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Abstract
Exciton polaritons (polaritons herein) are mixed light-matter quasiparticles, emerging
from the strong coupling between quantum-well (QW) excitons and cavity photons in
a semiconductor optical microcavity. They are a quantum superposition of these two
states, and as such they inherit their unique properties from both the excitonic and
the photonic components. They are interacting bosons, with interactions inherited
directly from the excitons, but they are also light-weight, fast and easily accessible
in optical experiments, due to the photonic part. As bosons, they can form a macro-
scopically coherent state, such as a Bose-Einstein condensate.

Although they have been studied for more than twenty years, due to their com-
plexity, their properties are still not fully understood and new research still emerges.
They are often studied in novel contexts, in new novel platforms, or with potential
for novel applications. Even some of their fundamental properties are still not fully
unveiled and are subject to intensive research. This is why this thesis centers around
novel properties of exciton polaritons, unexplored or unevidenced before. It focuses on
several key parts: spin-dependent properties, fundamental interactions, topological
and non-Hermitian properties, and dissipative effects.

The thesis studies solid-state semiconductor microcavities via optical experiments.
It first centers around the experimental study of spin-dependent interactions of long-
lived polaritons in a high-density condensate, where the polariton properties are gov-
erned by the polarization, optical anisotropy and the polarization-dependent inter-
actions. It studies the condensate collective excitations, affected by a non-Abelian
effective gauge field, which is formed by the polarization splittings. The thesis evi-
dences the effective field with unique, monopole-like features and dispersion degener-
acy points and directly measures the fundamental interaction constants. Then, using
the same methods, it uncovers the topological and non-Hermitian properties of exci-
ton polaritons, where not the interactions but the dissipation adds to the effective
gauge field, with a high contribution of an optical anisotropy. It evidences paired ex-
ceptional points in momentum space of such a system and extracts a non-Hermitian
topological invariant - serving as a first direct measurements of this feature. Then
the influence of dissipation is studied further, resulting in an uncommon effect of level
attraction. However, in order to do it, the excitonic properties of an AlGaAs plat-
form need to be understood first. Based on experimental results, the thesis pinpoints
three types of excitons - one direct and two momentum- and spatially-indirect - in the
studied QW system, and explores their characteristics. The system understanding
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is essential in unveiling the novel properties, when the coupling with photonic states
is included. In a full polariton microcavity the thesis evidences an inverted, anoma-
lous dispersion of a polariton state, inherently linked to a negative effective mass. It
uncovers a basis of the effect, stemming from a dissipative coupling mediated via a
coherent coupling to a dissipative mode. It pinpoints the dissipation to come from an
indirect state characterized in another part of the thesis, and it presents a new method
of anomalous dispersion curvature tuning. It is a first observation of an anomalous
dispersion in an unstructured QW polariton system to date.

All the findings of the thesis have profound implications for further research and
applications. They have been published or are under review in international peer-
reviewed journals.



Streszczenie
Polarytony ekscytonowe (zwane dalej polarytonami) są kwazicząstkami złożonymi
ze światła i materii, powstającymi w wyniku silnego sprzężenia ekscytonów zlokali-
zowanych w studni kwantowej (QW) ze związanymi fotonami w półprzewodnikowej
mikrownęce optycznej. Stanowią kwantową superpozycję tych dwóch stanów, a za-
tem dziedziczą swoje unikalne właściwości zarówno od składnika ekscytonowego, jak i
fotonowego. Są oddziałującymi bozonami, przy czym ich oddziaływania są bezpośred-
nio dziedziczone od ekscytonów; jednocześnie są lekkie, szybkie i łatwo mierzalne
w eksperymentach optycznych, dzięki składnikowi fotonowemu. Jako bozony mogą
tworzyć makroskopowo koherentny stan, jakim jest kondensat Bosego-Einsteina.

Mimo, że polarytony są badane od ponad dwudziestu lat, ze względu na swoją
złożoność ich właściwości wciąż nie są w pełni zrozumiane, co motywuje wciąż po-
jawiające się nowe badania. Są często badane w nowych kontekstach, w nowych
platformach eksperymentalnych, lub z potencjałem do nowych zastosowań. Nawet
niektóre ich fundamentalne właściwości nie zostały jeszcze w pełni odkryte i są przed-
miotem intensywnych badań i dyskusji. Dlatego niniejsza praca skupia się właśnie na
takich nowych właściwościach polarytonów ekscytonowych, dotąd niezbadanych lub
nieudowodnionych. Koncentruje się na kilku kluczowych zagadnieniach: właściwości-
ach zależnych od spinu, fundamentalnych oddziaływaniach, właściwościach topolog-
icznych i niehermitowskich oraz efektach dyssypatywnych.

Praca bada półprzewodnikowe mikrownęki w ciele stałym za pomocą eksperymen-
tów optycznych. W pierwszej kolejności skupia się na eksperymentalnym badaniu
zależnych od spinu oddziaływań długożyjących polarytonów w kondensacie o wysok-
iej gęstości, w którym właściwości polarytonów są determinowane przez polaryzację,
anizotropię optyczną i zależne od polaryzacji oddziaływania. Praca bada kolekty-
wne wzbudzenia kondensatu, na które wpływa nieabelowe efektywne pole cechowa-
nia, tworzone przez rozszczepienia polaryzacji. Praca przedstawia to efektywne pole
z unikalną strukturą przypominającą monopole magnetyczne oraz punktami degen-
eracji w dyspersji stanów, a także przedstawia bezpośredni pomiar fundamentalnych
stałych oddziaływań. Następnie, wykorzystując te same metody, odkrywa właści-
wości topologiczne i niehermitowskie polarytonów ekscytonowych, dla których nie
oddziaływania, lecz dyssypacja przyczynia się do struktury efektywnego pola ce-
chowania, przy jednoczesnym dużym wkładzie anizotropii optycznej. Praca przed-
stawia sparowane punkty wyjątkowe w przestrzeni pędu takiego systemu i wyznacza
niehermitowski niezmiennik topologiczny, co stanowi pierwsze bezpośrednie pomiary
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tej cechy. Następnie badany jest dalej wpływ dyssypacji, który prowadzi jednak do ni-
etypowego efektu przyciągania stanów kwantowych. Aby go wyjaśnić, należy najpierw
zrozumieć właściwości ekscytonów w układzie materiałowym AlGaAs. Na podstawie
wyników eksperymentalnych praca identyfikuje oraz charakteryzuje trzy typy ekscy-
tonów – jeden prosty i dwa skośne w pędzie oraz w przestrzeni – w badanym systemie
studni kwantowych. Zrozumienie tego układu jest kluczowe dla zrozumienia nowych
właściwości, gdy uwzględnione jest sprzężenie ekscytonów ze stanami fotonowymi. W
pełnej mikrownęce polarytonowej praca dokumentuje odwróconą, anomalną dyspersję
stanu polarytonowego, nierozerwalnie związaną z ujemną masą efektywną. Wyjaśnia
podstawy tego efektu, wynikające z dyssypatywnego sprzężenia, tworzonego przez
koherentne sprzężenie ze stanem dyssypatywnym. Praca wskazuje, że dyssypacja
pochodzi z jednego ze skośnych stanów, scharakteryzowanych we wcześniejszej części
pracy, i prezentuje nową metodę zmiany i kontroli krzywizny anomalnej dyspersji.
Jest to pierwsza obserwacja anomalnej dyspersji w niestrukturyzowanym systemie
polarytonowym opartym o studnie kwantowe.

Wszystkie wyniki rozprawy mają ważne implikacje dla dalszych badań i zastosowań.
Zostały one opublikowane lub są w trakcie recenzji w międzynarodowych czasopis-
mach naukowych.
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Preface
Since the first observation of exciton polaritons, there has been a growing interest
in their studies, due to their fascinating properties and large application potential.
These quasiparticles are often referred to as “part-light, part-matter” or even “inter-
acting photons”, what truthfully shows their complex and unique nature. Exciton
polaritons arise from the strong coupling between photons and excitons and repre-
sent a quantum superposition of these two states. As complex bosons, they undergo
a number of collective-coherence phenomena, such as Bose-Einstein condensation,
parametric scattering, and superfluidity, what since the early days has sparked a
huge interest in the field. As mixed particles, they inherit properties of both the
excitons and the photons, merging the best of the two worlds, what makes them a
superb experimental platform to study. Easy optical access to quantum observables
such as phase, spin degree of freedom or momentum, combined with a low particle
mass and with the possibility of high condensation temperatures, fuelled the research
on those quasiparticles in many interest areas and topics.

However, despite years of research, there is still a need to understand some of the
exciton polariton properties, with several milestone observations still ahead. With
time, whole new fields have emerged, in which the use of polaritons can be beneficial
or crucial, such as studies of analogue systems, complex non-Hermitian and topo-
logical phenomena, quantum computing, or neural networks with machine learning
technologies. The properties of both the exciton polaritons and their condensates in
these new contexts, new designs or in new material platforms still need to be studied.

This thesis focuses on several key aspects of the properties of exciton polaritons
and their condensates. It explores novel characteristics, which have not been ad-
dressed before. Based on optical experiments, it dives into new features of polaritons,
in novel contexts, crucial from a future research and applications point of view. In
particular, it addresses:

• Polarization and fundamental properties of high density exciton-polariton con-
densates in the interaction-dominated Thomas-Fermi regime, related to their
spin degree of freedom and with relation to the gauge-field emergence, unevi-
denced before,

• Fundamental study of polariton-polariton interaction strength, with spin reso-
lution,
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• Non-hermitian properties and the implications of the polariton’s non-Hermiticity
on the effective spin gauge filed, with crucial implications in topology,

• Dissipation role and the influence of a dissipative coupling on the polariton
dispersion, including level attraction and an anomalous shape of the dispersion
in an exciton-polariton microcavity,

• Crucial structure characteristics, necessary to achieve condensation and lasing
in increased temperatures with the use of III-V based semiconductors.

The thesis is centred around AlGaAs-based semiconductor microcavities – a stan-
dard III-V semiconductor material platform, well known and studied since the very
beginning of the polariton research. However, it re-discovers this material in the
novel contexts. Dissipative coupling, non-hermiticity, gauge fields, topology, effective
mass engineering for analogue systems, as well as the still-remaining holy grail of
room temperature condensation in a III-V based system - all addressed in this thesis
- are only a few examples of these contexts, remaining at the forefront of today’s
research. Moreover, recent years showed growing interest in the use of novel mate-
rials (like transition metal dichalcogenide monolayers or perovskites, among others)
as an active medium in the exciton-polariton research, yet there is still a need for a
deeper understanding of the well-known platform, which often proves to have a big
advantage over the newer designs. III-V based systems are superb when compared
to those emerging materials in reproducibility, ease of design and engineering, con-
trol during growth, in linewidths, quality and stability, to mention just a few – all
crucially important in the novel phenomena studies or applications.

One part of the thesis differs from the others in the use of a novel material - a
perovskite crystal - as an active medium, but the experimental methods are the same
as in other parts. The studied phenomenon also importantly connects to the other
parts, as it addresses the polarization, non-Hermitian, and fundamental polariton
properties. The characteristics of the novel material increase the size of the effects
studied.

The thesis first addresses an ultra-high quality microcavity with GaAs quantum
wells, characterized by long polariton lifetimes, allowing for the study of fundamental
properties of polariton condensates in a high density interaction-dominated Thomas-
Fermi regime. It studies the polarization properties of collective (elementary) excita-
tions of such a condensate, governed by their spinor properties. It serves as a first
experimental observation of the fundamental excitations dispersion anisotropy, and
measures the polariton-polariton interactions. It explores also the inherent gaugue
field present in the system, studied by a direct measurement of the spin texture in an
interacting spinor condensate.

Then the gauge field is studied in a perovskite crystal-based microcavity, with
no polariton-polariton interactions, but with an important role of inherent polariton
non-Hermiticity and with significant structural anisotropy. The study evidences the
stark effect of polariton non-Hermiticity on topology. Importantly, it serves as the
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first direct measurement of a non-Hermitian topological invariant in a hybrid light-
matter system. It presents the effective gauge field with an imaginary component and
looks at the topologically non-trivial, paired exceptional points in the effective spin
field.

Then the thesis focus shifts to the AlGaAs-based microcavity, initially designed for
room-temperature coupling and lasing. It carefully investigates another novel finding
and a property, related to the inherent dissipation present in the structure and to
the particle’s negative effective mass. It shows and serves as the first experimental
observation of the anomalous dispersion shape in an exciton-polariton microcavity
with quantum well excitons as an active medium. Most importantly, it addresses the
basis of this unexpected observation, with the dissipative coupling via a dissipative
mode serving as the phenomenon’s mechanism.

However, in order to offer this explanation, more basic properties of the structure
need to be addressed first, with careful characterization of the underlying quantum
well system. The thesis studies optical and temporal properties of the excitonic reso-
nances present in the high Al-content AlGaAs quantum wells, discovering the presence
of both a direct and two momentum- and space-indirect excitons. It characterizes all
three species in a wide range of densities and temperatures, which is vital for the
system’s understanding under additional coupling with photons.

Finally, in order to report all these observations, the Results part is preceded by
a conceptual Introduction, acquainting with the topic of exciton polaritons and their
condensates. The Introduction focuses on several of the polariton’s key properties
- pivotal especially in the context of the results presented later. Each study in the
Results section is additionally initiated with a specific introduction to the exact topic,
with references to the fundamental facts stated in the Introduction and to the prior
research in this field.

Hence, the thesis is structured as follows:

PART I - Introduction is a general introduction into the topic of exciton polari-
tons. It is divided into two main introductory chapters: first it addresses key
properties of these quasiparticles in a single-particle (low density) limit in Chap-
ter 1. It focuses on the properties important in the studies reported later in
the Results parts. Then, Chapter 2 focuses on the high-density properties
of polaritons, introducing the topic of Bose-Einstein condensation and polari-
tonic condensation, similarly with implications in the Results parts. They are
ended with an Outlook in Chapter 3. Chapter 4 describes key Methods used,
shared by all the Results.

Then, the thesis moves to the Results parts, divided into four main studies:

PART II - Collective excitations of exciton-polariton condensates in a
synthetic gauge field addresses the fundamental properties of high-density
exciton-polariton condensates, with the focus on the polarization, and investi-
gates the topic of collective excitations of exciton-polariton condensates in a
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synthetic gauge field. It explores the excitation spectrum anisotropy and the
spin-anisotropy of polariton-polariton interactions.

PART III - Direct measurement of a non-Hermitian topological invariant
in a hybrid light-matter system addresses the first experimental observation
of the non-Hermitian invariant in an exciton-polariton system, implied by the
dissipation and the optical anisotropy, which influence the effective gauge field,
evidenced in polarization-resolved experiments. It uses a perovskite crystal as
an active medium.

PART IV - Optical properties and dynamics of direct and spatially and
momentum indirect excitons in AlGaAs/AlAs quantum wells serves
as a crucial characterization of the AlGaAs/AlAs quantum well system, later
used in Part V. It characterizes the direct and the momentum- and spatially-
indirect excitons, exploring their temporal, temperature and density-dependent
properties, uncovering the excitons’ origin and studying their recombination
dynamics. The results are essential in understanding the further results in
the polariton microcavity, but also have important implications in potential
applications.

PART V - Anomalous dispersion via dissipative coupling in a quantum
well exciton-polariton microcavity describes an unexpected observation of
an anomalous dispersion in a quantum-well polariton microcavity, linked to a
negative effective mass. It addresses the influence of dissipation and explores
the result of the aforementioned presence of indirect excitons on the polaritonic
states.

The two first studies have been done in collaboration with the Polariton BEC Re-
search Group at the Research School of Physics, the Australian National University,
led by Prof. Elena Ostrovskaya. The experiments have been conducted during my
research stay in Canberra during the first academic year of my Doctoral Studies, fol-
lowed by the collaboration with the group. The rest of the presented experiments
were performed at the Wrocław University of Science and Technology, the home in-
stitution, in a Nonlinear Quantum Photonics group led by Prof. Marcin Syperek at
the Department of Experimental Physics.

Each of the Results parts is structured as follows: first, the exact topic is intro-
duced in the Introduction section. Then the Contributions statement is made,
directly stating my role in the reported studies, which are a collaborative work. They
are followed by the Results, presenting published works. If necessary, the results are
supported by Supplementary Materials. Each part is finished with a Summary
of the findings.

The thesis is ended with a Summary and Conclusion of all the results.
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This Preface serves as the introduction to this very thesis and to its structure.

Wrocław,
September 2024
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Part I
Introduction





CHAPTER1
Exciton polaritons

1.1 Basic concepts

1.1.1 Excitons in semiconductor nanostructures
Excitons are quasiparticle states of electrons and holes, bound together via Coulomb
interactions [1,2]. They are elementary excitations of a direct bandgap crystal and are
the most widely studied in the context of semiconductor materials. These composite
entities can be seen as being similar to atoms, featuring an electron and a positively
charged hole, bound together by the electromagnetic force, in analogy to how electrons
are held in orbit around atomic nuclei. They transport energy, but they don’t transfer
net electric charge, and as complex quasiparticles of two fermions they prove to have
bosonic character [3].

The study of excitons spans a wide range of materials. Semiconductors form an
important class of materials where the study of these excitations becomes particu-
larly relevant. In semiconductors - materials with an energy bandgap - the electrons
occupying energy levels within the valence band can absorb energy from an external
source (e.g. photons from an incident light), and be relocated to the conduction band,
leaving behind an empty state, known as a hole. When subsequently bound together
by the Coulomb interaction, this process creates an exciton – a bound electron-hole
pair with opposite charges. Its energy is typically below the semiconductor bandgap.
The probability of the particle binding can be enhanced e.g. by localization of both
electrons and holes.

Excitons typically can be well described by a hydrogen atomic model, with the
lowest state resembling 1s orbital and a center of mass moving freely [1]. Their overall
position and movement can be described by the movement of the center of mass. The
state’s kinetic energy can be then approximated as:

EX = ℏ2K2

2mX
, (1.1)

with mX being the total excitons mass, consisting of electron and hole effective masses:
mX = me + mh. K is a full exciton wavevector [1].

Furthermore, excitons are characterized by their binding energy, which is the
energy required to separate the electron and the hole, thereby dissociating the exciton.
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In the simple approach of a hydrogen model it can be approximated by the Rydberg
energy [1, 4]:

EB = Ry∗ = µe4

2ϵ2ℏ2 = e2

2ϵaB
, (1.2)

where µ is the reduced effective mass of an exciton, 1
µ = 1

me
+ 1

mh
. This definition

introduces an exciton’s Bohr radius, aB , in direct analogy to the hydrogen model:

aB = ϵℏ2

µe2 . (1.3)

ϵ describes the electrical permittivity of the medium. In semiconductors this binding
energy typically ranges from a few meV to a few tens of meV in a bulk material
[1], widely differing across different materials. However, the binding energy can be
influenced, e.g. by localization of electrons and holes, imposed by a structure design.

The latter fact is one of the important reasons why excitons are widely studied in
the context of semiconductor nanostructures. The reduced-dimensionality systems,
such as quantum wells (QWs), quantum dots, or nanowires confine the motion of
electrons and holes in one or several dimensions, and impose quantization constraints
on their motion, leading to discrete energy levels and modified density of states (DOS)
[1, 5]. In QWs, thin semiconductor layers are sandwiched between two barriers, and
the nanometre size of the layers restrict the motion of electrons and holes to a single
plane. The subsequent discrete nature of the particle energy levels allows for precise
control of the electron and hole energies, while reduced dimensionality increases the
Coulomb interaction strength. This leads to an up to fourfold increase in exciton
binding energy, compared to the bulk material [6–9], due to the shrinkage of the
exciton’s Bohr radius aB .

In high-quality QWs, with excitons described by the hydrogen atomic model, the
exciton’s center of mass moves freely in the plane of the QW. The energy-momentum
dispersion of these states may be then approximated by a kinetic energy of a free
particle in a 2D plane, with quadratic dependence on the in-plane wavevector k∥
(perpendicular to the growth direction of the QW) [1,4]:

EX(k) ≈ EX

(
k∥ = 0

)
+

ℏ2k2
∥

2mX
. (1.4)

Additionally, imposing constraints on the particle movement by creating a nanos-
tructure enhances exciton radiative recombination rates, making them efficient sources
of light [7–9]. This also comes from the shrinkage of the exciton’s Bohr radius - what
increases the oscillator strength and the binding energy. Combined with the advan-
tage of a big control over the exciton properties by adjusting the well’s thickness and
composition, this enables QW exciton’s use in a wide range of applications, mostly in
optoelectronic and photonic devices, such as lasers, detectors or modulators. More-
over, the ability to control exciton properties in QWs has led to the exploration of
light-matter interactions and studies on novel quantum phenomena, such as in the
area of exciton-polaritons, subject at the core of this thesis.
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1.1.2 Photons in semiconductor microcavities
Photons are massless bosonic particles when moving freely. However, they can also
become confined in space, e.g. by locating them in optical cavities. When inside
an optical resonator, such as a Fabry-Perot cavity (light confinement between two
mirrors), the electromagnetic modes become quantized, leading to well-defined en-
ergy levels for photons, in analogy to the quantized electron states [2]. The spatial
distribution of these standing wave patterns depends on the specific geometry of the
cavity.

Various cavity designs and types can by used, ranging from typical aforementioned
Fabry-Perot cavities, through photonic crystal slabs, whispery gallery mode cavities,
up to sophisticated custom designs, confining photons in different dimensions [2, 10].
In exciton-polariton research the 2D planar microcavities are most notoriously used,
with photons confined in one of the dimensions between two reflectors, as the samples
are typically produced as layered structures. In plane photons can propagate freely.

Eigenmodes of such a Fabry-Perot cavity are standing waves, which wavelength
is directly related to the size of the resonator. Most generally, this condition is met
for waves with wavelength λ0 such that:

2nCdC = mλ0, (1.5)

where nC and dC are the refractive index and the width of the cavity respectively,
and m are natural numbers m = 1, 2, 3 . . ..

The reflecting surfaces can be made in a number of ways, starting from simple
metallic mirrors. Within the semiconductor context the distributed Bragg reflectors
(DBRs) are very often used as mirrors, since they can provide near unity reflectivity
and can be monolitically integrated with the active region. DBR’s include a number
of repeated layers with alternating refractive indices, designed to create a construc-
tive interference effect for waves reflected from many interfaces, what increases the
overall reflection. A visualization of such a reflector is presented in Fig. 1.1 (a).
Thicknesses of these layers need to satisfy the condition of constructive interference
for backpropagating waves and destructive interference of the light passing through.
In most typical case of two alternating materials this condition is met when:

n1d1 = n2d2 = λ0/4, (1.6)

where n1 and n2 are the refractive indices of the neighbouring layers, d1 and d2 are
their respective widths and λ0 is the central reflected wavelength.

Adding an additional spacer between two distributed mirrors creates a full cavity
structure, with a schematic visualisation of such a design presented in Fig. 1.1 (b).
It can be considered as a 1D photonic crystal with a central defect. Designing the
layers’ thicknesses, as well as adequately choosing materials and the number of pairs,
allows for the confinement of light in a certain spectral range (called a stop-band,
around a central wavelength following the Bragg condition (eq. 1.6)), but also affects
the cavity quality and photon leakage. The confined standing wave - the cavity
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n2

n1

DBRs
cavity (spacer)

QW barriers
QW layers

DBRs

a)

b)

c)

Figure 1.1. Schematic visualisation of the microcavity structure. (a) A single distributed
Bragg reflector (DBR), formed from alternating layers of two materials with different refrac-
tive indices, n1 and n2. (b) Two DBRs with a spacer layer between them, forming a full
optical microcavity. (c) Typical polariton microcavity structure, with quantum wells (QWs)
embedded inside the cavity, overlapping with the maxima of the electromagnetic standing
wave confined within the cavity. QWs can be replaced by other active layers, such as layered
semiconductors or perovskite crystals, to act as an active medium providing excitons. In
the pictured example multiple QWs are embedded (three stacks of four QWs), a design that
is often used in monolithic structures to increase the exciton-photon coupling.



1.1 Basic concepts 7

(photonic) mode with the wavelength λ0 - is visible in the reflectivity spectrum as
a sharp dip, even within the photonic stopband [2]. To confine light in the visible
or close to the visible spectrum, the required DBR layer thicknesses are typically on
the order of tens of microns, depending on the materials used. The increase of the
number of pairs increases the overall reflection. The cavity layer is typically on the
order of a photon wavelength.

Confinement of photons leads to a strong enhancement of the light intensity inside
the cavity (of the resonant energy), with the oscillating decay inside the DBR mirrors.
As the photons cannot propagate freely, their energy dispersion relation is modified.
It can be approximated with a parabola for small in-plane momenta (wavevectors,
k∥), effectively making photons act as massive particles:

EC(k) = ℏc

nc

√
k2

⊥ + k2
∥ ≈ EC

(
k∥ = 0

)
+

ℏ2k2
∥

2mC
, (1.7)

thus, introducing the concept of photon effective mass:

mC =
EC

(
k∥ = 0

)
c2

n2
c

= hnc

cLc
. (1.8)

Here the effective mass of a cavity mode mC clearly depends on the cavity refractive
index nc and an effective cavity length Lc (a sum of the physical cavity length L
and the depth of the light penetration into the mirrors Lc = L + λ0

2nc

n1n2
|n1−n2| ). The

mass is approximately four to five orders of magnitude smaller than an exciton’s
mass [2, 11–14].

Moreover, all microcavities can be characterized by their quality factor (Q-factor),
defined as the ratio of the resonant cavity frequency to the linewidth (FWHM) of
the cavity mode, quantifying the rate photon of leakage from the cavity [2, 15]. It
is a measure of the cavity losses (photons escaped from the microcavity), and the
typical planar microcavity Q-factor values range from 102 to 104. The higher the
quality factor, the fewer photons are lost and the longer are the cavity photon life-
times. Q strongly depends on the material system used and on the exact cavity
geometry and design. The best quality factors in planar microcavities are typically
observed in monolithic, DBR-based microcavities created with well developed III-V
semiconductor based materials [10,16,17].

Apart from monolithic structures with DBRs, various cavity designs can be used,
yet the concept of the light confinement remains core. Regardless of the exact design,
the spatial confinement of photons serves as a basis for a wide range of applications,
such as optoelectronic devices, efficient light sources or quantum information process-
ing. The ease of cavity engineering and design enable huge mode tunability, further
enhancing the confined photons application potential.
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1.1.3 Strong coupling

Placing excitons and photons in the same space allows for the consideration of how
they interact. Their confinement in a single structure leads to the enhanced light-
matter interactions, hence it is often employed in studies on quantum electrodynam-
ics [2]. In the most typical planar microcavity structures, one or more QWs are
incorporated into the cavity layer, parallel to the cavity’s plane. Such a design is
schematically presented in Fig. 1.1 (c). The excitons confined in the QWs interact
with the cavity photons, which lifetime is prolonged in the optical resonator. To
achieve strong interaction between the excitons and photons, QWs are typically posi-
tioned at the antinodes of the cavity field, where its intensity exhibits maximum [2,18].
Additionally, the cavity mode’s frequency and the QW exciton frequency need to be
matched close to resonance to create conditions favourable for their coupling. High
oscillator strength of the implemented QW and high quality of the microcavity further
enhance the coupling between the photonic and the excitonic states [18].

Depending on the constituent particle energy and decay (accounting for the losses)
one can distinguish either a weak coupling or a strong coupling regime between the
two particles. Weak coupling leads to the enhancement of a spontaneous emission
rate (faster emission of light from the cavity) - the so-called Purcell effect [2, 19].
The coupling stronger than the losses leads to creation of new states, the exciton
polaritons.

Due to the light propagation, photon absorption and the exciton’s radiative emis-
sion, the energy can be exchanged between confined QW excitons and microcavity
photons. With sufficient coupling of the two (under the strong coupling conditions)
the energy is continuously transferred back and forth between the two particles. In
direct analogy to other strongly interacting systems, this transfer results in a charac-
teristic Rabi oscillations in the time domain, accompanied by a normal mode splitting
of the emerging states [2,11–13,20]. One can view it as an emergence of a new, com-
plex quasiparticle, no longer distinguishable as a single excitonic or a photonic state
- the so-called exciton polariton.

The mixed exciton-photon system results in creation of two eigenstates, the two
branches of a polariton spectrum: a lower polariton (LP) and an upper polariton
(UP). Their dispersions may be easily approximated, using a semi-classical model of
two damped coupled oscillators (a photon and an exciton), but also in the quantum
second quantization description, with bosonic creation and annihilation operators for
photons and excitons. The former approach leads to a definition of a simple intuitive
Hamiltonian:

H =

(
EC(k⃗) V

V EX(k⃗)

)
, (1.9)

where EC and EX are the cavity photon and exciton energies, and V quantifies their
interaction strength (coupling).

In the latter, second quantization description approach, the analogous Hamilto-
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nian can be written as:

H =
(

â†
k⃗

b̂†
k⃗

)(EC(k⃗) Ω
2

Ω
2 EX(k⃗)

)(
âk⃗

b̂k⃗

)
, (1.10)

where â†
k⃗
, âk⃗ and b̂†

k⃗
, b̂k⃗ are the creation and annihilation operators for photons and

excitons with the wavevector k⃗, and the energies EC and EX respectively. Ω quantifies
the particle coupling. Both the semi-classical and the full quantum theory frameworks
give equivalent results.

As in planar samples the system is quantized in one direction (typically denoted
as z) and photons and excitons are free to propagate in plane, the full wavevector
k⃗ = (kx, ky, kz) can be simplified to the in-plane and the perpendicular directions,
k⃗ =

(
k∥ , k⊥

)
, k∥ = k2

x + k2
y, k⊥ = kz. Moreover, as the photonic and excitonic

dispersions can be approximated by quadratic dependencies with respect to the in-
plane wavevector (for small k), as described in previous sections, k∥ = k will be further
used for simplicity of notation. Importantly, being one of the wavector projections, the
in-plane wavevector is directly linked to the angle of incidence of light illuminating
or being emitted from the structure θ (angle from the direction perpendicular to
the sample surface), k ∝ sinθ. This allows for a direct measurement of the state
dispersions in angle-resolved experiments, as will be showed in further sections.

As introduced in two previous sections, confinement of photons and excitons leads
to their approximately parabolic energy-momentum dispersions, within the effective
mass framework,

EX (k) = EX0 + ℏ2k
2

2mX
(1.11)

and

EC (k) = EC0 + ℏ2k
2

2mc
, (1.12)

where mX is the total exciton mass and mC is the effective mass of the cavity photon
(eq. 1.8). Detuning between these two states is defined as:

∆(k) = EC(k) − EX(k). (1.13)

When they couple (Hamiltonians 1.9 and 1.10), the resulting state dispersions of the
lower and the upper polariton branches become non-parabolic, with the wavevector
dependence calculated as:

EUP
LP

(k) = 1
2

[
EX(k) + EC(k) ±

√
(ℏΩ)2 + (EX(k) − EC(k))2

]
. (1.14)

An example of such a dispersion is presented in Fig. 1.2. Solid green lines in Fig.
1.2 (a), (b) and (c) show the energy-momentum dependencies of eigenstates derived
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with formula 1.14, with three different exciton-photon detunings ∆0 = EC0 − EX0.
Dashed lines present the dispersions of the uncoupled constituents - the cavity photon
(blue) and the exciton (red). Due to the exciton’s effective mass being much higher
than that of the cavity photon mX ≫ mc, the exciton energy can be approximated as
nearly dispersionless. One can clearly see the final state repulsion, with characteristic
avoided crossing of the polariton branches at resonance, and the deviation from the
parabolic curve (especially at larger momenta). The avoided crossing is typical in
strongly-interacting systems. When the interaction is not strong enough to overcome
the dissipation, the modes cross (in the weak coupling regime or when uncoupled)
and exciton polaritons are not formed.

Additionally, the inherent decay (lifetime) of both underlying quasiparticles should
be taken into account, as the QW excitons recombine and the confined photons even-
tually leak from the cavity. This makes exciton polaritons a naturally dissipative
system. As it is often done in open systems, the dissipation rates can be included
as imaginary parts of the branch complex energy [21, 22]. One can then rewrite the
energies as:

EC
′ = EC − iγC , (1.15)

EX
′ = EC − iγX , (1.16)

where γX and γC are the exciton and photon decay rates (inverse lifetimes) respec-
tively.

Their incorporation into the same model finally yields:

EUP
LP

′ = 1
2

[
EX + EC + i(γX + γC) ±

√
(ℏΩ)2 + (EX + γX − EC − γC)2

]
. (1.17)

In the formulas above Ω is the so-called Rabi frequency, which quantifies the par-
ticle coupling. It is envisioned as the splitting between the upper and lower branches
when on resonance, called Rabi splitting ℏΩ. The Rabi frequency physically repre-
sents a dipole interaction strength [11,13]. It is proportional to:

Ω ∝
√

foscNQW

Lc
, (1.18)

where NQW is the number of QWs and fosc is the exciton oscillator strength. The
condition for the strong coupling is satisfied when:

ℏΩ > γX + γC , (1.19)

meaning that the interaction needs to be higher than the losses. As one can clearly see
from these conditions, the material parameters and the structure quality are crucial
in the strength of exciton-photon coupling and an achievement of the strong coupling
regime, as they influence both the oscillator strength and the lifetimes.

Moreover, polaritons are complex entities, inheriting their characteristics from the
photonic and excitonic components. The exciton and photon contributions can be
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Figure 1.2. Polariton state dispersions. (a-c) Examples of a lower (LP) and an upper (UP)
polariton branch dispersions (solid green lines) at three different exciton-photon detunings
∆0 = EC0−EX0: (a) ∆0 < 0 (a ”photonic” detuning), (b) ∆0 = 0, (c) ∆0 > 0 (an ”excitonic”
detuning). The bare exciton (red) and bare microcavity photon (blue) dispersions are plotted
with dashed lines. (d-f) Hopfield coefficients of the corresponding polariton dispersions. Red
(blue) lines show the excitonic (photonic) Hopfield coefficient of the lower polariton branch
|X|2 (|C|2).

quantified by the so-called Hopfield coefficients. These determine the exciton (X) and
the photon (C) fraction in a lower polariton and can be defined as:

|X|2 = 1
2

1 + EC − EX√
(ℏΩ)2 + (EC − EX)2

 = 1
2

1 + ∆ (k)√
(ℏΩ)2 + ∆ (k)2

 , (1.20)

|C|2 = 1
2

1 − EC − EX√
(ℏΩ)2 + (EC − EX)2

 = 1
2

1 − ∆ (k)√
(ℏΩ)2 + ∆ (k)2

 . (1.21)

The coefficients always satisfy a condition:

|X(k)|2 + |C(k)|2 = 1. (1.22)

Their wavevector dependencies are presented in Fig. 1.2 (d-f), showing how the pho-
tonic and excitonic fractions change as a function of the momentum. The examples
are plotted at different initial exciton-photon detunings (with corresponding eigen-
state dispersions presented in Fig. 1.2 (a-c)).
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The Hopfield coefficients significantly simplify the polariton description. With
their use, polariton effective masses or lifetimes can be simply calculated from the ini-
tial state (photon and exciton) parameters with the Hopfield fractions used as weights,
as is described in sections 1.2.4 and 1.2.5. Mathematically, Hopfield coefficients can
be calculated as the Hamiltonian eigenvectors, showing the contribution of each basal
state to the final eigenvalue.

1.2 Key properties

Previous section introduced the concept of the strong coupling between excitons and
photons confined in optical microcavities and the emergence of new quasiparticles -
exciton polaritons (which will be also called polaritons further on for simplicity). It
introduced their unique dispersion relation, clearly deviating from the quasi-parabolic
cavity photon modes. This section will discuss polaritons’ key characteristics, emerg-
ing as a unique mixture of the photonic and excitonic properties.

1.2.1 Polariton spin

Polaritons possess a spin degree of freedom, stemming from optically active excitons
coupled to photons. Typically, in QWs composed of the zinc-blend semiconductors
(such as many III-V semiconductors, e.g. GaAs) the excitons can have spin pro-
jections of either ±1 or ±2, what is directly related to the exciton formation from
conduction band electrons (with spin of ±1/2) with either heavy-hole (±3/2) or light-
hole (±1/2) states in a semiconductor [1]. Since photons can carry only a spin angular
momentum of s = ±1 (corresponding to the two circular polarization states), only
the j = ±1 excitons couple to light. The j = ±2 states cannot be coupled to photons,
hence are often referred to as dark excitons. Effectively, only bright excitons form
polaritons. The influence of the dark exciton presence on the polariton coupling has
recently gained interest [23, 24], but its discussion is beyond the scope of this the-
sis. Hence, polariton spin has two allowed integer projections on the cavity growth
axis, effectively making polaritons a two-component (spinor) system, described by a
pseudospin parameter [25].

It is important to note, that as the photonic component carries the spin angular
momentum of the whole quasiparticle, one can directly measure the polariton spin
by measuring the polarization of light escaping the microcavity. The pseudospin (or
the polarization) degree of freedom can be very conveniently described by a so-called
Stokes vector and represented on the Poincaré sphere [25, 26], presented in Fig. 1.3.
In this formalism, the polarization (hence also the pseudospin) is described by a
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Figure 1.3. The Poincaré sphere, allowing a simple visualization of the last three Stokes’
parameters, with their easy parametrization into spherical coordinates. An exemplary po-
larization state is shown with a green arrow.

four-component vector S:

S =


S0
S1
S2
S3

 . (1.23)

S0 is the total light intensity, S1 is the degree of linear polarization in the vertical
(V) and horizontal (H) polarization basis S1 = IH −IV

IH +IV
, S2 is the degree of linear

polarization in the diagonal (D) and anti-diagonal (A) polarization basis S2 = ID−IA

ID+IA
,

and S3 describes the degree of polarization in the circular (left-circular σ− or right-
circular σ+) polarization basis S3 = Iσ+ −Iσ−

Iσ+ +Iσ−
, while I is the intensity of the polarized

light. H and V is a basis of two perpendicular linear polarizations, while D is the
+45◦ and A is the −45◦ (with respect to the H/V axes) linear polarizations [27,28].

A visualization of the Stokes vector on a Poincaré sphere is presented in Fig. 1.3
as a green arrow. Such a representation simplifies the description of the polarization
state. On the sphere, points on the equator correspond to linearly polarized light,
points at the poles represent circularly polarized light, and points on the rest of the
sphere indicate other elliptical polarization states. Shorter vectors represent not fully
polarized states. Three of the Stokes parameters (S1, S2, S3) correspond to the
state’s Cartesian coordinates.

Plotting the pseudospin vector in 3D allows for visualizing the pseudospin distri-
bution in space or in momentum. Such a distribution is characteristic of the structure
in question and can be described as the pseudospin rotation in the effective gauge
field, as expanded in further subsections.
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1.2.2 TE-TM splitting

When considering the polariton spin degree of freedom and the polarization of light
in a cavity, the effect of the TE-TM splitting (or longitudinal-transverse splitting)
needs to be introduced. In optical microcavities one can observe the energy splitting
between transverse-electric (TE) and transverse-magnetic (TM) polarized modes in
the dispersion for oblique angles - the effect known for polaritons, but also for purely
photonic structures [2,25,29]. For polaritons, the effect arises from three contributing
effects: (i) angle- and polarization-dependent phase delay upon reflection of light
from the DBR layers (∆ϕT M = ∆ϕT En21/n22) - a purely photonic effect, (ii)
the wavevector dependence of the long-range exciton exchange interaction and (iii)
the difference in wavevector dependence of exciton oscillator strength for TE and TM
modes [25,26,29]. The first of the listed effects is much larger than the latter two, and
is intrinsic to a microcavity, hence it is often the only one taken under consideration.
One can view it as a different effective length of the cavity for the TE and TM modes.

TE-TM splitting manifests in the polariton branch dispersion as a different cur-
vature of the two linearly polarized branches, making the polariton effective masses
different for the TE and TM polarized modes (typically mT M < mT E). An example
of such a dispersion is presented in Fig. 1.4 (a-b). The two modes are represented by
solid red and blue lines. The splitting between them is presented in (c-d) with a green
dashed line as a function of the in-plane wavevector in two perpendicular directions
(in-plane of the cavity, denoted as kx and ky).

In the effective mass approximation, at small in-plane wavevectors k (at small
angles of incidence), the splitting between the TE and the TM modes increases with
k (regardless of the direction), following a quadratic dependence. Its overall angle-
dependence is non-monotonic - in an empty cavity (a purely photonic case) it increases
like sin2(θ), where θ is the angle of incidence (angle from the direction perpendicular
to the sample surface), but depends on the mode energy. The TM mode can be higher
or lower in energy, depending on the the detuning between the cavity mode from a
central wavelength of the DBR stopband. [29].

The dependence in polariton microcavities is further affected by the wavevector
dependence of the Hopfield coefficients (described in section 1.1.3). Since both the
photonic and excitonic components are contributing to the overall splitting, its value
also depends on the exciton-photon detuning. As mentioned, because of the photonic
contribution, the splitting’s magnitude is sensitive to the central wavelength of the
DBR stopband and the detuning of the cavity mode from a central frequency. The
impact of this photonic contribution and the weaker excitonic effects are weighted
with the photonic and excitonic fraction coefficients.

The general Hamiltonian describing the TE-TM splitting may be written in a
circular polarization basis as [26,28–30]:

HT E−T M (k) =
(

H0 (k) β (k) e−2iϕ

β (k) e2iϕ H0 (k)

)
= H0 (k) I + Ωeff · σ (1.24)
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Figure 1.4. Visualization of the TE-TM splitting. (a-b) An example of a typical polariton
dispersion in a negatively-detuned cavity, with two linearly-polarized modes (corresponding
to the TE and the TM polarizations) plotted with solid red and blue lines respectively.
Dashed lines show the dispersions of the constituent particles (the cavity photon and the
exciton). A splitting between the two polariton eigenstates is presented in (c-d) with green
dashed lines. The dispersions and the splittings are presented in two perpendicular directions
in plane, kx (a,c) and ky (b,d). (e) A corresponding effective field texture, showing a rotation
of the polariton pseudospin in plane.

where k is the in-plane wavevector (k ≡ k∥) and ϕ - the in-plane angle (orientation
of the in-plane wavevector), β (k) is the energy splitting between the TE and TM
modes, I is the identity matrix and σ represents the Pauli matrix vector (with its
components being Pauli spin matrices). H0 is an initial Hamiltonian, describing
either the photonic or the polaritonic system without the TE-TM splitting. Ωeff can
be then viewed as an effective in-plane magnetic field, acting on the particle spin:

Ωeff (k) = ΩT E−T M (k) = β (k)

cos2ϕ
sin2ϕ

0

 . (1.25)

Since the third component is zero, the field acts in-plane. The analogy with the real
magnetic field is further expanded below.

Explicitly describing the exciton-polariton dispersions, one can characterize the
lower branch with a single-particle Hamiltonian in a circular polarization basis [28,30]:

H (k) =
(

ELP (k) −βk2e−2iϕ

−βk2e2iϕ ELP (k)

)
. (1.26)
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Here, ELP is the dispersion of the lower polariton extracted from a coupled-oscillator
model (see section 1.1.3) and β is the parameter quantifying the TE-TM splitting.
The in-plane wavevector is expressed as k = (kx, ky) = |k| (sinϕ, cosϕ). The two
resulting eigenstates are presented in Fig. 1.4 (a-b). The TE-TM splitting has a
rotational symmetry (visualised as a direct symmetry between two perpendicular
directions in Fig. 1.4 (c,d)), and the two eigenstates are degenerate at k = 0.

Because the coupling of the polariton pseudospin to the in-plane wavevector is
described in a mathematically analogous way to the spin-orbit coupling of electrons
(where the effective magnetic field from their orbital motion interacts with their in-
trinsic angular momentum, giving rise to a spin splitting), it is very often referred
to as the “photonic spin-orbit coupling” [25, 31] (see equation 1.24). In solid-state
systems spin-orbit coupling transforms static electric fields in the laboratory frame
into magnetic fields in the frame of a moving electron, which then interact with the
spin of the electron. In optical systems the role of electron’s spin is taken by the spin
of photons, encoded in their polarization. Just as in electronic systems, also in optical
ones (including polariton) this effect results in a variety of quantum phenomena, such
as the realization of topological states [30, 32–34]. Depending on the symmetry, one
can realize the so-called Dresselhaus- or the Rashba-type of coupling [25, 31, 35, 36].
In case of polariton systems, spin relaxation mechanism is similar to the Dyakonov–
Perel spin relaxation mechanism for electrons in semiconductors, where the role of the
effective Rashba and Dresselhaus fields is now played by the field created due to the
TE–TM splitting. However, the TE-TM field created by the TE–TM splitting has a
unique wavevector dependence, differing from the Dresselhaus or Rashba ones [25].

Since the spin (polarization) of polaritons is coupled to momentum and the Hamil-
tonian 1.24 is analogous to the effective magnetic field acting on particle spin, Ωeff
governs polariton pseudospin’s rotation in plane. The effect is presented in Fig. 1.4
(e). There, the distribution of polariton pseudospin in plane is plotted, when only
the TE-TM field is present, with the dispersions plotted in (a-b)). The polarization
winds around the point k = (0, 0).

Importantly, the photonic spin-orbit effect leads to the optical analogue of the
spin-Hall effect [37]. In electronic systems the spin Hall effect refers to a generation
of an electronic spin current perpendicular to the charge current flow, due to the
spin-dependent scattering of electrons by charged impurities or other defects, or due
to spin–orbit effects on the carrier energy dispersion [25]. In polaritonic systems spin
currents are carried by neutral particles (polaritons) and the spin separation takes
place owing to a combination of elastic scattering of polaritons by structural disor-
der and the directionally-dependent influence of TE–TM splitting on the scattered
polaritons. The elastic scattering of exciton polaritons is affected by the effective
field Ωeff - if the initial polariton state has a zero spin and is characterized by some
linear polarization, the scattered polaritons become strongly spin polarized. In ef-
fect, spin polarizations of the polaritons scattered clockwise and anticlockwise have
different signs. It leads to a clear polarization texture in momentum space [25,26,37],
confirmed in experiments.

The TE-TM splitting and the effective field can be directly observed experimen-
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tally, by performing polarization-resolved measurements (in two orthogonal polariza-
tion bases, e.g. horizontal and vertical). Performing the measurements in horizon-
tal/vertical, diagonal/antidiagonal and both circular bases allows for extracting all
components of the polariton pseudospin, hence allows to directly map the effective
field. Different polarizations of polaritons scattered in different directions (a hallmark
of the optical spin Hall effect), has been observed and realized experimentally in dif-
ferent conditions [38–41], also in the condensated state (introduced in further parts
of this thesis) [42,43].

Moreover, one can further expand Hamiltonian 1.24 (and the effective field com-
ponents 1.25), accounting for an additional birefringence or for a real magnetic field,
simply by adding either nondiagonal or diagonal components to the matrix. The
TE-TM splitting is inherently degenerate at k∥ = 0 and non-zero at larger momenta,
but the cavity anisotropy (a birefiregent component) or the real magnetic field lifts
this degeneracy at normal incidence and breaks its rotational symmetry. Such new
contributions are described in the next section.

1.2.3 Cavity anisotropy and gauge fields

The model described in the previous section can be further expanded, accounting for
additional terms.
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Figure 1.5. Visualization of the gauge field, with both the TE-TM splitting and the cavity
anisotropy included. Panels are analougus to Fig. 1.4 and all the parameters are the same,
apart from the nonzero X-Y splitting value. The anisotropy axis have been selected to act
in direction y (direction x is perpendicular to the anisotropy axis, φ = π/2).
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One of such terms results from the cavity birefringence or any inherent/imposed
anisotropy. The TE-TM splitting has a rotational symmetry, creating two polar-
ized states which are degenerate at k = 0, drawing away from each other at higher
momenta (as presented in Fig. 1.4), regardless of the direction in-plane. However,
this symmetry can be broken with the sample anisotropy [28, 30]. The birefringent
term refers to a difference in effective cavity lengths for the ordinary and extraor-
dinary waves, which can directly stem from the anisotropic crystal structure and is
often unavoidable in crystalline systems. It can also be purposefully engineered into
the structure [31,44]. The anisotropy, breaking the rotational symmetry, changes the
symmetric (paraboloid-like) dispersion of the photonic (hence also polaritonic) modes.
It acts as an additional splitting between linear polarizations associated with crystal-
lographic axes (when stemming from the crystal structure), and can be described as
a constant effective magnetic field term (often referred to as an X-Y splitting).

Anisotropy becomes one of the terms in the aforementioned Hamiltonians 1.24 and
1.26 and adds to the effective field Ωeff (1.25). Accounting for the TE-TM splitting
and the intrinsic anisotropy (X-Y splitting) results in the Hamiltonian [28,30,36]:

H (k) =
(

H0 (k) α (k) + β (k) e−2iϕ

α (k) + β (k) e2iϕ H0 (k)

)
, (1.27)

Here α describes the birefringence.
Explicitly describing lower polaritons translates to:

H (k) =
(

ELP (k) αe−iφ − βk2e−2iϕ

αeiφ − βk2e2iϕ ELP (k)

)
, (1.28)

where α quantifies the X-Y energy splitting and φ is the anisotropy orientation angle.
The two eigenstates of this Hamiltonian are presented in Fig. 1.5.

As one can see, when the anisotropy is added on top of the TE-TM splitting, the
two polarization-resolved modes dispersions are changed - as the degeneracy at k = 0
is broken, the branch dispersion now depends on the spatial direction (its relation to
the anisotropy axis), what is visualized in Fig. 1.5. All parameters used are the same
as in Fig. 1.4, but the anisotropy aligned with the y direction is included. Again, solid
blue and red lines show the two polarized modes (a-b) and the splitting between them
is presented with the green dashed line (c-d). A pseudospin rotation (the effective
field) is presented in (e). One can see a clear difference between the two perpendicular
directions (in-plane of the cavity, kx and ky).

At a specific angle, in the direction parallel to the anisotropy axis, the TE-TM and
the X-Y fields exactly compensate, what results in a crossing of the two eigenstate
dispersions, leading to the occurrence of a degeneracy point in momentum space. Such
a unique state energy dependence, often described as a diabolical point, leads to a
number of sophisticated phenomena [28, 30, 35, 36, 45]. The associated effective field
acts on the pseudospin as a non-Abelian gauge field of the Rashba kind [28]. Around
this crossing the polarization rotates, what can be described by a field analogous to
a magnetic monopole, what is visualized in Fig. 1.5 (e). It remains in plane of the
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sample. The effect of this field will be further explored in Parts II and III of this
thesis.

Furthermore, one can introduce a real magnetic field, affecting polaritons via the
Zeeman splitting, due to the excitonic component of polaritons. In QWs, placed in a
real magnetic field, excitons with spins parallel or antiparallel to the magnetic field
have different energies. This results in a Zeeman splitting of the exciton resonance,
with value linearly proportional to the magnetic field. The Zeeman splitting of exci-
ton states transfers to the Zeeman splitting observed for polaritons, weigthed with
the excitonic Hopfield component [2, 46]. As the two spin components of excitons
couple to photons with corresponding circular polarizations, the magnetic field im-
poses polarization of the polariton states, manifested as a change in the polarization
of the detected light from a polariton microcavity [46]. The Zeeman split branches
can be observed with the polarization-resolved measurements in the circular basis, in
the presence of a magnetic field.

When added on top of the TE-TM field and the possible anisotropy, magnetic
field makes the total effective field non-zero also out of plane [30]. All three contri-
butions can be then accounted for in a full model with the Hamiltonian in a circular
polarization basis (further expanding Hamiltonians 1.24 and 1.27):

H (k) =
(

H0 (k) + ∆Z α + β (k) e−2iϕ

α + β (k) e2iϕ H0 (k) − ∆Z

)
= H0 (k) I + Ωeff · σ. (1.29)

Here φ = 0 has been selected for simplicity of notation, aligning the x, y axis with the
anisotropy axis. ∆Z is the polariton Zeeman splitting (owing to the excitonic part).
With no external magnetic field ∆Z = 0.

The full effective field can be then extracted as:

Ωeff (k) =

α + β (k) cos2ϕ
β (k) sin2ϕ

∆Z

 . (1.30)

1.2.4 Polariton effective mass
In close resemblance to electrons in specific energy bands in a semiconductor, the
concept of an effective mass of exciton polaritons is very often used. It characterizes
the curvature of the polariton energy-momentum dispersion. As introduced briefly in
section 1.1.3, in typical cases of strongly coupled polaritons in planar microcavities,
the lower and upper polariton effective mass can be described as the harmonic mean of
the mass of its exciton and photon components, weighted by the Hopfield coefficients
[11,13]:

1
mLP

= |C|2

mX
+ |X|2

mC
(1.31)

and
1

mUP
= |X|2

mX
+ |C|2

mC
(1.32)
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(where |X|2 and |C|2 determine the exciton and the photon fraction in a lower po-
lariton). Because the effective mass of a photon is much smaller than that of an
exciton, the exciton-polariton effective mass is predominantly determined by the pho-
tonic part, making the lower polariton effective mass very small (on the order of
10−5m0, where m0 is the free electron mass), especially when the photonic fraction
is high [2, 13].

At small wavevectors, near the bottom of the dispersion, both polariton branches
can be approximated as nearly parabolic, with evident discrepancies only at larger
momenta. Hence, very often only the parabolic approximation is used. Nevertheless,
the mass is broadly wavevector-dependent.

The concept of the effective mass can be generalized to any energy dispersion, as
the measure of a band curvature, in direct similarity to semiconductor band studies
in solid-state physics. A more general definition of mass can be then obtained with
the use of a Taylor series expansion of the dispersion: E (k) ≈ E0 + ℏ2k0(k−k0)

m1(k0) +
ℏ2(k−k0)2

2m2(k0) + . . . [47]. The coefficients of each expansion order relate to a new mass
parameter, with certain characteristic effects on the dynamics of the particle. In
particular one can define:

m1 = ℏ2k [∂kE (k)]−1
, (1.33)

m2 = ℏ2 [∂2
kE (k)

]−1
. (1.34)

The parameter m1 is related to the classical motion of the wave packet, and
determines the group velocity vg = ℏk/m1. The parameter m2 determines the
acceleration of the packet when an external force is applied, as well as its diffusion
rate. In case of a purely parabolic dispersion m1 = m2, but otherwise, m1 and m2
can have different signs, be zero, or even become infinite [47,48]. These concepts will
be expanded in Part V of this thesis.

In exciton-polariton research the m1 effective mass is most often considered. It
becomes particularly important in the context of an additional potential landscape
present in the microcavity, e.g. a lattice potential [11]. External potential largely
affects the polariton dispersion (similarly to the electron bands in semiconductors),
hence changes the mass. Favourable condensation of the negative-mass polaritons
has been shown in a photonic lattice (at high symmetry points) [49], however the
negative effective mass has also recently been observed in a planar structure [48].
This directly translates to an opposite sign of the particle’s velocity and momentum
in its dynamics, given by relation m1vg = ℏk and can allow the observation of more
sophisticated phenomena [50]. These topics are expanded in Part V.

1.2.5 Polariton lifetime

In direct analogy to the polariton mass, the polariton lifetime τ can be calculated as a
harmonic mean of the exciton lifetime and photon lifetime (being a result of a leakage
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of light through the cavity mirrors), weighted by the Hopfield coefficients [11,13]:

1
τUP

= |C|2

τX
+ |X|2

τC
, (1.35)

1
τLP

= |X|2

τX
+ |C|2

τC
(1.36)

For lower polaritons the lifetime is typically inherited mostly from the photonic com-
ponent, as the cavity photon lifetime is usually much shorter than the exciton lifetime
inside a QW [2]. The former time is most typically on the order of up to single picosec-
onds in standard semiconductor microcavities and the latter - on the order of several
tens of picoseconds up to nanoseconds in GaAs-based QWs, resulting in polariton
lifetime on the order of 1-100 ps [13, 51, 52]. Total decay rate obviously depends on
the exciton-photon detuning, as ∆ governs the Hopfield fractions (see Fig. 1.2).

Because the photonic component plays a crucial role, the polariton lifetime is also
highly affected by the cavity Q-factor. Constant leakage of photons makes cavity-
polaritons a highly dissipative, open system, with the need of constant pumping
to continue their investigation. However, it also allows for the direct measurement
of polariton characteristics such as energy or phase (in real and momentum space),
via optical experiments - as the observation in luminescence measurements is based
typically on leaked photons.

Additionally, the lifetimes can be directly translated into the state decay rates,
introduced in equation 1.17. The rates are proportional to the inverse lifetimes and
can be investigated in optical experiments from the state linewidths. For example
γX and γC are the exciton and photon decay rates (inverse lifetimes, multiplied by
ℏ) respectively. Decay rates of lower and upper polariton states can be re-written as
a weighted mean of γX and γC , weighted with the Hopfield coefficient.

1.2.6 Non-hermiticity
Due to the constant leakage of photons from the cavity, exciton-polaritons are an
inherently open quantum system, which continuously decays and requires constant
pumping of energy. Even though according to the principles of quantum mechanics
the Hamiltonian describing a closed system’s energies must be Hermitian, losses in
open systems make them inherently non-Hermitian [53–55]. Polariton intrinsic non-
Hermiticity for long has been unsung, but found a huge renewed interest in recent
years [53,56–59].

As in any open system, the losses can be accounted for by using the concept of
complex energies. Even though the basic axiom of quantum mechanics requires the
Hamiltonian (and other observables) of a system to be self-adjoint operators, repre-
sented by Hermitian matrices, in reality any physical system is in some way coupled
to its environment. Many approaches has been suggested and used to take this into
account, one of which being effective non-Hermitian Hamiltonians [60]. They provide
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a conceptually simple and intuitive approach and have already led to profound in-
sights and applications [61]. They enable to calculate the complex eigenenergies of
the system, where the real part corresponds to the state energy value and the imag-
inary part quantifies the dissipation (loss) or gain. In case of exciton polaritons, it
means accounting for and calculating both the real mode energies (e.g. as a function
of particle’s momentum) and the decay rates, in one complex parameter, introduced
in equation 1.15. Both of them can be observed experimentally, e.g in optical exper-
iments – the former directly, and the latter via the mode linewidth (proportional to
inverse lifetime) [53]. This will be further employed in Part III of this thesis.

The solution of a simple two coupled oscillators Hamiltonian with the inclusion
of the initial state linewidths, has already been introduced in section 1.1.3, with the
lower and upper polariton dispersion formulas in equation 1.17, accounting for their
imaginary parts.

Non-hermiticity of polaritons, combined with their versatility and usefulness in ex-
perimental studies, made them an ideal platform to study sophisticated non-Hermitian
topologies [53,61–64] and other extraordinary phenomena. Non-hermiticity has been
shown to strongly modify the structure of the modes and spectral degeneracies,
in effect affecting particle transport, localization and dynamical properties. It is
linked to the existence of the exceptional points (non-Hermitian spectral degenera-
cies) of the modes, and paths a way to the study of non-trivial non-Hermitian topolo-
gies [61, 65–67]. Phenomena such as unidirectional transport, anomalous lasing/ab-
sorption and chiral modes have been observed and remain of a huge interest in the
exciton-polariton research. A combination of topology and non-Hermicity is the topic
of Part III of this thesis.

1.3 Material platforms

Exciton polaritons can emerge in any system, where excitons and photons interact.
Due to fabrication and experimental concerns, availability, interest in particular char-
acteristics or potential for useful application, several material platforms have been
most widely studied. Some of the most advantageous and sought-after characteris-
tics are: small exciton Bohr radius and large exciton binding energy (leading to high
saturation density, necessary for the exciton presence even at high particle densities),
high quality cavity (leading to long cavity photon and polariton lifetimes), strong
exciton-photon coupling (for robust strong coupling) and large QW exciton oscilla-
tor strength, together with large polariton-phonon and polariton-polariton scattering
cross sections (leading to efficient polariton thermalization) [13]. Of course the avail-
ability and costs of the fabrication technology remain a crucial factor.

The most widely used and studied systems since the very beginning have been the
direct III-V direct-gap semiconductors, particularly the AlxGa1−xAs compounds, due
to the best fabrication quality (via molecular-beam epitaxy growth) of both QWs and
microcavities. Low lattice mismatches between the GaAs and AlAs materials, leading
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to the achievement of nearly defect-free alternating layers, allowed the fabrication
of very high Q-factor microcavities. To this day the most sophisticated polariton
studies requiring high quality and long polariton lifetimes are achieved in this material
system, following the very first observation of dynamic polariton condensation [68].
An important drawback of this material-system however is quite low exciton binding
energy, which prevents the polariton observation (hence also condensation) at room
temperature [13, 52]. The binding energy on the order of a few milielectronovolts
is not sufficient to overcome the thermal energy at increased temperatures, leading
to dissociation of excitons hence lack of the exciton-polariton presence. Necessity
for cryogenic temperatures in studies and in potential devices is a huge drawback,
both experimentally and from the useful application point of view [51]. There are
several approaches to overcome this issue (such as achieving a very strong coupling
regime [69], Γ − X mixing [70], or implementation with novel materials), but still the
low-temperature experiments remain the gold standard.

Another, historically exploited first, but less often used today system is CdTe (II-
IV semiconductor) -based, typically with CdTe QWs and MgxCd1−xTe barrier and
DBR layers. Even though the lattice mismatch between these materials is larger,
it is compensated by a larger binding energy and a larger oscillator strength, as
well as a larger refractive index contrast (leading to less layers needed in the DBRs)
[13,51]. The first Bose-Einstein condensation (in quasi- thermal equilibrium) has been
achieved in this material system [71], showing its potential. However, due to the less
efficient polariton scattering, the condensation in the ground state is actually harder
to observe, and the energy relaxation bottleneck is more persistent in this system [13].
It is also not a popular choice in typical optoelectronic devices, hence it has a lower
potential in its integration with devices and application in technology.

Additionally, there have been studies on the development and use of certain wide-
band-gap materials with low lattice constants, such as GaN, ZnSe or ZnO. As their
exciton binding energy and oscillator strength are large, polariton lasing can be ob-
served even at 300 K, though few such observations have been reported [72, 73].
A much higher concentration of impurities and crystal defects leads to much lower
microcavity quality and the QWs integration is more challenging due to the lack of
lattice matched DBR layers [13].

Some organic semiconductors have also been suggested and used, hosting the
Frenkel/molecular excitons with a much larger binding energy and oscillator strength
[74, 75]. More importantly, recently there is a growing interest in the use of new
systems, such as thin layers of transition metal dichalcogenides [76,77] or perovskites
[78,79] to develop polariton samples. Again, high exciton binding energy and oscilla-
tor strength make them advantageous and make polariton observation at room tem-
perature possible. On the other hand, polariton condensation is challenging. Reports
show that the nonlinearity in TMDCs and perovskite polariton microcavities are typ-
ically dominated by the phase-space filling effects and vanishing of the Rabi splitting,
which makes the achievement of polariton condensation very difficult [80,81]. The key
advantages of TMDC use are e.g. the strongly bound excitons, a range of possible
materials with different band-gaps (covering a broad spectral region from near-IR
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to visible), exciton sensitivity to the sample thickness, valley degree of freedom or
the possibility of gating and electrical control [76, 80]. These materials are transpar-
ent, flexible, and mechanically strong, all making them advantageous for practical
optoelectronic and nanophotonic applications. At the same time, they need to be im-
plemented in microcavities - which remains a big challenge. Unlike the MBE-grown
semiconductors, their exfoliation-based preparation method makes them unsuitable
for monolithic microcavities growth. A wide range of approaches have been used, such
as integration with an MBE-grown GaAs-based bottom DBR and plasmonic metallic
top DBR, transfer of the top DBR on top of the flake, DBR growth in MOCVD cham-
bers and other, but the final microcavity quality is still significantly smaller than the
best GaAs-based structures [76].

In this thesis several different novel properties and qualities of polaritons have
been studied. Three of the four result parts are connected by a similar experimental
platform – all employing the GaAs-based monolithic microcavities. In particular two
different structures have been considered: one ultrahigh quality structure with GaAs
QWs and the other employing an AlGaAs compound. In both cases the material
choice was of core importance to the study and the finding. The choice in the first
one was necessary for studies of very sophisticated phenomena – ultralong polariton
lifetime was crucial in an achievement of a high density highly uniform condensate in
the Thomas-Fermi regime and the observation of condensation excitations (Part II of
the thesis). The latter employed a sample designed for room-temperature condensa-
tion even in the GaAs-based platform, owing to the Γ − X coupling, which allowed
the formation of indirect X-excitons, core to the observed phenomenon (Part V). The
exact structure characterization proved essential in the result interpretation and be-
came an important piece of research (Part IV). The aforementioned coupling allowed
also the studies at increased temperatures.

On the contrary, the platform investigated in Part III is different, as it em-
ployes lead-halide perovskite crystals embedded in an optical microcavity. This was
necessery to increase the sample’s anisotropy (as these orthorombic-structure crys-
tals are known to be optically anisotropic). However, the experimental methods were
the same as in other studies (work in Part II in particular), together with analysis
methods and big part of the underlying phenomenon.

1.4 Applications

Finally, it is important to mention a large application potential of exciton polaritons
and a wide range of ways how they can be used in science, industry or everyday life.

Since the very beginning, they were the most widely studied in the context of
efficient lasers or light sources – due to their condensation and efficient coherent light
emission. The topic of polariton condensation is discussed in detail in the next chapter
(Chapter 2), with a section devoted to polariton lasing.
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What is important is that the onset of coherent light emission and superlinear
growth of the output power in polariton systems is expected and known to occur at
much lower threshold powers than in traditional photon lasers, where a population
inversion is needed [12,51,82]. This was the core promise of polariton research and its
drive since their discovery [2], with the ”holly grail” of near threshold-less lasing and
ultra-efficient light sources being the goal. Unlike typical photon lasers, the threshold
for polariton ”lasing” can be made almost arbitrarily low, if the polariton lifetime
is sufficiently increased (in contrast to the limit of the minimum carrier density at
transparency, which needs to be surpassed to observe population inversion) [51]. The
polariton decay rate is usually dominated by mirror losses, which can be mitigated
with the sample quality.

Polariton lasing has been demonstrated in a wide range of materials and structures
(e.g. see reviews [12, 51, 82]), with the lowest threshold densities achieved in high-
quality GaAs-based samples, grown with epitaxial methods. However, despite the big
promises, most polaritonic structures suffer from the presence of a phonon bottleneck,
which hinders polariton relaxation (see section 2.2.2). Electrical injection has proved
to be even more challenging, however, it was finally achieved, with the threshold
powers comparable (or even favorable) to the best vertical cavity surface emitting
lasers (VCSELs) [51,83]. Room temperature lasing has also been achieved in a range
of material platforms [79,84–87].

Furthermore, polariton lasing has been investigated in a wide range of contexts,
such as in lattices, with promises of topological lasing [88–92], chiral lasing [93–95] or
spin-helix lasing [35] in a range of platforms.

Polaritons have also been suggested as a medium allowing the creation of entirely
new states of matter, such as in fractional quantum Hall states, even with a promise of
looking for non-Abelian anyons [96]. These states can be used as quantum simulators,
with polaritons being advantageous over atomic and optical systems.

Apart from lasing, polaritons have attracted significant attention e.g. for the
realization of all-optical logic elements. First proposals investigated logical gates em-
ploying the binary information in the polarization of light [97]. Most studies however
have suggested polariton diodes and polariton electronic switches that use the charac-
teristic bistable or spin-multistable nonlinearity of exciton polaritons, to create logical
elements [51]. The intrinsic polariton nonlinearity is expected to provide advantages
in terms of switching times and threshold powers when compared to purely optical
schemes. Furthermore, the polarization degree of freedom of polaritons, similarly to
photons, can be used in a number of ways in spintronic devices [2, 43].

Another interesting application is the so-called quantum polaritonics, which har-
nesses quantum behaviour of polaritons, with no classical counterpart. The examples
include obtaining an entanglement from pair scattering (e.g. [98]), showing an inter-
ference between two parametrically generated states that share the same signal [99],
or - importantly - using Rabi oscillations to create quantum bits (qubits) [100]. These
have potential applications in cryptography, computation and simulation.

Recently there is a lot of attention brought to the use of exciton polaritons in neu-
romorphic computing. Typically the challenge in developing optical artificial neural
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networks for neuromorphic computing is the realization of a nonlinear activation func-
tion but combined with ultrafast operation. Since photons are very weakly interacting,
purely photon-based optical neurons typically require large input power to reach the
nonlinear regime, limiting their capability in terms of speed or energy efficiency. The
strength of exciton-polariton nonlinearity is much higher, enabling their efficient use.
Theoretical, but also experimental results have already been shown [97,101–104], with
polaritonic neuromorphic computing outperforming linear classifiers [105].

Finally, from the scientific research perspective, huge advantages of polariton sys-
tems (over photons, atoms or electrons) make them ideal for the so called emulation
and simulation [106]. Their experimental investigation may give important insights
into other, less accessible platforms, systems or contexts, allowing profound conclu-
sions. They act as the so-called analogue systems. As such, they have been investi-
gated in a wide range of contexts, such as for the study of classical magnetism [106],
non-trivial many-body physics (such as the fractional quantum Hall states mentioned
above [107]) or even in experimental studies of black holes [108–110].



CHAPTER2
Polariton condensates

The first chapter introduced the concept of exciton polaritons and their key prop-
erties, inherited mostly from the photonic and excitonic components. Importantly,
as explained, they are quasiparticles composed of two bosons - hence they have an
integer spin projection and are bosonic in nature. This fact governs their statistics,
their behavior and the rules they obey.

In stark contrast to Fermi-Dirac statistics, resulting in the Pauli exclusion prin-
ciple, bosons with same quantum numbers are allowed to occupy the same state.
Moreover, their being in the same quantum state is more probable, due to the parti-
cle’s indistinguishability [111]. In popular science it is often referred to as the ”social”
nature of bosons. The fact that a transition rate into an already occupied quantum
state is enhanced by its occupation number is called bosonic stimulation [2, 112]. It
is broadly the basis of a wide range of collective phenomena bosons undergo, most
remarkable of which is condensation.

From the boson statistics Bose and Einstein first showed, how such particles are
expected to undergo a phase transition in sufficiently high densities, or at sufficiently
low temperatures [113, 114]. In this state a macroscopic number of particles occupy
the same state (e.g. the ground state) and they behave collectively, as a single unified
phase. The condensate is described by a single wavefunction and the state is known
to have spontaneous macroscopic coherence.

This chapter will introduce the very basics of bosonic condensation, the specific
case of condensation of polaritons and some of the properties of polariton condensates,
crucial in further findings of this thesis. It will also highlight the advantages of
polariton investigation in the condensate studies, with marked differences from other,
typically regarded systems.

2.1 Bose-Einstein condensation

Following Bose and Einstein’s theory [113, 114], all non-interacting bosons can be
described by the distribution, defining the average occupation numbers (the expected
number of particles in a single-particle energy state):

ni (E, T ) = 1

e
E−µ
kB T − 1

, (2.1)
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where E and T are particle’s energy and temperature, and µ is the chemical potential.
The latter describes the energy required to add one particle without the change of
entropy or volume.

Einstein has showed how an ideal Bose gas can undergo transition between the gas
phase and the condensed state. The transition (called Bose-Einstein condensation)
occurs when the mean spacing between the particles (n1/3, with n being the gas
density) decreases to a value comparable to the thermal de Broglie wavelength Λ
[13, 115], defined as:

Λ (T ) = h√
2πmkBT

=

√
2πℏ2

kBmT
. (2.2)

At low temperatures (or high densities), the wavefuctions of separate particles
start to overlap, finally forming one state, described by a single wavefunction, where
the partcles act collectively. The critical temperature for condensation can be calcu-
lated from the above conditions – the condensate is formed when

T ≤ Tcr = 2πℏ2

kBm

( n

2.612

)2/3
, (2.3)

or alternatively (at a given temperature), when

n ≥ ncr = 2.612 1
Λ (Tcr)3 . (2.4)

In the above equations m is the boson’s mass and the number constant comes from
the Riemann zeta function ς (3/2) ≈ 2.6124.

Below the critical temperature (or above the critical density) a large fraction of
bosons occupies a single quantum state, macroscopic in space and described by a single
wavefunction. As a single state, the particles occupying it are phase-coherent. The
process of condensation can be described as a phase transition, where the macroscopic
occupation of the state is the order parameter. It is related to the symmetry breaking
(hence it is a second-order phase transition [115]).

The number of particles in the condensate N0 is dependent on temperature and
can be expressed as [116]:

N0 = N

[
1 −

(
T

Tcr

)3/2
]

(2.5)

(with N being the total number of particles).
What is key to note is that the description of Bose-Einstein condensation was

introduced for the ideal Bose gas of non-interacting particles. It was then expanded by
Bogoliubov [117], who introduced a theory for weakly interacting gases – as discussed
below in section 2.1.1.
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2.1.1 BEC of weakly iteracting particles
The description of Bose-Einstein condensation was initially introduced for the ideal
Bose gas of non-interacting particles and then expanded by Bogoliubov for dilute
gases with weak interactions [117]. With interactions, the particle scattering becomes
crucially important in the system investigation and the state occupation and critical
conditions are modified, determined by the intra-particle interaction strength.

Bose-Einstein condensates (BECs) of weakly interacting bosons have been de-
scribed by Pitayevskii [118] and Gross [119] with a famous Gross-Pitaevskii equation
(GPE) – a classical partial differential equation for the superfluid order parameter.
It can be derived as a mean-field limit to describe the dynamics of the condensate
wave function Ψ (r, t). It states [20,116]:

iℏ
∂

∂t
Ψ (r, t) =

[
−ℏ2∇2

2m
+ Vext (r) + U |Ψ|2

]
Ψ (r, t) . (2.6)

It is a nonlinear version of the Schrödinger equation – the kinetic term ℏ2∇2

2m
(with m being particle’s mass) and the external potential Vext are “expanded” by
an additional, nonlinear term – U |Ψ|2. This term describes the interaction strength
between condensing particles and make the equation explicitly dependent on the
particle density n = |Ψ|2. The strength U can be also translated into the particle-
particle scattering length as [20] (in 3D):

U = 4πℏ2as

m
. (2.7)

Furthermore, GPE can be seen as what the Maxwell equations are for quantum
electrodynamics in nonlinear media, but for the matter [20].

Importantly, the GPE is quantitatively accurate when the occupation of modes
other than the condensate is small (e.g. as is much shorter than the mean interparticle
spacing) [20]. It is valid only at very low temperatures, as it does not include the
temperature dependencies of all parameters.

From this equation one can look at the dynamics of the BEC. However, by im-
posing a small perturbation on the condensate wavefunction (the Bogoliubov approx-
imation) one can calculate also the elementary excitations of the BEC. The simplest
solution with no external potential Vext = 0 gives the dispersion relation of interacting
Bose–Einstein-condensed particles - the famous so-called Bogoliubov spectrum:

ℏω = ±

√
ℏ2k2

2m

(
ℏ2k2

2m
+ 2Un

)
. (2.8)

It shows a quasi-linear dispersion (above and below the condensate), directly related
to the interaction strength U . Further investigation of this spectrum can be found in
section 2.3.

The bosonic character of exciton polaritons make them good candidates for con-
densation, what is expanded in further sections. As interacting particles, the conden-
sate wavefunction is often derived with the use of GPE.
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2.1.2 A note on BEC in two dimensions
Importantly, it is known that in the reduced dimensionality systems, such as a uniform
2D system of bosons, true Bose-Einstein condensation cannot occur, because the
long-wavelength thermal fluctuations destroy a long-range order [13, 120]. This fact
is a consequence of the Mermin-Wagner theorem, and it is particularly important in
the context of realistic polariton condensates. Following it, in case of both 2D and
1D geometries the transition to BEC in a uniform system is only possible at zero
temperature. In dimensions d ≤ 2, long-range fluctuations can be created with little
energy cost, so as they increase the entropy, they are favored. A non-zero density of
states in the ground state prevents Bose-Einstein condensation in d ≤ 2 systems.

However, if the Bose gas is spatially confined and it has a finite size and a finite
number of single-particle states (as it is typically the case in realistic settings) the
critical condition for the transition can be fulfilled at Tcr > 0, simply at a modified
critical density, (ncr = 2

Λ(T )2 ln L
Λ(T ) in the case of 2D box system of size L) [13].

Often it is then referred to as a quasi-BEC phase [13,121].
Even though a planar microcavity exciton-polariton system is inherently two di-

mensional, the condensate’s finite size allows this law to be adhered to – realistically
the polariton condensate cannot occupy a largely extended state and the finite size
makes it effectively three dimensional. Restriction of the system to a finite size, in-
hibits excitation of density and phase fluctuations and permits the formation of a
condensate (or a quasicondensate) phase with a macroscopic coherence length [11].
The condensate size is typically governed by the optical excitation size (pumping
spot size) or by the external potential (either natural to the sample or purposefully
built-in/implemented) [11].

2.1.3 A note on other collective phases
Additionally, two other similar transition types, with some similarities to BEC, have
been shown and investigated: the so-called BKT (from the names Berezinskii, Koster-
litz and Thouless) and BCS (Bardeen, Cooper and Schrieffer). First, Berezinskii,
Kosterlitz and Thouless have shown how the formation of vortices can drive a phase
transition unique to the 2D systems — the BKT transition [122, 123]. Below the
critical temperature thermally excited vortices may form bound pairs (of oppositely
circulating vortices), which stabilize a local order [13,122,124,125]. In the context of
exciton polaritons in a wide range of realistic cases, the system size is small enough
that a quasi-BEC phase transition occurs typically before the BKT [13,126]. However,
the properties of the two phases differ and the mechanism of condensation in many
systems is still actively debated [52,127], yet it is beyond the scope of this thesis.

Secondly, in the interacting quantum gasses a transition between the BEC and the
BCS phases can occur (named after Bardeen, Cooper and Schrieffer [128]), similarly
to fermionic systems [129, 130]. The mechanism of such a transition is based on
paring between fermionic species (a crossover from a degenerate Fermi gas described
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by the standard BCS theory to a degenerate Bose gas with a BEC phase below a
critical temperature). In the context of exciton polaritons, at sufficiently large exciton
and holes densities (above a Mott density) the BEC-BCS crossover may take place,
where degenerate Fermi gasses of electrons and holes are paired in the momentum
space and an electron and hole plasma with screened Coulomb interactions coherently
couples to a cavity-photon field [13, 131, 132]. However, the delicate after-effects of
this distinction are not only beyond the scope of this work, but also the studied
densities are significantly lower.

2.2 Polariton condensation
A wide range of particles and quasiparticles have been considered and used to achieve
BEC, such as photons, excitons, bosonic atoms and other. Due to their composite
nature exciton polaritons are bosons, hence they also undergo collective-coherence
phenomena introduced in the previous section. Initially, they gained the most interest
as a highly promising platform to study Bose-Einstein condensation in solid state
systems, what significantly fuelled their research. In particular, several factors make
them highly advantageous:

• the photonic component of exciton polaritons makes them easily accessible ex-
perimentally. The photons leaked from the microcavity carry all the information
about the quantum particles, what can be easily probed in optical experiments.
Emission (luminescence) experiments are the most often used, but also the re-
flection and transmission schemes are often employed. This allows for the exper-
imental investigation of the energy, momentum, phase and spin of the formed
condensate in a quick and relatively non-expensive manner - giving an insight
into the condensate coherence, population distribution, polarization, transport,
temporal decay or spatial distribution. It is very often contrasted with studies
of atomic condensates, which prove to be a big challenge and require highly
sophisticated methods (such as complex optical traps, cooling systems up to
microkelvin scales, etc.).

• exciton polaritons have a very small effective mass in comparison to systems
such as atoms or excitons, hence the critical density (temperature) for the con-
densation are much lower (higher), and much easier to achieve than in case of
atomic or excitonic condensates;

• in a range of material systems, exciton binding energies are sufficiently large
to allow for the strong exciton-photon coupling – hence also for polariton con-
densation – at elevated temperatures, up to a room temperature (see sections
1.3 and 1.4). This again stands in stark contrast to the vastly studied atomic
gases, where temperatures necessary for condensation need to be on a sub-kelvin
range. Even though challenging, employing polaritons allowed for many studies



32 2 Polariton condensates

of condensates at room temperature [79,84–87], what is obviously advantageous
from both the experimental and the application point of view;

• the photonic component makes the extension of the phase-coherent wavefunc-
tion of polaritons much easier in space than for bare excitons, despite defects
or disorder. By dressing the excitons with a microcavity vacuum field, the
extended spatial coherence is more easily achieved, regardless of the realistic
sample imperfections, which often limit quantum phase transitions [13].

Additionally:

• the dissipative nature of exciton polaritons makes them a unique system to
study condensates in the delicate balance of pumping and loss (in and outside
of a thermal equilibrium). It further enables studies of non-Hermitian effects
(due to the inherently non-hermitian nature of polaritons, see section 1.2.6),
also in the condensed phase. The open system properties are obviously a big
challenge, but at the same time they allow novel studies and novel contexts
exploration;

• as polaritons are often studied in high quality semiconductor samples in well-
developed material platforms, they are a highly promising system for a range
of possible applications (see section 1.4). Many of the proposed applications
require the coherent, condensed state [51];

• owing to their excitonic component, polaritons – also in the condensed state –
are sensitive to external magnetic or electric fields, allowing for their external
control via these parameters. This stands in stark contrast to photonic con-
densates, with photons barely affected by the external stimuli. Combined with
the polariton sample processing and design possibilities, this opens an endless
range of settings in which they can be studied.

2.2.1 Condensation in driven-dissipative systems
Crucially, all first descriptions of a purely BEC state (described in the previous sec-
tion) are true for bosons in a thermodynamic balance, at very low temperatures and
for particles with infinite lifetime – occupying the condensed state indefinitely. It is
clearly not the case for exciton polaritons – as shown in the first chapter, polaritons
are inherently dissipative, with the lifetime determined mostly by the cavity photon
lifetime (equation 1.36). The system needs constant pumping in order to maintain the
condensate and to compensate for the losses. Therefore – it needs to be considered
as a driven-dissipative system.

A use of the GPE (equation 2.6) in order to describe a polariton condensate
wavefunction clearly needed to be expanded in order to account for the loss (or gain
and loss). New terms had to be included, often phenomenologically, in the mean field
approximation [20,115,133]. The most simple case with two additional terms, written
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explicitly for the lower polariton wavefunction ΨLP (under the resonant pumping
conditions), yielded [20]:

iℏ
∂

∂t
ΨLP (r, t) =

[
− ℏ2∇2

2mLP
+ Vext (r) + Up |ΨLP |2 − iγLP

2
+ iηLP Einc (r, t)

]
ΨLP (r, t) .

(2.9)
Here, just as in 2.6, mLP is the lower polariton effective mass (in the kinetic

energy term) and Vext is the external potential. Up is the polariton-polariton interac-
tion strength (in the nonlinear term dependent on particle density), which is related
to the particle-particle scattering length as. Additionally, two terms need to be in-
cluded: the term describing the loss rate, with γLP being the polariton dissipation
(inverse lifetime, related to photon and exciton dissipation) and the pumping term
proportional to the incident field Einc, with ηLP quantifying the coupling of the po-
lariton to incident radiation. They account for loss (dissipation) and gain (drive)
respectively.

This general equation have been successfully used to describe exciton polariton
condensates in a wide range of contexts, yet it has its limitations, with ΨLP varying
slowly in space and time. It remains a mean-field approximation. If the pumping
is done into an excitonic reservoir (further described in the next sections), with in-
dependent (and possibly slow) dynamics, it is often necessary to model the reservoir
separately [20, 115]. Often it has been coupled with Semiclassical Boltzmann rate
equations [13,49,134–136].

A typically-studied case of an incoherent, far off-resonant excitation of a polariton
condensate results in a set of two coupled equations [11,20]:

iℏ
∂

∂t
ΨLP (r, t) =

[
− ℏ2∇2

2mLP
+ Vext (r) + Up |ΨLP |2 − iγLP

2

+URnR (r, t) + i

2
RnR (r, t)

]
ΨLP (r, t) , (2.10)

∂nR

∂t
= −

(
γR + R |ΨLP |2

)
nR (r, t) + P (r, t) , (2.11)

with the first one describing the polariton wavefunction and the second one - the
dynamics of the condensate reservoir. Here, nR is the reservoir density and P is
the optical pumping rate. The critical parameters defining the condensate dynamics,
apart from the polariton dissipation γLP , are the reservoir excitons loss rate γR and
the stimulated scattering rate R. A new term RnR (r, t) describes the scattering
from the incoherent reservoir to the condensate. UR defines the polariton-reservoir
interactions.

The next section investigates the particular case of the polariton condensation
process and the complicated relaxation mechanisms necessary to achive a condensate.
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2.2.2 Polariton condensation
Creating a polariton condensate is most typically achieved by using a non-resonant
optical excitation (however electrical, or resonant excitation schemes are also possible
and have been succesfully used). Incoming light with the above-bandgap energy can
be absorbed by a semiconductor and a hot cloud of high-energy electron-hole pairs
is generated. They subsequently scatter, dissipating their energy mainly via phonon
emission. At lower energies, the Coulomb interactions become important and the
high energy-high momentum excitons are being created. Particles scatter further,
until they reach the optically active zone, the so-called light cone, in which their
momentum can be carried by photons. Only then the excitons and the photons can
couple and create polaritons [12].

Formed quasiparticles, mostly in the LP dispersion, scatter further, now mostly
with acoustic phonons. However, this process is effective only until they reach the so-
called “polariton bottleneck”. In the vicinity of the inflection point (where the exciton
and photon energy difference is on the order of the Rabi splitting), the dispersion
becomes steep, and the photonic component of the LP becomes appreciable. This
results in the reduction of the polariton lifetime, leaving less time for cooling, and the
steep dispersion reduces the phonon density of states, leaving fewer phonons available
to carry large amounts of energy and making the cooling process less efficient.

This is the reason for the polariton accumulation often observed around the bot-
tleneck region [135]. Then a second mechanism becomes responsible for their further
relaxation – the polariton-polariton scattering, which allows for occupation of dis-
persion around k = 0 [2, 12]. With the high enough population, polariton-polariton
scattering becomes more probable. It can leave one particle in the vicinity of the
dispersion minimum and the other at twice the bottleneck momentum, following the
parametric scattering condition [2]. High momentum particles can be cooled again via
phonon emission. Additionally, scattering with free carriers - also generated during
pumping - may help in the relaxation process [52,82].

Hence, at a certain particle density, conditions for bosonic stimulation are met,
leading to the avalanche scattering process and subsequent macroscopic occupation
of the ground state. With the condensate forming, polaritons are then scattered into
it with the same phase, leading to a spontaneous coherence buildup [2,52,82]. Exper-
imentally, the density can be easily changed via the pumping process, e.g increasing
the optical excitation power or injecting more carriers electrically. This stands in
contrast to typical atomic condensate realizations, where the critical conditions are
met typically by decreasing the temperature.

Bosonic stimulation scattering process is what makes polaritons remarkably dif-
ferent from traditional photon lasers (what is further expanded in section 2.2.3).

The condensation process is associated with a distinct threshold behavior: a non-
linear rapid increase of particle population at a corresponding momentum, the rise
of macroscopic coherence due to the macroscopic occupation of the same state, but
also the state linewidth narrowing. Below the threshold, there is a broad distribution
of polaritons in both energy and momentum. Increasing the pumping power may
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then lead to a sudden narrowing of their distribution, a hallmark of condensation,
when a large number of polaritons occupies the same quantum state. The appear-
ance of the macroscopic order at threshold is interpreted as the symmetry breaking,
hence the condensation is regarded as a second order phase transition [2, 12, 20, 52].
The first direct experimental observation of this process and the exciton-polariton
BEC was achieved by Kasprzak et al. [71]. Since then it has been achieved in many
experimental platforms, also at room temperature.

As already mentioned, the very complicated relaxation process has been success-
fully captured e.g. by the Semiclassical Boltzmann rate equations [13, 49, 134, 135].
The properties of the final condensate are often described by the aforementioned GPE,
with terms accounting for gain and loss (equation 2.9).

A highly important result of the relaxation process described above is a crucial role
of the reservoir - a population of particles that can relax into the condensate. In the
most basic case of an optical excitation with a focused laser spot, the optically created
excitons, the bottleneck polaritons and the condensed particles are all localized in the
same place in space, what significantly influences the condensate properties [49,136–
139]. The particles then interact not only within the same phase, but also with
the reservoir. Hence, any experimental measurements of the condensate need to
take into the account also the non-condensed particles, vastly changing the measured
characteristics, such as coherence. To overcome this limitation, the spatial separation
of the condensate and the reservoir (pump) is often employed [138, 140]. It can
be achieved with either studying ultra-high quality samples with largely extended
condensates (and investigating propagating condensates outside of the pumping spot)
[139] or by polariton trapping, e.g with the use of optical traps [11, 140]. The latter
approach - particularly relevant in the context of this thesis - is expanded in section
2.6.

2.2.3 Polariton lasing

Regardless of the exact mechanism of the condensate formation, its emission consists
of a coherent beam of light with spectrally narrow lines, similar to that of a standard
laser. The condensation process is associated with a distinct threshold behavior: a
sudden narrowing of the distribution, a nonlinear rapid increase of particle popula-
tion (measured as a rapid increase of photoluminescence intensity), the state linewidth
narrowing as well as the rise of macroscopic spatial coherence [2,12,52]. Hence, the co-
herent emission of condensed polaritons is very often referred to as “polariton lasing”,
even though it does not constitute as a light amplification by stimulated emission of
radiation [82]. There is no population inversion involved and the relaxation process
leading to amplified light emission is starkly different [51,52].

At the beginning of exciton-polariton condensates’ investigation there was a lot
of debates and controversies regarding the nature of the coherent light emission, due
to the system’s similarity to VCSELs (vertical-cavity surface emitting lasers). Even
though the sample structures are typically very similar, in VCSELs the electrons and
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the holes act as a gain medium and lasing occurs via population inversion, where
many electron-hole pairs are excited [52, 82]. Coherent light is emitted by a well-
known process of stimulated emission, where light in the cavity is amplified by the
recombination of electron-hole pairs. The gain medium (electron-hole pairs) needs to
be pumped sufficiently, such that the population inversion occurs, in order to coher-
ently amplify photon emission. In contrast, to achieve polariton coherent emission,
a large population of high-energy excitons is typically excited, but then the bosonic
amplification of scattering process described in the previous section takes place, lead-
ing to the ground state occupation. Hence no population inversion is involved. The
emission is achieved via the stimulated scattering (or stimulated cooling), rather than
the stimulated emission [51, 52, 82]. The particle species that accumulates the coher-
ence differs - in contrast to VCSELs, in polariton condensates the strong coupling is
present, hence the coherence that accumulates is in the polaritons rather than the
cavity photons. Thus, even though both a laser and a polariton condensate emit
coherent light, there is a clear distinction between the coherent particle species.

There are other important differences between the two regimes, such as the the
momentum-space distribution, onset of degeneracy or a Heisenberg-limited position
and momentum uncertainty product [52]. Additionally, it’s important to note, that all
these differences are the most clear when the polariton lifetimes are sufficiently long
and the thermalization occurs, leading to a truly BEC state. When polariton lifetimes
are shorter, the distinction becomes less obvious, as the system may remain and
operate outside of thermal equilibrium [52,82]. Such an intermediate regime between
a photon laser and BEC is often called polariton laser - when the strong coupling
and macroscopic occupation of the polariton ground state is present, but without a
thermalized population of polaritons. More on the precise distinction between the
regimes can be found e.g. in refs. [13, 43,52,71,82,141].

Historically, the laser-like emission of polaritons was what drove the initial interest
and investment in this field, as it offered a new way to create ultralow threshold
coherent light sources, up to the limit of thresholdless lasing [2]. Most of their possible
applications employ their efficient light emission above threshold. More on this topic
can be found in section 1.4.

2.3 Condensate excitations

In section 2.1.1 the idea and the description of weakly interacting Bose gases have
been introduced, initially considered by Bogoliubov for diluted gases [117]. The lowest-
order approximation of the system’s Hamiltonian when the interactions are included
gives a ground state energy of the Bose gas and an equation of state [116]. A higher-
order approximation on the other hand gives the excitation spectrum - the energy
dispersion of excited states of the interacting Bose gas, introduced in equation 2.8
(with zero external potential). Importantly, the excited states of an interacting Bose
gas can be described in terms of a gas of noninteracting quasiparticles (it can be in-
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tuitively shown by explicitly using a second quantization approach, presented e.g. in
ref. [116]). The excitation spectrum is approximately linear at low momenta (around
k = 0) with the energy-momentum slope dependent on the strength of particle-
particle interactions. The excitations dispersion has been explicitly introduced in
equation 2.8.

The schematic visualization of the Bogoliubov spectrum, as a function of the
wavevector, is presented in Fig. 2.1 (solid blue line). It is compared to a kinetic
energy spectrum ℏ2k2

2m of the same exemplary particle (hence a spectrum with no
interactions U = 0, a dotted orange line).

As visible in Fig. 2.1, the Bogoliubov dispersion at small momenta gives a linear,
phonon-like form:

ϵ(k) = vsℏk =
√

Un

m
ℏk. (2.12)

Velocity vs =
√

Un/m is the sound velocity of the condensate. The Bogoliubov theory
predicts that the long-wavelength excitations of an interacting Bose gas are sound
waves [116]. These excitations can be also regarded as Goldstone modes associated
with breaking of a gauge symmetry, caused by the Bose–Einstein condensation [116].

The condensate excitations can be intuitively viewed either in a quasi-particle
picture, as particles excited from the ground state condensate and occupying higher
energy states, or as collective waves, higher frequencies, disturbing a single wavefunc-
tion of the collectively behaving ground state condensate.
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Figure 2.1. Bogoliubov dispersion of elementary excitations, with a quasi-linear dispersion
at small momenta (solid line), compared to a parabolic dispersion (kinetic energy of the
same particle, with no interactions, dotted line).
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2.3.1 Superfluidity
Importantly, the Bogoliubov spectrum and its phonon-like form is the basis of the
phenomenon of superfluidity (according to the Landau’s criterion for superfluidity) -
a dissipation-less flow of a fluid (flow without any loss of kinetic energy), hence fluid’s
zero viscosity [116]. It was initially observed for liquid helium-4 (He-II) [142–144],
which is a boson, and the onset of the superfluidity was shown as a manifestation
of its Bose–Einstein condensation. Similar phenomenon of superconductivity can be
viewed as the superfluidity of a Fermi gas (coming from the fermion-pairing) [128,145].

Hence, the excitations of a BEC are flowing without the loss of energy and can
flow against any defects, as long as the defects are sufficiently small. The defect size
needs to be smaller than the so-called healing length ξ - also called the interaction
length, as it is directly related to the interaction strength of the condensate. It is
defined as [116]:

ξ =
√

ℏ2

2mUn
= 1√

2
ℏ

mvs
. (2.13)

The healing length defines the transition between the phonon and the particle regimes
in the Bogoliubov spectrum (low momentum vs high momentum as seen in Fig. 2.1).
When the typical distance D, characterizing the density variations taking place in
the system, is much larger than the healing length, the condensate wavefunction
remains unaffected. This means the physical obstacles the condensate liquid encoun-
ters need to be smaller than ξ for the wavefunction not to be changed and for the
dissipation-less flow to remain. When they become larger than ξ, the obstacles cre-
ate discontinuities in the ground state wavefunction, and excite elementary waves or
topological excitations, such as vortices or solitons [116,146].

If D ≫ ξ (meaning that the density of the gas changes slowly in space), then the
quantum pressure term becomes negligible. The neglection of the pressure term, to-
gether with the kinetic term, is referred to as the Thomas–Fermi approximation [116].
In this so-called Thomas-Fermi regime the chemical potential of a high-density con-
densate in the ground state is uniquely determined by the condensate mean-field
energy [116, 147]. The condensate’s behavior is then dominated by the interparti-
cle interactions [147] - what is especially relevant in the context of this thesis and
expanded in section 2.3 and in Part II. Entering the Thomas-Fermi regime allows
for the measurements of the particle-particle interaction strength - also in polariton
systems [116,147,148].

2.3.2 Excitations in exciton-polariton condensates
Even though exciton polaritons typically do not form a truly BEC state and are
subject to gain and loss terms (see section 2.2.2), the polariton condensate is char-
acterized by a spectrum very similar to the one introduced by Bogoliubov. In the
particular case of polariton condensates, the excitation spectrum has been success-
fully calculated (e.g. by using a perturbative formalism of Bogoliubov-de Gennes
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introduced before (within the mean-field approximation) from the GPE (equation
2.9)) [133,149]. It results in form:

ϵ(k) = ℏωBog =
√

ϵLP (ϵLP + 2Upn) (2.14)

- the dispersion analogous to the Bogoliubov spectrum (see equation 2.8 and Fig.
2.1), but with the effective mass of the lower polariton branch as the particle’s
mass and the polariton-polariton interaction strength Up specifically. ϵLP is the
lower polariton energy dispersion (equation 1.14) shifted to its ground state’s energy,
ϵLP (k) = ELP (k) − ELP (0).

Quite crucially, due to the wavevector dependence of the lower polariton mass mLP

(see chapter 1.2.4) and the finite lifetime, the polariton condensate dispersion differs
from a typical gas of massive particles. Apart from their non-parabolic dispersion,
the inherently dissipative (open) nature and the finite lifetime of polaritons result in
the the excitation modes to also have a non-zero imaginary part (they decay in time).
With non-negligible losses, at low wavevectors (around k = 0) the excitation spectrum
is flat in energy, increasing at finite momenta [133]. Hence, the long-wavelength
excitations of the condensate are dispersion-less and have a diffusive character [133,
149, 150]. At higher momenta the dispersion approaches the quasi-linear Bogoliubov
spectrum. However, these dissipative terms are beyond the scope of this thesis, and
are not accounted for in further considerations.

The excitation dispersion calculated with equation 2.14 is presented in Fig. 2.2
with solid blue line. It accounts for the polariton dispersion non-parabolicity (wavevec-
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Figure 2.2. Dispersion of the exciton-polariton condensate excitations (solid line) compared
to the dispersion of the uncondensed, low-density lower polaritons (dotted line). Both spectra
are shown as an energy relative to the ground state.
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tor dependence of the lower polariton effective mass), but it does not account for the
finite lifetime (the imaginary part of the spectrum). It is compared with the disper-
sion of the lower polariton mode (spectrum with no polariton-polariton interactions
Up = 0, or the low-density regime) presented with dotted line.

One should also note, that both positive- and negative-energy excitation branches
(±ℏωBog) fulfill the evolution equations necessary to calculate the excitation spectrum,
what corresponds to the positive and negative Bogoliubov branches. The physical
elementary excitations correspond to the positive branch only [20, 116, 151], while
the negative branch can be seen partly in similarity to the electron’s holes in solid
state. It is not a real excitation branch of the system: it corresponds to the emitted
photons associated with the creation of real Bogoliubov excitations in the polariton
system [152] and it is an intrinsic feature of an interacting condensate (it does not
require the presence of a reservoir, but it requires nonzero interactions) [152]. The
positive energy branch (+ℏωBog) is typically described as a normal branch (NB)
and the negative one (−ℏωBog) as a ghost branch (GB). The occupation of the NB
occurs via the process of thermal excitation (thermal depletion) [148, 153] and the
GB is populated by the quantum depletion process [148], with parametric occupation
of both the positive and the negative branches. The appearance of the GB in the
photoluminescence spectrum of an exciton–polariton condensate can serve as a direct
probe of quantum fluctuations (beyond mean-field effects), as have been evidenced
experimentally [148].

The excitation spectra have been observed in several studies, employing different
experimental methods and schemes [154–157]. Such an observation proves to be very
challenging experimentally, as the condensate’s strong emission hinders any other
signal in optical experiments. Excitation emission is typically orders of magnitude
lower than that of the condensate, what requires sophisticated experimental designs,
such as a two-photon Bragg scattering technique [155] (in an atomic condensate)
or covering the strong emission of the ground state condensate [148] (also further
explored in Part II). The quasi-linear excitation branches not only lie at the core of
the superfluidity phenomenon and can serve as its experimental evidence, but also
their dispersions can been used to extract the inter-particle interaction strength Up

(also in the exciton polariton context) [147,148]. This topic is expanded and explored
in Part II of this thesis.

2.4 Polariton-polariton interactions

Polaritons, as massive particles with partly excitonic and partly photonic character-
istics, interact with other particles such as phonons, excitons or other polaritons.
Photon interactions are known to be very weak and often neglected, so the po-
lariton interactions are mainly a result of the excitonic component [13, 20]. Hence,
polariton-polariton interactions are inherited directly from the exciton-exciton inter-
actions [158].
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A very clear signature of the interactions undergone within a polariton condensate
is the characteristic blueshift of the emission above the condensation threshold – a
hallmark of an interactiong bose gas [159]. The energy of the laser-like polariton emis-
sion increases with density (excitation), what stands in contrast to a typical photonic
lasing case in a weak-coupling regime. In polaritonic systems, polariton-polariton in-
teractions shift the condensate ground state energy - being repulsive, towards higher
energies. The blueshift is density-dependent. For long it has been used to simply
quantify the polariton-polariton interaction strength [14, 159–161], however, a huge
drawback of the blueshift analysis to explore polariton-polariton interactions (with
the non-resonant excitation) is a distinction between the interaction with the reservoir
of uncondensed excitons and the polariton-polariton interactions within the conden-
sate [159, 162]. It can be overcome by spatially separating the reservoir and the
condensate population (as further explained in section 2.6).

Apart from the blueshift, a more reliable and direct signature of the polariton-
polariton interactions is the renormalization of the polariton dispersion into a linear
Bogoliubov profile [39,155,159] (see Fig. 2.2) or a superfluid behavior [39,163], both
introduced in the previous section and evidenced experimentally. Under the resonant
pumping, polariton–polariton interactions lead to nonlinear effects such as bistability
of the pumped mode [164, 165] and polariton parametric scattering [20, 25, 133, 166].
Superfluidity has been evidenced e.g. with the resonant Rayleigh scattering [167] or
with the suppression of scattering from defects when the flow velocity is slower than
the speed of sound [39], on top of the linearization of the dispersions (observation of
the excitation branches, see section 1.1.1).

To estimate the interaction value, most of the first theoretical works have assumed
the exciton-exciton interaction strength (in the Born approximation) as g ∼ 6Eba2

B

[133, 134, 158, 160, 168], (where EB is the excitonic binding energy and aB is the
excitonic Bohr radius, see section 1.1.1) with typical values in GaAs narrow quantum
wells on the order of g ∼ 6 µeV µm2 [147, 160] (assuming EB ≈ 10 meV and aB ≈
10 nm). More recent models show that the corrected proportionality factor is in fact
4π [169]. Additionally, an accurate description of 2D scattering is recently subject
to intensive research [23,169,170]. Regardless, this approximation indicates that the
polariton gas is intrinsically weakly interacting (as measured by the unitless parameter
g/ ℏ2

2m ∼ 0.01 ≪ 1 [160, 171, 172]), as the polariton effective mass is typically several
orders of magnitude lower than the vacuum electron mass. However, the interactions
need to be compared to the kinetic energy term.

The interaction constant has been proven to be quadratically dependent on the ex-
citonic fraction [147,148], a result in line with expectations, as the polariton-polariton
interactions are mainly a result of the exciton-exciton interactions g. Hence, the
polariton-polariton interaction strength Up [147] ca be calculated as:

Up = |X|4 g

2NQW
, (2.15)

where |X|2 is the excitonic Hopfield coefficient (see section 1.1.3 and equation 1.20)
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and NQW is the number of quantum wells. The latter needs to be accounted for, as
the excitons are confined in separate layers. The factor 2 accounts for the dominant
role of triplet interactions [147].

The polariton-polariton interactions are most often described within the mean-
field approximation. Then, at low particle density, the blueshift of ground state
energy related to polariton-polariton interactions is linearly dependent on the particle
density n [160]:

∆E = Upn (2.16)

Polariton-polariton interaction strength Up is independent on density, as long as one
assumes an absence of many-body correlations [160].

Experimentally the value have been often characterized from the polariton blueshift
(e.g. [14,159–161]), but this approach is problematic due to the reservoir presence and
the precise estimation of the density [159]. More accurate value estimations can be
done with the Bogoliubov spectrum observations. In the Thomas-Fermi Regime of a
high density condensate (see section 2.3), which is governed by interactions, Up can
be extracted with fitting the excitation dispersions [147,148] using the equation 2.14.
One can also minimize the influence of the reservoir in a pulsed excitation experiment,
employing the ”hole–burning effect” [138].

Figure 2.3 shows a comparison of some of the reported values of the polariton-
polariton interaction strength, reproduced from ref. [147]. These values were obtained
by various methods and the their range spans over several orders of magnitude, most
of them exceeding the conventional theoretical theoretical estimate (solid line) by at
least an order of magnitude. However, most of the measurements were performed on
trapped condensates what can produce larger values due to the quantum confinement

Figure 2.3. Comparison of some of the previously reported values of the polariton-polariton
interaction strength, scaled by the number of quantum wells, as a function of the exciton
fraction, reproduced from ref. [147] (black points correspond to the result of that work).
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effect, together with the lack of the complete separation between the polariton and
reservoir density. The measurements reported in ref. [147] (labelled as ”Our work” in
the reproduced Fig. 2.3) have been done in the Thomas-Fermi regime, with the fully
eliminated influence of the incoherent excitonic reservoir.

Very importantly, the exciton-exciton interactions are known to be spin-dependent
[173,174]. Because polaritons interact through their excitonic components, the strength
of these interactions is also spin-dependent. As discussed in section 1.2.1, polaritons
have two possible bright spin projections, as only the j = ±1 excitons couple to light.
Hence, the interaction strengths for polaritons of the same (triplet) α1 and opposite
(singlet) α2 spin are known to be different [25,175–178].

There have been various attempts to estimate the values of α1 and α2 - both
experimentally (e.g. [175, 176, 179–181]) and theoretically (e.g. [133, 158, 182–185]).
The two most essential and consistent conclusions of most of the works are that
α1 > 0 (the triplet polariton-polariton interactions are repulsive) and |α1| ≫ |α2|
[134, 175, 177]. Some works also suggest that α2 is negative [179], meaning that
polaritons with opposite spins should weakly attract, but the sign is up to the debate
and could change with exciton-photon detuning [175]. Such conditions lead to a
linearly polarized Bose-Einstein condensate being the ground state of the system
[25, 175]. However, the exact ratio of the α1 and α2 values and their signs have a
crucial impact on the critical conditions for the condensation of exciton polaritons
in microcavities [25, 175] and is known to strongly depend on the exciton-photon
detuning. This can lead to different regimes with varying condensate polarization
(e.g. a circular polarization of the ground state at a certain range of detunings) or its
instability (e.g. a condensate collapse or fragmentation) [175,176,186]. The constants
should not be strongly dependent on the in-plane wave vector of the interacting
polaritons (if it remains inferior to the inverse exciton Bohr radius) [175].

The attraction between parallel-spin polaritons is typically weaker than the repul-
sion (at negative photon-exciton detunings) - and this is suggested as a basis of why
the Bose-Einstein condensation of exciton polaritons in planar microcavities is possi-
ble [175]. The factors responsible for the antiparallel-spin polaritons repulsion are the
mean-field electrostatic interaction (independent on spin) and direct exchange inter-
action. The factors responsible for attraction are the interaction via a biexciton state,
the indirect exchange coupling via the dark states and the Van-der-Waals coupling
(independent on spin and small) [175].

In most cases, the experimental investigation of the polariton-polariton interac-
tions focused only the average strength of the interactions (meaning looking mostly
at α1, with much weaker α2 being neglected) and the experiments to extract both
of them are very scarce. The former approach (a single value) includes most of the
works presented in Fig. 2.3. In some other works only the α1 to α2 ratio was being
investigated and debated [175, 187] or their difference [176] and not the exact values.
These used a scheme of resonant transmission of light through a microcavity in the
strong coupling regime, which is challenging for most samples.

Expanding the accurate approach of studying the linearized Bogoliubov spectrum
of the condensate excitations in the Thomas-Fermi regime, but considering also the
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polarization resolution, allows to directly study both interaction constants experimen-
tally. This method was proposed by this thesis as it is described in more detail in
Part II.

2.5 Coherence

As already introduced, the bosonic condensation - including the exciton-polariton
condensation - is associated with the buildup of the macroscopic coherence. When a
large portion of particles occupies the same state, described by a single wavefunction,
their phase is the same, allowing for the emission of the coherent radiation. It is well
known, that the onset of a coherent laser emission in purely optical systems (such
as VCSELs) is also associated with the appearance of long-range spatial coherence
along the cavity plane - but the mechanism of the coherence buildup in such systems
is different to polaritonic ones. In case of polaritons, the coherence comes from
the stimulated scattering into the ground state, while in case of lasers - from the
stimulated emission process (see section 2.2.3).

Hence, an important consequence of the Bose–Einstein condensation is the occur-
rence of coherence effects associated with the phase of the order parameter. Even in
the very first experimental realization of the BEC of exciton polaritons (by Kasprzak
et al. [71]), the authors reported an increase of the temporal coherence and the build-
up of the long-range spatial coherence, together with the linear polarization (all in-
dicating the spontaneous onset of a macroscopic quantum phase). They evidenced
it in the spatial correlation measurements, using a Michelson interferometer. Such
measurements have become a common practice in other studies since then, as a part
of proving the condensation.

Spatial coherence is reflected by the classical first-order correlation function of the
polariton emission, g(1), where the emission from two positions in space are interfered
with one another [13,188,189]. In the low-density regime, the polaritons are expected
to exhibit only the short-range correlations (with a correlation length given by the
thermal de Broglie wavelength), while in the condensed phase, a complete coherence,
up to the size of the condensate is expected [71,116]. The experimental investigation
is typically done with the use of a retro-reflector in one arm of the Michelson inter-
ferometer, to invert the image in a centro-symmetric way [71] and measure a spatial
autocorrelation.

Spatial coherence measurements can also directly show the fragmentation of the
condensate, e.g. in unstable or trapped regimes [116], for example when the ratio of
the inter-particle interaction strengths α1 and α2 don’t allow for a stable condensate
phase [176]. The robustness of Bose–Einstein condensation against fragmentation is
ensured by two-body interactions [116].

Additionally, recently there have been a lot of attention put towards the ef-
fects of coherence relative to two or more condensates, such as with two overlap-
ping condensates [116] or with several condensates trapped separately in optical
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traps [106, 190, 191]. Effects such as coherent oscillations in an exciton-polariton
Josephson junction have been described and shown [116,192].

2.6 Polariton trapping

In case of microcavity polaritons, their existence is always connected to the confine-
ment in plane of the microcavity, but in recent years a lot of attention and efforts
has been put towards studying polaritons in additional, 2D or 1D potential land-
scapes [11]. The presence of an external potential is not necessary to observe the
condensation, but a confinement allows for controlling, directing and structuring the
flow of polaritons and their behavior [11, 13]. It can be used to trap and localize
polaritons or their condensates.

Polariton’s unique properties allow for a wide range of possibilities to influence
their potential landscape. Several pathways of creating such a potential are possible
and can be achieved by using either their photonic or excitonic parts. The examples
of the ones most often used are: a use of a local strain [193], surface acoustic waves
[194], electrostatic traps [195], structuring an excitonic reservoir [140], using low-
dimensional active material [196], using photonic crystals [197], metal masks [198],
etching micropillar cavities [199] or using hybrid approaches [200]. Many of them are
reviewed in ref. [11].

In particular, optical traps with the reservoir shaping have proved to be very useful
experimentally. When the condensate is excited optically, in the non-resonant exci-
tation scheme, the pumping laser spot can be at the same time structured spatially
on the sample, in order to localize the particle’s population. Excitons are created
at the position of the laser and the subsequent relaxation process (creating polari-
tons) occurs close to the spot - due to their large effective mass excitons are able to
diffuse only small distances [138,140] (in comparison to polaritons or photons). More-
over, the presence of the exciton density and the high density blueshifted polaritons
create a repulsive potential, altering further polariton movement, due to the polariton-
exciton and polariton-polariton interactions. The repulsive interaction between the
condensate and the reservoir particles enables the creation of effective potentials by
exploiting a local reservoir-induced energy barrier [138]. The influence of the optical
excitation’s spatial (and temporal) distribution on the polaritons can be seen directly
in coupled equations 2.10 and 2.11. The complex linear potential induced by the exci-
tonic reservoir can be calculated as Ṽ (r) = URnR(r)+i [RnR(r) − γLP ] (see equations
2.10 and 2.11), with both real and imaginary parts proportional to the pumping rate,
P (r), as nR(r) ∝ P (r) [53].

Very importantly in the context of this thesis, the additional potential can be
employed specifically to trap polariton condensates, at the same time separating
the studied quantum phase from the reservoir. As already introduced, an inherent
presence of the exciton reservoir severely influences the condensate properties and
measured characteristics. Investigating e.g. the condensate coherence or particle-
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particle interactions needs to account for the ”feeding” population, or to spatially
separate the two - what can be achieved by the potential engineering. In the most
typical cases of the condensate creation via a Gaussian-shaped optical pump spot, the
reservoir and the condensing polaritons are at the same position and spatially overlap,
what severely influences the condensate characteristics. Hence, spatially structured
optical pumps can be useful to avoid this problem [138,147,162].

The most attention in these regard has been put to creating circular traps, by
exciting the sample with a doughnut-shape laser beam [140], as schematically depicted
in Fig. 2.4. It can be achieved with the use of conical lenses (axicons) [138, 140] or
devices such as spatial light modulators (SLMs) [201] or digital micromirror devices
(DMDs). Such a shaping can be used to localize polariton condensates in the centre,
with the reservoir located at the edges. With high effective mass, excitons diffuse
mostly around the excitation area, but most of them is unable to reach the center
of the ring (provided that a sufficient ring diameter is used, typically on the order
of 10 − 50 µm). Hence, the number of excitons in the centre of the trap is largely
reduced.

The repulsion of polaritons from the ring-shaped exciton reservoir creates a ring-
like trapping potential, and the uncondensed polaritons ballistically expand either
towards its center or outside [140], schematically depicted in Fig. 2.4. Panel (a) is
a visualization of the spatial distribution of the excitation (in real space, in-plane
of the sample), creating a similar distribution of the excitons and blueshifted polari-
tons. The reservoir creates a repulsive potential, schematically depicted in Fig. 2.4
(b), with blueshifted particles moving either oudisde or toward the center of the ring.
Those in center eventually collide with each other, subsequently condensing, if the
density is sufficient [159,202]. In order to create condensates fully spatially separated
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Figure 2.4. Schematic visualization of the ring-shape optical trapping of polariton conden-
sates. (a) A spatial distribution of the optical excitation, with a donut-shape laser beam.
Polaritons created in this area move ballistically towards the center of the trap (or outside),
what is schematically visualized by yellow arrows. (b) A schematic visualization of the po-
tential landscape, created by the reservoir. It alters the polariton movement, due to the
repulsive polariton-exciton and polariton-polariton interactions. Polaritons moving towards
the center can be trapped and create a high density condensate, separated from the reser-
voir.
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from the reservoir one needs to use sufficiently large traps and a sufficiently strong
pump, as the reservoir can still influence the condensate inside if conditions are not
met [162]. Fully escaping the reservoir influence utilizes strong depletion of the reser-
voir (the effect of the so-called spatial hole burning) [138,147,162] in pulsed excitation
conditions. This scheme proved to be useful in creating a high density condensate in
a Thomas-Fermi regime, with no reservoir present [147].
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CHAPTER3
Outlook

The first chapter served as a general introduction to the topic of exciton polaritons and
their condensates, giving a broad theoretical background and acquainting with some
of their essential properties. However, it is important to note that these quasiparticles
are extremely complex, and they are studied in a lot of contexts, systems, materials
and schemes. Due to the polariton’s complexity, the Introduction had to focus only
on a selected number of topics, which are relevant to the further Results parts.

Prior to moving into the Results, the essential Methods will be discussed in a
subsequent chapter, common to all the further included studies.

Then, the thesis will move into the Results, divided into four main topics. Each
study is preceded by a more specific Introduction and finalized with the finding Sum-
mary.
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CHAPTER4
Methods

The studies described in this thesis are experimental works, with the findings based
on the experimental observations. In all studies photoluminescence (PL) measure-
ments of semiconductor samples were performed, in which the studied structures
are optically pumped by the incoming laser excitation, and the structure emission
is recorded in a spectroscopic setup. The employed optical setups have been build
and tailored purposefully for the studies in question. In all studies the microphoto-
luminecsence (µPL) configuration has been used (having high spatial resolution due
to the application of microscope objectives) and the setups were built in a reflection
configuration.

4.1 Angle-resolved and spatially-resolved
measurements

In spectroscopic studies of exciton polaritons the angle-resolved experiments are most
often used, to directly measure the characteristic polariton energy-momentum dis-
persion. As introduced in section 1.1.3, the in-plane wavevector of the effectively
two-dimensional (2D) polariton system is directly linked to the angle of incidence of
light illuminating or being emitted from the structure θ (angle from the direction
perpendicular to the sample surface). This allows for a direct measurement of the
state dispersions in angle-resolved experiments, as:

k∥ = ksinθ = 2π

λ
sinθ. (4.1)

Hence, by detecting the energy (or wavelength, λ) of the light emitted at each angle,
one can reconstruct the whole energy-momentum dispersion of the respective state.

In order to do it experimentally, one can use lenses in a confocal configuration
and image the Fourier plane of the sample’s emission to study it in the reciprocal
space (the so-called far field). Moreover, one can adjust the same setup to measure
also the emission in real space (the so-called near field). Both are schematically de-
picted in Fig. 4.1. The simplest case (not depicted there) of an optical detection
path consisting of a microscope objective (placed at the focal length from the sample)
and an imaging lens (at its focal-length distance from the detector, e.g. a spectrom-
eter) creates a simple microscope and allows to observe the emission in real space.
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K-space imaging (far field)

Fourier 
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Figure 4.1. A schematic representation of the k-space (a) and real space (b) imaging. Even
number of appropriately positioned lenses between the imaging objective and the detector
entrance results in the Fourier plane imaging ((a), with the plane sketched with a red dotted
line). Odd number allows for real-space plane imaging ((b), green dotted line).

Employing a 2-dimensional detector in such a system offers a spatial resolution in
a single measurement. Then, by adding an additional lens at its focal length from
the back of the objective (an infinity-corrected one), one can image the Fourier plane
instead. According to the principles of geometric or Fourier optics, photons falling on
a single lens at an given angle are focused in a point shifted from the central optical
axis, at the lenses’s focal length plane [203]. Hence, imaging this plane allows to im-
age the angular distribution of the emission, directly translated into the momentum
(wavevector k)-dependence. Adding further lenses in confocal configurations allows
to observe either the far or the near field (real or momentum space), depending if the
number of lenses is odd or even.

The most typically used k-space imaging setup consists of four lenses in a confocal
configuration, as schematically presented in Fig. 4.1 (a). The imaged Fourier plane of
the emission is sketched as a red dotted line. Using four lenses (instead of two) allows
for additional momentum-space filtering of the emission, due to the creation of an
intermediate Fourier plane (see Fig. 4.1 (a)). One can filter the signal in momentum
space, if a spatial filter (e.g. an iris) is positioned in the conjugate plane.

Moreover, if one of the lenses (marked with a rotated arrow in Fig. 4.1 (a)) is
placed on a removable mount (e.g. a flip mount), one can very easily switch between
the real and k-space imaging. Changing the number of lenses between the objective
and the detector to an even number allows to study the emission in real space, as
shown in Fig. 4.1 (b). The number higher than one (e.g. three as in Fig. 4.1 (b))
allows to filter the emission in real space, using the intermediate real-space plane.
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Such a plane in the latter configuration is sketched in Fig. 4.1 (b) with a green
dotted line.

Now, the detection lenses in any configuration can be placed in the full PL optical
setup to image both spaces and be adjusted for the experimental needs.

4.2 Optical experiments

The example of an optical setup used in the thesis experiments is presented in Fig.
4.2. In all measurements (apart from Part III), the sample was placed in the con-
tinuous flow liquid helium cryostat and cooled down to cryogenic temperature of
∼ 4.5 K (or higher temperatures in temperature-dependent measurements). It was
excited with a Ti:Sapphire laser, tuned to a reflectivity minimum of the microcavity,
to reduce the loss due to the sample reflection. In Parts II and III a chopped CW
laser was used, while Parts IV and V employed a pulsed Ti:Sapphire laser (with 76
MHz repetition rate), pumping an Optical Parametric Oscillator (OPO), to generate
femtosecond-scale pulses of a desired wavelength. A high numerical aperture (NA)
microscope objective was used to both focus the laser beam on a sample and collect
the photoluminescence signal. The imaging setup consisted of four lenses in a confocal
configuration, enabling near- and far-field emission imaging, as described in the sec-
tion above. The signal was then imaged onto a monochromator slit and dispersed by
a grating. The imaging was recorded by a high-efficiency EMCCD (Electron Multiply-
ing Charge-Coupled Device), following the monochromator. In Part IV, the temporal
resolution has been achieved by using a Si-cathode-based streak camera attached to
a second exit of the monochromator.

Cryostat
+ sample

Ti:sapphire Laser
(+OPO)

Microscope
Objective

Beamsplitter

Monochromator
+CCD

Figure 4.2. Schematic diagram of the experimental setup. The excitation laser beam is
represented with a red line. The detected signal is marked in grey. The lens on a flippable
mount is marked by the rotated black arrow. Adding or removing this lens allows to switch
between the momentum- and real- spatial resolution.
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Cryostat
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Figure 4.3. Schematic diagram of the experimental setup, allowing for the linear
polarization-resolved measurements and for the real- and momentum-space filtering, as well
as for the optical trapping. The ring-like shape of the excitation laser is achieved with the
use of a conical lens (axicon) and two lenses in the excitation path. Moving the imaging
lens on the translation stage allows for the optical tomography. This setup has been used
in experiments described in Part II of this thesis.

Moreover, in Parts II and III, a polarization resolution of the measurements has
been necessary, to study the spin properties of polaritons. As described in section
1.2.1, performing the measurements in four linear polarizations (horizontal-vertical
H/V and diagonal-antidiagonal D/A basis, corresponding to the in-plane axes of the
Poincaré sphere) allows to detect two Stokes parameters, S1 and S2 (see section 1.2.1
and Fig. 1.3). In the performed experiments, the polarization resolution has been
achieved by placing a half-waveplate and a linear polarizer in the detection path,
what is presented and marked in Fig. 4.3. Additionally, in Part III also the S3 Stokes
component has been measured. In order to do so, an additional quarter-waveplate
has been added in the detection path, to perform the measurements in the circular
(left-circular σ− or right-circular σ+) polarization basis.

Furthermore, the monochromator entrance slit allows to image only a single ”slice”
of the whole two-dimensional real/momentum space, selecting a vertical direction. In
order to achieve a resolution in the direction perpendicular to the slit and detect
spectra in the whole 2D momentum space, the imaging lens can be mounted on a
translation stage in front of the monochromator (as marked in Fig. 4.3), allowing
for the optical tomography [204]. Moving this lens in the horizontal direction allows
to access, ”slice by slice”, the whole two-dimensional space (either real or reciprocal).
This method has been used in Parts II and III of this thesis. Employing a motorized
translation stage allows for the automation of the whole scan. Additionally, in Part
II the signal has been filtered in the intermediate conjugate planes: with an optical
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iris in the real space to reject the potential barrier signal, and a movable razor-blade
edge in momentum space to reject the strong condensate emission around k = 0. The
filters are also shown in the adjusted setup in Fig. 4.3.

Additionally, in Part II a circular optical trap has been created to minimize the
overlap of polaritons with the excitonic reservoir, as described in section 2.6. In
order to do so, an annular spatial distribution (a ring-like shape) of the laser on
the sample has been created. It was achieved with the use of an axicon lens in
a confocal configuration between two imaging lenses in the excitation path of the
optical setup [147, 162], as presented in Fig. 4.3. This allowed for the laser beam
shaping into a ring of ∼ 45 µm in diameter.

The power density of the excitation laser has been adjusted with the use of reflec-
tive or polarization-based filters in the excitation path and measured with a power
meter in front of the sample. The reflection of the pump laser from the sample
has been achieved with selected spectral filters (e.g. a longpass filter) placed in the
detection path.

4.3 Data analysis
The experimental data has been analysed, using Matlab and Origin software. All
measured spectra (e.g. at each wavevector), after accounting for an experimental
background, were fitted with appropriate curves, typically Lorentzian or Gaussian-
shaped, in order to extract the energies, broadenings or intensities of the studied
states. Further numerical analysis of the results has been done mostly using the
Matlab software, with some custom-adjusted global fits implemented in the Origin
software. All analysis has been adjusted to the specific experiment and data in ques-
tion, with custom-made scripts. More specific data treatment or analysis performed
in each study is described in respective parts and can be found in Methods and/or
Supplementary Materials of the manuscripts.
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Introduction
There have been an increasingly growing interest in the studies of the spin-orbit
interactions in photonic systems and their use in designing synthetic Hamiltonians,
nontrivial topologies, achieving and studying exceptional points or calculating the
Berry curvature, among many others. Many of these remarkable phenomena have
a potential and a goal to design photonic emulators of quantum Hamiltonians - a
specific use of one system to study another, enabling to make general conclusions.
Photonic systems offer a huge advantage of the experimental accessibility, as well as -
very often - ease of design and tunability, in comparison to other solid state platforms.
However, as photons’ response to external fields and photon-photon interactions are
typically very weak, exciton-polariton systems offer an additional big advantage in
this regard, over the purely photonic systems. Their excitonic component makes
them much more sensitive to a wide range of stimuli and adds a broad spectrum
of possibilities for property tuning and influence via these external stimuli (such as
electric and magnetic fields).

Importantly, polariton-polariton interactions and nonlinearities add an additional
degree of freedom to tailor this system’s properties and add to its complexity and its
large potential, while still preserving the ease of the optical access. These interactions
in fact allow for the particle relaxation and scattering, enabling the achievement of
thermal quasi-equilibrium. Polaritons are known to condense much more easily than
photons - even though both phases have been achieved, polariton condensates were
experimentally demonstrated much sooner [71] than the photonic ones [205] and were
more broadly investigated since.

Studies of polariton-polariton interactions are hugely important to understand
their condensation and for all kinds of applications which employ the nonlinear prop-
erties of polaritons, such as optical switching and single-photon blockade devices [51].
Over the past few years, there have been several efforts and experimental approaches
to establish the absolute value of the strength of these interactions, broadly intro-
duced in section 2.4. However, as explained there, most of the studies disregarded
the spin degree of freedom, while the interaction strengths for polaritons of the same
(triplet) opposite (singlet) spin are known to be different. Creating a relatively easy
experiment to measure the strength of spin-dependent interactions in any material
platform would be critical to be able to study and potentially control this degree of
freedom in future applications, yet the experimental efforts to extract both values,
particularly both at the same time, proved to be scarce and challenging.
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The polariton pseudospin, apart from its importance in the condensed phase, is
vital in the aforementioned spin-orbit interaction (SOI) context also at low-density
regime, as explained in sections 1.2.1 and 1.2.3. In solid state physics, SOI is a
relativistic effect, which transforms static electric fields in the laboratory frame into
magnetic fields in the frame of a moving electron. The magnetic fields interact with
the spin of a studied particle, and result in a rich variety of quantum phenomena,
including the realization of topological states [63, 206]. In optical microcavities, the
momentum-dependent transverse-electric–transverse magnetic (TE-TM) splitting of
the optical modes of the microcavity, together with a possible optical anisotropy
(linear birefringence) of the cavity, create an effective magnetic field, which affects
the polariton dynamics (see section 1.2.3 and Fig. 1.5). This is present also in the low-
density regime, below the condensation threshold, mainly via the photonic component
of the quasiparticles. Polariton pseudospin aligns with this effective field, what can
be directly measured with the polarization of emitted light.

One can now combine the two contributions - (a) the presence of the effective
gauge field, coming both from the inherent spin-orbit field and the cavity anisotropy,
with (b) the importance of the spin-dependent interactions in a high density regime
of the condensed phase. The inherent gauge field still affects polariton behavior, even
if nonlinearities start to play an important role. Each of these contributions have
been considered before separately, or purely theoretically, but never have all three
components been realized experimentally in a single system. Former considerations
focused mainly on the low density regime (and the effect of SOI on polaritons without
interactions) or on the theoretical investigations in the high density regime (yet mostly
without the cavity anisotropy).

Importantly in the context of this study, Shelykh et al. [177] showed how the dif-
ference in the interaction strengths for polaritons with parallel and antiparallel spins

Figure 4.4. Bogoliubov split branches, reproduced from ref. [177]. Solid lines show
renormalized lower-polariton branches and contrast them with the dispersion of bare lower-
polariton modes (dashed lines) in the region of strong coupling. The anisotropic splitting
between the Bogoliubov branches is shown in a dashdotted line. The wave vector is perpen-
dicular to the condensate polarization in panel (a) and collinear with it in panel (b). Panel
(c) shows the overall behavior of the splitting.
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results in the anisotropy in the Bogoliubov spectrum of condensate elementary exci-
tations. The authors considered theoretically, using the generalized Gross-Pitaevskii
equation, a linearly polarized exciton-polariton condensate in a semiconductor micro-
cavity. They showed a presence of two linearly polarized branches (eigenstates) of
the excitations, with an anisotropic splitting between them, as one can see in Fig.
4.4. They did not include the cavity anisotropy – the two linearly polarized Bogoli-
ubov branches were considered degenerate at k = 0. The results clearly show how
the spin-anisotropy of the polariton-polariton interactions results in a remarkably
different dispersion for excitation branches in directions parallel and perpendicular
to the polarization axis of the condensate. Different dispersions of the two branches
directly relate to different sound velocities of collective waves within the condensate
(see equation 2.12). The quasi-linear Bogoliubov branches of two linear polarizations
were found to only draw away from each other in the direction perpendicular to the
polarization of the condensate, while they cross at a specific wavevector in the direc-
tion parallel. Hence, the splitting between the two branches (starting from zero at
k = 0 for degenerate branches) only increases in one direction, while it comes back to
zero at two points in momentum space (for positive and negative wavevector) in the
parallel direction (as shown with red dash-dotted line in Fig. 4.4 (a) and (b)). Such
a state crossing is known to be a diabolical point and is highly interesting from a the-
oretical and experimental standpoint. The authors also showed how this anisotropy
noticeably affects the real-space dynamics of polariton condensates.

It’s very important to note, that such a behavior of the states and their splitting
may hugely resemble the effect of the gauge field (with the TE-TM and the anisotropy
present) on the polariton branches in a low density regime. The lower polariton
eigenstates also draw away from one another in one direction, while they cross in
the direction perpendicular to it (as described in section 1.2.3), but the directions
are then governed by the anisotropy axis (not the condensate polarization, as there
is no condensate). However, one has to highlight, that the nature of these effects
is completely different. One comes from the contributions of the TE-TM splitting
and the spatial (often structural) anisotropy, while Shelykh et. al. considered the
contributions of the spin-dependent interactions and the TE-TM field in a nonlinear
regime, with no anisotropy present. In the former, the anisotropic branches are of
the lower polariton modes, while in the latter - it’s the renormalized branches of the
excitations above the polarized condensate, that show the anisotropic behavior. This
comparison will be further expanded below and in Fig. 4.6.

Figure 4.4, reproduced from Shelykh et al. [177], shows the calculated anisotropic
dispersions of the Bogoliubov branches in two polarizations and the splitting between
them. It also contrasts these renormalized lower-polariton branches (solid lines) with
the dispersion of bare lower-polariton modes (dashed lines) in the region of strong
coupling. The splitting between the renormalized states is shown in a dashdotted
line. The results are presented as a function of the wavevector perpendicular to the
condensate polarization in panel (a) and collinear with it in panel (b). Panel (c)
shows the overall behavior of the splitting (in the whole two-dimensional momentum
space).
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Hence, the main conclusion of this theoretical study is that accounting for the
polariton nonparabolic dispersion (strong coupling), the longitudinal-transverse split-
ting (TE-TM splitting, inherent to the microcavity), and the polarization-dependent
interactions, one obtains substantial deviations of the quasiparticle spectrum from
the typical Bogoliubov one. One can observe the anisotropy and strong polarization
dependence of the dispersion, which results in characteristic asymmetric cross-like
distributions of propagating polaritons in the real space [177]. The stark anisotropy
can be observed even without any spatial anisotropy present in the non-interacting
system.

Second important contribution has been done by Tercas et al. [28]. The authors
considered theoretically the polariton dispersion relations when both the TE-TM split-
ting of the modes and the structure anisotropy of a semiconductor microcavity are
considered. Those were found to combine into a non-Abelian gauge field for exciton-
polaritons or cavity photons, as explained before in section 1.2.3. Quite similarly
to the case of the interaction anisotropy considered above, such a field leads to the
anisotropy of the dispersion spectra, but now even just for the TE and TM polarized
modes of polaritons in the linear regime. The authors showed how the field texture
can be tuned simply by rotating the sample and how it can range continuously from
a Rashba to a monopolar field. So the polarization anisotropy of the lower-polariton
branches can be observed when the TE-TM splitting and the cavity anisotropy are in-
cluded. In essence it is inherently a photonic effect (so no strong coupling is necessary
to observe it), but it proliferates into the polariton system. Even in the linear, non-
interacting regime the gauge field’s effect leads to remarkable focusing and conical
diffraction effects.

This theoretical finding has been then experimentally evidenced e.g. by Gianfrate
et al. [30]. Authors of this study showed the expected anisotropy of the lower polariton
modes, subject to both the spin-orbit coupling and the inherent cavity anisotropy
(in this case due to the inherent structure birefringence) in a high-quality planar
microcavity with embedded GaAs QWs. They evidenced a small anisotropy of the
lower polariton modes in the linear regime, which they then increased by an external
magnetic field - another contributor to the overall gauge field (see equations 1.29 and
1.30, with ∆Z being the Zeeman splitting). They used their findings to calculate a
Berry curvature - an important topological metric. Additionally, they showed the
polarization patterns in the momentum space (as values of the Stokes parameters),
from which one can extract the pseudospin rotation in the gauge field.

Crucial findings of these two works are shown in Fig. 4.5. In (a) and (b), repro-
duced from Tercas et. al. [28], one can see the crossing branches of polaritons (or
photons, as the approximation is parabolic) in the direction parallel to the anisotropy
axis (a) and the effective non-Abelian gauge field in momentum space in (b). They
are the calculated model curves. Figs. (c) and (d) are reproduced from Gianfrate
et.al [30], showing the experimental evidence of these effects in a polariton microcav-
ity. Inset in (c) additionally presents the splitting between the TE and TM branches,
different in direction perpendicular and parallel to the anisotropy axis.

Furthermore, another important contribution to this topic which should be men-
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Figure 4.5. The non-Abelian gauge field effect on polariton eigenstates. (a) Polariton
dispersion relation along the x direction (with φ = 0, hence, along the anisotropy axis),
showing the two polariton branches crossing at the magic point k∗, reproduced from ref. [28].
The corresponding field texture is presented in (b) (also reproduced from this study). (c)
and (d) are the experimental results of [30]. (c) Eigenmode energies (zero at about 1.6015
eV) along kH and kV (horizontal and vertical directions respectively). Inset: the energy
splitting of the eigenmodes. Points are the experimental results, pink and blue lines are
the fitted dispersions (model curves). (d) k-space in-plane pseudospin (S1, S2) texture, with
monopolar texture around the crossing points.

tioned is the experimental and theoretical work by Polimeno et al. [36] in which the
authors showed the effect of the non-Abelian gauge field on the exciton-polariton
quantum flow in a polariton microcavity, affecting its trajectory. They did it in a
perovskite-based smaple in which the inherent anisotropy (birefrengence) is known to
be much bigger and the splitting is much higher. This was an experimental evidence
of the effect of the field, not just the measurement of the field itself.

Now one should consider the most realistic case, where all the contributions are
present and the polaritons enter the non-linear regime. It is typical that the cavity
anisotropy is present and inherent to the optical microcavity (due to e.g. crystal bire-
fringence) what results in the gauge field being non-Abelian, but the spin-anisotropic
polariton-polariton interactions are crucial in the high density, renormalized regime.
The interacting regime have been briefly considered in the Tercas et. al work de-
scribed above [28], but only with the condensate put into motion in the vicinity of
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the exceptional crossing-point. The authors showed how the spin-orbit coupling in-
duces a breakdown of superfluidity and how the spatially homogeneous flows become
unstable, evolving into spin textured states, such as stripes or domain walls.

However, such a case is essentially different from the ground-state condensate
with close to zero momentum, with the renormalized excitation branches energetically
above it. The authors calculated their dispersions in a general case (shown in the
Supplemental Material [28]), but they proceeded to regard it solely at a specific
wavevector. Importantly, their work is purely theoretical. The influence of the spin-
dependent interactions on the overall effective field has not been evidenced, before
the work presented in this part of the thesis.

Moreover, the authors did not suggest, how the experimental observation of the
dispersion anisotropy could serve as a direct measure of both interaction constants -
as it is also shown by this part of the thesis.

Finally, they used only a parabolic approximation of the dispersion (hence, a
purely photonic case), while one can also account for the polariton dispersion non-
parabolicity.

A summary and a comparison of all of the contributions described above is pre-
sented in Fig. 4.6, with an exemplary set of parameters. (a) and (b) show the low-
density lower polariton branches (the calculated eigenstates of the equation 1.28),
with (b) or without (a) the cavity anisotropy α. They are the LP dispersions (in two
linear polarizations) in a low density regime, with no polariton-polariton interactions
present. Contrary, (c-f) are the calculated eigenstates of the renormalized lower polari-
tons - the excitations above a condensate in a high density, nonlinear regime, governed
by the polariton-polariton interactions. Spin-anisotropy of the interaction strengths
is included (with α1 > 0 and α1 ≫ |α2|). In (c) and (e) no structural anisotropy
(birefringence) α is present (as considered by Shelykh et al. [177]), while (d) and (f)
accounts for the TE-TM splitting, cavity anisotropy and the spin-anisotropic inter-
actions. In (c) and (d) α2 < 0 (the opposite-spin polaritons weakly attract, as it is
typically found in literature), however (e) and (f) additionally show the same results
with positive α2, showing how its sign governs the overall branch splitting. The model
accounting for all contributions is explicitly presented in the Results section of this
part of the thesis. In all figures solid lines are the model eigenstates and the dashed
green lines show the splitting between them as a function of the in-plane wavevec-
tor. The results are presented in two directions - perpendicular and parallel to the
anisotropy axis (which is then translated into and aligned with the polarization of
the condensate in (c-f)).
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Figure 4.6. Comparison of the contribution of the TE-TM splitting, structural cavity
anisotropy and the spin-dependent polariton-polariton interactions on the polariton eigen-
states (in the circular polarization basis). Solid lines are the model eigenstates and the
dashed green lines show the splitting between them as a function of the wavevector in two
perpendicular directions in-plane. Parameters for all the graphs are: the exciton energy
EX0 = 1.750 eV , the cavity mode energy EC0 = 1.748 eV , the effective refractive index
(defining photon’s effective mass) nC = 3.5, the Rabi splitting ℏΩR = 6 meV , the TE-TM
splitting parameter β = 30 µeV µm2 and the Zeeman splitting ∆Z = 0 (no magnetic field).
When nonzero: the structural anisotropy α = 0.2 meV and the anisotropy angle φ = 0 (in
b, d, f), the condensate energy ϵ0 = 1.747 eV and the polariton-polariton interactions are
α1n = 500 µeV (triplet) and α2n = ±100 µeV (singlet) (in c-f). A large value of α2n has
been selected to increase the visibility of its effect.



66



Contributions
This research has been a collaborative work. D. Biegańska (the author of this thesis)
participated in designing the research question, she took part in rebuilding and mod-
ifying the optical setup (to adjust it to this study) and - supported by the coauthors
- she performed all the experiments. Then she analysed the experimental data (using
the Matlab software) with discussions and advice from all the authors. She wrote
scripts helping to automate part of the analysis of the large amount of data. She
employed the models available in literature to the specific data in question to fit it
and extract the physical parameters, with discussions with all the authors. She also
performed statistical analysis proving the validity of the applied model. She prepared
all the graphs and wrote the initial version of the manuscript. All authors contributed
to the final version of the text.



68



Results



Collective Excitations of Exciton-Polariton Condensates in a Synthetic Gauge Field

D. Biegańska ,1,2 M. Pieczarka ,1,2 E. Estrecho ,1 M. Steger,3,† D.W. Snoke,3 K. West,4

L. N. Pfeiffer,4 M. Syperek,2 A. G. Truscott ,5 and E. A. Ostrovskaya 1,*

1ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre,
Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia

2Department of Experimental Physics, Wrocław University of Science and Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

3Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
4Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

5Laser Physics Centre, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia

(Received 3 December 2020; revised 24 July 2021; accepted 21 September 2021; published 28 October 2021)

Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton
polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic
microcavities with momentum-dependent transverse-electric–transverse-magnetic splitting of the optical
modes, the excitations’ dispersions are predicted to be strongly anisotropic, which is a consequence of the
synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths
for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the
collective excitations in a high-density optically trapped exciton-polariton condensate, we observe
excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the
interaction constants for polaritons of the same and opposite spin and map out the characteristic spin
textures in an interacting spinor condensate of exciton polaritons.

DOI: 10.1103/PhysRevLett.127.185301

Introduction.—Exciton polaritons (polaritons herein) are
quasiparticles formed by excitons strongly coupled to
confined photons, typically in a semiconductor optical
microcavity. As interacting bosons, they form 2D non-
equilibrium condensates analogous to Bose-Einstein
condensates of ultracold atoms at sufficiently large particle
densities above the phase transition threshold [1–4].
Furthermore, polaritons possess a spin degree of freedom
inherited from optically active excitons coupled to photons
[5–7]. Polariton spin has two allowed integer projections on
the cavity growth axis, σ�, making a polariton condensate
effectively a two-component (spinor) gas described by a
pseudospin parameter [1,8].
Polaritons interact through their excitonic components

[6,9] with a spin-dependent strength [7,10–12]. The inter-
action strengths for polaritons of the same (triplet) α1 and
opposite (singlet) α2 spin are related as jα2j ≪ α1 [7,9,13].
Moreover, momentum-dependent transverse-electric–trans-
verse magnetic (TE-TM) splitting of the optical modes of
the microcavity [14] and optical anisotropy (linear bire-
fringence) of the cavity create an effective magnetic field,
which affects the polariton dynamics in the low-density
regime, below the condensation threshold via the photonic
component of the quasiparticles [15,16], similar to other
optical systems [17,18]. In the high-density regime, above
the condensation threshold, this synthetic field affects the
condensate pseudospin dynamics [19–22] in addition to the

effect of spinor polariton-polariton interactions. As a result,
the single-particle dispersion of the polaritons in the low-
density regime, as well as the dispersion of the collective
excitations [23] of the condensate, are predicted to be
strongly anisotropic [24–26]. Namely, the dispersion
branches cross in one of the directions in the 2D momen-
tum space at the so-called diabolical points, forming
characteristic Dirac cones. The characteristic monopolar
pseudospin texture around these crossing points in momen-
tum space can be described in terms of an effective Rashba-
like non-Abelian gauge field [25–27]. Studies of such
gauge fields were previously limited to ultracold atomic
Bose-Einstein condensates [28]. Observation of a synthetic
(artificial) gauge field for polaritons in anisotropic micro-
cavities offers the possibility to study topological phases of
matter [29–31] and analog physics in optical systems [32].
However, despite the experimental progress in mapping
the nontrivial spin textures in the single-particle (linear)
regime [27], the predicted behavior of collective excitations
in the interaction-dominated (nonlinear) regime above the
condensation threshold has not been confirmed to date
[33–36].
In this Letter, we observe the dispersion of collective

excitations of a linearly polarized high-density polariton
condensate in an optical trap. By performing polarization-
resolved photoluminescence tomography, we detect the
excitation branches in momentum space and observe a clear
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asymmetry in the directions parallel and perpendicular to
the cavity anisotropy axis. Moreover, we determine the
triplet and singlet interaction strengths α1;2 and extract the
spin textures and synthetic magnetic gauge field distribu-
tion in the nonlinear regime.
Experimental setup.—We use an ultrahigh-quality GaAs-

based microcavity cooled down to ∼4 K using a continu-
ous-flow liquid helium cryostat. The very narrow linewidth
of the polariton emission arising from the long cavity
photon lifetime of > 100 ps in this sample [37,38] enables
resolution of the non-negligible anisotropy of the polariton
dispersion [27]. Off-resonant excitation of the sample with
a continuous-wave laser beam, shaped by a conical lens
into a ring of 45 μm in diameter, creates a round “box”
optical trap [39,40] for polaritons. This trapping geometry
minimizes the overlap of polaritons with the excitonic
reservoir. We record the photoluminescence spectra in 2D
momentum space by translating the imaging lens with
respect to the monochromator slit. Polarization sensitivity
is achieved by employing a half wave plate and a linear
polarizer in the detection path, enabling us to record the
spectra in four linear polarizations bases: horizontal and
vertical and diagonal and antidiagonal with respect to the
laboratory frame of reference. The experiments are per-
formed on a region of the sample corresponding to a
small, positive exciton-photon detuning of Δ ¼ ð2.70�
0.21Þ meV and the excitonic Hopfield coefficient X2

0≈
0.585, which defines the excitonic fraction of the polariton.
Further details of the experiment can be found in the
Supplemental Material [41].
Low-density regime.—Polariton eigenstates in the

low-density limit can be described by a single-particle
Hamiltonian in a circular polarization basis [25,27]:

H ¼
�

ϵLPðkÞ Ω
2
e−iφ − βk2e−2iθk

Ω
2
eiφ − βk2e2iθk ϵLPðkÞ

�
; ð1Þ

where ϵLP is the lower-polariton dispersion extracted from a
coupled-oscillator model, β is the TE-TM splitting param-
eter, and Ω is the cavity anisotropy constant. The source of
Ω is the birefringence, which is caused by the small residual
strain of the full multilayer structure [42–45]. The wave
vector can be expressed as k ¼ kðcos θk; sin θkÞ, with θk
denoting the in-plane propagation angle. The angle φ
defines the anisotropy axis that depends on the sample
orientation. By diagonalizing the Hamiltonian, one obtains
two dispersive, linearly polarized eigenstates. The cavity
anisotropy, Ω, breaks the cylindrical symmetry of the TE-
TM splitting, resulting in both energy and polarization
splitting at k ¼ 0, as shown in Figs. 1(a),(c),(d). The two
dispersion branches diverge in the direction perpendicular
to the anisotropy axis (k⊥), but cross in the direction
parallel to it (kk). The crossing point occurs at k�k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω=ð2βÞp

, where the effects due to TE-TM splitting and
optical anisotropy cancel each other [Fig. 1(d)].

To apply this model to the experimental data, we
fit the polarization-resolved spectra for each wave vector
with a Lorentzian function and extract the energy of the
eigenstate from the spectral peak. Subsequently, by
fitting the measured dispersions with the eigenvalues
of Eq. (1), as shown in Fig. 1(c), we find the values
β ¼ ð14.89� 0.92Þ μeV μm2, Ω ¼ ð28.1� 2.2Þ μeV,
and φ ¼ −15°. Hence, the crossing point occurs at
k�k ¼ 0.971 μm−1, and kk is −15° from the þx axis [see
the orientation of the frames of reference in Fig. 1(b)].
These measured parameters are essential for the analysis of
the collective excitations in the high-density regime.
For each of the eigenstates, we also extract two compo-

nents of the Stokes vector, S1, S2, which correspond to the
polarization state or in-plane pseudospin of the polaritons.
They are calculated from the polarized photoluminescence
intensities I using the formulas S1 ¼ ðIH − IVÞ=ðIH þ IVÞ
and S2 ¼ ðID − IAÞ=ðID þ IAÞ. An example of the ex-
tracted texture of the S1 component is presented in
Fig. 1(b) and is consistent with the previous measurements
in high-quality GaAs-based microcavities [27]. This is a
typical texture arising from TE-TM splitting, which is the
dominant effect at large k > k�k. The full in-plane pseudo-
spin textures of the single-particle eigenstates are shown in
the Supplemental Material [41].
Condensate excitations.—By increasing the pump power

above the condensation threshold, we create a high-density,

(a)

(c)

(b)

(d)

FIG. 1. Polariton dispersion in the low-density regime.
(a) Energy splitting between the polariton eigenstates, calculated
from Eq. (1), with the cross sections in the directions parallel
(solid line) and perpendicular (dotted line) to the anisotropy axis.
(b) Cross section of the Stokes vector component S1 at the
constant energy E ¼ 1.60154 eV in the measurement ðkx; kyÞ
and anisotropy ðkk; k⊥Þ frames of reference. (c) Polariton eigen-
states and (d) their energy splitting extracted from the measured
dispersions in the directions kk and k⊥. Solid lines are the
model fits.
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single-mode condensate in the Thomas-Fermi regime
[39,46], formed in an optically induced potential trap.
The condensate emission is highly polarized, with 95% of
linear polarization oriented parallel to the anisotropy angle
φ ¼ −15°. A similar pinning of the condensate polarization
to a given direction in the sample is routinely observed in
different types of samples [47–51] and is not a signature of
the expected stochastic buildup of polarization due to
spontaneous symmetry breaking [52]. Here, we provide
strong evidence that the pinning of the condensate polari-
zation arises from the optical anisotropy of the cavity. This
effect is undetectable in low-quality samples, where the
anisotropic splitting Ω is much smaller than the spectral
linewidths.
To study dispersion of the condensate excitations, we fix

the pump power to the highest value available in our
experiment (see the Supplemental Material [41]), where the
interaction-induced effects are the strongest, and filter out
the strong contribution of the condensate near k ¼ 0 with
an edge filter in momentum space. This allows us to detect
the much weaker emission from the excitations without

saturating the camera [46]. We use a vertically (hori-
zontally) oriented edge to block the emission from
kx < 0.55 μm−1 (ky < 0.5 μm−1). Tomographic scans are
performed for each edge filter orientation and combined to
reconstruct a 2D excitation spectrum. A constant-energy
slice of the scans is presented in Fig. 2(a) showing the
momentum-resolved S1 texture and the edges (dashed
lines) of the filter. A circular real-space aperture is also
used to block the photoluminescence from the annular
barrier of the optical trap.
The images of the collective excitation branches along

k⊥ at kk ¼ 0 for horizontal and vertical polarizations are
shown in Figs. 2(b),(c). The residual emission at the
condensate energy has the characteristic Airy pattern
arising from the diffraction on the real-space filter [46].
Above the condensate energy, clear Bogoliubov excitation
branches are seen in both orthogonal polarizations. The
negative or ghost branches [46] are also detectable but are
extremely weak (see the Supplemental Material [41]);
therefore, we focus on the much brighter normal branches
in our detailed analysis. At a constant energy slice

(a) (b) (c)

(d) (e) (f)

FIG. 2. Dispersion of collective excitations in the high-density regime. (a) Cross section of the Stokes vector component S1 at the
constant energy E ¼ 1.60154 eV. Gray dotted lines mark the edges of the filtered area. The frames of reference are marked as in
Fig. 1(b). (b),(c) Examples of the photoluminescence spectra at kk ¼ 0 in (b) horizontal (H) and (c) vertical (V) polarization basis. Data
points show energies extracted from fitting, white solid lines—the fitted model, and white dotted lines—single-particle dispersions.
White dashed line marks the energy of the condensate E ¼ μ ¼ 1.600252 eV and the gray dotted line is the edge of the spatial filter in
momentum space. The condensate emission in the image is attenuated by a factor of 0.01 (b) and 0.1 (c). (d) Energy splitting between the
excitations predicted by the model with the cross sections in the directions parallel (solid line) and perpendicular (dotted line) to the
anisotropy axis. (e) Dispersions and (f) energy splitting between the collective excitations in the directions parallel and perpendicular to
the condensate polarization direction with the corresponding theoretical fits (solid lines). Green dashed line in (f) shows the energy
splitting for the single-particle states. Gray shaded area in (e),(f) marks the range of emission blocked by the edge filter.
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[see Fig. 2(a)], the two branches have different polari-
zations and wave vectors. Equivalently, the dispersions are
split as shown in Fig. 2(e). As predicted by theory and
shown in Fig. 2(d), the energy splitting is highly aniso-
tropic, which is confirmed by the experimental data in
Fig. 2(f). As in the low-density limit (Fig. 1), the collective
excitation branches diverge in the direction perpendicular
to the anisotropy axis (along k⊥) and cross in the orthogo-
nal direction (along kk).
The experimental results can be modeled by solving the

linearized equations for excitation eigenstates within the
mean-field framework, as described in Ref. [25]. Taking
into account the optical anisotropy and the TE-TM split-
ting, the excitations of a linearly polarized condensate at
k ¼ 0 result in four dispersion branches �ϵL;U—two for
positive and two for negative energies with respect to the
condensate energy (chemical potential) E ¼ μ.
Expressed in the basis aligned to the cavity anisotropy

axis, the positive excitation branches can be written as:

ϵUðqÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩþϵðqÞ∓βq2ÞðΩþϵðqÞ∓βq2þ2ðα1−α2ÞnÞ

q

ϵLðqÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵðqÞ�βq2ÞðϵðqÞ�βq2þ2ðα1þα2ÞnÞ

q
; ð2Þ

where ϵðqÞ ¼ ϵLPðqÞ − ϵLPð0Þ, and ntot ¼ 2n is the total
condensate density. Here the wave vector is aligned to
the anisotropy axis such that q ¼ kk;⊥, and the order of the
� and∓ signs corresponds to kk and k⊥. The two branches
inherit the anisotropic behavior of the single-particle
dispersions, as shown by the energy splitting in k space
[see Fig. 2(d)]. However, the crossing points k� now also
depend on the spin-dependent interaction constants.

Since the parameters β and Ω are known from the low-
density measurements, we fit the measured dispersion of
excitations using α1n and α2n as fitting parameters. Good
agreement between the experimental data and the theoreti-
cal model is illustrated in Figs. 2(e),(f). One can observe a
shift of the crossing points k� with respect to the low-
density case, directly induced by the polariton-polariton
interactions in the condensed state. The resulting values are
α1n ¼ ð322� 12Þ μeV for the polaritons in the triplet spin
configuration and α2n ¼ ð9� 15Þ μeV in the singlet con-
figuration, with the corresponding chemical potential
μ ¼ ðα1 þ α2Þn − ðΩ=2Þ ¼ ð317� 20Þ μeV. The conden-
sate density is measured [46] to be ∼2200 μm−2.
This yields the interaction constants α1 ¼ ð0.293�
0.029Þ μeV μm2, while α2 ¼ ð0.008� 0.014Þ μeV μm2.
These measured values are in good agreement with
previous estimates. For polaritons in GaAs-based samples,
it is common to neglect the singlet contribution to the total
blueshift. This assumption is fully supported by our result,
with α2 around 2 orders of magnitude smaller than α1. Our
values yield the ratio α2=α1 ¼ ð0.027� 0.048Þ, being
positive and smaller than the common assumptions [7,9]
for the GaAs system. The relative uncertainty of the ratio is
high due to the uncertainty in individual interaction
constants, which precludes a clear determination of its
sign. However, taking into account the spin-dependent
interactions and the nonzero (positive) value of α2 is
essential to properly model the polarization-resolved col-
lective excitations spectra, as demonstrated by statistical
analysis of the goodness of fit (see the Supplemental
Material [41]). We note that the small, positive ratio of
α2=α1 falls into the known region of stability of phase
space for a linearly polarized condensate [7,12]. In con-
trast to previous reports, our approach enables a direct

(a) (b) (c)

FIG. 3. (a) S1 and (b) S2 components of the Stokes vector for the collective excitations. Shown are experimental (left column) and
theoretical (right column) results for the lower excitation branch ϵL (top row) and the upper branch ϵU (bottom row). Color scales are
normalized to the maximum of the Stokes parameter, where the maximum Stokes amplitudes of the experimental results are around
40%. (c) Calculated pseudospin texture of ϵU (black arrows), plotted over the field texture obtained from the theoretical model. Red
crosses mark the positions of the crossing points.
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measurement of both values. The corresponding
exciton-exciton interaction strengths, defined as αex1;2 ¼
NQWðα1;2=X2

0Þ where NQW ¼ 12 is the number of quantum
wells, have the values of αex1 ¼ ð10.3� 1.1Þ μeV μm2 and
αex2 ¼ ð0.2� 1.7Þ μeV μm2, which are in good agreement
with previously reported values for the GaAs micro-
cavities [39,53].
Spin texture of excitations.—The in-plane pseudospin of

the collective excitations is characterized by the Stokes
vector for the excitation eigenstates. Extracted polarization
patterns are presented in the left columns of Figs. 3(a),(b),
with the right columns showing the corresponding solution
of the full theoretical model. To highlight the contrast in the
patterns in spite of a very small splitting between the
branches, we calculate the maximum Stokes vector com-
ponents at the energies slightly offset from the eigen-
states (the details of the analysis can be found in the
Supplemental Material [41]). The experimental results
show a good correspondence to the polarization patterns
of the eigenstates expected from the model. The resulting
pseudospin textures [Fig. 3(c)] show a pattern similar to
that reported in the single-particle case [27]. However, the
existence and position of the diabolical points with the
associated effective monopolar magnetic field is now
governed not only by the ratio of Ω and β but also by
the polariton interactions since they arise from the collec-
tive (Bogoliubov) excitations of an interacting condensate.
The exact crossing points and the corresponding monop-
oles in the pseudospin patterns are not directly accessible in
our experiment, being too close to the strong condensate
emission. Nevertheless, a clear manifestation of such a
gauge field texture is visible in the experimental data
[Fig. 3(c)].
Conclusions.—In this Letter, we have demonstrated

anisotropy of collective excitations in a spinor exciton-
polariton condensate, which results from the innate spin
anisotropy of polariton interaction and the optical
anisotropy (birefringence) of the microcavity under study.
The optical anisotropy provides the strongest contribution
to the anisotropy of the collective excitation branches in our
GaAs-based system. Our experimental method enables a
new, direct measurement of the interaction constants α1 and
α2 for the polaritons in the triplet and singlet spin
configurations and can be applied to other systems with
different interaction strength ratios. In our sample, we
confirmed a 2 orders of magnitude difference in the
interaction strengths α1;2.
Furthermore, we extracted the pseudospin textures of the

collective excitations in the polariton condensate resulting
from the interplay between the effective magnetic field
of the microcavity and spin-dependent interactions. The
presence of diabolical points with the associated spin
structure characteristic of a monopolelike magnetic field
signifies that polariton systems in the high-density (non-
linear) regime can be used in future studies of synthetic

gauge fields and topological physics [17,54]. The dominant
role of the cavity birefringence in the anisotropyof collective
excitations points to a straightforward way to design
synthetic gauge fields for quantum liquids of light by
tailoring the optical anisotropy of microcavities [32,55–58].
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I. SAMPLE AND EXPERIMENTAL DETAILS

The sample under study was an ultrahigh-quality 3λ/2 GaAs-based microcavity, consisting of distributed Bragg
reflectors with 32 (top) and 40 (bottom) pairs of alternating Al0.2Ga0.8As/AlAs layers and an active region of 12
GaAs/AlAs quantum wells with the nominal thickness of 7 nm. The sample was excited with a CW Ti:Sapphire laser,
tuned to a reflectivity minimum of the microcavity (around 720 nm), chopped with an acoustic optical modulator
at 10 kHz and 1% duty cycle to minimise thermal heating of the sample. The annular spatial distribution of the
laser on the sample was achieved with the use of an axicon lens in a confocal configuration between two imaging
lenses in the excitation path of the optical setup (see Supplemental Figure 1), as in our previous works [1, 2]. A
NA = 0.5 microscope objective was used to both image the laser beam and collect the photoluminescence signal
from the sample. The imaging setup consisted of four lenses in a confocal configuration, enabling near- and far-field
emission imaging. The signal was filtered in the intermediate conjugate planes: with an optical iris in the real space to
reject the potential barrier signal and a movable razor-blade edge in momentum space to reject the strong condensate
emission around k = 0. The signal was then imaged onto the monochromator slit and dispersed by a grating. In order
to achieve a resolution in the direction perpendicular to the slit and detect the spectra in 2D momentum space, the
imaging lens was mounted on a translation stage in front of the monochromator, allowing the optical tomography.
Measurements were performed in four linear polarizations (horizontal-vertical H/V and diagonal-antidiagonal D/A
basis, corresponding to the in-plane axes of the Poincaré sphere [3]). The polarization resolution was achieved by
employing a half-waveplate and a linear polarizer in the detection path. In the case of excitations measurements
two sets of such scans were recorded: one with the condensate emission covered in either the horizontal or vertical
direction in momentum space. The imaging was recorded by a high-efficiency EMCCD camera (Andor iXon Ultra 888),
following a Princeton Instruments IsoPlane 320 monochromator. The sketch of the experimental setup is presented
in Supplemental Figure 1.

II. DATA TREATMENT AND ANALYSIS

Each polarized spectrum (at each wavevector) was fitted with a Lorentzian curve in order to extract the energies
of the two eigenstates. An example of the measured photoluminescence signal with the fitted curves is presented in
Supplemental Figure 2(b). Since the splitting between the two states is small, especially close to the crossing points,
where it becomes smaller than the linewidth, one cannot clearly resolve two distinct peaks in the photoluminescence
signal. However, using the polarized spectra one can clearly extract two modes separated in energy. The same method
was used to extract the eigenstates in the low- and high-density regimes. Error bars are 95% confidence intervals
obtained for the peak positions from the Levenberg-Marquardt algorithm.

∗ Current address: National Renewable Energy Lab, Golden, CO
80401, USA

† elena.ostrovskaya@anu.edu.au
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Supplemental Figure 1. Schematic diagram of the experimental setup.

After extracting the eigenstate energies in the directions perpendicular and parallel to the anisotropy axis, their
dispersions were fitted with a solution of the model described in the main text (Eq. 1). Diagonalization of the

Hamiltonian leads to a single-particle spectrum in the form of ε±(k) = εLP (k)±
√

Ω2

4 + β2k4 − Ωβk2 cos (2θk − ϕ)),

where εLP (k) = 1
2

(
Ec(k) + EX(k)−

√
(Ec(k)− EX(k))2 + ~Ω2

V RS

)
, Ec = Ec0 + ~2k2c2

2Ec0n2
c

is a cavity mode, and EX

corresponds to the exciton resonance energy. Using this formula for fitting low-density case data, the values of Ω and
β were extracted, and used in the analysis of the collective excitation branches.

In the high-density regime, the full model (described in detail in Supplemental Material of ref. [4]) can be simplified
to be written as follows:

L =

−ε− α1n− Ω/2 −α2n− εa −α1n −α2n
−α2n− εb −ε− α1n− Ω/2 −α2n −α1n

α1n α2n ε+ α1n+ Ω/2 α2n+ εb
α2n α1n α2n+ εa ε+ α1n+ Ω/2

 ,

where εa,b = β(k‖ ± ik⊥)2 − Ω/2. The eigenvalues of the matrix L correspond to the excitation eigenstates.
The full solution of this model can be further simplified by considering two directions that are relevant to the

experimental observations, i.e. parallel and perpendicular to the optical anisotropy axis:

εL
(
k||
)

=

√(
ε+ βk2

||

)(
ε+ βk2

|| + 2 (α1 + α2)n
)
,

εU
(
k||
)

=

√(
Ω + ε− βk2

||

)(
Ω + ε− βk2

|| + 2 (α1 − α2)n
)
,

εL (k⊥) =
√

(ε− βk2
⊥) (ε− βk2

⊥ + 2 (α1 + α2)n),

εU (k⊥) =
√

(Ω + ε+ βk2
⊥) (Ω + ε+ βk2

⊥ + 2 (α1 − α2)n).

Combined fitting of these four expressions to our eigenstates yielded values of α1n = (322 ± 12) µeV and α2n =
(9 ± 15) µeV . Estimated errors come from 95% confidence interval after accounting for the error on Ω and β values
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(obtained from the previous fit). By using the same method as described in ref. [1] to calibrate the setup and calculate
the density of the condensate, the measured value was found to be ntot = 2n ≈ (2200 ± 200) µm−2, finally yielding
α1 = (0.293± 0.029) µeV µm2 and α2 = (0.008± 0.014) µeV µm2.

(a) (b)

(c)

Supplemental Figure 2. (a) Cross-section of the Stokes vector component S1 of a measured excitations’ dispersion, along
kx = 0 µm−1. Energies of two eigenstates, extracted from the fitting procedure are marked with white circles, while red points
show positions of maximum values of S1 component at each point in momentum space. They are slightly shifted from the
branches, and were used to calculate polarization maps in the main text. (b) An example of a single measured spectrum of
elementary excitations for wavevector kx ≈ 0µm−1, ky ≈ 1µm−1, detected in horizontal (H) and vertical (V) polarization basis
with calculated S1 component presented in (c). Solid lines show fitted Lorentzian curves used to extract the eigenstates.

III. SPIN TEXTURES

In order to extract the pseudospin textures, the Stokes vector components were calculated for each of the excitation
branches in the whole measured 2D momentum space. At the extracted energies of eigenstates, the S1 and S2

components were calculated using the intensities from the measured polarization-resolved spectra. However, as shown
in Supplemental Figure 2, the finite broadening and small splitting between the branches results in partial overlapping
of the states and the maximum value of the polarization degree is shifted from the eigenstate peak position in energy.
Therefore, to enhance the visibility contrast of the patterns we used those maximum values to present the polarization
maps and calculate the pseudospin textures in the main text (Fig. 3).

The polarization and pseudospin patterns were calculated in a similar manner for the low-density case, as presented
in Supplemental Figure 3.

To compare the measured polarization patterns with the theoretical expectations, the maps in Fig. 3 in the main
text were calculated from the full model as [4]:

S =

S1

S2

S3

 =

2Re
(
ψ+ψ

∗
−
)

2 Im
(
ψ∗+ψ−

)
|ψ+|2 − |ψ−|2

 ,

where Ψ = (ψ+, ψ−)
T

is a polariton spinor.

They were rotated 15◦ to account for the difference in the measurement frames.
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(a) (b) (c)

Supplemental Figure 3. (a) S1 and (b) S2 components of the Stokes vector for the low-density polaritons, at the ε− (top row)
and the ε+ (bottom row) lower polariton branch. Corresponding pseudospin textures are presented in (c), with red crosses
marking the positions of the crossing points.

IV. POWER DEPENDENCE

We have studied the power dependence of polarization- and momentum-resolved polariton photoluminescence along
one direction in momentum space (along the monochromator slit in experimental frame of reference), without momen-
tum filtering. It enabled us to study the threshold and the linear polarization degree of the condensate. Supplemental
Figure 4 shows the dependence of integrated photoluminescence signal at k = 0 on the excitation power. Nonlinear
increase of the emission intensity, combined with abrupt increase in the degree of linear polarization (see inset of
Supplemental Figure 4), clearly mark the condensation threshold.

For further studies of excitations, presented in the main text, we have chosen the power corresponding to the last
point on this series (marked with green) in order to achieve the highest condensate density.
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Supplemental Figure 4. Power dependence of the integrated photoluminescence intensity at k = 0, resolved in H- and V-
polarizations. Inset: S1 Stokes vector component of the polariton emission versus the excitation power. Dashed line shows the
degree of linear polarization of a high-density condensate, saturating around 95%. Green circles and arrows indicate powers
used for low-density and high-density measurements presented in the main text.
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V. COMPARISON OF LOW-DENSITY AND HIGH-DENSITY DATA

Supplemental Figure 5 shows the comparison of low-density polariton and high-density excitation dispersions (shown
separately in Figs. 1(c,d) and 2(e,f) of the main text). Energies of the eigenstates were shifted to the extracted
condensate energy. The difference between the low and high density regimes is clear, as the shifts far exceed the
eigenstate linewidths and experimental errors. Supplemental Figure 5(b) shows the energy splitting between the
collective excitations in the directions parallel and perpendicular to the condensate polarization direction with the
corresponding theoretical line following from fits (solid green), compared with the splitting of low-density polariton
branches and their model (dotted purple line). With interactions included (model described in Section II), the resulting
eigenstate splitting dependence on wavevector is clearly different from the low-density limit (Eq. 1 in the main text).

Moreover Supplemental Figure 5(b) also demonstrates how including polarization-dependent interactions (for po-
laritons in triplet and singlet state with corresponding α1 and α2 strengths) shifts the diabolical point. Dashed line
shows the excitation branches’ splitting which would result from considering our fitted model with α2 = 0. This
highlights that considering polarization-dependent interactions is essential to reliably fit experimental data points.

(c)

(a) (b)

Supplemental Figure 5. Low-density polariton (diamonds) and high-density excitation (circles) eigenstate dispersions (a)
and their splitting (b) in the directions parallel and perpendicular to the condensate polarization direction. Corresponding
theoretical fits are shown with solid lines (excitation branches) and dotted lines (low-desity polariton branches). Red dashed
line in (b) shows the energy splitting resulting from same excitation model (Eq. 2 of the main text) and parameters extracted
from our fits, but with α2 = 0. Grey shaded area marks the range of emission blocked by the edge filter in high-density regime
experiments.

To further prove the validity of our model, we have performed a statistical analysis of the goodness of the fit and
compared models with and without the interactions. Supplemental Figure 6 presents several approaches to model our
measured data. Panel (a) shows our fitted model, as in the main text, with the interaction constants included. We
highlight that the fitting procedure was performed to the dispersion curves (Supplemental Figure 6(a)), as described
in Section II, and the graph in Supplemental Figure 6(b) show the resulting energy splitting calculated from the fit.
Supplemental Figures 6(c,d) show the model without polariton-polariton interactions, i.e., with the same polariton
parameters extracted from the low-density measurements, but with α1, α2 = 0. It is therefore a model of non-
interactiong polaritons, but with the energy of the k = 0 state ε0 shifted to the measured condensate energy. It is
very clear that the curve does not model our data correctly. Supplemental Figures 6(e,f) additionally present the
model with no interactions but with the energy shift as a fitting parameter, yielding the value ε0 = 1.60052 eV ,
which is blueshifted by 270 µeV from the observed condensate energy, and by 890 µeV from the low-density lower
polariton. This model therefore results in a significant discrepancy with the observed blueshift. Furthermore, it does
not yield the best fit to our experimental data, as shown in the analysis below. Finally, Supplemental Figures 6(g,h)
additionally present a model with only triplet interactions taken into account, i.e., with α2 = 0 and α1n being the
only fitting parameter (yielding the value α1n = (323± 13)µeV - almost the same as in our original approach). Even
though the fit to the excitation dispersion is similar to that achieved with our original approach, the energy splitting
calculated from the fit and presented in Supplemental Figure 6(h) shows a clear descrepancy with our data, as further
quantified and discussed below.

For each of the models presented in Supplemental Figure 6, we calculated the residual sum of squares (RSS),
the mean residual square (MRS) (both measuring the discrepancy of the data points and the fitted line), and the
R-squared (R2) parameter, showing the overall goodness of fit. As each of the experimental points is subject to
uncertainty, the fitting was performed through a weighted nonlinear least square procedure, with error bars included
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Supplemental Figure 6. Comparison of the model fits. Left panels (a,c,e,g) show the excitation dispersions, with datapoints
extracted from the measurements and the corresponding theoretical curves shown as solid lines. Right panels (b,d,f,h) present
the corresponding eigenstate splitting, with the model curves calculated from the dispersion fits. Panels (a,b) show the model
used in the main text, with both interaction energies used as fitting parameters. Panels (c,d) and (e,f) show the models
neglecting the interactions, with the k = 0 energy set to the measured condensate energy in (c) and used as a fitting parameter
in (e). Panels (g,h) show the model without the singlet interactions, with the interaction energy α1n as the only fitting
parameter.
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as instrumental weights, wi = 1
σ2 , where σ is the size of an error bar. Calculated statistical measures were therefore

also adjusted, taking these weights into account:

RSS =

m∑
i=1

wi(yi − ŷi)2,

MRS =
RSS

m
,

TSS =

m∑
i=1

wiy
2
i −

(
m∑
i=1

(yiwi)/

m∑
i=1

wi

)2 m∑
i=1

wi,

R2 = 1− RSS

TSS
,

where yi are the datapoints, ŷi are model points, TSS is the corrected total sum of squares, and m is the number of
points.

The results are presented in Supplemental Table I, with the statistical parameters calculated for each of the models
discussed above, as well as for the eigenstate splitting (not subject to fitting). The columns (a-h) in Supplemental
Table 1 present the statistical measures corresponding to the fitting of different models to the experimental dispersion
branches in Supplemental Figures 6(a,c,e,g) and the extracted energy splitting in Supplemental Figures 6(b,d,f,h),
respectively.

Fitted model No interactions
No interactions,
fitted blueshift

Only triplet
interactions

α1n = 322 µeV α1n = 0 µeV α1n = 0 µeV α1n = 323 µeV
α2n = 9 µeV α2n = 0 µeV α2n = 0 µeV α2n = 0 µeV

ε0 = 1.60025 eV ε0 = 1.60025 eV ε0 = 1.60052 eV ε0 = 1.60025 eV

Dispersions (a) (c) (e) (g)
Residual sum of squares RSS 2330.3 816160 7120.1 2829.1
Mean residual square MRS 19.58 6858.50 59.83 23.77

R2 0.9964 -0.2749 0.9889 0.9956
Splitting (b) (d) (f) (h)

Residual sum of squares RSS 154.73 411.39 411.39 610.85
Mean residual square MRS 2.7146 7.2173 7.2173 10.717

R2 0.6639 0.1064 0.1064 -0.3268

Supplemental Table I. Statistical analysis of the goodness of fit and model comparison. Best parameter values are highlighted
in red.

Our original model yielded a value of R2 = 99.64%, as seen in column (a) of Supplemental Table I, which proves its
statistical significance. It is the highest R2 value of all considered approaches. As seen in column (b) of Supplemental
Table I, R2 for the resulting splitting is 66.39%, which means a larger discrepancy between the data points and the
model, however, we stress that the small splitting values in k‖ direction (close to zero due to the crossing point presence)
greatly contribute to the overall discrepancy, as they come close to the experimental resolution limit. Importantly, we
were able to measure such small splittings because of the polarization-resolved measurements, enabling the isolation
of individual eigenstates in the polarization basis. Without polarization filtering, both branches are indistinguishable
experimentally. In the k⊥ direction, the splitting values can be seen as more reliable, and curve calculated from our
fit closely follows the data (left side of the Supplemental Figure 6(b)).

As evident from column (c) of Supplemental Table I, neglecting the interactions results in a poor fit, with negative
R2 (meaning that the fit is worse than a horizontal line and does not explain the data variance) and the residual
squares larger than those presented in column (a) by orders of magnitude. Even including an additional blueshift into
the model (originating, for instance, from an excessive reservoir in the trap), results in ∼ 3 times higher residual sum
of squares and mean residual square as seen in column (e) of Supplemental Table I. More importantly, this low-density
interactions-free polariton approach does not agree with the splitting data, yielding the R-squared parameter of only
10.64%, as seen in columns (d,f) of Supplemental Table I.
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Finally, a model that does not include the singlet (opposite-spin) polariton-polariton interactions does fit the data
with high statistical significance as can be seen in column (g) of Supplemental Table I. Nevertheless, the splitting data
show a very high discrepancy with this model, with negative R2, as reported in column (h) of Supplemental Table I.
These results point to the significance of including a positive value of α2 to correctly describe our data, even though
its value is very small comared to α1 and is characterised by a significant uncertainty.

The model used in our work, as highlighted in columns (a,b) of Supplemental Table I, yields by far the closest fit
to the measured data, with almost perfect match in the fitted eigenstate data and a very good correspondence in the
splitting calculated from it.

VI. GHOST BRANCHES

As mentioned in the main text, our experimental investigation of Bogoliubov excitation branches also results in
observing the negative (ghost) branches in both orthogonal polarizations, with examples presented in Supplemental
Figure 7. The visibility of these branches further confirms the presence of the polariton-polariton interactions. Their
signal, however, is very weak and strongly affected by the diffracted condensate emission (especially in polarization
parallel to the one of the condensate), therefore we do not analyse it in detail and focus on the much brighter normal
branches.

(c)

(a) (b)

Supplemental Figure 7. Examples of the photoluminescence spectra at k‖ = 0 in (a) horizontal (H) and (b) vertical (V)
polarization basis, with energies shifted to the condensate energy, showing both positive and negative (ghost) excitation
branches. Data points show energies extracted from fitting of normal branches, white solid lines - the fitted model. White
dashed line marks the energy of the condensate and grey dotted line is the edge of the spatial filter in momentum space. The
condensate emission in the image is attenuated by a factor of 0.01 (a) and 0.1 (b), and the ghost branch emission is multiplied
by a factor of 5 (a) and 10 (b).
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Summary of the
findings

In summary, the work presented in this Part served as a fundamental study of the
polarization properties of a high-density exciton-polariton condensate in the Thomas-
Fermi regime, governed by polariton-polariton interactions. It investigated the col-
lective elementary excitations of a condensate with an intrinsic synthetic gauge field,
directly showing the excitation branches spin anisotropy. This work:

• served as the first experimental observation of the polarization splitting and
the anisotropic behavior of the condensate excitation dispersions in an opti-
cally confined condensate, previously explored only theoretically. This study
experimentally evidenced a clear difference in the polarization-resolved excita-
tion dispersions in different in-plane directions, showing two linearly-polarized
Bogoliubov branches with different sound velocities of the collective condensate
waves. The dispersion splitting was governed by the photonic TE-TM split-
ting, the inherent optical anisotropy and the spin-anisotropy of the polariton-
polariton interactions, all of which were accounted for in the theoretical model.
The strongest contribution to the anisotropy of the collective branches in this
system has been found to come from the optical anisotropy part.

• presented a rotation of the polariton spin in an interacting regime of the con-
densate, directly showing a non-abelian gauge field with characteristic degener-
acy points, around which the monopolar field texture is formed. Such a field
has been shown before only in an non-interacting, low density regime of pho-
tonic states, with no evidence of the influence of polariton-polariton interaction
anisotropy on the shape of the field prior to this work. The polarization texture
has been directly evidenced from the Stokes vector components of the polariton
pseudospin and showed superb correspondence to the results of the theoretical
model.

• based on the experimental data, two interaction constants have been extracted,
describing interaction strength of polaritons with the same or opposite spins.
Previously, most experimental studies on polariton-polariton interactions fo-
cused solely on the average value, with no spin resolution, or only on their
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ratio. This work offered a new, relatively straightforward way of measuring
both constants in a polariton condensate, in future possible also in other mate-
rial systems. It used a mean-field framework to describe the observed excitation
eigenstates, allowing for the quantitative analysis of all the contributing effects.
The extracted values of the interaction constants proved the theoretical predic-
tions and common claims, that polaritons with the same spin interact with each
other much more strongly than the particles with opposite spins. Additionally,
the statistical analysis proved the applicability of the model and validity of the
results.

• is important for further research and applications. The presence of diabolical
points with the associated spin structure characteristic of a monopole-like mag-
netic field signifies that polariton systems in the high-density (nonlinear) regime
can be used in future studies of synthetic gauge fields and topological physics.
The dominant role of the cavity birefringence in the anisotropy of collective
excitations points to a straightforward way to design synthetic gauge fields for
quantum liquids of light by tailoring the optical anisotropy of microcavities.
The measured values of the polariton-polariton interactions can be regarded as
being of core importance in fundamental research.
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Introduction
Topology is is a branch of mathematics describing the properties of a geometric object
that are preserved under continuous deformations. It describes global characteristics
of a whole class of systems and it is central to understanding and engineering materials
that display robust physical phenomena immune to imperfections [33]. Different
topological phases of matter are characterized by topological invariants - quantities
that take on discrete values which do not change under continuous deformations of
the space (hence remain invariant). They can be used to classify groups of objects and
describe a global, topological property - objects with the same topological invariant
are topologically equivalent [33]. The most common example of a topological invariant
is the number of holes in an object, with a doughnut and a cup being members of
the same class. Changing the topological invariant (e.g. by creating a new hole in an
object) is known as a topological phase transition.

Topology has gained a huge interest after the discovery of topologically protected
energy bands in electronic materials and solid state systems [123, 207–209]. With
properties invariant to continuous deformations (such as stretching, twisting, crum-
pling, and bending) it allows the existence of topological phases immune to disorder.
Imperfections or sample defects typically lower or even diminish the effectiveness of
electronic devices, hence topological protection gave a lot of promise in potential ap-
plications. Topological phases in electronic materials has led to demonstrations of
unique phenomena, such as a dissipationless current in topological insulators or an
enhanced sensitivity to electromagnetic fields [210,211].

Firstly studied in solid state systems, soon topological states have been presented
also in photonic systems [32, 33], with potential applications in photonic devices.
Topological effects such as topological protection, unidirectional transport or topo-
logical lasing can be realized in e.g. photonic crystals, coupled resonators, metamate-
rials and quasicrystals [33]. Soon it has also been suggested and realized in polariton
systems [63,206,212–216]. Breaking the time-reversal symmetry, necessary to induce
topological edge modes, has been done with an external magnetic field, or by breaking
the inversion symmetry (e.g. by creating a lattice) [91,206,214,215,217].

In energy-conserving (Hermitian) systems, topological invariants are determined
by the winding of the phase of the eigenstates in momentum space. The bulk–
boundary correspondence dictates that the topological invariant called the winding
number, which specifies the number of chiral edge modes, is completely determined
by the bulk topological invariant - the Chern number [218, 219]. The winding has
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been evidenced experimentally in a range of systems [218,220–222].
However, the situation is different in dissipative, open systems which are not Her-

mitian (as introduced in section 1.2.6), in which the gain and the loss govern also the
topological properties. In non-Hermitian systems, a topological invariant emerging
from the winding of the complex eigenenergies has been predicted [65–67]. Some
properties of the eigenstates stemming from the novel non-Hermitian topology - e.g.
localization of modes [223] or the polarization half-charge [224] - have been experimen-
tally observed in photonic and mechanical systems, however, a direct measurement
of the non-Hermitian topological invariant in momentum space has not been demon-
strated prior to this work, regardless of the physical system under investigation.

Extracting the non-Hermitian properties of photonic or polaritonic systems can be
done by experimentally mapping both the energy and the linewidth of the spectrum,
what correspond to mapping the real (energy) and imaginary (linewidth) parts of the
eigenstates. As introduced in section 1.2.6, accounting for the inherent losses can be
done by using a non-Hermitian framework [53, 60], where both the exciton and the
photon resonances are described by complex energies E′ = E − iγ. The real part E
corresponds to the state energy, and the imaginary part - to its linewidth (inverse
lifetime). One can now include these complex energies into full Hamiltonians, e.g.
into the Hamiltonian describing the TE-TM splitting of the photonic or polaritonic
states, combined with the anisotropy/birefringence (described in section 1.2.3 and in
equation 1.27).

By simply measuring the photoluminescence spectra, one can extract both real and
imaginary parts of the eigenstates from the fitting procedure. Mapping these values
in momentum space - very similarly to the methods described in the previous part
of this thesis - allows to extract the novel topological invariant — fractional spectral
winding - when done near the exceptional points (the crossing points of the eigenstate
dispersions). Additionally, mapping the polariton pseudospin in momentum space
(again, with methods described in the previous parts) allows to map the artificial
in-plane magnetic field acting on the polaritons. Here, the non-Hermiticity results in
a unique appearance of circular polarization, maximized near the exceptional points,
even without the presence of the external (real) magnetic field.

This work - in contrast to other works presented in this thesis - has been done
in a perovskite material platform, with a lead-halide perovskite crystals embedded
in an optical microcavity. These crystals are known to be optically anisotropic [79],
having an orthorombic structure - what allows for a much higher X-Y splitting (the
birefringence of the cavity medium). This effectively enlarges the overall eigenstate
splitting and makes the exceptional points more distinct. Additionally, larger exci-
ton binding energies in these materials allow for the polariton presence (and even
condensation [79]) at room temperature - a condition used in this work.

Large structural anisotropy greatly increases the size of the effects described in
section 1.2.3 and also in the previous part (Part II) of this thesis. The values of the
branch splitting are higher, hence much easier to observe and extract experimentally.
Even though no polariton-polariton interactions have been considered in this part (a
low density regime) and the broad scope of this work is different, the experimental
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methods are very similar to the ones employed in the previous part. By mapping the
photoluminescence spectra in the momentum space, while resolving the polarization
of the states, one can extract the effective magnetic field governing the polariton
pseudospin. This highlights, how this technique is hugely versatile, and how it can
be employed to study various novel characteristics of polaritons or photons.

It’s also important to note, that this work significantly differs from the works
by Tercas et al. [28] and Gianfrate et al. [30] (described in the Introduction to Part
II) in two ways. First, in these works the authors used a parabolic approximation
of the polariton states in the model (further used in the effective-SOI Hamiltonian),
hence, considered a purely photonic effect of the gauge field, with no strong coupling
between the photons and excitons needed. Here, apart from the gauge field effect
on the photonic mode, photons are strongly coupled to excitons. Secondly and most
importantly, this work considers also the imaginary part of the polariton states -
hence their inherent non-Hermiticity - as it has not been done before.
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Direct measurement of a non-Hermitian topological 
invariant in a hybrid light-matter system
Rui Su1*†, Eliezer Estrecho2*†, Dąbrówka Biegańska2,3, Yuqing Huang1, Matthias Wurdack2, 
Maciej Pieczarka2,3, Andrew G. Truscott4, Timothy C. H. Liew1,5, Elena A. Ostrovskaya2*, Qihua Xiong6,7,8*

Topology is central to understanding and engineering materials that display robust physical phenomena immune 
to imperfections. Different topological phases of matter are characterized by topological invariants. In energy- 
conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum 
space. In non-Hermitian systems, a topological invariant is predicted to emerge from the winding of the com-
plex eigenenergies. Here, we directly measure the non-Hermitian topological invariant arising from exceptional 
points in the momentum-resolved spectrum of exciton polaritons. These are hybrid light-matter quasiparticles 
formed by photons strongly coupled to electron-hole pairs (excitons) in a halide perovskite semiconductor at 
room temperature. We experimentally map out both the real (energy) and imaginary (linewidth) parts of the 
spectrum near the exceptional points and extract the novel topological invariant—fractional spectral winding. 
Our work represents an essential step toward realization of non-Hermitian topological phases in a condensed 
matter system.

INTRODUCTION
The discovery of topologically protected energy bands and associated 
topological phases in electronic materials has led to demonstrations 
of unique phenomena, such as dissipationless current (1) and en-
hanced sensitivity to electromagnetic fields (2, 3), that have the po-
tential to revolutionize the electronics industry. Inspired by the 
discoveries in the field of condensed matter physics, the realization 
of topological effects in engineered photonic systems holds similar 
promise for photonic applications (4). On the other hand, growing 
understanding of the physics of non-Hermitian systems with gain 
and loss (5,  6) has led to demonstration of novel functionalities, 
such as loss-induced lasing (7), enhanced sensing (8, 9), and optical 
nonreciprocity (10, 11). The past few years have witnessed the con-
vergence of the two research directions, with notable theoretical 
and experimental advances in extending the notion of topology to 
non-Hermitian systems (12,  13). The bulk-boundary correspon-
dence, the principle relating the surface states to the topological 
classification of the bulk, was generalized to non-Hermitian sys-
tems (14–17) and has been explored for high-order systems (18, 19). 
Furthermore, the associated non-Hermitian skin effect, the local-
ization of bulk modes at the edges of an open boundary system, was 
observed in experiments (20–22). A unique non-Hermitian topology 

arising from the winding of the complex eigenvalues (eigenener-
gies) was theoretically predicted (23–25). This is in stark contrast to 
energy-conserving systems, where the topological invariants are de-
termined by the winding of the phase of the eigenstates in momen-
tum space, which has been directly measured in ultracold atomic 
(26, 27), microwave (28), and photonic systems (29). The properties 
of the eigenstates stemming from the novel non-Hermitian topol-
ogy, such as the polarization half-charge (30) and localization of 
modes (31), have been experimentally observed in photonic and 
mechanical systems. However, a direct measurement of the non- 
Hermitian topological invariant in momentum space is yet to be 
demonstrated, regardless of the physical nature of the system under 
investigation.

Exciton polaritons, hybrid light-matter particles arising from 
strong coupling of confined photons to excitons in a semiconduc-
tor, offer a promising platform for investigations of topology and 
non-Hermitian physics in condensed matter. Artificial lattice poten-
tials (32–34) enable exciton polaritons to emulate topological quan-
tum matter (35), although the topological gap only opens in very 
strong magnetic fields requiring a superconducting magnet and 
cryogenic temperatures. Under similar extreme conditions, exciton- 
polariton systems also enable a direct measurement of physical quanti-
ties directly related to topology, such as the quantum geometric tensor 
(36), including the nonzero Berry curvature (36–38). Moreover, be-
cause of the photonic and excitonic losses, exciton polaritons are 
inherently non-Hermitian. A non-Hermitian spectral degeneracy—
an exceptional point (EP) (7, 39), where both the eigenvalues and 
eigenvectors coalesce—was demonstrated in exciton-polariton systems 
(40, 41) in parameter space. Since then, new proposals have emerged 
combining topology and non-Hermiticity of the system using arti-
ficial lattices (42–44). However, there are no experimental studies 
yet demonstrating the novel topology arising from non-Hermiticity 
in exciton-polariton systems.

In this work, we exploit exciton polaritons formed in optically 
anisotropic lead-halide perovskite crystals embedded in an optical 
microcavity to demonstrate the emergence of non-Hermitian to-
pology in an exciton-polariton system at room temperature. First, 
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we develop a non-Hermitian model for the two states of exciton- 
polariton pseudospin that accounts for the inherent losses in the 
system. The exciton-polariton pseudospin originates from the two 
allowed projections of its spin on the structure axis and is directly 
related to the polarization of the exciton-polariton emission, i.e., 
cavity photoluminescence (PL) (45). The model predicts the for-
mation of two paired EPs in momentum space connected by the 
topologically protected bulk Fermi arcs (30). We also demonstrate 
theoretically that the topologies of the eigenstates (polarization 
winding) and the eigenenergies (spectral winding) are not equiva-
lent, and the latter can persist when the former is absent. Then, by 
performing spectroscopic measurements of exciton-polariton PL, 
we experimentally confirm the existence of paired EPs and Fermi 
arcs linking them in momentum-resolved spectrum. Moreover, the 
non-Hermiticity results in the appearance of circular polarization, 
maximized near the EPs (46), which arises from the imaginary part of 
the artificial in-plane magnetic field acting on the exciton-polariton 
pseudospin. We provide a direct measurement of the novel non- 
Hermitian topological invariant—spectral winding—in a spatially 
homogeneous system and demonstrate the topological stability of 
the EPs and Fermi arcs against the gap-opening perturbations.

RESULTS
Non-Hermitian model for exciton-polariton dispersion
Losses are unavoidable in exciton-polariton systems because of the 
finite lifetimes of the cavity photons and excitons. These losses can 
be fully accounted for using non-Hermitian framework, where both 
exciton and photon resonances in the cavity are described by com-
plex energies    ~ E   = E − i , with the real part corresponding to the 
resonance energy and the imaginary part to the linewidth (inverse 
lifetime). We therefore model the complex exciton-polariton dis-
persion (spectrum in momentum space) by using a 4 × 4 non- 
Hermitian Hamiltonian describing the coupling of the two polarization 
modes of the cavity photons to the corresponding modes of the 
exciton (47)

   H(k ) =  (    
 H  c  (k)

  
V  1  2×2  

   
V  1  2×2  

  
   ~ E    x    1  2×2  

  )     (1)

where ℏk is the in-plane momentum, 12 × 2 is the 2 × 2 identity 
matrix,     ~ E    x   =  E  x   − i    x    is the complex exciton energy, and V is the 
exciton-photon coupling strength. For simplicity, we assume that 
the exciton spins are degenerate in energy, and the coupling strength 
is isotropic. We model the cavity photon by extending the Hermitian 
Hamiltonian (48, 49) to properly account for the losses

    H  c  (k ) =  (    
   ~ E    c  (k)

  
  ~   +   ~  (k )  e   −2i 

    
  ~   +   ~  (k )  e   2i 

  
   ~ E    c  (k)

   )     (2)

where  is the in-plane propagation angle,     ~ E    c  (k ) =    ~ E    c0   +   ~  (k)  is the 
mean complex energy of the cavity photon,    ~  (k)  is a function relat-
ed to the effective mass (real part) and the momentum-dependent 
loss rates (imaginary part),    ~    describes the complex energy splitting 
due to X-Y splitting, and    ~  (k)  describes transverse-electric transverse- 
magnetic (TE-TM) splitting. The X-Y splitting can arise from the 
birefringence in the cavity medium (48, 49), for example, due to the 
anisotropic orthorhombic crystal structure of perovskites at room 
temperature (33, 50), which leads to different cavity lengths for the 

ordinary and extraordinary waves and results in the splitting of both 
energies and linewidths at normal incidence (k = 0). The TE-TM 
splitting naturally arises from the polarization-dependent reflectiv-
ity of the dielectric mirrors at oblique angles, inducing an effective 
spin-orbit coupling (48–50) that increases with the angle of inci-
dence (or k). The resulting energy splitting is sensitive to the posi-
tion of the cavity resonance with respect to the distributed Bragg 
reflector (DBR) stopband, but the linewidth consistently increases 
(decreases) with momentum for TE (TM) modes (47). The model 
Eqs. 1 and 2 are derived by extracting the resonances in 4 × 4 transfer 
matrix simulations (46) (see Materials and Methods). The behavior 
of the energies and linewidths is presented in the Supplementary 
Materials.

In the strong coupling regime, the model Eqs. 1 and 2 result in 
four exciton-polariton branches (see the Supplementary Materials). 
In this work, we focus on the two lower polariton branches since the 
upper branches are not visible in PL experiments. The lower polar-
itons at lower momenta k can be described by a model similar to Eq. 2. 
However, the effective X-Y and TE-TM splitting parameters    ~    and    ~    
now also depend on the exciton-photon coupling strength V and 
exciton-photon detuning     ~ E    c0   −    ~ E    x   . In experiments, the exciton- 
photon coupling strength is typically fixed, but the exciton-photon 
detuning can be varied across the sample because of distinct cavity 
lengths. The effective 2 × 2 Hamiltonian can be recast into a more 
convenient form as    ~ E   = 〈  ~ E  (k ) 〉  1  2×2   + G(k ) ·  , where  〈  ~ E  (k ) 〉  is the 
mean lower polariton complex energy,  =[x, y, z]T is a vector of 
Pauli matrices, and

  G(k ) = [  ~   +   ~  (k ) cos 2,   ~  (k ) sin 2, 0]  (3)

is the effective non-Hermitian gauge field. The complex spectrum 
can be written as     ~ E    ±   − 〈  ~ E  〉 = ±  √ 

_________________
   G R  2   −  G I  2  + 2i  G  R   ·  G  I     , where GR 

and GI are the real and imaginary parts of the gauge field, respec-
tively. In the Hermitian limit of negligible losses, the spectrum (en-
ergy eigenvalues) of the Hamiltonian with gauge field, Eq. 3, features 
two Dirac cones in momentum space, as shown by the energy sur-
faces in Fig. 1 (A and B). This lossless approximation has been suc-
cessfully used to describe several experiments in exciton-polariton 
systems such as the optical spin-Hall effect (45), anomalous Hall 
effect (36), and the measurement of the quantum geometric tensor 
(36–38). Adding a real-valued z component to the gauge field, Eq. 3, 
e.g., by inducing a Zeeman shift of the exciton energies with an out-
of-plane magnetic field, would remove the Hermitian degeneracies at 
the Dirac point and thus open a topological gap (36–38). When 
polarization-dependent losses are non-negligible, the imaginary parts 
of the gauge field, Eq. 3, split each of the Dirac point into a pair of 
EPs, as shown in Fig. 1 (C and D). These EP pairs are topologically 
stable (12), in stark contrast to the Dirac points that are only stable 
when protected by symmetry. It takes a strong gap-opening pertur-
bation (i.e., a real-valued z term) to make the EPs approach each 
other (see Fig. 1E) and annihilate to open the gap (see Fig. 1F). A 
closer look at one of the pairs, as shown in Fig. 1 (C and D), reveals 
that the paired EPs are connected by open arcs called the bulk Fermi 
arc (30), where E = 0 (green), and the imaginary Fermi arc, where 
 = 0 (orange), which form closed contours in momentum space 
(see Fig. 1G). The gap opens when the bulk Fermi arc shrinks and 
disappears, and the imaginary Fermi arc closes.

Non-Hermitian systems are characterized by two nonequivalent 
types of topological winding numbers: The first one is a topological 
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charge of the eigenstates (or pseudospin) arising around singulari-
ties in momentum space, and the second one is the non-Hermitian 
topological charge associated with eigenenergies. For the case of Eq. 3, 
there are pairs of singularities in the pseudospin texture, around which 
the in-plane pseudospin component winds. As shown in Fig. 1H for 
the upper eigenstate, the in-plane pseudospin angle rotates by ± 
around the singularity due to the  discontinuity at the bulk Fermi arc, 
resulting in half-integer topological charges (30). The lower eigen-
state exhibits the same topological charges at the same singularities 
(see the Supplementary Materials). Moreover, the pseudospin is po-
larized up or down at these points, which translates to circularly 
polarized PL emission (51), exactly at the momenta of the paired 
EPs (see the Supplementary Materials).

Adding a chiral (or z) term to Eq. 3, which can be achieved by 
magnetically induced Zeeman splitting (36), or intrinsic chirality 
(optical activity) (38), moves the EPs in momentum space, but the 
pseudospin singularities remain at the same momenta, a phenome-
non closely related to the haunting theorem in singular optics (51). 
The singularities reside in separate eigenstates, and the topological 
charge becomes integer-valued. These effects are demonstrated in 
Fig. 1I for a weak, real-valued z perturbation, where one singularity 
disappears, since it migrates to the other eigenstate (see the Supple-
mentary Materials), and the winding of the remaining one is −2. 
The integer topological charges persist even if the gap opens. More-
over, with increasing magnitude of the z term, the polarization at 
the EP becomes elliptical, and the discontinuity at the bulk Fermi 
arc continuously decreases toward zero where the gap opens, as shown 
in Fig. 1J (see also the Supplementary Materials). The half-integer 
winding, shared by the two eigenstates, is therefore unstable against 

any z perturbation, where a nonzero z term suddenly switches the 
winding from  to 2 (or to zero for the other eigenstate). This tran-
sition is reminiscent of the Hermitian case, where the z perturba-
tion immediately destroys the Dirac point and opens the gap.

In contrast to the topology of the eigenstates described above, 
the winding of the eigenenergies is deeply tied to the EP and is to-
pologically stable. The topology is revealed by the “spectral phase” 
of the difference of the two complex energies  Arg(  ~ E  )  (23–25). As 
shown in Fig. 1 (K and L), the singularities of the spectral phase occur 
exactly at the EP with a -spectral phase winding or half-integer topo-
logical charge, regardless of where the singularities of the eigenstates 
are located in momentum space. This is because the spectral phase 
jump at the bulk Fermi arc remains equal to . These two features, the 
-winding and the -phase jump, persist even under a weak, real-valued 
z perturbation, as shown in Fig. 1L. This is in contrast with the be-
havior of the eigenstates, where the  winding suddenly switches to 
2 (Fig. 1, H and I), and the phase jump across the bulk Fermi arc de-
creases with a z perturbation (see the Supplementary Materials).

At sufficiently strong z perturbation, the EPs meet and annihi-
late, the gap fully opens, and the non-Hermitian topological charges 
disappear, but the topological charges of the eigenstates (polariza-
tion vortices) remain (see Fig. 1J). This demonstrates that the topologies 
of the eigenstates and the eigenenergies are separable, and measur-
ing the topology of the eigenstates, in general, is not equivalent to 
measuring the non-Hermitian topology of the eigenenergies. In the fol-
lowing, we experimentally observe paired EPs in an exciton-polariton 
system with weak chirality and directly measure the non-Hermitian 
topological invariant by extracting the winding of complex eigene-
nergies from the PL spectrum.

kx

k
y

A

G H I J K L

B C D E F

k
x

k
y

E - E

x,y
)(

zz

kx kx kx kxkx

k
y

k
y

Weak Strong

z z z zz

Fig. 1. Complex spectral structure near pairs of EPs in momentum space. (A) Energy (real part of the complex spectrum) of the exciton-polariton modes in a micro-
cavity with linear birefringence, calculated using the model Eq. 1. The mean energy is subtracted for clarity. Energy crossings occur at two opposite regions in the 2D 
momentum space (kx, ky). (B) Enlarged view of the dashed region in (A) in the Hermitian limit, showing a Dirac point. (C) Energy of the dashed region in (A) in the non- 
Hermitian case, with nonzero ix, y components, showing the Dirac point splitting into a pair of EPs (pink dots) connected by the nodal line, bulk Fermi arc (green), where 
the energies cross. (D) Imaginary part of the complex spectrum corresponding to the linewidth for the dashed region in (A), showing the imaginary Fermi arc (orange), 
where the linewidths cross, emanating from the EPs (pink dots). (E) Energy of the system with a weak, real-valued z term perturbation. (F) Same as (E) but with a strong 
perturbation leading to the annihilation of the EPs and opening of the gap. (G) Simplified complex energy structure of the two eigenstates, showing the bulk (green) and 
imaginary (orange) Fermi arcs connecting at the EPs and forming two closed contours. A single contour can also form (dashed orange) for the different sign of the parameters 
in Eq. 3. (H to J) In-plane pseudospin angle in momentum space of the upper eigenstate corresponding to (from left to right) (C), (E), and (F), respectively. (K and L) Spec-
tral phase  Arg(  ~ E  )  in momentum space corresponding to (C) and (E), respectively. In (H) and (I), pink dots correspond to the EP, dashed lines correspond to the bulk Fermi 
arc, and white arrowed contours correspond to the half-charge (H, K, and L) and integer (I and J) windings around the singularities.
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Experimental observation of paired EPs
To demonstrate the EP pairs in the exciton-polariton dispersion ex-
perimentally, we use the microcavity schematically shown in 
Fig. 2A. It is formed by sandwiching a ~142-nm-thick CsPbBr3 per-
ovskite crystal between two SiO2/Ta2O5 DBRs, as detailed in Mate-
rials and Methods. The crystal is optically anisotropic because of its 
orthorhombic symmetry (33, 52, 53), which leads to X-Y splitting of 
the exciton-polariton states (33, 50). The exciton polaritons are ex-
cited by an off-resonant laser with the photon energy far above the 
perovskite exciton energy. The exciton-polariton energy distribu-
tion in momentum space is extracted from the PL of the sample. An 
emitted photon at polar angle , azimuthal angle  (see schematics 
in Fig. 2B), and photon wavelength  carries the exciton-polariton 
in-plane momentum   ℏk = ℏ (    2 _    )  sin (cos , sin )  , with  correspond-
ing to the propagation angle. To distinguish between the pseudospin 
states of exciton polaritons, which translate to the polarization of 
the PL, the signal is recorded with linear polarizations along the 
horizontal-vertical (H-V) (orientation shown in Fig. 2B), diagonal- 
antidiagonal (D-A), and left-right circular polarizations (L-R). The 
sample is oriented so that the X-Y splitting, along with the spin-orbit 
coupling, results in energy crossing along (kx, ky = 0) but no crossing 
along (kx = 0, ky) in the linearly polarized exciton-polariton dispersions 
(36, 37), as shown in Fig. 2C.

The non-Hermitian character of the exciton-polariton disper-
sion is reflected in the linewidths of the modes, which are also split 
at k = 0 (see fig. S2). Subtracting the mean value, i.e.,  − 〈〉, reveals 
that the linewidth dependence on k is also anisotropic as shown in 
Fig. 2D, such that the linewidth switches or crosses along the direction 
(kx, ky = 0) but not along (kx = 0, ky). The crossings in energy and 
linewidth along the same direction suggest that the Fermi arcs form 
two loops in momentum space, as shown by the insets of Fig. 2C. A 
similar behavior of energy and linewidth in momentum space was ob-
served for the cavity photons in birefringent ZnO-based microcavities 
(46, 54) in the weak coupling regime (i.e., without coupling to excitons). 
However, the paired EPs remained elusive in the strong coupling 

regime despite several experiments on exciton polaritons in anisotro-
pic cavities (36–38,  55). Related EPs in momentum space were ob-
served in microcavities with embedded carbon nanotubes (56) and 
organic microcrystals (57), but strong exciton-photon coupling in these 
systems only occurs in one polarization. Our results demonstrate that 
the exciton polaritons can inherit the EPs from birefringent cavity 
photons.

The EPs predicted in Fig. 1 (C and D) are expected to exist near 
the energy crossings at k* ≈ ( ± 5.2, 0) m−1 (see Fig. 2C). The posi-
tion of the EP pair can be determined by carefully tracking the com-
plex spectrum near this region. The extraction of peak energy and 
linewidth from the polarized PL measurements is detailed in Mate-
rials and Methods. Figure 3 shows the results of the measurements 
along five lines (labeled b to f) in k-space that intersect the Fermi 
arcs as schematically shown in Fig. 3A. The measurement in Fig. 3B 
is approximately along the bulk Fermi arc, where the mode energies 
approach each other while the linewidths clearly repel. At a slightly 
off-arc position, as shown in Fig. 3C, the mode energies always re-
pel, but the linewidths cross at two points of the imaginary Fermi 
arc. Perpendicular to the bulk Fermi arc and close to the EP, the ener-
gies cross while the linewidths approach each other, as shown in 
Fig. 3D. Conversely, the modes cross in linewidth and approach in 
energy outside the bulk Fermi arc but close to the EP, as shown in 
Fig.  3F. Across the middle of the bulk Fermi arc, Fig.  3E clearly 
shows that the energies cross, but the linewidths repel. From these 
results (see fig. S5 for the 2D surfaces), we estimate the EP positions 
to be kEP ≈ (−5.2, 0.40) m−1 and kEP ≈ (−5.2, 0.09) m−1 with a bulk 
Fermi arc length of ≈0.31 m−1.

Pseudospin texture in the complex artificial gauge field
The existence of the EPs is further evidenced by the circular polar-
ization of the exciton-polariton emission (9, 46), which corresponds 
to the singularities of the eigenstates near the EPs (see Fig. 1, H and I) 
where the exciton-polariton pseudospin points either up or down. We 
define the pseudospin of the eigenstates using the Stokes parameters: 
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S1 = (IH − IV)/(IH + IV), S2 = (ID − IA)/(ID + IA), and S3 = (IR − IL)/(IR + IL). 
In the Hermitian limit, and since Eq. 3 does not have a z term, the 
eigenstates are orthogonal and purely linearly polarized (48), with 
the corresponding pseudospins confined to the S1-S2 plane of the 
Poincaré sphere (orthogonal polarizations are antipodal), as shown 
by the thin red and blue arrows in Fig. 4A. However, due to non- 
Hermiticity, the eigenstates of the Hamiltonian are not orthogonal, 
and the pseudospins of the eigenstates tend to point in the same 
direction toward one of the poles, as shown by the thick red and 
blue arrows in Fig. 4A. This leads to a nonzero S3 Stokes component, 
while the projections on the S1-S2 plane remain antipodal. Hence, both 
eigenstates have the same S3 components (dashed arrows in Fig. 4A), 
which, in this case, is a measure of the non-Hermiticity of the 
Hamiltonian. At the EP, full alignment occurs, resulting in a merged 
eigenstate pointing to the pole with a purely circular polarization, as 
shown by the purple arrow in Fig. 4A. The calculated circular polar-
ization or S3 component of the pseudospin texture of either eigen-
state in k-space is shown in Fig. 4B. Maximum circular polarization 
occurs at the EPs and gradually decreases away from them. The EPs 
within the pair have opposite chirality, and the two pairs have op-
posite orientations.

The appearance of chirality in the model arises from the inter-
play between the real and imaginary components of the purely 

in-plane complex artificial magnetic field. If the real and imaginary 
fields are parallel or purely real or imaginary, the pseudospin of the 
eigenstates tends to align (parallel or antiparallel) to the field. How-
ever, if the two fields have perpendicular components, the pseudo-
spins tend to align away from the real and imaginary parts and 
toward each other, which, in our case, effectively induces an out-of-
plane component. The effective out-of-plane component is different 
from a real-valued out-of-plane magnetic field, where the pseudo-
spins of the two modes remain antipodal on the Poincaré sphere. 
This non-Hermitian generalization allows an arbitrary control of 
the polarization (58) and can lead to rich spin dynamics not achiev-
able with real-valued artificial magnetic fields. Note that in this 
off-resonant (incoherent) regime of exciton-polariton excitation, 
we are measuring the pseudospin of the eigenstates. This is in con-
trast to the resonant (coherent) regime, where a nonzero S3 compo-
nent can result from pseudospin precession in an in-plane field (45).

We take advantage of the non-Hermiticity, which results in non-
orthogonal and chiral eigenstates, to directly measure the S3 or spin 
texture of the exciton polaritons, as shown in Fig. 4C, by capturing 
the momentum space distribution without resolving the two modes. 
This method assumes that the two eigenstates at a momentum k are 
equally occupied, which is not always the case. However, it is effec-
tive for finding the pseudospin singularities shown in Fig. 1(H and I). 
A circular polarization texture qualitatively similar to the prediction 
of the model is observed using this method, with the local extrema 
near the EPs (black points in Fig. 4C). The discrepancy between the 
momenta of the EPs and the extrema of the S3 texture is due to the close 
proximity of the EPs. The opposite circular polarization in the vicinity 
of the paired EPs tends to overlap and cancel each other. Hence, the 
measured ∣S3∣ is greatly reduced, and the extrema are offset away 
from the EPs (see the Supplementary Materials for supporting simu-
lations). A similar low level of circular polarization degree near the EPs 
was observed for microcavity photons without coupling to excitons (54).

In addition to the spin texture due to the EPs, there is a back-
ground circular polarization (or chirality) that is not accounted for 
in the model Eqs. 1 and 2. This originates from the exciton emission 
of the bare perovskite (see the Supplementary Materials). The ob-
served chirality can arise from the chirality of the excitons in lead- 
halide perovskites (59, 60), but further experimental work is needed 
to verify its origin and derive an effective model for its spin texture. 
Here, we treat the chirality as a weak z perturbation to Eq. 3, which 
can move the EPs toward each other and potentially open the gap in 
the Hermitian limit (see Fig. 1) (38). The clear observation of EPs in 
our experiment therefore demonstrates the topological stability of 
EP pairs against gap-opening (chiral) perturbations or any pertur-
bation in general (12). The weak chirality places the experiment in 
the regime shown in Fig. 1(E, I, and L), where the topologies of the 
eigenstates and eigenenergies are not related to each other.

Observation of non-Hermitian topological invariant
Last, with the existence of the EPs verified using both the complex 
energies and pseudospin texture, we demonstrate the direct mea-
surement of the non-Hermitian topological invariant arising from 
the EPs in momentum space. For the two-level system considered 
here, the non-Hermitian topological invariant, called the “spectral 
winding” or “vorticity” (23–25), is formally defined as

  w = −   1 ─ 2    ∮ 
C

      ∇  k   arg [   ~ E    +  (k ) −     ~ E    −  (k )] · dk   (4)
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Fig. 3. Mapping out complex energies near the EP pair. (A) Schematics of the EP 
pair (pink dots) connected by the bulk (green) and imaginary (orange) Fermi arcs. 
Dashed lines (b to f) represent the lines (directions) in k-space, along which the 
measurements in (B) to (F) are performed. (B to F) Measured energies and line-
widths (mean-subtracted) of the two modes: (B) Parallel to and very near the bulk 
Fermi arc; (C) parallel to the bulk Fermi arc intersecting the imaginary Fermi arc 
twice, which corresponds to two linewidth crossings and no crossing in energy; (D) 
perpendicular to the bulk Fermi arc very near the top EP, showing crossing in both 
energy and linewidth; (E) along the center of the real Fermi arc, showing crossing 
in energy and anticrossing in linewidth; (F) near the EP but outside the real Fermi 
arc showing no crossing in energy but crossing in linewidth. The complex eigen-
values are sorted so that a smooth crossing (D and E) or anticrossing (B, C, and F) in 
the real part is ensured. The values for k are as follows: (B) kx = −5.19 m−1, (C) 
kx = −5.07 m−1, (D) ky = 0.40 m−1, (E) ky = 0.21 m−1, and (F) ky = 0.09 m−1. Error 
bars represent the 95% confidence interval fitting results.
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where C is a closed loop in k-space. Naturally, this topological in-
variant is zero for Hermitian systems. The topology depends on the 
scalar field  arg [    ~ E    +  (k ) −    ~ E    −  (k ) ] , a spectral phase that is well defined 
everywhere except at the EPs. Hence, the EPs are sources of non- 
Hermitian topological charges. For the paired EPs considered here, 
the theoretical spectral phase calculated from model Eq. 3 rotates in 
opposite directions around each EP, forming oppositely charged 
spectral vortices, as shown in Fig. 4D. The spectral vortices have a 
half-integer charge (23) since the spectral phase acquired around 
the loop enclosing a single EP is ±.

By carefully measuring the energies and linewidths in the vicinity 
of the EP pairs, we are able to extract the spectral phase and consequent-
ly determine the winding of the complex eigenenergies, as presented in 
Fig. 4 (E and F). The spectral phase winds around the EPs and jumps 
by approximately  at the bulk Fermi arc that connects the EPs. The 
small phase jumps away from the EP pair are experimental artifacts 
where we switch between H-V and D-A polarized measurements (see 
Materials and Methods) to extract the energies and linewidths. Using 
the definition in Eq. 4, we can assign a ±1/2 non-Hermitian topological 
charge to the EPs, as annotated in Fig. 4D and symbolized by the black 
and white arrows in Fig. 4 (E and F). Each pair of EPs therefore forms 
a “topological dipole,” and the two dipoles have opposite orientations, 
as predicted by the model in Fig. 4B. Furthermore, the spectral wind-
ing around the whole EP pair is zero. Consequently, if the separation of 
the EP pair is not resolved in the experiment, the non-Hermitian topo-
logical invariant would not be measurable.

It is important to stress that the topological winding of the eigene-
nergies measured here should, in principle, be accompanied by the 
half-integer winding of polarization (30), as theoretically demon-
strated in Fig. 1 (H and K). However, because of the background S3, 
which introduces a weak z term perturbation, the measured spec-
tral winding is no longer related to the winding of the polarization 
(see Fig. 1, I and L). Hence, the non-Hermitian topological invari-
ant observed in this work is fundamentally different from the wind-
ing of the eigenstates observed in photonic systems (30). Moreover, 
the measured half-integer topological invariant is unaffected by the 
chirality observed in the experiment, as theoretically demonstrated 
in Fig. 1L. This is not the case for the polarization winding that would 
become integer-valued even for weak chiral perturbation.

DISCUSSION
In summary, we have demonstrated the existence of paired EPs in the 
momentum-resolved exciton-polariton spectrum and directly measured 
the non-Hermitian topological invariant arising from the half-integer 
winding of the exciton-polariton complex eigenenergies around the 
EPs. We have also shown theoretically that the topology of the eigen-
states and eigenenergies is separable, and hence, the signatures of inher-
ent topology of EPs previously observed in the eigenstates of classical 
wave systems (30, 31) are fundamentally different from our observation.

In contrast to previously demonstrated EPs in parameter space 
of exciton-polariton systems (40,  41,  56), the EPs in momentum 
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space observed here are expected to have a direct influence on the 
system’s dynamics (61). Our observation can potentially lead to the 
realization of non-Hermitian topological phases (24) and the pre-
dicted nontrivial dynamics, such as a non-Hermitian skin effect 
(62), without the need for sophisticated microstructuring of the sam-
ple (43) or strong external magnetic fields (35). Moreover, we have 
demonstrated the manifestation of the imaginary part of the artifi-
cial gauge field that tends to align the exciton-polariton pseudospin 
pair toward each other and perpendicular to the field direction. 
This may lead to a new type of spin precession (58) and dynamics of 
exciton polaritons that is not possible in real magnetic fields. Com-
bined with advanced methods for potential landscaping (32) and 
the possibility to extract a wide range of observables from the cav-
ity PL, our work affirms exciton polaritons as a solid-state platform 
for exploring robust topological phenomena that do not occur in 
Hermitian systems. A recent experiment on organic microcavities 
with highly polarization-dependent (anisotropic) light-matter cou-
pling (57) has demonstrated a diverging quantum metric at the EP, 
in stark difference to Hermitian systems (31).

Unlike previous observations of EPs in optical microcavities 
(54), our demonstration of a non-Hermitian topological invariant 
relies on hybrid light-matter particles, exciton polaritons, which ex-
hibit strong interactions due to the exciton component (63). There-
fore, our study offers a new platform for investigating the interplay 
between the non-Hermitian topology and nonlinearity, which may 
bring about unexpected phenomena, e.g., similar to self-adaptation 
in energy transfer (64). For example, under a strong circular polar-
ized excitation, the unique strong spin-anisotropic nonlinearity in 
exciton-polariton systems (48, 55) could potentially lead to an effec-
tive real z perturbation with rich tunability. This could provide an 
efficient pathway for investigating Hermitian and non-Hermitian 
topological effects in the presence of z perturbations and nonlin-
earity, even without the need of real magnetic fields.

Last, the strong interactions and very small effective mass of 
exciton polaritons have successfully enabled the demonstration of 
collective quantum effects, e.g., bosonic condensation (65) and 
superfluidity (66, 67), at elevated temperatures, in particular, using 
lead-halide perovskites (33, 34, 68). Thus, our work paves the way 
for investigating the interplay between quantum many-body effects 
and non-Hermitian topology, which is, as yet, an unexplored frontier 
in non-Hermitian physics (12).

MATERIALS AND METHODS
Perovskite microcavity fabrication
Pairs (20.5) of SiO2 and Ta2O5 were deposited on a silicon substrate as 
the bottom DBR using an electron beam evaporator (OHMIKER- 50D). 
The 142-nm-thick cesium lead bromide perovskite crystal was grown 
with a vapor phase deposition method on a mica substrate and then trans-
ferred onto the bottom DBR by a dry-transfer process with Scotch tape 
(33). Subsequently, a 60-nm-thick poly(methyl methacrylate) protection 
layer was spin-coated onto the perovskite layer. Another 10.5 pairs of SiO2 
and Ta2O5 were deposited onto the structure by the electron beam 
evaporator, acting as the top DBR to complete the fabrication process.

Optical spectroscopy characterizations
The energy-resolved momentum space PL was mapped by using a home- 
built angle-resolved PL setup with a motorized translation stage to scan 
the whole 2D momentum space. In the detection line, a quarter– wave 

plate, a half–wave plate, and a linear polarizer were used for the detec-
tion of polarization-resolved PL mappings in momentum space. A 
continuous-wave laser (457 nm) with a pump spot of ~10 m was used to 
pump the perovskite microcavity, passing through an optical chopper to 
minimize sample heating. The emission from the perovskite micro-
cavity was collected through a 50× objective (numerical aperture = 
0.75, Mitutoyo) and directed to a 550-mm focal length spectrometer 
(HORIBA iHR550) with a grating of 1200 lines/mm and a liquid 
nitrogen–cooled charge-coupled device of 256 × 1024 pixels. All mea-
surements were conducted at room temperature.

Non-Hermitian theoretical model
The simple non-Hermitian model in Eqs. 1 and 2 for the exciton- 
polariton spectrum was derived by simulating the reflectance of a 
microcavity with an embedded anisotropic cavity spacer and the ex-
citonic transition in the strong coupling regime. We follow the 
4 × 4 transfer matrix method in (46) but with an addition of the 
exciton resonance modeled as a Lorentz oscillator.

The transfer matrix calculations and the theoretical model also 
capture the linewidth behavior of the experiment shown in fig. S4. 
Regardless of the direction, the linewidth increases with k as the 
exciton fraction of polariton increases. However, the experimental 
linewidth increases more or less linearly with k (see fig. S4), com-
pared to the near-parabolic behavior of the numerical simulation. 
This can arise from the inhomogeneous broadening of the exciton 
resonance, which is not accounted for in the simulations.

Determination of mode energies and linewidths
To measure the energy and linewidth, we fit Lorentzian functions to 
the measured spectra at different points in k-space. The energy cor-
responds to the center, while the linewidth corresponds to the full 
width at half maximum of the fitted Lorentzian function. Away from 
the energy crossings, the spectrum displays two peaks and can be 
fitted with a double Lorentzian function, as shown in fig. S7. Near 
the energy crossings, there is only one apparent peak since the mode 
energy separation is smaller than the linewidth. To resolve the indi-
vidual peaks, we take advantage of the orthogonal pairs (H-V or 
D-A) of polarized measurements. Each polarized spectrum is fitted 
with a single Lorentzian as shown in fig. S7, and the orthogonal pair 
with the largest energy splitting is chosen. This switching between 
H-V and D-A results in jumps in the extracted energies and line-
widths (see Fig. 3, B to F) and small phase jumps in the spectral phase 
(see Fig. 4, E and F). This is because we are not measuring (or pro-
jecting) the eigenstates in their appropriate orthogonal basis. In prin-
ciple, a full polarization tomography is needed, in addition to the 
2D scan of the momentum space, to properly separate the modes 
and smoothen the jumps in the complex energy and spectral phase. 
However, this will greatly increase the measurement time and data 
from 3D to 4D. The current set of data is enough to verify the existence 
of EPs and measure the half-integer spectral winding in this system.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abj8905
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Numerical simulations and theoretical modelling  

Examples of the simulated reflectance are shown in Fig. S1, with and without strong exciton-photon  

coupling. Without exciton-photon coupling, the reflectance dips correspond to the cavity photon  

modes, which can be modelled by Eq. (2) of the main text, as shown by the dashed lines in fig. S1a.  

In the strong coupling regime, the reflectance dips form 4 exciton-polariton branches, as shown in 

Fig. S1b. All branches can be modelled by Eq. (1) using the parameters of the cavity photon with  

the exciton-photon coupling strength 𝑉𝑉 as the fitting parameter.  

  

  

Figure S1: Simulated reflectance using the 4×4 transfer matrix method. a “Empty” anisotropic  
microcavity with exciton-photon coupling turned off. Dashed lines correspond to the exciton  
(known a priori) and cavity photon energies (fitted using Eq. 2 of the main text). b Same as a but 
with the exciton-photon coupling turned on. Dashed lines are energies extracted from the model,  
Eq. 1 of the main text, of the main text using the exciton and cavity photon energies extracted in  
(a), and the exciton-photon coupling strength 𝑉𝑉 as the fit parameter. 
 

     We fitted Lorentzian profiles to the reflectance dips to extract the energy (peak centre) and 

linewidth (peak width), which are presented as data points in Fig. S2a, b and Fig. S2c, d for the  

weak and strong coupling regimes, respectively. Evidently, the energies of the lower polariton  

branches (see Fig. S2c) inherit the same behaviour from the cavity photon, but the crossing occurs  

at lower momenta for the polariton branches. However, the linewidth behaviour is different for the 

two cases. The linewidth of the TE (TM) polarised cavity photon increases (decreases) with  

momentum, resulting in the linewidths crossing along the 𝑘𝑘𝑦𝑦 direction (see Fig. S2b). This means  

the Fermi arcs form a single closed contour in momentum space (see dashed contour in Fig. 1G of  

the main text). For the polariton branches, the linewidths increase with momentum, regardless of  

the polarisation. This is because the excitonic fraction (which has a large linewidth) increases with  

momentum. As a result, the polariton linewidths cross along the same direction as the energies,  



suggesting that the Fermi arcs form two closed loops in momentum space, as illustrated by the solid  

arcs in Fig. 1G of the main text.  

  

 
Figure S2: Extracted energies and linewidths from 4 × 4 transfer matrix simulations. a  
Extracted energies and b linewidths from the reflectance dips of the simulations with no exciton- 
photon coupling. Solid lines are fit to the complex dispersion using Eq. 2 of the main text. c, d 
Same as a and b but with strong exciton-photon coupling. Solid lines are fit to the complex 
dispersion using Eq. 1 of the main text using the cavity photon parameters extracted in a, b.  
  

     To confirm that the model, Eqs. (1,2) of the main text, describe the non-Hermitian dispersion of  

exciton polaritons, we fit the eigenvalues of Eq. (1,2) to the extracted complex dispersion. We used  

Eq. (2) of the main text to fit to the complex cavity photon dispersion, shown as solid lines in Fig.  

S2a, b, resulting in the following cavity photon parameters: 𝐸𝐸�𝑐𝑐0 =(2.306-4.58×10-4i) eV,  

𝜒𝜒�1 =(2.3×10-3-1.45×10-7i) μm-2.eV, 𝜒𝜒�2 =(8.76×10-7-8.59×10-8i) μm-4.eV, 𝛼𝛼� =(8×10-3 - 4.28×10- 

6i) eV, 𝛽𝛽�1 =(1.76×10-4-6.4×10-6i) μm-2.eV, 𝛽𝛽�2 =(5.01×10-7-5.33×10-8i) μm-4.eV. The complex  

exciton energy is known a priori as an input to the simulation with a value of 𝐸𝐸�𝑥𝑥 =(2.407-6.08×10- 
3i) eV. We then use these parameters to fit to the eigenvalues of Eq. (1) to the complex lower  

exciton-polariton dispersion as shown in Fig. S2b, c, resulting in an exciton-photon coupling  

strength of 𝑉𝑉=61 meV. Note that the model starts to deviate from the exciton-polariton dispersion 

at higher momenta. This is due to the weak polarisation and momentum-dependent exciton-photon 7 

coupling strength, which is neglected in the model for simplicity.  

For sufficiently large negative detuning of cavity photon with respect to the exciton energy, Eq. (2)  

of the main text can be used to describe the lower exciton-polariton branches. The 2×2 Hamiltonian  



is easier to understand and can describe the energy crossings and topology of the exceptional points  

presented in this work. Moreover, it enables a simple theoretical model for the effective gauge field  

for exciton polaritons. The validity of the 2×2 approximation is demonstrated in Fig. S3, where the  

crossing and anti-crossing behaviour of the complex dispersion is qualitatively captured by the 2×2  

Hamiltonian. The model greatly deviates from the simulations at higher momenta, such that the  

energy and linewidth crossings occur at different momenta compared to the simulations. Higher  

order terms can be added to the 𝜒𝜒�(𝑘𝑘) and 𝛽𝛽�(𝑘𝑘) terms to improve the model.  

  

 

Figure S3: Simulated and theoretical exciton-polariton complex dispersion. (a) Energy and  
linewidth (FWHM) of the lower exciton-polariton modes (upper polariton not shown) extracted  
from the 4×4 transfer matrix simulation of an anisotropic microcavity with embedded excitons in  
the strong coupling regime. (b) Mean-subtracted energy and linewidth of the simulated data in (a).  
c, Mean-subtracted energy and linewidth of the simple model (Eq. (1) of main text, after accounting  
for the losses), showing a similar behavior as that in (b).  
  

Supplementary experimental data  

The transfer matrix calculations and the theoretical model also capture the linewidth behaviour of  

the experiment shown in Fig. S4. Regardless of the direction, the linewidth increases with 𝑘𝑘 as the 

exciton fraction of polariton increases. However, the experimental linewidth increases more or less  

linearly with 𝑘𝑘 (see Fig. S4), compared to the near parabolic behaviour of the numerical simulation.  

This can arise from the inhomogeneous broadening of the exciton resonance, which is not accounted 2 

for in the simulations.  

  



 

Figure S4: Experimentally measured linewidths. FWHM of the experimental data presented in 
Fig. 2c of the main text. The linewidths of both modes are split at 𝑘𝑘 = 0 and increase with 𝑘𝑘 as the 
excitonic fraction of the exciton-polariton increases.   
 
     The measured energies and linewidths near the paired EPs in momentum space are shown in  

Fig. S5. The complex energies are sorted following the same method in Fig. 3 of the main text to  

highlight the crossings in energy and linewidth.  

  

Figure S5: 2D complex spectra. Experimentally extracted (a) Energy and (b) linewidth surfaces  
in the vicinity of the paired exceptional points (pink dots).  

     The spin texture of the excitonic PL of CsPbBr3 perovskite crystals in momentum space are  

shown in Fig. S6. This was measured directly in momentum space without spectral filtering. The  

same background spin texture is observed outside the paired EPs in Fig. 4C of the main text. Note  

that, as expected, this chirality does not depend on the orientation (by rotation) of the sample.  



 
Figure S6: Weak inherent chirality of CsPbBr3 perovskite crystals. S3 texture in k-space of the  
energy-integrated photoluminescence of a bare perovskite crystal. 

  
     The extraction of the energy and linewidth is performed by fitting the spectrum at each point in 

momentum space. For regions away from the EPs, two peaks appear in the polarised spectrum, as  

shown in Fig. S7a, which can be fitted to a double Lorentzian function. Near the EPs, the two peaks 

overlap so only one peak appears in the measurements. These peaks can be distinguished using the 

pair of orthogonally linearly polarised measurements as shown in Fig. S7b, c. We then select the  

pair that produces the largest energy splitting. 

  
Figure S7: Fitting of spectral data. (a) Spectral profile (blue dots) at a 𝑘𝑘 point away from energy  
crossings. The red line is the double Lorentzian function fit, and the shaded areas are the 
contributing Lorentzian functions. Crossed polarised spectral profiles at a 𝑘𝑘 point (b) near and (c)  
very close to an exceptional point. A single Lorentzian function (shaded region) is used to fit the  
polarized data (blue dots). Dashed vertical lines correspond to the peak energy of the upper panel.  

 
Topology of the eigenstates of the non-Hermitian model  

For completeness, we show here the topology of the eigenstates corresponding to the discussions  

related to Fig. 1H-L of the main text. In Fig. S8, we show changes of the lower eigenstate with  



 

increasing real-valued 𝜎𝜎𝑧𝑧-term perturbation along with the topology of the eigenenergies, defined 

the spectral phase. Similar to Fig. 1K-L of the main text, the EPs in a pair each other (see Fig. S8a, 

b) and annihilate leading to a trivial non-Hermitian topology, i.e. zero spectral winding, as shown  

in Fig. S8c.  

     The in-plane pseudospin angle of the lower eigenstate (shown in Fig. S8d-f) is the opposite of  

that of the upper eigenstate (see Fig. 1H-J). Indeed, at some finite 𝜎𝜎𝑧𝑧 -term perturbation, the  

pseudospin singularity migrates to one of the eigenstates. The upper eigenstate (Fig. 1I) retains the 

negative (clockwise) winding while the lower eigenstate retains the positive winding. The 

singularity is accompanied by high circular polarisation degree, as shown by the spin textures (or  

𝑆𝑆3) in Fig. S8g-l. The sign of the circular polarisation follows the winding direction of the in-plane  

pseudospin angle. Note that since the pseudospin singularites do not follow the EP in momentum 

space for finite 𝜎𝜎𝑧𝑧-term perturbation, the EP becomes elliptically polarised.  

 

Figure S8: Topology in momentum space for increasing magnitude of gap-opening 
perturbation. a-c Spectral phase near a pair of EPs (pink dots) for different magnitudes of real-
valued 𝜎𝜎𝑧𝑧-term perturbation. Same data are presented in Fig. 1k, l of the main text. d-f In-plane 
pseudospin angle of the lower eigenstate corresponding to a-c, respectively. The plots for the upper  
eigenstate are presented in Fig. 1h-j of the main text; Pseudospin texture (or 𝑆𝑆3) of the upper (g-i)  
and lower (j-l) eigenstates corresponding to a-c. White arrowed contours correspond to the winding 
direction around the pseudospin singularities. 
  
     The evolution of the windings of both eigenstates and eigenenergies as a function of a 𝜎𝜎𝑧𝑧 - 

perturbation are shown in Fig. S9a. For a vanishing 𝜎𝜎𝑧𝑧-perturbation, both eigenstates share the same 

winding of 𝜋𝜋. However, for a nonzero 𝜎𝜎𝑧𝑧-term, as soon as the EP moves away from the pseudospin 

singularity, the shared winding migrates to one of the eigenstates resulting in a winding of 2𝜋𝜋 for  

that eigenstate and zero for the other. The windings of 2𝜋𝜋 and 0 persist for any strength of 𝜎𝜎𝑧𝑧- 

perturbation. The zero 𝜎𝜎𝑧𝑧-term case is a transition point that demonstrates the instability of the 𝜋𝜋- 

winding of the eigenstates against 𝜎𝜎𝑧𝑧-perturbation. This is reminiscent of the instability of Dirac 

points in the Hermitian case, where any 𝜎𝜎𝑧𝑧-perturbation destroys the degeneracy and opens the gap. 8 



 

In contrast, the 𝜋𝜋 winding of the eigenenergies is more robust, requiring a finite 𝜎𝜎𝑧𝑧-perturbation to 

change the winding number, as shown by the solid curve in Fig. S9a. The EPs meet and annihilate 

at this finite 𝜎𝜎𝑧𝑧-perturbation, consequently destroying the bulk Fermi arc. This signifies the non-

Hermitian topological transition and is accompanied by the sudden disappearance of the 𝜋𝜋 jump of  

the spectral phase at the bulk Fermi arc, as shown in Fig. S9b. By contrast, the phase jump of the 

eigenstate at the bulk Fermi arc continuously decreases from 𝜋𝜋 for any nonzero 𝜎𝜎𝑧𝑧-perturbation,  

which demonstrate the stark difference between the topology of the eigenstates and eigenenergies.   

  

  

Figure S9: Evolution with 𝝈𝝈𝒛𝒛-perturbation. a Numerically calculated winding of the eigenstates 
(dashed) and eigenenergies (solid) as a function of 𝜎𝜎𝑧𝑧-perturbation. b Discontinuity jump of the in-
plane pseudospin angle (dashed line) and spectral phase (solid) at the midpoint of the bulk Fermi  
arc as a function of 𝜎𝜎𝑧𝑧-perturbation.  
 
  

Magnitude of circular polarisation degree near the EPs  

The order-of-magnitude reduction of the measured circular polarisation degree near the EPs can be  

explained by the close proximity of the exceptional points. The high circular polarisation near the  

EPs (due to the pseudospin singularities) has opposite handedness and finite extent in momentum  

space, as shown in the theoretical spin texture shown in Fig. 4B of the main text. Hence, the opposite  

spin textures due to the EPs tend to overlap and cancel each other. In the measurement, this will  

result in the reduction of the circular polarisation degree: the closer the pseudospin singularities in  

momentum space, the larger is the reduction in the measured circular polarisation.  

     We observe the same behaviour in the transfer matrix simulations, which simulates the  

experiment, as presented in Fig. S9. In the simulations, we varied the number of DBR pairs (from  

4.5 to 6.5) and calculate the 𝑆𝑆3 of reflectance at constant energy (near the EP energy). Increasing 

the number of DBR pairs decreases the linewidth and hence reducing the separation between the  

EPs. As clearly shown in Fig. S9, the maximum |𝑆𝑆3| decreases with increasing number of DBR  

layers. This suggests that samples with very high Q-factor will bring the EPs very close to each  

other such that the EP pairs cannot be resolved in the experiment.  



 

  
Figure S10: Simulated circular polarisation degree near the EPs. Simulated spin texture in  
momentum space at constant energy (near the EP energy) for an anisotropic microcavity with 
different number of DBR pairs: a 4.5 pairs, b 5.5 pairs, c 6.5 pairs. 



Summary of the
findings

In summary, the work presented in this Part focused on the non-Hermitian topological
properties of a perovskite-based exciton-polariton system, governed by the polariton
pseudospin, the optical (structural) anisotropy of an active material and the inherent
system losses. It studied the optically-anisotropic lead-halide perovskite crystals,
embedded in an optical microcavity, to demonstrate the emergence of non-Hermitian
topology in an exciton-polariton system at room temperature. This work:

• served as the first direct measurement of a non-Hermitian topological invariant,
called spectral winding (or vorticity). The invariant arose from the half-integer
winding of the exciton-polariton complex eigenenergies around the exceptional
points present in the system’s gauge field. The invariant was extracted from
the real and imaginary part of the eigenstates, which were measured directly in
polarization-resolved experiments.

• directly showed a pseudospin texture of a complex artificial gauge field, gov-
erned by the TE-TM splitting and the anisotropy field, with a critical impor-
tance of the system’s non-Hermiticity. It experimentally evidenced the existence
of paired exceptional points in the momentum-resolved exciton-polariton spec-
trum, connected by the topologically protected bulk Fermi arcs. The findings
suggested that the Fermi arcs form two loops in momentum space, a behavior
similar to the one observed for the cavity photons in previous works, but solely
in the weak coupling regime. This work has demonstrated for the first time
that the exciton polaritons can inherit the exceptional points from birefringent
cavity photons. Moreover, it showed how the non-Hermiticity results in the
appearance of circular polarization in the effective field, maximized near the
exceptional points, arising from the imaginary part of the artificial in-plane
magnetic field acting on the exciton-polariton pseudospin.

• developed a non-Hermitian model to describe exciton-polariton dispersion and
used it to extract the topological invariant from the experimental data. It also
showed that the topologies of the system eigenstates (polarization winding) and
eigenenergies (spectral winding) are not equivalent and are separable, meaning,
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that the latter can persist when the former is absent. Hence, the inherent topol-
ogy of these exceptional points is different from any previously observed points
in the eigenstates of classical wave systems. The previously shown exceptional
points in parameter space of exciton-polariton systems should not have a direct
influence on the system’s dynamics, in contrast to the ones in momentum space
evidenced here.

• paves a way for future studies and can lead to the realization of non-Hermitian
topological phases, nontrivial dynamics, non-Hermitian skin effect, etc., without
the need for sophisticated sample microstructuring or strong external magnetic
fields, as well as to explore robust topological phenomena that do not occur
in Hermitian systems. Moreover this presentation in exciton-polariton system
offers a new platform for investigating the interplay between the non-Hermitian
topology and nonlinearity, with large importance of quantum many-body effects
- an unexplored frontier in non-Hermitian physics so far.
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Introduction
This work differs from other parts of this thesis, as it does not involve strong coupling
between excitons and photons. However, it has been done as a key characterization
of the active material of the full microcavity, later described in Part V. In Part
V an initially unexpected effect has been observed in an AlGaAs/AlAs polariton
microcavity designed for room temperature strong coupling and lasing [70]. To explore
and understand the nature of the effect, the QW active medium had to be understood
fully, prior to the coupling with the photonic modes. In order to do that, the top
Bragg reflector of the full cavity has been etched, and the QW system on top of the
bottom DBR has been investigated. It was assured that no measurable signatures
of remaining photonic modes in the spectral vicinity of the QWs were observed and
a purely QW system could be considered. This investigation proved to be vitally
important in the result described in Part V.

The system in question consists of Al0.20Ga0.80As QWs, separated by AlAs barri-
ers. This material system has been purposefully used to take advantage of a so-called
Γ − X coupling in order to increase the exciton binding energy and allow for the
existence of exciton polaritons at room temperature, even in a GaAs-based system.
As described in detail in section 1.3, III-V semiconductors are highly advantageous
in exciton-polariton research, as they offer the highest quality, scalability and repro-
ducibility of all the semiconductor platforms. High quality of the epitaxial growth,
precise control over the structure parameters, and small lattice mismatches necessary
to achieve high quality factors of optical microcavities make them the best candidates
for a wide range of applications [13, 51]. However, one important drawback of these
systems is a relatively low exciton binding energy, on the order of a few milielec-
tronovolts, preventing the polariton observation (hence also condensation) at room
temperature [13, 52]. The binding energy is not sufficient to overcome the thermal
energy at increased temperatures, leading to a dissociation of excitons. Most of the
GaAs polariton studies require cryogenic temperatures, what hinders also the appli-
cation potential. That is one of the reasons why other platforms, such as wider gap
semicoductors (e.g. GaN) or transition metal dichalcogenide systems gained interest
in the exciton-polariton context in recent years (see section 1.3). However, they still
lack the superb qualities of the aforementioned AlGaAs compounds. There are several
approaches to overcome the issue of the small binding energy in III-V systems, such
as achieving a very strong coupling regime [69]. Another solution is the employment
of the Γ − X mixing [70,225–227].
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As GaAs is a direct bandgap semiconductor at the Γ point, while AlAs is char-
acterised by an indirect bandgap with the global minimum of the conduction band
in the X point of the Brillouin zone [228], the AlxGa1−xAs alloy is characterized
by a direct-to-indirect bandgap transition at a specific proportion of the two binary
semiconductors of around x = 0.24 [229,230]. Near the Γ −X crossover, the quantum
mechanical mixing of the Γ - and the X-valley electrons was reported to manifest in
a large enhancement of the donor activation energies and the exciton binding ener-
gies [231]. Mixing of the Γ -valley electrons with the X- and L-valley leads to an
increase of the electron effective mass which, in turn, should lead to an increase
of the exciton binding energy, proportional to its effective mass (see section 1.1.1).
The increased exciton binding energy allows for the exciton-photon coupling at sig-
nificantly increased temperatures. Polariton lasing has been reported at 155 K in an
Al0.31Ga0.69As/Al0.41Ga0.59As QW sample [232] and in 170 K in GaAs QWs placed in
a Al0.3Ga0.7As cavity with AlAs/Al0.15Ga0.85As DBRs [233], yet the strong coupling
in this system has been observed up to the room temperature [70].

At the same time, the nearly resonant, spatially separated levels, open a possibility
for indirect excitons to emerge. In AlGaAs/AlAs QWs near the Γ − X crossover the
conduction band edge in the Γ valley creates a confinement potential for electrons in
the QW material, but the confinement for the X-valley electrons is created in the AlAs
barrier (as the material is indirect, with minimum in the X valley) [234–236]. Holes
are confined within the Γ -valley in the QW material [234]. This leads to the existence
of confined Γ -electron levels in the QW layer and the X-electron states in the barrier
layer, provided appropriate layer widths and material composition are used. The
near-resonant levels of Γ QW electrons and X AlGaAs states were studied in single
and multi-QW structures [237–239], as well as in superlattices [225, 226, 240–244],
showing the possibility of tunnelling [238] and interactions [226] between the confined
electron states.

Electrons from both levels, designed to be close to resonance near the Γ − X
crossover, can interact with holes confined in the QW layer. This creates ”standard”,
direct, Γ -valley excitons confined in QWs, but also the spatially and momentum
indirect excitons, consisting of the X-valley electron in the barrier and the Γ hole
in the QW. Because of the X valley anisotropy (in contrast to the isotropic Γ band)
[225, 245, 246], X electrons with different effective masses can be confined in the
barrier layer. This comes from the fact, that creation of the QW structure breaks
the spatial symmetry and selects a direction in space. Hence, a crossection of the
anisotropic effective mass paraboloid of the X AlAs electrons needs to be considered
in two directions: the quantization direction and the direction perpendicular to it
[225,236,247]. This anisotropy has been broadly studied in ref. [225] and the effective
masses are summarized in Table 4.1, following this reference.

An important conclusion from this fact is that in AlGaAs/AlAs QWs (or super-
lattices) two different confined indirect excitons can be formed: one coming from the
coupling between the QW holes and the XX,Y confined levels in AlAs (characterized
by the (lighter) transverse mass mt) and a second one, with the same holes coupled
to the XZ confined states (with (heavier) longitudinal mass ml). Typically, only the
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[100] mass
(dispersion mass)

[001] mass
(quantization mass)

XX (100) ml mt

XY (010) mt mt

XZ (001) mt ml

Γ (000) mΓ mΓ

Table 4.1. Effective masses of the Γ and X valleys, re-written from ref. [225]. The mass
along [001] is a quantization mass in the typical (001) superlattices or QWs. The [100] mass
accounts for the dispersion along [100] direction.

heavy holes are taken into consideration, as their mass is higher and they form a
ground state in the valence band of such a system [1,228].

Regardless of the AlGaAs context, the spatially indirect excitons, with Coulomb-
bound electrons and holes characterized by spatially separated wavefunctions, found
an increased interest in recent years. They have been most often considered in a con-
text of TMDC layers [248–251]. A strong dipolar nature of such excitations allows
for the observation of new exciting phenomena, including a dipolar excitonic insula-
tor [252], high-temperature superfluidity [253], and high-temperature Bose-Einstein
condensation [254–256], among others. They are characterized by a high dipole mo-
ment, prolonged lifetime, high diffusion length and are bosonic in nature, as well as
they provide good control of the exciton properties due to their sensitivity to an elec-
tric field and dielectric environment [251,255,257,258]. All these characteristics lead
to a big potential of indirect excitons in novel electronic and photonic devices [259,260].
In the particular context of this thesis, their existance in the AlGaAs/AlAs polariton
microcavity allowed for a unique observation described in Part V.
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Klembt2, Sven Höfling2, Christian Schneider3, and Marcin Syperek1,+

1Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
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ABSTRACT

We present an experimental study on optical properties and dynamics of direct and spatially and momentum indirect excitons
in AlGaAs/AlAs quantum wells near the crossover between Γ− and X-valley confined electron states. The time-integrated
photoluminescence experiment at T = 4.8 K revealed three simultaneously observed optical transitions resulting from (a) a direct
exciton recombination, involving an electron and a hole states both located in the Γ -valley in the quantum well layer, and (b)
two spatially and momentum indirect excitons, comprising of the confined electron states in the X-valley in the AlAs barrier with
different effective masses and quantum well holes in the Γ -valley. This interpretation has been based on the optical pumping
density-dependent, temperature-dependent and spatially-resolved photoluminescence measurements, which provided the
characterization of the structure, crucial in potential system’s applications. Additionally, the time-resolved photoluminescence
experiments unveiled complex carrier relaxation dynamics in the investigated quantum well system, which is strongly governed
by a non-radiative carrier recombination - the characteristics further critical in potential system’s use. This solid state platform
hosting both direct and indirect excitons in a highly tunable monolithic system can benefit and underline the operation principles
of novel electronic and photonic devices.

Introduction
A discovery and recent interest in two-dimensional (2D) materials spark remarkable progress in research on excitons and the
use of excitonic properties in optoelectronic devices. Particular attention has been paid to spatially indirect excitons with
Coulomb-bound electrons and holes characterized by spatially separated wavefunctions. The strong dipolar nature of such
excitations allows for the observation of new exciting phenomena, including a dipolar excitonic insulator1, high-temperature
superfluidity2, and high-temperature Bose-Einstein condensation3–5, among others. Moreover, due to their high dipole moment,
prolonged lifetime, high diffusion length and bosonic nature, as well as good control of the exciton properties due to their
sensitivity to an electric field and dielectric environment, indirect excitons can benefit and underline the operation principles of
novel electronic and photonic devices6, 7. In this new wave of exciting discoveries, the attention can be brought back to the
relatively mature AlGaAs/AlAs quantum well (QW) system in which similar indirect excitons can be generated in a highly
controllable environment. Surprisingly, the knowledge on the isolated AlGaAs/AlAs QW system and its excitonic properties is
limited in the literature8–12, with research focused mainly on superlattice systems, not on isolated QWs.

What is important is that this system offers fabrication capabilities that are still unreachable in 2D layered semiconductors.
The use of III-V semiconductors, in particular with AlGaAs alloy materials in monolithically integrated structures is highly
beneficial due to the high quality of epitaxial growth, precise control over the structure parameters, and small lattice mismatches
necessary to achieve high quality factors of optical microcavities. They can be easily integrated into multilayer monolithic
structures and are suitable for a wide range of well-developed microelectronic processing techniques. On the other hand, the
important drawback in developing useful systems and studying new excitonic-based physical phenomena in these materials
is a low exciton binding energy, particularly when compared with 2D materials such as transition-metal dichalcogenides or
2D perovskites. The typical energies on the order of a few millielectronvolt are too small compared to the thermal energy
at increased temperatures, which results in the exciton’s effective dissociation, preventing an elevated-temperature device
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operation.
Nevertheless, several attempts have been made to overcome this issue. One of the approaches employs the Γ −X band

mixing9, 13, 14. As GaAs is a direct bandgap semiconductor at the Γ point, while AlAs is characterised by an indirect bandgap
with the global minimum of the conduction band in the X point of the Brillouin zone, the AlxGa1−xAs alloy is characterized
by a direct-to-indirect bandgap transition at a specific proportion of the two binary semiconductors of around x = 0.2415, 16.
Near the Γ −X crossover, the quantum mechanical mixing of the Γ− and the X−valley electrons was reported to manifest in
large enhancement of the donor activation energies and the exciton binding energies17. At the same time, the nearly resonant
spatially separated levels open a possibility for indirect excitons to emerge.

Near-resonant levels of Γ QW electrons and X AlGaAs states were studied in single and multi-QW structures18–20, as well
as in superlattices13, 14, 21–25, showing the possibility of tunnelling19 and interactions14 between the confined electron states.
Such interacting states have yet to be studied in more complex structures, such as enclosed microcavities, where complex
dynamics seems crucial in the structure design and band structure engineering.

In this report, we bring the III-V-based system back to the spotlight, uncovering the properties that can underline the
operation of exciton-based photonic devices. We studied the optical properties of AlGaAs/AlAs QWs, operating close to the
Γ −X coupling regime. Using photoluminescence experiments supported by theoretical calculations within the effective-mass
framework, we unravel the nature of multiple resonances present in the structure spectra and interpret two of the lowest energy
states as spatially- and momentum-indirect X-excitons. We characterize the density and temperature evolution of all the energy
states, as well as their temporal decay and spatial diffusion. Our work points to the complex exciton and carrier dynamics in
this system, hindered by nonradiative processes and further affected by localization effects. Such detailed investigation on the
interplay between the energy states is important to understand the resulting complex dynamics in the full structure such as
microcavity, under the additional interaction with photonic modes, particularly of the dipolar excitons. Investigating the system
in a wide range of temperatures is necessary to carefully design and understand future high-temperature devices.

Results
Steady-state photoluminescence spectroscopy
The structure under study is schematically depicted in Fig. 1a). It consists of twelve 9 nm-wide Al0.20Ga0.80As QWs, separated
by 4 nm AlAs barriers, distributed in three stacks of four, comprising the active part of the structure. Good isolation of each
QW, provided by the barriers, ensures negligible coupling of confined states between neighbouring QWs. The active part was
monolithically integrated on a distributed Bragg reflector (DBR), enhancing emission involving confined QW states. More
details on the sample can be found in the Methods section.

To probe the fundamental excitations in this QW system, we employ the steady-state photoluminescence (PL) experiment
(see Methods). Figure 1b) displays the measured low-temperature (T = 4.8K) PL spectrum of the AlGaAs/AlAs QW, registered
under a quasi-resonant energy excitation at Eexc = 2.00eV and an excitation power of Pexc = 10µW. The PL spectrum consists
of three well-resolved features, with enhanced visibility due to the DBR. The features originate from the carrier recombination
between QW-confined states. The highest-energy and highest-intensity PL band located at 1.8472 eV corresponds well to the
Coulomb-correlated electron-hole (exciton) recombination in the vicinity of the Γ valley in the Brillouin zone. The transition
involves the lowest-lying Γ -electron state and the topmost Γ -hole state confined in the AlGaAs QW. The assignment has been
suggested by the energy match with the calculations performed during the initial design of the sample26, as well as the PL band
intensity dominating the spectrum. Therefore, it should reflect the recombination of momentum- and spatially direct Γ -exciton
(annotated simply as Γ), having a high optical transition probability.

The presence of two PL bands located energetically below the Γ exciton is initially surprising. They are centred at energies
of 1.8007 eV and 1.7843 eV respectively, redshifted by nearly 47 meV and 63 meV from the direct Γ exciton transition. Large
energy separation with respect to Γ excludes their identification as charged-excitons or multi-exciton recombination since
these are typically characterized by sub-10 meV binding energies27, 28. The defect-assisted recombination would likely appear
in a spectrum as a single broad transition instead of two clearly resolved bands, resembling the excitonic transitions in the
AlGaAs/AlAs QW29. Therefore, we attribute the observed spectral features to the recombination of excitons involving the
X-valley electrons and Γ -valley holes, observed previously in other AlGaAs nanostructures10, 11, 20. We further investigate the
nature of these transitions in the following sections.

Calculations
To elucidate the nature of the two optical transitions energetically below the Γ exciton and to provide arguments for their
identification, the QW band structure has been calculated within the effective mass approximation. Fig. 1c) shows the band
alignment for Al0.20Ga0.80As QW material and the AlAs barriers in the conduction (CB) and valence (VB) bands, including
the electrons from both the Γ and X valleys of the Brillouin zone. It is important to note that while in the Γ valley the CB
profile (Fig. 1c), solid grey line) creates a confinement potential for electrons in the QW material, the confinement for X-valley
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Figure 1
a) Schematic illustration of the investigated quantum well (QW) structure. b) Low temperature (T = 4.8 K) photoluminescence

(PL) spectra of the Al0.20Ga0.80As /AlAs QWs registered at quasi-resonant excitation, Eexc = 2.00 eV, and low excitation
power Pexc ≈10 µW. c) Scheme of the band structure of one period of the structure with the single-particle levels marked with

dashed lines the and optical transitions indicated with arrows. The solid black line represents the edge of the valence band
(VB), while solid grey and green lines show the edges of the conduction band (CB) in the Γ and X valley, respectively.

electrons (Fig. 1c), solid green line) is created in the AlAs barrier11, 30, 31. Holes can be confined only within the Γ -valley in the
QW material11. For clarity, only the topmost heavy hole (hh) band is presented, and unstrained materials are considered, in
good agreement with the experimental implementation.

The band alignment is the basis for calculations of the single-particle confined states for Γ electrons (e1) and holes (hh1),
and X electrons (xx,y, xz), as schematically depicted in Fig. 1c). The presence of two X-electron confined states results from
the X-electron effective mass anisotropy, well known for the AlAs material13, 32, 33. As the quantization occurs in the growth
direction perpendicular to the QW plane (the z-direction, [001] in the crystal structure), two X-electron masses need to be taken
into account in calculations, in contrast to the isotropic Γ conduction band13, 31. This results in a doublet of states for transverse,
xx,y, and longitudinal, xz, electrons in the X valley. Their masses differ by a factor of 0.2268 in the AlAs layer (with a higher
value of the longitudinal mass)34, yielding the energy separation of approximately 28 meV between the calculated energy levels
in the doublet. Our calculations do not include strain effects that can lead to further state separation35.

Γ and X electrons in confined states can interact with Γ holes confined in the QW layer via Coulomb interactions, forming
spatially and momentum direct and indirect excitons. In our calculations, we estimated the Coulomb corrections to single-
particle energies using the Rydberg formula (see Methods). This simplified approach is likely to be an overestimation of
the actual electron-hole Coulomb coupling for the indirect excitons due to the spatial separation between carriers34, 36. On
the contrary, the binding energy of the Γ exciton is underestimated due to the two-dimensional nature of the QW states31.
Additionally, the Γ −X coupling (neglected in our calculations) may affect the exciton energies17. More accurate evaluations of
the exciton energies require complex self-consistent calculations, which are beyond the scope of this work36–38. Nevertheless,
our simplified approach results in good agreement with experimental observations, as discussed below.

The calculated band structure and the energies of the optical transitions are confronted with the results of the PL measurement
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in Table 1. The data shows that the Coulomb-corrected energy difference between the e1 and the hh1 states in the Γ -band
corresponds very well to the spectral position of the most intensive PL band identified as Γ. As expected, the type-I confinement
and the direct nature of the transition in the real and in the momentum space are linked to its high optical intensity. More
importantly, the calculated energies of transitions involving the xx,y and xz states in the X-valley and the Γ -valley heavy hole
state (marked as XX ,Y , and XZ in Fig. 1c)) are in good agreement with the PL band energies observed below the Γ. Both XX ,Y ,
and XZ transitions are nominally indirect in the real and momentum space, which should lead to a low transition probability.
However, several effects can increase this value. It is important to note that as the translational symmetry is broken in the growth
direction (z), the XZ recombination is allowed without phonon assistance, regardless of its indirect character in the momentum
space, due to the weakening of the momentum selection rules25, 31, 35, 39. Translational invariance of the Hamiltonian (hence the
momentum selection rules) should not be broken in the plane of the structure, resulting in the need for phonon presence for
the XX ,Y transition to occur25, 31, 35, 39. The excitonic states can therefore be described as pseudo-direct in the case of XZ and
indirect in the case of XX ,Y . Notably, both remain indirect in the real space.

Additionally, it is known that in the energetic vicinity of the electron states of the Γ and X valleys in the Al-rich AlGaAs
semiconductor compounds, the xx,y and xz states can have an admixture of the e1 states, which increases the transition
probability (this effect is not included in our calculations)9, 30, 31, 37. What is more, the X-valley electrons can be shifted towards
the AlGaAs/AlAs heterointerface due to the Coulomb interaction with holes confined in the QW layer, the localization at
interface inhomogeneities (caused by chemical content fluctuations), and local electric field or strain fluctuations, which
increases the overlap integral with the Γ valley hole states9, 19, 39. Interface inhomogeneities are expected to have the strongest
influence on the xz electron states, as their effective mass is the largest13 (effect visualized in our spatial diffusion measurements,
described in the next section).

Exciton PL peak energy
(4.8 K)

Calculated
single-level

transition energy
E

Calculated exciton
binding energy

ERy

Calculated exciton
recombination

energy
E −ERy

Γ(e1 −hh1) 1.8472 eV 1.8521 eV 4.8 meV 1.8474 eV
XX ,Y (xx,y −hh1) 1.8007 eV 1.8130 eV 9.5 meV 1.8062 eV

XZ(xz −hh1) 1.7843 eV 1.7847 eV 6.8 meV 1.7752 eV

Table 1. Measured and calculated energies of the three investigated optical transitions, including the energies calculated from
single-particle states (E), calculated excitonic correctons (ERy) and the transition energies at T = 4.8K.

Excitation power-dependent photoluminescence

a) b) c)

Figure 2. a) Excitation power-dependent photoluminescence (PL) spectra at Eexc = 2.00eV and T = 4.8K. b) Change of the
PL peak position with excitation power. c) Evolution of the PL intensity (represented as fitted peak area) of three respective
bands as a function of Pexc. Dashed lines show the power-law fits to the experimental points at low excitation powers (in the
linear growth regime), with slopes of γ = 1.009(5), 0.997(5) and 0.99(1) for Γ, XX ,Y and XZ respectively.

The PL emission bands are examined as a function of the excitation power, Pexc, providing additional information on the
nature of observed emission and the underlying optical transitions. Figure 2a) presents the spectra evolution with increasing
Pexc. Three PL maxima, corresponding to the Γ, XX ,Y , and XZ excitons, were fitted with Gaussian profiles and the extracted
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energies are shown in Fig. 2b). One can observe that the middle-energy peak (corresponding to the XX ,Y exciton) becomes
unresolvable from the spectra under the strongest pumping. In contrast to the other two states, its energy blueshifts as a function
of excitation power, what can be attributed to its dipolar nature and the repulsive interactions between quasiparticles, as was
observed before for spatially indirect excitons11, 40, 41. Contrarily, both Γ and XZ exciton energies present a small redshift
with increasing excitation power, a behaviour not expected for indirect states. It is important to note that in the case of the
XZ excitons, their ground state nature makes them more prone to inhomogeneities, which affect their lifetime and transport
properties. Higher probability of the transition due to the weakened momentum selection rules, shorter decay and higher
localization can hinder their build-up, necessary for the repulsive interactions to be observed. Small redshift of the Γ and the XZ
PL bands at high excitation powers indicate the local sample heating under the elevated pumping.

Figure 2c) shows the spectrally integrated emission intensity of the three investigated bands as a function of Pexc, plotted in
the log-log scale. Experimental points within the low excitation power range were fitted with the power law function I ∝ Pγ

exc,
where the γ value depends on the recombination mechanism42, 43. For the defect-assisted mono-molecular recombination of
photo-injected electrons or holes the coefficient is expected to be lower than 1. However, when the recombination is governed
by the mixture of free and bound exciton annihilation, 1 < γ < 2. Our fitting procedure yielded almost the same γ parameter for
all three PL bands. Extracted values γ = 1.009(5), 0.997(5) and 0.99(1) for Γ, XX ,Y and XZ respectively, clearly suggest that
all the observed optical transitions have excitonic character in the considered low excitation power range.

The superlinear growth at increased Pexc (see Fig. 2c)) is quite surprising. It begins at an excitation power of approximately
∼3×102 µW. At this power level, the calculated electron-hole pair density is estimated as ∼3.9×1018 cm−3 (see Methods),
what approaches the Auger threshold limit for the QW system, estimated to be on the order of ∼1019 cm−344, 45. Further increase
of the excitation power, up to Pexc = 103 µW, is expected to hypothetically reach this density limit and lead to a non-radiative
recombination taking over the radiative processes, causing a sublinear increase in the PL intensity45–47. However, the observed
superlinear increase contradicts these expectations, suggesting that the number of the photogenerated electron-hole pairs in the
QW stack is significantly lower than the estimated value. It could result from the fast, non-radiative carrier relaxation following
the pulse photoexcitation, which could efficiently lower the carrier population in the QW. According to this interpretation,
a non-radiative state saturation may occur at an excitation density of ∼3×102 µW, potentially leading to the increased PL
intensity form the QW confined states with a further increase of the pumping power. These effects can be confirmed by studying
the PL temporal decay, as described in section Time-resolved photoluminescence.

Temperature-dependent photoluminescence

a) b)

Figure 3. a) Temperature-dependent photoluminescence (PL) spectra at Eexc = 2.00eV and Pexc = 150µW. b)
Temperature-induced energy shift of the PL bands. Points show the band energies extracted from fitting the spectra in a) with
Gaussian profiles, open points mark the energies extracted from the spectra maximal intensity values and stars indicate the
excitonic transitions calculated within the effective mass approximation. Dashed curves are the Varshni fits to the temperature
dependences above 100 K.

To further characterize the studied system’s excitonic features, we look at the temperature evolution of the PL spectra in the
wide temperature range, with results presented in Fig. 3. As the temperature T increases, the energy of all resonances redshifts,
as seen in Figs. 3a)-3b). At T ≈ 80K, the XX ,Y transition becomes unresolvable, while the neighbouring XZ starts to dominate
the spectrum. We highlight the fact that spectra presented in Fig. 3a) are not normalized, and the intensity of XZ emission
strongly increases at T > 100K reaching the maximum at ∼200 K. We hypothesize that the intensity increase originates from

5/13



the rising phonon density, making both the radiative transition from the XZ exciton and the nonradiative transitions between
e1, xx,y, and xz electron levels more probable. Relaxation of electrons to the xz state can be additionally increased by the
decrease in energy separation between the Γ and X states with temperature (due to the different temperature variation of the Γ

and X energy gaps in AlGaAs and AlAs layers respectively25, 48), as well as by the quench of the XX ,Y emission, making the
inter-level transfer more effective. Additionally, these may be contributed to by an increased carrier density in the QW, owing
to the temperature-driven release of carriers from nonradiative charge traps. The results of the excitation power-dependent
and temperature-dependent time-resolved PL measurements suggest the existence of these traps (see sections Excitation
power-dependent photoluminescence and Time-resolved photoluminescence). However, we also note, that absorption
and effectiveness of the excitation strongly differ with temperature as the energy gaps shift, with Eexc crossing the band gap
energy of the Al0.40Ga0.60As spacer in the structure at T ≈ 220K, while the pumping energy in our experiment was set constant
(Eexc = 2.00eV). Hence, no definite conclusions based on the intensity evolution can be made. We note that the efficient
high-temperature PL highlights the potential use of the structure in photonic devices at elevated temperatures, possibly up to
room temperature.

Additionally, temperature dependences of the transition energies were fitted using the Varshni formula:49

Et(T ) = Et(0)− αT 2/(T +β ) where Et is the transition energy, and α and β are fitting constants related to the used
semiconductor materials. The fitting results are presented in Fig. 3b) with dashed lines. Extracted α and β constants (α =
7.97× 10−4 eVK−2 and β = 399K for the Γ state, and the α = 6.71× 10−4 eVK−2 and β = 425K for the XZ state) match
well the reported material parameters of GaAs and AlAs48, 50. Curves were fitted to the experimental points above 100 K, as at
low temperatures the dependences deviate from the Varshni model. Transition energies lower than the theoretical values point to
the likely additional localization effect and Coulomb correlations. At low temperatures, both Γ and XZ excitons can be trapped,
e.g. by spatial inhomogeneities of the QW interfaces or the chemical composition fluctuations, acting as localization centres,
when the thermal energy is insufficient to overcome the energy potential minima20, 51. Localisation effect is also affecting the
diffusion of the excitonic complexes, showing the limited spatial extent of the low-temperature PL emission of both Γ and
XZ states, contrasted with the increase of the XZ’s diffusion at elevated temperatures, as presented and described in section
Exciton diffusion, below. Localization energies suggested by the difference between the Varshni curves and the measured
exciton emission at low temperatures are around 6 meV to 8 meV.

Finally, we estimate the expected exciton recombination energies at room temperature, using the same methods as described
in the Calculations section. In contrast to previous estimations26, we verify the system to be indirect (with the type-II transition
from the quantized X-valley state in the barrier to the first heavy hole QW energy state as the lowest energy transition) in the
whole studied temperature range up to the room temperature. At 300 K, the exciton energies estimated from our calculations are
1.751 eV, 1.730 eV and 1.6992 eV for the Γ, XX ,Y and XZ transitions respectively, matching nearly perfectly the PL resonances
observed in the experiment (see Fig. 3b), open stars).

Exciton diffusion

Figure 4. Spatial extent of the photoluminescence intensity, showing diffusion profiles of the three studied excitons, measured
at low excitation power (Pexc = 10µW) and the temperature of T = 4.8K (solid lines) and T = 140K (dashed lines). The XX ,Y
exciton is not visible at elevated temperatures.

The assignment of the observed QW transitions is further supported by the measured spatial profiles of the time-integrated
PL emission at low temperatures and low excitation power density. The spatial extent of the PL signal of the three observed
transitions at T = 4.8K is displayed in Fig. 4 (solid lines). One can see a clear difference between the emission profiles of the
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studied states. The XX ,Y excitons (the middle-energy-peak in Fig. 1b)) travel further away from the excitation spot than the Γ

excitons before recombining, with their emission profile extending for more than 100 µm. The XZ excitons are characterized by
the smallest in-plane diffusion profile at low temperatures, even slightly smaller than that of the Γ excitons. Extended diffusion
profiles are commonly observed for indirect excitons, having high momentum, and often being characterized by long radiative
lifetimes, thus propagating macroscopic distances before recombination4, 52, 53. Several factors can influence the diffusion,
including the in-plane effective mass, phonon density, exciton-phonon interaction and spatial localization of the states, as well
as the efficiency of a non-radiative recombination52, 54, 55. The need for the phonon assistance in the XX ,Y transition affects
its recombination probability, hence the diffusion length, explaining its stark distinction from the other two profiles. In the
case of the XZ excitons, the aforementioned breaking of the momentum-selection rules makes them more similar to the Γ

excitons, what is visualized in the narrower diffusion profile. Moreover, having the largest effective mass in the z-direction,
their transport properties might be influenced by the spatial inhomogeneities of the QW interfaces, which act as localization
centres4, 56, further affecting the diffusion.

The localization effect is clearly visualized by studying the diffusion profiles at elevated temperatures (experimental curves
measured at T = 140K shown in Fig. 4 with dashed lines). The diffusion of the XZ state largely increases at elevated temperature
and becomes significantly broader spatially than that of the Γ state, which remains narrow. The observation can be linked to
the nature of an indirect state and the localization. Once the thermal activation overcomes the localization energy from local
potential minima, the diffusion range of the XZ exciton is expected to be longer than that of the direct excitons. On the other
hand, it remains narrower than the XX ,Y transition at low temperatures due to the difference in selection rules and in the effective
mass. Full characterization of the temperature dependence is discussed in the previous section, where more localization effects
become apparent. Overall, observed differences in the diffusion profiles support our interpretation of the nature of the direct
and indirect excitons, as similar behaviour has been observed before in this material system35.

Time-resolved photoluminescence

a) b)

Figure 5. a) Temporal evolution of the photoluminescence (PL) intensity of the three studied transitions recorded at low
temperature T = 4.8K and excitation power Pexc = 100µW. Solid lines show monoexponential decay curves, fitted to
experimental data (points), with the time constants of 11 ps, 17 ps and 19 ps for XX ,Y , XZ and Γ exciton respectively. b)
Temporal PL decays of three investigated transitions with increasing temperature. Excitation energy (Eexc = 2.00eV) and
power (Pexc = 150µW) were set constant throughout the series.

Finally, we explore the exciton recombination dynamics in the system. Figure 5a) shows the temporal evolution of the
PL intensity for the Γ, XX ,Y and XZ transitions, following a ∼200 fs excitation pulse at low temperature (T = 4.8K) and at the
excitation power of Pexc = 100µW.

All three transitions can be approximated by a mono-exponential decay with the characteristic decay time constant
(τPL) of about 11 ps for the XX ,Y transition and 17 ps for the XZ . We note that such short decays are close to the temporal
resolution of our detection system (of ∼7 ps), and are much smaller than the decay times expected for direct28, 57–59 and
indirect transitions9, 19, 39, 60–62. This observation reveals the likely presence of efficient nonradiative decay channels for the
photoinjected carrier population in our system, dominating the measured dynamics and manifested by a shortening of the PL
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decay.
Among the processes that could lead to the shortening of the PL decay time at cryogenic temperatures is an efficient

depopulation of the QW reservoir through carrier relaxation into the states located below the fundamental QW bandgap, or
the Auger-like processes, expected mainly in the high pumping regime. Importantly, the estimated maximum electron-hole
pair density generated by our pump laser is on the order of 1018 cm−3 (see Methods), what is at least an order of magnitude
lower than the concentrations necessary for the Auger processes to take place44, 45. Moreover, the Auger recombination is
known to be followed by a drop of the PL efficiency with the pumping power density, a behaviour opposite to the clear increase
observed in our structure, as presented in Figure 2c). The pump power-dependent PL experiment suggests that the number of
the electron-hole pairs in the QW is significantly lower than the estimated values, as the time-integrated PL does not exhibit
characteristic intensity saturation even up to Pexc = 104 µW (see Figure 2c)). This indicates the likelihood of other non-radiative
recombination processes, unrelated to the Auger ones, governing the carrier recombination just after the photoexcitation, and
effectively decreasing the measured PL decay times. They could come from carrier relaxation to the states below the bandgap,
such as defect states63–65.

The Γ exciton is characterized by a slightly larger τPL of around 19 ps. However, its decay deviates from purely monoex-
ponential at early times, with noticeably longer rise time (see the blue curve in Fig. 5a)). The elongated rise time for the Γ

exciton is related to the inefficient capture of photo-generated carriers/excitons from the barrier, which may also stem from
non-radiative processes happening in this layer, decreasing the overall capture probability. On the contrary, a relatively short
capture time for the X valley can be driven by carrier relaxation in the barrier, additionally enhanced by the carrier transfer
from the Γ to the X valley.

Furthermore, we studied the temporal evolution of the PL resonance intensity when the temperature is increased and the
results can be seen in Fig. 5b), with corresponding time-integrated spectra presented in Fig. 3a). At elevated temperatures, the
decays of all resonances become multiexponential, with the shorter component being on the same order of magnitude as the low
temperature and the longer component strongly increasing up to several nanoseconds. This makes the net decay much longer,
extending above the available 2 ns temporal window. Importantly, the XX ,Y is characterised by the near resolution-limited decay
for all temperatures at which it is observed, which can be explained by the ultrafast transfer of electrons to the true ground
state, acting as an efficient nonradiative channel for this state. As the transition probability of the XX ,Y state is lower due to the
momentum-forbidden nature, the intra-level transitions become more effective. It further visualises the complex dynamics
within the system, with possible transitions between closely neighbouring levels, especially when phonons help to conquer
the energy barriers and carry particle momentum. Additionally, the temperatures corresponding to the stark elongation of
the XZ and Γ emission (∼80K to ∼100K) match the localization energies estimated from the transition energy evolution as
described in the section Temperature-dependent photoluminescence, pointing to the likelihood of localization effects playing
an additional role in the change of dynamics with temperature, as it has been observed before60. Even more, the reservoir of
trap states existing below the fundamental bandgap of the system, indicated by other measurements, could also contribute to the
PL elongation. As the temperature rises, carriers may be released from the trap states and populate the QW confined states due
to the increasing phonon bath. This process elongates the observed radiative lifetime63–66.

Summary and Discussion
In this work, we investigated fundamental optical excitations in the AlGaAs/AlAs QWs near the regime of Γ -X valley coupling
for confined electrons, using the time-integrated and time-resolved photoluminescence. Our experimental characterization is
supported by theoretical calculations within the effective-mass framework.

The low-temperature PL experiments reveal three clearly resolved optical transitions, which we interpreted as direct and
momentum- and spatially-indirect excitons. The strongest PL feature is attributed to the Γ exciton recombination. It has
been previously observed in the microcavity-embbedded AlGaAs/AlAs QW26 and its transition energy matches very well the
calculated one. It dominates the spectrum at low temperature and low photo-excitation, as it is expected form a direct exciton
transition of a high transition probability.

The other two transitions below the Γ exciton have not be thoroughly investigated in similar QW structures. Our study
suggests their indirect nature and the X-valley-electrons origin. The middle energy transition, pinpointed as XX ,Y , have features
corresponding well to the momentum and spatially indirect exciton, with the xx,y-electron constituent. This state is expected to
be purely indirect in space and in momentum, hence initially forbidden, yet allowed by a random potential which includes
all wavevectors39. It does not mix with the Γ state by the structure potential39 (in contrast to XZ). In our experiments this
state is characterized by a largely extended diffusion, and its energy blueshifts with density, as it is expected from dipolar
species, affected by repulsive interactions. In both of those observations XX ,Y ’s characteristics clearly differ from the other
two states, as one can expect from their momentum-direct (or pseudo-direct) nature. At the highest excitation powers and
increased temperatures it becomes unresolvable from the spectra, overwhelmed by the other two transitions. This can also be
pinpointed to its indirect nature, as the momentum-selection rules make its recombination the least probable. With increased
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phonon influence, the xx,y electrons can clearly relax or scatter into the other two states, preventing the XX ,Y exciton radiative
recombination (with Γ−XX ,Y mixing allowed by the potential fluctuations due to interface roughness19).

Finally, we have identified the ground state of this system as the XZ exciton, effectively recognizing the whole structure
to be of the type-II (spatially indirect) and pseudo-direct in momentum. Symmetry (the structure potential) allows XZ’s
recombination without the assistance of phonons and its mixing with the Γ state19, 20, 39. Accordingly, in all of our measurements
its characteristics are similar to the highest Γ state, e.g. it presents similar diffusion profile at low temperatures and redshifts in
energy at increased densities, due to the unintentional sample heating. The largest effective mass makes it the lowest energy
state in the system39. It also makes it prone to the interface roughness and fluctuations and becoming localized. One can clearly
see this effect in its observed narrow diffusion profile, the profile’s expansion at increased temperatures, in the clear deviation
from the Varshni curve at low temperatures, but also in a significant increase of its luminescence and decay time at elevated
temperatures, as the excitons that are localized at low temperature become mobile at elevated temperatures20. The temperature
of this increase in the decay constant corresponds well to the estimated localization energy of around 7 meV.

Our clear identification and characterization of these states are crucial in a careful design of future devices, where specific
excitonic states are at the core of interest. Our system offers a superb monolithic platform in which three species of excitons,
both direct and indirect, can be exploited. As a clear example, such a QW system can be integrated inside a microcavity, where
the dipolar excitons coupled to the cavity field can provide new functionalities and device applications.

Methods

Sample growth
The investigated structure was grown by molecular beam epitaxy on a nominally undoped (001) GaAs substrate. The structure
consists of twelve 9 nm-wide Al0.20Ga0.80As QWs, separated by 4 nm AlAs barriers, distributed in three stacks of four. The
stacks were initially placed in a λ/2-AlAs cavity surrounded by AlAs/Al0.40Ga0.60As distributed Bragg reflectors (DBRs),
consisting of 28/24 mirror pairs in the bottom/top reflector, including 3 nm GaAs smoothing layers after each mirror pair. Such
a full microcavity structure was initially designed for room-temperature polaritonics, however, here we investigate the system
prior to the coupling with the photonic modes. To characterize the QW system, the top DBR has been etched away, so the QW
part on a bottom DBR-structure is studied in this work. The resulting structure is characterised by an enhanced luminescence
extraction efficiency. Additionally, it was verified that no measurable signatures of remaining photonic modes in the spectral
vicinity of the QWs were observed. Thus, one can assume no photonic mode coupling and focus on the QW emission. The
structure with a top DBR mirror, providing a full cavity system, has been presented elsewhere26.

Optical experiments
For the time-integrated (PL) and time-resolved photoluminescence (TRPL) experiments, the structure was held in a helium-flow
optical cryostat, allowing for the sample temperature control in the range of 4.8 K to 300 K. The structure was excited by
∼200 fs-long laser pulses with the pulse central wavelength of 620 nm (Eexc = 2.00 eV). The pulses were delivered by a
synchronously-pumped optical parametric oscillator with a 76 MHz repetition frequency, pumped with a Ti:Sapphire laser.
The optical excitation was focused on the sample surface via an infinity-corrected high-numerical-aperture (NA) objective
(NA=0.65). The PL/TRPL signal was then collected by the same objective and directed to a 0.3 m-focal length monochromator
for spectral resolution. The PL was registered by a thermo-electrically-cooled Si-based electron-multiplied-CCD camera or by
a Si-cathode-based streak camera. The TRPL measurement system provided a time resolution of ∼7 ps. Spatial resolution in
the time-integrated spatial diffusion measurements was achieved using the two-dimensional CCD camera67, 68.

Band structure calculations
The band structure calculations were performed within the effective mass approximation. Due to the wide band gaps in the
investigated materials the conduction band was assumed parabolic near the Γ and X points and the spin–orbit split-off (SO)
energy is large enough to ignore the SO band. The remaining valence bands (heavy and light hole) were described in the
Luttinger model69. The energies and wave functions of confined carriers were obtained numerically by solving the Schrödinger
equation using the method reported in Ref.70. Standard material parameters34 for GaAs and AlAs were used in the calculation
and linear interpolation was applied for Al0.20Ga0.80As. The valence-band offset was calculated as 37% of the difference in
band gaps in the well and barrier layers. The exciton binding energy was estimated from the formula ERy = µe4/2ε2h̄2, where
µ is the in-plane reduced effective mass and ε is the dielectric constant.
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Photo-excited electron-hole pair density estimation
The estimation of the maximum electron-hole pair density Ne−h, generated by our pump laser and used in sections Excitation
power-dependent photoluminescence and Time-resolved photoluminescence has been done with a following formula:

Ne−h =
Pexc

A f Eexc
Tob jTglass(1−Rsample)e−αd , (1)

where Pexc is the measured averaged excitation power, A = π (φ/2)2 is the laser spot area, φ = 4 µm is its diameter, f = 76MHz
is the laser pulse repetition frequency, the excitation energy Eexc = 2.00eV = 3.2038×10−19 J, Tob j = 80 % is the objective
transmission at 620 nm, the sample reflection under the normal incidence Rsample = 30 %71 and the cryostat glass transmission
is Tglass = 96 %. α = 2×104 cm−1 is the absorption coefficient for the Al0.2Ga0.8As QW material at cryogenic temperatures72

and d is the effective width of the absorption layer (QW stack), d = 4 ·3 ·9 nm=108nm. The experiment with Pexc = 100µW
gives the maximum concentration of Ne−h = 1.41×1013 cm−2 (Ne−h/d = 1.31×1018 cm−3).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on
reasonable request.
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Summary of the
findings

The work presented in this Part focused on the excitonic characteristics of a QW
system, which serves as an active material in the microcavity presented in the next
Part of this thesis. This study investigated the system prior to the coupling with
photonic modes. The structure was designed purposefully to increase the binding
energy of the QW excitons, due to a near resonance of the Γ− and X-valley band
energy minimum, following a high Al content of the AlGaAs material. This work
explored the optical properties and dynamics of the excitons in this system and:

• showed the presence of three states in the emission spectrum and used the
power-dependent, spatially-resolved, temperature-resolved and time-resolved
experiments, combined with theoretical calculations, to pinpoint their origin.
It concluded, that three types of excitons are present in this QW system: an
expected Γ-electron exciton confined in the QW layer (labeled as Γ), but also
two momentum- and spatially-indirect excitons, lower in energy, stemming from
X-valley electrons in the barrier layer with different effective masses, coupled
to the confined QW holes (labelled as XX,Y and XZ). Such indirect states
have been studied in AlGaAs/AlAs superlattices before, but remained broadly
unexplored in isolated QWs in a similar material system.

• showed a clear difference in the optical characteristics of the three studied
states, in particular between the two indirect excitons. Namely, it showed a
blueshift of the photoluminescence energy with excitation power of the XX,Y

state, expected for a dipolar exciton, as well as its largely extended diffusion,
also characteristic to indirect states. These characteristics follow directly from
the momentum-selection rules, making the recombination of this state the least
probable. The low recombination probability evidences also in the state’s ab-
sence in the photoluminescence spectra at high densities or high temperatures.
The pseudo-direct nature of the XZ state makes its resemblance closer to the
direct Γ exciton, and results in the respective redshift, narrow diffusion profile
and strong emission also at increased temperatures.
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• have identified the ground state of this system as the XZ exciton, effectively
recognizing the whole structure to be of the type-II (spatially indirect) and
pseudo-direct in momentum.

• showed a linear dependence of the emission intensity of all three transitions
with optical excitation density, expected for the excitonic transitions, followed
by a possible non-radiative recombination taking over the radiative processes
at high densities. The presence of efficient non-radiative recombination was
further supported by the time-resolved measurements, which showed a fast,
picosecond-scale photoluminescence decay of all three transitions on the order
of the experimental setup resolution. Even though the indirect states are ex-
pected to present long lifetimes, the observed short decay in the luminescence
experiments is likely to come from the non-radiative processes.

• it additionally showed, how also the localization effects play a role in Γ and XZ

characteristics, evidenced by the temperature-dependent and spatially resolved
measurements. Namely, a deviation from Varshni curves at low temperatures,
low diffusion of the XZ state contrasted with a largely extended one at higher
temperatures, as well as a significant increase of XZ ’s luminescence and decay
time at elevated temperatures, have all suggested that the excitons that are
localized at low temperature become mobile at the elevated ones.

• provided the results of the theoretical calculations within the effective-mass
framework, which showed a great correspondence with the experimental data.
It also used simple models such as Varshni formulas to extract the material
parameters (Varshni temperature constants and localization energies) of the
states in question, largely in line with the previously reported parameters.

• has important implications not only in the full polariton microcavity, studied in
the next Part, but also in other optoelectronic or photonic applications of such
a system. The studied structure offers a superb monolithic platform in which
three species of excitons, both direct and indirect, can be exploited at the same
time, e.g. to underline the operation principles of novel electronic and photonic
devices.
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Introduction
As shown throughout this thesis, in interacting quantum systems it is typical to
observe level repulsion. With interactions, an avoided crossing between the energy
levels of two strongly coupled eigenmodes is expected, and the size of the anticrossing
gap is proportional to the strength of the coupling. In particular case of excitons in
optical microcavities, standing at the core of this thesis, when the photonic and the
excitonic modes are put close to resonance in energy and the quality is sufficient to
prolong the excitation existence, the two modes couple and hybridize, forming exciton
polaritons. The resulting energy levels anticross, avoiding degeneracy at resonance,
and form characteristic polariton branches. The lower polariton dispersion is non-
parabolic, yet for all the momenta the effective mass linked to band curvature remains
positive.

However, there are also rare and more unique cases in which level attraction can
be observed. Such observations have been done in a range of systems and settings,
and there have been many approaches to explain such a phenomenon, such as the
imaginary form of coupling [48,261], certain decay channels [48,262], artificial coupling
using an external feedback circuit [263, 264] and various inclusions of non-Hermitian
dissipative terms in the Hamiltonian [261]. All these approaches share a common
characteristic - they account for some type of dissipation present in the studied system.
When the dissipation becomes equally important to the coherent coupling, emergent
states can attract, instead of repelling.

The effect of the level attraction has been observed in a wide range of physical
systems. Initially studied mainly for magnons, and with most of the investigations
in this context [265–267], but later it was observed also in microwave cavities [263],
mechanical systems [268] or photonic crystal cavities containing single quantum dots
[269]. In each case the exact form of dissipation differs, as well as the models suggested
to describe it, however, an inherent existence and an importance of the decay remains
a key factor. The broad range of contexts for these observations is not surprising -
losses are inevitable in all open systems. Typically they are perceived as detrimental
to the performance of the electronic or photonic devices, but recently the inherent
non-Hermiticity of the system started to be considered advantageous. Controlling the
losses has been suggested as a way to design novel properties or functionalities, e.g.
in non-Hermitian photonics [270].

When levels with parabolic dispersions are being subject to a substantial loss,
but the interlevel coupling and the energy proximity are both sufficient, they at-
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tract, and the dispersion of one of the modes can invert, presenting an anomalous
behaviour. Models show that this effect can lead to an inverted, anomalous wavevec-
tor dependence of one of the parabolic coupled modes, in effect resembling an inverted
parabola [23, 48, 266, 267, 271]. Depending on the relative strength of the interaction
and the dissipation, several regimes are expected, with either a single maximum of the
energy-momentum dispersion at k = 0, or a non-monotonic anomalous function with
maximas at finite wavevectors [261]. With the coherent coupling being sufficiently
strong in comparison to the dissipation, the typical repulsion would hinder any effect.

One would expect, that exciton-photon systems are a great example of such a
two parabolic modes system, and that with the level attraction, the dispersion of
the eigenmodes would be hugely affected. Experimentally, for long such an observa-
tion has not been reported in microcavity polariton systems. Only recently the first
hints have been presented, but they are still very scarce and limited. Several exact
mechanisms have been suggested, different in each case, to explain the attraction.
Importantly, all the experimental observations have been reported only in transition-
metal dichalcogenide (TMDC) - based, rather low-Q microcavities.

First observation by Dhara et al. [272] was reported for trion polaritons in MoSe2
layer, with the anomalous dispersion extracted from the photoluminescence spectra.
The result is presented in Fig. 4.7 (a), reproduced from this study, showing a differ-
entiated logarithm of the raw photoluminescence spectrum. One can see an inverted
dispersion of one of the three modes. The supporting model, explaining the nature of
the effect, is applicable only for many-particle excitons in heavily-doped samples, with
complex interactions. A crucial role of the trion resonance is highlighted, interacting
with an exciton and with a cavity photon (including many-body interactions with
mediating polaritons). It’s important to note, that the experimental result shown in
Fig. 4.7 (a) is the differentiated logarithm of the raw data, calculated to increase
the visibility and even then the linewidths of the final modes are very broad. The
material platform and the sample quality strongly hinders the result.

Subsequent observation by Wurdack et al. [48] (reproduced in Fig. 4.7 (b)) showed
negative-mass exciton-polaritons in an optical microcavity with a WS2 monolayer.
The effect has been reported in two samples with different exciton-photon detunings,
and the observation was made at room temperature. In the photoluminecence spec-
tra (see Fig. 4.7 (b)) the authors observed an anomalous dispersion of one polariton
branch, with double maxima curves (maximas at finite wavevectors). To explain it,
the authors suggested the mechanism of dissipative coupling via interactions of exci-
tons with phonons, supported by a microscopic theory. They presented a model with
exciton and photon modes coupled via imaginary interactions. Such an approach
accounts for two decay channels present in the system - one related to the losses of
photons (due to the microcavity imperfections) and one to the exciton-phonon inter-
actions. Phonons are found to be the main contributor to the decay. They used
a phenomenological approach to model the data, but they supported it with a mi-
croscopic theory. Importantly, this observation has been made at room temperature,
and the interaction of TMDC excitons with phonons is known to be strong (in relation
to e.g. GaAs-based systems, especially at low temperatures). Moreover, one has to
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d)

a) b)

c)

Figure 4.7. Reported observations of an anomalous dispersion in exciton-polariton micro-
cavities. (a) Angle-resolved PL spectrum - the differentiated logarithm of the raw data to
enhance the contrast - reproduced from ref. [272]. Solid line presents the model fitting. (b)
Momentum-resolved PL spectra of two samples with different values of the exciton–photon
detuning, reproduced from ref. [48]. The maximum intensity at each k value has been scaled
to unity to visualise the shape of the lower branch. The black circles are the fitted peak
positions of the two branches and the solid red lines are the fitted dispersion of the upper
and lower polaritons. (c) Angle-resolved micro-PL spectra, reproduced from ref. [273]. The
black dot-dashed lines show the bare cavity dispersion, MoSe2 exciton emission and trion
emission energies, the red solid lines show fitted upper and lower polariton modes. The
extracted polariton energy is also plotted as a function of the in-plane wavenumber on the
right-hand side. The error bars for the lower polariton and trion energies have been multi-
plied by a factor of 6 for increased visibility. (d) Calcultaed power spectra of the anomalous
dispersions (with two sets of parameters), reproduced from ref. [261]. The color plots show
the power spectra (color scale in arbitrary units), the dashed white lines correspond to the
real parts of the theoretical model and the dashed-black lines represent the bare exciton and
cavity photon kinetic energies.
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note, that the spectra presented in Fig. 4.7 (b) are normalized, so that the maximum
intensity at each k value has been scaled to unity, to visualise the shape of the lower
branch. The effect is not starkly seen in the raw photoluminescence spectrum and
the linewidths remain relatively broad.

Anomalous dispersion in a polariton sample has also been observed in ref. [273]
(with the observation reproduced in Fig. 4.7 (c)), similarly in a TMDC monolayer,
but it was not a subject of the work. The authors suggested that the mechanism of
its occurence could be the same as in Dhara et al. [272], but they did not investigate
the topic further. This only shows how such an effect is present and can be unexpect-
edly observed in a wide range of systems and samples, with more importance than
previously thought, yet that it is still not very well understood.

Apart from these scarce observations, some theoretical predictions have been made
in the context of exciton-polariton microcavities. In Bleu et al. [261] (a work inspired
by discussions with the author of this thesis and coauthors of the research presented
in this part) the authors showed how coupling of both resonances - the exciton and
the cavity photon - to a shared photonic environment could lead to the anomalous
shape of the dispersion. In such lossy cavities different regimes of the anomalous
dispersion could be observed (with either a single or double maxima), depending on
the ratio of the resonance decays. This setting was modelled by an imaginary form
of coupling in a non-Hermitian model Hamiltonian. The examplary results of these
calculations are presented in Fig. 4.7 (d) (with two regimes of the anomalous shape
shown).

Additionally, in recent work by Binder et al. [274] the authors also considered the
dispersion sign reversal of radiative resonances in two dimensions, as a consequence
of a non-Hermitian coupling. They predicted how the 2D-layer polaritons without
a cavity can exhibit mass-sign reversal similar to microcavity polaritons and have
derived an analytic expression that sets conditions on the mass-sign reversal. However,
their system is inherently different, as no cavity is present.

All of the works described above show, how this topic in the exciton-polariton
context is now hotly debated. The limited reported works are very recent and there
are still many unanswered questions. The experimental evidence is not only scarce,
but also limited to rather low-Q microcavities with 2D materials. This limits both the
effect’s further experimental investigation, but also its potential application. These
platforms are known to be rather inferior to monolithic III-V based systems in terms
of quality, reproducibility and scalability. The investigated cases could be seen as
rather ”single-shot” samples, with little potential of scalability or precise tuning. The
observations lack narrow sharp linewidths, as it is expected in non-monolithic, TMDC-
based samples, especially at room temperature.

Furthermore, the models describing each of the cases are different. All of them
describe a dissipative form of coupling between two modes, but the exact form, as
well as the underlying phenomenon differ. Even though the level attraction and the
anomalous band curvature can be phenomenologically described by the imaginary
coupling between the two states, the physical basis of the effect is not always clear.
Moreover, more models can be considered, when investigating a context of the level
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attraction more broadly, beyond just the exciton-photon physical systems [266,267].
Importanly in the context of this thesis, Yu et al. [271] have shown, how in a physi-

cal system, the dissipative type of coupling can be realized by coupling two oscillators
reactively to a third, highly dissipative entity. They showed, how a real coupling of
three oscillators (all with an intrinsic decay) can be regarded as an effectively com-
plex coupling between two of the modes, provided that they are nearly resonant and
that the dissipation of the third mode is sufficient. The third-party mode in cavity
systems can even come from an invisible cavity mode, with extremely high leakage or
dissipation. They regarded this model in a context of magnonic cavities, and used it
to explain an experimental observation made in ref. [265]. Even though this mecha-
nism has been successfully used to explain level attraction in magnon cavities, it has
never been considered in the polariton context.

Crucially, this model explains the nature of the level attraction in a wide range of
systems, showing how the dissipative coupling (often described in Hamiltonians as an
imaginary coupling between two states [48,261,262,267]) may result from a coherent
coupling, but of three resonances. The presence of a highly dissipative mode, if
pinpointed, can explain the attractive level crossing. In an intuitive, classical picture
this model can be visualized as three damped oscillators (e.g. visualized as springs),
coupled to each other, one of which is additionally in contact with a friction surface
(hence, it is strongly damped). It is schamtically visualized in Fig. 4.8. The authors
of ref. [271] call this type of coupling an absement coupling - the coupling force is
proportional to the relative absement (the time integral of displacement) and can can
be realized via a third oscillator with extra dissipation (as shown in Fig. 4.8). It
differs from a reactive or a velocity types of coupling [271] between two oscillators, in
which the mutual force is proportional to the oscillator’s relative displacement or to
their relative velocity respectively.

Finally, regardless of the explanation, the anomalous dispersion is inherently
linked to a negative sign of the effective mass m1, introduced in section 1.2.4. This
parameter is related to the classical motion of the wave packet and determines the
group velocity vg = ℏk/m1 [47, 48]. Hence, the negative effective mass results in a
complex and unique particle dynamics - the velocity and the force have different signs.

1 20

friction
Figure 4.8. A simple classical depiction of the absement coupling, leading to the attractive
level crossing, modelled as a coupling via a dissipative mode. The coupling between three
numbered harmonic oscillators is schematically depicted, with damping visualized as springs.
A dissipative mode is shown in orange, having contact with a friction surface.
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The effect have been evidenced in Wurdack et al. [48], demonstrating propagation of
the negative-mass polaritons in the direction opposite to their momentum. Such a
unique feature can be used to further study nontrivial particle dynamics and hydrody-
namics, or to investigate analogue systems. The optical accessibility of the polariton
platform makes them an ideal system to specifically design and study analogous
cases in other, less accessible systems [36,275–277]. The effective mass engineering is
a highly desirable and discussed topic, as it can be used e.g. to purposefully design
non-Hermitian effects [58,63,278] (see also section 1.2.6), or obtain controllable excep-
tional points [49,279–281]. Prior to the works described above, the negative effective
mass in polariton microcavities has been obtained mainly by the potential landscape
engineering [11], e.g. creating lattice potentials [199, 281, 282] or bound states in the
continuum (in waveguides) [283]. Such an approach always requires additional sam-
ple processing steps, often hindering the effect tunability or limiting the systems in
which it can be realized. The additional steps increase the cost and complexity of
sample preparation. The engineering can also be realized via sophisticated excitation
schemes [284], hugely increasing the complexity of the experiment.

An inverted, anomalous dispersion due to dissipative coupling adds one more
possible way to engineer the effective mass and obtain negative m1, even without any
additional structuring. A specific context of high quality III-V semiconductor-based
system would be additionally advantageous in this regard, as it offers the highest
control of the design, structure parameters and the quality of the final structure.
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Although energy level repulsion is typically observed in interacting quantum systems, non-
Hermitian physics predicts the effect of level attraction, which occurs when significant energy dissipa-
tion is present. Here, we show a manifestation of dissipative coupling in a high-quality AlGaAs-based
polariton microcavity, where two polariton branches attract, resulting in an anomalous, inverted
dispersion of the lower branch in momentum dispersion. Using angle-resolved photoluminescence
measurements we observe the evolution of the level attraction with exciton-photon detuning, lead-
ing to changes in anomalous dispersion shape within a single sample. The dissipative coupling is
explained by the interaction with an indirect exciton, acting as a highly dissipative channel in our
system, and the observed dispersions are well captured within a phenomenological model. Our re-
sults present a new mechanism of dissipative coupling in light-matter systems and offer a tunable
and well-controlled AlGaAs-based platform for engineering the non-Hermitian and negative mass
effects in polariton systems.

INTRODUCTION

In interacting quantum systems, it is typical to observe
level repulsion. When two modes couple and intermix,
the resulting energy levels anticross, avoiding degener-
acy at resonance. If the strongly interacting states are
photons and excitons confined in planar microcavities,
the resulting eigenstates appear as two exciton-polariton
branches, schematically depicted in Fig. 1(a). Lower
polaritons are characterized by a nearly parabolic dis-
persion at small wavevectors, with small and positive ef-
fective mass, inherited largely from the photonic compo-
nent. At larger momenta characteristic inflection points
appear, around which the second derivative of the energy
dispersion changes sign, nevertheless, the mass that de-
termines the group velocity remains positive for all mo-
menta [1]. The mode dispersion and particle effective
mass can be further engineered, typically by introducing
an additional potential landscape in the system, such as
lattice potentials, yet it requires additional sample pro-
cessing or sophisticated excitation schemes [2–5].

However, in all open systems, losses are inevitable, and
the interactions and eigenstates are strongly affected by
dissipation. Optical systems in which light confinement
can be effectively engineered, such as high-quality opti-
cal microcavities, are an ideal experimental platform to
study dissipation-related coupling effects. When dissi-
pation becomes equally important to the coherent cou-
pling, the emergent states can attract (instead of re-
pelling), even without additional potential. The attrac-
tion effect is analogous to classical in-phase oscillations
of dissipatively coupled pendulums [6]. In light-matter
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systems the influence of dissipative coupling has been
experimentally observed in photonic-crystal cavities con-
taining single quantum dots [7]. In two-dimensional po-
laritonic systems however, while there were some first ex-
perimental hints in rather low-Q microcavities containing
monolayer semiconductors [8, 9], clear studies in narrow-
linewidth systems are elusive so far. The level attrac-
tion phenomenon has mainly been studied in other con-
texts, such as magnons [6, 10, 11], microwave cavities
[12], opto-mechano-fluidic resonators [13] or mechanical
systems [14]. Dissipative coupling has been suggested
as a potential mechanism for entangled state creation,
as a new tool in the design of superconducting qubits
[10, 11], for development of metamaterials [10], but also
as a mechanism beneficial in cavity spintronics [11].

When the coupling of two quantum mechanical oscil-
lators with parabolic dispersions, subject to substantial
loss, becomes complex, and the imaginary (dissipative)
coupling is comparable to the real (coherent) coupling,
the levels attract, and the dispersion of one of the modes
can invert, presenting an anomalous behaviour. It is vi-
sualized in Fig. 1(b). The resulted band has a nega-
tive curvature parabolic wavevector dependence, directly
representing the negative effective mass of the emergent
state. However, even though the level attraction and
the anomalous dispersion can be phenomenologically de-
scribed by the imaginary coupling between the two states,
the physical origin of the effect is not always clear and
varies between systems. Interestingly, it has been shown
how, in a physical system, the dissipative type of coupling
can be realized by coupling two oscillators reactively to
a third, highly dissipative entity [15], as schematically
depicted in Fig. 1(c). The third-party mode in cavity
systems can come from an invisible cavity mode with ex-
tremely high leakage or dissipation. This mechanism has
been successfully used to explain the level attraction in
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Figure 1. A schematic visualisation of the level attraction effect in an energy-momentum dispersion (a-c) and the investigated
structure (d-e). (a) Levels of a strongly coupled system of two coherently coupled modes, showing level repulsion. (b) Level
attraction of the same two modes, coupled with an imaginary coupling. (c) A schematic visualisation of a similar level attraction
effect, but coming from a real coupling between three modes, one of which is strongly dissipative. Two initial modes in (a-c)
are marked with dashed lines, and the third, dissipative mode in (c) is highlighted in green. (d) Schematics of the investigated
microcavity, with a close-up of the active layer. In the system band structure solid lines show the edges of the X, Γ and
valence bands of one period of the repeated layers. Dashed lines indicate the quantized electron (e1, XX,Y , XZ) and heavy
hole (hh1) levels in two adjacent layers. Carriers occupying these levels subsequently form three excitons present within the
system (indicated with orange arrows), when subject to Coulomb interactions. (e) The photoluminescence spectrum of the
bare quantum well system, with the top Bragg reflector etched away. Three well-resolved features, labeled as Ex(Γ), Ex(XX,Y )

and Ex(XZ), correspond to transitions of three excitonic species present in our sample.

magnon cavities [15], yet has never been considered in an
exciton-polariton context.

Regardless of the mechanism, the negative mass of such
an inverted state can be used in a wide range of studies
on non-Hermitian effects or topology [16–18]. It mani-
fests itself in the particle’s dynamics, so that its group
velocity and momentum have opposing directions [1, 9].
Next to substantial fundamental interest, this, in turn,
can be employed to control wavepacket dynamics [1], hy-
drodynamics [19], or cause resonance trapping [20]. For
all these applications, engineering the inverted dispersion
is crucial, yet so far cavity engineering focused mainly on
the potential engineering or spin-orbit interactions in po-

lariton microcavities, rather than the dissipation. Precise
control over the attraction strength would also be hugely
beneficial.

In exciton-polariton settings, anomalous dispersion has
been predicted [21], but it has been experimentally ob-
served only very recently and only in transition-metal
dichalcogenide samples [8, 9]. This medium lacks the ex-
citon energy control and ease of the cavity design of a
III-V based semiconductor and proved to be challenging
in reproducibility. Moreover, in the experimental hints
made so far, the effect was strongly obscured by inho-
mogeneously broadened lines, while their theoretical de-
scriptions vary widely.
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In this work, we unequivocally demonstrate the level
attraction manifested as an inverted anomalous disper-
sion in the AlGaAs exciton-polariton system. We inves-
tigate the mechanism of dissipation in our structure, cru-
cial for the attraction to occur. In contrast to previous
studies, our III-V semiconductor sample not only hosts
conventionally studied Γ-excitons in the QWs, coherently
coupled to photons, but also lower-energy spatially- and
momentum-indirect X-excitons, which are strongly prone
to dissipation. We show that the source of dissipation in
our structure is the lower-energy indirect state, acting
as a draining channel for both photons and electrons.
This highly dissipative mode allows for the dissipative
coupling to become sufficiently strong to surpass the co-
herent exciton-photon coupling, and result in inverted
eigenstate dispersion. Finally, we demonstrate the supe-
riority of our material system in comparison to previous
realisations, owing to its high tunability, ease of design,
and huge potential for non-Hermitian phases engineering,
by showing a change of the dispersion shape as a function
of exciton-photon detuning.

RESULTS

Excitonic structure

We studied an AlGaAs/AlAs optical microcavity, de-
signed for room temperature polaritonics [22]. However,
in this work we focus on experimental observations made
at cryogenic temperature of 4 K, benefiting from the nar-
row polaritonic linewidths. The sample schematic is de-
picted in Fig. 1(d) and a detailed description of the sam-
ple composition can be found in Methods.

Due to the high aluminium content affecting the band
alignment, the structure hosts direct and indirect exci-
tons in the quantum well (QW) [22–24]. Apart from the
conventional direct excitons composed of Γ-valley elec-
trons and heavy holes confined in the QW layer, the
structure also hosts lower-energy spatially and momen-
tum indirect X-excitons [24]. Since the order of X and
Γ-valley energy minimum in the conduction band is re-
versed for the Al0.2Ga0.8As QW and for the AlAs barrier
material, the fundamental QW electron state resides in
the barrier. This allows the formation of indirect excitons
composed of X-valley electrons in the barrier Coulomb-
correlated with Γ-valley heavy holes confined in the QW
layer. Two lowest-energy optically active states relate to
excitons consisting of X-valley electrons with different ef-
fective masses (longitudinal and transverse with respect
to the spatial quantization axis), forming XZ and XX,Y

states respectively. The single-particle energy levels are
visualized in the QW band structure in Fig. 1(d), us-
ing dashed lines. Measured spectrum of the bare QW
active material is presented in Fig. 1(e), where all ex-
citonic transitions are indicated. The indirect nature of
these excitonic states has been investigated in detail in
our previous work [24].

When embedded in a monolithic optical microcavity
close to resonance with the Γ-state, direct excitons cou-
ple strongly to light, forming exciton-polariton quasipar-
ticles [22]. These states are characterized by the normal-
mode splitting and present typical polariton dispersions
(as shown in Supplementary Material, section I). How-
ever, herein we study the structure at very large nega-
tive Γ-exciton – photon detunings, ∆Γ = Ec −Ex(Γ) < 0
(where Ec is the cavity mode energy and Ex(Γ) is the en-
ergy of the direct exciton in the QW). In this regime, the
light-matter interactions are dominated by the coupling
of the cavity optical mode to the indirect X -valley exci-
tons and the resulting states strongly differ from the typ-
ical exciton-polaritons under coherent light-matter cou-
pling. The detuning is sufficiently large that the coherent
coupling to the Γ-excitons becomes irrelevant. For conve-
nience, throughout the rest of the paper, we will refer to
the detuning as defined with respect to the higher-energy
X-exciton, ∆X = Ec − Ex(XX,Y ).

Photoluminescence Measurements

To study the coupling between photons and X-
excitons, we measured angle-resolved photoluminescence
spectra in a wide detuning range, close to resonance with
the X-excitons. When the photonic mode gets sufficiently
close to the energy of the XX,Y excitonic resonance, a
new lower energy state brightens up, with the disper-
sion curved in a distinctly inverted manner. An experi-
mental example of such a momentum dispersion is pre-
sented in Fig. 2(a), together with the peak energies of
the two branches, extracted with a fitting procedure (see
Methods and Supplementary Material, section II). An
apparent and monotonous redshift of this mode’s energy
with increasing wavevector can be seen in Fig. 2(b), a
dependence opposite to the higher energy photonic-like
state. The two levels attract, causing the mirroring of
their wavevector energy dispersions, mimicking the dis-
persion sketched in Fig. 1(b). The negative curvature of
such an inverted parabolic dispersion is directly linked
to the negative effective mass of the lower mode - a rare
phenomenon in exciton-polariton systems [8, 9, 25, 26].

Taking advantage of the cavity energy gradient (due to
the thickness variation across the sample), we probed the
negative mass states in a range of sample positions (de-
tunings). As presented in Fig. 2(c), decreasing the detun-
ing between the cavity mode and the XX,Y -exciton en-
ergy ∆X leads to an increase in attraction effect, with the
anomalous shape of the lower branch becoming steeper
and more distinct. Figure 2(c) shows the energies of two
polaritonic branches extracted from fitting the PL mea-
surements taken at different sample positions. Interest-
ingly, around the positive photon to XX,Y -exciton de-
tuning of approximately 10 meV the curvature changes
from the inverted parabola-like with one energy maxi-
mum at k = 0 to anomalous shape with two distinct and
symmetric maxima at k ̸= 0. Similar dispersion shapes
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Figure 2. Experimental observation of the anomalous dispersion. (a) Momentum-resolved photoluminescence image at a chosen
exciton-photon detuning (linear color scale). Spectra crossections taken at several wavevectors are presented in (b) (connected
dots), together with fitted curves (solid lines). Red dots show the energies of the two deconvoluted modes, extracted from
fitting, also marked in white in (a). (c) Extracted mode dispersions at several exciton-photon detunings ∆X . Error bars
indicate the fitting standard error.

have been observed before in different structures in both
regimes [8, 9], yet never in the same material system,
nor in a single sample. The corresponding change of the
effective mass value with the detuning is presented in
Supplementary Material, section VI.

At negative detunings ∆X , only one branch appears
in the photoluminescence spectrum, with the standard
parabolic shape of the dispersion resembling the one of a
photonic mode, as presented in Supplementary Material,
section I. For further discussions, we focus solely on the
level attraction region.

Model

To understand the source of level attraction, we have
to recall the existence of the XZ-electron exciton, with
energy below both the XX,Y exciton and the photonic
mode, which inclusion proves to be crucial in the theo-
retical description of the data. To describe our system
and quantify the mechanism of level attraction, we used
a general three coupled oscillator model, predicting the
attractive level crossing via the existence of a dissipative
mode [15]. Even though the level attraction has been
previously described with the use of imaginary coupling
between two oscillators [9, 21], in [15] the authors show
how, in a physical system, the dissipative coupling can be
realized by coupling two oscillators to a third highly dis-
sipative one, even if the mode is invisible. In our case, the
third-party mode could be identified as the XZ -exciton.

The model can be represented by a 3×3 non-Hermitian
matrix:

H =

E1 V g1
V E2 g2
g1 g2 E0


=

Ec − iγc V g1
V Ex(XX,Y ) − iγx g2
g1 g2 Ex(XZ) − iγ0

 .

In this approach, two oscillators with intrinsic decay
(with energies of E1 and E2) are coupled to each other
coherently via V , and to the third oscillator E0, which
is strongly damped, γ0 ≫ γc, γx. Significant dissipation
of the third state is crucial for the level attraction and
for E0’s strong influence on the E1 and E2 dispersions,
when the real coupling terms g1 and g2 are sufficiently
large to surpass the coherent coupling V . In such condi-
tions, these terms can effectively act as complex coupling
between the two modes [9, 10, 15], provided that E1 and
E2 are nearly resonant, what is further discussed in Sup-
plementary Material, section III. In a regime of high co-
herent coupling between the two resonances and a weak
dissipation of the third mode all eigenstates repel, as it is
typically observed in exciton-polariton systems [27–31].

We schematically visualise the model and the involved
oscillators in Fig. 3(a). In our structure, two coupled res-
onances are the photonic mode C and the XX,Y exciton,
with energies and decay rates of Ec, Ex(XX,Y ) and γc, γx
respectively. The lower-energy XZ excitonic resonance
acts as a dissipative mode and is characterized by the en-
ergy of Ex(XZ) and dissipation γ0. The coupling between
photons and XX,Y excitons inside the microcavity (V ) is
expected to be weak, due to the space- and momentum-
indirect nature of the excitonic resonance. On the con-
trary, XZ-exciton is expected to couple to light more ef-
ficiently, as the spatial symmetry breaking allows for its
recombination without the assistance of phonons, due to
the weakening of the momentum-conservation rules, re-
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Figure 3. Level attraction modelling. (a) Schematic visualisation of the three coupled oscillators model and its application in
our system. The coupled particles (photon (Ec, presented as a single circle) and two indirect excitons (Ex(XX,Y ) and Ex(XZ)),
represented as double circles) – are shown on a schematic energy scale, with their intrinsic decays sketched as broad arrows,
while the couplings are presented as two-sided arrows. (b) Comparison of the model lines with experimental level branches
at several exciton-photon detunings, plotted in corresponding colors. Model parameters are described in the main text. (c)
Example dispersion at a single photon-XX,Y -exciton detuning of 11.4 meV . Dashed lines mark the dispersions of a bare
photonic mode and two indirect excitons, open points are the fitted peak positions of the three polaritonic branches, and solid
green lines are the model dispersions. For clarity, the experimental data is only presented for positive k.

gardless of its indirect nature [24, 32, 33]. The coupling
between the two indirect excitons is enabled via trans-
fer of electrons between the states and transitions from
the higher XX,Y to the lower XZ electronic state, as evi-
denced by complex temporal dynamics [24] and previous
studies [34–37]. Both couplings g1 and g2 are therefore
expected to play a significant role in the system, with
the g1 value expected to be much larger than V . The
energies of both excitonic resonances can be directly in-
ferred from the photoluminescence measurements of the
bare QW structure (see Fig. 1(e) and [24]).

Using this approach, we modelled our experimental
dispersions, as presented in Fig. 3(b). Experimental
points are the extracted peak energies of the two polari-
tonic branches at several exciton-photon detunings ∆X ,
and solid lines show the fitted model eigenstates. Ad-
ditionally, in Fig. 3(c) we show all three of the model
eigenstates at the exciton-photon detuning of 11.4 meV ,
as well as the dispersions of a bare photonic mode and
two indirect excitons (dashed lines). We note that in
most measurements, the lowest-energy mode cannot be
seen in the photoluminescence spectra, except near the
∆X ≈ 11 meV detuning, hence we used only two states
in the dispersion modelling.

Model results show very good correspondence with
the measured dispersions. The model reflects well the
anomalous shape of the lower branch dispersion and cap-
tures a clear transition between its monotonic (with a
single maximum at k = 0) and non-monotonic (with
maxima at finite wavevectors) |k|-dependence when de-
creasing ∆X . At larger detunings the model disper-
sions match experimental points nearly perfectly, demon-
strating the change in curvature around k = 0, linked
to the dissipative level attraction. Discrepancies be-
tween the model and the experimental curves become

visible only at smaller positive exciton-photon detunings
(∆X ≤ 10 meV ). This may arise from the fact, that
to model our data we set all the parameters constant
throughout this detuning range (apart from the photonic
mode energy), which is a simplified approach. All three
decay constants, as well as level energies, can vary across
the sample, due to the local disorder and the layer width
change. Nevertheless, the model describes our system
very well in a large range of exciton-photon detunings,
even when using only one set of parameters. Moreover,
a high agreement between the model line and the third
state detectable at the detuning ∆X = 11.4 meV pre-
sented in Fig. 3(c), despite not using this state in the
fitting, further proves the applicability of our model.

The extracted exciton-photon couplings are V =
0.1 meV and g1 = 10.6 meV , while the coupling between
two X-excitons g2 is 17 meV . As expected, the coherent
coupling between the photonic mode and the spatially
and momentum indirect XX,Y exciton is much smaller
than other energies in our system. The highly dissipa-
tive XZ state couples to light more efficiently, what is
likely a result of the symmetry breaking effect described
above. The most influential interaction comes from the
nonradiative coupling between the two X-excitons. The
extracted decay rates of all states are γc = 0.1 meV ,
γx = 0.01 meV and γ0 = 41 meV . The model pho-
ton linewidth value corresponds to a lifetime of approx-
imately ∼ 6 ps, which is a value expected for this mi-
crocavity, subject to disorder and operating at large de-
tuning from the designed wavelength [38]. A small line
broadening of the XX,Y state originates from its longer
lifetime, expected from its indirect nature. On the other
hand, large broadening γ0 of the XZ exciton points to its
dissipative role and it is crucial to obtain level attraction
in our system. We note that the model value is larger
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than the measured photoluminescence linewidth broad-
ening of this state of ∼ 20 meV , measured with the top
mirror removed from the cavity [24]. However, the ob-
served emission linewidth cannot be directly translated
into the homogeneous broadening. Photoluminescence
broadening consists of both homogeneous and inhomoge-
neous parts, but, at the same time, can be narrowed by a
Purcell effect, resulting from a formation of very low-Q-
factor half-microcavity [27]. Large damping of this mode
likely comes from the sensitivity of these states to struc-
ture inhomogeneities, stemming from their ground state
nature, and affecting their lifetime and transport prop-
erties, as discussed in detail in [24] and shown before
[39]. Overall, the model accurately describes our system
and reveals the highly damped XZ excitons as the source
of the level attraction and the inverted polariton disper-
sion. The importance of the damped mode inclusion is
presented in section IV of the Supplementary Material.

In addition, we considered the contribution of the three
involved oscillators in the final system eigenvalues, by
studying the Hopfield coefficients [40, 41]. Coefficient
wavevector dependencies reflect the anomalous behaviour
of the inverted anomalous branch, with the dissipative
exciton fraction gaining importance in the anomalous re-
gion (at small wavevectors), particularly at small detun-
ings. It further highlights the importance of the XZ ex-
citons in the observed effect. Hopfield dispersions at sev-
eral detunings, as well as their more detailed discussion,
can be found in section V of the Supplementary Material.

DISCUSSION

In summary, we have observed the anomalous disper-
sion of the polaritonic branch in an AlGaAs-based micro-
cavity, characterized by the negative effective mass. Our
AlGaAs-based semiconductor system offers precise high-
quality growth and design of the layers, fine-tuning its
properties, what will uniquely allow to tailor the coher-
ent coupling and the optical Q-factor as well as the dis-
sipation, by engineering the XX,Y and XZ excitons. We
have shown how the presence of and the coupling to the
indirect excitonic state energetically below the excitonic
and photonic resonances, which acts as a channel of loss,
can manifest itself as a dissipative coupling between these
states. Our hypothesis is supported by a phenomenolog-
ical model of three coupled oscillators. The high dissipa-
tion rate of this indirect state is crucial to make the effec-
tive coupling non-Hermitian and overcome the coherent
coupling. Furthermore, we have observed the evolution
of the system eigenstates with varying detuning, show-
ing the shift and the change of the eigenstate dispersion
curvature. We show two regimes of anomalous disper-
sion shape, with eigenstate energy maxima at k = 0 and
k ̸= 0 in a single sample.

Previously, the anomalous dispersion of exciton polari-
tons in unstructured samples has been observed solely in
transition metal dichalcogenide-based samples [8, 9, 26].

The supporting models were applicable only for many-
particle excitons in heavily-doped samples with complex
interactions [8], or for media with a strong influence of
exciton-phonon interactions [9]. In our case of a III-V
semiconductor-based system at cryogenic temperature,
phonon influence is known to be much smaller, hence
insufficient to lead to the dissipative coupling. Previ-
ously studied systems lacked the presence of a tunable
and energetically-lower state providing a channel of loss,
which proves to be crucial in our structure. Even more
importantly, they also lacked the excellent linewidths,
making the dispersion shape less distinct and rendering
interpretations of the observed dispersions less robust.

Here, we present the effect of level attraction in a new
experimental platform, with a new source of the dissi-
pative coupling in the exciton-polariton context. Apart
from narrow linewidths, our system provides a great op-
portunity for level attraction tuning, via changing the
detuning between the resonances, owing to the sample’s
wedged growth. So far, the effective mass engineering
had to involve additional sample processing steps (such as
patterning or etching) or complicated excitation schemes,
e.g. structured beams, which prove to be costly, imper-
fect, and often difficult to implement. In our case the
mass can be engineered during the typical sample growth,
with no further steps required. The change of the eigen-
state dispersion curvature can be easily accessed by sim-
ply changing the position on the sample, allowing access
to different anomalous dispersion curvatures in a single
platform. Such a straightforward tuning was lacking in
previous observations, and shows a clear path for future
studies or device design.

Anomalous dispersion can be employed in novel studies
of non-Hermitian effects [16, 17, 42], nontrivial dynam-
ics and hydrodynamics [1, 43] and in studies of analogue
systems [44–46]. It allows access to a plethora of studies
on the exceptional points and related phenomena, such as
winding of the complex eigenenergies, chiral modes, topo-
logical lasing, or enhanced perturbation, among others
[18, 47–49]. The optical, easily experimentally-accessible
platform of high quality and high adjustability presented
in this work makes our finding relevant and desirable far
beyond the exciton-polariton context. The observation
can be considered to be an important contribution to the
broad field of dissipative coupling effects, with losses and
dissipation affecting practically all physical systems.

METHODS

Sample

The sample under study consists of twelve 9 nm-wide
Al0.20Ga0.80As QWs, separated by 4 nm AlAs barriers,
distributed in three stacks of four (as visualized in
Fig. 1(d)). The stacks are placed in a λ/2-AlAs cavity
surrounded by AlAs/Al0.40Ga0.60As distributed Bragg
reflectors (DBRs), consisting of 28/24 mirror pairs in the
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bottom/top reflector, including 3 nm GaAs smoothing
layers after each mirror pair in the local minimum of the
electromagnetic field. The whole microcavity structure
was grown by molecular beam epitaxy on the GaAs sub-
strate. Lack of wafer rotation during growth results in
a gradual change of the cavity length across the sample,
allowing for the experimental access to a wide range
of exciton-photon detunings. The photoluminescence
spectrum of the bare quantum well system presented
in Fig. 1(e) was taken on a sample with the top Bragg
reflector etched away [24].

Optical Measurements

The sample was placed in the continuous flow liquid
helium cryostat and cooled down to 4.2 K. It was
excited by laser pulses from the OPO pumped by a
Ti:Sapphire pulsed laser with 76 MHz repetition rate,
generating the wavelength of around 620 nm. The beam
was focused on a sample via a NA = 0.65 objective.
Structure photoluminescence was then collected by the
same objective and imaged on a slit of a monochromator
(with a 1200 lines/cm groove density diffraction grat-

ing) equipped with a high-efficiency EMCCD camera.
Imaging the Fourier plane by using four confocal lenses
in the detection path allowed for the angle-resolved
measurements.

Dispersion extraction

Photoluminescence spectra at each wavevector were
fitted with a sum of a Lorentzian (lower central energy)
and Gaussian (higher energy) curves. The extracted peak
energies were used for further modelling. The error bars
presented throughout the manuscript come from the fit-
ting standard error. An exemplary fit with the more
detailed discussion on the fitting function selection can
be found in the Supplementary Material, section II.

DATA AVAILABILITY

The datasets generated during and/or analysed during
the current study are available from the corresponding
author on reasonable request.
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I. PHOTOLUMINESCENCE MEASUREMENTS AT DIFFERENT DETUNINGS

Owing to a stopped rotation of the wafer during an active layer growth, resulting in a gradual change of the cavity
length across the sample, we were able to access a very large range of exciton-photon detunings. We measured
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Supplementary Figure 1. (a) Momentum-resolved photoluminescence spectra in the strong coupling regime with the Γ-electron
exciton, which energy is marked by a dashed line. Points mark the energy of the lower polariton branch, extracted by
Lorentzian-curve fitting at each wavevector. (b) Dispersions of the lower polariton branch in the strong coupling regime in ∆Γ

(Γ-electron-exciton to photon) detuning range of around 11 (upmost curve) to −18 meV (lowest curve). (c), (d) Examples of
photoluminescence spectra with photon energy below the XX,Y - (c) and below both XX,Y - and XZ-electron-excitons (d).
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momentum-resolved photoluminescence spectra with the photonic mode scanning the energies of the whole cavity
stopband.

As described in the main manuscript, when the photonic mode is sufficiently close to the direct Γ-electron exciton
energy of 1.8472 eV , one can observe the result strong coupling. Supplementary Figure 1(a) shows an example of
far-field photoluminescence in this region, with the extracted energies of the lower polariton branch plotted as points.
Additionally, lower polariton dispersions at several exciton-photon detunings (∆Γ = −18 → 11 meV ) are presented
in Supplementary Figure 1(b). One can see a clear change in the branch curvature, typical for the strong coupling
regime in exciton-polariton studies. The extracted vacuum Rabi splitting at 4.2 K is ℏΩΓ ≈ 12 meV .

When the energy of the photonic mode is lower, and gets closer to the indirect XX,Y -exciton, we observe anomalous
dispersion of one of the eigenstates, as described in the main manuscript and presented there in Figure 2. However,
in the negative detuning range in this region, ∆X < 0, when the photon energy is lower than that of the XX,Y -
exciton, only one parabolic branch appears in the photoluminescence spectra. Two examples of such measurements
are presented in Supplementary Figure 1(c) and (d). In the whole figure dotted lines mark the energies of three
excitons present in the sample.

II. PHOTOLUMINESCENCE FITTING AND DISPERSION EXTRACTION

To extract the energy dispersions of the three branches investigated in the main text, we fitted the photoluminescence
spectra at each wavevector with a sum of a Lorentzian (lower central energy) and a Gaussian (higher energy) curves.
An example of such a fitting is presented in the main manuscript in Figure 2(b). Additionally, two of the curves
presented there are also shown in Supplementary Figure 2, together with the individual fitted profiles.
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Supplementary Figure 2. Measured photoluminescence spectra taken at wavevectors k = 0 µm−1 and 2 µm−1, at a detuning
∆X = 11.4 meV , together with the fitted curves. Solid grey and red lines show the individual peaks of the convolution, while
the dashed curves correspond to the final fitted model. Arrows indicate the peak central energies, extracted from the fitting,
of the two peaks (shown also as red dots in Figure 2(b) of the main manuscript and used for further modelling).

The choice of band profiles was carefully selected to obtain the highest agreement with the experimental data, while
also minimizing the number of free fitting parameters. Voigt profiles are known to describe both the homogeneous
and the inhomogeneous broadening of the experimental state lines, but their implementation adds significantly to
the complexity of the fit. At selected wavevectors the double Voigt profile fitting was performed, giving peak energy
results analogous to the Gaussian and Lorentzian sum fitting. However, the experimental data matching was poorer
with the Voigt curves, visualized in lower goodness-of-fit metrics. At some momenta Voigt fit convergence was not
achieved, due to the larger number of free fitting parameters in comparison to the Lorentzian and Gaussian curves. It is
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expected, that when the line shape is mostly Gaussian or Lorentzian and one of the broadenings is significantly higher
than the other one, the Voigt model is over-parameterized and the convergence is not achieved. To better describe
the experimental data and use consistent analysis for all wavevectors and all detunings, we choose the Gaussian and
Lorentzian sum (with the fitted peak energy values used throughout the main manuscript).

The error bars presented throughout the manuscript come from the fitting standard error and the eigenstates
energies come solely from the fitting procedure.

III. MODEL TRANSFORMATION

In ref. [1] with the presentation of the three-mode quantum model, authors show how the 3 × 3 matrix can be
transformed by performing a unitary transformation to block-diagonalize the three-mode system into the two-mode
and one-mode subsystems, effectively decoupling the third mode. When the coupling with the mode 0 (the strongly
dissipative mode) is weak, such a transformation can be realized in the perturbation method using the Schrieffer-Wolff
transformation. The decoupling of the third dissipative mode effectively renormalizes the coupling between modes
1 and 2 and modifies their eigenfrequencies with the additional dissipation (contributing as imaginary parts and
guaranteeing the non-negativeness of the dissipation of the model). The authors show how such simplification is valid
when V ≪ g1, g2, but the coupling to the third state is sufficiently weak (so that the condition for the generator,
perturbative and non-perturbative parts of the Hamiltonian is met, see Supplementary Material of ref. [1]). When
V = 0, effective coupling between the two oscillators g12 becomes imaginary when |E1,2 − E0| ≪ |γ1,2−γ0| and this is
realized when mode 0 has large dissipation (γ0). Hence, to observe attraction, γ0 should be large such that |γ1,2 − γ0|
is dominated by γ0, but not so large such that the coupling strength g12 is still sizable. Overall it shows a huge
importance of the relative ratios of the mode broadenings and their energy differences, on top of the coupling values.

In our case, due to the high importance of the third resonance (the XZ exciton), and its sizable coupling to both
the photon and the exciton, such a perturbative approximation cannot be made. The 2× 2 matrix with the effective
imaginary coupling (g12 = V + 1

2g1g2
∑

i=1,2
1

Ei−E0
) is not sufficient to describe our system, as the coupling values are

sizeable when compared to other energy scales in our system. To visualize it, in Supplementary Figure 3 we present
the solution of the transformed 2×2 matrix model (with effective imaginary coupling g12), using the same parameters
as extracted from the 3× 3 model fitting (see main text). We compare it to the full 3× 3 matrix solution, presented
with dashed lines. The simplified model (solid) lines clearly deviate from the unsimplified approach (dashed curves)
which fits best to our experimental data.

Supplementary Figure 3. Comparison of the 3 × 3 model solution (dashed lines) with the eigenstates of the model simplified
into a 2 × 2 matrix, by using a Schrieffer-Wolff transformation (described in detail in ref. [1] Supplementary Material, solid
lines). All parameters can be found in the main manuscript.

However, even though such a transformation cannot be made in our case, it visualizes the nature of the effect.
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Anomalous dispersion and band attraction has been previously described by imaginary coupling between two oscillators
(see e.g. [2, 3]). In [1] the authors show, how in a real physical system the dissipative coupling can be realized by
coupling both oscillators reactively to a third highly dissipative entity. The third-party mode can even be an invisible
mode (in our case we identified it as the XZ-exciton), with high leakage or dissipation. Its effect on the other two
resonances is analogous to the imaginary coupling between them - even if the exact transformation into a 2×2 system
cannot be made in our case.

IV. NON-HERMITICITY AND COUPLING IMPORTANCE

To further visualize the importance of the dissipation of all three modes in the observed attraction effect, in
Supplementary Figure 4 we show the solution of the model with varying decay and coupling conditions. Panel (b)
shows model curves with no dissipation of the XZ exciton (the dissipative mode), followed by the model solution with
no dissipation of all three resonances (fully real model) in (c). The curves are compared to the model fitted to the

V = 0.1 meV
g1 = 0 meV
g2 = 17 meV

= 0.1 meV
= 0.01 meV
= 41 meV

= 0.1 meV
= 0.01 meV
= 0 meV

= 0 meV
= 0 meV
= 0 meV

V = 0 meV
g1 = 0 meV
g2 = 0 meV

V = 0.1 meV
g1 = 10.6 meV
g2 = 0 meV

= 0.1 meV
= 0.01 meV
= 41 meV

V = 0.1 meV
g1 = 10.6 meV
g2 = 17 meV

X=11.4 meV

(a) (c)

(e)

(b)

(d) (f)

Supplementary Figure 4. Solution of the model with varying decay and coupling conditions, showing the importance of the
dissipation and coupling. Solid lines show the dispersions of three eigenmodes, while dashed lines present the initial resonances.
Parameters different from the fitted model values (the ones extracted from the experimental data) are marked in red. All curves
were calculated at the same detuning between the XX,Y exciton and the photonic mode of 11.4 meV . (a) Model with the fitted
parameter values. (b) Model with no dissipation of the lowest energy mode (XZ), γ0 = 0. (c) Model with no dissipation of all
involved oscillators (fully real model). (d) Model with no coupling between the involved oscillators (fully decoupled modes).
(e) Model with no coupling between the XZ exciton and photon, g1 = 0. (f) Model with no coupling between the XZ and XZ
excitons, g2 = 0.
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experimental data in (a). All three coupling constants V , g1 and g2 in (a-c) were fixed, with values extracted from
the fitting to the experimental data. One can clearly see, how the non-hermiticity of the system is crucial in the effect
observation, with the largest impact of the huge decay of the dissipative mode. Without its contribution, the level
attraction cannot be observed and the dispersions become trivial.

Moreover, in panels (d-f) we additionally show the comparison of the solved model with fixed decay constants γC ,
γX and γ0, but varying coupling constants. In panel (d) the modes are fully decoupled, showing the most trivial case
of three initial resonances. Panels (e) and (f) show how the lack of coupling between the dissipative mode and the
photon (e) or the XX,Y exciton (f) affects the dispersion. One can clearly see how the middle energy branch (solid
blue line) in both cases becomes trivial and is hugely redshifted in comparison to the observed data (see panel (a)).

V. HOPFIELD COEFFICIENTS

In addition to our model eigenvalues, we studied also the respective Hopfield coefficients, to gain insight into the
contribution of the three involved oscillators in the final modes. By calculating eigenvectors and plotting respective
oscillator components we study the dispersion of each contribution. The results at two different experimental detunings
(∆X = 10.0 meV , corresponding to a single-maximum dispersion shape of the anomalous branch energy and ∆X =
7.8 meV , corresponding to the double-maximum curve) are presented in Supplementary Figure 5.

Left panels (a,e) show the calculated energy dispersions (with three eigenstates labelled as branch 1, branch 2 and
branch 3), followed by the Hopfield coefficients for each branch separately in the next columns. In our considerations
it’s particularly important to look at the mode contributions into the inverted, anomalous branch with the negative
effective mass (branch 2, (c) and (g)). Not surprisingly, the excitonic fraction related to the XX,Y exciton is higher
than the other two components, due to the energetic closeness between this branch and the initial resonance. However,
particularly in the anomalous region around k=0, both other resonances gain importance. Increased contribution of
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Supplementary Figure 5. Eigenstate dispersions (a,e) and the Hopfield coefficients (b-d,f-h) of each state at two exciton-photon
detunings ∆X = 10.0 meV (a-d) and ∆X = 7.8 meV (e-h).
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(a) (c)(b) (d)

Supplementary Figure 6. Closeup of the Hopfield coefficient dispersions of branch 2 at four exciton-photon detunings. (c) and
(d) are the closeup of Supplementary Figure 5 (c) and (g) respectively.

the photon fraction can be considered a typical and an expected behaviour, as it enlarges when the energy proximity
of photon to this final eigenstate is higher. However, the excitonic fraction linked to the XZ exciton (yellow curve)
presents the anomalous dependence near k = 0, visible especially at the smaller detuning (bottom row, panels (e-h)).
Its value is enhanced in the anomalous region, even though branch 2 diverts from the XZ resonance, which is a
behaviour opposite from a standard Hermitian Hamiltonian. To further visualize this effect we additionally plot the
closeup of this region in Supplementary Figure 6, showing only the photonic and the XZ-excitonic fractions of the
branch 2 at four exciton-photon detunings (including the two presented in Supplementary Figure 5).

Increased contribution of the lowest-energy exciton into the anomalous branch in the crucial region, reflecting the
inverted shape of the dispersion, pinpoints its interpretation as the dissipative mode. Even though our model cannot
be simplified into a 2× 2 matrix with imaginary coupling as described in Section III of this Supplementary Material,
this increased contribution clearly justifies our approach of treating XZ state as the dissipative mode, crucial to
observe level attraction.

VI. EFFECTIVE MASS

Knowing the energy band dispersions one can calculate the particle’s effective mass, which is a direct measure of
band curvature. A definition of mass, in analogy to solid state systems, can be obtained with the use of a Taylor series
expansion of the dispersion [2, 4]: E (k) ≈ E0 +

ℏ2k0(k−k0)
m1(k0)

+ ℏ2(k−k0)
2

2m2(k0)
+ . . .. The coefficients of each expansion order

relate to a new mass parameter, with certain characteristic effects on the dynamics of the particle. In exciton-polariton
research the ones most typically defined are:

m1 = ℏ2k [∂kE (k)]
−1 (1)

m2 = ℏ2
[
∂2
kE (k)

]−1
. (2)

The parameter m1 is related to the classical motion of the wave packet, and determines the group velocity vg =
ℏk/m1. The parameter m2 determines the acceleration of the packet when an external force is applied, as well as
its rate of diffusion. In case of a purely parabolic dispersion m1 = m2, but otherwise, m1 and m2 can have different
signs, be zero, or even become infinite. In typical cases of two strongly coupled oscillators in polariton microcavity
the m1 mass of lower polaritons remains positive for all momenta (while the m2 effective mass changes sign around
the inflection points).

In our case, the m1 parameter of the anomalous dispersion branch is negative, as it is shown in Supplementary
Figure 7. There, in panels (b), (d) and (f) we present the calculated mass m1 of the inverted branch (branch 2) as
a function of the wavevector, with corresponding energy dispersions presented in (a), (c), and (e) respectively. The
results are presented at three of the studied detunings ∆X : 11.4 meV (a-b), 10.0 meV (c-d) and 7.8 meV (e-f). The
masses were calculated from the fitted model curves.

One can clearly see, that the group-velocity mass of the anomalous state is negative. With larger detunings
∆X = 11.4 meV and 10.0 meV the mass m1 < 0 for all momenta (Supp. Fig. 7 (a-d)). At the smaller detuning of
7.8 meV (Supp. Fig. 7 (e-f)) m1 changes sign at a wavevector |k∗| ≈ 1.34 µm−1 (indicated with the red dotted lines).
The closeup of the branch 2 effective mass is also presented in panel (g).



7

(a)

(c)

(e)

(b)

(d)

(f)

𝚫X=11.4 meV

𝚫X=10.0 meV

𝚫X=7.8 meV

(g)

Supplementary Figure 7. Effective mass parameter m1 wavevector dependence of the investigated anomalous branch (branch
2), at three exciton-photon detunings ∆X = 11.4 meV (a-b), ∆X = 10.0 meV (c-d) and ∆X = 7.8 meV (e-f). Calculated
masses are presented in (b), (d) and (f), with corresponding energy dispersions shown in (a), (c) and (e). Red dashed lines in
panels (e-f) show the wavevector, at which m1 parameter of the anomalous branch changes sign. The closeup of these three
m1 wavevector dependencies comparing the three exciton-photon detunings is additionally presented in (g).

Given the relation m1vg = ℏk, negative mass m1 < 0 means that the particle’s velocity and momentum have an
opposite sign. Then, the particles will move in the direction opposite to vg, such that the particles displaced to the
positive direction with respect to the excitation spot will have an average velocity towards the same direction [2, 5].

Change of sign of the m1 parameter at the detuning of 7.8 meV (Supp. Fig. 7 (e-f)) occurs near the inversion
peak in the branch dispersion, marked with red dashed lines. However we also note, that this is the detuning at
which the discrepancies between the model and the experimental curves are the highest, as discussed in the main
text. Regardless, it visualizes the change of the anomalous dispersion of this branch from the single maximum to
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double-maxima shape and a huge potential of our system to study the exceptional points and related phenomena.
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Summary of the
findings

In summary, the research study presented in this Part focused on the coupling be-
tween the indirect excitons described in Part IV and photonic modes of a full polariton
microcavity. It investigated a unique effect of level attraction, resulting in an anoma-
lous dispersion of the polaritonic state, and studied the topic of dissipative coupling
in an exciton-polariton system context. This work:

• served as the first experimental observation of the anomalous dispersion in a
polariton microcavity which was based on high quality semiconductor QWs.
An inverted dispersion is a clear manifestation of level attraction - a rare phe-
nomenon in an interacting system context. Prior to this work, an anomalous
dispersion of a polariton state has been shown only in the transition metal
dichalcogenide material-based samples in a very limited number of works, with
ongoing debates about the effect’s origin. This work has evidenced clearly
resolved inverted energy-momentum dispersions, characterized by the negative
effective mass of such state. This material system is largely superb to previously
investigated dichalcogenide layers in linewidths, structure quality, reproducibil-
ity and potential use.

• showed an evolution of the anomalous state’s dispersion with the exciton-photon
detuning, evidencing a change from the inverted-parabola to the double-maxima
energy-wavevector dependencies with decreasing detuning in a single sample.
Both regimes has never been explored in a single experimental study before,
and the tuning of the exciton-photon detuning of the anomalous state has not
been possible.

• pinpointed the origin of the effect, showing a pivotal importance of a dissipative
mode presence in the finding, which effectively made the coupling between the
photonic and the excitonic states dissipative. Based on the characterization
from Part IV, it recalled the presence of a lower-energy indirect state, which high
dissipation rate proved to be crucial in the finding, mediating the dissipative
coupling effect. The experimental data has been modelled with a three coupled
oscillators model, previously regarded solely outside of the exciton-polariton
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context. The modelling reflected well the anomalous shape of the lower branch
dispersion and captured a clear transition between its monotonic (with a single
maximum at k = 0) and non-monotonic (with maxima at finite wavevectors)
|k|-dependence when decreasing detuning, fully supporting the hypothesis of
the dissipative mode’s key influence on the effective exciton-photon coupling.
Moreover, this explanation has been further supported by showing an influence
of each coupling strength in the model eigenstates, as well by the dissipative
exciton fraction gaining importance in the anomalous region (especially at small
detunings), when considering the Hopfield coefficients. Finally, the coupling
constants between all states have been quantified with the data modelling.

• offered a relatively easy way of tuning the polariton state dispersion in an anoma-
lous limit and paths a new way to tailor a state dispersion and engineer an
effective mass in a mixed light-matter system, without the need of additional
sample processing steps. This can be used in future studies of non-Hermitian
effects, exceptional points, non-trivial dynamics and hydrodynamics, or in stud-
ies of analogue systems. The III-V-based semiconductor platform makes it an
ideal platform for future studies and applications.

• adds an important contribution to the newly opened discussion of the dissipation
effects in polariton states, as well as to much broader field of dissipative coupling
and level attraction effects in open systems, presenting a new platform in which
it can be studied.
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In this thesis I aimed to study novel properties of exciton polaritons and their
condensates, in unique contexts not explored before. I investigated several of their
properties - all with important implications for further research or in potential appli-
cations, as highlighted throughout this thesis.

First, in Part II, I performed the first experimental observation of the polarization
splitting and the anisotropic behavior of the polariton dispersions in a high-density
Thomas-Fermi regime of an optically confined condensate. With purely theoreti-
cal predictions of this effect reported in literature prior to this work, I evidenced
experimentally a clear difference in the polarization-resolved excitation dispersions
in different in-plane directions. The dispersion splitting was governed by the pho-
tonic TE-TM splitting, the inherent optical anisotropy and the spin-anisotropy of
the polariton-polariton interactions, all of which I accounted for and modelled. I
presented a rotation of the polariton spin in an interacting regime of the condensate,
presenting a non-abelian gauge field with characteristic degeneracy points, around
which the monopolar field texture is formed. Such a field has been shown before
only in the non-interacting, low density regime of photonic states, with no evidence
of the influence of polariton-polariton interaction anisotropy on the shape of the field
shown so far. Moreover, I used the theoretical model to extract two interaction con-
stants from the experimantal data - the interaction strength of polaritons in a singlet
and in a triplet configuration. It was a novel approach and a demonstration of a
new way of measuring both constants in a single experiment. Previously, the experi-
mental works focused on a two strengths’ ratio, or the difference between them, and
the experimental schemes to achieve it were very complicated. Most works focused
solely on the average value, with no spin resolution. My experiments have confirmed,
that polaritons with the same spin interact with each other much more strongly than
the particles with opposite spins. This new approach can be used in other mate-
rial systems in the future. The diabolical points and a unique effective field texture
can also be further explored in future works, both in research and in potential ap-
plications, with the interaction anisotropy adding an additional degree of freedom
to previously considered low-density-regime gauge field. The measured values of the
polariton-polariton interactions are of core importance in fundamental research.

Using the same methods, I contributed to the first direct measurement of a non-
Hermitian topological invariant, called spectral winding (or vorticity), in a polariton
system, as described in Part III. My analysis was used to experimentally show the
existence of paired exceptional points in the momentum-resolved exciton-polariton
single-particle spectrum, stemming from the TE-TM splitting and the anisotropy
field - a field similar to the one described in the previous part, but with a key im-
portance of the system’s non-Hermiticity. This allowed for the first measurement
of the non-Hermitian topological invariant, arising from the half-integer winding of
the exciton-polariton complex eigenenergies around these exceptional points. The
experimental methods and analysis were very similar to the ones used in Part II, but
with the imaginary part of the eigenstates also taken into consideration. Again, the
effective field texture was shown in the momentum space (here in a low density limit
with a large effect of the structural anisotropy), and a big attention has been put to
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the points around which the field winds. The result has been used to show theoreti-
cally that the topology of these eigenstates and eigenenergies is separable - meaning,
that the inherent topology of these exceptional points is different from any previously
observed points in the eigenstates of classical wave systems. The previously shown
exceptional points in parameter space of exciton-polariton systems differ from the
ones in momentum space evidenced here, as the latter are expected to have a direct
influence on the system’s dynamics. This can be used in further research or applica-
tions. Moreover, the measurement of the imaginary part of the artificial gauge field
allowed for the conclusion, that it tends to align the exciton-polariton pseudospin pair
toward each other and perpendicular to the field direction, what is of fundamental
importance in basic research. It may lead to a new type of spin precession and dy-
namics of exciton polaritons that is not possible in real magnetic fields. In the future,
this study could be combined with the interaction-dominated limit explored in the
previous Part, to investigate the interplay between the quantum many-body effects
and the non-Hermitian topology, unexplored in non-Hermitian physics so far.

This work differed from the other parts as it was not done in a III-V GaAs-
based material system, but the methods used remained the same. The perovskite
material used here was of core importance in the finding, as its structural anisotropy
significantly increased the visibility of the effect, allowing for the observation.

Then, I focused on another novel setting of exciton polaritons, this time in a mi-
crocavity designed for room-temperature strong coupling. Such a design was allowed
by the increased binding energy of the QW excitons, due to a near resonance of the
Γ− and X-valley band energy minimum, allowing for the Γ − X coupling of the QW
states - the implications of which were not explored in full detail in polariton micro-
cavities before. I made an initially unexpected observation of an anomalous shape of
the state dispersion and investigated the topic further to be able to fully understand
it.

In order to do that, first, I had to characterize the QW system in question. In Part
IV I presented the optical properties of the QWs, prior to the coupling with photonic
modes. I showed three states present in the emission spectrum and the results of the
power-dependent, spatially-resolved, temperature-resolved and time-resolved experi-
ments, performed in order to pinpoint their origin and understand their dynamics.
Paired with the theoretical calculations, these experiments allowed for the conclusion,
that three types of excitons are present in this QW system: an expected Γ-electron
exciton confined in the QW layer, but also two momentum- and spatially-indirect
excitons, lower in energy, stemming from X-valley electrons in the barrier layer with
different effective masses, coupled to the confined QW holes. My experiments allowed
for this conclusion, but also served as a detailed characterization of all the states. The
finding has important implications not only in the aforementioned unexpected effect
in a full polariton microcavity, but also in other optoelectronic or photonic appli-
cations of such a system. Isolated AlGaAs/AlAs has not been widely explored in
literature before (with research focusing mainly on a GaAs platform or superlattice
systems) and the implications of the Γ − X valley energy minimum crossover prox-
imity has not been explored before in such a detail in a single similar QW structure.
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Apart from the state origin, I evidenced also an important impact of non-radiative
processes and state localization, governing the system’s dynamics. This is of core
importance in any future applications of a similar system.

Finally, the characterization made in Part IV allowed me for a detailed investi-
gation of the full polariton microcavity, with the AlGaAs QW states coupled to the
photonic modes. In Part V I evidenced experimentally the anomalous dispersion of
one of the states in a polariton microcavity, for the first time in a high quality III-V
semiconductor-based sample. An inverted dispersion of a polariton state has been
shown before only very recently and in a very limited number of works, solely in the
transition metal dichalcogenide material-based systems. The effect’s origin has been
debated. Here, I used the hypothesis of the dissipative mode presence and its core
importance in the finding, effectively making the coupling between the photonic and
the excitonic states dissipative. Such an approach has not been used in the exciton
polariton context before. I pinpointed the dissipation to come from a lower-energy
X-electron exciton, investigated in Part IV. I observed the anomalous dispersion in a
range of exciton-photon detunings, which could be easily tuned with a position on a
sample, what has not been done in any prior work in a single structure. I evidenced a
change of the dispersion shape with detuning, showing both the inverted-parabola and
the double-maxima energy-wavevector dependencies. Again, both regimes has not
been explored in a single study before, apart from purely theoretical considerations.
Finally, I used the model previously regarded solely outside of the exciton-polariton
context, to support the hypothesis of the dissipative mode’s key influence on the
effective exciton-photon coupling. It allowed me to quantify the coupling constants
between all involved states, further supporting the suggested explanation. This work
offered an easy way of tuning the polariton state dispersion in an anomalous limit
and paths a new way to tailor a state dispersion and engineer an effective mass in
a mixed light-matter system, without the need of additional sample processing steps.
It could be used in a wide range of further contexts and applications. The study adds
an important contribution to the newly opened discussion of the dissipation effects
in polariton states and the atypical level attraction in such systems, which starts to
arise broadly. Very personally, it is a successful end of a huge quest throughout my
hole Doctoral Studies, to be able to understand the unique effect I have observed
unexpectedly at the beginning, what I believe I finally achieved.

All the works described in this thesis add new insights into the exciton-polariton
research field and have broad implications: in this field, in applications, but also in
other, analogous contexts.
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APPENDIXA
List of international

research visits
International internships during the Doctoral Studies:

• Internship in the Low Dimensional Structures and Devices Group, Depart-
ment of Physics and Astronomy, University of Sheffield, United Kingdom

Date: Oct-Dec 2019,
Topic: Topological polaritonics - investigating the exciton-polaritons in
lattices of coupled zero-dimensional microresonators,
Supervisors: Prof. Dmitry Krizhanovskii and Dr Charles Whittaker,

• Internship in the Polariton BEC Group at the Nonlinear Physics Centre,
Research School of Physics, The Australian National University, Canberra,
Australia

Date: Jan-Jul 2020,
Topics: Collective excitations of exciton-polariton condensates in a syn-
thetic magnetic field, Anisotropy of exciton-polariton emission in perovskite
structures,
Supervisor: Prof. Elena Ostrovskaya.

• Internship in the Advanced Photonics Lab at the Institute of Nanotechnol-
ogy CNR-NANOTEC, Lecce, Italy

Date: Sept-Dec 2021,
Topics: Exciton polaritons and their condensates in a synthetic gauge
field, Universal scaling and coherence evolution of an exciton-polariton
condensate after quench,
Supervisors: Dr Dario Ballarini,



184 Appendix A List of international research visits

International internships prior to the Doctoral Studies:

• Internship at the Technische Physik, Universität Würzburg, Germany

Date: Aug-Sept 2017,
Topic: Preparation and spectroscopic measurement of atomically thin
transition metal dichalcogenides,
Supervisor: Dr Christian Schneider,

• Internship in the Low Dimensional Structures and Devices Group, Depart-
ment of Physics and Astronomy, University of Sheffield, United Kingdom

Date: Feb-Mar 2019,
Topics: Nonlinear and quantum optics of hybrid light-matter states in
nanophotonic structures,
Supervisors: Prof. Dmitry Krizhanovskii and Dr Charles Whittaker.



APPENDIXB
List of relevant prizes

and scholarships
Prizes and Scholarships received during the Doctoral Studies:

• May 2024: START Stipend for young, talented researchers, by Foundation for
Polish Science,

• Nov 2023: Max Born’s Scholarship (by Student Scholarship Program) for
doctoral students with outstanding achievements,

• Nov 2022: The Prize of the Rector of Wrocław University of Science and
Technology for the Best PhD Students,

• Nov 2022: Honorable Mention in Max Born’s Scholarship (by Student Schol-
arship Program) for doctoral students with outstanding achievements,

• Dec 2021: The Prize of the Dean of Faculty of Fundamental Problems of
Technology at the Wrocław University of Science and Technology for the Best
PhD Students.
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APPENDIXC
List of international

conference
presentations

Contributed Talks:

• D. Biegańska et.al, ”Elementary excitations of exciton-polariton condensates in
a synthetic gauge field”, International Conference on Optics of Excitons
in Confined Systems OECS 17, Dortmund, Germany, virtual format, Aug-
Sept 2021,

• D. Biegańska et.al, ”Elementary excitations of exciton-polariton condensates in
a synthetic gauge field”, Quantum Optics X, Toruń, Poland, virtual format,
Sept 2021,

• D. Biegańska et.al, ”Condensation and ballistic propagation of exciton po-
laritons in AlGaAs microcavity at high temperatures”, 49th International
School & Conference on the Physics of Semiconductors ”Jaszowiec
2021”, virtual format, Sept 2021,

• D. Biegańska et.al, ”Elementary excitations of exciton-polariton condensates
in a synthetic gauge field”, 22nd International Conference on Physics of
Light-Matter Coupling in Nanostructures PLMCN22, Varadero, Cuba,
Apr 2022,

• D. Biegańska et.al, ”High-temperature condensation, ballistic propagation and
non-hermitian effects of exciton polaritons in AlGaAs-based microcavities”, 22nd
International Conference on Physics of Light-Matter Coupling in
Nanostructures PLMCN22, Varadero, Cuba, Apr 2022,

• D. Biegańska et.al, ”Anomalous dispersion and dissipative coupling in AlGaAs
exciton-polariton structure”, 51st, International School and Conference
on the Physics of Semiconductors “Jaszowiec 2023”, Szczyrk, Poland,
Jun 2023,



188 Appendix C List of international conference presentations

Poster Presentations:

• M. Pieczarka, D. Biegańska et.al, ”Spatial Diffusion of Photogenerated Carriers
in Coupled Quantum Well -Quantum Dot Structures”, 45th, International
School and Conference on the Physics of Semiconductors “Jaszowiec
2016”, Szczyrk, Poland, Jun 2016,

• D. Biegańska et.al, ”Lateral Diffusion of Photogenerated Carriers in Coupled
Quantum Dot – Quantum Well Structures Emitting at 1.55 �m”, 46th, In-
ternational School and Conference on the Physics of Semiconductors
“Jaszowiec 2017”, Szczyrk, Poland, Jun 2017,

• D. Biegańska et.al, ”Optical properties of MoTe2 monolayers in various dielec-
tric environments”, 48th, International School and Conference on the
Physics of Semiconductors “Jaszowiec 2019”, Szczyrk, Poland, Jun 2019,

• D. Biegańska et.al, ”Towards an (Al,Ga)As-based Exciton-Polariton Laser Oper-
ating At Room Temperature”, 10th International Conference on Sponta-
neous Coherence in Excitonic Systems ICSCE10, Melbourne, Australia,
Jan 2020,

• D. Biegańska et.al, ”Collective excitations of exciton-polariton condensates in a
synthetic gauge field”, Condensates of Light Workshop, Utrecht University,
virtual, Dec 2020,

• D. Biegańska et.al, ”Direct measurement of the anisotropic elementary exci-
tations in an exciton-polariton condensate in a synthetic gauge field”, 49th
International School & Conference on the Physics of Semiconductors
”Jaszowiec 2021”, virtual format, Sept 2021,

• D. Biegańska et.al, ”Elementary excitations of exciton-polariton condensates
in a synthetic gauge field”, Bose-Einstein Condensation 2021 BEC2021,
Sant Feliu de Guixols, Spain, hybrid format, Sept 2021,

• D. Biegańska et.al, ”Anomalous dispersion in AlGaAs exciton-polariton struc-
ture”, International Conference on Optics of Excitons in Confined
Systems OECS 18, Lecce, Italy, Jun 2023,

• D. Biegańska et.al, ”Anomalous dispersion and dissipative coupling in quantum
well exciton-polariton structure”, 7th International Workshop On The Op-
tical Properties Of Nanostructures OPON 2024, Wrocław, Poland, Feb
2024.
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