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ABSTRACT

The analysis of two-dimensional (2D) strongly correlated systems poses a significant chal-
lenge due to the exponentially increasing amount of computational resources required by an
exact simulation. However, tensor network methods have arisen as potent approximation
techniques that enable the resolution of this issue in certain cases. In this thesis, we conduct
an extensive investigation of the application of these methods for the analysis of strongly
correlated systems, emphasizing the study of the monolayer of CrI3 and the simulation of
random unitary (quantum) circuits.

We begin by applying the Matrix Product State (MPS) based techniques to analyze the
magnetic ordering in the spin-3/2 XXZ Hamiltonian on a honeycomb lattice, being an effec-
tive model of the monolayer of CrI3. We demonstrate that magnetic phases emerging in the
system can be predicted with high precision by the classical approximation of the model,
in a wide range of the parameter space. We find the correlation energy to be the greatest in
magnitude for the in-plane ferromagnetic and antiferromagnetic phases, while being equal
to zero in the case of the off-plane ferromagnetic one.

Next, we give a pedagogical introduction to two-dimensional Isometric Tensor Networks
(isoTNS) and discuss the Moses Move and 2D version of Time Evolving Block Decimation
(TEBD2) algorithms that operate on them. We then present modifications to the basic
isoTNS framework, which allow for the entire orthogonality surface to be moved into the
bulk of the lattice, resulting in a reduced bond-size required when performing calculations.
Additionally, we rearrange the entanglement flow in the network to create a tree-like structure,
and provide a technique allowing for application of two-site operators on nodes lying on
different branches. We compare the two methods on the task of finding the ground state of
the transverse field Ising model on a square lattice, by means of imaginary time evolution.

Finally, we show how the modified TEBD2 algorithm can be used to emulate the execution
of random quantum circuits, with simultaneous estimation of both the two-qubit and the
multi-qubit fidelities, which we compare with the ones obtained by an existing MPS-based
technique. For the two demonstrated methods we note very high average fidelity, with
respect to the number of parameters used, which is inversely proportional to the amount of
entanglement being present in the system. We analyze the bottleneck of the altered TEBD2

algorithm and suggest alternative approaches allowing for its circumvention.



STRESZCZENIE

Analiza dwuwymiarowych (2D) układów silnie skorelowanych stanowi niezwykle trudne
wyzwanie ze względu na rosnącą wykładniczo ilość zasobów obliczeniowych wymaganych
do ich dokładnej symulacji. W wybranych przypadkach problem ten może zostać rozwiązany
dzięki zastosowaniu metod aproksymacyjnych, których sztandarowym przykładem są sieci
tensorowe. W niniejszej pracy wykorzystujemy te metody w analizie układów silnie sko-
relowanych, kładąc szczególny nacisk na badanie własności monowarstwy CrI3 oraz symu-
lację obliczeń przeprowadzanych na komputerach kwantowych.

Stosujemy algorytmy wykorzystujące tzw. Matrix Product States (MPS) do analizy uporząd-
kowania magnetycznego w hamiltonianie spin-3/2 XXZ na siatce plastra miodu, będącym
efektywnym modelem monowarstwy CrI3. Pokazujemy, że fazy magnetyczne pojawiające się
w układzie można przewidzieć z dużą precyzją za pomocą klasycznego przybliżenia modelu
w szerokim zakresie przestrzeni parametrów. Zauważamy, że energia korelacji jest największa
dla faz ferromagnetycznej i antyferromagnetycznej w płaszczyźnie materiału, podczas gdy
jest ona równa zeru w przypadku fazy ferromagnetycznej w osi prostopadłej do płaszczyzny.

Następnie przedstawiamy pojęcie izometrycznych sieci tensorowych (ang. Isometric Ten-
sor Networks) (isoTNS) i omawiamy dwa algorytmy operujące na tej klasie struktur - ruch
Mojżesza (ang. Moses Move) oraz dwuwymiarową wersję metody Time Evolving Block Dec-
imation (TEBD2). W dalszej części pracy wprowadzamy dwie modyfikacje podstawowego
formalizmu isoTNS oraz wspomnianych metod. Pierwsza z nich umożliwia przesunięcie
całej tzw. przestrzeni ortogonalności do wnętrza układu, efektywnie pozwalając na zm-
niejszenie wymiarów tensorów wykorzystywanych w trakcie obliczeń. Ponadto, pokazujemy
metodę rearanżacji przepływu entropii splątania przez system, efektywnie przekształcając go
w strukturę drzewiastą. Prezentujemy także technikę aplikacji operatorów działających na
węzłach znajdujących się na różnych gałęziach takiego układu. Porównujemy podstawowe i
zmodyfikowane metody wykorzystujące isoTNS na zadaniu znalezienia stanu podstawowego
modelu Isinga w zewnętrznym polu poprzecznym (ang. transverse field Ising model) poprzez
ewolucję w czasie urojonym.

Na koniec pokazujemy, w jaki sposób zmodyfikowany algorytm TEBD2 może być wyko-
rzystany do emulacji wykonywania losowych obwodów kwantowych, z jednoczesnym osza-
cowaniem wierności dwu- oraz wielokubitowej. Otrzymane wyniki porównujemy z rezul-
tatami uzyskanymi za pomocą istniejącej metody bazującej na MPS. Dla dwóch zademon-
strowanych technik odnotowujemy bardzo wysoką średnią precyzję dwukubitową, w sto-
sunku do liczby użytych parametrów, która jest odwrotnie proporcjonalna do ilości spląta-
nia występującego w układzie. Przeprowadzamy dogłębną analizę wąskiego gardła zmody-
fikowanego algorytmu TEBD2 oraz proponujemy alternatywne podejście potencjalnie pozwala-
jące na jego obejście.
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FIRST CHAPTER

INTRODUCTION

Strongly correlated materials have long been a major focus of research in the field of con-
densed matter physics. Systems belonging to this class cannot be described accurately in
terms of its non-interacting constituents [1], resulting in different competing phases with
extremely intriguing properties. One of the most notable instances of such material is a
high-temperature superconductor [2], whose discovery has sparked an unabated interest in
the community that continues to this day. Other examples worth mentioning are magnetic
systems, in which due to the interaction between spins various magnetic orderings may
arise, among which the simplest examples are the ferromagnetic (all spins aligned) and
antiferromagnetic (spins antialigned) ones [3]. The analysis of physical properties of such
materials is important not only from a purely scientific perspective, but can also lead to many
technological applications.

However, exact simulations of such systems with the use of classical methods poses a
great challenge due to the exponentially increasing size of the Hilbert space with respect to
the number of particles. In 1982 Richard Feynman proposed to harness quantum physics
for the purpose of computation [4] and build a completely new kind of machine, whose
number of elements would be proportional to the size of the simulated system. Thus was
born the idea of a quantum computer. Since then, significant progress has been made in
the development of quantum computing hardware and algorithms for simulating quantum
systems.

One method involves the usage of analog quantum simulators, which are specially de-
signed quantum systems that can emulate the behavior of other quantum systems [5–8]. An
alternative approach is to perform a digital quantum simulation, basing on the circuit model
of quantum computation [9–16].

Nevertheless, building a fault-tolerant quantum computer is an extremely complex en-
gineering challenge, as these machines are highly susceptible to errors that can cause the
delicate quantum state to lose its properties, rendering the final result meaningless. These
inaccuracies might arise from improperly applied gates on the qubits (basic units of quantum
information), their initialization, measurement, or a decoherence process, in which the envi-
ronment by interacting with qubits changes their state [17]. To protect quantum computers
against this noise researchers have developed a variety of quantum error-correction codes
(QEC) [18–20]. Yet, these methods require many more qubits and gates than the numbers
needed to conduct the original computation [21, 22]. Because of this overhead, currently
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available machines are not protected by the QEC, and the scale of computations that can be
reliably performed using this technology is severely constrained by the noise. Because of that,
these machines are referred to as Noisy Intermediate-Scale Quantum (NISQ) computers [23].

Until a fault-tolerant quantum computer is built, one of the most powerful approximation
tools currently available for simulating quantum many-body systems are tensor networks.
Two of the most prominent examples of these mathematical structures are Matrix Product
States (MPS) [24–28] and Projected Entangled Pair States (PEPS) [29, 30]. The former can
describe wavefunctions with a single-dimensional (1D) chain of connected tensors, while the
latter is a two-dimensional (2D) structure, with tensors distributed on the nodes of a grid. To
fully exploit the potential of an MPS, it is usually generated in the so-called canonical form.
All of the tensors in such an MPS (except one) fulfil the isometry condition, which allows them
to be ignored while updating the tensor network or calculating the expectation value of some
observable, significantly accelerating the computations. Thus, MPS is an example of a 1D
Isometric Tensor Network. Although MPSs are 1D structures, they can be used to simulate 2D
systems. However, their scaling in this context is inferior to the 1D case, due to the long range
correlations introduced in the tensor network. General PEPS (not preserving the canonical
form) thanks to larger number of ancilla degrees of freedom per each tensor are not affected
by this issue as severely, although their exact contraction comes at an exponential cost, due to
which approximation techniques are used for that purpose. Nevertheless, recently different
ways of canonizing PEPS were presented [31–34], leading to the 2D version of Isometric
Tensor Networks (isoTNS).

In this thesis, we employ both 1D and 2D versions of Isometric Tensor Networks in large-
scale numerical studies of different physical models, as well as noisy simulations of quantum
circuits, characterized by a finite fidelity similar to the one manifested by the NISQ computers.

In Chapter 2 we review the basic concepts related to the formalism of tensor networks.
We describe the properties of an MPS and show how it can be obtained, starting from a state
vector, by means of Singular Value Decomposition (SVD) [28]. We explain how to truncate
the degrees of freedom (referred to as the bond-size) of a given tensor, by keeping just the
most relevant singular values obtained during the SVD. We illustrate different algorithms
operating on MPSs, such as variational compression [28], Time Evolving Block Decimation
(TEBD) [26, 28] and Density Matrix Renormalization Group (DMRG) [28, 35–38]. We conclude
this chapter by showing how MPSs can be utilised to simulate 2D systems.

In Chapter 3 we study two chosen physical models using 1D methods. We localize the
critical point of the transverse field Ising (TFI) model on a finite square lattice. Although
the properties of an infinite version of this system were investigated in the past [39–42],
we use results of our calculations as a benchmark, against which we compare techniques
involving 2D tensor networks introduced in the further part of this work. Then, we examine
the spin-3/2 XXZ Hamiltonian on a honeycomb lattice, which can serve as a model of the
monolayer of CrI3 [43]. We compare the predictions of magnetic phases manifested by this
system, given by the classical approximation of the model, with the ones obtained via DMRG
calculations.

In Chapter 4 we describe random quantum circuits used by Google Inc. in their famous
quantum supremacy experiment [44]. We explain how MPSs can be used to simulate this
class of systems and show that the fidelity of such calculations can be precisely approximated
even in regimes for which exact classical simulation is intractable [45].

In Chapter 5 we review one of the techniques used to canonize PEPS and illustrate how to
implement the 2D version of the Time Evolving Block Decimation (TEBD2) algorithm using
this formalism [32,34]. Then, we develop two modifications of the initial framework. First one
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allows for a significant reduction of the bond-size required during calculations. The second
one puts a constraint on given degrees of freedom of tensors stored in the grid, transforming
it into a tree-like structure. We compare the two versions of the TEBD2 algorithm on the
task of obtaining the ground state of the TFI model through imaginary time evolution. We
test the adjusted TEBD2 algorithm on the task of simulation of random quantum circuits
and demonstrate that the proposed alterations allow for an accurate approximation of the
fidelity of such computations. We compare the results of our method with the ones given by
simulation performed with the use of MPS-based techniques.

Finally, we conclude the thesis in Chapter 6 and provide suggestions for the future work.
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SECOND CHAPTER

ISOMETRIC TENSOR NETWORKS IN 1D

We will begin this chapter with a comprehensive description of the tensor and tensor network
concepts, followed by an introduction of a diagrammatic representation that makes it easy to
visualize different kinds of tensors, and various operations that can be conducted on them.
With this tool, we will define the most basic single-dimensional type of tensor network called
Matrix Product State (MPS). By showing in detail the different ways in which an MPS can
be obtained, we will introduce the notion of normalization, which, when used in the right
way, allows for an immense increase in the speed of certain types of calculations. Then, we
will demonstrate two ways of representing an operator that can be applied to such a tensor
network. Finally, we will illustrate two algorithms that use these distinct representations of
operators. The first method, called Time Evolving Block Decimation (TEBD), can be used
to conduct both real and imaginary time evolution of an arbitrary quantum state stored in
the form of an MPS, while the second one, named Density Matrix Renormalization Group
(DMRG) allows to obtain the ground state of 1D physical systems.

We will end this chapter by showing how the properties of two-dimensional systems can
be analyzed by means of one-dimensional MPS representation. This will be the building block
for the structures and methods tailored specifically for the simulation of higher-dimensional
systems, which will be discussed in detail in Chapter 5.

2.1 Basics

Tensor is a mathematical object that captures the concept of a multilinear map [46], i.e. a
function of numerous variables f : A1×A2× ...×An → B , where A1, A2, ..., An and B are vector
spaces, with the condition of f being linear with respect to each Ai argument. A tensor can
be represented by a multidimensional array, where the number of dimensions of such an
object is described as order, or rank. Intuitively, the order of a tensor can be understood
as a number of directions in which the array expands or the number of indices needed to
explicitly define the location of each element in such an array. For example, the components
of a two-dimensional array (which is also an order-2 tensor) could be denoted as Ti , j , where
i and j are the aforementioned indices. However, indices may not only be displayed in the
form of subscript, and the superscript notation is also the correct one. The location of the
index tells us how it responds to the change of basis, which can be twofold. We will describe
this difference shortly, but for that purpose we first need to introduce a general rule for the
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contraction of two tensors. The contraction over a given index j = 1, ...,n is defined as a sum
of corresponding components multiplied together, and can only be performed if the index in
question appears in both tensors once as a superscript and once as a subscript, i.e.

ck
i =

n∑
j=1

a j
i bk

j = a j
i bk

j . (2.1)

On the right hand side in the above equation we introduced the Einstein summation
convention, which omits the summation sign. We will alternately use it with the standard
notation, in which a subscript denotes iterating over a particular set. Both of these notations
will be distinguishable based on the context in which they are employed (or the appropriate
interpretation will be made clear in some circumstances). In special cases, we will also
surround the index with square brackets, e.g., in Ô[i ], to emphasize the usual meaning of the
index.

Knowing how we can contract two tensors, we can precisely describe the meaning of
the subscript and superscript conventions for the index location. We will explain that on
an example of an order-1 tensor, a vector. It can come in two forms, as a column vector
(contravariant) and as a row vector (covariant). Let us define a C i

i ′ matrix that changes the
basis in some arbitrary way, which can be written down as

êi ′ = ei C i
i ′ , (2.2)

where ei are the old basis vectors, while êi ′ are the new ones. The components of a
contravariant vector v in order to compensate for the basis change need to be transformed
by a matrix that is an inverse of the C i

i ′ matrix,

v̂ i ′ = (C−1)i ′
i v i . (2.3)

On the other hand, the components of a covariant vector w are transformed by the same
matrix that carried out the change of the basis vectors,

ŵi ′ = wi C i
i ′ . (2.4)

This reasoning can be extended to the case of higher-order tensors, for which there is a
separate covariant or contravariant transformation operation for each of the tensor indices.
Therefore, the T i1,i2,...,in

ji , j2,..., jm
tensor is transformed as follows

T̂
i ′1,i ′2,...,i ′n
j ′i , j ′2,..., j ′m

= (C−1)
i ′1
i1
· · · (C−1)

i ′n
in

T i1,i2,...,in
ji , j2,..., jm

C j1

j ′1
· · ·C jm

j ′m
. (2.5)

The T i1,i2,...,in
ji , j2,..., jm

tensor is sometimes described as an (n,m)-order one, however in this work
we will refer to the order of the tensor as the total number of its dimensions. Thus, we will
call T i1,i2,...,in

ji , j2,..., jm
the (n +m)-order tensor.

Although we have focused up to this point solely on the properties of a single tensor, the
cautious reader may have noticed that we used multi-tensor operations for that purpose.
Indeed, in Eqs. (2.1) to (2.5) we have already dealt with the most important concept of this
work, i.e. tensor network, which is defined as a discrete set of tensors connected to each other
by contractions. On the right-hand side of Eqs. (2.1) to (2.4) we can see contractions of just
two tensors, which can be relatively easy to grasp, however the mathematical description of
multiple tensors given for example in Eq. (2.5) becomes cumbersome and hard to track. In
the following section we will see, how to diminish this hardness with an intuitive graphical
tool.
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2.1.1 Diagrammatic representation of tensors

Knowing the basic properties of tensors we can now define a formalism called tensor diagram
notation (or Penrose graphical notation) [47]. Within this convention, we will represent each
tensor with some geometric shape (usually we will use rectangles, ovals and diamonds) with
a couple of line segments, called legs (or alternately, wires or bonds), attached to it. The
number of legs is always equal to the order of a tensor, so each leg always resembles one
of the tensor indices. With this approach, we can represent an order-0 tensor (scalar) as a
shape without any legs, an order-1 tensor (vector) as a shape with one leg, and so on. We can
see that this tool allows for easy visualization of higher-dimensional tensors, whose exact
representation or mathematical description might be difficult to grasp. Examples of several
tensors in diagrammatic notation are depicted in Fig. 2.1.

Figure 2.1: Examples of several low-dimensional tensors.

As we mentioned in Section 2.1, tensors are represented by multidimensional arrays. Such
arrays can be freely reshaped by adding or removing dimensions, as long as the total number
of elements stored in the initial and final structure is the same. For example, an order-3
tensor T i

j1, j2
of size 3×2×2 can be reshaped into a T i

( j1, j2) matrix of size 3×4. In this single
example we introduced a number of notations that we will stick to in the rest of the work.
Firstly, we will refer to the size of a given index as the upper bound on the set of numbers,
over which it can iterate. Secondly, we will represent the grouping (or combining) of two
indices by imply surrounding them with brackets. Going back to the example, we could end
the whole reshaping procedure with the additional step of changing the label of the newly
obtained index from ( j1, j2) to j , and arrive simply at T i

j .
Of course, the reverse operation, which aims to split one index into two is completely

valid, and can be written down as a transition from T i
j to T i

j1, j2
.

Both of the presented techniques are particularly easy to illustrate using the diagram
notation, by replacing a single leg with two (splitting) or vice versa, by replacing two legs with
one (grouping). These two operations are shown in Fig. 2.2.
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Figure 2.2: An example of combining two legs of a tensor. (a) T i
j1, j2

before grouping. (b) T i
( j1, j2)

after combination of j1 and j2 legs.

Apart from the possibility of splitting and combining the legs, they can also be bent or
crossed. A leg that is bent in the opposite direction to its original one, can be understood
as Kronecker delta. In turn, crossing two legs of a given tensor corresponds to swapping the
indices assigned to those legs. Each of these operations can be viewed as a separate tensor,
and their meaning is shown in Fig. 2.3.

Figure 2.3: Legs transformations as standalone tensors. (a) Contraction or relabeling. (b,c)
Kronecker deltas. (d) Swap operation [46].

By bending and crossing legs of a given tensor, we can arbitrarily rearrange its indices. For

example, a M i
j matrix can be transformed into M j

i , Mi , j , M j ,i , M i , j and M j ,i . The sequence of
operations that arrive at each of these representations is illustrated in Fig. 2.4.

Figure 2.4: All possible rearrangements of indices of a matrix M i
j [46].

Continuing the above reasoning, the adjoint of a tensor can be obtained by reversing the
direction of its legs. If we combine this procedure with complex conjugation (which simply
inverts the sign of the imaginary part of each complex number, being the constituent of the
considered tensor) marked with a ∗ symbol standing next to the tensor label, we arrive at
the operation of particular interest in the following sections of this chapter - the Hermitian
adjoint. It will be commonly denoted with the † symbol. The relationship between all these
three transformations is depicted in Fig. 2.5.

Knowing the rules governing bending and crossing of legs, the only operation left to
be explained in Penrose notation is the joining of two bonds. Such connection of two legs
corresponds to the contraction over the indices assigned to them. When summing over given
indices, the legs in question disappear from the diagram, reducing the dimensionality of the
resulting tensor. With this approach, we can easily represent such operations as matrix-vector
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Figure 2.5: Relationships between transposition, conjugation and Hermitian adjoint of given
tensor [46].

multiplication or even contraction of two tensors over multiple indices at once, which are
shown in Fig. 2.6.

Figure 2.6: Examples of tensor contraction. (a) Multiplication of a vector by a matrix. (b)
Contraction of two tensors over multiple bonds.

Moreover, we are not limited to joining legs that come solely from two different tensors.
Nothing stands in the way of connecting two legs from a single tensor, as long as their sizes
match. In this way, we can perform the operation of partial trace (shown in Fig. 2.7).

Figure 2.7: Partial trace conducted by contracting legs belonging to a single tensor.

Finally, we need to determine the cost of basic tensor contractions. For the two tensors
A and B , each having legs of size {χA

i } and {χB
j }, respectively, we define the cost of their

contraction as

cost (A.B) =∏
i
χA

i

∏
j
χB

j

/ ∏
χ∈A∩B

χ. (2.6)

An useful intuition helping to easily calculate the cost given by the above formula, is to
check how many legs are "touched" by the tensors to be contracted. Using this method we
can determine that the contraction shown in Fig. 2.6.a would cost O(χ2), in Fig. 2.6.b O(χ7),
and in Fig. 2.7 O(χ5), assuming that all legs of the tensors in question have the same size,
equal to χ.
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2.2 Singular Value Decomposition

Now that we have a solid foundation in tensor diagram notation, we can move on to more ad-
vanced algorithms and structures that use this formalism. We will start with a method called
Singular Value Decomposition (SVD), which will be an essential part of all the techniques
described in the sections to come.

SVD takes an m ×n matrix M and decomposes it into three output matrices M =U SV †.
S is a k ×k diagonal matrix, where k = min{m,n}, storing real and non-negative singular
values si , which are usually ordered in descending order. The U and V † matrices have the
shapes m×k and k×n, respectively. They are called semi-unitary matrices, which means that
they fulfil the isometry condition U †U =V †V = 1. Let us point out that in order to obtain the
identity matrix, U should be multiplied by its Hermitian adjoint from the left, while V † from
the right. This is due to the fact that U has orthonormal columns and V † has orthonormal
rows.

This factorization procedure can be simply expressed using the Penrose notation as
shown in Fig. 2.8.

Figure 2.8: Diagrammatic representation of the SVD.

Above we used the diamond shape to represent S, to emphasize the fact that it is a diagonal
matrix.

Since this method will be one of the crucial components of the algorithms described in
this paper, it is extremely important to know its computational complexity. For an m ×n
matrix, the cost of SVD is equal to O(mn ·k), with k = min{m,n}. We deliberately separated
the number of singular values to be calculated from the size of the entire matrix on the
left-hand side of the equation, with the intention of showing the correct intuition and making
it simple to assess the complexity of SVD in the future.

In the context of quantum physics SVD is also used to derive the Schmidt decomposition.
To understand it, let us denote by |ψ〉 the general pure state of a composite system consisting
of subsystems A and B . Such a quantum state is commonly represented by a column vector

|ψ〉 = ∑
α,β
Ψ(α,β)|α〉A|β〉B , (2.7)

where {|α〉A} and {|β〉B } form orthonormal bases in their corresponding Hilbert spaces.
Now, if we focus solely on the coefficients of |ψ〉, we can treat them as entries in a matrix
(being the outcome of a vector reshape). As a result, each of these coefficients can be denoted
as Ψ̂α

β
. If we further decompose this matrix using SVD and then restore the column vector

form, we can rewrite the initial quantum state as

|ψ〉 =
k∑
γ=1

sγ|γ〉A|γ〉B , (2.8)

where sγ are called Schmidt values. The {|γ〉A} and {|γ〉B } sets are orthonormal, and can be
extended to form the bases of their assigned Hilbert spaces. Now, if we express the reduced
density matrices of A and B as follows

9
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ρ̂A =
k∑
γ=1

s2
γ|γ〉A 〈γ|A , ρ̂B =

k∑
γ=1

s2
γ|γ〉B 〈γ|B , (2.9)

we can see that due to the normalization condition of the density matrices (their trace
must be equal to 1), we have

∑k
γ=1 s2

γ = 1. From this we can immediately see that Schmidt
coefficients are just square roots of the eigenvalues of a given diagonalisable matrix, while
the corresponding eigenvectors of the ρ̂A and ρ̂B are the left and right singular vectors,
respectively [28].

Due to this fact, we can use singular values to analyze the entanglement between A and B
subsystems. For that purpose we can use the von Neumann entropy

S(A|B)(|ψ〉) =−Tr ρ̂A log ρ̂A =−Tr ρ̂B log ρ̂B =−
k∑
γ=1

s2
γ log s2

γ, (2.10)

or a more general Renyi entropy

Sα(A|B)(|ψ〉) = 1

1−α log
(∑

k
s2α

k

)
. (2.11)

In Eq. (2.11) the α appearing as the superscript should not be treated as one of the indices
introduced in the previous section, but rather as a signature denoting the value of parameter
used to calculate the Renyi entropy.

The number of non-zero Schmidt values is called Schmidt rank, and directly distinguishes
the product states (in the above case k = 1) from the entangled ones (k > 1).

2.3 Matrix Product States

We have already demonstrated that a quantum state, which is often represented as a column
vector, may be transformed into a matrix while constructing the Schmidt decomposition.
Furthermore, this reshaping procedure made it easy for us to acquire information about the
entanglement between its A and B subsystems. We can continue this reasoning by increasing
the number of subsystems, as it takes place, e.g., in a chain of particles of length L. In the
further part of this work we will refer to each subsystem of such a chain as node (or site). In
general, each node might represent either a single particle or a grouped set of particles. We
unify these two scenarios by focusing only on the size of a local Hilbert space of each node,
which will be denoted as pi , for i = 1, ...,L.

2.3.1 Generating MPSs

Using the above convention we will introduce an algorithm allowing for the generation of an
MPS [28]. We can write down an arbitrary quantum state of a chain of length L as

|ψ〉 = ∑
p1,p2,...,pL

Ψ(p1,p2,...,pL)|p1, p2, ..., pL〉. (2.12)

Let us once again focus exclusively on the coefficients of this vector, and apply reshaping
similar to the one given in previous section. We begin with "detaching" the first subsystem
from the remaining ones and as a result form a matrix, which is subsequently decomposed
with the use of SVD
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Ψ(p1,p2,...,pL) = Ψ̂p1
(p2,...,pL) =U p1

a1
Sa1

a1
(V †)a1

(p2,...,pL). (2.13)

If we perform the multiplication of the Sa1
a1

and (V †)a1
(p2,...,pL) matrices (the purpose of

which will be explained shortly) to obtain aΘa1
(p2,...,pL) matrix, we can rewrite the coefficients

of the quantum state under study as

U p1
a1

Sa1
a1

(V †)a1
(p2,...,pL) =U p1

a1
Θ

a1
(p2,...,pL). (2.14)

Now, in order to "detach" p2 from p3, ..., pL we can conduct onΘa1
(p2,...,pL) a similar opera-

tion to the one presented in Eq. (2.13), with the only difference being the combination of the
a1 and p2 indices. The result of this procedure can be written as

U p1
a1
Θ

a1
(p2,...,pL) =U p1

a1
Θ̂

(a1,p2)
(p3,...,pL) =U p1

a1
U (a1p2)

a2
Sa2

a2
(V †)a2

(p3,...,pL). (2.15)

By repeating the steps of multiplication of the S and V † matrices, followed by proper
reshaping, and finally SVD, we can represent the coefficients of the considered quantum state
as follows

Ψ(p1,p2,...,pL) =U p1
a1

U (a1,p2)
a2

U (a2,p3)
a3

. . .U (aL−2,pL−1)
aL−1

Θ
aL−1
pL

. (2.16)

We can see that in order to calculate the coefficients of |ψ〉, represented as in Eq. (2.16),
it is necessary to compute the product of matrices, from which this structure has taken its
name - Matrix Product State [24–28].

Each matrix given in Eq. (2.16), except the ones lying on the edges, can be reshaped into
an order-3 tensor, by simply splitting the (ai−1, pi ) leg into two separate ones - ai−1 and pi

U p1
a1

U (a1,p2)
a2

U (a2,p3)
a3

. . .U (aL−2,pL−1)
aL−1

Θ
aL−1
pL

= Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

. (2.17)

From this picture it is easy to see that if we were to conduct the contraction over all ai ′

legs, we would obtain a tensor with remaining p1, p2, ..., pL legs. The pi indices cannot be
removed from an MPS, because they serve as the formal description of the state of a physical
system under study. On the other hand, the ai ′ legs introduce some additional degrees of
freedom to each tensor stored in an MPS, which disappear when we perform a summation
over a given ai ′ leg. In order to illustrate the dual nature of these indices, we shall refer to pi

legs as the physical ones, while ai ′ will be denoted as virtual ones.
Diagram notation makes it simple to show all of the procedures that have been covered in

this section up until this point. To obtain an MPS we begin with a vectorΨ having one p leg,
describing the physical degrees of freedom of all the nodes included in the considered chain.
We split the p leg into p1, p2, ..., pL ones, which consists of replacing one leg with L new ones.
Now, we can group the p2, p3, ..., pL legs on one side of the tensor, leaving the remaining p1

on the other side. This tensor, being in fact a matrix, is further factorized with the use of SVD,
giving us U , S and V † matrices (depicted by an oval, a diamond, and another oval), connected
with legs labeled as a1. Subsequently, contraction of S with V † gives us newΘ tensor, having
one virtual leg a1 and p2, p3, ..., pL physical ones (grouped so far as a single leg). We finalize
the procedure by "detaching" the p2 leg from all the physical ones and combine it with a1, to
prepareΘ for the next SVD.

In summary, the algorithm consists of L−1 SVDs interspersed with proper tensor reshap-
ing. All of the steps involved in this method are shown in Fig. 2.9.
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Figure 2.9: Transformation of a vector into an MPS by a series of SVDs.

Although the Einstein summation convention eases the process of writing formulae
involving several tensors, a proper description of steps presented in Eqs. (2.12) to (2.17) is still
a difficult task. We have seen that the diagram notation alleviates this hardness and makes it
simple and understandable to depict complex algorithms utilizing tensor operations.

2.3.2 Canonical form of an MPS

Let us focus now on the properties of the MPS obtained in Eq. (2.16). Any transformation
of the initial vector is only worthwhile, if we can benefit computationally from this new
representation. By examining some of the physical properties of the chain under study we
can in fact see a huge numerical gain. We will discuss this on the example of calculating the
norm of the state. Using the bracket notation, we would calculate the norm of a vector as
〈ψ|ψ〉. In the MPS language, this can be expanded as

〈ψ|ψ〉 =(Θ†)a′
L−1,p ′

L (A†)
a′

L−2

a′
L−1,p ′

L−1
. . . (A†)

a′
2

a′
3,p ′

3
(A†)

a′
1

a′
2,p ′

2
(A†)a′

1,p ′
1

Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

. (2.18)

In Section 2.2 we have seen that U matrices had the U †U = 1 feature. If we apply this
property to the innermost A tensors in Eq. (2.18), which emerge from reshaping of U matrices,
we may obtain

(Θ†)a′
L−1,p ′

L (A†)
a′

L−2

a′
L−1,p ′

L−1
. . . (A†)

a′
2

a′
3,p ′

3
(A†)

a′
1

a′
2,p ′

2
(A†)a′

1,p ′
1

Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

= (Θ†)a′
L−1,p ′

L (A†)
a′

L−2

a′
L−1,p ′

L−1
. . . (A†)

a′
2

a′
3,p ′

3
(A†)

a′
1

a′
2,p ′

2
(A†)a′

1,p ′
1
δ

p ′
1

p1
Ap1

a1
Aa1,p2

a2
Aa2,p3

a3
. . . AaL−2,pL−1

aL−1
Θ

aL−1
pL

= (Θ†)a′
L−1,p ′

L (A†)
a′

L−2

a′
L−1,p ′

L−1
. . . (A†)

a′
2

a′
3,p ′

3
(A†)

a′
1

a′
2,p ′

2
(A†)a′

1,p1
Ap1

a1
Aa1,p2

a2
Aa2,p3

a3
. . . AaL−2,pL−1

aL−1
Θ

aL−1
pL

= (Θ†)a′
L−1,pL (A†)

a′
L−2

a′
L−1,pL−1

. . . (A†)
a′

2

a′
3,p3

(A†)
a′

1

a′
2,p2

δa′
1,a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

12
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= (Θ†)a′
L−1,pL (A†)

a′
L−2

a′
L−1,pL−1

. . . (A†)
a′

2

a′
3,p3

(A†)
a′

1

a′
2,p2

Âp2

a′
1,a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

. (2.19)

Above we utilized the δ
p ′

1
p1

(presented in Fig. 2.3.a), which merely relabels the legs. By doing
this, we highlighted the fact that we were contracting the physical legs of two tensors. To
improve readability, further δ operators of this type were suppressed. Assuming the inherent
relabeling, we will omit these operators in the remaining part of this work when contracting
the physical legs.

Due to the fact that U matrix resulting from an SVD is a semi-unitary matrix, we were
able to omit the contraction of (A†)a′

1,p ′
1

and Ap1
a1

tensors. Moreover, the same rule applies
to the remaining A tensors in the MPS, which allows us to reduce the above equation in the
following fashion

(Θ†)a′
L−1,p ′

L (A†)
a′

L−2

a′
L−1,p ′

L−1
. . . (A†)

a′
2

a′
3,p ′

3
(A†)

a′
1

a′
2,p ′

2
Âp2

a′
1,a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

= (Θ†)a′
L−1,p ′

L (A†)
a′

L−2

a′
L−1,p ′

L−1
. . . (A†)

a′
2

a′
3,p ′

3
δa′

2,a2
Aa2,p3

a3
. . . AaL−2,pL−1

aL−1
Θ

aL−1
pL

...

= (Θ†)a′
L−1,p ′

Lδa′
L−1,aL−1

Θ
aL−1
pL

= (Θ†)a′
L−1,p ′

L Θ̂a′
L−1,pL

= n. (2.20)

Since Θ tensors often do not meet the isometry condition, we are forced to undertake
their contraction, which yields the scalar n, being the norm that we were trying to calculate.

At this stage, a number of observations should be taken. First, we observed from Eqs. (2.18)
to (2.20) that, because of how we constructed the MPS, we may ignore contractions of all the
tensors to the left of theΘ tensor when computing some property of the MPS. The A tensors
shall hereafter be referred to as left-normalized ones. Secondly, the contraction ofΘ andΘ†

tensors could not be omitted, becauseΘwas not obtained from a semi-unitary matrix. This
fact also explains, why we multiplied the S and V † matrices in Eq. (2.14), giving as a result
Θ. Another set of semi-unitary matrices may be produced via SVD ofΘ, which would make
it possible to skip the computation of tensor products in the final form of the MPS. On the
other hand, factorization a matrix that is already a semi-unitary one is futile, because it does
not provide any numerical advantage in the future. To emphasize this special property of the
Θ tensor, we will refer to it as the orthogonality center. Finally, we will call all MPSs consisting
of left-normalized tensors followed by the ortohogonality center, as the left-canonical ones.

To highlight the normalization feature of given tensor we will add arrows to its legs,
indicating the direction of its normalization. Additionally, we will follow the convention of
assigning an incoming arrow to each physical leg. With this extended formalism we can
illustrate a left-canonical MPS as shown in Fig. 2.10.

Figure 2.10: MPS in the left-canonical form.

The Hermitian adjoint of a given tensor will be depicted by a tensor mirrored along
the horizontal line, with the legs directions reversed. With this improved framework the
diagrammatic representation of the norm computation given in Eqs. (2.18) to (2.20) also
becomes particularly clear, and is illustrated in Fig. 2.11.
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Figure 2.11: Calculation of the norm of an MPS in the left-canonical form.

So far, in the process of generating an MPS we were contracting the S and V † matrices,
resulting from consecutive SVDs. Nothing, however, prevents the contraction of S with the U
matrix, rather than the V † one. In this way, we could "detach" the physical legs starting from
the right edge of the initial tensor and arrive at

Ψ(p1,p2,...,pL) = Ψ̂(p1,p2,...,pL−1)
pL

=U (p1,p2,...,pL−1)
aL−1

SaL−1
aL−1

(V †)aL−1
pL

=Θ(p1,p2,...,pL−1)
aL−1

(V †)aL−1
pL

= Θ̂(p1,p2,...,pL−2)
(pL−1,aL−1) (V †)aL−1

pL

=U (p1,p2,...,pL−2)
aL−2

SaL−2
aL−2

(V †)aL−2
(pL−1,aL−1)(V

†)aL−1
pL

...

=Θp1
a1

(V †)a1
(p2,a2) . . . (V †)aL−2

(pL−1,aL−1)(V
†)aL−1

pL
. (2.21)

Again, with proper reshaping we can convert all V † tensors as follows

Θ
p1
a1

(V †)a1
(p2,a2) . . . (V †)aL−2

(pL−1,aL−1)(V
†)aL−1

pL
=Θp1

a1
B a1,p2

a2
. . .B aL−2,pL−1

aL−1
B aL−1

pL
. (2.22)

The newly acquired B tensors are right-normalized since they are the final outcome of
the transformation of V † matrices. This suggests that if we were to recalculate the MPS norm,
we could do so without multiplying any of the tensors assigned to nodes from 2 to L, and
instead just conduct the contraction of the left-mostΘwithΘ†. We will call all MPSs in the
form presented in Eq. (2.22) as the right-canonical ones, and a diagram representation of
such a state is illustrated in Fig. 2.12.

Figure 2.12: MPS in the right-canonical form.
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There is one final note to be made in the context of MPS normalization. In the case of
an MPS in the left-canonical form, we have seen on an example of norm calculation that we
could ignore the contraction of all L −1 tensors located to the left from the orthogonality
center, and conduct only the contraction of the rightmost tensor with its Hermitian adjoint.
The same would be true, if we wanted to calculate some other feature of the right-most site,
e.g., the expectation value of particle spin in the Z axis. In Section 2.4, we will go into more
depth about how this can be accomplished, but for now, let us just say that in that case we
could also ignore all of the left-normalized A tensors, and focus solely on theΘ tensor. The
right-normalized MPS would likewise exhibit all of these features, although in this scenario
we would omit the contraction of all B tensors located to the right from the orthogonality
center.

However, no matter which of the two presented forms of MPS we would choose, if we
wanted to examine some property on any of the sites located in the bulk, we would be forced
to conduct some additional contractions, which we would like to avoid. To evade this issue
we will present another technique, allowing for the shifting of the orthogonality center.

This can be also achieved by means of the SVD. Let us assume that we were given an MPS
in the left-canonical form and wanted to shift the orthogonality center to some tensor located
in the bulk. We begin with the multiplication of the two right-most tensors

Ap1
a1

Aa1,p2
a2

. . . AaL−3,pL−2
aL−2

AaL−2,pL−1
aL−1

Θ
aL−1
pL

= Ap1
a1

Aa1,p2
a2

. . . AaL−3,pL−2
aL−2

Θ
(aL−2,pL−1)
pL

. (2.23)

Now, if we use SVD to factorize the newly obtainedΘ, we essentially arrive at the second-
to-last step of the procedure generating an MPS in the left-canonical form. Although this
time, we contract S with the U matrix instead of V †, giving us

Ap1
a1

Aa1,p2
a2

. . . AaL−3,pL−2
aL−2

Θ
(aL−2,pL−1)
pL

= Ap1
a1

Aa1,p2
a2

. . . AaL−3,pL−2
aL−2

U (aL−2,pL−1)
aL−1

SaL−1
aL−1

(V †)aL−1
pL

= Ap1
a1

Aa1,p2
a2

. . . AaL−3,pL−2
aL−2

Θ
aL−2,pL−1
aL−1

B aL−1
pL

. (2.24)

In the last transformation, in addition to multiplying U and S, we also reshaped the Θ
tensor and relabeled the V † one (knowing that it is a right-normalized tensor). We can see
that the MPS presented in Eq. (2.24) incorporates both the left-normalized A tensors and
the right-normalized B ones. For this reason, we shall refer to this type of MPS form as
mixed-canonical.

The orthogonality center can be moved to any location along the chain using a sequence
of consecutive SVDs, giving us the most general form of an MPS in the mixed-canonical form

Ap1
a1

Aa1,p2
a2

. . . AaL−3,pL−2
aL−2

Θ
aL−2,pL−1
aL−1

B aL−1
pL

= Ap1
a1

. . . Aai−2,pi−1
ai−1

Θ
ai−1,pi
ai

B ai ,pi+1
ai+1

. . .B aL−1
pL

. (2.25)

Using the same logic as before, when calculating the norm of an MPS in the mixed-
canonical form, it is sufficient to multiply onlyΘ byΘ†, disregarding the tensors A and B . We
would also proceed in a similar way in the case of analyzing any property of the i th node.

The diagrammatic representation of a mixed-canonical MPS along with the procedure of
shifting of the orthogonality center and norm calculation are illustrated in Fig. 2.13.

2.3.3 Vidal representation

The canonical form, while powerful, has its limitations. For instance, if the orthogonality
center is located at the right edge of the chain and we would like to measure some property of
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Figure 2.13: (a) MPS in the mixed-canonical form. (b) Shifting of the orthogonality center. (c)
Norm calculation in the case of an MPS in the mixed-canonical form.

the left-most site, a sequence of SVDs would need to be run along the entire chain. However,
we can obtain a slightly different representation of an MPS, called Vidal representation [25],
which alleviates this problem.

Once again, let us assume that we were given a state vector which we would like to
transform into a tensor network, in a fashion similar to the one illustrated while generated an
MPS in left-canonical form. After the first SVD we would obtain the following state

Ψ(p1,p2,...,pL) = Ψ̂p1
(p2,...,pL) =U p1

a1
Sa1

a1
(V †)a1

(p2,...,pL). (2.26)

This time, before incorporating the S matrix into V † we are copying the singular values
obtained during SVD. Let us call these Schmidt values as S[1] to emphasize the fact that
they were generated during the first factorization in the whole procedure. The following
contraction leads to
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U p1
a1

Sa1
a1

(V †)a1
(p2,...,pL) =U p1

a1
Θ

a1
(p2,...,pL), (2.27)

which is further factorized, resulting in

U p1
a1
Θ

a1
(p2,...,pL) =U p1

a1
Θ̂

(a1,p2)
(p3,...,pL) =U p1

a1
U (a1,p2)

a2
Sa2

a2
(V †)a2

(p3,...,pL). (2.28)

Knowing the next steps of the procedure, we can see that the already obtained U tensors
will not be involved in any other SVD, and as a result will not change at any point in the

further part of the algorithm. We can utilize this fact and multiply the U (a1p2)
a2

from the left by
1/S[1], which can be understood as a simple division by the singular values obtained during
the first factorization. This operation gives us the following state

U p1
a1

U (a1,p2)
a2

Sa2
a2

(V †)a2
(p3,...,pL) = Γ

p1
a1

Sa1
a1
Γ

(a1,p2)
a2

Sa2
a2

(V †)a2
(p3,...,pL), (2.29)

where we denoted by Γ tensors, which may not necessarily be isometries (with the excep-
tion of the left-most tensor). By repeating the steps outlined above L−1 times, we can see the
following pattern to emerge

Ψ(p1,p2,...,pL) =U p1
a1

Sa1
a1

(V †)a1
(p2,...,pL) = Γ

p1
a1
Θ

a1
(p2,...,pL)

= Γp1
a1

U (a1,p2)
a2

Sa2
a2

(V †)a2
(p3,...,pL) = Γ

p1
a1

Sa1
a1
Γ

(a1,p2)
a2

Θ
a2
(p3,...,pL)

= Γp1
a1

Sa1
a1
Γ

(a1,p2)
a2

U (a2,p3)
a3

Sa3
a3

(V †)a3
(p4,...,pL) = Γ

p1
a1

Sa1
a1
Γ

(a1,p2)
a2

Sa2
a2
Γ

(a2,p3)
a3

Θ
a3
(p4,...,pL)

= . . . = Γp1
a1

Sa1
a1
Γ

(a1,p2)
a2

Sa2
a2
Γ

(a2,p3)
a3

. . .U (aL−2,pL−1)
aL−1

SaL−1
aL−1

(V †)aL−1
pL

= Γp1
a1

Sa1
a1
Γ

(a1,p2)
a2

Sa2
a2
Γ

(a2,p3)
a3

. . .SaL−2
aL−2

Γ
(aL−2,pL−1)
aL−1

SaL−1
aL−1

Γ
aL−1
pL

, (2.30)

where in the final step, we took advantage of the fact that the V † tensor already had the
appropriate form, thus no matrix division was necessary.

By reshaping the bulk Γmatrices into order-3 tensors and renaming all the S matrices to
Λ, to match the widely used convention, we arrive at the final form of the MPS in the Vidal
representation

Ψ(p1,p2,...,pL) = Γp1
a1
Λ

a1
a1
Γ

a1,p2
a2

Λ
a2
a2
Γ

a2,p3
a3

. . .ΛaL−2
aL−2

Γ
aL−2,pL−1
aL−1

Λ
aL−1
aL−1

Γ
aL−1
pL

, (2.31)

which is also illustrated in Fig. 2.14 with the use of Penrose notation.

Figure 2.14: MPS in the Vidal representation.

Now, in order to obtain the orthogonality center at an arbitrary site of the chain, it is
sufficient to multiply the corresponding tensor by left and right singular values

Γ
p1
a1

. . .Γai−2,pi−1
ai−1

(Λai−1
ai−1

Γ
ai−1,pi
ai

Λ
ai
ai

)Γai ,pi+1
ai+1

. . .ΓaL−1
pL

→ Γ
p1
a1

. . .Γai−2,pi−1
ai−1

Θ
ai−1,pi
ai

Γ
ai ,pi+1
ai+1

. . .ΓaL−1
pL

.
(2.32)
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Moreover, we can convert between Vidal representation and the canonical form in a very
convenient way. By simply incorporating the Schmidt values from the left and right sides, we
may obtain the A and B tensors, respectively. We can write this down explicitly, as

Γ
p1
a1

(Λa1
a1
Γ

a1,p2
a2

)(Λa2
a2
Γ

a2,p3
a3

) . . . (ΛaL−1
aL−1

Γ
aL−1
pL

) → Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . .ΘaL−1
pL

(2.33)

and

(Γp1
a1
Λ

a1
a1

) . . . (ΓaL−3,pL−2
aL−2

Λ
aL−2
aL−2

)(ΓaL−2,pL−1
aL−1

Λ
aL−1
aL−1

)ΓaL−1
pL

→Θ
p1
a1

. . .B aL−3,pL−2
aL−2

B aL−2,pL−1
aL−1

B aL−1
pL

. (2.34)

Of course it is also possible to convert Vidal representation into a mixed-canonical one
by combining the final two methods described. The transformation from canonical form to
Vidal representation can also be achieved, by simply reversing the steps taken above, however
without the prior knowledge of the singular values at each bond it would involve a sequence
of SVDs.

Division by the singular values is the final topic worth addressing in the context of the
representation shown in this section. Firstly, this operation is correctly defined, because we
are not storing the Schmidt values equal to 0, in order to decrease the bond dimensions of the
MPS. Secondly, division by very small singular values might lead to some numerical errors,
like the loss of normalization of the whole state. However, this issue can be simply fixed by
disregarding the entries which are smaller than some given threshold, like 10−14.

2.3.4 MPS bond-sizes

Let us finish the analysis of the properties of an arbitrary MPS, with a thorough investigation
of the bond-sizes of its tensors. Let us suppose, for the sake of simplicity that the chain under
study consists of even number of sites, each having a physical leg of size d . If we were to
generate an MPS in the left-canonical form, we would begin the whole procedure with a
vector of size d L . Then, we would reshape it into a d×d L−1 matrix, and further factorize it with
the use of SVD, arriving at matrices U1, S1 and V †

1 , where we added the subscript to highlight
how many SVDs were used to generate the matrices in question. By the properties of SVD,
U1, S1 and V †

1 are of sizes d ×d , d ×d and d ×d L−1, respectively. We can immediately relabel
the U1 matrix as A1, because it already has desired dimensions and no further reshaping is
required. Multiplication of S1 and V †

1 , giving as a resultΘ1, does not change the bond-sizes,
so Θ1 has shape d ×d L−1. We reshape Θ1 to "detach" one physical leg from the remaining
ones, and combine it with the already existing virtual leg, resulting in a d 2 ×d L−2 matrix Θ̂1.
Decomposition of Θ̂1 gives U2, S2 and V †

2 of sizes d 2 ×d 2, d 2 ×d 2 and d 2 ×d L−2, respectively.
We could reshape U2 into an order-3 tensor to clearly distinguish the physical legs from the
virtual ones, giving as a result a d×d×d 2 A2 tensor. We can see now that repeated application
of SVD followed by reshaping will result in a sequence of tensors with exponentially increasing
sizes d×d , d×d×d 2, d 2×d×d 3 and so on. However, this will only happen until we reach the
central bond of the chain. In this step, the matrix to be factorized would be of size d L/2 ×d L/2

(with the first dimension being the result of multiplication of the virtual bond-size d L/2−1

with the physical leg size d), so the bonds connecting three resulting matrices UL/2, SL/2 and
V †

L/2 would be of size d L/2. After the incorporation of singular values into the V †
L/2 we would

be left with the largest bond in the whole MPS, of size d L/2. In the following step, the matrix
to be factorized would be of size d L/2+1×d L/2−1, so the minimal value among the dimensions
involved would be equal to d L/2−1, which would result in a smaller bond-size than the one
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obtained in the previous step. We would see this decrease in virtual bond-sizes throughout
the whole second part of the MPS, with the final bond connecting sites L−1 and L, being of
size d .

Using the Penrose notation makes all the steps described above much clearer. In Fig. 2.15
we show once again the procedure of generating an MPS in the left-canonical form, however
this time we are extending the picture by adding the sizes of all legs. Thanks to this we can
predict the bond-size resulting form a given SVD by simply choosing the smaller value among
the bond-sizes of the tensor to be factorized.

Figure 2.15: MPS generation starting from a state stored as a vector.

If we closely examine the steps involved in the above scheme, we can notice two things.
Firstly, after the generation of an MPS is finished, we can arbitrarily contract two neighbouring
tensors and split them once again with the use of SVD, without any increase in the bond-
size connecting them. Despite the apparent senselessness of this technique, it has serious
implications in the two-dimensional case, where a similar procedure would result in an
increase in the bond dimension. For these kinds of tensor networks an extra care is needed
to preserve the desired structure of legs sizes, which will be explained in more detail in
Chapter 5.

Secondly, if we compare the sizes of the initial vector and the final tensor network, gener-
ated by this naive algorithm, we can see that the latter one uses much more parameters to
encode the same state! Let us recall that the state vector was of size d L. However, the two
central tensors in an MPS have shapes d L/2−1×d ×d L/2 and d L/2×d ×d L/2−1, respectively, so
just these two objects take twice as much memory as the initial vector. To address this issue,
SVDs are usually supplemented with truncations, which consist of discarding all but the first
χ singular values, where χ is a parameter set upfront launching any procedure operating on
an MPS. Singular values obtained from an SVD are always ordered in a non-ascending order,
thanks to which in the process of removing all entries with indices greater than χ, we are
effectively getting rid of the values that carry the least amount of information. Alternatively, a
given cutoff level can be chosen. All singular values that are smaller than this threshold are
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removed, similarly as in the case in which we are keeping only the first χ entries. An example
of such a truncation is depicted in Fig. 2.16.

0 5 10 15 20 25 30
index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sin
gu

la
r v

al
ue

s

Figure 2.16: Example set of singular values with a chosen cutoff level.

When we preserve the first χ singular values during truncation, we are actually keeping
the entries that carry the most entanglement. It has been shown that ground states of 1D
systems, obeying the so called area law [48, 49], can be efficiently represented by MPSs with
constant bond-size χ. The area law states that the boundary area, rather than the volume,
determines how much entanglement entropy is present in a given region of the system. In 1D
this corresponds to a situation, in which after undergoing some initial growth, the scaling
of entanglement present in the ground state of gapped, local systems (with exponentially
decaying correlation lengths), becomes constant. Moreover, it has been shown that the
complexity of representing ground states of 1D critical systems with the use of MPSs also
scales polynomially with the number of sites [50].

However, the above properties do not hold for 2D systems represented via MPSs. For
example, for a rectangular lattice of size Lx×Ly , and a gapped Hamiltonian, the entanglement
entropy is proportional to min{Lx,Ly}, which entails a large bond-size χ. Furthermore, with
gapless models this scaling becomes noticeably worse.

Regardless of the type of system under study, the error associated with each truncation
performed on an MPS can be calculated as the sum of discarded Schmidt values

ϵtr unc =
∑
i>χ

s2
i . (2.35)

Equivalently, we can define the fidelity of such an operation as

ftr unc = 1−ϵtr unc = 1− ∑
i>χ

s2
i , (2.36)

where we used the fact that the squares of all singular values must sum up to 1.
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2.4 Diagram representation of operators

We showed in the last section how tensor networks may be used to represent any given
quantum state. Now, we will look at various methods for expressing operators that can be
applied to the aforementioned states, using the same formalism.

2.4.1 Single-site operators

We begin with the most basic kind of operator that acts only on a single site in the chain. In
fact, this operator (in the form of a matrix) does not need any kind of special transformation,
and already can be expressed in the tensor diagram formalism as a shape with two legs. We
will follow the convention assigning the incoming arrow to the first leg, and an outgoing
arrow to the second one. The application of such an operator to an MPS is also particularly
simple, because it relies solely on its contraction with a corresponding tensor from the MPS.
Both the single-site operator and its application to an MPS are shown in Fig. 2.17.

Figure 2.17: (a) Graphical representation of a single-site operator. (b) Application of an
operator to an MPS. The arrows on horizontal bonds were omitted, as in the case of single-
site operators it is not necessary to preserve the canonical form of the MPS.

We can notice that the application of such an operator does not increase any bond
dimension in the tensor network, thus it does not generate any entanglement in the state.
Although it can introduce some shuffling, which might further lead to more entanglement
being generated after the application of a multi-site operator (which will be introduced in the
following section).

At this point, let us elaborate on the norm calculation example from the previous section
and examine how the expectation value of a single-site operator can be calculated, when the
quantum state is expressed as an MPS. If the mentioned MPS is in a mixed-canonical form,
e.g., the expectation value of an Ô[i ] operator (Ô operator acting on i th site) can be written
down as

〈ψ|Ô[i ]|ψ〉 =(B †)a′
L−1,p ′

L . . . (B †)
a′

i

a′
i+1,p ′

i+1
(Θ†)

a′
i−1

a′
i ,p ′

i
(A†)

a′
i−2

a′
i−1,p ′

i−1
. . . (A†)a′

1,p ′
1
Opi

p ′
i
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Θ
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B ai ,pi+1
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. . .B aL−1
pL
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L . . . (B †)
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i
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i+1
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i
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p ′
i
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. . .B aL−1
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L (B †)
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L−2
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L−1
. . . (B †)
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i+1

(
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= (B †)a′
L−1,p ′

L (B †)
a′

L−2

a′
L−1,p ′

L−1
. . . (B †)

a′
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= o. (2.37)

To better reflect the order in which the actual contractions would occur, we permuted
several tensors in the second and penultimate line above. It should be emphasized that
in general changing the order of, e.g., matrix multiplications, can only be reversed if those
matrices commute. However, by using Einstein notation we are explicitly indicating, which
contraction is conducted at any particular moment, which justifies the tensor reordering.

As expected, the whole expression resulted in a scalar o, which is the expectation value of
an operator Ô[i ]. As previously, all of the steps presented in Eq. (2.37) become particularly
easy to follow, when we use Penrose notation, and are shown in Fig. 2.18.

Figure 2.18: Calculation of single-site expectation value of an MPS in the mixed-canonical
form.

Single-site operators might also be used to calculate the long-range correlations. In that
case, we would simply apply two operators to a pair of the chain sites, which in general
do not need to be adjacent. Nevertheless, in that scenario the contraction of all tensors
between these two sites in question needs to be performed (both in the ket and bra states)
with the additional condition that the orthogonality center must be one of these tensors. This
procedure is illustrated in Fig. 2.19.

2.4.2 Multi-site operators

As in the case of single-site operators, we begin the construction of a multi-site operator from
its matrix definition. As previously, this tensor can be depicted as a shape with two legs, the
former incoming, and the latter outgoing one. Now, the only transformation that needs to be
performed on this tensor is splitting of legs, to match the sizes of physical legs of sites. For
example, an operator acting on two spin−1/2 sites can be expressed as a 4×4 matrix, which
should be reshaped into an order-4 tensor of size 2×2×2×2. Of course we can also define
operators acting on more than just two sites, which would differ only in the number of legs.
Examples of some multi-site operators are shown in Fig. 2.20.

Application of such operators to an MPS, or calculation of their expectation values, is very
similar to the case of single-site operators. The only difference lies in the number of tensors
involved. We can begin the whole procedure by contracting the sites of the MPS, resulting in

22



SECOND CHAPTER: ISOMETRIC TENSOR NETWORKS IN 1D SECTION 2.4.2

Figure 2.19: Calculation of long-range correlations of an MPS in the mixed-canonical form.

Figure 2.20: Examples of (a) a two-site operator, and (b) a four-site one.

a multi-site orthogonality center. To preserve the properties of the canonical form we need
to make sure that one of the tensors being contracted is the initial single-site orthogonality
center, while the remaining tensors must form its immediate surroundings. This operation is
particularly easy in the case of just two sites, when it is sufficient to contract the orthogonality
center with one of its neighbouring nodes, before proceeding to the contraction with the
operator. After the application of such an operator is finished, we can restore the initial
structure of the MPS, with one tensor per node, by means of SVD. An example of application
of a 2-site operator and the calculation of its expectation value is shown in Fig. 2.21.

As can be seen from Fig. 2.21, the SVD conducted in order to restore the initial structure
of the MPS leads to an increase in the bond-size, which corresponds to entanglement being
generated in the state. To keep the memory footprint constant, we can truncate the bond in
question, or run a compression algorithm (which will be introduced later on).

Let us exemplify the construction of a 2-site operator on an explicit model. For that
purpose, we choose the transverse field Ising (TFI) model, whose Hamiltonian is defined as
follows

Ĥ =−J
L−1∑
i=1

σ̂x
i σ̂

x
i+1 − g

L∑
i=1

σ̂z
i . (2.38)
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Figure 2.21: (a) Application of a two-site operator on an MPS. (b) Calculation of an expectation
value with the use of a multi-site operator.

Assuming our chain consist of only 2 sites, above abbreviated formula can be expanded
as

Ĥ =−J (σ̂x ⊗ σ̂x)− g (σ̂z ⊗ 1+ 1⊗ σ̂z). (2.39)

Let us firstly focus on the interaction term. By doing explicit matrix multiplication we get

−J (σ̂x ⊗ σ̂x) =−J

(
0 1
1 0

)
⊗

(
0 1
1 0

)
=


0 0 0 −J
0 0 −J 0
0 −J 0 0
−J 0 0 0

 . (2.40)

The resulting matrix could be already reshaped into an order-4 tensor, giving us the
desired two-site operator representing the interaction between the two sites. To obtain the
whole Hamiltonian under study, this two-site operator could be supplemented with two
single-site ones, describing single site terms. However, if we were to calculate the expectation
value of energy of a given state for such an operator, represented by three separate tensors,
we would have to conduct more contractions in order to arrive at the desired result. We can
simplify this operation by incorporating the single-site terms into the bond-operator given in
Eq. (2.40). To get the most general form possible, we can also assume that the external field
acting on the two sites (given by the g variable) differs, and indicate its strength by g1 and g2,
for the first and second sites, respectively. This gives us
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−J (σ̂x ⊗ σ̂x)− g1(σ̂z ⊗ 1)− g2(1⊗ σ̂z) =


−g1 − g2 0 0 −J

0 −g1 + g2 −J 0
0 −J g1 − g2 0
−J 0 0 g1 + g2

 . (2.41)

The final step to be made is to reshape the matrix given in Eq. (2.41) into an order-4 tensor
(a matrix of matrices)


−g1 − g2 0 0 −J

0 −g1 + g2 −J 0
0 −J g1 − g2 0
−J 0 0 g1 + g2

→


( −g1 − g2 0

0 −J

)(
0 −g1 + g2

−J 0

)
(

0 −J
g1 − g2 0

) ( −J 0
0 g1 + g2

)
 . (2.42)

Although the above operator was designed with just two sites in mind, in combination
with the canonical form of the MPS it can be used to calculate the expectation value of energy
in the TFI model for a chain of arbitrary length. The procedure would consist of just two
steps, which should be repeated in a sweep going over all bonds in the MPS. We could begin
with an MPS in the right-canonical form, in which, for the record, the orthogonality center
is located on the left-most site of the chain. We could calculate the bond-energy for these
two sites utilizing the fact that contractions of all of the tensors from the third onward could
be omitted. Then, we could shift the orthogonality center to the second site and calculate
again the energy of the next two sites. By conducting this procedure for L−1 times we would
obtain energies assigned to each virtual bond in the whole MPS. Then, the total energy would
be simply the sum of all the component energies. The whole sweeping operation is show in
Fig. 2.22.

The method described in the last paragraph needs just one last adjustment to work
properly. Due to the way in which the whole algorithm works, we would measure twice the
single-site terms contributing to the bond-energies. To remedy that it is sufficient to divide
by 2 all gi variables for the sites in the bulk of the chain, leaving g1 and gL unchanged.

2.4.3 Matrix Product Operators

The techniques shown above for the generation of operators as tensor networks although
correct, have their limitations. For example, efficient representation of long-range interac-
tions with this approach becomes problematic. Furthermore, it is desirable to express the
operators as a series of connected tensors, with just one tensor per site of the chain, similar
to how we created the MPS representations of quantum states.

By generalizing the formula for an arbitrary MPS defined Eq. (2.16), we can express the
coefficients of an operator Ô as

O(p1,p2,...,pL)
(p ′

1,p ′
2,...,p ′

L)
=W p1

p ′
1,a1

W p2,a1

p ′
2,a2

. . .W pL−1,aL−2

p ′
L−1,aL−1

W pL ,aL−1

p ′
L

. (2.43)

We can see that similarly to the case of an MPS, to obtain given coefficient of Ô it is
necessary to conduct a product of matrices, hence the name Matrix Product Operator (MPO)
[37, 51–53]. A graphical depiction of an MPO is shown in Fig. 2.23.

While SVD-based methods for the effective generation of MPOs have been proposed [54],
we will demonstrate an alternative strategy based on the so-called Finite State Machines (FSM)

25



SECOND CHAPTER: ISOMETRIC TENSOR NETWORKS IN 1D SECTION 2.4.3

Figure 2.22: Calculation of the expectation value of energy with the use of just a single two-site
operator. (a) Generation of multi-site orthogonality center. (b) Calculation of the first bond
energy. (c) Shifting of the orthogonality center. (d) computation of the second bond energy.

Figure 2.23: Example of an MPO.

[55]. We will present it on the example of the Heisenberg XXZ model, whose Hamiltonian is
defined as

Ĥ =
L−1∑
i=1

( J

2
Ŝ+

i Ŝ−
i+1 +

J

2
Ŝ−

i Ŝ+
i+1 + J z Ŝz

i Ŝz
i+1

)
−h

L∑
i=1

Ŝz
i . (2.44)

The above abbreviated formula can be of course expanded as

Ĥ = J

2
Ŝ+

1 ⊗ Ŝ−
2 ⊗ 1⊗ . . .+ J

2
Ŝ−

1 ⊗ Ŝ+
2 ⊗ 1⊗ . . .+ J z Ŝz

1 ⊗ Ŝz
2 ⊗ 1⊗ . . .

−hŜz
1 ⊗ 1⊗ 1⊗ . . .− 1⊗hŜz

2 ⊗ 1⊗ . . .+
. . . (2.45)

Now, in order to define the Hamiltonian of the whole system, we will introduce an FSM,
which would act in a similar fashion to the Turing machine traversing a given tape. The FSM
will have a set of internal states, just like the Turing machine, however in this comparison
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we will replace the tape with a string of operators appearing in Ĥ , each acting on a local
Hilbert space. As a starting point for our FSM we choose the left-most edge of the string, from
which we will proceed rightwards. The FSM begins in the R (ready) state and can transition to
another state by inserting a specific operator in the string. Let us assume that there are four
additional states: 1, 2, 3, which will be the "intermediate" states, and the final one F . Starting
at the first position in the string, we can insert four different operators: 1 (leaving the state of
the FSM unchanged), Ŝ+, Ŝ− and Ŝz , changing the state to 1, 2 and 3, respectively. Placing
of any of the spin operators forces us to immediately insert the corresponding operator
appearing in Ĥ , to complete the interaction term. For example, putting of Ŝ+ imposes
placement of J

2 Ŝ−, which also changes the state of the FSM to F . Similarly, for the case of

remaining intermediate states 2 and 3, the FSM can transition to F by inserting J
2 Ŝ+ and

J z Ŝz , accordingly. Finally, the FSM being in the F state has already placed all possible spin
operators in the string, leaving the unit operator 1 as the only possible option to be inserted.
However, as already mentioned, F is the final state, so similarly to the case of R , placement of
1 leaves FSM in F .

Summarizing, we can list all possible transitions in the FSM as follows: R - R by 1, R - 1 by
Ŝ+, R - 2 by Ŝ−, R - 3 by Ŝz , R - F by −hŜz (the single-site term), 1 - F by J

2 Ŝ−, 2 - F by J
2 Ŝ+, 3 -

F by J z Ŝz and finally F - F by 1. The corresponding FSM is depicted in Fig. 2.24.a.

Figure 2.24: Finite state machines generating MPOs for (a) the nearest-neighbors transverse
field and (b) the long-range J1, J2 Ising models.

However, the graphical illustration is not the only possible way to encode all possible
changes of the FSM state. For that purpose we can use an operator-valued matrix, whose basis
is spanned by the 5 states of the FSM. Each operator appearing in such a matrix corresponds
to the transition between corresponding states, resulting in the following bulk-tensor of the
MPO

W[i ] =



R 1 2 3 F
R 1 0 0 0 0
1 Ŝ+ 0 0 0 0
2 Ŝ− 0 0 0 0
3 Ŝz 0 0 0 0
F −hŜz (J/2)Ŝ− (J/2)Ŝ+ J z Ŝz 1

. (2.46)

Each entry in above 5×5 matrix is also a 2×2 matrix, resulting in W[i ] being a order-4
tensor, with two virtual bonds of size 5. Recalling the shapes of the tensors included in an
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MPS we can notice that its first and last tensors have one virtual bond less than the bulk-
tensors (assuming no periodic boundary conditions). We must take this fact into account
while generating the edge tensors of the MPO, and adjust their sizes in a similar fashion.
For the product W[1] ·W[2] · · ·W[L] to yield the Hamiltonian given in Eq. (2.44), we need

to surround it with the boundary vectors vL = (
0 0 0 0 1

)
and vR = (

1 0 0 0 0
)T

,
arriving at vL ·W[1] ·W[2] · · ·W[L] · vR . The vL and vR vectors can be incorporated in the left-
and right-most tensors of the MPO, respectively, resulting in

W[1] =
(−hŜz (J/2)Ŝ− (J/2)Ŝ+ J z Ŝz 1

)
, W[L] =


1

Ŝ+

Ŝ−

Ŝz

−hŜz

 . (2.47)

As implied at the beginning of this section, MPOs can also incorporate long-range inter-
actions. We will exemplify the construction of such an operator on the case of a J1, J2 Ising
model

Ĥ = J1

L−1∑
i=1

σ̂z
i σ̂

z
i+1 + J2

L−2∑
i=1

σ̂z
i σ̂

z
i+2. (2.48)

The FSM for this model is constructed analogous to the case of the Heisenberg model,
with the difference that we introduce one possible transition between intermediate states via
an unitary operator. Graphical illustration of such an FSM is given in Fig. 2.24.b. Again, by
choosing the states of the FSM as basis for the matrix, we can encode all possible transitions
in the following bulk-tensor

W ′
[i ] =


R 1 2 F

R 1 0 0 0
1 J1σ̂

z 0 1 0
2 J2σ̂

z 0 0 0
F 0 σ̂z 0 1

. (2.49)

We can obtain the edge-tensors in a way similar to the one given in the example of a
short-range Hamiltonian, arriving at

W ′
[1] =

(
0 σ̂z 0 1

)
, W ′

[L] =


1

J1σ̂
z

J2σ̂
z

0

 . (2.50)

Having defined the algorithm for expressing Hamiltonians in the form of MPOs, let us
look at two possible, particularly interesting cases of their use. Firstly, the application of an
MPO to an MPS can be performed as shown in Fig. 2.25.

We can see that after the contractions over physical legs are finished, the resulting tensor
network has double horizontal bonds. These legs can be combined together, giving as a result
an MPS, with virtual bonds of larger sizes than the initial state. This unwanted property will
be remedied by methods introduced in the following section.

The second operation that can be carried out on an MPO, is the calculation of its expecta-
tion value. This is achieved by "sandwiching" an MPO between an MPS and its Hermitian
adjoint, as illustrated in Fig. 2.26.

28



SECOND CHAPTER: ISOMETRIC TENSOR NETWORKS IN 1D SECTION 2.5

Figure 2.25: Application of an MPO to an MPS.

Figure 2.26: Calculation of expectation value of energy of an MPO.

It should be pointed out that contraction over all bonds depicted in Fig. 2.26 results in
a scalar, being the desired expectation value, while no other operations such as shifting of
the orthogonality center are needed. If the MPO expresses some particular Hamiltonian, this
value would be the expectation value of energy of the model under study. We can see that
this method is much simpler than the entire procedure required to obtain the expectation
value of energy using bond operators, demonstrating the utility of MPOs.

2.5 Tensor network compression

While investigating the properties of a state produced by applying an MPO to an MPS we have
seen that its horizontal bonds have larger sizes than the initial ones. Therefore, the size of the
MPS and, consequently, its memory footprint would rapidly increase as a result of a number
of MPO applications. To prevent this from happening we need a method of compressing given
MPS. We will present two methods to achieve this goal: an SVD-based and a variational one.

2.5.1 Compression by SVD

Let us assume that we were given an MPS in the left-canonical form, with maximal bond-
size χ′, which we would like to compress. The most naive approach would be to conduct a
procedure similar to the one allowing for cannonization of given MPS that is to conduct a
sweep of SVDs with truncations throughout the whole chain, going from right to left [28].
However in this scenario, each SVD would factorize a tensor with just a single physical leg
of size d . Let us once again write down the coefficients of state |ψ〉 stored as an MPS in the
left-canonical form

Ψ(p1,p2,...,pL) = Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

. (2.51)
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We can factorize the right-mostΘ tensor by means of SVD as follows

Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

= Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

U aL−1
aL−1

SaL−1
aL−1

B aL−1
pL

≈ Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Ũ aL−1
aL−1

S̃aL−1
aL−1

B̃ aL−1
pL

, (2.52)

where we immediately relabeled the V † matrix as B tensor (because it already had a
proper form). Second line in the above equation represents the truncation of singular values,
which is indicated by the ∼ symbol over the tensors affected by this operation.

We can proceed to the next step of compression by contracting the Ũ and S̃ matrices with
the A tensor assigned to the (L−1)th site, resulting in

Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Ũ aL−1
aL−1

S̃aL−1
aL−1

B̃ aL−1
pL

= Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . .Θ̃aL−2,pL−1
aL−1

B̃ aL−1
pL

. (2.53)

By conducting these two steps of decomposition and tensor multiplication L−1 times (in
total), we arrive at the right-normalized, compressed MPS

Ap1
a1

Aa1,p2
a2

Aa2,p3
a3

. . . AaL−2,pL−1
aL−1

Θ
aL−1
pL

≈ ... ≈ Θ̃p1
a1

B̃ a1,p2
a2

B̃ a2,p3
a3

. . . B̃ aL−2,pL−1
aL−1

B̃ aL−1
pL

. (2.54)

The consecutive steps of this method are presented graphically in Fig. 2.27.

Figure 2.27: Diagrammatic representation of the SVD compression.

While getting rid of the singular values during SVDs, we can adopt two strategies. Firstly,
we can stick to a predetermined value ofχ as the bond-size for the resulting MPS, however this
approach does not provide any bounds on the distance (measured as the 2-norm) between
the state that we want to compress, and the final one. An alternative policy would be to pick
an acceptable error ϵ, and during truncation omit the number of singular values, whose sum
of squares is smaller than or equal to ϵ (as described in Eq. (2.35)). This approach would
implicitly pick the bond-size χ, allowing for a more flexible construction of the final MPS.
The risk associated with this method is that the singular values may be distributed uniformly,
e.g., in a highly entangled state, in which case the number of omitted singular values would
be minor, leading to a large bond-size χ. We can see then that there is a certain trade-off
between the fidelity of compression and the number of variational parameters stored in the
final MPS. However, this issue will only be relevant for highly correlated states, while in a wide
range of cases we will be able to effectively compress a particular state while maintaining its
properties.
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We will now take a closer look at the computational cost of this kind of compression. It is
known that this technique is very fast for χ′ ∼χ, however becomes slow for χ′ ≫χ [28]. Let
us therefore analyze the complexities of the most expensive SVD and tensor contraction.

Starting from the right edge of the chain, we group the right virtual leg of each subsequent
Θ tensor with the physical leg, to create a matrix that can be decomposed by SVD. The
resulting bonds connecting U , S and V † matrices will be of size d (assuming no truncation is
performed yet, and χ′ ≫ d), due to the properties of SVD. After proper multiplication and
reshaping, the next tensor to be decomposed will be of size χ′× (d ·d). The factorization
of this matrix will give in turn a bond of size d 2, which will become the right, virtual bond
of the next Θ tensor. This situation will repeat up to the nth iteration, in which the right
bond, being of size d n , after the combination with physical leg will result in bond of size d n+1,
which will become larger than χ. This will be the moment of the first truncation, resulting
in the U matrix of size χ′×χ and V † matrix of size χ×d n+1. After incorporation of singular
values into U and its further multiplication with the tensor located on the left, we will obtain
the largestΘ tensor to be factorized during the whole process, being of size χ′×d ×χ. The
right dimension ofΘwill never become larger than χ, while under the initial assumptions we
are guaranteed that the left bond will be of size χ′ or smaller. Knowing the computational
cost of SVD (see Section 2.2) we get the complexity of the largest factorization being equal to
O(χ′dχ ·χ′) =O((χ′)2dχ) for χ′ ≤ dχ, and O(χ′dχ ·dχ) =O((χ′)d 2χ2) otherwise. These limits
however fail, when the initial MPS is not in the canonical form. In that case, the mere costs of
SVDs bringing it to a properly normalized form are equal to O((χ′)3d) each [28].

Finally, the U tensor resulting from the decomposition (and further truncation) of the
largest possibleΘwill be of size χ′×χ. Thus, its further multiplication with the next tensor
with dimensions χ′×d ×χ′ will cost O((χ′)2dχ) (see Section 2.1.1).

We will end this section with a remark that an SVD-based compression is not an optimal
one. Additionally, by its design, it can only operate on a single bond, which could make it
difficult to escape local minima. However, this method can generate a good starting point for
the next algorithm to be introduced - the variational compression.

2.5.2 Variational compression

Another approach to obtain a compressed state |ψ̃〉 from the initial one |ψ〉 is to minimize
the distance between them, measured as 2-norm that is ∥|ψ〉−|ψ̃〉∥2

2 = (〈ψ|−〈ψ̃|)(|ψ〉−|ψ̃〉) =
〈ψ|ψ〉− 〈ψ|ψ̃〉− 〈ψ̃|ψ〉+ 〈ψ̃|ψ̃〉, with respect to |ψ̃〉. This can be achieved by choosing an
initial guess for |ψ̃〉 (being random, or given by the SVD-compression), followed by further
iterative method making use of the fact that all tensors appearing in the MPSs can be treated
as variational parameters [28]. In each iteration we will be fixing all tensors besides a single
one, which will be updated in a way minimizing the aforementioned distance.

Assuming no normalization of the MPSs (e.g., in the case of randomly chosen initial guess
for |ψ̃〉), we can call tensors of |ψ〉 and |ψ̃〉 as T and T̃ , respectively. Then, we can find an
updated tensor T̃ pi (assigned to the i th site) by extremizing the distance with respect to
(T̃ †)p ′

i
. The latter tensor appears only in the 〈ψ̃|ψ̃〉− 〈ψ̃|ψ〉 part for the expression for the

norm, which gives us
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∂

∂(T̃ †)p ′
i

(〈ψ̃|ψ̃〉−〈ψ̃|ψ〉) =
(
(T̃ †)a′

L−1,p ′
L . . . (T̃ †)

a′
i

a′
i+1,p ′

i+1
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . . (T̃ †)a′

1,p ′
1

)
×

(
T̃ p1

a1
. . . T̃ ai−2,pi−1

ai−1
T̃ ai−1,pi

ai
T̃ ai ,pi+1

ai+1
. . . T̃ aL−1

pL

)
−

(
(T̃ †)a′

L−1,p ′
L . . . (T̃ †)

a′
i

a′
i+1,p ′

i+1
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . . (T̃ †)a′

1,p ′
1

)
×

(
T p1

a1
. . .T ai−2,pi−1

ai−1
T ai−1,pi

ai
T ai ,pi+1

ai+1
. . .T aL−1

pL

)
= 0. (2.55)

As can be seen, the (T̃ †)p ′
i

disappeared from the above equation, leaving some dangling
legs, which (as will be shown later) will serve us as the bonds of the newly obtained tensor. By
reorganizing Eq. (2.55) we obtain

(
(T̃ †)a′

L−1,p ′
L . . . (T̃ †)

a′
i

a′
i+1,p ′

i+1
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . . (T̃ †)a′

1,p ′
1

)
×

(
T̃ p1

a1
. . . T̃ ai−2,pi−1

ai−1
T̃ ai−1,pi

ai
T̃ ai ,pi+1

ai+1
. . . T̃ aL−1

pL

)
=

(
(T̃ †)a′

L−1,p ′
L . . . (T̃ †)

a′
i

a′
i+1,p ′

i+1
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . . (T̃ †)a′

1,p ′
1

)
×

(
T p1

a1
. . .T ai−2,pi−1

ai−1
T ai−1,pi

ai
T ai ,pi+1

ai+1
. . .T aL−1

pL

)
. (2.56)

We can easily permute the order in which tensors appeared in Eq. (2.56) by using the
Einstein notation, allowing us to organize the contractions as follows

(
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . .

(
(T̃ †)a′

1,p ′
1
T̃ p1

a1

)
. . . T̃ ai−2,pi−1

ai−1

)
×

(
(T̃ †)

a′
i

a′
i+1,p ′

i+1
. . .

(
(T̃ †)a′

L−1,p ′
L T̃ aL−1

pL

)
. . . T̃ ai ,pi+1

ai+1

)
T̃ ai−1,pi

ai

=
(
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . .

(
(T̃ †)a′

1,p ′
1
T p1

a1

)
. . .T ai−2,pi−1

ai−1

)
×

(
(T̃ †)

a′
i

a′
i+1,p ′

i+1
. . .

(
(T̃ †)a′

L−1,p ′
L T aL−1

pL

)
. . .T ai ,pi+1

ai+1

)
T ai−1,pi

ai
. (2.57)

Although the above equation appears to be very complicated at first glance, it becomes
fairly simple to understand once the correct order of contractions is explained. Let us firstly

focus on the
(
(T̃ †)

a′
i−2

a′
i−1,p ′

i−1
. . .

(
(T̃ †)a′

1,p ′
1
T̃ p1

a1

)
. . . T̃ ai−2,pi−1

ai−1

)
part. By conducting contractions

starting from the inner-most brackets we can notice that we are summing over the bonds of
the tensors assigned to the first site, followed by contraction of tensors on the second site
(including the result of the first operation), and so forth, up to the (i −1)th site. This whole
procedure can be thought of as computing the left environment of the i th site.

A similar reasoning can be conducted for the
(
(T̃ †)

a′
i

a′
i+1,p ′

i+1
. . .

(
(T̃ †)a′

L−1,p ′
L T̃ aL−1

pL

)
. . . T̃ ai ,pi+1

ai+1

)
part appearing in Eq. (2.57). In that case, we are just starting contractions from the Lth site
and proceed leftwards, up to the (i +1)th site, obtaining the right environment of the i th site.

As a result, we can relabel the left and right environments of the i th site as L̃ and R̃,
respectively, and arrive at(

L̃a′
i−1,ai−1

· R̃a′
i ,ai

)
T̃ ai−1,pi

ai
= La′

i−1,ai−1
T ai−1,pi

ai
Ra′

i ,ai . (2.58)
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Above we separated the L̃ and R̃ labels from the L and R ones to emphasize the fact that
in the former case we are contracting the MPSs representing the compressed state |ψ̃〉 and its
Hermitian adjoint 〈ψ̃|, while in the latter we are operating on |ψ〉 and 〈ψ̃|.

We can treat the two disjoint parts L̃ and R̃ of the tensor network on the left hand-side

of Eq. (2.58) as a single operator Ẽ
a′

i ,ai

a′
i−1,ai−1

. Moreover, contraction of all of the tensors on the

right-hand side gives a single tensor (T ′)
a′

i ,pi

a′
i−1

. If we combine these two facts, we can rewrite

Eq. (2.58) as

Ẽ
a′

i ,ai

a′
i−1,ai−1

T̃ ai−1,pi
ai

= (T ′)
a′

i ,pi

a′
i−1

, (2.59)

whose constituents can be further reshaped, resulting in

Ẽ
(a′

i−1,a′
i )

(ai−1,ai ) T̃ (ai−1,ai )
pi

= (T ′)
(a′

i−1,a′
i )

pi
. (2.60)

The last operation performed allows us to see the Ẽ
(a′

i−1,a′
i )

(ai−1,ai ) T̃ (ai−1,ai )
pi

contraction as a simple
matrix-matrix multiplication. If we also take into account the fact that the pi index iterates

over the columns of the T̃ (ai−1,ai )
pi

and (T ′)
(a′

i−1,a′
i )

pi
matrices, we may slice the data by taking

corresponding column vectors from each of the two matrices, for each value of pi . As a result,
we can write down a system of linear equations for each pi as follows

Ax = b, (2.61)

which can be further solved via an iterative solver, like the conjugate gradient or trust
regions methods.

However, the computational cost of steps involved in obtaining the Ẽ
a′

i ,ai

a′
i−1,ai−1

operator

and subsequent solving of the system of linear equations can be immensely reduced. At
the beginning of this section we assumed no normalization was imposed on the |ψ〉 and
|ψ̃〉 states. Although, if the MPSs in question were in the mixed canonical form, with the
orthogonality center of the compressed state being at the site that was updated, we could
notice that L̃a′

i−1,ai−1
= δa′

i−1,ai−1
and R̃a′

i ,ai = δa′
i ,ai . As a result, we could rewrite Eq. (2.59) as

T̃ ai−1,pi
ai

= (T ′)
a′

i ,pi

a′
i−1

. (2.62)

In this way, we are able to omit the contractions resulting in L̃a′
i−1,ai−1

and R̃a′
i ,ai environ-

ments and the further use of an iterative solver. Thus, the updated tensor on given site can be
obtained only by the contraction of |ψ〉 with 〈ψ̃|, from which a single tensor was removed.
Fig. 2.28 shows diagrammatic representations of the more general compressing algorithm, as
well as the canonical form-based one.

There are a number of steps that might be taken in order to improve the speed of com-
pression. Firstly, after optimization of given tensor of |ψ̃〉 is finished, we need to shift the
orthogonality center, so that the update on the following site can be made. This can be done,
as usual, by means of the SVD. For the sake of simplicity, let us assume that we have optimized
the i th site and need to proceed rightwards (a similar reasoning is of course valid for the
leftward move). We can notice that the tensor being updated at given moment (or more
specifically, its Hermitian adjoint) disappears from the right hand-side of Eq. (2.58). This
means that while performing the factorization we can keep only the U matrix, while S and V †

may be omitted, because the tensor resulting from their contraction will be modified during
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Figure 2.28: Variational compression algorithm (a) in the most general form, and (b) utilising
the canonical form of the MPS.

the update anyway. In the case of the leftward move the V † matrix can be preserved, while S
and U tensors can be ignored. Moreover, since each of the |ψ〉 state tensors will be contracted
with a corresponding tensor from the 〈ψ̃|, it is not necessary to keep |ψ〉 in canonical form.
The consequence of this is the observation that no further SVDs need to be conducted on
|ψ〉, which remains constant throughout each iteration of the compression algorithm.

With the variational compression it is also possible to update two sites simultaneously.
This modification reduces the chances of getting caught in a local minimum and can greatly
reduce the distance between the initial state, and the compressed one. Graphical illustration
of this version of the algorithm is shown in Fig. 2.29.

Figure 2.29: Two-site version of the variational compression algorithm.

Finally, in order to reduce the number of contractions, the left and right environments
of given sites are usually stored in an array. Then, when a given tensor of |ψ̃〉 is updated, its
Hermitian adjoint is contracted with its left (right) environment, along with the corresponding
tensor from |ψ〉, resulting in the new environment of the site located to the right (left). This
technique is illustrated in Fig. 2.30.

2.6 Time Evolving Block Decimation

So far, we have mostly concentrated on the examination of quantum states that remained
constant over time. The only exceptions to this rule were situations, in which these states
were modified by application of an operator, which was represented as a bond operator or an
MPO. In this section we will build upon these methods, and demonstrate the Time Evolving
Block Decimation (TEBD) algorithm [25, 26], which enables the time evolution of slightly
entangled physical states. Next, we will show how a small modification to this method can be
used to determine the ground state of a chosen physical model.
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Figure 2.30: (a) Division of the environment of a given site into the left and right parts. (b)
Storing of the left part of the environment in an array with emphasis on which tensors it
consists of for a given cell. (c) Contraction resulting in a single tensor representing the left
part of the environment. (d) Update of the environment.

2.6.1 Real time evolution

The TEBD algorithm is based on the Suzuki-Trotter decomposition [56–58], which allows for
approximation of matrix exponentiation. The first order decomposition is given by

eλ(A+B) = lim
n→∞(e A/neB/n)n (2.63)

or, analogously

eλ(A+B) = eλAeλB +O(λ2), (2.64)

where λ≪ 1 is a parameter, and A and B are matrices, which in general do not commute
generating the error represented by the last term in the above equation. Of course we can ex-
tend this formula to the case, in which we are dealing with a much larger number of summed
elements. For example, we can use this approximation to transform the evolution operator
given by a Hamiltonian with nearest-neighbours interactions. This Hamiltonian can be
written as Ĥ =∑L−1

i=1 ĥi ,i+1, where ĥi ,i+1 are the interaction terms between the neighbouring
nodes, while the corresponding evolution operator as

Û (t ) = e− i
ħ Ĥ t = e− i t

ħ
∑L−1

i=1 ĥi ,i+1 . (2.65)
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Following Eq. (2.64) we can divide the total evolution time t into N smaller time steps τ.
Then, the evolution operator over the time τ can be written as

Û (τ) = e− i
ħ Ĥτ =

L−1∏
i=1

e−i ĥi ,i+1τ+O(τ2), (2.66)

while the whole evolution would consist of N applications of operator Û (τ). We can see
that in order to increase the final precision of the simulation we can decrease the time step τ,
while simultaneously increasing their total number N .

To carry out such an evolution of a state stored as an MPS in the right-canonical form,

we could apply a sequence of operators e− i
ħ ĥi ,i+1τ on each pair of neighbouring sites, starting

on the left edge of the chain and proceeding rightwards. Following the steps described
in Section 2.4.2, before application of each operator we would merge two neighbouring

sites, contract the resulting 2-site orthogonality center with e− i
ħ ĥi ,i+1τ, and finally split the

subsequent tensor to restore the initial structure of the MPS, with one tensor per node. To
keep the canonical form intact, during the splitting via SVD we could incorporate the singular
values into the V † matrix, so that no additional operation is needed before the application of
the following operator. All these steps are illustrated in Fig. 2.31.

Figure 2.31: Basic version of the TEBD algorithm.

However, the error resulting from the noncommutativity of bond Hamiltonians can be
diminished with the use of second-order Trotter-Suzuki decomposition, utilizing the forward
and backward multiplication of constituent operators, giving us

Û (τ) =
L−1∏
i=1

e− i
ħ ĥi ,i+1(τ/2)

1∏
j=L−1

e− i
ħ ĥ j , j+1(τ/2) +O(τ3). (2.67)

This method is illustrated in Fig. 2.32.a. At first sight it would seem that the second-order
decomposition would require two times more applications of operators in comparison to the
first order version. However, using specific characteristics of the Hamiltonian in question
and aspects of the tensor networks discussed in this work, we can get around this problem.

Firstly, we can notice that the bond operators on even bonds commute with each other,
thanks to which they can be applied in parallel. The same is true for the odd-bond operators.
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Figure 2.32: (a) Naive application of the operators resulting form a second-order Trotter-
Suzuki decomposition. (b) Parallelization of application of operators shown in the sub-figure
(a).

As a result we can reorganize the operators shown in Fig. 2.32.a, evolving the MPS over a single
time step, into just 4 layers, which are shown in Fig. 2.32.b. Vidal representation is the best fit
for this arrangement of operators, because thanks to it we can avoid unnecessary SVDs that
would have to be conducted to shift the orthogonality center over the bonds, on which no
operator is applied in given layer. Also, by separating the even interactions from the odd ones
in the definition of the Hamiltonian Ĥ = Ĥeven + Ĥodd , we can denote the corresponding

layers of operators as e− i
ħ Ĥeven (τ/2) and e− i

ħ Ĥodd (τ/2).
Secondly, the odd-bond operators appearing in the second and third layers in Fig. 2.32.b

can be grouped together, if no properties of the MPS are measured in-between the layers [28].
As a result we can reformulate the evolution operator over a single time step as

Û (τ) = e− i
ħ Ĥeven (τ/2)e− i

ħ Ĥoddτe− i
ħ Ĥeven (τ/2) +O(τ3). (2.68)

Finally, we can notice that we can also combine the layers of even-bond operators of the
subsequent layers, again, if no properties of the MPS are measured between them. Thanks to
this observation, we can write down the evolution operator over the time t as

Û (t ) = e− i
ħ Ĥeven (τ/2)e− i

ħ Ĥoddτe− i
ħ Ĥeven (τ/2)e− i

ħ Ĥeven (τ/2) . . .

. . .e− i
ħ Ĥeven (τ/2)e− i

ħ Ĥeven (τ/2)e− i
ħ Ĥoddτe− i

ħ Ĥeven (τ/2) +O(Nτ3)

= e− i
ħ Ĥeven (τ/2)e− i

ħ Ĥoddτe− i
ħ Ĥevenτ . . .e− i

ħ Ĥevenτe− i
ħ Ĥoddτe− i

ħ Ĥeven (τ/2) +O(Nτ3). (2.69)

Thus, the second-order decomposition of operator Û (t ) requires the application of just
one more layer compared to the first-order decomposition (using the even-odd grouping
of operators), which is a completely acceptable price given the increase in precision we
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obtain. All the steps involved in reordering of the operators resulting in Eq. (2.69) are shown
graphically in Fig. 2.33.

Figure 2.33: Merging of layers occurring in the second order Trotter-Suzuki decomposition.

2.6.2 Imaginary time evolution

By introducing a small change into the above method we can use it not only to evolve a given
quantum state stored as an MPS, but also obtain the ground state of chosen Hamiltonian
Ĥ . Let us assume that Ĥ is time independent. In such a case, we can get the energy basis by
solving the eigenvalue problem

Ĥ |ψn〉 = En |ψn〉, (2.70)

where ψn are the eigenvectors, while En are the the energy eigenvalues. Then, we can
choose a random initial state |ψr andom〉, which can be expressed in the above energy basis,
at time t0, as follows

|ψr andom(t0)〉 =∑
n

cn |ψn〉, (2.71)

where cn are the expansion coefficients. Now, we can evolve this state up to the moment
t , arriving at

|ψr andom(t )〉 =∑
n

cne−i En (t−t0)/ħ|ψn〉. (2.72)

From Eq. (2.72) we can see that the contributions to the superposed state, coming from
each of the basis eigenvectors, oscillate throughout the whole evolution with the frequency
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proportional to En/ħ. However, if we replace the real time t with its imaginary substitute
τ = i t , and assume τ0 = 0, we may conduct an imaginary time evolution leading to the
following state

|ψr andom(τ)〉 =∑
n

cne−Enτ/ħ|ψn〉. (2.73)

This time, the expansion coefficients of the energy eigenstates do not oscillate, but rather
decay exponentially fast with the rate proportional to En/ħ. Because the ground state energy
is, by definition, the smallest one among all En , its decay rate will be the slowest. Then, for
large value of τ the ground state will be projected out of the initial random state, provided
that it was part of the |ψr andom(0)〉, which is usually the case.

In order to implement the imaginary time evolution through the TEBD algorithm, we
choose a set of time steps of decreasing length {τ1,τ2, . . . ,τm}. Starting with τ1 we generate

the evolution operators e− τ1
ħ ĥi ,i+1 (instead of e− iτ1

ħ ĥi ,i+1 ). For the fixed value of τ1 we run
consecutive iterations of TEBD, until the change in energy of the state is smaller than the
chosen threshold. The number of iterations cannot be guessed in advance, and is dependent
solely on the convergence of energy. After reaching the point of minimal fluctuations, we
decrease the time step length to τ2, and proceed in a similar fashion. After conducting this
procedure for all time steps, from τ1 up to τm , the obtained state should be the projected
ground state.

The final point worth highlighting in the context of imaginary time evolution via TEBD is
that the second-order Suzuki-Trotter decomposition is typically used, albeit in its simplest
version, as illustrated visually in Fig. 2.32.a.

2.7 Density Matrix Renormalization Group

Although effective, the imaginary time evoulution described in the preceding section has
certain drawbacks. Firstly, it uses the bond operators, which makes it applicable only to
systems with nearest-neighbours interactions. Secondly, it tends to get caught in local minima
and not provide the true ground state energy. In this section we demonstrate a variational
algorithm called Density Matrix Renormalization Group (DMRG) [28, 35–38], which allows for
inclusion of long-range interactions and converges to the low energy values much faster than
TEBD.

2.7.1 Finite version

The goal of this method is to find the state |ψ〉, given as an MPS that minimizes the energy
of some Hamiltonian Ĥ , represented in the form of an MPO. This state can be found by
extremizing the expectation value of energy, which can be written as follows

d

d |ψ〉
〈ψ|Ĥ |ψ〉
〈ψ|ψ〉 = 0. (2.74)

We can get rid of the denominator in the fraction by using the Lagrangian multiplier
technique, arriving at the folowing formula

d

d |ψ〉 (〈ψ|Ĥ |ψ〉−λ〈ψ|ψ〉) = 0. (2.75)
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The tensors, being the constituents of the |ψ〉 state, appear in Eq. (2.75) in a product form,
making it a highly nonlinear problem. We can bypass this issue by following an approach
similar to the one presented in Section 2.5.2 that is by optimising just a single tensor at a
time, while fixing all the remaining ones. In this way, we can update consecutive tensors by
sweeping through the lattice back and forth. Thus, in each iteration of the algorithm instead
of finding the solution to Eq. (2.75), we will rather extremize

∂

∂(T †)p ′
i

(〈ψ|Ĥ |ψ〉−λ〈ψ|ψ〉) = 0. (2.76)

Assuming no normalization of the MPS, we can illustrate Eq. (2.76) using diagram notation
as shown in Fig. 2.34.

Figure 2.34: Diagrammatic representation of a single site update in the DMRG algorithm,
when the MPS does not satisfy the canonical form.

Let us transform the tensor networks depicted in Fig. 2.34 in order to find an elegant
way of finding the solution to Eq. (2.76). Again, as shown in Section 2.5.2, we can reshape
the tensor T pi into a vector v of size χ2p, while the remaining part of the left-most tensor
network appearing in Fig. 2.34 can be contracted and reshaped into an χ2p ×χ2p matrix M .
This matrix is frequently referred to as an effective Hamiltonian. Because we have already
decided to reshape T pi into v , we also need to find a proper transformation for the residual
tensors included in the tensor network representing the calculation of the overlap. In fact, we
can treat them as another matrix N . All of these conversions (shown graphically in Fig. 2.35)
allow us to restate Eq. (2.76) as a generalized eigenvalue problem

M v −λN v = 0. (2.77)

Figure 2.35: Generation of the (a) M and (b) N matrices appearing in Eq. (2.77).
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Since it may be challenging to solve Eq. (2.77) numerically, we shall attempt to further
simplify it. As usual, we can achieve immense gains by making use of the canonical form of
the MPS. By keeping the orthogonality center at the i th site we can notice that the N matrix
simplifies to the identity, which allows us to rewrite Eq. (2.77) as

M v −λv = 0, (2.78)

which is a standard eigenvalue problem. The corresponding tensor networks are depicted
in Fig. 2.36.

Figure 2.36: Update of a single site in the DMRG utilising the canonical from of the MPS.

Due to the size of the matrix M , usage of the exact diagonalization technique in order
to find solutions of Eq. (2.78) might be too computationally expensive. Instead of that, it is
recommended to use Lanczos algorithm to obtain the eigenstate with the smallest eigenvalue,
corresponding to the energy, which is in fact the ultimate goal of the DMRG method. After
reshaping the resulting vector v into a tensor T ′pi , we might proceed to update the next
tensor, by shifting the orthogonality center left or right. The whole procedure given above is
performed on each site of the chain in sweeps going from left to right and backwards, until
the energy converges.

A number of remarks regarding the implementation ought to be taken in this place. Firstly,
this algorithm might be extended to find not only the ground state of given system, but also
other low lying states. We can achieve this by initially running the standard DMRG and saving
the resulting state |ψ0〉. Then, we begin the search for the first excited state. It can be done by
enforcing the orthogonality of the state resulting from the Lanczos technique, while solving
the eigenvalue problem on a given site, to the analogous vector taken from |ψ0〉. This is a
commonly used extension of the Lanczos method.

The second observation concerns efficient calculation of the effective Hamiltonian M . It
would be expensive to contract all of the component tensors in order to obtain M at each site.
For this reason, usually each site has assigned its left and right environment, consisting of
the appropriate parts of the MPO, sandwiched between the bra and ket MPSs. For example,
the left environment of the i th site would include all tensors on sites from 1 to i −1 of Ĥ , |ψ〉
and 〈ψ|, resulting in a tensor with three dangling legs. By analogy, the right environment
would incorporate tensors on sites from i +1 up to L, also generating a tensor with three
legs. Then in order to calculate M at given site it is sufficient to contract the left environment
with the i th tensor of the MPO, followed by another contraction with the right environment.
Construction and method of storage of these environments is shown in Fig. 2.37.a-c.

Of course, left and right environments should be updated between optimizations of con-
secutive sites. Let us assume that at some point of the ground state search we are proceeding
rightwards. Then, after the optimization at the i th site and the following shifting of the
orthogonality center is finished, we can contract the A[i ] tensor with the left environment,
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Figure 2.37: (a) Indication of the left and right parts of the effective Hamiltonian used in
the DMRG algorithm. (b) Storing of the left environment of each site, with explicitly shown
tensors being its constituents. (c) Contraction leading to a single tensor representing the left
environment. (d) Update of the environment.

along with W[i ] tensor of the MPO and A†
[i ]. As a result, we obtain the left environment of the

(i +1)th site. In this scenario, we do not have to update the right environment, because it
would have changed anyway after the optimization of the (i+)th site is finished. Analogously,
if we were sweeping leftwards, we would contract the B[i ], B †

[i ] and W[i ] tensors with the
right environment and not update the left one. The update of the environment is shown in
Fig. 2.37.d.

The final modification of the algorithm worth discussing is the two-site update. It should
be noted that the single-site version has no possibility of increasing the sizes of virtual bonds.
To address this issue the so called mixers are used, which, however, will not be discussed in
detail in this work. Let us just mention that they allow for an increase in the bond-sizes of the
horizontal legs in the MPS, and make it possible to escape local energy minima. The two-site
update does not suffer from this problem, and in general manifests better convergence than
the single-site version. The graphical depiction of this modification of the DMRG is shown in
Fig. 2.38.a.

In this context, the shifting of the orthogonality center also becomes more intuitive, as it
is simply performed during the splitting of the two-site tensor. The update of environments
is also akin to the previously presented one. The left environment is updated by contraction
with A[i ], W[i ] and A†

[i ] (done only when moving rightwards), while the right environment by
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Figure 2.38: (a) The two-site version of the DMRG algorithm. (b) Shifting of the orthogonality
center followed by the environment update, performed after the optimization step of the
DMRG is finished.

contraction with B[i+1], W[i+1] and B †
[i+1] (conducted only while moving leftwards), where

A[i ] and B[i+1] are obtained from the SVD of the two-site orthogonality center. Shifting along
with the update of the environments is shown in Fig. 2.38.b.

2.7.2 Infinite version

Although extremely useful in the analysis of finite systems, the DMRG method making use of
the tensor network formalism showed in the previous section does not closely resemble the
original algorithm suggested by White [35, 36], which allows to obtain the ground state of a
given model in the thermodynamic limit. In this section, we will describe the infinite DMRG
(iDMRG), which will be an intuitive extension of the finite version, enabling simulation of
chains with L →∞. We will begin the explanation with a conceptual approach, which will be
further expanded on when we concentrate on implementation details.

Let us assume that the system under study has translationally invariant unit cell, consist-
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ing of L sites. At this point we can immediately emphasize that the unit cell of the algorithm
might be different from the unit cell of the MPS. The infinite algorithm begins in the same
way as the finite version. After the initialization of the system and environments (shown in
Fig. 2.39.a) we sweep through the chain in a standard way. However, between the sweeps we
increase the system size by inserting a copy of the "central" part of the chain into each of the
environments (illustrated in Fig. 2.39.b). We then extend the range of sweeps, to incorporate
all sites in the new, larger system.

Figure 2.39: (a) Initialization of the infinite version of the DMRG method. (b) Conceptual
view of the extension of the system, by insertion of a single copy of the current unit cell of the
algorithm into each of the environments.

From this abstract framework, it would seem that, starting with an arguably poor initial
guess, we would improve our approximation of the bulk unit cell with each extension of
the system. However, this would come at the expense of an increasing memory footprint.
Fortunately, this issue can be resolved by wise use of dummy tensor legs, environments and
indexing modulo L [38].

While introducing the MPS formalism, we stated that the left-most Γ[1] tensor and the
right-most Γ[L] are matrices, with only one virtual leg each. However, we can insert a dummy
leg of size 1 to each of these tensors, the left one for Γ[1] and right one for Γ[L]. This would
amount to simply increasing the dimensionality of the array representing the tensor, without
addition of any new entries. As a result, each tensor in an MPS constructed in this fashion
would be an order-3 one. Thanks to this solution, it is now possible to perform contraction of
Γ[1] with Γ[L] over the dummy legs, to obtain a two-site tensor.

Second thing to notice, is that after initial growth of the virtual legs of environments,
with each contraction with a column consisting of tensors coming from the ket state, the
MPO, and the bra state, those bond-sizes eventually saturate at χ (thanks to the truncation of
Schmidt values). This means that after reaching such a state of environments we can contract
arbitrarily many columns into them, one at a time, without increasing their total size. To
fully understand the implementation to be presented, let us denote the number of columns
contracted with given environment as its age.

With the above setup we can add one last modification to the finite DMRG method. In
the standard, two-site version of the algorithm, the last update of the rightward sweep was
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performed on the Θ[L−1,L] tensor. However, with the addition of dummy legs and usage of
indices modulo L, we may take another step and optimize the Θ[L,1] tensor, which will be
followed by a standard update of environments. This operation conceptually corresponds to
creation of the orthogonality center from the last site of the central system, and the left-most
one from the copy of the chain that should be incorporated into the right environment. Yet,
with the extensions presented above we do not need to make any copies of the system.

To fully illustrate that with this approach each environment truly incorporates L new
columns at the end of each sweep, we show in Fig. 2.40 the ages of the left and right envi-
ronments throughout the first two sweeps of iDMRG. Transition between each state of the
environments is done via the update of the two-site orthogonality center. Moreover, each
case in which there was no need to store environment at site i was denoted simply by the "-"
symbol.

Figure 2.40: Change of the environment ages during the first two sweeps of the iDMRG
algorithm.

One might wonder whether the above approach preserves the canonical form. Indeed,
this becomes particularly clear, when we use the Vidal representation. With its help we can
obtain a two-site tensor consisting of Γ[1], the singular values Λ[0] ≡ Λ[L] assigned to the
dummy legs, and Γ[L]. For this tensor to become a true orthogonality centerΘ[1,L] we need to
incorporate in it theΛ[1] andΛ[L−1] singular values.

The last topic worth discussing in the context of iDMRG is the convergence criterion. As
the system size grows between consecutive iterations, it is pointless to determine whether
to end the algorithm basing on the total energy of the system, as it can be done in the finite
DMRG. Rather than that, we can measure the average energy per site, and terminate the
calculations after reaching the saturation of this value.

2.8 Charge conservation

Computational cost of operations performed on tensors of various kinds can be significantly
reduced, when these objects preserve the highly sparse block-diagonal structure. Such a
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situation occurs, for example, when a given Hamiltonian Ĥ commutes with an unitary U .
In this scenario, Ĥ can be written in the basis of U , and both of them can be diagonalized
simultaneously.

We can define a general charge rule [38], which enforces the block structure of tensors and
selects the entries, which can be discarded. Let us exemplify it on the case of a spin-1/2 system.
In this scenario, we can pick the basis of the Ŝz operator and denote it as {|α〉} = {| ↑〉, | ↓〉}. The
eigenvalues corresponding to each of the basis vectors can be rescaled (to avoid numerical
errors) according to the q = 2Ŝz/ħ formula, which gives the values of 1 and -1 assigned to
| ↑〉 and | ↓〉, respectively. The obtained q values are the charges in question (also reffered to
as quantum numbers), and similarly as the {|α〉} basis can be written down in the form of a
vector as q̄ = (1,−1).

Let us write down three spin operators in the {|α〉} basis, where we relabel each basis
vector by its corresponding charge

Ŝz =
( 1 −1

1 1/2 0
−1 0 −1/2

)
, Ŝ+ =

(1 −1
1 0 1

−1 0 0

)
, Ŝ− =

(1 −1
1 0 0

−1 1 0

)
. (2.79)

We can note that for each of these operators we can find a value Q, which satisfies the
following rule

q̄ [1]
a1

− q̄ [2]
a2

̸=Q =⇒ Ŝa1
a2

= 0. (2.80)

The Q in the above formula is called the total charge, and for Ŝz is equal to 0, for Ŝ+ is
2, and for Ŝ− is -2. Eq. (2.80) was defined for simple matrices, while in general we would
like to extend it to the case of higher-dimensional tensors. To achieve this goal let us recall
that any matrix can be expressed in Penrose notation as a shape with two legs. Moreover, we
can assign the incoming arrow to the first bond (labeled as a1), and an outgoing one to the
second (denoted as a2), as we already did multiple times in this work. Finally, we can modify
Eq. (2.80) by including a sign ζ, corresponding to the direction of an arrow of given leg of the
tensor. We will follow the convention assigning a +1 value to the incoming legs, and -1 to the
outgoing ones. Thus, with this new notation we can reformulate Eq. (2.80) as

ζ[1]q̄ [1]
a1

+ζ[2]q̄ [2]
a2

̸=Q =⇒ Ŝa1
a2

= 0. (2.81)

Even though introduction of ζ values seems redundant at first sight, it allows for a simple
generalization of the charge rule to the case of order-n tensors, which can be written as

∀a1, a2, . . . an : ζ[1]q̄ [1]
a1

+ζ[2]q̄ [2]
a2

+ . . .+ζ[n]q̄ [n]
an

̸=Q =⇒ T(a1,a2,...,an ) = 0. (2.82)

In the above equation we also utilized the fact that good quantum numbers are additive.
In Fig. 2.41 we explicitly show, how this property translates into the assignment of charges to
the bonds of an MPS.

In Table 2.1 we show how the charge rule for Q = 0 can be applied in the case of the second
tensor shown in Fig. 2.41. We can plainly see the sparse structure of the tensor, as only 6 out
of 16 entries can be non-zero.

The last thing worth mentioning in the context of conservation of quantum numbers, is
that formally any operator with Q ̸= 0 does not preserve the charge of the state it acts upon.
However, it retains the block structure, and therefore can be used during the generation of a
charge conserving MPO. The operators which cannot be naively used for that purpose, are
the ones without a well defined total charge, which is the case, e.g., with Ŝx or Ŝ y .
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Figure 2.41: Conservation of quantum numbers for the first three tensors of an MPS. The
charges are assigned to the bonds from left to right, following the direction of arrows. In the
case of virtual legs the basis vectors with the same quantum number were grouped together.

Incoming Outgoing - Right
Left Top | ↑↑〉 (2) | ↑↓〉 (0) | ↓↑〉 (0) | ↓↓〉 (-2)

| ↑〉 (1) | ↑〉 (1) ̸= 0 0 0 0
| ↑〉 (1) | ↓〉 (-1) 0 ̸= 0 ̸= 0 0
| ↓〉 (-1) | ↑〉 (1) 0 ̸= 0 ̸= 0 0
| ↓〉 (-1) | ↓〉 (-1) 0 0 0 ̸= 0

Table 2.1: Identification of entries in the central tensor from Fig. 2.41, which can be discarded
for Q = 0. The left two columns store the basis vectors of the incoming legs (and their
corresponding charges), while the top row defines analogous values for the outgoing leg. The
0 and ̸= 0 values present in the table should be thought of as the components of an order-3
tensors, stored at the intersection of the three indices.

2.9 Simulation of 2D systems via 1D methods

We will conclude this chapter by demonstrating how 1D methods can be used to model the
2D systems, which are ultimately the subject of this work. This task can be achieved by simply
projecting a 2D system onto a 1D MPS, as shown in Fig. 2.42.

Figure 2.42: Projection of a 2D system onto a 1D "snake" MPS.
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We can immediately see that this mapping introduces certain long-range interactions
between the sites of the chain, which are neighbors in the 2D lattice, but are farther apart in
the MPS. Because of that the naive TEBD method cannot be used for this class of systems.
Moreover, MPOs representing the long-range interactions have larger legs than the short-
range ones. As a result, application of such an MPO to an MPS increases the bond-size of
the latter. This in turn increases the computation time and makes it more difficult to obtain
convergence, e.g., while using the DMRG method.
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THIRD CHAPTER

SIMULATION OF 2D PHYSICAL MODELS WITH

1D ISOMETRIC TENSOR NETWORKS

In this chapter we will use 1D isometric tensor networks to simulate two strongly corre-
lated physical models. In the first section we will use finite DMRG, without conservation
of quantum numbers, to obtain the ground state of the transverse field Ising (TFI) model
on a square lattice. Although this model was extensively studied in the past, it will serve us
as a benchmark for methods tailored specifically for 2D systems that will be presented in
Chapter 5. The purpose for which we perform these calculations also justifies the resignation
from the conservation of quantum numbers, as the methods to be presented in the further
part of this work do not yet use this formalism.

In the second section of this chapter we will use both finite and infinite versions of DMRG
to analyse magnetic phases of the spin-3/2 Heisenberg XXZ model on a honeycomb lattice,
which can effectively model the monolayer of CrI3. This material has been reported to
exhibit the ferromagnetic order in the off-plane axis, which has received a lot of attention
from the condensed matter physics community, and suggests the usefulness of its thorough
examination. Results of these studies were published in Ref. [59].

3.1 Transverse field Ising model on a square lattice

The Hamiltonian of the transverse field Ising model on a square lattice is defined as

Ĥ =− ∑
〈i , j 〉,i< j

J σ̂x
i σ̂

x
j − g

∑
i
σ̂z

i , (3.1)

where 〈i , j 〉 denotes iteration over the nearest neighbours in the lattice. We obtain the
ground states of this model for the fixed value of J = 1 and varying g .

The main goal of this section is to obtain benchmark results with the use of an MPS
method, with which we will be able to compare two-dimensional algorithms developed in
the further part of this work. Because of that, we are not interested in systems having little
to no entanglement, as it is known that these can be simulated efficiently with 1D methods.
Rather than that, we will focus on systems with moderate amount of entanglement, which at
the same time can be found in each of the system sizes considered (in this place we will study
only rectangular L×L lattices).
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Thus, in order to get test cases of comparable difficulty for different values of L, we needed
to firstly locate critical points gc , as these may fall upon different values of the g -space, due
to the properties of finite size systems. For each obtained ground state MPS, we measured
the von Neumann entanglement entropy for all bi-partitions of the chain, and picked among
those values the maximal one, denoted as Smax . This allowed us to assign one Smax value to
each g , and locate the point of maximal entanglement for each system size L.

We run the DMRG calculations for g ∈ {0.5,1.0, ...,3.5,4.0}, and maximal bond-size χ in-
creasing gradually by 100 every 40 sweeps, and eventually stopping at 1200, to get the first
vague location of the critical point. Later, after finding the area in which the peak of entangle-
ment was present in our results, we run additional calculations, this time incrementing g in
steps of length 0.1. Combination of all of the described results allowed us to generate the plot
of maximal entanglement Smax for each value of g , which is shown in Fig. 3.1. For each L we
marked the gc with a star symbol.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
g

0.0

0.2

0.4
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10 × 10

Figure 3.1: Maximal entanglement in the ground state MPS of the TFI model, for varying
values of g . The critical points are marked with star symbols, while cases of moderate
entanglement, being the benchmarks for methods to be presented, are marked with crosses.

To make sure that the ground states which we obtained from the DMRG are correct, we
checked the scaling of the critical value gc , which is shown in Fig. 3.2. In the thermodynamic
limit we obtain the value of 3.236 (the intersection of the fitted line with the vertical axis in
the plot), which is in good agreement with the value of 3.044 obtained from infinite methods
[39–42], considering the finite size of the lattices we studied.

Knowing that the results obtained from the DMRG are correct, we moved on to selecting
the benchmark cases for the 2D methods. We picked the ground states with Smax ≈ 0.6, which
are marked with crosses in Fig. 3.1. In Chapter 5 we will focus our analysis on the number of
variational parameters used in a 2D tensor network, while trying to reproduce these results,
therefore it is of great importance for us to know, how precisely can we represent the selected
ground states with MPSs storing as few parameters as possible. To get this information we
conducted variational compression of the MPSs obtained from the DMRG, reducing the
maximally allowed bond-size by 1 in each step, and performing 4 sweeps across the whole
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Figure 3.2: Scaling of the critical value gc . We can see the leveling off of the gc values for
increasing system size L.

chain. The energies and maximal entanglement entropy of states resulting from the last
1000 steps of compression of the ground state for g = 3.1 on a 10×10 lattice are illustrated in
Fig. 3.3 and Fig. 3.4, respectively.
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Figure 3.3: Differences between the energies of the MPSs resulting from compression, and the
ground state energy in the TFI model with g = 3.1 on a 10×10 lattice, obtained with DMRG.
The plot should be read from right to left, as firstly the values for large bond-sizes χ were
obtained.
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Figure 3.4: Differences between the maximal entanglement entropy appearing in the ground
state of the TFI model for g = 3.1 on a 10×10 lattice (obtained via DMRG), and analogous
property of states resulting from the variational compression.

3.2 Heisenberg XXZ model on a honeycomb lattice

Recent years have seen a significant amount of theoretical and experimental research into
the diverse class of two-dimensional van der Waals crystals, which include semiconductors,
superconductors, semi-metals, topological insulators, charge density waves materials, ferro-
electrics, and magnetics [60–71]. These materials have numerous potential uses in cutting-
edge types of electronics, such as spintronics, valleytronics, and optoelectronics [62, 72–76].
Among these materials, the monolayers of CrI3 and Cr2Ge2Te6 have been discovered to have
ferromagnetic order [77, 78], while monolayers of FePS3 manifest antiferromagnetic order
[79, 80]. In several other materials, the magnetic order has likewise been predicted and then
empirically verified [77, 81–93].

In this section we will focus on the analysis of the aforementioned monolayer of CrI3. Its
crystalline structure consists of chromium atoms arranged in a honeycomb lattice (shown in
Fig. 3.5b), each having an octahedral environment with iodine atoms located at the edges
(Fig. 3.5a).

(a) (b)

Figure 3.5: (a) Chromium atom with its octahedral iodine environment. (b) The honeycomb
crystalline lattice of CrI3 [59].

It has been shown that the magnetic order in CrI3 can be described by the spin-3/2 XXZ
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Heisenberg model [43, 94], whose Hamiltonian is defined as

Ĥ =−
J

∑
〈i , j〉,i< j

S̄i · S̄ j +λ
∑

〈i , j〉,i< j

Ŝz
i Ŝz

j +
∑

i
D(Ŝz

i )2

 , (3.2)

where the Z axis was chosen as the off-plane direction. The J parameter is associated
with the Heisenberg isotropic exchange interaction between spin particles. λ stands for
the anisotropic super-exchange that results from the spin-orbit interactions of ligand I
atoms across the ≃ 90 degree Cr − I −Cr bonds. Finally, the D term describes the single
ion anisotropy that results from the interaction between the spin-orbit coupling and the
distorted octahedral environment of the Cr atoms.

It should be noted that by the Mermin-Wagner theorem [95] any long-range ordering
could not emerge from Hamiltonian in Eq. (3.2) if not for the λ and D terms, which break the
spin-rotational invariance. By means of ab-initio calculations, parameters for isolated CrI3

have been determined, and are equal to D = 0 meV, J = 2.2 meV and λ= 0.09 meV [43, 94].
For this set of variables this material exhibits the ferromagnetic order in the off-plane (Z ) axis,
below the Curie temperature TC = 45 K [78]. However, it has been shown that other phases
can be achieved in CrI3 by introducing defects [96], strain [97, 98] and charge doping [98, 99],
which effectively enhance magnetic anisotropy.

In this place we will analyse the magnetic ordering of the Heisenberg model ground state
in a wide range of parameter space, and compare obtained results with classical predictions.
Hamiltonian given in Eq. (3.2) can exhibit four different magnetic phases: in-plane ferromag-
netic, in-plane antiferromagnetic, off-plane ferromagnetic and off-plane antiferromagnetic
which are shown in Fig. 3.6. When the system parameters are changed, these phases compete
with one another, with the ferromagnetic order being preferred for J > 0, and the antiferro-
magnetic one for J < 0. We will use these four product states as the classical approximation
of the model, and pick the one giving the smallest expectation energy of the Hamiltonian as
the ground state.

To obtain the ground state of the fully quantum Hamiltonian we firstly conducted cal-
culations using finite DMRG, for the lattice with periodic boundary conditions along both
of the basis vectors, making it effectively a torus. Because of the big local Hilbert space size,
being equal to 4 for a spin-3/2 particle, we utilized the conservation of quantum numbers,
with the total value of spin in the Z axis being the preserved property. With this setup, for
each sector of the Hamiltonian we obtained the ground state and first two excited ones. After
the calculations for each sector were finished, we gathered all of the results and chose two
smallest eigenvalues (and corresponding state-vectors), as the ground state and the first
excited state energies of the whole Hamiltonian. Finally, to check the scaling of the results
predicted by finite DMRG we performed separate computations using iDMRG in the infinite
cylinder geometry.

We firstly obtained the ground state of the isolated CrI3 on a lattice consisting of 9 unit
cells, giving in total 18 spin-3/2 particles. The obtained energy of EGS =−139.1175 meV was
equal to the one predicted by the classical approximation, as expected from a simple product
state. Then, we investigated the properties of the system for varying parameters of the Hamil-
tonian. As the impact of the single ion anisotropy (corresponding to the D variable) is substan-
tially smaller than the one coming from the exchange interaction between particles [43], we
carried out the calculations for just three different values of D ∈ {−0.4,0.001,0.4}, while focus-
ing on a larger parameter space of the remaining coefficients J ,λ ∈ {−0.5,−0.45, ...,0.45,0.5}.
Because the number of all considered combinations of parameters is equal to 1323 we re-
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Figure 3.6: Four possible magnetic orderings appearing in Eq. (3.2). (a) Ferromagnetic off-
plane. (b) Antiferromagnetic off-plane. (c) Ferromagnetic in-plane. (d) Antiferromagnetic
in-plane [59].

stricted the lattice size to 4 unit cells, giving in total 8 spin-3/2 particles. Although this system
size seems to be small, once again we need to take into account big local Hilbert space size.
If we were to conduct a similar analysis using exact diagonalization (or Lanczos algorithm),
the storage of the Hamiltonian alone would require roughly 35 GB of memory. This fact, in
combination with a large number of investigated combinations of parameters, would make
the whole analysis infeasible.

In Fig. 3.7 we show the magnetic phases predicted by the classical approximation of the
Hamiltonian. In order to recognize the phases of state-vectors obtained from the DMRG
calculations, and compare them with classical predictions, we firstly measured the average
value of spin in the Z axis, which is illustrated in Fig. 3.8. Due to the fact that, for instance,
the ferromagnetic and antiferromagnetic phases in the X Y plane both have average values of
spin in the Z axis equal to 0, this value alone would not be sufficient to differentiate between
all possible phases. The additional information needed is the average in-plane correlation.
For any chosen bond in the lattice, this value is defined as (〈Ŝ+

i Ŝ−
j 〉+〈Ŝ−

i Ŝ+
j 〉)/2, where i and j

are the indices of the nearest neighboring sites. This property is depicted in Fig. 3.9.
The average value of spin in the Z axis and in-plane correlations appear in four different

combinations. Firstly, the spins can be fully aligned in the off-plane direction with no
coexisting correlation in the X Y plane. This situation corresponds to the ferromagnetic order
in the Z axis (top-right corner of the phase diagram). Secondly, the average spin value in the
off-plane axis and in-plane correlations are both equal to 0. This information alone is not
sufficient to draw a definite conclusion regarding the corresponding phase, thus we looked
closely at the expectation value of spin at each site. The spins were fully aligned in the Z axis
in an alternating fashion, giving the antiferromagnetic order (bottom-left corner). The last
two cases correspond to a situation with the average value of spin in the off-plane axis being
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Figure 3.7: Magnetic phases predicted by the classical approximation [59].
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Figure 3.8: The average value of spin in the Z axis [59].
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Figure 3.9: The average correlation in the X Y plane between the nearest neighbouring spins
[59].

equal to 0. The only factor differentiating between these two cases is the correlation in the
X Y plane. The positive one gives the ferromagnetic order (bottom-right corner), while the
negative one results in the antiferromagnetic phase (top-left corner). We can therefore notice
that the magnetic phase of Hamiltonian in Eq. (3.2) can be approximated with high fidelity
within the investigated parameter space.

To get a better picture of the properties of the system under study we also investigated
the energy gap and average entanglement entropy present within the MPS (the average was
taken over all bisections of the chain), which are shown in Fig. 3.10 and Fig. 3.11, respectively.
The energy gap is present within the off-plane phases and increases with the magnitude of D
(as expected from the formalism adopted in the definition of the Hamiltonian in Eq. (3.2)),
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while the in-plane phases are gapless. On the other hand, entanglement is present in all of
the phases, with the exception of the ferromagnetic one in the Z axis.
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Figure 3.10: The energy gap between the ground state and the first excited one [59].

-0.5 -0.25 0.0 0.25 0.5
J

D = 0.001

-0.5 -0.25 0.0 0.25 0.5
J

-0.5

-0.25

0.0

0.25

0.5
D = -0.4

-0.5 -0.25 0.0 0.25 0.5
J

D = 0.4

0.000

0.286

0.571

0.857

1.143

1.429

1.714

2.000

Figure 3.11: The average entanglement entropy in the XXZ model [59].

The last property that we analysed was the correlation energy, defined as the difference
between the energy resulting from the DMRG calculations and the classical approximation. It
is illustrated in Fig. 3.12. We can see that it is the largest in magnitude in the case of in-plane
phases, and its maxima coincide with the maxima of entanglement entropy.

-0.5 -0.25 0.0 0.25 0.5
J

D = 0.001

-0.5 -0.25 0.0 0.25 0.5
J

-0.5

-0.25

0.0

0.25

0.5
D = -0.4

-0.5 -0.25 0.0 0.25 0.5
J

D = 0.4

0.5000

0.4286

0.3571

0.2857

0.2143

0.1429

0.0714

0.0000

Figure 3.12: The correlation energy [59].

To check the scaling of the properties obtained from finite DMRG we ran the iDMRG
on an infinite cylinder, on a set of parameters corresponding to each corner of the three
types of phase diagrams presented above. For each such case we conducted the calculations
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three times, for increasing values of bond-size χ ∈ {1000,2000,3000}. The chosen unit cell of
the algorithm consisted of four sites. We also restricted calculations to the subspaces with
〈Ŝz〉 = 0 and 〈Ŝz〉 = 3/2 ·4 = 6, because these were the only candidates for the true ground
state. With this setup, we reproduced the results given by the finite method. Mean energy per
site, average value of spin in the Z axis and mean in-plane correlations are listed in Tables 3.1
to 3.3.

D J λ DMRG
iDMRG

χ= 1000 χ= 2000 χ= 3000

-0.4

-0.5 -0.5 -2.61813 -2.61394 -2.61394 -2.61394
-0.5 0.5 -1.52755 -1.49697 -1.49697 -1.49697
0.5 -0.5 -1.52755 -1.49697 -1.49697 -1.49697
0.5 0.5 -2.475 -2.475 -2.475 -2.475

0.001

-0.5 -0.5 -3.48795 -3.48618 -3.48618 -3.48618
-0.5 0.5 -1.78903 -1.76248 -1.76248 -1.76248
0.5 -0.5 -1.78903 -1.76248 -1.76248 -1.76248
0.5 0.5 -3.37725 -3.37725 -3.37725 -3.37725

0.4

-0.5 -0.5 -4.36585 -4.36492 -4.36492 -4.36492
-0.5 0.5 -2.10218 -2.07989 -2.07989 -2.07989
0.5 -0.5 -2.10218 -2.07989 -2.07989 -2.07989
0.5 0.5 -4.275 -4.27499 -4.27499 -4.27499

Table 3.1: Mean energy per node [59].

D J λ DMRG
iDMRG

χ= 1000 χ= 2000 χ= 3000

-0.4

-0.5 -0.5 0 0 0 0
-0.5 0.5 0 0 0 0
0.5 -0.5 0 0 0 0
0.5 0.5 1.5 1.5 1.5 1.5

0.001

-0.5 -0.5 0 0 0 0
-0.5 0.5 0 0 0 0
0.5 -0.5 0 0 0 0
0.5 0.5 1.5 1.5 1.5 1.5

0.4

-0.5 -0.5 0 0 0 0
-0.5 0.5 0 0 0 0
0.5 -0.5 0 0 0 0
0.5 0.5 1.5 1.5 1.5 1.5

Table 3.2: Average value of spin in the Z axis [59].
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D J λ DMRG
iDMRG

χ= 1000 χ= 2000 χ= 3000

-0.4

-0.5 -0.5 -0.42120 -0.39787 -0.39787 -0.39787
-0.5 0.5 -2.35530 -2.33065 -2.33065 -2.33065
0.5 -0.5 2.35530 2.33065 2.33065 2.33065
0.5 0.5 0 0 0 0

0.001

-0.5 -0.5 -0.31161 -0.30305 -0.30305 -0.30305
-0.5 0.5 -2.38443 -2.35844 -2.35844 -2.35844
0.5 -0.5 2.38443 2.35844 2.35844 2.35844
0.5 0.5 0 0 0 0

0.4

-0.5 -0.5 -0.25103 -0.24679 -0.24679 -0.24679
-0.5 0.5 -2.34179 -2.31411 -2.31411 -2.31411
0.5 -0.5 2.34179 2.31411 2.31411 2.31411
0.5 0.5 0 0 0 0

Table 3.3: Average correlation in the X Y plane [59].
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FOURTH CHAPTER

SIMULATION OF QUANTUM CIRCUITS WITH

1D ISOMETRIC TENSOR NETWORKS

In the previous chapter with the use of MPS methods we obtained the groudstates of the
TFI model for a chosen parameter set, which will serve us as benchmark for our work in
consecutive chapters, when testing the 2D tailored algorithms. However, these states are char-
acterized by a moderate amount of entanglement. We would like to evaluate how effectively
the 2D methods introduced in this work can describe states with high levels of entanglement,
in order to fully explore their potential.

For that purpose, we will attempt to simulate random quantum circuits. We will do this for
two reasons. First off, this task was created specifically to generate as much entanglement in a
quantum system with as few operations as possible. Secondly, 1D algorithm used to simulate
these circuits can be extended in a straightforward way to the 2D case, which alleviates all the
issues associated with different rates of convergence of different methods (e.g. as is in the
case of TEBD and DMRG).

The aforementioned random quantum circuits were used by Google Inc. in their famous
“quantum supremacy experiment” [44]. At first, Google claimed that reproducing their results
by performing simulation on the biggest existing supercomputer would take 10,000 years.
This initial hypothesis was overstated, according to subsequent research [100–102], however,
running such a simulation still requires an exponential amount of resources relative to the
number of considered qubits.

We will firstly introduce the quantum supremacy task in a simplified 1D version, along
with the MPS-based algorithms allowing for its simulation. Then, we will extend these
concepts to the 2D variant, paying attention to any nuances between the two versions.

4.1 Quantum supremacy task in 1D

The quantum circuit that can be executed on a 1D quantum computer, which we will initially
attempt to simulate, is shown in Fig. 4.1. It consists of alternating layers of single- and two-
qubit quantum gates. Using the nomenclature introduced by Google, we will refer to a pair
consisting of a single-qubit gate layer, followed by a two-qubit gate one, as cycle.

Each single-qubit gate is chosen randomly from a set {
p

X ,
p

Y ,
p

W }, where W = (X +
Y )/

p
2. Additionally, once a given gate is picked in one layer, it cannot be selected in the
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|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

Figure 4.1: (Left) Random quantum circuit executed on a 1D quantum computer. First two
cycles are marked with dashed lines. (Right) Tensor network representation of the same
quantum circuit.

subsequent layer of single-qubit gates. In the case of two-qubit gates just a single type of gate
will be used throughout the whole circuit. However, as we will see shortly, the type of chosen
multi-qubit gate will have a huge impact on the difficulty of the task. The three kinds of gates
that will be used in this work are CNOT, CZ and ISWAP. Finally, two consecutive layers of
multi-qubit gates will act on different pairs of qubits. For example, if the second layer was
consisting of gates that should be applied on even pairs of qubits, the fourth one will act on
the odd ones.

From Fig. 4.1 we can see that the illustrated circuit can be directly translated into the tensor
network framework, if we simply represent the qubits as an MPS rotated by 90 degrees from its
previously used orientation. None of the quantum gates need any additional transformations.
Moreover, we can see a resemblance between the application of quantum circuit onto a set
of qubits, and the MPS-based techniques. This observation gave rise to the first algorithm
simulating noisy quantum computers [45].

In fact, the algorithm works exactly in the same way as the TEBD method, with the only
difference being that the evolution operators are replaced with quantum gates. Although a
DMRG-based method was also proposed [103], we will reproduce only the former one, as it
will be easier to extend it to two dimensions.

Let us remind that to avoid exponential explosion of resources used during the execu-
tion of TEBD, we truncate the bonds resulting from SVDs. This is the place, where we are
approximating the simulation, by reducing the entanglement to yield a finite fidelity of the
application of a two-site gate. It should be noted that each single-qubit gate can be applied
perfectly, as it cannot introduce any entanglement in the system. However, it can shuffle the
state, which can later result in an increase in entanglement, when a two-qubit gate is applied.

Using the terminology from Ref. [45] we will call the fidelity of application of the nth
two-site gate as fn . Let us also denote the truncated state after the application of n two-qubit

gates as |ψT (n)〉. We can immediately note that |ψT (n)〉 SVD≈ U |ψT (n −1)〉, where U denotes
the two-site operation. Following Ref. [45], the two-qubit fidelity is defined as

fn = |〈ψT (n)|U |ψT (n −1)〉|2. (4.1)

Thanks to the canonical form of the MPS, we can estimate fn by the sum of squares of
singular values kept after the truncation, divided by the sum of squares all singular values
[45], which can be written as
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fn =
( χ∑

i=1
s2

i

)/( 2χ∑
i=1

s2
i

)
. (4.2)

If the MPS was not in the canonical form, we would have to contract all tensors stored in
the two chains to calculate fn , which once again shows huge gain resulting from the usage of
this formalism.

However, the mere gain from estimating the precision of a two-qubit gate application
would be negligible, if we could not correlate it in any way with the real fidelity of our noisy
simulation in relation to an exact realisation of a quantum circuit. If we denote a perfect
state resulting from application of n two-qubit gates as |ψP (n) (that is a state, on which no
truncations were conducted), we can write down the multi-qubit fidelity F (n) as

F (n) = |〈ψP (n)|ψT (n)〉|2. (4.3)

Although it was essential to use |ψP (n)〉 in the above definition, for large enough systems
we would not be able to obtain it by means of classical simulation. In fact, this is exactly the
state that we would like to approximate. Ideally, we would want to use consecutive fn values,
rather than having to rely on |ψP (n)〉. We can achieve this task by defining an orthonormal
basis {|α〉}, whose first vector is given as |1〉 ≡ |ψT (n −1)〉. Then, we can write |ψP (n −1)〉 in
this basis, assuming that the simulation is performed on N qubits, as

|ψP (n −1)〉 =
2N∑
α=1

pα|α〉 = p1|1〉+
2N∑
α=2

pα|α〉

=
√
F (n −1)|ψT (n −1)〉+

2N∑
α=2

pα|α〉, (4.4)

where pα are coefficients, which should not be confused with probabilities (p standing
for perfect). We can conduct a similar procedure for the exact and truncated states after the
application of the next U gate, resulting in

|ψP (n)〉 =
2N∑
α=1

pαU |α〉 =
√
F (n −1)U |ψT (n −1)〉+

2N∑
α=2

pαU |α〉, (4.5)

|ψT (n)〉 =
2N∑
α=1

tαU |α〉 = t1U |1〉+
2N∑
α=2

tαU |α〉

=
√

fnU |ψT (n −1)〉+
2N∑
α=2

tαU |α〉, (4.6)

where tα coefficients are analogous to the pα ones (t standing for truncated). After
defining |ψP (n)〉 and |ψT (n)〉 in the above way, we can simply put them in Eq. (4.3), giving us

F (n) = |〈ψP (n)|ψT (n)|2 =
∣∣∣ 2N∑
α=1

p∗
α〈α|U †

2N∑
α′=1

tα′U |α′〉
∣∣∣2

=
∣∣∣ 2N∑
α,α′=1

p∗
αtα′〈α|U †U |α′〉

∣∣∣2
=

∣∣∣ 2N∑
α=1

p∗
αtα

∣∣∣2
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=
∣∣∣√F (n −1) fn +

2N∑
α=2

p∗
αtα

∣∣∣2
(4.7)

Because the quantum state must be normalized, and using that pα ∼ 1/
p

2N [45], we can
note that the last term in Eq. (4.7) is negligible, giving us

F (n) ≈F (n −1) fn . (4.8)

This recurrent relation can be in turn extended as follows

F (n) ≈
n∏

i=1
fi , (4.9)

showing that the multi-qubit fidelity is approximated by the product of two-site opera-
tions. To check the precision of prediction given by Eq. (4.9) we launched simulations on
three different circuits. All of them had the same architecture, as described above, but differed
in the type of two-qubit gate used. By simply changing the type of this multi-qubit gate, we
could easily increase the difficulty of the task. Thus, the circuits with CNOT gates were the
easiest to simulate, CZ gates resulted in an intermediate difficulty, and the ISWAP gates were
the most challenging ones, as would be expected from the way the quantum supremacy task
was designed [104, 105]. In Figs. 4.2 and 4.3 we show the multi-qubit fidelity during each step
of the execution of circuits containing 50 cycles, for a system consisting of 25 qubits. For each
simulation we used two different bond-sizes χ= 256,512. It can be seen that the difficulty of
the circuit clearly translates into the slope of the curves, and that increase in bond-size gives
higher fidelity.

0 10 20 30 40 50
m

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

CNOT

MPS = 256
MPS = 256, exact
MPS = 512
MPS = 512, exact

Figure 4.2: Multi-qubit fidelity of simulations of random quantum circuits with CNOT gates,
for a chain consisting of 25 qubits, using the MPS-based method. The lines correspond to
predictions given by Eq. (4.9), while the overlaps with exact calculations are marked with
crosses.

We compared our results with an exact simulation obtained with the use of cirq library
for relatively small system sizes. In Figs. 4.2 and 4.3 the marked overlaps between the state
vectors given by cirq simulator, and the ones resulting from the contraction of the MPSs, are
very close to the predictions given by Eq. (4.9), which proves the usefulness of this formula.

Besides the multi-qubit fidelity we would also like to define a second tool, with which
we could evaluate the performance of our simulators compared to real quantum computers.
We can achieve this by simply introducing the average two-qubit fidelity fav g , which can be
written as
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Figure 4.3: Multi-qubit fidelity of simulation of random quantum circuits with CZ and ISWAP
gates, also for a chain of 25 qubits.

fav g = n
√
F (n). (4.10)

In Table 4.1 we show average fidelities for the same simulations as illustrated in Figs. 4.2
and 4.3.

χMPS CNOT CZ ISWAP
256 0.997 0.979 0.959
512 0.998 0.985 0.969

Table 4.1: Average two-qubit fidelity for simulations of random quantum circuits applied on
a chain of 25 qubits. Each circuit consisted of 50 cycles, which gives 600 two-qubit gates in
total.

Considering the fact that for an exact simulation of these circuits with the MPS-based
algorithm we would require the bond-size of 4096, we can still obtain an excellent average
fidelity. Moreover, this precision should also increase when simulating circuits implementing
real algorithms, as these are not designed to be extremely hard, but rather are targeted to
solve actual problems.
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4.2 Quantum supremacy task in 2D

In this section we will generalise the approach of Ref. [45] to the 2D case. Throughout all
this thesis we will be considering only rectangular lattices, due to which the two-site gates
appearing in any given layer can only occur in four possible configurations. Each such
configuration corresponds to the type of pair of qubits, on which the gate can be applied.
Thus, the four possible arrangements of bonds are: vertical odd (denoted as A), vertical even
(B), horizontal even (C ) and horizontal odd (D). As these configurations interspersed in
different ways can result in tasks of varying difficulty, we will follow just the ABC DC D AB
pattern, which was reported to be the most challenging one [44]. In situations, in which there
are more cycles in the circuit than in the presented sequence, this pattern is simply repeated
as many times as necessary. In Fig. 4.4.a we show an example grid of qubits with marked
types of bonds, on which the multi-qubit gates are applied.

Figure 4.4: (a) Types of bonds, on which two-qubit gates are applied in a given layer. (b)
Mapping of the 2D lattice onto a 1D MPS.

To obtain benchmark results of simulation, with which we will compare two-dimensional
methods developed in the further part of this work, we conducted calculations with the use of
MPSs. For that purpose we projected the rectangular lattice onto a 1D chain in a way shown
in Fig. 4.4.b. With this mapping we were able to apply each layer of horizontal gates without
any additional steps needed, while in the case of vertical ones we used a fixed number of
SWAP operations per each gate. In spite of the fact that there have been proposed methods
involving contractions of multiple sites at once [45], in our analysis we restricted ourselves to
combinations of at most two tensors at any given moment, to make comparison of different
methods easier.

Results of simulation of random circuits on a 5×5 lattice for χ= 256,512 are shown in
Fig. 4.5. In this case we performed calculations for just 20 cycles. We can see that even though
we used the same bond-sizes as in the case of 1D system, the fidelity drops significantly faster.
This is caused by the need for the use of SWAP gates, which increase the difficulty of simu-
lation. Moreover, by applying the vertical gates we are introducing long range correlations,
which are hard to grasp with the use of 1D MPSs.

Similarly as in the case of simulation of a 1D system, in Table 4.2 we show the average
two-qubit fidelity of each simulation of a circuit applied onto a 5×5 lattice.
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Figure 4.5: Multi-qubit fidelity of simulation of random quantum circuits with CNOT, CZ
and ISWAP gates applied on a 5×5 lattice. The calculations were performed with the use of
MPS-based method. From the spacing between different cycles on the horizontal axis it can
be seen that the application of vertical layers requires significantly more operations than the
horizontal ones.

χMPS CNOT CZ ISWAP
256 0.965 0.935 0.88
512 0.974 0.953 0.899

Table 4.2: Average two-qubit fidelity for simulations of random quantum circuits applied
on a 5×5 lattice. The total number of multi-site gates is equal to 200 (not including SWAP
operations required by the MPS simulator).
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ISOMETRIC TENSOR NETWORKS IN 2D

Up to this point we focused only on methods basing on single-dimensional tensor networks.
However, other kinds of tensor networks were developed, which are operating in higher-
dimensional spaces. Among them are Tree Tensor Networks (TTN) [106–113], Multiscale
Entanglement Renormalization Ansatz (MERA) [114–116] and Projected Entangled Pair States
(PEPS) [29, 30].

In TTNs the distance between any pair of sites in the lattice scales as O(log N ), where N is
the total number of nodes. Because of that TTNs can capture longer-range correlations in
comparison to the MPSs, as the correlation functions usually decay exponentially fast with
respect to the path length [108]. An example TTN is shown in Fig. 5.1.

Figure 5.1: Example of a Tree Tensor Network.

PEPS are generalized MPSs, which are characterized by a regular lattice of higher rank
tensors where nearest neighbours are connected by virtual legs. Usually, the arrangement
of these legs matches the geometry of the lattice under study. The power of PEPS lies in the
ability of capturing the ground states of 2D systems with significantly smaller bond-size than
the one needed when using MPS. However, the cost of exact calculation of properties of such
a tensor network grows exponentially, because of which usually approximation methods are
used for that purpose.
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Recently different methods of canonization of PEPS were presented [31–34], which by
imposing the isometry conditions onto the tensor network reduces its cost of contraction.
In this work we will follow the methods introduced in Refs. [32, 34] and refer to a canonized
PEPS as an Isometric Tensor Network (isoTNS). In Fig. 5.2.a we present an example of a PEPS,
while Fig. 5.2.b illustrates its isoTNS version.

Figure 5.2: (a) PEPS for a 5×5 lattice. (b) isoTNS for the same lattice. Orthogonality row and
columnΘ are highlighted in red, while the orthogonality center θ is marked in purple.

As can be seen in Fig. 5.2, in the case of isoTNSs we need to extend the concept of
orthogonality center to orthogonality row and column. These two surfaces can be easily
recognized while looking at the illustration, by having only incoming bonds connecting
them with the rest of the lattice. Moreover, the position of orthogonality center inside the
orthogonality surface is not fixed, as it can be easily moved with the use of SVD. However,
shifting of the orthogonality center outside its current orthogonality surface is not possible,
and instead of that the whole orthogonality row (or column) is moved. This procedure will be
discussed in detail in Section 5.3.

5.1 Initialization of the isoTNS

isoTNS can be initialized in a number of different ways. One of them can be achieved by
the so called MPS to isoTNS algorithm [32], which transforms an MPS with each constituent
tensor being a grouped site, containing multiple physical indices, into a full fledged isoTNS
with just a single tensor per each node. However, in this work we will not need this procedure,
so we will use for the purpose of initialization much simpler approach. Specifically, we will
generate random, normalized tensors with physical leg of size d and the remaining virtual
bonds of size 1, whenever a random starting state from a given algorithm is required. Thus,
this will be the strategy used in the case of imaginary time evolution.

In the case of simulating quantum computations we will simply create the product state
|00...0〉 (which usually serves as a starting point to all quantum algorithms) by generating
separately |0〉 states on each site, and reshaping them to match the dimensionality required
by the isoTNS. So, each vector will be also transformed into a tensor with physical leg of size
d and remaining virtual bonds of size 1. isoTNS created in this way has just one singular
value per each virtual bond (equal to 1), thanks to which it fulfills the isometry condition.
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5.2 Computing observables of an isoTNS

Computation of observables with the use of an isoTNS is particularly efficient, especially in
the case of single-site expectation values, since it amounts to contracting the orthogonality
center with its Hermitian adjoint and an operator. When it comes to calculating two-site
observables, for nearest neighboring sites it can be also be achieved at a low cost, because
we only need to make sure that the two nodes in question are lying inside the orthogonality
surface, and can be simply contracted. The rest of the computations is analogous to the case
of single-site operators [28]. However, for sites farther apart it is necessary to contract larger
number of nodes, similarly to the case of an MPS when calculating long range correlations
[28].

5.3 Shifting of the orthogonality surface via Moses Move

In order to be able to optimize any given tensor in the lattice we need to introduce a procedure
allowing for shifting of the orthogonality surface. This method will be called the Moses Move
[32]. We will exemplify its use on the case of orthogonality column, however shifting of
orthogonality row is analogous.

As mentioned above, the input to the Moses Move consists of the l th orthogonality
column, which will be denoted as Θl , with the orthogonality center θ stored at its bottom
tensor. The algorithm will output two new columns: Al andΘ. The first one will be the new
l th column, fulfilling the isometry condition, whileΘ can be thought of as an extracted ancilla
column, not directly assigned to any physical position in the lattice. Its further contraction
with the B l+1 column will result in a new orthogonality columnΘl+1 similarly as it takes place
in MPS, when we contract singular values with given tensor to shift the orthogonality center.

We begin the procedure by shifting θ to the top node by conducting a series of SVDs. For
each tensor to by factorized we firstly combine all of its legs, besides the virtual one attached
from the direction in which we would like to move θ. Assuming that the upper bound on the
bond-size for isometries is equal to χ, and for the orthogonality surface η, reshaping of the
tensor located at the bottom of the lattice gives a matrix of size dη2 ×η, while for the tensor
located in the bulk this transformation results in a dηχ2 ×η one.

After reaching the top of the lattice we begin the core part of the Moses Move. At its each
step, we will split one tensor into three new ones. This splitting is preceded by combining of
tensors legs into three groups. By the A group we will denote legs attached from the bottom,
which means that in fact this group will consist only of the bottom, virtual leg. The B group
will contain all bonds attached from left and also the physical one. Finally, the C group will
incorporate all remaining virtual legs attached from right.

After the first reshaping is finished we conduct another one, by combining the A and C
legs. As a result we obtain a matrix of size dim(B)×dim(AC ). This matrix is factorized via
SVD, which gives U1, S1 and V †

1 matrices. After the incorporation of singular values into V †,
we are left with U1 and θ1 matrices connected by a single bond. This bond is splitted into
two new ones, each of size at most χ, the product of which gives the original bond-size. So,
for instance, if the original matrices U1 and θ1 are of shapes 4×4 and 4×8, respectively, the
connecting leg of size 4 is divided into two, each of size 2. These new legs will be denoted as
BR and BL . The splitting is achieved by reshaping the matrices into order-3 tensors.

Subsequently we are reshaping θ1 from a dim(BR )×dim(BL)×dim(AC ) tensor into an
order-4 one of size dim(A)×dim(BR )×dim(BL)×dim(C ). It is done in order to find an unitary
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Figure 5.3: a) Shifting of the orthogonality center to the top of the lattice. b) A conceptual
view of the Moses Move. c) Detailed splitting procedure dividing a single tensor into three
new ones.

disentangler D minimizing the entanglement entropy S ABR :BLC , thus the one between the
ABR and BLC degrees of freedom. Finding of such disentangler is a well known problem,
which might be solved with the use of conjugate gradient method [34, 117].

When D is found, it is contracted with θ1 over the BR and BL legs, while its Hermitian
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Figure 5.4: a) Basic merging of Θ and B l columns. b) Contracting of columns involving an
immediate truncation of vertical bonds.

adjoint D† is contracted with the U1 tensor. The following step of the procedure consists of
reshaping of θ1 tensor into a matrix of size dim(ABR )×dim(BLC ), which is further factorized
by SVD into U2, S2 and V †

2 . If the disentangler was not used previously, this step could
result in a large number of non-negligible singular values, the disposal of which would give a
substantial truncation error.

By incorporating S2 into V †
2 we obtain the new orthogonality center θ2. The last step of

tensor division involves splitting of all legs of U1, U2 and θ2, which were previously combined.
After this procedure is finished, θ2 might be contracted with the tensor lying below the initial
tensor that was divided by the Moses Move. When this is done, the whole algorithm might be
repeated. By conducting it on each tensor of the initialΘl column we are "unzipping" it, and
obtain new Al andΘ columns. All of the steps described above are shown in Fig. 5.3.

After theΘ column has been extracted, it can be further contracted with the B l+1 column
located to the right. It can be achieved in two ways. Firstly, tensors in each row ofΘ can be
simply contracted with the corresponding ones from B l+1. This would result in a new column
Θl+1, in which each tensor would have double vertical legs. These can be truncated later
during the following update of theΘl+1 column, e.g., while shifting the orthogonality center
upwards.

A second way to merge these two columns involves an immediate truncation of vertical
bonds. After the first contraction of tensors from the Θ and B l columns is finished, the
resulting tensor is reshaped into a matrix by grouping its horizontal legs with the physical
bond on one side, and the vertical legs on the other. The factorization that follows resembles
shifting of the orthogonality center upwards, shown in Fig. 5.3.a, however this time we are
proceeding downwards. While conducting the SVD the vertical bond can be truncated and
the singular values are incorporated into the bottom tensor. During the next step of merging,
instead of contracting just two tensors, we are also contracting the third one, being the result
of the procedure described above. The following steps are analogous to the first one, however
during reshaping of tensor into a matrix, the top vertical legs are also included into the group
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Figure 5.5: a) Update of the Al column by the Evenbly-Vidal algorithm. b) Optimization of
theΘ column.

consisting of horizontal and physical ones. Both of the column contracting techniques are
depicted in Fig. 5.4.

Although the Moses Move presented in this section was moving rightwards, a leftwards
shifting is analogous. Moreover, the application of Moses Move on rows can be achieved by
simply rotating the whole lattice and using the same procedure.

5.4 Variational solution ofΘl = AlΘ

Although result given by the Moses Move might not be the optimal one, it can be improved by
means of variational optimization techniques. Firstly, we can increase the overlap 〈AlΘ|Θl 〉 by
updating the tensors of the Al column. This can be achieved via the Evenbly-Vidal algorithm
[118, 119]. It is based on the idea of linearization of function to be optimized by keeping all
tensors fixed, except the one being updated during given iteration. In our case, the function
in question is the aforementioned overlap 〈AlΘ|Θl 〉. We can denote the updated tensor as
A[i ] and the rest of the tensor network, forming the environment of this tensor, as E A[i ] . Then,
by sweeping through the Al column we are updating each of its tensors as A[i ] ← A′

[i ] =V U †,

where the V and U † matrices come from the factorization of the environment through SVD
E A[i ] =U SV †.

The optimization of theΘ column can be thought of as variational compression, which
was described in detail in Section 2.5.2. The only difference lies in creation of environment of
the tensor being updated. In this case, it will be similar to the one used in the Evenbly-Vidal
algorithm, but a different tensor is removed from the tensor network.
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Both of these optimization techniques are depicted in Fig. 5.5.

5.5 Imaginary time evolution in two dimensions

With the procedures outlined in the preceding sections, we can now easily introduce the
algorithm of imaginary time evolution making use of the isoTNS. In fact, it will be almost
identical to the Moses Move, with the only difference lying in the initial shifting of the
orthogonality center. In the Moses Move we achieved this by the mere use of SVDs. However,
these factorizations can be replaced with the application of evolution operators, followed by
the calculation of expectation values of bond operators.

As a result, the application of this method on a given column is similar to a 1D TEBD
algorithm. After sweeping through each column we can rotate the whole lattice and proceed
with the following updates, this time over the rows. After four rotations we obtain a lattice
in its original orientation, which finishes one full step of the algorithm. Summarizing, this
method consists of two nested versions of a single-dimensional TEBD, where it got its name
TEBD2.

The application of evolution operators on a single column is depicted in Fig. 5.6.a, while
the conceptual representation of the whole TEBD2 algorithm is shown in Fig. 5.6.b.

Figure 5.6: a) Update of a single column of the isoTNS in a TEBD-like fashion. b) A schematic
outlook of the TEBD2 algorithm.

To estimate the cost of the algorithm we firstly need to make certain assumptions re-
garding the size of η. As a matter of principle we will simply use η= 6χ, as it gave the best
numerical results. With this setup we can note that the cost of both SVDs conducted during
the Moses Move is of the same order. The first one takes O(dη2χ3 ·dχ2) =O(d 2η2χ5) FLOPS,
while the second one O(η2χ3 ·ηχ) =O(η3χ4). As η is a simple linear function of χ we can im-
mediately see that the cost of both factorizations is proportional to χ7 [32, 34] . The following
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contraction of the orthogonality center (resulting from the division of the initial tensor into
three new ones), with the tensor lying below, costs O(dη3χ3) <O(χ7).

While mergingΘ column with the B l+1 one, the most costly contraction is carried out in
the bulk, and takes O(dη2χ5) ∝O(χ7) FLOPS. Thus, the cost of the entire procedure shifting
the orthogonality surface is O(χ7).

Whereas, in the 1D-TEBD method the most expensive operation is the division of the
two-site tensor into two separate ones, and its cost is O(d 2η2χ4 ·dηχ2) =O(d 3η3χ6) ∝O(χ9)
[34].

5.6 Benchmark results of the TEBD2 algorithm

We used the TEBD2 algorithm trying to reproduce the results obtained in Section 3.1, i.e., the
ground states of the TFI model on a square lattice with approximately the same maximal
entanglement entropy for varying system sizes. As the convergence of the algorithm over the
consecutive iterations was very slow, we followed a similar approach as the one used in Ref.
[32]. Instead of running the algorithm for a given time-step τ until reaching convergence, as
it is usually the case when using the TEBD algorithm, we rather conducted a fixed number of
iterations per given τ, followed by the decrease of the length of τ. The number of iterations
was inversely proportional to τ. In our calculations we used a second-order Trotter-Suzuki
decomposition to minimize the energy error. The obtained results are shown in Fig. 5.7.
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Figure 5.7: Errors of mean energies per site for the TFI model. The true ground states was
obtained by large scale 1D-DMRG calculations.

From Fig. 5.7 we can see that after reaching its minimum, the error of energy density starts
to diverge. This is caused by the use of the Moses Move, which introduces small inaccuracies
during its each iteration.
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5.7 Shifting the entire orthogonality surface into the bulk

Up until this point we were introducing the procedures firstly presented in Refs. [32, 34].
From now on we will show our own modifications of these methods, created for the purpose
of this work.

The first alteration allows for shifting of the whole orthogonality surface into the bulk,
which allows for a significant reduction of bond-sizes needed while carrying out numerical
calculations. It should be emphasized that in the initial definition of the Moses Move and
TEBD2 one of the orthogonality surfaces was kept at the edge of the lattice, while the other
one was moved across the system. For instance, throughout all examples shown in previous
sections we were always keeping the orthogonality row at the bottom edge of the lattice, while
the orthogonality column was shifted.

To see the consequences of this constraint imposed on the lattice let us use a certain
analogy. We can view the graph representing the system as an instance of the flow network
[120] in which all of the nodes are sources, with the only exception being the orthogonality
center, which acts as a sink. Then, the flow going through the lattice corresponds to the
maximal possible entanglement. Moreover, for each node (besides the orthogonality center),
the product of sizes of the incoming legs must be equal to the product of sizes of the outgoing
ones. If we concentrate for a moment solely on the virtual legs, we can see that their outgoing
flow must be d times larger than the incoming one, where this d factor comes from the
temporarily ignored physical bond.

Using this formalism we can easily estimate the maximal bond-size of 4096 needed to
represent exactly a 5× 5 lattice of qubits, with the orthogonality surface located on the
edge. This system is depicted in Fig. 5.8.a. However, if we were able to shift the whole
orthogonality surface into the bulk, we would be able to reduce the bond-size required to
just 64. This situation is illustrated in Fig. 5.8.b. We should immediately note that the largest
tensors in both of the lattices in Fig. 5.8 store the same number of variational parameters.
However, the above strategy for estimating bond-sizes assumes that we are in possession of
huge computational resources and do not perform any truncations. When executing real
algorithms, we will always discard some singular values to avoid an exponential explosion
of needed memory. Then, in the scenario shown in Fig. 5.8.b the pruning of variational
parameters is much more flexible, and potential SVDs should cost much less than in the case
shown in Fig. 5.8.a.

To be able to shift the entire orthogonality surface into the bulk we can firstly note that
the lattice shown in Fig. 5.8.a can be interpreted as a top-left part of a larger system. The
virtual legs connecting this subsystem with its environment would be the incoming ones, and
all of them would be of size 1. From this perspective, the TEBD2 launched on this lattice can
be viewed as time evolution of just a single part of a larger system, completely independent
of its environment.

By extending this reasoning we can modify the original TEBD2 algorithm to operate on
four different parts of the lattice separately. The only modification needed is to take into
account the dangling legs when approaching the edge of the sublattice, which connects it
with the remaining part of the system. With this adjustment we can run TEBD2 in a clockwise
fashion, sequentially going through all four quarters of the lattice. This procedure is shown in
Fig. 5.9.
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Figure 5.8: Comparison of different bond-sizes needed to represent exactly a 5×5 lattice of
qubits with different locations of the orthogonality surface.

Figure 5.9: TEBD2 algorithm with the orthogonality surface located in the bulk.

5.8 Tree-like isometric tensor networks

Since we wanted to use our algorithms operating on isoTNSs to simulate computations on
quantum computers, we tried to predict the multi-qubit fidelity in a way analogous to that
shown in Eq. (4.9). Unfortunately, as the Moses Move introduces additional inaccuracies,
not directly related to the errors attributed to the application of operators, we were not
able to approximate this value with high precision (neither by using SVDs, nor by means of
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variational solution of theΘl = AlΘ problem).
This prompted us to slightly modify the structure of the lattice. We decided to keep the

sizes of chosen legs to be always equal to 1, effectively forbidding the flow of entanglement in
loops between any two nodes in the system. As a result, we obtained a tree-like version of the
isoTNS, with "empty" bonds connecting the branches. Also, each path connecting any node
with the central site has an "L" shape. Finally, this choice of the lattice arrangement allowed
us to pick just a single restriction of the bond-size, being equal to χ, which allows to avoid the
ambiguity associated with selecting the correct relationship between χ and η values, as was
the case in the initial definition of the isoTNS. Example of a tree-like isoTNS is illustrated in
Fig. 5.10.

Figure 5.10: Structure of the tree-like isoTNS on a 5×5 lattice. The dashed lines correspond
to bonds of size 1.

By choosing this structure of the lattice we were able to apply operators on non-empty
bonds, and further move the orthogonality surface with the use of the Moses Move. This time,
the predicted fidelities were accurate, as the Θ surface extracted in the process of shifting
consisted of tensors with just a single entry, enforcing it to be equal to 1. As a result, further
contraction of Θ tensors with the ones stored in the B l+1 surface was trivial, and did not
disturb the precision of our predictions. Moreover, we were able to stop using the disentangler
as a result of the introduction of these modifications, as one of the legs of the D unitary would
be of size 1, which makes the optimization redundant. The application of the Moses Move on
a modified lattice is presented in Fig. 5.11.

However, the above method does not allow to update the "empty" bonds. To solve this
issue we developed a new technique, involving the contraction of tensors on neighboring
branches. We will exemplify it on the case of application of operators on vertical bonds in
the top-left quarter of the system. Beginning in the centre of the lattice, we are contracting
two sites into one, effectively starting the merging of two branches. After having applied an
operator on the resulting two-site tensor, we shift the orthogonality center by SVD in the
outwards direction. We decided to loosen restrictions imposed on the bond-size for this step
of the algorithm and keep at most χ2 singular values, after the factorization is finished. We
do that in order to not dispose of too much entanglement stored in two branches, which at
this point are being fused into one. We further contract the ancilla tensor (the one without
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Figure 5.11: The Moses Move procedure conducted on a tree-like isoTNS.

any physical leg) with the following two tensors lying on its path. We proceed in this fashion
until reaching the leaf nodes.

At this point we start the division of branches, combined with a simultaneous shifting of
the orthogonality surface. Using SVD we firstly "detach" the bottom site, and further reshape
resulting tensors in order to split in two the bond connecting them. As the vertical bonds
in this example were chosen to be always of size 1 (besides the central column of the whole
lattice), the reshaping step can be simply achieved by an addition of a trivial leg to both of the
tensors. Then, we shift the orthogonality center inwards, by obtaining with SVD an ancilla
tensor, which is further contracted with a two-site one located closer to the center of the
system. We sweep in this fashion inwards, until reaching the two-site tensor from which the
merging of branches began, and simply divide it by SVD, which finishes one step of shifting
of the orthogonality surface. All steps involved in this procedure are illustrated in Fig. 5.12.

By repeating the outward and inward sweeps multiple times we can apply operators on all
vertical bonds, concurrently shifting the orthogonality surface to the top-edge of the lattice.
We then proceed with an analogous method to move it back to the center of the system,
which allows for subsequent update of the remaining parts of the lattice.

We will conclude this section with the analysis of the computational complexity of tech-
niques being performed on the tree-like isoTNS. For both the Moses Move and the two-site
update the most expensive operations are being conducted on the site located in the center
of the lattice, due to the highest number of non-empty bonds attached to it. In the case of the
Moses Move, the cost of factorization of this site is O(dχ4 ·χ) =O(dχ5), while for the two-site
update it is equal to O(d 2χ5 ·dχ2) =O(d 3χ7). Moreover, the contraction of the central site of
the lattice with an orthogonality center, resulting from the chosen shifting technique, is of
the same order as its division via SVD, and is equal to O(dχ5) and O(d 2χ7), respectively for
the Moses Move and the two-site method. Finally, the most expensive operation associated
with the application of an operator is the factorization of the updated two-site tensor, and
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Figure 5.12: A two-site method allowing for simultaneous application of operators on "empty"
bonds and shifting of the orthogonality surface. Application of two-site operators was omitted
for clarity.

its cost is equal to O(d 2χ5 ·dχ2) =O(d 3χ7). We can thus see that the cost of shifting of the
orthogonality center across the lattice in the tree-like isoTNS is of the same order as in the
case of the Moses Move performed on the basic isoTNS (∝ O(χ7)), while the number of
FLOPS needed during the application of an operator on a two-site tensor is of smaller order
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in the tree-like version (also ∝O(χ7)).

5.9 Benchmark results for the tree-like isoTNS

To benchmark performance of the TEBD2 algorithm using the tree-like isoTNS we return
to the task of obtaining the ground state of the TFI model. This time we also used a second
order Trotter-Suzuki decomposition while generating the time evolution operators. However,
because during the update of a single quarter of the lattice we are firstly sweeping outwards,
and then inwards, we divided each evolution step over time τ into two separate ones, each
corresponding to a time-step of length τ/2. Consequently, the first and last layers of operators
applied in every iteration of the TEBD2, which originally corresponded to a τ/2 time-step,
were replaced with two layers evolving the system over the time τ/4.

With the use of modifications introduced in previous two sections we observed that
the convergence was much more stable than in the case of the original TEBD2 algorithm.
Because of that we were reducing the time-step length only when the energy converged for
the currently used value of τ, similarly as it is done in the case for classical TEBD.

In Fig. 5.13 we show energy calculated with the modified TEBD2 as a function of the
time-step τ. As a reference point we used the ground state energies obtained in Section 3.1
with the use of 1D-DMRG.
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Figure 5.13: Ground state energies of the TFI model on a L ×L lattice, obtained with the
TEBD2 algorithm operating on a tree-like isoTNS, per time-step τ. Each dot corresponds to
the last value of energy calculated using given τ. Insets depict the energies for very small
values of τ. The bond-sizes chosen for the purpose of simulations were equal to 6, 12 and 18.

We also wanted to compare the precision with which the true ground state can be rep-
resented using the tree-like isoTNS and an MPS, when we limit the number of variational
parameters stored in each of these structures. For that purpose we conducted multiple simu-
lations using the modified TEBD2, progressively increasing the maximally allowed bond-size.
On the other hand, we conducted large scale 1D-DMRG calculations to obtain the ground
state in the form of an MPS, which was subsequently gradually compressed. The details on
the latter approach were presented in Section 3.1.
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In Fig. 5.14 we show results of error densities of the energy as a function of the number
of used variational parameters, for the two techniques described above. We can see that a
certain gain from the usage of the tree-like isoTNS was observed only for a very small number
of used parameters. However, it is known that imaginary time evolution manifests worse
convergence than the DMRG algorithm, which can partially explain this phenomenon. A
similar analysis with the use of a DMRG approach, which was already proposed in the context
of isoTNSs [34], could be very fruitful and would allow to definitively determine, whether a
similar gain in precision of representation of the true ground state can be achieved using the
tree-like isoTNS for large number of used variational parameters.

0 0.74 2.89 6.44 11.32
parameters [105]

10 3

10 2

10 1

|
E/

L2 |

DMRG (compressed)
TEBD2 (tree)

0 20 40 60 80
MPS

Figure 5.14: Error density of energy as a function of the number of used variational parameters
in the TFI model, for modified TEBD2 algorithm and state obtained with 1D-DMRG, which
was further variationally compressed. Calculations were performed for a 10×10 lattice and
g = 3.1. The horizontal axis above the plot shows values of χ corresponding to a given number
of variational parameters, when an MPS-based technique is used. However, this serves only
as a reference point, and in the case of tree-like isoTNS different values of χ were used.

Finally, we compared the results given by the modified TEBD2 and its original counterpart.
For that purpose we also investigated, how the energy obtained with each algorithm varies
with respect to the number of used parameters. In the case of the tree-like isoTNS we took
into account only the final value returned by this method, as the energies for consecutive
values of τ were approaching the true ground state energy from below and intersected with it
at certain point, which can be seen in Fig. 5.13. On the other hand, in the case of the original
TEBD2 we took both the minimum and final values of energy, because we have seen that
for small enough values of τ the energy starts to diverge. Outcomes of this comparison are
shown in Table 5.1.

First thing to notice, is that for similar number of used parameters the minimum values
of energy calculated with the original TEBD2 method are smaller than the corresponding
ones obtained with the modified version of the algorithm. However, with the increasing
number of parameters in the tensor network this difference diminishes, and we expect that
asymptotically the energy obtained with both of these techniques would be comparable.
Moreover, the energy obtained with the TEBD2 on a tree-like isoTNS is significantly smaller
than the final one obtained with the original method, which highlights the usefulness of

80



FIFTH CHAPTER: ISOMETRIC TENSOR NETWORKS IN 2D SECTION 5.10

isoTNS - tree isoTNS - benchmark
Parameters χtr ee Final energy χ η Minimum energy Final energy

4232 4 -323.0923
7840 2 12 -324.4980 -316.4407

12096 6 -324.5932
28008 8 -325.3048
54992 10 -325.6417
80688 4 24 -326.0377 -316.9485
98568 12 -325.8405

164304 14 -325.9545
258536 16 -326.0271
287444 6 36 -326.1756 -317.0089
377928 18 -326.0781
536360 20 -326.1160
741800 22 -326.1435

1002984 24 -326.1644

Table 5.1: Energies obtained with two version of the TEBD2 algorithm with respect to the
number of variational parameters stored in the tensor network. The simulations were per-
formed for a TFI model on a 10×10 lattice with g = 3.1.

the modifications proposed in this work. The last aspect worth mentioning is that as the
bond-size increases, the energies given by both methods converge towards the true ground
state energy.

5.10 Simulation of 2D quantum computers via tree-like
isoTNS

In the final section of this chapter we return to the task of noisy simulation of quantum
computers. This time we will use for that purpose the TEBD2 algorithm on a tree-like isoTNS,
where we simply replace the time evolution operators with quantum gates.

We firstly checked, if our prediction of the multi-qubit fidelity F , calculated as a product
of fidelities of consecutive SVDs, is in line with the square of the overlap between the exact
and truncated states. In Fig. 5.15 we show that in fact our approximations are accurate, on an
example of random quantum circuits applied on a 5×5 lattice with various types of two-qubit
gates. It should be noted that because we are updating a single quarter of the lattice at a
time, firstly sweeping outwards, and then inwards, we are applying gates coming from two
consecutive layers (whenever it is possible). As a result, after finishing operations on a given
quarter we effectively apply just about 1/4 of all the gates from two consecutive cycles. We
apply the remaining gates by proceeding in a clockwise fashion, updating other three quarters
of the lattice. Thus, during one whole step of the algorithm we apply two cycles of the circuit.
Because of this property random quantum circuits seem to be a perfect fit for our method, as
the layers of horizontal and vertical gates always come in pairs.

However, this feature of our algorithm also comes with a certain inconvenience. The cirq
exact simulator gives access to the state vector only after the application of gates in the whole
layer is finished, due to which we were comparing our truncated state with the perfect one
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only after every second cycle. Despite this, we see an excellent precision of our approximation
of F , which can be seen in Fig. 5.15.
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Figure 5.15: Multi-qubit fidelity of the simulation of random quantum circuits with the CNOT,
CZ and ISWAP gates applied on a 5×5 lattice. The calculations were performed with an
algorithm operating on a tree-like isoTNS, for varying bond-sizes. The square of the overlap
between the truncated and exact states is marked with crosses.

Knowing that we can precisely predict the multi-qubit fidelity of simulation performed
with our method, we moved on to checking how does the average two-qubit fidelity fav g

scale with the size of the system. For that purpose we chose three values of the bond-size
χtr ee equal to 64, 68 and 72, and gradually increased the width and length of the lattice.
Concurrently, for all simulations conducted with the algorithm operating on a tree-like
isoTNS, we performed analogous computations using the MPS-based method. For each
instance of MPS calculations we used the bond-size χMPS giving a slightly larger number of
variational parameters kept in the tensor network, as compared to the tree-like isoTNS. For
example, for a 6×5 lattice and χtr ee = 72, an analogous number of variables is stored in an
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MPS with χMPS = 1454. We chose to use an MPS with a bit larger number of parameters to
check, whether a gain in precision with simultaneous compression of the quantum state can
be obtained with our method. Results of the average two-qubit fidelity for the two described
methods are depicted in Fig. 5.16.
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Figure 5.16: Comparison of the average two-qubit fidelity for the algorithm using a tree-like
isoTNS, and an MPS-based method.

Surprisingly, even though in the case of the MPS-based simulations we are conducting
large number of SWAP operations in order to apply vertical gates, the average precision
of this method scales better than the one of the algorithm operating on a tree-like isoTNS.
Nonetheless, results of the two methods give very high average fidelity, if one considers how
small is the fraction of parameters stored in the final tensor network, as compared to an
exact simulation. For example, in the case of a 7×7 lattice and circuit including the CNOT
gates, the MPS-based method gave ∼ 96% average two-qubit fidelity and the tree-like isoTNS
algorithm ∼ 95% one, for just ∼ 10−7 variables being stored in the final state. It should be
highlighted that during the application of gates and shifting of the orthogonality surface it is
needed to operate on a larger parameter space (which will be explained in depth shortly),
however it is still incomparably smaller than the full Hilbert space.

Another observation that can be drawn from Fig. 5.16 is that, as expected, the average
two-qubit fidelity gradually decreases as we increase the difficulty of the task, by replacing
the CNOT gates in the circuits with the CZ and ISWAP ones. However, the slopes of curves
corresponding to both methods are similar in the case of the CNOT and CZ gates, and differ
drastically for the ISWAP gates. This prompted us to investigate the individual fidelities of
SVDs for the two techniques under study, while simulating a circuit containing the ISWAP
gates, applied on the largest tested lattice of size 7×7. These values are presented in Fig. 5.17.

We can see that the fidelities corresponding to the MPS-based method never fall below
the threshold of 1/2. This phenomenon occurs due to the properties of SVD and the structure
of the largest two-site tensor appearing in an MPS. Let us recall that for an a ×b matrix,
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Figure 5.17: Individual fidelities of SVDs conducted during the execution of an algorithm
operating on a tree-like isoTNS with χtr ee = 72, and the MPS-based method using χMPS = 943.
The random quantum circuit was applied on a 7×7 lattice. Lower bound on the fidelity of
SVDs performed on an MPS is marked with a dashed line.

SVD always calculates at most min(a,b) singular values. Thus, for the largest tensor in the
chain (depicted in Fig. 5.18.a) being of size dχ×dχ we always calculate dχ singular values,
from which we keep only the χ most relevant ones. As d = 2 in the case of qubits, we can
plainly see that the lower bound on the fidelity of SVD performed on a chain is equal to 1/2.
However, this constraint does not apply to two-site tensors appearing in trees and PEPS.
Example of such an object is shown in Fig. 5.18.b. Because multiple legs are combined on
both ends of this tensor, in order to form an a ×b matrix which can be further factorized, the
minimum among a and b is always some power of χ. As we further keep only the χ largest
singular values we can see that in this scenario there is a possibility of a much larger leakage
of information, than is the case with MPSs.

Another issue resulting from the contraction of two separate sites into one is the increase
in memory needed to store the resulting tensor, when operating on trees and PEPS systems.
This problem does not arise in the context of MPSs, as two tensors containing dχ2 variables
each take up the same amount of space as the two-site tensor holding d 2χ2 parameters
(when working with qubits). In contrast, in the case of PEPS the number of variables stored
in two single-site nodes is equal to 2 ·dχ4, while for a two-site tensor it amounts to d 2χ6.
Thus, we can see a significant increase in space needed to store such an object. This, in
turn, explains the inferior scaling of memory footprint of our method with respect to an
MPS-based technique.

Knowing the bottleneck of our algorithm we will end this chapter with suggestions for
improvements and alternative approaches to the task of simulation of two-dimensional
quantum systems. All the methods developed in this work rely exclusively on the SVD
technique to assess the multi-qubit fidelity of our calculations, which, as we have seen,
causes a number of problems. Although, recently a different strategy was proposed [103],
which might allow to overcome these issues. The authors use an approach similar to the
DMRG algorithm, in which the MPO representing the Hamiltonian is substituted with several
layers of a quantum circuit. As a result, rather than calculating the two-qubit fidelity as
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Figure 5.18: a) The largest tensor in an MPS. b) The largest tensor in a general PEPS. c)
Application of a two-site quantum gate in the case of PEPS with the use of reduced tensors
technique.

the sum of squares of preserved singular values, we obtain it as the norm of the last tensor
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updated during the final sweep of the optimization.
It should be noted that our modified TEBD2 algorithm can be applied on a general TTN.

However, due to the necessity of contraction of two sites located in the middle of different
branches, it would suffer from the same problems as the ones present in our implementation.
This issue can be overcome in two steps. Firstly, we could factorize a four-legged two-site
operator into two three-legged ones, e.g., by SVD. Then, we could optimize each tensor
occurring on the path connecting the two sites, on which the gate is applied, in a DMRG-like
fashion discussed above. As the shifting of the orthogonality center on a single branch (which
would be necessary in this scenario) does not increase the maximal bond-size used, the most
expensive operation of the whole method would be the calculation of environment of the
updated tensor. In the case of a binary tree, in which all tensors besides the leaves are the
ancilla ones, by using smart strategy for tensor contraction the cost of such procedure would
amount to O(χ4) [121]. Because the distance between any pair of physical sites in a TTN
scales logarithmically with respect to the total number of particles, this technique should
asymptotically scale better than the MPS-based method, since the decay of the correlation
functions with respect to the path length is typically exponentially fast. Numerical studies in
this area would be needed to check, whether there are other obstacles that arise when using
this algorithm. A potential disadvantage of this approach would be, e.g., worse performance
in avoiding local minima when updating just single-site tensors, rather than the two-site
ones.

Finally, we suggest possible modifications to the algorithm operating on the basic isoTNS.
The first area, in which a significant improvement might be achieved, is the application of
the two-site operators. The cost of naive procedure achieving this task, being equal to O(χ9),
can be significantly reduced by using the reduced tensors method [122]. In this technique,
the physical leg of given site is grouped together with a single virtual bond, which, when
factorization is conducted, allows for "detachment" of the physical leg along with the ancilla
one from the remaining virtual degrees of freedom. Effectively, the tensor corresponding to a
physical site is moved along one of the bonds, leaving the other tensor resulting from the SVD
as the ancilla one. When this method is performed on the two sites, on which the operator is
ought to be applied, the two tensors being the output of this procedure can be contracted,
giving as a result an order-4 tensor of size O(d 2χ2). After the update of this node is finished,
it can be divided by another SVD, and the resulting tensors can be contracted with the ancilla
ones, left from the preparation step of the procedure. As a result, the overall cost of the
application of a two-site operator is reduced to O(χ5), which is equal to the cost of both the
SVD of a single site, performed at the beginning of the algorithm, and contractions conducted
at its end. All of the steps described above are depicted in Fig. 5.18.c. It should be noted
that in the course of carrying out the reduced tensors method, at most three truncations are
performed, each bounded from below by the fidelity of 1/2 (in the case of qubits). Thus, the
lower limit on the final fidelity of the application of a two-site tensor is equal to 1/8, due to
the multiplicative nature of the accumulation of errors. Numerical studies checking whether
this bound is ever reached during the execution of real quantum circuits would be of great
value.

However, even the best possible method of applying operators would not be useful to us
if we were not able to predict the multi-qubit fidelity of our simulation. As we mentioned
previously, we could not approximate this value using local estimates (coming from the SVDs
or variational solution of theΘl = AlΘ problem), thus we propose here a more "global" ap-
proach. The problem lies precisely in estimating the precision, with which the orthogonality
surface is moved. In general, this value can be computed by calculating the overlap of the
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whole PEPS from before, and after the shifting. In the case of isoTNS this procedure is not
as expensive, as the only update of tensors occurs in the initial Θl B l+1 columns, yielding
the AlΘl+1 ones, while the rest of the lattice satisfies the isometry condition. Therefore, the
precision of shifting of the orthogonality surface should be properly approximated by the
|〈Θl B l+1|AlΘl+1〉|2 value. Nevertheless, the computation of this fidelity would cost O(χ8),
and would involve storing the copy of initial and final columns, making it the most expensive
part of the whole simulation algorithm.
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CONCLUSIONS

The study of the properties of strongly correlated two-dimensional systems is a fascinating
area of research, which at the same time poses a huge challenge due to the exponentially
increasing amount of resources required to perform their exact classical simulation. A large-
scale quantum computer could be potentially used to overcome this problem, however its
construction is itself an extremely difficult engineering endeavor. Until such a fault-tolerant
machine is built, approximation methods using tensor networks serve as one of the most
powerful tools to explore the interesting physics of complex quantum systems.

In this thesis we focused on the algorithms utilising the so-called isometry condition,
allowing for significant areas of tensor networks to be ignored when conducting their update,
or calculating the expectation values of observables of interest. We began with a pedagogical
introduction to the 1D MPSs and presented a number of algorithms, such as variational
compression, TEBD and DMRG (both in its finite and infinite versions). We showed how to
increase the efficiency of simulation by introducing the concept of charge conservation. We
also illustrated how 2D systems might be mapped onto a 1D chain, which in turn allows the
use of the aforementioned methods to analyze their properties.

We then used the DMRG technique to analyze two types of physical models. Firstly, we
localized the critical point of the transverse field Ising model on a finite L ×L rectangular
lattice, for varying values of L, and compared the obtained results with the ones presented in
Refs. [39–42] in order to check their correctness. From the entire spectrum of investigated
Hamiltonian parameters we selected a set giving a comparable amount of entanglement being
present in the system, for increasing size of the lattice. These results served us as a benchmark
against which we compared algorithms tailored specifically for the two-dimensional tensor
networks, developed in the further part of this work.

Secondly, we investigated the properties of the spin-3/2 XXZ Hamiltonian with a single
ion anisotropy on a honeycomb lattice, which was shown to be an effective model of the
monolayer of CrI3 [43]. Isolated CrI3 manifests the ferromagnetic order in the off-plane axis,
with a Curie temperature TC = 45 K [78], while other magnetic phases exhibited by the Hamil-
tonian can be achieved by the introduction of defects [96], strain [97, 98] and charge doping
[98, 99], which enhance magnetic anisotropy. We showed that a classical approximation of
this model can be used to predict the type of magnetic ordering with high fidelity in a wide
range of the parameter space. The in-plane ferromagnetic and antiferromagnetic phases have
correlation energies that are the greatest in magnitude, while the off-plane ferromagnetic
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phase has a correlation energy of zero. With the help of our findings, it is feasible to identify
the Hamiltonian parameters for which the energy gap is the largest, increasing the stability of
the resulting phase.

Afterwards, we turned to the task of noisy simulation of quantum circuits with the use
of MPS-based methods, which by reducing the amount of entanglement being present in
the system yield a finite precision [45]. We explained, how the two-qubit fidelity can be
approximated by the sum of squares of singular values kept during the SVD, and how the
multi-qubit fidelity can be obtained by the product of the two-qubit ones. We demonstrated
the concept of random quantum circuits, which were used by Google Inc. in their famous
quantum supremacy experiment [44]. We showed how the fidelity of simulation of this kind
of circuits depends on the type of multi-qubit gates used, being the highest for the CNOT
gates, and decreasing gradually when utilizing the CZ and ISWAP ones.

Next, we introduced the two-dimensional Isometric Tensor Networks, proposed initially
in Refs. [32, 34]. We gave a detailed description of the Moses Move technique, allowing to
shift the orthogonality surface over the whole lattice, and the TEBD2 algorithm, which in turn
can be used to obtain the ground state of a chosen physical model by means of imaginary
time evolution. Then, we presented two modifications of the initial framework, designed
specifically for the purpose of this work. The first one allows to move the whole orthogonality
surface of an isoTNS into the bulk, effectively allowing for a significant reduction of the
bond-size required to conduct given computations. The second alteration consisted of two
parts. The first one involved the rearrangement of the flow of entanglement through the
lattice, making it effectively a tree-like structure. Second one used tensors contraction and
SVDs to merge different branches, making it possible to apply the two-site operators on
nodes not being directly connected in the initial tree.

We compared both the original version of the TEBD2 and the modified one utilizing the
aforementioned alterations on the task of obtaining the ground state of the transverse field
Ising model on a square lattice. As a reference point we used the results calculated with the
use of the DMRG algorithm. We have seen that the adjusted version of the TEBD2 exhibited
much more stable convergence than the basic one. As the initial implementation diverged
for small enough length of the time-step, we kept track of both the minimum value of energy
it gave during the whole run-time, as well as the final one. We anticipate from the altered
TEBD2 to give asymptotically the same energy (with respect to the number of variational
parameters stored in the final tensor network) as the minimal one obtained with the basic
version. Whereas in the case of the last values obtained with both methods the one proposed
in this work was always superior.

Finally, we adjusted the modified TEBD2 algorithm to the task of simulation of random
quantum circuits. Thanks to the introduced alterations we were able to predict the multi-
qubit fidelity of our calculations with high precision, which we were not able to achieve with
the initial version of the isoTNS formalism, due to the error caused by the Moses Move. Using
this method, we obtained very high average two-qubit fidelity with only a fraction of the
parameters used, with respect to the number required by an exact simulation, which also
depended on the amount of entanglement being present in the simulated state. We compared
these results with those of the MPS-based technique. For the largest system studied, being a
grid of size 7×7, the average two-qubit fidelity of the modified TEBD2 algorithm was worse by
∼1% in the case of the CNOT gates used in the circuit, and ∼2% worse for the CZ and ISWAP
gates, than the fidelity obtained with the MPS-based method. We found the contraction of
two sites into a single tensor and merging of different branches to be the bottlenecks of the
modified TEBD2 algorithm, and proposed a DMRG-based approach potentially allowing to
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bypass these issues and extend our algorithm to the case of general tree tensor networks.
In the case of the basic isoTNS we also suggested a method involving the calculation of the
square of the overlap between the two columns being the input of the Moses Move, and the
ones being its output, potentially allowing an exact estimation of the multi-qubit fidelity
when shifting the orthogonality surface. This technique might allow the use of standard
isoTNS to its full extent in the context of simulating random quantum circuits. However, the
last two conjectures should be verified by extensive numerical studies.

Altogether, the results presented in this thesis show the great power of tensor networks as
a tool to investigate the properties of quantum systems. The two-dimensional isoTNS seem
to hold great potential in the context of studying physical models, although there is still no
consensus in the community as to which of the methods used to canonize PEPS is best, and
further research in this area is needed. New discoveries in this field could be also used in
the context of noisy simulation of quantum circuits, resulting in calculations of even higher
fidelity.
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