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Agnieszka Wyłomańska, PhD, DSc, Professor WUST

Assistant Supervisor:
Joanna Janczura, PhD

Wroclaw, September 2022





Politechnika Wrocławska
Wydział Matematyki

Katedra Matematyki Stosowanej

Rozprawa doktorska

Zastosowanie procesów stochastycznych do
modelowania czynników ryzyka rynkowego
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Chapter 1

Introduction

Market risk factors forecasting is one of the most difficult tasks which has to be conducted by a

company in the face of a current volatile and globalised financial world. Depending on the profile

of the company, it may deal with commodity risk, foreign exchange risk, interest rate risk and

equity price risk. There is wide range of methods which can be used for forecasting, but they

should be well fitted to the purpose of their applications.

The probability of forecasting market risk prices without any errors in the longer horizon is

close to zero, therefore determining price assumptions rather as ranges or probability distributions

than single forecasts seems to be an effective way to address the high volatility of the market risk

as well as a concept which enables a company to be able to prepare better not only for base case

scenario but also for the range of more pessimistic or optimistic scenarios.

While stochastic modelling of market risk prices is a very useful tool, which allows for the

simulation of future price distributions, it requires a proper understanding of market risk factors

dynamics, which in turn enables selection of an appropriate model and its correct calibration and

estimation. Traditionally, advanced methods of forecasting and modelling prices have been used

in financial sector. However, an increasingly dynamic financial environment has begun to spur

industrial companies to start implementing it as well.

One of the business areas which is very unique in terms of characteristics, impact and scale of

market risk is the mining business. Mining companies are exposed mainly to commodity prices

(metals and energy), exchange rates and interest rates. What makes this risk exposure exceptional

is the fact that the sensitivity of production and financial plans of the company to market risk is far

larger than in other business areas. Moreover, the business and investment plans of mining com-

panies are usually of a multi- year nature. Hence, correctly assessing market risk prices behaviour

has an enormous and fundamental impact on a company’s strategic, technical and financial plans.
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The higher volatility of market risk factors, time-inhomogeneous and non-Gaussian charac-

teristics, means that classical processes used for stochastic modelling may not ideally reflects the

properties of market data. In order to accommodate the above caveats, we propose in this the-

sis novel models and methods which could improve the quality of modelling and consequently

improve the entire market risk management process.

The dissertation is organised as follows. Chapter 2 presents the foundational motivation be-

hind this doctoral thesis and describes problems, which could be addressed or solved if the results

of the study are applied. Chapter 3 contains a summary of published research articles related to

forecasting and modelling market risk factors, with special attention to metals prices. The final

section describes author’s contribution to the field and lists all publications which serve as refer-

ence material to the thesis of the work. Chapter 4 is focused on modelling metals prices, with

primary emphasis on the non-Gaussian behaviour and time-inhomogeneous character of data, as

well as changes of regimes. Chapter 5 describes the CKLS/SGT model applied to modelling cur-

rency exchange rates. This model has been also used for presenting and addressing the problem of

the calibration data length used for the prediction. Chapter 6 should be treated as an introduction

for multidimensional view on a given problem. In this part we have proposed a two-dimensional

VAR model with the 𝛼−stable distribution that reflects the changing dependence structure of the

analysed assets. Chapter 7 presents a product of two components for a two-dimensional time se-

ries. The theoretical results are applied to the energy market case study. Chapter 8 summarises the

thesis and shows potential applications of the methods proposed in previous chapters for market

risk management.

The presented doctoral dissertation has been prepared as a part of the Implementation Doctor-

ate Programme in cooperation with KGHM Polska Miedź S.A. Given the fact, that the market

risk factors modelling can be used by any manufacturing company, consideration of the results

presented in this thesis may have wider business application.
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Chapter 2

Problem formulation

A production company, whose financial results to a large extent depend on market prices, is obliged

to properly manage its exposure to the risk of fluctuations of these prices. Market risk management

has become a fundamental element of the corporate strategy and a source of enhancing a company’s

value. Effective risk management primarily involves identifying, measuring risk and deciding on

the scale of risk acceptance, as well as the use of risk mitigating instruments.

KGHM Polska Miedź S.A. (KGHM) is a company active in the mining business, where the

aforementioned properties are in an enhanced way valid. Based on uncertain metals prices and

currency rates assumptions, multiyear technical and financial plans are prepared, investment de-

cisions are undertaken and liquidity risk is managed. Market risk factors which have the greatest

impact on the KGHM’s financial results are: the copper price, the silver price, energy prices and

exchange rates (especially USDPLN).

One of the key steps in the market risk management process in KGHM is risk measurement,

which in some way quantifies the size of the company’s current exposure to risk and helps to

answer the question of whether this exposure is optimal for the company in the context of the

current, external market conditions and the internal situation or the long-term plans of the company.

Correctly calculated risk measures are also used to estimate the impact of the company’s potential

actions aimed at shaping the desired risk profile. Such actions include using natural hedging or

actively managing the derivatives portfolio and preparing simulations of future financial results as

support for the market risk management process.

Calculating such risk measures as Earnings-at-Risk, Cash-Flow-at-Risk or Net Debt / EBITDA-

at-Risk among others, requires generating numerous paths of market risk factors. Simulation

utilises probing from a predetermined predicted probability distribution. For this reason it is ex-

tremely important to choose an appropriate model on the basis of which the distribution is created,
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especially when the market environment is constantly changing. In the scenario generation stage,

it is necessary to use stochastic models to simulate market variables of up to even a 5-year time

horison. Modelling market risk factors for such a long period is complex, and the literature on this

issue is limited.

For modelling purposes KGHM has been assuming that the prices of metals (copper and sil-

ver) follow the dynamics of the Schwartz model for commodities (geometric Ornstein-Uhlenbeck

process). It is a model commonly used in commodity markets, and often the forward curves show

a similar shape to the expected value of this model. It has desirable properties such as a return to

the mean and a stabilising variance in the long term. In the case of the USDPLN exchange rate

simulation, an assumption has been made about the dynamics of this exchange rate in accordance

with the standard Black-Scholes model (geometric Brownian motion).

The objective of this dissertation is to focus on analysis and selection of stochastic pro-
cesses used in the simulation process which could better address properties of market data.

Areas of potential improvements are grouped below:

1. Financial variables are characterized by non-Gaussian distributions and some authors

stressing that assuming the Gaussian distribution of the prices in modelling is inappropriate. The

reason for this is that very often extreme events in financial markets occur more frequently than

expected and their deviation from mean or median is far bigger than is by definition assumed

in Gaussian distribution. Thus, in the literature, many researchers have proposed to apply the

modification of the classical models by using processes different from the Brownian motion as the

noise.

2. Additionally, a continuously changing macroeconomic situation means that financial data

are not stable over time, which in other words can be defined as their having an in-homogeneous

character. The implication of this is that a model with constant coefficients could be inappropriate

to model data with a time-dependent mean and time-dependent scale parameter (in particular vari-

ance). Therefore, one can find in the literature different modifications of the classical stochastic

processes by taking, instead of the constant, the time-dependent coefficients. However in the lit-

erature there is small number of examples showing how the above-mentioned characteristics could

be applied to market risk factors modelling, especially in the longer horison.

3. Another important phenomenon that should also be addressed, based on a non-homogeneous

nature in financial data, is the change of price regimes. The regimes captured by regime-switching

models very often correspond to fundamental changes in specific markets. In empirical analysis

this means that volatilities, autocorrelations, and cross-covariances of asset returns very often dif-

fer across regimes, which allow regime-switching models to properly capture the dynamics of
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financial series (especially for commodity prices). In modelling market risk factors based on long

term data history, the ability to recognise and apply the change of regimes can be of benefit rather

assuming that the whole data history represents one modelling structure.

4. One of the most important problem in stochastic modelling can be formulated as follows:

how to properly model the distribution or range of values for an asset which is a combination
of two (or more) other assets. In the previously mentioned context of market risk management

in a mining company, the problem can be formulated as the modelling of the range of values for

the metal price expressed in the currency of a given country. In the one-dimensional modelling

approach, it can be simply analysed as a product of two independent processes (metal price and

exchange rate), while in two-dimensional models (such as the vector autoregressive model) the

relation between these two assets is also included.

The situation becomes more complex when the relation between the metal price and the ex-

change rate (two assets) is changing over time. Where that relation, over time, to turn out to

be apparent or unstable, it could lead to misleading conclusions and, as a consequence, wrong

decisions in market risk management or more generally business process. Moreover, although

including the above-mentioned properties, as non-Gaussian and time-inhomogenous behaviour of

assets, makes such multidimensional modelling even more complex, nevertheless this can improve

the quality of the market risk factors modelling and more adequately measure the market risk level

for a company.

5. Finally, when using stochastic processes, one additional question very often appears, namely

how to choose the appropriate length of historical data for stochastic modelling. The most

common approach to the process of forecasting is to choose all of the available historical data and

then calibrate the forecasting model on the selected sample and predict future values. The length of

the historical data sample is most often chosen in an ’ad-hoc’ fashion. It has been however shown in

the literature on short-term forecasting that by using various approaches, forecasting errors can be

significantly lowered. The first popular method used here involves averaging predictions obtained

from different models calibrated to the same historical data sample. Another technique that brings

gains in terms of forecasting accuracy involves averaging forecasts obtained from the same model

but calibrated to historical samples of different lengths. The above-mentioned approaches have

been proved to be effective and extensively used in the context of short-term forecasting but the

problem of the optimal calibration sample length selection remains practically overlooked when it

comes to long-term modelling.

The motivation for this thesis is to propose potential improvements to stochastic processes
used for modelling which could address the problems described above and, in consequence,
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improve the quality of the modelling process.These problems are not entirely new, but consider-

ing them in the context of a company active in the mining business adds an additional dimension

to the discussion.
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Chapter 3

State of the art

This chapter summarises the important theory and research direction in the considered field of

modelling market risk factors.

3.1 State of the art

Advanced mathematical modelling is required for forecasting market risk factors distributions and

simulating prices scenarios, which is an integral part of the market risk measurement process. A

wide variety of forecasting methods are available and it is worth stressing that there is no single

model which is universally applicable. As some authors suggest, it is even desirable to use different

forecasts under diverse sets of assumptions so that the results can be compared under alternative

scenarios [1].

3.1.1 Market risk forecasting methods

Although methods based on the continuous- and discrete-time processes seem to be appropriate for

market risk price modelling, one can find many different approaches considered for this problem.

As commodities prices are one of most important from KGHM’s point of view, our review is based

on this class of market risk factors; however it can be generalised to apply to other market risk

factors. The methods proposed in the literature to commodities price forecasts, in general, divided

into a few groups: qualitative, trend-based, econometric, stochastic processes- and time series-

based. One can also find a modern approach where machine learning techniques are applied [2–5].

Various combinations of these methods are also considered in [6–11]. For more details, it is worth

mentioning, for instance, to the review the article [12].
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In the econometric approach, most of the research is based on the relationship between mar-

ket prices and economic factors, and functions under the assumption that supply and demand are

fundamental drivers of economic growth and price balance. The dependence between price and

economic factors is the basis for the economic models. This approach is, for instance, demon-

strated in [13–15], where the similarity between the price movements for different commodities

was discussed. The econometric-based methods were also proposed in [16, 17].

In the stochastic-based approach for market price modelling, Gaussian-based models have

mainly been discussed. The authors argue that predicted market prices based on the stochastic

approach are a result of a widely held conviction that market fluctuations have random sources

[12, 14, 18]. The commonly-used stochastic models for the commodity price modelling are ordi-

nary Brownian motion, geometric Brownian motion, and mean reversion models, like the Vasicek

model or its extension for the non-constant coefficients. In the following papers various Gaussian

stochastic processes are applied for the commodity price modelling [19–25]. In the next section,

stochastic models discussed in the literature in the context of modelling market risk prices are

described in a more comprehensive way.

The time series-based approach was presented, for instance, in [10, 26, 27] where the authors

proposed the autoregressive moving average (ARMA) models for a real commodity price. More-

over, in [10, 26, 27] more complicated time series models were applied, such as autoregressive

conditional heteroscedastic (ARCH), the generalized ARCH (GARCH), or the autoregressive inte-

grated moving average models (ARIMA). The error correction model was proposed in [28], while

the unequal-interval contour lines and contour time sequences filtration was discussed in [29] to

predict the metal price. Finally, the improved wavelet–ARIMA time series is presented in [30] for

commodity price modelling. Similarly to the stochastic processes-based approach, as well as in

time series modelling, the researchers depart from the assumption of Gaussianity and propose a

heavy-tailed class of distributions [31].

On the border of time series-based and econometric approaches there are multidimensional

time series models. On the one hand, multidimensional systems can describe the dependence

between varied factors, while on the other hand they take into account the possible dependence

in time within one single process. The most classical multidimensional time series is the class of

vector autoregressive (VAR) models. In [16, 17, 32] the multidimensional modelling of commodity

prices and the financial markets in two countries was considered. This method is discussed in more

detail in the following section.
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3.1.2 Stochastic processes used for modelling market risk prices

The analysis of real data by using continuous-time models is based on the discrete-time approxima-

tion of the theoretical stochastic processes. This approach seems to be more effective, especially in

modelling long-term market risk prices. One of the classical continuous-time stochastic processes

used in the financial data description is the Ornstein-Uhlenbeck model introduced by Uhlenbeck

and Ornstein [33] as the appropriate system for the velocity in the classical Brownian diffusion.

The Ornstein-Uhlenbeck process, known also as the Vasicek model [34], was one of the earliest

stochastic systems of the term structure. It exhibits the mean reversion property which indicates

that, over time, the process tends to its long-term mean. This pattern is definitely visible in the

commodity price data [23, 35], where the supply-demand relation should stay in balance in the

long term. Some authors also use such an assumption for currency modelling [36, 37].

Non-Gaussian distributions

However, some researchers voice the opinion that classical stochastic models are inappropriate for

commodity and, also more generally, for financial price description as they do not take into account

possible large observations apparent in market data. In [12, 38] the authors stressed that assuming

the Gaussian distribution for modelling market prices is inappropriate as this is not characteristics

of financial data. Thus, in the literature, many researchers proposed a modification of the classical

Orstein-Uhlenbeck process by using process different from the Brownian motion one as the noise

[25, 39–43]. This approach can be also continued by applying in place of the ordinary Brownian

motion the process of stationary independent increments having skewed generalized Student’s t

(SGT) distribution, [44]. The class of SGT distributions contains many known distributions such

as Student’s t, Gaussian and Cauchy. Thus, it can be considered as the general class useful for

modeling light- and heavy-tailed data. Models based on the SGT distribution were used in mod-

elling of various phenomena, [45–48]. An interesting summary of non-Gaussian processes used in

the energy and commodities area can be found in [49], while the use of non-Gaussian models in

the exchange rates area is described in [50].

Time-dependent coefficients

Moreover, stochastic models, where it is assumed that the coefficients are time-dependent, are

becoming meaningful. These models are especially useful for data where a changing (in time)

mean and scale parameter (in particular variance) are apparent. The best-known examples of such

models that are especially useful in financial data description are Ho-Lee [51], Hull-White [52],
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Black-Derman-Toy [53] and Black-Krasinski [54]. One can find in the literature the techniques

used for the estimation of the time-dependent parameters of the stochastic models [55–59]. A

discussion about the use of time-dependent coefficients in exchange rates modelling can be found

in [60] whereas in the energy market in [61].

Changing of price regimes

Another important modelling feature is the fundamental changes of price behaviour character-

istics, captured by regime-switching models. In empirical analysis means, volatilities, autocor-

relations, and cross-covariances of asset returns very often differ across regimes, which allow

regime-switching models to capture properly the dynamics of financial series (especially com-

modity prices) including fat tails, heteroskedasticity, skewness, and time-varying correlations. Es-

pecially in modelling financial data, based on long-term data history, the ability to recognize and

apply the change of regimes is extremely important to better forecast potential price distributions.

In the literature, stochastic models are proposed that take into consideration the fact that the real

data behave differently for different periods. This is related to the so-called regimes’ switching be-

haviour [62, 63]. Interesting examples of such models, for financial data description, are presented

for instance in [64–66]. A regime switching approach can be also found in research which only

concentrates on a chosen asset class: energy [67, 68], metals [69], exchange rates [70, 71].

Multidimensional modelling

We have indicated in the previous section the VAR model as one of the methods used for metals’

forecasting. This classical multidimensional model is used in various applications, especially in

economy and finance [72–75]. The popularity of such models is related to the fact that on one hand

they can describe the dependence between various factors and, on the other hand, they take into

account the possible dependence in time within the one single process. There are many interesting

research studies devoted to the theoretical analysis of VAR time series, see e.g. [76, 77]. Generally,

the VAR model has been used in many different applications across asset classes. In the research

paper [78] VAR models have been used for forecasting WTI, Brent, natural gas and heating oil

prices. VAR models used for exchange rates modelling are proposed in [79–81].

Another approach to multidimensional modelling is analysing of time series (or general stochas-

tic process) being a product of other time series. This topic has been rarely discussed in the lit-

erature, but it seems to be interesting, especially from the practical point of view. In [82], the

basic statistics were discussed for time series being a product of two stationary models. In the

mentioned bibliography position, the author highlighted that the product time series is crucial in
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nonlinear time series analysis or in the theory of time series with random parameters. In [83] the

effects of algebraic operations were discussed, for example the product, on trends in time series.

An analysis related to the product of stochastic (time dependent) components is presented by [84],

where the authors discussed the product of stochastic iterated integrals associated with general

Lévy processes. It is also worth considering [85, 86] for other studies on the products of stochastic

integrals.

Particular emphasis in studying the interdependence of data is placed on the product of two

random variables that comes from the same class of distributions, see eg. [87–90]. In this case one

can find interesting approaches used in the analysis of the distribution and probabilistic properties

of the product random variable. Special attention is paid to a case where the two considered random

variables are Gaussian or Student’s t distributed, see e.g. [91–95] as well as [96–99].

One can also find other interesting cases in [100], where exponentially distributed random

variables are considered or in [101], where Dirichlet distributed random variables are examined.

For other references, see also [102–105]. Different classes of distributions are also considered

in the literature and the product of such random variables is analysed, see eg. [106–111] and

references therein. The theoretical results related to the product of random variables were used

in various applications, including finance, risk management, the economy, but also the physical

sciences, reliability theory, hydrology, and many others, see e.g. [112–120].

Optimal length of calibration data

The most common approach to the process of forecasting is to choose a sufficient portion of histor-

ical data and then calibrate the forecasting model on the selected sample and predict future values.

The length of the historical data sample is most often chosen in an ’ad-hoc’ fashion; usually the

authors decided to use as many historical values as possible. It has been however shown in the

literature on the short-term forecasting that by using various approaches, forecasting errors can

be significantly lowered. The first popular method involves averaging predictions obtained from

various models calibrated to the same historical data sample [121, 122]. Although it turned out

that the averaged forecast usually outperforms each individual prediction, this approach has not

resolved the problem of the optimal calibration sample length. Another technique that brings gains

in terms of forecasting accuracy involves averaging forecasts obtained from the same model but

calibrated to historical samples of different lengths [123–126]. The rationale behind this approach

is that, when calibrating the model to a longer sample, we capture the long-term trends whereas in

using a short calibration sample we take into consideration only recent, short-term price behaviour.
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3.2 Author’s contribution to the field

As was stated earlier, although there are variety of stochastic processes proposed by the literature,

there is a limited availability of research describing their use in the market risk factors modelling

process for business purposes.

In this thesis, we have been been focused on stochastic processes which can be used for mod-

elling prices in a horison adequate to the requirements of a manufacturing company or, more

specifically, a mining company. The proposed models also take into account the specific charac-

teristics of the financial market.

We have introduced new stochastic models with time-dependent parameters, regime-switching

and non-Gaussian, namely SGT, behaviour. Moreover, we have presented some theoretical prop-

erties of the analysed processes and described the step-by-step procedure of estimation of the

introduced new model’s parameters.

We have also considered the CKLS model based on the SGT distribution which exhibits non-

Gaussian behaviour. We have described the estimation technique for the model parameters and

checked its efficiency using Monte Carlo simulations. We also defined a new validation factor

useful in the selection of the appropriate model to real data.

Further, we have described the problem of the selection of the calibration window length of the

long–term prediction for the currency exchange rates data. We have proposed here a new averaging

approach. As a result we have concluded that the long term averaging of different models can give

better and more stable results in modelling exchange rates.

Moreover, we have examined the stability of the relation between two assets, namely metal

price and exchange rate, using different correlation metrics. Basing on the results, we have pro-

posed a two-dimensional VAR model with an 𝛼-stable distribution that reflects the changing de-

pendence structure of the analysed assets in two identified regimes.

Finally, we have discussed the properties of the product of two time series. We have derived

general formulas for the autocovariance function and study its properties for various cases of cross-

dependence between the VAR(1) model components. A simulation study has been conducted for

two types of bivariate distributions of the residual series, namely the Gaussian and Student’s t. The

results obtained were applied to the electricity market case study.

The results obtained in this thesis have been published in the following articles:

1. G. Sikora, A. Michalak, Ł. Bielak, P. Miśta, and A. Wyłomańska, “Stochastic modeling of
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and its Applications, vol. 523, pp. 1202 – 1215, 2019
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diction for currency exchange rates by a time-dependent Vasicek model,” Theoretical Eco-

nomics Letters, vol. 10, pp. 579–599, 2020
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Chapter 4

Metals prices modelling

Modelling metals prices is a very difficult task, especially if it is focused on a longer, even sev-

eral years horison. Metals prices are driven not only by fundamental factors like supply-demand

balance but also by the macroeconomic environment, investor sentiment and other factors, which

in practice very often implies high volatility and limited predictability of behaviour. While using

stochastic modelling helps to better measure and understand the scale and probability of potential

price movements, nevertheless the selection of the right model is extremely important to achieve

the desired effect. Commodities prices, including metals, usually exhibit the mean reversion prop-

erty, which indicates that over time, the process tends to its long-term mean. There is a consensus

on this matter on the market. However, when it comes to further selection of a model, there are

opinions that traditional stochastic models, with Gaussian distribution and time-homogeneous pa-

rameters, are not perfect in the description of commodities prices.

In this chapter, we introduce two novel stochastic models which could be used for modeling

metals prices. Both models are based on the SGT distribution and stochastic differential equation,

thus before we define the analysed stochastic process, first will first introduce the SGT distribution

and general model framework.

Skewed Generalized t-Student distribution (described in paper [121]) is a family of a wide

variety of well-known distributions such as Gaussian, uniform, Laplace or Student’s t-distribution.

Setting SGT distribution parameters:

{(𝜇, 𝜎, 𝜆, 𝑝, 𝑞) : 𝜇 ∈ R, 𝜎 > 0,−1 < 𝜆 < 1, 𝑝 > 0, 𝑞 > 0};

accordingly to what is presented in Fig. 4-1, specific distribution can be obtained.
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Figure 4-1: The SGT family of distributions, source: [129]

SGT distribution is defined by probability density function (PDF) [134] in the following way:

𝑓𝑆𝐺𝑇 (𝑥;𝜇, 𝜎, 𝜆, 𝑝, 𝑞) =
𝑝

2𝜐𝜎𝑞
1
𝑝𝐵
(︁

1
𝑝
, 𝑞
)︁(︁

|𝑥−𝜇+𝑚|𝑝
𝑞(𝜐𝜎)𝑝(𝜆sgn(𝑥−𝜇+𝑚)+1)𝑝

+ 1
)︁ 1

𝑝
+𝑞

where:

𝑚 =
2𝜐𝜎𝜆𝑞

1
𝑝𝐵(2

𝑝
, 𝑞 − 1

𝑝
)

𝐵(1
𝑝
, 𝑞)

;

𝜐 = 𝑞−
1
𝑝

⎡⎢⎣(3𝜆2 + 1)

⎛⎝𝐵
(︁

3
𝑝
, 𝑞 − 2

𝑝

)︁
𝐵
(︁

1
𝑝
, 𝑞
)︁

⎞⎠− 4𝜆2

⎛⎝𝐵
(︁

2
𝑝
, 𝑞 − 1

𝑝

)︁
𝐵
(︁

1
𝑝
, 𝑞
)︁

⎞⎠2
⎤⎥⎦

− 1
2

.

(4.1)

Moreover, we assume that 𝑝𝑞 > 2.

Let 𝑆1 ∼ 𝑆𝐺𝑇 (𝜇 = 0, 𝜎 = 𝜎̃, 𝜆, 𝑝, 𝑞) and 𝑆2 ∼ 𝑆𝐺𝑇 (𝜇 = 𝜇, 𝜎 = 𝜎̃𝜎, 𝜆, 𝑝, 𝑞). Then:

∀𝜎>0, 𝜇∈R 𝑆1𝜎 + 𝜇
𝑑
= 𝑆2. (4.2)

Indeed, let us define

𝑆1 ∼ 𝑆𝐺𝑇 (𝜇 = 0, 𝜎 = 𝜎̃, 𝜆, 𝑝, 𝑞), 𝑆2 ∼ 𝑆𝐺𝑇 (𝜇 = 𝜇, 𝜎 = 𝜎̃𝜎, 𝜆, 𝑝, 𝑞)

with 𝜎 > 0, 𝜇 ∈ R. We will show that:

𝑃 (𝑆1𝜎 + 𝜇 < 𝑥) = 𝑃 (𝑆2 < 𝑥). (4.3)
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Figure 4-2: The PDF of the SGT distribution for different values of the parameters in comparison
with the PDF of standard Gaussian distribution, source: [129]

We use the formula for the PDF of SGT distribution given in formula (4.1):

𝑃 (𝑆1𝜎 + 𝜇 < 𝑥) = 𝑃

(︂
𝑆1 <

𝑥− 𝜇

𝜎

)︂
=

∫︁ 𝑥−𝜇
𝜎

−∞
𝑓𝑆𝐺𝑇 (𝑢; 0, 𝜎̃, 𝜆, 𝑝, 𝑞)𝑑𝑢

=

∫︁ 𝑥

−∞

1

𝜎
𝑓𝑆𝐺𝑇

(︂
𝑢− 𝜇

𝜎
; 0, 𝜎̃, 𝜆, 𝑝, 𝑞

)︂
𝑑𝑢

=

∫︁ 𝑥

−∞

𝑝

2𝜐(𝜎̃𝜎)𝑞
1
𝑝𝐵
(︁

1
𝑝
, 𝑞
)︁(︁

|𝑢−𝜇
𝜎

+𝑚|𝑝

𝑞(𝜐𝜎̃)𝑝(𝜆sgn(𝑢−𝜇
𝜎

+𝑚)+1)𝑝
+ 1
)︁ 1

𝑝
+𝑞

𝑑𝑢

=

∫︁ 𝑥

−∞

𝑝

2𝜐(𝜎̃𝜎)𝑞
1
𝑝𝐵
(︁

1
𝑝
, 𝑞
)︁(︁

|𝑢−𝜇+𝜎𝑚|𝑝
𝑞(𝜐(𝜎̃𝜎))𝑝(𝜆sgn(𝑢−𝜇+𝜎𝑚)+1)𝑝

+ 1
)︁ 1

𝑝
+𝑞

𝑑𝑢

=

∫︁ 𝑥

−∞
𝑓𝑆𝐺𝑇 (𝑢;𝜇, 𝜎̃𝜎, 𝜆, 𝑝, 𝑞) 𝑑𝑢 = 𝑃 (𝑆2 < 𝑥).

The above equality is true because of the fact following from the Eq. (4.1):

𝜎𝑚 = 𝜎
2𝜐𝜎̃𝜆𝑞

1
𝑝𝐵(2

𝑝
, 𝑞 − 1

𝑝
)

𝐵(1
𝑝
, 𝑞)

=
2𝜐(𝜎̃𝜎)𝜆𝑞

1
𝑝𝐵(2

𝑝
, 𝑞 − 1

𝑝
)

𝐵(1
𝑝
, 𝑞)

.

In Fig. 4-2 we present the PDF of the SGT distribution for different vales of the parameters.

The PDFs are compared with the PDF of standard Gaussian distribution.
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The general model considered in this chapter is given by the following stochastic differential

equation [135]:

𝑑𝑋𝑡 = 𝛼(𝑋𝑡, 𝑡)𝑑𝑡+ 𝛽(𝑋𝑡, 𝑡)𝑑𝐵𝑡, (4.4)

where {𝐵𝑡} is the Brownian motion.

Most known examples that fit the model (4.4) are presented in the Tab. 4.1.

Table 4.1: Classical models given by the Eq. (4.4).

Model 𝛼(𝑋𝑡, 𝑡) 𝛽(𝑋𝑡, 𝑡)

Merton 𝛼1 𝛽1

Vasicek 𝛼1 + 𝛼2𝑋𝑡 𝛽1

Dothan 𝛼1𝑋𝑡 𝛽1𝑋𝑡

Brennan-Schwartz 𝛼1 + 𝛼2𝑋𝑡 𝛽1𝑋𝑡

Cox-Ingersoll-Ross (CIR) 𝛼1 + 𝛼2𝑋𝑡 𝛽1

√
𝑋𝑡

CIR-VR 𝛼1 + 𝛼2𝑋𝑡 𝛽1𝑋𝑡

√
𝑋𝑡

Ho-Lee 𝛼1(𝑡) 𝛽1(𝑡)

Hull-White 𝛼1(𝑡) + 𝛼2(𝑡)𝑋𝑡 𝛽1(𝑡)

Black-Derman-Toy 𝛼1(𝑡) + 𝛼2(𝑡) ln𝑋𝑡 𝛽1(𝑡)

Black-Krasiński 𝛼1(𝑡) + 𝛼2(𝑡)𝑋𝑡 ln𝑋𝑡 𝛽1(𝑡)

However, in many business applications (like metals’ prices modelling) the Gaussian distribu-

tion in the model (4.4) seems to be insufficient. Thus, we propose to modify the model and assume

a process which satisfies the following stochastic differential equation:

𝑑𝑋𝑡 = 𝛼(𝑋𝑡, 𝑡)𝑑𝑡+ 𝛽(𝑋𝑡, 𝑡)𝑑𝑆𝑡, (4.5)

where similarly as previously, in the general case 𝛼(·) and 𝛽(·) are appropriate functions. Here we

assume {𝑆𝑡} is a process of stationary independent incremental having SGT distribution. In this

case the increment process {𝑑𝑆𝑡} = {𝑆𝑡+𝑑𝑡−𝑆𝑡} constitutes a sequence of independent identically

distributed (iid) random variables of Skewed Generalized t-Distribution [121] with the assumption

E(𝑑𝑆𝑡) = 0 and E(𝑑𝑆2
𝑡 ) = 𝑑𝑡.
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4.1 Non-Gaussian time-inhomogeneous model

The most important metals’ risk factors for KGHM are copper, silver and gold prices. Modelling

the behaviour of metal prices in the medium- and long-term horison is necessary for the market risk

management process. As mentioned before, stochastic models traditionally used to describe met-

als’ prices have proved not to be suitable to represent the dynamic behaviour and time-related na-

ture of metal markets. Thus, the model (4.5) with the constant coefficients is inappropriate to model

data with a time-dependent mean and time-dependent scale parameter (in particular variance). In

this section we implement and describe a modification of the classical Ornstein-Uhlenbeck process

(4.6) by taking, instead of the constant, the time-dependent coefficients 𝛼 and 𝛽.

In the further calculations we assume that the functions 𝛼(·) and 𝛽(·) have specific form, and

finally the analysed process is given by the stochastic differential equation:

𝑑𝑋𝑡 = (𝛼1(𝑡) + 𝛼2(𝑡)𝑋𝑡)𝑑𝑡+ (𝛽1(𝑡) + 𝛽2(𝑡)𝑋𝑡)𝑑𝑆𝑡 (4.6)

for the general functions 𝛼1(·), 𝛼2(·) and 𝛽1(·), 𝛽2(·) : [0, 𝑇 ] → R. Moreover, we consider only

the case when 𝑝𝑞 > 2. The additional limitations of the functions are given in the next section.

The results presented in this section are published in [129].

4.1.1 Estimation

In this part, we present a procedure of estimating the parameters of the stochastic process given by

Eq. (4.6).

Let us assume we have a vector of realization of the stochastic process (given by Eq. (4.6))

𝑥0, 𝑥1, . . . , 𝑥𝑛 with corresponding time points 𝑡0, 𝑡1, . . . , 𝑡𝑛 such that ∀𝑖∈{1,2,...,𝑛}𝑡𝑖− 𝑡𝑖−1 = ∆. For

the sake of simplicity we assume ∆ = 1. Then the increments of the considered observations we

denote as 𝑦0, 𝑦1, . . . , 𝑦𝑛−1 where 𝑦𝑖 = 𝑥𝑖+1 − 𝑥𝑖 for 𝑖 = 0, 1, ..., 𝑛− 1.

To accomplish this, we first rewrite Eq. (4.6) to its discrete version:

𝑦𝑖 = 𝑥𝑖+1 − 𝑥𝑖 = 𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑥𝑖 + (𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖)𝑠𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛− 1; (4.7)

where {𝑠𝑖} is a time series of iid random variables with the SGT distribution with parameters

𝜇 = 0, 𝜎 = 1, unrestricted 𝜆, and 𝑝, 𝑞 such that 𝑝𝑞 > 2.

In addition we apply the local regression approach [136], similarly as in [55], in order to

obtain the estimates of 𝛼1(·) and 𝛼2(·) functions in the model (4.6). We assume here that 𝛼1(·) ∈
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𝒞𝑑𝛼1 , 𝛼2(·) ∈ 𝒞𝑑
𝛼
2 so that they can be expanded to Taylor’s polynomials [137] in every time point

𝑡* ∈ {𝑡0, . . . , 𝑡𝑛−1} of 𝑑𝛼1 and 𝑑𝛼2 degrees:

𝛼𝑤(𝑡𝑖) =

𝑑𝛼𝑤∑︁
𝑘=0

𝛼
(𝑘)
𝑤 (𝑡*)

𝑘!
(𝑡𝑖 − 𝑡*)𝑘 +𝑅𝑑𝛼𝑤(𝑡𝑖), 𝑤 = 1, 2; (4.8)

where 𝑅𝑑𝛼𝑤(·) is Peano’s remainder which we, in further considerations, neglect. After expand-

ing (4.8) and gathering constants for common 𝑡𝑘𝑖 , we arrive at the following approximation:

𝛼𝑤(𝑡𝑖) ≈
𝑑𝛼𝑤∑︁
𝑘=0

𝑘𝛼𝑤𝑡
𝑘
𝑖 , 𝑤 = 1, 2. (4.9)

In order to find 𝑘𝛼𝑤 estimates from Eq. (4.34) for all 𝑡𝑖 in 𝑏 surrounding, we define the loss

function as the weighted sum of squared errors. It should be noted that {𝑘𝛼𝑤} are estimated

separately for every timepoint 𝑡* ∈ {𝑡0, . . . , 𝑡𝑛−1}. From Eq. (4.7) we obtain the following:

𝑠𝑖 =
𝑦𝑖 − (𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑥𝑖)

𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖

≈
𝑦𝑖 −

(︁∑︀𝑑𝛼1
𝑘=0 𝑘𝛼1𝑡

𝑘
𝑖 +

∑︀𝑑𝛼2
𝑘=0 𝑘𝛼2𝑡

𝑘
𝑖 𝑥𝑖

)︁
𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖

=: 𝑠𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛−1.
(4.10)

We assume here that the loss function, applied in the estimation algorithm for each

𝑡* ∈ {𝑡0, . . . , 𝑡𝑛−1}, takes the following form:

𝐿*
𝑡*,𝛽,𝜏,𝑑𝛼1 ,𝑑

𝛼
2 ,𝑏

𝛼,𝑏𝛼𝑟
({𝑥𝑖}, {𝑡𝑖}; {𝑘𝛼𝑤}) =

𝑛−1∑︁
𝑖=0

𝑠2𝑖𝐾𝑏𝛼,𝑏𝛼𝑟 (𝑡𝑖 − 𝑡*) + 𝜏

⎛⎝ 𝑑𝛼1∑︁
𝑘=0

𝑘𝛼
2
1 +

𝑑𝛼2∑︁
𝑘=0

𝑘𝛼
2
2

⎞⎠ . (4.11)

The first component of the loss function, namely 𝑠2𝑖𝐾𝑏𝛼,𝑏𝛼𝑟 (𝑡𝑖− 𝑡*) is related to the fact that estima-

tors are fitted locally (and not globally). Furthermore, similarly to Ridge regression [138], we have

added to the loss function a second component - Tikhonov regularization [139] (with parameter 𝜏 ).

This regularization compensates for (possibly) not a unique solution and the high variance of the

estimators. We used here a single-valued parameter 𝜏 however this can be swapped for a vector of

{𝜏𝑖}. This change yields better estimates but it needs the whole vector of {𝜏𝑖} that has to be found.

We propose to use in Eq. (4.11) the asymmetric kernel function 𝐾𝑏,𝑏𝑟(·) that we define as follows:

𝐾𝑏,𝑏𝑟(𝑡) = 2
𝐾
(︁

𝑡
𝑏−𝑏𝑟

)︁
1𝑡≤0 +𝐾

(︁
𝑡
𝑏𝑟

)︁
1𝑡>0

𝑏
, (4.12)

20



where 𝑏 is the width of the kernel function 𝐾𝑏,𝑏𝑟(·) (distance from left root to right) and 𝑏𝑟 is the

distance to the right root from 0. This form of kernel enables to find a balance between the classical

symmetric and causal kernel function such that estimators have smaller variance. In the estimation

procedure the parameters 𝑏𝛼, 𝑏𝛼𝑟 , 𝑑
𝛼
1 , 𝑑

𝛼
2 and 𝜏 are called hyperparameters. In the applications, the

most commonly used are three kernel functions 𝐾(·) in (4.12), [55, 136, 140, 141]:

• Epanechnikov kernel - 𝐾(𝑡) = 3
4
(1− 𝑡2)1𝑡∈(−1,1);

• Tricube kernel - 𝐾(𝑡) = 70
81
(1− |𝑡|3)31𝑡∈(−1,1);

• Gaussian kernel - 𝐾(𝑡) = 1√
2𝜋

exp
(︁
− 𝑡2

2

)︁
.

Due to compact support, in problems related to financial data modelling, the Epanechnikov and

tricube kernels are used [55, 136, 141]. In our applications we used the tricube kernel.

To simplify the calculations, in the first step of the estimation procedure we consider 𝛽1(·) and

𝛽2(·) functions in model (4.6) as they were known - we are using the iterative method of finding

estimates with starting condition:

𝜉
(0)
𝑖,𝛽 := 𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖 ≡ 1. (4.13)

However, neither the optimal 𝑑𝛼1 , 𝑑
𝛼
2 values (see Eq. (4.34)) nor the kernel’s widths 𝑏𝛼, 𝑏𝛼𝑟 are

known. We find optimal values of hyperparameters 𝑑𝛼1 , 𝑑𝛼2 , 𝑏𝛼, 𝑏𝛼𝑟 and 𝜏 (see Eq. (4.11)) to be the

ones that entail the lowest values of the mean squared error (MSE) statistics:

MSE𝑦 =
𝑛−1∑︁
𝑖=0

⎛⎝𝑦𝑖 −

⎛⎝ 𝑑𝛼1∑︁
𝑘=0

𝑘𝛼̂1𝑡
𝑘
𝑖 +

𝑑𝛼2∑︁
𝑘=0

𝑘𝛼̂2𝑡
𝑘
𝑖 𝑥𝑖

⎞⎠⎞⎠2

𝜔𝑖; (4.14)

MSE𝑥 =
𝑛∑︁

𝑖=1

⎛⎝𝑥𝑖 − 𝑥0 −
𝑖∑︁

𝑗=1

⎛⎝ 𝑑𝛼1∑︁
𝑘=0

𝑘𝛼̂1𝑡
𝑘
𝑗 +

𝑑𝛼2∑︁
𝑘=0

𝑘𝛼̂2𝑡
𝑘
𝑗𝑥𝑗

⎞⎠⎞⎠2

𝜔𝑖 (4.15)

and Augmented Dickey–Fuller test [142] statistic (with null hypothesis that unit root is present in

a time series data) for vector
{︁
𝑦𝑖 −

(︁∑︀𝑑𝛼1
𝑘=0 𝑘𝛼̂1𝑡

𝑘
𝑖 +

∑︀𝑑𝛼2
𝑘=0 𝑘𝛼̂2𝑡

𝑘
𝑖 𝑥𝑖

)︁}︁
. The weights {𝜔𝑖} (in Eq.

(4.14) and (4.15)) are generated using the method of exponential smoothing [143].
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After obtaining the optimal hyperparameters’ values, let us rewrite the loss function 𝐿*(·)
defined in (4.11) using the following matrices:

𝑦 =

⎛⎜⎜⎜⎜⎜⎝
𝑦0

𝑦1
...

𝑦𝑛−1

⎞⎟⎟⎟⎟⎟⎠ 𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0𝛼1

1𝛼1

2𝛼1

...

𝑑𝛼1
𝛼1

0𝛼2

1𝛼2

...

𝑑𝛼2
𝛼2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

𝑡0 𝑡1 . . . 𝑡𝑛−1

𝑡20 𝑡21 . . . 𝑡2𝑛−1
...

... . . . ...

𝑡
𝑑𝛼1
0 𝑡

𝑑𝛼1
1 . . . 𝑡

𝑑𝛼1
𝑛−1

𝑥0 𝑥1 . . . 𝑥𝑛−1

𝑡0𝑥0 𝑡1𝑥1 . . . 𝑡𝑛−1𝑥𝑛−1

...
... . . . ...

𝑡
𝑑𝛼2
0 𝑥0 𝑡

𝑑𝛼2
1 𝑥1 . . . 𝑡

𝑑𝛼2
𝑛−1𝑥𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐾𝑡* =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐾𝑏𝛼,𝑏𝛼𝑟
(𝑡0−𝑡*)(︁

𝜉
(0)
0,𝛽

)︁2 0 . . . 0

0
𝐾𝑏𝛼,𝑏𝛼𝑟

(𝑡1−𝑡*)(︁
𝜉
(0)
1,𝛽

)︁2 . . . 0

...
... . . . ...

0 0 . . .
𝐾𝑏𝛼,𝑏𝛼𝑟

(𝑡𝑛−1−𝑡*)(︁
𝜉
(0)
𝑛−1,𝛽

)︁2 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then the loss function (4.11) takes the form:

𝐿* = (𝑦 − 𝑇 ⊺𝛼)⊺𝐾𝑡* (𝑦 − 𝑇 ⊺𝛼) + 𝜏𝛼𝜏𝛼

which we minimize with respect to the vector 𝛼:

𝜕𝐿*

𝜕𝛼
= −2𝑇𝐾𝑡* (𝑦 − 𝑇 ⊺𝛼) + 2𝜏𝐼𝛼 = 0.

We get:

(𝑇𝐾𝑡*𝑇
⊺ + 𝜏𝐼)𝛼 = 𝑇𝐾𝑡*𝑦.

Then, the 𝛼 estimates for 𝑡* can be calculated from the following:

𝛼̂ = (𝑇𝐾𝑡*𝑇
⊺ + 𝜏𝐼)−1 𝑇𝐾𝑡*𝑦. (4.16)

Having 𝛼1(·) and 𝛼2(·) functions from the model (4.6) estimated, we can estimate 𝛽1(·) and

𝛽2(·) functions. Similarly to 𝛼1(·), 𝛼2(·) functions estimation, we will approximate 𝛽1(·) and 𝛽2(·)
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functions from the model (4.6) by Taylor’s polynomials [137]:

𝛽𝑤(𝑡𝑖) ≈
𝑑𝛽𝑤∑︁
𝑘=0

𝑘𝛽𝑤𝑡
𝑘
𝑖 , 𝑤 = 1, 2. (4.17)

Then, parameters {𝑘𝛽𝑤} can be found using the maximum likelihood method [136]. Exploiting

properties proved in Eq. 4.3 and the fact that {𝑠𝑖} are iid, we see that the loglikelihood function

can be written as follows:

𝑙*
𝑡*,𝑑𝛽1 ,𝑑

𝛽
2 ,𝑏

𝛽 ,𝑏𝛽𝑟
({𝑒𝑖}, {𝑡𝑖}; {𝑘𝛽𝑤}, 𝜆, 𝑝, 𝑞) = (4.18)

𝑛−1∑︁
𝑖=0

ln

⎛⎝𝑓𝑆𝐺𝑇

⎛⎝𝑒𝑖; 0,

⎛⎝ 𝑑𝛽1∑︁
𝑘=0

𝑘𝛽1𝑡
𝑘
𝑖 +

𝑑𝛽2∑︁
𝑘=0

𝑘𝛽2𝑡
𝑘
𝑖 𝑥𝑖

⎞⎠ , 𝜆, 𝑝, 𝑞

⎞⎠⎞⎠𝐾𝑏𝛽 ,𝑏𝛽𝑟
(𝑡𝑖 − 𝑡*),

where {𝑒𝑖} is obtained by transformation of the Eq. (4.7) in the following way:

𝑒𝑖 := 𝑦𝑖 − (𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑥𝑖) ≈ (𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖)𝑠𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛− 1. (4.19)

In this case, the additional optimal hyperparameters’, namely 𝑑𝛽𝑤 (𝑤 = 1, 2), 𝑏𝛽 and 𝑏𝛽𝑟 , need to

be found. We propose the use of the Breusch–Pagan test [144] statistic with null hypothesis that

variance is independent of descriptive (independent) variables (a time series is homoscedastic).

We prefer the set of hyperparameters 𝑑𝛽𝑤 (𝑤 = 1, 2), 𝑏𝛽 and 𝑏𝛽𝑟 that entail lowering the test statistic

calculated for the time series:

{𝑠𝑖} =

⎧⎨⎩𝑦𝑖 −
(︁∑︀𝑑𝛼1

𝑘=0 𝑘𝛼̂1𝑡
𝑘
𝑖 −

∑︀𝑑𝛼2
𝑘=0 𝑘𝛼̂2𝑡

𝑘
𝑖 𝑥𝑖

)︁
∑︀𝑑𝛽1

𝑘=0 𝑘𝛽1𝑡𝑘𝑖 +
∑︀𝑑𝛽2

𝑘=0 𝑘𝛽2𝑡𝑘𝑖 𝑥𝑖

⎫⎬⎭ . (4.20)

Having hyperparameters picked, we maximize the loglikelihood function (4.18) with respect to

{𝑘𝛽𝑤} (defined in (4.17)) and unknown residuals’ parameters 𝜆, 𝑝, 𝑞. Since the analytical solution

to the maximization of the function (4.18) does not exist, it is needed to find a maximum of the

function using numerical algorithms. To simplify calculations we will benefit from the invariance

property of maximum likelihood estimators [145]. Let us note that 𝜆 ∈ (−1, 1), 𝑝 > 0 and 𝑞 > 0.

We will maximize function 𝑙*(·) (4.18) with respect to parameters: 𝑘𝛽𝑤 ∈ R (𝑤 = 1, 2; 𝑘 =

0, . . . , 𝑑𝛽𝑤), 𝜆* ∈ R, 𝑝* ∈ R, 𝑞* ∈ R, using the substitution:

𝜆 =
2

𝜋
arctan(𝜆*), 𝑝 = log(|𝑝*|+ 1), 𝑞 = log(|𝑞*|+ 1). (4.21)
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Then optimization can be done with a wider and simpler class of algorithms like

Broyden–Fletcher–Goldfarb–Shanno algorithm [146].

The earlier proposition of 𝜉(0)𝑖,𝛽 ≡ 1 (see equation (4.13)) can be highly doubtful, especially

when the time series is obviously heteroskedastic. To compensate for this, we use the iterative

method of 𝛼1(·), 𝛼2(·), 𝛽1(·), 𝛽2(·) estimation. In the next step of the estimation we set:{︁
𝜉
(1)
𝑖,𝛼

}︁
= {𝛼̂1(𝑡𝑖) + 𝛼̂2(𝑡𝑖)𝑥𝑖}

and {︁
𝜉
(1)
𝑖,𝛽

}︁
=
{︁
𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖

}︁
and repeat the whole estimation procedure until the changes in the estimated functions are insignif-

icant, i.e. while

∃𝑖
⃒⃒⃒
𝜉
(𝛾)
𝑖,𝛼 − 𝜉

(𝛾−1)
𝑖,𝛼

⃒⃒⃒
> 𝜖𝛼 or ∃𝑖

⃒⃒⃒
𝜉
(𝛾)
𝑖,𝛽 − 𝜉

(𝛾−1)
𝑖,𝛽

⃒⃒⃒
> 𝜖𝛽,

where 𝜖𝛼, 𝜖𝛽 are some defined thresholds and 𝛾 is the number of the current iteration (or after a

given number of iterations).

After estimating the 𝛼1(·), 𝛼2(·), 𝛽1(·), and 𝛽2(·) functions, we can finally estimate the global

parameters of residuals {𝑠𝑖} (defined in (4.20)) that are modeled by SGT distribution (in the pre-

vious steps of the estimation procedure only the local estimates of the parameters are found). We

find 𝜆̂, 𝑝, 𝑞 by numerically maximizing the likelihood function with respect to 𝜆*, 𝑝* and 𝑞* (see

the substitution proposed in (4.21)):

𝐿({𝑠𝑖};𝜆*, 𝑝*, 𝑞*) =
𝑛−1∏︁
𝑖=0

𝑓𝑆𝐺𝑇 (𝑠𝑖; 0, 1, 𝜆(𝜆
*), 𝑝(𝑝*), 𝑞(𝑞*)). (4.22)

A schematic algorithm of the parameters’ estimation procedure is presented in Fig. 4-3.

4.1.2 Simulation study

Using the methodology presented in Section 4.1.1 we have checked the performance of the es-

timation procedure using simulated data. Utilizing Euler’s method [147] we have generated the

trajectory of the process given by the following stochastic differential equation:

𝑑𝑋𝑡 = [0.1 + 0.025𝑡− 0.015𝑋𝑡]𝑑𝑡+ [0.03 + 0.001𝑡]𝑑𝑆𝑡, (4.23)
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Start

Load data to {𝑥𝑖}

Set 𝛾 = 0,
𝜉
(−1)
𝑖,𝛼 ≡ ∞, 𝜉(−1)

𝑖,𝛽 ≡ ∞,

𝜉
(0)
𝑖,𝛼 ≡ 0, 𝜉(0)𝑖,𝛽 ≡ 1

Choose kernel function 𝐾(·)

Set Γ to the maximum num-
ber of iterations, 𝜖𝛼 and

𝜖𝛽 to the minimum change
in the functions’ estimates

∃𝑖
⃒⃒⃒
𝜉
(𝛾)
𝑖,𝛼 − 𝜉

(𝛾−1)
𝑖,𝛼

⃒⃒⃒
> 𝜖𝛼

or
∃𝑖

⃒⃒⃒
𝜉
(𝛾)
𝑖,𝛽 − 𝜉

(𝛾−1)
𝑖,𝛽

⃒⃒⃒
> 𝜖𝛽

and 𝛾 < Γ

Set 𝛾 = 𝛾 + 1

yes

Find optimal 𝑑𝛼1 ,
𝑑𝛼2 , 𝜏 , 𝑏𝛼 and 𝑏𝛼𝑟

Calculate ∀𝑡* 𝛼̂ (4.16)

Set
∀𝑖 𝜉

(𝛾)
𝑖,𝛼 = 𝛼̂1(𝑡𝑖) + 𝛼̂2(𝑡𝑖)𝑥𝑖

Calculate {𝑒𝑖} (4.19)

Find optimal
𝑑𝛽1 , 𝑑𝛽2 , 𝑏𝛽 and 𝑏𝛽𝑟

Numerically find maximum of the
function 𝑙* (4.18) for all 𝑡* with
respect to 𝑘𝛽𝑤 , 𝜆*, 𝑝* and 𝑞*

Set
∀𝑖 𝜉

(𝛾)
𝑖,𝛽 = 𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖

Calculate {𝑠𝑖} (4.20)

no

Maximize likelihood func-
tion (4.22) to find 𝜆̂, 𝑝, 𝑞

Output: {𝑘𝛼̂𝑤},
{︁
𝑘𝛽𝑤

}︁
, 𝜆̂, 𝑝, 𝑞

End

Figure 4-3: The schematic algorithm of the estimation procedure, source: [129]
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(a) Exemplary realization of the process {𝑑𝑆𝑡}.
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(b) Exemplary realization of the process {𝑋𝑡}.

Figure 4-4: The exemplary realizations of the stochastic process defined by the equation (4.44)
with residuals having SGT distribution (4.24), source: [129]
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(a) Comparison of the theoretical function
𝛼1(𝑡) + 𝛼2(𝑡)𝑥𝑡 = 0.1 + 0.025𝑡− 0.015𝑥𝑡
with its estimate.
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(b) Comparison of the theoretical function
𝛽1(𝑡) + 𝛽2(𝑡)𝑥𝑡 = 0.03 + 0.001𝑡 with its estimate.

Figure 4-5: Estimation of the model’s parameters for simulated time series, source: [129]

under the assumption:

𝑑𝑆𝑡 ∼ 𝑆𝐺𝑇 (𝜇 = 0, 𝜎 =
√
𝑑𝑡, 𝜆 = 0.25, 𝑝 = 1.5, 𝑞 = 3), (4.24)

and 𝑡 ∈ [0, 250 · 10] (10 years with 250 working days). The exemplary realization of the processes

{𝑑𝑆𝑡} and {𝑋𝑡} are presented in Fig. 4-4. The parameters of the model are chosen arbitrarily in

order for them to be in some sense comparable to the parameters obtained for the real data.

Using the presented methodology, we have estimated 𝛼1(·), 𝛼2(·) and 𝛽1(·), 𝛽2(·) functions

from the model (4.6). In Fig. 4-5 we present the estimated functions and the theoretical ones from

the model (4.44). We observe that the estimates correspond to the theoretical functions.

The estimated parameters of the SGT distribution are 𝜆̂ = 0.246, 𝑝 = 1.475 and 𝑞 = 3.213 -

they are close to the theoretical parameters 𝜆 = 0.25, 𝑝 = 1.5 and 𝑞 = 3. Furthermore, based on

the Kolmogorov–Smirnov test [148] statistic 𝐾 = 0.00715 and p-value = 0.960, we conclude that

the model’s parameters were correctly estimated.
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(c) Box-plots of SGT distribution’s parameters’ estimates.

Figure 4-6: Estimation of the parameters for the model (4.44) for 100 Monte Carlo simulations,
source: [129]

Furthermore, we have performed the Monte-Carlo [149] simulations for the process given by

Eq. (4.44). More precisely, we have simulated 100 realizations of the process and performed

the estimation methodology presented in the previous section. Finally, we found estimates of

[0.05, 0.25, 0.5, 0.75, 0.95]-quantiles for 𝛼1(·), 𝛼2(·) and 𝛽1(·), 𝛽2(·) functions’ estimators. In

Figs. 4-6a and 4-6b we present the result. In both Figs. 4-6a and 4-6b we see that the first few

points of the functions’ estimators demonstrate significant variance. This is due to the low number

of samples taken into the functions’ estimation. We have also plotted the box-plots of the estimated

parameters of the SGT distribution, see Fig. 4-6c. For every estimated parameter, we observe that

medians are close to theoretical values and the variance of the estimated parameters is low.

4.1.3 Real data application

In this part, we analyse the real data series describing the price of copper, while the results for

other metals (silver and gold) are presented in [129].

For the considered time series we will demonstrate that the proposed model (4.6) based on

the SGT distribution is acceptable. Finally, we will show the results of the long-term prediction

based on the fitted model. Moreover, in the estimation procedure, we take Γ = 2 (two iterations of

estimation) and applied the tricube to be the kernel function 𝐾(·) in (4.12). It should be noted that

the real data related to the copper prices are only used here for the illustration of the introduced

methodology. At the end of this part we also include conclusions from a similar application of
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(a) Copper prices data.
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(b) Copper data after Box-Cox transformation.

Figure 4-7: Copper price data, source: [129]

the model to two other metals (silver and gold), which should prove that the proposed model is

universal and can also be applied to real data from different areas.

In the first real example, we analyse the time series corresponding to the copper price. The

data set consists of 3348 observations from the period 02.01.2004 to 31.03.2017. In Fig. 4-7 we

demonstrate the considered data. Due to unstable variance, visible in the vector of observations,

we transformed the data taking the Box-Cox transformation [150]:

∀𝑡 𝑥𝑡 = ln(𝑥*
𝑡 ),

where {𝑥*
𝑡} is the vector of the copper price data. We present the transformed vector in Fig. 4-7b.

We split the data into training time series (used for the estimation of the model’s parameters) -

the period from the beginning of 2004 to the end of 2013 and a testing time series (used for the

validation of the model) - the period from 2014 up to 31.03.2017. The vector of training time series

consists of 2525 observations while the time series used for validation has 823 observations.

In the first step, we find the optimal hyperparameters 𝑑𝛼1 , 𝑑
𝛼
2 , 𝑏

𝛼, 𝑏𝛼𝑟 , 𝜏 needed for minimization

of the loss function (4.11). As proposed in Section 4.1.1, we use MSE𝑥 (4.15), MSE𝑦 (4.14) and

Augmented Dickey–Fuller test statistic. We get weights {𝜔𝑖} (for statistics MSE𝑥 and MSE𝑦 - see

Eq. (4.15) and (4.14)) using the exponential smoothing method [143] with smoothing parameter

𝜑 = 8× 10−4. Weights {𝜔𝑖} are calculated using the following formula:

𝜔𝑖 =
1− exp(−𝜑)
1− exp(−𝑛𝜑)

exp(𝜑(𝑖− 𝑛)), 𝑖 = 1, . . . , 𝑛. (4.25)

With selected hyperparameters 𝑑𝛼1 = 0, 𝑑𝛼2 = 1, 𝑏𝛼 = 750, 𝑏𝛼𝑟 = 237.5, 𝜏 = 0.7 we esti-

mate 𝛼1(·) and 𝛼2(·) functions from the model (4.6) using Eq. (4.16). Acquired estimates are

presented in Fig. 4-8a. We see that the estimates are well fitted to the data. However, this might
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(b) Comparison of composition of {𝛽1(𝑡𝑖)+𝛽2(𝑡𝑖)𝑥𝑖}
with {𝑒𝑖} series.

Figure 4-8: Copper price data: resulting estimates from the first iteration of estimation of
𝛼1(·), 𝛼2(·) and 𝛽1(·), 𝛽2(·) functions, source: [129]

also indicate that they are overfitted. Due to the heteroskedasticity property of the time series, in

the first iteration, the change in the process’s variance could be wrongly assigned to the 𝛼1(·) and

𝛼2(·) functions. To compensate for this effect we take advantage of the iterative estimation method

(discussed in Section 4.1.1).

We calculated the vector {𝑒𝑖} using formula (4.19) and we found optimal hyperparameters for

𝛽1(·) and 𝛽2(·) functions’ estimation 𝑑𝛽1 = 0, 𝑑𝛽2 = 0, 𝑏𝛽 = 1000, 𝑏𝛽𝑟 = 10. The appropriate

estimates were found by the maximizing function (4.18). Then based on acquired estimates, their

composition was calculated and shown in Fig. 4-8b with a series of {𝑒𝑖} for comparison. We see

that the composition of 𝛽1(·) and 𝛽2(·) functions estimates is a good approximation of the standard

deviation of the examined time series.

Next, we repeat the previously presented steps taking 𝜉
(1)
𝑖,𝛽 = 𝛽1(𝑡𝑖) + 𝛽2(𝑡𝑖)𝑥𝑖. We get the

following results:

1. Selected hyperparameters for 𝛼1(·) and 𝛼2(·) functions estimation - 𝑑𝛼1 = 0, 𝑑𝛼2 = 0, 𝑏𝛼 =

937.5, 𝑏𝛼𝑟 = 1.25, 𝜏 = 8× 10−3;

2. The estimated 𝛼1(·) and 𝛼2(·) functions - see Fig. 4-9a;

3. Picked hyperparameters for 𝛽1(·) and 𝛽2(·) functions estimation - 𝑑𝛽1 = 1, 𝑑𝛽2 = 0, 𝑏𝛽 =

1437.5, 𝑏𝛽𝑟 = 60;

4. The estimated 𝛽1(·) and 𝛽2(·) functions - see Fig. 4-9b.

Having the 𝛼1(·), 𝛼2(·) and 𝛽1(·), 𝛽2(·) functions estimated, the estimation of residuals’ dis-

tribution’s parameters is performed maximizing the likelihood function (4.22). The obtained es-

timates of those parameters are 𝜆̂ = −0.08, 𝑝 = 2.32 and 𝑞 = 3.11. From the analysis of the
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(b) Comparison of composition of {𝛽1(𝑡𝑖)+𝛽2(𝑡𝑖)𝑥𝑖}
to {𝑒𝑖} series.

Figure 4-9: Copper price data: resulting estimates from the second iteration of estimation of
𝛼1(·), 𝛼2(·) and 𝛽1(·), 𝛽2(·) functions, source: [129]

parameters’ estimates, using the SGT distributions family tree (see Fig. 4-1), we conclude that the

time series {𝑠𝑖} can be approximated by the Generalized Student’s t-distribution. Furthermore, we

observe that it can be roughly approximated by standard Student’s t-distribution, considering the

following equality:

𝑆𝐺𝑇 (𝜇 = 0, 𝜎 = 1, 𝜆 = 0, 𝑝 = 2, 𝑞 = 𝜈/2)
𝑑
= 𝒯 (𝜈),

where 𝒯 (𝜈) denotes the Student’s t-distribution with 𝜈 degrees of freedom. Then distribution with

estimated parameters 𝑆𝐺𝑇 (0, 1, 𝜆̂, 𝑝, 𝑞) is Student’s t-distribution with 6 degrees of freedom.

We have checked if the fitted model properly describes the data by constructing the quantile

lines using the Monte-Carlo method performing 10 000 simulations of the process given by (4.6)

with the estimated parameters. We have plotted the vector of the real data (from the testing set) with

marked quantile lines (see Fig. 4-10a). As can be seen, the time series used for validation perfectly

falls into the constructed quantile lines. To confirm that the realizations of the process (from the

validation period) fall into the constructed confidence intervals (from constructed quantile lines)

with the right probabilities, we use here the method described in [127], where the simple visual

validation factor for proper model recognition was proposed. For perfect models, 1−𝛼 confidence

intervals should include data with probability 1−𝛼. Thus, we present the percent of the data falling

inside of the estimated confidence intervals. For our model (see Fig. 4-10b) we see that the real

and theoretical probabilities are similar. Therefore, we conclude that the model correctly predicted

fluctuations in the process. We also have shown the whole vector of the data with quantile lines for

the tested period, see Fig. 4-10c.

Finally, we have tested the residuals {𝑠𝑖} using the Kolmogorov–Smirnov (KS) test [148] -

we obtain the value of the statistic 𝐾 = 0.00888 with p-value = 0.989 thus the null hypothesis,

30



� ��� ��� ��� 	�� ����

���
�������
������


����

����

����

	���
Quantiles

q0.95��q0.05
q0.90��q0.10
q0.85��q0.15
q0.80��q0.20
q0.75��q0.25
q0.70��q0.30
q0.65��q0.35
q0.60��q0.40
q0.55��q0.45
q0.50

(a) Copper prices data with the constructed
quantile lines.

��� ��� ��� ��� ��� ���

�
��
�������������


���

���

���

���

���

���

	

�
���
��
��
��


����������

�
���

(b) Visual validation factor that compares the esti-
mated and theoretical probabilities of the data falling
inside confidence intervals.
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(c) Copper prices data with constructed quantile lines by using Monte Carlo simula-
tions.

Figure 4-10: Validation of the fitted model for copper price data, source: [129]
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that {𝑠𝑖} has the SGT distribution with estimated parameters, can not be rejected. We compare

the efficiency of the model with SGT distribution with the corresponding model with Gaussian

distribution. In the Gaussian case the KS test yields the test statistic 𝐾 = 0.02622 with p-value =

0.062.

Thus, we can conclude that the considered model based on the SGT distribution (4.6) is fitted

correctly and accurately describes the copper price time series characteristics. Furthermore, it

outperforms the model with residuals modeled with Gaussian distribution.

Similar analysis for the silver and gold prices data have been presented in [129].

4.2 Non-Gaussian regime-switching model

In this section we describe the second considered stochastic model. Similarly, as the model dis-

cussed in Section 4.1, it is based on the SGT distribution introduced in (4.1) and stochastic dif-

ferential equation (4.5). However this particular model additionally takes into account one very

important characteristics of commodities markets - the change of regimes. However, considering

the fact that it is difficult to perfectly indicate the moment of regimes change, the model could be

more useful for post-factum analysis.

We start by introducing the stochastic process that is often used for a description of financial

data [34, 51, 54, 151]:

𝑑𝑋𝑡 = (𝛼1(𝑡) + 𝛼2(𝑡)𝑋𝑡) 𝑑𝑡+ (1−𝐻𝑡)𝜎1𝑑𝑆
1
𝑡 +𝐻𝑡𝜎2𝑑𝑆

2
𝑡 , (4.26)

where {𝑆1
𝑡 } and {𝑆2

𝑡 } are independent processes of stationary independent increments having

SGT distribution.

Factors 𝛼1(·), 𝛼2(·) appearing in Eq. (4.26) are some functions dependent on time - 𝛼1(·), 𝛼2(·) :
[0, 𝑇 ]→ R. The process {𝐻𝑡} is defined as follows:

𝐻𝑡 =

⎧⎨⎩0, if 𝑋𝑡 ∈ 𝐶1;

1, if 𝑋𝑡 ∈ 𝐶2.
(4.27)

We use the notation 𝑋𝑡 ∈ 𝐶1 to indicate that the process {𝑋𝑡} at time 𝑡 is in a state/case 𝐶1.

We assume that we model data that we suspect of having two states of volatility. For example,

in metals prices we might discern periods when a metal keeps its value with small deviations

or periods with sudden rises and drops of value. The scale of these deviations is controlled by

parameters 𝜎1, 𝜎2 ∈ R+ for the states 𝐶1 and 𝐶2, respectively.
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The results presented in this section have been published in [130].

4.2.1 Estimation

For the estimation procedure, we will first use the discretized version of Eq. (4.26) with 𝑑𝑡 → 1

(∀𝑖 𝑡𝑖+1 − 𝑡𝑖 = 1):

𝑌𝑡𝑖 := 𝑋𝑡𝑖+1
−𝑋𝑡𝑖 = 𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑋𝑡𝑖 + (1−𝐻𝑡𝑖)𝑆

1
𝑡𝑖
+𝐻𝑡𝑖𝑆

2
𝑡𝑖
, (4.28)

where {𝑆𝑘
𝑡𝑖
} (𝑘 = 1, 2; 𝑖 = 1, 2, . . . , 𝑛) are independent random variables and have the following

distributions:

𝑆1
𝑡𝑖
∼ 𝑆𝐺𝑇 (𝜇1, 𝜎1, 𝜆1, 𝑝1, 𝑞1),

𝑆2
𝑡𝑖
∼ 𝑆𝐺𝑇 (𝜇2, 𝜎2, 𝜆2, 𝑝2, 𝑞2).

(4.29)

In the business applications we actually consider the realization of the process {𝑋𝑡} given in

(4.28). In the further analysis we denote the vector of realisations of the process {𝑋𝑡} as 𝑥 = {𝑥𝑖}
while its increments as 𝑦 = {𝑦𝑖} = {𝑥𝑖+1 − 𝑥𝑖}, 𝑖 = 1, 2, . . . , 𝑛.

For the estimation of 𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑥𝑡𝑖 we will use a modified method of least squares. Let us

define the loss function of the classic least squares method [152] for our model (4.28):

𝐿(𝑥,𝑦; {𝑘𝛼𝑤}) =
𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 =

𝑛∑︁
𝑖=1

(𝑦𝑖 − (𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑥𝑡𝑖))
2 .

However, this choice of loss function is not well suited for noise with heavy tails. Thus we will

use a loss function which makes estimates less sensitive to outliers. We could utilize the weighted

least squares method [153], but there is a problem in choosing the proper weights, especially when

we assume that residuals do not have to have a finite first moment. Another loss function that tries

to handle outliers is the Huber loss function [154]:

𝐿(𝑦,𝑦; 𝛿) =

⎧⎨⎩
∑︀𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2 , for |𝑦𝑖 − 𝑦𝑖| ≤ 𝛿;∑︀𝑛

𝑖=1 2𝛿|𝑦𝑖 − 𝑦𝑖| − 𝛿2, for |𝑦𝑖 − 𝑦𝑖| > 𝛿.
(4.30)

Merging together the mean absolute and mean squared loss functions, results in better performance

by Huber loss function when dealing with heavy tailed data. The parameter 𝛿 in Eq. (4.30) defines

the distance from 𝑦 that is needed for 𝑦𝑖 to be treated as an outlier.
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In our research, we will use the Charbonnier/pseudo-Huber loss function [155]. This function

is a modification of the Huber loss function that avoids assembling |𝑥| and 𝑥2 explicitly - for small

values of 𝑥 the Charbonnier loss function behaves like 𝑥2 and for large values like |𝑥|. It is given

by the following formula:

𝐿(𝑦,𝑦; 𝛿) =
𝑛∑︁

𝑖=1

𝛿2

⎛⎝√︃1 +

(︂
𝑦𝑖 − 𝑦𝑖

𝛿

)︂2

− 1

⎞⎠ . (4.31)

Here, the 𝛿 parameter has a similar meaning to the one in ( the previously presented) Huber loss

function standard (4.30).

To capture the local changes in trend in the data we will use the local regression method [136].

First let us define the pseudo-Huber function as follows:

𝑓𝐻(𝑦 − 𝑦; 𝛿) = 𝛿2

⎛⎝√︃1 +

(︂
𝑦 − 𝑦

𝛿

)︂2

− 1

⎞⎠ . (4.32)

Then, to find local estimates of the parameters, we will minimize the loss function of the following

form:

𝐿𝑡*(𝑥,𝑦; {𝑘𝛼𝑤}) =
𝑛∑︁

𝑖=1

𝑓𝐻(𝑦𝑖 − 𝛼1(𝑡𝑖) + 𝛼2(𝑡𝑖)𝑥𝑡𝑖)𝐾𝑏,𝑏𝑟(𝑡𝑖 − 𝑡*) + 𝜏
2∑︁

𝑤=1

𝑑𝑤∑︁
𝑘=0

𝑘𝛼
2
𝑤. (4.33)

The functions 𝛼1(·) and 𝛼2(·) (from Eq. (4.28)) are locally approximated by Taylor’s polynomials

[137] of 𝑑1 and 𝑑2 degree (we assume that 𝛼1 ∈ 𝒞𝑑1 and 𝛼2 ∈ 𝒞𝑑2):

𝛼𝑤(𝑡𝑖) ≈
𝑑𝑤∑︁
𝑘=0

𝛼
(𝑘)
𝑤 (𝑡*)

𝑘!
(𝑡𝑖 − 𝑡*)𝑘 =

𝑑𝑤∑︁
𝑘=0

𝑘𝛼𝑤𝑡
𝑘
𝑖 , 𝑤 = 1, 2. (4.34)

The function 𝐾𝑏,𝑏𝑟(·) is an asymmetric kernel function (proposed in [129]). We will use here

the asymmetric tricube kernel function [141] given by the following Eq.:

𝐾𝑏,𝑏𝑟(𝑡) = 2
𝐾
(︁

𝑡
𝑏−𝑏𝑟

)︁
1𝑡≤0 +𝐾

(︁
𝑡
𝑏𝑟

)︁
1𝑡>0

𝑏
, (4.35)

where 𝐾(·) is tricube kernel function [141]:

𝐾(𝑡) =
70

81
(1− |𝑡|3)31𝑡∈(−1,1).
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Hyperparameters 𝑏 and 𝑏𝑟 are (in order) the width of the kernel and the distance from 0 to the right

root of the kernel.

The last term in the loss function (4.33) is Tikhonov regularization [139]. We will exploit this

regularization (similarly to ridge regression [138]) with one hyperparameter 𝜏 ∈ R+.

We minimize the loss function (4.33) using numeric minimization methods such as the Broyden-

Fletcher-Goldfarb-Shanno algorithm [146]. To ease computations, we can pass Jacobian of the loss

function (4.33). Knowing the derivative of the pseudo-Huber function (4.32):

𝑓 ′
𝐻(𝑦 − 𝑦; 𝛿) =

𝑦 − 𝑦√︁
1 +

(︀
𝑦−𝑦
𝛿

)︀2 ,
we can easily compute the Jacobian:

𝜕𝐿𝑡*

𝜕𝑘𝛼1

=
𝑛∑︁

𝑖=1

−𝑓 ′
𝐻(𝑦𝑖 − 𝑦; 𝛿)𝐾𝑏,𝑏𝑟(𝑡𝑖 − 𝑡*)𝑡𝑘𝑖 + 2𝜏 𝑘𝛼1;

𝜕𝐿𝑡*

𝜕𝑘𝛼2

=
𝑛∑︁

𝑖=1

−𝑓 ′
𝐻(𝑦𝑖 − 𝑦; 𝛿)𝐾𝑏,𝑏𝑟(𝑡𝑖 − 𝑡*)𝑥𝑖𝑡

𝑘
𝑖 + 2𝜏 𝑘𝛼2.

(4.36)

Let us define:

𝑊𝑡𝑖 := 𝐻𝑡𝑖𝑆
1
𝑡𝑖
+ (1−𝐻𝑡𝑖)𝑆

2
𝑡𝑖

as the detrended time series (4.28). Then, using estimates of {𝑘𝛼𝑤}, we remove a drift from the

data:

𝑤̂𝑖 = 𝑦𝑖 −
𝑑1∑︁
𝑘=0

𝑘𝛼̂1𝑡
𝑘
𝑖 −

𝑑2∑︁
𝑘=0

𝑘𝛼̂2𝑥𝑖𝑡
𝑘
𝑖 ≈ ℎ𝑖𝑠

1
𝑖 + (1− ℎ𝑖)𝑠

2
𝑖 .

Assuming that {𝐻𝑡𝑖} is a Markov chain [156] and for any measurable set A the following Eq.

holds [157]:

𝑃 (𝑊𝑡𝑖 ∈ A|𝐻𝑡1 = ℎ1, . . . , 𝐻𝑡𝑖 = ℎ𝑖) = 𝑃 (𝑊𝑡𝑖 ∈ A|𝐻𝑡𝑖 = ℎ𝑖),

then we can use estimation methodology for Hidden Markov Models for continuous distributions

with two hidden states.

Let us define:

𝜁𝑡𝑖|𝑡𝑗(𝑘) = 𝑃 (𝐻𝑡𝑖 = 𝑘|𝑊 (𝑡𝑗);M). (4.37)

Namely, it is a probability of {𝑊𝑡𝑖} being in a state 𝑘 at a time 𝑡𝑖 under condition of data up to the

time 𝑡𝑗 (𝑊 (𝑡𝑗) = {𝑊𝑡}
𝑡𝑗
𝑡=𝑡1) and the set of the model’s parameters M = {𝜇1, 𝜎1, 𝜆1, 𝑝1, 𝑞1, 𝜇2, 𝜎2,
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𝜆2, 𝑝2, 𝑞2,𝑃 ,𝜂}. In the set M, 𝑃 is a matrix of transition probabilities 𝑃 = {𝑝𝑖𝑗}:

∀𝑘 𝑝𝑖𝑗 = 𝑃 (𝐻𝑡𝑘+1
= 𝑖|𝐻𝑘𝑖 = 𝑗), 𝑖, 𝑗 = 0, 1

and 𝜂 is a vector of initial distribution, namely 𝜂𝑖 = 𝑃 (𝐻𝑡1 = 𝑖), 𝑖 = 0, 1. The other parameters

that need to be estimated correspond to the SGT distribution for the 𝐶1 and 𝐶2 states.

To estimate 𝜁𝑡𝑖|𝑡𝑖 (𝑡𝑖 = 1, 2, . . . , 𝑇 ) we use the following Eq. [158]:

𝜁𝑡𝑖|𝑡𝑖 =
𝜁𝑡𝑖|𝑡𝑖−1

⊙ 𝜉𝑡𝑖

1′(𝜁𝑡𝑖|𝑡𝑖−1
⊙ 𝜉𝑡𝑖)

, (4.38)

𝜁𝑡𝑖+1|𝑡𝑖 = 𝑃𝜁𝑡𝑖|𝑡𝑖 ; (4.39)

with starting condition 𝜁𝑡1|𝑡0 = 𝜂. The 1′ indicates the transposition of the matrix 1. In the

Eq. (4.38), the ⊙ symbol stands for the Hadamard product (element-wise multiplication), 1 is a

vector of ones, namely: 1 =
[︁
1 1

]︁
′ and 𝜉𝑡𝑖 is given by:

𝜉𝑡𝑖 = {𝑓𝑆𝐺𝑇 (𝑤𝑖|ℎ𝑖 = 𝑗 − 1;𝜇𝑗, 𝜎𝑗, 𝜆𝑗, 𝑝𝑗, 𝑞𝑗)}𝑗=1,2.

Using those matrices we can compute the log-likelihood function [159]:

𝑙(M) =
𝑡𝑛∑︁

𝑡=𝑡1

ln
(︁
1′(𝜁𝑡𝑖|𝑡𝑖−1

⊙ 𝜉𝑡𝑖)
)︁
. (4.40)

Using Kim’s algorithm [160] we can compute probabilities conditioned on a whole data set (cal-

culate starting from 𝑡𝑛−1 down to 𝑡1):

𝜁𝑡𝑖|𝑡𝑛 = 𝜁𝑡𝑖|𝑡𝑖 ⊙
[︁
𝑃
(︁
𝜁𝑡𝑖|𝑡𝑛 ⊘ 𝜁𝑡𝑖+1|𝑡𝑖

)︁]︁
, (4.41)

where ⊘ is the Hadamard division operator.

Then using Hamilton’s estimator [161] for transition probabilities we have:

𝑝𝑖𝑗 = 𝑝𝑖𝑗

∑︀𝑡𝑛
𝑡=𝑡2

𝑃 (ℎ𝑡 = 𝑗|𝑤(𝑡𝑛); M̂)𝑃 (ℎ𝑡−1=𝑖|𝑤(𝑡−1);M̂)

𝑃 (ℎ𝑡=𝑗|𝑤(𝑡−1);M̂)∑︀𝑡𝑛
𝑡=𝑡2

𝑃 (ℎ𝑡−1 = 𝑖|𝑤(𝑡𝑛); M̂)
. (4.42)
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Afterwards, we estimate parameters of SGT distributions for both states using the maximum like-

lihood estimation method. For each subset:

W0 = {𝑤̂𝑖 : 𝜁
(0)
𝑡𝑖|𝑡𝑛 > 𝜁

(1)
𝑡𝑖|𝑡𝑛} and W1 = {𝑤̂𝑖 : 𝜁

(0)
𝑡𝑖|𝑡𝑛 ≤ 𝜁

(1)
𝑡𝑖|𝑡𝑛}

(𝜁(𝑘)
𝑡𝑖|𝑡𝑛 indicates kth element of vector 𝜁𝑡𝑖|𝑡𝑛) we maximize log-likelihood function:

𝑙(W𝑘−1;𝜇𝑘, 𝜎𝑘, 𝜆𝑘, 𝑝𝑘, 𝑞𝑘) =
∑︁

𝑤∈W𝑘−1

ln (𝑓𝑆𝐺𝑇 (𝑤;𝜇𝑘, 𝜎𝑘, 𝜆𝑘, 𝑝𝑘, 𝑞𝑘)) , 𝑘 = 1, 2, (4.43)

using e.g. Nelder-Mead algorithm [162].

The whole procedure is repeated until convergence i.e. until a change in the log-likelihood

function (4.40) is less than some small selected constant 𝜀. All of the estimation steps are gathered

in pseudo-code (Algorithm 1).

Algorithm 1: Estimation algorithm
1 [1]
2 𝛿 ← selected hyperparameter defined alongside the Huber loss function (4.30)

𝑑1, 𝑑2 ← selected hyperparameters for 𝛼1(·), 𝛼2(·) functions (4.34)
𝑏, 𝑏𝑟 ← selected hyperparameters defined for the asymmetric kernel function (4.35)
𝜂 ← selected initial distribution ie.

[︀
1 0

]︀ ′
𝑃 ← selected initial transition matrix ie.

[︂
12 12
12 12

]︂
𝜀← Some small constant greater than zero 𝑛← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑦) 𝛼̂← [ ] for
𝑡* ← [𝑡1, 𝑡2, . . . , 𝑡𝑛] do

3 {𝑘𝛼𝑤} ← argmin
{𝑘𝛼𝑤}

(𝐿𝑡*(𝑥,𝑦; {𝑘𝛼𝑤})) Minimize L (4.33) using Jacobian (4.36)

𝛼[𝑡*]←
∑︀𝑑1

𝑘=0 𝑘𝛼̂1𝑡
*𝑘 +

∑︀𝑑2
𝑘=0 𝑘𝛼̂2𝑥𝑖𝑡

*𝑘 𝑤̂ ← 𝑦 − 𝛼̂

𝜇̂1, 𝜇̂2 ← random data point from 𝑦 𝜎̂1 ← 𝑠𝑡𝑑(𝑦); 𝜎̂2 ← 2 · 𝑠𝑡𝑑(𝑦) 𝜆̂1, 𝜆̂2 ← 0;
𝑝1, 𝑝2 ← 2; 𝑞1, 𝑞2 ←∞ 𝐿(M)← 0;𝐿(M̂)← −∞ while |𝐿(M)− 𝐿(M̂)| > 𝜀 do

4 𝐿(M)← 𝐿(M̂); 𝐿(M̂)← 0 𝜁𝑡+1|𝑡 ← [𝜂]; 𝜁𝑡|𝑡 ← [] for 𝑖← 1 : 𝑛 do

5 𝜁𝑡|𝑡[𝑖]← 𝜁𝑡𝑖|𝑡𝑖 Calculate using Eq. (4.38) 𝜁𝑡+1|𝑡[𝑖]← 𝜁𝑡𝑖+1|𝑡𝑖 Calculate using Eq. (4.39)

𝐿(M̂)← 𝐿(M̂) + ln
(︁
1′(𝜁𝑡𝑖|𝑡𝑖−1

⊙ 𝜉𝑡𝑖)
)︁
𝜁𝑡|𝑇 ← [ ] 𝜁𝑡|𝑇 [𝑛]← 𝜁𝑡|𝑡[−1] Get the last element

- 𝜁𝑡𝑛|𝑡𝑛 for 𝑖← 𝑛− 1 : 0 do

6 𝜁𝑡|𝑇 [𝑖]← 𝜁𝑡𝑖|𝑡𝑛 Calculate using Eq. (4.41).
7 Utilize previously calculated elements of 𝜁𝑡|𝑇 𝑃 ← 𝑃 Update transition matrix 𝑃 using

Eq. (4.42) for 𝑘 ← 1 : 2 do

8 𝜇̂𝑘, 𝜎̂𝑘, 𝜆̂𝑘, 𝑝𝑘, 𝑞𝑘 ← argmax
𝜇𝑘,𝜎𝑘,𝜆𝑘,𝑝𝑘,𝑞𝑘

𝑙(W𝑘−1;𝜇𝑘, 𝜎𝑘, 𝜆𝑘, 𝑝𝑘, 𝑞𝑘) See Eq.(4.43)
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(a) Exemplary realization of the process
{𝑋𝑡} given in (4.44).
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(b) Exemplary realization of the process
{𝐻𝑡𝑑𝑆

1
𝑡 + (1−𝐻𝑡)𝑑𝑆

2
𝑡 }.

Figure 4-11: The exemplary realization of the stochastic process defined by Eq. (4.44), source:
[130].

4.2.2 Simulation study

To check the effectiveness of the proposed estimation procedure, we have analysed the simulated

data that resemble the real data analysed in the further parts of this thesis.

The trajectory of the model was generated using the Euler method [147] for the following

stochastic differential equation:

𝑌𝑡 = 𝛼1(𝛾𝑡) + 𝛼2(𝛾𝑡)𝑋𝑡 + (1−𝐻𝑡)𝑆
1
𝑡 +𝐻𝑡𝑆

2
𝑡 , 𝑋0 = 0, 𝛾 = 10−3;

𝛼1(𝑡) = 1.87𝑡− 28.9𝑡2 + 104.8𝑡3 − 133.3𝑡4 + 55.5𝑡5, 𝑡 ∈ [0, 1];

𝛼2(𝑡) = 0.1− 0.2𝑡+ 0.15𝑡2, 𝑡 ∈ [0, 1];

(4.44)

with initial distribution 𝑃 (𝐻1 = 0) = 1− 𝑃 (𝐻1 = 1) = 1 and

𝑆1
𝑡 ∼ 𝑆𝐺𝑇 (0, 1, 0.1, 1, 4),

𝑃 =

[︃
0.986 0.014

0.0225 0.9775

]︃
.

𝑆2
𝑡 ∼ 𝑆𝐺𝑇 (0, 3,−0.2, 2.5, 2),

For a such set of parameters the 𝑆𝐺𝑇 distribution is skewed and has the property of heavy tails.

The vector of 1001 samples was generated for 𝑡 ∈ {0, 1, . . . , 1000}. The exemplary trajectory

is shown in Fig. 4-11. We then used the estimation methodology proposed in section 4.2.1.

Using the grid search method, we picked the following hyperparameters:

• 𝛿 = 2 (parameter of pseudo-Huber function (4.32));

• 𝑑1 = 2 (degree of local approximation of 𝛼1(·) polynomial (4.34));

• 𝑑2 = 1 (degree of local approximation of 𝛼2(·) polynomial (4.34));
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• 𝑏 = 200 (bandwidth of the asymmetric kernel function (4.35));

• 𝑏𝑟 = 75 (distance from 0 to right boundary of the asymmetric kernel function (4.35));

• 𝜏 = 0.1 (Tikhonov regularization).

For those hyperparameters, for every time point we calculated the local estimates of 𝛼1(·) and

𝛼2(·) functions. We show the results in Fig. 4-12a. The robustness of the estimation method to

outliers (see the behavior near 𝑡 = 500 where abnormal values can be found) can be seen, rising

from the usage of tho pseudo-Huber loss function. Then we performed the estimation procedure

for the Hidden Markov Chain part with the following results:

𝜇̂1 = 0.0582, 𝜎̂1 = 1.1268, 𝜆̂1 = 0.1454, 𝑝1 = 1.3525, 𝑞1 = 2.0168,

𝜇̂2 = −0.1841, 𝜎̂2 = 2.9016, 𝜆̂2 = −0.1892, 𝑝2 = 3.4400, 𝑞2 = 1.0538,

𝑃 =

[︃
0.992646 0.007354

0.012827 0.987173

]︃
.

In Fig. 4-12b we also present the probabilities of the vector of the data being in a more violate

and stable state with the accompanying vector of differences of the vector {𝑥𝑡𝑖}. Let us note that

we determine the process’ state by selecting one that entails the highest conditional probability

𝜁𝑡𝑖|𝑡𝑛 (4.37).

On this single example, we see that the estimates are very close to the theoretical ones. To

further validate the method we performed 250 Monte-Carlo simulations and visualized the dis-

tribution of the SGT distributions’ parameters estimators and the distribution of the hidden state

accuracy (ratio of when the estimated and theoretical states match) using box plots (presented in

Fig. 4-13). We can see that the method estimates regimes with high accuracy. However, from

the Fig. 4-13c, we find that sometimes the estimated parameter 𝜎 (responsible for the variance) is

overestimated. This is caused by the fact that when many unlikely values (“heavy tail” property)

occur, the likelihood of it being caused by large variance is larger than by the “heavy tail” property

while the sample size is relatively small (then also parameters 𝑝 and 𝑞 are wrongly estimated as

they are responsible for modeling the “heavy tail” property). The solution to this problem can be

solved by using the trajectories of a larger sample size. Thus one can conclude that the estimation

methodology is correct and provides reasonable results.

4.2.3 Real data application

In this part, we check the performance of the proposed model by modelling daily copper price

data. The data consists of 2525 data points from the beginning of 2004 until the end of 2013. In
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(a) E[𝑋𝑡|𝑋0] estimate for the process {𝑋𝑡} Eq. (4.44) with marked simulated states of the under-
lying Markov Process.
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(b) Estimates of probabilities of the realization {𝑥𝑡𝑖} being in 𝐶1 and 𝐶2 state marked on {𝑦𝑡𝑖} (𝑦𝑡𝑖 =
𝑥𝑡𝑖+1 − 𝑥𝑡𝑖 definition in Eq. (4.28)) with comparison of estimated PDFs.

Figure 4-12: Resulting estimates for simulated data for SDE given by Eq. (4.44, source: [130]).
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Figure 4-13: Accuracy of regimes estimates with distributions of model’s (4.28) parameters’ esti-
mators, source: [130]
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(a) Copper price data.
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(b) Differentiated copper price data.

Figure 4-14: Copper price data used for evaluation of the proposed methodology, source: [130]

Fig. 4-14a we see that variance changes over time. Due to this fact we transformed the vector

taking the Box-Cox transformation [150] - i.e. the natural logarithm of the data. In the next step,

we scaled the data by 1000 to reduce numerical errors. From Fig. 4-14b, where differentiated data

is presented, we see periods when the variance is significantly higher than in other periods and it

resembles the realization of a random variable with heavier tails than Gaussian distribution. Thus

the proposition of using this model seems to be reasonable.

The estimation method requires the selection values of hyperparameters which we can find

using grid search - we chose ones with the lowest loss. For the local estimation of 𝛼1(·) and 𝛼2(·)
functions we picked the following values:

• 𝛿 = 75 (parameter of pseudo-Huber function (4.32));

• 𝑑1 = 0 (degree of local approximation of 𝛼1(·) polynomial (4.34))

41



� ��� ���� ���� ���� ����

���
����������


����

����

����

����

����

����

	���

	���

(a) Trend estimates of copper price data.
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(b) Local estimates {0𝛼̂1 + (0𝛼̂2 + 1𝛼̂2𝑡𝑖)𝑥𝑖} for the
copper price data.

Figure 4-15: Resulting trend estimates for copper price data, source: [130]

• 𝑑2 = 1 (degree of local approximation of 𝛼2(·) polynomial (4.34));

• 𝑏 = 750 (bandwidth of the asymmetric kernel function (4.35));

• 𝑏𝑟 = 187.6 (distance from 0 to the right boundary of the asymmetric kernel function (4.35));

• 𝜏 = 0.7 (Tikhonov regularization).

Taking the above-mentioned parameters, we minimized the loss function (4.33). The results are

presented in Fig. 4-15.

After that, we estimated parameters of the Hidden Markov Chain with SGT distribution as the

noise. The estimated parameters are as follows:

𝜇̂1 = 0.12, 𝜎̂1 = 36.71,

𝜆̂1 = −0.0270, 𝑝1 = 3.8919, 𝑞1 = 1.1947,
𝑃 =

[︃
0.97713 0.02287

0.01223 0.98777

]︃
.

𝜇̂2 = 1.05, 𝜎̂2 = 17.12,

𝜆̂2 = −0.0300, 𝑝2 = 2.0268, 𝑞2 = 5.8758,

The final results are presented in Fig. 4-16.

We also tested the fit for residuals. Because we presumed that they are independent, we can test

residuals separately for every case (orange and blue parts of the vector from plot 4-16a) of Hidden

Markov Chain. We used KS to validate the null hypothesis that the vector of residuals constitutes

a sample from SGT distribution with estimated parameters.

For both of the states, the test passes with a p-value greater than 0.95 which is significantly

larger than the commonly-used significance level 𝛼 = 0.05. The KS test returned test statistics
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(a) Estimates of probabilities of the copper price being in 𝐶1 and 𝐶2 state marked on {𝑦𝑡𝑖} with estimated
PDFs.
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(b) Marked estimated most probable states of the copper price data.

Figure 4-16: Resulting Hidden Markov Chain estimates for copper price data, source: [130]
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(a) Q–Q plot of residuals for first state.
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(b) Q–Q plot of residuals for second state.

Figure 4-17: Q–Q plots of residuals for each estimated hidden state, source: [130]

𝐾1 = 0.01267, 𝐾2 = 0.01267 with p-values 0.9572 and 0.9601 for the state 𝐶1 and 𝐶2, respec-

tively. Thus we can not reject the null hypothesis.

To further review the ability of the model to explain randomness in the data, especially the

heavy tails, we performed a visual test of goodness of fit - Q–Q plot [163] presented in Fig. 4-17.

The Q–Q plot is a visual test which compares the empirical quantiles of real data and the theoretical

ones corresponding to the tested distribution.

Based on the results of both tests, we conclude that the model properly describes the data.

From Fig. 4-16a we see that the estimation procedure found the presumed two states which can be

easily labelled as calm and violate. This fact finally confirms our assumption of the existence of

such hidden states and thus justifies the use of the model to the copper price data.

4.3 Discussion and summary

In this chapter we have proposed two stochastic models which address characteristics of financial

data, that is the non-Gaussian behaviour and time-inhomogeneous character.

On top of this, these two models have a built-in inflation trend, unlike basic Orstein-Uhlenbeck

which has constant parameters of the trend and return to the mean. In light of rising inflationary

pressure around the world, the increasing cost of commodities extraction and the growing demand

for metals from new applications, this may better reflect changing business dynamics.

The initially-proposed model improves the quality of modelling and outperforms models with

Gaussian distributions.

The second model is more complex and difficult to apply as it assumes changes of regimes.

The detection of switching points ex-ante, when regimes of metals prices are changing, is very
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challenging. This model cannot be applied to all metals. According to the results in [130], model

is a better fit to cyclical metals like copper (base metal), rather than gold or silver (precious metals),

in case of which changes are of a disordered nature. The second model has more applicable when

used for descriptive purposes rather than modelling future prices.
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Chapter 5

Currency exchange rates modelling

For metal mining companies active in the international environment, not only metal prices have

a substantial impact on their financial situation. Currency exchange rates are no less important,

as they impact both cash flows as well as the fair value of balance sheet positions and, in fact,

very often determine the business competitiveness of each mine as they are located in various

jurisdictions around the world.

In modelling currency exchange rates, the random walk model has been very often assumed.

However, the longer the forecast horizon, the more visible is the property of data showing that over

time, the process based on data tends to drift towards its long-term mean. The methodology used

in this chapter is very similar to the one used in the previous chapter, dedicated to metals prices

modelling.

5.1 Non-Gaussian time-inhomogeneous model

In this section we present the time-inhomogeneous non-Gaussian model for currency exchange

rates description. Similarly, as for the metal prices analysis, we utilize here the general class of

distributions, namely SGT distribution (4.1) and the stochastic process described by the special

case of the general process given by Eq. (4.4). The results presented in this section are published

in [127].

An important prediction of the theoretical literature on target exchange rates is that we might

expect mean reversion of the exchange rate when the central banks engage in intramarginal inter-

vention and market participants expect the exchange rate band to be fully credible and engage in
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stabilising speculation. This mean-reverting property is widely referred to in the literature [164–

167]. The strength of the mean-reverting component of the process measures the robustness and

the credibility of the exchange rate bands.

In our modelling study of the currency exchange rates data, we propose to apply the gener-

alisation of the Chan-Karolyi-Longstaff-Sanders (CKLS) model. This model was introduced for

describing the future evolution of the short term interest rate in [168]. Short term interest rates are

a crucial feature of the monetary transmission mechanism, which enables a monetary authority’s

actions to influence short-term interest rates and also, indirectly, the exchange rate [169].

The general model under consideration is based on SGT distribution and it is given by the

following form:

𝑑𝑋𝑡 = (𝛼 + 𝛽𝑋𝑡) 𝑑𝑡+ 𝜎𝑋𝑑
𝑡 𝑑𝑆𝑡, (5.1)

where {𝑆𝑡} is the process with stationary increments with SGT distribution. Such a model is

widely applied in the validation of derivative instruments dependent on interest rates [170, 171].

It belongs to the class of one-factor stochastic processes, but one can consider multi-factor models

[172, 173].

The formula (5.1) simplifies to the well-known, simpler models as presented in Table 4.1. The

classical CKLS model is defined in a similar way as the formula (5.1), however {𝑆𝑡} is replaced

by the ordinary Brownian motion. The most popular examples of the classical CKLS model are:

the Merton [174], Vasicek [34], CIR-SR [175], Dothan [176], Brennan-Schwartz [177], CIR-VR

[178] and CEV [179] models. As one can see, it is a natural extension of the classical Ornstein-

Uhlenbeck process (also called the Vasicek model) widely discussed in the literature. The structure

of the model (5.1) and its parameters allow modification of the rate of the return to the mean value

[180]. The 𝛽 parameter is the rate of the return and the ratio −𝛼/𝛽 is the mean value to which the

process returns. The volatility term not only has constant components 𝜎 > 0 and 𝑑 ∈ [0, 2), but

also random sources 𝑋𝑡 and 𝑑𝑆𝑡.Therefore, the conditional mean and the conditional variance of

the process {𝑋𝑡} depend on its values. This is the crucial assumption and an upgrade of previously

studied models [181].

5.1.1 Model estimation

In this part we present the procedure of estimating the CKLS model parameters from empirical

data. We may recall, that in the estimation algorithm as the output we obtain four estimators

(𝛼̂, 𝛽, 𝜎̂, 𝑑) of the CKLS model parameters. For that goal, we apply the generalized methods of

moments (GMM), which is the procedure introduced by the Nobel Prize winner, economist Lars
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Hansen in the paper [182]. The method is constantly being developed [183–185] and is widely

applied in multi-fractals research [186], emission modelling [187], economic studies [188], time

series modelling [189], queueing networks [190] and turbulence modelling [191], among others.

As was mentioned, the classical CKLS model allows different distributions of the noise {𝑆𝑡}.
This does not affect the procedure of parameters estimation. Therefore we present the estimation

procedure for the general model given in (5.1).

One can rewrite the discrete version of Eq. (5.1) for the process on the interval [0, 𝑇 ] as a

system of the following equation:

𝑋𝑛+1 −𝑋𝑛 = (𝛼 + 𝛽𝑋𝑛)∆𝑡+ 𝜖𝑛+1, (5.2)

𝜖𝑛+1 = 𝜎𝑋𝑑
𝑛∆𝑆𝑛, (5.3)

where ∆𝑡 is a time step and 𝑛 ∈ {0,∆𝑡, . . . , 𝑁∆𝑡} is an even division of the interval [0, 𝑇 ] with

𝑁 = 𝑇/∆𝑡 subintervals of the same length. Moreover, innovations ∆𝑆𝑛 = 𝑆(𝑛+1)Δ𝑡 − 𝑆𝑛Δ𝑡 are

independently identically distributed (i.i.d.) with the distribution of the process {𝑆𝑡} in (5.1).

The sequence {𝑋𝑛} defined by the above system of equations is a Markov chain [192] with a set

of four moment functions:

𝑓𝑛(𝜃) =

⎡⎢⎢⎢⎢⎣
𝜖𝑛+1

𝜖𝑛+1𝑋𝑛

𝜖2𝑛+1 − 𝜎2𝑋2𝑑
𝑛[︀

𝜖2𝑛+1 − 𝜎2𝑋2𝑑
𝑛

]︀
𝑋𝑛

⎤⎥⎥⎥⎥⎦ ,

where 𝜃 = (𝛼, 𝛽, 𝜎, 𝑑). Under the hypothesis of the CKLS model form (5.2)-(5.3) and the orthog-

onality assumption for 𝑋𝑛 and 𝜖𝑛+1, the quantity 𝑓𝑛(𝜃) satisfies the following condition:

𝐸 [𝑓𝑛(𝜃)] =

⎡⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎦ ,

which in the GMM theory is called moment conditions for moments 𝐸 [𝑓𝑛(𝜃)] . The main idea
behind the GMM methodology is to choose the CKLM model with parameters 𝜃 = (𝛼, 𝛽, 𝜎, 𝑑)

satisfying the above moment conditions. Since from the practical point of view the CKLM model
is estimated from the real trajectory, instead of the function 𝐸 [𝑓𝑛(𝜃)] one considers its empirical
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version 𝑔𝑁(𝜃):

𝑔𝑁 (𝜃) =
1

𝑁

⎡⎢⎢⎢⎢⎢⎣
∑︀𝑁

𝑛=1 [𝑥𝑛 − 𝛼Δ𝑡− (1 + 𝛽Δ𝑡)𝑥𝑛−1]∑︀𝑁
𝑛=1 [𝑥𝑛 − 𝛼Δ𝑡− (1 + 𝛽Δ𝑡)𝑥𝑛−1]𝑥𝑛−1∑︀𝑁

𝑛=1 [𝑥𝑛 − 𝛼Δ𝑡− (1 + 𝛽Δ𝑡)𝑥𝑛−1]
2 − 𝜎2𝑥2𝑑𝑛−1Δ𝑡∑︀𝑁

𝑛=1

[︁
(𝑥𝑛 − 𝛼Δ𝑡− (1 + 𝛽Δ𝑡)𝑥𝑛−1)

2 − 𝜎2𝑥2𝑑𝑛−1Δ𝑡
]︁
𝑥𝑛−1

⎤⎥⎥⎥⎥⎥⎦ ,

where 𝑥1, 𝑥2, . . . , 𝑥𝑁 is the trajectory of the process defined in (5.1). The goal of the estimation

procedure is the solution of the following equation:

𝑔𝑁(𝜃) = 0⃗, (5.4)

with respect to the parameters 𝜃 = (𝛼, 𝛽, 𝜎, 𝑑). Such a problem could equally be considered as a

minimization of the quadratic form 𝑔𝑁(𝜃)
𝑇𝑔𝑁(𝜃) with respect to 𝜃 vector. Therefore, the estimator

𝜃 of the true parameters (𝛼, 𝛽, 𝜎, 𝑑) is defined as follows:

𝜃 = 𝑎𝑟𝑔min
𝜃

[︀
𝑔𝑁(𝜃)

𝑇𝑔𝑁(𝜃)
]︀
.

Since the two top Eqs. in (7.2) are linear with respect to 𝛼 and 𝛽, we can write their explicit

solutions as follows:

𝛼̂ = ∆𝑡

∑︀𝑁
𝑛=1 𝑥𝑛 − (1 + 𝛽∆𝑡)

∑︀𝑁
𝑛=1 𝑥𝑛−1

𝑁
,

and

𝛽 =
1

∆𝑡

⎡⎣ (︀
1
𝑁
− 1
)︀∑︀𝑁

𝑛=1 𝑥𝑛𝑥𝑛−1

(
∑︀𝑁

𝑛=1 𝑥𝑛−1)
2

𝑁
−
∑︀𝑁

𝑛=1 𝑥
2
𝑛−1

− 1

⎤⎦ .

Moreover, in order to compute solutions of two other equations of the system (7.2) one can apply

any numerical method to get 𝜎̂ and 𝑑. In our empirical study, we used the fminsearch Matlab

built-in function.

5.1.2 Simulation study

In Fig. 5-1 we present two example trajectories (see left and right panels) of the CKLS model with

SGT distribution with: 𝛽 = −0.4, 𝜎 = 0.1, 𝑑 = 0.5 and 𝑝 = 1.5, 𝑞 = 10, 𝜆 = −0.0082, 𝜇 =

0, 𝑠 = 0.0062 and three different vales of 𝛼 parameters. The parameters are selected to be close

to the parameters estimated from the real data analysed in the next section. One can see the 𝛼

parameter influences the response of the trajectories. The smaller the 𝛼, the higher the values

of the process are observed. We expect the typical trajectories of the CKLS model with SGT
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distribution exhibiting non-Gaussian behaviour and mean-reversion property. Such properties we

can observe in Fig. 5-1.

100 200 300 400 500 600 700

n

1.5

2

2.5

3

3.5

X
(n

)

100 200 300 400 500 600 700

n

1.5

2

2.5

3

3.5

X
(n

)  = 0.1

 = 1

 = 1.5

Figure 5-1: Example trajectories of the CKLS model with SGT distribution with: 𝛽 = −0.4,
𝜎 = 0.1, 𝑑 = 0.5 and 𝑝 = 1.5, 𝑞 = 10, 𝜆 = −0.0082, 𝜇 = 0, 𝑠 = 0.0062 and three different values
of 𝛼 parameter, source: [127].

In order to check the proposed estimation technique of the CKLS model with SGT distribution

we simulate 3000 trajectories of this model, and using the procedures presented in the previous

sections we estimate the parameters for each trajectory. Each simulated trajectory contains 756

(2 * 252) observations. Finally, we create the boxplots of the obtained estimates and present them

in Fig. 5-2. The parameters used for the simulations are selected to be close to the parameters ob-

tained for the real data analysed in the next section. The mean absolute percentage errors (MAPE)

of estimated parameters from the CKLS model are presented in the titles of each boxplot.

We have also studied the MAPE and its dependence on the changes of the 𝛼 parameter. In our

simulation study we have simulated 3000 trajectories of the CKLS model with 𝒮𝒢𝒯 distribution

with the following parameters: 𝛽 = −0.40, 𝜎 = 0.1, 𝑑 = 0.5. In Fig. 5-3 we present the MAPE

with respect to the 𝛼 value taken to the simulations. The range of the 𝛼 parameter is selected to

be close to the estimated 𝛼 for the real data considered in this part. As one can see the MAPE is

not very sensitive for the changes in 𝛼 parameter which indicates the stability of the estimation

method.
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Figure 5-2: Estimators of the parameters of the CKLS model. The true parameters are: 𝛼 =
0.3, 𝛽 = −0.40, 𝜎 = 0.1, 𝑑 = 0.5 are marked by black dashed lines. To the simulations we take
the following parameters of SGT distribution: 𝑝 = 1.5, 𝑞 = 10, 𝜆 = −0.0082, 𝜇 = 0, 𝑠 = 0.0062.,
source: [127].
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Figure 5-3: The MAPE for the estimator of the 𝛼 parameter in the CKLS model with 𝒮𝒢𝒯 dis-
tribution. The other parameters taken to the simulations are: 𝛽 = −0.40, 𝜎 = 0.1, 𝑑 = 0.5 and
𝑝 = 1.5, 𝑞 = 10, 𝜆 = −0.0082, 𝜇 = 0, 𝑠 = 0.0062., source: [127].

5.1.3 Validation factor

In the classical validation procedure of fitting a given model to a real time series we compute the

quantile lines of specific order based on the calibrated model and compare them with the real data.
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The model is fitted to the historical data from the calibration period and then the validation is

made for the data from the prediction period. In order to calculate the quantile lines we use the

Monte-Carlo simulations. In this approach very often the quantile lines on the level 5% and 95%

or 25% and 75% are calculated. If the model is appropriate to the analysed time series, we expect

that the 90% or 50%, respectively, of the data from the prediction period falls into the constructed

intervals. The open issue is always the choice of the proper order of such quantiles. Thus, we

propose a novel validation technique which we call the space quantile-inclusion data plot. The idea

of this validation factor is the following. The horizontal axis (x-axis) presents the 𝑞% difference

between space quantile lines (100 − 𝑞)/2% and 𝑞 + (100 − 𝑞)/2% for the whole spectrum of 𝑞.

In our applications we take 𝑞 ∈ [10, 20, . . . , 90]. The vertical axis (y-axis) represents the fraction

𝜑(𝑞) of real data from the prediction period that lies between quantile lines (100 − 𝑞)/2% and

𝑞 + (100 − 𝑞)/2% (equivalently, the fraction of real data included in 𝑞% quantile region). Hence,

such a plot presents a line describing the goodness of fit and dependence between the historical data

and simulated trajectories of the fitted model. For an ideally fitted model the plot should present

the identity line. It is worth emphasising, such a factor bypasses the problem of choosing the

right quantile lines. Moreover, by applying the whole spectrum of 𝑞, the space quantile-inclusion

data plot can easily show the under-fitting or over-fitting of the calibrated model (too wide or too

narrow quantiles lines from generated trajectories, respectively). It also serves as a great tool in

comparison of different calibrated models from the same data set.

This graphical representation can be factorised as the average square distance between the

space quantile-inclusion data plot and the identity line. Thus the validation factor for the given

model 𝑀 can be formulated as follows:

Φ𝑀 =
1

#𝑄

∑︁
𝑞∈𝑄

|𝜑(𝑞)− 𝑞|2, (5.5)

where 𝑄 is a set of possible values of 𝑞. In our case 𝑄 = [10, 20, . . . , 90], #𝑄 is the number of

elements of the set 𝑄, 𝜑(𝑞) is the fraction of real data from the prediction period that lies between

quantile lines (100 − 𝑞)/2% and 𝑞 + (100 − 𝑞)/2% constructed using the model 𝑀 fitted for the

data from the calibration period. In an ideal situation this the factor Φ𝑀 should tend to zero. In

this case the model 𝑀 properly describes the real data. This factor can be also used in order to

compare two (or more) fitted models 𝑀1 and 𝑀2 to the same time series. We select the model

with the smallest validation factor, i.e. if Φ𝑀1 < Φ𝑀2 , then model 𝑀1 is selected as the more

appropriate for the considered data. We used this approach in the next section when we compare
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the CKLS model with SGT distribution and the classical GBM applied to the currency exchange

rates.

5.1.4 Real data application

In this section we present the analysis of real data sets which contain the currency exchange rates.

For the comparison, we examine two daily currencies pairs: EURUSD and USDPLN. These spe-

cific pairs have been chosen intentionally to verify the ability to applying the new proposed model

to currency exchange rates with different characteristics: EURUSD – the major world’s currency

pair and USDPLN – an emerging market currency with lower liquidity. In order to prove that

the CKLS model is universal for the currency exchange rates data, we compare the results of the

CKLS model with the classical GBM [193]. Moreover, we propose to apply the CKLS with gen-

eral SGT distribution, as the general class of distributions. The idea of estimation of the new model

is presented in the previous sections. In order to confirm that the SGT distribution is more effi-

cient in the analysed data modelling in Fig. 5-4 we present (in log-log scale) the right empirical

tails of logarithmic returns of two considered currency exchange rates. We compare them with the

empirical tails of the SGT distribution with the parameters estimated from the logarithmic returns

of real data. In the same plot, we demonstrate the right tails of the Gaussian distribution with

the parameters estimated as the empirical mean and empirical variance of the corresponding log-

arithmic returns. Fig. 5-4 shows that SGT distribution fits the data better than the Gaussian one.

Thus it is reasonable to consider the CKLS model with innovations from SGT distribution. For
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Figure 5-4: The right empirical tails of the logarithmic returns of EURUSD (left panel) and US-
DPLN (right panel) with the right tails of the SGT and Gaussian distributions with the parameters
estimated based on the data (in double logarithmic scale), source: [127].
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each examined data set we fit two models, namely CKLS with SGT distribution (CKLS/SGT) and

GBM. Both models are fitted for the historical data. For each currency exchange rate, we consider

9 historical data sets. All of them contain data from the year 1997. The end date of historical data

are the years 2007-2015.

CKLS SGT
Year: 𝛼 𝛽 𝜎 𝑑 𝜇 𝑠 𝜆 𝑝 𝑞
2007 1.6397 -0.4406 0.0894 1.1247 -0.00009 0.0066 0.0223 1.6739 7.7393
2008 0.5195 -0.1534 0.0774 1.2295 -0.00007 0.0065 0.0471 1.6891 7.5221
2009 0.8957 -0.2521 0.2728 0.3173 0.00001 0.0075 0.0623 1.9143 2.0000
2010 1.0371 -0.2966 0.3740 0.1420 0.00001 0.0084 0.0503 1.6986 2.0022
2011 1.1230 -0.3225 0.4018 0.0961 -0.00015 0.0087 0.0283 1.6435 4.1954
2012 1.2620 -0.3570 0.4243 0.0657 0.00005 0.0089 0.0580 1.5991 4.5397
2013 1.2706 -0.3677 0.4204 0.0781 0.00003 0.0089 0.0498 1.5798 4.9101
2014 1.2605 -0.3679 0.3918 0.1244 0.00002 0.0088 0.0528 1.6074 4.8272
2015 1.3231 -0.3796 0.3547 0.1912 0.00006 0.0086 0.0520 1.6171 4.7127

Table 5.1: The parameters of the CKLS model with SGT distribution estimated for USDPLN data,
source: [127].

CKLS SGT
Year: 𝛼 𝛽 𝜎 𝑑 𝜇 𝑠 𝜆 𝑝 𝑞
2007 0.2662 -0.2370 0.1018 0.4349 0.00002 0.0062 -0.0083 1.4543 200.0036
2008 0.0741 -0.0498 0.1023 0.1824 0.00008 0.0060 -0.0061 1.4277 142.4036
2009 0.1809 -0.1471 0.1011 0.9015 0.00004 0.0063 0.0039 1.3238 99.5099
2010 0.1839 -0.1458 0.1022 0.9839 0.00005 0.0064 0.0049 1.3442 75.1792
2011 0.2518 -0.2083 0.1032 1.0073 0.00003 0.0065 -0.0007 1.3668 75.9255
2012 0.2769 -0.2295 0.1027 1.0957 0.00003 0.0066 -0.0112 1.3606 135.7517
2013 0.2824 -0.2319 0.1018 1.0722 0.00002 0.0065 -0.0072 1.4106 47.1199
2014 0.2731 -0.2203 0.1013 1.0100 0.00003 0.0064 -0.0126 1.4023 42.5706
2015 0.2938 -0.2439 0.1011 0.9229 -0.00003 0.0063 -0.0069 1.3204 131.7730

Table 5.2: The parameters of the CKLS model with SGT distribution estimated for EURUSD data,
source: [127].

Finally, we make the prediction for the next three years. In Figs. 5-5-5-8 we demonstrate

9 panels corresponding to the 9 mentioned end years of the historical data. Moreover, we also

present the empirical quantiles for the prediction period for the levels 5% and 95% (red lines) and

25% and 75% (green lines). In Figs. 5-5 and 5-6 we demonstrate the results for EURUSD while in

Figs. 5-7 and 5-8 - for USDPLN.

55



2000 2004 2008
0.5

1

1.5

2

2.5
Year 2007

2000 2004 2008
0.5

1

1.5

2

2.5
Year 2008

2000 2004 2008
0.5

1

1.5

2

2.5
Year 2009

2000 2004 2008 2012
0.5

1

1.5

2

2.5
Year 2010

2000 2004 2008 2012
0.5

1

1.5

2

2.5
Year 2011

2000 2004 2008 2012
0.5

1

1.5

2

2.5
Year 2012

2000 2004 2008 2012
0.5

1

1.5

2

2.5
Year 2013

2000 2004 2008 2012 2016
0.5

1

1.5

2

2.5
Year 2014

EURUSD CKLS/SGT

2000 2004 2008 2012 2016
0.5

1

1.5

2

2.5
Year 2015

Figure 5-5: The CKLS/SGT modelling for EURUSD for 9 considered end years of historical data.
The prediction is made for a three-year period. In each case, we present the empirical quantiles for
the prediction period for the levels 5% and 95% (red lines) and 25% and 75% (green lines), source:
[127].

In order to compare the obtained results, we analyse the space quantiles-inclusion data plot

described in the previous sections for two considered exchange currency rates, 9 end years of

historical data and two considered models. The appropriate plots are presented in Figs. 5-9 and

5-10. In Fig. 5-9 we present the results for EURUSD. We can see that in general the CKLS/SGT

model seems to be superior with respect to the GBM. The space quantiles-inclusion data plots

are closer to the identity line in case of CKLS/SGT for all end years of a three-year calibration

period. However, for both models we can see that the constructed quantile lines are too narrow

for the same end years of the calibration period. Namely, for the years 2007, 2008, 2014 and

2015 the space quantiles-inclusion data plots for both models are below the identity line, which

suggests both models are overfitting. For the other end years of a three-years calibration period

for both considered models the space quantiles-inclusion data plots are above the identity line, that

suggests the constructed quantile lines for all considered 𝑞 values are too wide and the models are

underfitting. In Fig. 5-10 we present the results for USDPLN. Also in this case the CKLS/SGT
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Figure 5-6: The GBM modelling for EURUSD for 9 considered end years of historical data. The
prediction is made for a three-years period. In each case, we present the empirical quantiles for
the prediction period for the levels 5% and 95% (red lines) and 25% and 75% (green lines), source:
[127].

model, in general, seems to be the superior one with respect to the GBM. The space quantiles-

inclusion data plots are closer to the identity line. For both considered currency exchange rates

the CKLS/SGT model is more universal and can be useful in describing the currency exchange

rates with different behaviour. In table 5.3 the validation factor calculated as the average square

distance between the space quantile-inclusion data plot and the identity line for two considered

models, two considered currency exchange rates and 9 end years of historical data. As we can see,

this factor clearly indicates that the CKLS/SGT model is more appropriate for the considered cases

than the classical GBM model.

5.2 Averaging calibration window for prediction

In this section we discuss the problem of the calibration length used for the prediction. The anal-

ysis will be performed based on the generalized (time-dependent) Vasicek model for the currency
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Figure 5-7: The CKLS/SGT modelling for USDPLN for 9 considered end years of historical data.
The prediction is made for three years period. In each case, we present the empirical quantiles for
the prediction period for the levels 5% and 95% (red lines) and 25% and 75% (green lines), source:
[127].

exchange rate data description being a special case of (4.4). However, the proposed methodology

is universal and can be applied for any model used for data analysis. The results presented in this

section are published in [20].

We analyse in this section the extended Vasicek model by replacement of the constant coef-

ficient in the classical process by coefficients dependent on time. The considered process seems

to be perfect for modeling the analysed exchange rates data, under the condition that they are ho-

mogeneous. However, in the analysed data, we observe that some of their characteristics change

over time, thus in the case of a long-term prediction problem this behaviour needs to be taken into

consideration. In general, as was mentioned, one may expect that the longer the calibration length,

the better the prediction performance. This statement is true, but only in the case of the homoge-

neous data. This problem is highlighted in this part of the thesis. We demonstrate that the analysed

vectors of observations cannot be modeled by the same process, thus in the problem of a long-term

prediction the non-homogeneous character of the time series should be taken into consideration.
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Figure 5-8: The GBM modelling for USDPLN for 9 considered end years of historical data. The
prediction is made for three years period. In each case, we present the empirical quantiles for the
prediction period for the levels 5% and 95% (red lines) and 25% and 75% (green lines), source:
[127].

0 10 20 30 40 50 60 70 80 90 100
 q [%]

0

10

20

30

40

50

60

70

80

90

100

 (
q
)
 
[
%
]

EURUSD GBM

2007
2008
2009
2010
2011
2012
2013
2014
2015

0 10 20 30 40 50 60 70 80 90 100
 q [%]

0

10

20

30

40

50

60

70

80

90

100

 (
q
)
 
[
%
]

EURUSD CKLS/SGT

2007
2008
2009
2010
2011
2012
2013
2014
2015

Figure 5-9: The space quantiles-inclusion data plots for EURUSD for 9 considered end years of
historical data for CKLS/SGT model (left panel) and GBM (right panel), source: [127].
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EURUSD USDPLN
Year: CKLS/SGT GBM CKLS/SGT GBM
2007 428.74 74.76 1019.08 66.84
2008 48.59 126.64 426.31 670.8
2009 222.93 1022.34 59.43 676.57
2010 128.16 140.23 383.47 693.89
2011 403.49 761.75 413.94 690.29
2012 321.10 1046.75 94.69 600.87
2013 60.69 46.43 245.79 322.71
2014 394.03 1077.77 297.43 616
2015 196.22 58.58 108.73 53.75
Mean 244.88 483.91 338.76 487.97

Table 5.3: The validation factor calculated as the square distance between the space quantile-
inclusion data plot and the identity line for CKLS/SGT and GBM two considered currency ex-
change rates and 9 end years of historical data, source: [127].

Financial data, including exchanges rates, are characterised by high volatility and uncertainty

driven by interest rates changes, inflation rates fluctuation, a three-year monetary policy conducted

by central banks and obviously industrial production and other financial events. In light of such

a volatile environment, models which are used for modelling should take into account not only a

three-year changing parameters of the model through the time but also time frames of data based

on which three-year model is calibrated. Averaging of calibration windows for modelling purposes

is a good solution here, and enables the limition of potential outstanding forecasting errors, which

could be very costly in real business application.
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Figure 5-10: The space quantiles-inclusion data plots for USDPLN for 9 considered end years of
historical data for CKLS/SGT model (left panel) and GBM (right panel), source: [127].
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The extended Vasicek model (also called generalized Vasicek model) with time-dependent pa-

rameters belongs to the group of time-inhomogeneous models [52, 194]. This model has been ex-

tended by Hull and White by allowing both, the drift and variance coefficients, to be time-varying

and its stochastic differential equation is given by the formula [55]:

𝑑𝑋𝑡 = {𝛼0(𝑡) + 𝛼1(𝑡)𝑋𝑡}𝑑𝑡+ 𝛽0(𝑡)𝑑𝐵𝑡, (5.6)

where 𝛼0(𝑡), 𝛼1(𝑡), 𝛽0(𝑡) are functions. The special case of the model (5.6) is the CKLS model

with 𝑑 = 0, (7.1). However, in practical applications, it is more reasonable to expect that at least

some of the parameters of the extended model involve time-dependent coefficients. It is interesting

to note that the model is also a special case of (4.6) with 𝛽2(𝑡) = 0 and Gaussian distribution.

The explicit solution of the formula (5.6) is given by [194]:

𝑋𝑡 = 𝑒−𝑙(𝑡)

(︂
𝑋𝑠 +

∫︁ 𝑡

𝑠

𝑒𝑙(𝑢)𝛼0(𝑢)𝑑𝑢+

∫︁ 𝑡

𝑠

𝑒𝑙(𝑢)𝛽0(𝑢)𝑑𝐵𝑡

)︂
, (5.7)

where 𝑙(𝑡) =
∫︀ 𝑡

𝑠
𝛼1(𝑢)𝑑𝑢. The conditional mean of 𝑋𝑡 (with known 𝑋𝑠) is given by:

𝑒−𝑙(𝑡)
(︁
𝑋𝑠 +

∫︀ 𝑡

𝑠
𝑒𝑙(𝑢)𝛼0(𝑢)𝑑𝑢

)︁
, and the conditional variance is 𝑒−2𝑙(𝑡)

∫︀ 𝑡

𝑠
𝑒−2𝑙(𝑢)𝛽2

0(𝑢)𝑑𝑢.

5.2.1 Simulation study

We focus on the problem of the parameter estimation for the time-varying Vasicek model using

different lengths of the historical data calibration sample. Then we forecast future values by sim-

ulating a number of trajectories from the extended Vasicek model with estimated parameters, and

we investigate how the length of the calibration sample impacts the quality of our predictions. Fi-

nally, we try to find the ’optimal’ calibration window length. Our general methodology consists of

several steps which are presented by a flowchart in Fig. 5-11.

Figure 5-11: The schematic algorithm of the applied methodology, source: [20].
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In order to illustrate the formulated problem, we first present our approach to the simulated data

set. As our exemplary data, we consider a simulated trajectory (Fig. 5-12) of the model defined

in (5.6) for constant coefficients. We use first 252 * 9 = 2268 observations (on the left-hand side

from the dashed vertical line) as a training period for estimation of the model parameters. Note that

in the simulated trajectory, we can distinguish three different regimes, i.e., the trajectory consists

of three realizations of the Vasicek process, simulated with three different sets of parameters (we

denote these three parts 𝑋1, 𝑋2, 𝑋3, respectively). The values of these parameters are shown in

Tab. 5.4.

𝑋1 𝑋2 𝑋3

𝛼0 0.004 0.007 0.005
𝛼1 -0.003 -0.004 -0.003
𝛽0 0.025 0.05 0.015

Table 5.4: Parameters of the Vasicek model for each part of the trajectory in Fig. 5-12, source:
[127].

Figure 5-12: A sample simulated trajectory with three distinguishable regimes 𝑋1, 𝑋2 and 𝑋3

(marked with different colors). The dashed, vertical line indicated the end of the training period,
source: [20].

The next step requires the selection of a calibration period for the parameter estimation - a

training sample consisting of historical data on which we estimate the parameters of the Vasicek

model (to later use the estimated model to forecast the future values). A common belief is that

the longer the calibration sample is, the better the results are. However, in our case, as can be

seen from Fig. 5-12, the data that we want to forecast, i.e., observations from 2267 to 2520 (on

the right-hand side from the vertical dashed line), was generated using the same set of parameters

as for the last 3*252 observations in the calibration sample (observations from 1513 to 2268).

Therefore, with this knowledge, intuitively, taking a long calibration period that takes into account

the whole calibration sample should bring less satisfactory results than calibrating our model to
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the last 3*252 observations. In our study we consider different lengths of the calibration period

(calibration windows) - it ranges from 3*252 up to 9*252 observations for the simulated case. Note

that all training samples are left-truncated so that they end on the same observation of the training

period, i.e., when considering a 3*252 observation calibration window we take observations from

1513 to 2268, and for 7*252 calibration sample we take observations from 505 to 2268.

Once the parameters of the Vasicek model are estimated from historical data, we predict future

values by simulating 10 000 trajectories (each containing 252 observations) using the calibrated

model. Next, we evaluate the performance of our estimations using the following measures: mean

absolute percentage error (MAPE) and a novel technique introduced in the previous sections, called

a validation factor (VF).

The first measure, MAPE, is calculated in the following way:

MAPE(cal) =
1

𝑁𝑇

𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

|𝑋̂𝑐𝑎𝑙
𝑡,𝑛 −𝑋𝑡|
𝑋𝑡

, (5.8)

where 𝑋̂𝑐𝑎𝑙
𝑡,𝑛 is the predicted value at prediction time 𝑡 from the 𝑛-th generated trajectory from the

validated period, obtained from the Vasicek model calibrated to a training sample of length 𝑐𝑎𝑙,

𝑋𝑡 is the real value at time 𝑡, 𝑁 is the number of generated trajectories and 𝑇 is the length of each

trajectory. We take 𝑁 = 10000 and 𝑇 = 252.

In the next step of assessing our performance, we follow [127] and evaluate the quality of our

estimations with the novel method based on the quantile lines computed from the 10000 simulated

trajectories. The quantile lines, 𝒬(𝑐𝑎𝑙), are obtained by calculating the empirical quantiles of the

simulated values at each time point:

𝒬(𝑐𝑎𝑙) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑄𝑐𝑎𝑙
0.05(𝑡1) . . . 𝑄0.05(𝑡252)

𝑄𝑐𝑎𝑙
0.1(𝑡1) . . . 𝑄0.1(𝑡252)

...
...

𝑄0.9(𝑡1) . . . 𝑄0.9(𝑡252)

𝑄0.95(𝑡1) . . . 𝑄0.95(𝑡252)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.9)

where 𝑄𝑐𝑎𝑙
𝑞 (𝑡) is a 𝑞-th quantile of the simulated prices from a certain calibration window 𝑐𝑎𝑙,

calculated for values of 10000 simulations at time 𝑡. The second error measure, VF, is calculated

in the following way:

VF(cal) =
1

#P

∑︁
𝑝∈P

|𝜑(𝑝)− 𝑝|2, (5.10)
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where P = [0.1, 0.2, . . . , 0.9] is a set of possible values of 𝑝, 𝜑(𝑝) is the fraction of real data from

the validated period lying between calculated quantile lines 1−𝑝
2

and 𝑝 + 1−𝑝
2

and #P is the size

of the set P. When evaluating our results with the use of this factor, we pay particular attention to

the amount of real data placed between certain quantile lines - if the model is correctly estimated,

90% of data should lie between the 0.05 and 0.95 quantile lines, 50% between the 0.25 and 0.75

quantile lines etc. Similarly to MAPE, the lower the value of the VF is, the better the results of the

model parameter estimation are.

The results of the evaluation for the simulated data case are presented in Tab. 5.5. It turns out

that, indeed, taking the shortest, 3-year (3*252 observations) calibration sample produced the best

results in terms of both MAPE and VF. This simple analysis is a motivation and a starting point to

the real data consideration.

Calibration length
3*252 4*252 5*252 6*252 7*252 8*252 9*252

MAPE 0.0161 0.0176 0.0306 0.0276 0.0167 0.0221 0.0266
VF 0.0068 0.0138 0.0376 0.0851 0.0184 0.0181 0.0581

Table 5.5: Results in terms of MAPE and VF for the simulated data case. Columns refer to lengths
of the model calibration window. Best performing model is marked in blue, source: [20].

5.2.2 Real data application

In this section, we present the results of our investigation concerning the selection of the calibration

window for the estimation of the generalized Vasicek model parameters for real data. We propose

here a new approach in the considered issue. We consider daily-frequency of the EUR/USD and

USD/PLN currency exchange rates, both spanning from 2nd January 1997 up to 2nd January 2015.

We use the first 10 years of data, i.e., from 2 January 1997 to 29 December 2006 (dashed, vertical

line in Fig. 5-13 and Fig. 5-14 marks the end of this period) as the initial period for the model

calibration. For each currency pair, we examine the influence of the length of a training sample

on the quality of our 1-year forecasts - the methodology is similar to the one used in case of

simulated data. For each test-year (from 2007 to 2014) we first calibrate the generalized Vasicek

model’s parameters on the different lengths of historical data and then generate 10 000 exchange

rate trajectories for the corresponding year. Then we use the real data to evaluate the predictions

in terms of both MAPE and VF - results are shown in Tables 5.6 - 5.7. The columns are labeled

from 2 to 10 and correspond to the length of the historical data sample used to estimate generalized

Vasicek model’s parameters. For each row (which corresponds to a certain test-year) we mark the
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best performing calibration window, i.e., we mark the calibration window length for which the

generated trajectories produced the best results in terms of a certain error measure (MAPE or VF).

This allows us to clearly depict which calibration window length was the ’optimal’ one in a certain

year.

EURUSD

Figure 5-13: EUR/USD daily exchange rates from from 2 January 1997 to 2 January 2015. The
dashed, vertical line indicates the end of the initial 10-year calibration period, source: [20].

USDPLN

Figure 5-14: USD/PLN daily exchange rates from from 2 January 1997 to 2 January 2015. The
dashed, vertical line indicates the end of the initial 10-year calibration period, source: [20].

As we have seen in the previous section, the choice of just one optimal calibration window

length for estimating the extended Vasicek model parameters is, in our case, a cumbersome and

hardly doable task. The performance of certain windows changes significantly over time, and

an inappropriate choice can bring extremely disappointing results by significantly lowering the

accuracy of our predictions. Also, it is worth mentioning that as selection of the optimal calibration

window was made ex-post, we would not be able to indicate the best calibration sample length

in advance. Therefore, in order to tackle this issue, analogously to [195] we examine several

combinations of different calibration window lengths and average the predictions obtained from

these windows. Then we evaluate the accuracy of the averaged forecast in terms of MAPE and VF.
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We consider five different combinations of calibration windows; we denote them by Avg(·) and the

argument describes the windows that we choose for averaging. We use MATLAB notation in order

to refer to a certain combination, e.g. Avg(2:10) refers to averaging predictions from all window

lengths from 2 to 10 years while Avg(2:4,8:10) to selecting predictions from the three shortest (2,

3, 4-years) and three longest (8, 9, 10-years) windows.

We use two different approaches to average the predictions - the choice depends on the selection

of the evaluation measure.

Calibration length
2 3 4 5 6 7 8 9 10

MAPE
2007

0.0500 0.0512 0.0538 0.0570 0.0534 0.1060 0.0526 0.0567 0.0574
VF 0.0240 0.0052 0.0017 0.0017 0.0149 0.1472 0.0064 0.0025 0.0063

MAPE
2008

0.0668 0.0666 0.0643 0.0632 0.0648 0.0641 0.0675 0.0666 0.0676
VF 0.0694 0.0623 0.0802 0.0870 0.0725 0.0641 0.0436 0.0522 0.0453

MAPE
2009

0.1231 0.1158 0.1066 0.0903 0.0713 0.0708 0.0702 0.0717 0.0688
VF 0.0443 0.0359 0.0106 0.0163 0.0017 0.0016 0.0293 0.0018 0.0037

MAPE
2010

0.0970 0.0946 0.0939 0.1821 0.1096 0.1171 0.1187 0.0890 0.0880
VF 0.0710 0.0699 0.0628 0.0901 0.0066 0.0073 0.0051 0.0341 0.0286

MAPE
2011

0.0689 0.0889 0.0918 0.0527 0.0528 0.0611 0.0651 0.0568 0.0695
VF 0.0039 0.0203 0.0198 0.0208 0.0130 0.0095 0.0040 0.0267 0.0973

MAPE
2012

9.2977 0.0664 0.0895 0.0855 0.0525 0.0479 0.0513 0.0533 0.0643
VF 0.1043 0.0769 0.1048 0.1063 0.0200 0.0313 0.0388 0.0457 0.0685

MAPE
2013

0.0461 0.0305 0.0359 0.0617 0.0619 0.0367 0.0523 0.0426 0.0427
VF 0.0583 0.0157 0.0329 0.1027 0.1085 0.0355 0.0017 0.0559 0.0835

MAPE
2014

0.0486 0.0592 0.0615 0.0552 0.0792 0.0522 0.0330 0.0505 0.0539
VF 0.0085 0.0157 0.0191 0.0098 0.0568 0.0055 0.0275 0.0117 0.0071

Table 5.6: Results in terms of MAPE and VF for the EUR/USD data. The columns refer to the
lengths of the model calibration window (in years). The best performing model for each year is
marked in blue, source: [20].

Averaging approach when evaluating MAPE

When evaluating the forecasts in terms of MAPE, we take every simulated trajectory from each

calibration window length and average their values with corresponding trajectories from different

windows in the chosen combination. As an example we take Avg(2:4) - we average predictions of

currency pairs of exchange rates obtained from the extended Vasicek model calibrated to 2, 3, and

4-year historical data samples. For each calibration window lengths, we obtain 10000 simulated

trajectories of the underlying’ price. We take the first trajectory for each of the calibration window

length and average their values - we obtain a new, averaged trajectory of the same length (1-year).
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Calibration length
2 3 4 5 6 7 8 9 10

MAPE
2007

0.0950 22.9650 0.1073 0.0942 0.1044 0.1042 0.1019 0.1029 0.0982
VF 0.0022 0.0191 0.0038 0.0087 0.0044 0.0032 0.0036 0.0027 0.0043

MAPE
2008

0.1169 0.1125 0.1087 0.1178 0.1118 0.1226 0.1377 0.1345 0.1360
VF 0.0631 0.0807 0.0934 0.1414 0.1366 0.1201 0.0269 0.0357 0.0363

MAPE
2009

0.2582 0.1774 0.2134 0.1184 0.1223 0.1127 0.1109 0.1155 0.1179
VF 0.0409 0.0132 0.0826 0.0130 0.0315 0.0156 0.0293 0.0101 0.0124

MAPE
2010

0.1423 0.0928 0.1269 0.1741 0.2043 0.1779 0.1016 0.1040 0.0984
VF 0.0673 0.0095 0.0513 0.0487 0.1004 0.1139 0.0466 0.0229 0.0404

MAPE
2011

0.1110 0.1507 0.1479 0.0733 0.0757 0.0977 0.1080 0.0828 0.0782
VF 0.0260 0.0438 0.0560 0.0488 0.0101 0.0070 0.0274 0.0110 0.0129

MAPE
2012

0.1370 0.1052 0.1277 0.1421 0.1239 0.0744 0.0797 0.0849 0.0752
VF 0.0303 0.0081 0.0198 0.0258 0.0155 0.0338 0.0254 0.0072 0.0176

MAPE
2013

0.0656 0.0811 0.0809 0.1251 0.0716 0.1171 0.1123 0.0640 0.0703
VF 0.0702 0.0740 0.0988 0.1316 0.0901 0.1515 0.1358 0.0538 0.0608

MAPE
2014

0.0728 0.0770 0.0835 0.0951 0.1120 0.0954 0.0727 0.0674 0.0654
VF 0.0414 0.0480 0.0390 0.0690 0.1193 0.0695 0.0241 0.0180 0.0245

Table 5.7: Results in terms of MAPE and VF for the USD/PLN data. The columns refer to lengths
of the model calibration window (in years). The best performing model for each year is marked in
blue, source: [20].

This procedure is repeated for all trajectories and for each test-year. Then, MAPE is calculated for

new, 10 000 averaged trajectories in the same way as was shown in Section 5.2.1.

Averaging approach when evaluating VF

The second error measure, a validation factor, assesses the performance of predictions based on

the quantile lines obtained from simulated trajectories. When averaging predictions from a certain

combination of windows, for each calibration window length, we calculate the values of quantile

lines from the generated samples. Then we average their values (across different window lengths)

for each of the quantiles 0.05, . . . , 0.95 separately and obtain new, averaged quantile lines. Then we

evaluate the performance of a certain combination by calculating the value of the VF for averaged

quantile lines. An exemplary procedure of averaging quantile lines for two calibration windows is

shown in Fig. 5-15.

5.3 Discussion and summary

In this chapter we have proposed a stochastic model which address the characteristics of financial

data, that is the non-Gaussian behaviour and time-inhomogeneous character. The results presented
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USDPLN

Figure 5-15: Method of obtaining averaged quantile lines, shown only for 0.05 (lower curves) and
0.95 quantiles (upper curves). The red, dotted lines, which represent averaged quantile lines, are
obtained by averaging the values of three other quantile lines, source: [20].

show that the CKLS/SGT model is universal and can be useful in describing currency exchange

rates with different behaviour and is more appropriate for the considered cases than the classical

GBM model.

In addition, we discussed the problem of the calibration data length used for the prediction. We

have demonstrated that, depending on the test-year data length and starting point, one might obtain

different results and in the long term, the averaging of different models can give better and more

stable results in modelling exchange rates.
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Chapter 6

Multidimensional market risk prices
modelling

In the previous chapters, we have concentrated on one-dimensional market risk factors modelling.

However, in business reality, very often there is a necessity to monitor and model the behaviour of

two or more risk factors at the same time, because they are interlinked and only a holistic approach

gives a proper overview of the market dynamics and the useful information required for market

risk management.

Adding a business context to multidimensional modelling, an example of the most important

market risk factors for KGHM are the price of copper (Cu in US Dollars) and the USDPLN ex-

change rate. From the market risk measurement and modelling perspective, the copper price in

Polish zloty (Cu in PLN) effectively drives revenues, cash flows, earnings and therefore, in fact,

the financial situation of the company. Therefore, the main problem considered can be formulated

as follows: how to properly model the range of Cu in PLN, taking into account the changing in

time dependence between the USDPLN exchange rate and the copper price in USD, under the

additional assumption that both assets have non-Gaussian impulsive behaviour. Although the for-

mulated problem seems to be dedicated to a specific case, it can be considered as a general one,

namely the modelling of the range of values for the metal price expressed in the currency of a given

country, when the relationship between the metal price and the exchange rate (between the original

currency and the national currency) is changing over time. In the considered case, it is important

to capture the non-Gaussian characteristics, changing regimes, and non-constant relation between

risk factors, as such instability can create additional risk for the company if it occurs.

Based on the relation and distribution analysis, we propose in this chapter a two-dimensional

VAR model with the 𝛼−stable distribution for which the non-homogeneity of the data is reflected
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in two identified regimes. The proposed VAR(1) model is a generalization of the AR(1) model,

which in turn is a generalisation of the Orstein-Uhlenbeck process presented in Chapter 4. The

VAR(1) model has however a discrete character, whereas the models introduced in Chapter 4 are

continuous. Additionally, the 𝛼−stable distribution has a common part with the class of SGT

distributions, meaning Cauchy distribution. The use of the 𝛼−stable distribution is advantageous

due to the easy definition of a stable multivariate distribution and the fact that it is a generalization

of multivariate normal distribution. The results presented in this chapter are published in [131].

6.1 Relation between assets

Fig. 6-1 presents weekly copper prices in USD (top panel) and the USDPLN exchange rate (bot-

tom panel) from the period January 7th, 2000 - October 2nd, 2020. The logarithmic returns of the

analysed data are demonstrated in Fig. 6-2 in the top and middle panels, respectively. One can see

the specific behaviour of the time series. On one hand, it is clearly seen that both data sets exhibit

a non-Gaussian behaviour with visible large observations that may suggest a heavy-tailed distri-

bution of the time series. This behaviour is especially apparent in the logarithmic returns of the

examined assets. On the other hand, one can see that the data have a non-homogeneous structure

- there are visible regimes of the time series that do not fit the overall pattern. Special attention

should be paid to the period from the year 2008 to 2012, where the large observations are more

frequent than in the other periods. This behaviour is especially visible for copper price logarithmic

returns (see the top panel of Fig. 6-2). The non-homogeneity of the time series indicates that the

parameters switch in time and one stationary model can not be used for the whole data description.

Despite the fact that there is no direct economic relationship between the copper price (in USD)

and the USDPLN exchange rate, even a brief look at the charts shows that there is a negative rela-

tion between these risk factors, see Fig. 6-2, the bottom panel. From the market risk management

point of view, such a statement is very important, especially if these assets are the major risk fac-

tors in the portfolio. However, if that relation were to turn to be apparent or unstable during the

time, it could lead to misleading conclusions and as a consequence incorrect decisions.

The mentioned relation between the considered assets can be expressed by different measures

of dependence. Here we examine three metrics, namely Pearson, Spearman rank, and Kendall

rank correlation coefficients. The definitions and properties of these measures as well as their

sample versions are presented in the next section. Here we only mention that the Pearson corre-

lation is effective for the data with light-tailed distribution (like the Gaussian one), while the two

other correlation measures can also be used for the heavy-tailed distributed time series. In order
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Figure 6-1: The weekly data corresponding to the copper price in USD (top panel) and USDPLN
exchange rate (bottom panel) from the period Jan 7th, 2000 - October 2nd, 2020, source [131].
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Figure 6-2: The logarithmic returns of weekly copper price in USD (top panel), USDPLN ex-
change rate (middle panel), and the corresponding sample Pearson, Spearman rank, and Kendall
rank correlation coefficients calculated for two-yearly windows (104 observations), source [131].

to demonstrate the dynamics of the dependence structure, the sample correlation coefficients are

calculated for the data from a moving window corresponding to a two-year period (104 observa-

tions). As one can see in Fig. 6-2, the sample correlation coefficients change over time, which

indicates the dynamic structure of the relationship between the assets. Moreover, for the time pe-

riod between the years 2006 and 2012, there is a clear difference between the Pearson correlation

coefficient and the two other measures (especially the Kendall rank correlation coefficient). This
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phenomenon may confirm the non-homogeneous structure of the data. Moreover, the heavy-tailed

distribution may also influence the difference between the dependency measures.

The specific characteristics of the data described above are the motivation for using the non-

Gaussian models for their description. Moreover, the visible relationship between the analysed

assets implies that a multidimensional model needs to be applied. The dynamics of the correlation

coefficients and the non-homogeneous behaviour of the data indicate that in the first step of the

analysis the examined time series should be divided into regimes of the homogeneous structure.

6.2 Methodology

In this section, we present the general methodology used in the subsequent analysis. The demon-

strated methods are known from the literature, thus we recall only the main concepts, definitions,

and properties.

6.2.1 The dependence structure description for Gaussian and non-Gaussian
time series

Different measures of dependence between variables may be used to describe the interplay of

different elements in a complex system and the strength of their relationship. We focus on three of

the most broadly used measures, namely, the Pearson correlation, the Spearman rank correlation,

and the Kendall rank correlation [143].

The most common dependency measure between two random variables is the Pearson correla-

tion coefficient 𝜌𝑃 which for a random vector (𝑋, 𝑌 ) is defined as follows [196]:

𝜌𝑃 =
cov(𝑋, 𝑌 )

𝜎𝑋𝜎𝑌

, (6.1)

where 𝑐𝑜𝑣(·, ·) is the covariance function, 𝜎𝑋 is the standard deviation of 𝑋 and 𝜎𝑌 is the standard

deviation of 𝑌 . The sample version of 𝜌𝑃 for (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛), denoted as 𝑟𝑃 is

defined as [196]:

𝑟𝑃 =

∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)√︀∑︀𝑛

𝑖=1(𝑥𝑖 − 𝑥)2
√︀∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
, (6.2)

where 𝑥, 𝑦 are sample means of the data vectors 𝑥 and 𝑦, respectively.

The Pearson correlation is used to study the linear relationship between two variables. It takes

values in the range [−1, 1]. Values close to 1 and −1 indicate a strong relationship (positive and
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negative, respectively). A value of 0 means no linear dependence. The Pearson correlation coef-

ficient is sensitive to outliers. Therefore, this measure is useful especially for Gaussian (or light-

tailed) distributed variables.

The Spearman rank correlation coefficient for a random vector (𝑋, 𝑌 ) has the following form

[197, 198]:

𝜌𝑆 =
cov(𝑄,𝑊 )

𝜎𝑄𝜎𝑊

, (6.3)

where 𝑐𝑜𝑣(·, ·) is the covariance between 𝑋 and 𝑌 , (𝑄,𝑊 ) is a random vector of ranks correspond-

ing to (𝑋, 𝑌 ), and 𝜎𝑄 and 𝜎𝑊 are the standard deviations of variable 𝑄 and 𝑊 , respectively. The

sample version of the Spearman rank correlation coefficient for a random bi-dimensional sample

(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) being the realisation of the random vector (𝑋, 𝑌 ) is defined as follows:

𝑟𝑆 =
1

𝑛−1

∑︀𝑛
𝑖=1(𝑞𝑖 − 𝑞)(𝑤𝑖 − 𝑤)

[ 1
𝑛−1

∑︀𝑛
𝑖=1(𝑞𝑖 − 𝑞)2 1

𝑛−1

∑︀𝑛
𝑖=1(𝑤𝑖 − 𝑤)2]1/2

, (6.4)

where 𝑞𝑖, 𝑤𝑖 are the empirical counterpart of the random variables 𝑄 and 𝑊 , whereas 𝑞 and 𝑤

are the sample means of the relevant rank samples. The Spearman rank correlation takes values

between [−1, 1] and verifies a monotonic relationship. This measure is especially useful in the case

when the analysed variables are non-Gaussian. It is insensitive to large observations and thus in

these cases indicates the relation more adequately than the Pearson correlation.

The last considered measure is the Kendall rank correlation. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)

be a random sample corresponding to the random vectors (𝑋, 𝑌 ). The sample Kendall rank corre-

lation coefficient is defined as follows [199]:

𝑟𝐾 =
2

𝑛(𝑛− 1)

∑︁
1≤𝑖≤𝑗≤𝑛

𝐽((𝑥𝑖, 𝑦𝑖), (𝑥𝑗, 𝑦𝑗)), (6.5)

where 𝐽((𝑥𝑖, 𝑦𝑖), (𝑥𝑗, 𝑦𝑗)) = sgn(𝑥𝑖−𝑦𝑖)sgn(𝑥𝑗−𝑦𝑗) and 𝐽((𝑥𝑖, 𝑦𝑖), (𝑥𝑗, 𝑦𝑗)) = 1, if a pair (𝑥𝑖, 𝑦𝑖)

is concordant with a pair (𝑥𝑗, 𝑦𝑗), i.e. if (𝑥𝑖− 𝑥𝑗)(𝑦𝑖− 𝑦𝑗) > 0; 𝐽((𝑥𝑖, 𝑦𝑖), (𝑥𝑗, 𝑦𝑗)) = −1, if a pair

(𝑥𝑖, 𝑦𝑖) is discordant with a pair (𝑥𝑗, 𝑦𝑗), i.e. if (𝑥𝑖−𝑥𝑗)(𝑦𝑖−𝑦𝑗) < 0. The Kendall rank correlation

coefficient is based on the difference between the probability that two variables are in the same

order (for the observed data vector) and the probability that their order is different. In the formula

(6.5) it is required that the variable values can be ordered. This coefficient takes values between

[−1, 1]. A value equal to 1 means full accordance, a value equal to 0 does not match orders,

while a value equal to −1 means the complete opposite accordance. The Kendall rank correlation

coefficient indicates not only the strength but also the direction of the dependence. Similarly to

the Spearman rank correlation, it is resistant to outliers and is used especially for the non-Gaussian

73



distributed data [143]. Despite the mentioned correlation coefficients, other dependency measures

adequate for heavy-tailed distributed data are also considered in the literature, see for instance

[200–202].

6.2.2 The 𝛼−stable distribution

The analysed data describing metals’ price and currency exchange rates are non-Gaussian. To

model such a specific behaviour, we propose to apply the 𝛼−stable distribution. Below we recall

the corresponding definition and the main properties.

For the 𝛼−stable distribution the probability density function (PDF) and the cumulative distri-

bution function (CDF) are given in close form only in a few special cases. Therefore, a common

way to define the distribution of an 𝛼−stable random variable 𝑍 is by determining its characteristic

function [203]:

[exp{𝑖𝜃𝑍}] = exp {−𝜎𝛼|𝜃|𝛼 (1 + 𝑖𝛽𝑤(𝑡, 𝜃)) + 𝑖𝜇𝜃)} , (6.6)

where:

𝑤(𝜃, 𝛼) =

{︃
− sgn (𝜃) tan

(︀
𝜋𝛼
2

)︀
if 𝛼 ̸= 1,

2
𝜋
sgn (𝜃) ln |𝜃| if 𝛼 = 1,

(6.7)

and sgn(·) denotes a sign function. The parameter 0 < 𝛼 ≤ 2 is called the stability index and

regulates the rate at which the distribution tails converge. The other parameters are: the scale

parameter 𝜎 > 0, the skewness parameter −1 ≤ 𝛽 ≤ 1, and the shift parameter 𝜇 ∈ R. If

𝛽 = 𝜇 = 0, the distribution of 𝑍 is symmetric with respect to 0 and the characteristic function

given in Eq. (6.6) simplifies to the following one:

[exp{𝑖𝜃𝑍}] = exp {−𝜎𝛼|𝜃|𝛼} . (6.8)

It is worth emphasizing that the 𝛼−stable distribution with 0 < 𝛼 < 2 constitutes a gener-

alization of the Gaussian distribution corresponding to the case of 𝛼 = 2. For the non-Gaussian

distribution, the properties differ significantly from the ones corresponding to 𝛼 = 2: the tails

converge to zero according to a power function and the second moment is infinite. Additionally,

for 0 < 𝛼 ≤ 1 the first moment is also infinite. The above-mentioned facts yield non-Gaussian

𝛼−stable random variables that take extreme values more likely than is observed in the Gaussian

case.
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6.2.3 Vector autoregressive model with 𝛼−stable distribution

The VAR model with the 𝛼-stable distribution is defined as an extension of the classical model

where the innovations are assumed to be Gaussian distributed (or at least have finite second mo-

ments), see for example [204]. In the 𝛼-stable non-Gaussian case with infinite variance, the VAR

system can be used to model the data exhibiting a higher likelihood of more extreme events.

A time series {X(𝑡)} = {(𝑋1(𝑡), . . . , 𝑋𝑚(𝑡))
𝑇} is called a vector autoregressive model with

𝛼-stable distribution, if for each 𝑡 ∈ Z it satisfies the following system of equations:

X(𝑡)−Θ1X(𝑡− 1)− . . .−Θ𝑝X(𝑡− 𝑝) = Z(𝑡), (6.9)

where {Z(𝑡)} = {(𝑍1(𝑡), . . . , 𝑍𝑚(𝑡))
𝑇} is an 𝑚-dimensional 𝛼−stable random vector and

Θ1, . . . ,Θ𝑝 are 𝑚 × 𝑚 matrices with time-constant coefficients. For simplicity, we assume here

that the noise vector Z(𝑡) consists of independent 𝛼-stable distributed random variables, i.e. 𝑍𝑖(𝑡)

and 𝑍𝑗(𝑡) are independent for any 𝑡 ∈ Z when 𝑖 ̸= 𝑗, and the characteristic function of 𝑍𝑖(𝑡) is

given by Eq. (6.6) for all 𝑡 ∈ Z. Moreover, the vector Z(𝑡) is assumed to be independent of the

vector Z(𝑠) for 𝑡 ̸= 𝑠, where 𝑡, 𝑠 ∈ Z.

The conditions for the existence and uniqueness of the bounded solution of a vector autore-

gressive time series with multidimensional 𝛼−stable distribution are provided in [205]. Note that

for 𝑝 = 1, the bounded solution of the autoregressive system of order 1 takes the form:

X(𝑡) =
+∞∑︁
𝑗=0

Θ𝑗Z(𝑡− 𝑗), (6.10)

assuming that the elements of Θ𝑗 are absolutely summable, i.e., if the eigenvalues of Θ are less

than 1 in the absolute value, where Θ = Θ1 in Eq. (6.9). It should be mentioned that in the

case when the coefficients of the matrices in Eq. (6.9) responsible for the relationship between

time series components are zero, then the VAR model reduces to 𝑚 independent one-dimensional

𝛼−stable autoregressive (AR) time series [31].

In the classical (Gaussian) version of the VAR system, the dependence structure of the pro-

cess can be described using the covariance or the correlation. As a consequence, to estimate

the parameters of the system, one often uses the multidimensional Yule-Walker method based

on the auto-covariance function [206]. However, since for the VAR model with non-Gaussian

𝛼−stable distribution the second moment is infinite, there is no theoretical justification for using

the covariance-based method to estimate the unknown parameters. Therefore, in [207] the au-

thors propose the modified Yule-Walker method, similarly to the one-dimensional case examined
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in [208, 209], which is based on the covariation well defined for the 𝛼−stable distribution with

𝛼 > 1. The covariation can be also used, instead of the auto-covariance, to quantify the interde-

pendence within a time series. In this case, the measure is called auto-covariation and it is defined

in the following way:

CV(𝑋𝑖(𝑡), 𝑋𝑖(𝑡− ℎ)) =
E[𝑋𝑖(𝑡)𝑋𝑖(𝑡− ℎ)⟨𝑝−1⟩]

E[|𝑋𝑖(𝑡− ℎ)|𝑝]
𝜎𝛼
𝑋𝑖(𝑡−ℎ), (6.11)

where:

𝑥⟨𝑎⟩ = |𝑥|𝑎sign(𝑥), (6.12)

1 < 𝑝 < 𝛼 and 𝜎𝑋𝑖(𝑡−ℎ) is the scale parameter of the random variable 𝑋𝑖(𝑡− ℎ). In practice, one

often estimates the so-called normalized auto-covariation from the data, i.e., the auto-covariation

divided by the parameter 𝜎𝑋𝑖(𝑡−ℎ). The appropriate estimators are presented in [208–210].

6.3 Two-dimensional analysis of the copper price (in USD) and

USDPLN exchange rate

In this section, we present the analysis of two-dimensional modelling for data corresponding to the

copper price (in USD) and the USDPLN exchange rate. The visual inspection of the logarithmic

returns (see Fig. 6-2 top and middle panels) of the considered assets and the evident difference

between the correlation coefficients (see Fig. 6-2 bottom panel) indicate that the data are related,

however, they should be divided into parts of the homogeneous structure. To do this, we assume

that the one-dimensional time series of logarithmic returns follows a symmetric 𝛼−stable distribu-

tion with parameters 𝜎 and 𝛼 switching between two values. These two parameter sets (𝜎1, 𝛼1) or

(𝜎2, 𝛼2) correspond to an unobserved state process and, hence, reflect the changes in market con-

ditions. To estimate the moments of switching, we apply a Hidden Markov Model approach [211]

and assume that the state process is driven by a Markov chain with probabilities of changing the

states given by a transition matrix. The HMM estimation procedure is based on the expectation-

maximization algorithm, [212], designed to infer parameters in the models depending on latent

variables (here the state process). As a by-product of the EM algorithm, we obtain the probabil-

ities of the two states for each time point. These probabilities are then used for the identification

of different regimes within the time series. Namely, for each value of the logarithmic returns, we

assign the state that is more probable. The resulting regime classification for both variables is il-

lustrated in Fig. 6-3. The obtained results are consistent with the market situation reflected in the
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analysed data. For a few years before and after the peak of the great financial crisis (2008) volatil-

ity in the market among many different assets stayed at elevated levels, whereas in other periods

the market moves were significantly weaker. One of the reasons for this issue could be that be-

fore and after the crisis the valuations of many assets achieved extreme levels, with very dynamic

changes also reflected in currency markets. In the case of the copper price, the data showed that

elevated volatility was observed even earlier as a result of substantial incremental Chinese demand

growth dynamics. For further analysis, we decided to choose the overlapping regimes timing for

both assets.
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Figure 6-3: The logarithmic returns of the weekly copper price in USD (top panel) and USDPLN
exchange rate (bottom panel) with regimes obtained via the HMM classification procedure, source:
[131].

6.3.1 The 𝛼−stable VAR modelling involving relationship between the con-
sidered assets

In this section, we model the logarithmic returns of the copper price (in USD) and the USDPLN

exchange rate using the two-dimensional VAR time series with the 𝛼-stable distribution, described

in Section 6.2. We assume the simplest version of the model, namely VAR(1). In this approach, we

allow for a possible dependence between the considered assets, in contrast to the second approach

presented in the next subsection. Taking into account the regime identification step, we assume that

the parameters of the VAR(1) model change at a certain point in time. Therefore, we separately

consider regime 1 and regime 2 marked in Fig. 6-4. In our analysis, we assume that regime 1 starts

when first of the assets (copper price in USD or USDPLN exchange rate) falls into this regime
77



due to the HMM classification step (see in Fig. 6-3). Note that we omit the short period in 2004,

where regime 1 was identified for the copper price, since there is no corresponding regime change

in the USDPLN exchange rate. Thus, regime 1 starts in March of 2006. In the economical context

of world exchanges, including commodities markets, there was a dynamic growth of assets value

starting from 2006, which led eventually to a financial crisis outbreak two years later.

The end of regime 1 is specified as the second half of 2012 when the situation on the market

started to stabilize and the classification results indicate the existence of the second regime for both

assets.

The final regimes segmentation is plotted in Fig. 6-4. In practice, we separately fit the VAR(1)

model for each regime.

2008 2010 2012 2014 2016 2018 2020

-0.2

-0.1

0

0.1

0.2
CU price logaritmic returns

2008 2010 2012 2014 2016 2018 2020

Year

-0.1

-0.05

0

0.05

0.1
USDPLN logaritmic returns

Figure 6-4: The logarithmic returns of the weekly copper price in USD (top panel) and USDPLN
exchange rate (bottom panel) with marked regimes used for time series modelling. Regime 1 is
marked with red stars, while regime 2 is marked in blue, source: [131].

The coefficients matrices of the two-dimensional VAR(1) models estimated based on the data

corresponding to regime 1 and regime 2, respectively, are given by:

̂︀Θ𝑟𝑒𝑔𝑖𝑚𝑒1 =

[︃
0.2706 −0.0569
0.0063 0.2134

]︃
,

̂︀Θ𝑟𝑒𝑔𝑖𝑚𝑒2 =

[︃
0.3119 0.1403

0.0010 0.1472

]︃
. (6.13)
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The estimation results indicate that there exists a relation between the considered factors in both

regimes. The parameters related to the dependence between the assets lie outside the main di-

agonal and one can see they take non-zero values. The corresponding residual time series are

presented in Fig. 6-6. We recall that in the VAR(1) model the residual vectors are assumed to

be independent and identically distributed. This also holds in a one-dimensional sense, i.e., for

the components of the residual vectors treated separately. Therefore, in Fig. 6-5 we plot the cor-

responding auto-covariation functions which indicate a non-zero value only for ℎ = 0. Recall

that the auto-covariation function, similarly to the auto-covariance function for the Gaussian (or

general light-tailed) case, indicates the interdependence of the examined time series.
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Figure 6-5: The normalized auto-covariation functions of the residuals corresponding to the
VAR(1) models applied to the logarithmic returns of the weekly copper price in USD and US-
DPLN exchange rate for the data from regime 1 (left panels) and regime 2 (right panels), source:
[131].

To demonstrate that the residuals of the model are not Gaussian distributed, we use five goodness-

of-fit tests based on the distances between the empirical and theoretical cumulative distribution

functions (CDF). The empirical CDF is calculated for the residual series, while the theoretical one

is the CDF of the Gaussian distribution with parameters estimated from the residual series. Here

we use the following statistical tests: Kolmogorov-Smirnov test (T1) [213], Kuiper test (T2) [214],

Watson test (T3) [163], Cramer-von Mises test (T4) [215] and Anderson-Darling test (T5) [216].

In Table 6.1 we present the results of the tests: the statistics values and the p-values, respectively.

As one can see, the p-values for the 𝐻0 hypothesis of the Gaussian distribution are relatively small,

which indicates that Gaussianity is rejected for most of the considered cases at the standard 0.05

significance level.

This result is a motivation for the 𝛼−stable distribution testing. We use the same test proce-

dures, namely T1-T5, however, the theoretical CDF is calculated for the 𝛼−stable distribution with
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the parameters fitted to the corresponding residual series, see Table 6.1 for the results of the tests.

All considered tests indicate that there is no evidence to reject the null hypothesis that the residuals

are 𝛼-stable distributed (the corresponding p-values are higher than the standard confidence level

of 0.05). In Table 6.2 we present the results of fitting the one-dimensional 𝛼-stable distribution to

each residual time series separately. For the estimation of the 𝛼−stable distribution parameters, we

applied the regression method [217]. Note that for both assets we obtained the higher 𝜎 values in

the first regime, with the value being almost two times larger than in the second regime. It shows

that there was a significant change in the scale of the market fluctuations between the regimes.
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Figure 6-6: The residuals corresponding to the VAR(1) model applied to the logarithmic returns of
weekly copper price in USD and USDPLN exchange rate for the data from regime 1 (left panels)
and regime 2 (right panels), source: [131].

Using a two-dimensional 𝛼−stable VAR(1) model is consistent with the economic reality,

where the relation between apparently unrelated market factors, which are in our case the cop-

per price (in USD) and the USDPLN exchange rate, is visible and even growing over time in

recent times, due to the large amounts of money put by central banks into circulation.

6.3.2 The 𝛼−stable VAR modelling involving no relationship between the
considered assets

In this part, we present the results obtained under the assumption that the relation between the

copper price (in USD) and USDPLN exchange rate is negligible and can be omitted. Thus, in

this approach it is assumed that in the two-dimensional 𝛼−stable VAR(1) model the coefficients

outside the main diagonal are equal to zero, so the components are independent. Similarly to the
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Table 6.1: The results of the statistical tests (statistics values and p-values given in brackets) verify-
ing the null hypotheses that the residual time series corresponding to the two-dimensional VAR(1)
models are Gaussian or 𝛼-stable distributed, source: [131].

T1 T2 T3 T4 T5
CU Price REGIME 1

𝐻0: Residuals are Gaussian distributed
0.7807 1.4246 0.1187 0.1151 0.6901

(0.1580) (0.0730) (0.0530) (0.0460) (0.0590)
𝐻0: Residuals are 𝛼-stable distributed

0.5943 1.0813 0.0545 0.0553 0.3203
(0.4080) (0.3230) (0.2980) (0.2260) (0.3930)

USDPLN REGIME 1
𝐻0: Residuals are Gaussian distributed

1.3233 2.2381 0.5617 0.4688 3.4434
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

𝐻0: Residuals are 𝛼-stable distributed
0.6142 0.8775 0.0247 0.0179 0.4046

(0.5440) (0.7760) (0.8850) (0.9520) (0.4600)
CU Price REGIME 2

𝐻0: Residuals are Gaussian distributed
0.9345 1.6041 0.2428 0.2353 1.6185

(0.0380) (0.0210) (0.0030) (0.0020) (0.0010)
𝐻0: Residuals are 𝛼-stable distributed

0.4141 0.7056 0.0146 0.0153 0.1326
(0.9090) (0.9550) (0.9910) (0.9730) (0.9680)

USDPLN REGIME 2
𝐻0: Residuals are Gaussian distributed

1.1238 1.9029 0.2293 0.2250 1.4983
(0.0010) (0.0010) (0.0020) (0.0010) (0.0010)

𝐻0: Residuals are 𝛼-stable distributed
0.4645 0.8962 0.0389 0.0359 0.3061

(0.7880) (0.6650) (0.4680) (0.4780) (0.3560)

81



Table 6.2: The parameters of the 𝛼-stable distribution estimated for the residual time series corre-
sponding to the two-dimensional VAR(1) models, source: [131].

𝛼 𝜎 𝛽 𝜇

CU Price REGIME 1
1.9219 0.0236 −0.5714 0.0007

USDPLN REGIME 1
1.7229 0.0114 1.0000 0.0016

CU Price REGIME 2
1.8243 0.0119 −0.3416 −0.0004

USDPLN REGIME 2
1.8424 0.0074 −0.0160 0.0000

previous case, we fit the two models to the data separately for regime 1 and regime 2, where the

regimes are chosen in the same manner as previously. The coefficients of the models in the second

considered approach are as follows:

̂︀Θ𝑟𝑒𝑔𝑖𝑚𝑒1 =

[︃
0.2927 0

0 0.2100

]︃
,

̂︀Θ𝑟𝑒𝑔𝑖𝑚𝑒2 =

[︃
0.2810 0

0 0.1386

]︃
(6.14)

and the residual time series are presented in Fig. 6-8.
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Figure 6-7: The normalized auto-covariation functions of the residuals corresponding to the
VAR(1) model with independent components applied to the logarithmic returns of the weekly cop-
per price in USD and USDPLN exchange rate for the data from regime 1 (left panel) and regime 2
(right panel), source: [131].
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In Fig. 6-7 we additionally plot the corresponding auto-covariation functions of the residuals

having non-zero values only for ℎ = 0. Similarly to the first approach, in Table 6.3 we present the

results for the Gaussian and 𝛼−stable distribution testing for the residual series. All tests indicate

no evidence in favor of rejecting the hypothesis about the 𝛼-stable distribution. On the other hand,

the p-values for the Gaussian distribution testing are significantly smaller than for the 𝛼−stable

distribution. In Table 6.4 we present the estimated parameters of the 𝛼-stable distribution for the

residual time series.
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Figure 6-8: The residuals corresponding to the VAR(1) model with independent components ap-
plied to the logarithmic returns of the weekly copper price in USD and USDPLN exchange rate
for the data from regime 1 (left panel) and regime 2 (right panel), source: [131].

6.4 Real data application. Modelling of the copper price in

PLN. The comparative study

Based on the models fitted to the logarithmic returns of the market quotations of the copper price in

USD and the USDPLN exchange rate we also infer the dynamics of the copper price in PLN, which

is the main risk factor in the mining company KGHM. To this end, we simulate the trajectories of

the copper price in USD and USDPLN exchange rate using the fitted two-dimensional 𝛼−stable

VAR(1) models with the parameters given in Eq. (6.13) and in Eq. (6.14), respectively, i.e., when

the relationship between assets is taken under consideration or not. Then, the trajectories of the

copper price in PLN are obtained as a product of the basic variables. The simulated trajectories are

further used to derive the distribution of the copper prices in PLN. The obtained distributions are
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Table 6.3: The results of the statistical tests (statistics values and p-values given in brackets) ver-
ifying the null hypotheses that the residual time series corresponding to the VAR(1) model with
independent components are Gaussian or 𝛼-stable distributed, source: [131].

T1 T2 T3 T4 T5
CU Price REGIME 1

𝐻0: Residuals are Gaussian distributed
0.7223 1.3586 0.1189 0.1151 0.6882

(0.2510) (0.1330) (0.0730) (0.0590) (0.0860)
𝐻0: Residuals are 𝛼-stable distributed

0.6459 1.1040 0.0574 0.0582 0.3299
(0.3120) (0.2990) (0.2730) (0.2050) (0.3800)

USDPLN REGIME 1
𝐻0: Residuals are Gaussian distributed

1.3065 2.2167 0.5633 0.4708 3.4536
(0.0010) (0.0000) (0.0000) (0.0000) (0.0000)

𝐻0: Residuals are 𝛼-stable distributed
0.5304 0.7368 0.0236 0.0171 0.4093

(0.7260) (0.9530) (0.8960) (0.9510) (0.4250)
CU Price REGIME 2

𝐻0: Residuals are Gaussian distributed
0.9037 1.6305 0.2274 0.2207 1.5643

(0.0490) (0.0230) (0.0030) (0.0020) (0.0010)
𝐻0: Residuals are 𝛼-stable distributed

0.3283 0.6568 0.0143 0.0150 0.1273
(0.9970) (0.9750) (0.9820) (0.9630) (0.9720)

USDPLN REGIME 2
𝐻0: Residuals are Gaussian distributed

1.1281 1.9804 0.2319 0.2278 1.5169
(0.0000) (0.0010) (0.0020) (0.0000) (0.0000)

𝐻0: Residuals are 𝛼-stable distributed
0.4640 0.8905 0.0398 0.0366 0.3121

(0.7630) (0.6410) (0.4050) (0.4150) (0.3470)

84



Table 6.4: The parameters of the 𝛼-stable distribution estimated for the residual time series corre-
sponding to the VAR(1) model with independent components, source: [131].

𝛼 𝜎 𝛽 𝜇

CU Price REGIME 1
1.9233 0.0236 −0.5953 0.0007

USDPLN REGIME 1
1.7214 0.0114 1.0000 0.0016

CU Price REGIME 2
1.8314 0.0120 −0.4291 −0.0005

USDPLN REGIME 2
1.8411 0.0073 −0.0280 0.0000
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Figure 6-9: The copper (Cu) price in PLN in both analysed regimes (blue solid lines) together with
the quantile lines for 10%, 20%, ..., 90% confidence levels for the VAR(1) model (black dashed
lines) and for the VAR(1) model with independent components (green solid lines), source: [131].

plotted in the form of quantile lines in Fig. 6-9 for both regimes and both models. The calculations

were based on 100000 simulated trajectories. In the first regime, the copper price in PLN proba-

bility distribution is skewed to the upside reflecting the higher volatility of return rates both for the

copper price and the USDPLN exchange rate and theoretically unlimited growth potential for the

value of the assets in the extraordinary market environment. Using the 𝛼−stable VAR(1) model

taking into account the relationship between assets helps to narrow down the quantile lines, which

should be supportive from the market risk management point of view, however, the improvement is

not substantial. In regard to the second analysed regime, the probability distribution for the copper

price in PLN is more symmetric and narrower than for the first period. The 𝛼−stable VAR(1)

model with dependent factors does not show narrower quantile lines than in the case of no relation
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between both coordinates. Hence, for more stable market conditions the relationship between these

two factors does not have to lead to narrowing price distributions. In a more stable situation on the

market, often specific events, related exclusively to copper or the USDPLN exchange rate drive

their prices, which can create some volatility of the assets with a harder to capture and modelling

relation. In such circumstances, the two-dimensional model that assumes no dependence between

components could give a similar outcome to the general VAR(1) model, when their relationship is

taken into consideration.

6.5 Discussion and summary

The analysis presented in this section has been focused on the proper understanding of the dynam-

ics of the analysed historical data corresponding to the two assets, in this case the copper price in

USD and the USDPLN exchange rate, and its implications for modelling purposes.

We have proposed a two-dimensional VAR model with the 𝛼−stable distribution that reflects

the changing dependence structure of the analysed assets. This model takes into account the rela-

tionship between the analysed time series and allows the specific (heavy-tailed) behaviour of the

data to be described. Moreover, the application of the regime-switching methodology enables the

periods, when the data relatively have a homogeneous structure, to be considered separately. In-

deed, for both assets, we obtained a significant difference in the scale of the market fluctuations

among the regimes. For comparison, we have also applied an approach with no relation between

the assets, i.e the VAR(1) model with independent components.

Using such a model improved the data description quality, especially in the volatile market

environment where the negative correlation between the copper price in USD and USDPLN ex-

change rates has been higher and gave an advantage over using separate one-dimensional models

for both assets.

From our analysis, we can conclude that in a regime with a higher volatility it is hard to control

heavy tails even taking into account the higher negative correlation between the assets. This is

extremely important information for the risk management process. Therefore, careful investigation

of the real data and the proper selection of the used methods enables the building of more adequate

forecasts, especially for stress test scenarios in multidimensional asset management.
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Chapter 7

From multi- to univariate case. Risk
modelling by product of components for
bi-dimensional model in energy market.

In previous chapters we have described and analysed stochastic models for metals and exchange

rates in one-dimensional and multi-dimensional cases. Due to the dynamically growing prices of

energy factors, energy costs have become another market risk factor to which mining companies

are exposed. In this light modelling energy risk, including electricity risk, is gaining more and

more importance for mining companies.

Since electricity is a special commodity with very limited storage possibilities, electricity sup-

ply and demand must be constantly balanced. This makes operational planning a crucial issue

for electricity trading companies. Production or cost management is usually based on electricity

load or demand predictions, published on a day-ahead basis by the transmission system operators

(TSO). However, these forecasts are burdened with prediction errors, which might cause large de-

viations of the actual energy cost from its projections. On the other hand, the financial cost of the

load or demand prediction errors is equal to the product of the electricity price and the size of these

errors.

From the mathematical point of view the problem analysed in this chapter can be considered

as a generalisation of the known issue related to the analysis of the product of two (or more)

random variables, which is an important branch of probability theory, statistics and applied math-

ematics. When one studies the product of random variables, the main attention is usually paid to

its distribution and the analysis of how the probabilistic properties of the individual random vari-

ables influence the characteristics of their product. A simpler model, the product of two random
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variables, can be found in [132]. In this chapter we present a product of two components for a

two-dimensional time series, which is a more difficult one. The theoretical results are applied here

to the electricity market case study. The results presented in this chapter are published in [133].

The multi-dimensional VAR time series is often used to model the impulse-response functions

of macroeconomics variables. However, in some economical applications the variable of main

interest is the product of time series describing market variables, like e.g. the cost, being the prod-

uct of price and volume. In this chapter we analyse the product of the bi-dimensional VAR(1)

model components. For the introduced time series we derive general formulas for the autocovari-

ance function and study its properties for different cases of cross-dependence between the VAR(1)

model components. The theoretical results are then illustrated in the simulation study for two types

of bivariate distributions of the residual series, namely the Gaussian and Student’s t. The obtained

results are applied to the electricity market case study, in which we show that the financial cost of

load prediction errors can be well described by time series being the product of the VAR(1) model

components with the Student’s t distribution.

In the following we recall the main properties of the VAR(1) model. Definition of the mul-

tidimensional VAR(p) model has already been presented in Eq. (6.9). Here we take 𝑝 = 1 and

Θ1 = Φ. The bi-dimensional VAR(1) time series, {X(𝑡), 𝑡 ∈ Z} , satisfies the following equation

[206]:

X(𝑡)− ΦX(𝑡− 1) = Z(𝑡), (7.1)

where X(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡)), Φ is 2× 2 matrix

Φ =

[︃
𝜑11 𝜑12

𝜑21 𝜑22

]︃
, (7.2)

and {Z(𝑡), 𝑡 ∈ Z} is the zero-mean bi-dimensional residual series, i.e. for each 𝑡 ∈ Z, Z(𝑡) =

(𝑍1(𝑡), 𝑍2(𝑡)).

We assume here that {Z(𝑡)} is a series of independent bi-dimensional random variables having

the same distribution, i.e. for each 𝑡 ∈ Z, (𝑍1(𝑡), 𝑍2(𝑡)) ∼ (𝑍1, 𝑍2). Moreover, we consider only

the finite-variance case, i.e. the covariance matrix of (𝑍1, 𝑍2) (denoted further as Γ𝑍) is properly

defined. In the further analysis the variances of random variables 𝑍1 and 𝑍2 for any 𝑡 are denoted

as 𝜎2
𝑍,1 and 𝜎2

𝑍,2, respectively, while the correlation coefficient between them as 𝜌𝑍 .
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Let us assume that the following condition for the model coefficients is satisfied:

det(𝐼 − 𝑧Φ) ̸= 0 for all 𝑧 ∈ Z such that |𝑧| ≤ 1, (7.3)

i.e. the eigenvalues of the matrix Φ (denoted further as 𝜈1 and 𝜈2) are less than 1 in the absolute

value. Under this assumption, for each 𝑡 ∈ Z one can express X(𝑡) in the causal representation:

X(𝑡) =
+∞∑︁
𝑗=0

Φ𝑗Z (𝑡− 𝑗) . (7.4)

Let us note that, when the condition (7.3) is satisfied, then the coefficients Φ𝑗 are absolutely

summable. In this case, the time series given in Eq. (7.4) is the unique bounded stationary solution

of Eq. (7.1) and it converges [206]. In this chapter, we consider only the case when the eigenvalues

of the matrix Φ are the real numbers.

We take the following notation:

Φ𝑗 =

[︃
𝜑
(𝑗)
11 𝜑

(𝑗)
12

𝜑
(𝑗)
21 𝜑

(𝑗)
22

]︃
, 𝑗 = 0, 2 . . . . (7.5)

Obviously, for 𝑗 = 0, 𝜑(𝑗)
11 = 𝜑

(𝑗)
22 = 1 and 𝜑

(𝑗)
12 = 𝜑

(𝑗)
21 = 0. [218] shows that for a 2 × 2 matrix,

the coefficients of Φ𝑗 can be expressed in the following form depending on the eigenvalues of the

matrix Φ:

• if 𝜈1, 𝜈2 are different eigenvalues of the matrix Φ, i.e. (𝜑11−𝜑22)
2 ̸= −4𝜑21𝜑12 (and |𝜈1| < 1,

|𝜈2| < 1), then we have

Φ𝑗 =

[︃
𝜈2𝜈

𝑗
1−𝜈1𝜈

𝑗
2

𝜈2−𝜈1
+

𝜈𝑗2−𝜈𝑗1
𝜈2−𝜈1

𝜑11
𝜈𝑗2−𝜈𝑗1
𝜈2−𝜈1

𝜑12

𝜈𝑗2−𝜈𝑗1
𝜈2−𝜈1

𝜑21
𝜈2𝜈

𝑗
1−𝜈1𝜈

𝑗
2

𝜈2−𝜈1
+

𝜈𝑗2−𝜈𝑗1
𝜈2−𝜈1

𝜑22

]︃
, 𝑗 = 1, 2, . . . , (7.6)

• if the eigenvalues of the matrix Φ are equal 𝜈1 = 𝜈2 = 𝜈, i.e. (𝜑11 − 𝜑22)
2 = −4𝜑21𝜑12 (and

|𝜈| < 1), then we have

Φ𝑗 =

[︃
𝑗𝜈𝑗−1𝜑11 − (𝑗 − 1)𝜈𝑗 𝑗𝜈𝑗−1𝜑12

𝑗𝜈𝑗−1𝜑21 𝑗𝜈𝑗−1𝜑22 − (𝑗 − 1)𝜈𝑗

]︃
, 𝑗 = 1, 2 . . . . (7.7)
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Using Eq. (7.4) one can show that the components of the VAR(1) model can be expressed in the

following form:

𝑋𝑖(𝑡) =
∞∑︁
𝑗=0

2∑︁
𝑘=1

𝜑
(𝑗)
𝑖𝑘 𝑍𝑘(𝑡− 𝑗), 𝑖 = 1, 2 (7.8)

and their distributions do not depend on 𝑡. Thus, from Eq. (7.8) one can obtain the formulas for

variances 𝜎2
𝑋,1, 𝜎2

𝑋,2 of 𝑋1(𝑡) and 𝑋2(𝑡), respectively

𝜎2
𝑋,𝑖 = Var(𝑋𝑖(𝑡)) =

∞∑︁
𝑗=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
𝑖𝑘 𝜑

(𝑗)
𝑖𝑙 𝛾𝑍,𝑘,𝑙, (7.9)

where 𝛾𝑍,𝑘,𝑙 is the (𝑘, 𝑙) component of the covariance matrix Γ𝑍 . Recall that Γ𝑍 is is given by

Γ𝑍 = Γ𝑍(𝑡) = [𝛾𝑍,𝑖,𝑗(𝑡)]
2
𝑖,𝑗=1 = [E[𝑍𝑖(𝑡)𝑍𝑗(𝑡)]]

2
𝑖,𝑗=1 , (7.10)

where 𝛾𝑍,𝑖,𝑖 = 𝜎2
𝑍,𝑖 and 𝛾𝑍,1,2 = 𝛾𝑍,2,1 = 𝜌𝑍𝜎𝑍,1𝜎𝑍,2.

Let us note that the covariance between 𝑋1(𝑡) and 𝑋2(𝑡) is also dependent on 𝑡 and it is given

by

𝛾𝑋,1,2 = E[𝑋1(𝑡)𝑋2(𝑡)] = E

[︃
∞∑︁
𝑗=0

2∑︁
𝑘=1

𝜑
(𝑗)
1𝑘𝑍𝑘(𝑡− 𝑗)

∞∑︁
𝑖=0

2∑︁
𝑙=1

𝜑
(𝑖)
2𝑙 𝑍𝑙(𝑡− 𝑖)

]︃

=
∞∑︁
𝑗=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑗)
2𝑙 E[𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑗)] =

∞∑︁
𝑗=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑗)
2𝑙 𝛾𝑍,𝑘,𝑙. (7.11)

Thus, the correlation coefficient between 𝑋1(𝑡) and 𝑋2(𝑡) for each 𝑡 ∈ Z is given by

𝜌𝑋 =
𝛾𝑋,1,2

𝜎𝑋,1𝜎𝑋,2

=

∑︀∞
𝑗=0

∑︀2
𝑘,𝑙=1 𝜑

(𝑗)
1𝑘 𝜑

(𝑗)
2𝑙 𝛾𝑍,𝑘,𝑙√︁∑︀∞

𝑗=0

∑︀2
𝑘,𝑙=1 𝜑

(𝑗)
1𝑘 𝜑

(𝑗)
1𝑙 𝛾𝑍,𝑘,𝑙

∑︀∞
𝑗=0

∑︀2
𝑘,𝑙=1 𝜑

(𝑗)
2𝑘 𝜑

(𝑗)
2𝑙 𝛾𝑍,𝑘,𝑙

. (7.12)

The autocovariance function of {𝑋𝑖(𝑡)} for 𝑖 = 1, 2 is dependent on 𝑡 and takes the form:

𝐴𝐶𝑉 𝐹𝑋𝑖
(ℎ) = E[𝑋𝑖(𝑡)𝑋𝑖(𝑡+ ℎ)] =

∞∑︁
𝑗=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
𝑖𝑘 𝜑

(ℎ+𝑗)
𝑖𝑙 𝛾𝑍,𝑘,𝑙. (7.13)
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Using the same reasoning as in the above calculations, one can show that the cross-covariance

between {𝑋1(𝑡)} and {𝑋2(𝑡)} is also dependent on 𝑡 and it is given by:

𝐶𝐶𝑉 𝐹𝑋1,𝑋2(ℎ) = E[𝑋1(𝑡)𝑋2(𝑡+ ℎ)] =
∞∑︁
𝑗=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
1𝑘 𝜑

(ℎ+𝑗)
2𝑙 𝛾𝑍,𝑘,𝑙. (7.14)

7.1 Product of the components of bi-dimensional finite-variance

VAR(1) model

Here, we introduce the time series {𝑌 (𝑡), 𝑡 ∈ Z} that is a product of two components of the

bi-dimensional VAR(1) model discussed in the previous section. Precisely, for each 𝑡 ∈ Z we

have:

𝑌 (𝑡) = 𝑋1(𝑡)𝑋2(𝑡), (7.15)

where the bi-dimensional time series {X(𝑡)} satisfies Eq. (7.1). Assuming that condition (7.3) is

fulfilled and applying Eq. (7.8) one can show that for each 𝑡 ∈ Z, 𝑌 (𝑡) can be represented as:

𝑌 (𝑡) =
∞∑︁

𝑗,𝑖=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
2𝑙 𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑖). (7.16)

Using the above representation, one can calculate the main characteristics of the {𝑌 (𝑡)} time

series. In the equations presented below, we assume that in general, E[𝑍𝑘𝑍𝑙𝑍𝑛𝑍𝑟] < ∞ for

𝑘, 𝑙, 𝑛, 𝑟 = 1, 2. However, for some special cases (see Section 7.2), this assumption may be less

restrictive depending on the relationship between components of the considered VAR(1) model.

Observe that if {𝑌 (𝑡)} is the product time series defined in Eq. (7.15), where {𝑋1(𝑡)} and

{𝑋2(𝑡)} are the two components of the finite-variance VAR(1) model given in Eq. (7.1) satisfying

the condition (7.3), then the expected value and variance of {𝑌 (𝑡)} exist and are given by:

E(𝑌 (𝑡)) = 𝛾𝑋,1,2 = 𝜌𝑋𝜎𝑋,1𝜎𝑋,2, (7.17)

Var(𝑌 (𝑡)) = 𝜎2
𝑌 = E

⎡⎣(︃ ∞∑︁
𝑗,𝑖=0

2∑︁
𝑘,𝑙=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
2𝑙 𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑖)

)︃2
⎤⎦− 𝛾2

𝑋,1,2, (7.18)

where 𝜎𝑋,𝑖, 𝛾𝑋,1,2, 𝜌𝑋 are given in Eqs. (7.9), (7.11) and (7.12), respectively. These results can be

directly derived from from Eqs. (7.15) and (7.16).
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In the following we derive the formula for the ACVF of the time series {𝑌 (𝑡)}, ACVF𝑌 (𝑡, 𝑡+

ℎ) = Cov(𝑌 (𝑡), 𝑌 (𝑡 + ℎ)) for 𝑡, ℎ ∈ Z. Assume that {𝑌 (𝑡)} is the product time series defined

in Eq. (7.15), where {𝑋1(𝑡)} and {𝑋2(𝑡)} are the two components of the finite-variance VAR(1)

model given in Eq. (7.1) satisfying the condition (7.3). The expectations E(𝑌 (𝑡)) and E(𝑌 (𝑡+ℎ))

are given in Eq. (7.17). Thus, we need to calculate E(𝑌 (𝑡)𝑌 (𝑡 + ℎ)) for any ℎ = 0, 1, . . .. Using

Eq. (7.16) one obtains:

E(𝑌 (𝑡)𝑌 (𝑡+ ℎ)) =
∞∑︁

𝑗,𝑖,𝑚,𝑝=0

2∑︁
𝑘,𝑙,𝑛,𝑟=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
2𝑙 𝜑

(𝑚)
1𝑛 𝜑

(𝑝)
2𝑟

×E [𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑖)𝑍𝑛(𝑡+ ℎ−𝑚)𝑍𝑟(𝑡+ ℎ− 𝑝)]

=
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

2∑︁
𝑘,𝑙,𝑛,𝑟=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
2𝑙 𝜑

(𝑚+ℎ)
1𝑛 𝜑

(𝑝+ℎ)
2𝑟

×E [𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑖)𝑍𝑛(𝑡−𝑚)𝑍𝑟(𝑡− 𝑝)] .

Applying the formula for the ACVF of {𝑌 (𝑡)} we get:

ACVF𝑌 (𝑡, 𝑡+ ℎ) = E(𝑌 (𝑡)𝑌 (𝑡+ ℎ))− E(𝑌 (𝑡))E(𝑌 (𝑡+ ℎ))

we obtain that the autocovariance function of {𝑌 (𝑡)} for ℎ = 0, 1, . . . , has the following form:

ACVF𝑌 (𝑡, 𝑡+ ℎ) =
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

2∑︁
𝑘,𝑙,𝑛,𝑟=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
2𝑙 𝜑

(𝑚+ℎ)
1𝑛 𝜑

(𝑝+ℎ)
2𝑟

×E [𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑖)𝑍𝑛(𝑡−𝑚)𝑍𝑟(𝑡− 𝑝)]− 𝛾2
𝑋,1,2, (7.19)

where 𝛾𝑋,1,2 is given in Eq. (7.11).

Let us emphasize that the ACVF given in Eq. (7.19) is dependent on 𝑡. Moreover, {𝑌 (𝑡)} has a

constant mean function. Thus, it is stationary in the weak sense. Therefore, in the further analysis

it will be denoted as ACVF𝑌 (ℎ).

7.2 Special cases analysis

In this section, we consider the following special cases related to the dependence of the components

of the finite-variance VAR(1) model given in Eq. 7.1. Let us emphasise that in the considered cases

we do not consider any specific distribution of the residual series.

92



• Case 1: the time series {𝑋1(𝑡)} and {𝑋2(𝑡)} are independent. This is the case, when for

each 𝑡 ∈ Z the random variables 𝑍1 and 𝑍2 are independent and 𝜑12 = 𝜑21 = 0, where 𝜑𝑖𝑗

𝑖, 𝑗 = 1, 2 are the coefficients of the matrix Φ given in Eq. (7.2). In this case, {𝑋1(𝑡)} and

{𝑋2(𝑡)} are two independent autoregressive time series of order 1 (called AR(1)) satisfying

the following equations:

𝑋1(𝑡)− 𝜑11𝑋1(𝑡− 1) = 𝑍1(𝑡), 𝑋2(𝑡)− 𝜑22𝑋2(𝑡− 1) = 𝑍2(𝑡). (7.20)

• Case 2: the time series {𝑋1(𝑡)} and {𝑋2(𝑡)} are dependent only through the residual com-

ponents. In this case, we assume that the random variables 𝑍1 and 𝑍2 are dependent (and we

assume their correlation coefficient 𝜌𝑍 ̸= 0), however 𝜑12 = 𝜑21 = 0, where 𝜑𝑖𝑗 𝑖, 𝑗 = 1, 2

are the coefficients of the matrix Φ given in Eq. (7.2). In this case, {𝑋1(𝑡)} and {𝑋2(𝑡)}
also satisfy Eq. (7.20), but they are dependent.

• Case 3: the time series {𝑋1(𝑡)} and {𝑋2(𝑡)} are dependent only through the coefficients of

the VAR(1) model. This is the case, when the random variables 𝑍1 and 𝑍2 are independent,

however 𝜑12 ̸= 0 or/and 𝜑21 ̸= 0, where 𝜑𝑖𝑗 𝑖, 𝑗 = 1, 2 are the coefficients of the matrix Φ

given in Eq. (7.2). For simplicity we assume 𝜑12 ̸= 0 and 𝜑21 = 0. In this case, {𝑋1(𝑡)} and

{𝑋2(𝑡)} satisfy the following equations:

𝑋1(𝑡)− 𝜑11𝑋1(𝑡− 1)− 𝜑12𝑋2(𝑡− 1) = 𝑍1(𝑡), 𝑋2(𝑡)− 𝜑22𝑋2(𝑡− 1) = 𝑍2(𝑡), (7.21)

thus, the time series {𝑋2(𝑡)} is the AR(1) model while {𝑋1(𝑡)} does not satisfy the AR(1)

equation.

Case 1

In this case we assume 𝜎2
𝑍,𝑖 < ∞ for 𝑖 = 1, 2. The coefficients of the matrix Φ given in Eq. (7.2)

that lie outside the main diagonal are equal to zero, i.e., 𝜑12 = 𝜑21 = 0. Thus, we have:

𝜑
(𝑗)
11 = 𝜑𝑗

11, 𝜑
(𝑗)
22 = 𝜑𝑗

22, 𝜑
(𝑗)
12 = 𝜑

(𝑗)
21 = 0, 𝑗 = 0, 1, . . . . (7.22)

Moreover, according to the condition given in Eq. (7.3), |𝜑11| < 1 and |𝜑22| < 1. Using Eq. (7.9)

and (7.12) one can easily show that:

𝜎2
𝑋,𝑖 =

∞∑︁
𝑗=0

𝜑2𝑗
𝑖𝑖 𝛾𝑍,𝑖,𝑖 =

𝜎2
𝑍,𝑖

1− 𝜑2
𝑖𝑖

. (7.23)
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In the considered case 𝜌𝑋 = 0.

Finally, using Eqs. (7.17) and (7.19) one can show that the following hold:

E(𝑌 (𝑡)) = 0, Var(𝑌 (𝑡)) =
𝜎2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑2
11)(1− 𝜑2

22)
, ACVF𝑌 (ℎ) =

𝜎2
𝑍,1𝜎

2
𝑍,2(𝜑11𝜑22)

ℎ

(1− 𝜑2
11)(1− 𝜑2

22)
. (7.24)

Case 2

In this case we assume E[𝑍2
1𝑍

2
2 ] <∞. Similarly as previously, condition (7.22) is satisfied. How-

ever, now, we assume that the components of the residual series are dependent and the correlation

coefficient 𝜌𝑍 is non-zero. One can show that 𝜎2
𝑋,𝑖 has the same form as in Case 1 for 𝑖 = 1, 2, i.e.,

it is given by Eq. (7.23). However, using Eq. (7.12) we obtain that the 𝜌𝑋 coefficient is given by:

𝜌𝑋 =
𝜌𝑍
√︀

(1− 𝜑2
11)(1− 𝜑2

22)

1− 𝜑11𝜑22

. (7.25)

Using Eq. (7.17) one obtains:

E(𝑌 (𝑡)) =
𝜌𝑍𝜎𝑍,1𝜎𝑍,2

(1− 𝜑11𝜑22)
. (7.26)

On the other hand, using Eq. (7.19) we can calculate the ACVF for {𝑌 (𝑡)} for ℎ = 0, 1, . . . .

Indeed, we have:

ACVF𝑌 (ℎ) =
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

𝜑𝑗+𝑚+ℎ
11 𝜑𝑖+𝑝+ℎ

22 E [𝑍1(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍1(𝑡−𝑚)𝑍2(𝑡− 𝑝)]

−
𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑11𝜑22)2
.

Now, we can calculate the value:

𝑟1,2(𝑡, 𝑗,𝑚, 𝑖, 𝑝) = E [𝑍1(𝑡− 𝑗)𝑍1(𝑡−𝑚)𝑍2(𝑡− 𝑖)𝑍2(𝑡− 𝑝)]

for all 𝑡 ∈ Z and 𝑖, 𝑗 = 0, 1, . . . , 𝑚, 𝑝 = −ℎ,−ℎ + 1, . . . . Using the fact that for each 𝑡 ∈ Z the

bi-dimensional residual series Z(𝑡) is a zero-mean vector and for 𝑡 ̸= 𝑠, Z(𝑡) is dependent on Z(𝑠),
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one obtains the following:

𝑟1,2(𝑡, 𝑗,𝑚, 𝑖, 𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E [𝑍2
1(𝑡− 𝑗)𝑍2

2(𝑡− 𝑗)] , if 𝑖 = 𝑗 = 𝑝 = 𝑚;

E [𝑍2
1(𝑡− 𝑗)]E [𝑍2

2(𝑡− 𝑖)] , if 𝑗 = 𝑚, 𝑖 = 𝑝, 𝑗 ̸= 𝑖;

E [𝑍1(𝑡− 𝑗)𝑍2(𝑡− 𝑗)]E [𝑍1(𝑡−𝑚)𝑍2(𝑡−𝑚)] , if 𝑗 = 𝑖,𝑚 = 𝑝, 𝑗 ̸= 𝑚;

E [𝑍1(𝑡− 𝑗)𝑍2(𝑡− 𝑗)]E [𝑍1(𝑡−𝑚)𝑍2(𝑡−𝑚)] , if 𝑗 = 𝑝, 𝑖 = 𝑚, 𝑗 ̸= 𝑖.

(7.27)

Thus, we have:

𝑟1,2(𝑡, 𝑗,𝑚, 𝑖, 𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚𝑍 , if 𝑖 = 𝑗 = 𝑝 = 𝑚; 𝑖, 𝑗,𝑚, 𝑝 = 0, 1, 2 . . . ;

𝜎2
𝑍,1𝜎

2
𝑍,2, if 𝑗 = 𝑚, 𝑖 = 𝑝, 𝑗 ̸= 𝑖; 𝑖, 𝑗,𝑚, 𝑝 = 0, 1, 2 . . . ;

𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2, if 𝑗 = 𝑖,𝑚 = 𝑝, 𝑗 ̸= 𝑚; 𝑖, 𝑗 = 0, 1, 2 . . . , 𝑚, 𝑝 = −ℎ,−ℎ+ 1 . . . ;

𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2, if 𝑗 = 𝑝, 𝑖 = 𝑚, 𝑗 ̸= 𝑖; 𝑖, 𝑗,𝑚, 𝑝 = 0, 1, 2 . . . ,

(7.28)
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where the value 𝑚𝑍 = E [𝑍2
1(𝑡)𝑍

2
2(𝑡)] is dependent on 𝑡. Therefore, we have:

ACVF𝑌 (ℎ) = 𝑚𝑍

∞∑︁
𝑗=0

(𝜑11𝜑22)
2𝑗+ℎ + 𝜎2

𝑍,1𝜎
2
𝑍,2

∞∑︁
𝑗=0

𝜑2𝑗+ℎ
11

[︃
∞∑︁
𝑖=0

𝜑2𝑖+ℎ
22 − 𝜑2𝑗+ℎ

22

]︃

+𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2

∞∑︁
𝑗=0

𝜑𝑗+ℎ
11

[︃
𝜑𝑗+ℎ
22

∞∑︁
𝑚=0

(𝜑11𝜑22)
𝑚 − 𝜑𝑗+ℎ

22 (𝜑11𝜑22)
𝑗

]︃

+𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2

∞∑︁
𝑗=0

𝜑𝑗+ℎ
11

[︃
𝜑𝑗+ℎ
22

∞∑︁
𝑚=−ℎ

(𝜑11𝜑22)
𝑚 − 𝜑𝑗+ℎ

22 (𝜑11𝜑22)
𝑗

]︃

−
𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑11𝜑22)2

=
𝑚𝑍 (𝜑11𝜑22)

ℎ

1− (𝜑11𝜑22)
2 + 𝜎2

𝑍,1𝜎
2
𝑍,2 (𝜑11𝜑22)

ℎ

(︂
1

(1− 𝜑2
11)(1− 𝜑2

22)
− 1

1− (𝜑11𝜑22)
2

)︂
+𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2 (𝜑11𝜑22)

ℎ

(︂
1

(1− 𝜑11𝜑22)
2 −

1

1− (𝜑11𝜑22)
2

)︂
+𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2 (𝜑11𝜑22)

ℎ

(︃
(𝜑11𝜑22)

−ℎ

(1− 𝜑11𝜑22)
2 −

1

1− (𝜑11𝜑22)
2

)︃
−

𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑11𝜑22)2

= (𝜑11𝜑22)
ℎ

[︃
𝑚𝑍 − 𝜎2

𝑍,1𝜎
2
𝑍,2 − 2𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2

1− (𝜑11𝜑22)
2 +

𝜎2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑2
11)(1− 𝜑2

22)

+
𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑11𝜑22)
2

]︃
. (7.29)

Finally, taking ℎ = 0 one obtains the variance of a random variable 𝑌 (𝑡) for each 𝑡 ∈ Z:

Var(𝑌 (𝑡)) =
𝑚𝑍 − 𝜎2

𝑍,1𝜎
2
𝑍,2 − 2𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2

1− (𝜑11𝜑22)
2 +

𝜎2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑2
11)(1− 𝜑2

22)
+

𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑11𝜑22)
2 .

Case 3

In this case we assume E(𝑍2
1𝑍

2
2) <∞ and E(𝑍4

2) <∞. One can show that we have:

𝜑
(𝑗)
11 = 𝜑𝑗

11, 𝜑
(𝑗)
22 = 𝜑𝑗

22, 𝜑
(𝑗)
21 = 0, 𝑗 = 0, 1, . . . (7.30)
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and the eigenvalues of the matrix Φ are equal 𝜈1 = 𝜑11 and 𝜈2 = 𝜑22. Thus, according to Eqs.

(7.6) and (7.7) the following is fulfilled for 𝑗 = 1, 2, . . .:

𝜑
(𝑗)
12 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜑𝑗
22−𝜑𝑗

11

𝜑22−𝜑11
𝜑12, if 𝜑11 ̸= 𝜑22;

𝑗𝜑𝑗−1
11 𝜑12, if 𝜑11 = 𝜑22,

(7.31)

while for 𝑗 = 0, 𝜑(𝑗)
12 = 0. In order to fulfill condition (7.3) we assume that |𝜑11| < 1 and |𝜑22| < 2.

Using Eq. (7.9) one obtains:

𝜎2
𝑋,1 =

𝜎2
𝑍,1

1− 𝜑2
11

+ 𝜎2
𝑍,2

∞∑︁
𝑗=0

(︁
𝜑
(𝑗)
12

)︁2
, 𝜎2

𝑋,2 =
𝜎2
𝑍,2

1− 𝜑2
22

. (7.32)

Thus, we have:

𝜎2
𝑋,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎2
𝑍,1

1−𝜑2
11
+

𝜎2
𝑍,2𝜑

2
12

(𝜑22−𝜑11)2

[︁
𝜑2
22

1−𝜑2
22
− 2𝜑11𝜑22

1−𝜑11𝜑22
+

𝜑2
11

1−𝜑2
21

]︁
, if 𝜑11 ̸= 𝜑22;

𝜎2
𝑍,1

1−𝜑2
11
+

𝜎2
𝑍,2𝜑

2
12(1+𝜑2

11)

(1−𝜑2
11)

3 , if 𝜑11 = 𝜑22.

(7.33)

Moreover from Eq. (7.11) we have:

𝛾𝑋,1,2 =
∞∑︁
𝑗=1

𝜎2
𝑍,2𝜑

(𝑗)
12 𝜑

𝑗
22.

Thus, we obtain the following formula for the expected value of the random variable 𝑌 (𝑡) for each

𝑡 ∈ Z:

E(𝑌 (𝑡)) = 𝛾𝑋,1,2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎2
𝑍,2𝜑12

𝜑22−𝜑11

[︁
𝜑2
22

1−𝜑2
22
− 𝜑11𝜑22

1−𝜑22𝜑11

]︁
, if 𝜑11 ̸= 𝜑22;

𝜎2
𝑍,2𝜑22𝜑12

(1−𝜑11𝜑22)2
, if 𝜑11 = 𝜑22.

(7.34)
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To obtain the explicit formula for ACVF𝑌 (ℎ) we will use Eq. (7.19). For ℎ = 0, 1, 2 . . . we have:

ACVF𝑌 (ℎ) =
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

2∑︁
𝑘,𝑙,𝑛,𝑟=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
2𝑙 𝜑

(𝑚+ℎ)
1𝑛 𝜑

(𝑝+ℎ)
2𝑟 E [𝑍𝑘(𝑡− 𝑗)𝑍𝑙(𝑡− 𝑖)𝑍𝑛(𝑡−𝑚)𝑍𝑟(𝑡− 𝑝)]

− 𝛾2
𝑋,1,2

=
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

2∑︁
𝑘,𝑛=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑖)
22𝜑

(𝑚+ℎ)
1𝑛 𝜑

(𝑝+ℎ)
22 E [𝑍𝑘(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍𝑛(𝑡−𝑚)𝑍2(𝑡− 𝑝)]

− 𝛾2
𝑋,1,2

=
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

𝜑𝑖+𝑝+ℎ
22

2∑︁
𝑘,𝑛=1

𝜑
(𝑗)
1𝑘 𝜑

(𝑚+ℎ)
1𝑛 E [𝑍𝑘(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍𝑛(𝑡−𝑚)𝑍2(𝑡− 𝑝)]

− 𝛾2
𝑋,1,2

=
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

𝜑𝑖+𝑝+ℎ
22 𝜑

(𝑗)
12 𝜑

(𝑚+ℎ)
12 E [𝑍2(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍2(𝑡−𝑚)𝑍2(𝑡− 𝑝)]

+
∞∑︁

𝑗,𝑖=0

∞∑︁
𝑚,𝑝=−ℎ

𝜑𝑖+𝑝+ℎ
22 𝜑𝑗+𝑚+ℎ

11 E [𝑍1(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍1(𝑡−𝑚)𝑍2(𝑡− 𝑝)]

− 𝛾2
𝑋,1,2.

Moreover, the value

𝑟2,2(𝑡, 𝑗,𝑚, 𝑖, 𝑝) = E [𝑍2(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍2(𝑡−𝑚)𝑍2(𝑡− 𝑝)]

is given by:

𝑟2,2(𝑡, 𝑗,𝑚, 𝑖, 𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜅𝑍 , if 𝑖 = 𝑗 = 𝑚 = 𝑝; 𝑖, 𝑗,𝑚, 𝑝 = 0, 1, . . . ,

𝜎4
𝑍,2, if 𝑖 = 𝑗, 𝑚 = 𝑝, 𝑚 ̸= 𝑗; 𝑖, 𝑗 = 0, 1, . . . , 𝑚, 𝑝 = −ℎ,−ℎ+ 1, . . . ,

𝜎4
𝑍,2, if 𝑗 = 𝑚, 𝑖 = 𝑝, 𝑚 ̸= 𝑖; 𝑖, 𝑗,𝑚, 𝑝 = 0, 1, . . . ,

𝜎4
𝑍,2, if 𝑗 = 𝑝, 𝑖 = 𝑚, 𝑚 ̸= 𝑗; 𝑖, 𝑗,𝑚, 𝑝 = 0, 1, . . . ,

(7.35)
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where 𝜅𝑍 = E [𝑍4
2(𝑡)] <∞ is dependent on 𝑡. Additionally, one can show that:

E [𝑍1(𝑡− 𝑗)𝑍2(𝑡− 𝑖)𝑍1(𝑡−𝑚)𝑍2(𝑡− 𝑝)] = 𝜎2
𝑍,1𝜎

2
𝑍,2, if 𝑗 = 𝑚, 𝑖 = 𝑝, 𝑖, 𝑗, 𝑝,𝑚 = 0, 1, 2, . . . .

Thus, we have the following:

ACVF𝑌 (ℎ) = 𝜅𝑍

∞∑︁
𝑗=0

𝜑
(𝑗)
12 𝜑

2𝑗+ℎ
22 𝜑

(𝑗+ℎ)
12 + 𝜎4

𝑍,2

∞∑︁
𝑗=0

𝜑
(𝑗)
12 𝜑

(𝑗+ℎ)
12

[︃
∞∑︁
𝑖=0

𝜑2𝑖+ℎ
22 − 𝜑2𝑗+ℎ

22

]︃

+𝜎4
𝑍,2

∞∑︁
𝑗=0

𝜑𝑗+ℎ
22 𝜑

(𝑗)
12

[︃
∞∑︁
𝑖=0

𝜑𝑖
22𝜑

(𝑖+ℎ)
12 − 𝜑𝑗

22𝜑
(𝑗+ℎ)
12

]︃

+𝜎4
𝑍,2

∞∑︁
𝑗=0

𝜑𝑗+ℎ
22 𝜑

(𝑗)
12

[︃
∞∑︁

𝑚=−ℎ

𝜑𝑚
22𝜑

(𝑚+ℎ)
12 − 𝜑𝑗

22𝜑
(𝑗+ℎ)
12

]︃

+𝜎2
𝑍,1𝜎

2
𝑍,2

∞∑︁
𝑗=0

∞∑︁
𝑖=0

𝜑2𝑗+ℎ
11 𝜑2𝑖+ℎ

22 − 𝛾2
𝑋,1,2.

Let us observe that for ℎ = 0, 1, 2, . . . the following holds:

∞∑︁
𝑗=0

∞∑︁
𝑖=0

𝜑2𝑗+ℎ
11 𝜑2𝑖+ℎ

22 =
(𝜑11𝜑22)

ℎ

(1− 𝜑2
11)(1− 𝜑2

22)
. (7.36)

Now, to make the calculations simpler, let us assume that 𝜑11 = 0 and 𝜑22 ̸= 0. In this case, the

matrix Φ (see Eq. (7.2)) has two different eigenvalues and 𝜑
(𝑗)
12 = 𝜑12𝜑

𝑗−1
22 , 𝑗 = 1, 2 . . .. Clearly,

𝜑
(𝑗)
11 = 0 for 𝑗 = 1, 2, . . . and for 𝑗 = 0, 𝜑𝑗

11 = 1. We have the following:

∞∑︁
𝑗=0

𝜑
(𝑗)
12 𝜑

2𝑗+ℎ
22 𝜑

(𝑗+ℎ)
12 = 𝜑2

12𝜑
2ℎ
22

∞∑︁
𝑗=1

𝜑4𝑗−2
22 =

𝜑2
12𝜑

2ℎ
22𝜑

2
22

1− 𝜑4
22

, ℎ = 0, 1, 2, . . . .

Let us first consider the case ℎ = 0. We have:

∞∑︁
𝑗=0

𝜑
(𝑗)
12 𝜑

(𝑗)
12

[︃
∞∑︁
𝑖=0

𝜑2𝑖
22 − 𝜑2𝑗

22

]︃
= 𝜑2

12

∞∑︁
𝑗=1

𝜑2𝑗−2
22

[︃
∞∑︁
𝑖=0

𝜑2𝑖
22 − 𝜑2𝑗

22

]︃

= 𝜑2
12

[︂
1

(1− 𝜑2
22)

2
− 𝜑2

22

1− 𝜑4
22

]︂
.

∞∑︁
𝑗=0

𝜑𝑗
22𝜑

(𝑗)
12

[︃
∞∑︁
𝑖=0

𝜑𝑖
22𝜑

(𝑖)
12 − 𝜑𝑗

22𝜑
(𝑗)
12

]︃
= 𝜑2

12𝜑
−2
22

∞∑︁
𝑗=1

𝜑2𝑗
22

[︃
∞∑︁
𝑖=1

𝜑2𝑖
22 − 𝜑2𝑗

22

]︃

= 𝜑2
12

[︂
𝜑2
22

(1− 𝜑2
22)

2
− 𝜑2

22

1− 𝜑4
22

]︂
.
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On the other hand, for ℎ > 0 we have:

∞∑︁
𝑗=0

𝜑
(𝑗)
12 𝜑

(𝑗+ℎ)
12 𝜑2ℎ

22

[︃
∞∑︁
𝑖=0

𝜑2𝑖+ℎ
22 − 𝜑2𝑗+ℎ

22

]︃
= 𝜑2

12𝜑
2ℎ
22

∞∑︁
𝑗=1

𝜑2𝑗−2
22

[︃
∞∑︁
𝑖=0

𝜑2𝑖
22 − 𝜑2𝑗

22

]︃

= 𝜑2
12𝜑

2ℎ
22

[︂
1

(1− 𝜑2
22)

2
− 𝜑2

22

1− 𝜑4
22

]︂
.

∞∑︁
𝑗=0

𝜑𝑗+ℎ
22 𝜑

(𝑗)
12

[︃
∞∑︁
𝑖=0

𝜑𝑖
22𝜑

(𝑖+ℎ)
12 − 𝜑𝑗

22𝜑
(𝑗+ℎ)
12

]︃
= 𝜑2

12𝜑
2ℎ
22

∞∑︁
𝑗=1

𝜑2𝑗−1
22

[︃
∞∑︁
𝑖=0

𝜑2𝑖−1
22 − 𝜑2𝑗−1

22

]︃

= 𝜑2
12𝜑

2ℎ
22

[︂
1

(1− 𝜑2
22)

2
− 𝜑2

22

1− 𝜑4
22

]︂
.

∞∑︁
𝑗=0

𝜑𝑗+ℎ
22 𝜑

(𝑗)
12

[︃
∞∑︁

𝑚=−ℎ

𝜑𝑚
22𝜑

(𝑚+ℎ)
12 − 𝜑𝑗

22𝜑
(𝑗+ℎ)
12

]︃
= 𝜑2

12

∞∑︁
𝑗=1

𝜑2𝑗+ℎ−1
22

[︃
∞∑︁

𝑚=−ℎ+1

𝜑2𝑚+ℎ−1
22 − 𝜑2𝑗+ℎ−1

22

]︃

= 𝜑2
12𝜑

2ℎ
22

[︂
𝜑−2ℎ
22 𝜑2

22

(1− 𝜑2
22)

2
− 𝜑2

22

1− 𝜑4
22

]︂
.

Finally, assuming 𝜑11 = 0 we obtain the following formula for the autocovariance function of the

time series {𝑌 (𝑡)}

• If ℎ = 0

ACVF𝑌 (ℎ) = 𝑉 𝑎𝑟(𝑌 (𝑡))

=
𝜅𝑍𝜑

2
12𝜑

2
22

1− 𝜑4
22

+ 𝜎4
𝑍,2𝜑

2
12

[︂
1 + 2𝜑2

22

(1− 𝜑2
22)

2
− 3𝜑2

22

1− 𝜑4
22

]︂
+

𝜎2
𝑍,1𝜎

2
𝑍,2

1− 𝜑2
22

−
𝜎4
𝑍,2𝜑

2
12𝜑

2
22

(1− 𝜑2
22)

2

= 𝜑2
12

[︂
𝜑2
22(𝜅𝑍 − 3𝜎4

𝑍,2)

1− 𝜑4
22

+
(1 + 𝜑2

22)𝜎
4
𝑍,2

(1− 𝜑2
22)

2

]︂
+

𝜎2
𝑍,1𝜎

2
𝑍,2

1− 𝜑2
22

. (7.37)

• If ℎ > 0

ACVF𝑌 (ℎ) =
𝜅𝑍𝜑

2
12𝜑

2ℎ
22𝜑

2
22

1− 𝜑4
22

+ 𝜎4
𝑍,2𝜑

2
12𝜑

2ℎ
22

[︂
2 + 𝜑−2ℎ

22 𝜑2
22

(1− 𝜑2
22)

2
− 3𝜑2

22

1− 𝜑4
22

]︂
−

𝜎4
𝑍,2𝜑

2
12𝜑

2
22

(1− 𝜑2
22)

2

= 𝜑2
12𝜑

2ℎ
22

[︂
𝜑2
22(𝜅𝑍 − 3𝜎4

𝑍,2)

1− 𝜑4
22

+
2𝜎4

𝑍,2

(1− 𝜑2
22)

2

]︂
. (7.38)
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7.3 Simulation study

To illustrate properties of the product of the VAR(1) model components, we conduct a simulation

study. To this end, we simulate bi-dimensional trajectories of the VAR(1) model {X(𝑡)} with a

bivariate Gaussian or bivariate Student’s t distribution for the residual vector.

We recall that the bivariate Gaussian distributed random vector (𝑍1, 𝑍2) has the following PDF

[219]:

𝑓𝑍1,𝑍2(𝑧1, 𝑧2) =

exp

{︃
− 1

2(1−𝜌2)

[︁
(𝑧1−𝜇𝑍,1)

2

𝜎2
𝑍,1

− 2𝜌
(︁

𝑧1−𝜇𝑍,1

𝜎𝑍,1

)︁(︁
𝑧2−𝜇𝑍,2

𝜎𝑍,2

)︁
+

(𝑧2−𝜇𝑍,2)
2

𝜎2
𝑍,2

]︁}︃
2𝜋𝜎𝑍,1𝜎𝑍,2

√︀
1− 𝜌2

, 𝑧1, 𝑧2 ∈ R

(7.39)

where 𝜌 ∈ (−1, 1) is the correlation coefficient between random variables 𝑍1 and 𝑍2 (denoted in

the main text as 𝜌𝑍); 𝜇𝑍,1, 𝜇𝑍,2 ∈ R are the corresponding expected values, while 𝜎2
𝑍,1, 𝜎

2
𝑍,2 > 0

are the corresponding variances. When 𝜌 = 0, the PDF of the random vector (𝑍1, 𝑍2) is just the

product of the PDFs of the Gaussian distributed random variables.

The bivariate Student’s t distribution with 𝜂 degrees of freedom has PDF given by [220]:

𝑓𝑍1,𝑍2(𝑧1, 𝑧2) =
1

2𝜋
√︀

1− 𝜌2

[︂
1 +

𝑧21 − 2𝜌𝑧1𝑧2 + 𝑧22
𝜂(1− 𝜌2)

]︂− 𝜂+2
2

, 𝑧1, 𝑧2 ∈ R. (7.40)

The marginal random variables 𝑍1 and 𝑍2 have the one-dimensional Student’s t distribution defined

by the following PDF [221]:

𝑓𝑍1(𝑧1) =
Γ((𝜂 + 1)/2)
√
𝜂𝜋Γ(𝜂/2)

(︂
1 +

𝑧21
𝜂

)︂− 𝜂+1
2

, 𝑧1 ∈ R, (7.41)

where Γ(·) is the gamma function, i.e. Γ(𝛼) =
∫︀∞
0

𝑡𝛼−1𝑒−𝑡𝑑𝑡 for 𝛼 such that Re(𝛼) > 0. Note that

the number of degrees of freedom, 𝜂, is equal for both marginal variables. It is worth highlighting

that the correlation 𝜌𝑍 between the random variables 𝑍1 and 𝑍2 is equal to the parameter 𝜌. How-

ever, its zero value is not equivalent to the independence of the random variables 𝑍1 and 𝑍2 is not

a product of the PDFs of the marginal distributions. If 𝑍1 and 𝑍2 are independent, the PDF of the

random vector is given by:

𝑓𝑍1,𝑍2(𝑧1, 𝑧2) =
Γ((𝜂𝑍,1 + 1)/2)Γ((𝜂𝑍,2 + 1)/2)
√
𝜂𝑍,1𝜂𝑍,2𝜋Γ(𝜂𝑍,1/2)Γ(𝜂𝑍,2/2)

(︂
1 +

𝑧2𝑍,1
𝜂𝑍,1

)︂−
𝜂𝑍,1+1

2
(︂
1 +

𝑧22
𝜂𝑍,2

)︂−
𝜂𝑍,2+1

2

,(7.42)
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where 𝑧1, 𝑧2 ∈ R, 𝜂𝑍,1 > 0, 𝜂𝑍,2 > 0 are the degrees of freedom parameters of 𝑍1 and 𝑍2,

respectively.

The Student’s t distribution defined in (7.41) has zero mean and variance equal to 𝜎2
𝑍,1 =

𝜂
𝜂−2

. It can be generalized to the Student’s t location-scale distribution by applying the following

transformation 𝑍(𝜇,𝜆) := 𝜇 + 𝜆𝑍, where 𝑍 is Student’s t distributed. It yields a three parameter

(𝜇, 𝜆, 𝜂) distribution, with 𝜇 being the shift parameter, 𝜆 > 0 the scale parameter and 𝜂 > 0 the

degrees of freedom. The variance of the Student’s t location-scale random variable is equal to

𝜎2
𝑍(𝜇,𝜆)

= 𝜆2 𝜂
𝜂−2

.

In our simulation study the shape parameter of the Student’s t distribution is set to 𝜂 = 5, so it

has a much heavier tail than the Gaussian one. For simplicity, we assume that the scale parameters

of the Gaussian distribution for both coordinates are equal, i.e. 𝜎𝑍,1 = 𝜎𝑍,2. Moreover, we assume

that 𝜎𝑍,𝑖 =
√︁

𝜂
𝜂−2

, 𝑖 = 1, 2, which is equal to the standard deviation of the marginal Student’s t

distributions. Thus, the variances of both distributions of the residual vectors are equal.

We analyse the trajectories as well as the autocovariance functions of the product of the sim-

ulated VAR(1) vectors defined in Eq. (7.15) separately for Cases 1-3. We also derive the 5% and

95% confidence bounds (CB) for the autocovariance function using Monte Carlo calculations of

the empirical ACVF with 1000 repetitions and two cases of the trajectories length, namely 𝑛 = 100

or 𝑛 = 1000. Note that the autocovariance at lag ℎ = 0 is equal to the variance of the time series,

ACVF𝑌 (0) = Var(𝑌 (𝑡)) for each 𝑡.

It is worth mentioning that in a case when the residual series has a bivariate Gaussian distribu-

tion, then 𝑋1(𝑡) and 𝑋2(𝑡) for each 𝑡 ∈ Z have one-dimensional Gaussian distributions and 𝑌 (𝑡)

has a variance-gamma distribution with appropriate parameters, see[222]. A detailed analysis re-

lated to the distribution of the product of Gaussian random variables was presented, for instance,

by [132]. In a case where (𝑍1, 𝑍2) have the bivariate Student’s t distribution, the components of

the VAR(1) model 𝑋1(𝑡) and 𝑋2(𝑡) are not Student’s t distributed. This is related to the fact that

the linear combination of Student’s t distributed random variables (with different weights) is not

Student’s t distributed.

Case 1

In this case the time series {𝑋1(𝑡)} and {𝑋2(𝑡)} are independent. Hence, 𝜑12 = 𝜑21 = 0 and

the residual vectors components {𝑍1(𝑡)} and {𝑍2(𝑡)} for each 𝑡 ∈ Z have independent marginal

distributions. In the Gaussian case it is simply equivalent to 𝜌𝑍 = 0 in Eq. (7.39). However, in

the Student’s t case putting 𝜌𝑍 = 0 in (7.40) does not lead to the independence of the marginal
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distributions. Hence, the components of the residual vector are simulated as independent one-

dimensional Student’s t random variables, see Eq. (7.41) for the PDF formula.

Since the shape of the ACVF of the product time series depends strongly on the sign of 𝜑11𝜑22

(see formula (7.24)), we use two parameter sets: either 𝜑11 = 0.8 and 𝜑22 = 0.8 or 𝜑11 = 0.8

and 𝜑22 = −0.8. The sample trajectories of the model components {𝑋1(𝑡)} and {𝑋2(𝑡)} as well

as their product {𝑌 (𝑡)} are plotted in Figures 7-1 and 7-2 for 𝜑22 = 0.8 and 𝜑22 = −0.8, respec-

tively. Comparing both figures a clear difference can be observed in the behaviour of trajectories

corresponding to {𝑋2(𝑡)} as well as {𝑌 (𝑡)}. Setting 𝜑11𝜑22 < 0 (see Figure 7-1) yields an antiper-

sistent behaviour of both time series. Moreover, the distribution of the product time series {𝑌 (𝑡)}
has heavier tails than for {𝑋1(𝑡)} and {𝑋2(𝑡)}. This effect is more pronounced for the Student’s t

distribution of the residuals.

Figure 7-1: Sample trajectories of the VAR(1) model components and their product for the Gaus-
sian (left panels) and Student’s t distribution (right panels). The parameters correspond to Case 1,
i.e. 𝜑11 = 0.8, 𝜑22 = 0.8, 𝜑12 = 𝜑21 = 0 and the residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2 are independent
with 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 = 𝜂

𝜂−2
for the Gaussian one, source:

[133].

In Figure 7-3 we plot ACVF𝑌 (ℎ) for both sets of parameters and both distributions. The shape

of the autocovariance function strongly depends on the sign of 𝜑11𝜑22. It has a clear power decay

if 𝜑11𝜑22 > 0 and antipersistent convergence to zero if 𝜑11𝜑22 < 0. The values of ACVF𝑌 (ℎ) are

the same for both distributions, which follows directly from the formula (7.24) and the fact that

the variances for both distributions are equal. However, a difference between the distributions can

be observed in the widths of the intervals between CBs, i.e. the confidence intervals (CIs). Due to
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Figure 7-2: Sample trajectories of the VAR(1) model components and their product for the Gaus-
sian (left panels) and Student’s t distribution (right panels). The parameters correspond to Case 1,
i.e. 𝜑11 = 0.8, 𝜑22 = −0.8, 𝜑12 = 𝜑21 = 0 and the residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2 are independent
with 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 = 𝜂

𝜂−2
for the Gaussian one, source:

[133].

the heavier tails for the Student’s t distribution wider CIs are obtained in this case. The difference

is more apparent if 𝑛 = 100, showing that the convergence of the empirical autocovariance to its

theoretical value is slower than in the case of the Gaussian distribution.

Case 2

In this case, the time series {𝑋1(𝑡)} and {𝑋2(𝑡)} are dependent only through the residual vector.

Hence, in the Gaussian case we set 𝜌𝑍 ̸= 0, while in the Student’s t case the bivariate specification

(7.40) needs to be used, yielding dependence between 𝑍1 and 𝑍2 for any 𝜌𝑍 ∈ (−1, 1). We start

with a comparison of the behaviour of the trajectories and autocovariance functions with 𝜌𝑍 = 0.8

in both cases. Note that the sign of 𝜌𝑍 does not influence the value of the autocovariance function,

which follows directly from the formula (7.29). On the other hand, similarly as in Case 1, the sign

of 𝜑11𝜑22 is an important factor for the ACVF behaviour. Hence, we use two parameter sets: either

𝜑11 = 0.8 and 𝜑22 = 0.8 or 𝜑11 = 0.8 and 𝜑22 = −0.8.

The sample trajectories corresponding to the time series {𝑋1(𝑡)}, {𝑋2(𝑡)} and their product

{𝑌 (𝑡)} are plotted in Figures 7-4 and 7-5, respectively. Similarly as in Case 1, we can observe

heavier tails for the Student’s t distribution and a clear antipersistnecy if 𝜑11𝜑22 < 0. An interesting
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Figure 7-3: Autocovariance function of the VAR(1) components product ACVF𝑌 (ℎ) (solid line)
and the corresponding confidence bounds 𝐶𝐵𝑞,𝑛 (dashed lines) for the Gaussian (left panels) and
Student’s t distribution (right panels). The confidence bounds were obtained using Monte Carlo
simulations with 1000 repetitions. The sample length was set to 𝑛 = 100 or 𝑛 = 1000. The
parameters correspond to Case 1, i.e. 𝜑11 = 0.8, 𝜑22 = 0.8, 𝜑12 = 𝜑21 = 0 (top panels; see
Fig. 7-1 for the corresponding sample trajectories) or 𝜑11 = 0.8, 𝜑22 = −0.8, 𝜑12 = 𝜑21 = 0
(bottom panels; see Fig. 7-2 for the corresponding sample trajectories) and the residual vectors
𝑍𝑖(𝑡), 𝑖 = 1, 2 are independent with 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 = 𝜂

𝜂−2

for the Gaussian one, source: [133].

feature can be observed in Figure 7-4, i.e. when 𝜑11𝜑22 > 0. The strong dependence between

the residuals makes the product distribution highly non-symmetric, even though the individual

components do not exhibit this feature.

The empirical autocovariance function of the product time series for both parameter sets is

plotted in Figure 7-6. Again, similarly as in Case 1, we can observe a power decay if 𝜑11𝜑22 > 0

and antipersistency if 𝜑11𝜑22 < 0. However, now the values of the ACVF𝑌 (ℎ) are different for

the Gaussian and Student’s t distributions. This is a consequence of different values of 𝑚𝑍 in Eq.

(7.29). For the Gaussian distribution we have the following [132]:

𝑚𝑍 = E
[︀
𝑍2

1𝑍
2
2

]︀
= 𝜎2

𝑍,1𝜎
2
𝑍,2 + 2𝜌2𝑍𝜎

2
𝑍,1𝜎

2
𝑍,2.
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Figure 7-4: Sample trajectories of the VAR(1) model components and their product for the Gaus-
sian (left panels) and Student’s t distribution (right panels). The parameters correspond to Case 2,
i.e. 𝜑11 = 0.8, 𝜑22 = 0.8, 𝜑12 = 𝜑21 = 0 and the residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2 are correlated
with 𝜌𝑍 = 0.8. 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 =

𝜂
𝜂−2

for the Gaussian one,
source: [133].

Hence, the autocovariance function simplifies to:

ACVF𝑌 (ℎ) = (𝜑11𝜑22)
ℎ

[︂
𝜎2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑2
11)(1− 𝜑2

22)
+

𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2

(1− 𝜑11𝜑22)
2

]︂
.

This is not the case for the Student’s t distribution, for which in general 𝑚𝑍 ̸= 𝜎2
𝑍,1𝜎

2
𝑍,2 +

2𝜌2𝑍𝜎
2
𝑍,1𝜎

2
𝑍,2, so the first component in the ACVF𝑌 (ℎ) (see formula (7.29)) is non-zero.

The difference between the distributions is also clearly visible in the widths of the confidence

intervals. For the Student’s t distribution much longer trajectories are needed to obtain a good

convergence of the empirical autocovariance to its theoretical values.

Since for the Student’s t distribution 𝜌𝑍 = 0 is not equivalent to independence, we also compare

the ACVF𝑌 (ℎ) values obtained with 𝜌𝑍 = 0 in Case 2 with the ones obtained in Case 1 (i.e. with

independent one-dimensional Student’s t residuals). Recall that for the Gaussian case putting 𝜌𝑍 =

0 leads to independence, hence it directly corresponds to Case 1. The ACFV𝑌 functions for both

Student’s t specifications are plotted in Figure 7-7. Indeed, we can observe that the dependence

between 𝑍1 and 𝑍2 changes the values of ACVF𝑌 (ℎ), even if 𝜌𝑍 = 0. This is a consequence of the

𝑚𝑍 value in the formula (7.29).
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Figure 7-5: Sample trajectories of the VAR(1) model components and their product for the Gaus-
sian (left panels) and Student’s t distribution (right panels). The parameters correspond to Case 2,
i.e. 𝜑11 = 0.8, 𝜑22 = −0.8, 𝜑12 = 𝜑21 = 0 and the residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2 are correlated
with 𝜌𝑍 = 0.8. 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 =

𝜂
𝜂−2

for the Gaussian one,
source: [133].

Case 3

In this case, the random variables 𝑍1(𝑡) and 𝑍2(𝑡) are independent for each 𝑡 ∈ Z and the relation

between {𝑋1(𝑡)} and {𝑋2(𝑡)} is driven only by 𝜑12 ̸= 0 and 𝜑22 ̸= 0. Hence, we simulate the

trajectories using the Gaussian distribution with 𝜌𝑍 = 0 and the independent one-dimensional

Student’s t distributions. Note that it follows directly from the formulas (7.37) and (7.38), that,

differently than in Case 1 and Case 2, the sign of 𝜑12𝜑22 does not influence the autocovariance

values. Hence, now we use only a one-parameter set, namely 𝜑12 = 0.8, 𝜑22 = 0.8, 𝜑11 = 𝜑21 = 0.

The sample trajectories corresponding to time series {𝑋1(𝑡)}, {𝑋2(𝑡)} and {𝑌 (𝑡)} are plotted

in Figure 7-8. Similarly as in Case 2, asymmetry of the product can be observed. However, now it

is the effect of dependence through 𝜑12 and 𝜑22 coefficients and not the residuals correlation.

The autocovariance functions of the product time series together with the corresponding con-

fidence bounds are plotted in Figure 7-9. For both distributions we can observe a power decay of

ACVF𝑌 (ℎ), but the values are different. For the Gaussian distribution we have:

𝜅𝑍 = E
[︀
𝑍4

2

]︀
= 3𝜎4

𝑍,2, (7.43)
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Figure 7-6: Autocovariance function of the VAR(1) components product ACVF𝑌 (ℎ) (solid line)
and the corresponding confidence bounds CB𝑞,𝑛 (dashed lines) for the Gaussian (left panels) and
Student’s t distribution (right panels). The confidence bounds were obtained using Monte Carlo
simulations with 1000 repetitions. The sample length were set to 𝑛 = 100 or 𝑛 = 1000. The
parameters correspond to Case 2, i.e. 𝜑11 = 0.8, 𝜑22 = 0.8, 𝜑12 = 𝜑21 = 0 (top panels; see Fig.
7-4 for the corresponding sample trajectories) or 𝜑11 = 0.8, 𝜑22 = −0.8, 𝜑12 = 𝜑21 = 0 (bottom
panels; see Fig. 7-5 for the corresponding sample trajectories) and the residual vectors 𝑍𝑖(𝑡), 𝑖 =
1, 2 are correlated with 𝜌𝑍 = 0.8. 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 =

𝜂
𝜂−2

for
the Gaussian one, source: [133].

which follows directly from the fact that the kurtosis, i.e. E[𝑍4]/[Var(𝑍)]2, of the Gaussian dis-

tribution is equal to 3. This is not the case for the Student’s t distribution. Hence, in the Gaussian

case, ACVF𝑌 (ℎ) simplifies to:

ACVF𝑌 (ℎ) =

⎧⎨⎩𝜑2
12

[︁
(1+𝜑2

22)𝜎
4
𝑍,2

(1−𝜑2
22)

2

]︁
+

𝜎2
𝑍,1𝜎

2
𝑍,2

1−𝜑2
22

, if ℎ = 0,

𝜑2
12𝜑

2ℎ
22

[︁
2𝜎4

𝑍,2

(1−𝜑2
22)

2

]︁
, if ℎ > 0,

while for the Student’s t the first component in the formulas (7.37) and (7.38) is always positive,

making the ACVF𝑌 (ℎ) higher than in the Gaussian case. The confidence intervals are again wider

for the Student’s t distribution.
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Figure 7-7: Autocovariance function of the VAR(1) components product ACVF𝑌 (ℎ) (solid line)
and the corresponding confidence bounds CB𝑞,𝑛 (dashed lines) for the bivariate Student’s t distribu-
tion (right panel) with 𝜌𝑍 = 0 and independent Student’s distributed residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2
(left panel). The confidence bounds were obtained using Monte Carlo simulations with 1000 rep-
etitions. The sample length was set to 𝑛 = 100 or 𝑛 = 1000. The model parameters are equal
𝜑11 = 0.8, 𝜑22 = 0.8, 𝜑12 = 𝜑21 = 0, 𝜂 = 5, source: [133].

7.4 Real data application. Modelling cost of electricity load

prediction errors

Electricity prices are known to be autoregressive and highly dependent on the physical demand

(or equivalently load), see e.g. [223]. The day-ahead forecasts of the load are usually published

by the transmission system operators (TSO) and can be used for cost or production planning in

electricity companies. However, these forecasts are burdened with prediction errors, which might

cause large deviations of the actual energy cost from its predictions. The cost of these errors is

equal to the product of the price and the difference between the actual and forecasted load. Hence,

the methodology derived in Section 7.1 might be useful in such a context.

We apply the VAR(1) model to electricity day-ahead market data from the danish DK1 zone

spanning over the time period 1.1.2016-31.12.2021, available from [224]. The time series corre-

sponding to the first variable, denoted as {𝑋𝜇
1 (𝑡)}, are the weekly means of the day-ahead elec-

tricity prices, while the second variable, corresponding to the time series {𝑋2(𝑡)}, are the weekly

means of the load forecast errors, i.e. the difference between the load values forecasted by the TSO

and the corresponding actual values. The product of these time series {𝑌 (𝑡)} = {𝑋𝜇
1 (𝑡)𝑋2(𝑡)} is

the total weekly cost of the load prediction errors. The analysed time series are plotted in Figure

7-10.
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Figure 7-8: Sample trajectories of the VAR(1) model components and their product for the Gaus-
sian (left panels) and Student’s t distribution (right panels). The parameters correspond to Case 3,
i.e. 𝜑12 = 0.8, 𝜑22 = 0.8, 𝜑11 = 𝜑21 = 0 and the residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2 are independent
with 𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 = 𝜂

𝜂−2
for the Gaussian one, source:

[133].

Before applying the VAR(1) model, the electricity prices are demeaned, i.e., for each 𝑡 we cal-

culate 𝑋1(𝑡) = 𝑋𝜇
1 (𝑡) − 𝜇𝑋 , where 𝜇𝑋 is the mean of the prices corresponding to {𝑋𝜇

1 (𝑡)}. In

Figure 7-11 we plot the empirical ACVF obtained for both time series corresponding to {𝑋1(𝑡)}
and {𝑋2(𝑡)}, as well as the empirical cross-covariances, CCVF𝑋1,𝑋2(ℎ) = Cov(𝑋1(𝑡), 𝑋2(𝑡+ℎ)),

between both components. The shapes of the obtained curves indicate a strong autoregressive

effect in {𝑋1(𝑡)}, a lower one in {𝑋2(𝑡)} and no such effects between the components. This ob-

servation is confirmed by the estimated matrix Φ of the coefficients of the VAR(1) model obtained

using the Yule-Walker algorithm [206]:

Φ =

[︃
0.7639 −0.0629
−0.0167 0.1247

]︃
. (7.44)

Next, we analyse the residuals obtained from the fitted VAR(1) model. The one-dimensional time

series corresponding to {𝑍1(𝑡)} and {𝑍2(𝑡)} are plotted in Figure 7-12 together with the corre-

sponding empirical auto- and cross-covariances. The obtained curves are close to 0 and show no

time dependence in the residual series. The empirical correlation between the trajectories corre-

sponding to {𝑍1(𝑡)} and {𝑍2(𝑡)} is equal to 𝜌𝑍 = 0.0766 and is not significantly different from 0
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Figure 7-9: Autocovariance function of the VAR(1) components product ACVF𝑌 (ℎ) (solid line)
and the corresponding confidence bounds CB𝑞,𝑛 (dashed lines) for the Gaussian (left panel) and
Student’s t distribution (right panel). The confidence bounds were obtained using Monte Carlo
simulations with 1000 repetitions. The sample length was set to 𝑛 = 100 or 𝑛 = 1000. The
parameters correspond to Case 3, i.e. 𝜑12 = 0.8, 𝜑22 = 0.8, 𝜑11 = 𝜑21 = 0 (see Fig. 7-8 for the
corresponding sample trajectories) and the residual vectors 𝑍𝑖(𝑡), 𝑖 = 1, 2 are independent with
𝜂 = 5 for the Student’s t distribution and 𝜎2

𝑍,1 = 𝜎2
𝑍,2 =

𝜂
𝜂−2

for the Gaussian one, source: [133].

according to the 𝑡 test, see e.g. [225], as the 𝑝-value is equal to 0.2183. The independence of resid-

uals’ components is further confirmed by the 𝜒2 independence test, see e.g. [225], which yields

the 𝑝-value of 0.2395.

Finally, we fit a distribution to the components of the residual series. Since the independence

between time series corresponding to {𝑍1(𝑡)} and {𝑍2(𝑡)} for each 𝑡 cannot be rejected, we analyse

them separately as one-dimensional samples. In Figure 7-13 we plot the empirical probability

density functions (PDFs) of sample trajectories corresponding to {𝑍1(𝑡)} and {𝑍2(𝑡)} together

with the fitted PDFs of the Gaussian and Student’s t location-scale distributions (see Appendix

for details) and the corresponding quantile-quantile plots. It can be observed that the Student’s

t distribution yields a good fit to the empirical PDF and there is much improvement over the

Gaussian one, especially in the case of load prediction errors (corresponding to {𝑍2(𝑡)}). The

fit is further confirmed by the Kolmogorov-Smirnov goodness-of-fit test, see e.g.[225]. For the

trajectory corresponding to the first component, the obtained 𝑝-values are equal to 0.1063 or 0.7458

for the zero mean Gaussian or Student’s t location-scale distribution with 𝜇 = 0, respectively. For

the trajectory corresponding to {𝑍2(𝑡)} the 𝑝-values are equal to 0.0012 and 0.5016, respectively.

Hence, the Student’s t distribution with the scale parameter cannot be rejected at any reasonable

significance level for both variables, while the Gaussian distribution can be rejected in the case of

the time series corresponding to {𝑍2(𝑡)}.

111



Figure 7-10: The analysed Danish electricity market data from the time period 1.1.2016-
31.12.2020. Top panel: the weekly means of the day-ahead electricity prices (corresponding to
time series {𝑋𝜇

1 (𝑡)}). Middle panel: the weekly means of the load TSO forecast errors (corre-
sponding to time series {𝑋2(𝑡)}). Bottom panel: the product of weekly day-ahead prices and load
forecast errors, ({𝑌 (𝑡)} = {𝑋𝜇

1 (𝑡)𝑋2(𝑡)}), i.e the total cost of these errors, source: [133].

Summarizing all of the obtained results, we conclude that a good fit is obtained for Case 1

(see Section 7.2) of the VAR(1) model with Student’s t distributed residuals, i.e. 𝜑12 = 𝜑21 =

0 and {𝑍1(𝑡)} and {𝑍2(𝑡)} are independent. Estimation of the model parameters under Case

1 specification yields: 𝜑11 = 0.7630, 𝜑22 = 0.1241, while the Student’s t degrees of freedom

parameters 𝜂𝑍,1 = 4.85, 𝜂𝑍,2 = 2.47 and the scale parameters are equal to 𝜆𝑍,1 = 5.28, 𝜆𝑍,2 = 3.03.

Recall that the VAR(1) model was fitted to the demeaned prices, i.e. it was assumed that to

𝑋1(𝑡) = 𝑋𝜇
1 (𝑡) − 𝜇𝑋 , where 𝜇𝑋 is the mean of the prices {𝑋𝜇

1 (𝑡)}. Hence, before analyzing the

final cost of the error, i.e.:

𝑌 (𝑡) = (𝑋1(𝑡) + 𝜇𝑋)𝑋2(𝑡), (7.45)

there is a need to also apply the mean-shift also to the first coordinate of the fitted VAR(1) model. In

Case 1 straightforward derivations lead to the following formula for the autocovariance of {𝑌 (𝑡)}:

ACVF𝑌 (ℎ) = ACVF𝑋1𝑋2(ℎ) + 𝜇2
𝑋ACVF𝑋2(ℎ) =

𝜎2
𝑍,1𝜎

2
𝑍,2(𝜑11𝜑22)

ℎ

(1− 𝜑2
11)(1− 𝜑2

22)
+ 𝜇2

𝑋1
𝜑ℎ
22

𝜎2
𝑍,2

1− 𝜑2
22

. (7.46)

In Figure 7-14 we plot the derived theoretical autocovariance function for {𝑌 (𝑡)}, see Eq.

(7.46), with the estimated parameters and the fitted Student’s t residual distribution, as well as the
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Figure 7-11: The empirical autocovariance function for time series corresponding to {𝑋1(𝑡)},
ACVF𝑋1(ℎ) (top, left panel) and {𝑋2(𝑡)}, ACVF𝑋2(ℎ)) (bottom, right panel), as well as the cor-
responding empirical cross-covariances CCVF𝑋1,𝑋2(ℎ) (top, right panel) and CCVF𝑋2,𝑋1(ℎ) (bot-
tom, right panel), source: [133].

empirical autocovariance function calculated for the product of the analysed data. Additionally, we

also calculate the 5% and 95% CBs for the autocovariance function of the fitted model using Monte

Carlo simulations with 1000 repetitions. As can be observed, the empirical autocovariance curve

resembles the shape of the theoretical values and lies within the confidence intervals. It confirms

that the fitted VAR(1) model describes well the properties of the product. Hence, the presented

approach provides a well fitted model for both the prices and the load prediction errors and at the

same time allows for modeling the total cost of the TSO load forecast errors, being the product of

both variables. The results might be useful in cost planning for energy companies and help in a

proper evaluation of the risk related to the errors of the load/demand predictions.

7.5 Discussion and summary

In this chapter, we have introduced a new times series arising as a product of the bi-dimensional

VAR(1) model components and derived formulas for its main characteristics, such as the mean and

the autocovariance function. Clearly, the results presented in this chapter can be further generalized

for other time series models, especially for the VAR model with higher order or higher dimension.

In the literature, there are also considered VAR models with heavy-tailed multidimensional dis-

tribution, e.g. stable [226, 227], thus the natural extension of the current study is the analysis of

time series that is a product of two components of such models. In this case, the dependence struc-

ture can not be expressed by the means of the autocovariance function defined for finite-variance
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Figure 7-12: The residual series corresponding to {𝑍1(𝑡)}, {𝑍2(𝑡)} (top right and left panels,
respectively) and the empirical autocovariance function ACVF𝑍1 (middle, left panel), ACVF𝑍2

(bottom, right panel), as well as the empirical crosscovariances CCVF𝑍1,𝑍2 (middle, right panel)
and CCVF𝑍2,𝑍1 (bottom, right panel), source: [133].

models, but by the dependence measures properly defined for the infinite-variance time series, see

[226].

In the real data application section, we have conducted a case study based on the data from the

Danish electricity market. We have shown that the weekly prices and load prediction errors can be

modelled by a VAR(1) model, which also yields a good fit for the product time series, describing

in this case the total cost of the load prediction errors. As the load forecasts are a crucial parameter

for production and trade planning in electricity companies, the proper evaluation of the risk of their

errors is essential for market strategies planing.

Another direction in which this topic could be analysed is the distribution of a random variable

that is a product of two continuous random variables. In our study we derived formulas for the

probability density functions and moments of the products of the Gaussian, log-normal, Student’s

t and Pareto random variables. This approach has been presented in [132]. Based on the data

from continuous trading on the German energy market, we have shown a good reasonable fit of the

product of log-normal and Student’s t distribution to the transaction values. Since the transaction

value is the final profit/cost for a trader, finding a proper density describing its distribution, which

is also consistent with the prices and volumes data, can help an energy market participant in trading

strategy planning.
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Figure 7-13: The quantile-quantile plots for the Gaussian (left panels) and Student’s t location-
scale distribution (middle panels) fitted to time series corresponding to {𝑍1(𝑡)} (top panels) and
{𝑍2(𝑡)} (bottom panels). In the right panels the empirical PDFs (a, blue colour) corresponding to
{𝑍1(𝑡)}, 𝑓𝑍1(𝑧), and {𝑍2(𝑡)}, 𝑓𝑍2(𝑧), together with the fitted PDFs for the Gaussian (b, red colour)
and Student’s t location-scale (c, yellow colour) distributions are plotted, source: [133].

Figure 7-14: The autocovariance function of the product of prices and load prediction errors,
ACVF𝑌 (ℎ). The empirical autocovariance is plotted with a violet colour, while the theoretical
values calculated for the fitted VAR(1) model, see Eq. (7.46) are plotted with a yellow colour.
Additionally 5% and 95% CBs obtained from Monte Carlo simulations of the fitted model are
plotted with dashed lines, source: [133].
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Chapter 8

Conclusions. Potential application of
discussed models for the market risk
measurement process

An effective market risk management process in a industrial company consists of several stages:

risk identification, the measurement of risk, determining risk appetite and, if natural methods of

risk reduction are not sufficient, the use of risk mitigating instruments.

The risk measurement stage plays a special role in the market risk management process. Essen-

tially, it quantifies the size of the company’s current risk exposure and helps to answer the question

of whether this exposure is optimal for the company in the context of the current market conditions

and the internal situation or long-term plans of the company.

Correctly-calculated risk measures are used to estimate the impact of the company’s potential

actions on shaping the desired risk profile. In the risk measurement stage we can specify four

successive steps [228]: Metric specification, Exposure mapping, Generating scenarios and Risk

measure calculation as well as evaluation. Actually, scenario generation is exactly the risk man-

agement process stage, in which the stochastic models presented in this thesis may be applied

[229]

8.1 Scenario generation - a key stage of the market risk mea-

surement process

For calculating any risk measure, there is a requirement to generate price scenarios for market risk

factors. The Monte Carlo simulation method, introduced by Stanislaw Ulam from the Lviv School
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of Mathematics [230], is commonly used for sampling from the probability distribution. It can deal

with often very complex and non-linear systems of equations. It assumes that the future prices of

risk factors follow a predetermined predicted probability distribution.

Figure 8-1: Example of copper price scenarios with mean and 5% / 95% quantiles.

Therefore it is very important to choose an appropriate model on the basis of which the dis-

tribution is created. The novel models discussed in previous chapters can be useful for improving

the scenario generation process and solving the problems signaled in the Chapter 2. From a practi-

cal point of view, the areas of potential improvements indicated at the beginning of this thesis are

connected to the three stages of model application, listed below.

Model specification

A model should correspond well to the actual behaviour of market data. Potential model risk

may appear when for example, we assume that a stochastic process follows Gaussian distribution,

whereas in fact it is fat-tailed, with a large deviation of the extreme values. We may also ignore

stochastic volatility in a situation where the present observations affect the following ones. We

might also misspecify relationships between variables. For instance, we might ignore correlations

or get correlations wrong in VAR estimation. All of the above-mentioned examples of model risk

have been addressed in this thesis.

Two novel stochastic models which could be used for modelling metals prices, introduced in

Chapter 4 are based on the SGT distribution and stochastic differential equations. Additionally,

in Section 4.1 we implemented and described modification of the classical Ornstein-Uhlenbeck
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process by taking, instead of the constant, the time-dependent coefficients 𝛼 and 𝛽. In turn, in

Section 6.3, based on relation and distribution analysis, we proposed the use of a two-dimensional

VAR model with 𝛼−stable distribution. Moreover the non-homogeneity of the data is reflected in

the two identified model regimes.

Model implementation

Another element which may create a problem with the functioning of the model in practice can

also arise from the way models are implemented. A formal model does not and cannot provide a

complete specification of model implementation in every conceivable circumstance, because there

is a large number of possible instruments and markets and their varying institutional and statistical

properties. Therefore, the selected model should be properly, and with great awareness, fit to the

purpose of its use. This topic is developed in Section 8.2.

Model calibration

Other risk associated with model application can also result from the incorrect calibration of an

otherwise good model. Parameters might be estimated with error, not kept up-to-date or estimated

over inappropriate sample periods. Incorrect calibration can lead to major losses if the models are

then used to price traded instruments. We indicated this problem at the beginning of this thesis,

focusing especially on choosing an appropriate length of historical data for stochastic modelling. In

Chapter 5 we performed an analysis based on the generalized (time-dependent) Vasicek model for

the currency exchange rate data description. We demonstrated that, in the long term, the averaging

of different models can give better and more stable results in modelling exchange rates.

8.2 Risk measurement applications using stochastic processes

As described in previous sections, stochastic modelling is very important part of the market risk

measurement process. Obviously it can be used for many real business applications related to

market the risk management process, and specifically the measurement process. Based on the

business practice of KGHM, we can indicate the following market risk measurement areas in which

stochastic modelling is used:

• Stress test analysis

• Sensitivity analysis
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• Profitability Risk, Cash-Flow Risk and Liquidity Risk assessment

• Credit Risk exposure evaluation

• Hedging optimisation

Sensitivity analysis

Sensitivity analysis is a tool used to decrease the uncertainty of an outcome by changing the value

of variables that affect it within a preset range. For corporates exposed to significant market risk,

it is usually focused on finding dependence and the influence of changing prices of metals, energy

prices and exchange rates among other important factors on a company’s financial situation. While

this often has a one-dimensional character, in business practice, adding an additional dimension is

also very informative.

Modelling mining royalty tax payments in Poland is a good example of a multidimensional

problem, as the tax formula is a derivative of the copper price in PLN. A model which could be

used for conducting sensitivity analysis of tax payments to the copper price in PLN was described

in more detail in Chapter 6 and in [131].

Stress test analysis

An extended and more extreme version of the sensitivity analysis is the analysis of stress test

situations for the company. This effectively helps to evaluate the risk factor levels at which a

company’s key financial ratios are not acceptable from the company’s point of view (break even

points). In the prices simulation stage, it is extremely important to have comprehensive knowledge

and a firm understanding of the stochastic models used. The fat tail distributions or homogeneous

volatility assumption used can improve the quality of modelling in this area.

Stress test analysis can be used for many different purposes and be based on one-dimensional

or multidimensional calculations. One of the applications can be assessing liquidity risk, for which

stochastic models with heavy-tails could be used, as well as non-Gaussian distributions or address-

ing the higher probability of realization of extremely negative price scenarios. These kinds of

models are analysed in Chapter 4 and in [129, 130].

Profitability Risk, Cash Flow Risk and Liquidity Risk assessment

Stochastic modelling is moreover used to calculate risk measures reflecting the financial situation

of a company. In this part risk measures are presented based on the financial indicators used by

manufacturing companies.
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It is important to highlight that these measures are based on the Value-at-Risk concept proposed

by Philippe Jorion [169], which a can be defined as the maximum value by which potential financial

indicator may drop in relation to the assumed level (for example budget), as a result of (normal)

market risk factor changes in a given reporting period and with a given probability. In the course of

development of the Value-at-Risk measure a wide range of use at-Risk-based measures supporting

the methodology of market risk management in manufacturing companies was created, such us

CorporateMetrics, which also addressed using measures for a long-term forecasting horison [1,

228].

Below are presented examples of the measures used:

Earnings at Risk (EaR) - specifies by how much profit may decrease in relation to the assumed

level (budget), as a result of (normal) changes in prices of metals, energy prices and exchange rates,

for a given reporting period and with a given probability.

Fig. 8-2 presents graphically the concept of the EaR measure in relation to the planned budget.

Figure 8-2: Earnings-at-Risk measure - an example.

Cash Flow at Risk (CFaR) - financial cash flows exposed to risk - defines how much financial

flows may deteriorate in relation to the mean level, as a result of (normal) changes in raw material

prices and exchange rates, for a given horizon and with a given probability.

Net Debt/EBITDA (Earnings Before Interest, Taxes, Depreciation and Amortization) - one of

the most common financial covenant used in credit agreements. Breaking it may result in making

a loan immediately payable.
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Generally elements of all the models discussed in previous chapters can be considered for

use in calculating risk measures. Nevertheless these measures often require simulating multiple

risk factors and exposure maps are very complex. Therefore, before the implementation of more

advanced models, the entire process should be analysed in terms of creating added value for the

company, taking into account the system’s overall complexity and costs.

Credit Risk exposure evaluation

Another area where stochastic modeling can be used is credit risk management. Derivatives used

for managing market risk are usually traded with financial institutions, therefore the potential pos-

itive mark-to-market for the company with each individual institution in fact creates credit risk

exposure. Classical measures like the transaction volume or portfolio mark-to-market doesn’t re-

flect true credit exposure as they only address current market conditions, whereas the exposure

can change and potentially increase, depending on market risk factors values. Therefore stochastic

modelling / scenario generation is used here to estimate, with a given probability, the percentile

of price levels, real potential credit risk exposure and to calculate the appropriate risk measure:

Potential Receivables-at-Risk (PRaR). Such a measure can be for example calculated for a portfo-

lio of exchange rates derivatives and the model CKLS described in Chapter 5 and in [127] can be

considered here to be applied.

Hedging optimisation

When risk level is not acceptable, companies should firstly use natural methods of excess risk

mitigation (for example netting, costs in the same currency as revenues, borrowing in a specific

currency fit to exposure, purchasing and selling QP matching). If it is not possible or sufficient,

hedging activity is often applied as a solution. Effectively this means using financial instruments

(derivatives) in order to help model risk exposure in the manner accepted by the company. In

fact, hedging instruments are used to manage risk and protect the financial measures described in

previous sections.

Using stochastic modelling and Monte Carlo simulations in hedging activity and derivatives

portfolio management is of fundamental importance as many financial instruments have an un-

symmetrical payout profile, which requires advanced methods of computing to fully understand

risk dynamics. Simulation is primarily used to:

• Determine the level of hedging, necessary to achieve the company’s goals.

• Enable the assessment of the effect of a hedging strategy against its execution.
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• Compare of strategies using different hedging instruments.

According to results presented in this thesis, based on different data length for model estimation

and calibration, one can formulate varied conclusions. Taking this into account, the averaging of

calibration windows, which is described in Chapter 5 and in [20], can be a valuable solution here.

8.3 Conclusions

Stochastic modelling is a key stage in the market measurement process and is used for generating

price scenarios necessary to calculate risk measures. Choosing the right stochastic model, along

with a comprehensive understanding of the assumptions on which is based, is extremely important.

Presented examples of stochastic modelling application presented in this chapter in the market

risk measurement process have been based on the experience and the example of KGHM, a com-

pany active in the mining business, which is exposed to metals prices, energy prices and exchange

rates fluctuations. However these examples can be generalised for any industrial company with a

substantial market risk profile.

Applying models that take into account the price properties described in the Chapter 2 as non-

Gaussian distribution, time-dependent coefficients, the changing of price regimes as well as the

multidimensional approach, may help to refine the forecasting of market risk prices and thus im-

prove the results of the market measurement process. The analysis, and the results presented in

this thesis, demonstrate the usefulness of the introduced models in real applications.
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[43] A. Wyłomańska, “Measures of dependence for Ornstein–Uhlenbeck process with tempered

stable distribution.,” Acta Physica Polonica B, vol. 42, no. 10, 2011.

127



[44] P. Theodossiou, “Financial data and the Skewed Generalized t-Distribution,” Management

Science, vol. 44, pp. 1650–1661, 12 1998.

[45] A. BenSaïda and S. Slim, “Highly flexible distributions to fit multiple frequency financial

returns,” Physica A: Statistical Mechanics and its Applications, vol. 442, pp. 203–213, 2016.

[46] S. Slim, Y. Koubaa, and A. Bensaida, “Value-at-Risk under Lévy GARCH models: Evi-

dence from global stock markets,” Journal of International Financial Markets, Institutions

and Money, vol. 46, pp. 30–53, 2017.

[47] C. Hansen, J. McDonald, and P. Theodossiou, “Some flexible parametric models for par-

tially adaptive estimators of econometric models,” Economics E-Journal, vol. 1, no. 7,

pp. 1–20, 2007.

[48] J. B. McDonald, R. A. Michelfelder, and P. Theodossiou, “Robust estimation with flexible

parametric distributions: estimation of utility stock betas,” Quantitative Finance, vol. 10,

no. 4, pp. 375–387, 2010.

[49] A. M. Gambaro, “A discussion on non-gaussian price processes for energy and commodity

operations,” Production and Operations Management, vol. 30, pp. 47–67, 2021.

[50] A. Raknerud and Øivind Skare, “Multivariate stochastic volatility models based on non-

Gaussian Ornstein-Uhlenbeck processes: A quasi-likelihood approach,” Statistics Norway,

vol. 614, 2010.

[51] T. S. Y. Ho and S.-B. Lee, “Term structure movements and pricing interest rate contingent

claims,” The Journal of Finance, vol. 41, no. 5, pp. 1011–1029, 1986.

[52] J. Hull and A. White, “Pricing interest-rate- derivative securities.,” Review of Financial Stud-

ies, vol. 3, no. 4, pp. 573 – 592, 1990.

[53] F. Black, E. Derman, and W. Toy, “A one-factor model of interest rates and its application

to treasury bond options,” Financial Analysts Journal, vol. 46, no. 1, pp. 33–39, 1990.

[54] F. Black and P. Karasinski, “Bond and option pricing when short rates are lognormal,” Fi-

nancial Analysts Journal, vol. 47, p. 52, Jul 1991.

[55] J. Fan, J. Jiang, C. Zhang, and Z. Zhou, “Time-dependent diffusion models for term structure

dynamics,” Statistica Sinica, vol. 13, pp. 965–992, 10 2003.

[56] Y. Y. Su, H. J. Cui, and K. C. Li, “Parameter estimation of varying coefficients structural

EV model with time series,” Acta Mathematica Sinica, English Series, vol. 33, pp. 607–619,

May 2017.

[57] H. Cui, “Estimation in partial linear ev models with replicated observations,” Science in

China Series A: Mathematics, vol. 47, p. 144, Jan 2004.

128



[58] C. Sophocleous, J. Hara, and P. Leach, “A model of stochastic volatility with time-dependent

parameters,” Journal of Computational and Applied Mathematics, vol. 235, 05 2011.

[59] P. Reichert and J. Mieleitner, “Analyzing input and structural uncertainty of nonlinear dy-

namic models with stochastic, time-dependent parameters,” Water Resources Research,

vol. 45, no. 10, 2009.

[60] J. Beckmann, A. Belke, and M. Kühl, “The dollar-euro exchange rate and macroeconomic

fundamentals: a time-varying coefficient approach,” Review of World Economics, vol. 147,

p. 11–40, 2010.

[61] H. A. Dwyer and T. Petersen, “Time-dependent global energy modeling,” Journal of Applied

Meteorology, vol. 12, p. 36–42, 1973.

[62] J. Janczura and R. Weron, “Efficient estimation of markov regime-switching models: An

application to electricity spot prices,” AStA Advances in Statistical Analysis, vol. 96, 07

2011.

[63] C. J. Kim, J. Piger, and R. Startz, “Estimation of markov regime-switching regression mod-

els with endogenous switching,” Journal of Econometrics, vol. 143, no. 2, pp. 263 – 273,

2008.

[64] K. Salhi, M. Deaconu, A. Lejay, N. Champagnat, and N. Navet, “Regime switching model

for financial data: Empirical risk analysis,” Physica A: Statistical Mechanics and its Appli-

cations, vol. 461, pp. 148 – 157, 2016.

[65] J. Hamilton, Regime-Switching Models. Palgrave McMillan Ltd., 01 2008.

[66] J. Cai, “A markov model of switching-regime arch,” Journal of Business & Economic Statis-

tics, vol. 12, no. 3, pp. 309–316, 1994.

[67] N. Haldrup and M. Ørregaard Nielsen, “A regime switching long memory model for elec-

tricity prices,” Journal of Econometrics, vol. 135, no. 1, pp. 349 – 376, 2006.

[68] A. Alizadeh, N. Nomikos, and P. Pouliasis, “A markov regime switching approach for hedg-

ing energy commodities,” Journal of Banking & Finance, vol. 32, pp. 1970–1983, 09 2008.

[69] M. Naeem, A. K. Tiwari, S. Mubashra, and M. Shahbaz, “Modeling volatility of precious

metals markets by using regime-switching GARCH models,” Resources Policy, vol. 64,

2019.

[70] M. Azizi, A. Nunian, S. M. Zahari, and S. R. Shariff, “Modelling foreign exchange rates: a

comparison between markov-switching and markov-switching garch,” Indonesian Journal

of Electrical Engineering and Computer Science, vol. 20, pp. 917–923, 2020.

[71] S. Kim and D. Y. Yang, “International monetary transmission and exchange rate regimes:

Floaters vs. non-floaters in east asia,” Asian Development Bank Institute Working Papers,

129



vol. 181, 2009.

[72] S. Johansen, “Modelling of cointegration in the vector autoregressive model,” Economic

Modelling, vol. 17, no. 3, pp. 359–373, 2000.

[73] P. R. Hansen, “Structural changes in the cointegrated vector autoregressive model,” Journal

of Econometrics, vol. 114, no. 2, pp. 261–295, 2003.

[74] E. Zivot and J. Wang, “Vector autoregressive models for multivariate time series,” in Mod-

eling Financial Time Series with S-PLUS, pp. 385–429, New York: Springer, 2006.

[75] S. Ankargren, M. Unosson, and Y. Yang, “A flexible mixed-frequency vector autoregression

with a steady-state prior,” Journal of Time Series Econometrics, vol. 12, no. 2, p. 20180034,

2020.

[76] H. Lütkepohl, “Comparison of criteria for estimating the order of a vector autoregressive

process,” Journal of Time Series Analysis, vol. 6, no. 1, pp. 35–52, 1985.

[77] P. Saikkonen and H. Lütkepohl, “Trend adjustment prior to testing for the cointegrating

rank of a vector autoregressive process,” Journal of Time Series Analysis, vol. 21, no. 4,

pp. 435–456, 2000.
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