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Eksperymentalne badania czasowo-przestrzennych zjawisk
nieliniowych w światłowodach wielomodowych

Słowa kluczowe: wielomodowe światłowody, nieliniowa optyka światłowodowa, mieszanie

czterech fal, pułapkowanie solitonów, dyskretna emisja stożkowa, światłowód gradientowy,

światłowód typu step-index, światłowód fotoniczny, czasowo-przestrzenne pakiety falowe

Streszczenie: Praca doktorska poświęcona jest eksperymentalnej charakterystyce nieliniowych

zjawisk zachodzących w światłowodach wielomodowych. Hipoteza badawcza streszcza się w py-

taniu, w jaki sposób i w jakim stopniu dynamika zjawisk nieliniowych o skorelowanych cechach

czasowych i przestrzennych może być kontrolowana przez kształtowanie właściwości światła

wprowadzanego do światłowodu. Rozprawa zaczyna się od ogólnej prezentacji światłowodów

wielomodowych wraz z charakteryzującymi je parametrami używanymi do opisu badanych

zjawisk nieliniowych. Wyniki w pracy są przedstawione według rosnącej liczby oddziałujących

modów. W pierwszej kolejności badane są dwójłomne włókna mikrostrukturalne prowadzące

dwa mody polaryzacyjne. W szczególności analizowana jest konwersja polaryzacji i zjawisko

pułapkowania impulsów w związku z dwójłomnością grupową i ortogonalnym rozpraszaniem

Ramana. Następnie badana jest nieliniowa konwersja częstotliwości do dalekich zakresów

spektralnych zachodząca przez procesy mieszania czterech fal wewnątrz- i międzymodowego

w kilkumodowym włóknie gradientowym. Jako ostatnia analizowana jest nieliniowa propa-

gacja ultrakrótkich, intensywnych impulsów w wielomodowym światłowodzie o skokowym

profilu współczynnika załamania. Uzyskane wyniki dowodzą spontanicznej emisji dyskret-

nej fali stożkowej, którą można opisać jako quasi-niezmienniczy czasowo-przestrzenny pakiet

falowy. Pomimo że w rozważanych systemach dominują różnego typu czasowo-przestrzenne

nieliniowe efekty, to składowe spektralne, przestrzenne i czasowe światła wychodzącego ze

światłowodu mogą być deterministycznie kontrolowane przez kompozycję modową pola wejś-

ciowego. Uzyskane wyniki przyczyniają się do fundamentalnego zrozumienia zjawisk nielin-

iowych w wielomodowych światłowodach i wskazują drogę do sposóbów kontrolowania nowych

strukturyzowanych wiązek światła, które mogą prowadzić do ekscytujących nowych kierunków

badań i zastosowań.



Experimental investigation of spatiotemporal nonlinear
phenomena in multimode optical fibers

Keywords: multimode optical fibers, nonlinear fiber optics, four-wave mixing, soliton trap-

ping, discretized conical emission, graded-index fiber, step-index fiber, photonic crystal fiber,

space-time wavepackets

Abstract: This thesis work is devoted to the experimental characterization of nonlinear

phenomena taking place in multimode optical fibers. The research hypothesis concerns how

the dynamics of nonlinear phenomena with correlated spatial and temporal features can be

governed by the input light properties. The dissertation begins with a general presentation of

multimode optical fibers, and their parameters used to describe the nonlinear effects under

study. The results and chapters are presented according to the increasing number of optical

modes involved. The case of birefringent microstructured fibers supporting two polarization

modes is studied first. In particular, pulse trapping and polarization conversion phenomena

are analyzed through fiber group birefringence and orthogonal Raman scattering. Secondly,

far-detuned nonlinear frequency conversion is investigated through intramodal and intermodal

four-wave mixing processes in a few-mode graded-index fiber. Thirdly, the nonlinear propaga-

tion of ultrashort, intense pulses in a step-index multimode fiber highlights the spontaneous

emission of discretized conical waves, which can be described as quasi-invariant space-time

wave packets. Although distinct spatiotemporal nonlinear phenomena are involved in the

systems considered, the spectral, spatial and temporal components of the output light are

deterministically controlled by the modal composition of the input optical field. The obtained

results contribute to the fundamental understanding of nonlinear phenomena in multimode

optical fibers and pave the way for the control of new structured light states that could lead

to exciting new research directions and applications.



Etude expérimentale de phénomènes non-linéaires
spatiotemporels dans les fibres optiques multimodes

Mots clés: fibres optiques multimodes, optique non-linéaire fibrée, mélange à quatre-ondes,

piégeage de solitons, émission conique discrète, fibre à gradient d’indice, fibre à saut d’indice,

fibre microstructurée, paquets d’ondes spatiotemporels

Résumé: Ce travail de thèse est consacré à la caractérisation expérimentale de phénomènes

non-linéaires se produisant dans les fibres optiques multimodes. L’hypothèse de recherche

concerne la manière dont la dynamique des phénomènes non-linéaires avec des caractéristiques

spatiales et temporelles corrélées peut être régie par les propriétés de la lumière en entrée de

fibre. La thèse commence par la présentation générale des fibres optiques multimodes et de

leurs paramètres utilisés pour décrire les effets non-linéaires étudiés. Les résultats et chapitres

sont présentés en fonction du nombre croissant de modes optiques mis en jeu. Le cas de fibres

microstructurées biréfringentes supportant deux modes de polarisation est d’abord étudié. En

particulier, les phénomènes de piégeage d’impulsions et de conversion de la polarisation sont

analysés à travers la biréfringence de groupe de la fibre et la diffusion Raman orthogonale.

Deuxièmement, la conversion non-linéaire de fréquences ultra-décalées est étudiée par le bi-

ais de processus de mélange à quatre-ondes intra-modaux et intermodaux dans une fibre à

gradient d’indice à quelques modes. Troisièmement, la propagation non-linéaire d’impulsions

ultracourtes et intenses dans une fibre multimode à saut d’indice met en évidence l’émission

spontanée d’ondes coniques discrètes, qui peuvent être décrites comme des paquets d’ondes

spatio-temporels quasi-invariants. Bien que des phénomènes non-linéaires spatio-temporels

distincts soient impliqués dans les systèmes considérés, les composantes spectrales, spatiales et

temporelles de la lumière émise sont contrôlées de manière déterministe par la composition

modale du champ optique d’entrée. Les résultats obtenus contribuent à la compréhension

fondamentale des phénomènes non-linéaires dans les fibres optiques multimodes et ouvrent

la voie au contrôle de nouveaux états de lumière structurée pouvant conduire à de nouvelles

directions de recherche et des applications passionnantes.
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Chapter 1

Introduction

The field of nonlinear optics was opened with Theodore Maiman’s invention of laser in

1960 [1]. This breakthrough allowed to produce optical fields with intensities that rival those of

the atomic electric field, enabling displacing the electric charges. Consequently, a high-intensity

laser light alters the properties of the medium in which it travels, thereby affecting its own

propagation and, for instance, resulting in generation of new spectral components. In the wake

of the laser’s invention, numerous nonlinear processes were observed in bulk media for the first

time during the 1960s, beginning with the demonstration of the second harmonic generation

of light at 347 nm from a ruby laser beam with a wavelength of 694 nm focused into a quartz

sample [2].

Simultaneously, the field of optical fibers developed rapidly, initially for the purpose of

transmitting images through bundles of glass fibers [3]. Following pivotal studies that suggested

the possibility of drastically reducing fiber losses [4, 5, 6], optical fibers brought a revolution

in the field of telecommunication [7], leading to Charles Kao being awarded the Nobel Prize

in Physics in 2009 for ”groundbreaking achievements concerning the transmission of light in

fibers for optical communication”.

At the intersection of nonlinear optics and fiber optics, the new field of nonlinear fiber

optics emerged [8, 9]. The optical fibers turned out to be an excellent platform for exploring

nonlinear phenomena, since the guided light is confined in a small area and the propagation

distances are very large, resulting in significant nonlinearity even at relatively low pulse powers.

In the following years, various nonlinear processes were observed in optical fibers: stimulated

Raman emission [10], optical Kerr effect [11], parametric wave mixing processes [12, 13, 14],

self-phase modulation [15], and formation of optical solitons [16]. With advancements in

fabrication technology facilitating the production of single-mode fibers (SMF) and their

structural simplicity that proved extremely advantageous in 1980s for telecommunication

applications [17, 18], the majority of the conducted research concentrated on the nonlinear

phenomena in single-mode fibers, and the nonlinear properties of multimode fibers (MMF)

have remained largely unexplored.

However, starting from 2010 the nonlinear effects in MMF receive a substantial renewed

attention [19, 20]. This is driven by promising applications that surpass the possibilities of

single-mode fibers, including space-division multiplexing in telecommunication systems [21, 22],

high-power lasers [23] and high-resolution biomedical imaging [24]. At the same time, multimode

optical fibers support a rich variety of coupled spatial and temporal phenomena that are

extremely interesting to study from the fundamental point of view. In present days, thanks to

innovative characterization techniques, improved light sources, and better computing power to

support experimental observations with numerical modeling, this subject has become a central
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issue in the field of nonlinear fiber optics [25].

Multimode fibers offer a natural platform to bridge the gap between the nonlinear

phenomena that have been examined over the past 50 years in both single-mode fibers and

bulk media. Each of those types of structures is distinct in terms of the way it guides light.

Single-mode fibers support only one spatial mode, whereas bulks support a dense and infinite

number of modes. A continuous mode structure in bulks enables investigation of fascinating

space-time correlations during nonlinear pulse propagation. As multimode fibers support a

discretized mode structure, it is very interesting to explore how the spatiotemporal dynamics

can be transposed from each of the two limiting cases, namely a single discrete mode in SMF,

and a continuous set of modes in bulk.

Very recently, spatiotemporal pulse dynamics in multimode fibers have led to exciting

observations of qualitatively new phenomena, such as spatial beam self-cleaning that reshapes

the transverse spatial beam pattern at the fiber output via the nonlinearity [26, 27, 28] and

multimode solitons [29, 30, 19], in which nonlinearity balances both chromatic dispersion and

modal dispersion. However, further research is still necessary to reach a complete understanding

of the complex interactions of light between multiple fiber modes.

For example, extensive studies on optical solitons in SMF are driven by their ability to

maintain the pulse shape during propagation due to an interplay between dispersive and

nonlinear effects. The possibility of avoiding temporal broadening of pulses transmitted over

the distances of thousands of kilometers has profound implications for modern high-speed

high-capacity telecommunication systems [18]. Such as conventional single-mode solitons play

a key role in understanding pulse temporal dynamics in single-mode fibers, multimode solitons

might provide an intuitive tool to understand the pulse spatiotemporal dynamics in multimode

systems. Recent studies indicate that nonlinear couplings between many modes of MMF can

mitigate the issue of intermodal dispersion, leading to formation of synchronized, non-dispersive

pulses in multiple spatial modes [29, 31]. Nevertheless, many aspects of the behavior and

properties of multimode solitons remain unexplored. By examining simpler structures, such as

bimodal solitons, we can gain a perspective on the underlying principles and dynamics that

govern multimode solitons in more complex systems.

From another perspective, it is interesting to consider the spatiotemporal dynamics of

light in MMF as the pulse power approaches the critical threshold for self-focusing [32]. In

bulk media, the transverse size of the beam at high intensities can progressively reduce during

propagation due to the Kerr effect overcoming diffraction [33]. Self-focusing has been extensively

studied in bulk materials such as glasses, liquids, and gases [34, 35, 36] for its capability to

counteract diffraction, which could result in diffraction-free optical beams that maintain shape

during propagation [37, 38]. Such ultrafast pulses with a localized transverse profile are termed

light bullets: stable pulses that are confined in both time and space. Nonlinear light couplings

in MMF could lead to Kerr nonlinearity balancing both chromatic dispersion and diffraction

at the same time. Light bullets in fibers remain experimentally unexplored despite focused

efforts. Besides their fundamental appeal, they hold potential for use as complex data bits in

high-capacity telecommunication and data processing systems.

Finally, frequency conversion processes have been explored in both SMF and bulks.
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However, various modes of MMF offer more degrees of freedom in enabling phase-matching of

nonlinear wave-mixing processes. After several experimental studies of intermodal four-wave

mixing at the onset of nonlinear fiber optics [12, 13, 14, 39], this subject reemerged around

2010 [40, 41] and has remained in the center of interest from that time, in particular for

generating a broadband supercontinuum through a series of cascaded intermodal four-wave

mixing processes [42, 43, 44, 45, 46]. Highly-multimode graded index fibers are particularly

interesting in this context, as their relatively low intermodal dispersion can lead to formation of

a broad supercontinuum through the phenomenon known as geometric parametric instability,

characterized by the presence of a series of distinct spectral peaks [47, 48, 49, 50]. Its analytical

description is based on a simplified picture of degenerated mode groups in graded-index fibers.

Nevertheless, deeper analyses are still required to provide a complete overview of the potential

of multimode interactions.

Such nonlinear intermodal interactions have the potential to shape the spatiotemporal

spectrum in relatively simple experimental configurations. This could provide a welcome alter-

native to a more complex experimental approach of engineering the desired three-dimensional

ST pulse structure through a coherent wave shaping combined with linear spatial mode mul-

tiplexing. The primary focus of this dissertation is the experimental investigation of novel

spatiotemporal nonlinear effects in multimode fibers. I aim to show that spectral, spatial, and

temporal dynamics of nonlinear phenomena can be controlled through the modal composition

of the excited field by managing the polarization, spatial distribution, and phase profile of the

input optical field in a conceptually simple experimental arrangement.

The research hypothesis is evaluated by detailed studies of pulse trapping by soliton in

birefringent photonic crystal fibers, intramodal and intermodal four-wave mixing in a graded-

index fiber, and discretized conical emission and generation of helicon wavepackets in a highly

multimode step-index fiber. The choice of each subsequent investigated topic is driven by

the potential to explore more complex interactions resulting from the increasing number

of interacting modes. Initially I study birefringent photonic crystal fibers that support two

polarization modes. This is followed by investigation of a few-mode graded-index fiber. In the

end I explore the nonlinear dynamics in a highly multimode step-index fiber.

This dissertation is organized as follows. Chapter 2 describes fundamental principles

governing both linear and nonlinear regimes of light propagation in different modes of optical

fibers. The introduced concepts are illustrated with experimentally and numerically charac-

terized properties of the fibers that are used for the subsequent investigations of nonlinear

processes. Chapters 3-5 contain the results of my studies on spatiotemporal nonlinear effects.

Chapter 3 presents the experimental investigation of pulse trapping in two birefringent photonic

crystal fibers characterized by different magnitudes of group birefringence. The polarization

conversion phenomena I study result from the fiber group birefringence and orthogonal Raman

scattering of the pump pulse. Chapter 4 provides the theoretical predictions and experimental

characterizations of intramodal and intermodal four-wave mixing processes in a few-mode

graded-index fiber. I reveal the potential to obtain high-gain frequency conversion with far-

detuned peaks whose spectral position is determined by the fiber dispersion. Chapter 5 contains

the experimental confirmation and detailed study of spontaneous emission of a discretized
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conical wave in a step-index multimode fiber, as well as preliminary results of the experimental

study of the formation of helicon wavepackets.

The doctoral thesis has been realized under the international cotutelle scheme. The

research work was carried out alternately at the Wrocław University of Science and Technology

(WUST) and at the University Bourgogne-Franche-Comté (UBFC). During the three academic

years 2021/2022 - 2023/2024 I spent 4 months each year at UBFC.

Selected findings discussed in this dissertation have been published in three peer-reviewed

journal articles:

• K. Stefańska, P. Béjot, J. Fatome, G. Millot, K. Tarnowski, B. Kibler, High-gain far-

detuned nonlinear frequency conversion in a few-mode graded-index optical fiber, Scientific

Reports, 2024, 10.1038/s41598-024-65873-w;

• K. Stefańska, P. Béjot, K. Tarnowski, B. Kibler, Experimental observation of the sponta-

neous emission of a space-time wavepacket in a multimode optical fiber, ACS Photonics,

vol. 10, 3, 2023, 10.1021/acsphotonics.2c01863;

• K. Stefańska, S. Majchrowska, K. Gemza, G. Soboń, J. Sotor, P. Mergo, K. Tarnowski,

T. Martynkien, Soliton trapping and orthogonal Raman scattering in a birefringent

photonic crystal fiber, Optics Letters, vol. 47, 16, 2022, 10.1364/OL.463643.

Additionally, I have contributed as the presenting author to 6 international conferences (1 poster,

6 oral presentations, including one invited), with one more oral presentation scheduled for

September 02-06, 2024, as well as 2 workshops and 3 schools (1 presentation and 5 posters).

A detailed list of all scientific contributions made during the PhD thesis can be found in the

Appendix at the end of the dissertation.
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Chapter 2

Light coupling and propagation

in multimode fibers

Conventional optical fibers guide light by the phenomenon of total internal reflection (TIR),

which was first demonstrated in the light fountain experiment of Jean-Daniel Colladon [51]

and described by John Tyndall [52] in the nineteenth century. When light arrives at the

interface from one medium with a higher refractive index to another medium with a lower

refractive index, it can be fully reflected back into the first medium if the incidence angle is

sufficiently large. A dominating material used in fiber optics due to its robustness is fused

silica. It is characterized by a number of favorable properties: broad spectral region of optical

transparency [53, 54], superior resistance to mechanical stresses such as pulling and bending

compared to other optical glasses [55, 56, 57, 58], high damage threshold against laser-induced

breakdown [59, 60, 61, 62], and possibility of doping with other materials to achieve efficient

light guidance and improve various properties. In particular, certain dopants are used to

increase the refractive index in the core, such as germania [63] or alumina [64], and others,

like fluorine, are used to decrease the refractive index in the cladding [65]. The contrast of

refractive index is essential in achieving TIR of light within the fiber on its core-cladding

boundary instead of on its outer surface, which was first proposed by Abraham van Heel in

1954 [66] and proved to be highly beneficial in reducing the losses and in preserving a high

quality of the light beam.

If the difference between the refractive index of fiber core and cladding is sufficiently

high, or the core area is large enough, the fiber becomes multimode. Multimode fiber supports

multiple transverse guided modes for a given wavelength. Each of them is characterized by

a certain set of properties, such as: transverse amplitude profile of electric field distribution,

effective refractive index, propagation constant, and optical losses. In this chapter, I discuss

different types of multimode optical fibers, their fundamental linear and nonlinear properties

that give rise to distinct phenomena, and the mode structure of multimode fibers.

2.1 Multimode optical fibers

Multimode fibers with a single core can be divided into two main categories: step-index

fibers and graded-index fibers. In step-index fibers, a glass core with constant refractive index

n0 is surrounded by a cladding layer with constant refractive index ncl < n0. In graded-index

fibers, the refractive index value decreases gradually from the center of the core to its boundary

with cladding. Various special designs of fibers have been developed to enhance their properties

making them particularly useful for specific applications [67, 68, 69, 70]. In the following,
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2.1. Multimode optical fibers

besides describing step-index and graded-index fibers, I also focus on one particular specialty

fiber design: microstructured fibers, also referred to as photonic crystal fibers. In the later

chapters, I study different nonlinear phenomena in the three introduced fiber types, therefore

it is essential to comprehend their distinct design features to understand how it affects their

unique properties.

2.1.1 Step-index fibers

A step profile of refractive index is the most basic design of a fiber. Figure 2.1 provides a

schematic illustration of this refractive index profile. Fiber core with a radius R is made of

a material with refractive index n0. Fiber cladding is made of a material with slightly lower

refractive index ncl. To ensure compatibility with various fiber connectors and components,

the cladding radius Rcl is typically equal to 62.5 µm.

The photograph of the crossection of the step-index (SI) fiber which I use in the later

investigations is displayed on the right side of Fig. 2.1. This fiber has a large silica core with

R = 52.5 µm, and a fluorine-doped glass cladding.

The contrast of refractive index between the fiber core and cladding is often characterized

by the relative index difference:

∆ =
n20 − n2cl
2n20

. (2.1)

Another very useful parameter in assessing fiber properties is V number defined as:

V = k ·R ·NA = k ·R ·
√

n20 − n2cl, (2.2)

where k = 2π/λ, λ is the wavelength in vacuum, and NA is the numerical aperture. V number

is a dimensionless normalized optical frequency. It determines the number of modes supported

by the fiber. If V < 2.405, fiber supports only a single mode (two modes when polarization

degeneracy is included). For larger values, fibers supports higher-order modes as well. When

the number of modes is large, it can be estimated as:

M ≈ V 2/2, (2.3)

if modes are accounted for both polarization directions [71]. The step-index fiber used in

my investigations is characterized by the following parameters provided by its manufacturer

Figure 2.1: Schematic illustration of refractive index profile of a step-index fiber and a photograph of

the fiber used in later experiments.
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2.1. Multimode optical fibers

(Thorlabs, fiber FG105LCA): R = 52.5 µm and NA = 0.22. I therefore estimate that it

supports over 2450 modes at the pump laser wavelength 1035 nm. The provided formula

indicates that fibers support more modes as the wavelength decreases, as M shows inverse

quadratic dependence on λ. For example, the investigated fiber supports propagation of over

ten thousand different modes at λ = 500 nm.

2.1.2 Graded-index fibers

The refractive index of graded-index (GRIN) fiber decreases radially inside the core of

radius R from the value n0 at the core center to the cladding refractive index ncl [72]. The

refractive index profile, illustrated schematically in Fig. 2.2, is given by:

n2(r) = n20

[

1− 2∆
(
r

R

)α]

, (2.4)

where α ≈ 2 is a typically assumed near parabolic index profile in the core (r ¬ R) [73],
and α = 0 is a flat index profile in the cladding (R < r ¬ Rcl). The near parabolic shape
of the core refractive index profile is due to the typical near parabolic germanium doping

concentration [74]. Remarkably, such profile of refractive index results in an almost equal

distribution of effective refractive indices of the guided modes. In this case, all modes propagate

with (approximately) the same group velocity, and the intermodal dispersion is much smaller

than in other designs of multimode fibers [74].

The refractive index profile of the GRIN fiber which I use in the later investigations can

be approximated with the following parameters: a core radius R = 8 µm with a parabolic

index profile, a 5mol% Ge doping in the core center, and a pure silica cladding. In addition,

this profile features a region of depressed index, called trench, which is doped with fluorine at

(10 µm < r < 15 µm). The photograph of the fiber’s cross-section is displayed on the right side

of Fig. 2.2, and the measured refractive index profile is shown in Fig. 4.5.

The general formula for a total number of guided modes (accounting for both polarizations)

for a fiber with an arbitrary index profile can be written as [75]:

M ≈ 2π
λ2

∫ R

0
2πr

(

n2(r)− n2cl
)

dr, (2.5)

Figure 2.2: Schematic illustration of refractive index profile of a graded-index fiber and a photograph of

the fiber used in later experiments.
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2.1. Multimode optical fibers

and in a GRIN fiber it can be estimated as [74]:

M ≈ α

α+ 2
∆

(
2π

λ
n0R

)2

. (2.6)

2.1.3 Photonic crystal fibers

Photonic crystal fibers (PCFs) obtain their waveguide properties not from a radially

varying material composition but from a microstructure of air holes. Since the pioneering

research led by the group of Philip Russel [76], various designs have been proposed to achieve

modification of different properties, as this type of fiber offers many degrees of freedom.

In its most basic form, a PCF is entirely composed of silica, with the glass core region

surrounded by multiple rings of periodic air holes that effectively reduce the refractive index of

the cladding region. In different designs, the core region can be further doped with additional

materials, and the size and arrangement of air holes varies from one structure to another [77, 78].

For example, the PCF used in later experiments is characterized by a Ge-doped core, a set

of smaller air holes arranged in a honeycomb lattice, and two regions with larger air holes

arranged symmetrically on two sides of the core, see the image of the fiber’s cross-section

in Fig. 2.3. This kind of structure is fabricated using a preform, which consists of multiple

stacked capillaries and solid rods arranged in a pre-ordered manner and inserted in a larger

tube. The preform is then drawn into a fiber in a way similar to the standard fiber fabrication

process [79].

The arrangement of air holes in PCF affects how the fiber modes are guided. Significant

design flexibility permits achieving different combinations of desirable properties. For instance,

it is possible to reach small effective mode areas, which enhance the fiber nonlinearity [80].

Moreover, the fiber’s dispersive properties are highly sensitive to the size and spacing of air

holes, enabling much more customization of the chromatic dispersion compared to the other

fiber designs and reaching unique outcomes [81, 82, 83].

It should be mentioned that calculating the modal and dispersive properties of PCF requires

a numerical approach because there is no radial symmetry and the cladding refractive index

is not homogeneous. For that reason, an advanced mode solver is required: the transmission

properties of the fiber can be obtained for example using the Comsol Multiphysics software.

Figure 2.3: Image from a scanning electron microscope showing the photonic crystal fiber used in the

later experiments.
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2.2. Fiber modes and free space coupling

2.2 Fiber modes and free space coupling

Fiber modes are obtained by solving the wave equation, which takes the following form in

cylindrical coordinates [84]:

∂2E

∂r2
+
1

r

∂E

∂r
+
1

r2
∂2E

∂φ2
+
∂2E

∂z2
+ n2k2E = 0, (2.7)

where k = 2π/λ, z is the direction of propagation, n is the local refractive index value, and

E(r, φ) is the complex electric field profile. The following assumes a cylindrically symmetric

fiber, which means that the refractive index depends only on the radial coordinate r and not

on the azimuthal coordinate φ. The described step-index and graded-index fibers satisfy this

requirement.

The next useful simplification is considering the weakly guiding approximation, valid for

fibers with relatively small index contrast ∆≪ 1. In this case, the axial components of the
electric and magnetic fields become negligible, so that the fields are considered transverse to

the fiber axis [85]. Under such assumption, the above equation can be solved using an ansatz

expressed either as:

E(r, φ) = Flm(r) cos (lφ),

E(r, φ) = Flm(r) sin (lφ),
(2.8)

or as:

E(r, φ) = Flm(r) exp (+ilφ),

E(r, φ) = Flm(r) exp (−ilφ),
(2.9)

with Flp(r) satisfying the following equation:

F ′′lp(r) +
1

r
F ′lp(r) +

(

n2(r)k2 − l
2

r2
− β2

)

Flp(r) = 0. (2.10)

For Flp(r) to be physically meaningful, it has to converge toward zero for r →∞. Such solutions
exist only for certain discrete values of βlp, each of them representing the specific guided mode.

This eigenvalue β is the propagation constant of the mode, which governs its propagation in

the fiber.

In order to preserve continuity of the φ-dependent factor in Eqs. 2.8 and 2.9, the index l,

called the azimuthal mode number, must be an integer l = 0, 1, 2, ... . For selected l, the index

p, which is an integer called the radial mode number, starts from 1 for the highest possible β

and increases until no more solutions can be found.

When the mode basis is established using the ansatz from Eq. 2.8, the guided modes are

referred to as LP (linearly polarized) modes, which is the typically assumed mode basis in

optical fibers. I describe their selected properties in Section 2.2.1. When the mode basis is

established using the ansatz from Eq. 2.9, the guided modes carry orbital angular momentum

(OAM) [86]. The value of OAM depends on the integer l, which in this mode basis is often

called the topological charge. It is evident from Eqs. 2.8 and 2.9 that a superposition of modes

from one basis can form modes from another basis. The discussion of OAM fiber modes can

be found in Section 2.2.3.
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2.2. Fiber modes and free space coupling

2.2.1 LP modes

The electric field of the LP mode has one predominant direction of polarization. In a

cylindrically symmetric fiber, this direction can be arbitrarily selected. Consequently, fiber

modes can be divided into two orthogonally polarized groups. One group has electric field

aligned along the x axis, while the other has electric field aligned along the y axis, making the

two sets of modes degenerate. Another type of mode degeneracy results from the choice of

ansatz, which according to Eq. 2.8 makes use of either cos(lφ) or sin(lφ). These two solutions

are known as even and odd modes of the fiber, respectively, and are degenerate for any l ̸= 0.
Consequently, all spatial LP0,p modes are 2-fold degenerate due to polarization degeneracy,

and all LPl,p modes with l > 0 are 4-fold degenerate in the weakly guiding approximation.

The solutions to the wave equation vary based on the refractive index profile n(r). In the

following, I present key observations about modes in step-index and graded-index fibers and

devote a section to the challenge of efficiently coupling the input beam into the selected mode.

LP modes in step-index fibers

Equation 2.10 has analytical solutions for step-index fibers, whose core refractive index

remains constant. The solution for the core part involves a Bessel function Jl(r
√

n20k
2 − β2),

while the solution for the cladding part involves a modified Bessel function Kl(r
√

β2 − n2clk2).
The two functions must be balanced to ensure continuity at the boundary between the core

and the cladding, and the entire procedure is detailed in Ref. [84].

Obtaining the eigenvalue β and the corresponding mode field distributions for each LPl,p

mode requires a numerical approach. I have solved the wave equation numerically for the

step-index fiber used in the study in Chapter 5, considering the l = 0 modes at the pump

laser wavelength λ = 1.035 µm. At this wavelength, the fiber supports propagation of 23 LP0,p

modes. The calculated amplitude and intensity profiles for the first four LP0,p modes are shown

in Fig. 2.4. The fundamental mode LP0,1 has a Gaussian-like intensity distribution with a

maximum at the center of the core. Higher-order modes have more complex field distributions

with the number of lobes determined by the radial number p.

On the right side of Fig. 2.4 I show the mode propagation constant β as a function of

the radial number for all found guided LP0,p modes. The fundamental mode is characterized

by the highest β, with its value approaching n0k (indicated with a black horizontal line).

The propagation constants of higher-order modes decrease at an increasing rate, and the

highest-order guided mode has β approaching nclk.

LP modes in graded-index fibers

Core refractive index of GRIN fibers changes according to Eq. 2.4. For such n(r) distribu-

tion, the analytic solution of the radial mode equation 2.10 involves Laguerre polynomials, as

detailed in Ref. [84]. I have used a numerical mode solver to determine the mode field distribu-

tions of the l = 0 modes for the same wavelength as in the previous example λ = 1.035 µm.

To better illustrate the unique features of the graded-index design, I consider the parabolic
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2.2. Fiber modes and free space coupling

Figure 2.4: Calculated amplitude and intensity profiles of the first few LP0,p modes (left) and mode

propagation constant (right) as a function of the radial mode number for the step-index fiber characterized

by a R = 52.5 µm pure-silica core and NA=0.22, assuming λ = 1.035 µm. In the left panels, the vertical

dashed line at r = R indicates the core-cladding boundary.

Figure 2.5: Calculated amplitude and intensity profiles of the first few LP0,p modes (left) and mode

propagation constant as a function of the radial mode number for the graded-index fiber characterized

by a R = 50 µm core with a 24mol% Ge doping in the core center, a parabolic index profile, and a pure

silica cladding, assuming λ = 1.035 µm. In the left panels, the vertical dashed line at r = R indicates

the core-cladding boundary.
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2.2. Fiber modes and free space coupling

Table 2.1: First 15 mode groups of GRIN fibers with the associated LPl,p modes. The mode count

#ndeg (#deg) excludes (includes) mode degeneracy.

g modes #ndeg #deg

1 LP0,1 1 2

2 LP1,1 1 4

3 LP0,2; LP2,1 2 6

4 LP1,2; LP3,1 2 8

5 LP0,3; LP2,2; LP4,1 3 10

6 LP1,3; LP3,2; LP5,1 3 12

7 LP0,4; LP2,3; LP4,2; LP6,1 4 14

8 LP1,4; LP3,3; LP5,2; LP7,1 4 16

9 LP0,5; LP2,4; LP4,3; LP6,2; LP8,1 5 18

10 LP1,5; LP3,4; LP5,3; LP7,2; LP9,1 5 20

11 LP0,6; LP2,5; LP4,4; LP6,3; LP8,2; LP10,1 6 22

12 LP1,6; LP3,5; LP5,4; LP7,3; LP9,2; LP11,1 6 24

13 LP0,7; LP2,6; LP4,5; LP6,4; LP8,3; LP10,2; LP12,1 7 26

14 LP1,7; LP3,6; LP5,5; LP7,4; LP9,3; LP11,2; LP13,1 7 28

15 LP0,8; LP2,7; LP4,6; LP6,5; LP8,4; LP10,3; LP12,2; LP14,1 8 30

index profile with a R = 50 µm core, a 24mol% Ge doping in the core center, and a pure silica

cladding, to obtain a larger number of guided modes than in the few-mode GRIN fiber that is

actually used in the later study. The calculated amplitude and intensity profiles for the first

four LP0,p modes are shown in Fig. 2.5. The mode field distributions resemble those obtained

for the step-index profile, however the key distinction is that the modes in the GRIN fiber are

localized closer to the core center. This is due to the radial dependence of the core refractive

index.

Assuming a parabolic index profile α = 2, propagation constant of the LPl,p mode is

expressed as [87]:

β = n0k

[

1− 2(l + 2p− 1)
√
2∆

n0kR

]1/2

. (2.11)

Clearly, modes with the same value of the integer l + 2p− 1 ≡ g have the same propagation
constant, where g is referred to as the group mode number of a LPl,p mode. Consequently,

modes belonging to the same group g are degenerate in the weakly-guiding approximation.

Table 2.1 presents all the modes belonging to the first 15 groups, illustrating that the mode

degeneracy escalates as g increases - each group g includes 2g degenerate modes.

Remarkably, the propagation constant of the mode characterized by the mode group

number g can be approximated as a simple sum of the material dispersion and waveguide

contribution [87]:

βg = n0k

[

1− 2g
√
2∆

n0kR

]1/2

≈ n0k − g
√
2∆/R. (2.12)

It is important to note that the first term in the above equation depends solely on the
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2.2. Fiber modes and free space coupling

wavelength-dependent refractive index in the center of the fiber core, and the second term is a

waveguide contribution that depends on the mode group number and parameters of the fiber

design. Consequently, for a given wavelength all modes with the same group number have the

same value of the propagation constant, whereas modes with increasing group numbers have

propagation constants separated by a factor of
√
2∆/R. This is evident in Fig. 2.5, where β is

a linear function of g.

The equidistant distribution of mode propagation constants is a very useful feature of

graded-index fibers. It creates conditions for the emergence of new phase-matched processes

through the self-imaging effect [73]. In particular, collective spectral sidebands (associated with

numerous intermodal four-wave mixing combinations) can emerge on both sides of the pump

wavelength in a phenomenon called geometric parametric instability (GPI) [47]. Section 4.1

includes the analysis of the spectral positions of phase-matched nonlinear wave mixing processes

predicted using the presented assumption.

2.2.2 Optimization of the launch system to excite the LP0,1 mode

In general, launching the optical beam into the multimode fiber results in excitation of

a superposition of many different modes. The efficiency of excitation of the specific mode is

determined by the overlap of its amplitude with the complex amplitude of the pump field

incident on the fiber.

The dynamics of the investigated nonlinear processes significantly depend on the amount

of energy contained in various modes of the fiber. In particular, the discretized conical wave

studied in Chapter 5 emerges as intermodal dispersive wave emitted from an unsteady localized

wave structure, and to assure optimal observation and easy interpretation of the phase-matching

conditions it is crucial that the ultrashort pump pulses initially propagate in a single fiber

mode. Typical laser beam is well approximated by a Gaussian intensity profile, therefore the

best overlap can potentially be achieved for the fundamental LP0,1 mode. For that reason, I

developed a light coupling scheme aimed at enhancing the excitation of the fundamental mode,

while reducing the energy coupling into the higher-order modes of the used multimode fiber,

which, it is worth highlighting, supports close to 2500 modes at the pump wavelength.

The developed launch system consists of a focusing lens in conjunction with a multiaxis

platform that provides 5 degrees of freedom and serves to support the entire, sub-10-cm-long

fiber used in this study. In addition, I precisely controlled the path of the input beam using

two mirrors arranged in a Z configuration and ensured the exact alignment of the focusing

lens’s center with the laser beam by using an adjustable XY translation mount.

It is worth to mention the importance of carefully performing the fiber cleaving process.

As evident in Fig. 2.1, the cladding layer is quite thin - it measures only 10µm. Consequently,

the score, which is a scratch at the surface of the glass made by the cleaving blade, must

be very precise and cannot go too deep, otherwise the core integrity might be compromised

which impacts the optical field distribution and prevents pure excitation of the fundamental

mode (note that the LP0,1 mode intensity profile in Fig. 2.4 extends relatively close to the

core-cladding boundary). To achieve a clean breaking along the score line the force applied by
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2.2. Fiber modes and free space coupling

Figure 2.6: Calculated efficiencies of power coupling into the fundamental fiber mode for the beam

with a Gaussian intensity profile launched into the investigated step-index MMF. The points show

the calculated results as a function of incident beam radius, offset in the longitudinal and transverse

directions, and error in angular orientation. The lines serve to guide the eye.

the cleaver to the scored fiber must be precisely managed. After cleaving I inspect both ends

of the fiber under the microscope to confirm the clean cut. The segment of the fiber that is

an exposed glass is approximately 2-4mm long from both sides, and the rest remains in the

protective polymer coating.

I have found that specific properties of the incident beam should be precisely managed to

efficiently launch light into the fundamental mode of this highly multimode fiber. In order to

better understand how strong the fiber misalignment influences the launch efficiency into the

fundamental fiber mode, I have calculated complex overlap integrals containing the transverse

input beam profile and the mode profile using the RP Fiber Calculator software. The results,

shown in Fig. 2.6, are analyzed below.

Waist radius of the incident beam

The size of the beam at the focus should match the size of the fundamental mode. The

waist radius of the beam with a Gaussian intensity profile compared to the intensity profile

of the LP0,1 mode shown in Fig. 2.4 should then be around 35µm (at 1/e
2). A deviation of

5 µm causes a decrease of power coupling from 98% to 95-96%. However, larger discrepancies

from the optimal beam size have a stronger impact on light launch efficiency. As a result,

the choice of the lens used for light coupling into the fiber is crucial to ensuring preferential

excitation of the selected mode. Consequently, I characterized different available lenses with
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the use of a scanning slit optical beam profiler (Thorlabs, BP104IR) to optimize the beam

diameter at the focal point to fit the calculated intensities of the fiber modes. The inspection

was performed with the pump laser in the continuous mode to avoid damaging the beam

profiler. A bi-convex lens (Thorlabs, LB1904-C) was chosen because of the optimal beam waist

radius of this element; however, it should be noted that a plano-convex lens would be a better

choice as it has lower spherical aberrations. The parameters analyzed in the following assume

the optimized beam waist radius of 35µm.

Transverse and longitudinal alignment of the fiber

The fiber input end should be well-aligned with respect to the beam focus. In terms of

alignment in the transverse direction, the position error of the incident beam should be small

compared to the radius of the mode. The offset by several micrometers is acceptable in this

case. The error of 10 µm allows for the launch efficiency of 90%, while the error of 30µm results

in a twice lower efficiency. Consequently, high precision of the optical-mechanics (preferably

with sub-micron accuracy) is important for optimizing transversal alignment of the fiber.

Moreover, the distance from the focal spot should ensure a flat wavefront of the incident

beam. However, as shown in Fig. 2.6, the coupling efficiency into the fundamental mode is less

prone to errors related to misalignment of the fiber input end in the longitudinal direction,

compared to the other analyzed cases. Even a large longitudinal offset of 1mm does not

significantly change the obtained coupling, dropping the efficiency to 96.5%.

Angular orientation of the beam

Finally, it is crucial to ensure the correct direction of the input beam so that it hits the

fiber input face perpendicularly. I have found that for such highly-multimode fiber the error of

even fraction of a degree can significantly impact the beam launch efficiency. Consequently,

ensuring the parallel orientation of the beam with respect to the optical table, and controlling

the tilt and yaw of the fiber input end is crucial for optimized light launching. In addition, I

should highlight the importance of the inspection performed after cleaving the fiber to verify

whether the cut is perpendicular to the fiber axis.

The optimization of the mentioned beam parameters according to the performed analysis

allows to achieve high coupling efficiency. In the linear regime, 82% of the beam power is

coupled into the fiber.

In the end, it is important to note that even if the pump field is coupled entirely into the

fundamental mode, some amount of random mode mixing might occur during propagation

due to various factors, including, but not limited to:

• manufacturing irregularities causing non-circularity of the core radius, variations in the

material composition, and roughness at the core-cladding boundary [88],

• bending-induced coupling [89],

• applied mechanical stress [90].
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Figure 2.7: Helical structures and phase fronts of OAM beams with (a) l = +1, (b) l = −1, (c) l = +2,
(d) l = −2.

It is impossible to eliminate the coupling caused by the inherent structure of the fiber. In

order to mitigate the mode mixing resulting from the remaining disturbances, it is important

to keep the fiber segment straight. In the context of this specific experiment, it is achievable,

as merely a few centimeters of nonlinear propagation in the MMF are enough to observe the

effect under investigation, therefore the entire fiber segment can be placed on the multi-axis

platform. It is also critical to avoid exerting mechanical force on the fiber and to forego the

use of conventional fiber clamps or magnetic holders that cause unwanted energy couplings.

2.2.3 Shaping the beam to excite OAM modes

OAM modes are another mode basis to represent spatial modes of fibers, see Eq. 2.9. They

are characterized by a helical phase front exp(ilφ) varying around the axis, where the topological

charge l indicates the amount of orbital angular momentum lh̄ carried by each photon [91].

The polarization states associated with this mode basis are left and right circular polarization,

σ±, which indicates the spin angular momentum carried by each photon [86]. Consequently,

OAM modes are denoted as OAM±±l,p, with the superscript indicating the polarization state,

l indicating the number of phase steps in the intensity profile and simultaneously the number

of intertwined helical surfaces, see Fig. 2.7, and p indicating the number of concentric rings in

the intensity profile. Each l ̸= 0 OAM mode carries a non-zero orbital angular momentum and
has a donut-shaped intensity with a dark central spot since its phase is undefined at the center.

Under weakly guiding approximation, each l > 0 OAM mode is 4-fold degenerate including

polarization and direction of phase rotation, while OAM±0,p mode is 2-fold degenerate including

only polarization. The OAM modes can be formed by superposing the even and odd LPl,p

modes with correct phase shifts [92]. Clearly, the total count of modes guided in the specific

fiber remains identical, irrespective of whether the LP basis or the OAM basis is considered.

OAM modes in the GRIN fibers form degenerate groups [93], similarly to the LP modes.
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Figure 2.8: Examples of q plates. Lines indicate the local direction of the optical axis.

2.2.4 Excitation of OAM modes

Common methods used for creating the OAM beams include spatial light modulators

(SLM) [94, 95], spiral phase plates [96, 97, 98], and q plates [99, 100]. To form the OAM beam

for the study described in Chapter 5, I used a q plate, which is an element allowing direct

conversion of the optical angular momentum from the spin to the orbital. This implies a

possibility of obtaining an OAM beam from a circularly polarized beam passing the q-plate,

as demonstrated in Ref. [99]. I elaborate on this below, additionally describing the method

developed to shape the beam for exciting simultaneously both the fundamental l = 0 and the

first order l = 1 OAM fiber modes in the desired proportion.

A q plate is a uniaxial birefringent flat plate with a homogeneous birefringent phase

retardation ϑ. In the following, I focus on two typical phase retarders: half-wave plate (ϑ = π)

and quarter-wave plate (ϑ = π/2). The q plates have an inhomogeneous orientation of the fast

(or slow) optical axis. Assuming that light impinges at normal incidence on the surface of the

plate, which is parallel to the xy coordinate plane, the orientation of the optical axis of the

q plate can be written as:

α(r, φ) = qφ+ α0, (2.13)

where α is the angle of optical axis orientation with the x axis, q is an integer or a semi-integer,

and α0 is a constant indicating the angle of optical axis orientation with the x axis at φ = 0.

Figure 2.8 demonstrates a few examples of q plate geometries for different values of q and α0.

The effect applied on an optical field by a q plate with a birefringent phase retardation

of ϕ can be conveniently analyzed using Jones formalism [101] with the following Jones matrix

Mϑq applied on the optical field at each point of the q plate transverse plane:

Mϑq = R(−α) ·Mϑ ·R(α), (2.14)

where R(α) =

(

cos(α) sin(α)

− sin(α) cos(α)

)

is the standard 2 × 2 rotation matrix by angle α, and

Mϑ is the Jones matrix for the phase retarder with a homogeneous orientation of the optical

axis. The considered half-wave and quarter-wave plates with a homogeneous orientation of the

17



2.2. Fiber modes and free space coupling

optical axis are characterized by the following Jones matrices Mϑ:

Mπ = exp (−iπ/2)
(

1 0

0 −1

)

,

Mπ/2 = exp (−iπ/4)
(

1 0

0 i

)

,

(2.15)

assuming that their fast axis lies parallel to the x axis. Applying Eqs. 2.15 and 2.13 to 2.14

allows obtaining the following Jones matrices for the half-wave and quarter-wave q plates:

Mπq =

(

cos(2α) sin(2α)

sin(2α) − cos(2α)

)

,

Mπ/2q =

√
2

2

[(

1 0

0 1

)

+ exp (i · 3π/2)
(

cos(2α) sin(2α)

sin(2α) − cos(2α)

)]

,

(2.16)

neglecting the terms that represent a global phase shift, which is irrelevant for this discussion.

I will first analyze the influence of a half-wave q plate on the optical field, which can

be described by the Jones electric field vector Ein. A left-circular polarized plane wave

Ein = E0 × (1, i) will be transformed into the following output field:

Eout =M
π
q ·Ein = E0

(

cos(2α) sin(2α)

sin(2α) − cos(2α)

)

·
(

1

i

)

= E0

(

cos(2α) + i sin(2α)

sin(2α)− i cos(2α)

)

=

= E0 exp (i2α)

(

1

−i

)

= E0 exp (i2qφ) exp (i2α0)

(

1

−i

)

.

(2.17)

After passing the q half-wave plate, a left-circular polarized wave becomes uniformly right-

circular polarized, just as it would with a regular half-wave plate. Interestingly, the wave also

acquires a phase factor exp (i2qφ), which indicates its transformation into a helical wave with

an orbital helicity of 2q and an orbital angular momentum 2qh̄ per photon. It is easy to confirm

that for a right-circular polarized input wave, the sign of the orbital helicity and angular

momentum of the output field is inverted. This technique enables generation of a circularly

polarized OAM beam from a circularly polarized laser beam with a standard Gaussian intensity

profile. The sign of the orbital helicity of the output wave front can be selected by the input

polarization handedness, while its magnitude can be controlled by the q plate geometry.

Next, I analyze the influence of a quarter-wave q plate on the optical field, again considering

a left-circular polarized input plane wave. This results in the following output electric field:

Eout =M
π/2
q ·Ein = E0

√
2

2

[(

1 0

0 1

)

+ exp (i · 3π/2)
(

cos(2α) sin(2α)

sin(2α) − cos(2α)

)]

·
(

1

i

)

=

=

√
2

2
E0

(

1 0

0 1

)

·
(

1

i

)

+

√
2

2
E0 exp (i · 3π/2)

(

cos(2α) sin(2α)

sin(2α) − cos(2α)

)

·
(

1

i

)

=

=

√
2

2
E0 ·

(

1

i

)

+

√
2

2
E0 exp (i · 3π/2) exp (i2qφ) exp (i2α0)

(

1

−i

)

.

(2.18)
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2.2. Fiber modes and free space coupling

Figure 2.9: Input beam (top row) and near-field images of the fiber output (bottom row) for different

rotations of circular polarizer selecting the launched beam composition.

After passing the q quarter-wave plate, a left-circular polarized wave produces a right-circular

polarized helical wave with an orbital helicity of 2q (just as it would after passing the q

half-wave plate) superposed with the initial left-circularly polarized wave. This results from the

expression for the q quarter-wave plate Jones matrix Mπ/2q =
√
2/2[I + exp (i · 3π/2)Mπq ] in

Eq. 2.16, which consists of the identity matrix that returns the input field vector Ein unchanged,

and the Jones matrix corresponding to the q quarter-wave plate with a respective phase shift

3π/2. It is evident that for a right-circular polarized wave, half of the input field will pass

the q plate unchanged, and the rest will produce a left-circular polarized OAM beam with an

orbital helicity −2q.
Consequently, the goal of controllably launching the laser beam into the l = 0 and l = 1

OAM fiber modes is realized as follows. First, the polarization of the laser beam is converted

from linear to circular by a simple quarter wave plate. Next, the beam is passed through a

q = 1/2 plate to obtain a superposition of a circularly polarized l = 0 beam and a l = 2q = 1

helical beam polarized circularly with the opposite handedness to the incident beam. Finally,

the desired composition of the beam is controlled with a circular analyzer, which can select

either one circular polarization component, or any combination of the two. The resulting beam

is linearly polarized and contains a specific mix of l = 0 and l = 1 components. Finally, the

beam is launched into the fiber under study using a similar procedure to the one detailed in

the previous section concerning the excitation of the LP0,1 mode. This allows to selectively

control the excitation of the fundamental and the first-order OAM fiber mode, as shown in

Fig. 2.9 for different rotations of the quarter-wave plate in the circular analyzer.
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2.3. Linear properties and phenomena

Figure 2.10: Refractive index calculated for the core center and cladding of the investigated GRIN fiber,

along with the effective refractive index of the fundamental fiber mode.

2.3 Linear properties and phenomena

In this section, I introduce the fundamental principles governing the linear propagation

of light in optical fibers. I discuss the key concepts such as the mode propagation constant,

dispersion, birefringence, and attenuation mechanisms. This part aims to provide a theoretical

foundation, bolstered by experimental and numerical characterization of the linear parameters

of the fibers used in various studies throughout this doctoral thesis. Through the analysis of

theoretical models complemented by practical examples, this section lays the groundwork for

the exploration of nonlinear effects in the subsequent section.

2.3.1 Propagation constant and effective refractive index

The propagation constant β of a mode describes how the phase of the light with a given

frequency varies along the propagation direction z:

A(z) = A(0) exp (iβz), (2.19)

where A(z) is the complex amplitude of the light field at position z, and the medium is assumed

to be lossless. The propagation constant depends on the wavelength λ and the optical frequency,

which is written as ω = 2πc/λ.

Propagation constant is given by the product of the effective refractive index neff and

the vacuum wavenumber k = 2π/λ, therefore β = neffk = neffω/c. The effective index of a

mode is a similar concept to the refractive index of a material; it quantifies the decrease of

phase velocity of a particular wavelength compared to its phase velocity in vacuum, n = c/vph.

The wavelength-dependent effective refractive index of the fundamental mode of the studied

GRIN fiber, calculated using a mode solver software, is shown in Fig. 2.10, together with the

refractive indices of the core (n0) and cladding (ncl) material. At shorter wavelengths, the

mode effective index is closer to n0, while at longer wavelengths it approaches ncl. This trend

is also observed for higher-order fiber modes, although their effective indices approach the
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2.3. Linear properties and phenomena

Figure 2.11: Calculated phase and group effective refractive index for the fundamental mode of the

investigated GRIN fiber.

cladding index at shorter wavelengths than those of the fundamental mode, after which they

cease to be guided in the fiber (the cut-off wavelengths).

Dispersion (dependence of effective index and propagation constant on wavelength) plays

a crucial role in light propagation in fibers, especially for short pulses. That is because different

spectral components associated with the pulse travel at different speeds, and undergo different

phase change per unit length. The different effects of dispersion can be accounted for by

expanding the mode propagation constant in a Taylor series around the central frequency of

the pulse ω0:

β(ω) = β0 + β1 · (ω − ω0) +
1

2
β2 · (ω − ω0)2 + ..., (2.20)

where

βm =

(
∂mβ

∂ωm

)

ω=ω0

, m = {0, 1, 2, ...}. (2.21)

The terms corresponding to the different orders of derivatives have the following physical

meaning:

• β0 describes a phase shift;

• β1 =
1
vg
is the inverse group velocity, which describes the speed of the pulse envelope;

• β2 is the group velocity dispersion responsible for the pulse broadening;

• higher-order derivatives describe higher-order dispersion.

2.3.2 Group refractive index

In a manner analogous to the phase refractive index, the group refractive index can be

defined as the ratio of the velocity of light in vacuum to its group velocity in the medium:

N =
c

vg
= cβ1 = c

∂β

∂ω
=
∂

∂ω
(ω · n(ω)) = n(ω) + ω ∂n

∂ω
. (2.22)

Consequently, the group index at a specific wavelength consists of the combined information

on the value of the phase refractive index, but also its frequency dependence. If the wavelength
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2.3. Linear properties and phenomena

dependence of the phase index is known, for example by calculating the mode effective index

with a mode solver software, the group index can also be easily determined, see Fig. 2.11.

In order to experimentally determine the frequency dependence of the group index I employ

a method based on the white-light spectral interferometry [102], which involves recording a set

of spectral interferograms in a Mach-Zehnder interferometer with an adjustable path length of

the reference arm. The other arm contains the fiber segment of a known length. The technique

is based on measuring the equalization wavelength as a function of the path length difference,

or equivalently the differential group refractive index dispersion in the fiber. It does not deliver

the direct value of N , but the group index related to its value at an arbitrarily chosen length

of the reference arm L0MZ. The measured dependence of the differential group index can then

be fitted to a function ∆N(λ), which can be used for calculating the chromatic dispersion,

or group birefringence, as detailed in the following sections. As an illustration, the measured

values of differential group index for two modes of the studied PCF are shown in Fig. 2.12.

Walk-off of short pulses due to group velocity mismatch

The walk-off effect plays an important role in the description of the nonlinear phenomena

involving two or more co-propagating pulses. The investigated nonlinear processes are typically

efficient for short pulses due to their high intensities even for low average powers. However,

a short pulse duration imposes a limit of the useful interaction length due to the temporal

walk-off. If the interacting pulses have different wavelengths, they travel with different group

velocities, losing their temporal overlap after the distance when the faster pulse completely

walks through the slower pulse. The strength of the pulse walk-off depends on the group

velocity mismatch, and is evaluated with the relative inverse group velocity of the pulses in

two optical fields:

RIGV = βi1 − βj1 =
1

vig
− 1
vjg
=
1

c

(

N i −N j
)

, (2.23)

where i, j indicate different wavelengths or different fiber modes. After final transformation,

it is evident that the group velocity mismatch can be easily determined by the difference in

group indices of the two optical fields. For example, the measurements of the differential group

indices in the PCF allow to simultaneously determine RIGV, see the right axis in Fig. 2.12.

The results for both modes are shown in relation to the value of β1 of the LP
x
0,1 mode at the

pump laser wavelength λ = 1560 nm, marked with a vertical line. The obtained results show

that in the analyzed spectral region the pulses at longer wavelengths travel slower in both

fiber modes than the pulses at shorter wavelengths, and the LPx0,1 mode (blue) travels faster

than the LPy0,1 mode (red).

In practice, it is useful to define the walk-off length:

LW = T0/RIGV, (2.24)

where T0 is the pulse width. In the considered example, assuming that the pump laser pulse

(which is characterized with T0 = 13 fs in the PCF study) is exciting both modes of the PCF,

the walk-off length is approximately 5 millimeters. This demonstrates that the intermodal
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2.3. Linear properties and phenomena

Figure 2.12: Measured linear parameters of two modes LPx0,1 (blue) and LP
y
0,1 (red) of the investigated

PCF: differential group refractive index and relative inverse group velocity.

interactions of ultrashort pulses can be significantly limited because of their different group

velocities, unless nonlinear mode couplings lead to changes of pulse group velocities.

2.3.3 Dispersion

Group velocity dispersion is the phenomenon that the group velocity of light in a medium

depends on the frequency or wavelength. The term can also be used as a precisely defined

parameter, namely the derivative of the inverse group velocity with respect to the angular

frequency, just as indicated in Eq. 2.21:

β2 =
∂

∂ω

1

vg
=
∂

∂ω
β1 =

∂

∂ω

(
∂β

∂ω

)

=
∂2β

∂ω2
. (2.25)

Group velocity dispersion can alternatively be expressed as a derivative with respect to

wavelength, in which case it is typically referred to as the chromatic dispersion parameter D.

It can be written in relation to β2:

D =
∂

∂λ

1

vg
= −2πc
λ2
β2, (2.26)

or to the derivatives of refractive index:

D =
1

c

∂N

∂λ
= −λ
c

∂2n

∂λ2
, (2.27)

The chromatic dispersion expressed as a derivative of group index with respect to wave-

length can be retrieved from the experimental characterization of differential group refractive

index. When the experimental points are approximated with a function ∆N(λ), a simple

numerical derivation allows to obtain the dependence D(λ) and, consequently, β2(λ). As an

illustration, both dispersion parameters calculated as a function of wavelength are shown for

one of the modes of another studied PCF in Fig. 2.13. Notably, both β2 and D vanish at a

wavelength of 1.24 µm. This wavelength, marked with dashed line both in Fig. 2.13 for PCF and
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2.3. Linear properties and phenomena

Figure 2.13: Measured chromatic dispersion of the investigated PCF.

in Fig. 2.11 for GRIN fiber is referred to as the zero-dispersion wavelength λZDW. Typically,

in silica fibers λZDW ≈ 1.3 µm, however the design flexibility of PCF allows to significantly
modify the dispersion curve: flatten it [82], shift the λZDW, and even achieve D > 0 in the

visible spectral region [81].

Using the terms ”positive” or ”negative” dispersion might be confusing due to the different

signs of β2 and D, hence, the terms normal and anomalous dispersion are used instead.

Normal dispersion (D < 0, marked with a red region in Fig. 2.13) implies that the group

velocity decreases for increasing optical frequency and increases with wavelength (blue-shifted

components of the optical pulse travel slower than the red-shifted components of the same

pulse); anomalous dispersion (D > 0, marked with a blue region in Fig. 2.13) implies that

the group velocity increases for increasing frequency. Nonlinear effects in fibers manifest

qualitatively different behavior depending on the dispersion region.

Because of group velocity dispersion, various frequency components of the pulse travel

with different velocity. As a result, the pulse width increases during propagation. The fiber

length over which this effect starts to play a significant role is called the dispersion length:

LD =
T 20
|β2|
. (2.28)

At this distance, a Gaussian pulse broadens by a factor of
√
2 [84]. When a T0 = 13 fs pulse

is injected into the investigated PCF at 1.56 µm in the anomalous dispersion region with

β2 = −28.5 fs2/m, the dispersion length is less than 10 meters. This might potentially lead to
a significant dispersive pulse broadening over a longer distance of propagation; however, as I

describe in the later sections, this might be balanced by nonlinear effects if the pulse intensity

is sufficiently high.

Finally, it is worth to highlight that the term “chromatic” is employed to distinguish that

type of dispersion from other types. This is especially significant for multimode fibers, which

also show intermodal dispersion that pertains to the different group velocities of various fiber

modes. In particular, polarization mode dispersion is associated with the distinct propagation

characteristics of light fields with orthogonal polarizations, as detailed below.
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2.3.4 Birefringence

In an ideal, cylindrically-symmetric, and stress-free fiber, light field polarized in the x

direction does not interact with the orthogonal polarization state. However, in practice, random

variations in the core shape along the fiber and anisotropic stress lead to an uncontrollable cou-

pling to other polarizations [103]. This issue can be addressed by using birefringent fibers, where

a large birefringence is deliberately introduced to overshadow the relatively minor birefringence

fluctuations and maintain the polarization state of the input field. Introducing birefringence

leads to a significant difference of the effective refractive indices of the orthogonal polarization

modes, thus reducing the probability of linear coupling. Such polarization-maintaining fibers

are achieved by altering the geometry of the core [104], introducing anisotropic stresses [105],

or most commonly by combining both methods. The investigated PCF combines the two

methods with three rows of large air holes arranged on the two sides of the core as shown in

Fig. 2.3. High pressure deployed during the fiber drawing process results in lattice squeezing,

modification of the core shape, and consequently high birefringence.

In birefringent fibers, the phase effective refractive index of the mode polarized along

the so-called slow axis (x axis by convention) is higher, and the index of the mode polarized

along the fast axis (y axis by convention) is lower. This results in a slower and faster light

propagation in terms of phase velocity, respectively. The difference between the effective indices

of the orthogonally polarized modes is the phase birefringence:

B = nx − ny =
λ|βx − βy|
2π

=
λ

LB
. (2.29)

LB denotes the beat length, defined as the distance over which the phase difference between

the polarization modes changes by 2π.

As the dispersion of the two polarization modes may vary, phase birefringence is also

frequency-dependent. This is characterized by the group birefringence:

G = B − λ∂B
∂λ
, (2.30)

which can be also interpreted as the difference in group indices of the polarization modes

Nx − Ny. In birefringent photonic crystal fibers, the second term in the above equation is
typically dominant, leading to opposite signs of B and G.

I used two independent experimental techniques to determine the birefringence of both

studied PCFs. First, I measured differential group refractive index in the previously described

experiment while controlling which fiber polarization mode is excited. Because the measure-

ments are performed with the same L0MZ length of the reference arm, calculating the difference

of the fitted functions ∆Nx −∆Ny allows to determine directly the group birefringence G, see
blue lines in Fig. 2.14.

Another approach [106] is to simply excite both polarization modes in the fiber with a

spectrally broad light, aligning the polarization azimuth of the input beam at an angle of around

45◦ with respect to one of the fiber axis. This way, two equally excited polarization modes

propagate through the fiber of length L and accumulate the relative phase shift ∆φ = 2πLB/λ.
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Figure 2.14: Measured phase and group birefringence determined using various techniques in the two

investigated PCFs.

At the fiber output, the two modes are mixed by an analyzer with the azimuth adjusted at

45◦ with respect to the polarization axes and the mode spectral interference is resolved by an

optical spectrum analyzer. The average birefringence of the fiber segment can be determined

from the spectral fringe period ∆λ, as each single period corresponds to a 2π phase shift

between the two polarization modes. Group birefringence can be determined using the following

relationship:

G = − λ
2

L∆λ
. (2.31)

This method was used to obtain results marked with green points in Fig. 2.14 which follow

very well the blue line indicating an excellent agreement with the results obtained using the

previous technique.

It is also worth noting that the registered spectral interferogram allows to reconstruct the

relative phase birefringence between two wavelengths from the number of spectral fringes m

that separates them. As each consecutive fringe corresponds to a phase difference of 2π, the

phase birefringence can be written as [107]:

B =
mλ

L
. (2.32)

It should be noted that the fiber length needs to be carefully selected to ensure that the

interference pattern can be resolved using the spectral analyzer, and that the results can be

obtained at sufficiently dense spectral intervals. I measured the phase birefringence using the

conventional lateral point force method [108] at a few selected wavelengths (represented by

black markers in Fig. 2.14). The obtained value was then used to calculate the fringe number m

in absolute terms, enabling to retrieve the full B(λ) dependency (orange points in Fig. 2.14).

The performed measurements allow to confirm high birefringence of the two photonic crystal

fibers used in the study described in Chapter 3. The obtained magnitude of fiber birefringence in

the range from 10−4 to 10−3 is considered to be very high [84], as the conventional (meaning: not

microstructured) birefringent fibers with an elliptical core are characterized by B ∼ 10−6 [104],
and the conventional birefringent fibers with stress-induced birefringence typically achieve

B ∼ 10−4 [105]. Finally, the high dispersion of phase birefringence indeed results in the negative

26



2.3. Linear properties and phenomena

group birefringence at wavelengths longer than 1.1 µm (0.8 µm) for PCF 1 (PCF 2) on the left

(right) of Fig. 2.14. The opposite signs of phase and group birefringence indicate that the x

polarization mode of the fiber travels faster in terms of group velocity than the y polarization

mode, even though it has a lower phase velocity. The respective group velocities of the two

modes are important when considering the nonlinear effects occurring in that study.

2.3.5 Attenuation

In practice, optical fibers are not a lossless medium, contrary to the assumption made

in Eq. 2.19. To account for fiber losses, the equation needs to be modified to include the

attenuation coefficient α:

A(z) = A(0) exp ((iβ − α/2)z), (2.33)

which quantifies the power loss originating from various sources, leading to attenuation of

optical signals transmitted inside the fiber. This coefficient links the transmitted power P , the

injected power P0 and the length of propagation in the fiber L:

P = P0 exp (−αL),

α = − 1
L
ln
P

P0
,

(2.34)

and is usually expressed in units of dB/km or dB/m, αdB/km = 4.343α [84]. The factor 1/2 in

the equation for field amplitudes results from the fact that the optical power or intensity is

proportional to the square of the amplitude.

The attenuation coefficient can be determined using a conventional cut-back method,

which involves measuring the power at the end of a long fiber segment, followed by reducing the

fiber length by L, and repeating the power measurement. Provided that the launch conditions

remain unchanged, the power ratio allows to determine the light attenuation in the cut-back

segment. By adjusting the length of the cut-back segment, different orders of magnitude of

loss can be measured. For high loss, the fiber length after the cut-back must be sufficiently

short; otherwise, the fiber attenuation might reduce the signal below the detector sensitivity

threshold.

The attenuation coefficient measured in PCF as a function of wavelength is shown in

Fig. 2.15. There are different factors contributing to the attenuation of light as it travels in

the fiber. The primary loss mechanisms in the near-infrared and mid-infrared spectral regions

are material loss, Rayleigh scattering (providing a fundamental limit and varying as λ−4), and

mode confinement loss [84]. Rayleigh scattering is dominant at shorter wavelength, and at

1.55 µm it results in attenuation of 0.12-0.15 dB/km. Silica glass exhibits minimal absorption

in the spectral range from 0.5 µm to 2 µm. However, the presence of OH ions can significantly

affect the ligth absorption in this spectral window [54]. The fundamental vibrational OH

absorption peak at 2.72 µm, its overtone at 1.38 µm and combinations with vibrational mode

of SiO4 tetrahedron at 2.21 µm result in distinct absorption bands that significantly contribute

to the fiber attenuation. The relative intensities of OH absorption bands [54] can be used

to estimate the fiber attenuation at their spectral positions based on the characterization of
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Figure 2.15: Measured attenuation coefficient in PCF (black) and its estimation for longer wavelengths

(green).

only a single absorption band. By determining the loss related to the OH absorption band at

1.38 µm (reaching 2.53 dB/m), I can find the corresponding loss at 2.21 µm, which should be

201/62.7 times higher and reach 8.11 dB/m.

It should be mentioned that state-of-the-art fibers, produced in dry conditions to minimize

the OH ion content in the fiber preform exhibit an OH absorption peak around 1.4 µm that is

below 0.5 dB/km [109], which is highly desirable for telecommunication applications. Although

similar results are also possible in photonic crystal fibers [110], the PCF used in our study is

characterized by a higher OH content, resulting in a significant OH absorption band compared

to the transmission-optimized PCF in the referenced work.

The final factor contributing to the fiber attenuation is mode confinement loss, which

stems from the leaky nature of fiber modes. It affects especially the higher-order modes near

their cut-off, causing them to continuously radiate a small amount of carried energy into the

fiber cladding during the propagation. The extent of confinement loss is influenced by the

fiber structure, and is particularly pronounced in photonic crystal fibers due to their complex

design [111]. Reducing core size of PCF can lead to significant confinement loss which can even

surpass material losses [80], thus restricting the usable fiber lengths to less than a kilometer.

The measured PCF attenuation shown in the inset of Fig. 2.15 is higher in the spectral

range from 1.5 µm to 1.8 µm compared to standard silica fibers, which can be attributed to

confinement loss resulting from the fiber design.

2.4 Nonlinear properties and phenomena

Light in an optical fiber is confined to a small transverse area, resulting in high intensities

even at moderate beam powers. Furthermore, the waveguiding property of fibers enables

light to travel considerable distances, leading to accumulation of effects of fiber nonlinearities.

Consequently, optical fibers exhibit significant nonlinear effects, especially when the light

propagates in the form of short, high-intensity pulses. In the subsequent sections, I introduce

fundamental fiber properties and associated nonlinear effects, which are relevant to the subjects

explored in the later chapters.
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2.4.1 Effective mode area

To assess the strength of nonlinear effects, it is necessary to determine the size of the

transverse area occupied by the light beam in the fiber. Fiber modes have smooth transverse

profiles with no well-defined boundaries. Therefore, determining the area of a mode is not

particularly straightforward, especially for complex profiles of higher-order modes. Hence,

effective mode area is a very useful concept. It is defined as:

Aeff =

(∫∫∞
−∞ |F (x, y)|2 dxdy

)2

∫∫∞
−∞ |F (x, y)|4 dxdy

, (2.35)

where F (x, y) is the spatial distribution of the fiber mode across the transverse coordinates.

The shape of the mode, and consequently the effective mode area depend on both the

core size and the doping levels that determine how tight is the localization of mode in the

core [112]. Standard single-mode fibers, such as SMF-28, have effective mode areas on the

order of 100µm2. The effective mode areas of the large mode area fibers sometimes exceed

1000 µm2. On the other hand, photonic crystal fibers are sometimes characterized by mode

areas below 10 µm2. Typically, effective mode area increases with wavelength. The calculated

effective areas of the selected modes in two fibers used for later experiments are displayed as a

function of wavelength in Fig. 2.16.

Nonlinear effects depend on the light intensity. For a given power level, the optical intensity

is larger when a mode area is smaller, leading to more significant nonlinearities. Consequently,

the fiber nonlinearity can be enhanced by reducing the core diameter, while ensuring that the

mode remains well-confined, particularly in the long wavelength range.

2.4.2 Nonlinear parameter gamma

The strength of the nonlinear interaction can be expressed by the nonlinear parameter γ:

γ =
2πn2
λAeff

. (2.36)

Figure 2.16: Calculated effective areas of the fundamental and higher-order modes of the investigated

GRIN and photonic crystal fiber.
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The mode area Aeff depends on the fiber design and can be reduced as explained in the previous

section. The Kerr coefficient n2 is a material parameter of a given glass explained in more

detail in the following section.

It should be mentioned that for some of the nonlinear processes, choosing the value of

calculated effective mode area is not so straightforward. More specifically, in the case of

four-wave mixing, the occurring effects result from interactions of different modes at different

wavelengths. As presented in Fig. 2.16, the value of Aeff changes with wavelength and from

mode to mode. Consequently, the nonlinear parameter can instead of 1/Aeff be driven by the

overlap integral of the fields distribution [84]:

fi,j,k,l =

∣
∣
∣
∣
∣
∣

⟨F ∗i F ∗j FkFl⟩
√

⟨|Fi|2⟩⟨|Fj |2⟩⟨|Fk|2⟩⟨|Fl|2⟩

∣
∣
∣
∣
∣
∣

, (2.37)

where angle brackets denote integration over the transverse coordinates and subscripts indicate

four interacting waves. Fi is the spatial distribution of the fiber mode in which the ith field

propagates inside the fiber.

2.4.3 Nonlinear refractive index

A large number of nonlinear effects in optical fibers originate from Kerr effect, which is

an intensity-dependent increase of refractive index, meaning that the phase delay of light gets

larger as the intensity of light increases [113]. This nonlinear correction to refractive index can

be written as:

∆n = n2I, (2.38)

and it plays an important role in various processes that involve generation of new frequencies.

Kerr coefficient n2, also referred to as nonlinear refractive index, varies for different materi-

als [114]. Its value is relatively small in silica compared to other transparent glasses, reaching

approximately 2.6× 10−20m2/W for wavelengths around 1µm [115, 116, 117, 118].

2.4.4 Self-phase modulation

Self-phase modulation (SPM) is one of the consequences of the Kerr effect [84]. In this

phenomenon, an ultrashort pulse of light traveling in a fiber experiences a nonlinear phase

shift that results from its own intensity. The phase shift increases with the length of the fiber.

The fiber length over which SPM starts to play a significant role during pulse propagation is

called the nonlinear length:

LNL =
1

γP0
, (2.39)

where P0 is peak power of the pulse. The nonlinear length indicates the distance over which the

phase shift at the peak of the pulse is equal to 1 rad. SPM causes generation of new frequency

components as the pulse propagates in the fiber, leading to its spectral broadening. The new

frequency components are shifted to longer wavelengths at the leading edge of the pulse, and

to shorter wavelengths at the trailing edge of the pulse.
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Pulse self-steepening and formation of optical shock

Self-steepening is related to the distortion of the optical pulse caused by the group velocity’s

dependence on the intensity [119, 120]. The peak of the pulse travels slower than both its edges.

As a result, the trailing edge of the pulse becomes increasingly steeper during propagation.

Eventually, pulse self-steepening leads to formation of optical shock in an analogue manner to

creation of acoustic shock on the leading edge of a sound wave [121, 122]. For femtosecond

pulses and peak powers in the kW range, pulse self-steepening can impact the nonlinear

propagation in short sub-meter segments of single-mode fibers [84].

2.4.5 Formation of solitons

It should be noted that chromatic dispersion can also significantly affect ultrashort light

pulses, as discussed in Section 2.3.3. If the effects of Kerr nonlinearity and dispersion are

comparable and the fiber is sufficiently long (L > LD ∼ LNL), the interplay between GVD and
SPM can lead to qualitatively new results, which differ based on the dispersion regime [84]. In

the anomalous dispersion region, the combined influence of self-phase modulation and dispersion

can mitigate the temporal and spectral broadening caused by each of them individually, resulting

in the formation of a soliton pulse. The propagation of soliton is governed by its order N ,

defined as:

N2 =
LD
LNL
=
γP0T

2
0

|β2|
. (2.40)

Solitons generated in the investigated PCFs from the pulses of the used pump laser are

characterized by N ≈ 1 for the average pump powers ranging from 50mW to 100mW. Such
fundamental solitons (N = 1) do not change their shape during propagation, in contrast to

higher-order solitons, which exhibit periodic oscillations [123].

2.4.6 Self-focusing

Nonlinear self-focusing is another consequence of the Kerr effect, following SPM. This

time, the impact of the intensity-dependent refractive index is observed in the transverse

spatial dimensions, as the beam size is reduced during propagation. This occurs because the

higher optical intensity at the center of the beam causes a local increase of refractive index for

the central part of the beam compared to the outer parts of the beam. The altered refractive

index distribution acts as a focusing lens [124]. This mechanism is triggered when the peak

power exceeds a threshold value [32]:

Pcrit =
3.72λ20
(8πn0n2)

, (2.41)

enabling self-focusing to overcome diffraction of the beam.

2.4.7 Cross-phase modulation

Cross-phase modulation (XPM), occurring alongside SPM, describes interactions between

two or more pulses that propagate simultaneously in a fiber at distinct wavelengths or polariza-
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tions [84]. Fiber nonlinearity causes each pulse to undergo a nonlinear phase shift influenced by

the intensity of the other pulses. If the two co-propagating optical fields i and j are co-polarized,

the phase modulation of one field by the second field can be written as:

∆ni = 2n2Ij . (2.42)

The factor of 2 shows that XPM is twice as effective as SPM for the same intensity of light.

This factor is valid for fields with the same polarization. For orthogonally linearly polarized

fields it should be replaced by 2/3 [125]. The XPM mechanism does not result in transfer

of energy between the interacting pulses, however it leads to coupling of the optical fields.

Notably, it can cause trapping of pulses that initially travel at different speeds, but due to the

XPM-induced nonlinear spectral shifts, they begin to propagate at common velocity [126, 127].

2.4.8 Four-wave mixing

Kerr effect provides a mechanism for a mutual interaction of four optical fields. For example,

if two wavelength components travel together through a fiber, four-wave mixing (FWM) may

cause the generation of two new frequency components. This process requires conservation of

net energy, which can be written as:

ωp1 + ωp2 = ωs + ωas. (2.43)

In the general case in which ωp1 ̸= ωp2, two pump beams must travel together for FWM to
occur. Interestingly, degenerate FWM can be initiated with a single pump beam at a frequency

ωp = ωp1 = ωp2, and is often observed in optical fibers. The low-frequency sideband generated

at ωs and the high-frequency sideband generated at ωas are referred to as the Stokes and

anti-Stokes bands, respectively.

FWM is a phase-sensitive process, which means that the interaction depends on the

relative phases of the four beams. Its effect will accumulate efficiently over longer distances

only if the amplitudes added to the sidebands at one point in the fiber add constructively

to those generated at other points. Hence, any (intra- or intermodal) FWM process requires

satisfaction of the following linear phase-matching condition in order to efficiently generate

FWM sidebands [87, 13]:

∆β = βsµ + β
as
η − βp1ν − βp2κ = 0, (2.44)

where βp2κ represents the propagation constant of the spatial mode κ at the frequency ωp2.

The phase-matching condition is driven by dispersion, but it can also be substantially

modified by nonlinear phase shifts in the case of high involved optical intensities. For a com-

pletely degenerate pump fields (indistinguishable on the basis of their frequencies, polarization,

or spatial profile), assuming undepleted pump, the effective phase-mismatch involving the

effects of nonlinear phase changes becomes:

∆k = ∆β − 2γp,pP0 + 2γs,pP0 + 2γas,pP0, (2.45)

where ∆β = βsµ + β
as
η − 2βpκ is the phase-matching condition in the linear regime; P0 is the

input peak power; and γp,p, γs,p and γas,p denote the effective nonlinear parameters for pump’s
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self-phase modulation, pump-induced cross-phase modulation of Stokes and anti-Stokes bands,

respectively, which take the form of:

γi,j,k,l =
2πn2
λi
fi,j,k,l (2.46)

driven by the overlap integral of the field distributions defined in Eq. 2.37 and where γi,j = γi,j,i,j .

It is noteworthy to emphasize that for the far-detuned FWM process investigated in Chapter 4,

the integration involves the wavelength-dependent field distributions.

It is worth to note that if solely the pump wave is incident at the fiber, and the phase-

matching condition is satisfied, the Stokes and anti-Stokes sidebands can be emerge from

noise (vacuum fluctuations), on which I elaborate in the following section. Conversely, if a

weak signal at either Stokes or anti-Stokes frequency is launched together with the pump, it is

amplified while a new idler is simultaneously generated at the phase-matched frequency. The

gain responsible for amplification (for either noise or the injected signal) can be written as:

g =
√

(γFWMP0)2 − (∆k/2)2, (2.47)

until the gain saturation occurs because of pump depletion. The maximum gain (gmax) is

achieved for ∆k = 0, thus gmax = γFWMP0, with γFWM =
√
γs,as,p,pγas,s,p,p being the effective

nonlinearity for the FWM process.

2.4.9 Modulation instability

Modulation instability (MI) can be interpreted as a FWM process which occurs with a

quasi-CW beam acting as a pump for the two noise-seeded sidebands. It leads to amplification

of a small fluctuations of the constant pump due to the Kerr nonlinearity, typically acting

in conjunction with anomalous dispersion. This leads to increasing oscillations of the optical

power and amplification of sidebands in the optical spectrum proportional to the power of the

optical beam, see Eq. 2.47.

Interestingly, when this process involves two different pump optical fields (at different

wavelengths, orthogonal polarizations, or spatial modes), it can also occur in the normal

dispersion region [128]. In Chapter 4, I observe the intermodal MI sidebands around the

pump centered at 1.064 µm that arise due to bimodal interaction between the LP0,1 and LP0,2

modes, which are both excited due to the beam launching conditions. Phase-matching of the

MI sideband peak depends on the ratio of powers injected into each mode, therefore it is

possible to estimate the initial power distribution between the two spatial modes involved at

the pump wavelength by analyzing the experimentally-observed frequency detuning of the

sideband peaks. This method is based on the stability analysis of the stationary solutions of

the two incoherently coupled nonlinear Schrödinger equations (for the modes involved) in the

presence of small amplitude and phase perturbations, which is developed in Ref. [129]. The

corresponding stability matrix [M ] of the system provides the following dispersion relation:

K2± = ±
√

Y 2(U2 − 2UX + 4V 2 +X2) + Y (U +X + Y )
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with U = n2ωpfν,ν,ν,νPν/c, V = 2n2ωpfν,κ,ν,κ
√
PνPκ/c,X = n2ωpfκ,κ,κ,κPκ/c, and Y = β2Ω

2/2.

Subscripts ν and κ refer to the spatial modes involved at the pump frequency ωp, Pν/κ is power

injected into the respective mode, overlap integral fi,j,k,l is defined in Eq. 2.37, and dispersion

coefficient β2 is assumed to be the same for both modes. The MI phenomenon occurs when

the wave number K of the perturbation possesses a nonzero imaginary part, and manifests

itself by the exponential growth of the amplitude of the perturbation with the power gain

G = 2|Im(K)|, where K is the eigenvalue of the matrix [M ] with the highest imaginary part.

2.4.10 Raman scattering

Raman scattering leads to transfer of power from one optical field, which acts as a pump,

to another Stokes field with a lower frequency. The frequency difference between the pump and

the Stokes is determined by the vibrational modes of the medium (optical phonons), and lies

in the terahertz range for fused silica. This effect, first described in 1928 [130], can be viewed

as the conversion of a photon with energy h̄ωp by a molecule to a photon with lower energy

h̄ωs as the molecule makes the transition to a vibrational excited state [84].

Raman scattering is characterized by the gain spectrum gR(∆f), where ∆f =
ωp−ωs
2π

represents the frequency difference between the pump and Stokes waves. The Raman response

of the medium for either co-polarized or orthogonally polarized optical fields can be determined

with commonly used models that consider contributions from isotropic and anisotropic molecular

responses ga(∆f) and gb(∆f) [131]:

g||(∆f) = ga(∆f) + gb(∆f), (2.48)

g⊥(∆f) = gb(∆f)/2, (2.49)

where gϵ(∆f) = 2γfRIm(R̃ϵ(∆f)) (ϵ = a, b), R̃ϵ(∆f) is the Fourier transform of Rϵ(τ),

Ra(τ) = faha(τ), Rb(τ) = fbhb(τ) + fcha(τ), and Raman response functions for silica glass

are expressed as:

ha(t) =
τ21 + τ

2
2

τ1τ22
· exp

(

− t
τ2

)

· sin
(
t

τ1

)

, (2.50)

hb(t) =
2τ3 − t
τ23

· exp
(

− t
τ3

)

, (2.51)

where fa = 0.75, fb = 0.21, fc = 0.04, fR = 0.245, τ1 = 12.2 fs, τ2 = 32 fs, and τ3 = 96 fs.

The Raman gain spectra calculated according to the described model are shown in Fig. 2.17.

In silica fibers, the Raman gain spectrum extends over a broad range of frequencies. When

considering transfer to the same polarization as the pump, the gain spectrum g|| extends up

to 40THz and has a broad peak around 13THz. Transfer to the polarization orthogonal to

the pump is characterized by a significantly lower Raman gain spectrum g⊥ with a maximum

around 3THz and a flat plateau up to 15THz.

Raman gain can act over long propagation distance and lead to a substantial transfer of

power to the Stokes wave. When a probe beam is launched together with the continuous-wave

pump into the fiber, it is amplified in a process of stimulated Raman scattering as long as
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2.4. Nonlinear properties and phenomena

Figure 2.17: Normalized Raman gain in silica fibers calculated for co-polarized (g||) and orthogonally

polarized (g⊥) pump and Stokes pulses.

its frequency lies in the bandwidth of the gain spectrum. If only the pump beam is present,

spontaneous Raman scattering generates photons within the entire bandwidth of the Raman

gain spectrum, and the frequency component with the highest gain builds up most rapidly.

Interestingly, for pulses with a sufficiently large spectral bandwidth, such as ultrashort solitons,

Raman scattering acts within the spectrum of the single pulse, leading to redistribution of

energy from the components at higher frequencies to the components at lower frequencies.

This leads to a shift of the pulse spectrum towards longer wavelengths, in the case of solitons

known as the Raman soliton self-frequency shift (SSFS) [132].

It should be highlighted that for short pulses with duration of less than 100 ps, the Stokes

generation might be limited due to the group velocity mismatch. Since the pump and Stokes

pulses have different frequencies, they travel at different velocities and lose temporal overlap

at propagation distances exceeding the walk-off length, which hinders amplification of the

Stokes pulse. Interestingly, Raman scattering into a Stokes mode different than the pump

mode potentially allows to obtain much closer group velocities of the two pulses, allowing

Stokes amplification to occur over longer distances of propagation [133, 134]. In Chapter 3, I

study the effects of orthogonal Raman scattering between two polarization modes on ultrashort

pulses propagating in photonic crystal fibers.
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This chapter outlined the basic designs of optical fibers and the fundamental phenomena

that govern their light-guiding properties. It is important to acknowledge that the silica based

step-index, graded-index, and photonic crystal fiber introduced here represent only a subset

of the wide range of available types of optical fibers. Other fiber types, such as hollow-core,

Bragg, or twisted fibers, and fibers fabricated from different materials (including chalcogenide,

tellurite, or ZBLAN fibers) are undoubtedly important in the field of fiber optics and have

found a specific range of applications. The decision to focus on introducing the three selected

designs is based on their use in the investigations detailed in the subsequent chapters.
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Chapter 3

Soliton trapping in birefringent pho-

tonic crystal fibers

The optical solitons are intense light pulses that propagate in a nonlinear medium in

anomalous dispersion regime. They retain shape due to balance between chromatic dispersion

and self-phase modulation. The possibility of transmission of such undistorted pulses in optical

fibers was predicted by Hasegawa and Tappert in 1973 [135]. In 1986, Mitschke and Mollenauer

discovered that an ultrashort soliton undergoes self-frequency shift caused by energy transfer

from the higher to the lower frequency part of the spectrum due to Raman scattering [132]

(SSFS – soliton self-frequency shift). This phenomenon allows for continuous tuning of the

soliton’s spectral position and facilitates reaching wavelengths not available with typical laser

sources. In recent years, the possibility of effectively tuning solitons was investigated in photonic

crystal fibers (PCFs). They appeared to be perfect media for spectral tuning of solitons as

they provide control over the shape of dispersion curve and allow to obtain a small effective

mode area which results in high effective nonlinearity [136, 137, 138, 139].

The second thread of the recent research related to solitons in optical fibers is focused

on few-mode fibers (FMFs) and multimode fibers (MMFs) [140]. In reference to photonic

crystal fibers, the FMFs and MMFs have relatively high effective area, thus they can guide

high-intensity pulses. Moreover, they enable more complex dynamics by providing additional

degrees of freedom to the system. Propagation of solitons in higher-order modes of MMF was

investigated by Rishøj et al. [141] in a step-index silica fiber with a 100µm core. The conversion

is enabled by Raman scattering and group velocity matching of distinct spatial modes. When

the two modes have identical group velocities at spectral separation corresponding to the

frequency difference at which nonlinear Raman gain is maximized, a new, spectrally separated
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ultrashort pulse is initiated in a second mode from quantum noise. This process is consecutively

repeated several times during the propagation in the 12-meter-long fiber, when the generated

mode undergoes the SSFS and reaches the group-velocity matched wavelength with another

mode at the frequency separation within the Raman gain bandwidth.

Raman scattering is not the only phenomenon that is important in describing nonlinear

pulse propagation. Due to cross-phase modulation (XPM), the intense pulse can force the com-

mon group velocity causing trapping of the other copropagating pulse. When two copropagating

pulses are orthogonally polarized, the XPM induces nonlinear phase shifts in both polarization

components which depend on the intensity of the orthogonal polarization component [84].

This kind of mutual interaction can lead to trapping of orthogonally polarized pulses. The

first studies on soliton trapping showed a numerical investigation of XPM in conventional

birefringent fibers [126, 127]. They were followed by the experimental demonstration of soliton

trapping in low-birefringent optical fiber in the low power regime [142]. In this experiment, the

linearly polarized pulse with azimuth angle θ = 45◦ excited two polarization components. The

x(slow)-axis component propagated at shorter wavelength to increase the group velocity, and

the y(fast)-axis component propagated at longer wavelength to decrease the group velocity.

Finally, both components propagated with a common group velocity.

Interestingly, there exists a mechanism that can transfer energy from one polarization

component to the other. This mechanism is provided by orthogonal Raman scattering. The

energy from the shorter wavelengths in one polarization is transferred to the longer wavelengths

in orthogonal polarization. The gain spectrum for orthogonally polarized (g⊥) pulses is shown

in Fig. 3.1, normalized to the maximum of g|| (see Fig. 2.17 for both g|| and g⊥). The normalized

orthogonal Raman gain exceeds 0.03 for frequency shifts between 1.2 and 17.4THz and its

maximum is located around 3THz. Although the orthogonal Raman response is weaker than co-

polarized Raman response, it plays a key role in the pulse trapping observed in the conventional

birefringent fiber by Nishizawa [143, 144]. In those experiments, the soliton polarized along

the slow fiber axis transferred part of its energy to the fast axis. The generated pulse polarized

along the fast fiber axis was trapped by slow-axis component and fed by the trapping pulse

through the Raman scattering. The authors confirmed that the pulses overlapped temporally

and copropagated along the fiber. In the following work, the authors also investigated pulse

trapping of co-linearly polarized pulses across zero-dispersion wavelength [145]. Additionally,

Figure 3.1: Raman gain in silica fibers calculated for orthogonally polarized pulses based on model from

Ref. [131]. Gain is normalized to the maximum of Raman gain for co-polarized pulses.
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trapping of an orthogonally polarized continuous wave [146] and even pulse trapping and

amplification of incoherent light from a super-luminescent diode [147] were demonstrated in

birefringent fibers.

In the referenced works [143, 144, 146, 147], a conventional birefringent fiber was used.

In this type of fiber, the group velocity matching of polarization modes is possible between a

shorter wavelength aligned to the slow (x) axis and a longer wavelength aligned to the fast (y)

axis. Consequently, pulse trapping is possible when the trapping pulse is aligned to the slow

axis and the generated trapped pulse is aligned to the fast axis.

In the following chapter I investigate soliton trapping in two birefringent photonic crystal

fibers with a group birefringence on the order of 10−4 and 10−3. Such detailed experimental

study is conducted for the first time in fibers exhibiting a negative value of group birefringence,

achieved due to the specific fiber design. Through control of the azimuth angle of the linearly

polarized input pulse, pulse peak power, and fiber length, I obtain different detunings and energy

transfers to the two polarization components of the output pulse. Interestingly, I observed that

the characteristics of the wavelength shifts of the two output polarization components differ

qualitatively depending on the magnitude of fiber birefringence.

3.1 Study conditions

To observe the effect of Raman scattering on solitons, I used a mode-locked Er-doped

fiber laser (FemtoFiber pro IR, TOPTICA Photonics) operating at 1.56 µm and generating

23 fs pulses (at FWHM, corresponding to T0 = 13 fs) with a repetition rate of 80 MHz and

average output power of about 200mW. The laser beam was passed through a polarizer and

half-wave plate to control its power level and polarization state. I monitored the beam average

power with a thermal power sensor (Thorlabs, S401C). I recorded the output spectrum with

an optical spectrum analyzer (Yokogawa AQ6376). The pulses were injected into the fiber

with an aspheric lens (Thorlabs, C230TMD-C).

I used PCF designed for SSFS and manufactured in-house through stack-and-draw method

from a single preform in the Laboratory of Optical Fibers Technology at the Maria Curie

Skłodowska University (Lublin, Poland). A germanium-doped core (with 18mol% doping

level) is surrounded by rings of air holes arranged in a honeycomb lattice. Three rows of larger

air holes arranged in a bow-tie centered on the core assist in achieving high birefringence.

Modification of conditions during the drawing process influenced the geometrical parameters

along the fiber’s length, leading to varying guiding properties for different segments. For the

investigation of soliton trapping, I selected two sub-100-meter-long segments from different

parts of the drawn fiber, to which I will refer as PCF 1 and PCF 2. The SEM images of the

two fibers cross-sections in the core region are shown in the insets of Fig. 3.2(a-b). Elliptical

core of PCF 1 has a major axis of 4.5 µm and a minor axis of 2.9 µm, while the core of PCF 2

is more elongated with a major axis of 5.1 µm and a minor axis of 2.5 µm. The lattice pitch

of the air hole microstructure is 3.0 µm in both PCFs and the average diameter of the holes

closest to the core is 0.9 µm in PCF 1 and 1.5 µm in PCF 2.
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3.1. Study conditions

Figure 3.2: Transmission properties of the two photonic crystal fibers. Measured related inverse group

velocities RIGV (a-b) and calculated chromatic dispersion D (c-d) of the mode polarized along x axis

(blue) and y axis (red) in PCF 1 (a,c) and PCF 2 (b,d). Insets in (a,b) show SEM images of the fiber

cross-section with arrows indicating direction of x and y axis and a white scale bar of 5µm. Group

birefringence (e) measured in PCF 1 and PCF 2. Measured attenuation (f) with an estimated maximum

at 2.21 µm indicated with green circle. Calculated mode effective area (g) and effective refractive

index (h) of the two polarization modes of both PCFs. A vertical black line indicates a 1.56 µm pump

wavelength.
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The fibers’ geometry results in their birefringence and different modal parameters depend-

ing on the direction of the linear polarization of light. Blue and red arrows on the cross-sections

indicate orientation of the polarization axis of the slow (x) and fast (y) mode. I employed

several experimental characterization techniques to gain insight into the transmission properties

of the two polarization modes of both fibers. The measured and calculated parameters are

shown in Fig. 3.2.

I used white-light interferometry [102] to characterize relative inverse group velocities

(RIGV, ∆β
(x/y)
1 ) of the two polarization modes in a short fiber section, see Fig. 3.2(a,b) for

RIGV related to inverse group velocity of the x polarization mode at the pump wavelength. This

allowed to calculate dispersion, shown in panels (c,d), and group birefringence, shown in panel (e).

Chromatic dispersion is simply the slope of RIGV. In PCF 1, it reaches 22.1 ps km−1 nm−1

(23.0 ps km−1 nm−1) at 1.56 µm pump wavelength for the pulses polarized along x (y) axis.

In PCF 2, it reaches 49.6 ps km−1 nm−1 (53.7 ps km−1 nm−1) at the pump wavelength for the

pulses polarized along x (y) axis.

The difference between RIGV measured for the two polarization modes allows to determine

the group birefringence: G = (∆βx1 −∆βy1 )c, where c is the speed of light in vacuum. In PCF 1,
G = 1.5× 10−4 at the pump wavelength, and 2.2× 10−4 at 2 µm. PCF 2 is characterized by a
more elongated core, which results in a higher group birefringence, reaching 8.5× 10−4 at the
pump wavelength, and 1.25× 10−3 at 2 µm.
I used the cut-back technique to measure fiber attenuation in the near-infrared spectral

region, see Fig. 3.2(f). To evaluate the low-loss spectral region I used a 100-meter-long segment

between PCF 1 and PCF 2, which should be characterized by similar attenuation as both

PCFs. In the long wavelength range, attenuation exceeds 1 dB/m for wavelengths longer than

2.12 µm. The used source provided light only up to 2.18 µm, at which the attenuation exceeded

4 dB/m. I was able to gain insight into attenuation at longer wavelengths by determining

loss related to the OH absorption band at 1.38 µm (reaching 2.53 dB/m) and using relation

provided in Ref. [54] to find corresponding loss level at 2.21 µm, which should be 201/62.7

times higher and reach 8.11 dB/m. The intensities of the measured and estimated maxima of

two absorption bands are marked with green points in panel (f).

In addition, the geometrical parameters determined from the SEM images were used in the

numerical modeling of the transmission properties performed using the Comsol Multiphysics

software by the team from the Department of Optics and Photonics at Wrocław University

of Science and Technology. In Fig. 3.2(g-h), I show the mode effective area Aeff and effective

refractive indices determined as a function of wavelength.

The two birefringent PCFs are characterized by negative values of group birefringence. In

Fig. 3.2(a-b) we clearly see that pulses polarized along the y fiber axis have a higher RIGV

and group refractive index (lower group velocity) than pulses polarized along the x fiber

axis. This observation aligns with other reports on PCFs [148], but is contrary to reports on

conventional birefringent fibers [143, 144, 146, 147]. Consequently, group-velocity-matching

could be achieved if the polarization of a shorter wavelength is aligned to the y axis and the

polarization of a longer wavelength is aligned to the x axis. In the next section, I investigate

the dynamics of pulses polarized along x or y axis propagating in birefringent PCFs.
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3.2. Energy conversion for pump pulses polarized along fiber axis

3.2 Energy conversion for pump pulses polarized along fiber

axis

In the following I investigate the influence of input pulse power and distance of propagation

in fiber on spectral pulse dynamics in the two birefringent PCFs. I found that the soliton

dynamics significantly depends on whether the input beam is polarized along the x or y axis

of the fiber.

3.2.1 Investigation for increasing pump power

Figure 3.3 shows the optical spectra recorded at the output of 20-meter-long sections of

PCF 1 and PCF 2 for different pump powers. The power level is displayed in the top left corner

for each panel, and represents the input beam average power measured before the lens used

for coupling light into the fiber. I used polarizer to separate the signal components polarized

along the x (blue line) or y (red line) fiber axis.

The input pulse forms a soliton, which undergoes Raman SSFS. The soliton wavelength

increases with power, but the soliton can be tuned hardly beyond 2.1 µm due to the abrupt

increase of attenuation. When the input pulse is polarized along the x axis (top panels),

the soliton pulse is generated with a well-defined central wavelength, indicated with blue

dashed lines. However, when the input pulse is polarized along the y axis (bottom panels),

the generated soliton pulse polarized along the y axis, indicated with red dashed lines, is

accompanied by an orthogonally polarized component at longer wavelengths. To improve

clarity, the central wavelengths of the soliton generated when the input pulse is polarized along

the x axis and of both polarization components generated when the input pulse is polarized

along the y axis are plotted as a function of pump power in Fig. 3.4.

The intensity of the signal starts to decrease when it is shifted beyond 2.05 µm. When

PCF 1 is pumped by 100mW beam polarized along the y axis, the signal component polarized

orthogonally to the input pulse is even attenuated below the noise level. This occurs due to

high transmission loss, which, based on the measurements shown in Fig. 3.2(f), results in a

power decrease of 12 dB at 2.05 µm, 17 dB at 2.10 µm, and 40 dB at 2.15 µm over 20 meters of

the fiber. However, it should be noted that these values represent an upper limit, and the actual

soliton attenuation is lower, as its wavelength continuously shifts during propagation, meaning

that high loss affects it on a distance shorter than 20 meters. The relationship between the

soliton shift and the fiber length will be discussed in the next section.

In top right corners of each panel in Fig. 3.3 I provide the polarization extinction ratio

(PER) of solitons. It ranges from 9.1 dB to 11.5 dB in PCF 1, and from 22.2 dB to 37.8 dB in

PCF 2. It is evident that PER of solitons is significantly higher when the pulse propagates

in PCF 2. This is as anticipated, because the increased birefrigence of PCF 2 decreases

linear couplings between orthogonal polarizations caused by the fiber’s imperfections, which

aids in preserving the pulse polarization. There appears to be no clear correlation between

the polarization purity of the solitons and the pulse power. This indicates that polarization

extinction is limited by linear couplings.
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3.2. Energy conversion for pump pulses polarized along fiber axis

Figure 3.3: Optical spectra recorded at the output of 20-meter-long section of PCF 1 (left) or PCF 2

(right) for increasing power of pump beam polarized along the x (top) or y (bottom) axis of the fiber.

Line colors denote signal components polarized along the x (blue) or y (red) axis. Average power of the

input beam is indicated in the top left corner of each panel. Polarization extinction ratio of solitons is

given in the top right corner of each panel.
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3.2. Energy conversion for pump pulses polarized along fiber axis

Figure 3.4: Central wavelength of solitons from Fig. 3.3 as a function of pump power for PCF 1 (left)

and PCF 2 (right) after 20m of propagation in the fiber. When x axis is excited, only the signal

component polarized along the x axis is observed (blue circles). When y axis is excited, the signal

component polarized along the x axis (blue asterisks) is observed in addition to the original component

polarized along the y axis (red crosses).

Figure 3.4 allows to easily compare the soliton detunings depending on the polarization

direction of the input beam. The soliton generated from the input beam polarized along the

x axis (blue circles) is more detuned than the soliton generated with the same input power from

the beam polarized along the y axis (red crosses). This can be attributed to the lower dispersion

of the x polarization mode. As both solitons are characterized by N = 1 (see Eq. 2.40), and

carry a similar energy (as shown in Fig. 3.5), which is proportional to P0T0, the duration of

soliton in x polarization mode must be shorter to maintain N = 1. A shorter soliton duration

corresponds to a higher peak power P0, resulting in a larger SSFS for the soliton carried by

the mode with a lower dispersion. The difference in the detunings of orthogonally polarized

solitons decreases with the soliton wavelength shift (particularly after passing 2µm), which is

related to the fiber attenuation. This observation is valid for both fibers.

Furthermore, for the input pulse polarized along the y axis, the difference between the

spectral positions of the generated soliton (red crosses) and the orthogonally polarized signal

component (blue asterisks) increases very slowly with power (and with the soliton wavelength):

from 32 nm to 46 nm in PCF 1; and from 64 nm to 80 nm in PCF 2. Notably, the difference is

smaller in PCF 1 than in PCF 2. This topic will be examined more thoroughly in the later

sections.

When comparing the central wavelengths of the solitons in PCF 1 and PCF 2 for a

specific power level of the input beam, it is evident that the solitons shift approximately

150-200 nm further when propagating in PCF 1. For instance, when the x (y) axis is excited

with an input power of 70mW, the soliton shifts to 2066 nm (2059 nm) in PCF 1, compared

to 1855 nm (1814 nm) in PCF 2. At first impression, this seems unexpected, as PCF 1 has a

lower nonlinearity coefficient γ owing to the larger mode effective area Aeff (by almost 30%),

as shown in Fig. 3.2(g). Two key factors account for the observed dynamics.

The first factor is related to the significant difference in dispersion between the two fibers:

the dispersion of PCF 1 is less than half the dispersion of PCF 2 at the pump wavelength.

Using again the analytical formula 2.40, I have verified that the fundamental solitons (N = 1)

44



3.2. Energy conversion for pump pulses polarized along fiber axis

Figure 3.5: Relationship between the fiber output power and the power of the input beam in short,

2-meter-long sections of PCF 1 (left) and PCF 2 (right) for input beam polarization aligned along x

and y axis of the fiber. The calculated ratio of powers is indicated below markers for x polarization and

above markers for y polarization.

emerge in both fibers for the lower investigated powers. Assuming that both solitons carry the

same energy proportional to P0T0, it can be deduced that due to the higher γ/|β2| ratio in
PCF 1 compared to PCF 2, the soliton duration T0 must be shorter, leading to higher peak

power and the shift to longer wavelengths. This explains the greater soliton shift observed in

PCF 1, assuming the energy level of the two solitons in both fibers is the same.

However, the light coupling efficiencies differ, favoring PCF 1 even further (higher soliton

energy requires even shorter soliton duration to maintain the same N). Due to the different

geometry of the fiber cores, optimal alignment with respect to the input beam allows more light

to be coupled into PCF 1 than into PCF 2. This is confirmed by analyzing the power of the

collimated fiber output as a function of the input beam power for short 2-meter-long sections

of both fibers in Fig. 3.5. In PCF 1 the ratio between output and input powers reaches 50%

for 60mW power of the input beam, and in PCF 2 this ratio is equal to 43%. The measured

ratio does not depend on the beam polarization. The results are similar for input powers of

60mW, 70mW, and 80mW, however the power ratios decrease for higher investigated input

powers, namely 100mW and 127mW. This might result from soliton crossing spectral regions

characterized by increased losses - for example, due to absorption bands of combination modes

of OH and SiO4 tetrahedron vibrations around 1.894 µm [54]. It should be mentioned that

the actual coupling efficiency is higher than the provided values, because the pulse energy

decreases after passing the coupling lens at the fiber input and the collimating lens at the fiber

output and during the 2 meters of propagation due to Raman scattering leading to SSFS as

well as attenuation. Nevertheless, the similar power ratios obtained for input powers of 60mW,

70mW, and 80mW confirm that it is possible to couple more energy into PCF 1, which aids

in obtaining larger soliton shifts in this fiber than in PCF 2 for the same power of the input

beam.

Finally, it is worth remarking that the data presented in Fig. 3.5 can be used to determine

the approximate level of power coupled into the fiber from the average power of the input beam

that is provided in this study. I have decided to refer to the power of the input beam, because
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3.2. Energy conversion for pump pulses polarized along fiber axis

the fiber output power significantly changes with the fiber length, and is also influenced by

soliton dynamics (when the SSFS occurs, part of the photon energy is lost due to Raman

scattering). The input beam powers for which similar levels of power are obtained at the

output of 2-meter-long fiber sections are 60mW in PCF 1 and 70mW in PCF 2 (with 30mW

output power) or 70mW in PCF 1 and 80mW in PCF 2 (with 33mW output power). In the

subsequent section, where I investigate soliton detunings in cutback experiments, I compare

the results obtained for both PCFs with the two indicated sets of input powers.

3.2.2 Investigation along the propagation distance

In this section I investigate the spectral pulse dynamics with propagation distance, studied

via cutback of the original 20-meter-long PCF 1 and 100-meter-long PCF 2. I took special

care to keep the fiber launch conditions unchanged. Figure 3.6 presents the spectra registered

at the output of fiber sections of different lengths: 2m, 8m, 20m, and 100m; for the fixed

input beam average powers of 60mW for PCF 1 and 70mW for PCF 2, which correspond to

the same average power of 30mW measured at the output of 2-meter-long sections of both

PCFs. A second set of similar characterizations is shown in Fig. 3.7 for increased input powers:

70mW for PCF 1 and 80mW for PCF 2, which correspond to 33mW measured at the output

of 2-meter-long fiber sections. The data in Fig. 3.7 serves to qualitatively support the analysis

performed in the subsequent paragraphs, in which I refer to Fig. 3.6.

In both excitation cases in the two fibers, the solitons shift toward longer wavelengths

during propagation. This shift occurs due to the energy transfer from the shorter to the longer

wavelength part of their spectrum, driven by the scalar Raman gain (see g|| in Fig. 2.17). The

soliton spectra narrow during propagation, and the SSFS efficiency generally decreases. The

SSFS efficiency η, defined as the ratio of the soliton power (measured using the bandpass filter

Thorlabs FB2000-500) to the total output power, is provided in Fig. 3.6. The data for the

2-meter-long PCF 2 is not included, as the soliton shifts insufficiently far to avoid cutting it

off by the bandpass filter. The spectral narrowing and decrease of SSFS efficiency are direct

consequences of the attenuation [149]. As the soliton peak power decreases its duration must

increase to satisfy Eq. 2.40, and soliton narrows spectrally.

Interestingly, the polarization extinction ratio of solitons does not exhibit the same

dynamics in the two PCFs. In PCF 1, the PER steadily declines as the propagation distance

increases from 2m to 20m: dropping from 24.5 dB to 11.2 dB for the x axis excitation, and from

31.5 dB to 9.6 dB for the y axis excitation. In PCF 2, the soliton PER does not follow the same

trend over the initial 20 meters of propagation. Instead, it varies between 21.5 dB and 37.8 dB,

without any apparent correlation to the propagation distance. It is only after 100 meters

of propagation that the PER drops to 13.1 dB for the x axis excitation, and to 18.9 dB for

the y axis excitation, which still remains a better extinction ratio than after 20 meters of

propagation in PCF 1. This relatively superior performance of PCF 2 in terms of preserving

the polarization of the soliton pulses can be attributed to its high birefringence. However,

maintaining a high polarization extinction ratio of the main soliton is not the only requirement

for ensuring pure polarization of the output pulses.
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3.2. Energy conversion for pump pulses polarized along fiber axis

Figure 3.6: Optical spectra recorded at the output of fiber sections of increasing lengths with an average

power of the input beam equal to 60mW for PCF 1 (left) or 70mW for PCF 2 (right). The direction

of the input beam polarization is along the x axis (top) or y axis of the fiber. Line colors denote signal

components polarized along the x (blue) or y (red) axis. Fiber length is indicated in the top left corner

of each panel. Polarization extinction ratio of solitons is given in the top right corner of each panel, and

η denotes ratio of output soliton power to total output power.
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3.2. Energy conversion for pump pulses polarized along fiber axis

Figure 3.7: Optical spectra recorded at the output of fiber sections of increasing lengths with an average

power of the input beam equal to 70mW for PCF 1 (left) or 80mW for PCF 2 (right). The direction

of the input beam polarization is along the x axis (top) or y axis of the fiber. Line colors denote signal

components polarized along the x (blue) or y (red) axis. Fiber length is indicated in the top left corner

of each panel. Polarization extinction ratio of solitons is given in the top right corner of each panel, and

η denotes ratio of output soliton power to total output power.
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3.2. Energy conversion for pump pulses polarized along fiber axis

Figure 3.8: Central wavelength of polarization components of the solitons as a function of propagation

distance in PCF 1 (top row) and PCF 2 (bottom row) for four power levels of the input beam. When

the x axis is excited, only the signal component polarized along the x axis is observed (blue circles).

When the y axis is excited, the signal component polarized along the x axis (blue asterisks) is observed

in addition to the original component polarized along the y axis (red crosses).

As noted in the previous section, when the input pulse is polarized along the y axis, the

generated soliton polarized along the y axis is accompanied by an orthogonally polarized

component at longer wavelengths, which affects the polarization purity of the fiber output.

The intensity of this second component increases with propagation distance, with an exception

for 100-meter-long PCF 2, where it is affected by losses accumulated over a long propagation

distance. The observed gradual increase of intensity indicates that the pulse component

polarized along the x axis emerges due to orthogonal Raman scattering, which enables the

simultaneous conversion of wavelength and polarization.

Figure 3.8 illustrates the soliton wavelength shifts as a function of propagation distance in

PCF 1 and PCF 2, respectively. The most significant wavelength shift occurs within the initial

few meters of propagation. At later stages, the rate of spectral shift decreases considerably,

primarily due to the reduction of soliton energy (as indicated by the calculated η) caused by

attenuation. Furthermore, the solitons shift further in PCF 1 than in PCF 2. The reasons for

this behavior are discussed in the paragraphs related to Fig. 3.4.

Finally, for the input pulse polarized along the y axis, the difference between the spectral

positions of the generated soliton (red crosses) and the orthogonally polarized signal component

(blue asterisks) does not appear to be correlated with propagation distance, and is very similar

no matter the fiber length. As noted in the previous sections, this difference is smaller in PCF 1

than in PCF 2. In the following, I investigate how the spectral positions of the different pulse

components depend on the azimuth of the input beam polarization.
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3.3. Energy conversion for other polarization azimuths of pump pulses

Figure 3.9: Optical spectra recorded at the output of 20-meter-long fiber sections with an average power

of the input beam equal to 70mW for PCF 1 (left) and 80mW for PCF 2 (right) for different direction

of the input pulse polarization with respect to the x fiber axis. Line colors denote signal components

polarized along the x (blue) or y (red) axis.

3.3 Energy conversion for other polarization azimuths of pump

pulses

In the previous sections I analyze the soliton dynamics using linearly polarized pulses

with the azimuth aligned along the x or y fiber axis. However, I obtained additional interesting

results as the polarization direction of the input beam is rotated. Those findings are detailed

in this section. Figure 3.9 shows the spectra registered at the output of 20-meter-long sections

of PCF 1 and PCF 2 for different azimuths of input polarization θ with respect to the x axis

of the fiber.

When the polarization azimuth is not exactly aligned to the x axis, the soliton shifts to

shorter wavelengths: in PCF 1 (PCF 2) for θ = 20◦ it shifts to 2027 nm (1875 nm) instead of

2033 nm (1901 nm) for θ = 0◦. Similar observation can be made when the polarization azimuth

is not exactly aligned to the y axis: in PCF 1 (PCF 2) for θ = 70◦ the soliton polarized

along the y axis shifts to 1960 nm (1775 nm) instead of 2024 nm (1856 nm) for θ = 90◦ and

the second pulse component polarized along the x axis shifts to 1995 nm (1844 nm) instead of

2062 nm (1922 nm). This can be explained by less energy from the input pulse participating

in generation of the soliton polarized along the specific fiber axis, which results in its lower

peak power and smaller shift over the 20 meters of propagation. The intensity of the soliton

polarized along the y axis is lower for the excitation at θ = 70◦ than at θ = 90◦, contrary to
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3.3. Energy conversion for other polarization azimuths of pump pulses

Figure 3.10: Optical spectra recorded at the output of increasing lengths of PCF 1 with 70mW input

beam average power for equal excitation of the two fiber axes. Line colors denote signal components

polarized along the x (blue) or y (red) axis.

the intensity of the second pulse component, which outgrows the soliton, even at θ = 82◦ in

PCF 2. This is because the energy coupled into the x axis facilitates the transfer from the

original soliton to the trapped pulse.

An interesting set of results is obtained for the excitation at θ ≈ 45◦, when an equal
amount of energy is coupled into both fiber axes. At the beginning of propagation, this leads

to generation of two orthogonally polarized soliton components that carry almost the same

energy, resulting in their similar intensities. This is illustrated in the top panel of Fig. 3.10,

which shows spectral dynamics characterized in experiments for increasing length of PCF 1.

When the two polarization modes are excited with an equal amount of energy, linear coupling

between polarizations does not affect the energy distribution, since a net balance is zero.

However, Fig. 3.10 shows that the component polarized along the x axis gradually dominates

the component polarized along the y axis as the propagation distance increases. The mechanism

providing transfer of energy between the two orthogonal polarizations only in one direction from

shorter to longer wavelength is orthogonal Raman scattering. The presented results indicate

that orthogonal Raman scattering is the mechanism that transfers the energy between two

polarization modes of the fiber and consequently affects the polarization state of the propagating

solitons. This is further confirmed by numerical simulations performed by other team members

with the use of a self-developed solver1 based on the software implemented in Ref. [150]. The

simulations are performed for θ = 45◦ in PCF 1 assuming the Raman polarization mixing

1https://github.com/WUST-FOG/cgnlse-python
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3.3. Energy conversion for other polarization azimuths of pump pulses

Figure 3.11: Optical spectra calculated at the output of increasing lengths of PCF 1 for equal excitation

of the two fiber axes assuming 80mW input beam average power coupled with 50% efficiency. Line

colors denote signal components polarized along the x (blue) or y (red) axis. Simulations performed

assuming the orthogonal Raman polarization mixing term is turned off (dashed lines) or turned on

(solid lines). Figure reproduced from [151].

term h3(T ) set to zero (left panel of Fig. 3.11) or turned on (right panel of Fig. 3.11). When

the orthogonal Raman polarization mixing term is turned off, both polarization components

have equal intensities at each investigated propagation distance. When the orthogonal Raman

polarization mixing term is turned on, the polarization component polarized along the x axis

gradually dominates the other component, as I observe in the experiments. The characteristic

frequency of the maximum orthogonal Raman gain ∆ω⊥ ≈ 3THz [131] can be retrieved from
Fig. 3.1. In the subsequent section I show that the spectral positions of the two orthogonally

polarized components are separated by a value close to ∆ω⊥.

Before that, it is interesting to point out that the characteristics of the soliton wavelength

shifts for the simultaneous excitation of the two polarization modes differ qualitatively in

experiments using PCF 1 and PCF 2. Each of the two generated orthogonally polarized soliton

components propagates with the specific group velocity according to its spectral position and

polarization. The group velocity difference between the two polarization modes is smaller in

PCF 1 than in PCF 2, see Fig. 3.2(e) for measured group birefringence. In PCF 1, the group

velocity difference between the two polarization modes is not large enough to cause a temporal

separation of the two orthogonally polarized pulse components. Their temporal overlap over a

sufficiently long distance allows the mechanism of cross-phase modulation (XPM) to force their

common group velocity, causing their trapping and shift of each polarization component to a

wavelength that is matched in terms of group velocity to the wavelength of the orthogonally

polarized copropagating pulse. The results of numerical simulations performed by other team

members confirm that the two orthogonally polarized pulse components are localized at the

same time after 20 meters of propagation [151], see Fig. 3.12. During propagation, orthogonal

Raman scattering leads to transfer of energy from one polarization component to the other.
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3.3. Energy conversion for other polarization azimuths of pump pulses

Figure 3.12: Calculated spectra (top) and temporal profiles (bottom) of generated soliton pulses at the

output of 20-meter-long section of PCF 1, assuming 80 mW input power with 50% coupling efficiency.

Line colors denote signal components polarized along the x (blue) or y (red) axis. Figure reproduced

from [151].

Conversely, PCF 2 is characterized by more than 5 times higher group birefringence. The

pulses in two orthogonal polarizations separate in time before they are trapped through the

mechanism of XPM. As a result, the soliton generated from the pump energy polarized along the

x axis does not overlap temporally with the soliton generated from the pump energy polarized

along the y axis. Nevertheless, the linear coupling of energy from the soliton pulse polarized

along the y axis to the orthogonal polarization is amplified by the orthogonal Raman scattering.

This leads to the generation of copropagating pulse component at a longer wavelength, polarized

along the x axis. As the group velocity becomes lower at longer wavelengths (see Fig. 3.2(a-b)),

the component polarized along the x axis propagates with a more similar group velocity to

the soliton that is feeding it, compared to the soliton generated from the part of pump pulse

energy polarized along the x axis. This leads to trapping of the long-wavelength component to

the soliton polarized along the y axis through the mechanism of XPM. Its intensity gradually

increases during propagation at the expense of the original soliton. As a result, two signal

components polarized along the x axis are observed at different spectral positions for several θ

in Fig. 3.9: the pulse trapped to the soliton polarized along the y axis and amplified through

the orthogonal Raman scattering, and the soliton generated from the pump pulse energy

polarized along the x axis of the fiber. It should be noted that those two components polarized

along the x axis do not belong to a single pulse and are separated in time.
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3.4. Soliton positions, group velocity matching, and Raman gain

Figure 3.13: Central wavelength shift of polarization components of the solitons as the input pulse

polarization is rotated with respect to the x axis of the fiber in PCF 1 (left) and PCF 2 (right). The

input beam average power is 66mW, and the fiber sections are 80 meter long in both cases.

The characteristics of the wavelength shift of each polarization component as a function of

azimuth of the input pulse polarization are illustrated in Fig. 3.13 for longer 80m sections of

the two PCFs. In PCF 1, the two trapped pulse components are located at 1.82 µm and beyond.

The largest shifts occur when the input pulse polarization is aligned along one of the fiber axis.

In PCF 2, the amount of energy in the y polarization mode is just enough around θ ≈ 30◦ to
generate a soliton in this mode, which is shifted to 1.60 µm after 80 meters of propagation.

It is accompanied by a trapped, orthogonally polarized pulse component located at 1.66 µm.

When θ increases, more energy is coupled into y polarization, leading to further shift of the

two trapped pulse components. In a similar way, at θ ≈ 70◦ the amount of energy polarized
along the x axis is just enough to lead to the generation of soliton in this polarization mode.

When θ decreases, more energy is coupled into x polarization, and the soliton polarized along

the x axis is shifted toward longer wavelengths. Finally, it is worth to point out that around

θ ≈ 45◦ the energy of any of the two solitons in PCF 2 is lower compared to the combined
energy of the two copropagating trapped pulses in PCF 1, therefore the two solitons in PCF 2

shift to wavelengths much closer to the pump compared to the soliton in PCF 1.

3.4 Soliton positions, group velocity matching, and Raman gain

In this section, I analyze the relation between spectral positions of the main and trapped

pulse components for excitation at θ = 90◦, θ = 70◦, and θ = 45◦. I summarize the results

obtained for different propagation distances and power levels in Fig. 3.14. I relate the retrieved

spectral positions to the group velocity matched wavelengths of x and y polarization modes

calculated from the measured relative inverse group velocities of the two polarization modes of

each fiber, shown in Fig. 3.2(a-b) and to the spectral gain of orthogonal Raman scattering

shown in Fig. 3.1.
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3.4. Soliton positions, group velocity matching, and Raman gain

Figure 3.14: Relation between central wavelengths of two polarization components of the soliton pulse

investigated for different propagation distances (indicated in the legend) and pump average powers

between 60 and 127mW in PCF 1 (orange markers) and PCF 2 (pink markers) when the input pulse

polarization is rotated 90◦, 70◦, and 45◦ with respect to the x axis of the fiber. Results for simulations

performed for PCF 1 are indicated with blue markers. Two lines indicate group velocity matched

wavelengths of the two polarization modes in each fiber (based on Fig. 3.2(a-b)). Background intensity

indicates normalized orthogonal Raman gain from the pulse component polarized along the y axis (the

gain spectrum is shown in Fig. 3.1).
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3.4. Soliton positions, group velocity matching, and Raman gain

Figure 3.14 shows dependence of central wavelength of the trapped pulse component

polarized along the x axis λx on the central wavelength of the original soliton polarized along

the y axis λy. Orange markers are used for PCF 1 and pink markers are used for PCF 2.

In addition, blue markers are used for results of simulations performed for PCF 1 by other

team members. Different shapes of markers indicate lengths of the fiber sections. The markers

for the two fibers follow two separate lines, and the experimental results agree well with

the simulations. As noted in the previous sections, the spectral separation of the two pulse

components is larger for PCF 2, therefore the markers belonging to PCF 2 are located higher

than the markers belonging to PCF 1.

Shades of markers indicate the value of θ. To enhance clarity, additional plots are provided

in which data for only a single excitation angle is displayed (the top right plot and the two

bottom plots). In PCF 1, the markers for each analyzed exicitation angle spread relatively

evenly along the line (limited by the pump wavelength and the saturation of shift due to the

fiber attenuation). The markers with larger λx and λy are related to higher pulse powers and

longer fiber lengths. In PCF 2, the markers are also spread along the line for the excitation

angle θ = 90◦. However, for lower θ I observe a threshold to values of λx and λy. For θ = 45
◦

neither exceeds 1.8 µm, even for the highest pulse powers. This is due to a lower energy of the

generated soliton pulse, as discussed in the preceding section.

The two dotted lines have an additional function besides serving as a visual guide. They

denote the group velocity matched wavelengths of x and y polarization modes of each fiber,

retrieved from measurements shown in Fig. 3.2(a-b). The markers indicating the central

wavelengths of the pulse polarization components follow group velocity matching lines, which

confirms that the two orthogonally polarized pulse components have matched group velocities.

In the background of Fig. 3.14, I plot the grayscale map of normalized gain spectrum of

the orthogonal Raman scattering from λy. It can be clearly observed that in both investigated

fibers the pulse components polarized along the x axis are located at spectral regions for

which relatively strong orthogonal Raman gain is obtained from the component polarized

along the y axis. This confirms that the trapped component originates from the soliton formed

initially in the y polarization mode of the fiber. Interestingly, the spectral positions of the

two pulse components follow the group velocity matching lines rather than the line with a

maximum Raman gain. This indicates that in the investigated process, it is crucial for the

pulse component fed by the Raman scattering from the original soliton to match its group

velocity to that feeding soliton, as the relatively low values and the plateau in the orthogonal

Raman gain spectrum lead to favoring the components that overlap temporally over long

distances, meaning that they must propagate with the same group velocities.
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3.5. Conclusions

3.5 Conclusions

In this chapter I investigated soliton trapping in two birefringent photonic crystal fibers.

I found that due to a negative sign of group birefringence, pumping the fiber with pulses

polarized along the x (slow) axis assures higher polarization purity of the output signal than

pumping with pulses polarized along the y (fast) axis, which leads to transferring part of the

pulse energy to the orthogonal polarization. I confirmed that orthogonal Raman scattering

provides the mechanism of energy transfer between the two polarization components of the

soliton. The polarization conversion efficiency depends on the initial excitation of the fiber,

which proves the research hypothesis that managing the polarization of the input optical

field results in control of the nonlinear dynamics. By changing azimuth angle of linearly

polarized light while managing the pulse power or fiber length, it is possible to achieve various

polarization components at distinct spectral positions. Furthermore, controlling the input

field’s polarization allows to generate either a single soliton pulse, or two separate pulses with

distinct spectral separations in the fiber whose birefringence is sufficiently high. Importantly,

I found that the x mode is favored for most of excitation angles. The obtained results are

particularly important for the tunable sources of polarized light which are based on Raman

SSFS in the birefringent PCFs [152].

Additionally, the presented analysis of a soliton propagating in two fiber polarization

modes might be useful in understanding the dynamics of a more complex multimode solitons.

For example, the temporal separation of solitons propagating in the two polarization modes of

PCF 2, which is characterized by high group birefringence, highlights the important influence

of intermodal dispersion, which, if too large, can hinder the formation of a single pulse from

the various excited modes.

Finally, it is worth to note that the group velocity matching analyzed in this study is

also satisfied in the self-mode conversion investigated by Rishøj et al. [141]. In the case of the

polarization conversion reported here, the process takes place over a longer distance than in

the mode conversion. This is due to the smaller gain of orthogonal Raman scattering compared

to the gain of co-polarized Raman scattering, as shown in Fig. 2.17. The study presented here

provides important results regarding Raman-assisted energy transfer between different modes

of the fiber. The observed effects of Raman scattering change drastically depending on the

interaction of co-polarized or orthogonally-polarized fiber modes.
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Chapter 4

High gain far-detuned four wave mix-

ing in a graded-index fiber

Intermodal nonlinear wave mixings in graded-index (GRIN) fibers have been a subject of

recent detailed investigations. A particular focus has been placed on the peaks emerging on

the short-wavelength side of the pump laser (in the near-infrared and visible spectral regions)

in fibers with relatively large core diameter (50-100µm) [47, 49, 45, 153, 50, 154]. In such

fibers, discrete spectral sidebands appear as a result of a refractive index grating enabled by

equidistant distribution of mode propagation constants and induced by the nonlinear Kerr

effect that leads to periodic self-imaging of the beam along propagation [73, 155]. As predicted

in [156] the wave propagating in a GRIN fiber may undergo so-called geometric parametric

instability (GPI), which causes exponential amplification of small perturbations in the frequency

domain. The process is characterized by a specific phase matching condition [156] on which I

expand in equation 4.1. The first experimental demonstrations in standard 52µm core GRIN

fibers showed multiple spectral bands in the short wavelength side of 1.064 µm pump, but only

the first order sideband detuned by approximately 125THz has been observed on the long

wavelength side of the pump [47, 49]. In subsequent experiments, GPI has been studied in

seeded configuration [45], in fibers with periodically modulated core [48], in varying spatial

coupling conditions [157], in various fiber designs which revealed control over the the frequency

shifts [158], and using a distinct methodology to analyze the generated sidebands [153].

To the best of my knowledge, the possibility of generating sidebands far from the pump

wavelength in the mid-infrared (mid-IR) region has not been experimentally investigated

in such fibers to date. The commonly accepted limit of the transparency window of silica

fibers (0.4 to 2.4 µm) prevents their practical use in mid-IR [159, 160]. The two types of
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nonlinear phenomena that allow to generate wavelengths longer than the pump and to access

this spectral region are four wave mixing (FWM), which gives rise to spectral peaks at

specific wavelengths and supercontinuum (SC) generation, which can lead to a significant

spectral broadening of the original pump. Interestingly, despite high fiber losses, several

studies demonstrated SC generation up to 3µm in short meter-long [161, 162] and centimeters-

long [163, 164, 165] segments of germanium-doped silica fibers. Introducing germanium to

the core region shifts the fiber transmission window toward longer wavelengths while also

increasing fiber nonlinearity [160, 166]. In [162] it was theoretically predicted that a cm-long

segment of heavily germania-doped fiber (97%) pumped at 2µm could produce a broadband

spectrum extending up to 3.5 µm. Subsequent experiments demonstrated the possibility of

using short segments of germania-core fibers pumped by systems based on thulium-doped fiber

amplifiers to obtain mid-IR radiation spanning up to 3.5 µm [167, 168], and 3.6 µm [166]. For

completeness, I should mention that to achieve longer wavelengths fibers made of soft-glass

materials, including fluoride [169, 170, 171], telluride [172] and chalcogenide [173, 174], are

used.

Moreover, several studies have explored the possibility of achieving mid-IR in silica

photonic crystal fibers, which enable easy engineering of dispersion properties through control

of the fiber design [82]. In pure silica PCF mid-IR generation up to 4µm was investigated

numerically [175], and the authors concluded that accessing the wavelengths beyond 3.5 µm is

in principle possible but it poses a major practical challenge due to requiring very short, sub-cm

fiber segments. Experimentally, a 1.4m of endlessly single-mode (ESM) large mode area PCF

was used to convert picosecond pulses from a 1.064 µm pump to 2.54 µm Stokes with a 6%

efficiency, and according to theoretical predictions utilizing a tunable Yb-doped fiber amplifier

source could result in obtaining up to 3µm in this fiber [176]. In a subsequent work [177], the

same group studied FWM in similar fibers, and observed a 180THz conversion from 1.064 µm

pump to 0.65 µm anti-Stokes and 2.93 µm Stokes in a 60 cm fiber segment. Another study [178]

investigated shorter-than-1m segments of PCFs pumped by a 1.064 µm picosecond pulses for

achieving 0.65 µm anti-Stokes, which corresponds to the Stokes generated at 2.77 µm. Finally,

a conversion of 1.064 µm nanosecond pulses was investigated in two ESM PCFs [179], resulting

in the most far-detuned FWM into the mid-IR region in a silica fiber. In that study, a Nd:YAG

laser pump was converted to 3.11 µm Stokes with a 0.2% efficiency.

In the following I investigate, both theoretically and experimentally, far-detuned nonlinear

frequency conversion in a few-mode silica GRIN fiber pumped at 1.064 µm. The fiber core

is moderately doped with germanium, reaching a concentration of 5% in the center of the

core. I report the wave mixing processes extending towards both the visible and the mid-IR,

achieving gains of hundreds of dB per meter below 0.65 µm and record-far detuning beyond

3.5 µm. This remarkably high-gain wavelength conversion is obtained in short fiber segments

of less than one meter. My results highlight the potential of graded-index fibers in terms of

high modal overlap over an ultrabroad spectral range.
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4.1. Remarks on theoretical analysis of FWM processes in GRIN fibers

4.1 Remarks on theoretical analysis of FWM processes in

GRIN fibers

First, I offer some perspectives on how to accurately analyze the spectral positions of the

peaks generated in a FWM process. As an example, I analyze FWM processes in a simple

GRIN fiber with a 1.064 µm pump in the fundamental mode. I assume that the fiber has a

parabolic profile of refractive index, 22µm core diameter, 5% Ge doping in the center of the

core, and cladding made of pure silica. This fiber has been studied earlier in [44]. The design

assumed here is simplified with respect to an actual fiber profile featuring a trench as shown

in Fig. 4.5(a). Nevertheless, for the purpose of comparing results obtained using different

techniques, a simplified design is considered in this section. This eliminates any variations that

may arise from the introduction of a trench, which can be accounted for in one technique but

not in another.

As outlined in Chapter 2, any (intra- or intermodal) FWM process that occurs in an

optical fiber can be described by a phase-matching condition 2.44. The FWM process is the

most efficient when the effective phase mismatch vanishes, which means ∆β = 0. For a given

combination of spatial modes µ, η, ν, κ (Stokes, anti-Stokes, and two pump waves, respectively),

knowing their propagation constants, one can find the phase mismatch and establish the

wavelengths of Stokes and anti-Stokes in a phase-matched process. To do that, I calculated

mode propagation constants for the assumed fiber design using a rigorous model that takes

into account the impact of the varying concentration of germanium doping in the fiber core.

Knowing mode propagation constants as a function of wavelength, I used equation 2.44 to

obtain phase mismatch for different combinations of modes. Here I analyze three combinations

of Stokes (µ) and anti-Stokes (η) in LP0,1 or LP0,2 modes, assuming that pump is in LP0,1

mode, and ignoring the issue of estimating the cutoff of LP0,2 mode. In Fig. 4.1(a) solid

lines represent the calculated ∆β as a function of either Stokes or anti-Stokes wavelength.

Among these lines, only the purple one crosses zero, which means that phase-matching is

achieved only when both Stokes and anti-Stokes waves are in the fundamental mode, rather

than one of them being in the LP0,2 mode. The spectral positions of where the line crosses

zero, namely 3.52 µm and 0.63 µm, correspond to the wavelengths of Stokes and anti-Stokes of

this intramodal process.

Here, it is worth to mention and discuss the applicability of some frequently employed tech-

niques that simplify the procedure of obtaining phase-matched wavelengths. A common practice

is using Taylor expansion of the refractive index or the mode propagation constant around

the pump frequency to approximate it to the second (or higher) order in ω, as inEq. 2.20.

This method is convenient and used very often in theoretical investigations of FWM pro-

cesses [44, 47, 87]. However, it is important to be aware of the limitations of this approach

and of the possible mistakes it could cause. To illustrate, I used second order Taylor expansion

of propagation constants of LP0,1 and LP0,2 modes to again calculate phase mismatch curves

for the previously analyzed FWM processes. The results are plotted with dotted lines in

Fig. 4.1(a). The dotted lines follow the solid lines in the spectral range near the 1.064 µm
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4.1. Remarks on theoretical analysis of FWM processes in GRIN fibers

Figure 4.1: (a) Phase-mismatch curves for FWM process with a selected spatial modes in Stokes (µ) and

anti-Stokes (η) assuming pumping at 1.064 µm in the fundamental mode in a 22µm-core GRIN fiber with

a 5% Ge doping in the core center. Solid lines: obtained using calculated mode propagation constants;

dotted lines: obtained using second order Taylor expansion of mode propagation constants around pump

wavelength. (b) Phase-mismatch for intramodal FWM process with a Stokes, anti-Stokes, and pump in

the fundamental mode, assuming pumping at 1.064 µm, calculated using full mode propagation constant

(solid line), or second-order (dotted line), fourth-order (dashed line), or sixth-order (dashed-dotted line)

Taylor expansion of mode propagation constant around pump wavelength.
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4.1. Remarks on theoretical analysis of FWM processes in GRIN fibers

pump wavelength, but they deviate notably when the wavelengths are significantly different

from the pump. As a result, the purple dotted line does not cross zero, which indicates that

there are no phase-matched wavelengths for the intramodal FWM process. The orange and

green dotted lines cross zero at the same points, leading to conclusion that Stokes in LP0,1

(LP0,2) should be generated at 2.97 µm, and anti-Stokes in LP0,2 (LP0,1) should be generated

at 0.65 µm. Clearly, the conclusions drawn here differ significantly from those reached in the

preceding paragraph. While the phase-matched wavelengths are quite similar (albeit it is

coincidental), the anticipated modal composition is incorrect. It is important to emphasize

that when the FWM peaks being studied are far-detuned from the pump, relying on the

Taylor expansion of mode propagation constants to analyze phase-matching conditions can

lead to significant mistakes. This approach has been taken to study the same fiber that is

investigated in this chapter [44]. Due to the application of the Taylor approximation in their

analysis, the authors inaccurately identified the FWM process originating the anti-Stokes peak.

One possible improvement could involve using a higher-order Taylor expansion to enhance the

accuracy of the fit [154]. However, this necessitates the numerical calculations of higher-order

derivatives, increasing the susceptibility to numerical errors. Moreover, it involves more com-

plex derivations to obtain the equation for phase-matching. In Fig. 4.1(b) I have verified that

using fourth- and sixth-order Taylor expansion did not yield satisfactory approximations of

the propagation constants in the spectral regions so far away from the pump. Consequently,

due to the possibility of inaccurate predictions of the spectral positions and modes in the

far-detuned FWM processes, this technique will not be suitable for far-detuned frequency

conversion investigated in the following.

The second technique that allows simplifying the calculations takes advantage of the

specific feature of the GRIN fibers, which have nearly equally-spaced effective refractive

indices of guided modes. In practice, while investigating a GRIN fiber, the phase-matching

condition 2.44 is often reformulated by expressing the propagation constants of the modes as

a simple sum of the material dispersion and wavelength-independent waveguide contribution,

as in Eq. 2.12. After undergoing this transformation and a few rearrangements, this leads to

deriving an approximate phase-matching condition [74]:
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which consists of phase mismatch occurring due to material dispersion (∆kM ) and due to

waveguide dispersion (∆kW ). It should be noted that the expression (gµ + gη − gν − gκ)
depends on the group numbers of interacting modes and is equal to a certain integer G.

Moreover, different combinations of modes {µ, η, ν, κ} can yield identical values of G. For
instance, G = 2 for each of the following combinations of Stokes, anti-Stokes and two pump

modes interacting in a FWM process: {LP0,1,LP0,2,LP0,1,LP0,1}, {LP0,2,LP0,1,LP0,1,LP0,1},
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4.1. Remarks on theoretical analysis of FWM processes in GRIN fibers

Figure 4.2: Phase-matching curves for FWM processes with a pump wavelength of 0.625 µm. The ∆kM
and −∆kW curves represent the material and waveguide dispersion contributions, respectively. −∆kW
were calculated for several allowed values of integer G. Numbers in brackets represent example values

of p of LP0,p modes that could be selected for Stokes, anti-Stokes, and two pump modes interacting in

a FWM process and be characterized by a given G.

{LP0,2,LP0,2,LP0,2,LP0,1}, {LP0,3,LP0,1,LP0,2,LP0,1}, {LP1,1,LP0,2,LP1,1,LP0,1}. The re-
maining parts of the equation 4.1 depend solely on the material and geometric parameters

of the fiber. As a result, each of the combinations listed above has similar phase-matching

conditions. However, it is worth to underline that although these combinations are nearly

equivalent wavelength-wise (result in nearly identical Stokes and anti-Stokes wavelengths if a

FWM process occurs), their FWM efficiencies differ. This arises from the fact that different

combinations of spatial modes exhibit varying overlap integrals, leading to different nonlin-

ear coupling coefficients γ1,2,3,4 (defined in Eq. 2.46) and different relative strengths of the

interaction. It is also important to mention that the possible values of G are limited by the

requirement to conserve the spatial angular momentum of the modes [87].For that reason, G

has to be an even integer. As my subsequent analysis is restricted to the LP0,p modes, I will

simplify the labeling of mode combinations by using only the radial mode number p of the four

interacting modes {pµ, pη, pν , pκ}. For instance, the combination {LP0,3,LP0,1,LP0,2,LP0,1}
will be denoted as {3, 1, 2, 1}.
The approach outlined above is a simple yet powerful tool that provides the possible

conditions of the FWM process occurring in a GRIN fiber. Knowing just the material dispersion

of the fiber and the group numbers of the participating modes, one is able to predict the

approximate phase-matched wavelengths of Stokes and anti-Stokes waves for a given pump.

I illustrate this with the fiber design that has already been introduced, but assuming that

the pump is now at a shorter wavelength of 0.625 µm, which results in more guided modes

in the considered spectral region around the new pump wavelength. In Fig. 4.2 I show the

phase mismatch contribution of the material (∆kM ) and waveguide (−∆kW ) dispersion for
several mode combinations characterized by different values of G. Phase matching occurs at the

intersection of the curves. With every (even) value of G, a pair of sidebands is generated, which
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4.1. Remarks on theoretical analysis of FWM processes in GRIN fibers

become more detuned from the pump as G increases. It can be shown [87] that approximating

the material dispersion using a second order Taylor expansion and solving equation 4.1 for the

FWM frequency shift gives an expression that scales as
√
G. In practice, numerous studies on

nonlinear wave mixing processes in multimode GRIN fibers have combined the two described

approximations to analyze the generated sidebands, for instance: [47, 49, 156]. In certain works

the authors include higher-order dispersion terms to gain better insight into the origin of the

sidebands emerging in experiments [45, 154], or perform a rigorous analysis accounting for all

orders of material dispersion [153]. Setting aside the method of introducing the contribution

of material dispersion, the approach that collectively includes the waveguide contribution from

different combinations of modes to a specific sideband is indeed very useful when addressing a

large number of possible intermodal interactions in a highly multimode fiber. As each mode

requires a pre-computed propagation constant, analyzing a complex multimode environment on

a mode-by-mode basis rapidly becomes impractical. The collective approach is also particularly

beneficial when considering a largely multimode input pumping condition, or when the input

modal content is not known.

However, when dealing with a few-mode fiber, the number of intermodal couplings is

significantly reduced and easier to analyze. In this scenario, using the above described collective

approach to investigate FWM processes may be less favorable due to certain limitations that I

will discuss below. First, it fails to provide information on the modal content of the emerging

FWM peaks. As noted previously, although various mode configurations have equivalent phase-

matching conditions, they vary in terms of FWM efficiencies. Consequently, experimental

characterization of the modal content of the peaks generated in a FWM process typically

reveals that certain modes tend to dominate over the rest [44, 180]. When each combination

of four modes is analyzed individually, in the way described in the beginning of the section 4.1,

they are characterized by a certain overlap integral defined in Eq. 2.37. This integral can be

be compared with the overlap integrals of other mode combinations, which offers insight into

relative effectiveness of the FWM processes contributing to a given sideband. In contrast, the

collective analysis provides only the estimated phase-matched wavelengths, and information

about the interaction strength cannot be retrieved. As a result, it is unfeasible to gain any

insight into the modal composition of the Stokes and anti-Stokes waves using this approach.

The next issue is that the propagation constants of the modes in the GRIN fibers are

not perfectly equidistant. Because of that, the derived equation 4.1 is not precise, resulting

in the collective approach allowing to obtain only approximated positions of phase-matched

wavelengths. I illustrate this in Fig. 4.3, where I compare the phase-matching curves obtained

with the two approaches. The thick dashed lines represent the collective approach explained

above. They are obtained by summing the ∆kM and ∆kW curves from Fig. 4.2. The remaining

phase mismatch curves are calculated by directly adding the propagation constants of Stokes,

anti-Stokes, and two pump modes in various combinations of spatial modes (similarly to solid

lines in Fig. 4.1(a)). Figure 4.3 clearly demonstrates that employing the collective approach

allows to correctly estimate the phase-matched wavelengths of only a limited number of possible

mode combinations (the ones marked with thin solid lines).
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Figure 4.3: Phase-matching curves for FWM processes involving different combinations of Stokes,

anti-Stokes, and pump modes calculated using two approaches: a collective approach that accounts

for material and waveguide dispersion contribution (thick dashed lines), and a rigorous approach that

accounts for the effective refractive index of each mode (thin lines). The considered mode combinations

are grouped by linestyle according to their phase-matched wavelength.
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4.1. Remarks on theoretical analysis of FWM processes in GRIN fibers

Figure 4.4: Experimental characterization of the Stokes peak generated in nonlinear wave mixing process

in a 62.5 µm core fiber pumped at 1.064 µm reveals different modal components at offset wavelengths

[Reprinted with permission from Leventoux et al., Opt. Lett. 46, 3717-3720 (2021). Copyright 2021

Optical Society of America].

The phase mismatch curves corresponding to the other groups of mode combinations

(represented by dashed, dotted, and dash-dotted lines) deviate from the trajectory of the phase-

mismatch curve obtained using the collective approach, and have notably different zero-crossing

wavelengths in the long wavelength side of the pump. For example, the anticipated Stokes

wavelengths corresponding to the following FWM processes: {1, 4, 1, 2}, {2, 4, 2, 2} (purple
dashed-dotted lines), {1, 5, 1, 2}, {2, 5, 2, 2} (green dotted lines), and {1, 6, 1, 2}, {2, 6, 2, 2}
(magenta dashed lines) are all in proximity of 0.815 µm, rather than approximately 0.848 µm,

0.921 µm, and 0.994 µm, as implied by the values of G for the first, second, and third pair of

the listed combinations, respectively.

Another example considers a different perspective: FWM processes indicated by purple

lines have Stokes waves around 0.749 µm, 0.811 µm, and ranging from 0.846 µm to 0.853 µm,

which is a much more rich and complex dynamic compared to the wavelength of 0.848 µm

indicated by the G=4 phase mismatch curve. A recent experimental study [180] employed

a 3D beam mapping technique to analyze the spatial-spectral structure of the Stokes peak

generated in nonlinear wave mixing process in a multimode, 62.5 µm core GRIN fiber. Figure 4.4

reproduced from that publication shows the wavelength-dependent spatial profiles of the beam

around the Stokes peak. Combining those experimental findings with the conclusions from my

theoretical investigations above, it becomes evident that generation of different modes at offset

wavelengths is the result of varying phase-matching conditions of the different FWM processes,

and cannot be addressed by the approach that takes into account general contribution of

waveguide dispersion.
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Figure 4.5: Measured parameters of the fiber: (a) Refractive index profile measured at 0.632 µm (blue

dots) and corresponding fit used for the numerical analysis (black line). (b) Measured attenuation (blue

dots) and absorption spectrum of bulk silica (Suprasil F300) from Ref. [54] (dashed line) in the mid-IR.

As explained above, the commonly used picture of the equidistant distribution of mode

propagation constants, together with the use of a finite-order Taylor series expansion of

propagation constants, could fail to correctly describe my observations in the few-mode fiber

without implying a misinterpretation of mode combinations involved in FWM processes.

Consequently, all the phase-matching curves presented in the following are obtained by taking

into account the full frequency dependence of the mode propagation constants.

4.2 Study conditions

In this section, I present a detailed description of the conditions of my investigation of

nonlinear four wave mixing in a few-mode graded-index fiber. First, I provide the measured and

calculated parameters of the fiber that actually has a slightly more intricate refractive index

profile than the one assumed in the preceding section. Next, I elaborate on the experimental

setup and light coupling conditions.

4.2.1 Fiber properties

I used a commercially available few-mode GRIN fiber [44]. The photograph of the fiber

cross section is shown in Fig. 2.2. The refractive index profile, measured at 632 nm by other

team members, is shown in blue in Fig. 4.5(a). To approximate it (see black line), I assumed the

following fiber design. The core has a radius of 8µm and is doped with GeO2 with a parabolic

profile and a maximum concentration in the center equal to 5%mol. The core is surrounded

by a 2 µm thick layer of pure silica and a 5µm thick fluorine doped trench followed by a pure

silica cladding. I used the Sunak material dispersion model to calculate wavelength-dependent

refractive indices of pure and GeO2-doped silica [181]. I assumed a constant refractive index

shift induced by the fluorine doping to pure silica, δnF = −5.5 · 10−3. The refractive indices of
the center of the core, the pure silica cladding, and the fluorine-doped trench calculated as a

function of wavelength are shown in Fig. 4.6(c).
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4.2. Study conditions

Figure 4.6: Calculated mode damping (a), effective area (b), and effective refractive index (c) of the

first three LP0,p modes of the GRIN fiber under study. Calculated effective group refractive index and

corresponding inverse group velocity of the LP0,1 mode (d).

For silica-based fibers such as the one studied, material linear losses in the visible and

near-infrared spectral regions are negligible for meters-long fiber segments. However, when

approaching the 2-µm spectral region, the silica transparency significantly drops. To gain more

insight, I measured fiber losses using the common cutback method described in Section 2.3.5.

As a light source I used a home-developed fiber supercontinuum that emits wavelengths up

to 2.8 µm (with a spectral gap around 2.7 µm due to OH absorption band in the fiber) and

a He-Ne laser that emits at 3.392 µm. The measurement results are shown in Fig. 4.5(b) in

semi-log scale, and are compared to the attenuation of bulk silica glass [54], reproduced with

black dashed line. The good agreement allows to use the bulk attenuation as an estimation

of the fiber losses in the mid-IR. The measured attenuation reaches 1 dB/m at 2.4 µm and

70 dB/m at 3.39 µm, and it would exceed 200 dB/m for wavelengths beyond 3.54 µm. To put

this result in perspective, I also checked the attenuation of a standard multimode GRIN fiber

(Nufern, core diameter of 50µm). It reaches 62 dB/m at 3.392 µm, which confirms that such a

high attenuation is mainly due to material losses rather than fiber design.

Modal properties of the fiber were obtained using the COMSOL Multiphysics software. I

consider only linearly polarized LP0,p modes. The calculated damping coefficient, effective areas,

and effective refractive indices of the first three LP0,p modes are plotted in Fig. 4.6(a), (b), and

(c) respectively. In addition, in Fig. 4.6(d) I plot the group refractive index and corresponding

inverse group velocity for the fundamental mode. Modal attenuation exceeds 100 dB/m at

0.92 µm for LP0,3, at 1.40 µm for LP0,2, and at 3.94 µm for LP0,1 mode. I assumed that the
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4.3. Intramodal four wave mixing study

modes are cut off at this level of attenuation (the corresponding wavelengths are marked with

gray dashed lines in Fig. 4.6(b-c)). The effective mode area grows linearly with wavelength and

reaches 200 µm2 close to cutoff. For the LP0,1 mode, the linear behavior changes drastically

around 3.5 µm. Noticeably, close to the cutoff the effective refractive index drops below the

material refractive index of the silica cladding. The above observations regarding the two

fiber parameters indicate that the modes at indicated wavelengths start to propagate in the

cladding, and this can be associated with increasing confinement losses. For the fundamental

mode, the calculated damping coefficient reaches 16 dB/m at 3.5 µm. This value is still only a

small fraction (less than 20%) of the measured attenuation (Fig. 4.5(b)) which indicates that

material losses are the main contribution to the fiber’s attenuation in the mid-infrared.

4.2.2 Experimental setup

I used a high-power laser source (Teem Photonics, PNP-M08010-1x0) operating at 1.064 µm

with a maximum peak power 220 kW. It delivers 400 ps pulses with a repetition rate of 1 kHz.

The beam passed through a polarizer and a half-wave plate to control the power and polarization,

and was coupled to the fiber using a ×10 microscope objective with a numerical aperture
NA = 0.25. The fiber was placed on a pitch & yaw tilt platform combined with a 3-axis stage

system to ensure precise fiber adjustments. Light coupling was handled with care to maximize

excitation of the fundamental mode LP0,1 by ensuring that the laser beam goes straight and

exactly through the center of the microscope objective and by focusing the beam on the

center of the fiber core. The fiber output spectrum was monitored using two optical spectrum

analyzers (Yokogawa, AQ6374 and AQ6377), and the associated spatial content was analyzed

using two beam profilers (Cinogy, CinCam CMOS-1202 IR; FLIR, SC7300) and a set of suitable

spectral filters. The power was monitored by using a thermal power sensor (Thorlabs, S401C).

In the following sections, I present and analyze two typical fiber output spectra obtained for

slightly different average powers but similar spatial light coupling conditions into a 70 cm-long

fiber segment.

4.3 Intramodal four wave mixing study

Here, I maximized the coupling into the fundamental mode by monitoring the modal

content of the fiber output. The corresponding output spectrum for an average power of

27.5mW (equivalent to more than 60% coupling factor of the input laser beam whose power

measured just before the input microscope objective was 46mW) is plotted in Fig. 4.7(b). The

pump spectrum is broadened around 1.064 µm due to the intermodal modulation instability

arising from the bimodal interaction with the LP0,2 mode [129, 13]. By finely analyzing the

MI peak frequency and gain recorded for several fiber lengths (see Fig. 4.8(b)), I can estimate

the initial power distribution between the two spatial modes involved at the pump wavelength,

as described in Section 2.4.9. My analysis reveals that more than 85% of the total power was

injected into the fundamental mode. The residual peaks around 0.8 and 1.4 µm in the overall

spectrum in Fig. 4.7(b) arise from the laser source. However, a striking observation here is the
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Figure 4.7: (a) Phase mismatch ∆β calculated for the FWM process in the fundamental mode. (b)

Experimental spectrum recorded at the output of a 70 cm-long fiber segment when the aforementioned

FWM process in the fundamental mode is optimized. Insets: near-field images of the three spectral

peaks (anti-Stokes, pump, and Stokes waves) captured using appropriate spectral filters.

emergence of two far-detuned peaks located at 3.580 µm and 0.625 µm. The peaks’ spectral

positions represent a symmetric 200THz detuning from the pump, which corresponds to the

wavelengths of the Stokes and anti-Stokes of a FWM process involving solely the fundamental

LP0,1 mode. The near-field spatial characterization of filtered spectral peaks (see insets in

Fig. 4.7(b)) corroborates the intramodal nature of this FWM process. More specifically, I used

a shortpass 0.95 µm spectral filter to capture the anti-Stokes wave at 0.625 µm, a bandpass

1.064 µm spectral filter to capture the pump wave, and a longpass 2µm spectral filter to

capture the Stokes wave at 3.580 µm. The spatial intensity patterns can all be attributed

to the fundamental mode LP0,1, whose full-width at half-maximum significantly broadens

over the fiber core with increasing wavelength. The power contained in the mid-infrared peak

was measured to be 40 µW when the total average power at the fiber output was 27.5mW.

Comparing to a 0.2% efficiency of conversion of 1.064 µm pump pulses to 3.105 µm Stokes

reported in a meter-long PCF [179], I measured a comparable but slightly lower conversion

efficiency, while observing Stokes at much longer wavelength (which results in higher losses).

To the best of my knowledge, the described observation is the most far-detuned frequency

conversion into the mid-IR range performed in a silica-based fiber.

Using Eq. 2.44, I calculated the phase mismatch for the FWM process involving only

the fundamental mode and plot the obtained ∆β in Fig. 4.7(a). My results corroborate that

the phase-matching of the far-detuned frequency peaks observed at ±200THz can be fully
driven by the higher-order dispersion of solely the LP0,1 mode (i.e., a degenerate FWM that

transfers energy from a strong pump wave to two waves). Indeed, the corresponding linear

phase-matching accurately predicts the spectral positions of the Stokes and anti-Stokes at
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Figure 4.8: Corresponding spectra of anti-Stokes (a), pump (b), and Stokes (c) waves recorded at the

output of fiber segments of increasing lengths. In (a-b), the input beam launch conditions were kept

unchanged. In (c), for each fiber length the launch conditions were adjusted to obtain the highest

intensity of the Stokes peak.

3.524 µm and 0.627 µm, respectively (marked with dotted lines in Fig. 4.7). Note that the

disagreement in frequency with experiments remains in the order of 1THz for both peaks (see

also Fig. 4.8(a and c) for zoomed in measured spectra).

To further study this FWM process, I carried out a cutback experiment to compare the

power spectra of anti-Stokes and pump waves at different propagation distances. I plot selected

spectra of anti-Stokes in Fig. 4.8(a), obtained for different fiber lengths with input beam

launch conditions kept unchanged (except average power here equals to 24mW). Notably, the

anti-Stokes power grows significantly with propagation distance. The estimation of this growth

rate along the propagation distance is analyzed later (see Fig. 4.9(a)). After approximately

70 cm, the spontaneous gain for the anti-Stokes saturates and further propagation leads solely

to spectral broadening. The broadening is induced by the cascaded broadening of the pump
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Figure 4.9: (a) Experimental gain measurements for the anti-Stokes wave centred at 0.625 µm as a

function of propagation distance z, obtained for peak powers in the fundamental mode equal to 51 kW

(red and yellow) and 36 kW (blue) (with fitting curves in dashed lines as guides to the eye). Horizontal

solid segments also indicate the cutback fiber lengths. (b and c) Theoretical gain calculations for the

anti-Stokes (b) and Stokes (c) waves for 36 kW (blue) and 51 kW (orange) peak power. Black dashed

line indicates the estimated fiber attenuation in this spectral region. (d) Theoretical gain calculations

for the anti-Stokes and Stokes waves as a function of peak power. Dashed orange and blue lines indicate

peak powers plotted in (b-c).

spectrum, as observed in Fig. 4.8(b), through cross-phase modulation effects. Note that the

same frequency detuning of spectral sidebands is observed (approximately 8.5 THz).

Additionally, in Fig. 4.8(c), I present some selected spectra of the mid-IR Stokes wave

obtained for different fiber lengths. After each cutback the fiber alignment was optimized to

achieve the highest intensity of the mid-IR peak (for a constant average power of 27.5mW).

Clearly, the Stokes power is limited by the strong fiber losses in this spectral region (see

Fig. 4.5(b)). After exceeding approximately 70 cm of propagation, the Stokes power begins

to drop as the fiber losses overcome the already saturated gain of the FWM process. In this

study, I observe a small detuning by a fraction of 1THz of the Stokes central wavelength and a

change in its bandwidth for different lengths of the fiber. This may result from small variations

of the input conditions which were optimized each time to achieve the highest intensity of the

Stokes peak.

In the following, I characterize the dynamics of gain of the observed spontaneous far-

detuned FWM process. In Fig. 4.9 I compare some experimental gain measurements along the

fiber length (a) with theoretical predictions for the two analyzed peak powers (b-c). In addition,
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in Fig. 4.9(d) I display gain calculated as a function of peak power, obtained using Eq. 2.47. To

compare my measurements performed for the higher power with theoretical values, I estimate

the value of the input peak power P0 equal to 85% of 60 kW. Peak power of 60 kW corresponds

to average power of 24mW that was measured in two cutback experiments indicated with

yellow and red points in Fig. 4.9(a), and 85% is the estimate for the power contained in

the fundamental mode by analyzing the frequency detuning of MI peaks around the pump.

Estimation of experimental gain is possible only for the anti-Stokes wave in the visible region,

based on several spectra recordings, as shown in Fig. 4.8(a). Such a gain estimation over

very short propagation distances is challenging. As shown by the two data sets for the same

power of 51 kW in the fundamental mode, the obtained gain strongly depends on the cutback

increment (indicated by horizontal segments). Nevertheless, the gain measurements agree well

with the theoretical predictions. The measurements also show the complete saturation of the

FWM process after 0.7m as the gain rapidly drops to zero. It is worth mentioning that the

theoretical phase-matching ∆k, which involves the nonlinear phase changes due to pump power

and is defined in Eq. 2.45, better predicts the spectral positions of the Stokes and anti-Stokes

at 3.545 µm and 0.626 µm, respectively.

In the third cutback experiment (marked with blue in Fig. 4.9(a)), the output average

power is 17mW, and analysis of the MI peaks around the pump (not shown here) again

indicates that 85% of the power is contained in the fundamental mode. The gain measured

here agrees well with the theory for P0 = 36 kW. Several effects can impact the gain efficiency

of this FWM process, namely the higher mid-IR losses accumulated during propagation, the

competition with other FWM processes such as intermodal MI around the pump, and the

temporal walk-off between the generated peaks and the pump [84]. I checked the group velocity

mismatch using equation 2.23 and a calculated IGV of the LP0,1 mode from Fig. 4.6(d). GVM

between the pump and anti-Stokes wavelengths is 48 ps/m, and GVM between the pump and

Stokes wavelengths is 168 ps/m. Subsequently, I verified the corresponding walk-off lengths

LW for a characteristic duration of the pump pulse T0 ≈ 240 ps. I found LW = 5and 1.4m,
respectively, which is longer than the fiber segments under study. A clear identification of

the involved detrimental effects would require further numerical studies based on complex

modeling as a function of modal excitation [182].

4.4 Intermodal four wave mixing study

To study intermodal FWM processes, I increased the input peak power into the 70-cm-long

GRIN fiber by slightly adjusting the position of the fiber around the input focal plane, after

which I collected the output spectrum shown in Fig. 4.10(g). The average power at the fiber

output is now 29.8mW, thus corresponding to a coupling efficiency of more than 65%. Here, I

obtained a similar spectrum characterized by a pump broadened around 1.064 µm and two far-

detuned frequency peaks at ±200 THz. However, a new set of frequency peaks has emerged in
the visible region, similarly to previously reported in Ref. [44] in a slightly longer fiber segment

(1 meter). The minor adjustment in the input conditions modified the characteristic frequency

of intermodal MI bands around the pump (now about 10 THz detuning). Consequently, I
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Figure 4.10: (a-e) Near-field images of the spectrally filtered peaks indicated by arrows and colored

dashed lines. Left sections are experimental measurements, whereas right sections provide corresponding

calculated mode distributions for a given wavelength. In panel (e), both calculated LP0,1 and LP0,2
modes are shown. Red line in right sections indicates the inner edge of the fluorine-doped trench. (f)

Phase mismatch ∆β calculated for intra- and intermodal FWM processes - details provided in text. (g)

Experimental spectrum recorded at the output of a 70 cm-long fiber segment with an average power of

29.8mW when a cascaded FWM process is optimized.

estimate that no more than 80% of the total power is now injected into the fundamental mode

(and the remaining into the LP0,2 mode). However, as previously shown, the fundamental

mode remains the main mode involved in the distinct FWM processes studied below.

A detailed investigation of each FWM at the origin of the spectral peaks was performed

both experimentally and theoretically. I characterized the spatial content for the newly emerged

spectral peaks by near-field imaging as shown in Figs 4.10(a-e). I analyzed various configurations

of intermodal FWM processes and listed them in Table 4.1. As very similar phase-matched

frequencies can be found, beyond the necessary condition of phase-matching for the FWM

interactions for distinct mode combinations, I determined the relative strength of the interaction

using the nonlinear coupling coefficient γ1,2,3,4 which is driven by the overlap integral of the field

distributions f1,2,3,4. It is noteworthy to emphasize that integration for far-detuned processes

should involve wavelength-dependent field distributions.

For the case of far-detuned peaks at ±200 THz studied in detail in the previous section,
there are two possible FWM processes involving LP0,1 mode only, or a combination of the

two modes: LP0,1 and LP0,2. In Table 4.1 those are: {pµ, pη, pν , pκ} = {1, 1, 1, 1}, or {1, 2, 1, 2}.
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Table 4.1: FWM combinations with the highest overlap integrals. For comparison, the self-phase

modulation coefficient at the pump wavelength in the fundamental mode is 0.0165 µm−2.

{pµ, pη, pν , pκ} λsµ λasη λp1ν λp2κ fs,as,p1,p2
(
µm−2

)

{1, 1, 1, 1} 3.524 0.627 1.064 1.064 0.0111

{1, 2, 1, 2} 3.475 0.629 1.064 1.064 0.0045

{2, 1, 1, 1} 1.351 0.556 1.064 0.625 0.0135

{2, 2, 2, 1} 1.364 0.554 1.064 0.625 0.0059

{1, 3, 1, 2} 1.373 0.552 1.064 0.625 0.0054

{1, 2, 1, 1} 1.372 0.552 1.064 0.625 0.0054

{2, 2, 1, 2} 1.354 0.555 1.064 0.625 0.0050

{1, 3, 2, 1} 1.384 0.550 1.064 0.625 0.0036

{2, 1, 1, 1} 0.799 0.513 0.625 0.625 0.0171

{3, 1, 1, 2} 0.791 0.517 0.625 0.625 0.0111

{1, 2, 1, 1} 0.802 0.512 0.625 0.625 0.0106

{3, 2, 2, 2} 0.793 0.516 0.625 0.625 0.0093

{1, 3, 1, 2} 0.804 0.511 0.625 0.625 0.0084

{2, 2, 1, 2} 0.801 0.513 0.625 0.625 0.0072

{2, 3, 1, 3} 0.804 0.511 0.625 0.625 0.0057

{3, 2, 1, 3} 0.795 0.515 0.625 0.625 0.0048

{2, 3, 2, 2} 0.802 0.512 0.625 0.625 0.0037

{2, 2, 1, 1} 0.906 0.477 0.625 0.625 0.0119

{3, 1, 1, 1} 0.894 0.480 0.625 0.625 0.0113

{2, 3, 1, 2} 0.909 0.476 0.625 0.625 0.0073

{1, 4, 1, 2} 0.911 0.476 0.625 0.625 0.0034

{1, 3, 1, 1} 0.911 0.476 0.625 0.625 0.0029

Clearly, these combinations exhibit different overlap integrals, which translate into different

FWM efficiencies. This confirms that the process under-study predominantly involves the

fundamental mode (the corresponding ∆β is indicated by a black line in Fig. 4.10(f)). In this

regard, it is also worth to point out that the resulting FWM efficiency also depends on the

power contained in the two pumping modes {pν , pκ}. I recall that based on my estimations,
around 80% of the pump power is injected into the LP0,1 mode, and 20% into the LP0,2 mode.

Such distribution of the pump power further privileges the resulting efficiency of the intramodal

FWM process.

The second pair of analyzed peaks is located at 0.555 µm and 1.352 µm (blue dashed lines

in Fig. 4.10). In that case, I retrieve experimentally the main signature of the fundamental

mode for such peaks, see Figs. 4.10(c) and (e). Table 4.1 provides the corresponding FWM

processes with the highest overlap integrals. To satisfy the condition ωs + ωas = ωp1 + ωp2, the

origin of the observed spectral components can only be explained by involving non-degenerate

FWM with two distinct pump wavelengths, specifically 0.625 µm and 1.064 µm. The mode

combination {2, 1, 1, 1} appears as the most probable scenario with the highest overlap integral
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and consistent with the pump wavelengths mostly carried by the fundamental mode (the

corresponding ∆β is marked with blue line in Fig. 4.10(f)). However, it has to be pointed out

that at the Stokes wavelength the LP0,2 mode is close to cutoff. This explains the reason behind

observation of the Stokes peak in the fundamental mode with a lower intensity compared to

the anti-Stokes peak. Other combinations listed in Table 4.1 provide FWM processes with

lower efficiencies due to lower overlap integrals but enabling Stokes emission in the LP0,1 mode

with mixed pumping in both LP0,1 and LP0,2 modes. Again, it has to be pointed out that the

efficiency of such FWM process with mixed pumping is additionally reduced due to the lower

power of the pump contained in the higher order mode compared to the power of the pump

contained in the fundamental mode.

The third pair of peaks emerges at 0.514 µm and 0.798 µm (green dashed lines in Fig. 4.10).

These sidebands are mainly associated with the LP0,1 and LP0,2 modes, respectively, see

Figs. 4.10(b) and (d). When checking possible phase-matched combinations, I identified a

degenerate FWM with pumping in the fundamental mode at 0.625 µm as the process with the

highest overlap integral, thus giving {2, 1, 1, 1} (the corresponding ∆β is marked with green
line in Fig. 4.10(f)). This is in excellent agreement with my measurements. Other combinations

are also listed in Table 4.1 for comparison.

Finally, the fourth pair of peaks identified at 0.473 µm and 0.904 µm (magenta dashed

lines in Fig. 4.10) exhibits low intensities. Due to intense pump in proximity of Stokes wave

I did not retrieve the Stokes spatial profile. Instead, I could record the spatial content of

anti-Stokes wave, which is mainly supported by the LP0,3 mode, as shown Fig. 4.10(a). My

analysis indicates that these wavelengths can be associated with degenerate FWM processes

with pump at 0.625 µm involving the LP0,1 and LP0,2 modes. The one best corresponding to

the experimental characterization refers to {2, 3, 1, 2} in Table 4.1 (the corresponding ∆β is
marked with magenta line in Fig. 4.10(f)), and confirms the low efficiency.

4.5 FWM in other fiber designs

Far-detuned frequency conversion in the normal dispersion regime has already been

investigated in single-mode and small-core fibers, but it is typically rather limited to frequency

shifts of tens of THz and FWM gain of tens of dB/m [183, 184]. In the performed study

extended FWM features are supported by the combination of (i) the strong modal overlap

across a large spectral bandwidth linked to the fiber profile and (ii) high peak powers. In

Fig. 4.6(b), one can notice that the effective area of the fundamental mode remains in the 10

to 200 µm2 range over the 3 µm spectral bandwidth. As discussed in Section 4.2.1, the increase

around 3.5 µm can be associated with higher confinement losses and could possibly contribute

to the lower measured power of the Stokes peak.

Such far-detuned phase-matchings are also theoretically possible in conventional profiles

of silica step-index and graded-index fibers. I conducted numerical and experimental investiga-

tions on the FWM processes using various designs of fibers available at our laboratory. For

numerical studies, I assumed a 1.064 µm pump and each wave in the fundamental mode. The

obtained results are summarized in Table 4.2. Along with the predicted Stokes and anti-Stokes
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Table 4.2: Numerical investigation of intramodal FWM processes in the LP0,1 mode with pump at

1.064 µm evaluated in various fiber designs.

Fiber type Core diameter GeO2 doping λsµ λasη fs,as,p,p fp,p,p,p 1/fs,s,s,s

(µm) (µm) (µm)
(
µm−2

) (
µm−2

) (
µm2

)

GRIN 22 5% 3.524 0.627 0.0111 0.0165 262

step-index 8.2 3.9% 3.727 0.621 0.0064 0.0207 1820

step-index 15.5 4.2% 3.297 0.634 0.0077 0.0087 189

step-index 3.6 24% 5.234 0.592 0.0167 0.1201 2322

step-index 3.4 28% 5.242 0.592 0.0221 0.1271 1384

step-index 3.2 31% 5.238 0.592 0.0271 0.1314 882

step-index 4.0 31% 4.663 0.601 0.0429 0.1020 157

step-index 6.0 31% 3.937 0.615 0.0406 0.0543 52

step-index 8.0 31% 3.951 0.615 0.0278 0.0334 60

GRIN 50 11% 3.774 0.619 0.0056 0.0079 433

GRIN 62.5 20% 4.155 0.610 0.0058 0.0085 432

GRIN 100 24% 4.333 0.607 0.0039 0.0058 654

wavelengths, I included calculated overlap integrals for FWM process and self-phase modulation

coefficients at the pump wavelength in the fundamental mode. In addition, to give insight

into mode confinement at mid-IR spectral range, I provided effective areas of the fundamental

mode at the Stokes wavelength. The calculated parameters for the GRIN fiber under study

are presented in the first row of the table.

First, I considered a step-index refractive index profile which is similar to the standard SMF-

28 fiber. For the assumed 3.9%mol GeO2-doped core with a diameter of 8.2 µm, Stokes and

anti-Stokes peaks are located at 3.727 µm and 0.621 µm, respectively. However the calculated

overlap integral equal to 0.0064 µm−2 is almost twice as low as the case of the GRIN fiber

studied here, resulting in a FWM gain below the fiber attenuation. Furthermore, I observed

significantly reduced modal confinement at long wavelengths comparing to the GRIN fiber

(i.e., effective mode area increased substantially beyond 1000 µm2). The fundamental mode

clearly no longer remains guided in the core at that spectral range, which is not conducive to

achieving high FWM gain. Experimentally, I conducted cutback measurements under pumping

conditions similar to my prior research. Nevertheless, I did not detect any far-detuned FWM

peaks, neither in the visible, nor in the mid-IR spectral range.

Subsequently, I investigated a few-mode step-index silica fiber which has a core almost

twice the size of the standard SMF and a comparable germanium doping level. In such design,

the Stokes wavelength calculated at 3.297 µm is less detuned than in the investigated GRIN

fiber case. I have found that the modal confinement at this spectral range is well maintained

(the mode effective area remains below 200 µm2), and the overlap coefficient is comparable to

the self-phase modulation coefficient at the pump wavelength. The calculated modal overlap

coefficient equal to 0.0077 µm−2 is approximately 2/3 of the modal overlap of the GRIN fiber
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Figure 4.11: Experimental spectrum for 23mW average power recorded at the output of a meter-long

segment of step-index fiber with a 15.5 µm core diameter with the light launching conditions optimized

to excite the fundamental mode. Magenta lines indicate the Stokes and anti-Stokes wavelengths of the

intramodal FWM process. Insets: near-field images of the selected peaks captured using appropriate

spectral filters.

under study. In the cutback experiments, I did not detect any peak in the mid-IR spectral range

beyond 3 µm for fiber lengths between 50 and 100 cm. Instead, I observed multiple spectral

peaks arising from cascaded intermodal FWM, which are located closer to the 1.064 µm pump.

The spectrum recorded at the output of a meter-long fiber segment for an average power

of 23mW is shown in Fig. 4.11. Using spectral filters with different central wavelengths, I

characterized spatial content of selected spectral peaks, which revealed either LP0,1, or LP0,2

modes, as shown in the figure insets. The input coupling conditions were optimized to excite

the fundamental mode (the captured image of spectrally filtered pump shown in one of the

insets corroborates the high quality of excitation). My results are consistent with the outcomes

of another study of nonlinear dynamics that has been performed in this fiber using a 1.064 µm

picosecond pump [43]. The authors used much longer segments of this fiber (50 and 5 meters)

and different injection conditions to excite either a multimode mix, or fundamental mode only.

Here, I validate as well as expand upon the previous study by presenting the experimental

spectrum obtained at the output of a shorter, meter-long fiber segment. This offers insight

into nonlinear dynamics occurring at shorter propagation distance. The increased pump power

I used resulted in generation of a greater number of cascaded peaks compared to what had

been reported previously. However, despite employing higher power and optimizing excitation

of fundamental mode, I did not detect the Stokes peak I predicted at 3.297 µm linked to the

intramodal FWM process (the predicted Stokes wavelength is indicated by a dashed magenta

line in Fig. 4.11). I identified a peak 0.633 µm, which corresponds to the predicted anti-Stokes
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wavelength of the intramodal process (the peak is indicated by a magenta line in Fig. 4.11).

Its intensity is relatively weak compared to the nearby peaks, which poses a challenge to

retrieve its modal content and confirm whether it is indeed the expected LP0,1 mode. The low

intensity of this potential anti-Stokes peak suggests that the absence of the Stokes peak could

be attributed to competition with other wave mixing processes that might have higher overlap

coefficients and use up the available pump power earlier during the propagation.

Following, I performed a numerical study on a set of highly-nonlinear fibers. Our available

step-index single-mode fibers are characterized by small cores of 3.2-3.6 µm and high GeO2

doping levels. I have found that the reduced core size and the increased refractive index contrast

between core and cladding result in a notable increase of the detuning of the FWM process,

causing the expected wavelengths of the phase-matched Stokes peak to exceed 5 µm. In the

investigated designs, the calculated overlap coefficients are higher than those in our GRIN

fiber. However, it is essential to emphasize that they are only a fraction of the respective

self-phase modulation coefficients, and mode effective area at calculated Stokes wavelengths is

close to or exceeding 1000 µm2, which indicates that beyond 5µm the mode can no longer be

guided in core for any of the considered designs. Analysing those three investigated profiles, it

is evident that increasing germanium doping level significantly enhances mode confinement.

By conducting further numerical investigations, I have discovered that increasing the core

diameter of the fiber with a 31% germanium-doped core leads to a notable reduction of mode

effective area at the Stokes wavelength, which results in increase of the overlap coefficient.

Simultaneously, increasing the core diameter shifts the predicted Stokes peak toward shorter

wavelengths. However, for the final optimized fiber profile with a 8µm core, the Stokes peak

is expected to be generated around 4 µm, which remains an interesting potential outcome.

While I did not have access to fibers with the identified designs, it could be worth to explore

experimentally the possibility of generating mid-IR radiation in fibers with higher level of

germanium doping in the core. I would like to recall and point out that germanium assists in

extending the fiber transmission window toward longer wavelengths, which could potentially

aid in generation of mid-IR wavelengths.

The last type of refractive index profiles I investigated was graded-index fiber. I considered

fiber designs with larger cores than the one used for my study. For each of the analyzed designs

with core diameters of 50 µm, 62.5 µm, and 100µm the predicted Stokes is shifted towards

longer wavelengths than in the 22µm core GRIN fiber, to 3.774 µm, 4.155 µm, and 4.333 µm,

respectively. However, contrary to prior findings, mode effective areas at the anticipated

Stokes wavelengths exceed 400 µm2, which indicates insufficient mode confinement in the core.

Furthermore, the overlap coefficients are half or less than in the case of the GRIN fiber in

the previous study, suggesting that the FWM process may not be as efficient as in the earlier

scenario. Experimentally, I checked that pumping meter-long and shorter segments of our

available graded-index fibers at 1.064 µm did not result in any far-detuned FWM peaks in

the mid-IR spectral range. One result worth noting was obtained in the fiber with 62.5 µm

core and 20% GeO2 doping, where at the fiber output I observed a peak at 1.870 µm, and a

corresponding peak at 0.744 µm. The intensity of the peak close to the visible spectral range

was high, surpassing even the pump. The spectrum recorded at the output of a 80 cm long
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Figure 4.12: (a) Phase mismatch calculated for the FWM process in the fundamental mode (magenta)

and for the FWM process with anti-Stokes in LP0,1 and Stokes in LP0,2 mode (black). (b) Experimental

spectrum recorded at the output of a 80 cm-long, 62.5 µm core GRIN fiber for 23mW average power

coupled into the fiber with the light launching conditions optimized to excite the fundamental mode.

fiber segment for an average power of 23mW is presented in Fig. 4.12(b). In addition, in

Fig. 4.12(a) I plot using a black line the phase-mismatch curve for the intermodal FWM process

corresponding to the Stokes peak in LP0,2 mode and the anti-Stokes peak in LP0,1 mode. The

expected positions of Stokes (at 1.878 µm) and anti-Stokes (at 0.742 µm) agree very well with

the experimental data. My results validate the findings in [180], where a mix of LP0,1 and LP1,1

modes had been excited in a 2.3m long fiber and a 3D beam mapping technique was used to

characterize the spatial content of the two peaks. Indeed, in that study the anti-Stokes peak

was found to be composed of LP0,1, while the main component of the Stokes peak was identified

as the LP0,2 mode (the Stokes peak characterization is reprinted here in Fig. 4.4). Compared

to the results described in that article, the anti-Stokes peak I observed is significantly more

intense, and both the Stokes and anti-Stokes peaks have narrower bandwidth. This discrepancy

may result from my cleaner coupling into the fundamental mode and a shorter fiber used for

my study. The intermodal FWM process I investigated has an overlap coefficient equal to

0.0055 µm−2, and a mode effective area at the Stokes wavelength of approximately 417µm2.

The values of those two parameters are close to the ones corresponding to the investigated

intramodal FWM process, which are provided in Table 4.2. Nevertheless, the recorded spectrum

shows no discernible peak that can be associated to either anti-Stokes or Stokes waves of the

intramodal process (refer to magenta line in Fig. 4.12 for the phase-mismatch curve and dashed

magenta lines for anticipated Stokes and anti-Stokes spectral positions). This absence could

be explained by a much larger detuning of the Stokes wave of the intramodal process toward

the mid-IR spectral region, where fiber losses prevent effective peak generation.

81



4.6. Conclusions

4.6 Conclusions

In this chapter I investigated nonlinear frequency conversion processes in a short few-mode

graded-index silica fiber. I provided experimental evidence supported by theoretical analysis

that four wave mixing can be used for far-detuned frequency generation leading to conversion

of near-IR pump to visible and mid-IR wavelengths. The obtained results are particularly

interesting as I achieved generation of mid-IR radiation well beyond the commonly accepted

transparency window of silica fibers.

The conducted research clearly confirms the research hypothesis. By efficiently launching

the pump into the fundamental fiber mode, I achieved generation of far-detuned peaks generated

in the intramodal FWM process involving the fundamental fiber mode. By changing the modal

composition of the excited field I obtained a cascade of intermodal FWM processes that arise

through the combination of the secondary pump at 0.625 µm with or without the initial pump.

I performed detailed spatial investigation of the generated peaks and reached a good agreement

with my theoretical predictions. The secondary pump is enabled by the significant power

contained by the fundamental mode and more specifically the extremely high gain provided by

the spontaneous intramodal FWM process.

The performed measurements agree very well with the calculations based on the developed

theory. I clearly addressed the limits of possible application of the commonly used simplified

theoretical models that allow to study nonlinear wave mixing processes in GRIN fibers.

It is worth highlighting that such high parametric gain value (400 dB/m) was obtained

even for far-detuned frequencies. It appears that the specific refractive index profile of the fiber

that I tested allowed to observe FWM process with extremely interesting features. However,

there is still room for optimization through careful engineering of the index profile or the use

of infrared glasses to tailor phase-matched frequencies and parametric gain in other spectral

windows of interest.
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Chapter 5

Spatiotemporal wavepackets in a mul-

timode step-index fiber

Multimode optical fibers (MMFs) provide an enabling platform for studying spatiotemporal

phenomena in multidimensional systems and complex collective dynamics [20, 19]. This is due

to the possible fine control and analysis of discrete set of spatial modes that can propagate

and interact in MMFs, in contrast to the two limiting cases:

• single-mode waveguides supporting only one spatial mode,

• bulk media with their infinite and continuous set of modes.

Over the past decade extremely exciting observations of novel optical effects have been

reported, such as geometric parametric instability [47], beam self-cleaning [27, 26], light

thermalization [185, 186], multimode solitons [29], and spatiotemporal laser mode-locking [23],

to name a few.

When considering the potential of multimode waveguides combined with recent technologi-

cal advances in laser sources and pulse shaping, one of the most promising developments relates

to the generation and application of propagation-invariant spatiotemporal (ST) wavepackets

[187, 188, 189, 190, 191]. Such an ultimate control of light will pave the way to the delivery

of pulsed sources with custom spatial profiles through multimode optical waveguides which

could have applications in sensing, imaging, spectroscopy, and investigating novel light-matter

interactions [192, 193]. Until now, invariant optical ST wavepackets have primarily been gener-

ated and characterized in free space and bulk media [194, 195, 196, 197], often limited to 1D

configurations (e.g., ST light sheets).

In the following, I provide a complete analysis, from theory through numerical simulations

to experiment, of the spontaneous generation of a discretized conical wave during nonlinear
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propagation of an intense ultrashort pulse in a multimode fiber. The theoretical analysis

draws on insights from recent publications [187, 198, 188]. In particular, I unfold that this

spatiotemporal phenomenon leading to the formation of a 2D linear wavepacket corresponds

to a broadband emission of intermodal dispersive waves from an unsteady localized wave

structure. This structure is formed during nonlinear propagation and is driven by a characteristic

phase-matching relation. Through the analysis of numerical simulations based on the linear

unidirectional pulse propagation equation [182], I determine and realize the experimental

conditions necessary for achieving the spontaneous generation of 2D propagation-invariant

wavepackets in a commercially-available step-index multimode fiber. This research led to the

first-ever documented observation of discretized conical emission in a MMF. Moreover, I present

experimental characterization of spontaneous conical emission in two distinct bulk samples,

which serves as a reference and provides a comparison to the discretized conical emission

arising in a multimode fiber. Finally, I outline my investigations concerning the generation of

3D quadric waves in a multimode fiber, which were predicted recently in [188].

5.1 Theoretical description of ST wavepackets

In this section I provide general theoretical description of propagation-invariant 3D linear

space-time wavepackets that follow spiralling trajectories in structured media such as optical

fibers. Subsequently, I refine this concept to 2D linear ST wavepackets, or conical waves, which

represent a special category of invariant wavepackets that do not rotate during propagation.

As I show, this framework is applicable to both structured and bulk media.

In this derivation, I assume weak guidance approximation, thus limiting the study to a

scalar approach. I consider structures with refractive index exhibiting cylindrical symmetry

around the propagation axis z. These restrictions are met by conventional optical fibers. To

represent spatial modes of the fiber, I use OAM mode basis, which is introduced in Section 2.2.3.

To briefly recall, an OAM fiber mode at frequency ω can be represented by a triplet (l, p, ω),

where l ∈ {0,±1,±2, ...} refers to the topological charge, and p is related to radial mode
number, indicating the number of concentric intensity rings in the mode intensity profile.

Following theoretical derivation from [188], I define a family of modes (l, p, ωlp) so that their

propagation constants β satisfy the following relation:

β(l, p, ωlp) = K0 +K1ωlp +Kll, (5.1)

where constants K0, K1, and Kl can be chosen arbitrarily. A linear superposition of the modes

belonging to the given family yields an electric field expressed as:

E(r, φ, t) =
∑

l,p

Ē(l, p, ωlp)Al,p(r, ωlp)e
i(lφ−ωlpt), (5.2)

where Al,p(r, ωlp) is the radial field distribution, Ē(l, p, ωlp) is the electric field amplitude for

the mode (l, p, ωlp), and phase factor contains angular and time dependencies.

Using the two above relations and considering evolution of an electric field along the prop-

agation axis z according to the linear unidirectional pulse propagation equation (UPPE) [182],
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Figure 5.1: Examples of helicon wavepackets in a fused silica rod with radius R = 100 µm. (a,c)

Quadric surfaces obtained in normal and anomalous dispersion regimes. Green dots indicate discretized

conic sections for each p coordinate. Black circles correspond to the selected modes used for the linear

construction of helicon wavepackets depicted in (b,d) through iso-surfaces of their spatiotemporal

intensity pattern at half-maximum. The successive subplots obtained every π/(2|Kl|) corroborate the
invariant nature of helicon wavepackets over propagation. The dashed orange line indicates the origin

(x = 0, y = 0). Projections on planes are provided for a clear observation of rotation [Adapted with

permission from ACS Photonics 2022, 9, 6, 2066–2072. Copyright 2022 American Chemical Society].

which in the modal basis takes the form: ∂zĒ(l, p, ω) = iβ(l, p, ω)Ē(l, p, ω), we obtain the

following solution:

E(r, φ, t, z) = E(r, φ+Klz, t−K1z, 0)eiK0z. (5.3)

Notably, the resulting electric field propagates at a fixed group velocity 1/K1 and its intensity

rotates around the propagation axis with a period given by 2π/Kl, see Fig. 5.1 adapted

from [190] for helicon wavepackets propagating in normal (b) and anomalous (d) dispersion

regimes in a fused silica rod. Figure 5.1(a) (Fig. 5.1(c)) shows the 3D quadric surface corre-

sponding to the general phase-matching pattern obtained from the relation 5.1 in the normal

(anomalous) dispersion regime for arbitrarily chosen constants K0, K1, and Kl. Black circles

indicate a particular selection of modes with various radial and angular indices that superposed

construct the corresponding helicon wavepackets depicted in panels (b) and (d). In fact, any

modes belonging to a given family and satisfying the phase-matching relation 5.1 can contribute

to constructing a ST wavepacket that is free from diffraction and dispersion. Such wavepacket

is an invariant field in a frame that propagates at the velocity 1/K1 and that rotates around

the z axis with a spatial period 2π/Kl. It consists of waves that oscillate at different frequencies

and that carry different topological charges.
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It is crucial to note that the outlined method concerns ST wavepackets composed of linear

superposition of strictly monochromatic modes. Such scenario cannot align with a realistic

physical situation because it would require an infinite amount of energy. In practice, a ST

wavepacket could be constructed by combining multiple continuous-wave lasers (or frequency-

comb lines) using wave shaping techniques and spatial mode multiplexing. In contrast, the

involved modes could be spontaneously excited during the nonlinear propagation of ultrashort

pulses (which I investigate in subsequent sections). This in turn implies a non-zero bandwidth

of the participating frequencies ωlp. Non-zero spectral bandwidth is associated with a finite

temporal envelope that must be incorporated into the expression 5.2 for the electric field

constructed from a given family of modes [187, 188]. As a result, the temporal envelope of

the modes forming the ST wavepacket does not propagate at a one fixed group velocity. This

leads to a temporal dispersion of the constructed wavepacket, meaning that it is not entirely

propagation-invariant. Nevertheless, the propagation length over which the effect of dispersion

of the different participating modes noticeably impacts the propagation strongly depends

on the duration of the temporal envelope. Therefore, over a finite propagation distance, the

wavepacket can be deemed invariant.

Regarding the spontaneous emergence during the course of nonlinear propagation, earlier

works made use of the effective three-wave mixing picture developed to describe conical waves

emitted in bulk and condensed media [199, 200]. This approach has recently been generalized

to structured media [187] and to spontaneous emission of more general 3D wavepackets in

fibers [188]. In such circumstances, the constants K0, K1, and Kl in the phase-matching

condition 5.1 correspond respectively to the propagation constant, the inverse group velocity,

and the rotation rate of the optical shock front that is formed in the normal dispersion

regime due to the self-focusing and self-steepening of the pulsed beam. This ST shock front

is followed by wavebreaking and seeds linear dispersive waves, which are then resonantly

amplified in higher-order modes leading to the formation of ST wavepacket. Such dynamics

will be investigated in later sections, see Fig. 5.8 and its description. The resulting wavepacket

propagates with the same group velocity and rotation rate as the initial optical shock. The

tolerance of the bandwidth of the generated frequencies that I mentioned in the preceding

paragraph introduces a certain tolerance into the phase-matching condition 5.1:

∣
∣
∣β(l, p, ωlp)−K0 −K1ωlp −Kll

∣
∣
∣ ¬ 2π
dz
, (5.4)

where dz is related to a distance over which the optical shock seeds the emerging broadband

wave structure. In subsequent sections, I compare dz obtained from the numerical study to the

bandwidth of the wave structure under investigation.

Finally, I recall that in the context of a general framework that classifies ST wavepackets

localized in all dimensions and different dispersion regimes, the modes belonging to a given

family lie on a specific quadric surface in the three-dimensional (l, p, ω) space [190], as seen

in Fig. 5.1(a,c). In general, those surfaces are associated to ST quadrical waves (helicon

wavepackets that propagate in spiraling trajectories). This model naturally embeds a special

2D case of commonly studied conical waves [200] obtained at the intersection of the quadric
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surface with the plane defined by topological charge l = 0. The specific shape of this two-

dimensional wavepacket in the (p, ω) plane depends on the chromatic dispersion of the medium

and the central wavelength of the input pulse. The cross-sections of the quadric surface along

the l = 0 plane can take the form of a hyperbola (manifesting as the so-called X-wave in the case

of normal dispersion regime [199, 201, 202], for reference see blue squares in Fig. 5.1(a)), or an

ellipse (O-wave for anomalous dispersion regime [203, 204, 205]). To complete this description,

when the central wavelength of the input pulse is in the near-zero dispersion regime, a more

complex ST dynamics results in a so-called fish-wave which exhibits characteristics common

to both X- and O-waves [199, 206].

Conical waves and spontaneous conical emission have typically been studied in bulk

media [194, 200, 32, 207], such as solids [205, 208], liquids [199, 204, 209, 210], gases [211, 212],

or free space [210, 213, 214]. In general, the conical emission is related to the beam self-focusing

overcoming diffraction when peak power exceeds a critical threshold Pcrit = 3.72λ
2
0/(8πn0n2) [32].

Theoretical and numerical results from recent studies have shown evidence that MMFs are

another, structured type of medium that supports spontaneous emission of discretized conical

waves during propagation of intense ultrashort pulses with peak powers around the critical

self-focusing threshold [187, 198, 182]. In the following, I investigate conical wavepacket

generated in the normal dispersion regime, and more specifically spontaneous emergence of

discretized X-wave during the propagation of ultrashort pulses in a step-index MMF. Since

the considered fiber is circularly symmetric and the family of modes that satisfy this new

phase-matching relation contains only modes with l = 0, it is reasonable to consider the linearly

polarized modes of LP0,p class as basis for analyzing the conical emission. This yields the

spatiotemporal spectrum described by the following phase-matching relation:

∣
∣
∣β(p, ωp)−K0 −K1ωp

∣
∣
∣ ¬ 2π
dz
, (5.5)

which is a modified version of condition 5.4, where the term Kll disappears because the conical

wavepacket consists of modes that carry no topological charge, and where β(p, ωp) = β (0, p, ω0,p)

refers to the full frequency-dependent propagation constant of guided mode LP0,p. In the

experimental study I optimized the conditions to achieve beam coupling into the fundamental

fiber mode LP0,1. Such configuration implies the specific values of the K0 and K1 parameters

and properties of the generated wavepacket. Namely, the propagation constant of the optical

shock front is determined by the propagation constant of the fundamental mode at the carrier

central frequency ω0: K0 = β(1, ω0), whereas the inverse group velocity of the generated

wavepacket K1 = 1/vgX can be conveniently expressed as a sum β1+ δK1, where β1 = 1/vg0 is

the inverse group velocity of the fundamental mode at ω0. vg0 is commonly used as a velocity of

retarded time frame in which numerical simulations are performed. The parameter δK1 indicates

the difference of group velocities δvg = vg0 − vgX . Explicitly: δvg = δK1/ [β1 (β1 + δK1)].
Last but not least, I should emphasize that the above relation is applicable not only to

multimode waveguides but also to bulk media. In the latter case, the propagation constant is
√

k2(ω)− k2⊥, where wave vector k(ω) = n(ω)ω/c, n(ω) is a material refractive index and k⊥ is
a transverse component of the wave vector. However, waveguides and in particular multimode

87



5.2. Study conditions

fibers support a discrete set of modes, whereas free space, gases, and condensed media support

a dense and infinite number of spatial modes. In the first case, for a given ST wavepacket, only

a discrete number of frequencies ωlp comply with the relation 5.4. This results in generation of

ST wavepackets which are discrete in terms of possible modes that participate in a wavepacket

formation, hence the term discretized conical emission. In the latter cases, any value of ω can

correspond to a k⊥, which is associated with a spatial mode of such media. In literature, a

cone angle θ is often used in place of k⊥ as it corresponds to the space in which experiments

are performed [200]. The two parameters are linked by a simple relation: k⊥ = k sin θ, which I

use in the section dedicated to the study of conical emission in bulk media.

5.2 Study conditions

To study spontaneous generation of quadric and conical waves, I implemented the ex-

perimental setup depicted schematically in Fig. 5.2. I used a high-power femtosecond laser

(Monaco 1035, Coherent) delivering 275 fs pulses at 1035 nm with a chosen repetition rate

of 10 kHz. The pulse energy can be as high as 60 µJ. The laser output power was adjusted

to µJ-level energy by means of variable attenuator composed of neutral density filters and

a half-wave plate combined with a polarizer, in order to prevent damage issues [215]. The

transmission axis of the polarizer P1 was set vertically to ensure the conservation of the linear

polarization after reflection from the mirror.

For the research concerning helicon wavepackets, I employed additional polarizing optical

elements before the coupling lens L1 to shape the input beam. Namely, a polarizer P2 was used

to ensure the linear polarization state of the beam and a quarter-wave plate QWP1 was used to

convert polarization from linear to circular. The circularly polarized beam then passed through

a q = 1/2 zero-order quarter-wave q plate with an operating wavelength of 1.03 µm (custom

optical element manufactured by Thorlabs). This produced beam that can be described as

superposition of a circularly polarized Gaussian intensity profile (polarized with the same

handedness as the incident beam) and a circularly polarized OAM field with topological charge

l = 1 (polarized with the opposite handedness to the incident beam), see Section 2.2.4 for a

description of q plate operation. During the final stage of input beam shaping, the desired

composition of the beam is selected with a circular analyzer, consisting of the quarter-wave

plate QWP2 and the polarizer P3. By adjusting the orientation of the QWP2 axis from 0
◦ to

90◦, the beam could be modified to contain only the l = 1 field, a combination of the l = 1

and l = 0 fields, or only the l = 0 field (like the initial laser beam). This is depicted in the top

row of Fig. 5.3 (the position of the beam profiler used to obtain these captures is indicated in

the Beam shaping panel in Fig. 5.2). I controlled the beam composition by rotating the axis of

QWP2 and keeping the P3 polarizer axis rotation constant, in order to maintain the direction

of linear polarization of the beam that was coupled into the fiber.

For the research concerning conical emission in MMF and bulk glass, I had two alternatives:

either to rotate the QWP2 to the position marked with 90
◦ in Fig. 5.3 so that only the original

beam with Gaussian intensity profile and zero topological charge passed through the circular

polarizer, or to altogether remove the optical elements indicated in the Beam shaping panel in
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Figure 5.2: Experimental setup for investigating helicon wavepackets in MMF and for recording near-field

images and angularly-resolved far-field spectra of spontaneous conical emission from a multimode fiber

and bulk glass. ND: neutral density filter; HWP: half-wave plate; P: polarizer; M: mirror; L: lens; MMF:

multimode fiber; QWP: quarter-wave plate; VP: q plate; SF: spectral filter; BS: plate beamsplitter;

OSA: optical spectrum analyzer. The insets show photographs of the output beam in the far field for a

bulk BK7 glass plate and MMF.

Fig. 5.2 from the setup. I chose the latter approach to reduce the setup complexity and to

remove the various optical elements which might otherwise slightly affect the quality of the

laser beam. This left only the neutral density filters, half-wave plate, and polarizer P1, which

allowed control over the power of the linearly polarized laser beam.

After the beam shaping stage, I carefully coupled the high-quality beam into the fiber

under study using a f = 12.5 cm lens L1 (Thorlabs, LB1904-C). I selected the lens through an

optimization of the beam diameter at the focal point to fit the calculated intensities of the

fundamental and the first OAM modes of the fiber (around 45µm at FWHM for the l = 0

mode, and a ring diameter of approximately 54µm for the l = 1 OAM mode) to favor their

preferential excitation. I used a commercially-available step-index multimode fiber (Thorlabs,

FG105LCA) with a pure silica core (core diameter 2R = 105 µm), fluorine-doped silica cladding,
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Figure 5.3: Input beam (top row) and near-field images of the fiber end face in linear regime (bottom

row) for different rotations of the QWP2 axis. The locations for the beam profiler used to capture these

images are shown in Fig. 5.2: in Beam shaping panel for input beam characterization, and in Detection

system A panel for fiber output characterization.

and numerical aperture NA = 0.22. The fiber length used in the conical emission study was

5.8 cm, and the fiber length used in the helicon wavepacket study was 5.5 cm. It was crucial to

cleave the fiber with extreme care to avoid damaging the fiber core, as the cladding diameter of

125 µm provides only a thin layer of around 10µm surrounding the core. The fiber segment was

placed on a multi-axis platform that provides 5 degrees of freedom to ensure optimal coupling

conditions. All optimization procedures outlined here and in the subsequent paragraph required

detailed attention, as the process of coupling light into the fundamental mode of this highly

multimode fiber presented significant challenges (the fiber supports propagation of 23 LP0,p

modes at this wavelength; the total number of modes at the pump wavelength estimated using

Eq. 2.3 is almost 2500).

I first optimized the coupling at low input powers, by controlling both output power

(thermal power sensor S302C, Thorlabs) and spatial intensity distribution by near-field imaging

the fiber end-face (beam profiler with a CMOS sensor, CinCam CMOS-1202 IR, Cinogy), see

Detection system A panel in Fig. 5.2. Simultaneously, I sampled the fiber output beam using a

beamsplitter plate BS to monitor the fiber output spectrum by means of a collecting multimode

fiber (Thorlabs, M74L) with a very large 400µm core and numerical aperture NA = 0.39, and

an optical spectrum analyzer (Yokogawa AQ6374). The lenses L2, L3, and L4 were selected to

achieve the best possible magnification for two purposes: (i) to clearly resolve the fiber end-face

on the active area of the beam profiler and (ii) to gather the entire beam into the collecting

fiber to analyze the total output spectrum. When the excitation was optimal in the helicon

wavepacket study, I could verify that rotating QWP2 resulted in corresponding changes of the

spatial intensity distribution of the fiber output, see bottom row in Fig. 5.3. After ensuring

the optimal excitation of the fundamental mode (or the desired mode combination), I was

gradually increasing the input power while simultaneously checking the near-field of the fiber

end-face and observing the total output spectrum and making necessary adjustments of the

fiber position.

A distinctive spectral feature indicating the formation of a conical wave could be recognized

as a broad and strong spectral broadening towards visible wavelengths (i.e., blue-shifted spectral

shoulder) (see for instance Fig. 5.4(g)). Additional bandpass spectral filters SF could then be

added in Detection system A to characterize the modes associated to the generated frequencies.
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The discretized conical wave was also characterized in terms of angularly-resolved far field

spectra (see Detection system B panel in Fig. 5.2). In this configuration, a lens L5 (Thorlabs,

LB1676-C, f ′ = 10 cm) is placed at the focal distance away from the MMF output, and collects

the diverging output beam. The collected light is analyzed in the back focal plane of the

lens, where I transversely scanned the collimated beam using the same collecting multimode

fiber (Thorlabs, M74L). A large 400µm core of the collecting fiber prevents any additional

nonlinear effects. However, it imposes a limited spatial resolution of the transverse scanning,

which I performed in successive displacements with a 0.5mm step. As the optical spectrum is

measured in the Fourier plane (i.e., in the far field), the angular light distribution θ from the

MMF output is simply mapped into a transverse displacement d, as follows: θ = arctan(d/f ′).

The used Fourier transform system allows to capture the full angular emission as shown in the

following, with resolution below 0.3◦. Note that I also checked that the collecting fiber’s NA

does not influence measurement results.

In addition, in a similar way I carried out the experimental characterization of conical

waves emitted in bulk glass samples to unveil similar and distinct features between both

systems. I used a sapphire plate (5mm thick) and a BK7 glass plate (1.4 cm thick). In both

the fiber and bulk plates used, the propagation of 1035 nm pulses takes place in the normal

dispersion regime, leading to the generation of an X-wave. Photographs of the output beams

in the far field presented in Fig. 5.2 clearly illustrates the typical frequency-angular intensity

distribution of the field for the visible spectral tail for BK7 glass and MMF. In both cases,

higher frequencies are observed with increasing angles (i.e., larger k⊥). However, in the case

of the MMF, discrete rings can be seen instead of a continuous concentric rainbow, as is the

case for bulk BK7 glass. The rings are formed by superposition of discretized fiber modes that

contain higher frequencies as the mode order increases.

In the next section, I provide detailed characterization of the conical emission observed in

the two bulk samples. Following this, I perform a comprehensive analysis of the discretized

conical wave that emerges during nonlinear propagation in the multimode fiber. Finally,

I present the results obtained when the beam injected into the MMF carries a non-zero

topological charge.

5.3 Conical emission in bulk media

In this section, I perform a detailed experimental analysis of conical emission patterns

recorded for the two samples of bulk media. The studies were performed for a 1.39 µJ pulse

energy (peak power of 5.0MW for the used 275 fs pulses) of the beam focused into the sapphire

plate (Fig. 5.4) and a 1.86 µJ pulse energy (peak power of 6.8MW) of the beam focused into

the BK7 glass plate (Fig. 5.5). The powers used exceed critical self-focusing threshold in those

materials at the pump wavelength, which I estimate as around 2.9MW for sapphire (assuming

n0 = 1.749 [216] and n2 ≈ 3.1 × 10−20 m2/W [217]) and 3.5MW for BK7 glass (assuming
n0 = 1.507 [216] and n2 ≈ 3× 10−20 m2/W [116, 117]).
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Sapphire plate

First, a detailed analysis of conical emission pattern, shown in Fig. 5.4(a) for the sapphire

plate, is reported through measured angle-resolved far-field spectrum (θ − λ) in panel (f). It
exhibits the typical X-like shape studied in the normal dispersion regime of bulks [200]. Beyond

the continuous spectral broadening on-axis, the energy spreads following an increasing cone

angle of emission with increasing detuning from the carrier wavelength. This is additionally

confirmed by the near-field images that I recorded using distinct bandpass spectral filters with

central wavelengths in the visible arm of the X-wave, reported in Fig. 5.4(b-e).

Regarding the interpretation of the full (θ − λ) pattern observed, one can determine the
central region of the angularly resolved spectrum where the energy of the dispersive waves

accumulates according to the phase-matching constraints (similarly to Eq. 5.5). For bulk, the

Figure 5.4: Conical emission recorded at the output of a 5-mm-thick sapphire plate. (a) Output pattern

in the far field projected on a screen and photographed using a phone camera. (b-e) False-color near-field

images recorded with the use of bandpass spectral filters with different central wavelengths. (f) Measured

angle-resolved far-field spectrum. Solid white line provides the corresponding phase-matching using

relation of θ(ω). (g) Total spectrum measured with a focusing lens L4 before (blue line) and after

(orange line) (time separation: 45 minutes) performing the angle-resolved spectral measurements. Yellow

line: integration of angle-resolved far-field spectrum from panel (f).
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corresponding condition is simply: θ(ω) = arcsin(c/ω
√

k2(ω)− (K0 +K1ω)2).1 I calculated
the chromatic dispersion of the material using dispersion formula provided in [216] and I

performed a simple fitting procedure to establish the values of K0 = k(ω0) ≈ 10.7 rad µm−1

and K1 ≈ 5.965 ns m−1, which provides insight into the phase velocity ω/K0 and the group
velocity 1/K1 of the conical wave. I retrieved the corresponding white line shown in Fig. 5.4(f)

defining the theoretical phase-matching of the X-wave. A spectral gap observed on-axis between

the two hyperbolic X-tails, with one of them passing through or close to ω0 is a commonly

observed situation, which arises when the group velocity of the conical wave differs from the

group velocity of the input pump pulse. More specifically, the group velocity difference is

δvg ≈ 1.5m µs−1 for the fitted δK1 ≈ 50 ps m−1, which indicates that the X-wave is not seeded
directly by the input pump pulse.

Finally, I verified that the recorded angle-resolved spectrum integrated over an area

corresponds to the total spectrum acquired by focusing the entire beam exiting the MMF

into the collecting fiber. This allowed me to ensure that the performed procedure of collecting

angle-resolved measurements retains all important spectral information. The comparison,

depicted in Fig. 5.4(g), shows excellent agreement.

BK7 plate

The second bulk sample used for my conical emission study is a plate made of BK7

glass which is almost three times thicker than the sapphire plate. Similarly to the previous

material, propagation in a normal dispersion regime results in conical emission in the form of

X-wave revealed through the emergence of hyperbolic tails, clearly visible in the angle-resolved

far-field spectrum in Fig. 5.5(a). Comparing sapphire and BK7 glasses, I note distinct on-axis

spectral broadening, and different dependence of emission angle on detuning from the carrier

wavelength, which indicates that such characteristics are influenced by chromatic dispersion of

the material and group velocity of the seeding structure.

Besides that, BK7 glass features a more complex (θ−λ) pattern. In particular, I identified
several distinct possibilities for phase-matching fits in the (θ−λ) pattern. The two corresponding
to the most intense X-tails are marked with white solid and dashed lines. Each of these lines

corresponds to a different value of K1, as shown in Table 5.1 along with other characteristic

parameters describing the generated conical wave. Here, it is clear how the value ofK1 parameter

influences the shape of the phase-matching fit in the (θ − λ) plane. Namely, the dashed white
line (indicating the phase-matching with smaller δK1 and K1 being closer to 1/vg0) is less

steep than the solid white line and has smaller spectral gap at θ = 0. I verified that if K1 were

equal to 1/vg0 , there would be no spectral gap on-axis and both X-tails would start at ω0.

The complex shape of the registered (θ − λ) pattern indicates that multiple conical waves
propagating with different group velocities are emitted during various stages of the nonlinear

propagation of laser pulse in the plate used here. With a thinner plate, less X-tails might be

visible (as is the case for the sapphire plate), because some of the less-intense tails might be

1The strict phase-matching condition writes
√
k2(ω)− k2

⊥
= K0 +K1ω, and the derivation provided in the

text makes use of Snell’s law to account for the fact that the angle θ is measured in air.
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Table 5.1: Fitted parameters corresponding to the phase-matchings in BK7 plate indicated in Fig. 5.5(a)

by different lines. For comparison, the group velocity of the carrier wavelength in BK7 glass is vg0 ≈
197.2m µs−1 and inverse group velocity is 1/vg0 ≈ 5.070 ps m−1.

line K0 K1 δK1 vgX δvg

(rad µm−1) (ns m−1) (ps m−1) (m µs−1) (m µs−1)

solid 9.2 5.125 55 195.1 2.1

dashed 9.2 5.090 20 196.5 0.8

Figure 5.5: Conical emission recorded at the output of a 14-mm-thick plate made of BK7 glass.

(a) Measured angle-resolved far-field spectrum for a 1.86 µJ pulse energy. Solid lines provide the

corresponding phase-matching. (b) Full spectrum collected with a focusing lens for different pulse

energies. Inset: Output pattern for 1.85 µJ projected on a screen photographed using a phone camera.

related to conical waves emitted at longer distances of the propagation in the BK7 glass plate.

I verified that the integration of angle-resolved spectrum again agrees well with the total

spectrum of conical emission. In Fig. 5.5(b) I show the evolution of the total spectrum with

increasing pulse energies. Clearly, the spectral broadening is very sensitive to the coupled

energy. For 1.80 µJ, the initial laser spectrum broadens only slightly, see the blue line. For the

pulse energy exceeding 1.83 µJ I observed spectral broadening and a spectral shoulder forming

on the short-wavelength side of the pump, corresponding to the short-wavelength X-tail marked

with a white solid line in Fig. 5.5(a). For the pulse energy of 1.85 µJ the spectral shoulder

extends to wavelengths as short as 0.5 µm, see the orange line. An increase of spectral intensity

on the longer-wavelength side of the pump corresponds to the long-wavelength X-tail. I should

note here that a minor artificial peak at 0.518 µm arises due to the method of signal acquisition

by the optical spectrum analyzer, and is simply twice the frequency of the high-intensity pump

at 1.035 µm.

Higher pulse energies result in further spectral broadening and increase of spectral intensity
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(see yellow line for 1.90 µJ), and particularly in three spectral regions indicated with arrows:

• generated spectrum covers the spectral range around 0.45 µm, which corresponds to the

short-wavelength X-tail marked with a white solid line in Fig. 5.5(a);

• spectral intensity increases around 0.65 µm, which corresponds to the short-wavelength

X-tail marked with a white dashed line in Fig. 5.5(a);

• spectral intensity increases on the long-wavelength side of the pump, which corresponds

to both long-wavelength X-tails. Fringes observed in this spectral region result from

interference of the two spectrally overlapping X-tails.

This analysis of spectrum evolution for increasing pulse energy concludes my study of conical

emission in bulk glasses. In the next sections, I discuss findings obtained in a multimode fiber.

5.4 Discretized conical emission in a multimode fiber

In this part, I investigate conical emission in the MMF, and compare my measurements with

theoretical predictions and numerical results. The experimental study is performed with 1.20 µJ

pulse energy coupled into the fiber (with 1.66 µJ measured before the coupling lens, indicating

that the beam coupling efficiency exceeds 72%). The coupled pulse energy corresponds to a peak

power of 4.4MW, which is around the critical self-focusing threshold of silica glass at the carrier

wavelength Pcrit ≈ 4.2MW (assuming n0 = 1.450 [216] and n2 = 2.6×10−20m2/W [116, 117]).
In the following, a detailed analysis of the conical emission pattern (shown in the inset of

Fig. 5.2 and repeated in Fig. 5.7(h)) is reported through measured angularly resolved spectra

and spectrally-filtered near-field imaging of the fiber output.

In Fig. 5.6(a), I unveil the angularly resolved spectrum recorded at the output of a 5.8 cm-

long fiber segment. I retrieve the typical X-wave pattern with strong spectral broadening

on-axis and hyperbolic tails clearly visible on both wavelength edges. Again, the spectral gap

between the two X-tails indicates that the conical wave is not directly seeded by the input

pump pulse. More details will be given in the following.

Corresponding numerical simulations are based on the multimode unidirectional pulse

propagation equation (MM-UPPE) [182], which describes the evolution of the complex electric

field Ē:

∂zĒ(p, ω) =i

(

β(p, ω)− ω − ω0
vg0

)

Ē

+
i neff0n2ω

2

c2β(p, ω)

{

(1− fR) |E|2E + fR
[∫

hR(τ)|E(t− τ)|2dτ
]

E

}

,

and which is expressed in a retarded frame moving at velocity vg0 . The function hR is the

scalar Raman response of the fiber medium with Raman fraction fR = 0.18 for fused silica

glass. The conducted simulations of nonlinear pulse propagation corroborate the formation of

X-wave in the MMF, as shown in Fig. 5.6(b). An excellent agreement with the experiment is

obtained in terms of both angular emission and spectral bandwidth over a very high dynamic

range. When the (θ − λ) pattern is compared to the prior studies in bulk samples, differences
can be noted in both the maximum emission angle and the extend of spectral broadening.
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Figure 5.6: Angle-resolved far-field spectrum of conical emission obtained at the output of a 5.8 cm-long

step-index MMF. (a) Experimentally measured angle-resolved far-field spectrum. (b) Corresponding

numerical simulation of angle-resolved far-field spectrum based on MM-UPPE model. Calculated angles

take into account the refraction taking place at the fiber output. Note that the numerical spatial grid

cannot provide details for very small values of θ.

This again demonstrates that the dispersion properties of the medium along with the group

velocity of the seeding wave structure significantly affect the exhibited features of the X-wave.

Moreover, it should be emphasized that in the case of the conical emission occurring in a

waveguide the mode-resolved spectra could be more suitable for the investigated process than

the (θ − λ) representation used for bulk samples. Accordingly, in the following, I investigate
mode-resolved spectrum of the emerging X-wave. Figure 5.7 shows the numerical results of

the distribution of the full optical spectrum (power in log scale) over the different fiber modes

after propagation in the short 5.8-cm-long segment. An evident X-shaped pattern of the field

distribution is very similar to those usually studied in the Fourier domain, except that the

features of hyperbolic tails change on both wavelength edges, see Fig. 5.7(h). The visible tail

clearly exhibits higher-order modes than the infrared one, while in θ plane it is associated with

smaller cone angles. I experimentally characterized the modal composition of both visible and

infrared branches by means of imaging the near-field of the fiber output face in combination

with bandpass spectral filtering. Top panels in Fig. 5.7(a-g) confirm the discrete nature of the

conical emission. Increasingly-detuned frequencies from the carrier wavelength are contained

in higher-order modes of the fiber. In particular, for the visible branch, the phase-matching is
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Figure 5.7: Mode-resolved spectrum of conical emission obtained at the output of a 5.8 cm-long step-

index MMF. (a-g) False-color near-field images of the LP0,p higher-order modes involved in both X-like

tails at specific wavelengths. Top panels: experimental captures with a CCD camera using bandpass

spectral filters with indicated central wavelengths. Bottom panels: corresponding numerical fiber modes.

(h) False-color map of the numerical mode-resolved spectrum. Colored crosses: spectral positions of the

higher-order modes captured in subplots (a-g) according to the distinct bandpass spectral filters. White

squares and dashed lines: theoretical phase-matching region of the discretized conical wave. Inset: Fiber

output pattern projected on a screen photographed using a camera.

narrow enough in (p, λ) plane so that each filtered spectral band (10-nm bandwidth for the

filters with central wavelengths 515 nm and 620 nm; 40-nm bandwidth for the remaining filters)

is nearly associated with only one or a few fiber modes. For instance, at 515 nm, emission in

LP0,18 is revealed with a 10-nm bandwidth filter, see Fig. 5.7(a). And at 550 nm, emission in

LP0,13 is revealed with a 40-nm bandwidth filter, see Fig. 5.7(b). The main modal contents

identified using distinct spectral filters are indicated in Fig. 5.7(h) with colored crosses at

corresponding wavelengths. By contrast, the infrared part of X-wave implies almost the same

few higher-order modes (i.e., the tail is flatter beyond 1200 nm), so that the modal analysis is

less relevant. A longpass spectral filter with a cut-on wavelength of 1350 nm reveals a spatial

profile resembling the LP0,4 mode. The main corresponding LP0,p mode profiles, calculated

with a scalar mode solver, are presented in the bottom panels of Fig. 5.7(a-g) to corroborate

the identified main modal contents of the characterized X-tails.
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It is worth noting that in addition to the two hyperbolic X-tails, another feature appears

in the presented angle- and mode-resolved spectra. Namely, the carrier wavelength is present

even for large angles and high mode numbers. Numerical investigations published in [187, 198]

assume coupling of all pump energy into the fundamental mode. As a result, the mode-resolved

spectrum includes only the two hyperbolic X-like tails, with the power contained within the

region corresponding to the area surrounded by the dashed lines in Fig. 5.7(h). Such conditions

can be achieved in numerical studies only. In my experiment, I aimed to excite the fundamental

mode of the fiber; however, it is important to acknowledge that achieving excitation of the

LP0,1 mode only is inherently challenging. Even with a perfect alignment of the input beam

with the fiber input face, part of the injected optical energy inevitably couples into higher-order

modes because the Gaussian intensity profile of the beam does not align exactly with the LP0,1

mode intensity profile. As a result, the pump residue is detected across most angles in the

experimental angle-resolved spectrum shown in Fig. 5.6(a). Note the logarithmic scale of the

presented power spectra, indicating that the pump energy contained at the carrier wavelength

in modes of higher-orders is orders of magnitude lower compared to the pump energy contained

in the fundamental mode. In contrast to the previous numerical works, the Gaussian intensity

profile of the input beam is accounted for in the current numerical simulations, resulting in an

excellent agreement between the numerical and experimental results.

Next, I investigate the main nonlinear dynamics at the origin of the conical emission.

This analysis of the numerical results provides insight into the features of the seeding wave

structure and allows to determine conditions for phase-matching indicated with white squares

and dashed lines in Fig. 5.7(h). The detailed nonlinear propagation in the temporal, spectral,

and spatial domains is shown in Fig. 5.8, whereas the corresponding evolution of mode-resolved

spectrum is depicted in Fig. 5.9.

The retrieved nonlinear dynamics is consistent with observations regarding propagation

of femtosecond pulses in a normal dispersion regime [187]. In the beginning, the injected beam

propagates mainly in the fundamental mode at the pump wavelength, see Fig. 5.9(a). After one

centimeter of propagation, a local increase of the refractive index across the pulse profile due

to the nonlinear dependence on intensity and a spatiotemporal self-focusing (see Fig. 5.8(a,c))

leads to a decrease of pulse velocity and a self-steepening effect. As a result, an optical shock is

formed at the trailing edge of the pulse (see Fig. 5.8(d) detailing the evolution of the temporal

power profile and revealing the formation of the shock front, which is indicated with black lines

at two propagation distances 1.2 cm and 1.4 cm). The shock front followed by wave-breaking

is associated with a rapid, strong spectral broadening, clearly visible in Fig. 5.8(b) and (e)

around zb = 1.4 cm. This strong spectral broadening seeds linear waves in a large number of

modes (see Fig. 5.9(b)), but only the phase-matched frequencies over specific higher-order

modes are resonantly amplified according to the velocity of the shock front, as described by

the condition 5.5. To elaborate, the inverse group velocity of the optical shock K1 can be

expressed by the sum of inverse group velocity of the pump and δK1 correction, which can be

directly read from the presented graphs. More specifically, δK1 is simply found by comparing

the temporal positions of the shock front at different propagation distances (as indicated with

black lines for two values of z in Fig. 5.8(d)) or by analyzing the slope of the trailing pulse
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edge in Fig. 5.8(a). The retrieved value δKI1 ≈ 11.0 ps m−1 and the distance dIz ≈ 1.4mm
over which the seeding process occurs (between z = 1.28 cm and z = 1.42 cm) well define the

phase-matching and its finite bandwidth indicated with white squares and dashed lines in

Fig. 5.9(b,c) which presents the mode-resolved spectrum during and after the formation of the

optical shock. Here, the phase-matching parameter K0 representing the propagation constant

of the optical shock is simply the propagation constant of the fundamental mode at the pump

wavelength, because the initial shock is centered at the carrier wavelength.

After undergoing the dynamics described above, the optical shock accelerates around

ze = 1.6 cm while still seeding linear waves over the higher-order fiber modes over the distance

of dIIz ≈ 8mm. Different group velocity and updated value of correction δKII1 ≈ 5.0 ps m−1
lead to a new phase-matching condition indicated with white squares and dashed lines in

Fig. 5.9(e-f). The second fit matches very well with the new X-tail emerging in the visible

spectral region at slightly offset wavelengths compared to the previous X-tail.

Note that in the subsequent stages of the pulse propagation several less-intense optical

shocks can be found around z = 2.7 cm, z = 4.0 cm, and z = 5.3 cm, see Fig. 5.8(a). The

quasi-periodicity of their occurrence can be easily linked to the beating of the first two modes

of the fiber (LP0,1 and LP0,2) which are excited with the highest efficiency by the input beam

with a Gaussian intensity profile (see Fig. 5.9(a) for the energy distribution among fiber

modes at the initial stage of propagation). The period of recurring spatiotemporal self-focusing

reflects the beat length LB = 1.28 cm derived from the calculated properties of the two fiber

modes. The successive optical shocks seed less-intense discretized conical waves, thus inducing

some additional broadening of the mode-resolved spectrum. More specifically, the shock front

formed between z = 2.58 cm and z = 2.90 cm leads to an increase of power contained in the

higher-order modes at both wavelength edges, see mode-resolved spectrum before, during, and

after shock formation in Fig. 5.9(g-i). The phase-matching fit and its bandwidth given by the

estimated δKIII1 ≈ 12.3 ps m−1 and dIIIz ≈ 3.2mm are indicated by white squares and dashed
lines. Similarly, the shock front formed between z = 3.92 cm and z = 4.10 cm seeds various

wavelengths in higher-order modes in Fig. 5.9(k), but only the phase-matched wavelengths

remain in panel (l) according to the phase-matching determined by δKIV1 ≈ 14.3 ps m−1 and
dIVz ≈ 1.8mm, as indicated by white squares and dashed lines. The last shock formed at
z = 5.3 cm does not have enough strength to significantly alter the mode-resolved spectrum,

compare Fig. 5.9(k) and Fig. 5.7(h) before and after its formation.

Figure 5.7(h) shows mode-resolved spectrum after 5.8 cm of propagation in the fiber.

This final map results from complex interactions between several discretized conical waves

emitted subsequently during nonlinear pulse propagation, as discussed above. The theoretical

phase-matching of the first, most intense discretized X-wave is transposed from Fig. 5.9(c) to

Fig. 5.7(h), corroborating my experimental characterization of the generated wave structure.

It is worth to remind, that the 2D ST wavepackets emitted in the nonlinear process are not

truly propagation-invariant. The finite distance over which the shock front seeds the linear

resonant waves leads to a spectral tolerance (indicated with dashed lines) and dispersion of

the spontaneously emerging discretized conical wave.
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Figure 5.8: Nonlinear propagation of 275-fs pulses (1.2 µJ energy at 1035 nm) in step-index MMF. (a-c)

False-color map of temporal, spectral, and spatial power profiles as a function of propagation distance z.

(d-g) Snapshots of temporal (d,f) and spectral (e,g) power profiles showing formation and evolution of

the first, intense optical shock (d,e) and a following, less intense shock (f,g) and corresponding spectral

broadening.
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Figure 5.9: Evolution of the mode-resolved spectrum during propagation. Panels show false-color map of

the numerical mode-resolved spectrum (in log. scale, dB units) calculated before (first column), during

(second column), and after (third column) formation of optical shocks I-IV indicated in Fig. 5.8(a) at

different propagation distances. Squares and dashed lines show theoretical phase-matching regions of

the discretized conical waves corresponding to the subsequent optical shocks.
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Before concluding this section, it is worth to revisit the study of conical emission in the

BK7 plate, taking into account the evolution of the spectral power profile provided by numerical

simulations performed for the MMF. More specifically, spectral interference fringes appear

around z = 2.8 cm in the spectral power profile presented for the MMF in Fig. 5.8(g) (see

yellow line). The spectral fringes become visible after the formation of the second optical shock.

The first and second shock seed the same wavelengths (compare Fig. 5.9(d) and (h) to see

that the X-tails of the two discretized conical waves overlap spectrally at both wavelength

edges); therefore, fringes are observed over the entire spectrum in the fiber. The two shocks

are generated at different times, and the delay between them results in spectral fringes. In the

BK7 plate, spectral interference fringes appear as well, which indicates that more than one

optical shock is generated during propagation of the pump pulse in the 1.4-cm-thick plate. The

fringes are visible in the long-wavelength part of the output spectrum in Fig. 5.5(b), between

1.05 µm and 1.2 µm, which is seeded by both conical waves. The phase-matching regions of

the two conical waves are marked in Fig. 5.5(a) - the long-wavelength X-tails overlap, making

it possible to observe spectral fringes; meanwhile the short-wavelength X-tails are spectrally

separated, therefore the fringes cannot be observed in that spectral region.

Finally, it is necessary to discuss the stability of the nonlinear process under investigation.

As I found, the conducted experiments are carried out just below the fiber damage threshold.

A well-known mechanism that induces material breakdown in the ultrashort pulse regime is

photoionization, which leads to modification and ablation of material [218, 62]. Ionization

typically takes place when the laser intensity reaches around 1012W/cm2 [218]. The experiments

described above were performed with a coupled pulse energy of 1.2 µJ, which, for a Gaussian

beam profile, corresponds to an intensity of 1.5× 1011W/cm2. Under these conditions, the
nonlinear process remained stable, with the fiber output pattern retaining its features over

the course of one hour and 20 minutes when I performed its characterization, such as in the

top panels of Fig. 5.10, which show stable, although not perfectly optimized visible emission.

Doubling the pulse energy to 2.4 µJ resulted in the process losing its stability. When the beam

intensity increased, the fiber output pattern began to evolve rapidly, as shown in the middle

and bottom panels of Fig. 5.10, which feature snapshots from one second of a video recorded

for the coupled pulse energy of 3µJ. After over ten seconds of such dynamic changes, visible

emission ceased and could no longer be detected, indicating irreversible material damage. By

slightly adjusting the focused beam’s position at the fiber input end, I found that the visible

pattern reemerged, as the beam started to propagate in an undamaged fragment of the fiber

core. However, the pattern disappeared again after a similar duration, when the material in the

new beam path was modified. These observations clearly indicate that for a beam intensity of

approximately 3–3.5× 1011W/cm2, localized damage is induced to the material. The issue of
fiber damage is particularly important in the following, where I investigate helicon wavepackets

in MMF.
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Figure 5.10: Stability of the fiber output pattern in two power regimes. Top panels: Stable fiber output

pattern (snapshot every second) for 1.3 µJ pulse energy. Middle and bottom panels: Evolution of the

fiber output pattern recorded over one second for a coupled pulse energy around 3µJ. The fiber output

pattern is projected on a screen and recorded using a phone camera.

5.5 Helicon wavepackets in multimode fiber

In this part, I report on my work towards generation of helicon wavepackets in a multimode

fiber. This is accomplished using the experimental setup presented in Fig. 5.2, by shaping the

amplitude and phase of the input beam using the q plate and the rotating circular analyzer,

as shown in Fig. 5.3.

First, I analyze the output spectrum and near-field profiles of the fiber output as a function

of the injected pulse energy. This is done for two different compositions of the input optical

field: with a mix of l = 1 and l = 0 fields, by setting the QWP2 axis in the circular analyzer to

30◦, and with a pure l = 1 field, by setting the QWP2 axis to 0
◦. The results are shown in

Fig. 5.11(a) and (b), respectively.

For the mix of l = 1 and l = 0 fields, the spectrum does not show signs of significant

broadening even for the launched energy of 1.9 µJ, at which it ranges from 0.9 µm to 1.15 µm.

This requires more than 1.5 the amount of energy that is used in the discretized conical

emission study to reach the wavelength of 0.5 µm, see Fig. 5.7. After increasing the launched

pulse energy to 2.1 µJ, the spectrum undergoes a very large broadening to 0.45 µm, see purple

line. However, I found that at this energy level the process becomes unstable. After only a few

seconds the spectrum narrows substantially, with the initial drop of spectral intensity in the

short-wavelength side of the pump visible in a green line. The process evolves too rapidly to be

fully captured with the available equipment. The subsequent efforts to achieve a similar range

of spectral broadening in the same fiber segment by realigning the fiber result in the same

outcome, and after several attempts it is not possible to retrieve any kind of spectral broadening

at all, which indicates irreversible damage of the fiber sample. This observation aligns with
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Figure 5.11: Measured output spectrum and near-field images of the fiber output as a function of the

coupled pulse energy for the launched optical beam consisting of (a) a mix of l = 1 and l = 0 fields (b)

a l = 1 field.

the stability issues mentioned at the end of the previous section, where the discretized conical

emission process became unstable at a pulse energy close to 2.4 µJ. Here, because of different

composition of the input optical field, the instability threshold appears to shift to even lower

pulse energies, which are insufficient to observe the studied process.

In a subsequent experiment, I modified the composition of the launched optical field

to contain only the l = 1 component. The study of evolution of the output spectrum in

Fig. 5.11(b) shows much higher tolerance to the pulse energy in terms of the process stability,

allowing to inject energy close to 3 µJ. This is caused by a different spatial distribution of the

optical field, which does not lead to such high local beam intensity and strong subsequent

self-focusing stage, thus avoiding damage of the material. At 2.9 µJ, the spectral broadening

reaches 0.75 µm, and the formation of a weak spectral shoulder in the short-wavelength part

of the spectrum indicates generation of resonant radiation in higher-order modes. Near-field

imaging of the fiber output shows that for increasing pulse energy the optical field changes

its spatial distribution and breaks the circular symmetry, which further confirms the energy

couplings to other fiber modes.

In the following, I investigate the angle-resolved spectra and the spectrally-filtered near-field

images of the fiber output. The results presented in Fig. 5.12 are another set obtained in around
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Figure 5.12: Experimentally measured angle-resolved far-field spectrum and near-field images of the

fiber output captured using bandpass spectral filter. The pulse energy of the input l = 1 beam is 3.9 µJ,

and 2.9 µJ is measured at the output of the fiber.

6-cm-long fiber segment for the launched pulse energy of 2.9 µJ, with 3.9 µJ measured before the

coupling lens, indicating that the beam coupling efficiency exceeds 74%. When comparing these

measurements to those shown in Fig. 5.6 for the pump launched into the fundamental mode, I

note that more energy is coupled into the long-wavelength tail than into the short-wavelength

tail. However, the observed angularly-resolved spectra still remain of X-wave type. Despite

this, the visible part of the spectrum contains enough energy to characterize the output field

intensity distribution at different spectral ranges. The results clearly indicate various modal

components at distinct wavelengths, although the interpretation is not so straightforward as in

the case of discretized conical emission with only LP0,p modes involved. Each spectrally filtered

band contains multiple modal components, leading to their interference in the captured images.

Nevertheless, a clear trend is again observed, with higher-order modes present at more-detuned

wavelengths.

The experiments are supported with numerical simulations performed for two excited

modal compositions. The first simulation considers excitation of the l = 1 OAM mode with

3.0 µJ pulses (Fig. 5.13), while the second involves an equal excitation of l = 1 and l = 0 modes

with 1.05 µJ pulses (Fig. 5.14). The propagation in temporal, spectral, and spatial domains is
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(e)

Figure 5.13: Numerical simulation for l = 1, 3.0 µJ pulses launched into the step-index MMF. False-color

map of temporal (a), spectral (b), and spatial (c) power as a function of the propagation distance. Inset

shows a false-color beam intensity distribution at the fiber output. Mode-resolved spectrum (d) and

calculated near-field spectrally-filtered beam intensity distributions (e) at the fiber output.

shown in panels (a), (b), and (c), respectively, the mode-resolved spectra at the fiber output

are presented in panels (d), and the spatial intensity profiles at selected filtered spectral bands

are presented in panels (e).

Similarly to the case of nonlinear propagation of a pulse launched into the fundamental

fiber mode, an optical shock is formed and leads to wave breaking seeding a large number of

modes across a broad spectrum. When a mix of l = 1 and l = 0 modes is excited, the shock is

formed after less than 2 cm of propagation, as in the case of launching into the l = 0 mode.

When only the l = 1 mode is excited, the shock formation occurs at a longer propagation

distance, even for the increased pulse energy. This agrees well with experimental observations

and results from different dynamics of spatial self-focusing.
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(e)

Figure 5.14: Numerical simulation for an equal mix of l = 0 and l = 1 1.05 µJ pulses launched into the

step-index MMF. False-color map of temporal (a), spectral (b), and spatial (c) power as a function

of the propagation distance. Inset shows a false-color beam intensity distribution at the fiber output.

Mode-resolved spectrum (d) and calculated near-field spectrally-filtered beam intensity distributions (e)

at the fiber output.

As seen in panels (c), the beam profile changes shape at the moment of shock formation.

This is particularly accentuated for the l = 1 beam, where generation of higher-order modes

leads to the formation of symmetric lobes in the beam cross-section, as seen in the spatial

intensity distribution at the fiber output shown in the inset. For the mix of l = 1 and l = 0

modes, the beam shape at the fiber output still resembles its initial intensity distribution,

however it involves different higher-order modes.

Interestingly, the mode-resolved spectra at the fiber output do not show qualitative

agreement between the two analyzed excitation conditions. That is, the results shown in

Fig. 5.13 for launching the l = 1 beam indicate the formation of only the modes that are
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characterized by an odd value of l. This is related to the strong coupling from the l = 1 pump to

l = −1 mode because the two modes share the value of propagation constant leading to linear
phase-matching. The presence of those two modes drives the next stages of the stimulated

four-wave mixing processes with emission of l = 3 and l = −3, and higher-order modes with
odd l values in the next stages. The results shown in Fig. 5.14 for launching a mix of l = 1 and

l = 0 beams involve the modes characterized by even values of l at the fiber output as well.

Finally, the spectrally filtered near-field images retrieve some signature features of the full

beam in each investigated case. When only the l = 1 mode is excited, the spectrally-filtered

images show 2-fold rotational symmetry, with larger symmetric lobes present for the filtered

wavelengths that are closer to the pump. For more-detuned wavelengths, the spatial distribution

is still symmetric, but there is greater variability along the radial coordinate. When a mix of

two modes is excited, the spectrally-filtered images do not show rotational symmetry, spatial

distributions of spectral bands closer to the pump resemble the full beam, but for more-detuned

wavelengths there is again a greater variability along the radial coordinate.

After the performed numerical analysis, I compare the simulated spatiotemporal dynamics

with the experimental results shown in Fig. 5.12. The experiment was realized with the l = 1

beam launched into the fiber, and the results are very close to the simulations performed for

that excitation case. There appears to be a small contribution of l = 0 component, because

the experimental spectrally-filtered near-field images of the fiber output are not symmetric

(for example there is a shape of closing crescent for the spectral filtering around 500 nm,

which resembles simulations for 600 nm and 640 nm in Fig. 5.14), and the full beam spatial

distribution is in a shape of a bean with a non-zero intensity in the center. This contribution

of l = 0 is linked with the imperfect excitation conditions that occur with every experiment.

The results in this section do not unequivocally demonstrate the generation of a helicon

wavepacket. This could be improved by launching the beam with a different energy distribution

between the two fiber modes. Injecting less energy into the fundamental mode and more into

the l = 1 mode by setting the QWP2 axis closer to 0
◦ than the initial 30◦ could aid in achieving

more stable formation of optical shock at the required power level. Finally, as observed in the

numerical simulations, it might be difficult to distinguish experimentally the formation of a

helicon wavepacket that evolves in a spiralling trajectory from the formation of the wavepacket

formed from l = 1 beam by relying only on the spectrally filtered near-field images of the

spatial intensity distributions at the fiber output. Considering this, further development of the

part of the experimental setup devoted to the interferometric characterization of the generated

wavepackets is necessary in order to determine the involved topological charges. If even values

of l are detected, even for excitation very close to l = 1, this could confirm the formation of

the helicon wavepacket. Even though the conducted research provides a significant first step

towards generation of ST rotating wavepackets in multimode fibers, further investigation is

still necessary to fully investigate the spontaneously emerging complex spatiotemporal pulses

that carry orbital angular momentum.
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5.6 Conclusions

In this chapter, I investigated nonlinear propagation of intense ultrashort pulses in a

step-index multimode fiber. I experimentally demonstrated the spontaneous emission of a

discretized conical wave, validating earlier theoretical predictions [187, 198]. I have identified

analogies to bulk conical emission, studied in sapphire and BK7 glass plates. The experimental

results agree very well with the corresponding numerical simulations, and I performed detailed

analysis to explain distinct features of the investigated dynamics. Obtained results provide

a general understanding of phase-matched radiations emitted spontaneously by nonlinear

waves in multidimensional dispersive optical system. I have proven the research hypothesis

in demonstrating that by a controlled launching of the laser beam into the fundamental

mode, I achieve a spontaneous generation of a discretized conical wave formed from a linear

superposition of fiber modes with an engineered spatiotemporal spectrum. The emerging

ST wavepacket propagates with a deterministic group-velocity. Even if the configuration of

spontaneous emergence implies that the discretized conical wave is not fully non-dispersive

and non-diffractive, this simple and alternative approach appears as a welcome alternative to

the exact and complex shaping of invariant fields and opens the way to future investigations of

multidimensional ST wavepackets with fiber and waveguide technologies [191, 206, 219, 220].

Finally, I have explored the nonlinear dynamics when an OAM-carrying beam is launched

into the fiber. The obtained results indicate the presence of different spatial and spectal

components at the fiber output, even though additional experimental works are required for

the full characterization of the emerging complex ST wavepacket.
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Chapter 6

Conclusions and perspectives

In this dissertation, I studied how novel nonlinear phenomena with correlated spatial,

temporal, and spectral features that occur in optical fibers can be influenced by shaping the

input optical field in conceptually simple experimental configurations. I have investigated

nonlinear couplings and energy transfer between two polarization modes in birefringent photonic

crystal fibers, intramodal and intermodal four-wave mixing processes in a few-mode graded-

index fiber, and spontaneous generation of three-dimensional spatiotemporal wavepackets in a

highly-multimode step-index fiber.

First, particular attention was given to pulse trapping by solitons in birefringent PCFs. The

study revealed that the negative sign of group birefringence plays a crucial role in polarization

purity of the fiber output. Specifically, pumping the fiber with pulses polarized along the x

(slow) axis ensures higher polarization purity of the output signal compared to the y (fast)

axis. This is contrary to the observations of soliton trapping reported so far in conventional

birefringent fibers, which are characterized by the group birefringence of the same sign as the

phase birefringence. Because of the large dispersion of birefringence that is possible to achieve

through the microstructured design of PCF, this phenomenon is manifested in different way.

The experiments performed in the two fibers with different magnitude of group birefringence

confirmed that the spectral positions of the trapped pulse components are governed by the group

velocity matched wavelengths of the two polarization modes. The trapped pulses shift to longer

wavelengths with increasing pump power and propagation distance. Their spectral separation

remains unchanged, dictated by the fiber’s group birefringence. Furthermore, I have shown

how different variables influence polarization purity. In particular, I confirmed that the high

group birefringence aids in preserving the polarization extinction ratio of the soliton and the

trapped pulse. However, I also revealed that only launching the light polarized along the x fiber

axis can result in generation of a single polarization component at the fiber output, otherwise

- two components typically emerge at separate spectral positions, characterized by distinct

spectral intensities. The performed experiments highlight the importance of initial excitation

conditions in achieving different spectral and polarization components at the fiber output.

This is an important result in the context of multimode solitons, showing the importance of

cross-phase modulation and Raman effect in pulse dynamics.

Furthermore, I confirmed that orthogonal Raman scattering is the mechanism behind

energy transfer between the two polarization components when pumping with pulses polarized

along the y axis. By manipulating the azimuth angle of linearly polarized light, it is possible

to control the division of pulse power between polarization modes, with the x mode being

favored for most excitation angles. These findings are particularly significant for developing
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tunable sources of polarized light based on Raman self-frequency shift in birefringent fibers.

The performed study offers significant insights into Raman-assisted energy transfer between

different fiber modes. The effects of Raman scattering vary significantly depending on whether

the interaction involves orthogonally-polarized fiber modes, as reported here, or co-polarized

pulses, investigated by Rishøj et al. [141]. It is worth to note that the group velocity matching

is satisfied in each case. However, self-mode conversion described in the referenced work

leads to a complete transfer of energy from one mode to another over a distance of less

than 0.5 m, which is later followed by the soliton self-frequency shift until it reaches the

group-velocity matched wavelength with another mode at the frequency separation within the

bandwidth of the Raman gain, which again leads to a complete transfer of energy to another

mode. In the study performed here, the polarization conversion occurs over a distance of

several meters concurrently to the SSFS phenomenon, which alters the wavelengths of both

polarization components. This qualitative difference results from the smaller gain of orthogonal

Raman scattering compared to the gain of co-polarized Raman scattering. Consequently, when

considering the more general case of the multimode soliton, the observed effects could manifest

in a different manner depending on the mode polarization.

Subsequently, I investigated nonlinear frequency conversion processes in a short few-

mode graded-index silica fiber. Experimental evidence, supported by theoretical analysis,

demonstrated that four-wave mixing can be utilized for far-detuned frequency of the near-IR

pump light to visible and mid-IR spectral range. Remarkably, mid-IR light was generated well

beyond the commonly accepted transparency window of silica fibers, because the significant

spatial overlap resulted in a high gain that surpassed fiber attenuation. The cutback experiments

investigating the evolution of the anti-Stokes peak at 0.625 µm highlighted the significant

parametric gain provided by spontaneous intramodal FWM, which allows to generate the

Stokes detuned by 200 THz from the pump. The specific refractive index profile of the tested

fiber played a crucial role in observing these intriguing FWM process, suggesting potential for

further optimization through the engineering of the index profile or the use of infrared glasses.

The experimental results showed excellent agreement with the theoretical predictions.

Furthermore, a detailed analysis addressed the limitations of simplified theoretical models

commonly used to study nonlinear wave mixing processes in graded-index fibers.

In the next step, I studied a cascaded intermodal four-wave mixing processes caused by

modification of the light launch conditions. The multiple observed sharp spectral peaks arise

through the combination of the secondary pump in the anti-Stokes peak at 0.625 µm with or

without the initial pump. I performed detailed spatial investigation of the generated peaks

and reached a good agreement with my theoretical predictions. By a simple adjustment of the

input conditions, instead of far-detuned intramodal FWM process extending into mid-IR, I

obtained multiple spectral peaks in the visible and near-infrared spectral range. The performed

study indicates an interesting direction of future research, showing potential of the realization

of a new type, tunable, broadband fiber source which could be useful for many applications.
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Finally, I investigated the nonlinear propagation of intense ultrashort pulses in step-

index MMF close to the critical peak power threshold in silica. This study experimentally

demonstrated spontaneous emission of a discretized conical wave in a structured waveguide,

validating recent theoretical predictions. Analogies to bulk conical emission were identified by

performing characterization of supercontinuum emitted in sapphire and BK7 glass plates. The

pump pulse propagating in the normal dispersion region resulted in each case in the angle-

and mode-resolved spectrum in the form of X-wave. One potential direction of future study

could focus on investigation of ultrashort, high-energy pulses in other dispersion regions, which

could lead to demonstration of formation of light-bullets.

This research provided a comprehensive understanding of phase-matched radiations emitted

spontaneously by nonlinear waves in multidimensional dispersive optical systems. The emerging

spatiotemporal wavepacket, propagating with a deterministic group velocity, results from a

linear superposition of fiber modes with an engineered spatiotemporal spectrum. The numerical

simulations and theoretical analysis corroborated the obtained experimental results.

This simple approach of achieving formation of propagation-invariant field offers an alter-

native and very useful method compared to the complex shaping of spatiotemporal properties

of optical fields and opens new possibilities for future investigations of multidimensional ST

wavepackets using fiber and waveguide technologies.

Although different spatiotemporal nonlinear phenomena dominate the considered systems,

in each case the spectral, spatial, and temporal components at the fiber output are controlled

through the modal composition of the excited field. I have shown that modifying the polarization

azimuth of linearly polarized pump pulses, and the intensity and phase profile of the pump

optical field, leads to qualitatively different results:

• either formation and amplification, or the absence of the pulse component polarized

orthogonally to the pump and travelling at a longer wavelength with a matched group

velocity to the generated soliton;

• either a cascaded four-wave mixing process leading to generation of multiple peaks in

the visible and near-infrared spectral range or a far-detuned intramodal wavelength

conversion below 0.65 µm and beyond 3.5 µm into the mid-infrared spectral region;

• spontaneous emergence of a localized space-time wavepacket that is either cylindrically-

symmetric, or evolves on a complex trajectory during nonlinear propagation of ultrashort

pulse.

Overall, the results presented in this dissertation improved the fundamental understanding

of nonlinear phenomena observed in multimode and birefringent fibers and underscore the

critical importance of which modes participate in the nonlinear interactions. The insights

gained from these studies pave the way for further advancements in fiber optics, emphasizing

the need for continued research to fully harness the potential of these nonlinear phenomena.

This work lays a foundation for future explorations, which will undoubtedly contribute to the

advancement of the optical technologies and their applications in various fields.
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The exploration of nonlinear phenomena in multimode fibers has revealed and continues

to reveal a wealth of complex interactions and novel spatiotemporal dynamics that signifi-

cantly impact the field of fiber optics. Those recent advancements have opened up promising

applications, particularly in areas requiring sophisticated control over light properties.

One such application is in the development of high-brightness laser sources. Additionally,

the ability to generate complex spatiotemporal structured light could open new approaches in

optical communication and signal processing, potentially improving data transmission rates and

resilience to perturbations. Furthermore, the exploitation of cascaded nonlinear processes in

multimode fibers allows for the creation of tunable, broadband sources, which are invaluable for

advanced spectroscopic techniques and environmental sensing. Finally, structured wavepackets

can also facilitate the study of nonlinear inverse-propagation, enabling the design of complex

space-time input electromagnetic fields that transform optimally into the desired target output.

Despite these exciting opportunities, several significant challenges still need to be addressed.

Optimization of nonlinear interactions requires designing fibers with tailored refractive index

profiles through varied doping, or sophisticated structure, such as in PCF. Fabricating these

specially designed fibers with high precision and consistency remains a significant challenge.

Variations in manufacturing can lead to deviations from the desired fiber properties. As an

example, the supercontinuum generated in a large-core graded-index fiber manifests in various

ways depending on the presence of a small dip in the center of the fiber core, which is an

artifact resulting from the method of the fiber fabrication [221].

Furthermore, developing accurate theoretical models to predict and understand the be-

havior of nonlinear phenomena in multimode fibers is complex due to the high-dimensional

nature of the problem. Simulating the full spatiotemporal dynamics of multimode nonlinear

interactions requires significant computational resources and advanced algorithms. Moreover,

developing advanced techniques to accurately characterize the multimode nonlinear dynamics

is necessary but challenging. Finally, ensuring the stability of nonlinear interactions over time

and varying environmental conditions are critical for reliable applications.

Addressing these challenges is crucial and requires continued research and development in

fiber design, experimental techniques, and theoretical modeling. Given the potential of these

new studies, it is imperative that further research is dedicated to unraveling the underlying

mechanisms, developing new numerical and experimental techniques, and optimizing their

practical implementations. Continued investigation into the nonlinear behavior of multimode

fibers will undoubtedly drive technological advancements and open new avenues for innovation

in various scientific and industrial domains.
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[25] K. Krupa, A. Tonello, A. Barthélémy, T. Mansuryan, V. Couderc, G. Millot, P. Grelu,

D. Modotto, S. A. Babin, and S. Wabnitz, “Multimode nonlinear fiber optics, a spa-

tiotemporal avenue,” APL Photonics, vol. 4, p. 110901, 2019.

[26] K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz,
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[212] P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel,

and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,”

Phys. Rev. Lett., vol. 104, p. 103903, 2010.

[213] O. G. Kosareva, V. P. Kandidov, A. Brodeur, C. Y. Chien, and S. L. Chin, “Conical

emission from laser–plasma interactions in the filamentation of powerful ultrashort laser

pulses in air,” Opt. Lett., vol. 22, pp. 1332–1334, 1997.

[214] E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and

A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett.,

vol. 21, pp. 62–64, 1996.

[215] M. Ferraro, F. Mangini, Y. Sun, M. Zitelli, A. Niang, M. C. Crocco, V. Formoso,

R. Agostino, R. Barberi, A. D. Luca, et al., “Multiphoton ionization of standard optical

fibers,” Photonics Research, vol. 10, pp. 1394–1400, 2022.

[216] M. N. Polyanskiy, “Refractiveindex.info database of optical constants,” Scientific Data,

vol. 11, 2024.

[217] R. DeSalvo, A. Said, D. Hagan, E. V. Stryland, and M. Sheik-Bahae, “Infrared to

ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,”

IEEE Journal of Quantum Electronics, vol. 32, pp. 1324–1333, 1996.

[218] S.-H. Cho, H. Kumagai, I. Yokota, K. Midorikawa, and M. Obara, “Observation of self-

channeled plasma formation and bulk modification in optical fibers using high-intensity

femtosecond laser,” Japanese Journal of Applied Physics, vol. 37, p. L737, 1998.

130



Bibliography

[219] P. M. Walker, C. E. Whittaker, D. V. Skryabin, E. Cancellieri, B. Royall, M. Sich,

I. Farrer, D. A. Ritchie, M. S. Skolnick, and D. N. Krizhanovskii, “Spatiotemporal

continuum generation in polariton waveguides,” Light: Science & Applications, vol. 8,

p. 6, 2019.

[220] L. Wright, W. Renninger, D. Christodoulides, and F. Wise, “Nonlinear multimode

photonics: nonlinear optics with many degrees of freedom,” Optica, vol. 9, pp. 824–841,

2022.

[221] K. Krupa, V. Couderc, A. Tonello, D. Modotto, A. Barthélémy, G. Millot, and S. Wabnitz,
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