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Abstract

In the 21st century, Mobile Mapping Systems (MMSs) have undergone sub-
stantial advancements, driven by progress in sensors, software, and robotics.
Although nowadays they are being successfully deployed in diverse scenarios,
some sectors’ conditions still pose a challenge to reliably obtain high-quality
3D data. One of the most promising industries for benefiting frommobile map-
ping is mining, where complex and GNSS-denied environments are common.
Despite gaining more momentum in recent years in the scientific community,
the surveying-related aspects of underground applications of such systems have
not yet been well researched. Thus, this thesis aims to fill the gap by devel-
oping and validating a low-cost mobile mapping system capable of robustly
performing 3D reconstructions in mining environments. The study adopts
an iterative approach, evaluating various aspects of the system’s performance
against state-of-the-art methods, including comparisons with traditional sur-
veying techniques like TLS (Terrestrial Laser Scanning). Different measures
were explored to assess the quality of point clouds in subterranean conditions
to ensure resilient and reliable operation.

Based on a scientific literature meta-analysis, several research objectives
were established, addressing the identified scientific gaps. They include carry-
ing out comprehensive quantitative evaluations of 3D reconstruction quality
in mining conditions, establishing an open dataset for further development
in mobile mapping methods, and improving open-source SLAM solutions
while tailoring measurement approaches for mining environments and 3D
reconstruction requirements.

A series of six scientific articles presents the progression from basic mea-
surement systems to advanced SLAM implementations and comprehensive
data quality analyses. Each publication provides unique insights and advance-
ments to the field, tackling issues ranging from 3D data quality assessments at
various underground sites to publishing an open dataset, and developing several
diverse mobile mapping systems. In the final study, these efforts resulted in
the creation of a universal and robust handheld mapping system capable of
producing high-quality 3D reconstructions. The performance of the system
was validated in diverse environments, including underground tunnels, where
it matched or outperformed the quality of the results provided by commercial
solutions.
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The findings contribute to the broader field of research on mobile map-
ping technologies, particularly in challenging GNSS-denied, unstructured en-
vironments like mining areas. Overall, this dissertation not only enhances
state-of-the-art SLAM algorithms and develops open-source datasets but also
demonstrates the feasibility and effectiveness of using SLAM-based low-cost
MMSs in mining surveying, providing a versatile, transparent, reliable and
affordable solution for acquiring accurate 3D spatial data for various needs of
the mining industry.



Streszczenie

WXXI wieku mobilne systemy pomiarowe (ang.Mobile Mapping Systems,
MMS), napędzane postępem w dziedzinie czujników, oprogramowania i robo-
tyki, znacząco się rozwinęły. Choć obecnie są skutecznie wykorzystywane
w różnych zastosowaniach, warunki panujące w niektórych obiektach i ob-
szarach wciąż stanowią wyzwanie dla zapewnienia niezawodności uzyskiwania
wysokiej jakości danych 3D. Jedną z najbardziej obiecujących branż, mogą-
cych skorzystać z systemów MMS, jest górnictwo, gdzie częste są obiekty
o złożonej geometrii i środowiska pozbawione sygnału GNSS. Pomimo, iż
tematyka ta zyskuje w ostatnich latach popularność w społeczności naukowej,
aspekty związane z pomiarami w podziemnych zastosowaniach tych systemów
nie zostały jeszcze dobrze zbadane. Niniejsza praca ma na celu wypełnie-
nie tej luki poprzez wykonanie i walidację niskobudżetowego systemu po-
miarów mobilnych zdolnego do niezawodnego wykonywania rekonstrukcji
3D w środowiskach górniczych. Badania przeprowadzone zostały w pode-
jściu iteracyjnych, oceniając różne aspekty działania systemu w porównaniu
z najnowocześniejszymi metodami, w tym porównania z tradycyjnymi tech-
nikami pomiarowymi, takimi jak naziemny skaning laserowy (ang. Terres-
trial Laser Scanning, TLS). Zbadane zostały różne miary oceny jakości uzyski-
wanych chmur punktówwwarunkach podziemnych, aby zapewnić niezawodną
pracę systemu.

Na podstawie metaanalizy literatury naukowej ustalono cele pracy, adresu-
jąc zidentyfikowane luki badawcze. Obejmują one przeprowadzenie wyczerpu-
jących, ilościowych analiz jakości rekonstrukcji 3D w warunkach górniczych,
stworzenie otwartego zbioru danych do dalszego rozwoju metod MMS oraz
poprawę otwartych rozwiązań Symultanicznego Lokalizowania i Mapowania
(ang. Simulataneous Localization and Mapping, SLAM), dostosowując podejścia
pomiarowe do środowisk górniczych i wymagań dotyczących rekonstrukcji 3D.

Seria sześciu artykułów naukowych przedstawia postęp badań od podsta-
wowych systemów pomiarowych do zaawansowanych implementacji SLAM
i kompleksowych analiz pozyskiwanych przez nie jakości danych 3D. Każda
publikacja dostarcza unikalnych spostrzeżeń w dziedzinie, podejmując za-
gadnienia począwszy od oceny jakości danych 3D w różnorodnych podziem-
nych polach testowych, poprzez publikację otwartego zbioru danych, aż do
opracowania kilku systemów pomiarów mobilnych. W końcowym badaniu te
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wysiłki prowadzą do stworzenia uniwersalnego i solidnego systemu mapowa-
nia ręcznego zdolnego do generowania wysokiej jakości rekonstrukcji 3D.
Wydajność systemu została zweryfikowana w różnych środowiskach, w tym
w tunelach podziemnych, gdzie dorównała lub przewyższyła jakość wyników
uzyskiwanych przez komercyjne rozwiązania.

Przedstawione wyniki przyczyniają się do rozwoju szerszej dziedziny
badań nad technologiami mobilnych systemów pomiarowych, zwłaszcza w
trudnych warunkach pozbawionych sygnału GNSS, takich jak kopalnie. Pod-
sumowując, niniejsza praca doktorska nie tylko wprowadza usprawnienia do
najnowszych algorytmów SLAM i wzbogaca otwarte zbiory danych, ale także
demonstruje wykonalność i skuteczność stosowania MMS opartych na algo-
rytmach SLAMw pomiarach w warunkach górniczych, zapewniając wszech-
stronne, przejrzyste, niezawodne i niskokosztowe rozwiązanie do uzyskiwania
danych przestrzennych 3D o wysokiej dokładności dla różnych potrzeb prze-
mysłu górniczego.



Acknowledgements

This thesis is not the solitary achievement of an individual working in isolation.
It is the culmination of years of learning, collaboration, passionate discussions,
vigorous brainstorming, field experiments, and teamwork. Therefore, I would
like to extend my sincere gratitude to all those who have directly and indirectly
contributed to my research and personal development during my PhD studies.
This encompasses researchers, professionals, students, and enthusiasts in the
fields of surveying, robotics, geoscience, and related areaswithwhom I have had
the privilege to interact. While undoubtedly I will overlook some individuals
(I am sorry!), I would like to acknowledge those to whom I owe the most:

My supervisors, Jan and Fabio, for their guidance, unwavering support in
all aspects and gentle introduction into the world of science.

The numerous coauthors of my articles, for their collaboration and for
fostering an environment where I could grow and flourish amidst multidisci-
plinary challenges.

My friends from the PhD studies: Ania(s), Darek, Marek, Michał, Monika,
Natalia, Ola(s), Karolina, Paulina, for many thought-provoking conversations
and creating a flawless, supportive atmosphere during stressful times.

My colleagues from Digital Mining Center, for the years of teamwork and
the blood, sweat and tears shared during the field tests; special acknowledgment
to Prof. Zimroz and Dr. Szrek, whose leadership and vigor propelled numerous
scientific endeavors during this period.

My colleagues from Fondazione Bruno Kessler, especially Elisavet, Fabbio
and Luca, for a warm welcome to the group and many brainstorming sessions
in the realm of surveying and photogrammetry.

My colleagues from Technische Universität Bergakademie Freiberg, espe-
cially Prof. Benndorf and Jing, for the fruitful collaboration and bringing the
mining surveying expertise into our discussions.

Lastly, I extend my heartfelt thanks to my family, especially my partner
Gabriela and my father Piotr, without whom none of this would have been
possible.

vii





NOTHING AGES AS FAST AS THE FUTURE.
IC SIĘ TERAZ NIE STARZEJE TAK SZYBKO, JAK PRZYSZŁOŚĆ.
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Nomenclature

Below is a list of common abbreviations, mostly from fields of geomatics and
robotics, used in this thesis. For more in-depth explanations and definitions,
the reader is advised to look into the works by Granshaw (2020) and Thrun
(2002).

ACRONYMS

AI Artificial Intelligence
ARE Absolute Rotation Error
ATE Absolute Translation Er-

ror
BA Bundle Adjustment
CML Concurrent Mapping

and Localization; see
SLAM

CNN Convolutional Neural
Network

CSIRO Commonwealth Scien-
tific and Industrial Re-
search Organisation

DARPA Defense Advanced Re-
search Projects Agency

DEM Digital Elevation Model
DL Deep Learning
DoF Degrees of Freedom
DSLR Digital Single-Lens Re-

flex Camera
DSM Digital Surface Model
DTM Digital Terrain Model;

see DEM
FoV Field of View
GNSS Global Navigation Satel-

lite System

GPS Global Positioning Sys-
tem

GSD Ground Sampling Dis-
tance

IMU Inertial Measurement
Unit

INS Inertial Navigation Sys-
tem

LiDAR Light Detection and
Ranging

MLS Mobile Laser Scanning
MMS Mobile Mapping System
MMT Mobile Mapping Tech-

nique; see MMS
MVS Multi-View Stereo
NDT Normal Distributions

Transform
NeRF Neural Radiance Fields
PGO Pose Graph Optimiza-

tion
ROS Robot Operating System
RRE Relative Rotation Error
RTE Relative Translation Er-

ror
RTK Real-Time Kinematics
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xii I NOMENCLATURE

SE(G) G-dimensional Special
Euclidean Group

SLAM Simultaneous Localiza-
tion and Mapping

TLS Terrestrial Laser Scan-
ning

ToF Time-of-Flight
UAV Unmanned Aerial Vehi-

cle
UWB Ultra Wideband
V-SLAM Visual Simultaneous Lo-

calization and Mapping
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Part I

SCIENTIFIC CONTEXT AND
CONTRIBUTIONS

1





CHAPTER 1

Introduction

Mobile mapping, a concept that can be traced back in the scientific geomatics
community at least to the early 1990s (Bossler et al., 1991; Bossler and Toth,
1995), has undergone remarkable evolution fueled by technological advance-
ments in sensors, mobile platforms and computing capabilities. The termmobile
mapping system has been broadly defined in the literature as (Al-Bayari, 2019):
“an integrated system of surveying sensors mounted on a vehicle” or more
generally as (Elhashash et al., 2022): “an integrated system of mapping sensors
mounted on amoving platform to provide the positioning of the platformwhile
collecting geospatial data”. However, as highlighted even earlier in the review
study of (Grejner-Brzezinska et al., 2004):

"mobile mapping that originally emerged as a purely mapping
technology, has started its transition from rather exclusive data
acquisition applications supported by high quality GPS/INS, to
multitasking information systems capable of acquiring, storing,
manipulating, and displaying spatially referenced information to
provide a variety of mobile services related to spatial analysis, data
management, decision making, etc."

In the article, the complex nature and diversity of solutions used for different
purposes of acquiring and processing geospatial data are further described.
Almost twenty years later, those words still remain pertinent, with Mobile
Mapping Systems (MMSs) being widely adopted by end users in multiple indus-
tries, from construction, through city planning, mining, to forestry. Not only is
metric 3D reconstruction becoming accessible with readily available tools and
frameworks, but more advanced topics, such as semantic segmentation, scene
understanding and autonomous operation in multiple environments are being
successfully explored by researchers (Behley et al., 2019; Kümmerle et al., 2015;
Li et al., 2020; Tranzatto et al., 2022).

Another aspect ofMobileMappingTechnologies (MMTs) that has advanced
greatly over the years is sensor fusion. The introduction of concepts known
from probabilistic robotics (Thrun, 2002) and the growing availability of rela-
tively low-cost sensors enabled the creation of methods capable of long-term,
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4 I CHAP. 1 INTRODUCTION

reliable and robust mobile mapping in GNSS-denied areas. The prospect of
automating the process of performing high-precision and dense 3D reconstruc-
tion opens new frontiers in metric 3D data acquisition, making these tech-
nologies immensely attractive in various domains. Moreover, novel sensors
and approaches, such as event cameras, UWB- or signal-of-opportunity-based
localization methods are actively being explored, promising to enhance the
reliability of MMSs in the future. Collectively, these innovations are becoming
integral to modern technologies in the currently thriving artificial intelligence
(AI) applications in multiple sectors, including mobile robotics and highly de-
tailed 3D citymodeling. They form the backbone of specialized systems tailored
to specific industrial use cases.

Given the enormous value generated, the mining sector emerges as one
of the main possible beneficiaries of MMSs. The harsh conditions present in
mining environments, the imperative to reduce workers’ on-site presence and
limit the manual labor, extensive operational scale, and the prevalent use of
spatial data in mining surveying and mining operation monitoring and plan-
ning make it particularly appealing for MMS integration due to the possibility
to greatly shorten (or automate) the 3D reconstruction process with portable
or robotic solutions. The complexity of underground spaces, coupled with
the necessity to ensure robustness and safety in industrial facilities, naturally
creates interest and demand for research efforts that focus on those aspects.
The performance of MMTs commercially available nowadays, as well as their
open-source counterparts, degrades greatly in challenging, GNSS-denied en-
vironments, such as underground mines. Carrying out reliable and accurate
3D reconstructions in such conditions is still deemed an unsolved task in the
scientific community. Moreover, the introduction of low-cost 3D sensors to
the market, such as LiDARs and RGB-D cameras, considerably boosted the
progress in the research field of mobile mapping andmade it possible to democ-
ratize the access to 3D measurements for enthusiasts and smaller companies.
This thesis strives to address these needs, presenting a practically oriented
and heavily test-driven study of performing 3D mobile mapping with SLAM
algorithms in subterranean sites.



CHAPTER 2

Mobile Mapping for Mining Applications

2.1 AN OVERVIEW OF 3D DATA ACQUISITION METHODS

3D reconstruction, sometimes called also 3Dmapping, is a broad collective
term that, in the context of surveying, could be described as an overall set of
measurement methods used to determine the shape of an object or area in the
three-dimensional metric space. For its simplest form, sometimes referred
to as a "2.5D map" or an "elevation/height map", where for every planar point
only one unique elevation value exists, mentions of the first representation
of height difference depiction can be traced back to the Turin Papyrus map
from ancient Egypt (Harrell and Brown, 1992). However, at this stage, the hills
and mountains were depicted only symbolically. The first measurement-based
maps appeared much later. Interestingly, the first known contour map did not
convey information about elevation, but depth: a navigation map of the Dutch
River from 1584 by Pieter Bruinsz represented a constant-depth line in the
form of an isobath (as given by Rann and Johnson (2019)). However, the first
mention of a contour map of the ground elevation comes from 1778, from the
survey of a mountain in Scotland (Hutton, 1778). The idea of mapping being
of great interest of mining sector is stressed by the fact that both the Hutter’s
map and the earlier Turin Papyrus map both acted simultaneously as geological
maps due to the users’ interest in the locations of mineral deposits.

Today, large-scale DEMs or DSMs can be relatively easily obtained by var-
ious means, from terrestrial methods (Ozhygin et al., 2021; Piermattei et al.,
2019; Vaaja et al., 2011), through aerial and UAV surveys (Nex and Remondino,
2014; Rock et al., 2012), to satellite-based measurements (Moreira et al., 2004).
Depending on specific use requirements, such as GSD (Ground Sampling Dis-
tance), desired accuracy, texturization or survey frequency, an appropriate
strategy of performing a survey can be selected. However, in the mining con-
text, the application of DEMs is limited mainly to open pit mining (Chen et al.,
2015; Wang et al., 2020; Xiang et al., 2018; Yu et al., 2010) or surface subsidence
monitoring of active and post-mining areas of underground deposit exploita-
tion (Figure 2.2) (Ćwiąkała et al., 2020; Dong et al., 2022; Ignjatović Stupar et al.,
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6 I CHAP. 2 MOBILE MAPPING FOR MINING APPLICATIONS

2020; Lian et al., 2021; Owczarz, 2020; Ren et al., 2019a; Zhang et al., 2017).
Thus, a much more attractive but challenging concept is performing a full volu-
metric 3D reconstruction, which enables flexible and proper representation of
both underground and overground mining scenes (Singh et al., 2022).

FIGURE 2.1. Perspective view of a photogrammetric 3D reconstruction of an open pit mine
(Chen et al., 2015)

FIGURE 2.2. Results of subsidence monitoring through UAV photogrammetric surveying
(Ćwiąkała et al., 2020)

Independently of the means of transportation of the sensor acquiring data,
required to describe the target object shape, in the context of modern 3D recon-
struction, two main groups of methods can be distinguished. The first, older, is
photogrammetry, which encompasses all methods of performing measure-
ments on image(s) and their interpretations to describe an object’s geometry
and location in space (Luhmann et al., 2023), of which the first mention can
be found in the 19th century (Meydenbauer, 1867). In this extensive group,
several subgroups of different approaches to estimate the target’s shape exist.
For large-scale 3D reconstruction, stereo vision and MVS can be considered
the main pillars. In essence, these traditional methods are based on matching
and triangulating features found in pairs or sets of multiple images for the so-
called sparse reconstruction to estimate the camera poses, followed by a dense
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reconstruction to actually obtain the dense 3D point cloud of the surveyed area.
However, photogrammetry facesmultiple challenges in the conditions of an

underground mine (Gurgel and Preusse, 2021). In unstructured environments,
especially with weak lighting, the lack of natural light sources causes the need to
use artificial illumination, which is also often not present in the scene. This can
negatively impact the data acquisition process, resulting in poorly illuminated
images (see Figure 2.3). In addition, commonly encountered elongated and
narrow structures in underground mines, such as vertical shafts and tunnels,
hinder the ability to construct a well-defined camera network, with a favorable
network geometry for accurate 3D reconstruction.

To a limited extent, because of the common challenges mentioned above,
photogrammetric solutions are also seldom applied in underground mining
environments. Examples include the monitoring of rock mass and short-term
excavation progress (Benton et al., 2016), geological documentation (Sturzeneg-
ger and Stead, 2009) and displacement monitoring (Benton et al., 2017; Slaker,
2015). An example of photogrammetry application in underground conditions
is shown in Figure 2.4.

FIGURE 2.3. Example of a poorly illuminated underground scene with artificial lighting source
(Trybała et al., 2023d)

One of the currently emerging methods of 3D reconstruction in computer
vision involves the use of neural radiance fields (NeRFs;Mildenhall et al. (2021)).
Those methods utilize different deep learning architectures to learn the 3D
volumetric representation of the scene on the basis of images taken fromknown
camera poses (often estimated with, e.g. SfM) and behavior of the light rays.
Similarly, Gaussian splats have been proposed as an alternative to represent
the scene geometry from radiance fields (Kerbl et al., 2023). Such methods are
more focused on reconstructing objects than large-scale scenes, more com-
mon in mining applications, and their accuracy and reliability has yet to be
proven in diverse scenarios. Nevertheless they should be closely followed in
the near future, as they can already be a valuable complementary approach to
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FIGURE 2.4. Photogrammetric 3D reconstruction of a small part of an underground mine tun-
nel (Benton et al., 2017)

photogrammetric processing in cases where traditional methods struggle (e.g.,
low-textured objects, reflective surfaces) (Mazzacca et al., 2023; Remondino
et al., 2023).

For the second large group of methods, based on laser scanning, two dis-
tinct sensor categories can be discerned: those measuring distances using the
time-of-flight (ToF) principle and those using phase-shift estimation technique.
Although this distinction does not influence the standard data processing work-
flow (i.e., excluding the case of full waveform analysis), they are important in
survey planning due to their different characteristics. In general, ToF scanners
tend to have longer maximum ranges (up to a few kilometers) at the trade-off of
reaching slightly lower accuracy and precision of distance measurement, and
thus the final 3D point position compared to the phase-shift-based scanners
(Suchocki, 2020). Nevertheless, the data acquisition process is carried out in
the same way through obtaining overlapping dense point clouds of the sur-
roundings from different scanner positions and coregistering them in the same
reference frame using either clearly identifiable artificial targets (plates, circles,
spheres) or in a cloud-to-cloud approach (if a sufficient overlap between point
clouds is provided). Both methods can suffer from ubiquitous dust present in
the industrial mines.

TLS has been extensively used in mine surveying for the past 15 years. De-
spite a fairly heavyworkload, it has been applied tomultiple use cases, including
dense 3D reconstruction of underground tunnels (Kajzar et al., 2015), geologi-
cal structure localization (Kasza, 2018), investigating conditions of different
elements of mining infrastructure (Gallwey et al., 2021; Trybała et al., 2020)
and displacement monitoring (Slaker, 2015).

Both laser scanning and photogrammetry suffer from different inconve-
niences of underground mining conditions. The resulting 3D point cloud of
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laser scanning is already properly scaled, even if not georeferenced with ground
control points. This needs to be addressed in photogrammetric surveys, and if
the control point network is already present at the site, it is usually not very
dense and easy to include in the survey. Some dedicated solutions have been
developed to address this problem (García-Luna et al., 2019). Although pho-
togrammetry has a potentially higher physical accuracy limit in close-range
applications than TLS (with currently available hardware solutions), difficulties
in dense reconstruction of textureless areas and usually short baselines caused
by restricted movement and constrained space in underground corridors often
contribute to the quality degradation of the final photogrammetric product.

For the laser scanning, constrained spaces cause multiple occlusions and
severely extend the length of the data acquisition process in the common multi-
station data acquisition approach. Apart from the 3D geometry, both methods
can provide additional information about the surveyed surroundings. The TLS
data contains reflectance values of the laser beam and the images convey RGB
information. They cannot be directly compared and both have been shown to
enrich the data, especially for classification purposes (Li and Cheng, 2018). The
main advantage of RGB data is the possibility of texturization with real object
colors, which is the most natural way to perceive them for humans and could
be the preferred solution for visualization purposes. However, a similar effect
can be obtained with a TLS paired with a digital camera (Figure 2.5).

FIGURE 2.5. TLS point cloud of an underground tunnel textured with an DSLR image (Trybała,
2021)

Alternatively to the well-established surveying methods described above,
mobile mapping methods emerged in the 90s of the 20th century (Grejner-
Brzezinska et al., 2004) in the geomatics community. Those efforts were pre-
ceded by similar research interests of the robotic community investigating first
simultaneous localization and mapping methods in the late 1980s (Durrant-
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Whyte andBailey, 2006). Their core idea lies in substituting tedious stop-and-go
acquisition strategy of high-volume data (e.g., a single TLS station scan) with
collecting higher-frequency measurements with a sensor in motion. Moreover,
while mobile mapping can still be performed with high-precision, survey-grade
instruments, new methods are emerging that allow using low-cost sensors
(industry-grade LiDAR scanners, simple digital cameras, MEMS IMUs) to
achieve satisfactory results of 3D reconstruction. As these concepts are in great
agreement with the aim of this thesis and the challenges of 3D surveys inmining
environments, those methods will be described in detail in Sections 2.2 and 2.3.

Moreover, although not used directly to map the environment due to the
type of data they acquire, several other sensors are very relevant to mobile
mapping methods. Those devices generally lack the means to convey dense
information about the environment, but can provide useful information for
estimating the sensor position or motion in the approach called sensor fusion,
in the end improving the mapping results (Alatise and Hancke, 2020; Xu et al.,
2022b). Those sensors include global positioning systems, such as GNSS re-
ceivers (Jende et al., 2018), radio-based local positioning systems (Chehri et al.,
2009) and sources of relative position information, such as mapping vehicle
wheel odometry and IMUs (Thrun, 2002).

Even though the topic of 3D reconstruction is also relevant in e.g. reverse
engineering, manufacturing, medical imaging, where some additional relevant
methods exist (e.g., photometric stereo, structure light and triangulation scan-
ners, X-ray imaging, or computer tomography), the scope of this thesis does
not cover them due to their irrelevance to the large-scale mining applications.
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2.2 SIMULTANEOUS LOCALIZATION AND MAPPING

The topic of Simultaneous Localization and Mapping (SLAM), also known
as Concurrent Mapping and Localization (CML), emerged in the late 1980s,
when the robotic community started adapting probabilistic methods in the
research fields of mobile robot control and perception (Durrant-Whyte and
Bailey, 2006). The problem raises the issue of localization of the robot (or
in generalized form, an agent with capabilities of sensing some geometrical
features of its surroundings) in the unknown environment while simultane-
ously building and expanding its map, without any knowledge of it available
a priori. From surveying techniques, it is known that the task of localization
requires information about the map (i.e. coordinates of known and identifiable
landmarks) and the task of mapping requires knowledge of the sensor position,
thus turning SLAM into a "chicken and egg problem" requiring an iterative
and concurrent approach to solve it (Będkowski, 2022). Developing a single
"correct" solution to SLAM is further hindered by numerous issues such as the
natural tendency of relative positioning methods (i.e., odometry, integrating
inertial measurements) to accumulate errors in time (so-called drift), variety of
challenges in different environments, a rapidly growing dimensionality of the
feature space as the map expands and the challenge of data association (Bailey
and Durrant-Whyte, 2006).

As solving SLAM inherently involves processing various noisy measure-
ment data, a probabilistic approach is usually used to define the full SLAM
problem as (2.1) (Grisetti et al., 2010):

? (G1:) ,< |I1:) , D1:) , G0) (2.1)

which can be read as estimating the full posterior probability of the environ-
ment map m and the sensor trajectory G1:) = {G1, . . . , G) } at timestamps
{1, . . . ,) } given the subsequent pose change estimates (i.e., odometry)D1:) =

{D1, . . . , D) } and a set of observations connected to the surveyed environment
I1:) = {I1, . . . , I) }.

A simple graphical representation of the problem is shown in Figure 2.6.
For continuous SLAM, theG1:) is approximated directly as a continuous smooth
function, e.g., a spline, while for a pose graph approach, it is a set of discrete
(� (2) or (� (3) poses (Droeschel and Behnke, 2018). Moreover, the problem
can be limited to the so-called online SLAM, which limits the computational
effort, but estimates only the last agent pose G) , discarding or at least not
optimizing previous poses (Grisetti et al., 2010).
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FIGURE 2.6. SLAM problem definition (Bailey and Durrant-Whyte, 2006)

Despite the theoretical foundations of the solvability of the SLAM problem
being laid in the early 2000s (Dissanayake et al., 2001) and the publication of the
3 DoF SLAM algorithms now regarded as stable and reliable in practical robotic
applications in planar environments (Grisetti et al., 2005, 2007), changing the
problem space from SE(2) manifolds (3 DoF poses) to SE(3) (6 DoF poses)
greatly increases its difficulty. However, the enticing possibility of rapidly
capturing all three geometrical dimensions of objects and large-scale scenes
openedupopportunities for SLAMto enable 3Dmetric reconstructions rivaling
photogrammetry and TLS and enter the surveyingmarket. Such a chance is also
of great interest for the robotics community, since robust 3D perception is an
essential requirement for increasing robot and drone autonomy in challenging
applications.

Nonetheless, in general, metrology-related fields are much more strict and
demanding in terms of the required quality of 3D reconstruction. In mobile
robotics, the essential characteristics of robust SLAM in most applications in-
clude: correct topology, smooth and qualitatively correct localization allowing
the mobile robot to reliably navigate and operate in its target environment
and possibility of subsequent localization on a map created with SLAM. In
contrast, in surveying sector, the core characteristics of the desired output of
SLAM are map-centric, not agent-centric. A high quality and consistency of
3D reconstruction of a scene is sought after, with the essential relevant metrics
being accuracy, precision and completeness of the metric representation of a
surveyed scene.
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Historically, two means of representing the map in SLAM algorithms can
be found in the literature, sets of landmarks (keypoints, linear, planar or other
features) and grid-based (or, in case of mapping in 3D space, volumetric) repre-
sentations (Thrun, 2002). Their examples are shown in Figure 2.7. The former
one requires additional steps of feature detection, matching and dense recon-
struction and assumes the presence and stability of the features in the data of the
surveyed area, but in such favorable conditions possibly increases robustness
and quality of positioning while limiting the total computational cost of the
algorithm. The latter naturally provides a dense 3D reconstruction as an output
(in contrast to sparse landmarks), but increases the memory consumption and
thus worsens the scaling of the computational cost of loop closure detection.

FIGURE 2.7. A landmark (left) and occupancy grid (right) representations of 3DoFSLAMmaps
(Thrun, 2002)

In recent years, a growing number of studies have proposed various ap-
proaches to solving the 6 DoF SLAM (Figure 2.8). To identify research trends,
prevailing methods and the most important articles and institutes, a meta-
analysis of the literature has been carried out on the basis of the Scinapse search
engine, which supports queries to multiple databases of academic journals
(Färber, 2019; Lo et al., 2020; Nature, 2017; White, 2020) and allows advanced
filtering and analysis options. Bibliographic information and abstracts were
automatically retrieved from the database for queries of study topic relevance
with the keyword pair of "SLAM" and ’simultaneous localization and mapping".
The results were filtered out by relevant fields, since lookup also returns studies
from genetics, where the term "SLAM"means "signalling lymphocyte activation
molecule": a specific family of genes.

The DOIs of the articles were used to import the database into the VOS
Viewer meta-analysis and visualization software (Van Eck and Waltman, 2010).
In total, 9 278 topical works were included. To avoid cluttering up the visu-
alizations and limit the influence of less relevant studies, for further analysis,
only the top 100 articles were analyzed according to their citation count. This
set the citation threshold at 250.
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In the provided visualizations, the size of nodes in the graphs indicates
their relative frequency or citation count, while the width of the connection
between nodes indicates their co-occurrences, similarity based on references,
co-citations or number of joint works. For color coding papers, topics and
author affiliations, the clustering algorithm implemented in VOS Viewer was
used (Van Eck andWaltman, 2017). Nevertheless, the clustering parameters and
chosen number of clusters heavily influenced the process, therefore caution
must be kept during their interpretation. It should also be noted that due
to setting the citation threshold limit quite hard, the latest publications are
naturally put in a disadvantage and are underrepresented. Thereafter, this
analysis is not claimed to be exhaustive and only uses the articles’ popularity
as a proxy of their influence on the field, in practice measurable only after a
certain period of time.

FIGURE 2.8. SLAM-related studies per year based on Scinapse multi-database search from
1995 up to October 2023

First, keyword extraction was performed from all reviewed articles, which
is presented in Figure 2.9. Several leading topics can be found in the graph:

• particular elements of SLAM systems: loop closure detection, feature
extraction, object tracking, visual place recognition, occupancy grid,
visual SLAM and odometry, bundle adjustment, convolutional neural
network (CNN); also different types of features, i.e., points and lines,

• general areas of research: proposing new approaches and solutions, theo-
retical investigations of observability, consistency, geometric constraints,
experimental evaluation,

• different types of mobile mapping approach: real-time, active, visual,
monocular, stereo, RGB-D, semantic, particle, SfM,

• names of popular algorithmsORB-SLAM (Mur-Artal et al., 2015), Hector
SLAM (Kohlbrecher et al., 2011) and Fast-SLAM (Montemerlo et al.,
2002),
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FIGURE 2.9. Term network in the analyzed publications’ abstracts and titles for all SLAM-
related works. Two terms, "cooperative SLAM" and "wireless sensor network",
did not match any cluster

• environments and fields of SLAM application: search and rescue, indoor
scenes, GNSS-denied environment, low-cost,

• robotic platforms and sensors targeted in the study: UAV, quadrotor,
mobile robots, underwater vehicles.

Two terms, cooperative SLAM and wireless sensor network, created their own
clusters likely because both propose significantly different approaches to the
SLAM problem.

These clusters indicate the main directions in mobile mapping research.
What can be seen is that researchers have been focused mostly on proposing
novel SLAM approaches, its particular components or applying them in differ-
ent fields and with various platforms. The theoretical foundations of SLAM
solutions have also been covered by some influential studies (Dissanayake et al.,
2001; Huang and Dissanayake, 2007). However, the part of mapping quality
and its evaluation have not received much attention. The most cited articles
on the topic of SLAM evaluations usually investigate trajectory estimation
accuracy and time-wise performance of the algorithm (Endres et al., 2012a;
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Geiger et al., 2012a; Huang and Dissanayake, 2007) or in the best case they
introduce very simple point cloud comparisons in simulated environments
(Handa et al., 2014a).

In the next part, individual influential articles were investigated. The co-
citation graph of examined publications is presented as clusters in Figure 2.10.

Bibliographic coupling of the same set of articles is presented in Figure 2.11
as clusters and in Figure 2.12 by year of publication. These graphs examine
which pairs of articles reference similar studies. This characteristic indicates
the correlation between the foundations of both paired works.

The first graph in Figure 2.10 shows which articles are often referenced
jointly in other works. Thus, it informs of the similarity of those studies. In the
clusters, we can see some groupings of works regarding:

• monocular visual SLAM, in red Davison et al. (2007); Leutenegger et al.
(2013); Mur-Artal et al. (2015); Strasdat et al. (2012),

• frameworks dealing with RGBD SLAM, in yellow (Endres et al., 2012b;
Handa et al., 2014b; Kerl et al., 2013; Whelan et al., 2015b, 2016),

• visual SLAM in dynamic environments, in violet (Bescos et al., 2018; Li
and Lee, 2017; Sun et al., 2017; Yu et al., 2018),

• SLAM backend, focusing on strategies of fusing and smoothing infor-
mation gained in time, in blue and cyan (Bosse et al., 2004; Dellaert and
Kaess, 2006; Estrada et al., 2005; Grisetti et al., 2010; Guivant and Nebot,
2001; Kaess et al., 2012; Kümmerle et al., 2011; Thrun et al., 2004),

• more heterogeneous green cluster, containing theoretical works on
SLAM consistency and solvability (Bailey et al., 2006; Dissanayake et al.,
2001; Huang and Dissanayake, 2007), but also stereo SLAM (Cummins
and Newman, 2008, 2011; Gomez-Ojeda et al., 2019; Konolige and
Agrawal, 2008) and others.

Review works span across multiple clusters due to their wide scope (Bailey and
Durrant-Whyte, 2006; Bresson et al., 2017; Cadena et al., 2016; Durrant-Whyte
and Bailey, 2006; Fuentes-Pacheco et al., 2015; Saeedi et al., 2016; Taketomi
et al., 2017). Furthermore, the only studies that strictly focus on the LiDAR
SLAM by Shan and Englot (2018) and by Hess et al. (2016) do not fit any group.

A related graph of bibliographic coupling is presented in Figure 2.11. This
time, the graph is very dense, which is understandable given the reputation
and popularity of those articles. Although it is difficult to clearly delineate the
clusters, studies on the left side of the figure predominantly present theoretical
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FIGURE 2.10.Co-citation network of the most cited SLAM works

FIGURE 2.11. Bibliographic coupling by article for all SLAM-related works
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or high-level solutions for the SLAM problem. In the center, the review stud-
ies are located. Finally, the rightmost cluster cover specific frameworks and
applications of SLAM.

The last visualization of the bibligraphic coupling of publications (Figure
2.12) targets the issue of whether the similarity of references in the studies
is caused by their setting in time, which is confirmed by the smooth color
transition of most works in the network. Notable exceptions are articles that
present a highly influential ORB-SLAM framework (Mur-Artal et al., 2015),
foundations of semantic SLAM (Bowman et al., 2017) and survey papers of
Cadena et al. (2016) and Bresson et al. (2017).

FIGURE 2.12.Bibliographic coupling by year for all SLAM-related works

Finally, the bibliographic coupling has been examined by drawing connec-
tions between the affiliated institutions of the authors of all analyzed articles
(Figure 2.13). Even though the graph brings some insight into the collaboration
between different institutes, the main output of this analysis is the identifica-
tion of the most influential research groups. The size of the node provides
information on their relative total citation count. The importance of Carnegie
Mellon University and ETH Zürich is clearly visible. Several other institutions
from China, Japan and the USA are also present. Germany, Peru and Taiwan
are all represented by single institutions.

As mentioned earlier, the abovementioned analysis has been constrained by
number of citations to try to objectively identify trends in the field. Moreover,
some important studies were not included due to the usage of different words,
which did not match the keywords of the query (e.g., Labbé and Michaud
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FIGURE 2.13.Bibliographic coupling by institutions for all SLAM-related works

(2019)). To fill this gap, a look into the available, more recent open source
SLAM frameworks was taken. An author’s subjective list of approaches used
in various applications was compiled and last updated in October 2023. The
exploration was based on the examination of articles from the most influential
research groups listed above and the search on github.com open code repository.

The relevant algorithms are divided into odometry and SLAM frameworks,
depending on whether they are capable of performing pose estimation using
only sequential data or are able to adjust the odometry drift by applying other
methods (e.g., detecting loop closures and integrating them in a pose graph or
applying frame-to-map global feature matching approach). For each group,
frameworks are listed in chronological order of publishing the article describing
their latest major version.

• LiDAR odometry:

– LiDAR Odometry and Mapping: LOAM (Zhang and Singh, 2014)
and its variations, LeGO-LOAM (Shan and Englot, 2018) and
FLOAM (Wang et al., 2020),

– LiDAR-Inertial Odometry and Mapping: LIO-Mapping (Ye et al.,
2019)

– Livox Lidar Odometry and Mapping: LiLi-OM (Li et al., 2021),
– Direct Lidar Odometry: DLO (Chen et al., 2022),
– Lidar Odometry for Consistent operation in Uncertain Settings:

LOCUS (Reinke et al., 2022),
– FAST-LIO (Xu et al., 2022a),
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• LiDAR SLAM:

– Google Cartographer (Hess et al., 2016),
– High-Density Graph LiDAR SLAM: HDL-Graph-SLAM (Koide

et al., 2019),
– Semantic Surfel-based Mapping: SuMa++ (Chen et al., 2019),
– Multi-Metric Linear Least Square (Pan et al., 2021),
– Contonous-time ICP (Dellenbach et al., 2021),
– SC-LiDAR SLAM (Kim et al., 2022)
– Large-scale AutonomousMapping and Positioning: LAMP (Chang

et al., 2022),

• Visual odometry:

– Semidirect Visual Odometry (Forster et al., 2016)
– Direct Visual Odometry (Engel et al., 2017),
– OpenVINS (Geneva et al., 2020),
– Tracking and Dense Mapping: TANDEM (Koestler et al., 2022),

• Visual SLAM (V-SLAM):

– Parallel Tracking and Mapping: PTAM (Klein and Murray, 2007),
– RGB-D SLAM (Endres et al., 2013),
– Large-scale Direct SLAM: LSD-SLAM (Engel et al., 2014),
– Open Keyframe-based Visual-Inertial SLAM: OKVIS (Leutenegger

et al., 2015),
– Kintinuous (Whelan et al., 2015a),
– ElasticFusion (Whelan et al., 2016),
– Bundle-Adjusted Direct SLAM: BAD SLAM (Schops et al., 2019),
– DROID-SLAM (Teed and Deng, 2021),
– ORB-SLAM3 (Campos et al., 2021),
– Kimera (Tian et al., 2022),
– HyperSLAM (Hug et al., 2022),
– Colmap-SLAM (Morelli et al., 2023a),

• LiDAR-visual SLAM:

– Real-Time Appearance-Based Mapping: RTAB-Map (Labbé and
Michaud, 2019),

– maplab (Cramariuc et al., 2022),
– R3LIVE (Lin and Zhang, 2022),
– Swarm-SLAM (Lajoie and Beltrame, 2023).

On the basis of the meta-analysis, a progression of the prevailing methods
used in the literature can be seen. Traditionally, in the early 2000s, 3 DoF
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SLAM solutions based on Kalman filters (EKF and UKF), information filters or
particle filters were the predominant type of approaches used by researchers
(Aulinas et al., 2008). Nowadays, the prevailing approach in most state-of-the-
art solutions, especially for LiDAR-centric SLAMalgorithms, involves the use of
factor graphs for fusing the observations and creating an optimizedmap. Their
principle is based on representing unknown variables as nodes in the graph
and functions acting on a (typically small) subset of the variables, i.e., factors, as
its edges. In SLAM, a specific type of factor graph can be created: a pose graph.
It expresses subsequent SE(2) or SE(3) poses of the agent as nodes of the graph.
Measurement-based constraints are represented by edges connecting poses
associated with them (Będkowski, 2022). Common constrain types include
relative transformations between poses (e.g., estimated using LiDAR, visual or
wheel odometry) or loop closures, preintegrated IMU readings, motion model
estimates, relative landmark poses or GNSS positions.

The use of pose graphs allows one to greatly sparsify the informationmatrix
of the system and thus limiting the computational effort required to solve the
problem, in turn enabling processing high-frequency image or LiDAR data
(Grisetti et al., 2010). A graphical example of a typical LiDAR-centric factor
graph representation of a pose graph SLAM, used to fuse LiDAR odometry
estimates with other auxiliary measurements and information associations, is
taken from the LIO-SAM article (Shan et al., 2020) and presented in Figure
2.14.

FIGURE 2.14.Multi-sensor pose graph SLAM structure using LIO-SAM architecture as an exam-
ple (Shan et al., 2020)
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2.3 APPLICATION OF SLAM IN THE MINING CONTEXT

The first use of 3D mobile mapping of underground scenes was presented by
researchers from one of the most important mobile mapping research units,
Carnegie Mellon University and University of Freiburg (Hähnel et al., 2002;
Thrun et al., 2003). Although very limited due to available hardware and soft-
ware at the time, researchers succeeded in creating a topologically correct 3D
point cloud of an underground tunnel network using multi-LiDAR sensor se-
tups on amapping cart and amobile robot. However, they did not actually solve
a 6 DoF SLAM, but rather took the assumption of completely planar sensor
movement and used ICP-based scan matching to solve a planar, 3 DoF SLAM
problem and then used the estimated trajectory to transform the point clouds
from a vertically mounted 2D LiDAR scanner into a common reference frame.
This approach, while successful, clearly is not correct from the surveying point
of view. The study lacks a reliable assessment of the accuracy of the results.
Only a comparison of a planar section of the SLAM-derived map with a hand-
drawn map is presented, but some discrepancies of tunnel shapes can still be
seen (Figure 2.15).

In the following years, Tsubouchi et al. (2004) and Fairfield et al. (2006)
further studied the topic, but then the field of research stagnated. A few years
later, several technological advancements helped to continue the advances in
the area of 3D SLAM in challenging conditions: introducing affordable and
portable 3D LiDAR sensors and RGB-D cameras, edge computing devices
capable of SLAM processing (e.g., Nvidia Jetson board) and development of
a standardized open source software middleware: Robot Operating System
(ROS; Quigley et al., 2009). Together with the introduction of cheaper andmore
accessible mobile robotic platforms and the increasing interest in autonomous
vehicles and robots, they created perfect conditions to push the research field
further.

Although nowadays great progress has beenmade, enabled especially by the
Subterranean Challenge funded by the American Defense Advanced Research
Projects Agency (DARPA), where several top-tier research groups competed in
deploying fleets of autonomous robots in underground conditions for mapping
and search & rescue applications, which took place in the years 2018-2021
(Rogers et al., 2020). Multiple solutions developed in its scope have been al-
ready released as open source contributions and position articles, published by
consortia of robotic teams who participated in the competition. Those works
stress the progress of SLAM in unstructured environments and lessons learnt,
but also the remaining challenges of SLAM applications (Ebadi et al., 2023;
Tranzatto et al., 2022). In the paper of Ebadi et al. (2023), core issues such as
maintaining robustness of robot perception, especially using low-cost sensors,
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FIGURE 2.15.Comparison of the 2D SLAM grid map constructed by a mapping cart (a) with a
hand-drawn map (b) (Thrun et al., 2003)

distributed computing and utilizing alternative sensors (e.g., radar) are given.
Similarly to Section 2.1, a meta-analysis of published work on MMTs

and SLAM solutions has been performed, this time narrowing the subject to
mapping applications in mining-related applications, containing the keywords
"underground" or "subterranean". The query returned 103 articles.

First, popular research directions explored in this particular context were
examined. A relevant graph is presented in Figure 2.16. The main topics, not
well-clustered by the VOS Viewer algorithm, which can be identified in the
graph are:

• V-SLAM and its related issues and features (vision, fisheye camera,
monocular camera, texture, lighting),

• some issues or desired characteristic of SLAM (low-drift, failure, real
time, complex environment, robustness, effectiveness),

• LiDAR and LiDAR-inertial SLAM-related topics (LeGO-LOAM, LIO,
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laser scanner),

• experiment-related terms (underground tunnel, underground mine, un-
derground environment, experimental results, implementation, test),

• graph SLAM and graph optimization are also specifically mentioned.

Some generic, not mentioned above, SLAM keywords are also present in the
graph. The trends identified in the word map differ from the previous analysis
of all SLAM solutions. This time, the studies are much more practical, with
stronger stress on implementation, robustness of the solution and challenges of
the subterranean environments. An interesting observation is the appearance
of multiple terms related to graph SLAM and LiDAR SLAM, including two
specific LiDAR-centric frameworks, while no V-SLAM approach is mentioned.
This further underlines of the difficulties of applying vision-based mapping
methods in underground conditions.

FIGURE 2.16.Term network in the analyzed publications’ abstracts and titles regarding SLAM
applications in underground conditions

The next graph in Figure 2.17 illustrates co-citations of article pairs. To
limit the number of works analyzed and declutter the visualization, studies
without any citations were discarded from this analysis. Three clusters can be
identified:
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FIGURE 2.17. Co-citation network of the most cited works about SLAM applications in under-
ground environments

• green cluster, describing different, mostly LiDAR-based approaches for
mapping underground tunnels with robotic platforms, with the central
work of Ren et al. (2019b),

• blue cluster, examining handheld MMTs and autonomous vehicle appli-
cations in underground mines, with the most important works of Zlot
and Bosse (2014) and Sammartano and Spanò (2018),

• red cluster, with studies mostly related to the DARPA Subterranean
Challenge, with the leading works of Lajoie et al. (2020) and Ebadi et al.
(2020), both being earlier versions of their subsequent developments in
Lajoie and Beltrame (2023) and Chang et al. (2022).

The bibliographic coupling graph in Figure 2.18 illustrates trends in ref-
erencing similar studies. Although for all SLAM research papers this analysis
shows a clear trend with few exceptions, limiting its scope to only underground
applications conveys a different message. Because the early studies from 2014-
2019 did not have much relevant source material on which to build on, there
is generally weak bibliographic coupling between them. Only for very recent
works, from 2020-2023, a higher homogeneity of references can be seen. This
highlights rapid progress in this specific field of application in the aforemen-
tioned period.

Similarly, different trends emerge in the bibliographic coupling graph of
research units shown in Figure 2.19 compared to the broader scope of the gen-
eral SLAM analysis. There is a higher diversity observed in terms of countries,
attributed in part to less demanding citation count requirements. Notably,
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FIGURE 2.18.Bibliographic coupling by year for SLAM applications in underground environ-
ments

FIGURE 2.19.Bibliographic coupling by institutions for SLAM applications in underground envi-
ronments

institutions from the United States, China and Germany continue to be the
most represented. However, this time, multiple units from Australia, Canada,
and Italy also appear in the results, with the Australian CSIRO unit having the
highest total citation count. Furthermore, the interest of the mining industry in
SLAM is evident through the participation of coauthors affiliated with major
companies such as Caterpillar and TransPower.



2.3 APPLICATION OF SLAM IN THE MINING CONTEXT J 27

The survey, extended with studies found independently from other sources,
provided valuable insight into various aspects of developments in SLAM for 3D
reconstruction of underground sites. Several distinct and important research
directions emerged. The first one is associated with robotics and mostly en-
compasses developments in various technical aspects of SLAM, predominantly
based on the DARPA Subterranean Challenge. Rogers et al. (2020) provided
first results of benchmarking MMS 3D point cloud quality based on the initial
circuit of the Challenge. (Kramer et al., 2021) describes V-SLAM solution de-
veloped for this purpose, and Tranzatto et al. (2022) gives an insight into the
technologies used by the Challenge-winning team, Cerberus.

Several works concentrate on improving specific system components af-
fected by the degraded geometry and perception in subterranean environments:
loop closure detection (Denniston et al., 2022), LiDAR odometry (Reinke et al.,
2022), and path planning (Dang et al., 2019). Finally, Lajoie and Beltrame
(2023) and Khedekar et al. (2022) propose distributed SLAM systems for mo-
bile mapping in underground conditions with robot swarms. Ebadi et al. (2023)
provides an overview of different solutions and lessons learned from various
teams participating in the Challenge. The research works of Wang et al. (2022)
and Bogoslavskyi et al. (2016) should be mentioned as other relevant studies
that were not developed within the scope of the Challenge. The former pro-
poses an approach for loop closure detection in degraded environments and
the latter studies the robust robot navigation in the underground conditions.

The topics of multiple examined articles revolve around various applica-
tions of SLAM in underground conditions. In addition to the already discussed
robotic solutions, there are studies showcasing practical applications. They
include advances towards increasing the autonomy of mining vehicles (Jacob-
son et al., 2018, 2021; Kumar et al., 2017; Park and Myung, 2014), performing
inspection tasks in underground conditions with mobile robots (Azpúrua et al.,
2021; Marangi et al., 2019; Menendez et al., 2019) and mine search & rescue op-
erations (Li et al., 2023b; Zimroz et al., 2021). Some initial work has been done
in the field of UAV application in underground conditions (Jones et al., 2019;
Samarakoon, 2022), but this area cannot be considered mature for practical
large-scale applications yet. Multiple works focus on digitizing subterranean
cultural heritage sites with MMSs (Di Stefano et al., 2021; Gautier et al., 2020;
Menna et al., 2022; Torresani et al., 2022).

Ultimately, a group of the most relevant studies was compiled. They cover
the topics of evaluating MMS-derived 3D point cloud quality in underground
facilities or propose specific solutions to improve those results. Zlot and Bosse
(2014), Sammartano and Spanò (2018) and Ellmann et al. (2021) investigate
the GeoSLAM commercial MMS system capability for 3D reconstruction of
subterranean spaces. They obtain best 3D point position errors in the range
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of 5-10 cm, but in favorable conditions (e.g., multiple loop closures, slow and
steady movement, relatively large and structured tunnels). For failure cases
with strong drift, reported errors reach from 20 cm to 60 cm. For open source-
based solution using a Livox LIDAR scanner, Wang et al. (2023) achieves errors
reaching from 20 cm to 80 cm in the worst cases. Li et al. (2023a), using a similar
solution, but mounted on a helmet, stresses high failure rate of popular LiDAR
and LiDAR-inertial odometry algorithms, which rely on feature extraction
and matching, in underground conditions. The authors mention FAST-LIO
as the algorithm least affected by these problems. A use case in an open pit
mine was presented by Vassena et al. (2018). Although the study did not contain
a comprehensive accuracy analysis, presented compliance with a TLS point
cloud in the range of a few centimeters appears to be satisfactory.

Some studies try to address these issues through developments of a dedi-
cated SLAMapproach. (Xue et al., 2022)modified theLeGO-LOAMframework,
adding loop closure detection support with the Scan Context algorithm Kim
et al. (2022). Although its target environment is an underground coal mine,
the tests were performed only in an underground parking lot. Despite show-
ing an improvement, taking into the account conclusions of other, previously
mentioned studies, the actual performance in the mining conditions can be
considerably lower.

An interesting approach is presented by Yang et al. (2023). Although again a
feature-dependant LiDARSLAMframework is proposed, the authors introduce
a degeneration factor, based on the imbalance of spatial distribution of linear
and planar features detected in the point clouds. They point out that this
disparity is the cause of the increased drift errors of feature-based LiDAR
SLAM in degenerated scenes. This factor is utilized to introduce additional
IMU-based orientation features into the pose graph in the occurence of such
degradation. The results of the experiments carried out in a real underground
tunnels show a considerable improvement of the trajectory errors compared
to LeGO-LOAM and LIO-SAM. A limitation of the study is the lack of analysis
of the 3D reconstruction errors, since only the ATE of the robot returning to
the starting point was examined. Moreover, the proposed framework does not
support loop closure detections.

The study of Ren et al. (2019b) contrary to the popular feature-based LiDAR
SLAM propose a featureless approach (with optional ground plane detection)
based on robustifying GICP algorithm. The approach is similar to another pop-
ular open source framework, HDL-Graph-SLAM (Koide et al., 2019). However,
this work is subject to limitations similar to those discussed in the previous
article. Although the proposed algorithm does support loop closures, only ARE
and ATE metrics of the trajectory are analyzed and the final point cloud is
evaluated only qualitatively.
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Concluding from the literature review, one could state that the overwhelm-
ing majority of MMTs deployed in underground survey scenarios use LiDAR
or LiDAR-inertial systems. Especially LiDAR odometry approaches that are
point-based and not feature-based, such as those utilizing GICP or NDT, ap-
pear to be an appropriate approach. Analogously to general SLAM algorithms,
the prevailing method for incorporating other factors into an optimization
workflow is pose graph SLAM. However, the lack of V-SLAM-oriented studies
underline the severity of the problems vision-based methods face in practical
applications of mapping underground sites, which were described in 2.1. De-
spite excluding vision systems in this study, in the future, further investigation
of fusion methods, leveraging the strengths of both approaches, is envisioned,
since visual sensors could bring valuable features to 3D reconstruction results,
such as texturization and photogrammetric methods of internal quality control.

Due to these facts and the available hardware, the scope of this thesis has
been limited to LiDAR SLAM approaches. Although this approach was deemed
to have a high potential to provide sufficient mapping quality, the literature
review highlighted several scientific gaps and prospects of introducing novel
improvements to existing frameworks, developing a quality-oriented approach.
Those possibilities were investigated in this research.





CHAPTER 3

Main Contributions

3.1 AIM AND OBJECTIVES

This thesis seeks to explore the surveying aspect of applying different mobile
mapping technologies in the mining environments. The main aim of my re-
search was to develop and exhaustively test anMMS capable of operating
robustly in adverse underground conditions, which will be able to provide
metric 3D point cloud data reaching survey level quality. Since the success
of completing such a complex task cannot be easily evaluated with a single
objective metric (or a closed set of them), the study required adapting a research
strategy of iterative systemdevelopments, which led to performingmultiple
analyses, focusing on various aspects of the quality of the 3D data produced by
the investigated systems.

Furthermore, achieving this goal required exploring various measures
of assessing point cloud quality and adapting them in the specific context
of mapping constrained underground spaces. These evaluation methods had to
be used for number of comparisons of the systems analyzed with state-of-
the-art MMSs and traditional methods (e.g., survey-grade TLS) working in
various conditions to assess both the shortcomings of the selected evaluation
approach and the current stage of development of the proposed MMS. Using
this knowledge, the solutions had to be then iteratively improved and fine-
tuned to ensure a system capable of resilient and reliable operation in
subterranean environments, together with a set of guidelines for selecting
an appropriate method for a specific type of environment and themain purpose
of acquiring the point cloud.

Thus, the research thesis of the study is that SLAM algorithms can be suc-
cessfully applied to process 3D measurement data to perform high-quality 3D re-
constructions of mining environments. In this context, the term high-quality 3D
reconstructions should be understood as point clouds characterized by quality
measures, such as accuracy, precision, completeness and data density, which
can challenge well-established survey-grade methods (although, taking into
account the inevitable disparities in the quality of raw measurements due to
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vastly different hardware capabilities) and provide output quality sufficient for
different mining-related use cases.

Based on the literature review, the identified scientific gap and initial tests of
openly available noncommercial SLAM solutions, but also on discussions with
mining surveying experts on the current capabilities and desired characteristics
of existing commercial mobile mapping systems, three objectives have been
established to achieve the aim of this research:

[O1] Perform comprehensive quantitative evaluations of the 3D reconstruc-
tion quality of state-of-the-art LiDAR-SLAMmethods in mining condi-
tions (both underground and open pit). A key element in this concept
lies in using well-established surveying methods to obtain the reference
data and carrying out an in-depth quality assessment analysis of the
investigated data.

[O2] Establish an open data set to facilitate further developments in mobile
mapping methods for mining-related applications by the scientific com-
munity. The datasetwill significantly enrich other available data through
simultaneous acquisitions of data from multiple sensors (cameras, Li-
DAR scanners, IMUs) on a common mobile robotic platform.

[O3] Improve selected open source state-of-the-art SLAM solutions based on
the results of performed evaluations and propose a strategy for choosing
and tailoring a measurement approach for a specific type of mining
environments and final 3D reconstruction requirements.

Although most of the works included in this thesis at least indirectly sup-
ported my advancements to accomplish all of the objectives listed above, for
each article a main objective towards which it contributes is given. The sum-
mary of these connections is presented in Table 3.1. However, for the last
objective, [O3], an important contribution constitutes the conclusions from the
entire series of articles, contained in Section 4.1.

TABLE 3.1. Mapping of the thesis objectives to the articles contributing to them

Objective Contributing Study

O1 P1, P2, P4, P6
O2 P5
O3 P2, P3, P6
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3.2 LIST OF PUBLICATIONS

Contributions made in this thesis are presented in six scientific articles listed
below. Since the series shows the progression from a basicmeasurement system
and simple quality evaluation methods towards advanced software and hard-
ware SLAM implementation paired with more comprehensive, complex data
quality analyses, the papers are listed in the chronological order of appearance
in press. Their short summaries, importance and my personal contributions
are detailed in Section 3.3.

[P1] Trybała, P. (2021). LiDAR-based Simultaneous Localization andMapping
in an underground mine in Złoty Stok, Poland. In IOP Conference Series.
Earth and Environmental Science, volume 942. IOP Publishing

[P2] Wajs, J., Trybała, P., Górniak-Zimroz, J., Krupa-Kurzynowska, J., and
Kasza, D. (2021). Modern Solution for Fast and Accurate Inventoriza-
tion of Open-Pit Mines by the Active Remote Sensing Technique—Case
Study of Mikoszów Granite Mine (Lower Silesia, SW Poland). Energies,
14(20):6853

[P3] Trybała, P., Szrek, J., Dębogórski, B., Ziętek, B., Blachowski, J., Wodecki,
J., and Zimroz, R. (2023c). Analysis of Lidar Actuator System Influence
on the Quality of Dense 3D Point Cloud Obtained with SLAM. Sensors,
23(2):721

[P4] Trybała, P., Kasza, D., Wajs, J., and Remondino, F. (2023a). Comparison of
Low-Cost Handheld LIDAR-based SLAM Systems for Mapping Under-
ground Tunnels. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLVIII-1/W1-2023:517–524

[P5] Trybała, P., Szrek, J., Remondino, F., Kujawa, P., Wodecki, J., Blachowski,
J., and Zimroz, R. (2023d). MIN3D Dataset: MultI-seNsor 3DMapping
with an Unmanned Ground Vehicle. PFG – Journal of Photogrammetry,
Remote Sensing and Geoinformation Science

[P6] Trybała, P., Kujawa, P., Romańczukiewicz, K., Szrek, A., and Remondino,
F. (2023b). Designing and Evaluating a Portable LiDAR-based SLAM
System. The International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XLVIII-1/W3-2023:191–198
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3.3 SUMMARY OF THE RESULTS

One of the common aspects of all my research works presented as part of this
thesis is transparency in terms of free access to all the underlying components
of the implementation of each of the SLAMmethods tested. This is in contrast
to currently prevailing commercial mobile mapping solutions on the market,
which allow their user only a limited access to the data, technical details and
mathematicalmethods involved in processing themeasurements in their SLAM-
based software. Those in my opinion conflict with one of the core principles of
surveying: providing the end user of the 3Ddata a trustworthy quality assurance
through transparency, traceability and verifiability of the mathematical process
involved in constructing the final point cloud from the raw measurements
(e.g. scan registration, pose graph optimization, measurement error model).
Because of that, all works carried out by me in the scope of this thesis are based
on open source implementations, where each aspect of the data processing
pipeline could be analyzed and, in case of necessity, adjusted to the specific
needs of the available hardware configuration or survey site characteristics.

An important concept, recurring in the majority of the listed studies, is the
point cloud quality assessment. In surveying and photogrammetry, three dis-
tinct key terms are usually used in this context. Accuracy of the measurements
is defined as their compliance with the true values. Since real true geometry
is usually impossible to obtain, it is estimated with data acquired with instru-
ments of established much higher quality. Precision, on the other hand, is
a measure of the internal coherence of the data. This quality informs about
the repeatability and reliability of the measurements and has an impact on
the usable spatial resolution of the 3D reconstruction. Finally, completeness
indicates the extent to which the geometry of the object is captured. Usually,
the metric is estimated at a given spatial resolution due to the discrete nature
of the measurements (Knapitsch et al. (2017); Nocerino et al. (2020)).

Most of the software used anddeveloped in the listed articleswas performed
in a ROS environment (Quigley et al., 2009), which allowed seamless data ac-
quisition with multiple different sensors and the custom-made wheeled mobile
robot Jaroszek used inmany studies, as well as running the actual SLAMprocess-
ing in an efficient manner. Several analytical tools were additionally written
in Python. For vizualizations, data preprocessing and partly also quality eval-
uation, the Cloud Compare open software was utilized (Girardeau-Montaut,
2016) together with itsM3C2 plugin (DiFrancesco et al., 2020).
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The specific contributions of each described article are given in subsections
3.3.1 - 3.3.6. However, in short, the scientific novelty of the entire series can be
summarized as follows:

• performing 3D data acquisitions in multiple open-pit and underground
mining sites, using in-house build SLAM systems,

• processing the abovementioned data with implementations of state-of-
the-art approaches, gradually extended with novel improvements, based
on the experience from the previous field tests,

• carrying out exhaustive 3D data quality analyses, providing insights into
the performance of the selected SLAM frameworks in mining condi-
tions and pinpointing specific issues for streamlining the algorithms’
enhancement process,

• sharing a unique dataset, acquired in the underground conditions, aimed
at facilitating SLAM developments for mining applications by the scien-
tific community,

• developing an advanced version of a MMS, comprising hardware and
software, for high-quality 3D reconstructions of mining sites.
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3.3.1 P1: Robotic Mapping of an Underground Mine

Trybała, P. (2021). LiDAR-based Simultaneous Localization and Mapping in an
underground mine in Złoty Stok, Poland. In IOP Conference Series. Earth and
Environmental Science, volume 942. IOP Publishing

The first publication in the series documents the first analysis of the results
of performing a 3D reconstruction of a former underground mine tunnel with
a multiline LiDAR scanner mounted on a remotely controlled mobile robot.
The paper explores the first impressions of using a SLAM algorithm to map
an area with challenges typical for underground conditions: a tunnel of an
elongated shape, with uneven ground and varied geometry of the walls and
roof.

Due to the total lack of availability of open SLAM datasets collected in
underground conditions by industrial grade LiDAR sensors (see the review of
the literature in the study summarized in Section 3.3.5: Trybała et al. (2023d),
a data collection using available simple hardware (a Velodyne VLP-16 LiDAR
on a wheeled mobile robot) had to be performed by myself. These tests were
carried out in September 2020 in a former gold and arsenic mine in Złoty Stok,
Poland. A TLS survey has been performed at the test site to obtain a ground
truth (GT) point cloud. The raw data collected was used to test multiple SLAM
algorithms, most of which failed the task of performing a topologically correct
3D reconstruction of the approximately 120 m tunnel. Thus, in this very first
step of qualitative analysis, they were discarded.

Finally, the algorithm that performed the best, HDL-Graph-SLAM (Koide
et al., 2019), was selected for further parameter tuning and used to perform
the final 3D tunnel reconstruction. This relatively simple approach employs
an ICP-based scan matching, proximity-based loop closure detectors and g2o-
based PGO (Kümmerle et al., 2011). The approach is depicted in Figure 3.1,
although for the tunnel use case the constraints of GNSS poses and planar
ground were disabled on purpose. The 3D data quality has been investigated
qualitatively, inspecting the completeness, data density and precision through
an interactive visualization, and quantitatively, with the use of theTLS reference
data. Both point clouds were coregistered in a common reference frame and
the unsigned cloud-to-cloud distances were calculated. The distribution of
their values, representing estimates of measurement accuracy, and their spatial
distributionwere analyzed, which allowed to draw consensus on further system
developments, but also proved the suitability of the general surveying approach
to obtain 3D point cloud with a SLAMmethod in an underground tunnel.
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FIGURE 3.1. HDL-Graph-SLAM pose graph approach overview (Koide et al., 2019)

The positive result of the first algorithm evaluation was the basis for using a
similar but extended approach in the nextwork, described in Section 3.3.2: Wajs
et al. (2021). The issues that arose during the data analysis in this study, namely
uneven point cloud coverage (low completeness of the ceiling reconstruction),
were addressed directly in later works (Section 3.3.3: Trybała et al. (2023c).

Worth mentioning is the fact that, concurrently, other researchers also
tackled the issue of performing quality evaluation of the HDL-Graph-SLAM
framework point clouds, however, in simplier conditions and with a less elabo-
rated accuracy evaluation method. The work of Milijas et al. (2021) reported a
failure of 3D reconstruction, while the study of Akpınar (2021) the evaluation
was based only on the comparison of a few distances measured in the recon-
structed point cloud and at the real site. Furthermore, a later work of Koval et al.
(2022) used this algorithm in underground conditions, with a similar setup as
in my study. Although no map accuracy analysis was performed, they similarly
reported achieving good accuracy of robot trajectory estimation.

Since the article is a single-author publication, all of its contributions,
from system configuration, data acquisition, processing and analysis, as well
as manuscript preparation, were done by the author of this thesis. Work con-
tributes mainly to the achievement of the objective [O1].
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3.3.2 P2: Handheld Mapping in an Open-Pit Mine

Wajs, J., Trybała, P., Górniak-Zimroz, J., Krupa-Kurzynowska, J., and Kasza, D.
(2021). Modern Solution for Fast and Accurate Inventorization of Open-Pit
Mines by the Active Remote Sensing Technique—Case Study of Mikoszów
Granite Mine (Lower Silesia, SW Poland). Energies, 14(20):6853

The second study investigates the application of a similar simple SLAM
system as in Section 3.3.1, but in a handheld mode. Nevertheless, the same
LiDAR sensor, held approximately in a horizontal position, was used to perform
the data acquisition. A similar approach was presented in the work of (Vassena
et al., 2018). However, a more expensive LiDAR sensor was used there to
perform mobile mapping of an open-pit mine and even though survey-grade
reference data was available, no exhaustive data quality metrics are given.

Processing was done again with HDL-Graph-SLAM. However, this time,
the workflow has been enhanced with postprocessing of the SLAM initial
trajectory estimation, because the acquisition in more open area than a single
tunnel provided the opportunity to better exploit loop closures to minimize
the drift errors and obtain a higher quality point cloud.

A framework proposed by (Koide et al., 2020) was adopted to further op-
timize the initial estimate of a SLAM solution, calculated with HDL-Graph-
SLAM. First, several ground planes were fitted in the raw point clouds. Simi-
larly, a few nodes with clearly identifiable overlap, but without the loop being
automatically detected in the first run of real-time SLAM processing, were
connected by an edge, with the relative transformation estimated with stan-
dard ICP-based scan matching. Then, an additional step of more extensive,
but slower, automatic loop detection and scan matching was carried out to
densify node connections and strengthen the relationships between nearby
pose estimates. Lastly, an iterative process of manual loop verification and
automatic graph edge refinement enabled obtaining the final optimized pose
graph and retrieving the globally coherent point cloud. The final workflow is
presented in Figure 3.2.

The results of handheld mobile mapping were georeferenced to a 3D point
cloud obtained with a survey-grade GNSS RTK-supported LiDAR mobile
mapping system by Riegl, mounted on a car. The signed distances between
the SLAM point cloud and the reference mesh model were calculated and the
distribution of their values and spatial concentrations were further analyzed
to assess the applicability of the method for mapping open-pit mine areas.
Since the coauthors of the article, who have extensive experience in the mining
mapping field, deemed the results acceptable from a practical point of view of
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the requirements of mapping an open-pit mine, the developed SLAMworkflow
has been accepted as valid for open-pit mining areas and the focus of further
research has been put on challenges of applying SLAM in confined underground
spaces.

In this article, my main contributions revolved around performing data
acquisitions with the handheld SLAM system, developing and applying the im-
proved data processing workflow, and writing relevant parts of the manuscript.
The comparative data analysis, discussion and conclusions were carried out
jointly with other coauthors of the paper. The article contributes to the realiza-
tion of objectives [O1] and [O3].

FIGURE 3.2. Data processing workflow for mobile mapping segment of the study (Wajs et al.,
2021)
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3.3.3 P3: Analyzing Different Aspects of 3D Data Quality from a Robotic Map-
ping System

Trybała, P., Szrek, J., Dębogórski, B., Ziętek, B., Blachowski, J., Wodecki, J., and
Zimroz, R. (2023c). Analysis of Lidar Actuator System Influence on the Quality
of Dense 3D Point Cloud Obtained with SLAM. Sensors, 23(2):721

In this article, published in Sensors, a different aspect of the quality of point
cloud data, produced by SLAM, is examined. As discussed earlier, although
commonly in the robotics community SLAM algorithms are benchmarked
using trajectory-derived metrics, such as ATE, ARE, RTE, RRE (Geiger et al.,
2012b; Grupp, 2017; Sturm et al., 2012) or more sophisticated approaches
Kümmerle et al. (2009). On the other hand, surveying applications of 3D
reconstruction are focused on mapping, i.e., point cloud quality. However, in
some benchmarks, comparative analyses using survey-grade reference point
clouds or meshes, are still limited. They tend to focus on a single metric,
accuracy, estimating it with the computation of cloud-to-cloud or cloud-to-
model distances (Helmberger et al., 2022; Knapitsch et al., 2017; Schops et al.,
2017). Precision or completeness are rarely investigated. Even in such a case,
these metrics do not always give a complete picture of the performance of the
3D reconstruction method performance in confined spaces.

The experiments performed in the first work of the series (Section 3.3.1:
(Trybała, 2021)) underlined the issues arising from employing the common
strategy of mounting the multi-line LiDAR horizontally on the vehicle. While
the accuracy of the SLAM-derived point cloud was rather satisfactory, its
completeness was low due to multiple occlusions, small field-of-view (FoV)
and proximity of the walls in a narrow tunnel. To improve the system in this
aspect, an actuated system for continuously rotating the LiDAR scanner was
developed to overcome those flaws Figure 3.3 and several indoor experiments
were carried out in a tight corridor to quantitatively evaluate the improvements
in mapping quality, using several novel metrics for the evaluation of SLAM
systems, such as spatial data density, surface variation, voxel count and 3D
points spatial distribution.

The initial tests of the previously utilized framework, HDL-Graph-SLAM,
lead to the conclusion that the algorithms do not perform well with the data
from continuously rotating sensor. Because of that, the SLAM software back-
bone was switched to the SC-A-LOAM framework (Kim et al., 2022), which
upon qualitative evaluation was able to correctly reconstruct the corridor and
all objects located in it. Additional steps of preprocessing (point cloud undis-
tortion based on constant velocity motion model (Będkowski, 2022)) and post-
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FIGURE 3.3. A scheme of the developed actuated multi-line LiDAR system (Trybała et al.,
2023c)

processing (point cloud noise removal (Kim and Kim, 2020) were added to
the open-source software. At this point, the SLAM backend was moved from
g2o to GTSAM due to, subjectively, its better adaptability and readability to
pose graph structure manipulation (Dellaert, 2012). An overview of the applied
SLAM pose graph solution is depicted in Figure 3.4.

FIGURE 3.4. A scheme of a pose graph SLAM Used in (Trybała et al., 2023c)

The metrics derived from experiments of reconstructing the corridor with
a horizontally mounted LiDAR sensor on amobile robot, a scanner rotating in a
limited range and in a full range (180° of rotation) clearly proved the advantages
of the proposed solution over the most widespread placement of the LiDAR
scanner. Very high completeness and more optimal 3D point distribution were
achieved due to the scanning coverage of approximately hemispherical view
(combining measurements from a few frames).

The hardware and software solutions developed in the scope of this work
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were then used in the next studies described in Sections 3.3.4 and 3.3.5. Since in
thiswork testswere performed only in an indoor site, resembling the conditions
of an underground facility, the objective which was targeted was [O3].

My contributions in this multi-author research paper are: conceptualiza-
tion, developing the study methodology, involvement in hardware develop-
ments, low- and high-level programming of the SLAM system, performing the
data acquisition, processing and analyses.
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3.3.4 P4: Handheld Mobile Mapping in the Underground Tunnels: A Compre-
hensive 3D Reconstruction Quality Analysis

Trybała, P., Kasza, D., Wajs, J., and Remondino, F. (2023a). Comparison of
Low-Cost Handheld LIDAR-based SLAM Systems for Mapping Underground
Tunnels. The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLVIII-1/W1-2023:517–524

The work described in this Section introduces a rigorous test of developed
two mobile mapping solutions, utilizing different hardware and software solu-
tions, in a challenging underground tunnel of varied and complex geometry.
Sequences inside of a loop area of a partly collapsed adit were collected with
the evaluated systems and a commercial SLAM systemGeoSLAMZeb Horizon.
The results were compared to a survey-grade TLS ground truth point cloud.

For SLAMprocessing, two different solutions investigated were a handheld
version of an actuated multi-line LiDAR scanner from the previous work (Try-
bała et al., 2023c) and a new LiDAR-inertial system, using a Risley prism-based
Livox scanner (with a non-repetitive pattern, but limited FoV). For the former,
the processing pipeline remained unchanged, while the latter utilized another
approach inside the same framework, developed for this type of LiDARs: FAST-
LIO-SLAM (Kim et al., 2022; Xu et al., 2022a). All 3D reconstructions of the
surveyed area are shown in Figure 3.5.

FIGURE 3.5. Perspective views of all point clouds of the surveyed adit area used in the study
(Trybała et al., 2023c)
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In this publication, the point clouddata qualitywas assessedwith an analysis
focusing on several different criteria, building on the metrics proposed in
widely used 3D reconstruction benchmarks (Knapitsch et al., 2017; Schops
et al., 2017). Accuracy, precision and completeness metrics were calculated for
all 3 SLAMmethods and analyzed in detail and in summary plots. Moreover,
due to the unique characteristic of SLAM-based 3D reconstructions, global drift,
a standard method of completeness calculation may lead to incorrect results
(see example in Figure 3.6). For the photogrammetric methods evaluated in
(Knapitsch et al., 2017) this is corrected using trajectory alignment with the
ground truth. Utilizing a TLS-based reference data, this is not possible. Thus,
a novel method to perform an approximate SLAM-derived point cloud non-
rigid correction was developed to enable correct completeness estimation.
Finally, a novel voxel-based visualization and summarization method for the
computed metrics is presented.

FIGURE 3.6. The SLAM point cloud distorted by a global drift (yellow, left) and the same point
cloud corrected by proposed methods for estimating its completeness (blue,
right) overlapped with the TLS ground truth (red) (Trybała et al., 2023a)

The results of the evaluation of the SLAM systems in difficult conditions
stressed their diverse strengths. Notably, both system based on open-source
software were competitive with the muchmore expensive commercial solution,
indicating a high potential for more widespread practical applications. Another
remarkable conclusion of the research is the great performance of the non-
repetitive scanner, which was previously not available on the market. Those
results and addressing identified issues pushed the authors to improve the
handheld system, which was reported in the last work (Section 3.3.6: Trybała
et al. (2023b).

This study made significant contributions to the objective [O1]. My work
in its scope involved conceptualization, formulating the methodology, prepar-
ing hardware and software for both open-source-based SLAM systems and
performing all the analyzes described above.
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3.3.5 P5: Multi-sensor Robotic Mapping in Challenging Conditions: A Public
Dataset

Trybała, P., Szrek, J., Remondino, F., Kujawa, P., Wodecki, J., Blachowski, J.,
and Zimroz, R. (2023d). MIN3D Dataset: MultI-seNsor 3DMapping with an
Unmanned Ground Vehicle. PFG – Journal of Photogrammetry, Remote Sensing
and Geoinformation Science

The penultimate article published in this series directly aimed to address the
lack of publicly available datasets and benchmarks containing appropriate data
for evaluating different SLAM algorithms performance in the underground
conditions. Therefore, it fulfills the goal of the objective [O2]. Moreover,
building on previous developments of a multi-sensor mobile robot (Trybała
et al., 2022), this research utilizes the mobile robotic platform to collect a rich
multi-modal data set.

The manuscript contains a detailed review of the literature in the area of
public datasets relevant to the problem of mobile mapping in subterranean
environments. Thus, such a review was not included in Section 2.3. The advan-
tages and disadvantages of other works are given and lead to the conclusion that
the proposed MIN3D dataset will have unique characteristics and should be
of interest to the scientific community working on mobile mapping solutions,
especially those dedicated to the mining sector. The study also comprises the
thorough report on the data collection process, structure of the shared dataset
and preliminary results of both data processing with SLAM algorithms and an
example of an auxiliary data analysis Figure 3.7. Possible ways to utilize the
datasets are given as a starting point for the scientific community.

FIGURE 3.7. Example visualizations from the accuracy analysis of the SLAM results on the
MIN3D dataset using a University sequence (left) and an Underground sequence
(right) (Trybała et al., 2023a)
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In total, 8 sequences were collected with simultaneous recordings of the
data coming from 7 cameras, 2 LiDAR scanners and 3 IMUs Figure 3.8. Such
variety in devices and types of available data was selected to encourage develop-
ments in the areas of sensor fusionmethods and facilitate comparisons between
results obtained with approaches processing data from different sensors. The
dataset is split into two parts by the location of data collection. It encompasses 3
sequences recorded at the university and 5 obtained at a real underground site.
Such split allowed us to test the system in more controlled environment, where
several challenging factors common in mining applications (e.g., textureless
surfaces, indoor-outdoor transitions) could be easily simulated. Additionally, it
could be used for evaluating the quality degradation of the results between the
"test" and the "real" environment, which is especially critical for learning-based
methods.

FIGURE 3.8. The mobile robot with its sensor setup used for data collection in this research
(Trybała et al., 2023d)

In this work, my contributions spanned from conceptualization, devel-
oping the methodology, data collection software preparation, data curation
and publication, data processing for 3D reconstruction and evaluation of its
results, as well as carrying out the literature review, participating in hardware
development and writing the manuscript.
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3.3.6 P6: Developing a Universal and Robust Handheld Mobile Mapping Sys-
tem

Trybała, P., Kujawa, P., Romańczukiewicz, K., Szrek, A., and Remondino, F.
(2023b). Designing and Evaluating a Portable LiDAR-based SLAM System.
The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLVIII-1/W3-2023:191–198

The last research article in this series takes all the experience from the
previous works to create an ultimate version of the MMT solution for mining
environments. This does not diminish the value and usefulness of previously
developed and tested systems, as each of them has various levels of complexity
and diverse strengths that can be leveraged in different scenarios. This aspect
is elaborated further in Section 4.1.

Several improvements have been made to an open-sourced LiDAR SLAM
framework, based on the FAST-LIO LiDAR odometry: one of the best per-
forming SLAM algorithms in numerous benchmarks and studies (Cramariuc
et al., 2022; Koval et al., 2022). Their details are given in the article and include
enhancing loop matching accuracy and reliability, robustifying the pose graph
optimization and improving the flexibility of the framework. The software
side of the proposed PoLiMap system Figure 3.9 leverages its assumptionless
approach (i.e., not relying on strong assumptions about the sensor motion and
feature presence in the scene) to obtain the most accurate 3D reconstruction of
the underground tunnels. where the highly unstructured geometry can hinder
the performance of other SLAM approaches, relying on those assumptions.
Therefore, the system is characterized by a great versatility and is capable of
achieving state-of-the-art performance not only in mining areas, but also other
contexts, as proven through successful tests in urban and forest landscapes.

The crucial aspect of the thesis, 3D surveying of subterranean structures,
constituted the main part of the research. A cultural heritage site from the First
WorldWar, located near Trento, in Northern Italy, served as the primary testing
site. Themain part of the object is a narrow tunnel, leading through an irregular,
carved in stone staircase to a vertical shaft at its dead end. The conditions on
the site are similar to those common in touristic mining sites and natural caves.
The site has been subject to research on 3D reconstruction methods in the past
(Perfetti et al., 2022a; Torresani et al., 2022) and due to that 3Dpoint clouds from
several other mapping systems were available. Comparisons with well-known
commercial solutions of GeoSLAMZeb Horizon and Leica BLK2GO, as well as
the dedicatedmulti-camera portable photogrammetric systemANT3D (Perfetti
et al., 2022b) were made to assess the quality of the 3D reconstruction results
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FIGURE 3.9. The proposed mobile mapping system PoLiMap (Trybała et al., 2023b)

with the proposed mapping system Figure 3.10. The quality of the results is
on par with the reference data of other modern cutting-edge mobile mapping
systems.

FIGURE 3.10.The accuracy evaluation of the PoLiMap system at the 100 Scallini: a narrow un-
derground tunnel near Trento, Italy (Trybała et al., 2023b)

This work is the final and most advanced contribution to the objective [O3]
and also strives to fulfill the objective [O1]. My personal involvement to this
study includes conceptualization, preparation of the research methodology,
programming the PoLiMap system, conducting the measurements at the un-
derground site, processing the data and carrying out the 3D reconstruction
quality evaluation.
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3.4 OTHER CONTRIBUTIONS

Duringmy studies, I explored several other aspects of novel techniques of spatial
data processing and robotics in the mining sector. Those topics range from
employing machine learning algorithms for various purposes, such as satellite
image processing and TLS-based mining machinery condition monitoring,
through metrological evaluation of radio-based robot localization techniques,
assessing the quality of NeRF-based 3D reconstruction and neural network-
based monocular depth estimation, to exploring a search & rescue application
of a mini UAV in the underground mine. Although not directly related to this
thesis, they underscore the increasing importance and rapid development of
robotic and geodata-related applications in multiple, mostly but not exclusively,
mining-related fields. The full list of published articles, to which I contributed
during my PhD studies, but which are not in the main scope of my thesis, is
presented below in chronological order of their publication:
[1] Kopeć, A., Trybała, P., Głąbicki, D., Buczyńska, A., Owczarz, K., Bugajska,

N., Kozińska, P., Chojwa, M., and Gattner, A. (2020). Application of Re-
mote Sensing, GIS and Machine Learning with Geographically Weighted
Regression in Assessing the Impact of Hard Coal Mining on the Natural
Environment. Sustainability, 12(22):9338

[2] Trybała, P., Blachowski, J., Błażej, R., and Zimroz, R. (2020). Damage
Detection Based on 3D Point Cloud Data Processing from Laser Scanning
of Conveyor Belt Surface. Remote Sensing, 13(1):55

[3] Szrek, J., Trybała, P., Góralczyk, M., Michalak, A., Ziętek, B., and Zimroz,
R. (2020). Accuracy Evaluation of Selected Mobile Inspection Robot Lo-
calization Techniques in a GNSS-Denied Environment. Sensors, 21(1):141

[4] Trybała, P. and Gattner, A. (2021). Development of a Building Topological
Model for Indoor Navigation. IOP Conference Series: Earth and Environ-
mental Science, 684(1):012031

[5] Zimroz, P., Trybała, P., Wróblewski, A., Góralczyk, M., Szrek, J., Wójcik, A.,
and Zimroz, R. (2021). Application of UAV in Search and Rescue Actions
in Underground Mine—A Specific Sound Detection in Noisy Acoustic
Signal. Energies, 14(13):3725

[6] Trybała, P., Kaczan, W., and Górecki, A. (2021). Mining Waste Volume
Estimation Using Airborne Lidar Data and Historical Maps: A Case Study
of Tailing Piles in Szklary, Lower Silesia. Environmental Sciences Proceedings,
9(1):32

[7] Wróblewski, A., Wodecki, J., Trybała, P., and Zimroz, R. (2022). A Method
for Large Underground Structures Geometry Evaluation Based on Multi-
variate Parameterization and Multidimensional Analysis of Point Cloud
Data. Energies, 15(17):6302
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[8] Trybała, P., John, A., Köhler, C., Benndorf, J., and Blachowski, J. (2022).
Towards a mine3D dense mapping mobile robot: a system design and
preliminary accuracy evaluation. Markscheidewesen, 129(1):18–24

[9] Trybała, P., Szrek, J., Remondino, F.,Wodecki, J., andZimroz, R. (2022). Cal-
ibration of a Multi-sensor Wheeled Robot for the 3DMapping of Under-
ground Mining Tunnels. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLVIII-2/W2-2022:135–
142

[10] Wróblewski, A., Wodecki, J., Trybała, P., and Zimroz, R. (2023b). Large
underground structures geometry evaluation based on point cloud data
analysis. In IOP Conference Series: Earth and Environmental Science, volume
1189, page 012005. IOP Publishing

[11] Wróblewski, A., Trybała, P., Banasiewicz, A., Zawiślak, M., Walerysiak, N.,
and Wodecki, J. (2023a). Possibilities of 3D laser scanning data utilization
for numerical analysis of airflow in mining excavations. In IOP Conference
Series: Earth and Environmental Science, volume 1189, page 012009. IOP
Publishing

[12] Blachowski, J., Hajnrych, M., Trybała, P., and Tankielun, M. (2023). Multi-
criteria methodology for evaluating university campus facilities using the
AHP approach. Zeszyty Naukowe Politechniki Poznańskiej seria Organizacja
i Zarządzanie, 86:57–72

[13] Mazzacca, G., Karami, A., Rigon, S., Farella, E. M., Trybala, P., and Re-
mondino, F. (2023). NeRF for Heritage 3D Reconstruction. The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLVIII-M-2-2023:1051–1058

[14] Padkan, N., Trybala, P., Battisti, R., Remondino, F., and Bergeret, C. (2023).
Evaluating Monocular Depth Estimation Methods. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, XLVIII-1/W3-2023:137–144

[15] Yan, Z., Mazzacca, G., Rigon, S., Farella, E. M., Trybala, P., and Remondino,
F. (2023). NERFBK: A Holistic Dataset for Benchmarking NeRF-based 3D
Reconstruction. The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLVIII-1/W3-2023:219–226

[16] Szrek, A., Romańczukiewicz, K., Kujawa, P., and Trybała, P. (2024). Com-
parison of TLS and SLAM technologies for 3D reconstruction of objects
with different geometries. In IOP Conference Series: Earth and Environmen-
tal Science, volume 1295, page 012012. IOP Publishing



CHAPTER 4

Closing remarks

4.1 CONCLUSIONS

In this thesis, the problem of performing surveys with MMSs in mining envi-
ronments to obtain their 3D reconstructions was studied. A comprehensive
literature study of MMS applications in relevant conditions, carried out in
a top-down approach, was presented. Several in-house developed systems,
utilizing open source-based SLAM algorithms and different hardware, were
tested in multiple real underground sites of various complexity. Both handheld
scanners and mobile robots were investigated as a means of acquiring raw
data. Field tests and data processing to produce final 3D point clouds as the
output of the SLAM-based system were succeeded by extensive analyses of
the 3D reconstruction quality. Different aspects and metrics associated with it
were examined and compared to baselines of survey-grade TLS surveys and
high-quality commercial MMT solutions.

The results of multiple studies show that currently available SLAM frame-
works indeed face some challenges in the unstructured underground envi-
ronment, but upon extending them with several improvements proposed by
presented works, can meet or even surpass the 3D data quality provided by
the solutions available on the commercial market. Moreover, the point clouds
generated by proposed SLAM systems show high compliance with survey-
grade measurements. Although the precision and density of the raw data from
industrial grade LiDAR sensors used cannotmatchTLS instruments, the SLAM-
based surveys could still be successfully adopted bymultiple use cases inmining
industry, which do not require millimeter-level precision, but rather need for
centimeter-level data.

Although the last solution, developed within the scope of work described
in Section 3.3.6: (Trybała et al., 2023b) could generally be considered the best
and most advanced, others have specific advantages and can be preferred in
selected use cases. A simplified workflow that could be used for selecting the
most appropriate approach of applying SLAM for 3D reconstruction in mining
environments for different use cases is presented in Figure 4.1 and the details
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of each solution are given below:

• The simplest system composed of only a rotating mechanical LiDAR
scanner provided satisfactory results for large-scale open-pit mining 3D
reconstruction. The high FoV and long range of the sensor in occlusion-
less conditions enabled the acquisition of a highly complete point cloud
with sufficient accuracy for open-pit mining needs. Simplicity of the
system could be beneficial for practical real-life applications,

• Actuated LiDAR system, while more expensive and complex, greatly
increases the data coverage and enables achieving much better complete-
ness of 3D reconstruction in constrained spaces compared to a standard
horizontal sensor placement. This solution could also be of high inter-
est for robotized solutions, since obtaining high completeness of the
3D reconstruction can be challenging for LiDAR scanners with limited
FoV without applying more sophisticated, dedicated survey planning
methods,

• First version of the Livox-based MMS already provided a substantial
improvement in terms of accuracy, while still retaining low complexity
and real-time performance even in large-scale tunnels. A low cost of
building the system is its additional advantage. However, those come

FIGURE 4.1. Flowchart of optimal LiDAR SLAM system selection strategy for mining environ-
ments



4.2 FUTURE RESEARCH DIRECTIONS J 53

at a price of point cloud completeness highly dependant on the manual
data acquisition strategy and do not perform loop closures very well,

• The final PoLiMap system provided the best accuracy and reliability,
better coverage and stability due to employing a gimbal stabilization, but
at a cost of quite high complexity of the system. Even though the process
of data acquisition and processing with generic parameters is still simple,
perfecting the tuning of 3D reconstruction parameters to achieve the
best possible accuracy requires some domain-specific knowledge.

Three objectives were set at the start of this work, described in-depth in
Section 3.1. All of them (introducing novel developments into state-of-the-
art SLAM algorithms, building the open-source dataset collected for mining-
related use cases and performing numerous field tests of developed MMTs in
open-pit and underground facilities of varying difficulty) were accomplished
in a series of six publications. Their specific contributions are presented in
3.3. All of the research activities carried out in this thesis allow to finally draw
the conclusion that the thesis stated at the beginning of this work that SLAM
algorithms can be successfully applied to process 3D measurement data to acquire
high-quality 3D reconstructions of mining environments has been proven.

4.2 FUTURE RESEARCH DIRECTIONS

Based on the findings of this study, as well as technological solutions developed
in its scope, several future research directions will be sought. Since both the
pose graph approach and the FAST-LIO LiDAR-inertial odometry proved to be
universal and reliable solutions, incorporating more factors would be a feasible
strategy to further improve the final 3D reconstructions results obtained with
this system. One such element could be provided by efficient loop closure
detectors. Despite a substantial improvement of loop closurematching accuracy
and reliability, introduced in Section 3.3.6: (Trybała et al., 2023b), for long
acquisitions the time performance of detecting possible loops between graph
nodes could start to be an issue. An enticing possibility is the use of DL-based
point cloud descriptors.

Further hardware integration is envisioned. The integration of visual sen-
sors for creating visual-LiDAR-inertial sensors could bring benefits not only
from capability to add texture information to LiDAR points, but also from
robustifying the system with inputs of visual odometry and visual place recog-
nition for loop closure detection. SLAMsolutions developedwithin the scope of
this thesis can also be integrated with mobile robotic solutions for autonomous
exploration and navigation tasks. Novel sensors, such as recently introduced
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360° FoV Risley-prism LiDARs will be another interesting candidate topics to
benefit from the developments of this study.

Finally, extending postprocessing options would potentially bring improve-
ments in accuracy achievable with proposed SLAM systems. Features such as
automatic hyperparameter tuning and the introduction of bundle adjustment
concepts to jointly optimize the 3D point cloud and the sensor trajectory could
be investigated. An example of such approach can be found in the study by
Di Giammarino et al. (2023).

4.3 LIMITATIONS

Even though the presented dissertation provides extensive analyses on the
topic of applying mobile mapping systems in mining environments, as in every
study, it has some limitations to its scope related to the practical aspects of
carrying out time- and resource-constrained research. In light of the rigorous
data requirements inherent in my methodology, which involves the utilization
of survey-grade reference data combined with robotic and handheld sensors
within specific environments (and adhering to fully open access to the raw data),
the feasibility of employing public datasets became impossible at the start of
my work. Consequently, data acquisition required a hands-on approach, which
led to limitations in both the number of test sites and the diversity of sensors
used. New hardware appearing on the market can also greatly influence the
quality of results that can be obtained with examined SLAMmethods.

Given the plethora of algorithms available across various sensors, a strategic
decision was made to narrow the focus to a specific subgroup. This subgroup,
characterized by its superior performance in preliminary tests, centers around
LiDAR-centric SLAM. This selective approach aimed to streamline the inves-
tigation, enhance the depth of understanding of the results and improve the
likelihood of applicability of developed methods in real scenarios.

Furthermore, the ongoing DARPA Subterranean Challenge played a pivotal
role in propelling research within this domain. Although contributing novelty
to the field, the challenge also stressed the interest among researchers and
demonstrated the inherent complexities involved in subterranean 3D map-
ping. This research, carried out in parallel, but clearly with more limitations,
resources and slightly different focus, can be seen as a complementary input
into the newest developments in underground site mobile mapping from the
surveying point of view.

Formerly, simulation studies were also incorporated in initial phases of
my research, although they were not published. However, these tests revealed
a considerable simulation-to-reality gap, particularly concerning algorithm



4.3 LIMITATIONS J 55

performance in simulated environments versus their real-world counterparts
shown in the articles. Furthermore, a paper of Kadian et al. (2020) shows that
closing the so-called sim2real gap even for simple tasks still needs a substantial
computational effort for parameter tuning. These discrepancies were observed
not only in traditional algorithms but were even more apparent in DL-based
solutions. Despite the low applicability of end-to-endDL-based SLAMmethods
in practical use cases, recent developments in DL features for V-SLAM (Morelli
et al., 2023b) have shown promising results in different scenarios.
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Abstract. The mining sector is one of the most promising areas for implementing advanced 
autonomous robots. The benefits of increased safety, robot actions’ repeatability, and reducing 
human presence in hazardous locations are especially important in underground mines. One 
of the core functionalities of such a device is the robot’s ability to localize and navigate itself 
in the working environment. To achieve this, simultaneous localization and mapping (SLAM) 
techniques are used. In selected cases, they also allow the acquisition of dense spatial data in 
the form of 3D point clouds, which can be utilized for various 3D modeling and spatial analysis 
purposes. In this work, a mobile robot, equipped only with a compact laser scanner, is used 
to acquire spatial data in the adit of a closed mine in Złoty Stok, Poland. This data is further 
processed with selected SLAM algorithms to create a homogeneous 3D point cloud. Results 
are visualized and compared to a model obtained with a survey-grade laser scanner. Accuracy 
evaluation shows that employing SLAM algorithms to process data collected by a mobile robot 
can produce a reasonably accurate 3D geometrical model of an underground tunnel, even without 
incorporating any additional sensors.

1. Introduction
Automation and robotization of various industrial processes are inevitable steps of the mankind
technological advancement [1]. Since they provide an ability to reduce or even totally exclude
the direct involvement and physical presence of humans in the place of work, one of their most
important advantages is the increased safety of employers. This is a crucial issue especially in
sectors such as mining, where in many cases, there is a substantial risk of a serious or even fatal
accident. Furthermore, if such an accident happens, an underground mine is arguably one of the
most challenging environments for carrying out a rescue mission. Using mobile robots in this
circumstance would not only help the rescue team safely reach victims, but also employ more
sophisticated techniques of localizing them, utilizing sensors mounted on a robot [2, 3].

Deploying robotic devices in a mine can also facilitate the employment of novel techniques
of mining machinery monitoring [4]. This is a rapidly growing field, in which one could find
examples of using mobile robots for the acquisition of acoustic signals [5], infrared thermography
imagery [6] or LiDAR-based point clouds [7] to evaluate the condition of various belt conveyor
parts. Unmanned robots and mobile sensors have been also used for monitoring environmental
conditions in an underground mine [8, 9].

One of the basic requirements of allowing an inspection robot to safely operate in a mine is
achieving its spatial awareness. It should be a core capability of a robot to localize itself, map
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and analyze its surroundings, in turn to be able to navigate to certain places for accomplishing
the subsequent goals of a defined mission. Solving those issues is a serious challenge in
the environment of an underground mine, where uneven illumination, dust, humidity, high
temperature and rough terrain are often present. However, such a solution could simultaneously
produce another valuable outcome - 3D geometrical model of the environment, which could
be used for various other analytical purposes. Currently, such models are acquired with data
collected with survey-grade laser scanners used by mine surveyors. While they can provide
superior accuracy and resolution of the resulting point cloud, they are expensive and their usage
involves the surveyors’ physical presence in the place being measured. In this work, a solution to
those problems utilizing Simultaneous Localization and Mapping (SLAM) algorithm to process
LiDAR data acquired with a much cheaper, industrial-grade instrument will be presented.

The paper is organized as follows. Section 2 describes the robot and sensors used in the
experiment carried out in a closed mine in Złoty Stok, Poland. It also outlines the methodology of
processing data from both LiDAR scanners, comparing the results and evaluating the accuracy of
SLAM-derived model. Section 3 presents the results of the experiment, including the visualization
of the raw data, final geometrical models and outcomes of point clouds’ comparison. The last
section contains conclusions from this research and indicates plans for future work.

2. Methodology
In this study, a SLAM approach has been tested for creating 3D representations of mine tunnel
geometry. A SLAM problem is defined by an observer located in an unknown environment
where he must simultaneously determine and update his position on a map of the environment
and construct and update the map itself. Many researchers utilized various sensors to solve
this issue. The most common types of sensors used for mobile robot localization are cameras
[10, 11] (visual SLAM), LiDARs [12, 13, 14], ultra-wideband localization [15, 16] and inertial
systems [17]. Regarding the dimensionality of the map and the observer’s pose space, a SLAM
problem can be considered in 2D or 3D space, leading to a 4 degrees of freedom (DoF) or a 6 DoF
problem. A SLAM can be robustly and efficiently performed, taking into account the robot’s
movement over a perfectly flat ground only and constructing a two-dimensional map [18]. The
latter version of the problem is much more problematic, especially in demanding conditions.

Various SLAM versions have been tested in mining environments. In [19], 2D Hector-SLAM
has been applied to create a map of the underground tunnel. The possibility of applying various
versions of 3D LiDAR SLAM for the purpose of enabling autonomous vehicle operation in the
tunnels of an underground mine was examined in [20]. Another study concerned developing a
methodology of updating a high-resolution open-pit mine model with a cost-effective and fast
3D SLAM solution [21]. In the work of [22] extensive tests of a SLAM system for autonomous
mining vehicles were carried out. However, the study concerns mostly the ability to create
a simple 2D map of the mine and localize the vehicle in it. The research of [23] concerned
a close-source handheld SLAM system, a GeoSLAM ZebRevo. The instrument was tested in
underground conditions and results obtained from handheld scanning and from measurements,
when the scanner was mounted on a vehicle, were compared. Authors underline the fact that
proper usage in the mining environment should be restricted to short scanning periods and
unstructured underground conditions still pose a challenge for SLAM algorithms, indicating the
need of further research in this area. The same sensor was utilized in the study of [24] to not
only create 3D point cloud of an underground adit, but also construct a local geological model
through identification of fault zones.

In this work, an unmanned ground vehicle (UGV), equipped with a Velodyne VLP-16 LiDAR,
was used to carry out SLAM tests. The unit is shown in the Figure 1. The measurements were
performed in the adit of a closed underground gold mine in Złoty Stok, Poland. The adit is
currently used as a geotouristic place, so the ground flatness and lightning conditions are not
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as extreme as in an operating underground mine. However, they differ substantially from more
structured environments, such as buildings.

Figure 1. Mobile robot in the
measured adit

Figure 2. Reference measure-
ments with a Riegl Vz-400i

The data from the LiDAR was acquired using a laptop running Ubuntu 18.04 LTS and Robot
Operating System (ROS, [25]), placed on the robot. A SLAM algorithm, High-Density LiDAR
SLAM (HDL-SLAM) [26] was chosen for processing this data. It provides vast possibilities
of customization (e.g. different methods for scan matching, changeable parameters, ground
detection and voxelization) and is compatible with the post-processing interactive tool [27],
allowing to verify validity of scan matching, manually edit erroneous connections and refine the
pose graph with robust estimation. The above-mentioned software is compatible with ROS and
is shared online under a 2-Clause BSD license (HDL-SLAM) and GNU General Public License
v3.0 (post-processing tool).

After carrying out measurements with the mobile robot, a survey-grade laser scanner was
used to obtain the ground truth 3D model. The instrument employed for the survey was
Riegl Vz-400i (shown in Figure 2), providing point cloud accuracy of approximately 5 mm.
The instrument was additionally equipped with a Nikon D810 digital camera, which allowed to
generate colored point cloud visualizations. The scans were cleaned, registered and transformed
into a homogeneous local coordinate system using cloud-to-cloud technique in the Vercator cloud
software. The SLAM point cloud was matched to the reference model using the iterative closest
point (ICP) algorithm and the unsigned distances from points to the reference model were
calculated. To minimize the influence of gaps that could appear in the reference measurements
and not in the SLAM-based model, thus distorting its accuracy evaluation, the distances were
estimated using local surface modeling of the reference point cloud using the quadric local model.
Histogram of those distances was calculated and analyzed, as well as basic statistics. Finally,
the spatial distribution of the estimated error values was examined.
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3. Results and discussion
The drive through the 130-meter long tunnel took approximately 5 minutes. The robot collected
2978 scans, which were saved to a .rosbag file. The LiDAR’s field of view was reduced to 270◦ due
to the hardware mounted on the robot, obstructing the view behind the sensor. The UGV, as
shown in Figure 3, was additionally equipped with a compact light source to aid the operator’s
ability to control the machine in the dark parts of the corridor.

Figure 3. Mobile robot equipped with a Velodyne VLP-16 and a laptop for data collection

In the next part of the experiment, Riegl LiDAR was used to measure the tunnel, which was
scanned from 8 positions, totalling 120 949 585 points. The clouds have been manually cleaned
using Cloud Compare software. Scans were then registered in the Vercator cloud software, using
manual prealignment and cloud-to-cloud method. Average root mean square error (RMSE) of the
point-to-point error for each pair of clouds has been calculated during the alignment. Since the
expected accuracy of the SLAM point cloud is definitely greater than a centimeter, the resulting
error of 1.6 mm is satisfactory and justifies using this point cloud as a reference model for the
accuracy evaluation of SLAM. Finally, the reference point cloud has been subsampled to the
resolution of 5 mm to homogenize its spatial resolution. Render of a colored point cloud can be
seen in Figure 4.

Figure 4. Render of a colored reference point cloud acquired with a survey-grade laser scanner
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Scans collected with a mobile robot and stored in a .rosbag file were processed in an offline
mode to ensure repeatability and the possibility to test different parameter values and modes of
HDL-SLAM. They were, however, replayed as a stream of LiDAR scan data and processed in
real time. As for the SLAM settings, the generalized iterative closest point (GICP) algorithm
was used as a basis for scan matching and ground plane detection was enabled to aid the correct
orientation of subsequent scans with respect to the Z-axis. The obtained graph was optimized
with Levenberg–Marquardt algorithm. After the first step of real-time processing, the resulting
pose graph was refined and optimized in the post-processing mode, enhancing the graph edges
using Huber robust kernel to improve scan registration. The resulting point cloud was cleaned
in the same manner as the reference data set by removing distinctive outliers. The final point
cloud is shown in Figure 5. The resulting point cloud contained 357 468 points.

Registration of the SLAM-derived point cloud to the reference point cloud was carried out
in Cloud Compare software. With the random sampling limit of 100 000 points, the resulting
RMSE amounted to 14 cm. Visualizations of both point clouds transformed to the consistent
local coordinate system can be seen in Figure 6 (the tunnel interior) and Figure 7 (top view).
Nevertheless, the examination of the results shows that the SLAM-derived tunnel geometry is
mostly locally consistent with the reference data. The errors are mostly due to the drift of the
sensor position estimation, since no loop closure was present in the acquired data.

Figure 5. Render of a point
cloud produced by the HDL-
SLAM algorithm

Figure 6. The tunnel interior.
SLAM point cloud in blue, refer-
ence cloud in red

Figure 7. Top view of both point clouds. SLAM point cloud in blue, reference cloud in red



XXI Conference of PhD Students and Young Scientists (CPSYS 2021) 
IOP Conf. Series: Earth and Environmental Science 942 (2021) 012035

IOP Publishing
doi:10.1088/1755-1315/942/1/012035

6

Distances between SLAM point cloud and the ground truth data were calculated. The
surface of the reference model was approximated with a local quadric model fitted in the closest
neighborhood of each point. The outcome values were used to color the SLAM point cloud
according to the estimated errors. The top view of such visualization is depicted in Figure 8.
A histogram of distance values was plotted (Figure 9) and the basic summary statistics were
calculated (Table 1). Estimated point position errors follow a half-normal distribution, since the
unsigned distances were calculated.

Figure 8. Accuracy evaluation - distances between reference and SLAM point cloud

Figure 9. Accuracy evaluation - histogram of distances between reference and SLAM point
cloud

Table 1. Summary statistics of SLAM point cloud error distribution

Statistic Value [cm]

Median 8.3
Mean 11.8

95th percentile 34.0
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The obtained results prove that LiDAR SLAM can be successfully used for generating 3D
models of the highly unstructured corridors of an underground mine. Uneven ground and
irregular geometry of the tunnel, especially the walls and the roof, pose a challenge for correctly
matching subsequent, sparse LiDAR scans. However, proper parameter tuning of HDL-SLAM,
manual verification and refinement of the pose graph in the post-processing step allowed to obtain
reliable results. Gross errors of the final point cloud, caused by a quickly growing cumulative error
of the pose or failing to register following scans, showed in [20] in case of applying selected SLAM
algorithms in the mining environment, are not present. Accuracy and point cloud density of the
tested simple solution is clearly worse than the point cloud data collected with a survey-grade
scanner, but the resulting model is still locally consistent and could be used for GIS or robot
navigation purposes. Despite this, there are lessons to be learned for the future from the research
presented, which could potentially improve the SLAM performance in future applications. Firstly,
the main reason of large error values is the drift of robot positioning, gradually skewing its
trajectory. To cope with this problem, measurements have to be planned to ensure (optimally
several) loop closures. Secondly, as seen in Figures 5 and 6, the highest SLAM point cloud density
is concentrated on the lower and middle parts of the corridor walls. This should be attributed to
the horizontal placement of LiDAR sensor in the same plane as the robot movement. Because of
that, more sparse data is collected about objects located higher up and gaps can appear in the
resulting model. A different placement of the sensors with respect to the robot base could be
tested to address this issue, e.g. by tilting the LiDAR relative to the robot’s main motion plane
by a constant angle or by continuously rotating the sensor around its front-facing axis.

4. Conclusions
The conducted experiment shows the possibility of employing SLAM techniques to model the
highly irregular geometry of an underground mine tunnel. Even though the relatively simple
solution, utilizing only a single LiDAR sensor was tested, the accuracy evaluation of the resulting
point cloud indicates that such a model could be used for various purposes, e.g. digital
twin creation, flow modeling, volumetric calculations or robot navigation in a mine. In harsh
conditions of an underground mine, factors such as dust, rugged terrain or darkness can render
SLAM solutions heavily relying on camera vision or IMU readings nonfunctional. For this reason,
the ability to rely solely on LiDAR SLAM is very valuable.

Conclusions from this research will allow to enhance the configuration of the demonstrated
UGV 3D scanning platform for future applications. Potential works include automation of
data acquisition with autonomous exploration of the unknown environment of an underground
mine and improving SLAM accuracy with enhanced LiDAR mounting on the robot. Another
prospective field of research is testing the proposed solution enhanced with data fusion techniques.
Integrated supplementary sensors could include another LiDAR, cameras, IMU or wheel encoders.
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Abstract: Mining industry faces new technological and economic challenges which need to be
overcome in order to raise it to a new technological level in accordance with the ideas of Industry 4.0.
Mining companies are searching for new possibilities of optimizing and automating processes, as well
as for using digital technology and modern computer software to aid technological processes. Every
stage of deposit management requires mining engineers, geologists, surveyors, and environment
protection specialists who are involved in acquiring, storing, processing, and sharing data related
to the parameters describing the deposit, its exploitation and the environment. These data include
inter alia: geometries of the deposit, of the excavations, of the overburden and of the mined mineral,
borders of the support pillars and of the buffer zones, mining advancements with respect to the
set borders, effects of mining activities on the ground surface, documentation of landslide hazards
and of the impact of mining operations on the selected elements of the environment. Therefore,
over the life cycle of a deposit, modern digital technological solutions should be implemented in
order to automate the processes of acquiring, sharing, processing and analyzing data related to
deposit management. In accordance with this idea, the article describes the results of a measurement
experiment performed in the Mikoszów open-pit granite mine (Lower Silesia, SW Poland) with the
use of mobile LiDAR systems. The technology combines active sensors with automatic and global
navigation system synchronized on a mobile platform in order to generate an accurate and precise
geospatial 3D cloud of points.

Keywords: mobile laser scanning; Velodyne LiDAR; Riegl scanning system; open pit mine

1. Introduction

Modern land surveying in the mining industry is based on input data acquired from
both classical methods (leveling, tacheometry) and modern solutions: digital photogram-
metry, measurements with the use of Global Navigation Satellite Systems (GNSS), and laser
scanning. These data allow the preparation of maps documenting the deposit, situational
plans illustrating the advancement of mining operations, or 3D visualizations showing
planned reclamation forms. Commonly used worldwide, these surveying techniques have
both advantages and disadvantages. Their implementation typically depends on the level
of detail expected in the mining map, and thus on the accuracy of a particular measurement
method and on the duration of the measurement process [1–7].

Classical surveying methods allow highly accurate and precise measurement results.
The vertical displacements can be recorded with the use of classical and precise leveling
with accuracy levels of several millimeters [8] or under 1 mm [9], respectively. Displace-
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ments on the surface of a mining area can be observed in 3D. For this purpose, total station
measurements are combined with static GNSS measurements [10].

One of the interesting solutions, which is an extension of satellite measurements,
is the use of the so-called pseudolites. Pseudoliths are terrestrial transmitters that are
transmitting satellite-like signals to assist satellite navigation in areas depleted in terms
of signal availability from traditional satellites. The areas of application of this solution
are opencast mines with steep and high slopes, where poor satellite availability due to
obscured horizon limits the ability to receive the GNSS signal [11].

Recent years have also been marked by the dynamic development of measurement
technology based on ground-based radar. In mining, both underground and opencast, it
is mainly used to monitor the stability of slopes or to measure surface deformation [12],
rarely to monitor the exploitation progress or build the 3D models of mining area.

Observations in the form of a 3D continuous surface allow the construction of a 3D
model from the land or aerial level [13,14]. Such measurements typically involve UAV
photogrammetry techniques [15] and LiDAR, mainly ALS, and increasingly often UAV [16].
With the use of such techniques, the model can be quickly reconstructed with an accuracy
of below 7 cm [17], which, of course, depends on laser scanner accuracy itself as well as
resolution of the scan. In the case of UAVs, the main factor determining the accuracy of the
calculated model is so-called ground sampling distance (GSD; it is the distance between
pixel centers measured on the ground). Updating 3D mine models does not require as high
accuracies as in the case of monitoring subsidence movements or slope stability [18].

Limitations of the above methods also need to be stressed. Most importantly, leveling,
total station (excluding situations when prisms are stabilized on the measured points) or
photogrammetry survey methods cannot be used without the natural and/or an artificial
source of light, which fact practically disqualifies these methods from being used at night
or would entail the need to provide prohibitively expensive artificial lighting. Atmo-
spheric conditions (e.g., clouds, wind or atmospheric precipitation) are also a considerable
limitation, which may contribute to a lower quality of the measurement results or even
prevent the measurements entirely. On the other hand, the GNSS measurements—and
more specifically their precision—depend on the availability of satellite constellations, and
the use of the so-called differential corrections also increases the cost of the entire procedure.
Importantly, in the case of relatively deep open-pit excavations, which may have obstructed
views of the satellites, the measurement accuracy is lowered. Recent developments in
geomatics have allowed the use of a wide range of sensors to record the geometry of both
objects and other features on land [19]. Currently, hybrid sensors such as Mobile LiDAR
Systems (MLS) provide additional quality to the inventorying process of mining facilities,
as they offer solutions which prove flexible in terms of accuracy, resolution and access to
areas which are otherwise inaccessible to vehicles [20].

The aim of this article is to present an MLS-based measurement solution for open-
pit mining industry. The proposed technique employs a Riegl VMZ 400i measurement
platform and a Velodyne LiDAR sensor in the Simultaneous Localization and Mapping
(SLAM) approach to data acquisition and localization. The main concept presented in
this paper utilizes a high-resolution, precise geometrical data source (MLS) for creating
the initial model of the mine and updating it periodically using low-cost sensor and
open-source algorithms. Such solution could provide information about near real-time
tracking of the progress of mining works and allow e.g. volumetric calculations of the
excavated material.

The measurements from both systems provide data for developing a digital represen-
tation (the so-called Digital Twin) of the geometry of a mining excavation, which may be
used over the mine life cycle in such applications as monitoring the exploitation state of
the mining excavation, performed in the form of cyclical measurements in order to control
and optimize (improve) the efficiency of the mining process, constructing a management
model of an active or a closed excavation, providing information about the state of the
closed excavation and constructing its revitalization model. The methods here proposed
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allow quick access to the excavation-related data with a minimum workload required from
an operator to acquire and process the data and, as such, they reflect well the principles of
Industry 4.0 [21–25].

2. Materials and Methods

The main idea behind this study is based on the use of a point cloud obtained from a
RIEGL VMZ commercial hybrid laser-scanning platform equipped with a VZ400i scanner
mounted on an off-road vehicle. The system allows a quick acquisition of three-dimensional
data about the analyzed object, in this case about a granite quarry. The concept of integrat-
ing a high-resolution MLS approach with full georeferencing is a base for further analyses
of sensors used in acquisitions of 3D geometrical data related to the mine. The experiment
was performed with a low-cost Velodyne scanning sensor was, in a handheld SLAM MLS
approach. Tests of such a solution consist in obtaining three-dimensional information about
the mine (a point cloud) over a time t0 and in comparing the results with the results from
the Velodyne instrument. Consecutive measurements performed in time t1, t2, . . . tn may
be in the form of the so-called additional measurements with the use of low-cost handheld
MLS sensor. Figure 1 is a schematic diagram of the measurements.

Figure 1. Schematic diagram of the 3D modeling methodology based on two Mobile LiDAR Systems
(MLS) systems.

2.1. Description of the Study Area

This experiment was performed on the Mikoszów granite deposit located south-east
of the town of Strzelin (Lower Silesia, SW Poland; Figure 2). Based on lease no. 10/2001,
until 2016 Mineral Polska Sp. z o.o. mined the deposit for granite and gneiss. The company
is planning to renew its lease to mine the deposit with the same technology. The planned
output is 800,000 Mg per year. The geological resources of the Mikoszów deposit are
23,249,840 Mg (as per 31 December 2015). Until 2016, the deposit was mined with the use of
a mixed wall-shortwall system with parallel advancement of the mining front. The deposit
was extracted by drilling and blasting with the use of explosive materials and short and
long drillholes. The mined material was loaded with loaders or excavators into mobile
hoppers of crushing/sorting machines or into technological vehicles which transported it
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to processing devices located outside the mining plant. The processed stone was loaded
with a loader from the storage site onto vehicles provided by the clients [26–29].

Figure 2. (A)—location of the study area; (B)—view of the quarry in the NW direction, as of Nov. 2020 (Photo by J.
Górniak-Zimroz).

2.2. Mobile Laser Scanning

The literature mentions a number of mobile and autonomous mapping platforms
which can collect data form indoor mapping [30]. The main advantage of the MLS system
mounted on vehicle lies in the sensor fusion. The mobile mapping platform is equipped
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with GNSS, IMU (Inertial Measurement Unit) and DMI (Distance Measurement Indicator)
sensors. The GNSS observations are essential in the kinematic mode of Lidar data acquisi-
tion. For a perfect trajectory, both static and dynamic alignment is required. If this condition
is not met, the derived point clouds are distorted and lose spatial consistency. MLS data
acquisition in urban areas may be affected by multipath effects and by signal obstruction
due to buildings. This can lead to inaccurate GNSS measurements and, therefore, errors in
the estimated trajectory [31]. Kukko et al. (2012) presented on-board sensors integration
and MLS platform data acquisition from a vehicle, boat-mounted MLS for mapping fluvial
processes and snowmobile application for studying the characteristics of and changes
in snow cover. The main advantage of such mobile scanning platforms include fast and
smart data collection. In MLS, the slightly elevated point of view gives the advantage of
observing vertical surfaces with angle of incidence close to 0◦.

The mobile laser scanning technique allows fast and rapid 3D data acquisition in
mining areas. In this technique, the measurement is performed with a scanner, and the time-
dependent positions of the scanner are also recorded. In comparison to the standard laser
scanning technique (Terrestrial Laser Scanning—TLS), in which the measuring instrument
is located on an elevating tripod, the MLS has a similar incidence angle of the laser beam
with respect to the scanned surface. However, as the system is mobile, it allows the
acquisition of data for areas that were not visible from the perspective of the previous
location of the scanning platform. The point cloud thus obtained has a relatively smaller
number of occlusions and gaps. Examples of the integration of MLS data for the purpose
of geological structure mapping were described in [32]. What is more, the recordings
of LiDAR MLS datasets provide an alternative point of view. The average height above
ground is greater than in the case of TLS scanning stations mounted on tripods. The density
of the scan is similar to that of the TLS scan, and the density of the MLS records depends
on the movement speed of the scanning platform.

2.2.1. The Riegl VMZ Mobile Scanning Platform

The MLS Riegl VMZ400i system used in the study comprised: a GNSS system based
on simultaneous trajectory measurements from two antennas, an IMU, a DMI and a laser
scanner (Figure 3).

Figure 3. Mobile laser scanning system operated in the excavation: (1) Global Navigation Satellite
Systems (GNSS) antenna; (2) Inertial Measurement Unit (IMU); (3) Riegl VZ400i scanner; (4) DMI;
(5) power unit (inside the vehicle); (6) driver and control unit—computer with installed software and
its operator (inside the vehicle).
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2.2.2. Acquisition of MLS Data

The MLS data were recorded for the entire area of the Mikoszów mine and its vicinity.
The recording process was performed with the use of the Riegl VMZ 400i hybrid laser
scanning system set in the radar mode. The data acquisition process in this mode takes
place while the scanner rotates 360◦ (around it’s Z axis) and the whole MLS system drives
along the planned trajectory as well. For the purpose of this article, an area of interest (AOI)
was defined and indicated in yellow in Figure 4.

Figure 4. Sketch of the MLS data acquisition trajectory. The presented trajectory (blue line) covers the part of the route of
the scanning system used for georeference of the acquired point cloud as well as (purple line) the part of the route within
the excavation during the recording process of the data.

The procedure of recording MLS data, which is based on GNSS measurements, re-
quired the position of the MLS platform to be acquired around the analyzed mine in the
form of a dynamic alignment trajectory loop. All of the works related to the GNSS trajectory
measurements were performed in the Applanix PosPac MMS software, using the In-Fusion
single base adjustment solution. The procedure allowed the GNSS observations of the
platform to be linked with the BASE receiver, which was located in the central part of the
mine pit, on its southern slope. The In-Fusion solution integrates the GNSS sensor with
displacements recorded by the IMU and the DMI. The DMI allows precise information
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on the start and stop of the platform to be obtained from a source different to the GNSS.
Figure 5 shows a schematic diagram of the MLS data processing procedure.

Figure 5. Diagram of MLS data processing.

The MLS measurements and their processing procedure are based on a precise mea-
surement of the time recorded by the measurement system. The processing of a point cloud
consists in overlaying individual scan lines on the 3D trajectory in time. The measurement
accuracy of the MLS Riegl VMZ 400i is ensured owing to two GNSS antennas that measure
the GAMS azimuth (GNSS Azimuth Measurement System). This approach helps eliminate
inertial drift errors that are typically produced in a single-antenna approach). GAMS
determines the movement direction of the vehicle very accurately regardless of its speed,
resulting in the best possible heading accuracy and the best performance in any demanding
environment, e.g., with an insufficient number of satellites. The full technical data are
shown in Table 1.

Table 1. Riegl VMZ MLS technical data [33].

MLS Parameter Value

Scanner Min. Range 0.5 [m]

Scanner Max. Range 800 [m]

Accuracy/Precission 5/3 1 [mm]

Measurement Rate 0.5 M [measurement/s]

Scan field of view—Vertical 100 [◦]

Scan field of view—Horizontal 360 [◦]

Max Lines per Second (lps) 240 [lps]

GNSS Position Accuracy 20–50 [mm]

Roll/Pith/Heading Accuracy 0.015/0.05 [◦]
1 one sigma @ 100 m.

2.3. Handheld Mobile Laser Scanning

Another MLS technique is based on small mobile laser scanners (originally used in
robotics) and on the SLAM technology. The technology consists in simultaneous, iterative
determining the position of the observer and in constructing a map (or a 3D model) of the
surrounding area. SLAM algorithms are mainly based on data obtained from laser scanners,
stereoscopic cameras or monocular cameras. Solutions of this type are normally used in
GNSS-denied environments, but if such limitations are not present, the position indicated
by the GNSS receiver can be additionally used to improve the quality of SLAM-based
positioning [34,35]. The pose of the observation unit and its movement can be additionally
determined from the input data provided by other sources, such as IMU sensors [36,37] or
wheel odometry [38]. SLAM algorithms are found in numerous implementations and are
frequently based on the Kalman filters [35,39], graphs [40,41], or voxels [42].

SLAM functions by solving two basic problems:

• Estimation of consecutive transformations from the coordinate systems (related to the
operator), containing point clouds obtained at times ti and ti+1, into a uniform global
coordinate system—this process is referred to as laser odometry,

• Identification of the so-called loop closure, or return visit locations. In the case when
point clouds obtained in non-consecutive time points ti and tj correspond to identical
actual locations, another condition, different than the transformations calculated from
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the consecutive scans, can be added to the bundle adjustment of the measurement
trajectory. This fact significantly improves the quality and the robustness of the results
obtained from the SLAM algorithm, and eliminates errors related to the position
drifting in time due to the relative identification of consecutive observing positions.

MLS systems based on small portable laser scanners are now most typically offered as
backpack systems, frequently integrated with cameras and GNSS receivers (Figure 6A) or as
handheld scanners (Figure 6B). The measurement system can be further simplified by using
only a small LiDAR sensor carried by an operator (Figure 6C). Despite a different approach
to the sensor arrangement, the systems are, in fact, similar and share the measurement
methodology. Therefore, later in this article they will be synonymously referred to as
handheld laser scanners.

Figure 6. Examples of LiDAR-based scanning systems: (A) GreenValley International LiBackpack DGC50, (B) GeoSLAM
ZEB Horizon, (C) Velodyne VLP-16 with an interface box.

The measurement is performed by an operator who carries a handheld or a back-
pack scanner and walks around the surveyed area. The latter factor most significantly
distinguishes this solution from mobile or stationary laser scanners. On the one hand, it
is a limitation, as the range and speed of the measurement is smaller than in the case of
mobile scanning performed from a wheeled vehicle, drone or robot. Unlike in the above
solutions, the measurement process cannot be automatized. Nevertheless, the operator can
easily and naturally adjust the density of the point cloud in desired areas, by prolonging
the data acquisition time. Modern SLAM algorithms also allow consecutive scans to be
recorded and 3D models of the area to be constructed in real time. In combination with
visualization techniques (e.g., on a tablet), this function allows a more effective and precise
coverage of the surveyed area. Another advantage lies in the fact that the operator does
not have to be highly qualified. Data processing is automatic, and therefore the survey can
be performed by a person not familiar with the SLAM technology, or by an autonomous
vehicle. Only the post-processing of the data (correctness verification and adding loop
closures, georeferencing, improving the quality of defining the measurement trajectory),
which allows an improved quality and accuracy of the resultant point cloud, requires
higher competences and the ability to use a particular software.

Importantly, the measurement trajectory and thus the resultant point cloud, is biased
with a drift error, i.e., a measurement uncertainty which increases with time. As already
mentioned, this error is limited by revisiting the previously scanned locations and by
allowing the SLAM algorithm to perform loop closure. However, for this to be possible,
the measurement path needs to be planned in such a manner that the already surveyed
locations are revisited at a sufficient frequency [43,44].

Many of the SLAM algorithms which process 3D data provide lidar odometry with
the use of the Generalized Iterative Closest Point (GICP) algorithm. Ren et al. [45] pro-
posed a modification of this algorithm, allowing for the extraction of the ground plane
from individual scans and using them as landmarks in order to increase the robustness
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of the algorithm. Subsequently, the researchers compared the proposed method with
other state-of-the-art algorithms which use a lidar sensor only (VLP-16). These included
Lidar Odometry and Mapping (LOAM) [46], Lightweight and Ground-Optimized Lidar
Odometry (LeGO-LOAM) [47] and Berkeley Localization and Mapping (BLAM) [48]. The
proposed algorithm was designed for the consistent localization of autonomous vehicles
in roadways and tunnels of an underground mine. Nevertheless, tests performed on two
paths inside a building and on two paths in an underground mine indicate that the results
in the mining environment are significantly worse. The authors stress the significance of
the loop closure and of introducing plane constraints in obtaining satisfactory results from
the tested algorithms.

Vasenna & Clerici [49] introduce a concept of integrating data obtained from classical
point cloud construction methods (TLS and UAV photogrammetry) with data from a
commercial, backpack SLAM system manufactured by Heron. The aim of the study was
to verify the possibility of locating the SLAM operator in an open-pit mine environment
previously modeled with the use of classical methods. Having successfully verified this
possibility, the authors proposed a methodology for using SLAM in detecting changes of
excavation geometry. The estimated accuracy of such detections is above 3–4 cm.

In this study, HDL-SLAM algorithm framework, proposed by Koide et al. [50], has
been used. It is based on pose graph optimization and allows a significant elasticity in
selecting parameters (for both the LiDAR odometry and the loop closure) and additional
conditions in the SLAM algorithm, such as ground plane constraint, GNSS constraint,
LiDAR odometry, estimation method and numerous robust kernels. Moreover, the authors
provided an interactive graph editing program, which allows the resultant trajectory and
point cloud to be improved in the post-processing stage with the use of manual edition tools,
loop closure densification and edge refinement. The general concept of the data processing
acquired by handheld SLAM is presented in Figure 7. The framework was selected due to its
multiple options, which enable adjustments to the conditions of a particular surveyed object,
and also due to the open-source implementation in the Robot Operating System (ROS) [51],
which allows seamless integration with the LiDAR sensor and with the remaining software
installed on a Linux-run laptop computer. The measurements were performed with the use of
the Velodyne VLP-16. Its parameters are presented in Table 2.

Figure 7. Handheld LiDAR SLAM real-time (left) and post-processing (right) workflows.
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Table 2. Velodyne VLP-16 technical data.

Handheld LiDAR Parameter Value

Laser Max. Range 100 [m]

Range Accuracy 3 [cm]

Measurement Rate 0.3 M [measurement/s]

Scan Angle Resolution—Vertical 2.0 [◦]

Scan Angle Resolution—Horizontal 0.2 [◦]

Lines in each scan (channels) 16

3. Results

The fact that the hybrid Riegl VMZ 400i scanner was installed on a Nissan Navara
4 × 4 off-road vehicle enabled the operator to reach the lowest level of the Mikoszów
mine pit, which was the area subjected to further analysis, and to enter the otherwise least
accessible locations. The system functions owing to the fact that the scanner was installed
above the vehicle and the view of the satellites remained unobstructed. The unfavorable
Positional Dilution Of Precision (PDOP) and the insufficient number of satellites visible in
the vicinity of the vertical slopes was compensated for by data from IMU and DMI. The
geometrical processing of the data was performed in parallel with preliminary filtration.
The extraction parameters consisted of such LiDAR signal attributes as reflectance, distance,
deviation. The next stage consisted of data filtering. The resultant point cloud represented
all classes and comprised above 9.7 × 107 points (Table 3). The resultant point cloud
was not filtered in order to classify the point cloud in accordance with the ISPRS .las
recommendations. Figure 8 is a visualization in the form of a raster of the measurement
range. The recorded MLS point cloud is a set of XYZ 3D data and a series of parameters
such as amplitude and reflectance.

The handheld LiDAR measurements were performed by an operator who carried the
LiDAR scanner (Velodyne VLP-16) in his hand. The scanner was connected to a laptop
in the backpack. The data were recorded on the laptop, in rosbag format in ROS. The
measurement covered the area of the lowest level of the open-pit and was performed by an
operator walking around the mine. Attention was paid to intentionally form numerous
smaller measurement loops and to stop the measurement in the vicinity of the start location
in order to achieve a robust point cloud by forming a loop closure. The measurement
continued for 16 min and 54 s, during which a total of 10,676 scans were acquired.

The measurement results were subsequently processed offline with the use of SLAM
algorithms in order to combine them in a consistent point cloud. The preliminary estimation
of the measurement trajectory was performed as the scans were replayed with actual speed.
In the next step, the trajectory was manually improved in the post-processing mode by ad-
ditionally indicating points which correspond to a flat terrain and by indicating clear revisit
moments not identified automatically. Subsequently, automatic trajectory improvement meth-
ods were used to detect additional loop closures and robust refinement of pose graph edges.
This process was iterated until satisfying results were obtained (no deviating observations
(at 3 sigma), the trajectory visually corresponds to the actual measurement path). In effect,
the obtained trajectory allowed the point clouds to be recorded from all scans. The resultant
cloud, comprising 2,241,746 points, was filtered in Cloud Compare to remove measurement
noise. The final result comprising a set of 1,968,367 points is shown in Figure 8. The entire
post-processing lasted for approximately 30 min.
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Table 3. Riegl and Velodyne mls measurement data volume.

Data Source Number of Points Mean Point Density [points/m2]

MLS Riegl VMZ 400i 97,018,764 1500

Handheld SLAM LiDAR 2,241,746 50

Figure 8. Top view of the point clouds: Riegl MLS VMZ 400i (A) and handheld Velodyne SLAM (B). Colors represent
intensity value in a 7-bit range.

4. Discussion

The analyses demonstrate that mobile LiDAR measurement techniques provide input
data that ensure that the constructed 3D mine models are georeferenced. The developed
methodology for the processing of SLAM data is based on georeferencing them to the T0
model built using the MLS Riegl VMZ 400i technique. The results of the experiment also
indicate that it is possible to record a point cloud with the Iterative Closest Point (ICP)
method, using a low-cost handheld scanner and with reference to the MLS point cloud.
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The developed data processing method is based on overlapping the point clouds produced
with the use of LiDAR MLS and SLAM techniques. The advantage of the use of MLS
Riegl VMZ 400i lies in the fact that the 3D model has a full georeference in the chosen
EPSG coordinate system. The SLAM point cloud recorded in the local system allows a
continuous representation of the 3D surface in an open-pit mine. The MLS Riegl sensor
is also advantageous due to its range, which reaches 800 m, with the SLAM point cloud
recording at up to approx. 100 m. Another analyzed aspect is the scanning resolution. As
presented in Table 3, average resolution of the MLS measurement was 1500 points/m2

while the SLAM resolution was at an average of 50 points/m2. An important part of this
study was to verify whether the SLAM technique can be used as a low-cost approach to
3D modeling of mine geometry on ground. The results and the developed methodology
clearly demonstrate that the implementation of the SLAM technique allows updates to the
3D model of an open-pit mine. Measurements of the identical ground surface showed the
LiDAR data coherence level to be at 0.05 m. Figure 9 shows the spatial distribution of the
distances between the points in the SLAM-based cloud, while Figure 10 is their histogram.
A more detailed analysis of the locations with the highest individual deviations between
the models leads to a conclusion that they occur in areas not covered by the MLS scanning
or on areas covered with scattered greenery. In practical applications typical of an active
open-pit mine, both cases should not affect the quality of the obtained geometrical data.
The obtained accuracy levels (the distance between SLAM point cloud—MLS delivered
mesh model is at a level of ±5 cm) is sufficient to calculate volumes in open-pit mines of
similar scale and to update their 3D models, since the geometry changes associated with
the periodically monitored advances of the mining operation would usually be in the order
of meters.

Figure 9. The spatial distribution of the distances between MLS Riegl and Velodyne SLAM points. Colors represent the
distances from SLAM cloud to reference mesh.
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Figure 10. Distribution of the distances from SLAM cloud to reference mesh.

LiDAR observations in the implemented MLS approach allow the angles and distances
to be measured from multiple measurement stations represented by the trajectory of the
vehicle movement. In comparison to a classic approach to LiDAR measurements, TLS
offers a possibility to record a continuous surface in a DSM and to reconstruct it closely
representing the 3D surface with high measurement resolution. Importantly, in both the
classic TLS approach and the MLS, the measuring instrument has an identical incidence
angle at the analyzed object.

The LiDAR MLS method is seemingly limited by the impossibility to acquire data
from objects which are covered with water. The observed gaps in the data are due to
the absorption of the active LiDAR beam by the air-water medium, which causes the
laser beam to become deflected and the LiDAR measurement point not to be recorded
(white empty pixels in Figure 11). Another limitation of the LiDAR methods lies in the
so-called shadows cast by objects which obstruct the laser beam. The above limitations are
minimized by implementing the MLS technique, which allows a continuous measurement
along an MLS trajectory.
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Figure 11. Isometric visualization of intensity MLS LiDAR data with white gaps.

5. Conclusions

Mobile laser scanning technology is experiencing a dynamic growth in surveying.
This growth is observed in the precision of the measurements, in the amounts of ob-
tained data (scanning resolution and speed), and in the number of the transport platforms
being employed.

The in-field tests performed in the Mikoszów granite mine employed two types of
laser scanning systems to demonstrate their usefulness and the potential of using the
results in the modeling and monitoring of the geometry changes in an open-pit excavation.
The novelty of the presented solution lies in the integration of spatial data acquired with
sensors that vary in accuracy, measurement platform and procedure and data processing
to optimize the effort and cost of maintaining a time-varying 3D mine model.

The solution proposed by the authors is based on performing the first scan with the
use of a precise Riegl VMZ 400i system—this is indicated as state (point cloud) T0. The
most significant advantages of the method include the measurement range, data acquisition
speed and the quality of the MLS trajectory adjustment, which allows precision in the order
of single centimeters. Moreover, our method does not require the use of ground control
points in the measurement area or outside of it. The results of the bundle adjustment of the
MLS measurements were similar to the accuracy of RTK GNSS.

Data obtained with the use of this method may be successfully used in 3D modeling the
geometry of an excavation, or in planning or monitoring the progress of mining operations,
with respect to both compact rock (such as granite in this case, which may be mined in the
form of both blocks and aggregate), and bulk minerals.

Consecutive measurement sessions are performed at times T1 − . . . − Tn with the
use of Velodyne VLP-16, which is a tool operated in the SLAM approach. The experiment,
which consisted of acquiring data and then in combining the acquired data into a local
point cloud and in georeferencing the data into an MLS cloud, demonstrated that the data
are fitted at a precision sufficient to use them in the modeling of the advancement of mining
works. From the perspective of mining-related surveying, the data are of adequate quality.
Also, the solution proves economical, as it is based on the Velodyne VLP-16 low-cost
approach. Importantly, a scanner of this type does not need a highly skilled operator.
Additionally, the procedure of data processing and visualization is partially automated (on
the basis of low-cost and open-access software solutions), which is a factor limiting the cost
related to buying the software and employing a trained operator.
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A novel procedure of carrying out 3D measurements was developed that can be
applied to the entire life cycle of an open-pit mine. The experiment was successfully carried
out to test it in the real mining environment. The core element of the proposed procedure is
the creation of a base mine model with a precise MLS platform. Subsequent stages of work,
i.e., periodic measurement sessions with a SLAM-based system, are utilized to update the
base model and perform calculations of the excavated volume. It is worth noting that the
advantage of using Velodyne VLP-16 or similar lidar in the SLAM solution is that there is
no need for a highly skilled operator, costly equipment, or software. Such low-cost solution
could enable employing digital twin concepts in the small mining companies, e.g., quarries.

Another advantage of the proposed solution is the lack of need to establish the
ground control points. The base model is georeferenced using simultaneous GNSS RTK
measurements and the subsequent SLAM models are registered to it in cloud-to-cloud
manner, since the majority of the mine model is stable over time.

The authors would especially like to emphasize that the results of the experiment
performed in the Mikoszów open-pit mine clearly indicate that the integration of the MLS
LiDAR technique and of the handheld SLAM LiDAR technique according to the method
here described allows a 3D model of the excavation to be constructed and updated in
real time. The resultant high-resolution point cloud allows the designing, inventorying,
and feeding of big data databases in mines, according to the idea of Industry 4.0. LiDAR
techniques used in the analyzed mine enable a fast and comfortable acquisition of 3D
information about the excavation over the life cycle of a mine. This information may be
used at every stage of the mining operations in open-pit mines, including in prospecting
and exploration works, in access and development works, in the exploitation of the mineral,
in the reclamation works, and in the management of the post-mining area.
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Abstract: Mobile mapping technologies, based on techniques such as simultaneous localization
and mapping (SLAM) and surface-from-motion (SfM), are being vigorously developed both in
the scientific community and in industry. They are crucial concepts for automated 3D surveying
and autonomous vehicles. For various applications, rotating multiline scanners, manufactured, for
example, by Velodyne and Ouster, are utilized as the main sensor of the mapping hardware system.
However, their principle of operation has a substantial drawback, as their scanning pattern creates
natural gaps between the scanning lines. In some models, the vertical lidar field of view can also
be severely limited. To overcome these issues, more sensors could be employed, which would
significantly increase the cost of the mapping system. Instead, some investigators have added a
tilting or rotating motor to the lidar. Although the effectiveness of such a solution is usually clearly
visible, its impact on the quality of the acquired 3D data has not yet been investigated. This paper
presents an adjustable mapping system, which allows for switching between a stable, tilting or fully
rotating lidar position. A simple experiment in a building corridor was performed, simulating the
conditions of a mobile robot passing through a narrow tunnel: a common setting for applications,
such as mining surveying or industrial facility inspection. A SLAM algorithm is utilized to create
a coherent 3D point cloud of the mapped corridor for three settings of the sensor movement. The
extent of improvement in the 3D data quality when using the tilting and rotating lidar, compared to
keeping a stable position, is quantified. Different metrics are proposed to account for different aspects
of the 3D data quality, such as completeness, density and geometry coherence. The ability of SLAM
algorithms to faithfully represent selected objects appearing in the mapped scene is also examined.
The results show that the fully rotating solution is optimal in terms of most of the metrics analyzed.
However, the improvement observed from a horizontally mounted sensor to a tilting sensor was the
most significant.

Keywords: lidar; dense point cloud; SLAM; 3D reconstruction; 3D data quality; surface density

1. Introduction

Simultaneous localization and mapping (SLAM) represents one of the most significant
computational problems for any 3D reconstruction. It can be applied to autonomous cars
and robotics inspection missions to solve specific tasks, in particular map generation and
obstacle detection. The most promising data source for performing these tasks is application
of the lidar distance measurement method. Although many 3D-mapping lidar systems
have been developed and are used in various applications, the quality and accuracy of
the generated 3D point clouds and 3D geometries often remain insufficient, particularly in
complex or unstable environments. However, one of the most rapidly growing fields of
application for mobile mapping systems is underground mining, as the speed and possible
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automation of performing such measurements enables the rapid acquisition of dense 3D
data for vast underground structures. For these reasons, constant improvement is needed
in measurement system construction and point cloud data processing. New approaches to
the analysis and methodological assessment of the 3D data quality are also required. One
promising solution, improving the hardware side of the mapping system, is the design of a
spinning lidar sensor with an additional module that rotates the sensor around another axis.
This actuated lidar design, in which a scanner is combined with an actuation mechanism
to scan a 3D volume rather than a single line, has already been used in numerous mobile
robot SLAM applications [1].

Therefore, the main objective of our study was to quantitatively and qualitatively
assess the influence of a well-known approach using lidar rotation on the accuracy and
value of a 3D point cloud using an inspection robot in a test environment mimicking an
underground mine tunnel. The paper is structured as follows: first, in Section 2.1, the
state of the art is investigated. The scope of the investigation includes use of a rotating
lidar in mobile or stationary mapping and point cloud accuracy and quality assessment
methods, in particular, with respect to SLAM applications in underground environments.
Then, in Section 2.2, the design of an adjustable mapping system, developed for this
investigation, is presented. The SLAM data-processing workflow is described in Section 2.3,
and our approach to assessing the quality of the results with the metrics utilized for this
purpose is explained in Section 2.4. Next, in Section 2.5, the experimental setup used in
this study is described. The results obtained from the experiments undertaken are first
presented and analyzed in global terms in Section 3.1, and, then, considering local point
cloud quality in Section 3.2. Finally, a summary of the research, as well as final thoughts
and recommendations for implementing SLAM in underground environments, is presented
in Section 4.

2. Materials and Methods
2.1. State of the Art

The data acquisition strategy for autonomous vehicles and inspection robots using the
lidar system needs to be based on an understanding of specific environmental parameters,
such as the presence of a variety of dynamic or static obstacles, ensuring the highest
possible level of accuracy in the scanned data. Measurement systems with rotating lidar
sensors enable the capture of dense and close-to-spherical data about the surrounding
environment [2]. Thus, numerous research groups and companies have been engaged in
the development of methods to increase the resolution of the mapped space with rotating
2D and/or 3D lidar systems. With respect to the academic state-of-the-art, comprehensive
reviews can be found in the literature, focusing both on pure lidar SLAM [3] and on more
sophisticated, fusion-based, methods [4]. Many commercial, user-oriented devices are also
available on the market. An extensive, but not exhaustive, list of such solutions includes
handheld scanners, such as GeoSLAM Horizon, GreenValley LiGrip, SatLab Cygnus and
Leica BLK2GO, backpack solutions, such as Kaarta Stencil and Leica Pegasus, and complete
mapping systems for UGVs and UAVs, such as Emesent Hovermap ST. The wide range of
rapidly appearing and evolving SLAM systems on the market makes it difficult to provide
a fully comprehensive list.

The design of a dual 2D/3D lidar mapping system and a six-degrees-of-freedom (DOF)
interpolated odometry, where 2D lidar is used to enhance 3D solid-state lidar performance
used on a ground vehicle platform, can be found in [5]. The design of a spring-mounted
3D range sensor that reduces irregular vibrations of the measurement deck is described
in [6]. In [7], a method for focusing on specific regions of interest using a secondary rotation
motor to receive high-density measurements of the surroundings with a mobile robot
platform is presented. The authors tested how, by decreasing the secondary rotation speed
in the specific region, the point density in this area could be increased. The authors of [8]
developed a new system (named Art-SLAM) to perform point-cloud-based graph SLAM.
The proposed system is capable of achieving real-time performance, maintaining high
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accuracy, and can also efficiently detect and close loops in the trajectory, using a three-phase
algorithm. A similar method, focusing on the correction of a local point cloud alignment, is
described in [9].

Construction of the scanning actuation mechanism can have an impact on different
positions of the rotation center of the lidar mirror and construction itself; thus, sufficient
calibration methods are needed. The description of an automatic calibration method
for the actuated lidar can be found in [10]. An extension of the following calibration
methods for multiple spinning laser scanners with the support of inertial/global navigation
systems is presented in [11]. The results of the evaluation of an automated algorithm and a
spinning/rolling lidar system for continuous-time trajectory estimation, taking into account
inter-sample pose errors to handle data distortions, are described in [1]. The drawback
of using a high-density dataset is its size; thus, compression frameworks and algorithms
are needed. For example, reference [12] describes a detailed investigation of a geometry
compression method created for a spinning lidar point cloud.

Point cloud accuracy and data-quality assessment are amongst the most important
factors for the creation of reliable, error-free methods used in laser scanning. To tackle
the recurrent problems of misregistration, outlier detection and over-completeness, a
comparison of several methods is needed. In [13], the use of mobile indoor 3D scanning
methods are described, which are applied to a dozen different scanned locations, using
five commercial indoor mapping prototypes with respect to error metrics, which do not
operate on a manually given proximity scale, but on different proximity scales. High-
dense point cloud analyses include simplification methods, which enable significant size
reduction, while retaining sufficient variability of the geometry. Well-known algorithms
exist that combine incremental/hierarchy clustering or iterative simplification [14]. Surface
reconstruction using a robust diagnostic algorithm for more resistant outlier detection and
a technique for plane-fitting applying a minimum covariance determinant are presented
in [15]. In [16], this is used as an alternative approach for the assessment of local surface
damage in civil structures. In the same way, photogrammetry-based 3D mapping of road
distress detection is considered for use with unmanned aerial vehicles in [17].

With regard to the underground mining environment being investigated in the present
study, SLAM solutions and applications in real or artificial spaces need to be considered.
Underground workings are characterized by significant irregularities in the surrounding
geometries and by dustiness that can affect the performance of the mobile system and
the quality of measurements obtained. The results presented in the studies referred to
below confirm that SLAM-enabled laser scanning represents a promising method for
underground mining tunnel mapping and examination. One of the first studies that
indicated the potential for high-resolution 3D-mapping of an underground mine involved a
cart-mounted 3D-laser-scanner setup and an automatic 3D-modeling method [18]. Similarly,
reference [19] reported a method for solving the SLAM problem with six DOF for the
accurate volumetric mapping of an abandoned mine.

The authors in [20] proposed and tested a graph SLAM optimization method in
an underground mine laboratory based on a generalized iterative closest point (GICP).
In [21], a system for continuous high-resolution mapping and exploration of underground
spaces, with virtual-reality visualization capabilities that can be used in mobile robot rescue
operations, was presented. The investigation described in [22] demonstrated a SLAM
solution capable of accurately mapping underground mines at kilometer scales, using a
spinning 2D-laser scanner and an industrial-grade inertial measurement unit mounted
on a light vehicle. Finally, reference [23] analyzed the quality of SLAM-based mobile
laser scanner (MLS) data for the accurate and efficient geotechnical monitoring of the
underground mine environment. In addition, the applicability of real-time 3D SLAM
based on normally distributed transform (NDT) and pose-graph optimization for complex
underground space scenarios after disasters was examined in [24]. A broad assessment
of handheld laser scanners for mine surveys and the validation of results with terrestrial
laser scanners for reference data are presented in [25]. A summary of successful SLAM
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approaches for surveying underground environments, based on experiences from the
DARPA Subterranean Challenge, is presented in [26].

The literature review highlighted that there are still gaps to be filled with respect to
evaluation methods for comparing the results (i.e., 3D point clouds) produced with different
SLAM systems, with respect to both the hardware and the software used. Developing such
methods would assist in choosing suitable solutions for selected use-case environments,
optimizing the cost of scanning, system complexity and data size and quality. This study
aims to tackle this challenge.

2.2. Adjustable Mapping System Design

The purpose of developing an adjustable mapping system for this study was to
enable additional, controlled rotation of the lidar device around its longitudinal axis. In
consequence, the effective field of view (FoV) of the sensor can be gradually increased,
almost up to the point of a full-spherical FoV (excluding occlusions caused by the sensor
mounting and the robot). The adjustability of the proposed system is controlled by the
operator, who can easily change the range of lidar rotation using control software options
on the remotely connected tablet. In this research, we utilized these options to emulate three
different strategies for lidar head mounting, which have been used in various commercial
solutions and research prototypes. The details of the system configuration are presented in
the following paragraphs.

In this study, a 16-line Velodyne VLP-16 lidar is used. The sensor is mounted on
a rotating module, mounted above the set of sensors designed for inspection purposes
Figure 1a. The rotational movement is carried out using a Dynamixel AX-12A servo drive
from Robotis. During movement, the desired angle range changes with a resolution of
0.29◦. The supply voltage of the device is 12 V. The feedback signal of the current angular
position is used to dynamically generate the rigid body transform between the lidar and
the robot base reference frame. This allows the mapping to be performed in the robot frame
and provides an initial estimate for transformations between consecutive lidar positions in
a global frame of reference, computed by the SLAM algorithm.

(a) Sensor suite installed on the robot (b) Data-reading system structure

Figure 1. Adjustable mapping system for the mobile robot.

A block diagram of the data-acquisition system with the actuator module is shown in
Figure 1. Data from the lidar is sent to a computer via an Ethernet interface using a user
datagram protocol (UDP). Simultaneously, the data on the current inclination angle of the
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actuator is transferred to the computer via the USB port of the actuator module using a
half-duplex UART converter. The system is integrated with the Robot Operating System
(ROS) environment and dedicated software was developed for handling the components.
The software uses ROS dynamic reconfiguration parameters, which enable the setting of
a stable given position of the sensor throughout the measurement session or continuous
spinning of the lidar around the longitudinal axis of the robot in a given range. Due to
the limitations caused by the wiring, the maximum rotation range was limited to between
−90◦and 90◦, where the neutral horizontal position of the sensor was considered to be 0◦.
The control software was written using the Python language. The power supply of the
system was integrated with the robot power system. Suitable voltages for powering the
data acquisition computer, the lidar and the actuator module were obtained with DC/DC
step-down converters, set to the appropriate output voltage. The scheme of the module is
presented in Figure 2.

Figure 2. Lidar rotation module scheme. Θ1 represents inner laser rotation around the vertical axis
and Θ2 denotes external rotation of the entire sensor around its longitudinal axis using an actuator.

2.3. 3D Lidar SLAM

In this study, several steps of point cloud acquisition are taken to obtain coherent and
noise-free global point clouds. The aim is to ensure the highest quality of results from
the different methods tested so that the comparison outcomes would not be affected by
external factors or imperfect execution and repetition of the experiment. The parameter
values in each step are universally chosen and kept consistent for each case. Although
their method-specific tuning could potentially improve the accuracy of results, it might
significantly influence the data density and, thus, introduce bias into one of the most
important aspects of the analysis.

First, the robot trajectory is estimated in real time with the SLAM system, consisting
of A-LOAM lidar odometry [27], scan context loop closure detection [28,29] and GTSAM-
based pose-graph optimization [30–32]. A schematic overview of the method used is
presented in Figure 3, where different factor graph elements are denoted as symbols
with relevant connections between them. Lidar odometry, as the crucial element of the
system, provides transformation estimates between the sensor reference frame and a global
reference frame. The transform is calculated with a frequency of 10 Hz (equal to the lidar
data acquisition frequency) based on extraction of feature points, creating edge lines and
planar patches, and identifying correspondences between features found in consecutive
point clouds. An initial guess is provided by the tf broadcaster [33], which receives the
current actuator inclination angle and uses it to calculate the transform from the lidar frame
to the robot base frame. The SLAM workflow is based on open-source implementation of
SC-A-LOAM [28,29], with the addition of using rotation module feedback to provide an
initial guess of the lidar pose transformation and to prevent distortion of the point clouds.
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Figure 3. Scheme of utilized SLAM algorithm.

An important part of the applied SLAM algorithm is correction for motion distortion
of point clouds. The lidar used in the study acquires 360◦ 3D point clouds in constant
motion, revolving internally around its z-axis. One revolution (a sweep) takes 0.1 s and
an aggregated set of point coordinates is sent by the sensor to the PC. However, when
the scanner is in motion, the points acquired between the start and the end of the sweep
have a slightly different frame of reference. This results in aggregating in each point cloud
points acquired from slightly different positions, introducing a systematic error into the
measurements (Figure 4). Since the individual point acquisition timestamps are known,
it is possible to correct for the sensor ego-motion, provided that at least an approximate
motion of the sensor during the sweep is known. Lidar odometry is utilized to reproject
the points to the mutual reference frame of the point acquired at the end of the sweep.

Figure 4. Illustration of point cloud motion distortion in a simple room seen from the top view. Raw
point cloud in red; undistorted points in blue.

Lidar odometry provides a quick and constant, but preliminary, sensor pose estimate.
It is susceptible to long-term drift, especially with respect to orientation in the 3D space.
With a rotating sensor, such as that used in the study, this could cause unacceptable
mapping results, with common errors occurring, such as double walls or rotated corridors.
To prevent this, loop closure detection and pose-graph optimization are included in the
software system. In our test measurements, we did not have explicit loop closures in terms
of returning to the same place the robot visited earlier. Therefore, Scan Context++ was
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used to additionally bind the trajectory after each full resolution of the actuator. The point
clouds acquired at the same actuator inclination angle are/were similar due to the low
speed of the robot. The resulting matches between scans are added as a constraint to the
pose graph and optimized with GTSAM, reducing the drift of the odometry algorithm.

Then, clusters of points representing dynamic objects are removed in post-processing
using removert [34]. This step enables reduction in noise of the point clouds and exclusion
of moving objects accidentally appearing in the lidar field of view, such as the robot operator
or the robot itself. Although the filtering procedure may slightly influence the density of
the analyzed point clouds, due to the different level of robot ego-noise present in the three
compared SLAM approaches, this step is necessary to allow comparison of the resulting 3D
data. To minimize the influence of this step on the comparison, parameters of the filtration
in all three cases were kept consistent. An example of the effect of applying removert to our
data is presented in Figure 5. The noisy points are present in the central part of the scanned
environment, just above the floor. They are caused by the robot elements occasionally
coming into the lidar field of view. After applying the removert algorithms, this noise is
successfully eliminated. In the last stage of 3D data preparation, point clouds from every
scenario are cropped to the same area of interest to eliminate points that lie outside the
surveyed corridor.

Figure 5. Point cloud before (left) and after filtering (right).

2.4. Metrics for Quality Assessment of 3D-Scene Reconstruction

Evaluating the quality of 3D point cloud data acquired with a mobile mapping system
is not a straightforward task. Many metrics have been proposed and used to assess the
accuracy of SLAM measurements, such as the absolute trajectory error (ATE), the relative
trajectory error (RTE) and the relative position error (RPE) [35,36]. However, they focus
on positioning accuracy in the global context, that is, the angular and linear drift of the
algorithm in the long term, and do not convey information regarding the short-term quality
of the measurements. Nevertheless, there are other important aspects of 3D-data quality,
such as completeness, density and local coherence. In the context of extracting information
about specific objects from the point cloud, e.g., during inspection or classification, they
provide a more viable insight into the quality of geometry reconstruction [37], and, thus,
constitute the centerpiece of this study.

One of the metrics that can be used to estimate the local quality of a point cloud
is its density. This simply describes the number of measured points per chosen unit of
reference: a volume or a surface. For this study, since the mapped area primarily contains
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approximately planar surfaces, surface density was calculated with respect to Equation (1)
and analyzed.

SD =
N

ΠR2 (1)

where: N—number of neighboring points in the radius R around the analyzed point.
Data density provides information about the spatial distribution of points and their

number, characterizing the redundancy of the measured geometry. However, this metric
does not convey information on the noise level of the analyzed point cloud. To address this,
another component was introduced to the analysis, namely, object reconstruction quality,
that is, how accurate the measured geometry is of a single object in the scanned scene.

For evaluating the object reconstruction quality, i.e., the local consistency of a point
cloud, several objects were chosen as samples. They were manually identified in each
point cloud and compared between different tested lidar SLAM configurations. For planar
objects, such as walls, doors or floor, surface variation [38,39] (also named “change of
curvature” in other reports [40]) was calculated according to Equation (2). This metric
has been utilized in several investigations [15,16] to describe and identify local surface
deviations on the basis of point cloud data. The metric uses local descriptors of points in the
form of a covariance matrix of their neighborhood, which can be geometrically interpreted
as their eigenvectors with associated eigenvalues (Figure 6). The radius, in which the
neighboring points were included for calculation of the covariance matrix, was selected as
5 cm to provide detailed information, while still being above the value of the lidar ranging
accuracy. Moreover, for perfectly planar objects, it was possible to additionally perform a
least-square plane fit to introduce a single-number statistic for evaluation of local geometry
consistency [41].

SV =
λ3

∑3
i=1 λi

(2)

where λ1,2,3—eigenvalues (in descending order) of a covariance matrix calculated for the
set of coordinates of neighboring points in radius R.

Figure 6. An example subset of a 3D point cloud with corresponding eigenvectors scaled by
their eigenvalues.

In the cases of two distinctive objects in the study area, namely a ceiling lamp and a
trashcan, such analysis would not be meaningful since their geometry is more complex
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than a plane. To account for this, for all objects, point cloud resolution was additionally
compared by listing the number of points per object.

The last analyzed aspect of the point clouds acquired with SLAM is their completeness.
Since the raw number of points is heavily influenced by noise and redundant measurements,
other metrics need to be utilized for this purpose. Such a metric should describe a unique
volume of space, containing any measured points. Two data structures commonly used
in 3D-data processing have this property: a voxelgrid and an octree. Both divide a 3D
space into a regular volumetric grid of boxes. For the voxelgrid, the size of a single voxel is
fixed, and an octree contains a multiresolutional representation of the scene, sequentially
dividing cells at each level into octants [42,43]. To assess the completeness of scanning the
test environment, a number of occupied voxels and octree cells were compared between
the tested approaches. Voxelgrid resolution was selected at the levels of 5, 10 and 20 cm
based on the expected accuracy of the point cloud acquisition. Octree cells were counted at
each of the levels from 1 to 12. An example of an octree volumetric representation is shown
in Figure 7.

Figure 7. Example volumetric visualizations of an octree at levels: 3, 5, 7 and 9

2.5. Data Acquisition Setup

Several experimental data acquisitions were performed with a wheeled mobile robot
(Figure 8, powered by a Robot Operating System (ROS, [44]). Each measurement scenario
was carried out in the same corridor, approximately 40 m long, at the Wroclaw University
of Science and Technology. The corridor contained several obstructions in front, above
and on the sides of the robot, including recesses, doors and the wall above the lintel,
creating occlusions for the lidar. Such conditions were chosen to simulate the problems
with measurement coverage when scanning narrow linear objects, such as underground
tunnels. In each case, the robot followed approximately the same straight path, through
the middle of the corridor. Three common ways of utilizing the lidar sensor for SLAM
were considered:

1. Sensor in fixed horizontal position, i.e., horizontal lidar;
2. Sensor rotating in the full range from −90◦to 90◦, i.e., rotating lidar;
3. Sensor rotating in the limited range from −45◦to 45◦, i.e., tilting lidar.

During the tests, the adjustable mapping system was responsible for keeping the stable
position of the sensor in the first case and smoothly rotating it in the other cases. The system
feedback for the inclination angle was monitored in real time to ensure that no sudden
changes in the sensor inclination occurred and that the system worked correctly. Three raw
measurement datasets were recorded as .rosbag files and later processed with the previously
described SLAM workflow. Point sets were prepared for the analysis from consecutive
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measurements, with a horizontal, rotating, and tilting lidar containing, respectively, 1.9, 5.9
and 4.1 million points.

Figure 8. Robot during the measurements.

3. Results and Discussion

All the obtained point clouds were visually inspected. The topology and main dimen-
sions of the corridor measured in the point cloud matched the ground truth, which led to
the conclusion that the results of each measurement session succeeded in creating a valid
3D representation of the analyzed area. However, further analysis showed discrepancies
between the results for different methods.

3.1. Analysis of the 3D Data Density

First, the density of the point clouds was examined. For each point, a value of the
density of its surroundings was calculated and represented in a 3D view with an identical
color scale. The results are shown in Figures 9–11. The mean densities and corresponding
standard deviations were computed and are summarized in Table 1. The histograms with
kernel density estimator approximations of the analyzed density values are shown in
Figure 12.

Table 1. Density statistics in points per m2.

No Point Cloud Mean Surface
Density Standard Deviation

I Horizontal lidar 8978 5249
II Rotating lidar 10,230 5146
III Tilting lidar 7581 3967

In the 3D visualization of the point clouds (Figure 9), it can clearly be seen that a
horizontal lidar did not provide measurements of the whole area due to its limited field
of view. The most noticeable difference is located just at the starting point of the test. The
density of the point cloud in this case is moderate and slightly higher at the walls at the
height of the lidar during the measurements. However, examination of the histogram in
Figure 12 shows its great variability. The distribution has three modes, one at a density
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of approximately 1000 points per m2 (while the mean is roughly equal to 9000 points per
m2), which indicates that there are areas with significantly lower data coverage. This
phenomenon is not observed in the distributions of the datasets from a rotating lidar or
a tilting lidar. These are much smoother and exhibit a left skew towards higher density
values. The 3D views in Figures 10 and 11 of point clouds acquired with a rotating sensor
and a tilting sensor also indicate good measurement coverage, although the former has a
density higher by almost 35%, as illustrated in Table 1.

Figure 9. Point cloud density—horizontal lidar.

Figure 10. Point cloud density— rotating lidar.

Figure 11. Point cloud density—tilting lidar.
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Figure 12. Distributions of surface densities per point.

To further investigate the differences in the density of the point clouds, histograms of
the points’ z-coordinates were plotted using absolute and relative values. They are shown
in Figures 13 and 14. While Figure 13 can be used to directly compare results from different
methods to answer the questions such as, “Which method will generate the most dense
point cloud and with how large deviations?”, Figure 14 is better suited to describe the
internal properties of each method, i.e., “How well does the examined method represent
different areas, such as the floor, walls and ceiling?”. The former question is important in
terms of selecting the measurement method for a specific use case, while the latter can be
utilized to set expectations and plan measurements with an already selected method, e.g.,
due to hardware limitations.

The graph in Figure 13 generally indicates lower data density of the horizontal lidar
measurements at every height compared to the density of the other point clouds. However,
from 1.5 to 2.5 m above the ground level, i.e., at the level of the sensor mounting point, the
density is similar to the other methods examined for utilizing the lidar for SLAM. Another
mode of distribution is located at the ground level, representing good coverage of the floor
area. This peak is not present at the higher elevation, implying weak coverage of the ceiling
with the measurements. These issues are further exaggerated in Figure 14, which highlights
the limitation of the lidar placed horizontally on the robot. In a narrow, high corridor, this
method resulted in an unevenly dense point cloud, where areas of the floor and walls at the
level of the sensor position were overrepresented in comparison to areas not well-covered,
such as the ceiling. The other two methods, while differing in absolute values (Figure 13),
are characterized by very similar distributions of relative point counts per height. This
indicates that both methods are suitable for measurements of confined linear spaces, similar
to the test corridor, in terms of providing an evenly dense and complete point cloud.

A similar conclusion can be reached when analyzing point clouds downsampled by
the voxelgrids and octrees, for which the number of cells occupied for each method are
shown in Figures 15 and 16, respectively. At low voxelgrid resolutions and low octree
levels, all the point clouds contain a similar number of points, although the dataset acquired
with a rotating sensor is always the most numerous, followed by the tilting and horizontal
lidar methods. However, the higher the resolution and the octree level, the more visible
the difference between each method. At the highest analyzed resolution, the difference
between the rotating and tilting lidars also becomes significant: the former dataset contains
17% more 5 cm voxels and 44% more occupied octree cells at its 12th level.
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Figure 13. Distribution of points along the z-axis—absolute values.

Figure 14. Distribution of points along the z-axis—relative values.

Figure 15. Number of voxels for different voxelgrid resolutions.
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Figure 16. Number of occupied octree cells at each level from 1 to 12 (log scale).

3.2. Local Point Cloud Quality

In the previous subsection, the three analyzed point clouds were compared in the
global context, i.e., metrics were computed and examined for the whole dataset at once,
describing their overall spatial distribution, completeness and density. In contrast, this
subsection focuses on the examination of a few selected objects of interest located in the test
area. This analysis aims to highlight the deviations in the quality of the 3D reconstruction
of these objects between different methods. Six objects chosen for the detailed selective
analysis are marked with red boxes, annotated from (a) to (f), in Figure 17.

Figure 17. Objects selected for point cloud quality evaluation.

To begin with, the reconstruction quality of objects (a), (c), (e), and (f) was investigated,
since they consist mostly of planar objects. Consecutively, they are: a vertical surface
located high, a vertical surface at the same level as the measurement system, an area of
the floor at the mid-section of the measurement area and a door at the side wall in the
corridor. Their point clouds, colored by the calculated surface variation per point, are
presented in Figures 18–20. For objects (a) and (f) a huge influence of the occlusions is
visible in measurements with the horizontal sensor, resulting in parts of the objects not
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being mapped. Surface variation values for the above-mentioned objects were similar for
all tested methods. Horizontal lidar acquisition was characterized by the most extreme
discrepancies of surface variation in most cases, with the areas of low values mixed with
clusters of moderate and high outlier values. Rotating lidar produced point clouds that had
the most coherent surface variation in cases (a), (e), and (f), but the tilting sensor achieved
the best results in the case of object (c).

Figure 18. Point cloud surface variation comparison—objects (a) (left) and (e) (right).

Figure 19. Point cloud surface variation comparison—object (c).

Local accuracy of the final point clouds was assessed using a least-squares plane fit for
objects (a), (c) and (e). The results are listed in Table 2. The most consistent method was the
rotating lidar, which achieved the maximum standard deviation of plane fit residuals of
36 mm, which is not much greater than the sensor ranging accuracy (30 mm). Although
the residuals for horizontal and tilting lidar were also at an acceptable level, each method
achieved a roughly 50% increase in the residuals’ standard deviation compared to the
rotating lidar (for objects (a) and (c)). A noteworthy observation is the high compliance of
the results for object (e)—visible in all parts of the floor.
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Figure 20. Point cloud surface variation comparison—object (f).

Table 2. Standard deviations of the least-squares plane fit residuals

No Measurement Type Plane Fit σ [mm]
(a) (c) (e)

I Horizontal lidar 47 28 20
II Rotating lidar 30 36 12
III Tilting lidar 42 52 14

Objects (b) and (d), which had more complex geometries, were analyzed only in a
simplified context. Their point clouds are shown in Figures 21 and 22, respectively. In the
visualizations, the differences between the completeness of the 3D object reconstruction
using various methods are clear: the horizontal lidar did not acquire dense and complete
point clouds of those objects, while the rotating and tilting lidars successfully provided
sufficient 3D data to represent a complete object. For object (b), the difference between the
rotating and the tilting sensors is more noticeable than for object (d), which is caused by
the unfavorable placement of object (b) for the tilting sensor in the tested configuration (i.e.,
tilting of the sensor did not direct its field of view much to the ceiling).

Figure 21. Point cloud resolution comparison for object (b)—isometric views.

Figure 22. Point cloud resolution comparison for object (d)—isometric views.

The completeness of 3D data in the context of object reconstruction, as well as the
point cloud density, can be additionally summed up with a simple metric—the point count
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per object. Such an overview is presented in Table 3. Analyzing this metric, it can be seen
that the rotating lidar acquired the most points in all cases. Compared to the horizontal
lidar, it obtained from 40% more points up to seven times more points in the cases of the
complex objects (b) and d)). Compared to the tilt sensor, the rotating lidar acquired roughly
50% more data, but, for object (b), the discrepancy increased to 150% more points in favor
of the rotating sensor.

Table 3. Comparison of the number of points per object.

No Measurement Type Points per Object
(a) (b) (c) (d) (e) (f)

I Horizontal lidar 38,113 836 64,347 1432 6013 23,576
II Rotating lidar 86,618 5874 90,425 6289 44,671 38,065
III Tilting lidar 55,151 2286 70,834 4415 25,727 20,222

4. Conclusions

Different aspects of the 3D-data quality of three common hardware solutions utilizing
a 3D lidar scanner for the SLAM problem were investigated. Multi-metric comparison
was conducted to analyze factors such as local surface density and variation, plane recon-
struction accuracy and numbers of octree cells, voxels and points per mapped object. This
analysis enabled us to obtain insights into the behavior of SLAM in tunnel-like conditions,
especially with respect to key aspects of inspection and mapping robotic missions in con-
strained, underground environments. Similarly to the method described in [13], in the
future, our approach could be extended by performing multi-scale, multi-metric analysis
of the presented metrics, using software components with use of the ROS operating system
and the hardware setup described. This would enrich the results, especially when carrying
out such a comparison for scenes of greater scale.

Increasing the complexity of the system through introduction of an actuator to rotate
the spinning lidar around another axis greatly increased the data density and completeness,
and did not negatively impact the point cloud local coherence. Although the sensor rotating
in its full range generally obtained the best results, a tilting sensor achieved results that
were not much worse and provided significant improvement over the static, horizontal
placement of the lidar. Depending on the metrics analyzed, generally, the performance of
the rotating lidar was from 35% to almost 50% better than that of the tilting lidar. The tilting
lidar obtained a smoother data density distribution and almost 200% better completeness
(based on voxelgrid and octree cell counts) than the horizontal lidar, while still maintaining
comparable plane fit accuracy and mean data density. Choosing the right tool for the
selected measurement site will depend on the dimensions of the structure, notably its
height and width. The presence of objects causing numerous occlusions, common for
underground mining environments, would also favor the selection of one of the actuated
lidar mounts.

During inspection missions in underground mines, a massive amount of 3D data
is collected with SLAM to be used for both navigation and 3D analysis. In the case of
the latter, completeness of different object representations in the point cloud is crucial to
enable machine learning algorithms to perform classification successfully and to correctly
distinguish different objects of interest, which can then be processed with specialized,
use-case-targeted algorithms. Therefore, given the results presented in Section 3.2, sensor
solutions providing data denser than regular line scanners are desired. Although in this
study an actuated line scanner proved to be effective, similar devices, e.g., solid-state
lidars, should provide substantial improvement in data density. On the other hand, their
limitations often include a reduced field of view, which may negatively impact coverage of
the scanned area.
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ABSTRACT:  
The use of mobile mapping technologies (MMT) has become increasingly popular across various applications such as forestry, cultural 
heritage, mining, and civil engineering. While Simultaneous Localization and Mapping (SLAM) algorithms have greatly improved in 
recent years with regards to accuracy, robustness, and cooperativity, it is important to understand the limitations and strengths of each 
metrological measurement method to ensure the provision of 3D data of appropriate quality for the selected application. In this study, 
we perform a comparative analysis of three LiDAR-based handheld mobile mapping systems with survey-grade reference point clouds 
in a challenging test area of a partially collapsed underground tunnel. We investigate various aspects of 3D data quality, including 
accuracy and completeness, and present an improved method for 3D data completeness assessment aimed at evaluating SLAM-derived 
point clouds. The results demonstrate unique and diverse strengths and shortcomings of the tested mapping systems, which provide 
valuable guidelines for selecting an appropriate system for subterranean applications. 
 
 

1. INTRODUCTION 

Mobile mapping systems (Nocerino et al., 2019; Otero et al., 
2020; Elhashash et al., 2022) are steadily growing in popularity 
for the 3D reconstruction of indoor spaces. They are becoming 
more and more available for end-users thanks to their simplicity 
in use and affordability. They can be a cost- and time-effective 
alternative for traditional methods such as photogrammetry or 
Terrestrial Laser Scanning (TLS) in particular for large areas 
where mobile acquisitions would speed-up the surveying 
operations. Handheld, backpack and robotic-based vision- 
(Menna et al., 2022; Perfetti and Fassi, 2022), LIDAR- (Liang et 
al., 2014; Xie et al., 2022) or hybrid- (Trybała et al., 2022) 
systems using SLAM (Simultaneous Localization and Mapping) 
are becoming widely applied in multiple fields, such as cultural 
heritage documentation (Di Stefano et al., 2021), forestry 
(Pierzchała et al., 2018) and mining (Jones, 2020; Ebadi et al., 
2022). The application of mobile mapping technologies is quite 
complicated in underground, unstructured environments, since 
algorithms employed for motion estimation of the sensor have to 
deal with challenges such as low or uneven lighting, dust, high 
humidity, rough surfaces and overall lack of distinct visual and 
geometric features. Thus, a good understanding of the mapping 
system capabilities in terms of reliability and accuracy is needed 
for ensuring the compliance with the requirements of specific 
application. Moreover, in confined, underground spaces, 
multiple occlusions and a limited field of view of the sensors 
create other challenges for 3D data acquisition, leading to 
occurrences of holes and gaps in the resulting point clouds 
(Trybała et al., 2023). 
 
1.1 Paper’s aims 

The goal of the work is to assess the quality (geometry 
compliance with respect to ground truth data) and completeness 
of 3D point clouds acquired with different handheld LiDAR-
based SLAM solutions in unstructured underground conditions. 
A Livox- and Velodyne-based systems are benchmarked against 

a GeoSLAM ZEB Horizon and a TLS reference point cloud. For 
our analyses, different SLAM approaches are considered 
whereas a voxel-based point cloud comparison methodology is 
proposed, together with an improved method for evaluating the 
completeness of the 3D reconstruction. 
The work is part of the EIT-RM project VOT3D which aims to 
support the raw material sector by introducing modern methods 
and innovative solutions for the optimization of underground 
ventilation in mining scenarios based on 3D data. Utilization of 
mobile mapping technologies in the subterranean conditions, 
despite constituting a challenge, is an important part of enabling 
realistic simulations of ventilation system operation in an 
industrial underground mine. Consequently, understanding 
limitations and achievable quality of 3D data survey results in 
such environment is crucial for ensuring the reliability of entire 
optimization process.  
 

2. MOBILE MAPPING SOLUTIONS IN 
UNDERGROUND SCENARIOS 

2.1 Related works 

The issue of assessing accuracy of 3D point clouds for ensuring 
their suitability for the further analysis has been raised multiple 
times and for various use cases. Farella (2016) examined 
a commercial SLAM solution accuracy in the narrow 
underground corridors using targets measured with a total station. 
Toschi et al. (2015) performed an in-depth statistical analysis of 
accuracy of a mobile mapping system, mounted on a car, utilizing 
ground truth data obtained with a TLS and photogrammetry. 
Nocerino et al. (2017) similarly examined selected commercial 
SLAM solutions (a backpack and a handheld scanner) through 
point cloud comparison with a TLS ground truth data. The tests 
were performed in indoor and outdoor urban conditions. Lehtola 
et al. (2017) introduced a multi-scale error metrics for assessing 
the accuracy of point cloud data and performed the evaluation of 
multiple SLAM systems in the indoor setting. The works 
underlines the need of multi-objective 3D data quality 
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examination for SLAM besides carrying out a raw comparison of 
geometrical compliance with the reference data. Raval et al. 
(2019) investigated the ZebRevo SLAM-based mobile mapping 
system in an underground coal environment to evaluate its 
potential and identify related challenge. Kim and Choi (2021) 
proposed an autonomous driving robot to perform 3D mapping 
of mining tunnels based on two 2D LiDARs placed horizontally 
and vertically. 
 
2.2 Study area 

The test measurements were carried out in the Gontowa adit1, 
located in the Owl Mountains in Poland (Figure 1). The tunnels 
had been carved in sandstone during the World War II by 
Germans in the scope of the Riese project. Due to several 
collapses, the site is characterized by irregular geometry, thus 
being a perfect site to test the performances of mobile mapping 
units in a complex, uneven, underground scenario. 
For the assessment of the SLAM systems (Section 2.3), a part of 
the surveyed tunnels with a loop shape is considered (ca 120 m 
in total). This allowed to better check the results of LiDAR 
odometry, testing the ability of SLAM algorithms to detect loop 
closures and appropriately adjust the trajectory with a pose graph 
optimization.  

a)  b)  
Figure 1: Sketch (a) and a photo (b) of the surveyed tunnel. 

 

2.3 Assessed LiDAR-based mobile mapping systems 

Three portable mobile mapping solutions (Table 1) were used 
during a measurement session in the tunnels:  
• a GeoSLAM ZEB Horizon; 
• a Livox Horizon LiDAR, coupled with an internal inertial 

measurement unit (IMU) manually carried during the 
surveying operations; 

• a Velodyne VLP-16 LIDAR sensor coupled with 
a Dynamixel servomotor. 

The Velodyne LiDAR was assembled using open-source libraries 
and 3D printing rapid prototyping to realized handheld SLAM 
system (Figure 2a). It was designed for low-cost, fast mapping of 
unstructured underground environments. Thanks to integration 
with Robot Operating System (ROS, Quigley et al., 2009), our 
system is capable of utilizing different SLAM frameworks for 
LiDAR data, integrating various sources of LiDAR odometry, 
point cloud ego-motion compensation caused by the LiDAR and 
actuator rotating motions, as well as online and offline loop 
closure detection and pose graph optimization. Standardized 
setup in the ROS environment, using state-of-the-art libraries for 
point cloud processing and SLAM, such as PCL (Rusu and 
Cousins, 2011) and GTSAM (Dellaert et al., 2022), allows easy 
further extensions and improvements or streamlined 
implementation on a different machine. The setup does not 

 
1 from Latin aditus, entrance 

require IMU unit for mapping, which allows to perform mapping 
tasks even in high-vibration, industrial areas. However, it comes 
at a cost of expected slight degradation in mapping quality, 
comparing to LiDAR-inertial solutions.  

a) b)   

Figure 2: Assessed low-cost LiDAR SLAM systems: in-house 
3D design of an actuated Velodyne (a) and a Livox Horizon 
with an integrated IMU (b). 

 
Sensor Sensor parameter 
  Measurement 

speed [pts/s] 
Maximum 
range [m] 

Ranging 
accuracy [mm] 

Riegl VZ-400i 500,000 800 5 (@100 m) 

GeoSLAM Zeb 
Horizon 

300,000 100 30 (@100 m) 

Velodyne VLP-
16 

300,000 100 30 (@100 m) 

Livox Horizon 240,000 90 20 (@25 m) 

Table 1: Specification of sensors involved in the study. 
 
2.4 Ground truth data 

A dense reference point cloud was acquired with a Riegl VZ-400i 
TLS, a survey-grade instrument characterized by the ranging 
precision of 3 mm and accuracy of 5 mm at 100 m distance.  First, 
a field reconnaissance was conducted. The condition and 
accessibility of the site were assessed and a measurement plan 
has been prepared. Numerous collapses located mainly at the 
intersections of the corridors and tight constrictions made the 
measurements with a heavy TLS significantly more arduous and 
demanding. Finally, the entire 3D surveying was performed from 
60 stations, with the average distance between them being 
approximately 5 meters. Data acquisition parameters were 
selected to obtain a scanning grid with a resolution of 9 mm at 
a distance of 10 m. More than 931 mil points were collected in 
the entire underground area.  
The registration of the 60 individual scans into a single coherent 
poit cloud was performed with the proprietary RiSCAN PRO 
software. The employed scans adjustment method is based on 
plane-to-plane matching of patches extracted from the point 
clouds, utilizing a solver with a robust kernel. To create the final 
registered point cloud (Figure 3), some 171,197 patches were 
used and the final standard deviation of the adjustment was 
2.6 mm. The histogram of residuals, indicating their well-
balanced, normal distribution, is shown in Figure 4.  
 

 
Figure 3: Registered reference point cloud of the entire 
underground complex. 
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Figure 4: Residual distribution of plane-to-plane TLS point 
clouds registration. 

 
Finally, cropping to the investigated area of interest and 
subsampling the point cloud to the maximum resolution of 1 mm, 
the reference dataset size was reduced to some 11 mil points. 
 
2.5  3D data quality evaluation 

The assessment of the 3D reconstruction quality can be 
performed with a focus on particular aspects of the generated 
3D data properties. The most important ones are accuracy 
(i.e., compliance with the ground truth geometry), completeness 
(a measure of the area of interest coverage) and precision (point 
dispersion around the averaged location of a mapped object in 
a 3D space). Nevertheless, abovementioned qualities are still 
only a simplification of the broad topic and more metrics have 
been proposed and analyzed in other works (Lehtola et al., 2017; 
Trybała et al., 2023). 
For analyzing datasets acquired both with photogrammetric 
(Knapitsch et al., 2017) and laser scanning (Schops et al., 2017) 
methods, common multi-scale metrics of accuracy and 
completeness are often used (Nocerino et al., 2017). They derive 
from the classical metrics of precision and recall in classification 
problems. The ratio of evaluated points aligned to a ground truth 
model is calculated at different distance thresholds for 
determining the precision curve shape. On the contrary, 
completeness is estimated by thresholding the closest distances 
calculated from reference data to the analyzed point cloud. 
Different approaches of estimating the precision metric can be 
found in the literature, with the calculation of the roughness 
parameter (Santos and Júlio, 2013) and checking the standard 
deviation of the least-square fit on the planar surfaces (Chen et 
al., 2018) being the prevailing options. In this paper, due to lack 
or regular shapes in the underground tunnel, local accuracy, 
i.e., quality of the 3D data alignment to the reference data 
calculated for a small subset of points, will be considered as an 
approximation of precision evaluation. 
However, while being appropriate for tasks of small scenes or 
object 3D reconstruction, the evaluation of the completeness of 
large-scale indoor mapping can be heavily influenced by the drift 
error of the SLAM algorithm. The illustration of this problem is 
shown in Figure 5: although the point cloud acquired with SLAM 
is topologically correct, the drift errors result in the global shift 
of the location of the tunnel on the left side of the figure. While 
the inclusion of this drift error in assessing the point cloud global 
accuracy is desired, for estimating completeness it can falsely 
negatively skew the results. A simple co-registration of the 
evaluated point cloud with the ground truth data, even using 
a 9-parameter transform, would not solve the issue, since the 
rotational and translational errors of the SLAM algorithm cannot 
be expected to accumulate uniformly with the traveled distance, 
especially in variable and challenging underground conditions. 
A method of non-rigid and non-uniform point cloud alignment is 
needed to obtain an accurate fit to the reference data and calculate 
an accurate completeness metric (Figure 5b). 
To tackle this issue, we propose a sequential, voxel-based 
adjustment method. Its overview is presented in Figure 6.  

a) b)   

Figure 5: Top view of the point clouds depicting the influence 
of the global drift on their relative alignment: ground truth 
(red) overlapped with the original Velodyne SLAM data 
(yellow) (a) and with its drift-compensated version (blue) (b). 

 
First, we downsample the point clouds and create a common 
voxel grid for all of the evaluated datasets and the ground truth. 
We then create voxel models, checking the occupancy of each 
cell with a set minimum threshold of points to minimize the 
influence of noisy data. Afterward, we start an iterative process 
of aligning points inside of each voxel to the ground truth with 
the iterative closest point algorithm (ICP, Rusinkiewicz 
& Levoy, 2001), estimating the rotation and translation 
parameters. We select the initial voxel, e.g., the one populated 
with the highest number of points, and continue aligning 
subsequent neighboring voxels until all are transformed. We start 
the alignments with the initial guesses of the transform based on 
already calculated transforms of the neighboring voxels, which 
in turn reduces the drift error of the SLAM algorithm. Finally, all 
points from the original point cloud are transformed according to 
the transformation of their parent voxel.  

 
Figure 6: Flowchart of the proposed method for compensating 
SLAM drift errors and improve the 3D data completeness 
evaluation. 

 
In our method, we divide the analyzed point clouds regularly in 
the space domain, i.e., in a voxel grid. Alternatively, a temporal 
division approach can be used, as presented by Al-Durgham et al. 
(2021). Nevertheless, this would require the evaluated point 
clouds to be timestamped or to have the estimated sensor 
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trajectory with poses corresponding to raw point clouds. This 
cannot be always achieved, especially with commercial 
SLAM solutions.  
Our approach allows to adjust a whole, single point cloud for the 
evaluation, without any information on the sensor trajectory, and 
without artificially reducing the local noise of the point cloud for 
obtaining accurate completeness and local accuracy estimates.  
However, it must be stressed that the presented method does not 
aim to reduce the SLAM algorithm drift for achieving better 
mapping results since it utilizes the usually unavailable ground 
truth data. The presented workflow aims only to improve the 
process of evaluating the quality of the results obtained with 
different mobile mapping methods on a test field with reliable 
reference data. 
 
2.6 Selected metrics  

In this case study, results of mapping the underground site with 
3 mobile mapping systems are divided into 3 aspects: 

a) global accuracy, 
b) local accuracy, 
c) completeness. 

For assessing global and local accuracy, evaluated point clouds 
registered with a rigid ICP transform to the reference data were 
used. Global accuracy has been analyzed both using traditional 
approach (i.e., as percentage of cloud-to-reference unsigned 
distances below different thresholds) and calculating cloud-to-
reference signed distances with M3C2 method available in Cloud 
Compare software (Lague et al., 2013). Local accuracy has been 
analyzed through calculating standard deviations of point cloud 
subset fit in 2 selected areas and 2 cross-sections of the tunnel 
shown in Figure 7. Completeness metrics has been obtained with 
point clouds adjusted according to the previously described 
algorithm, summarized in Figure 6. 

  
Figure 7: The ground truth point cloud with highlighted 
regions-of-interest (ROIs) and cross-sections chosen for the 
selective local accuracy analysis. 

 
3. RESULTS 

The SC-LiDAR-SLAM open-source framework (Kim et al., 
2022) was adopted for processing the collected LiDAR data. 
A-LOAM was used as a source of LiDAR odometry for 
Velodyne and FAST-LIO was selected for Livox. Processing 
pipelines for both sensors utilized Scan Context++ for loop 
closure detection and GTSAM for constructing the pose graph. 
The data collected with the ZEB Horizon were processed with 
the GeoSLAM proprietary tool. 
The perspective views of the resulting point clouds are presented 
in Figure 8 whereas Figure 9 shows closeup views in one of the 
more challenging areas, where a passage through the tunnel is 

steep and narrow due to the rockfall. From those figures onwards, 
the uniform color coding is kept consistent for all point cloud 
data, unless indicated otherwise: TLS data is represented in red, 
GeoSLAM in orange, Velodyne in blue and Livox in green. 

a) b)  

c) d)  
Figure 8: Registered point clouds of the study area: TLS (a), 
GeoSLAM (b), actuated Velodyne (c) and Livox (d). 

 

a) b)  

c) d)  
Figure 9: Close view of the collected point clouds of an area 
with a partly collapsed passage: TLS (a), GeoSLAM (b), 
actuated Velodyne (c) and Livox (d). 

 
A qualitative investigation of those visualizations reveals some 
issues with the performance of different tested mapping systems. 
First, the point cloud from GeoSLAM contains heavy noise, 
concentrated around the area with the narrow passage of the 
tunnel. Livox point cloud seems to show the least surface 
deviation. However, sparse, more apparent erroneous point 
groups are also visible. The limited field of view of the sensor 
also caused the presence of visible gaps in the mapping coverage 
of the tight tunnel spaces. On the other hand, the 3D 
reconstruction from the actuated Velodyne measurements 
manifests visibly higher, although more uniformly distributed 
noise on the surfaces. 
In the next step, a quantitative assessment based on metrics 
selected in Section 2.6 has been performed. First, the local 
geometry of the mapped areas was examined on the basis of 
2 cross-sections and 2 ROIs. Point cloud subsets were registered 
to the corresponding TLS subset with an ICP algorithm again. 
This step refines their alignment to the reference data, enabling 
analyzing the local accuracy of results acquired with tested 
mapping systems. The resulting aligned point cloud cross-
sections and ROIs are shown in Figures 10 and 11, respectively. 
The standard deviations of each fit are reported in Table 2.  
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a)  b)  a)  b)  
Figure 10: Cross-sections A-A’ (a) and B-B’ (b) of point 
clouds acquired with: TLS (red), GeoSLAM (orange), 
actuated Velodyne (blue) and Livox (green). 

Figure 11: Regions-of-interest (ROIs) No. 1 (a) and No. 2 (b) of point 
clouds acquired with: TLS (red), GeoSLAM (orange), actuated 
Velodyne (blue) and Livox (green). 

 

a)  b)  c)  

d)  

Figure 12: M3C2 signed distances between the ground truth point cloud and GeoSLAM (a), actuated Velodyne (b) and Livox (c) 
data. Common coloring scheme according to the distance values applied to all point clouds (d). 

 
Sensor M3C2 

distance 
σ [mm] 

Cross-
section ICP 
fit σ [mm]  

ROI ICP 
fit σ [mm] 

  A-A’ B-B’ No.1 No.2 
GeoSLAM 364 26 94 49 35 
Actuated Velodyne 281 62 59 86 57 
Livox Horizon 232 53 24 26 114 

Table 2: Standard deviations of comparisons to the ground truth 
using the entire evaluated datasets (M3C2) and only selected 
cross-sections and ROIs. 
 
Most notably, a double-wall and double-floor errors is visible for 
Livox point cloud slice A-A’ and ROI No. 2. GeoSLAM exhibits 
a significantly higher noise level in slice B-B’. Velodyne point 
cloud fit errors are consistent at a medium level, ranging from 
57 to 86 mm. Results from fitting both Livox and GeoSLAM 3D 
data display higher variability, reaching error extremes from 
24 mm to around 100 mm.   
Global accuracy was investigated thereafter. Signed distances 
between each evaluated point cloud were computed and 
visualized with a common color scheme in Figure 12 to pinpoint 
the areas of the degradation of the mapping quality due to the 
drift of the SLAM algorithm. 3D data generated with all mobile 
mapping systems contain outlier groups in different areas. For the 
GeoSLAM, they are concentrated in tunnel parts on the left side 
of Figure 12a, while for the Livox highest error values were 
estimated for the area on the right side of the Figure 12c. 
Velodyne point cloud, presented in Figure 12b, differs from the 
ground truth mostly in the lower and left part of the figures. All 
of the examined SLAM variations exceeded the standard 
deviation of the signed distances to the reference data of 200 mm 
(Table 2). However, this not necessarily indicate the bad quality 
of the mapping results, but only the expected presence of the drift 
error since no global positioning source was available in the 
underground site. This results in numerous groups of outlying 
points (in terms of global accuracy), which on purpose were not 
manually removed or corrected. This is further proved by 
degradation of global accuracy concentrated in the in the lower 

left corner of the figure: the area furthest from the mapping 
starting point (and thus, the loop closure location). 
Another aspect of 3D data quality assessment, the completeness, 
was studied with drift-compensated versions of all evaluated 
point clouds. However, to showcase the difference between our 
proposed approach and the original, completeness curves were 
approximated and plotted with both methods (Figure 13). 
Noticeable difference can be seen not only in the absolute values, 
but also in the shape of the curves, indicating that our method 
provides estimates of the completeness metric in a more reliable 
and accurate manner.  

 
Figure 13: Comparison of completeness curves calculated for 
the analyzed datasets with the original method and our 
approach. 

 
Furthermore, accuracy and completeness curves, calculated as 
described in Section 2.6, are presented in Figure 14. The plot 
summarized the weaknesses of each tested method. 
Completeness of Velodyne and GeoSLAM mapping results 
quickly reaches values close to 100%. The accuracy of 
GeoSLAM, matching the Livox accuracy for low distance 
thresholds, plateaus at around 95% due to the presence of highly 
erroneous points. 
On the other hand, Velodyne’s accuracy rises considerably 
slower, but consistently, to almost 100% at the 0.5 m threshold. 
3D data generated with Livox achieves superior accuracy of all 
the tested methods, but due to narrow field of view, its results 
show an impaired completeness of the measurements even at 
high distance thresholds. 
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Figure 14: Resulting estimates of accuracy and adjusted 
completeness for different distance thresholds for the 
evaluated SLAM point clouds. 

 
To easily visualize the spatial distribution of areas with lower 
completeness and local accuracy, a simple voxel-based 
comparison method was developed. Using the common voxel 
grid, prepared during the drift-compensation phase of data 
processing, we compare the occupancy of voxels in each 
examined model with the reference voxel model. Thus, true 
positive (TP) voxel is occupied both in the examined and the 
ground truth data; false negative (FN) voxel is occupied only in 
the reference model, and a false positive (FP) voxel corresponds 
to a voxel occupied only in the evaluated dataset. Their 
percentages have been calculated for 2 voxel sizes (0.2 m and 
0.5 m) and listed in Table 3 and the corresponding visualizations 
are included in Figure 15. Confirming the findings of previous 
analyzes, the number of incorrectly mapped voxels for 
GeoSLAM and the number of unmapped voxels for Livox stay 
high even at lower resolutions, while results from Velodyne 
scanning generally improve in all aspects. 
 

System 20 cm voxel 
count [%] 

50 cm voxel 
count [%] 

  TP FN FP TP FN FP 
GeoSLAM 61 3 36 82 1 17 
Actuated Velodyne 57 25 18 88 5 7 
Livox Horizon 49 30 21 74 18 8 

Table 3: Ratios of voxels classified according to their occupancy 
compared to the reference voxel model. 

4. CONCLUSIONS 

This study presented a comprehensive assessment of the quality 
of results obtained from different 3D LiDAR-based mobile 
mapping techniques in an underground environment. We 
presented 2 in-house built systems, based on popular low-cost 3D 
LiDAR sensors, manufactured by Velodyne and Livox, and 
utilizing open-source SLAM frameworks for generating co-
registered point clouds. We compared such sensors to the 
GeoSLAM Zeb Horizon commercial solution and benchmark all 
systems against reference data collected with survey-grade TLS. 
Analyzing different aspects of 3D data quality provides insights 
into the unique strengths and limitations of each examined 
approach, which need to be considered when selecting the 
appropriate method for a particular application of 3D 
reconstruction of complex underground scenes. 
Based on our findings and the presented comparison 
methodology, an optimal mobile mapping system can be chosen 
according to the desired focus on the particular 3D data quality: 
accuracy and completeness. A crucial aspect is the determination 
of their critical values for selected metrics representing them. For 
example, for the VOT3D project purposes and ventilation 
simulations at a large scale, systems maximizing the 
completeness of the measurements, i.e., GeoSLAM and our 
actuated Velodyne system, would be the most suitable options. 
While the former has the potential to achieve greater accuracy, 
the latter might provide more robustness in the industrial mine 
environment due to not utilizing inertial data. On the other hand, 
applications requiring high accuracy and providing more room 
for maneuvering the sensor could benefit from employing 
a Livox-based mobile mapping system. 
The article reported also a dedicated technique for improving the 
assessment of 3D reconstruction completeness through applying 
an iterative, voxelized ICP alignment refinement. The proposed 
method aims to provide a more accurate assessment of real 
coverage of the 3D scene, obtained with SLAM. We reduced the 
influence of one of its inherent error sources, the drift, on the 
resulting completeness estimate. The approach is designed to be 
versatile due to the fact of requiring only the 3D point cloud data 
(reference and assessed) as the input. 
 

a)  b)  c)  

d)  e)  f)  

Figure 15: 3D visualizations of the voxel-based point cloud comparison with the reference data: GeoSLAM (a, d), actuated Velodyne 
(b, e) and Livox (c, f). Voxels compliant with the ground truth data are shown in green, non-mapped areas in blue and incorrect 
voxels in red. Figures a-c rendered for 0.2 m voxel size, figures d-f for 0.5 m voxel size. 
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Abstract
The research potential in the field of mobile mapping technologies is often hindered by several constraints. These include the 
need for costly hardware to collect data, limited access to target sites with specific environmental conditions or the collec-
tion of ground truth data for a quantitative evaluation of the developed solutions. To address these challenges, the research 
community has often prepared open datasets suitable for developments and testing. However, the availability of datasets that 
encompass truly demanding mixed indoor–outdoor and subterranean conditions, acquired with diverse but synchronized 
sensors, is currently limited. To alleviate this issue, we propose the MIN3D dataset (MultI-seNsor 3D mapping with an 
unmanned ground vehicle for mining applications) which includes data gathered using a wheeled mobile robot in two distinct 
locations: (i) textureless dark corridors and outside parts of a university campus and (ii) tunnels of an underground WW2 
site in Walim (Poland). MIN3D comprises around 150 GB of raw data, including images captured by multiple co-calibrated 
monocular, stereo and thermal cameras, two LiDAR sensors and three inertial measurement units. Reliable ground truth 
(GT) point clouds were collected using a survey-grade terrestrial laser scanner. By openly sharing this dataset, we aim to 
support the efforts of the scientific community in developing robust methods for navigation and mapping in challenging 
underground conditions. In the paper, we describe the collected data and provide an initial accuracy assessment of some 
visual- and LiDAR-based simultaneous localization and mapping (SLAM) algorithms for selected sequences. Encountered 
problems, open research questions and areas that could benefit from utilizing our dataset are discussed. Data are available 
at https:// 3dom. fbk. eu/ bench marks.
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1 Introduction

1.1  Mobile Mapping

Mobile mapping (Chiang et  al. 2021; Elhashash et  al. 
2022) is a widely used technique for various applications, 
such as documenting and inventorying scenes (Vallet and 
Mallet 2016; Di Stefano et al. 2021), integration of air-
borne surveying (Toschi et al. 2017), creating computer 
models for simulations or decisions (Tak et al. 2021; Feng 
et al. 2022), and guiding robots for navigation (Funk et al. 
2021). The integration of localization and mapping into 
a single process, known as simultaneous localization and 
mapping (SLAM), is crucial for accurate spatial posi-
tioning and navigation. A variety of sensors and devices 
can be used for mapping, including 2D and 3D LiDAR 
scanners, cameras, and depth sensors. SLAM algorithms 
perform well in indoor environments, such as factories 
and warehouses, allowing for autonomous operation of 
robots. However, mapping in outdoor and uncontrolled 
scenarios presents challenges for SLAM algorithms, such 
as uneven terrain, limited range of 2D LiDAR sensors, 
dynamic objects and more sources of sensor noise, which 
can potentially degrade the quality of mapping and render 
some popular assumptions useless (e.g., presence of the 
flat ground). In such scenarios, 3D LiDAR scanners and 
camera-based systems (V-SLAM) are more effective. In 
open spaces, global navigation satellite systems (GNSS) 
can provide a reliable location, but in areas where satellite 
signals are not available, such as tunnels, caves and mines, 
a more sophisticated SLAM algorithm is needed.

Research and development of mobile mapping solutions 
for such environments can be traced back to early works 
of Thrun et al. (2003), which showcased the usage of laser 
scanners mounted on a robot to carry out a volumetric 3D 
survey of an underground mine. Future advances in field 
robotics and increasing availability of open-source solu-
tions resulted in developing a wide selection of robotic 
(Kanellakis and Nikolakopoulos 2016; Nüchter et al. 2017; 
Ren et al. 2019; Trybała 2021; Yang et al. 2022), handheld 
(Zlot and Bosse 2013; Trybała et al. 2023), and wearable 
(Masiero et al. 2018; Blaser et al. 2019) solutions of vary-
ing complexity for mapping subterranean spaces. How-
ever, the problem of performing robust SLAM in challeng-
ing environments still cannot be considered as fully solved 
(Ebadi et al. 2022).

1.2  Open Datasets

To advance research in the field of SLAM, multiple open 
datasets have been collected and made publicly available 

by scientists from the robotics and geomatics communi-
ties (Geiger et al. 2012; Liu et al. 2021; Macario Barros 
et al. 2022; Helmberger et al. 2022). These datasets allow 
researchers to investigate various mapping approaches and 
easily test and evaluate in-house, commercial, or open-
source software solutions without the need for access 
to expensive data acquisition platforms, particularly for 
robotic systems. The popularity of these datasets has led 
to the creation of benchmarks, where automated systems 
evaluate the accuracy of processing methods using stand-
ardized metrics and rank them among other submitted 
solutions.

This approach enables an objective comparison of differ-
ent SLAM algorithms through use of common metrics, such 
as absolute and relative trajectory errors (ATE and RTE), 
to assess localization accuracy. However, there are various 
other strategies for evaluating the quality of 3D mapping, 
such as using different metrics for measuring the compliance 
of point clouds with ground truth (GT), and for aligning 
the resulting spatial data with reference data, such as using 
global or local registration methods.

One of the key events that greatly accelerated progress 
in mobile mapping research were the competitions organ-
ized by the US-based Defense Advanced Research Projects 
Agency (DARPA), such as the DARPA Grand Challenges 
(starting from 2004) (Seetharaman et al. 2006) and the 
Subterranean Challenge (held in 2017–2021) (Chung et al. 
2023). The former type of competition primarily focused on 
the needs of the automotive industry, such as localization, 
mapping, and perception in open, urban areas, and the lat-
ter on robot autonomy, perception, and SLAM, respectively. 
Through dedicated funding, clear goals, and reliable evalu-
ation methods, these events enabled teams from around the 
world to collaborate and develop innovative SLAM solu-
tions. The by-products of these challenges are also open 
datasets and benchmarks, which were collected and formed 
during the field trials of the competitions. Although there 
are numerous publicly available datasets dedicated to evalu-
ating SLAM algorithms, the diversity of real-world envi-
ronments in which these algorithms are applied, as well as 
the various sensor configurations for which mapping solu-
tions are developed, results in a constant need for acquiring 
more data to evaluate method performance under different 
conditions. This issue is becoming increasingly critical as 
learning-based methods gain popularity. Providing them 
with well-diversified training data with reliable reference 
data is crucial for their generalization, adaptability, and 
in consequence usability in real-world scenarios. Further-
more, the universality and uniqueness of a dataset is not 
only determined by the environment in which the data was 
collected, but also by the limited set of sensors used. The 
use of multiple sensors to simultaneously acquire different 
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types of data not only facilitates the development and testing 
of data fusion methods, but also provides the most objective 
way to compare methods based on different sensors, such as 
visual SLAM (V-SLAM) with LiDAR-based approaches. In 
recent years, the AMICOS1 and VOT3D2 EIT Raw Materials 
projects, among others, tackled the use of ground/wheeled/
handheld robotic platforms, equipped with various imaging 
and LiDAR devices, to inspect underground mining sce-
narios and technical infrastructures. Multi-sensors robots 
(Trybała et al. 2022) or portable stereo-vision systems (Tor-
resani et al. 2021) can be used to search for hot idlers in a 
conveyor belt, map underground spaces, or automatically 
search for humans or damages of components (Szrek et al. 
2020; Menna et al. 2022; Dabek et al. 2022).

1.3  Paper Contribution

A common aspect of robotics platforms and mobile mapping 
solutions is the accuracy and robustness evaluation of locali-
zation and mapping methods in harsh conditions (Nocerino 
et al. 2017; Trybała et al. 2023). Despite the availability of 
various robotic datasets collected in different environments, 
most of the available datasets do not have redundant sensor 
suites or accurate and complete 3D ground truth.

To address the above-mentioned issues, we propose a 
novel set of data collected in (i) an indoor man-made envi-
ronment (University buildings) and (ii) an underground 
facility in Walim (Poland) using a wheeled mobile robot 
(UGV) equipped with multiple low-cost sensors. The dataset 
comprises data from an exhaustive, redundant sensor sys-
tem, including two sets of different stereo cameras, inertial 
measurement units (IMUs), and two independent LiDAR 
scanners: a spinning Velodyne VLP-16 with an actuator 
and a solid-state Livox Horizon. To facilitate the evaluation 
of mapping results by the users, we also provide reliable 
GT data in the form of a survey-grade point cloud acquired 
with a Riegl time-of-flight-based terrestrial laser scanner 
and the parameters of the external calibration of the sensors 
mounted on the robot. The collected data are processed and 
a preliminary accuracy assessment of the results obtained 
with selected SLAM methods, utilizing various sensors, is 
presented.

The structure of the article is as follows. First, related 
works and available datasets for testing SLAM methods are 
discussed. Then, the utilized in-house mobile robot charac-
teristics, dataset structure, and ground truth data acquisi-
tion methodology are presented. The collected and shared 
eight sequences are reported in Sect. 3, together with some 
results of the performance of selected state-of-the-art SLAM 

algorithms. Finally, the directions of challenging research 
areas and an outlook or the future developments in the con-
text of utilizing the presented dataset close the paper.

2  Related Works

2.1  SLAM Datasets: Common Scenarios

In the general research area of mobile mapping, numer-
ous open datasets have been published, often featuring a 
dedicated benchmark. The most prominent research groups 
involved in these studies focus on the applications in the 
automotive industry, photogrammetry, surveying, and robot-
ics. At the early days of 3D SLAM developments for autono-
mous systems, datasets being published were dominated by 
car-based systems in urban areas and did not focus on bench-
marking and metrological evaluation of mapping. Thus, they 
did not provide an accurate reference data for mapping, but 
only the raw data from sensor systems consisting usually 
of camera(s), LiDAR scanners, and inertial measurement 
unit (IMU) (Smith et al. 2009; Blanco-Claraco et al. 2014; 
Cordts et al. 2015).

The prime example is the Massachusetts Institute of 
Technology (MIT) DARPA Grand Challenge 2007 dataset 
(Huang et al. 2010). Despite the lack of full GT, it still marks 
an important moment of publicly releasing a huge amount 
of image and point cloud data, acquired with sensors rel-
evant to the automotive industry applications, enabling a 
wide audience to work on robotic perception-related solu-
tions. Similarly, two Korea Advanced Institute of Science 
and Technology (KAIST) datasets (Choi et al. 2018; Jeong 
et al. 2019) include only GNSS-derived trajectories as the 
reference data, but provide additional data, recorded at day 
and at night, and extend the sensor selection by a thermal 
camera.

Among the most influential SLAM datasets, constitut-
ing arguably the most popular benchmark, is the Karlsruhe 
Institute of Technology and Toyota Technological Institute 
(KITTI) dataset (Geiger et al. 2012, 2013). The data were 
collected with a sensor system mounted on a roof of a Volk-
swagen car in the urban area of Karlsruhe, Germany. Apart 
from providing image, LiDAR point clouds and IMU data, 
it includes GNSS-based trajectory and an automated bench-
marking system for evaluating the performance of submitted 
solutions. Although it does not contain a reliable reference 
for mapping, subsequent developments added other chal-
lenges to the benchmark suite, such as image depth predic-
tion, object detection, or semantic segmentation. A recent 
survey of SLAM algorithms (Liu et al. 2021) highlighted 
the problem of providing the reliable GT for mapping in 
open SLAM datasets: only 35 out of 97 investigated datasets 
include 3D reference data for mapping quality evaluation.

1 https:// amicos. fbk. eu/
2 https:// vot- 3d. com/
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In the robotic and photogrammetric communities, three 
distinct classes of SLAM datasets can be distinguished, 
based on whether they were acquired with an unmanned 
aerial vehicle (UAV), unmanned ground vehicle (UGV), or 
a handheld system. An example of a UAV-based research is 
the European Robotics Challenge (EuRoC) dataset (Burri 
et al. 2016), which features visual–inertial system data with 
GT data consisting of trajectories acquired with a motion 
capture (MC) system, total station (TS) tracking and terres-
trial laser scanner (TLS) point cloud for mapping evaluation. 
However, the dataset lacks LiDAR scanning data. For UGV 
systems, the Technical University of Munich (TUM) RGB-D 
(Sturm et al. 2012) and Mobile Autonomous Robotic Sys-
tems lab (MARS) Mapper (Chen et  al. 2020) systems 
should be mentioned. The former one features only the data 
from depth cameras and only a, MC GT trajectory (further 
extended by an IMU in a handheld system in the TUM VI 
dataset (Schubert et al. 2018)), while the latter contains data 
from multiple LiDAR devices, stereo camera and an IMU, as 
well as trajectory obtained with a tracking system and a TLS 
point cloud. In the scope of the ETH3D dataset (Schops et al. 
2017), multiple image sequences obtained with a monocu-
lar camera and a stereo visual–inertial handheld system are 
shared. Most of them are recorded indoors, with a GT pro-
vided by a MC system. For a few scenes mapped outside, a 
GT is only reconstructed by a structure-from-motion (SfM) 
approach. From the most recent developments, interesting 
SLAM datasets start to include novel sensors such as event 
cameras (Klenk et al. 2021) and utilize simulation environ-
ments to facilitate the need for data acquisition in different 
conditions, especially for learning-based methods (Wang 
et al. 2020b). Nevertheless, the final evaluation of SLAM 
method performance should be assessed on real datasets, 
since multiple noise sources and possible failure factors pre-
sent in the real world are extremely hard to reproduce in a 
simulated environment.

2.2  SLAM Datasets: Challenging Environments

All the above-mentioned datasets are, however, captured in 
relatively easy indoor, feature-rich environments. For mobile 
mapping underground sites, especially industrial facilities, 
conditions are much harder and include a multitude of poten-
tial noise sources, such as dust, variable humidity, uneven 
lighting, lack of distinct visual and geometrical features, 
vibrations, and uneven ground. These factors negatively 
affect possible assumptions in SLAM algorithm, e.g., the 
presence of planar features in the surveyed data. Dynamic 
conditions of the working machinery and possible rockfalls 
further contribute to the unpredictability of the environment 
and dangers that need to be recognized for a mobile robot 
working in such a facility. Thus, SLAM datasets acquired in 
such harsh conditions were investigated further: the HILTI 

(Helmberger et al. 2022) and ConSLAM (Trzeciak et al. 
2023) datasets from a construction site and the S3LI dataset 
(Giubilato et al. 2022) from Mount Etna in Italy, providing 
data of featureless, bare rock surface of the volcanic land-
scape. The HILTI dataset features multiple datasets from 
different editions, which vary in terms of the sensor suites 
used. Although the ConSLAM dataset provides data col-
lected with a similar, prototypic sensor setup, it provides 
data from a periodically repeated measurements at the same 
construction site. Another challenging natural environment 
of a botanic garden was investigated by Liu et al. (2023), 
who share a dataset collected with a wheeled mobile robot 
with a rich sensor selection and a reliable ground truth 3D 
point cloud. A different challenging case could be consid-
ered for the mapping systems operating in areas with unreli-
able, partial GNSS signal coverage. An example of a dataset 
focusing on such conditions is BIMAGE Blaser et al. (2021), 
which provides raw data from a mobile mapping system col-
lected in urban canyons and forest areas supplemented by 
ground control points surveyed with a total station.

The first underground SLAM dataset (Leung et al. 2017) 
was published in 2017 and featured data acquired in a Chil-
ean underground mine recorded using a Clearpath UGV, 
equipped with a radar, stereo camera, and a Riegl TLS. 
The TLS was used in two ways: as a reference sensor, per-
forming static scans when the robot was not moving, and 
similarly to an industrial-grade 3D LiDAR system, continu-
ously scanning during robot’s movement. However, utilizing 
such expensive instrument is not common, since it greatly 
increases the costs of the measurement system, is not suit-
able for flying units due to its weight, and the laser scan 
frequency is low (6 s for one full scan).

The most suitable datasets for evaluating robotic SLAM 
solutions for mining-related applications were acquired 
during the DARPA Subterranean (SubT) Challenge. Many 
teams shared data they collected during at least one of the 
events, which included a tunnel circuit, a power plant site 
and a cave system, all of which are relevant to the subject 
of our study. Datasets were published by the DARPA Army 
Research Lab (Rogers et al. 2020) and teams: Cerberus 
(Tranzatto et al. 2022), CoSTAR (Koval et al. 2022; Reinke 
et al. 2022), MARBLE (Kasper et al. 2019; Kramer et al. 
2022), CTU-Cras-Norlab (Petracek et  al. 2021; Krátký 
et al. 2021), Explorer (Wang et al. 2020a). They include 
UGV- and UAV-based data from stereo cameras, IMUs, and 
industrial-grade LiDAR scanners, seldom supplemented by 
thermal cameras and radars. The TLS-based GT was pro-
vided by DARPA. Although useful, those datasets usually 
feature expensive platforms (e.g., Boston Dynamics Spot) 
and do not have redundant sensors (multiple stereo cameras, 
LiDAR scanners, IMUs), making them solution dependent. 
A summary of the above-mentioned relevant open SLAM 
datasets is presented in Table 1.
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To move beyond a simple comparison between differ-
ent SLAM algorithms (working on the data from the same 
sensor), we decided to enhance this approach, allowing 
to compare results from SLAM running on different sen-
sors, acquired during the same sequence (e.g., solid-state 
and spinning LiDAR sensors, stereo and RGB-D camera). 
Moreover, utilizing low-cost solutions popular in the robotic 
community and sharing a survey-grade, TLS-based ground 
truth data, we allow researchers to evaluate SLAM software 
and hardware solutions that can be then used by them to 
create affordable systems for popularizing mobile mapping 
methods in underground applications.

3  The MIN3D Dataset

The data were collected in interior and exterior areas of the 
Wroclaw University of Science and Technology (Fig. 1) and 
within some tunnels of the underground facility “Rzeczka”, 
which is a part of the “Riese” complex (Fig. 2), constructed 
during the World War II (Stach et al. 2014). Both sites fea-
ture varying surfaces and environments, which pose a chal-
lenge for SLAM algorithms as they must adapt to varying 
structural conditions, illumination changes, and the incon-
sistent level of the presence of distinct visual features.

3.1  Employed Robotic System and Sensor 
Configuration

The data were collected using a mobile robot equipped 
with a multi-sensory measuring column (Fig.  3). The 
robot was equipped with various sensors, as well as a 
data recording computer, power batteries, and lighting, 
which featured an adjustable intensity to adapt to the 

Table 1  Comparison of selected relevant, popular SLAM open datasets

Dataset Setting LiDAR scanner Camera Inertial Other sensors GNSS 3D GT 
point 
cloudSpinning Solid state Stereo RGB-D

KITTI Urban ✓ – ✓ ✓ ✓ – ✓ –
KAIST multispectral Urban ✓ – ✓ – ✓ Thermal camera ✓ –
EuRoC Indoor – – ✓ – ✓ – – ✓
TUM VI Indoor – – ✓ – ✓ – – –
ETH3D Indoor and outdoor – – ✓ ✓ ✓ – – –
HILTI Construction site ✓ ✓ ✓ – ✓ – – ✓
ConSLAM Construction site ✓ – – – ✓ Monocular and thermal 

cameras
– ✓

S3LI Outdoor – ✓ ✓ – ✓ – ✓ –
Chilean underground 

mine
Underground – – ✓ – – TLS LiDAR, radar – ✓

SubT: DARPA Army 
Research Lab

Underground ✓ – ✓ – ✓ – – ✓

SubT: Cerberus Underground ✓ – ✓ – ✓ – – ✓
SubT: CoSTAR Underground ✓ – ✓ ✓ ✓ Thermal camera, 

event camera, UWB 
beacons

– –

SubT: MARBLE 
(ColoRadar)

Underground, indoor, 
and urban

✓ – – – ✓ Radars – –

SubT: CTU-Cras-
Norlab

Underground ✓ – ✓ ✓ ✓ – – ✓

MIN3D Indoor and under-
ground

✓ ✓ ✓ ✓ ✓ Thermal camera, multi-
ple IMUs

– ✓

Fig. 1  The employed multi-sensor UGV near the university building
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environmental conditions and enable the recording of 
image data in low-light environments. The list of utilized 
devices includes:

• A Velodyne LiDAR scanner, mounted at the top of the 
measuring column through an additional rotation mod-
ule, which increases the resolution of the acquired data 
by rotating the sensor around the horizontal axis.

• An Intel RealSense D455 depth camera, placed below the 
Velodyne.

• Monocular RGB and IR cameras installed in the middle 
pair and featuring a similar optical system and field of 
view.

• A synchronized Basler stereo-rig.
• A Livox LiDAR scanner located at the bottom of the 

column.
• A NGIMU inertial measurement unit mounted at the 

robot base.

The data are supplemented by two IMU sensors inte-
grated with an Intel RealSense camera and the Livox LiDAR 
system as well as an independent NGIMU. The robot was 
controlled manually from a remote operator panel. Control 
signals were transmitted in the 2.4 GHz frequency band, 
while data acquisition control telemetry was obtained from 
a tablet connected to a computer placed on the robot via a 
Wi-Fi network. The block diagram of the connected sensors 
is shown in Fig. 4, while the remote visualization and control 

Fig. 2  Mapped locations: underground tunnel (aka adit)

Fig. 3  The mobile robot with its sensors placed along the vertical col-
umn bar with the example data frames (adapted from: Trybała et al. 
2022)

Fig. 4  Block diagram of a robotic multi-sensory measurement system 
(Trybała et al. 2022)

Fig. 5  Remote visualization and control panel (Trybała et al. 2022)
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panel are shown in Fig. 5. A methodology for system cali-
bration, i.e., estimation of the relative orientation between 
sensors, was presented in Trybała et al. (2022).

3.2  Data Acquisition

A total of eight datasets were acquired in two different 
settings:

• Three sequences inside and around the research building 
of the Faculty of Geoengineering, Mining and Geology at 
Wrocław University of Science and Technology (Poland).

• Five sequences in the underground site “Rzeczka”, part 
of the “Riese” underground complex (Walim, Poland).

The conditions of the university dataset resemble an 
industrial environment, with mostly monochromatic colors, 
scarce visual features, long and uniform corridors, and the 
presence of reflective surfaces. During the acquisitions in 
the subterranean environment, the robot was equipped with 
its own lighting system due to the absence of illumination 

in a huge part of the mine. These real underground condi-
tions allowed to illustrate the challenges often encountered 
in a setting of an industrial mine, where irregular tunnels 
carved or blasted in rock are mixed with reinforced, more 
structured areas.

To further increase the level of difficulty for SLAM algo-
rithms, the acquisitions featured illumination changes (robot 
driving from indoor to outdoor or through a room with light 
turned off) and frequent revisiting of the same area, often 
from different perspectives. The specific aims of each acqui-
sition, together with resulting data size, has been summed up 
in Table 2. Approximate robot trajectories for each sequence, 
drawn on a 2D projection of the ground truth point cloud 
cross sections, are shown in Figs. 6, 7, 8, 9, 10, 11, 12.

Due to some problems with the reliability of RealSense 
internal IMU, an additional NGIMU sensor was added to 
the measurement system. However, we still provide the 
incomplete data from the RealSense device, since it may 
allow some interesting analyses and development in terms 
of multi-IMU systems, as discussed further in Sect. 4. 
Similarly, probably due to the challenging environmental 

Table 2  Characteristics of the acquired data

a Velodyne LiDAR sensor placed horizontally
b Basler stereo with limited frame rate
c No RealSense IMU data

Sequence Path sketch Size/length Data acquisition aim Data samples Total size

University 1: ground  levela Figure 6 60 m × 40 m /220 m Whole area mapping, longer route, 
reflective surfaces, lack of visual 
features

53,147 images
10,163 point clouds
130,370 IMU readings

26.1 GB

University 2: indoor/outdoor Figure 7 50 m × 20 m/120 m Indoor/outdoor transition with 
changing illumination

26,419 images
5359 point clouds
111,500 readings

22.1 GB

University 3: lab loop closures Figure 8 20 m × 10 m/90 m Changing illumination in different 
rooms, multiple loop closures

25,519 images
5093 point clouds
159,215 IMU readings

18.9 GB

Tunnel 1: forward  passb Figure 9 80 m × 5 m/80 m Basic bare rock tunnel mapping, 
sparse geometrical and visual 
features

22,244 images
5785 point clouds
180,813 IMU readings

13.2 GB

Tunnel 2: return  passb Figure 10 80 m × 5 m/80 m Basic bare rock tunnel mapping, 
sparse geometrical and visual fea-
tures. Possibility of multi-session 
mapping with previous dataset

19,104 images
4156 point clouds
129,952 IMU readings

10.8 GB

Tunnel 3: main tunnel with loops, 
part  1b

Figure 11 70 m × 20 m/120 m Loop closures in underground 
conditions, transitions between 
unstructured/structured geometry

27,198 images
7074 point clouds
221,094 IMU readings

17.9 GB

Tunnel 4: main tunnel with loops, 
part  2b,c

Figure 11 40 m × 20 m/60 m Loop closures in underground 
conditions, transitions between 
unstructured/structured geom-
etry. Kidnapped robot problem 
if analyzed jointly with previous 
dataset

12,821 images
3336 point clouds
37,303 IMU readings

13.9 GB

Tunnel 5: secondary  tunnelb, c Figure 12 90 m × 10 m/100 m Basic bare rock tunnel mapping, 
transitions between unstructured/
structured geometry

19,884 images
5172 point clouds
57,828 IMU readings

22.5 GB
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conditions, the Basler stereo camera rig was not able to 
maintain the desired frame rate during the tunnel tests. 
Direct processing of this data will result in worse results 
than for images from other cameras, but might facilitate the 
development and evaluation of, e.g., AI-based image denois-
ing and frame rate interpolation methods for robustifying 
mobile robotic applications in challenging environments.

3.3  Dataset Structure

The data were recorded using an Intel NUC machine and, 
during the measurements, saved in the.rosbag file format 
using ROS (Robot Operating System) Melodic (Quigley 
et al. 2009) and common driver packages. In the post-pro-
cessing operations, the data were unpacked and converted 

Fig. 6  Sketch of the robot trajectory in the university building 
(Sequence University 1): textureless ground floor

Fig. 7  Sketch of the robot trajectory in the university building 
(Sequence University 2): indoor–outdoor transitions

Fig. 8  Sketch of the robot trajectory in the university building 
(Sequence University 3): ground floor (Sequence 1)

Fig. 9  Sketch of the robot trajectories in the underground tunnel 
(Sequence Underground 1): main tunnel, forward pass

Fig. 10  Sketch of the robot trajectories in the underground tunnel 
(Sequence Underground 2): main tunnel, return pass

Fig. 11  Sketch of the robot trajectories in the underground tunnel 
(Sequences Underground 3 & 4): pass with multiple loops. Route is 
split into two sequences: before (blue) and after (red) kidnapping a 
robot (position marked as a red cross)
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to open formats suitable for further analyses, as shown in 
Table 3.

The naming convention of the files is < ROS times-
tamp >  < dot >  < extension > , since all data were time-
stamped in a centralized manner, according to the ROS 
master node clock. However, time stamps of some of the 
data were already pre-synchronized by the respective device 
drivers. Time stamps for: RealSense RGB, IR images, depth 
maps, and IMU are synchronized to each other, as well as 

Fig. 12  Sketch of the robot trajectories in the underground tunnel 
(Sequence Underground 5): secondary tunnel

Table 3  Data types and file 
formats

Source of data Type of data File format

Velodyne LiDAR scanner Point cloud .ply
Livox LiDAR scanner Point cloud .ply
RGB camera Image .png
FLIR IR camera Image .png
RealSense RGB camera Image .png
RealSense stereo IR camera Images .png
RealSense precomputed depth map Image .png
Basler stereo camera Images .png
IMU Livox Linear acceleration, angular velocity .csv
IMU RealSense Linear acceleration, angular velocity .csv
IMU NGIMU Linear acceleration, angular velocity .csv

Fig. 13  File structure of the MIN3D dataset. Separate ground truth point clouds are provided for each of the three university sequences, but 
a single reference point cloud is shared for all five sequences of the underground facility
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Basler stereo pairs and Livox point clouds with its internal 
IMU. The dataset general structure is explained in Fig. 13.

3.4  Ground Truth and Evaluation Methodology

Reference data were acquired using a RIEGL VZ-400i ter-
restrial laser scanner (Fig. 14). The scanner features a laser 
pulse repetition rate of 100–1200 kHz, a maximum effective 
measurement rate of 500,000 points/s, and a measurement 
range of 0.5 m to 800 m. The scanning angle range is a total 
of 100° in a vertical line and max. 360° in the horizontal 
frame. The manufacturer’s stated accuracy of resulting sin-
gle point 3D position is 5 mm and the declared precision is 
3 mm (Riegl datasheet 2019).

For both test sites, the distance between consecutive scan 
positions was about 5–15 m. The scanning parameters used 
were a laser pulse repetition rate of 1200 kHz, a scanning 
resolution of 0.05°, and a point cloud resolution character-
ized by point-to-point distance of 17.5 mm at a distance of 
20 m.

The processing of the acquired TLS data was carried 
out in the dedicated RiSCAN PRO software (RIEGL Laser 
Measurement Systems GmbH 2019) for point cloud filtering 
and scan registration. The preliminary scan registration was 
performed using an automatic registration method based on 
voxels extraction and fitting. To improve scan position reg-
istration, alignment was performed using the multi station 
adjustment (MSA) procedure. The position and orientation 
of each scan position were adjusted in a bundle adjustment 
(BA), which included several iterations to minimize position 
error between overlapping planes and determine the best fit.

The alignment process resulted in an error (i.e., scanner 
position standard deviation after BA) of ca 2 mm for both 
test sites. Control of the alignment of the overlapping first 
and last positions, creating a loop, showed a spatial matching 
within 5 mm. This quality control was omitted only for the 
GT point cloud of the first university sequence, which does 
not include a loop. The resulting point cloud of the building 
test site and the underground facility are shown in Figs. 15 
and 16, respectively.

To facilitate the proper matching of measurement data 
with GT, reference points in the form of white spheres with 
a diameter of 100 mm were placed in the area of interest of 
both test sites (Fig. 17). The reference targets were selected 
to be properly visible by all the optical sensors mounted on 
the robot.

4  Processing and Analyses

The MIN3D dataset could support evaluations of 3D map-
ping methods, including SLAM. As multiple approaches to 
assess the quality of the mapping results exist, we do not 
provide a dedicated benchmarking tool and leave the deci-
sion of selecting an appropriate workflow to the readers. 
Pipelines developed for ETH3D (Schops et al. 2017), 3D 
Tanks and Temples (Knapitsch et al. 2017), as well as a 
more sophisticated analysis presented by Toschi et al. (2015) 
could be mentioned as examples of sound methodologies for 
carrying out quality evaluation of the 3D reconstruction for 
the results achieved from processing MIN3D data.

An overview of current state-of-the-art strategies of tack-
ling common problems, based on the research and experi-
ences from the DARPA Subterranean Challenge, in applying 
SLAM in underground environments can be found in Ebadi 
et al. (2022). Moreover, we also envision a MIN3D contri-
bution toward the development of specific algorithms for 
challenging mining environments (Fig. 18), which includes, 
e.g., dedicated methods for dealing with various structuri-
zation levels of geometry, loop closure detection in mostly 
featureless conditions, or point cloud filtering and optimiza-
tion approaches.

4.1  Underground Mobile Mapping Accuracy

During the preliminary evaluation of SLAM on our data-
set, comparisons of the point clouds obtained with exam-
ple SLAM algorithms were carried out on representative 
sequences of the dataset. One sequence has been selected 
from the indoor part of the dataset (University 2) and 
two sequences were chosen from the underground tun-
nels (Underground 1 and 3). Based on the state-of-the-art 
research, we chose one V-SLAM algorithm, one LiDAR-
inertial algorithm, and one pure-LiDAR method. We 
processed:

• RealSense RGB-D data with ORB-SLAM3 (Campos 
et al. 2021).

• Livox LiDAR scanner and IMU data with FAST-LIO 
SLAM (Kim et al. 2021; Xu et al. 2022).

• Actuated Velodyne LiDAR scanner data with SC-A-
LOAM (Kim et al. 2022).

As representative statistics, summarizing the mapping 
performance of each of those methods, we have chosen 
mean, standard deviation, and (− 3σ, 3σ) range of cloud-to-
cloud distance distributions, calculated as signed distances 
using M3C2 plugin of Cloud Compare software (Lague et al. 
2013).
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Point clouds based on the simultaneously acquired data 
from three different sensors were obtained using the previ-
ously mentioned state-of-the-art mobile mapping methods. 
They were then registered to the GT model using iterative 
closest point (ICP; Besl and McKay 1992) with an initial 
manual alignment. Mapping errors were estimated as the 
distances between the point clouds and the local GT model 
and signed according to their estimated normals. The error 
distributions were analyzed together with the qualitative 
analysis of the results (long- and short-term drifts, topology 
correctness). Summary statistics of the quantitative analysis 
of the mapping error distributions are presented in Table 4.

The obtained results show that the tested methods were 
appropriate for 3D mapping of the examined areas. Using 
a common color-coding scheme (Fig. 19), we compare the 
results of accuracy evaluation of the three tested SLAM 
approaches (Figs. 20, 21, 22). Qualitatively analyzing them, 
the resulting point clouds present the “correct” topology 
comparing to the GT data. However, in-depth analysis often 
revealed inconsistencies such as lack of proper loop closures, 
high short-term rotational drifts, long-term rotational drift 
around the robot’s roll axis, and increased noise near reflec-
tive surfaces. Those resulted in point cloud errors such as 
“ghosting”, i.e., not-aligned point clouds of areas measured 
multiple times or dimension deformation, i.e., shortening of 
the tunnel length. The above-mentioned issues occurred in 
both indoor and underground datasets and their example vis-
ualizations are presented in Fig. 23. It is worth mentioning 

Fig. 14  RIEGL VZ-400i terrestrial laser scanner

Fig. 15  Top view of reference TLS point clouds with the locations of 
the scan positions (in red): university ground floor, sequence 1

Fig. 16  Top view of reference 
TLS point clouds with the loca-
tions of the scan positions (in 
red): tunnels of the underground 
area. Part of the point cloud, 
representing the outdoor area 
irrelevant for the dataset, is not 
displayed
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Table 4  Statistics of the mapping error distributions for selected SLAM algorithms

Dataset Mean mapping error [cm] Standard deviation [cm] 95% of mapping error distribution range [m]

ORB-
SLAM3

FAST-
LIO-
SLAM

SC-A-
LOAM

ORB-
SLAM3

FAST-
LIO-
SLAM

SC-A-
LOAM

ORB-
SLAM3

FAST-LIO-
SLAM

SC-A-LOAM

University 2 − 3.5 2.8 − 7.7 101 31 54 (− 2.20, 
1.72)

(− 0.65, 
0.38)

(− 1.29, 0.85)

Underground 
1

− 3.8 0.7 − 8.9 47 23 60 (− 1.26, 
0.41)

(− 0.11, 
0.14)

(− 1.63, 0.73)

Underground 
3

− 3.5 2.5 − 14.6 45 16 81 (− 1.33, 
0.46)

(− 0.15, 
0.29)

(− 2.30, 1.44)

Fig. 19  Universal color scale used in all point cloud visualizations in 
Figs. 20, 21, 22, and 23

that no algorithm was able to properly recover from the sim-
ulation of the kidnapped robot problem between sequences 
Underground 3 and 4 using loop closure detection. Thus, 
Underground 3 was analyzed only as a standalone sequence.

4.2  Multi‑sensor Signal Analysis

Apart from the core issue of improving robustness and 
reliability of various mobile mapping and localization 

approaches, we encourage using the proposed MIN3D 
dataset also for other purposes, such as image enhancement. 
Conditions in which the data were acquired can challenge 
state-of-the-art image processing methods. Such methods 
include, but are not limited to, image deblurring and upscal-
ing, frame interpolation, depth estimation from monocular 
camera (or improving the quality of depth obtained with the 
stereo images), and application of different 3D geometry 
reconstruction methods. Evaluations of deep learning-based 
techniques are foreseen, since scarcity of the training data 
from unique, underground conditions may seriously hinder 
their performance on the MIN3D dataset.

Furthermore, simultaneous acquisition of data from vari-
ous sensors allows exploration of novel data fusion methods: 
this could also include methods for improving the quality of 
the data using multiple devices. As an example, we show 
a proof of concept of utilizing two IMUs in the context of 
possible developments in the area of the positioning methods 
using multiple inertial devices. We compared signals from 
IMUs installed in Livox and RealSense, with the focus on 
acceleration data. Figure 24 presents raw data from the sen-
sors expressed in g units.

Firstly, the moving average of the absolute value of the 
signals was calculated for every channel with the window 
of 1 s (see Fig. 25). This way, an average variability of 
vibration strength can be visualized and compared per axis. 
The main visible difference between devices is expressed 
as slightly stronger vibrations in the horizontal plane for 
RealSense compared to Livox. It can be explained by the fact 
that RealSense was mounted higher on the sensor column, 
and angular movements of the entire column, with respect 

Fig. 17  References object on robot path in the building corridor (left) 
and in the underground tunnel area (right)

Fig. 18  Challenges for SLAM in the underground environment: 
uneven illumination, lack of visual features (left); changing types of 
geometry: passage from an unstructured tunnel to a concrete corridor 
(right)



PFG 

1 3

Fig. 20  Examples of SLAM results on the University 2 sequence: a ORB-SLAM3 (sparse point cloud); b FAST-LIO-SLAM; c SC-A-LOAM

Fig. 21  Examples of SLAM results on the Underground 1 sequence: a ORB-SLAM3 (sparse point cloud); b FAST-LIO-SLAM; c SC-A-LOAM

Fig. 22  Examples of SLAM results on the Underground 3 sequence: a ORB-SLAM3 (incomplete sparse point cloud); b FAST-LIO-SLAM; c 
SC-A-LOAM

Fig. 23  Issues in various SLAM results: a large linear drift error at the straight start of Underground 2 dataset (ORB-SLAM3); b double wall 
error and noisy points in the Underground 1 dataset (FAST-LIO-SLAM); c angular drift at the end of Underground 3 dataset (SC-A-LOAM)
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to the pivot point at the bottom of the column, translate to 
stronger readings of the RealSense IMU.

In the second step, a moving variance was calculated 
for all channels, also with the window length of 1 s (see 
Fig.  26). Comparison of vibrations in the XY direc-
tions shows that there is a visible proportional relation 
between the energy of vibration of each device. It could 
be explained by the fact that the devices are mounted at 
different heights on the column, and the angular nature of 
the vibrations of the column causes the amplification of 
vibrations in the lateral plane as a function of the height 
of the column.

The authors attempted to evaluate the relation between 
vibration energy for the devices. The best achieved fit was 
a linear model with the ratio of 2.93 at R2 = 0.91 (Fig. 27). 
It shows that RealSense at its mounting point experiences 
almost 3 × more energetic vibration in the horizontal plane 
in relation to Livox due to the angular vibrations of the 
column. Additionally, the linear nature of the model, as 

well as the coefficient of 2.93 can be confirmed by the fact 
that Livox is mounted 30 cm above the pivot point (bottom 
mount of the column) and RealSense is placed at 88 cm 
above the pivot point, which is 2.933 times higher.

5  Conclusions 

The paper presented a novel UGV-based dataset for develop-
ing and testing mobile mapping solutions (e.g., SLAM) in 
challenging GNSS-denied conditions, common in mining 
applications or textureless indoor spaces. We provide data 
sequences collected simultaneously with multiple sensors, 
including different LiDAR scanners, cameras, and inertial 
units. The environments of tests were selected to pose a chal-
lenge for state-of-the-art data processing algorithms and fea-
ture changing illumination, varying complexity of geometry, 
and textureless areas. Acquisitions were carried out inside a 
university building and in an underground historical tunnel, 

Fig. 24  Raw signals from IMU accelerometers of Livox and RealSense
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which allows to also evaluate the performance degradation 
of developed methods between real and simulated condi-
tions. Such analysis would be especially valuable for learn-
ing-based approaches.

We presented quantitative evaluations of selected 
SLAM methods utilizing data from different sensors 
(cameras, LiDAR devices, IMU) and showed some short-
comings in their performance when applied to the MIN3D 
data. Additionally, an analysis of data from the multi-IMU 
system was performed to showcase the possible directions 
of research of multi-sensor data fusion.

In summary, it is envisaged that the utilization of 
the MIN3D dataset has the potential to accelerate 

advancements in multiple research domains within the 
field of robotics, computer vision and geomatics, acknowl-
edging that the list provided below is not exhaustive:

• Testing and improving mapping approaches (visual, 
LiDAR, fusion) in the challenging underground or 
indoor conditions.

Fig. 25  Moving average of absolute values for all axes with the win-
dow of 1 s. Axes X and Y (vibrations on the horizontal plane) show 
stronger vibration for RealSense, which was mounted higher on the 
column

Fig. 26  Moving variance for IMU linear accelerations X and Y (com-
parison per axis) with a window of 1 s. Significant proportional rela-
tion between vibration energy is revealed, which is a result of height 
difference of the mounting points on the column
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• Robustifying V-SLAM in the environments with chang-
ing illumination.

• Estimating depth with a monocular camera.
• Developing visual and LiDAR-based loop closure 

detection algorithms in degraded environments.
• Using multi-sensor odometry and mapping approaches 

(multi-IMU, multi-camera, multi-LiDAR).
• Online calibration and utilization of multi-sensor 

suites, including cameras with different spectral 
responses (e.g., RGB and thermal).
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ABSTRACT  

Mobile Mapping Technology (MMT) has evolved rapidly over the past few decades, especially in using low-cost sensors. This progress 

is primarily attributed to the appearance of innovative simultaneous localization and mapping (SLAM) algorithms. This article focuses 

on evaluating the efficiency of a new LiDAR-based portable SLAM system for mapping in dynamic real-world environments. The 

work proposed a technical solution based on a Livox Avia LiDAR sensor enhanced by gimbal stabilization. The system, named Portable 

Livox-based Mapping system (PoLiMap), is compared to other similar solutions by acquiring data from various environments, 

including urban sceneries, underground tunnels and forested areas, and processing them using a modified FAST-LIO-SLAM algorithm. 

The research presented in the article contributes to the understanding of the capabilities of PoLiMap systems under various conditions 

and offers significant insight into its potential applications. Accuracy evaluation results prove that the proposed MMT system can 

successfully tackle various demanding environments and challenge the results of other more costly state-of-the-art portable mobile 

laser scanning methods. 

 

KEY WORDS: Mobile Mapping, 3D reconstruction, Evaluation, Low-Cost, Urban mapping, Forest mapping, Cultural heritage. 

 

 

1. INTRODUCTION 

Advances in currently available technologies have greatly 

simplified the process of terrestrial 3D mapping in various 

conditions. However, different factors present in multiple 

environments, including dynamic objects, limited GNSS 

coverage, underground passages, reflective surfaces, dense and 

ever-changing vegetation, varying exposure to sunlight and 

more, pose a great challenge for developing a universal mobile 

mapping solution (Ali et al., 2020; Cheng et al., 2022). Achieving 

efficient 3D data collection and accurate reconstruction is 

possible with the use of Mobile Mapping Technologies (MMT) 

Systems. These devices equipped with different sensors, such as 

LiDARs (Elhashash et al., 2022; Ismail et al., 2022), radars 

(Rouveure et al., 2021; Glira et al., 2022) or cameras (Kolhatkar 

and Wagle, 2020; Torresani et al., 2021), enable the generation 

of precise and dense point clouds providing information about the 

geometric characteristics of the investigated area. The software 

backbone of MMTs is a Simultaneous Localization And 

Mapping (SLAM) method, either based on image or range data. 

SLAM allows to construct a map of the unknown environment 

while simultaneously estimating the sensor pose, and thus its 

trajectory during movement (Debeunne and Vivet, 2020). MMT 

sensors can be mounted on an autonomous robot (Wang et al., 

2018), placed aboard a ground vehicle (Singandhupe and La, 

2019) or UAV (Sonugür, 2023), but can also be used as a 

handheld device (Torresani et al., 2021). 

The principle of the currently prevailing pose graph approach to 

solving the SLAM problem can be split into two main 

components: LiDAR or visual odometry and graph optimization. 

The former is responsible for continuous association of the data 

collected by the sensors at subsequent frames, either through 

direct methods, or using feature extraction and matching for 

estimating the relative change of the sensor pose in the analyzed 

period. Those estimates constitute the main factor in the pose 

graph, which together with other available data, can be useful for 

calculating the sensor motion (inertial measurements, GNSS 

observations, landmark positions) is optimized in the backend to 

produce the final, adjusted sensor trajectory results and thus, 

allowing accumulating all measurements in a coherent, global 

map (He et al., 2022). In this study, one of the open-source 

LiDAR-based SLAM frameworks, FAST-LIO-SLAM (Kim et 

al., 2022a), is revisited, with the focus on improving its accuracy 

and robustness.  

The need of developing such solution is to ensure user-friendly 

acquisitions and quality mapping results in challenging 

conditions, such as those of irregular, underground tunnels. This 

lies in the EIT-RM projects VOT3D - Ventilation Optimizing 

Technology based on 3D-scanning VOT3D which aims to reform 

the current ventilation design approach by incorporating accurate 

and detailed 3D surveying and modeling of airways (Figure 1) in 

airflow simulations. The introduction of modern methods and 

innovative solutions for underground optimisation in mining 

scenarios based on 3D data is crucial for the resources sector. The 

utilization of MMT in underground environments, despite being 

a challenge, is a key factor enabling realistic simulations of the 

ventilation system's operation within an industrial underground 

mine (Janus and Ostrogórski, 2022; Wróblewski et al., 2023). An 

understanding of the limitations and achievable quality standards 

associated with 3D data surveys performed in such peculiar 

environment is therefore important to guarantee the reliability of 

the entire optimisation process. 

 

a)  b)  

Figure 1. One of the underground test sites of the VOT3D 

project, surveyed with the proposed MMT system: view from 

inside the tunnel (a) and side view of the mining tunnel (b). 

 

1.1 Paper aims 

In the past, various SLAM systems and algorithms have been 

tested for 3D reconstruction of cultural heritage objects (Di 
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Stefano et al., 2021; Perfetti and Fassi, 2022), mapping of 

underground and underwater scenario (Farella, 2016; Menna et 

al., 2023; Trybała et al., 2023a), or natural environments such as 

forests (Qian et al., 2016; Hyyppä et al., 2020). However, a rapid 

progress in the developments in both hardware and software in 

MMTs has democratised the use of low-cost, reliable and 

increasingly accurate in-house-built SLAM-based systems. Thus, 

the aim of this paper is multi-folds:  

(i) to assemble a 3D surveying measurement system based on a 

Livox Avia LiDAR sensor stabilized with a gimbal and 

designed to be easily carried by an operator or placed on a 

vehicle; 

(ii) to couple the proposed handheld system, based on a solid-

state LiDAR, with a state-of-the art pose graph SLAM 

approach for real-time 3D mapping; 

(iii) to perform a metrological assessment of the proposed low-

cost, lightweight MMT system in different environments 

(urban space, underground tunnel and forestry), using accurate 

ground truth data; 

(iv) to compare the proposed MMT system with other available 

mobile mapping solutions (GeoSLAM mobile scanner, multi-

camera in-house photogrammetric system). 

Data acquired with the proposed setup with and without the laser 

scanner mounted on a gimbal were also compared. The quality of 

both IMU signals and resulting point clouds were analyzed with 

the goal of assessing the extent to which external stabilization of 

the scanner improves data quality and reduces motion artefacts. 

 

 

2.  RELATED WORKS 

Methods for acquiring 3D point clouds and assessing their 

accuracy to ensure their suitability for further analysis has been 

discussed repeatedly in the literature (Di Stefano et al., 2021; 

Tanduo et al., 2022; Trybała et al., 2023). The development of 

reality-based 3D surveying instruments and methods, and in 

particular MMT, has represented a significant progress in data 

acquisition in various environments. Application of MMT using 

SLAM algorithms in a complex urban environment was 

presented in Wang et al. (2018). In its review Mobile Laser 

Scanning (MLS) solutions, GNSS, IMU and applications are 

presented. Similarly, examination was carried out in the historic 

part of the urban centre of Venice by Tanduo et al. (2022), 

involving selected SLAM solutions, using a commercial 

backpack-mounted system and a handheld scanner. This 

assessment involved a comparative analysis of point clouds 

against TLS-derived ground truth data.  

The use of a TLS and SLAM-based method in forest area 

mapping is described in Bienert et al. (2018) whereas Pan et al. 

(2023), present a system that integrates a dual laser scanners and 

an IMU system. Similar comparisons and combinations of 

SLAM-based methodologies with TLS data in forest areas are 

presented in Pierzchała et al. (2018), and Shao et al. (2020).  

Nocerino et al. (2017) evaluated portable MMT in indoor and 

outdoor scenarios. Comparative analyses of point clouds 

acquired using commercial LiDAR-based SLAM algorithms and 

portable, mobile scanning devices are presented in Sesmero et al. 

(2021), Fasiolo et al. (2023), Trybała et al. (2023a).  

Prados Sesmero et al. (2021) introduced an algorithm of graph 

SLAM applied in diverse environments, with particular emphasis 

on narrow, longitudinal facilities, especially tunnels, in which 

missing features and the problematic separation of different 

positions in the environment create difficulties to answer. Indoor 

and outdoor mapping studies on the performances of different 

SLAM algorithms in 3D mapping is presented in Akpınar (2021).  

3.  PROPOSED SYSTEM  

The Portable Livox-based Mapping (PoLiMap) system was 

designed for convenient mobility during surveying operations. 

The LiDAR Livox Avia sensor (Table 1) is placed on a gimbal to 

ensure smooth motion and a secured grip, even when the sensor 

is used on a high speed vehicle (car, motorcycle). A NVIDIA 

Jetson Xavier board running Robot Operating System (ROS) as 

well as the rest of the necessary equipment (power supplies, 

Livox Converter 2.0, external drive and screen tablet) are placed 

in a suitcase (Figure 2). 

Laser wavelength 905 nm 

Max. detection range 

(@ 100 klx) 

From 190 m @ 10% reflectivity 

to 320 m @ 80% reflectivity 

Range precision 2 cm @ 100 m 

Angular precision 0.05° 

Scanning rate 10 Hz 

Scanning pattern Line Circular 

Scanning mode Repetitive Non-repetitive 

Field of view (horizontal 

x vertical) 

70.4° x 4.5° 70.4° x 77.2° 

Point rate From 240,000 points/s  

to 720,000 points/s (triple return) 

Beam divergence horizontal: 0.03° 

vertical: 0.28° 

Data Latency ≤ 2 ms 

Weight 0.5 kg 

Table 1. Livox Avia specification (Livox Avia Quick Start Guide 

v1.4, 2021). 

 

 
Figure 2. Assembled PoLiMap and its equipment. 

 

For processing the LiDAR data, the system runs a FAST-LIO 

LiDAR odometry (Kim et al., 2022a): it estimates the change in 

sensor pose based on inertial measurements coupled with 

subsequent point cloud matching with a point-to-plane iterative 

closest point (ICP) algorithm in a frame-to-local map manner. 

Moreover, it utilizes Scan Context++ (Kim et al., 2022b) as a 

loop closure detector and GTSAM-based pose graph 

optimization (Dellaert et al., 2022).  
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Due to past critical evaluations of SLAM frameworks (Trybała 

et al., 2023a) and other internal tests, several improvements have 

been implemented in FAST-LIO-SLAM librar: 

- loop closure improvement: in the original implementation (Kim 

et al., 2022a), authors assumed constant, a priori assigned 

covariance values of each constraint in the pose graph. We used 

real covariance estimates for each measurement component, 

resulting from point cloud registration results in LiDAR 

odometry and fast generalized ICP-based (Koide, 2021) loop 

closures.  

- loop candidate identification: we allow using intensity-based 

Scan Context++ (Kim et al., 2022b) instead of height-based 

default version to tackle scenarios with huge variations of 

LiDAR scanner orientation, such as handheld mapping of 

nnarrow spaces. Moreover relaxed parameter values for 

accepting a candidate loop detection to make Scan Context++ 

act as a quick heuristic of finding several reasonable 

candidates. 

- rigorous loop closure verification: first the point clouds around 

both the historic and previous pose are aggregated in their 

neighbourhoods using current trajectory estimates and then 

downsampled with a rough-resolution voxel filter. The 

alignment is performed using fast voxelized generalized ICP 

(FastVGICP; Koide, 2021), assuming only a partial overlap 

between matched point clouds. It allows to reject in real-time 

multiple incorrect loop closures and provide a good initial 

guess for the precise registration, which is performed using 

FastGICP at much finer resolution if the matching error 

threshold is passed. Pre-aligning the point clouds facilitates 

achieving final convergence of the algorithm and speeds up the 

process.  

- alternative metric computation: the registration error is usually 

computed as the root mean square error (RMSE) of the entire 

aligned point clouds. In our approach we limit the set of points 

included in the RMSE calculation to the same predefined 

overlap ratio used for registration or use percentile Hausdorff 

distance of a corresponding ratio.  

Finally, a final check is performed if the loop candidate passes 

those tests. A hypothetical loop constrain is temporarily added to 

the pose graph. After optimizing the graph, adjustment error is 

computed, and if adding the loop causes a severe graph 

deformation, the hypothesis is rejected. This acts as an additional 

sanity check and reduces the number of incorrectly detected 

loops in distant areas similar to each other, which is a risk, e.g., 

in simple indoor environments. 

All these changes aim to achieve centimeter-level loop closure 

and 3D mapping accuracy even in cases of very different sensor 

orientations and partial point cloud overlap, while still 

maintaining a reasonable speed of computations. 

Although the implemented changes can add a noticeable 

overhead to the computation time, the results are obtained in 

close to real-time and the surveying process is not disturbed. In 

the worst case of loop closure detection and verification or pose 

graph optimisation taking too much time, LiDAR odometry with 

the resulting non-optimized point cloud is still performed in real-

time thanks to the original multi-threaded implementation of the 

framework. This trade-off however allows to obtain more 

accurate results of 3D mapping through increasing robustness of 

utilizing loops in the pose graph, as well as improving its 

accuracy through multi-resolution point cloud registration. 

Finally, multiple variables, such as selection of a robust kernel 

for each type of pose graph constraint and variables of 

abovementioned new elements of the framework, have been 

additionally exposed as ROS parameters, allowing its easier 

adaptation to challenging mapping conditions. 

4. EVALUATION 

4.1 Test scenarios 

To exhaustive evaluate the performances of the assembled 3D 

surveying system, different scenarios are chosen: 

- a part of the campus of Wroclaw University of Science and 

Technology (WUST) in Poland: the scene is particularly 

interesting because of its buildings of various sizes, geometries, 

surface types (concrete, glass, etc.) and architectural styles. The 

scene belongs to the MIN3D dataset (Trybala et al., 2023b): 

- a single deciduous tree from the forest area representing the 

types of tall trees (height of approx. 17 m). 

- a tight up-hill underground tunnel (“100 Scalini”), part of a 

large World War I fortification structure located in Mount 

Celva, Trento (Italy). The site structure is similar to that found 

in caves or historical mining areas. 

- a small forest area composed of different types of trees and 

representing a natural environmental scene with varied and 

irregular geometry.  

Additionally, a part of a tree-lined cobblestone street in an urban 

area was used to perform an ablation study of the proposed 

PoLiMap system (Section 5.1). The use case was selected for 

comparison of the system with and without the use of a gimbal to 

assess the impact of its use in scenarios of mapping environments 

with heavy vibrations. 

 

4.2 Quality assessment methodology 

To evaluate the quality of the data acquired with the proposed 3D 

surveying system, the SLAM-based points clouds were 

compared with ground truth (GT) data obtained using terrestrial 

laser scanning (TLS) or photogrammetry. The summarized 

scenarios with GT are included in Table 2. 

For the campus WUST and single tree case studies, the GT point 

cloud was acquired with a RIEGL VZ-400i pulse TLS. The 

manufacturer’s declared accuracy of a single point is 5 mm, and 

the precision is 3 mm. Data processing including scan cloud 

cleaning, filtering, registration, and adjustment was performed in 

specialized RiSCAN PRO software.  

For the other underground study area, GT data were acquired 

using a Leica BLK2GO mobile scanner. Additionally, the results 

were compared to two other point clouds, generated by a 

GeoSLAM ZEB Horizon and with a portable multi-camera 

photogrammetric system (Perfetti et al., 2022). 

For the quantitative assessment of the produced 3D data, 

registered with the method proposed in Section 3, the Multiscale 

Model-to-Model Cloud Comparison (M3C2) method (Lague et 

al., 2013) against the GT point cloud was used and statistics were 

calculated to determine mapping error values. Accuracy and 

completeness analysis was also carried out (Knapitsch et al., 

2017; Trybała et al., 2023a).  

 

Scenario Approx. size Reference data 

Outdoor university 

campus  

60 x 20 m,  

15 m height 

RIEGL VZ-400i 

Single tree 17 m height, 10 m (crown), 

0.5 m (trunk) diameter 

RIEGL VZ-400i 

WWI tunnel 50 m length BLK2GO,  

Zeb Horizon, 

photogrammetry 

Forest area 60 x 40 m, 20 m height BLK2GO 

Table 2. Summarized case studies with reference data. 
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5. RESULTS  

3D visualizations of the resulting point clouds along with close-

ups are shown in Figure 3. The point clouds represent three 

different environments: urban, underground and natural. Urban 

environments include dense open spaces with complicated 

geometry of buildings and urban infrastructure, interspersed with 

natural elements such as trees, shrubs and plants. Acquiring 3D 

data for the uppermost parts of high buildings can be a challenge 

due to the scanner's limited range. In contrast, closed spaces, of 

which an underground tunnel is an example, do not cause such 

issues, but the data may be degraded or sparse due to multiple 

occlusions or lack of geometrical features. The last scenario, 

represented by a forest, is one of the most difficult environments 

for 3D reconstruction due to the scattering of points caused by 

leaves or branches. The resulting point cloud is non-uniform with 

increased level of random noise in the tree crowns. 

 

 

 

   
(a) (b) (c) 

Figure 3. Visual impressions of the point clouds obtained with 

the proposed 3D surveying system: a fragment of the WUST 

campus (a), “100 Scalini” cultural heritage site (b) and the foresty 

area (c). 

Figures 4 – 7 present the 3D reconstructions of selected objects 

acquired with the proposed portable PoLiMap system and their 

comparison to reference data. Statistics from those comparisons 

are compiled in Table 3.  

For the WUST scenario, an analysis of specific man-made 

elements, including two building facades and a concrete 

substrate, reveals the smallest error on the ground level and a 

relatively larger error on the farther one of the building walls, 

partially obstructed by a fence. However, 95% of point were 

within 7 cm distance to the reference point cloud (Figure 4-top).  

For the tree object, due to occlusions and natural instability, tree 

foliage contains a lot of noise. The smallest deviations are 

observed on the outer parts of the crown the trunk, where 

standard deviation of M3C2 distances reaches 5.5 cm (Figure 4 – 

ceter ad bottom). Noteworthy to say that the general shape of the 

tree with its crown can still be distinguished.  

For both cases, it can be noticed that the point cloud generated 

from the PoLiMap system shows a lower point density (approx. 

800 points/m2 for WUST campus and 700 points/m2 for single 

tree) compared to the data collected with TLS (6600 points/m2 

and 1500 points per m2, respectively). 

 

 

 

 

PoLiMap TLS COMPARISON 

   

   

   

Figure 4. M3C2 comparison of point clouds from PoLiMap and 

TLS: a part of the WUST campus (top) and a single tree of the 

forest areas (center and bottom). 

For the underground case, data obtained from the PoLiMap 

system, GeoSLAM and multi-camera photogrammetric solutions 

were benchmarked against data obtained from Leica BLK2GO 

mobile scanner. The Leica handheld solution offers a high 

measurement rate of 420,000 points per second, with a range 

noise of +/-3 mm and an indoor accuracy of +/-10 mm. 

Comparison with reference data showed very comparable 

mapping results of GeoSLAM and Livox. Both of them achieved 

standard deviations in the M3C2 comparisons (Figure 6) below 4 

cm. The photogrammetric solution, although maintaining a 

correct shape of the tunnel, generated a slightly more noisy point 

cloud with the trajectory affected by a drift error. The errors were 

mostly accumulated in the vertical shaft at the end of the tunnel, 

which due to the constrained space could be captured from very 

limited perspectives, creating short baselines for the 3D 

reconstruction. As indicated in Table 3, excluding this part of the 

tunnel leads to achieving median error at level in line with other 

tested solutions. For all systems, the biggest differences, 

amounting to several centimeters, are noticeable at the inlet and 

outlet of the tunnel.  

Figure 5. Visualization of the reference point cloud from “100 

Scalini” (left) and the compared cross sections (right). 
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PoLiMap - BLK2GO GeoSLAM - BLK2GO 

  
Multi-Camera - BLK2GO 

 

Figure 6. M3C2 comparison of point clouds from PoLiMap, 

GeoSLAM and ANT3D with respect to the BLK2GO for the 

underground case. 

For the forest test site, the smallest M3C2 values occur on the 

ground and tree trunks. Larger differences are found in tree 

crowns due to the difficulty in mapping leaf objects and possible 

dynamics. This park area of approximately 60 x 40 m has been 

densely mapped with multiple, successfully recognized loop 

closures and repeated parts of the trajectory. No shadows or 

double object errors in the point cloud have been observed, 

despite this being a common issue with processing similar 

trajectories. Final standard deviation of the M3C2 distances to 

the reference BLK2GO data reached 13.8 cm, mostly due to the 

tree crowns. Using a robust error metric such as median absolute 

deviation, the obtained error was equal to 1.2 cm. 
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Figure 7. M3C2 comparison of point clouds from PoLiMap and 

BLK2GO for the forest case. 

The quality assessment in the form of completeness and accuracy 

estimation is provided by Figure 8. Together with previous 

accuracy analysis, it allows to draw final conclusions from the 

evaluation of proposed system. Summarizing the achieved errors, 

it can be seen that the investigated PoLiMap system is well-suited 

for mapping both indoor and outdoor environments. Urban 

spaces were reconstructed with mapping errors not exceeding 5 

cm for 95% of points and completeness of above 90% for 10 cm 

threshold (Figure 8a). For underground environment, the 

reconstruction accuracy and the mapping completeness of Livox 

point cloud were similar to results of GeoSLAM. Both methods 

performed fantastically, approaching close to 100% metrics for 

distance thresholds of 5-6 cm (Figure 8b). The case study of tree 

and forest were also mapped with correct topology and a 

reasonable accuracy, although visibly degraded in foliage of the 

plants. While the accuracy metric reached 90% for 10 cm and 5 

cm thresholds respectively, the completeness plateaued earlier, 

barely exceeding 80% in both cases for the highest considered 

threshold of 20 cm (Figures 8c and 8d). Moreover, as seen in 

Table 3, in almost all analysed cases median absolute deviation 

of comparisons to reference data was below 2.5 cm (besides 

foliage-rich single tree example). Considering that the 

measurement accuracy of a single point of the Livox scanner is 2 

cm, the obtained accuracy values can be considered satisfactory 

and effective in the tested scenarios.  

Mapping 

error 

[mm] 

WUST 

camp-

us 

Underground Tree Fore-

st 
PoLi- 

Map 

Geo-

SLAM 

ANT

3D 

ANT3D 

(without 

vertical 

shaft) 

All 

points 

Tru

-nk 

Mean 1 -1 0 -12 11 1 5 1 

Median 0 -1 3 4 4 0 0 0 

Standard 

deviation 

61 38 36 152 89 236 55 136 

Median 

absolute 

deviation  

10 24 18 29 21 62 7 11 

95th 

percentile 

71 65 52 362 160 53 90 91 

Table 3. Mapping error values for the applied LiDAR SLAM 

algorithm. 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 8. Accuracy and completeness curves for the proposed 

MMT system in all study sites: (a) WUST campus,  

(b) underground, (c) tree and (d) forest. 
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5.1 Ablation study 

An ablation study is performed to evaluate whether the gimbal 

stabilization is bringing benefit to the final SLAM-based 3D 

point clouds.  

Therefore additional measurements were taken in two scenarios: 

with and without the gimbal. The PoLiMap system was mounted 

on a vehicle which followed the same route two times. The 3D 

data captured in both scenarios were examined extracting various 

fragments from the data, visually comparing and calculating the 

root mean square error (RMSE) of fitting geometric primitives to 

point cloud subsets, representing several clearly distinguishable 

objects (tree trunks, flat elements of a facade). A set of the cross-

sections is shown in Figure 9. It is noticeable that the noise level 

is slightly lower in the point clouds acquired with the scanner 

coupled to the gimbal, which proves that the device has 

successfully fulfilled its main function. In addition, RMSE were 

calculated using the fitted circle or plane and point clouds 

obtained with and without the stabilization device. The results in 

Table 4 show that smaller values are consistently observed in all 

cases where the gimbal was used. 

 

  With 

gimbal 
Without 

gimbal 

#

1 

 

 
  

#

2 

 
   

 (a) 

#

3 

 
  

#

4 

 
 

 (b) 

Figure 9. Examples of point cloud cross sections: trees with 

fitted trunk circles (a) and building walls with fitted planes (b). 

 

Object 
With  

gimbal 

Without  

gimbal 

#1 15 19 

#2 17 20 

#3 14 15 

#4 8 16 

Table 4. The value of the RMSE [in mm] between the fitted 

circle/plane and the point cloud. 

 

Moreover, within the ablation study, we decided to quantify the 

difference in IMU noise levels using Power Spectral Density 

(PSD) analysis, which is one of the common metrics for this 

purpose and allows comparison of different signals in terms of 

their energy (Nirmal et al., 2016). PSDs were calculated using 

Welch’s method (Welch, 1967). Resulting plots for 

accelerometer and gyroscope data are presented in Figures 10 and 

11. Mean noise densities are compiled in Table 5. All signals 

from unstabilized scanner case exhibit clearly higher energy 

levels, especially considering higher frequencies. While the 

difference in mean noise values for the accelerometer varies from 

50% to 100% of higher noise for the scenario without gimbal, the 

increase in the gyroscope mean noise density reaches over 600%. 

Since IMU measurements quality degradation can influence both 

short-term trajectory estimation and correction of point cloud 

distortion caused by the sensor motion, the use of a stabilization 

solution in conditions with possible external sources of vibrations 

or shaking (vehicle moving on an uneven ground, heavy 

machinery, etc.) can clearly contribute to improving accuracy, 

precision and stability of the mobile mapping system. 

 

Figure 10. Power Spectral Density of the acceleration 

measurements in the ablation study: with gimbal (solid lines) and 

without gimbal (dashed lines). Frequency in a log scale. 

 

Figure 11. Power Spectral Density of the gyroscopic 

measurements in the ablation study: with gimbal (solid lines) and 

without gimbal (dashed lines). Frequency in a log scale. 
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Data Axis 

Mean noise density 

Linear acceleration 

[
�

√��
] 

Angular velocity 

 [
°

�√��
] 

With 

gimbal 

X 0.0027 0.07 

Y 0.0022 0.10 

Z 0.0031 0.11  

Without 

gimbal 

X 0.0050 0.50 

Y 0.0044 0.60 

Z  0.0045 0.42 

Table 5. Mean noise densities in the ablation study obtained with 

PSD analysis. 

 

6. CONCLUSIONS  

The research conducted in this article presents an evaluation of 

the proposed PoLiMap system in different environments (urban, 

natural and underground). The developed low-cost MMT 

solution consists of a Livox Avia LiDAR sensor and a gimbal for 

stabilization purposes. The acquired data for the various 

scenarios were processed using an improved SLAM algorithm 

and then compared with reference data from terrestrial laser 

scanning and other high-quality mobile mapping systems. The 

effectiveness of the stabilization tool was also proved by 

comparing quality of raw IMU and resulting 3D data collected 

with and without its use. 

The comprehensive evaluation of the derived 3D data in the 

selected use cases shows how well the proposed system can 

perform in different conditions. The statistics obtained from the 

comparison with ground truth data highlight the potential and 

limitations of the system for accuracy and completeness when 

mapping a specific environment. In all use cases the obtained 

metrics show satisfactory performance of the system, with great 

results of mapping man-made structures and reasonable results of 

reconstructing geometry of natural, more dynamic objects. 

Worth considering how the proposed MMT portable system can 

be applied in practice: industrial engineering, architecture or 

environmental monitoring. Prospects for future advances in 

PoLiMap system may include a comparative analysis between a 

configuration utilising a sensor affixed to a handheld gimbal and 

an alternative setup including portable, mobile scanning devices 

integrated into a backpack, widely used in case-studies. Even 

lower costs and high customization possibilities could facilitate 

easy adoption of the proposed system in different industries.  
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