sliding window is of size 6, we have 94 tests. If 5-10% of the tests are incorrect, around
4-9 false aggregation-prone regions can be found on average. This is, of course, a rough
simplification, as the tests are correlated, but it still gives an idea of possible problems
with the application of these methods to the large-scale identification of novel amyloids.

Unfortunately, few predictors perform a single test to examine the aggregation propen-
sity of the entire protein sequence. One of them is ECAmyloid. It extracts sequence fea-
tures such as evolutionary and secondary structure information, amino acid composition,
solvent accessibility, and others to train an ensemble learning classifier [117]. Another is
AMYPred-FRL, which uses a similar approach. It extracts sequence features and performs
feature representation learning to produce a meta-predictor [118].

The vast majority of these tools are trained on the sequences derived from pathological
amyloids, as functional amyloids are vastly underrepresented in amyloid databases. Func-
tional amyloids differ in amino acid composition from pathological ones [119]. Therefore,
the usage of these tools should be treated with caution in the case of bacterial functional
amyloids. This was confirmed by a recent study by Szulc et al. Correctly predicting all
amyloid fragments in curli (CsgA) was impossible with the common amyloid predictors
[82]. Based on this, it can be concluded that to analyse how bacterial functional amyloids
aggregate, other methods than amyloid predictors are welcome.

The protein alphabet is formed of twenty amino acids, which are protein building
blocks. With this alphabet, words and entire sentences, which relate to sequence motifs
and domains, are built. This analogy to natural language gives room for the application of
complex language models to study the language of proteins. One of the important families
of algorithms in this area is protein embeddings that aim to encode the sequence in the
form of a fixed-size vector. Although the idea of ’protein vectorization’ is not new, as
a protein-describing vector can be built, e.g. by calculating physicochemical properties,
modern natural language models bring it to the next level. By training the language
models on the protein sequence data sets, one can provide a descriptive representation of
a protein that provides more information than the mere protein sequence [120]. From a
technical point of view, two paradigms are used to train a protein language model: transfer
learning and self-supervision. Transfer learning accounts for the applicability of successful
neural network architectures, developed, e.g. for natural language. With self-supervision,
one can use the vast amount of unlabeled data to train the model. This latest idea of
protein language models makes them particularly useful, as unannotated proteins make
up a significant portion of the reference databases.

Protein embeddings proved to be useful in a variety of tasks. The shallow word2vec
embeddings for the proteins were highly precise in classifying antibacterial peptides [121].
SeqVec embeddings, based on the ELMo language model, captured the information on
secondary structure, disordered regions, and subcellular localization, succeeding models
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based on biophysical properties and evolutionary information, and at the same time pro-
viding fast calculations [122]. Similarly, ProtBERT embeddings performed at the level of
state-of-the-art in tasks related to structure, post-translational modifications, and function
prediction [123]. Embeddings from the ESM2 model were successfully applied to estimate
per-residue sequence conservation [124]. Finally, protocols using protein embeddings to
visualize protein datasets were developed [125].

In the second chapter, protein embeddings are used to better understand the pro-
tein space of the bacterial functional amyloids. As these proteins are poorly studied, this
unsupervised approach seems particularly valuable. Hence, the embeddings for bacterial
functional amyloids are predicted and analyzed to observe if these proteins form a homo-
geneous cluster that separates from the entire protein space. After this initial step, which
provides the map of the bacterial functional amyloids and relations between them and
other proteins, we discuss the results from a more classical sequence analysis approach
that is based on the evolutionary perspective.

Evolution purposefully designed functional amyloids. As an example, we can consider
the Csg and Fap amyloid systems which take part in biofilm formation and consist of
various genes that regulate transcription and aggregation of CsgA and FapC proteins. In
the case of the Csg system, two operons are present: CsgBAC and CsgDEFG. The first
encodes fibrillar CsgA (major curli subunit) and CsgB (minor curli subunit), as well as
the chaperone CsgC, while the second encodes accessory proteins responsible for fibril
translation, transcription and secretion [126]. Fap system is constructed similarly. FapC
is the major component of the fibril, and FapB is the minor one. FapA is a chaperone
that regulates fibril assembly and morphology [127]. Fap and Csg amyloid systems have
been shown to evolve to have amyloid agents and phylogenetically conserved mechanisms
that regulate their rates of aggregation [128, 129]. Similar observations were made for
yeast adhesins with amyloid properties - their aggregation-prone regions turned out to be
conserved in this protein family, [130]. In addition, the formation of A-body functional
amyloids, which is related to the physiological response to environmental stressors, was
conserved between different species, including fish, human, and chicken [131].

Functional amyloids, although similar to their pathological counterparts in many ways,
have their own characteristics. Most importantly, their fibrils have a wider range of sta-
bility and lifespan than pathological ones, even with the potential to disassemble under
certain conditions once the cell needs it, [119, 132, 131]. This fascinating flexibility re-
quires that aggregation control mechanisms are incorporated into the sequence of these
proteins [133].

It seems reasonable to think that tandem repeats, sequence regions with a repeat-
ing pattern of amino acids, could regulate protein aggregation propensity in the case of
bacterial functional amyloids. This view is supported by statistics that reveal the wide
presence of tandem repeats across different proteomes and their supporting role in the
binding properties of their proteins. Repetitions are under pressure of the evolution that
carves them to perfectly execute their well-designed roles in the cell [134]. The presence
of repeats introduces multiple symmetric interactions that could contribute to the pre-
cise steering of amyloid fibril formation in the case of these proteins. The CsgA and FapC
proteins, which are part of phylogenetically conserved amyloid systems, contain repetitive
sequence motifs that relate to the formation of beta-sheets in amyloid fibrils. The pres-
ence of repetitive motifs is conserved, although the parameters of tandem repeats differ
between bacterial species [128, 129]. Long biofilm-related amyloids also have repeats in
their sequences, but their role is not yet fully understood.
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The second chapter also discusses the role of tandem repeats in bacterial functional
amyloids. It is hypothesised that the similarity between repeat units, their number and
their lengths could be important factors regulating the aggregation process in the case of
bacterial functional amyloids. To evaluate this, the number of bacterial functional amy-
loids with repeated regions is examined. It is also demonstrated that repeats in bacterial
functional amyloids consist of a small number of units that are only a rough repetition of
each other. Finally, the results are compared with those of other bacterial proteins, reveal-
ing the particular aggregation-regulating character of the repeats in functional bacterial
amyloids. Nevertheless, sequence analysis is just a first step that slightly removes the veil
of secrecy of these proteins. Structure, which is so closely related to protein function,
could tell more.

Unfortunately, few structures of bacterial functional amyloids are experimentally re-
solved. The scarce examples include phenol-soluble modulin and the CsgA protein. The
full fibril structure of these proteins were studied with electron microscopy [135, 136].
Structures for pathological amyloids are also not widely abundant, especially in the case
of longer sequences. This low abundance of the amyloid structural data is a consequence
of experimental limitations, such as the sensitivity of amyloid fibrils to environmental con-
ditions and their high molecular weight, which make experiments difficult and expensive.
Little data on amyloid structures and issues associated with solving them experimentally
make computational approaches to structure prediction highly welcome.

Few attempts to predict amyloid structure have been made. Fibrepredictor was re-
leased in 2016. It is similar to template-based modelling. It estimates which of the known
fibrillar architectures is the most suitable for a provided sequence [137]. Another algorithm
is BetaSerpentine [138], which tries to predict how beta-arches are placed in a structure of
an amyliod fibril. A very recent tool from 2025 is RibbonFold [139]. It is a neural network
with built-in constraints that allow for the prediction of amyloid structures. Although all
these solutions are very promising and remarkable, they do not allow for a generalized
modelling of amyloid proteins. That means that modelling different sizes of the fibrils,
predicting structures for monomers and multimers, adding ions, which may affect amy-
loid fibrils and discovering unknown architectures of amyloid proteins is not possible with
them.

Recent breakthroughs in protein structure prediction methods are highly promising in
this regard. The current state-of-the-art model, AlphaFold, not only opened but also broke
the door to accurate computational modeling of proteins, reaching very high accuracy in
the CASP (Critical Assessment of Structure Prediction) competition [140]. AlphaFold is a
neural network trained on a large amount of structural data available in the Protein Data
Bank (PDB). AlphaFold proved useful in a variety of tasks. It provided predictions for
millions of proteins, covering 98.5% of the known proteome, that made up the AlphaFold
Database [141]. It can aid drug discovery [142, 143]. Structural information produced by
AlphaFold boosts reliable protein annotation [144]. Different variants of the AlphaFold
were used to predict multiple protein-protein interactions, for example, to discover the
interactomes of whole organisms [145]. These successful applications of AlphaFold and its
wide usage by the community naturally raise the question of it can deal with bacterial
functional amyloids.

In the third chapter, we investigate how the latest version of AlphaFold, AlphaFold 3,
deals with amyloid structure. The performance of AlphaFold on the cases of well-studied
amyloids, which were part of the training, is examined based on multiple monomeric and
multimeric predictions with different parameters. Models of amyloid proteins with an un-
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solved experimental structure of a fibril are also evaluated. The discovered trends are then
compared to the general AlphaFold predictions available for the human proteome. The
detailed analysis reveals that AlphaFold, regardless of its version, generally struggles with
amyloid proteins, as these constitute the minority of its training dataset. In consequence,
it prefers to produce high-quality globular models for amyloid proteins instead of the
fibrillar ones. The latest occur occasionally, but are more common for shorter sequences
and are often associated with poor quality scores. This result underscores that, to better
understand amyloid proteins, including bacterial functional amyloids, we need more ex-
perimental data on other amyloid proteins than on the handful of pathological amyloids
most commonly studied. Otherwise, the powerful machine learning approaches will not
work as we expect them to.

The variety of analyses produced for bacterial functional amyloids expands our un-
derstanding of them. However, until Chapter 5, I do not consider these proteins from the
perspective of the gut-brain axis, which is particularly important for medical applications.
The structural similarity of bacterial functional amyloids to pathological ones gives room
for speculation about their impact on the onset and progression of neurodegeneration.

In the final part of this thesis, we merge the gathered knowledge on bacterial functional
amyloids and protein-protein interactions to investigate this topic. An atlas of predicted
bacterial functional amyloids in the human gut proteome is provided to estimate to what
extent such proteins are present. For this goal, a computational pipeline is developed. The
screening method is based on the homology search and two amyloid predictors, which to-
gether aim to minimise false positive results when searching the large dataset of human gut
proteins. The predicted dataset of bacterial functional amyloids in the human gut micro-
biome is analyzed from multiple perspectives, including the taxonomic origin of identified
bacterial functional amyloids, their cellular localization and interactions with human pro-
teins. It is shown that the bacterial functional amyloids in the human microbiome may be
expressed by a wide array of bacterial species. Many of the potential bacterial functional
amyloids seem to be extracellular or membrane proteins capable of interacting with hu-
man proteins. The clinical significance of bacterial functional amyloids is discussed. The
metagenomic analysis of the abundance of bacterial functional amyloids in stool samples
from patients with Parkinson’s and Alzheimer’s disease and their respective controls was
performed, revealing that the amount of intestinal amyloids may be different during neu-
rodegeneration. The predicted protein-protein interactions between human proteins and
bacterial functional amyloids from the human gut microbiome point toward a couple of
important molecular pathways that these proteins may affect. Specifically, many of the
human proteins related to e.g. chemokine and cytokine signalling, leukocyte migration,
and cell junctions, which are responsible for gut impermeability, may be affected by bac-
terial functional amyloids. It seems that bacterial functional amyloids could share some
parts of the human interactome with pathological amyloids, triggering the same molecu-
lar pathways. Based on this analysis and data from the available literature, we discuss a
conceptual framework for the possible role of bacterial functional amyloids in neurodegen-
eration. This work is the first large-scale analysis of intestinal amyloidogenic proteins and
their relation to human proteins. Chapter 5 closes the full story about bacterial functional
amyloids, giving a solid basis for the discussion of their role in neurodegeneration.

The upcoming chapters reveal that our scientific interests lead to a nonuniform sam-
pling of biological data. This means that our level of understanding of different biological
phenomena varies and depends on how popular a certain topic is in the scientific com-
munity. The resulting knowledge gaps and interest biases may be detected by studying
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protein-protein interactions. Once found, to fill them, we may study proteins that are
rarely the main focus of researchers, such as bacterial functional amyloids. To better un-
derstand this understudied group of proteins, a dataset of bacterial functional amyloids
must be prepared. Analysis of their sequences and structures may give new insight into the
aggregation and interaction mechanisms of functional amyloids. The clinical importance
of this protein group may be assessed by studying their presence in the human microbiome
and predicting how they interact with human proteins. In the following chapters, all these
topics are discussed in detail, and all the results and methodological pipelines supporting
this work are shown.
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Goals and hypotheses of this work:
Hypothesis 1: Exploratory topological analysis of available protein-protein interac-

tion datasets can provide a new perspective on neurodegeneration.

Goal 1: To assess the quality of the real-world protein interaction networks through
topological analysis and identify if topological analysis can shed new light on disease
mechanisms.

Hypothesis 2: Sequence tandem repeats influence the aggregation of bacterial func-
tional amyloids.

Goal 2: To examine the role of tandem repeats in bacterial functional amyloids.

Hypothesis 3: Structures of amyloid fibrils can be predicted with AlphaFold 3.

Goal 3: To investigate AlphaFold 3 performance on amyloid proteins.

Hypothesis 4: Bacterial functional amyloids in the human intestine may influence
neurodegeneration.

Goal 4: To computationally identify bacterial functional amyloids in the human gut
proteome and their potential interactions with human proteins.

13



Chapter 1 Faculty of Fundamental Problems of Technology

14



Current protein-protein interaction
data cannot fully describe neurode-
generation

2.1 Introduction

All multiomics studies that drive the modern progress of life sciences require advanced
data analysis techniques. One of the methods that leads to a high data load is protein-
protein interaction experiments. Protein-protein interactions are highly specific, following
the idea of a lock and key. Their large-scale discovery provides an overview of the different
disease mechanisms that occur at the molecular level. This is particularly useful in the
case of proteinopathies, such as neurodegenerative diseases. Research in Alzheimer’s and
Parkinson’s diseases often focuses on the interactions between pathological amyloids and
other proteins, revealing altered molecular pathways and drug targets [146].

Large-scale analysis of protein-protein interactions results in protein-protein interac-
tion networks (PPIN). PPINs are mathematical objects consisting of nodes, proteins, and
links between them that are experimentally confirmed interactions. PPINs are prominent
examples of complex systems that aim to represent molecular mechanisms, e.g. during
the disease. They can provide us with a new perspective on the complicated nature of
neurodegeneration due to their intrinsic goal of capturing complexity. At the same time,
they require a sophisticated methodology for their analysis.

The investigation of PPINs is based on mathematical workflows for graph studies with
a frequent focus on network topology and dynamics [147]. Real networks often demonstrate
certain structural features. They are ’small worlds’, which means that any two nodes are
relatively close to each other. Consequently, they contain clustered regions where nodes
have high clustering coefficient values. Real networks are also ’scale-free’ - the majority
of the nodes have a low degree, and nodes with a high degree (hubs) appear rarely. This
property results in a heavy-tailed degree distribution, which can be described by the
power law distribution: pk ∼ k−γ [148]. The power law parameter γ for PPINs is expected
to follow: 2 < γ < 3 [148]. The impact of high-degree nodes may also be defined by
examining the number of links they bring. PPINs have a disassortative structure, which
means that proteins with a high number of interactors interact mostly with proteins
with a low number of interactors [149, 150]. The assortativity may be evaluated with the
degree correlation coefficient and Average Nearest Neighbour Degree (ANND) plots. The
described structure of the PPINs implies that they are robust to the random failure of one
protein in the network but vulnerable to the targeted attack when the most important
proteins, for example hubs, fail. Such nodes may also be fundamental in the case of failure
cascade simulation when the size of the error propagation in the network is measured.
These topological characteristics lead to the important question: Which proteins are the
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most important for the network?
The centrality metrics attempt to answer this issue. The most basic one is the degree

centrality, which is the number of interactors per protein. Betweenness centrality captures
nodes that lie between different clusters and serve as bridges between parts of the network.
Eigenvector centrality defines the node’s importance as a function of its neighbours’ im-
portance. Finally, closeness centrality describes the node’s role in the network by checking
its distance from other nodes. The application of these metrics, in the perfect scenario,
can lead to the discovery of novel drug targets.

PPINs data suffer from several problems that may limit their applicability. PPINs, in a
standard approach, are represented as static systems, while proteins form a dynamic one,
with temporal interactions. More importantly, the experimental data resources, which
are the building blocks for PPINs, are highly heterogeneous because different experi-
mental methods are used. Unfortunately, all the experimental protocols used to study
protein-protein interactions are error-prone and result in some false positives [151, 152].
Consequently, the data structure of the PPINs is not only heterogeneous, but also contains
artifacts. Finally, the choice of the proteins used to build PPINs is also important and
may depend on the individual research interests, leading to biased structures of PPINs.

Examination of the protein-protein interaction data can give a bird’s-eye perspective
on our knowledge about neurodegeneration and other diseases, uncovering not only molec-
ular mechanisms but also artifacts and unexplored ideas. In this chapter, available human
interactomes, including the Parkinson’s disease one, are studied to better understand the
structure of these systems. It is speculated that different data-gathering procedures and
scientific interests pose doubts about the validity and reliability of the available interac-
tomes, calling for research in less-studied directions. To make the study more applicable,
also in other contexts, a mathematical evaluation of how different topological characteris-
tics may guide the researcher in the diagnosis of their network biases and their implications
is provided. To further support this, an easy-to-use Colab notebook with applied methods
is made available.

The first hypothesis that available protein-protein interaction data differ in
quality, which can affect their applicability is discussed. The quality of the real-
world protein interaction networks is assessed by studying their topological characteristics.
As a result of this analysis, knowledge gaps in neurodegeneration research are detected.

Some preliminary results for this chapter were part of my Master Thesis. Full devel-
opment of this project took part during my PhD research.

2.2 Methods

PPIN definition

PPIN is a protein-protein interaction network G(V,E). V represents the set of nodes
(proteins) and E the set of links between them (interactions). The size of the V set is
denoted as N and the size of the E set as L.

Data retrieval

Three PPINs were recovered from the IntAct website https://www.ebi.ac.uk/intact/.
First, Parkinson, regarded protein-protein interactions related to Parkinson’s disease. It
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was downloaded twice: 4 November 2020 and 8 November 2021. Second, Cancer regarded
protein-protein interactions related to cancer. It was also downloaded twice on 1 February
2021 (Cancer I ) and on 8 November 2021 (Cancer II ). Third, HuRI, Human Reference
Interactome, covered the human protein interactome.

Parkinson and Cancer datasets are available in the section Download/Curated datasets
on the IntAct website. HuRI can be found using the identifier IM-25472 in IntAct search.
Topological analysis was performed on the downloaded datasets after the removal of par-
allel links and the extraction of the largest component.

Degree

The degree of a node k is the number of its neighbours, equal to the number of protein
interactors. The high-degree nodes are termed hubs.

Powerlaw fitting

In scale-free networks, the degree distribution follows the powerlaw distribution pk ∼
k−γ. In practice, it is often impossible to fit the powerlaw to the entire sequence of degree
values. Hence, the cutoff kmin, from which the fitting is possible, can be used. Then, only
the nodes with a degree greater than kmin are considered for fitting. If kmin it is not high
and the powerlaw fit is successful, the network is still considered scale-free.

To fit the powerlaw distribution to the degree distribution, a maximum likelihood (ML)
estimator implemented in the poweRlaw package was used [153]. For different numbers
kmin, the best γ value was estimated. The hypothesis H0: degree distribution does follow
the powerlaw was not rejected when the p-value of the fit was greater than 0.1. With this
approach, it was possible to balance between the best fit possible with the lowest kmin.
The detailed algorithm is presented in Figure 2.1.

Please note that the estimation of the γ value by fitting a linear line on the log-log
plot is not accurate [154]; hence, here, the mentioned maximum-likelihood estimator was
used for approximation of the γ value instead.

Figure 2.1: Algorithm for the powerlaw adjustment to the PPIN degree distribution.
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Centrality metrics and clustering coefficient

For the detailed definitions of centrality metrics and clustering coefficient used in
this work, see the documentation of the graph-tool library available at: https://graph-
tool.skewed.de/.

Degree correlation coefficient

Degree correlation coefficient of the network is defined as:

r =
∑
x exx −

∑
x axbx

1−∑x axbx .

Here, exy denotes a fraction of links in the network that link nodes with degree x with
nodes of degree y. Moreover, ∑x,y exy = 1, ∑y exy = ax, ∑x exy = bx. When r < 0, the
network is called disassortative, when r > 0 assortative, and r value equal to 0 corresponds
to a random distribution of links between nodes in the network.

Average Nearest Neighbour Degree (ANND)

Average Nearest Neighbour Degree (ANND) is defined for each node i as:

ann(i) =
1
ki

N∑
j=1

Aijkj.

Aij equals 1, when node i and j are connected, and 0 otherwise. ANND plot on y-axis
has the average < ann(i) > for all nodes i with degree k, and on x-axis degree values k.
Normalization of the ANND plot is performed with respect to the number of nodes N .

s1 and s2 plots

To study how high-degree, middle-degree and low-degree nodes contribute to the to-
tal number of links in the network, subnetworks GK(VK , EK), where VK = {v : kv ¬
K, and v ∈ V } and EK = {Eij : i,j ∈ VK and Eij ∈ E}, were defined. NK is the number
of nodes in GK and LK , the number of links of GK . Then, the contribution of the nodes
with degree K to the total number of links L in the network can be measured with the
following scores:

s1(K) =
LK
L

and
s2(
NK
N
) =
LK
L
.

Measuring PPIN robustness

The algorithms for measuring the network robustness are presented in Figure 2.2 and
2.3. The decomposition fractions with respect to the degree dk and betweenness centrality
dB are defined as points where the largest connected component contains less than 1% of
all nodes in the original network.
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Figure 2.2: Algorithm for measuring PPIN robustness with respect to random failures.

Figure 2.3: Algorithm for measuring PPIN robustness with respect to targeted attacks.

Failure cascade simulation

To examine the potential of each node to propagate the error in the network, the
failure cascade simulations were performed. The detailed algorithm is provided in Figure
2.4. The failure fraction F , which is the initial parameter of the simulation, is the criterion
of error propagation from one node to another. The simulation returns P - the percentage
of nodes affected by the error propagation.

Figure 2.4: Algorithm for the simulation of the failure cascade.
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Data analysis and visualization

All data analyses, simulations and visualizations were performed in Python 3 with the
following packages: NumPy [155], Pandas [156], SciPy [157], Matplotlib [158], seaborn
[159], graph-tool [160] and in R with ggplot2 [161].

2.3 Results
Three protein-protein interaction datasets were downloaded from the protein-protein

interaction database IntAct [162]. The first data set, Parkinson, referred to protein-protein
interactions related to Parkinson’s disease, with particular attention given to the LRRK2
protein (Leucine-rich repeat kinase 2). It was manually curated. To observe its evolu-
tion in time, Parkinson was downloaded on two separate dates: 4 November 2020 and 8
November 2021. On 4 November 2020, it contained 59 912 links between 5955 proteins
and on 8 November 2021, 55 930 links between 5956 proteins (22 new proteins and 70
new interactions were added, and 21 proteins and 65 interactions were lost). Parkinson
underwent minor changes within a year, and hence, the latest version (8 November 2021)
is only considered for the analysis. The second dataset, Cancer, was also manually curated
but aimed to contain protein-protein interactions that participate in cancer. Cancer was
also downloaded twice: on 1 February 2021 (Cancer I ) and on 8 November 2021 (Cancer
II ). Cancer evolved in time much more than Parkinson. In the first timestamp, it was
formed by 20 826 links between 5380 proteins, and in the second (Cancer II ), it consisted
of 23 263 links between 6027 proteins. Cancer II contained 2295 new interactions, out of
which 1246 were found in a study by Adhikari and Counter [163], which focused on KRAS,
HRAS and NRAS interactomes. Cancer II lost 75 interactions and 11 proteins present
in Cancer I. The differences in the number of proteins and interactions between Cancer
I and Cancer II were significant; hence, both datasets were used in further analysis. The
last dataset, Human Reference Interactome HuRI, had a neutral character and covered
2-11% of the entire human interactome. HuRI is not manually curated, instead, it is based
on a single high-throughput study, [164]. HuRI consisted of 162 719 links between 8204
proteins.

To estimate the completeness of the mentioned datasets, two Venn diagrams were
produced for Parkinson, Cancer II and HuRI (Figure 2.5 and 2.6). The first represents
the intersections of protein sets and the second, of interactions. It can be seen that,
although the overlaps between the sets of proteins are quite significant, the intersections
of the interaction sets are very poor. A complete PPIN should contain protein-protein
interactions found in other works, but that is not the case here.

2.3.1 Heterogeneity of PPINs
A basic data analysis of the metadata for all datasets was performed. PPIN con-

struction could be driven by different assumptions, starting from the idea to characterize
protein-protein interactions related to the disease, as in the case of Parkinson and Cancer,
and moving towards a general framework of protein-protein interactions between proteins
significantly expressed in humans, as in the case of HuRI.

Different methodological approaches lead to the emergence of PPINs. Parkinson data
is highly dominated by one study by Haenig et al. [165], which provided 85% of the protein-
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Figure 2.5: Intersection between proteins present in Parkinson, Cancer II and HuRI net-
works

Figure 2.6: Intersection between interactions present in Parkinson, Cancer II and HuRI
networks.

protein interactions. Haenig et al. focused on the so-called two-hybrid technique, used
for protein-protein interactions identification. In consequence, this method is the main
source of data in the Parkinson dataset. Another 10% of protein-protein interactions in
Parkinson was provided by antitag coimmunoprecipitation experiments. Cancer I was less
dominated by a single publication, although 30% of all recorded interactions were found by
Kennedy et al. [166]. The rest was obtained from multiple studies without any other work
standing out. 55% of the interactions were assigned as found by coimmunoprecipitation.
Other interactions were discovered with a variety of methods including tandem affinity
purification, pull-down, and protein kinase assay. Cancer II had similar characteristics.
52% of the records were obtained by coimmunoprecipitation and the next important group
consisting of 7% of the records were identified with proximity-dependent biotin. This last
group was formed by new records derived from the added study of Adhikari and Counter,
which was not present in Cancer I. Almost all records in HuRI had a yeast-two-hybrid
tag as an experimental method. Finally, I plotted the distribution of the IntAct MI score
(Figure 2.7), which is the reliability metric of the record. The MI score values were the
lowest for Cancer datasets, indicating their highest uncertainty.
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Figure 2.7: Violin plots of IntAct MI score distribution.

PPINs in IntAct may also contain non-protein entities, such as small molecule, gene,
single/double-stranded deoxyribonucleic acid, molecule set and peptide. In Parkinson and
HuRI such elements were rare and only 34 and 3 such elements were found, respectively.
In the Cancer datasets, non-protein elements were more common, and 617 and 610 were
found, for Cancer I and Cancer II, respectively. The non-protein items may have an im-
portant biological justification for their presence. For example, in the Parkinson datasets,
ponatinib and imatinib, tyrosine inhibitors interacting with the LRRK2 protein, were
found. Despite that, the appearance of non-protein data is unexpected when working
with protein-protein interaction data.

PPIN data may contain nonhuman protein source taxids even if it concerns only
the human organism,. Some of the proteins are present in a couple of versions in the
database, each relating to another organism. In addition, many records are repeated in
IntAct as half of the links in the analysed datasets were parallel. The detailed case studies
of such repeated records led to the observation that the same protein may be studied in
different variants but assigned to the database under the same identifier. For example,
interactions between different oligomers of a-synuclein (SNCA in IntAct) were represented
in the database as multiple self-loops for the SNCA node [167] (interaction identifiers:
EBI-10690046, EBI- 10690676 and EBI-10690707). Repetitions also appear when two
interacting proteins A and B were double assigned in the database, as “A interacting with
B” and “B interacting with A”. For further analysis, all parallel links were removed from
the datasets, leading to a dramatic reduction in size. After that, Parkinson consisted of
18 731 records, Cancer I of 12 423, Cancer II of 14 643 and HuRI of 51 842.

PPINs may represent different structural connectivity. Parkinson consisted of 17 dif-
ferent components, the largest including 99.4% of all nodes and 99.8% of all links. Cancer
I was formed by 120 components, the largest including 93.4% of all nodes and 97.6% of all
links. Cancer II was built with 115 components, the largest including 94.3% of all nodes
and 98% of all links. HuRI had 71 components, the largest including 98.5% of all nodes
and 99.8% of all links.

The summary of all datasets after the extraction of the largest component and the
removal of parallel links is provided in Table 2.1.
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PPIN
Final

number
of nodes

Final
number
of links

Mean IntAct
MI score

Dominating detection
method Special feature

Parkinson 5920 18 703 0.52 Yeast-two-hybrid Exceptional focus
on one protein

Cancer I 5025 12 122 0.42 Coimmunoprecipitation Lower reliability
of the links

Cancer II 5688 14 359 0.4 Coimmunoprecipitation Lower reliability
of links

HuRI 8082 51 758 0.58 Yeast-two-hybrid General study

Table 2.1: Summary of PPINs after processing (parallel links and disconnected parts
removed).

2.3.2 Structural Characterization of Available PPINs

Scale-free property

The fundamental property that describes real networks is their scale-freeness, which
means that the degree distribution follows the powerlaw. As expected, all considered
PPINs were characterized by a heavy-tailed degree distribution with multiple low-degree
nodes and a few exceptionally high-degree ones. The relative size of the strongest hub,
understood as its degree divided by the number of nodes in the network, were the following:
0.37 for Parkinson (LRRK2 protein), 0.064 for Cancer I (ESR1 protein), 0.082 for Cancer
II (NRAS protein) and 0.064 for HuRI (CYSRT1 protein). The results of the powerlaw
fitting are provided in Table 2.2. For HuRI, only a small fraction of nodes could be
described by the powerlaw distribution. In addition, the calculated γ value for this network
exceeded 3.

PPIN γ̂ Cutoff value Fraction of nodes described
by the power law (%)

Parkinson 2.2 10 11
Cancer I 2.16 4 26
Cancer II 2.21 5 20

HuRI 3.3 67 4

Table 2.2: Results of powerlaw fitting to the degree distributions.

To examine how subsequent groups of nodes contribute to the size of the network,
I defined subnetworks that contain nodes of the original network whose degree value is
lower than K. Then, the s1 plot represents how many links L of the original network,
the subnetwork K contains (LK/L). The s2 plot represents LK/L as a function of the
number of nodes in the subnetwork K divided by the total number of nodes (NK/N), see
Methods for details. With the s1 and s2 plots it is possible to investigate the contribution
of high- and low-degree nodes to the total number of links in the network. The s1 and s2
plots are presented in Figure 2.8.

17% of all the links present in Parkinson were produced by the two biggest hubs,
LRRK2 and HTT. Low-degree nodes with a degree value below 11, although covered
for 90% of the nodes, produced only 3% of the links. For Cancer, hubs were also highly
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important, but their contribution was lower, particularly in the case of Cancer I. The two
biggest hubs produced 5% of all the links in Cancer I and 7% in Cancer II. Similarly,
91% of the nodes with degree below 9 were responsible for 9.5% of all the connections in
Cancer I, and 8% in Cancer II. In HuRI, the hubs’ impact was the lowest. Small degree
nodes, with degree values below 34, accounted for 90% of the nodes and produced 20%
of all connections.

Figure 2.8: Impact of nodes with respect to their degree. A. s1 plot, B. s2 plot.

Assortatitivy

The PPINs are commonly expected to be disassortative. In consequence, their degree
correlation coefficient is below 0. This was observed for Parkinson (r=-0.018), Cancer I
(r=-0.001) and Cancer II (r=-0.011). The Average Nearest Neighbour Degre (ANND)
plots (Figure 2.9) for these networks contained hyperbolic-like scatterings that are the
next indicators of disassortativity. HuRI network broke out from this model. The degree
correlation coefficient for this network was equal to 0.008 and the ANND plot had different
scatterings that pointed towards assortativity.

Clusterization

The mean values of the clustering coefficient were 0.1, 0.13, 0.19 and 0.06 for Parkinson,
Cancer I, Cancer II and HuRI, respectively. For Parkinson, Cancer I, and Cancer II, the
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Figure 2.9: Average nearest neighbour degree (ANND) plot for PPINs of choice.

distributions of this parameter (Figure 2.10) had two regions of concentrations - one
around zero and the other, smaller, around 1.0. HuRI almost lacked the second region in
the distribution, indicating that highly connected regions, observed for the other networks,
were not present.

Figure 2.10: Histograms of clustering coefficient for A. Parkinson, B. Cancer I, C. Cancer
II, D. HuRI.

Robustness

All networks were similarly robust to simulations of random failures. Their failure
scatterings resembled a linear trend (Figure 2.11). The difference between networks was
observed for the simulation of tailored attacks with respect to different centrality metrics.
Degree and betweenness centrality led to a similar pace of the network decomposition,
which differed from the pace observed for the eigenvector and closeness centrality, which
resembled one another. The docomposition fractions with respect to the degree and be-
tweeness centrality are provided in Table 2.3.

The exact scattering trends for the networks of choice also differed. In HuRI, all of them
had a smooth, similar shape, in contrast to the results observed for Parkinson. Cancer
I and Cancer II were somewhere in between the smooth scatterings found for HuRI,
and uneven ones noticed for Parkinson. Parkinson, Cancer I and Cancer II seemed to
be similarly vulnerable to the targeted attacks, meanwhile, HuRI was more immune to
them.
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PPIN dk dB
Parkinson 0.08 0.16
Cancer I 0.1 0.14
Cancer II 0.09 0.15

HuRI 0.31 0.37

Table 2.3: Decomposition fractions for the simulation of tailored attacks with respect to
the degree dk and betweeness centrality dB.

Figure 2.11: Size of the largest component as a function of the fraction of nodes removed
for A. Parkinson, B. HuRI, C. Cancer I and D. Cancer II.

Error propagation

To examine how quickly the error may propagate in the networks, a failure cascade
simulation with respect to the parameter F was performed; it was the first time that
such a simulation was performed for a PPIN, to the best of our knowledge. In the failure
cascade model, a starting node is first marked as failed. In the iterative process, each node
is evaluated, and its status changes to failed if a fraction F of its neighbours failed. The
loop is repeated as long as at least one node changes the status to failed in the previous
iteration over the network. At the end, the algorithm returns a percentage P of nodes with
the failed status (see Methods for details). All networks had the heavy-tailed distributions
of the failure cascades. The percentages of nodes capable of propagating an error under
different F values are provided in Table 2.4. The maximal P values for different networks
are shown in Table 2.5. Most of the nodes capable of highly propagating an error in the
network, apart from LAMP2 in Parkinson, were significant hubs and bottlenecks in their
respective networks.
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PPIN F=0.25 F=0.5 F=0.75
Parkinson 10% 5.7% 3.5%
Cancer I 23% 15% 9%
Cancer II 20% 13% 8%

HuRI 3% 2% 1%

Table 2.4: Percentages of nodes capable of propagating an error.

PPIN F=0.25 F=0.5 F=0.75
Parkinson 99% (LRRK2, LAMP2) 28% (LRRK2) 21% (LRRK2)
Cancer I 4% (NUDCD1) 3% (HSPB1) 2% (HSBP1)
Cancer II 29% (AR, RAVER1) 3% (HSPB1) 2% (HSBP1)

HuRI 2% (MEOX2) 1.5% (MEOX2) 1% (MEOX2)

Table 2.5: Maximal failure cascade sizes (Pmax).

2.3.3 ETNA
All the discussed methods of topological analysis were encapsulated in one simple

tool, ETNA, which stands for Extensive Tool for Network Analysis. ETNA was built on
the graph-tool library, partially developed in C++, which guarantees high-speed perfor-
mance, as other popular network libraries are too slow to deal with large protein-protein
interaction datasets [160]. ETNA combines multiple Python and R packages into one
single pipeline with the rpy2 library. The graphical user interface was constructed with
ipywidgets [168].

The repository with ETNA source code and datasets analyzed in this chapter is avail-
able at:
https://github.com/AlicjaNowakowska/ETNA.
ETNA can be used through Google Colab using the link:
https://githubtocolab.com/AlicjaNowakowska/ETNA/blob/main/ETNAColab.ipynb.

2.4 Discussion

Protein-protein interactions are at the core of molecular systems. Recent developments
in high-throughput studies have provided us with a huge increase in available data, giving
hope for the acceleration of scientific discoveries. This direction seemed a promising ap-
proach in the context of neurodegenerative diseases that are characterized by multi-level
complexity.

The first step in any data analysis is the diagnosis of the provided data. This require-
ment was fulfilled in this chapter. A qualitative and topological examination of three
available protein-protein interaction datasets was conducted. These included a single
experiment-based network with uniform sampling of PPIs (Human Reference Interac-
tome - HuRI ) and literature-based networks (Cancer I, Cancer II and Parkinson). In the
first step, the data sources that led to the construction of the PPINs were investigated.
Secondly, the topology of PPINs was examined with classical and self-developed meth-
ods. The main conclusion of this study points to the high influence of the data-gathering
procedure on the PPIN topology, which may later affect the biological interpretation. It
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is suggested that the discovery of topological features similar to the ones described here
for different biased PPIN may help to assess the level of interest bias introduced in the
dataset of choice and draw attention to its cautious biological interpretation.

The available protein-protein interaction data was unexpectedly heterogeneous and
biased. Analysis of the Parkinson dataset revealed that 85% of the links had a single
source from the experiment performed by Haenig et al. Cancer II differed from Cancer
I, mostly due to the inclusion of multiple interactions from a one single experimental
publication in Cancer II. The annotation of the all datasets was heterogeneous. Non-
protein nodes, non-human taxids, temporal inclusion or removal of the interactions in the
network evolution, parallel links, usage of different experimental methods and different
quality of the interactions could be observed in the datasets. Single-experiment-based
PPIN, such as HuRI, although less heterogeneous, can also be problematic, and multiple
proteins and interactions may be missed. For example, a yeast-two-hybrid experiment,
which was used to build HuRI, may result in significantly different interactomes for the
same organism when repeated [169, 170, 171].

The analyzed PPINs had a generally typical topology for biological networks, con-
firming that they provide an overview of their respective biological phenomena. However,
the detailed results revealed deviations from the expected characteristics. The scale-free
property, which is a fundamental characteristic of many real-world networks, was observed
for all networks. The careful adjustment of the power law distribution, expected for scale-
free networks, confirmed a typical value of the degree exponent γ (between 2 and 3) for
Parkinson, Cancer I, Cancer II, which remained in line with other studies [171]. The
situation for HuRI was more complex, as the power law distribution could be fitted to a
small fraction of nodes and the estimated γ exceeded 3, which is unusual for biological
systems. Such structural disturbances present in HuRI may affect the detailed biological
interpretation of the network.

The scale-free structure is driven by the evolutionary needs to protect the network
from random perturbations. Nevertheless, makes it susceptible to targeted attacks, which
may be for example, a medical intervention that inhibits certain enzymes. To understand
how robust the network is towards targeted attacks, one may delete nodes one by one
according to different centrality metrics and measure the size of the resulting largest
connected component. Networks with a tight-knit structural pattern require that a large
fraction of nodes must be removed to decompose the network. HuRI had such a tight-
knit structure, as hubs were less impactful. In consequence, a higher fraction of the most
important nodes needed to be deleted to destroy the network. On the other side of the
spectrum, there were Parkinson, Cancer I and Cancer II networks. In these cases, the
removal of only a handful of nodes with the highest degree or betweenness centrality
led to the complete network decomposition. These fractions were also significantly lower
than those found in another study of a yeast PPIN, where dk = 0.2; dB = 0.25% [149].
The different methods of interactome sampling also affect the smoothness of scatterings
generated from the robustness examination. In the Parkinson study, which gave special
attention to the LRRK2 protein, the scatterings were irregular. For more uniform, though
incomplete HuRI, all points were smoothly decaying. Both behaviours were found for
different PPINs, suggesting that the data-gathering procedure highly affects the structures
of PPINs.

The disassortative linking pattern, which means that high-degree nodes link to low-
degree ones, was confirmed for Parkinson, Cancer I and Cancer II (degree correlation
coefficient values were below zero). Disassortativity is common for experiment-derived
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and literature-based PPINs [150, 149]. HuRI stood out from this pattern exhibiting an
assortative nature, which, although rare, sometimes can also be found [150]. The assorta-
tive structure results in a slightly different network robustness behaviour. In such a case
the decomposition is initially faster for betweenness centrality than for degree, as noted
for HuRI [149].

Although for all networks the distributions of degree, betweenness centrality and eigen-
vector centrality were heavy-tailed, the PPINs differed in their tail lengths. This was par-
ticularly visible for Parkinson. The maximal values of these centrality measures, when
also compared with Ran et al. [172], were exceptionally high. Further examination of the
contribution of low- and high-degree nodes to the number of links in the network with s1
and s2 plots confirmed this unusual impact of high-degree nodes. In HuRI, hubs were less
impactful and the number of middle-degree nodes was higher reflecting the nature of the
uniform sampling of the interactome. In contrast, the data bias toward LRRK2 protein
in the Parkinson network, caused the appearance of highly significant hubs in this PPIN.
Cancer I was between Parkinson and HuRI. Cancer II, which was characterized by a
higher publication bias, tended towards Parkinson. It can be concluded that the increase
in data size may come at the price of a higher bias in the dataset. Furthermore, it can
also impact the biological interpretation. The inclusion of new data in Cancer II resulted
in the topological changes that led to a new set of most influential proteins, different
from that in Cancer I and obtained in other cancer-related studies of PPINs [173]. As
hubs and bottlenecks are frequent drug targets, the biases in the data may impede the
identification of the proteins most important in the biological processes, instead revealing
proteins which are most interesting for the scientists.

The influence of scientific interests could also be seen in the failure cascade simulations.
The failure cascade simulates the effect that one malfunctioning protein may have on the
entire molecular system. As expected, most of the proteins had a low error propagation
potential, indicating that their malfunctioning would not affect the larger regions of the
network. Naturally, proteins with high centrality measures had the greatest capability to
propagate the error. However, for Parkinson and Cancer II, exceptions from this pattern
appeared, and less important nodes in the network also had high error propagation po-
tential. This unexpected result suggests that the introduction of the interest bias in the
data resources has a multi-level impact on the structure of the PPINs, posing doubt on
the reliability of the detailed biological interpretation of such systems.

The modularity of the network also changes with the methodology applied to con-
struct the network. For Parkinson, Cancer I and Cancer II regions with high clustering
coefficient values were found. Additionally, the mean value of this parameter for these
networks corresponded to the literature [149]. The results for HuRI were somewhat dif-
ferent as no nodes with high clustering values were identified. It could be that high levels
of clusterization are not necessary to form functional modules. On the other hand, this
could be the result of the uniform sampling of the human interactome.

Data quality analysis of the PPINs seems to be of fundamental importance for their
biological interpretation. HuRI significantly differed from other PPINs, including ones
described in the literature. The different topological characteristics of HuRI could suggest
a different dynamic of the interactions than in other interactomes. However, the structural
discrepancies result from the incompleteness of the data. The yeast-two-hybrid systems,
as the ones used in HuRI, cannot provide the data on proteins which cannot be expressed
in yeast, hence the full interactome data cannot be retrieved. According to the results,
Cancer I aligned the most with the expected topology. Although it was not the largest, the
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interpretation of the molecular pathways and analysis of the drug targets with centrality
measures seemed possible. Cancer II followed this trend, although the data bias was more
visible.

The Parkinson network was strongly disturbed toward one protein. For this network,
the identification of drug targets with the centrality metrics, would point toward to the
LRRK2 protein. As the two most influential hubs provided 20% of the links in this network,
one could conclude that these two proteins are the most essential for the disease and
should be the focus of further research. The failure cascade simulations would confirm
these observations. In reality, other proteins can also be important but scientific interests
impede this discovery. Hence, the biological interpretation of the Parkinson network is
easily biased by the data it has.

Scientific interests are a general problem in neurodegenerative disease studies. Many
researchers focus on the few prominent amyloids such as Aβ or α-synuclein. This was
clearly seen in the Amylograph project, which studied publications on amyloid protein
interactions [65]. Amyloids may interact with each other leading to the formation of
heterofibrils or affecting the rates of aggregation. The Amylograph database provides a
network representation of amyloid-amyloid interaction. 20% of the reported interactions
regard Aβ, and another 15% α-synuclein, revealing a significant scientific bias toward these
proteins that impedes the wide exploration of other scientific directions. It is also visible in
the Google Scholar engine for publication databases. 650 thousand records can be found
for ’Parkinson’s disease’, and 144 thousand, around 20% of the total, for ’Parkinson’s
disease and α-synuclein’. It is even more prominent for the ”Alzheimer’s disease” search,
which results in 2 million publications; meanwhile, for ’Alzheimer’s disease and amyloid
beta’, over one million hits are identified. This suggests that a significant part of the
research focuses on these two proteins, potentially introducing a significant bias in our
understanding of neurodegeneration.

How to detect interest and methodological biases in the data? It can be suggested
that in the case of PPINs the topological analysis can give a strong suspicion about them.
Assortative patterns, lower clusterization, and lower importance of the hubs are signs that
the PPIN data lacks certain information, and the biological interpretation of the network
structure is also troublesome at this point. On the other hand, if a couple of proteins
highly dominate the network, they widely propagate the errors in the network, and their
deletion leads to the very fast network decomposition; bias towards this group may be
suspected. To ease the detection of such biases, I developed an easy-to-use Colab notebook
that incorporates all presented methods and guarantees quick results.

This proves the first hypothesis of this thesis that exploratory topological analysis of
available protein-protein interaction datasets can provide a new perspective on neurodegen-
eration and makes the first goal To assess the quality of the real-world protein interaction
networks through topological analysis and identify if topological analysis can shed new light
on disease mechanisms realized.

The analysis conducted in this chapter revealed that our knowledge about neurode-
generative diseases, and particularly Parkinson’s disease, is biased toward certain groups
of human proteins, and particularly human amyloid proteins. As a consequence, at this
point, it is impossible to get a full picture of the molecular mechanisms that underlie
these disorders. To broaden our knowledge, we must sample other scientific directions as
well. Detailed studies of other proteins, and particularly nonhuman proteins expressed
by organisms that inhabit us, could give valuable insight into the different biological
processes involved in neurodegeneration. Hence, the following chapters will focus on an
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understudied group of bacterial proteins - functional amyloids that may also have clinical
significance but are not widely represented in the available databases and publications.

Results presented in this chapter were published as: Nowakowska, A. W., Kotulska,
M. (2022). Topological analysis as a tool for detection of abnormalities in protein–protein
interaction data. Bioinformatics, 38(16), 3968-3975.

31



Chapter 2 Faculty of Fundamental Problems of Technology

32



Less-studied amyloids: bacterial func-
tional amyloids and their sequence
analysis

3.1 Introduction

Throughout the decades, amyloid fibril formation was seen as a negative event associ-
ated with the onset and progression of the disease. The discovery of functional amyloids
around 20 years ago challenged this perspective, changing our understanding of the func-
tion of amyloids in organisms. The characteristic properties of amyloid fibrils, such as
stability, regularity and low solubility, make them a great material that nature uses for
various purposes.

The world of functional amyloids spans different kingdoms and functions. In humans,
physiological amyloid fibrils of Pmel17 can be found in melanosomes, where they promote
pigmentation [174]. In higher-order mammals, amyloid structures were discovered to serve
as storage reservoirs for various hormones [175]. Amyloid filaments are an inherent part
of spider silk [176]. In yeast, they participate in the signalling process that regulates the
immune response [177]. In bacteria, amyloid fibrils are often part of biofilm matrices.
Probably the most well-studied example is curli protein (CsgA) from E. coli, which forms
amyloid fibrils that protect a bacterial colony.

Our understanding of functional amyloids is still limited. Little is known about their
aggregation-prone regions. In the case of CsgA and CsgB, certain repeat regions are
aggregation driving. The same holds for FapC. But, in many other cases, especially in
longer bacterial amyloid proteins, the mechanisms of fibril formation are elusive. Only in a
few examples do we have any parts of their structures experimentally solved. Despite that,
the scarce structural data of functional fibrils already highlight the differences between
functional and pathological amyloids. For example, the core of the amyloid fibril of the
Orb2 protein, which is related to memory recall in Drosophila, was found to be hydrophilic
and not hydrophobic, as in the case of pathological amyloids [178]. Functional amyloid
fibrils of phenol-soluble modulins, which are found in the biofilm of Staphylococcus aureus,
can reveal a cross-alpha pattern instead of the expected cross-beta [179]. As amyloid
experiments are tedious, time-consuming, and expensive, computational approaches are
needed to speed up the research.

Bacterial functional amyloids are particularly interesting as they are present in the
human microbiome, which is dominated by bacteria. Their structural similarity to patho-
logical amyloids and the possibility of interactions with human proteins make them a
very interesting, though understudied, case. To broaden our understanding of bacterial
functional amyloids, a series of bioinformatics analyses are performed. In the first step,
a dataset of the known bacterial functional amyloids is prepared based on the litera-
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ture search. Next, the gathered data is analysed from the sequence (this chapter) and
structure (the following chapter) perspectives. As little is still known about bacterial
functional amyloids, the analysis is often enriched with knowledge about other amyloid
proteins, including pathological ones. Although they differ from functional amyloids, they
have been subject to extensive research that can provide value in our understanding of
the aggregation of their functional counterparts.

The analysis of the sequences of bacterial functional amyloids starts with the predic-
tion of the ProtBERT protein embeddings. They are then used to visualize the relations
between proteins from the prepared dataset of bacterial functional amyloids. Then, a more
standard approach with repeat detection is used to examine these sequences.

The modularity of amyloid fibrils inspires the search for regularity in the sequence.
In the protein world, the emergence of regular, larger, symmetric structures is frequently
associated with the appearance of smaller structural and sequence motifs. Amyloid fibrils
are a perfect example of larger symmetrical structures built of repeated units. In contrast
to pathological amyloids, their fibril formation is often reversible, as their presence may no
longer be beneficial, for example, in the absence of the stimuli [119, 132, 131]. The power
to disassemble requires that multiple structural modulators are encoded in these proteins.
Examples include the incorporation of charged residues [133]. It seems reasonable that
tandem repeats could be another purposefully designed regulatory mechanism as they
often have a strict role in the proteome.

In this chapter, the second hypothesis that sequence tandem repeats influence
the aggregation of bacterial functional amyloids is investigated. For this goal, the
presence of tandem repeats in bacterial functional amyloids, their imperfection and size,
is studied and discussed along with the results from simple molecular simulations. We
compare the results to the available literature that considers the role of the repeats in
other amyloid-forming proteins to get inspiration about their potential role in bacterial
functional amyloids. This chapter is an important step forward in our understanding of
molecular machinery governing bacterial functional amyloid aggregation and may prove
useful in future designs of aggregating peptides.

3.2 Methods

Dataset of bacterial functional amyloids (BFA)

The dataset of the known bacterial functional amyloids, referred to as BFA, was built
based on state-of-the-art publications regarding functional amyloids [78, 180]. This data
was further extended through Google Scholar searches. The aggregation propensity of
each protein in the BFA has been experimentally confirmed.

Bacterial proteins

Bacterial proteins were downloaded from Uniprot by applying the filters “Taxon-
omy:Bacteria” and “Protein Existence:protein level” in September of 2022, giving 39 526
sequences. This reference dataset was used for the statistical analysis of repeat patterns
between bacterial functional amyloids and other bacterial proteins. It might contain un-
known and known bacterial functional amyloids, but probably in negligible numbers.
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Human proteins

Human proteins used in section ”Known bacterial functional amyloids as a separate
protein group” were downloaded from Uniprot by applying filters “Taxonomy:Homo Sapi-
ens” and “Protein Existence:protein level” in March of 2023. This gave 69 176 sequences.

ProtBERT embeddings

The ProtBERT embeddings for proteins were calculated with the ProtTrans pipeline
available in Python for ProtBert-BFD pretrained-model [181]. For sequences with the
length above 3000 amino acids, the embeddings were not calculated due to limitations
of the computational power. The dimension reduction using the Principal Component
Analysis (PCA) of the embeddings matrices was performed with the sklearn package in
Python [182].

BFA network visualization

The ProtBERT embeddings were produced for each of the BFA proteins. As a result, a
matrix consisting of 38 rows, concerning 38 BFA proteins, and 1024 columns was produced.
It was then reduced with Principal Component Analysis (PCA) and 4 first columns, which
explained 70% of the variation in the data, were extracted. Hence, a 4-column long vector
describing each of the BFA proteins was obtained. The distances between BFA proteins,
in this new reduced space, were calulated and only 15% of the shortest ones, to limit
the number of edges in the network, were extracted to build the network. Nodes in the
network represented BFA proteins and edges apeared if the distance between the proteins
in the reduced ProtBERT spaces was in the top 15% of the shortest distances. For network
visualization, the networkx package in Python was used [183].

Repeat definition

Repeat in a protein sequence is understood as a set of similar motifs, each denoted as
a repeat unit, which are close to one another in the sequence.

Repeat detection

To detect the repeats in the proteins, RADAR software in the desktop version with
default parameters was used [184]. Although RADAR can provide false positive results
and omit certain repeat parts, it performed the best on well-annotated, CsgA and CsgB
proteins when compared to HHrepID [185] and T-Reks [186].

Imperfect repeats

Similarity between the repeat units was assessed with the Multiple Sequence Alignment
provided by RADAR for each detected repeat. For each MSA column, the frequency of
appearance f of the most common amino acid was calculated. The identity between the
repeat units is defined as the average f over the columns - favg.

Amino acid profile of the repeats

The amino acid profile was analyzed for the following four four datasets:
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• BS, complete bacterial proteins sequences (the reference dataset from the Uniprot)

• BR, all repeat units detected for all bacterial sequences

• AS, complete sequences of bacterial functional amyloids (BFA dataset),

• AR, all repeat units detected for BFA proteins

For each dataset and for each sequence, the frequency of each amino acid faa was calcu-
lated. The average frequency favg is understood as the mean faa over all sequences in the
corresponding dataset.

The distribution of faa vectors were compared with the Mann-Whitney U test. Mann-
Whitney U test is a nonparametric, rank-based test that is often used as an alternative to
the t-test. It tests the null hypothesis that two samples have different stochastic ordering
[187]. As multiple such tests were performed, Bonferroni correction was applied to the
obtained p-values.

Secondary structure prediction of the repeats

The secondary structure of each complete sequence from the BFA dataset with de-
tected repeats by RADAR was predicted using PSIPRED webserver [188]. Due to the
length limitations, six proteins were excluded from the analysis: Aap, Bap, Esp, PAc,
SasG and YghJ.

Data analysis and visualization

All data analyses and visualizations were performed in Python 3 with the following
packages: NumPy [155], Pandas [156], SciPy [157], Matplotlib [158], Seaborn [159].

3.3 Results
The dataset of the bacterial functional amyloids consists of 38 proteins presented in

Table 3.1.
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Protein Uniprot ID Reference
Aap (Staphylococcus epidermidis) Q5HKE8 [189]

SasG (Staphylococcus aureus) Q2G2B2 [190]
Bap (Staphylococcus aureus) Q79LN3 [191]
Esp (Enterococcus faecalis) Q9Z4N7 [87]
Pac (Streptococcus mutans) P11657 [192]

CsgA (Escherichia coli) P28307 [191]
CsgB (Escherichia coli) P0ABK7 [191]

FapC (Pseudomonas sp. UK4) C4IN70 [191]
FadA (Fusobacterium nucleatum) Q4U4F1 [193]

TasA (Bacillus subtilis) P54507 [194]
WapA (Streptococcus mutans) P11000 [195]

Mtp (Mycobacterium tuberculosis) P9WI87 [196]
ChpD (Streptomyces coelicolor) Q9L1J9 [197]
ChpE (Streptomyces coelicolor) Q9X9Z2 [197]
ChpF (Streptomyces coelicolor) Q9KYG7 [197]
ChpG (Streptomyces coelicolor) Q9KYH3 [197]
ChpH (Streptomyces coelicolor) Q9AD92 [191]
RdlB (Streptomyces coelicolor) Q934F8 [191]

CarD (Mycobacterium tuberculosis) P9WJG3 [191]
Tuf (EF-Tu) (Gallibacterium anatis) A0A263HIU7 [191]

YhgJ (Escherichia coli) P0CK95 [191]
HelD (Bacillus subtilis) O32215 [196]
Hfq (Escherichia coli) P0A6X3 [198]

Microcin (Klebsiella pneumoniae) Q9Z4N4 [191]
SuhB (Staphylococcus aureus) A0A0U1MJW7 [199]

RopA (Rhizobium leguminosarum) Q05811 [200]
RopB (Rhizobium leguminosarum) Q52866 [200]

Hpn (Helicobacter pylori) P0A0V6 [201]
Smu63c (Streptococcus mutans) Q8DWI5 [195]

Spb (Staphylococcus epidermidis) Q5HRC3 [202]
Hpag (Xanthomonas campestris) Q83XF9 [203]
Psma1 (Staphylococcus aureus) A9JX05 [191]
Psma3 (Staphylococcus aureus) A9JX07 [191]
Psmb1 (Staphylococcus aureus) A0A0H3KCA8 [204]
Psmb2 (Staphylococcus aureus) A0A0H3KSC6 [204]
AgrD (Staphylococcus aureus) Q53643 [191]

TapA (Bacillus subtilis) P40949 [85]
FapB (Pseudomonas sp. UK4) C4IN69 [127]

Table 3.1: List of bacterial functional amyloids (BFA dataset).
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3.3.1 Characterization of the dataset of bacterial functional amy-
loids (BFA)

The BFA dataset consists of 38 bacterial functional amyloids. Five of the identified
proteins in the BFA can be characterized as biofilm-related, long and multidomain. These
are: Aap, its ortholog SasG, Bap, its ortholog Esp, and PAc. All of them contain a charac-
teristic cell wall anchor domain LPXTG and undergo cleavage. Bap and Esp additionally
have an EF-hand motif responsible for calcium binding. Other biofilm-related proteins
are: WapA, which is a large and a poorly studied cell-wall protein, secreted TasA, TapA
and Smu63, already mentioned Csg, Fap and phenol-soluble modulins proteins and their
expression regulator AgrD, extracellular Mtp that forms similar fibrils to CsgA, adhesion
protein A - FadA, inositol phosphatase SuhB that regulates multiple biological functions
such as expression of virulence factors, exopolysaccharide biosynthesis and biofilm for-
mation. In the dataset, there were also proteins related to RNA and DNA binding that
undergo important structural changes upon binding: cytoplasmatic Hfq involved in tran-
scription, Tuf which binds GTP to transport aminoacylated tRNAs to the ribosome, and
transcription regulator CarD that binds RNA polymerase and stabilizes transcription ini-
tiation complex. The BFA dataset also contains chaplins, which are a family of proteins
involved in hyphae formation in filamentous bacteria, RdlB, which has a similar func-
tion as chaplins, RopA and RopB that take part in symbiotic interactions, a secreted
metalloprotease Hpn with a compositional bias towards histidine residues, secreted met-
alloprotease lipoprotein YghJ and plant cytotoxic harpin Hpag.

3.3.2 Visualization of the BFA dataset

To better understand the relations between the proteins in the BFA dataset, the BFA
dataset is visualized as a network (Figure 3.1). Because little is known about the proteins
in the BFA dataset and the information about them in common databases, like Uniprot
or Interproscan, is often scarce, each protein (node) was described using ProtBERT em-
beddings. Protein embeddings result from large protein language neural networks that are
trained on multiple proteomes. They aim to encode structural and functional information
about the proteins. This makes them particularly useful in the case of less-known pro-
teins, such as bacterial functional amyloids. ProtBERT is one such state-of-the-art model
and was successfully used e.g. for Gene Ontology predictions [123]. The space of the em-
beddings was reduced with Principal Component Analysis, the distances between BFA
proteins were calculated, and the network with 38 nodes representing the BFA proteins,
and 90 edges between them, representing only the most significant similarities between
the proteins in reduced ProtBERT space, was built.

The produced visualization is the map of the known bacterial functional amyloids
that allows for the easy detection of the functional clusters in the BFA dataset. The main
group is formed by biofilm-related proteins, that regardless to their size are similar in the
considered reduced ProtBERT space. Tuf, Hfq and CarD proteins are separated from the
biofilm-related proteins, but similar to one another, as all are related to DNA and RNA
binding. The last group is formed by the family of chaplins, which do not resemble other
proteins. Finally, Hpn, is separated and unlike other groups.
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Figure 3.1: Visualization of the BFA dataset in the form of the network built on the
distances in the reduced ProtBERT space.
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3.3.3 Known bacterial functional amyloids as a separate protein
group

To examine whether BFA proteins are a relatively homogeneous group that can be eas-
ily separated from other bacterial proteins, a new dataset that consisted of the sum of the
BFA dataset and a random sample of bacterial proteins (BFA∪ Random) was extracted.
Different sizes of the random proteins were tested, so that the contribution of the BFA
dataset to the newly created dataset ranged from 0.1 to 0.7 (|BFA|/|BFA∪Random|).
Then, the ProtBERT embeddings for BFA∪ Random were calculated and subject to the
dimension reduction with Principal Component Analysis to account for 70% of the vari-
ation. For each BFA protein, its one, three, or five nearest neighbours were constructed.
Finally, the fraction of the nearest neighbours belonging to the BFA dataset was calcu-
lated. This procedure was repeated 100 times (Figure 3.2).

Figure 3.2: Separation of BFA proteins from all bacterial proteins. The nn denotes the
number of nearest neighbours considered.

The calculations indicate that the BFA dataset is easily separable from other bacterial
proteins, probably due to the high population of biofilm-related proteins, which must have
characteristic embeddings in the space generated by ProtBERT.

3.3.4 Repeats in the bacterial functional amyloids
The observed relative homogeneity of the known bacterial functional amyloids, as a

group, raises a question about their other possible common traits. Therefore, the following
sections discuss the appearance of sequence repeats in the BFA dataset and their potential
impact on aggregation.

As few bacterial functional amyloids are still known, it seems worth supporting our
view on the role of the repeats in these proteins with examples from other amyloid proteins.
Hence, the analysis of the repeats is in a two-fold manner. First, as an inspiration, we
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Protein Uniprot ID Reference
CsgA P28307 [205]
CsgB P0ABK7 [206]
Sup35 P05453 [207]
Het-s Q03689 [208]

Pmel17 P40967 [174]
Silkmoth chorin protein class A - [209]

FapC C4IN70 [210]
PrP P04156 [211]
Htt P42858 [212]
Tau P10636 [213]

α-synuclein P37840 [214]
Apolipoprotein A-1 P02647 [215]

Apolipoprotein A-IV P06727 [216]

Table 3.2: List of known amyloid proteins whose sequence repeats

analyse examples of how the repeats were found to work in other amyloid studies, even if
the presence of such repetitions is accidental in these proteins. Then, the resulting theses
are evaluated on the studied dataset of bacterial functional amyloids.

3.3.5 Abundance of the repeats

Other amyloid studies

The repeats in amyloid proteins were reported in a variety of cases. Both, pathological
and functional amyloids were found to contain sequence repetitions that could modu-
late their amyloid formations. Amyloid proteins with sequence repeats that influence the
aggregation process, according to experimental data, are provided in the Table 3.2.

Bacterial functional amyloids

The repeat detection and characterization could be performed for 33 bacterial func-
tional amyloids, as 5 proteins were too short for the analysis (phenol-soluble modulins
and N-AgrD). The detection of the repeats was performed with RADAR software and re-
vealed positive results in 25 out of 33 studied sequences (73%). Proteins without detected
repeats included chaplins related to rodlet layer formation (ChpGED), spb, mtp and Hfq.
The polyH repeats present in Hpn were not found by the tool and hence, this protein was
also excluded from the further analysis. In total, 69 different repeats in 25 proteins were
detected. For comparison, in 38058 bacterial proteins found in Uniprot, RADAR yielded
the repeats in 67% of cases. The difference was not significant with the Fisher exact test
(p-value=0.3).

3.3.6 Number of units in a repeat

Other amyloid studies

It has been shown that a number of units in a repeat affects the amyloid characteristics
of a protein. Such a result has been reported for the PrP protein (prion protein). It has 5
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octapeptide repeats located in the N-terminus that are responsible for zinc uptake. PrP
variants with a higher number of units in a repeat have been shown to be more aggregation-
prone [211]. The same has been found for α-synuclein. In its native form, α-synuclein uses
its 7-units repeat to create a lipid-binding alpha-helical structure [217]. A higher number
of units in a tandem repeat inhibits beta-formation, affecting the aggregation propensity
of this protein. However, it comes at the price of lower lipid binding affinity, suggesting the
evolutionary trade-off between amyloid formation and lipid binding [214]. The impact of
the repeats on the aggregation pace has also been observed for bacterial functional amyloid
FapC that contains three repeat units, whose deletion slows down the aggregation [210].
The same was noted for the CsgA protein; mutants without certain units experienced a
dramatic loss in their aggregation rates [218].

Bacterial functional amyloids

The number of units in each of the detected 68 repeats was calculated (Figure 3.3). 91%
of the repeats in bacterial functional amyloids had 10 or fewer units. This trend was also
observed in general. 99% of the bacterial proteins with the repeats had 10 repeat units or
less. The analysed bacterial functional amyloids seemed to be enriched in repeats with 3-6
units, in comparison to bacterial proteins (Fisher exact p-value=0.0007). The tails of the
distribution of the number of units in a repeat differed in length. The highest number of
units in a repeat was 26 for bacterial functional amyloids, meanwhile for reference bacterial
proteins 57. In general, the distributions of the number of units in a repeat differed between
bacterial functional amyloids and reference bacterial proteins (Kolmogorov-Smirnov p-
value=6e-6).

Figure 3.3: Histogram of number of units in repeats found in functional bacterial amyloids
(blue bars) and all bacterial proteins (orange bars).
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3.3.7 Similarity between units

Other amyloid studies

It has been shown that the similarity between units, as well as their number, affects the
aggregation of the proteins. Titin protein is an interesting example in this case. The pres-
ence of more identical repeats in titin was shown to correlate with a greater aggregation
propensity of the protein [219].

Bacterial functional amyloids

The similarity between the units in a repeat was different for bacterial functional amy-
loids that reference bacterial proteins (Fig, 3.4). Repeats in bacterial functional amyloids
tended to be more imperfect than in the case of other proteins (Kolmogorov-Smirnov p-
value=3e-4). The impact of units’ similarity was further checked by Jakub Wojciechowski
in the CsgA protein case study. CsgA contains five imperfect repeats R1, R2, R3, R4 and
R5, out of which R1, R3 and R5 are aggregation-prone. The dimeric structures for three
mutant models were predicted with Alpha Fold 2: 1) CsgA only with five repetitions of
R1, 2) CsgA only with five repetitions of R3, and 3) CsgA only with five repetitions of
R2. Models with only R4 and R5 had low quality and hence were discarded. The simula-
tions with CABSflex software [220] enabled the investigation of the potential stability of
CsgA fibrils with perfect repeats. Models with only R1 or R3 units were more stable and
diverged less from the initial conformation than the original CsgA with imperfect repeats.

Figure 3.4: Histograms of identity between repeat units for functional bacterial amyloids
(blue hatched bars) and all bacterial proteins (orange plain bars).

3.3.8 Aggregation-prone regions in the repeats

Other amyloid studies

In several studies, aggregation-prone regions have been found in protein repeats. Tau
protein, although classified as pathological amyloid, contains aggregation-prone regions
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within a microtubule-binding domain (MTBD). MTBD contains repeated sequence motifs
that are the main aggregation-driving regions of the protein [221]. Also, the two hexapep-
tide motifs found on the R2 and R3 units in tau form amyloids. Examples of functional
amyloids with the aggregation-prone region hidden in the repeat include: Pmel17 with
10 imperfect repeats which incorporate amyloid-prone regions, fungal HET-s with two
imperfect repeats responsible for protein aggregation, and curli proteins CsgA and CsgB
[222].

Bacterial functional amyloids

The identification of the aggregation-prone regions in the case of functional amy-
loids is problematic with the current methods. The available predictors are trained on
pathological amyloids, which dominate the amyloid databases. Functional amyloids have
distinct amino-acid profiles. This, in combination with their low representation in hot spot
datasets, challenges the utility of the predictors in this case. Therefore, a more traditional
approach, calculation of the amino acid profiles, was taken to interpret the molecular role
of the found repeats.

Frequencies of amino acids faa for all found 69 repeats for the considered here bacterial
functional amyloids (AR) were analysed. The results were contrasted with the frequencies
determined for BS - entire bacterial protein sequences (not limited to the repeats), BR -
bacterial repeats and AS - entire sequences of bacterial functional amyloids (see Table with
bacterial functional amyloids). For each group, the average frequency of each of the amino
acids favg in the repeats was calculated (Figure 3.5). The detailed amino acid profiles in the
form of their distributions are presented in (Figure 3.6). For each amino acid, the Mann-
Whitney U test with Bonferroni correction was applied to reveal if the difference was
statistically significant. The cases where the mean frequency was statistically significantly
different from frequencies obtained for BR, BS, and AS (p-value¬0.05) are the most
interesting. In this scenario, repeats in bacterial functional amyloids are distinct from the
rest of the sequence and other bacterial proteins concerning the particular amino acid
frequency.

The physicochemical interpretation of the differences in the amino acid profiles, which
is discussed in this paragraph, was supported by Natalia Szulc. Firstly, it is easily no-
ticeable that bacterial functional amyloids, as expected, are characterized by their unique
frequency profile in comparison to BR, BS and AS. Repeats in bacterial functional amy-
loids (AR) are significantly enriched in threonine (T). Threonine, according to other
works, when exposed to flat surfaces, forms a zipper interface that stabilizes the inter-
action [223]. This indicates that threonine abundance could mediate interactions in the
repeats of bacterial functional amyloids, hence controlling the kinetics of amyloid forma-
tion. On the other hand, repeats in bacterial functional amyloids (AR) are depleted in
methionine (M), histidine (H), arginine (R), cysteine (C), leucine (L), and alanine (A).
The abundance of positively charged amino acids was found in pathological amyloids,
where they exhibited a negative impact on amyloid toxicity, e.g. through interactions
with cell membranes [119, 224, 225]. Their depletion in the repeats of bacterial functional
amyloids could indicate the lower cytotoxic effect observed for the aggregation of func-
tional amyloids [226]. The low abundance of alanine and leucine could explain the less
hydrophobic character of the interactions between interfaces of beta-sheets in bacterial
functional amyloids [227]. Similarly, the low prevalence of cysteine, which often stabilized
amyloid fibrils via a disulfide bond, could be related to the reversible character of the
functional amyloid structures [228]. The significantly higher content of asparagine (N)

44



Chapter 3Wroclaw University of Science and Technology

Figure 3.5: Mean amino acid frequency favg plot of entire bacterial sequences BS (blue
bars), repeats in bacterial sequences BR (orange bars), entire amyloid sequences AS (green
bars) and repeats in amyloids AR (red bars). For amino acids with red coloured labels,
the p-values of the Mann-Whitney U test after Bonferonni correction (for amyloid repeats
versus BS, BR and AS) were simultaneously below 0.05.

and aspartic acid (D) in AR than in the bacterial sequences BS and bacterial repeats
BR could be a general characteristic of functional amyloids, not necessarily their repeats,
keeping in line with previous studies [119]. A significantly higher content of glycine (G)
in the repeats of the bacterial functional (AR) only in comparison to entire bacterial se-
quences (BS) could be related to their role as gatekeepers that mediate structural changes
in the protein [229, 230, 231, 232].

3.3.9 Aggregation-prone regions outside of the repeat

Other amyloid studies

The aggregation-prone region may be inside or outside the repeats. Interestingly, even
if the repeats are not amyloidogenic they still may affect the aggregation kinetics. An
interesting example is α-synuclein. The aggregation-driving regions are present in the
C-terminus, meanwhile, sequence repeats in the N-repeats. Although the repeats have a
functional role not related to the aggregation, they still influence the aggregation propen-
sity of the entire protein [214]. The appearance of the mutations in the repeats affects
protein conformation and hence its fibrillation [233]. The same has been found for the
prion protein PrP, which contains the aggregation-prone region in the N-termina [234].
Although the repeats in PrP have a copper-binding function and are not aggregation-
driving, they still affect the amyloid formation. These observations are not limited to
pathological amyloids. 5 imperfect repeats in yeast prion sup35, which are not amyloido-
genic, modulate the fragmentation efficiency of the fibril [207].
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Figure 3.6: Distributions of amino acid frequencies (faa, y-axis) presented with violin plot.
AR - repeats in bacterial functional amyloids, BS - entire bacterial sequences, BR - repeats
in bacterial sequences), AS - entire amyloid sequences.

Bacterial functional amyloids

To further investigate the potential role of the repeats in bacterial functional amyloids,
the secondary structures of entire proteins were predicted with PSIPRED [188]. Each
repeat unit was then classified as either “Beta”, “Coil”, or “Helix”. The frequencies of
appearance of each of the secondary structure classes were calculated (Figure 3.7). 6
proteins were excluded from this analysis due to their length limitations.

The repeat units from HpaG, Microcin, CarD, FadA, ChpF and ChpH had no “Beta”
class predictions suggesting that repeats in these proteins do not resemble beta-sheet
structures. The general prevalences of “Beta” and “Helix” classes in all considered bacterial
functional amyloids were not statistically significantly different for the repeats in bacterial
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functional amyloids (the p-value of a two-sided Kolomogrov-Smirnov was 0.7). However,
the appearance of the “Coil” class was statistically significantly more frequent (the p-value
of a two-sided Kolmogorov-Smirnov was 4.5e-6 for comparison with “Beta” and 1e-4 for
comparison with ”Helix”). The median fraction of amino acids with “Coil” was equal to
0.5; meanwhile for “Beta”, it was 0.2 and 0.26 for “Helix”.

The potential abundance of coiled structures in the repeat units may be related to
their appearance as disordered fragments in the proteins. Such fragments, which are often
present in tandem repeats, may ease the fibril formation and facilitate amyloid interac-
tions. Hence, even if the repeats would be not aggregation-driving in an amyloid protein,
they could still be aggregation regulators.

Figure 3.7: Prediction of secondary structure for the repeats in bacterial functional amy-
loids (AR). Blue bars correspond to ’Beta’ class, orange to ’Helix’ and green to ’Coil’.
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3.4 Discussion

Our knowledge about bacterial functional amyloids is limited. Little such sequences
are known, and even fewer structures are resolved. The state-of-the-art prediction tools
for identification-prone regions that drive aggregation have limited utility for functional
amyloids, which are underrepresented in the hot spots databases. This scarcity of infor-
mation calls for more theoretical research on these proteins that could give us novel clues
about their characteristics. This chapter focuses on the sequence analysis of the bacterial
functional amyloids hypothesizing that such study could provide novel insights into their
aggregation and interaction mechanisms.

The literature search highlighted the scarcity of known examples of these proteins, as
only 38 instances were found. Despite the limited data size, the found sequences differed
in size and function in the cell. They form a separatable group from other bacterial
proteins, probably due to the frequent biofilm functions. As bacterial functional amyloids
are designed by evolution to aggregate and evolution favors repetition, this study focused
on a better understanding of the role of the repeats in these proteins. The modularity of the
amyloid fibrils inspired the search for regularity in the sequence since the intermolecular
interactions often facilitate the intramolecular ones.

The detailed analysis of the role of tandem repeats in bacterial functional amyloids
was based on the three pillars. To spark ideas about the influence of the repeats on the
aggregation process of bacterial functional amyloids, examples from the literature were
discussed. Although these studies often focus on pathological amyloids, the presence of
the repeats in such proteins, could give a hint on their impact on fibril formation. Then,
the calculation of repeat characteristics was performed for bacterial functional amyloids.
Finally, the results were compared to the ones found for all bacterial proteins and their
repeats to assess the statistical significance of the found features.

The appearance of the repeats in the bacterial functional amyloids does not seem to
be more frequent than in the case of other proteins. Nevertheless, we should keep in mind
that still few examples of such proteins are known and this tendency could change as
more data is gathered. However, when they do appear they have their unique character.

The repeats in bacterial functional amyloids consist of a medium number of units that
are not a perfect repetition of each other. In contrast to all bacterial proteins, they have
an overrepresentation of repeats with three to six units and a statistically significant lower
similarity between repeat units. Their amino acid profile is quite specific, pointing towards
flexibility, reversibility, and regulatory role of these regions in fibril formation, which is
further confirmed by the prevalence of the predicted coil conformation. The results bring
to light a purposeful design of the repeats by the evolution potentially targeted to regulate
the aggregation of the protein.

The addition or deletion of units in a repeat has been previously shown to affect
aggregation rates [210, 218]. The specific enrichment in a certain number of units in
the repeats in bacterial functional amyloids demonstrates the evolutionary pressed best
design that balances the aggregation. Further evidence supporting this hypothesis may be
found in the lower similarity between units. More similar units are rather correlated with
higher stability and toxicity of the fibrils, according to the presented work. The observed
imperfection could also be purposeful and may facilitate the aggregation properties of the
bacterial functional amyloids, which are not as rigid as pathological amyloids. On the one
hand, the presence of multiple similar sequences, as within a tandem repeat, could give
room for multiple symmetrical interactions broadening the number of control mechanisms
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in the aggregation process. On the other hand, their lower similarity weakens potential
amyloid interactions, which are rather the strongest in the case of identical sequences.
Hence, the presence of imperfect repeats could give rise to a sophisticated machinery that
stands behind the controlled aggregation of the bacterial functional amyloids.

The observed lower toxicity of the bacterial functional amyloids may be related to
their observed amino acid profile. In pathological amyloids, the positively charged amino
acids were found to contribute to the toxicity of the fibrils [119, 224, 225]. The repeats
in bacterial functional amyloids are depleted in these residues. In addition, the lower
abundance of hydrophobic amino acids, such as leucine and alanine, which participate
in hydrophobic interactions that stabilize structures, could explain the lower stability
of functional fibrils. The flexibility may also be the result of the prevalence of coiled
conformations of the repeats observed from the secondary structure predictions. Such
regions are often related to intrinsically disordered fragments, which could further regulate
the aggregation.

The presented results do not point towards the abundance of aggregation-prone re-
gions in the repeats. Rather, they suggest that such repeats do regulate the aggregation
no matter their exact location in the sequence. To aggregate in a controlled manner, bac-
terial functional amyloids must contain complex molecular machinery that controls the
fibril formation and dissasembly. The observed characteristics of tandem repeats in these
proteins make them perfect candidates for this role.

This chapter uncovers an interesting feature of the sequence of bacterial functional
amyloids related to their aggregation propensity. This may have an impact on how these
proteins aggregate and interact with other proteins, including human ones, also neurode-
generation. This proves the second hypothesis of this thesis that sequence tandem repeats
influence the aggregation of bacterial functional amyloids and makes the second goal to
examine the role of tandem repeats in bacterial functional amyloids realized.

Sequence analysis enabled discovery of novel characteristics of bacterial functional
amyloids. However, to obtain the full picture of the molecular mechanisms standing behind
bacterial function amyloids aggregation and interactions with other proteins, knowledge
of their structure would be very enriching. Structural information could allow for a more
detailed analysis of molecular interactions between bacterial functional amyloids and hu-
man proteins, e. g. via molecular docking, leading to an in-depth discussion on their role
in neurodegeneration. Hence, the next chapter covers the usage of state-of-the-art soft-
ware for protein structure prediction, AlphaFold, in the context of bacterial functional
amyloids and other amyloid proteins.

Results presented in this chapter were published as: Nowakowska, A. W., Wo-
jciechowski, J. W., Szulc, N., & Kotulska, M. (2023). The role of tandem repeats in
bacterial functional amyloids. Journal of Structural Biology, 215(3), 108002.
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Structure prediction of amyloid pro-
teins with AlphaFold 3

4.1 Introduction

In 2024, with the Nobel Prize in Chemistry award, all eyes were on bioinformatics.
The decades-long protein structure prediction problem has been solved, marking a new
era in structural biology.

AlphaFold (AF) does not need to be introduced to anyone working in molecular biology
[235]. A massive neural network model, with more than 30,000 citations in less than 3
years, can predict a protein structure in minutes with remarkable accuracy. The newest
version of the algorithm, AF3, was released in 2024 [236]. The method promises to account
for the environmental context, such as the presence of ligands or DNA, marking another
important step forward. Both versions of the algorithm use Multiple Sequence Alignment
(MSA) information and PDB (RCSB Protein Data Bank) templates, though the MSA
information alone is sufficient for good predictions. The importance of MSA is lower in
AF3. AF3 also has a generative character that leads to multiple different outputs, but at
the price of possible hallucinations.

AF algorithms seem promising for anyone working with proteins with unsolved struc-
tures, such as bacterial functional amyloids. Amyloids, in general, pose multiple exper-
imental challenges that limit the availability of structural data. Fibrils often have high
molecular weight, dissolution follows complicated protocols, and in one sample, polymor-
phic species may appear. These factors exploit the usage of X-ray, NMR, and cryo-EM
techniques for the determination of the amyloid structure [237, 238]. In consequence, ex-
perimental data on amyloids rise slowly, and computational approaches, such as AF, are
welcome.

Modelling amyloid proteins comes with several challenges. As already mentioned, few
experimental data is available, and resolved structures exist mainly for fragments of well-
studied pathological amyloids. As a consequence, teaching a model to predict an amyloid
structure is difficult, although an attempt to do so has been made. An example is Rib-
bonFold, released in 2025 [139]. RibbonFold is based on the architecture of AlphaFold-
Multimer. To predict an amyloid structure, the authors encoded constraints in the tem-
plate module that impose fibrillar appearance. The model was then fine-tuned on a dataset
of amyloid structures. RibbonFold is the first software that is designed to predict amyloid
structure, and it accounts for the structural polymorphism of amyloid fibrils. Nevertheless,
it has limited accuracy. By the assumption, RibbonFold is insensitive to the aggregation
propensity of a sequence, and for any input, it always predicts the amyloid fibril. It is
trained on a relatively small dataset of amyloid structures biased by scientific interests.
The constraints incorporated into the model will also limit the creativity of the algorithm
which may be needed when modelling functional amyloids, which are often different from
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the pathological ones. RibbonFold does not allow for modelling different sizes of a fibril
and accounting for other molecular entities, e.g. ions. The perfect software for amyloid
structure prediction should be sensitive not only to the structural polymorphism of amy-
loid fibrils but also allow for modelling monomers and multimers. It should also take into
account that many amyloids are easily affected by sequence modifications and environ-
mental conditions. For example, although the Aβ sequences in other organisms are nearly
identical, not all are aggregation-prone [239]. However, homologs of functional amyloids,
e.g. CsgA, often have a conserved aggregation propensity [240]. Finally, the ideal algo-
rithm should be able to distinguish which proteins, and not only fragments, are likely to
fold into amyloid fibrils and which are not, allowing for structural proteome-wide screens
of aggregation propensity and fibril structures. So far, no tool has been shown to do that.
Amyloids are a difficult case that requires a structure prediction algorithm to have a high
level of generalization and low training data memorization, which makes them a perfect
testing dataset.

AF2 failed to correctly predict amyloid structures [241]. However, the significant
changes in architecture that led to the release of AF3 give hope for performance im-
provement. AF3 is also the only software that attempts to generalise the structure predic-
tion problem, allowing for the modelling of monomers, multimers, DNAs, RNAs and the
addition of ions within a single tool, potentially enabling the complex amyloid modelling.

In this chapter, a third hypothesis that structures of amyloid fibrils can be
predicted with AF3 is investigated. Because the dataset of bacterial functional amyloids
is small, the analysis is not limited to them and instead, the AF3 performance on all
amyloid proteins is assessed. Monomeric and multimeric forms of amyloid proteins are
predicted. To explain how models are built for amyloid proteins by AF3, the results are
compared with structures available in the PDB and with predictions for the entire human
proteome.

4.2 Methods

Datasets: Positive control

AF3 performance on the amyloid protein structure prediction problem was evalu-
ated first for amyloid proteins without experimentally solved structures. To build such
a database, amyloid proteins were extracted from: Amypro database [191], the dataset
of bacterial functional amyloids BFA, introduced in the previous chapter, and Amy-
Load [242], which has fragments of aggregation-prone peptides (AmyLoad also has non-
aggregating sequences, see Negative control below). All sequences of alpha phenol-soluble
modulins were not considered, as they form amyloid fibrils with a cross-alpha architecture
[179]. Seven proteins, namely Aap, Bap, Esp, PAc, SasG, YghJ, and Agglutinin-like protein
3, were too long for multimeric predictions with AF3 and hence were removed. Sequences
with lengths below 10 amino acids were removed. Proteins, which had the solved structure
for (almost) the entire sequence (structure covered more than 80% of the sequence), with
reference to the STAMP database that contains amyloid proteins and their structures
[243], were excluded from the analysis. Many of the peptides from the AmyLoad database
were short and constituted part of the longer proteins or mutants of such; however, it was
impossible to assess whether their structure was solved. As the inclusion of the AmyLoad
database in the study allowed for accounting for negative examples (see below), and the
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chances that the majority of these sequences have solved structures is low, this problem
was considered negligible. Finally, all sequences were clustered at a 90% level of identity
with cd-hit default parameters [244]. Homologs of the Amyloid structure dataset (see be-
low) were identified with mmseqs easy-search with default parameters (minimum identity
threshold of 30%) [245], and sequences appearing as hits were removed. This made the
final version of the Positive control dataset.

Datasets: Negative control

Sequences confirmed not to aggregate were extracted from the AmyLoad. Peptides
with lengths below 10 amino acids were removed. Homologs of the Amyloid structure
dataset in the Positive-Control dataset were identified with mmseqs easy-search with
default parameters, and sequences appearing as hits were removed. This made the final
version of the Negative control dataset.

Datasets: Amyloid structure

Proteins with solved amyloid structure for (almost) the entire sequence (structure
covered more than 80% of the sequence) considered were: Aβ-42, α-synuclein, glucagon,
IAPP (human amylin), transthyretin, and immunoglobulin (see Table 4.1).

AF models

One AF3 structure with six protein copies and one monomer were predicted for each
sequence from the Positive control and Negative control datasets. For each protein from
Amyloid structure dataset, 50 monomeric and 50 multimeric models of six protein copies
were predicted. Additionally, for Aβ-42, 50 models for each number of protein copies
from 1 to 9 were predicted. For 8 proteins (Sauvagin, Viral protease VP4, Zona pellucida
sperm-binding protein 1, TasA, PMEL17, Semenogelin, Lung surfactant, p53) one model
for each number of protein copies from 1 to 9 was predicted. All models were predicted
with AF3 webserver available at https://AFserver.com/.

The datasets of Positive and Negative control are relatively small compared, e.g. to AF
Database. Therefore, to better understand how AF predicts proteins structures, models
for Homo Sapiens proteome were used as a reference. The monomeric structures predicted
with AF2, HSMonomers, were downloaded from the AF database available at
https://alphafold.ebi.ac.uk/download [141]. The dimeric structures for random pairs of
human proteins predicted with AF-Multimer, HSDimers, were downloaded from the web-
site https://predictomes.org/ [246]. At the time of this work, no larger AF3 prediction
dataset was available. AF models were visualized with pymol [247].
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Protein Sequence PDB*

Aβ-42
DAEFRHDSGYEVHHQKLVF
FAEDVGSNKGAIIGLMVGG

VVIA
2mxu

α-synuclein

MDVFMKGLSKAKEGVVAAA
EKTKQGVAEAAGKTKEGVL
YVGSKTKEGVVHGVATVAE
KTKEQVTNVGGAVVTGVTA
VAQKTVEGAGSIAAATGFV
KKDQLGKNEEGAPQEGILE
DMPVDPDNEAYEMPSEEGY

QDYEPEA

2n0a

IAPP
KCNTATCATQRLANFLVHS

SNNFGAILSSTNVGSNTY
VVIA

6vw2

Glucagon HSQGTFTSDYSKYLDSRRAQ
DFVQWLMNT 6nzn

Immunoglobulin lambda
variable 3-19 light chain

AVSVALGQTVRITCQGDSL
RSYSASWYQQKPGQAPVLV

IFRRFSGSSSGNTASLTIT
GAQAEDEADYYCNSRDSSA

NHQVFGGGTKLTV

6z1i

Transthyretin

GPTGTGESKCPLMVKVLDA
VRGSPAINVAMHVFRKAAD
DTWEPFASGKTSESGELHG
LTTEEEFVEGIYKVEIDTK
SYWKALGISPFHEHAEVVF
TANDSGPRRYTIAALLSPY

SYSTTAVVTNPKE

6sdz

Table 4.1: Amyloid structure dataset. *Example of a PDB identifier of an amyloid struc-
ture that was part of the AF training dataset.
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Quality of AF models

AF model quality can be described by [235]:

• pLDDT - per-residue predicted local distance difference test, takes values from 0 to
100

• pTM - describes the quality of the complex prediction, takes values from 0 to 1

• ipTM - describes the quality of the predicted relative positions of the subunits, takes
values from 0 to 1.

In the case of HSMonomers only pLDDT scores were available.

Similarity between structures

Similarity between structures was assessed with the TM-score that takes a value from
the interval (0,1]. The higher the TM-score, the more similar the structures are. Structures
with TM-score>0.5 are considered to belong to the same CATH category [248].

Structure classification

There is no reliable tool for assessing whether the structure is amyloid. Therefore,
each model was manually curated as resembling an amyloid fibril, similar to structures
deposited in the STAMP database, or not.

Similarity of monomers, multimers, and PDBs

Similarity between monomeric and multimeric models for Positive control and Negative
control sequences and HSMonomers and HSDimers was assessed with the Foldseek easy-
search command (with default parameters) [249].

Foldseek compares structures to detect even distant homology relationships. Foldseek
hits can be described by TM-score and homolog probability, which stands for “the proba-
bility for each match to be homologous, based on a fit of true and false matches on SCOPe”
(direct quote from van Kempen, 2024). Hits discovered by Foldseek on AlphaFold models
often relate to hits found by traditional sequence-based approaches like BLAST [250].

The most similar structure for each monomer and multimer in the PDB (version of
March 2025) was identified with Foldseek easy-search command (with default parameters).
Some of the structures in this PDB version have not been seen by AF and could not bias
the predictions. However, they constitute only a minority and should not impede the
observations of certain trends between AF training examples and models.

Clusterization of monomeric models predicted for each protein from the Amyloid structure
dataset was performed with Foldseek easy-cluster (with default parameters). Similarity
between monomeric cluster representatives and 50 multimers was assessed with Foldseek
easy-search (with default parameters).

Foldseek returns TM-scores and Homolog probability. Structural alignments were vi-
sualized with Foldseek webserver available at: https://search.foldseek.com/search.
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Data availability

The AF models for Positive control, Negative control and Amyloid structure datasets
are available at the zenodo repository of the project: https://zenodo.org/records/15576017.
The repository contains a metadata file, which contains sequences of the proteins, their
description, human classification if a model resembles an amyloid structure, identifiers of
PDB files that were similar to the AF model, and metrics of the structural alignment.

4.3 Results
The performance of AF3 in predicting the amyloid structure was evaluated on the

three datasets described above: Positive control, Negative control and Amyloid structure.

4.3.1 The size of the predicted fibril n influences model quality
The number of protein copies (n) is a critical AF3 parameter that defines the multi-

mericity of the complex, and in this case, the size of the predicted fibril. Given that all
predictions were made with the webserver, it was impractical to perform a comprehensive
screen for optimal n for each amyloid protein. Therefore, to decide on the best value n
for all amyloids in this study, AF3 was benchmarked on the well-known example of an
amyloid, Aβ-42. For each number of protein copies n, from 1 to 9, 50 structures of Aβ-42
were predicted with the AF3 webserver.

The monomeric models of Aβ-42 adopted helical conformations. The dimers were
either beta-sheet or helical. Higher values of protein copies n consistently yielded fibrillar
architectures (Fig. 4.1A). The quality of fibril predictions increased with the number of
protein copies n, peaking at a value of 5, and declined for higher multimericities (Fig. 4.1
B).

To ensure that choosing any protein copy number above 2 consistently results in the
same classification with respect to the fibrillar nature of the model, a quick benchmark
was conducted on other amyloid proteins. Eight random amyloid proteins were chosen
(sauvagin, viral protease VP4, zona pellucida sperm-binding protein 1, TasA, PMEL17,
semenogelin, lung surfactant, p53). For these examples, multimers with n values in the
range from 1 to 9 were predicted. For seven proteins, classifying whether the AF3 model
looks fibrillar or not was consistent regardless of the choice n. The only exception was se-
menogelin. In this case, dimers had a fibrillar architecture; meanwhile, higher n values led
to irregular structures that were hard to classify as fibrillar due to asymmetry. Examples
of results are presented in Fig. 4.2. It can be concluded that the change in the number
of protein copies n above 2 should not significantly bias whether the amyloid structure is
predicted or not by AF3, though it influences the model quality.

To balance between the longest fibril length possible and the model quality, 6 protein
copies were considered as a reasonable multimericity for amyloid structure prediction with
AF3 and used in further sections.
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Figure 4.1: Impact of the number of protein copies n. A. Examples of AF3 models of
Aβ-42 colored by pLDDT metric. From top to bottom and left to right: helical monomer,
helical dimer, beta-sheet dimer, and fibrillar structures for n = 5, n = 7 and n=9 protein
copies, respectively. B. pLDDT (blue) and iPTM (orange) as a function of the number of
protein copies used.
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Figure 4.2: AlphaFold 3 predictions for different number of protein copies n for lung
surfactant, semenogelin and p53.
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4.3.2 AlphaFold 3 struggles to predict amyloid fibril
One multimeric structure with 6 protein copies for each protein Positive control and

Negative control datasets were predicted. Each AF3 model was visually inspected, with
the help of Jakub Wojciechowski, to determine if it resembles an amyloid structure.

Figure 4.3: AF3 predictions of unknown amyloid structures. A. Examples of fibrillar and
non-fibrillar models of amyloid proteins. From left to right, from top to bottom: Gel-
solin globular model, helical model of Serum amyloid, amyloid fibrillar model of ChpE,
non-amyloid model of Myocilin, non-amyloid model of p53, amyloid fibrillar model of
Calcitonin. B. Confusion matrix of AF3 performance in amyloid structure prediction.

AF3 predicted highly diverse structures for amyloid proteins (Fig. 4.3A). Symmet-
rical, helical and fibrillar models appeared. The general performance in predicting the
amyloid structure was poor (Fig. 4.3B). Only 34% of the amyloid protein predictions
resembled fibrils (true positive). Similarly, only 45% non-aggregating peptides looked dis-
similar to an amyloid fibril (true negative). The classification scores were the following:
Accuracy=0.37, Precision=0.63, true positive rate (Sensitivity)=0.34, and F1-score=0.44.
Furthermore, sequences with incorrect predictions were more likely to have higher pLDDT
values (Mann-Whitney test p-value=0.02), but not pTM or ipTM, potentially misleading
the user.

No statistically significant difference was found in AF3 performance for functional and
pathological amyloids (Fisher’s exact test p-value=0.42).

AF3 performed better for shorter fragments than for entire proteins. For sequences
with a length below 36, which is the maximum length of the non-aggregating sequences,
the true positive rate increased to 45% (Fig. 4.4A). The true positive and true negative
cases had significantly lower sequence length values (Mann-Whitney test p-value = 3e-5,
Fig. 4.4B).

4.3.3 Comparison between multimeric and monomeric predic-
tions

Amyloid proteins are demanding cases for machine learning approaches due to their
polymorphism and frequent differences between monomeric and multimeric forms. To
evaluate if AF struggles with amyloid proteins because it cannot fully capture the dif-
ference between fibrillar structures and monomers, for each amyloid protein from the
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Figure 4.4: Influence of the sequence length. A. Confusion matrix of AF3 performance
in amyloid structure prediction for sequences with a length below 36 amino acids. B.
Distribution of sequence lengths for false positives and false negatives (blue) and true
positives and true negatives (orange).

Positive dataset, the monomeric model was also predicted. Monomeric and multimeric
models were then aligned with Foldseek.

In 43% of the cases, the monomer and multimer models of amyloid proteins shared
significant structural similarities with a TM-score>0.5. For these proteins, the multi-
meric model rarely resembled an amyloid fibril (Fig. 4.5A), it was usually of higher qual-
ity, though (difference of 15 points in pLDDT, statistically significant Mann-Whitney
p-value=9e-10). The similarity between monomer and multimer was more frequent in the
case of longer proteins than in shorter ones, in line with previous observations on the
performance of AF3 (difference in the sequence length was statistically significant with
the Mann-Whitney test p-value = 2e-12).

HSDimers and HSMonomers were compared to evaluate how AF generally deals with
multimeric models. For each chain in a dimer from the HSDimers dataset, corresponding
monomeric models were identified in HSMonomers and compared. In 80% of the cases
(group I), both chains of the dimer shared similarity with their corresponding monomers
(see the TM-score distribution in Fig. 4.5B). 41% of dimers in group I, and 34% of all
dimers in HSDimers, had TM-scores for both chains above 0.5. Cases with high TM-score
(>0.8) for one of the chains and the low TM-score (<0.3) for the other were present and
constituted 7% of the cases in group I. Group I models had a mean pLDDT of 62, standard
deviation=14. For 8227 dimers (19%, group II), for one of the chains, no similarity with
the corresponding monomer was found. Group II models were of low quality, with the
mean pLDDT of 56, standard deviation=15. 99.99% of models in group I and II had the
probability of structural homology, analogous to belonging to the same SCOPE family,
above 0.9. For only 637 dimers (1%, group III), no similar monomer was identified for
any of the chains. Group III models were of very low quality, with the mean pLDDT of
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47, standard deviation=17. The difference in pLDDT scores between group I, and merged
group II and III was statistically significant (Mann-Whitney p-value=0.0).

This shows that AlphaFold can do both: predict dimeric models similar to their
monomers and different to them. However, when the monomers and dimers have dif-
ferent conformations, the pLDDT scores of a dimer are low. This stays in line with how
frequently the amyloid structure was modelled for amyloid proteins and explains why the
scores for amyloid fibrils were low.

4.3.4 Similarity of AF models to structures deposited in the
PDB

Possible bias that affects the AF3 results may result from its training data, which
is rich in globular examples and contains few amyloid structures, particularly for longer
proteins. To evaluate whether the training data hinders amyloid structure prediction, for
each multimeric model, a similar structure was searched for in the PDB with Foldseek.

In total, 32756 hits were found for 84 models of amyloid proteins from the Positive
dataset and for 7 models of non-aggregating peptides from the Negative dataset. The
number of models that resembled a PDB structure for the Negative dataset was small
and, therefore, ignored in the further analysis.

Amyloid proteins whose AF3 predictions resembled PDB structures were significantly
longer in sequence than amyloid proteins whose models were not similar to PDB structures
(Mann-Whitney test p-value=2e-12). The lack of similarity between the model for an
amyloid protein and the PDB structures was a rare event, as of the 61 sequences with
a length greater than 100 amino acids, 7 of them did not resemble any structure of
the PDB. Moreover, models matching PDB structures were more frequently predicted as
non-fibrillar (Fisher’s exact p-value=2e-10, Fig. 4.6), though they had statistically higher
pLDDT values (Mann-Whitney test p-value=0.01).
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Figure 4.5: Simialrity between monomeric and multimeric models. A. Confusion matrix.
B. Distribution of TM-score in group I, models are colored by pLDDT.
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Figure 4.6: Similarity between AF3 models for amyloid proteins and PDB structures. A.
Confusion matrix for amyloid proteins from the Positive control dataset, classification of
the models with respect to the similarity to the PDB structures. B. Search for similar PDB
structures to the AF3 models of amyloid proteins. The homolog probability is presented
as a function of the TM-score between the AF3 model and the most similar PDB file.

63



Chapter 4 Faculty of Fundamental Problems of Technology

The homology information in the case of amyloid proteins could be a misleading factor
for AF3. Therefore, for each amyloid protein whose model resembled PDB structures,
the hit with the highest TM-score was extracted along with the probability that the
two proteins are homologous (Fig. 4.6). Amyloid proteins, which resembled the solved
structures deposited in the PDB and were homologous, tended not to resemble amyloid
fibrils, though again, they had much higher pLDDT. Specifically, the mean pLDDT of
a multimeric model for an amyloid protein with a homolog probability above 0.95 was
37, meanwhile, without the homolog, it was 57; the difference was statistically significant
with the Mann-Whitney test p-value=1e-4. The only protein that was modelled as a fibril
and resembled the PDB structure was CsgB, the homolog of CsgA, which has a solved
structure. Importantly, CsgA was probably not seen by AF3 during the training, hence,
AF3 modelled CsgB well without previous bias. In Fig. 4.7 the structural alignments
between globular multimeric models for amyloid proteins and their matches in the PDB
are shown.

Figure 4.7: Similarity between AF3 models for amyloid proteins and PDB structures in
the form of structural alignments.

To ensure that AF generally predicts models that resemble PDB structures, which
may be problematic in modelling amyloid proteins, as few amyloid structures are avail-
able, monomeric predictions for the human proteome were compared with PDB structures.
Specifically, for each model from HSMonomers, similar structures in the PDB were found
with Foldseek, and the hit with the highest TM-score was extracted (Fig. 4.8 and 4.9).
92% of monomeric models resembled PDB examples, and in the vast majority of matches,
proteins were likely homologous (Homolog probability above 0.9). The structural similar-
ity was also significant, as 85% of the hits had a TM-score above 0.8. AF predictions with
low pLDDT scores related to situations where the model did not resemble any of the PDB
structures or the hit was present but with a low probability of homology. These obser-
vations support the previous paragraph, suggesting that homology between the modelled
protein and the training data leads to a prediction of a similar non-fibrillar structure with
a high score. On the other hand, as few fibrils are present in the PDB, predicting amyloid
fibrils is a rare event associated with poor scores of the model quality even if the predicted
structure seems more correct.
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Figure 4.8: AF models for HSMonomers relate to the PDB structures. Results of the
search of AF2 models in the PDB for HSMonomers. Homolog probability as a function of
the TM-score between the AF model and the most similar PDB file. Outside of the X-axis,
the histogram of TM-score values is provided, and outside of the Y-axis, the histogram of
the homolog probability is provided.

4.3.5 Structure prediction for well-studied amyloid proteins
We investigated the performance of AF3 on amyloid proteins with unknown structure

and observed problems with such predictions. Therefore, the question arises of whether
AF is capable of learning the fibrillar form when it sees enough of such examples in its
training dataset.

Models of well-studied amyloid proteins whose structures have been solved and seen
by AF were predicted. Specifically, for each protein from the Amyloid structure dataset,
50 monomeric and 50 six-unit models were generated. The summary of the results is
presented in Table 4.2.

Predicted structures of 50 monomers for each protein were highly similar to each other.
The clusterization procedure yielded only one representative model for transthyretin, α-
synuclein, glucagon, immunoglobulin and Aβ-42. In the case of IAPP, monomeric models
were grouped into two clusters. All monomeric models of Aβ-42, glucagon and IAPP
were helical. For α-synuclein, 49 models were helical and 1 was disordered. This is in line
with the experimental data on the secondary structure of these proteins, although often
alternative conformations, such as disordered structures, are missed by AF3.
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Figure 4.9: AF models for HSMonomers relate to the PDB structures. A. pLDDT dis-
tribution for HSMonomers models when the structure has a likely homologous hit in the
PDB and when no similar structure was detected in the PDB or the homology was low.
The difference was statistically significant; Mann Whitney test p-value=0.0. B. pLDDT
distribution for HSMonomers models when the structure is similar to the hit in the PDB
(TM-score>0.5) and when not (TM-score<0.5). The difference was statistically signifi-
cant; Mann Whitney test p-value=1e-121.

Multimeric models of Aβ-42, α-synuclein and IAPP resembled amyloid structures (Fig.
4.10). In the case of glucagon models, 60% of them also resembled amyloid structures.
None of the multimeric models of immunoglobulin and transthyretin resembled amyloid
structure (Fig. 4.10).

Monomeric and multimeric models for Amyloid structure were compared. Specifically,
for each representative monomer identified after the clusterization, the most similar multi-
mer was searched for with Foldseek. As expected, monomers of Aβ-42, IAPP and glucagon
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Protein
Monomers’
structures

(A)

Multimers’
structures

(B)

Similarity
between

A
and
B

% of B
similar
to PDB

Hits
in the
PDB
for B

*Mean
TM-score

(std)

Aβ-42 all helical all amyloid none 76% all amyloid 0.36 (0.09)

α-synuclein

all helical
apart from

one
disordered

all amyloid

locally
in the

helical part
for 26
models
(mean

TM-score=
0.28)

100% all amyloid 0.99 (<0.01)

Glucagon all helical 60% amyloid none 20% varied 0.45 (0.14)
IAPP all helical all amyloid none 89% all amyloid 0.22 (0.03)

Immuno-
globulin
lambda

variable 3-19
light
chain

rich in
beta-sheets not amyloid

high
(mean

TM-score=
0.96)

100% all globular 1.0 (<0.01)

Transthyretin rich in
beta-sheets not amyloid

high
(mean

TM-score=
0.94)

100% all globular 0.96 (0.03)

Table 4.2: Results for Amyloid structure dataset. *Mean TM-score between the multimer
(B) and PDB (standard deviation in parenthesis is given).

and α-synuclein (TM-score=0.28) did not resemble the multimers. Monomeric and multi-
meric models of immunoglobulin and transthyretin were highly similar. Multimeric models
of immunoglobulin, transthyretin and α-synuclein resembled PDB structures. In the case
of IAPP, glucagon and Aβ-42 this similarity to the PDB was lower.
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Figure 4.10: Examples of AF3 predictions for proteins from the Amyloid structure dataset.
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4.4 Discussion

AF is a state-of-the-art software that revolutionized the field of structural biology. It
attempts to generalise the structure prediction problem, allowing for modelling proteins,
DNA, RNA, and complexes of those, with the inclusion of ions. Accounting for such
a broad context could potentially improve amyloid structure prediction that requires
that multiple factors are taken into account, giving hope for proteome-wide screens of
aggregation-prone proteins, and not only fragments of such. Unfortunately, AF3 struggles
with amyloid proteins.

The analysis performed in this chapter revealed that only for one-third of the tested
amyloid sequences AF predicted seemingly correct amyloid fibrils. Importantly, such mod-
els were often of much lower quality than the multimeric globular models, suggesting that
metrics other than pLDDT may be suitable for assessing the quality of AF models for
amyloid proteins. Problems with potentially misleading pLDDT scores have already been
observed in other cases, such as dimers and fold-switching proteins [246, 251, 252]. Pre-
sented results suggest that AF scores a model highly when a homologous example is part
of the AF training. Others have shown that it is possible to train a classifier that dis-
tinguishes correct AF models of dimers from the wrong ones [246], even when both have
high pLDDT scores. Perhaps, to assess whether AF amyloid models are wrong or correct,
we need to take a similar path and design new metrics specific to this case in the future.

AF also struggled with the negative dataset, predicting the amyloid fibrils in 56% of
the cases. This was closely related to the fact that many peptides known not to aggregate
are mutants of commonly studied amyloids, and AF is broadly known to be insensitive
to mutations [253].

The problem with predicting amyloid structures with AF appears to be related to
several factors. Many of the amyloid proteins require that the software manage to predict
different multimeric and monomeric forms of these proteins, as these are often differ-
ent. A structure prediction algorithm that does so can be suspected to generalize well to
the problem and not only memorize the seen examples. Half of the multimeric models
of amyloid proteins shared some similarities with monomeric ones, and one-third signifi-
cantly resembled the monomers (TM-score>0.5). In 86% of the cases when any similarity
appeared between a monomer and multimer, the multimeric models did not resemble
amyloid fibrils. The training dataset is of fundamental importance for AF, which is natu-
ral for any machine learning method. But this approach comes at the price of struggling
with unusual examples, like amyloid proteins. Few amyloid structures have been solved,
particularly for longer proteins. As amyloid proteins are a vastly underrepresented group,
this naturally influences the prediction of amyloid structures. However, the hope remains,
as in the case of well-studied amyloid proteins with structures seen by AF3 during the
training, it manages to predict the fibrillar models for them. Even though the number of
solved amyloid structures must be big enough to leave a signal in the neural network, one
solution may not be enough. This was observed for transthyretin and immunoglobulin,
for which, although amyloid structures are available, they constitute the minority of all
depositions for these proteins, leading to the bias toward globular models.

The training bias is also related to the homology information that is used by AF.
In previous studies, it was shown that proteins which are homologous but can adopt
two different structures are problematic for AF, and only one conformation for both is
predicted [254]. This supports the results presented for amyloid proteins. Aggregation of
amyloid proteins does not need to be conserved, and homologs of the amyloid protein

69



Chapter 4 Faculty of Fundamental Problems of Technology

may not form fibrils. Therefore, AF reliance on the homology information explains the
frequent presence of globular models for amyloid proteins, which resemble the training
examples present in the PDB. This was particularly notable in the case of longer proteins.
It seems that the presence of globular homologs in the training data biases the predictions
for amyloid proteins. Hence, AF seems to be capable of predicting amyloid fibrils in some
cases and undesired models resembled globular homologs present in the PDB. When
modelling amyloid proteins with AF a fibrillar model of low quality with respect to the
pLDDT should not be surprising, as exploration of other folds that reach beyond the PDB
is often related to a poor model quality, as demonstrated for HSMonomers. Importantly,
no difference in performance between functional and pathological amyloids was observed,
suggesting that AF problems with predicting amyloid structures are a combination of the
training examples and homology information.

AF’s reliance on the homology information and abundance of protein structure gave
it the deserved state-of-the-art place in protein structure prediction. Unfortunately, as
homology information is tricky in the case of amyloids and few amyloid structures are de-
termined, particularly for longer proteins, it is not surprising that AF struggles with these
difficult proteins. Given these circumstances, it seems impressive that in some scenarios,
it can predict the amyloid fibril structure, although it is often of poor quality with respect
to pLDDT. We suggest that using shorter sequences and different protein copy numbers,
comparing monomeric and multimeric prediction, checking if the structure of a homolog is
solved in the PDB and was used in the training, predicting more than one structure, and
careful interpretation of the model with metrics other than pLDDT can help in amyloid
structure prediction with AF3. In the future, certain manipulations of the Multiple Se-
quence Alignments and determination of novel amyloid structures, particularly for longer
proteins, could push this research forward.

The obtained results are disappointing and point toward the need for reliance on the
sequence information of bacterial functional amyloids until more amyloid structures are
experimentally determined. Therefore, the third hypothesis that structures of amyloid fib-
rils can be predicted with AlphaFold 3 is rejected, and the corresponding goal to investigate
AlphaFold 3 performance on amyloid proteins, including bacterial functional amyloids is
realized. In the light of observations made in this chapter, it can be concluded that the
structural predictions for bacterial functional amyloids are not a reliable source of infor-
mation yet and will not help in understanding the molecular interactions between these
proteins and human proteins. Hence, the next chapter uses only sequence data to give an
overview of bacterial functional amyloids produced by microbes inhabiting humans and
their potential interactions with the human proteome.

Results presented in this chapter are related to the preprint: Wojciechowska, A.
W., Wojciechowski, J. W., & Kotulska, M. (2023). Non-standard proteins in the lenses
of AlphaFold3 - a case study of amyloids. bioRxiv. This preprint was updated in line with
this chapter. Submitted to the journal.
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Bacterial functional amyloids in the
human microbiome

5.1 Introduction

The role of the gut microbiome in human health is undeniable by now. Intestinal bac-
teria supply essential substances such as vitamin B12 or short-chain fatty acids, maintain
epithelial integrity, and regulate the host’s immune response, influencing cytokine produc-
tion and lymphocyte activation [255]. Changes in the human gut microbiome have been
associated with the onset and progression of multiple diseases, including neurodegenera-
tion. However, details of molecular cross-talk of the gut-brain axis remain elusive.

Bacterial functional amyloids could be important actors in this interplay. Bacterial
functional amyloids are produced by bacterial strains that inhabit the human gut micro-
biome. Their structural similarity to pathological amyloids could lead to amyloid interac-
tions between microbial and pathological amyloids.

It has been hypothesized that the pathological aggregation of α-synuclein in Parkin-
son’s disease starts in the enteric nervous system. Amyloid structures of α-synuclein aggre-
gation in the enteric nervous system appear at the beginning of this disorder and correlate
with disease severity [92, 93]. The possible triggers of this pathological process could be
microbial amyloids that inhabit the intestine and may have contact with the neuronal
cells of the enteric nervous system. Once α-synuclein aggregation is triggered outside the
central nervous system, according to Braak’s hypothesis, it could propagate in a prion-
like manner from the enteric nervous system through the vagus nerve to the brain [91].
Multiple studies have shown that microbial amyloids can affect the rates of aggregation
of pathological ones [65]. The inhibition of bacterial functional amyloid CsgA protein in
mouse models reduces aggregation of α-synuclein in the brain [97]. CsgA can also interact
with Aβ and promote Alzheimer’s pathology in C. elegans models, [98]. Biofilm-related
bacterial functional amyloids are more abundant in Parkinson’s disease patients than in
healthy controls and can colocalize with α-synuclein in neurons, increasing its aggregation
[101].

Microbial amyloids could have a broad impact on neurodegeneration. The intestines of
patients with Parkinson’s and Alzheimer’s disease are often characterized by gut dysbiosis,
dysfunction, and inflammation [73, 102]. In such conditions, the structural similarity of
bacterial functional amyloids to pathological ones could trigger similar cytotoxic pathways
and promote further inflammation and intestinal permeability [103]. Both microbial and
human amyloids can activate immune receptors and inflammation pathways such as the
NLRP3 inflammasome [106, 107].

Many of the previous studies focused on a single bacterial functional amyloid and its
molecular interactions, providing evidence for the link between microbial amyloids and
neurodegeneration. However, so far, no large-scale study that would gather information
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from multiple resources has been performed on the microbiome scale. Here, this need is
ansewered.

In preceding chapters, an overview of the available protein-protein interaction data in
neurodegenerative diseases, sequence and structure analysis of bacterial functional amy-
loids were both provided. This chapter joins both views to investigate the potential clini-
cal importance of bacterial functional amyloids in neurodegeneration. The fourth and last
hypothesis that bacterial functional amyloids in the human intestine may in-
fluence neurodegeneration is investigated. For this goal, bacterial functional amyloids
in the human gut microbiome are identified, and their interactions with human proteins
are predicted. An atlas of known bacterial functional amyloids and their taxonomic origin
is given. The prevalence of bacterial functional amyloids in the health and disease micro-
biome is discussed. Finally, a framework of potential molecular mechanisms of bacterial
functional amyloids with human proteins in neurodegeneration is proposed.

5.2 Methods

Identification of bacterial functional amyloids in the human microbiome

Unified Human Gut proteome UHGP published by Almeida et al. clustered at 95%
of identity (v1.0 edition, file name: uhgp-95.faa) was used as a reference dataset of the
human gut microbiome proteome [256]. The dataset of bacterial functional amyloids BFA
was described in the third chapter of this thesis.

To identify homologs of BFA in UHGP, a homology search with mmseqs was performed
[245]; command: mmseqs search bfa uhgp-95 results tmp –comp-bias-corr 0 –mask 0. On
purpose, the compositional correction was turned off, as multiple amyloids may contain
repeated fragments or low-complexity regions.

The identified homologs were filtered with the entire sequence amyloid predictor
AmyPred-FRL tool in the webserver version [118]. The AmyPred-FRL returns a prediction
score from 0 to 1, where 1 means a highly probable amyloid and 0 a non-aggregating pro-
tein. The cutoff of 0.8 was applied. Sequences classified as amyloid-positive by AmyPred-
FRL were additionally filtered with ArchCandy [112], to ensure they are likely to contain
beta-arch motifs, typical for amyloids, in the sequences. To run ArchCandy, the follow-
ing command was used: java -jar ArchCandyV2.jar –TMfilter -t=0.5 -i=SeqID Sequence.
The resulting sequences were denoted as the UHGPAmyloids dataset. This approach uses
predictors trained mostly on pathological amyloids and can miss many of the functional
amyloids. However, it should limit the number of false positive examples, which is crucial
when screening a big dataset like UHGP.

UHGPAmyloids was clustered with cd-hit [244], command: cd-hit -i inputfile.fasta -o
outputfile.fasta -c 0.9/0.8/0.7/.

Taxonomy of the predicted bacterial functional amyloids

Taxonomic assignments were already provided by the authors of the UHGP dataset.
Throughout the text, the same nomenclature as found in the UHGP files was used to
minimize confusion. Shannon entropy of taxonomic assignments was calculated with the
phyloseq package in R [257].
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Cellular localization of the predicted bacterial functional amyloids

The cellular localizations of the UHGPAmyloids were predicted with the BUSCA
webserver with a ”taxonomic group” switched to ”Prokarya - Other - 3 compartments”
[258]. The BUSCA predicts the localization by identifying characteristic domains and
motifs in the sequence.

Protein-protein interactions between predicted bacterial functional amyloids
and human proteins

UHGPAmyloids proteins with Extracellular or Plasma membrane localization, accord-
ing to BUSCA, were extracted and formed UHGPAmyloids filtered dataset.

Human proteins were extracted from the Human Protein Atlas [259] (file: normal tissue.tsv,
version: 23.0, available in the Downloadable data section on the project website). To draw
out proteins expressed in the intestine, The Human Protein Atlas was filtered so that
the Tissue column, in the normal tissue.tsv file, included at least one of the following
words: colon, small intestine, duodenum, rectum. Then, proteins with Subcellular local-
ization [CC] including one of the following expressions: Cell membrane, cell membrane,
secreted, Secreted, extracellular, Extracellular, cell surface, Cell surface, junction, Junc-
tion, secretory, Secretory, cell wall, Cell wall were extracted. This dataset, referred to as
HPA filtered, should include proteins that are the most likely to interact with substances
secreted by the microbiome.

Protein-protein interaction predictions between predicted bacterial functional amy-
loids from the UHGPAmyloids filtered and human proteins from the HPA filtered were
predicted with ProteinPrompt [260] by Jakub Wojciechowski.

Overrepresentation Analysis

Human proteins from HPA filtered with at least 5 interactors from UHGPAmyloids filtered
were considered for GO and KEGG terms overrepresentation analysis. The overrepre-
sented terms were calculated with the ClusterProfiler package available in R [261].

The F-test was performed for the top 20 terms for Biological Process, Molecular Func-
tion and KEGG Pathways between proteins HPAIntestine filtered, which had at least 5
interacting partners in UHGPAmyloids and the entire set HPAIntestine filtered with f.test
function in R programming language. P-values were corrected using Bonferroni correction.

Data analysis and visualization

All data analyses and visualizations were performed in Python 3 with the following
packages: NumPy [155], Pandas [156], SciPy [157], Matplotlib [158], Seaborn [159].

5.3 Results

5.3.1 Presence of bacterial functional amyloids in the human
gut microbiome

The aggregation propensity of bacterial functional amyloids should be evolutionarily
conserved, as discussed in previous chapters. Hence, a pool of potential bacterial func-
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Figure 5.1: Identification of bacterial functional amyloids in human gut microbiome pro-
teome. A. Pipeline for the search of bacterial functional amyloids in UHGP, B. Number
of homologs found per BFA protein.

tional amyloids in the human microbiome proteome (UHGP) was created by searching for
homologs of BFA proteins in the UHGP dataset [262]) (Figure 5.1). 10249 matches were
found, which, after the removal of duplicates, gave 9541 unique sequences (mean sequence
identity equal 45%, mean E-value was 5e-6). The homology search yielded multiple se-
quences for longer bacterial functional amyloids as a result of different domain matches
(WapA: 730, HelD: 714, Aap: 714, YghJ: 714, SuhB: 714, Bap: 713, Smu63c: 711, PAc:
702, Tuf: 714). Three proteins, alpha phenol-soluble modulin and RdlB, had no homolog
in the UHGP.

The aggregation propensity of the identified homologs was predicted with the full-
length aggregation propensity predictor AMYPred-FRL to remove possible non-aggregating
proteins. AMYPred-FRL was trained mostly on pathological amyloids and probably leads
to multiple false negatives, but at the same time should reduce the false positive hits.
AMYPred-FRL filtration discarded 90% of the sequences, leaving 855 proteins. No corre-
lation was found between the AMYPred-FRL score and any of the homology parameters
(Pearson’s |R| ¬ 0.2). The remaining 855 proteins were additionally tested with the Arch-
Candy tool that predicts the occurrence of beta-arch motifs characteristic of amyloid pro-
teins. The next 50 sequences were discarded. This final dataset of 805 predicted bacterial
functional amyloids from the human gut microbiome is referred to as UHGPAmyloids.

The UHGPAmyloids were clustered at the levels of 90%, 80% and 70% identity, giving
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412, 302 and 243 sequences, respectively. The rather moderate decrease in the number
of sequences left after clusterization indicates the relative diversity of the found bacterial
functional amyloids.

Only UHGPAmyloids proteins are studied and homologs predicted as non-aggregating
are ignored in the upcoming analyses.

5.3.2 Taxonomic origin of intestinal bacterial functional amy-
loids

The taxonomic origin of UHGPAmyloids was analyzed and Shannon’s entropy for each
group of homologs was calculated (Figure 5.3) to identify bacteria that produce predicted
bacterial functional amyloids. Furthermore, the abundance of different taxonomic groups
in UHGPAmyloids and UHGP datasets was compared with Fisher’s exact test (Figure
5.2, Table 5.1). The proteome of our microbiome is mostly produced by Firmicutes, Bac-
teroidota, Proteobacteria and Actinobacteria. Despite that, the UHGPAmyloids proteins
are not evenly distributed between these phyla. The enrichment in Firmicutes, Proteobac-
teria and Fusobacteria and the depletion in Actinobacteriota and Bacteroidota were found
for UHGPAmyloids.

The taxonomic distribution of UHGPAmyloids indicates that these proteins are widely
present in the bacterial tree of life. The RNA-binding Hfq protein and biofilm-related pro-
teins had the highest taxonomic diversity. The long biofilm-related amyloids WapA, Bap,
PAc, Aap and Esp could be found mostly in Firmictutes but also in other phyla, such as
Proteobacteria, Myxococcota or Actinobacteria. Homologs of short biofilm-related pro-
teins, which were predicted to be prone to aggregation, could also be found in other
bacterial families, which are not typically associated with these proteins. For example,
the CsgA and CsgB proteins had low diversity at the phylum level, but their aggregat-
ing homologs were found not only in Enterobacteriaceae. Low taxonomic diversity was
found for the aggregating homologs of the Mtp protein, which were only identified in
Streptomycetes.

Phylum Percentage of UHGPAmyloids
from the phylum Fisher test p-value Category

Firmicutes 70.8% 1.6e-10 Overrepresentation
Proteobacteria 24.8% 5e-41 Overrepresentation
Fusobacteria 1.7% 1.7e-4 Overrepresentation

Actinobacteriota 1.4% 1.5e-12 Underrepresentation
Bacteroidota 0.9% 7.5e-67 Underrepresentation

Campylobacterota 0.2% 0.45 -
Myxococcota 0.1% 0.2 -

Table 5.1: Comparison of the phylum prevalence for the UHGPAmyloids and UHGP
datasets.

75



Chapter 5 Faculty of Fundamental Problems of Technology

Figure 5.2: Phylum prevalence in the UHGP dataset.
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Figure 5.3: Taxonomic diversity of the UHGPAmyloids. A. Taxonomic origin of UHG-
PAmyloids proteins grouped by the BFA source protein. B. Shannon entropy for different
groups of homologs in the UHGPAmyloids datasets.
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5.3.3 Patient samples and the abundance of bacterial functional
amyloids

The abundance of UHGPAmyloids in the gut microbiome samples of patients with
neurodegenerative diseases was tested by Jakub Wojciechowski and Kinga Zielińska [263].
They studied three metagenomic datasets on Parkinson’s disease, one metagenomic study
on Alzheimer’s disease, and one, as a negative control set, on Cryptococcal meningitis.
Cryptococcal meningitis is an infectious brain disease not characterized by any amyloid
deposition. Each dataset contained samples from patients with the disease and a respective
control group. They performed a detailed processing of the raw reads with quality control
and assembly procedures and searched for homologs of UHGPAmyloids in the samples.

The analysis showed a statistically significant greater presence of bacterial functional
amyloids in samples from patients with Parkinson’s disease than in the control in all three
Parkinson’s disease (Mann-Whitney U-test p-value ¬ 0.01). This was not observed for the
dataset on Alzheimer’s disease or Cryptococcal meningitis.

The abundance of each bacterial functional amyloid family was analysed to identify
the most important groups. Interestingly, in two out of three studies on Parkinson’s dis-
ease, CsgA homologs appeared more frequently in patients than in healthy controls. The
same was discovered for the dataset on Alzheimer’s disease (Mann-Whitney U-test with
Benjamini-Hochberg correction p-value ¬ 0.05). These observations particularly point to
the role of the curli protein in the pathology of amyloid disease. CsgA has already been
found to interact with both α-synuclein and Aβ protein and promote neurodegenera-
tion in Caenorhabditis elegans models [98], its apparent abundance could be of clinical
significance.

5.3.4 Interactions of bacterial functional amyloids with human
proteins

Cellular localization is of fundamental importance for the discussion of the molecular
interactions between bacterial functional amyloids and human proteins. Hence, the cellu-
lar localization for both BFA proteins and UHGPAmyloids was predicted. 60% of the BFA
source proteins were predicted as extracellular and 40% as cytoplasmatic. The UHGPAmy-
loids had similar proportions of predicted localizations: 43% were extracellular, 48% were
cytoplasmatic, and 9% were membrane. The UHGPAmyloids proteins with extracellular
localization were homologs of 25 different BFA proteins, mostly of biofilm-related ones
like WapA (187 extracellular homologs) and Bap (129 extracellular homologs). In gen-
eral, prokaryotic proteins are mostly cytoplasmatic (around 64%), sometimes membrane
(around 20%) and less than 2% of them are extracellular. This leads to the conclusion that
considered bacterial functional amyloids are more frequently extracellular or membrane
than other bacterial proteins.

The frequently predicted non-plasmatic cellular localization of UHGPAmyloids gives
grounds for the analysis of protein-protein interactions between bacterial functional and
human proteins. To reveal potential molecular mechanisms of this interplay, only UHG-
PAmyloids proteins with predicted extracellular or membrane localization were considered
(UHGPAmyloids filtered, 417 proteins). To extract human proteins that could interact
with bacterial functional amyloids, the Human Protein Atlas was used [264]. Proteins
that are experimentally confirmed to be expressed in the human intestine and are bi-
ologically related to the extracellular membrane or the junction space were withdrawn
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(HPAIntestine filtered, 2,361 proteins). Then, possible interactions between proteins from
HPAIntestine filtered and UHGPAmyloids filtered were computationally predicted.

183,742 interactions were predicted that affected 1,098 human proteins from HPAIntes-
tine filtered. As expected for protein-protein interaction systems, not all human proteins
had an equal number of interactors from UHGPAmyloids filtered and the distribution of
this parameter was skewed (Figure 5.4). For each UHGPAmyloids filtered protein, certain
human protein interactors were predicted. Homologs of WapA had the highest number of
interactors (114,058 in total), and homologs of TapA, had the lowest (135, in total).

Figure 5.4: Histogram of the number of predicted human interactors (from the HPAintes-
tine filtered dataset) per UHGPAmyloids filtered protein.

The most common interacting partner for bacterial functional amyloids was the hu-
man N-myc-interactor, Nmi protein (UniprotID: Q13287). It had 681 interactions with
UHGPAmyloids filtered proteins that spanned 20 different groups of homologs. The ma-
jority of Nmi interactions were with homologs of biofilm-related proteins (346 interactions
with homologs of WapA, 92 with homologs of SasG, and 70 with homologs of CsgA). All
predicted biofilm-related interactors of the Nmi protein originate from Proteobacteria,
which is often associated with pro-inflammatory characteristics [265], or Firmicutes. Nmi
protein is important from the immunological perspective as it interacts with interleukin-2
and STAT protein [266] and its level is often elevated in different cancers [267].

Among human proteins with the top five highest number of interactions with UHG-
PAmyloids filtered, there were C-C motif chemokine 5, Interferon-induced transmembrane
protein 1 and 2, both related to immune response, claudins that control the epithelial bar-
rier, and ubiquitin ligases (see the full list in Table 5.2) [268]. Human pathological amyloids
such as α-synuclein, major prion protein, and APP cutting protein presenilin-1 were also
predicted to interact with 417 UHGPAmyloids filtered proteins each. Tau and APP had
229 and 294 predicted interactions, respectively.
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Uniprot ID Description Number of interactions
Q13287 N-myc-interactor 684
P18848 Cyclic AMP-dependent transcription factor ATF-4 460

Q9H6Y7 E3 ubiquitin-protein ligase RNF167 418
P13501 C-C motif chemokine 5 417
P30874 Somatostatin receptor type 2 417
O15551 Claudin-3 417
O14493 Claudin-4 417
P21926 CD9 antigen 417
Q9H3Z4 DnaJ homolog subfamily C member 5 417
P10082 Peptide YY 417
P49768 Presenilin-1 417
P04156 major prion protein 417
P02745 Complement C1q subcomponent subunit A 417
O00264 Membrane-associated progesterone receptor component 1 417
P37840 α-synuclein 417
P67809 Y-box-binding protein 1 417
Q01629 Interferon-induced transmembrane protein 2 417
P13164 Interferon-induced transmembrane protein 1 417
Q99942 E3 ubiquitin-protein ligase RNF5 417
P32241 Vasoactive intestinal polypeptide receptor 1 417
P08172 Muscarinic acetylcholine receptor M2 417
P63000 Ras-related C3 botulinum toxin substrate 1 416
P61586 Transforming protein RhoA 416
P60953 Cell division control protein 42 homolog 416
Q9Y328 Neuronal vesicle trafficking-associated protein 2 416
Q9UKJ5 Cysteine-rich hydrophobic domain-containing protein 2 416
P26583 High mobility group protein B2 416
P04899 Guanine nucleotide-binding protein G(i) subunit alpha-2 416
P63096 Guanine nucleotide-binding protein G(i) subunit alpha-1 416
P21453 Sphingosine 1-phosphate receptor 1 416

Table 5.2: Proteins from HPAIntestine filtered representing the top five numbers of inter-
actions from UHGPAmyloids filtered (31 proteins in total).
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5.3.5 Pathways potentially affected by intestinal bacterial func-
tional amyloids

To get an overview of potential molecular pathways and processes affected by intes-
tine bacterial functional amyloids, a two-step overrepresentation analysis was performed.
Proteins from HPAIntestine filtered with at least five predicted interactors from UHG-
PAmyloids filtered were withdrawn. Then, GO terms, which were overrepresented in this
group with respect to the entire human proteome, were extracted (Figure 5.5). Then it
was checked if the identified go terms are also overrepresented with respect to the intesti-
nal proteins HPAIntestine filtered (Table 5.3 and 5.4). The performed analysis showed
that bacterial functional amyloids could have a broad impact on the human proteome
and interactome. Human proteins interacting with UHGPAmyloids filtered were found
to be enriched in GO Biological Process terms related to vesicle transport, protein lo-
calization, signaling, cell-cell and cell-matrix adhesion. UHGPAmyloids filtered were also
predicted to interact with claudins forming cell-cell junctions and maintaining the ep-
ithelial barrier function. The gut’s impermeability is directly linked to these proteins,
and their malfunctioning is associated with gastrointestinal diseases such as Inflamma-
tory Bowel Disease (IBD), Ulcerative Colitis (UC), Crohn’s Disease (CD) or Colorectal
Cancer (CRC) [269, 270].

The predictions demonstrated that the intestinal bacterial functional amyloids could
also affect signalling and transport in human cells. The enrichment in cytokine-binding
proteins, growth factors and G-protein-coupled receptors, as well as tyrosine kinase re-
ceptors, all regulating cell response to internal and external stimuli, was found. Other
overrepresented terms were related to transport and included endocytosis, exocytosis,
and integrin-binding. The integrin-binding properties were noticed for human patholog-
ical amyloids such as Aβ-42 and tau, suggesting the overlap between the interactors of
microbial and pathological amyloids.

The analogous two-step ORA was performed concerning KEGG pathways and Disease
Ontology. As for GO analysis terms such as cell-to-cell adhesion, including focal adhesion,
cell and adherens junctions, or transport were identified. In addition, multiple cancer-
related pathways were observed. The “Proteoglycans in cancer” pathway regards proteins
that are related to cell proliferation, migration and adhesion in cancerous cells. MAPK sig-
nalling pathway also influences cell proliferation, differentiation and death. The predicted
interactions indicate that bacterial functional amyloids could generally affect immune-
related pathways, as terms like chemokine signalling pathway, leukocyte migration, and
response to viral infections were also noted.
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Figure 5.5: The results of the overrepresentation analysis for A. Gene Ontology Molecular
Function, B. Gene Ontology Biological Process C. KEGG pathways.
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GO/KEGG Term
Fisher Test’s
p-value after

BH correction
growth factor binding 0.004

transmembrane receptor protein kinase activity 0.003
integrin binding 0.016

protein tyrosine kinase activity 0.002
G protein-coupled receptor binding 0.02

transmembrane receptor protein
tyrosine kinase activity 0.006

protease binding 0.004
cytokine binding 0.035

PDZ domain binding 0.06
transmembrane transporter binding 0.021

amyloid-beta binding 0.016
signaling adaptor activity 0.009

collagen binding 0.06
GDP binding 0.016

virus receptor activity 0.068
exogenous protein binding 0.068

ephrin receptor binding 0.029
G protein activity 0.013
calmodulin binding 0.019

cell-cell junction organization 0.002
receptor-mediated endocytosis 0.002

cell-matrix adhesion 0.002
regulation of cell-substrate adhesion 0.002

cell-cell junction assembly 0.006
cell-substrate junction assembly 0.002

cell-substrate junction organization 0.002
regulation of protein localization to membrane 0.005

regulation of phosphatidylinositol
3-kinase/protein kinase B signal transduction 0.002

focal adhesion assembly 0.003
positive regulation of phosphatidylinositol

3-kinase/protein kinase B signal transduction 0.002

Table 5.3: Fisher tests results for each GO and KEGG term with Benjamini-Hochberg
correction (number of tests = 60) with respect to intestinal proteins only (HPAIntes-
tine filtered).
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GO/KEGG Term
Fisher Test’s
p-value after

BH correction
regulation of protein localization

to cell periphery 0.004

establishment or maintenance of cell polarity 0.013
substrate adhesion-dependent

cell spreading 0.007

vesicle-mediated transport in synapse 0.004
integrin-mediated signaling pathway 0.002

regulated exocytosis 0.008
regulation of exocytosis 0.004

regulation of cell-matrix adhesion 0.006
regulation of epithelial

cell migration 0.002

Proteoglycans in cancer 0.002
Focal adhesion 0.004

Rap1 signaling pathway 0.005
Axon guidance 0.007

Regulation of actin cytoskeleton 0.003
Ras signaling pathway 0.006

Adherens junction 0.013
Endocytosis 0.005

MAPK signalling pathway 0.003
Leukocyte transendothelial migration 0.02

Tight junction 0.053
Phospholipase D signaling pathway 0.006

Chemokine signaling pathway 0.051
Fc gamma R-mediated phagocytosis 0.028

EGFR tyrosine kinase inhibitor resistance 0.018
Human papillomavirus infection 0.016

Relaxin signaling pathway 0.038
Platelet activation 0.104

Human cytomegalovirus infection 0.013
Fluid shear stress and atherosclerosis 0.01

Table 5.4: (Continued) Fisher tests results for each GO and KEGG term with Benjamini-
Hochberg correction (number of tests = 60) with respect to intestinal proteins only
(HPAIntestine filtered).
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5.4 Discussion

The human microbiome is a complex system with a broad influence on our mood,
dietary habits, health and incidence and progression of multiple diseases, including neu-
rodegenerative ones. The interplay between gut and bacteria can involve a wide range of
molecular mechanisms, one of them potentially involving bacterial functional amyloids.
The structural similarity of microbial amyloids to pathological ones could lead to a two-
step mode of action of these proteins. In line with the Braak hypothesis for Parkinson’s
disease, they could serve as triggers of pathological aggregation in the enteric nervous sys-
tem via direct protein-protein interactions occurring in the colon neurons. The pathology
could then spread to the brain and central nervous system through the vagus nerve [91].
Due to mechanisms of molecular mimicry, bacterial functional amyloids could activate
the same molecular pathways as pathological amyloids and, for example, affect the im-
mune system [103]. This is further supported by the fact that both types of amyloid have
already been discovered to activate Toll-like receptors and signal inhibitory receptors in
leukocytes 1 (SIRL-1) [104].

This part of the thesis focused on providing an overview of bacterial functional amy-
loids in the human microbiome and their potential impact on neurodegeneration. Previous
studies often discussed theoretical considerations or experimental analyses of a single mi-
crobial amyloid. Here, the analysis of multiple available microbiome datasets and related
predictions was conducted to provide the atlas of bacterial functional amyloids and their
potential interactions with human proteins.

The search for potential bacterial functional amyloids in the human microbiome with
homology methods provided a wide range of sequences in seven different bacterial phyla.
Such proteins turned out to be more abundant in the microbiomes of Parkinson’s disease
patients than in healthy controls for all three considered metagenomic datasets. No such
observation was made for either Alzheimer’s disease datasets or Cryptococla meningitis,
the latest also involving brain inflammation but not the presence of amyloid plaques.
Despite that, a greater abundance of CsgA protein homologs seemed to be universal for
samples from neurodegenerative patients. It was found for two out of three Parkinson’s
disease datasets, the Alzheimer’s disease dataset, but not for the Cryptococla meningitis
one. This gives the CsgA protein a special place in this discussion.

CsgA proteins have been shown to interact with both α-synuclein and Aβ-42 [271,
98, 240]. Furthermore, CsgA inhibition reduced neuronal death in Caenorhabditis elegans
[98]. Curli proteins, similarly to Aβ, have a pathogen-associated molecular pattern that
leads to the activation of immunological pathways [272]. Both amyloids are recognized by
toll-like receptors (specifically, TLR2 / TLR1 immune sensor-receptor system) responsible
for inflammation regulation [273]. Based on this evidence, the observed greater abundance
of homologs of CsgA protein alone in samples from patients with Alzheimer’s disease could
be a promoter of inflammation, cytokine release, increased intestinal permeability and,
consequently, of the onset and progression of neurodegeneration.

Identified bacterial functional amyloids (UHGPAmyloids) could have room for inter-
action with human proteins. The predictions of cellular localization of these proteins
revealed a 20-fold more frequent occurrence of extracellular proteins than in the case of
other bacterial proteins. Our limited knowledge of bacterial functional amyloids could be
biased toward extracellular examples of these proteins, leading to this result. Even if so,
many of the known and predicted bacterial functional amyloids are likely to interact with
the extracellular environment and, consequently, with the human protein interactome.
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Analysis of predicted protein-protein interactions revealed that intestinal bacterial
functional amyloids could affect the functioning of multiple human proteins, including
those responsible for endocytosis and exocytosis, signaling, and cell transport. The high
incidence of CsgAB amyloid proteins in Proteobacteria could be the reason behind the
pro-inflammatory properties of this bacterial group, as their populations are increased in
Parkinson’s disease, type II diabetes, and Alzheimer’s disease [274, 275, 276]. Interestingly,
according to the performed computational analysis, bacterial functional amyloids could
also be present in anti-inflammatory bacteria, such as Lactobacillus and Bifidobacterium,
which have clinical applications. Although the number of amyloid proteins identified in
these groups was low, it could still be important in the cases of increased gut permeability.

The computational analysis revealed that bacterial functional amyloids, as pathologi-
cal ones, could interfere with cell junctions. The negative impact of protein aggregation on
epithelial cell integrity was previously discussed [41]. Human amyloids such as α-synculein,
Aβ-42, tau and apolipoproteins can downregulate the expression of tight junctions that
are responsible for the impermeability of the blood-brain barrier. [41, 42, 43] Analogously,
the abundance of bacterial functional amyloids could have an unfavourable effect on gut
permeability.

The presented results point to potential pro-inflammatory properties of intestinal bac-
terial functional amyloids. According to the predictions, they could interact with human
proteins involved in chemokine signaling and leukocyte migration. Bacterial functional
amyloids appear to be able to interact with integrin and calmodulin-binding proteins,
which may have a neurotoxic effect.

The study showed that bacterial functional amyloids in the human gut microbiome
have a great potential to play an important role in the gut-brain axis. The changes ob-
served in the functionality of the microbiome in Parkinson’s disease patients could be
related to the different compositions of the microbiome, which may be characterized
by an increase in bacterial species expressing functional amyloids. As a result, a pro-
inflammatory positive feedback loop may appear. Abundant intestinal bacterial functional
amyloids could affect the immune system and interact with tight junctions, leading to
greater gut permeability. The greater permeability, on the other hand, could enable func-
tional bacterial amyloids to penetrate the epithelial barrier and promote inflammation.
The structural similarity of bacterial functional amyloids gives them the room to interact
with pathological amyloids, such as α-synuclein, potentially triggering their aggregation
in the enteric nervous system. Pathological aggregation could spread in a prion-like man-
ner between the vagus nerve and then the brain, as suggested by Braak’s hypothesis.
The potential route of interactions discussed here, supported by a wide-scale computa-
tional analysis, sheds light on the clinical significance of these proteins, which still requires
further in vivo experiments. This makes the last hypothesis of this work that bacterial
functional amyloids in the human intestine may influence neurodegeneration accepted,
and the corresponding goal to computationally identify bacterial functional amyloids in
the human gut proteome and their potential interactions with human proteins realized.

Results presented in this chapter are available as a preprint: Wojciechowska, A.
W., Wojciechowski, J. W., Zielinska, K., Soeding, J., Kosciolek, T., Kotulska, M. (2024).
Aggregating gut: on the link between neurodegeneration and bacterial functional amyloids.
bioRxiv. Submitted to the journal.

86



Discussion and conclusion

6.0.1 Discussion
The medical and social revolution of the past century has completely changed our life

expectancy. Unfortunately, the longer we live, the more likely we are to experience a loss of
cognitive ability that may cast a shadow over the autumn of our lives. Neurodegenerative
diseases and dementia pose a significant burden on the quality of life of millions of seniors
and their families around the world, estimated to cost billions of euros each year only in
Europe [277]. However, no effective treatment is available for these disorders.

Alzheimer’s and Parkinson’s disease are the most common neurodegenerative disor-
ders. Both diseases are characterised by amyloid deposits, which are present in the brains
of the patients. Amyloids are proteins or peptides that can form insoluble beta-sheet-rich
regular structures via the aggregation process. Their presence in the course of neurode-
generation is found to be a hallmark of the disease. Hence, for decades, our neurode-
generation research focused on a few cases of amyloid proteins, such as Aβ, α-synuclein
and tau. Although multiple studies pointed toward these proteins, exploring other scien-
tific endeavours could shed new light on our understanding of these disorders. Therefore,
studying the understudied in neurodegeneration was the main motif of this thesis.

We started by discussing the application of protein-protein interactions in neurode-
generation research. Protein-protein interaction systems are widely used to provide an
overview of the disease process, identify molecular mechanisms underlying it, and pro-
pose drug targets. Their common representation as graph objects gives solid ground for
the mathematical evaluation of such objects. The topological analysis of these systems was
hypothesized to provide a new view of the molecular mechanisms of neurodegeneration.

The detailed analysis of three datasets of protein-protein interactions, regarding Parkin-
son’s disease, cancer, and the entire human interactome, revealed that our scientific in-
terests pose a significant bias on the available data. In consequence, a reliable and large-
scale biological interpretation of such interactomes may not be possible. Chapter 2 showed
that investigation of the topology of a protein-protein interaction network, which includes
studying its centrality metrics, clusterisation, robustness, and performing failure cascade
simulation, is strongly related to how the data were gathered. The disease networks,
Parkinson and Cancer ones, were both built based on the literature. This had significant
consequences, as the systems did not appear to be a random sample of the disease inter-
actomes, but instead were biased in directions of the scientific interests. Therefore, it was
suggested that the interpretation of such protein-protein interaction networks should be
treated with caution. In consequence, the first hypothesis that Exploratory topo-
logical analysis of available protein-protein interaction datasets can provide
a new perspective on neurodegeneration was not accepted.

A set of topological metrics was provided to help other researchers assess the qual-
ity of their protein-protein interaction networks. Investigation of the degree distribution
should help identify how impactful the hubs are. Testing how their removal decomposes
the network and how quickly the error propagates in the network, when the hubs are
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the starting points, gives an idea of their importance in the network system. Having
similarly important hubs as in Parkinson network, one may suspect potential interest
bias towards certain proteins which stand behind the network topology. On the other
hand, the relatively low hubs’ importance and low network clusterization, as in the case
of the Human Reference Interactome (HuRI ), suggest that some data in the network
may be missing. The applied topological analyses were encapsulated in one easy-to-use
Colab notebook (an online programming environment) with a graphical user interface to
help others in the quick topological analysis of their networks. Hence, the first goal
to assess the quality of the real-world protein interaction networks through
topological analysis and identify if the topological analysis can shed new light
on disease mechanisms was realized.

The interest biases ruling the neurodegenerative studies were also observed in the
graph of amyloid interactions, Amylograph [65]. Amyloid proteins can affect the rate of
aggregation of one another and can even form fibrils that consist of both types of proteins
[96]. Amyloid interactions are considered to play an important role in the comorbidity
of amyloid-related diseases. However, the amyloid interaction network is also biased by
community interests. The majority of links refer to the famous Aβ-42 peptide, related to
Alzheimer’s disease, while other amyloid proteins were not studied in this context at all.

Our data on neurodegeneration focus on the proteins of greatest interest for scientists.
Although such proteins might be the most important ones for systems, it does not have
to be so. Chapter 2 demonstrates that, so far, we have not obtained the full picture of
neurodegeneration, and investigation of other topics could shed new light on the pathology
of the disease. This motivated all the following chapters, which focused on microbiome-
related bacterial functional amyloids.

The growing amount of research gives evidence that the microbiome plays a crucial
role in our health. Our intestinal bacteria produce a wide variety of molecular entities that
interact, among others, with our immune system, shaping our response to the environment.
Multiple studies have shown that the microbiome of neurodegeneration patients and their
healthy controls differs in taxonomy and related functionality of the bacteria.

One of the potentially interesting, though understudied, routes of gut-brain interac-
tions points to microbial amyloids. These proteins are crafted by evolution to produce
amyloid fibrils similar to those of pathological amyloids. The presence of pathological
amyloids, such as α-synuclein or Aβ-42, is often cytotoxic. Functional amyloids, including
microbial amyloids, form fibrils that the cell uses, for example, to protect itself from the
environment. The similarity between pathological and functional amyloids prompted an
interesting discussion about their role in neurodegeneration.

It was suggested that microbial amyloids could be able to activate similar undesired
molecular pathways as pathological amyloids and interact with pathological amyloids,
promoting their aggregation in the enteric nervous system, particularly in the case of
Parkinson’s disease due to molecular mimicry. The molecular studies provided evidence
for the rationale of this hypothesis. However, they often focused on a certain group of
microbial amyloids, not investigating them from a wider proteome-level perspective, which
could give a large-scale view of the role of these proteins in neurodegeneration.

The knowledge of bacterial functional amyloids was dispersed in the literature. Hence,
the first result of Chapter 3 is a dataset of these proteins based on meta-analysis. Indeed,
such a dataset can also be biased by scientific interests, similarly to protein-protein in-
teraction data, but bacterial functional amyloids are themselves an understudied topic in
neurodegeneration, which should be enough to provide new insights.
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The detailed analysis of the proteins in the dataset of bacterial functional amyloids
revealed that many of the known examples of these proteins are related to biofilm for-
mation, although cases of proteins with other functionalities, for example, DNA or RNA
binding, are also present.

The sequence analysis of the dataset of bacterial functional amyloids focused on tan-
dem repeats, regions of repeated sequences of amino acids in the protein sequence. We
observed that bacterial functional amyloids are enriched in repeated regions. The repeats
were often imperfect and consisted of a rather small number of units. They also had a
specific amino acid profile. The simulations revealed that changing repeat characteristics
in a protein potentially changes the stability of the fibril. The discovered characteristics
of the repeats suggested that the occurrence of repeats in bacterial functional amyloids is
not accidental. Repeats in different proteins often mediate various interactions inter- and
intra-protein interactions [278]. Bacterial functional amyloids are no exceptions to this
pattern. It seems that the repeated regions are not necessarily the drivers of the aggre-
gation, but rather their regulators. The presence of repeated regions introduces multiple
symmetric interactions in the protein structure, allowing better control of the aggregation.
Multiple symmetrical interactions should also impact interactions of bacterial functional
amyloids with other proteins, as repeated motifs are often stabilizing the heterocom-
plexes [278]. As a result, the second hypothesis that sequence tandem repeats
influence the aggregation of bacterial functional amyloids was accepted, and
the corresponding goal to examine the role of tandem repeats in bacterial
functional amyloids was realized.

It can be argued that the enrichment of the specific types of repeats in bacterial
functional amyloids could be related to a low number of known such proteins. Even if it
is the case, identification of the repeats in a newly discovered microbial amyloid should
provide insight into the aggregation mechanism, as repeats are likely to interfere with
fibril formation.

Bioinformatics analysis of a protein is not complete without structural information.
AlphaFold revolutionized protein structure prediction, allowing fast and accurate mod-
elling. Given this spectacular breakthrough, the hope to predict, with this tool, amyloid
fibrils for bacterial functional amyloids arose. In Chapter 4, AlphaFold was tested on a set
of examples of amyloid proteins revealing that it is still not capable of predicting amyloid
fibrils. The main reason for the problem was a low abundance of fibrillar structures in
the PDB. When AlphaFold deals with an amyloid protein, it often prefers to produce a
globular structure similar to a seen homolog during the training and give it a high score,
instead of predicting a fibrillar model which does not resemble the training examples.
Some improvement in the performance was observed for shorter sequences. As the re-
sults were rather disappointing, the third hypothesis that structure of fibrils
of bacterial onal amyloids coids can be predwithd with AlphaFold 3 was re-
jected. The third goal to investigate AlphaFold 3 performance on amyloid
proteins, including bacterial functional amyloids was realized.

We discussed the potential clinical relevance of bacterial functional amyloids in the
human gut microbiome in neurodegeneration as the final step of the analysis of these pro-
teins. To search for bacterial functional amyloids in the human gut microbiome proteome,
a pipeline for a proteome-wide screen based on the identification of homologs of known
bacterial functional amyloids and amyloid predictors was proposed. With this method,
805 potential microbial amyloids were found in the microbiome proteome. Compared to
the total number of microbial genes in the human gut microbiome, this number may seem
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modest. However, the search was limited by our current knowledge of bacterial functional
amyloids and amyloid predictors, which were trained on pathological amyloids. Conse-
quently, multiple microbial amyloids were probably missed. In the light of these facts,
the 805 identified bacterial functional amyloids, which were homologs of only 38 proteins,
seem to be a reasonable number.

The predicted bacterial functional amyloids spanned the bacterial tree of life, reaching
beyond the bacterial species known to produce functional amyloids. This highlights that
the universe of bacterial functional amyloids is larger than we might suspect. The abun-
dance of bacterial functional amyloids was shown to be larger in the case of metagenomic
samples from patients with Parkinson’s disease than in healthy controls. In the case of
Alzheimer’s disease, the overall abundance of functional bacterial amyloids in patients was
not significantly different from that of the controls. However, the abundance of homologs
of a specific bacterial functional amyloids, CsgA, was different in the case of patients with
Alzheimer’s disease and Parkinson’s disease.

The analysis of samples from patients with neurodegeneration demonstrates that not
only are bacterial functional amyloids widely present in our microbiome, but they also
seem to correlate with the state of the disease. To propose the mechanism of influence
of bacterial functional amyloids on human health, their interactions with human proteins
were predicted. Multiple molecular pathways are suspected to be affected by bacterial
functional amyloids, primarily including the inflammatory response, but also transport,
cell signalling, and cell junctions. Although we evolved to live with microbes and tolerate
them, in the course of neurodegeneration that is often accompanied by intestinal dysbiosis,
the ability to interact with our immune system by bacterial functional amyloids could have
a further negative effect on our health. Bacterial functional amyloids could also affect the
rates of aggregation of pathological amyloids in the enteric nervous system and hence play
an important role in the onset and progression of neurodegeneration. Therefore, the
fourth hypothesis that bacterial functional amyloids in the human intestine
may influence neurodegeneration was accepted, and the corresponding goal
to computationally identify bacterial functional amyloids in the human gut
proteome and their potential interactions with human proteins was realized.

6.0.2 Conclusion
Our scientific interests shape our view of biological processes. As trivial as it may

seem, life is a complex thing, and our models are as good as the data that we have. At
this point, our data about biology is biased. We gather more knowledge about processes
that interest us and less about the unpopular ones. As a result, we do not learn about all
aspects of biology in the same uniform way; to do so, we would have to choose the topics
that we study in a random way. Only then would our knowledge be a uniform sample of
the biology that remains behind. Such unbiased data could lead to better generalisation
of biology and unveil novel yet unexplored ideas and solutions. However, it is only a
purely theoretical concept, as convincing a scientist (and funders) to randomly pick a
topic instead of the most fascinating or promising one is against human nature. Maybe,
with the rise of artificial intelligence capable of doing science, this would be possible, but
still, the limitation of financial resources would remain.

The neurodegeneration research suffers from the problem of biased data, which is a
consequence of our interests. We know a lot about a couple of pathological amyloids, as
they are prominent hallmarks of the disease that caught our attention. As important as
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they are, focusing on pathological amyloids reduces our chances of finding novel, promis-
ing directions, which are needed, as currently, no cures for Alzheimer’s and Parkinson’s
diseases are known. Choosing to study bacterial functional amyloids in this thesis and
their role in neurodegeneration was also biased by scientific interests. However, it seems
that any step away from the beaten track can give us a new perspective on the biology
of disease, and in this case, on neurodegeneration.

Exploring the characteristics of bacterial functional amyloids was largely limited by
the scarcity of data about them. The 38 examples of bacterial functional amyloids do
not seem to be a lot to uncover general trends about these proteins. However, detailed
analyses revealed an interesting characteristic of the frequent sequence repeats that could
regulate their aggregation. The low abundance of data was particularly problematic in the
case of structure prediction. Because AlphaFold was trained on mostly globular proteins, it
struggles to differentiate when an amyloid fold should be predicted and when not. Despite
that, with the analysis we could understand that globular models for amyloid proteins are
related to the AlphaFold problem with predicting different folds for homologous proteins.
Estimating the scale of bacterial functional amyloids in the microbiome was difficult, as
few examples are known, and amyloid predictors do not adjust to such proteins. In spite
of this, we could see that bacterial functional amyloids are more common than expected
in the microbiome, relate to the disease, and due to mechanisms of molecular mimicry
can have negative effect on neurodegeneration.

Computational analyses are fueled by experimental data. By studying bacterial func-
tional amyloids, we clearly see that we still lack experimental methods to perform large-
scale studies on amyloid proteins which limits our development of bioinformatics methods.
As the data regards only pathological amyloids, computational methods mostly focus on
these proteins as well, helping to study the pathological amyloids more. This leads to
the interest loop that may be broken by high-throughput technologies which could guide
the discovery of novel amyloid sequences and structures, and not only aggregation-prone
regions, across different proteomes and push research forward in the future. Until this hap-
pens, this thesis demonstrates that studying even the scarce data on a seemingly niche
topic can give a new and valuable insight for the broader context of human diseases. It
seems that at this point our knowledge of biology is highly concentrated around our sci-
entific interests. Such topics are well-studied and deepen our understanding of molecular
mechanisms. But at the same time they are our local minima that do not allow us for
full exploration of the biological landscape. To cross these knowledge barriers, we need to
step into a new era of studies that focuses on large-scale and high-throughput methods
that may eliminate the biases that we see in our biological data. And this is taking place
on our eyes...
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and Andreas J Bäumler. Responses to amyloids of microbial and host origin are
mediated through toll-like receptor 2. Cell host & microbe, 6(1):45–53, 2009.

103



References Faculty of Fundamental Problems of Technology

[107] Glenn J Rapsinski, Meghan A Wynosky-Dolfi, Gertrude O Oppong, Sarah A Tursi,
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[110] Oscar Conchillo-Solé, Natalia S de Groot, Francesc X Avilés, Josep Vendrell, Xavier
Daura, and Salvador Ventura. Aggrescan: a server for the prediction and evaluation
of” hot spots” of aggregation in polypeptides. BMC bioinformatics, 8:1–17, 2007.

[111] Rafael Zambrano, Michal Jamroz, Agata Szczasiuk, Jordi Pujols, Sebastian Kmiecik,
and Salvador Ventura. Aggrescan3d (a3d): server for prediction of aggregation
properties of protein structures. Nucleic acids research, 43(W1):W306–W313, 2015.

[112] Abdullah B Ahmed, Nadia Znassi, Marie-Thérèse Château, and Andrey V Kajava.
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