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ABBREVIATIONS 

 

Term / Acronym Definition 

RMS Root Mean Square of a given variable  

PDF Probability Density Function  

PDFD Probability Density Function based on the Dirlik approach  

NB Probability Density Function based on the Bendat Rice approach  

LAL Probability Density Function based on the Lalanne approach 

STGB Probability Density Function based on the Steinberg approach 

IFFT Inverse Fast Fourier Transformation 

 f frequency 

mi i spectral moment  (0th, 1st, 2nd or 4th) 

S-N Stress versus number of cycles – fatigue curve definition for the stress life 
method 

RTCA Radio Technical Commission for Aeronautics 

 σ The mean value of a signal 

FEM Finite Element Method  

LALm Modified Probability Density Function based on the Lalanne legacy approach 
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CHAPTER 1 INTRODUCTION 

 

The initial research focused on a study of the legacy techniques and use of commercial software 
for vibration damage estimation in the aerospace industry, based on my experience in Collins 
Aerospace Company. Many civil and military projects need to meet specific requirements, taking 
into account specific cases – for which commercial software is at the initial stage of development 
or does not provide a solution for the considered cases (specific load combination, e.g., 
simultaneous acting sine sweep with random loading) or the provided solution is just a rough, 
conservative consideration. Working for many years on numerous aerospace projects before I 
started the research, I noticed that some methods used in the industry seem very conservative – 
I noticed that some units required redesigning, as they did not meet the dynamic load 
requirement. All the cases quoted in Collins Aerospace Company are the basis for initiating 
research, which allow for more robust vibration damage prediction to limit the cost of design and 
testing aerospace units, which need to meet the vibration loading requirements. This is also 
needed in terms of economical and safety aspects. 

The introduced research focused on creating tools and methods, which can be used commercially 
for sizing aircraft and helicopter units for dynamic load requirements based on new developed 
methods or legacy methods modified based on research results. The aim for new tools, algorithms 
and scripts is to provide more robust techniques than currently used by the company – allowing 
to predict failures more accurately, reduce the design process time and reduce the volume of cost 
excessive testing of real units.  

The research has been narrowed to impact stochastic dynamic loading and deterministic 
harmonic loading (for combined stochastic and deterministic loading scenario) on aircraft units –
as these cases reported the highest number of issues in Collins Aerospace Company. As an 
example of using developed tools and methods I chose the transmission shafts of an aircraft. 
Transmission shafts are one of the most affected by the dynamic loading units of aircrafts and 
helicopters. The last step of the research introduces the process of assessment dynamic load 
impact on an exemplary transmission shaft using the legacy technique and new developed 
techniques – based on research results presented in this document and results of tests conducted 
on real shafts. The results of real shaft testing have been used to obtain a correlated FEM model.  

It is worth noting that the transmission shaft example was used as demonstrational for 
consideration, but the created tools and methods can be used for all aerospace units – this 
generalisation is a great benefit for the whole company, as it does not narrow the research results 
just to the Actuation System Department (which is responsible for High Lift System aircraft 
transmission shafts). 

The research focused on dynamic loads affecting transmission shafts in the slat and flap 
transmission systems (see Figure 1-1) – one slat transmission shaft was chosen as an example.  



-20- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis
   

 

Figure 1-1 Transmission shafts architecture in a slot and flap system [1] 

 

The RTCA aviation standard DO-160G [2] (Environmental Conditions and Test Procedures for 
Airborne Equipment) regulates the requirements of individual aircraft also with regards to 
vibration in individual zones of the aircraft. As mentioned above, this document focuses on two 
load cases random vibration cases on an aircraft related to take-off, flight and landing described 
by the function of power spectral density and deterministic harmonic loading (used for a 
combined stochastic and deterministic loading scenario). 

Tools and methods developed in this document aim to assess the impact of dynamic loads on the 
transmission shafts of an aircraft as an exemplary usage. Transmission shafts are a torque 
transmitter from a power drive unit to the panels of slats and flaps. The example of the 
architecture of both systems (see Figure 1-1) shows the arrangement of transmission shafts 
connected to individual angular and planetary gears of the slat and flap systems. The significance 
of this system is important for the aircraft to obtain lift force during take-off and landing. These 
systems allow to increase the lift force of the aircraft at low speeds, making it easier for the 
aircraft to take off and maintain stability when approaching landing. In addition, these systems 
allow for the braking distance to be reduced, due to the aerodynamic drag caused during landing, 
which translates into less effort on the landing gear and the aircraft brakes, and a reduction in the 
braking distance. 

Random vibrations are normally described in the form of the Power Spectra Density (PSD) 
function, separately for each vibration zone of the aircraft in the form of appropriate curves (see 
Figure 1-2 as an example). In the case of transmission shafts, C / C1 curves (blue dash curve in 
Figure 1-2) are used for locations in the aircraft fuselage, while for location on the wing of the 
aircraft more restrictive E / E1 curves (red curve in Figure 1-2)  are used, which is due to the 
greater susceptibility of the aircraft wing to vibrations of different sources. The component 
exposure time to individual load profiles is 3h for each orthogonal direction. 
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Figure 1-2 Spectral density of signal strength for individual standard curves, ref [2] 

 

The more critical E / E1 curves indicate the maximum spectral density of the signal power in the 
200 – 500Hz frequency bandwidth, equal to 0.16g2 / Hz. In this document different values of the 
PSD input curve were used to obtain the various PSD responses based on one transfer function – 
limiting the research time.  

Research presented in this document has been divided into two parts:  

1) Vibration damage assessment under stochastic loading – used in civil and military aircrafts.  
2) Vibration damage assessment under combined stochastic and deterministic loading – used in 

military aircraft and helicopters.  
 

Research introduced in this paper focuses on modification of the legacy technique for vibration 
damage estimation using the Dirlik, Bendat, Lalanne and Steinberg methods introduced in 
Chapter 2. Additionally, the research expands Dirlik’ s considerations – focusing on assessment of 
vibration damage using the Monte Carlo and IFFT methods. All the considerations aim to provide 
a more robust technique of vibration damage prediction for stochastic loading and enabling 
estimation of the mean value of damage and the damage range for considered probability and 
IFFT frequency resolution – rather than evaluating just the mean value of damage – an approach 
used by legacy methods.  
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In terms of the second aspect of the research (vibration damage assessment under combined 
stochastic and deterministic loading) an algorithm was created for the legacy technique – based 
on frequency domain consideration. Justification will be presented that the frequency method 
used for this load scenario implies conservativism in damage estimation. The next step of the 
research is developing a new and more robust method for vibration damage assessment under 
combined stochastic and deterministic loading. Use of combined frequency and time domain 
consideration is proposed, in order to superimpose a random and deterministic signal and process 
Rainflow Cycle Counting algorithm in the time domain for final damage estimation (not using 
Rainflow Cycle Counting in the frequency domain as for the legacy method). Additionally, for the 
new method, we also provide the opportunity to assess the mean damage and damage range 
(which depend on IFFT block size – N – see equation Eq. 4.5 ). 

The considerations presented in this document allow for the development of a more robust 
technique for vibration damage estimation under random loading and combined random and 
deterministic harmonic loading, which can be adopted for commercial usage in Collins Aerospace 
Company, and which will be the basis for creation of in-house software.  
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CHAPTER 2 VIBRATION FATIGUE DAMAGE PREDICTIONS UNDER STOCHASTIC 
LOADING IN THE FREQUENCY DOMAIN THEORETICAL BACKGROUND 

 

This section presents the review of the frequency domain-based methods for vibration damage 
estimation, which are now the basis for the commercial software and tools used for commercial 
application. The aim of this research is to develop a methodology that would allow for the 
prediction of vibration damage, help to understand the testing of civil as well as military aircraft 
systems, and assess the possibility of under-testing. The research and conclusions presented in 
publications [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13] and [14] are focused on a combined 
computer technique method and FEM analysis predicting the vibration damage. The above 
referenced papers are milestones in this field of study and help to implement theoretical 
considerations initiated by precursors like Bendat [15], [16] and [17], Dirlik [18] and Rice [19], 
Lalanne [20], [21] and [22] and Steinberg [23]. The Steinberg method was developed for electronic 
applications [23], while the Wirsching [24], Chaudhury & Dover [25] and Hancock [26] methods 
are used for offshore applications. The Tunna method of vibration damage estimation under 
stochastic loading was developed for railway engineering equipment in the United Kingdom [27]. 
A summary of the solution methods for vibration damage estimation under stochastic loading for 
applications is presented in Table 2-1. 

 

Solution method for applications  

General Use  Electronic Equipment Offshore 
Railway   

Engineering 
Equipment 

Dirlik  Steinberg Wirsching Tunna 

Lalanne  Chaudhury & Dover Hancock - 

Narrow Band 
(Bendat/ Rice 

Method) 
- 

Chaudhury & 
Dover 

- 

Table 2-1 Solution method for application summary 

 

This paper focuses on further developing the Dirlik approach by using two combined methods: 
Monte Carlo and FEM simulation on predefined samples and Python programming language, 
which is the basis for this study. The research combines the Dirlik theoretical consideration on 
signal statistics in a time and frequency domain with studies made by Bishop and Halfpenny, who 
were the precursors of theoretical consideration in commercial software such as MSC CAE Fatigue 
[28] and [29] and HBM-nCode [30]. Therefore, research is focused on developing the theoretical 
background to describe the vibration damage phenomena under stochastic loading and 
developing code that allows for the use of commercial software such as Abaqus to evaluate the 
transfer function of the system. The transfer function can be multiplied by the PSD input to derive 
a system response using interpolation in the frequency domain and then estimate the damage 
based on the material allowable and exposure time to random loading. Another crucial aspect will 
be the introduction of complex time domain considerations using the Monte Carlo simulation 
approach (see Chapter 4) to benchmark the legacy methods and provide a new opportunity for 
precise vibration damage estimation for aircraft duty and test duty used during testing real units.   
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2.1 Narrow Band method – developed by Bendat and Rice 

In the 20th century in the early sixties, Julius Bendat [15], [16], [17] developed a theory that was a 
milestone for the vibration fatigue prediction for systems exposed to stochastic loading. The 
Bendat method was used by Dirlik during the development of semi-empirical theory for more 
general use (from narrow band to white noise signals). 

In the early 1950s, Rice [19] provided proof that the Probability Density Function (PDF) of peaks 
in vibration narrow band spectrum matched the Rayleigh distribution, defined by equation Eq. 
2.1  as the bandwidth reduced. 

P(𝛼) =
𝛼

𝜎2
𝑒
−𝛼2

2𝜎2  
Eq. 2.1 

 
 

where: 

σ – the signal standard deviation value  

α – an independent variable e.g., complex Huber Mises Hencky stress 

Two signals (with frequency f1 and f2) superposed to one – the red curve Figure 2-1 results in a 
time domain signal with frequency (f1+ f2) for narrow band solution, which is attenuated by a low 
frequency beat signal with frequency (f1- f2). The oscillation equation and the beat frequency 
equation can be demonstrated by trigonometry identities Eq. 2.2 [6]. 

sin(2πf1t) + sin(2πf2t) = 2 cos (2πt
f1 − f2
2

) sin (2πt
f1 + f2
2

) 
 Eq. 2.2 

  

  

Figure 2-1 Narrow Band solution – all positive peaks are matched with corresponding troughs of 
similar magnitude, hence the green signal is transformed to the red signal, [6] 

Following this assumption Bendat derived that the PDF function of Rainflow ranges of a signal also 
follows the Rayleigh distribution, and therefore the Rainflow range of a signal is defined by twice 
the peak amplitude. The narrow band solution assumes that all positive peaks are matched with 
corresponding troughs from a signal with similar magnitude, hence the green signal is 
transformed to the red signal – see Figure 2-1. This causes the PDF of Rainflow to be twice the 
PDF of the peaks. This approach used for the wide band process will therefore be conservative, 
and for some commercial software, such as CAE Fatigue [29], the number of peaks is replaced by 
an upward zero crossing variable to reduce the pessimism in the damage estimation [29]. 
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The second step of the Bendat solution [19], [31], [32] and [33] is to use a series of equations in 
order to estimate the number of cycles per unit (e.g. second) of exposure to the signal. Rice 
defines the number of peaks E[P] and upward zero crossings E[0] for signal statistics in the 
frequency domain as per the following equations Eq. 2.3, Eq. 2.4: 

𝐸[0] = √
𝑚2
𝑚0

 
Eq. 2.3 

Where: 

𝑚2– is the second spectral moment  

𝑚0– is the zero spectral moment 

 

𝐸[𝑃] = √
𝑚4
𝑚2

 
Eq. 2.4 

Where: 

𝑚4– is the fourth spectral moment 
 

The spectral moments: m0, m2, m4 are the 0, 2nd, 4th and are the area under the PSD response of 
the system.  These can be derived by integration of the general equation for spectral moment as 
defined in the following equation Eq. 2.5:  

𝑚𝑛 = ∫ 𝑓
𝑛 ∙ 𝑆(𝑓)𝑑𝑓

∞

0

 
Eq. 2.5 

Where: 

𝑚𝑛– is the n spectral moment  

f – is the considered frequency   

S(f)  – is the PSD Response Function of the system or the single side PSD of stress amplitude at a 
particular frequency [Hz] 𝑓𝑖 ∈ (𝑓𝑚𝑖𝑛; 𝑓𝑚𝑎𝑥). 

Note: the zero spectral moment represents the mean square value of the time domain signal or 
the RMS (Root Mean Square).  

 

Bendat’ s final narrow band solution of the Rainflow range histogram based on PDF can be 
expressed by the following equation Eq. 2.6: 

                      𝑁𝐵(𝑆) = (
𝑆

4𝑚0
𝑒
−𝑆2

8𝑚0) ∙ 𝑑𝑆 
Eq. 2.6 

Where: 

S – is the stress at the considered histogram bin 

Therefore, the number of cycles can be defined by equation Eq. 2.7: 
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                      𝑛𝑁𝑎𝑟𝑟𝑜𝑤_𝐵𝑎𝑛𝑑 = 𝑁𝐵(𝑆) ∙ 𝑇 ∙ 𝐸[𝑃] Eq. 2.7 

Where: 

T- is the time of exposure on random loading 

The first element of equation Eq. 2.6 is the Rayleigh probability distribution. T is the total time of 
exposition to a random load with predefined PSD input. 
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2.2 The Dirlik method – a general solution for the narrow and wide band processes  

Following the Rice [19] approach the PDF of peaks can be derived from the weighted sum of the 
Gaussian and Rayleigh distribution. In his thesis Dirlik reasoned that the PDF of peaks is not equal 
to the PDF of Rainflow ranges and derived separate equations for both variables [18]. Dirlik 
proposed an empirical solution to estimate the desired PDF of Rainflow ranges based on extensive 
computer simulation using the Monte Carlo technique. Nevertheless, Dirlik’ s solution was derived 
on a relatively short record of data, i.e., 10 times for each considered predefined spectrum. This 
approach doesn’t tell us much about the stochastic process and can therefore miss the proper 
estimated lives. Additional research in this matter has been introduced in section Chapter 4. 

The Dirlik method also defines the PDFD(S) function based on a series of empirical estimated 
variables defined as in equation Eq. 2.8:  

                     𝑃𝐷𝐹𝐷 = (
𝐷1

𝑄
𝑒
𝑍

𝑄+ 
𝐷2𝑍

𝑅2
𝑒
−𝑍2

2𝑅2+𝐷3𝑍𝑒
−𝑍2

2 ) ∙
𝑑𝑆

2𝑅𝑀𝑆
 

Eq. 2.8 

The variable definition is as follow: 

Irregular factor Eq. 2.9: 

                    𝛾 =
𝑚2

√𝑚0 ∙ 𝑚4
 Eq. 2.9 

 

The normalised Dirlik stress variable (note: Dirlik’ s normalised stress variable is two times that of 
Bendat’ s normalised stress variable)  Eq. 2.10: 

                     𝑍 =
𝑆

2√𝑚0
 

Eq. 2.10 

 

The ‘mean frequency’ Eq. 2.11: 

                     𝑋𝑚 =
𝑚1
𝑚0
∙ √
𝑚2
𝑚4

 
Eq. 2.11 

The remaining Dirlik empirical variables Eq. 2.12 through Eq. 2.16: 

                     𝐷1 =
2(𝑋𝑚 − 𝛾

2)

1 + 𝛾2
 

Eq. 2.12 

                    𝐷2 =
1 − 𝛾 − 𝐷1 + 𝐷1

2)

1 + 𝛾2
 Eq. 2.13 

       𝐷3 = 1 − 𝐷1 − 𝐷2 
Eq. 2.14 

 

                     𝑄 =
1.25 ∙ (𝛾 − 𝐷2 ∙ 𝑅 − 𝐷3)

𝐷1
 Eq. 2.15 
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                     𝑅 =
𝛾 − 𝑋𝑚 − 𝐷1

2)

1 − 𝛾 − 𝐷1 + 𝐷1
2 Eq. 2.16 

 

The Dirlik method is based on research and development made by Rice and Bendat, and therefore 
the Dirlik PDF (PDFD) is also based on the weighted sum of the Gaussian and Rayleigh exponential 
probability distribution. The Dirlik method has been ranked as more robust than the Narrow-Band 
Bendat and Steinberg methods, and similar as with robustness as Lalanne [10]. 
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2.3 The Wide Band method – developed by Steinberg 

As stated in section 2.1, the Narrow-Band approach for wide-band signal tends to be conservative, 
therefore other techniques need to be considered for damage prediction for better accuracy and 
less conservativism in the created algorithms. 

Figure 2-2 presents the typical wide-band signal, where the high frequency sinusoidal signal is 
superimposed with a low frequency signal. The signal has a Gaussian distribution of peaks in the 
spectrum. 

 

Figure 2-2 Wide-band time signal, which follows Gaussian distribution [6] 

 

In that case the irregular factor Eq. 2.9 decreases and the statistical distribution from Rayleigh 
Eq. 2.1 becomes Gaussian distribution as defined in equation Eq. 2.17. 

P(𝛼) =
1

𝜎√2𝜋
𝑒
−𝛼2

2𝜎2  
Eq. 2.17 

Note: the parameter description is analogical to that in equation Eq. 2.1. 

As we can see, the irregular factor γ is inversely proportional to the number of peaks as seen in 
equations Eq. 2.3,Eq. 2.4,Eq. 2.9, and therefore it can be defined in equation Eq. 2.18. This was 
also noticed by Rice in his work and has been offered for use [19].  

𝛾 =
𝐸[0]

𝐸[𝑃]
=

𝑚2

√𝑚0 ∙ 𝑚4
 

Eq. 2.18 

Graphically, a signal statistic in the time domain can be presented as in Figure 2-3. 
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Figure 2-3 Upward zero crossing E[P] and peaks E[P] in the time series spectrum [8] 

Therefore, the PDF of peaks is related to the bandwidth of a considered signal, and furthermore 
the wide-band signal peaks following the Gaussian distribution Eq. 2.17, opposed to the narrow-
band signal, which peaks follow the Rayleigh distribution Eq. 2.1.  

Irregular factors for a narrow-band signal tend towards unity – in this case all peaks in the 
spectrum occur above the mean of the signal, as opposed to the wide-band signal, where the 
irregular factors tend to zero – peaks in the spectrum occur symmetrically around the signal mean 
value. 

The narrow-band process can be presented graphically as in Figure 2-4, and a typical wideband 
signal can be presented as in Figure 2-5. A white noise process can be a part of the wide-band 
process if the irregular factor is below 0.5, as in Figure 2-6. Figure 2-7 also shows a sinusoidal 
signal when the irregular factor is equal 1. 

 

Figure 2-4 The narrow-band signal shape in the time and frequency domains, 𝛾 ∈ (0.95; 1), [8] 
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Figure 2-5 The wide-band signal shape in the time and frequency domains, 𝛾 ∈ (0.5; 0.95), [8] 

 

 

Figure 2-6 The white noise signal shape in the time and frequency domains, 𝛾 < 0.5, [8] 

 

Figure 2-7 The sinusoidal signal shape in the time and frequency domains, 𝛾 = 1, [8] 

Steinberg [11] and [23] others assume that the PDF of Rainflow ranges tends to be of Gaussian 
distribution. His approach was not to define PDF Rainflow ranges as a continuous histogram, but 
as discrete values based on three multiples of RMS – Root Mean Square amplitudes and is widely 
used in electronic equipment when there is good correlation with electronics testing. The 
histogram bins are calculated at stress amplitudes S=2∙RMS, S=4∙RMS and S=6∙RMS, the PDF of 
Rainflow ranges can be define as follows Eq. 2.19:     

STGB= {
0.683
0.271
0.043

} 
Eq. 2.19 
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Therefore, the number of cycles for the three bins defined as introduced above are defined by 
equation Eq. 2.20, [23].  

𝑛𝑆𝑡𝑒𝑖𝑛𝑏𝑒𝑟𝑔 = 𝑆𝑇𝐺𝐵 ∙ 𝐸[𝑃] ∙ 𝑇 

 

Eq. 2.20 

The number of cycles histogram for the Steinberg method for an example narrow band signal is 
presented in Figure 2-8. 

 

Figure 2-8 The number of cycles histogram for the Steinberg method (3 bins method) for the 
narrow band signal [6] 

The Steinberg approach is more dedicated to hand calculation for electronic equipment, with 
simplification made by the author to make this method relatively accurate for the single slope S-
N curve. In other scenarios a discrete value of Rainflow ranges can decrease the arbitration on 
different segments with different S-N curve slopes [6]. 
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2.4 The Lalanne/Rice method – a general solution for narrow-band and wide-band 
signals 

In his consideration Lalanne [6], [20], [21] and [22] has a similar approach to Rice [19] and 
concludes that for sufficiently long periods of time the PDF Rainflow ranges tend towards the PDF 
of signal peaks. Therefore, the weighted sum of the Gaussian and Rayleigh distribution will be 
correct for the derivation of the PDF of Rainflow ranges (Note: Dirlik, in his work [18], considered 
two different equations for the PDF of Rainflow ranges and the PDF of signal peaks). 

The PDF of Rainflow ranges or PDF of signal peaks was defined as the following equation Eq. 2.21 
[6] for Lalanne approach (LAL):  

      LAL=
1

𝑅𝑀𝑆
{
√1−𝛾2

√2𝜋
𝑒

−𝑆2

2𝑚0(1−𝛾
2)+ 

𝑆𝛾

2𝑅𝑀𝑆
𝑒
−𝑆2

2𝑚0[1 + erf (
𝑆𝛾

√2𝑚0(1−𝛾
2)
)]} ∙ 𝑑𝑆 

 

Eq. 2.21 

Here S is the stress for each considered bin in the histogram (centre of the bin or average value – 
integral), γ – the irregular factor is defined by Eq. 2.18, erf(x) is defined as the Gaussian error 
function and can be written as follows Eq. 2.22: 

erf(x)=
2

√𝜋
∙ ∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0
 Eq. 2.22 

The Lalanne and Rice approaches are treated as equally robust as the Dirlik approach [6], with 
one advantage that it is less empirical than the Dirlik approach. The number of cycles for the 
Lalanne method is solved numerically, like for the Dirlik method, and is based on the following 
equation Eq. 2.23:   

       𝑛𝐿𝑎𝑙𝑎𝑛𝑛𝑒 = 𝐿𝐴𝐿 ∙ 𝐸[𝑃] ∙ 𝑇 Eq. 2.23 

 

An example of a cycle counting histogram is presented in Figure 2-9. 

 

Figure 2-9 Example of a Rainflow cycle histogram based on a PSD of signal peaks for the 
Lalanne/Rice method [6] 
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2.5 Review of other methods for PDF estimation  

This section introduces other methods of Rainflow Cycle Counting in the frequency domain for 
specific use.  

2.5.1 Tunna Solution of PDF estimation  

The Tunna [27] solution is similar to narrow-band, and details can be found in section 2.1. The 
PDF function for the Tunna solution is presented in Eq. 2.24. The Tunna solution was originally 
developed as a railway solution and therefore will not be used in creating counting algorithms. 

                     𝑝(𝑆)𝑇𝑢𝑛𝑎 = (
𝑆

4𝛾2𝑚0
𝑒

−𝑆2

8𝑚0∙𝛾
2) 

Eq. 2.24 

2.5.2 The Wirsching Method of vibration fatigue damage estimation  

The number of allowable cycles for the Wirching [24] solution can be estimated using the 
following equation Eq. 2.25: 

                     𝐸[𝐷]𝑊𝑖𝑟𝑐ℎ𝑖𝑛𝑔 = 𝐸[𝐷]𝑁𝑎𝑟𝑟𝑜𝑤𝑏𝑎𝑛𝑑(𝑎(𝑚) + [1 − 𝑎(𝑚)](1 − 𝜀)
𝑐(𝑚) Eq. 2.25 

Where the Wirsching variable is defined as:  

a(m)=0.926-0.033m 

c(m)=1.587m-2.323 

m – slope of the S-N cure in logarithmic coordination  

E[D] variables can be defined also by equation Eq. 2.26. 

                     𝐸[𝐷] = 𝐸[𝑃]
𝑇

𝐾
𝑆𝑒𝑞
𝑚  

Eq. 2.26 

 

                    𝑆𝑒𝑞 = [∫ 𝑆
𝑚𝑝(𝑆)𝑑𝑆]

∞

0

1/𝑚

 

Eq. 2.27 

 

Where: 

K – is the constant proportionality between stress and deformation  

The Wirching solution was developed as an offshore solution, therefore it will also not be a part 
of the research quoted in this document. 

 

2.5.3 The Chaudhury & Dover Solution of vibration fatigue damage estimation 

The number of allowable cycles for the Chaudhury & Dover [25] solution can be estimated using 
the following equation Eq. 2.28: 

 𝑺𝒆𝒈𝑪𝒉𝒂𝒖𝒏𝒅𝒓𝒚&𝑫𝒐𝒗𝒆𝒓 = (𝟐√𝟐𝒎𝟎)[
𝜺𝒎+𝟐

𝟐√𝝅
𝜞(

𝒎+𝟏

𝟐
) +

𝜸

𝟐
𝜞(

𝒎+𝟐

𝟐
) + 𝐞𝐫𝐟 (𝒚)

𝜸

𝟐
𝜞(

𝒎+𝟐

𝟐
)
𝟏/𝒎

  
Eq. 2.28 
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where: 

erf(𝛾)=0.3012 𝛾+0.4916𝛾2+0.9181𝛾3-2.3534𝛾4-3.3307𝛾5+15.6524𝛾6-10.7846𝛾7 

and 𝛤 (
𝑚+2

2
) is the Gamma function — a tabular function used to avoid a numerical approach for 

integration.  

The Chaudhury & Dover solution was developed as an offshore solution; therefore, it will also not 
be a part of the research quoted in this document. 

2.5.4 The Hancock Solution of vibration fatigue damage estimation 

The number of allowable cycles for the Hancock [26] solution can be estimated using the following 
equation Eq. 2.25: 

                     𝑆𝑒𝑞_𝐻𝑎𝑛𝑐𝑜𝑐𝑘 = (2√2𝑚0) ∙ [𝛾𝛤 (
𝑚

2
+ 1)]1/𝑚 Eq. 2.29 

 

The Hancock solution was developed as an offshore solution; therefore, it will also not be a part 
of the research quoted in this document. 
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CHAPTER 3 VIBRATION FATIGUE DAMAGE PREDICTIONS UNDER STOCHASTIC 
LOADING IN THE FREQUENCY DOMAIN – ALGORITHM, PROGRAMMING 
AND COMPUTATION  

In this section we look at the computer technique used for vibration damage assessment. The 
Abaqus solver has been chosen as the solver used for FEM calculation, i.e., the transfer function 
of system estimation [34]. 

The first step of the algorithm is importing the complex stress tensor value from the ‘.odb’ field 
output database as defined in Figure 3-1. The imported results are the value of stress calculated 
in the integration point of element and extrapolated to the element nodal location. Therefore, 
the Abaqus default keyword needs to be changed from the default integration point to the 
element nodal location.   

 

Figure 3-1 The structure of the result repository in the Abaqus output database (.odb) file  

 

The PSD Response function based on complex stress tensors (real and imaginary values), which 
are used for the evaluation of Huber-Mises-Hencky – σHMH stress based on equation Eq. 3.1 

 σHMH =
1

2
[(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ11 − σ33)

2 +

6(σ23
2 + σ31

2 + σ12
2 )]  

 Eq. 3.1 

 

Where each stress tensor components are evaluated as equation Eq. 3.2.  

                     σij=Re(σij) + iIm(σij) Eq. 3.2 

 

 

 



-37- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis
   

Where: 

Re(σij) – is the real part of the stress tensors  

Im(σij) – is the imaginary part of the stress tensors 

The imaginary and real value for each frame – cumulative frequency value for the considered 
bandwidth, need to be imported by e.g. a loop through all the frames from step 2, which is a 
harmonic analysis at the considered frequency bandwidth (note: step 1 is the modal analysis for 
finding the resonance frequency in the considered spectrum used, then for creating the transfer 
function during harmonic analysis of the system for unit loading, e.g. a 1g sinusoidal signal input 
at unit basis).   

To prevent importing the result from e.g., boundary condition region, where the quoted damage 
would make the result much less readable, programming tools have been developed for importing 
only the considered ‘set’ of elements, which can be an outer shaft surface, or an element in the 
stress concentration region, e.g., at the filet radius. This approach also decreases the computation 
time, especially at the stage of importing the result from the output database (.odb). 

The stress-based approach is used for demonstrating the algorithm, and additionally this 
approach is widely used in the related research ([3] through [14]), and commercial software as 
nCode [30] and MSC CAE Fatigue [28], as isotropic material. Future research will also focus on 
developing an algorithm using the Critical Plane approach, which is treated as a more robust 
approach for multiaxial fatigue damage assessment ([28], [29], [30], [35], [36], [37] and [38], 
although much more computationally expensive. 

Additionally, further research will focus also on the possibility to use the proposed method in 
synergy with the energetic fracture mechanics model, as used in [39], [40] and [41], where the 
Cohesive Zone Model is used for assessing damage and life prediction. 

It should be mentioned that this method is originally developed for isotropic, metallic material, 
and any other consideration to use this method for orthotropic material will be a subject of future 
research. 

Note: In this paper the stress life method is introduced as an example. Further research will focus 
on using the strain life method, using e.g. Morrow or Smith-Watson-Topper Mean Stress 
Correction and Neuber correction [42], [43] and [44]. 

The main aim of the development is to use commercial software for transfer function estimation 
as a reference level of load, e.g., a 1g harmonic analysis, and then import the results from an .odb 
file to Python algorithms for the next stage of computation on the frequency domain. The derived 
transfer function H(f) is then multiplied by the PSD input G(f) defined for the considered test duty 
and obtained PSD Response function in the frequency domain, see equation Eq. 3.3 for multiple 
input, equation Eq. 3.6 for single input and Figure 3-2 for graphical representation of the 
derivation PSD response function. 

𝑆(𝑓) =∑∑𝐻𝑖(𝑓)𝐺𝑖𝑗(𝑓)𝐻𝑗(𝑓)

𝑛

𝑗=1

𝑛

𝑖=1

 
Eq. 3.3 

 

 

𝑆(𝑓) = 𝐻(𝑓) ∙ 𝐺(𝑓) Eq. 3.4 
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The obtained PSD Response function is the input for the signal statistic in the frequency domain 
process, as introduced in section Chapter 2 of this paper.  

 

Figure 3-2 PSD Response derivation based on the Transfer Function and PSD input loading 
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3.1 Algorithm for vibration damage estimation in the frequency domain - introduction 

This section introduces algorithms for vibration damage estimation using the Dirlik, Lalanne and 
Narrow Band Bendat methods . Figure 3-3 shows the first part of the algorithm, which aims to 
derive the transfer function of the considered unit (this can be represented by e.g., complex von 
Mises-Huber-Hencky stress).  

 

Figure 3-3 Part 1 of the algorithm for vibration damage assessment in the frequency domain 

The second part of the algorithm (see Figure 3-4) focuses on the derivation PSD response function 
based on the given PSD input function. In this loop, the signal statistic in the frequency domain is 
processing – evaluation of spectral moments and signal statistic parameters are introduced in 
Chapter 2. Additionally, this part of the algorithm evaluates the variable used by this particular 
method for evaluation of the PDF function. 

 

 

 



-40- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

  

 

Figure 3-4 Part 2 of the algorithm for vibration damage assessment in the frequency domain 

 
 Figure 3-5, Figure 3-6, Figure 3-7 and Figure 3-8 introduce the third part of the algorithm (the final 
one), which consists of evaluation of the PDF function and damage estimation for the Dirlik, Bendat, 
Steinberg and Lalanne methods, respectively.  
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 Figure 3-5 Part 3.1 of the algorithm for vibration damage assessment in the frequency domain, 
Dirlik method implementation 
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 Figure 3-6 Part 3.2 of the algorithm for vibration damage assessment in the frequency domain, 
Bendat/Rice method implementation 
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 Figure 3-7 Part 3.3 of the algorithm for vibration damage assessment in the frequency domain, 
Steinberg method implementation 
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 Figure 3-8 Part 3.4 of the algorithm for vibration damage assessment in the frequency domain, 
Lalanne method implementation 
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3.2 Spectral Moment estimation using different numerical integration methods  

The algorithm, which estimates the vibration damage in the frequency domain, is based on spectral 
moments, and therefore the area of the algorithm requires further attention. Numerical integration 
techniques are used to evaluate spectral moments. In this section we describe the most popular 
integration methods and compare the results of the integration of an exemplary transfer function 
obtained based on Abaqus harmonic analysis and evaluated using the first part of the created algorithm. 
Numerical procedures of integration were implemented using Python programming language [45],[46] 
and [47].  

3.2.1 The Cumulative Trapezoidal integration method  

This section presents exemplary spectral moment integration using the Cumulative Trapezoidal 
integration method used for convenience for tracking spectral moment values in the frequency domain. 
Figure 3-9, Figure 3-10, Figure 3-11 and Figure 3-12 show the exemplary cumulative integration process 
of the 0, 1st, 2nd and 4th spectral moments respectively.  

 

 

 Figure 3-9 The 0 Spectral moment obtained using the cumulative trapezoidal integration transfer 
function method 
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 Figure 3-10 The 1st Spectral moment obtained using the cumulative trapezoidal integration 
method of the transfer function 

 

 

 Figure 3-11 The 2nd Spectral moment obtained using the cumulative trapezoidal integration 
method of the transfer function 
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 Figure 3-12 The 4th Spectral moment obtained using the cumulative trapezoidal integration 
method of the transfer function 
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3.2.2 Numerical integration methods used – summary  

Vibration damage estimation in the frequency domain depends on the spectral analysis, as the whole 
signal statistic in the frequency domain depends on the accuracy of estimation spectral moments. 
Therefore, in this section we present the most common methods of integration spectral moments and 
compare the results.  

Table 3-1 shows that the Cumulative Trapezoidal, Trapezoidal, Simpson, Romberg, and Gauss 
integration methods give close results of spectral moments (less than 2% of difference). Additionally, 
the Gauss quadrature integration method gives a high difference of the 0, 1st and 2nd spectral moments 
(around 30%) and visible differences for the 4th spectral moment (7.5% comparing to the other 
methods). It is therefore not recommended to use this method in further work. Based on the research 
results, further research will be based on the Gauss and Trapezoidal integration methods, as both 
methods are equally robust and give close results.  

 

 𝑚0 𝑚1 𝑚2 𝑚4 

Cumulative Trapezoidal 
integration method 

21192 2567756 328497774 14815422714320 

Trapezoidal integration method 21192 2567756 328497774 14815422714320 

Simpson integration method 21528 2610383 333733189 14819449183349 

Gauss quadrature integration 
method 

14302 1759955 234317406 13714509525629 

Romberg integration method 21239 2573605 329212209 14826155234242 

Gauss integration method 21135 2560718 327629425 14800387051769 

Percentage difference between 
the maximum and minimum 

value, including the Gauss 
Quadrature integration method 33.6% 32.6% 29.8% 7.5% 

Percentage difference between 
the maximum and minimum 
value, excluding the Gauss 

Quadrature integration method 1.8% 1.9% 1.8% 0.2% 

 Table 3-1 Spectral moments integration using different integration methods 
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3.3 Python algorithm verification was created against the commercial MSC tool – CAE Fatigue  

The general approach presented in this paper is not to use commercial software for estimating vibration 
damage but create an original algorithm to control all the parameters and introduce further research 
results. The approach is therefore to create algorithms (with the current state of knowledge) and 
benchmark them with the commercial software MSC CAE Fatigue, which will be the basis of the 
research, later modified using research results. 

Verification against commercial was made using CAE Fatigue software, which provide the damage result 
using the Dirlik, Bendat/Rice and Steinberg methods. In this case it is also based on Abaqus results 
sorted in .odb file, and damages were estimated for the element nodal value. To decrease the size of 
the considered task, we also created input data, such as a set of elements for damage estimation.  

Python tools were created that quoted only the considered element number and sorted it in a .txt 
format file, and CAE Fatigue software based on this .txt ‘guideline’ can read/download only the result 
for quoted set of elements. This approach can make calculation much more effective than analysis of 
the whole model, additionally making the result more readable due to omitting results in the 
boundary condition and in low stress areas.  
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3.3.1 Sample description 

Fatigue damage estimation is based on the FEM analysis [48] using a linear dynamic method in an 
Abaqus [34] environment. Modal and harmonic analysis for unit loading (1g acceleration) is performed 
in an Abaqus environment for components, allowing the resonance characteristic of the system to be 
obtained for further consideration using Rainflow Cycles Counting algorithms for damage estimation in 
the frequency domain.  The research used a cantilever beam example with a cut U-notch. The geometry, 
discrete model and graphical support representation is presented in Figure 3-13, Figure 3-14 and Figure 
3-15. The harmonic load input is a unit load (1g) acceleration applied to the base (supported region).   

 

 Figure 3-13 Sample geometry used for analysis  

 

 

 

 Figure 3-14  Geometry, the discrete model, and graphical support representation of a sample 
taken for visualisation of the research results 
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   Figure 3-15 Discrete FEM model graphical representation details  

For this research we assumed that the sample is made of steel 17-4PH (H1025) and used fatigue material 
properties from MMPDS-15, reference [49] for considered steel for Kt equals 3.  

 

Steel 17-4PH (H1025) 

Young modulus 
E [MPa] 

Poisson ratio 
ν 

 [-] 

Density ρ 

 [t/mm3] 

195000 0.27 7.89E-09 

Table 3-2 Steel 17-4PH (H1025) material properties used for demonstrational analysis 

 

For consideration, we assumed a critical damping ratio constant for the whole frequency bandwidth (0-
1000Hz) and equal to 2.5% (Note that the created method and software need input, which consists of 
a model correlated against the test results, although as a benchmark we assumed artificial parameters 
of damping).  

The total damage caused by the considered time series history can be obtained by aggregating the 
damage caused by each bin presented in the stress range histogram, see Eq. 3.5. This method is known 
as the Palmgren-Miner accumulated damage estimation [50] and [51]. 

                                     𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒 =∑
𝑛𝑖
𝑁(𝑆𝑖)

∞

0

 
Eq. 3.5 
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Where: 

ni – the number of cycles for the considered stress in the bin on the fatigue histogram  

N(Si) – the number of permissible cycles for the considered stress in the bin interpolated the form of 
the S-N curve.  

The failure criterion corresponds to a total damage value exceeding 1. 

 

Damage results can then be presented on a discrete model using the Abaqus [34] visualisation module 
and the author’s scripts– see Figure 3-18,  Figure 3-20 and Figure 3-22, and using commercial 
software – CAE Fatigue – see Figure 3-19, Figure 3-21 and Figure 3-23. 
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3.3.2 Material properties case study 

To assess the fatigue damage life, samples made of stainless steel 17-4PH (H1025) were used for 
transmission shaft tubes to benchmark the algorithms, which use different methods for vibration 
damage assessment in the frequency domain i.e.: Dirlik, Lalanne, Steinberg, Bendat Narrow Band.  
 
The material fatigue properties based on references MMPDS-15 ref [49]. The fatigue curve for the 
considered material is for Kt equals 3 and for the stress ration R = -1 see Figure 3-16.  

 

 Figure 3-16 Best-fit S-N curves for notched, Kt=3.0, fatigue behaviours of 17-4PH (H1025) stainless 
steel bar, longitudinal and long transverse directions [49] 

 

The S-N curve was created based on a logarithmic equation in logarithmic coordinates, graphical 
representation of the S–N curve is presented in Figure 3-17. 

 

                                              log (𝑁𝑓) = 21.60 − 9.24log (𝑆𝑒𝑞) 

 

Eq. 3.6 

where: 

𝑆𝑒𝑞 = 𝑆𝑚𝑎𝑥(1 − 𝑅)
0.581 – equivalent stress for different stress ratios 

𝑅 – stress ratio 

𝑆𝑚𝑎𝑥 – stress level for considered cycles to failure   

𝑁𝑓 – cycles to failure for considered equivalent stress 
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Figure 3-17 The S-N curve for vibration fatigue consideration for 17-4PH (H1025) Kt = 3 
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3.3.3 Algorithm benchmarks against commercial software 

Damage values were estimated assuming a maximum sigma level of RMS stress equal to 10RMS for the 
range, therefore +/-5 for amplitude value. This setting is the default value of the CAE Fatigue software 
[28] and [29]. 

The stress bins used for damage estimation were set as default in CAE Fatigue software – equal to 32. 
Stress for each bin was calculated in the middle of the bin width, and the integration process was done 
using the trapezoidal numerical integration method. 

The damage value was evaluated using an unaverage element nodal value (stress value extrapolated 
from integration points of elements of the element nodal location). 
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3.3.3.1 White noise signal – irregular factor 0.300 

In Table 3-4 we quote the damage value for the irregular factor 0.585 using different methods of 
damage estimation in the frequency domain. The reference time exposure for the random vibration 
input for the considered irregular factor is 0.353h. Table 3-3 introduces the PSD input curve used for 
obtaining the white noise PSD response.  

 

PSD input curve definition for the 
white noise signal 

Frequency 
[Hz] 

PSD input  [g2/Hz] 

1 0.22 

200 0.22 

500 0.30 

1000 0.30 

 Table 3-3 The PSD input curve definition used to obtain the white noise PSD response signal  

Figure 3-18 shows exemplary damage results for the white noise signal using the Dirlik method and the 
author’s scripts. Analogical results has been presented using MSC CAE Fatigue software – see Figure 
3-19. 

 

 

 Figure 3-18 Visualisation of Dirlik Damage using a developed Python Algorithm at sample 
geometry using the Abaqus visualisation module and the author’s script – the white noise signal 
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 Figure 3-19 Visualisation of Dirlik Damage obtained in the MSC CAE Fatigue commercial software 
environment – the white noise signal 

As a reference for vibration damage we used the Dirlik method, which is the best for general usage, for 
a general value of the irregular factor [3] and [4].  

Dirlik damage quoted in Table 3-4 will be used also as a reference for the test setup as the most robust 
and general for all the methods used. Comparing the author’s algorithm for vibration damage 
estimation with MSC CAE Fatigue shows that for Dirlik and Narrow-Band (assuming use of the same 
approach with replacing EP with E0) obtained a great correlation. For the Steinberg method we obtained 
11.78% in differences, however this method is much less robust than the two mentioned earlier. 
Additionally, the obtained results are very conservative for the white noise signal. The Lalanne method 
gives less accurate results – modification of this method will be introduced in section 3.4. 

 

 Method used for 
damage estimation 

Dirlik Narrow-
Band 

Lalanne  Steinberg  

Damage values – 
Author’s Algorithm 

1.0023 3.675N* 

1.142N** 

0.0013 

 

8.321 

Damage values – MSC 
CAE Fatigue Software 

1.006 N/A* 

1.147** 

N/A 7.444 

% Difference Author’s 
Algorithm versus MSC 
CAE Fatigue  

0.36% N/A* 

0.43%** 

N/A 11.78% 

 Table 3-4 Damages values for different methods used for vibration damage assessment in the 
frequency domain for the white noise signal 

Note: 

N*Used EP – number of peaks in the spectrum value for Narrow Band cycles estimation as per equation 
Eq. 2.7. 

N**Used E0 – number of the upward zero crossing value, this approach is practiced in MSC CAE Fatigue 
software to decrease the conservatism of Narrow-Band method usage.  
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3.3.3.2 Wide band signal – irregular factor 0.585 

In  Table 3-6 the quoted damage value for the irregular factor 0.585 uses a different method of damage 
estimation in the frequency domain. The reference time exposure for the random vibration input for 
the considered irregular factor is 0.229h. Table 3-5 introduces the PSD input curve used for obtaining 
the wide band PSD response. 

  

The PSD input curve definition for 
the wide band signal 

Frequency 
[Hz] 

PSD input  [g2/Hz] 

1 0.25 

200 0.25 

500 0.06 

1000 0.06 

 Table 3-5 The PSD input curve definition used to obtain the wide band PSD response signal 

 Figure 3-20 shows exemplary damage results for the wide band signal using the Dirlik method and 
the author’s scripts. Analogical results are presented using MSC CAE Fatigue software – see Figure 3-21. 

 

 Figure 3-20 Visualisation of Dirlik Damage using a developed Python Algorithm as sample 
geometry using the Abaqus visualisation module and the author’s script – the wide band signal 
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 Figure 3-21 Visualisation of Dirlik Damage obtained in the MSC CAE Fatigue commercial software 
environment – the wide band signal 

As the reference for vibration damage we used the Dirlik method, which is the best for general usage, 
for a general value of the irregular factor [3] and [4].  

Dirlik damage quoted in Table 3-6 will be used also as a reference for the test setup as the most robust 
and general for all methods used. Comparing the author’s algorithm for vibration damage estimation 
with MSC CAE Fatigue shows that for Dirlik and Narrow-Band (assuming use of the same approach with 
replacing EP with E0) obtained a great correlation. For the Steinberg method we obtained 11.61% in 
differences, although this method is much less robust than the two mentioned earlier. Additionally, the 
obtained results are very conservative for the wide band signal. The Lalanne method gives less accurate 
results – modification of this method will be introduced in section 3.4. 

 

 Method used for 
damage estimation 

Dirlik Narrow-
Band 

Lalanne  Steinberg  

Damage values – 
Author’s Algorithm 

1.0236 2.2357* 

1.0635** 

3.5E-4 

 

5.063 

Damage values – MSC 
CAE Fatigue Software 

1.0286 N/A* 

1.0691** 

N/A 4.536 

% Difference Author’s 
Algorithm versus MSC 
CAE Fatigue  

0.48%he  N/A* 

0.52%** 

N/A 11.61% 

 Table 3-6 Damage values for different methods used for vibration damage assessment in the 
frequency domain for – the wide band signal 

Note: 

*Used EP – the number of peaks in the spectrum value for Narrow Band cycles estimation as per 
equation Eq. 2.7. 

**Used E0 – the number of upward zero crossing values, this approach is practiced in MSC CAE Fatigue 
software to decrease the conservatism of Narrow-Band method usage.  
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3.3.3.3 The Narrow band signal – the irregular factor 0.955 

Table 3-8 shows the quoted damage value for the irregular factor 0.585 using different methods of 
damage estimation in the frequency domain. The reference time exposure for the random vibration 
input for considered irregular factor is 0.346h. Table 3-7 introduces the PSD input curve used for 
obtaining the narrow band PSD response. 

 

The PSD input curve definition for 
the narrow band signal 

Frequency 
[Hz] 

PSD input  [g2/Hz] 

1 0.23 

200 0.23 

500 1.00E-04 

1000 1.00E-04 

 Table 3-7 The PSD input curve definition used to obtain the narrow band PSD response signal 

Figure 3-22 shows exemplary damage results for the narrow band signal using the Dirlik method and 
the author’s scripts. Analogical results are presented using MSC CAE Fatigue software – see Figure 3-23. 

 

 

 Figure 3-22 Visualisation of Dirlik Damage using a developed Python Algorithm as sample 
geometry using the Abaqus visualisation module and the author’s script – the narrow band signal 
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 Figure 3-23 Visualisation of Dirlik Damage obtained in the MSC CAE Fatigue commercial software 
environment – the narrow band signal 

As the reference for vibration damage the Dirlik method was used, as the best for general usage, for 
the general value of the irregular factor [3] and [4].  

Dirlik damage quoted in Table 3-8 will also be used as a reference for the test setup, as it is the most 
robust and general method used. A comparison of the author’s algorithm for vibration damage 
estimation with MSC CAE Fatigue shows that the Dirlik and Narrow-Band methods (assuming using the 
same approach with replacing EP with E0) obtained a great correlation. With the Steinberg method we 
obtained 6.27% differences, although this method is much less robust than the two mentioned earlier. 
Additionally, the obtained results is very conservative for the narrow band signal. The Lalanne method 
gives less accurate results – modification of this method will be introduced in section 3.4. 

   

Method used for 
damage estimation 

Dirlik Narrow-
Band 

Lalanne  Steinberg  

Damage values – 
Author’s Algorithm 

0.9910 1.0550* 

1.0236** 

4.86E-10 

 

2.388 

Damage values – MSC 
CAE Fatigue Software 

1.0288 N/A* 

1.0626** 

N/A 2.247 

% Difference Author’s 
Algorithm versus MSC 
CAE Fatigue  

3.67% N/A* 

3.67%** 

N/A 6.27% 

 Table 3-8 Damage values for different methods used for vibration damage assessment in the 
frequency domain for – the narrow band signal 

Note: 

*Used EP – the number of peaks in the spectrum value for Narrow Band cycles estimation as per 
equation Eq. 2.7. 

**Used E0 – the number of upward zero crossing values, this approach is practiced in MSC CAE Fatigue 
software to decrease the conservatism of Narrow-Band method usage.  
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3.4 Lalanne method modification 

Research results presented in Chapter 3 reveal that the Lalanne method gives underestimated damage 
values using Eq. 2.21 as per [20], [21] and [22]. Therefore, this section focuses on the modification of 
the Lalanne method and introduces changes to obtain a damage value aligned to the Dirlik method (as 
damage value using this method gives the closest result to damage value estimated using the Monte 
Carlo method).  

3.4.1 Integration of the PDF for the Dirlik, Lalanne and Narrow Band methods  

The aim of the research is to integrate the PDF function for the Dirlik, Narrow Band and Lalanne methods 
to see if there are any differences on that stage. For these purposes an exemplary white noise signal is 
used, with statistic parameters presented in Table 3-9. 

 

Signal statistic parameters in the frequency domain 

m0 (0th spectral moment) 
[MPa2] 

Irregular factor 𝛾 

 [-] 

i –Double Clipping 
Amplitude for the 

Histogram – with a signal 
clipped at 5RMS amplitude 
(10RMS double amplitude) 

[MPa] 

773.8 0.265 278.17 

Table 3-9 An exemplary signal statistic in frequency domain parameters  

 

The following points were analysed to identify the issue: 

i. Evaluation of the Lalanne PDF function – LAL as per Eq. 2.21 gives a value of the integer equal to 

∫ 𝐿𝐴𝐿(𝑆)𝑑𝑆 = 0.6326
𝑖

0
, and therefore does not reach the unity – it indicates that the proposed PDF 

equation needs to be modified.  Figure 3-24 shows the Lalanne PDF in the function of the stress 
variable.  

 

 Figure 3-24 The Lalanne PDF in the function of the stress variable 

 

ii. Evaluation of the Bendat Narrow Band PDF function – NB as per Eq. 2.6 gives a value of the integer 

equal ∫ 𝑁𝐵(𝑆)𝑑𝑆 = 0.9999
𝑖

0
, and therefore reaching the unity – it indicates that the proposed PDF 

equation is correct.  Figure 3-25 shows the Lalanne PDF in the function of the stress variable.  
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 Figure 3-25 The Narrow Band Bendat PDF in the function of stress variable 

 

iii. Evaluation of the Dirlik PDF function – PDFD as per Eq. 2.8 gives a value of the integer equal to 

∫ 𝑃𝐷𝐹𝐷(𝑆)𝑑𝑆 = 0.9999
𝑖

0
, and therefore reaches the unity – it indicates that the proposed PDF 

equation is correct.  Figure 3-26 shows the Dirlik PDF in the function of the stress variable.  

 

Dirlik empirical variables for PDF estimation 

Variable 

𝑋𝑚 

(Eq. 2.11) 

[-] 

𝐷1 

(Eq. 2.12) 

[-] 

𝐷2 

(Eq. 2.13) 

[-] 

𝐷3 

(Eq. 2.14) 

[-] 

𝑄 

(Eq. 2.15) 

[-] 

𝑅 

(Eq. 2.16) 

[-] 

Value 0.1688 0.1839 0.6547 0.1613 0.2299 0.1071 

Table 3-10 Dirlik empirical variables for PDF estimation 

 

 

Figure 3-26 The Dirlik PDF in the function of the stress variable 
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3.4.2 Modification of the Lalanne PDF function - introduction 

The PDF function introduced by Bendat in his work [15] in Rayleigh’s part of function (see Eq. 3.7) used 
the complementary error function as per Eq. 3.9  (for erfc definition see Eq. 3.10) 

                                                         W(z)= 𝑧𝑒−
𝑧2

2  
Eq. 3.7 

 

Where z is a standardised variable defined by Eq. 3.8: 

                                              z=
𝑆

𝑅𝑀𝑆
 Eq. 3.8 

 

Where: 

S – Is the stress at the histogram bin 

The Bendat formulation from reference [15] is as follows – see Eq. 3.9: 

W(z)= {
√1−𝛾2

√2𝜋
𝑒

−𝑆2

2𝑚0(1−𝛾
2)+ 

𝑆𝛾

𝑅𝑀𝑆
𝑒
−𝑆2

2𝑚0[1 − erfc (
𝑆𝛾

√𝑚0(1−𝛾
2)
)]} 

Eq. 3.9 

 

The complementary error function can be defined as per equation Eq. 3.10 as per [56]. Figure 3-27 
shows graphical representation of the error function and the complementary error function. 

                                                         erfc(x)=
2

√𝜋
∙ ∫ 𝑒−𝑡

2
𝑑𝑡

∞

𝑥
 

Eq. 3.10 

 

 Figure 3-27 The error function erf(x) and the complementary error function – erfc(x), graphical 
representation 
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Therefore, the multiplication factor in Rayleigh’s part of the equation Eq. 3.9  (1 − erfc (
𝑆𝛾

√𝑚0(1−𝛾
2)
)) 

is equal to the error function, which can be defined as in equation Eq. 3.11 and equation Eq. 2.22 
[56]. 

                                                    erf(x) = 1 − 𝑒𝑟𝑓𝑐(𝑥) Eq. 3.11 

 

As a modification of equation Eq. 2.21 it is proposed to replace Rayleigh’s multiplication factor (1 −

erfc (
𝑆𝛾

√𝑚0(1−𝛾
2)
)) with the error function erf (

𝑆𝛾

√𝑚0(1−𝛾
2)
)). Another modification uses Dirlik’ s 

normalised stress variable (
𝑆

2√𝑚0
 ) instead of Bendat’s normalised stress variable (

𝑆

√𝑚0
).  These two 

modifications of the Lalanne PDF function were introduced in equation Eq. 3.11.  

        𝐿𝐴𝐿𝑚 =
1

𝑅𝑀𝑆
{
√1−𝛾2

√2𝜋
𝑒

−𝑆2

8𝑚0(1−𝛾
2)+ 

𝑆𝛾

4𝑅𝑀𝑆
𝑒
−𝑆2

8𝑚0[erf (
𝑆𝛾

√8𝑚0(1−𝛾
2)
)]} ∙ 𝑑𝑆 

 

Eq. 3.12 

 

Figure 3-28 shows the modified Lalanne (LALm) PDF function in the stress variable. 

 

Figure 3-28 The modified Lalanne PDF in the function of the stress variable 

 

Figure 3-28 shows the modified Lalanne (LALm) PDF function in the stress variable. 

  

 Figure 3-29 Graphical comparison of the Lalanne PDF – LAL(s) and the modified Lalanne PDF – 
LALm(s) in the function of the stress variable 

 

 

 

 



-66- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

Evaluation of the modified Lalanne PDF function – LALm defined by per Eq. 3.12 gives a value of the 

integer equal ∫ 𝐿𝐴𝐿𝑚(𝑆)𝑑𝑆 = 0.9999
𝑖

0
, and therefore obtained the correct value. Table 3-11 shows the 

damage values for the legacy Lalanne PDF, modified Lalanne PDF and using the Dirlik method as the 
reference. As per damage values presented in Table 3-11, the proposed modification allows to obtain 
damage values closer to the Dirlik method than using the legacy approach.  

 

 Dirlik 
reference 
damage 
for the 
white 
noise 
signal 

Damage 
value for 
the white 

noise 
signal 

Dirlik 
reference 
damage 
for the 
wide 
band 
signal 

Damage 
value for 
the wide 

band 
signal 

Dirlik 
reference 
damage 
for the 
narrow 

band 
signal 

Damage 
value for 

the 
narrow 
band 
signal 

Damage value 
based on the 

legacy Lalanne PDF 
(LAL) 

 

1.0023 
(MSC CAE 

Fatigue 
damage 
1.0060) 

 

 

 

0.0013 

 

1.0236 
(MSC CAE 
Fatigue 
damage 
1.0286) 

 

3.5E-4 

 

 

0.9910 
(MSC CAE 

Fatigue 
damage 
1.0288) 

 

4.86E-10 

 

Damage value 
based on the 

proposed modified 
Lalanne PDF 

(LALm) 

 

1.4724 

 

1.1333 

 

 1.0236 

 Table 3-11 Damages based on the legacy and proposed Lalanne PDF  

The proposed modification gives a more conservative damage value for the narrow band signal 
(obtained ~50% more conservative than Dirlik) and for the wide band signal (obtained ~15% more 
conservative than Dirlik). For the white noise signal the proposed modification gives a result close to 
Dirlik – less than 5% of difference. Therefore, the proposed modified Lalanne method is recommended 
for use, especially when high conservatives in the analysis are desired, e.g., at the initial stage of the 
sizing unit, when test results are unavailable – the Transfer Function of the unit has not been correlated 
against the test results.   
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CHAPTER 4 VIBRATION FATIGUE DAMAGE PREDITIONS UNDER STOCHASTIC LOADING 
– COMBINED FREQUENCY AND TIME DOMAIN CONSIDERATION  

This section introduces combined frequency and time domains consideration for vibration damage 
estimation under random loading. The aim of the research is to analyses the unit in the frequency 
domain as presented in Chapter 3 using the linear dynamic approach to derive the transfer function. 
However, it is proposed that once the transfer function and then the PSD response have been derived, 
the signal should be retrieved in the time domain using the Monte Carlo method and IFFT. This section 
introduces the workflow used for switching from the frequency to time domain and final fatigue damage 
consideration in the time domain.  

4.1  Time signal generation from the PSD Response function  

The aim of using combined frequency and time domain consideration was introduced by Dirlik in his 
research [18]. For this purposes the Inverse Discrete Fast Fourier Transform (IDFFT) was used, (as the 
signal with one shape in the frequency domain can have infinite shapes in the time domain, which can 
cause different damage to the construction [52]) and the Monte Carlo method, which can be graphically 
presented in Figure 4-1. 

 

 

 Figure 4-1 The process of recreating the time signals from the frequency using the Monte Carlo 
method 

 

The basis for generating the time series data is the system response function [53], or the equivalent PSD 
response name estimated by the matrix summation process – see equation Eq. 3.3 for the multiple 
input. 
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For the single input – which will be considered in further research, the equation above can be reduced 
to the following equation Eq. 3.4, which will be used during research presented in this paper.  
 

In order to verify the process of calculating the RMS stress based on the obtained/retrieved time domain 
signal, the RMS stress in the frequency domain must also be calculated as per equation Eq. 2.5. 

The PSD response function and the frequency are the vector elements used in the next step for 
retrieving the time domain signal using Inverse Discrete Fourier transformation. The basic equation can 
be written as follows [18]: 

                                                       S(k∆t) = ∑ θ(j ∙ n2πf)

N
2
−1

n=
−N
2

∙ ej∙2πkn/N 

 Eq. 4.1 

where k can be written as per equation Eq. 4.3: 

                                                 𝑘 = 0,1,2,3,… ,𝑁 − 1  Eq. 4.2 

 

f – is the considered frequency 

N – is the natural number 

and the 𝜃 function can be written as Eq. 4.3 [54]: 

                                                             θ(j ∙ n2πf) = √S(n ∙ 2π∆f)ejΦn  Eq. 4.3 

for n defined as in the equation Eq. 4.4: 

                                                 𝑛 = 0,1,2,3,… ,𝑁/2 − 1 
 Eq. 4.4 

The Φn represents a random phase angle, defined as uniformly distributed in the bandwidth <-π; π>. 
This definition implies that the time series is obtained using the Monte Carlo approach and inverse 
discrete Fourier transformation. 

N in equation Eq. 4.1 represent the total number of samples, ∆𝑓 and ∆𝑡 are linked with N as per the 
following equation Eq. 4.5 :   

                                                 ∆𝑓 =
1

∆𝑡𝑁
  Eq. 4.5 

 

The time series signal is defined by function (S(k∆t) and needs to be a real function of time, in order to 
keep the sign for the Rainflow process, which would be omitted if the complex value of this function is 
not equal to zero, and therefore the magnitude would miss the sign of the signal. For this reason the 
spectrum defined by the function θ in equation Eq. 4.3 has to exhibit the complex conjugate symmetry 
as per the below equation [54] and [55]. 

                                                      𝜃(𝑗 ∙ 𝑛2𝜋𝑓) = 𝜃(−𝑗 ∙ 𝑛2𝜋𝑓) 
 Eq. 4.6 

For n defined by equation Eq. 4.4. 

What can be graphically shown as in the  Figure 4-2. 

An additional assumption for 𝜃 function is presented in the equation Eq. 4.7. 



-69- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

  

                                                 𝜃(0) = 0 
 Eq. 4.7 

This ensures that the signal in the time domain S(k∆t) has a mean value equal to zero.  

  

 Figure 4-2 The complex conjugate symmetry of the 𝜽 function 

This ensures that the signal in time domain S(k∆t) has a mean value equal to zero. 

It implies that the imaginary portion of the signal will be equal to zero, and therefore the magnitude of 
the signal will be equal to the real portion of this signal, which implies that the sign can be saved for 
further fatigue consideration.  

To verify the obtained signal, we can recalculate the RMS of the time series signal S(k∆t) using the 
standard deviation equation, which can be written as follows: 

                                                𝑅𝑀𝑆𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 = √
1

𝑁
∑𝑆(𝑘∆𝑡)2
𝑁−1

𝑘=0

 

 Eq. 4.8 

 

The obtained times signal has a zero mean value and standard deviation equal to the RMS estimated 
for the signal in the frequency domain, therefore the signal defined in the frequency domain retrieved 
to the time domain signal has been done successfully and will be used for retrieving the fatigue 
information using the time series Rainflow Cycle Counting algorithm implemented in Python language.     
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4.2 Time series Rainflow Cycle Counting algorithm  

For fatigue consideration the time series retrieved from frequency domain PSD Response is the input 
for  the Rainflow Cycle Counting algorithm [57], [58], [59], [60], [61] – to obtain pairs of maximum and 
minimum value of stress and an adequate number of cycles for the quoted stress range.  

The time domain Rainflow Cycle Counting algorithm starts at the beginning of stress (or strain, load 
history) and goes through the inside of following peaks – see Figure 4-3. The ‘raindrops’ continue falling 
through an imaginary roof from the upper to the lower level until it reaches opposite a maximum more 
positive / minimum more negative than the maximum value / minimum value from start point. 
Additionally, the flow stops when it meets the rain from the roof above. The length of the following 
rainflow is registered in half cycle ranges.  

  

Figure 4-3 Rainflow Method graphical representation, [59] 

Note: The dashed line represent the rain drop. 

The rain drop starts at the 1st peak (minimum value), falls at the 2nd and 4th peaks, and stops at the 
opposite 5th peak – as this peak is more negative than the starting point – the 1st peak. Therefore, the 
range from the 1st peak to the 4th peak is registered as a half cycle. By analogy the 2nd peak and the 3rd 
peak are registered as a half cycle – as the rain drop started at the 2nd peak and stops at the 4th peak – 
this peak is more positive than the 2nd peak, although the rain drop that started at the 3rd peak stops at 
the 2nd peak, as in this point it meets the rain drop from the above roof.  After meeting the second 
mentioned condition, there already exists a corresponding half cycle with equal magnitude extracted 
by the first condition – these two half cycles make a one full cycle. Therefore, the range consisting of 
the 3rd and 2nd peak make a full cycle, and the same with the range consisting of the 2nd peak and the 
3rd peak.  

This part of the research is creating the author’s algorithm using Python programming language.  A 
flowchart of the Rainflow Cycle Counting Algorithm in the time domain is used in the author’s script 
introduced in Figure 4-4.  
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 Figure 4-4 Flowchart of the Rainflow Cycle Counting Algorithm in the time domain  

 

Figure 4-5, Figure 4-8 and Figure 4-11 show the retrieved time series from frequency domain signals 
using the Monte Carlo method and IFFT for white noise, wide band, and narrow band signals, 
respectively. These signals are the PSD response in time domain. The next step of processing these 
signals is extracting the peak and trough for the Rainflow Cycle Counting in the time domain (see Figure 
4-6 for the white noise signal, Figure 4-9 for the wide band signal and Figure 4-12 for the narrow band 
signal). After the extraction process, the obtained series is processed using the Rainflow Cycle Counting 
algorithm in the time domain introduced in this section. The results are the pairs of minimum and 
maximum stress amplitude and adequate number of cycles for each pair. Graphical representation of 
this process is introduced using the author’s script in Figure 4-7 for the white noise signal, Figure 4-10 
for the wide band signal and Figure 4-13 for the narrow band signal. 

  



-72- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

   

 Figure 4-5 System response time history from IFFT and Monte Carlo Methods – the white noise 
signal 

 

 Figure 4-6 Initial time series processing extracting peak and trough for the Rainflow Counting 
Algorithm – the white noise signal 

 

 

 Figure 4-7 Rainflow Cycle Counting Algorithm Histogram – the white noise signal 
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 Figure 4-8 System response time history from the IFFT and Monte Carlo Methods – the wide band 
signal  

  

 Figure 4-9 Initial time series processing extracting peak and trough for the Rainflow Counting 
Algorithm – the wide band signal 

  

 Figure 4-10 Rainflow Cycle Counting Algorithm Histogram – the wide band signal 
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 Figure 4-11 System response time history from the IFFT and Monte Carlo Methods – the narrow 
band signal 

 

 

 Figure 4-12 Initial time series processing extracting peak and trough for the Rainflow Counting 
Algorithm – the narrow band signal 

 

 

Figure 4-13 Rainflow Cycle Counting Algorithm Histogram – the narrow band signal 
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CHAPTER 5 USING COMBINED TIME AND FREQUENCY DOMAINS CONSIDERATION 
FOR VERIFICATION AND MODIFICATION OF THE LEGACY THEORY  

5.1 Signal statistics in the time domain as a benchmark of the signal statistic in frequency domain 
research results 

Research results reveal that the signal statistics in the frequency domain give a different parameter 
result when the irregular factor decreases from 1 to 0 – moving from the narrow band to white noise 
signal – as introduced in [52]. Research has been extended to modify the existing signal statistics 
parameters in the frequency domain, to align them to the time domain signal statistic parameters. As 
the research object we used signals retrieved from the frequency domain using the Monte Carlo 
method, and the research was performed not on existing structure responses, but based on dummy 
system responses defined by a combination of two band pass filters in analytical form presented in 
equation Eq. 3.4. This approach allows for easily obtaining sixteen PSD responses with a different 
irregular factor from close to 1 (the narrow band signal) to close to 0.2 (the white noise signal). 

                                          𝑃𝑆𝐷_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖(𝑓) =

(

 𝐴1

√1+
(𝑓−𝑓1)

2

𝑄1
2

+
𝐴2

√1+
(𝑓−𝑓2)

2

𝑄2
2
)

 

2

 

Eq. 5.1 

 

  

The parameters used in analytical form in equation Eq. 3.4, which define the PSD response function 
for further research, are presented in Table 5-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-76- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

 

No. A1 A2 f1 f2 Q1 Q2 fmax 

1 3800 0 108 1.00E-30 3 0 250 

2 3250 0 97 1.00E-30 6 0 250 

3 2650 0 94 1.00E-30 8 0 250 

4 2000 0 66 1.00E-30 5 0 250 

5 2150 0 75 1.00E-30 14 0 250 

6 2350 0 65 1.00E-30 16 0 250 

7 2650 1800 42 106 5 4 250 

8 2700 2000 32 105 5 3 250 

9 2900 1700 34 109 5 2 250 

10 3000 1500 31 107 5 1.8 250 

11 3150 1000 29 115 6 2 250 

12 2950 700 25 109 6 2 250 

13 3050 600 21 110 6 2 250 

14 3100 0 20 1.00E-30 5.5 0 250 

15 3250 0 14 1.00E-30 5.3 0 250 

16 3350 0 12 1.00E-30 4.8 0 250 

Table 5-1 PSD response spectrum definition parameters 

Figure 5-5 through Figure 5-7 show graphical representation of the PSD response function for exemplary 
samples from Table 5-1. 

  

 Figure 5-1 PSD response function for sample 1, irregular factor 0.975 
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Figure 5-2 PSD response function for sample 11, irregular factor 0.486 

 

 

Figure 5-3 PSD response function for sample 16, irregular factor 0.258  

   

The goal of the first stage of the research was to evaluate signal statistics in the frequency domain 
(irregular factor, number of upward zero crossings and number of peaks in the signal) using full 
integration of spectral moment and comparison against time domain signal statistics. The signal in the 
time domain was retrieved from the frequency domain signal using the Monte Carlo method as 
introduced in this paper in the section above. Table 5-2 shows the research results, which confirmed 
the previous assumption that the wide band and white noise signal statistic parameters tend to differ 
from their equivalent in the time domain, and that the narrow band signal obtained matched the results 
of signal statistic parameters – also as predicted.   
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No. Time series variable  
Frequency domain 

variables full 
integration   

Full integration for 
frequency domain 

variables / time 
domain variables 

  Y EP E0 Y EP E0 Y EP E0 

1 0.975 111.14 108.39 0.955 114.54 109.34 0.98 1.03 1.01 

2 0.938 105.15 98.61 0.895 111.98 100.20 0.95 1.06 1.02 

3 0.912 105.21 95.95 0.863 114.13 98.44 0.95 1.08 1.03 

4 0.869 79.63 69.21 0.776 90.84 70.46 0.89 1.14 1.02 

5 0.811 100.61 81.63 0.725 117.48 85.17 0.89 1.17 1.04 

6 0.751 99.09 74.46 0.656 119.52 78.39 0.87 1.21 1.05 

7 0.704 100.57 70.81 0.661 112.58 74.46 0.94 1.12 1.05 

8 0.637 102.24 65.15 0.608 113.07 68.74 0.95 1.11 1.06 

9 0.591 97.67 57.77 0.548 110.61 60.67 0.93 1.13 1.05 

10 0.546 94.00 51.37 0.499 109.36 54.59 0.91 1.16 1.06 

11 0.486 94.73 46.08 0.434 114.01 49.44 0.89 1.20 1.07 

12 0.440 91.99 40.50 0.383 113.93 43.62 0.87 1.24 1.08 

13 0.388 94.83 36.79 0.340 117.75 39.98 0.88 1.24 1.09 

14 0.364 83.36 30.35 0.285 113.00 32.22 0.78 1.36 1.06 

15 0.282 91.58 25.83 0.230 122.80 28.23 0.82 1.34 1.09 

16 0.258 93.09 24.06 0.209 125.00 26.10 0.81 1.34 1.09 

 Table 5-2 Signal statistics in frequency domain parameters across irregular factor values, full 
spectral moment integration 

 

The highest differences obtained for the white noise signal (irregular factor below 0.5) were for the 
number of peaks in the spectrum – a 36% difference. The wide band signal (irregular factor between 
0.5 and 0.95) obtained a 21% maximum difference in the number of peaks in a signal. As the damage 
under random loading is proportional to the number of peaks, it is crucial to modify the empirical value 
to obtain proper results, which will result in a more accurate damage prediction. The maximum 
percentage differences in the assessment irregular factor are 22% and are observed for the white noise 
signal. The lowest exposure on the time and frequency domain signal statistic parameters can be 
observed for parameter E0 – upward zero crossing below 9% for the considered signal.  

Additionally, the research results show that commercial software introduced a modification in the 
integration of the spectral moment, although the proposed solution provides results that only decrease 
the differences in the signal parameter in the time and frequency domain by a small number. It is 
therefore necessary to develop a method of modification of empirical parameters evaluated in the 
frequency domain.  
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Research resulted in modification of the integration of the 1st, 2nd, and 4th spectral moments, consisting 
of reducing the integration range from 1Hz to only 77.5% of the maximum considered frequency (see 
ref [52]), where the zero spectral moment or the RMS stress is calculated. This approach allows for 
obtaining the signal statistic parameter in the frequency domain close to the time domain parameters, 
i.e., up to 5% differences in the number of peaks, up to 4% in the irregular factor value, and up to 3% 
for the upward zero crossing of the considered signal. The results are shown in Table 5-3. The introduced 
changes will be used for modified algorithms, which will enable a precise estimation of the vibration 
damage – based on the signal statistic in the frequency domain equivalent to the signal statistic in the 
time domain. 

 

No. Time series variable  

Frequency domain 
variables reduced 

integration range to (1Hz-
77.5%f) for m1, m2, m4 

Reduced integration 
for frequency domain 

variables / time 
domain variables 

  Y EP E0 Y EP E0 Y EP E0 

1 0.975 111.14 108.39 0.970 111.71 108.37 0.99 1.01 1.00 

2 0.938 105.15 98.61 0.929 105.89 98.42 0.99 1.01 1.00 

3 0.912 105.21 95.95 0.906 106.12 96.10 0.99 1.01 1.00 

4 0.869 79.63 69.21 0.848 81.49 69.12 0.98 1.02 1.00 

5 0.811 100.61 81.63 0.795 102.41 81.45 0.98 1.02 1.00 

6 0.751 99.09 74.46 0.733 101.29 74.26 0.98 1.02 1.00 

7 0.704 100.57 70.81 0.701 103.50 72.55 1.00 1.03 1.02 

8 0.637 102.24 65.15 0.644 104.10 67.01 1.01 1.02 1.03 

9 0.591 97.67 57.77 0.587 100.63 59.04 0.99 1.03 1.02 

10 0.546 94.00 51.37 0.542 97.78 52.95 0.99 1.04 1.03 

11 0.486 94.73 46.08 0.479 99.06 47.45 0.98 1.05 1.03 

12 0.440 91.99 40.50 0.434 95.84 41.57 0.99 1.04 1.03 

13 0.388 94.83 36.79 0.386 97.94 37.85 1.00 1.03 1.03 

14 0.364 83.36 30.35 0.349 86.44 30.19 0.96 1.04 0.99 

15 0.282 91.58 25.83 0.278 93.82 26.08 0.99 1.02 1.01 

16 0.258 93.09 24.06 0.252 95.44 24.03 0.97 1.03 1.00 

 Table 5-3 Signal statistics in the frequency domain parameters across irregular factor values, 
reduced spectral moment m1, m2, m4 integration 
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5.2 Narrow Band method modification 

Theoretical derivation in section 5.1 using the methodology described in Chapter 4 allows for developing 
modified code for vibration damage estimation considering the reduced integration of the 1st, 2nd and 
4th spectral moments. Reduced numerical integration implies that the signal statistic in the frequency 
domain, described empirically by Bendat, matches the signal statistic in the time domain – see section 
5.1 (the signal in the time domain retrieved using the Monte Carlo method and block size 220). 
Additionally, a proposed new empirical formulation for the Narrow Bendat method replaces the 
equation Eq. 2.6. The new proposed formulation for calculating the actual number of cycles in each 
stress range bin is to be replaced by the number of peaks - E[P] with a variable zero upward crossing – 
E[0], see equation Eq. 5.2. These changes in synergy with reduced integration imply modified damage 
results of the Narrow Band method (see Table 6) and are consistent with the Dirlik method damage 
value for the narrow band, wide band, and white noise signals. An additional benefit, in opposition to 
the Dirlik method, is that the new proposed technique is less empirically complicated, therefore less 
prone to error in engineering usage. 

 

                                  𝑛𝑁𝑎𝑟𝑟𝑜𝑤_𝐵𝑎𝑛𝑑 = 𝑁𝐵(𝑆) ∙ 𝑇 ∙ 𝐸[0] Eq. 5.2 
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5.3 Vibration damage estimation with modified integration of spectral moment results 

This section introduced the influence of reduced integration introduced in section 5.1 on the damage 
estimation in the frequency domain using the Dirlik, Lalanne and Narrow Band methods. Figure 5-4 
shows Graphical representation of the proposed reduced integration of spectral moments (1st, 2nd, and 
4th) for the exemplary PSD response function. Additionally, this section introduces modification of the 
Narrow Band and Lalanne methods introduced in section 5.2 and section 3.4.2 respectively. The 
research results presented in this section are an extension of the research results presented in the 
author’s publication [53]. 
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 Figure 5-4 Graphical representation of the proposed reduced integration of spectral moments  

 

Table 5-4 shows the summary of damage for the narrow band, wide band, and wide noise signal for full 
and reduced integration of spectral moments for PSD response clipped at five standard deviations. The 
obtained results show that reducing integration helps to obtain a great correlation of modified Lalanne 
and modified Narrow Band methods with the Dirlik method (note that the Dirlik method has the best 
correlation with the time domain damage estimation using the Monte Carlo method – see Table 5-4). 
Analogical observations were made for a signal clipped at three standard deviations as per Table 5-5. 
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Modification of the Narrow Band and Lalanne methods helps to obtain an equivalent method for the 
Dirlik legacy method by reducing complexity and reducing empirical variables. Using this method for 
commercial calculation makes it less exposed to error while keeping the same calculation accuracy. 
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Signal clipped at five standard deviations 

  

White noise signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.291 0.198 1.47 

Proposed modified Narrow Band (replaced EP 
with E0) 

0.090 0.079 1.14 

Dirlik 0.080 0.081 0.98 

Legacy Lalanne  3.688E-05 1.713E-05 2.15 

Proposed modified Lalanne 0.106 0.085 1.25 

Time domain mean damage value 0.074 

Wide band signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.185 0.129 1.43 

Proposed modified Narrow Band (replaced EP 
with E0) 

0.088 0.085 1.03 

Dirlik 0.092 0.082 1.13 

Legacy Lalanne  1.058E-05 1.552E-06 6.82 

Proposed modified Lalanne 0.091 0.086 1.06 

Time domain mean damage value 0.079 

Narrow band signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.088 0.085 1.03 

Proposed modified Narrow Band (replaced EP 
with E0) 

0.085 0.087 0.97 

Dirlik 0.081 0.081 0.99 

Legacy Lalanne  1.480E-11 7.149E-12 2.07 

Proposed modified Lalanne 0.085 0.085 1.00 

Time domain mean damage value 0.079 

 Table 5-4 A summary of damage for the narrow band, wide band, and wide noise signal for full 
and reduced integration of spectral moments – signal clipped at five standard deviations 
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Signal clipped at three standard deviations 

  

White noise signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.158 0.108 1.47 

Proposed modified Narrow Band (replaced EP with 
E0) 

0.049 0.043 1.14 

Dirlik 0.043 0.041 1.04 

Legacy Lalanne  3.688E-05 1.713E-05 2.15 

Proposed modified Lalanne 0.061 0.048 1.28 

Time domain mean damage value 0.041 

Wide band signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.101 0.070 1.43 

Proposed modified Narrow Band (replaced EP with 
E0) 

0.048 0.046 1.03 

Dirlik 0.047 0.044 1.05 

Legacy Lalanne  1.058E-05 1.552E-06 6.82 

Proposed modified Lalanne 0.050 0.047 1.07 

Time domain mean damage value 0.044 

Narrow band signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.048 0.048 1.00 

Proposed modified Narrow Band (replaced EP with 
E0) 

0.046 0.046 1.00 

Dirlik 0.044 0.045 0.99 

Legacy Lalanne  1.480E-11 7.149E-12 2.07 

Proposed modified Lalanne 0.046 0.046 1.00 

Time domain mean damage value 0.043 

 Table 5-5 A summary of damage for the narrow band, wide band, and wide noise signal for full 
and reduced integration of spectral moments – signal clipped at five standard deviations 
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5.4 Populational research and expansion of the Dirlik method  

Research results made on the pure stochastic loading scenario show that the damage varies, and the 
variation depends on the block size (N) used in the Inverse Fourier Transformation. To obtain 
information about statistics of the damage, the research was extended to search large populations 
consisting of 5000 samples (for which observed stabilization distribution parameters) to obtain the 
damage distribution. Additionally, the research results presented in this section focused on selecting 
three different distributions, characterised by the best fitting damage variation description (Gaussian, 
Exponentiated Weibull and Generalised Extreme Value distributions). 

Note that the populational analysis was performed for the critical integration point in the FEM discrete 
model.  
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5.4.1 White noise random signal analysis  

Four different block sizes were introduced in the white noise signal research: 212, 214, 216 and 218. The 
Kolmogorov-Smirnov criterium, which assesses the probability of distribution, was used to fit the 
distribution. Different distribution types available in the Python library [62] and [63] were used for the 
test. The best fitted distributions were narrowed to 3, with the highest fitting probability from: the 
Gaussian, Exponentiated Weibull and Generalised Extreme Value distributions.  

It should be noted that the mean damage value is shown in Table 5-6 through Table 5-13 and 0.13% 
(taken -3 standard deviation in Gaussian distribution as a base) of the population has no lower damage 
and 9.73% (taken -3 standard deviation in Gaussian distribution as a base) of the population has no 
higher damage.  

In Figure 5-5, Figure 5-7, Figure 5-9 and Figure 5-11 the corresponding damage values were presented 
for the searched population for the white noise signal for 4 mentioned block sizes for a signal clipped at 
3 standard deviations. Per analogy the same results for a signal clipped at 5 standard deviations is 
presented in Figure 5-13, Figure 5-15, Figure 5-17 and Figure 5-19. 

Visualisation of the best fitted distribution for a signal clipped at 3 standard deviations for 4 block sizes 
is presented in Figure 5-6, Figure 5-8, Figure 5-10 and Figure 5-12. Per analogy results for a signal clipped 
at 5 standard deviations are presented in Figure 5-14, Figure 5-16, Figure 5-18 and Figure 5-20. 

Table 5-6 through Table 5-9 introduce a populational research results summary made for a white noise 
signal clipped at 3 standard deviations, and Table 5-10 through Table 5-13 show a summary of results 
for a signal clipped at 5 standard deviations. 

 

  

 Figure 5-5 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=212 
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 Figure 5-6 The best fitted distribution for the damage values for the searched population for the 
white noise signal, with a signal clipped at 3 standard deviations, block size N=212 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.04010 0.01049 0.00866 0.06939 
Exponentiated 
Weibull 

0.70540 0.04010 0.01050 0.01692 0.07429 

Generalised 
Extreme Value 

0.77733 0.04010 0.01050 0.01543 0.07461 

 Table 5-6 Statistical parameters for a white noise signal clipped at 3 standard deviations, block 
size N=212 

 

  

 Figure 5-7 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=214 
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 Figure 5-8 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 3 standard deviations, block size N=214 – 

Generalised Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.02058 0.04099 0.00524 0.02521 0.05557 
Exponentiated 
Weibull 

0.07518 0.04099 0.00532 0.02837 0.05824 

Generalised 
Extreme Value 

0.59687 0.04100 0.00529 0.02723 0.05618 

 Table 5-7 Statistical parameters for a white noise signal clipped at 3 standard deviations N=214 
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 Figure 5-9 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=216 

  

 Figure 5-10 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the  

quoted value of 
damage [-]  

Normal 0.10940 0.04126 0.00263 0.03335 0.04856 
Exponentiated 
Weibull 

0.79453 0.04126 0.00263 0.03399 0.04887 

Generalised 
Extreme Value 

0.02990 0.04127 0.00268 0.03431 0.04900 

 Table 5-8 Statistical parameters for the white noise signal clipped at 3 standard deviations N=218 
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 Figure 5-11 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=218 

  

 Figure 5-12 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 3 standard deviations, block size N=218 – Normal 

distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.67943 0.04126 0.00131 0.03733 0.04490 
Exponentiated 
Weibull 

0.00000 0.15614 0.18807 0.03670 N/A 

Generalised 
Extreme Value 

0.00000 0.04947 N/A 0.03759 0.31644 

 Table 5-9 Statistical parameters for a white noise signal clipped at 3 standard deviations N=218 
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 Figure 5-13 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviations, block size N=212 

 

 

 Figure 5-14 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 5 standard deviations, block size N=212 –

Exponentiated Weibull distribution  

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.06688 0.06161 0.00035 N/A 
Exponentiated 
Weibull 

0.38994 0.06596 0.05255 0.01695 0.34883 

Generalised 
Extreme Value 

0.00004 0.06728 0.08206 0.01777 2.30564 

Table 5-10 Statistical parameters for a white noise signal clipped at 5 standard deviations, block size 
N=212 
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 Figure 5-15 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviations, block size N=214 

 

 Figure 5-16 The best fitted distribution for damage values for a searched population for the 
white noise signal, with a signal clipped at 5 standard deviation, block size N=214 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07349 0.03908 0.00073 NA 
Exponentiated 
Weibull 

0.02981 0.07292 0.03322 0.03013 0.25528 

Generalised 
Extreme Value 

0.40506 0.07323 0.03732 0.02966 0.29918 

 Table 5-11 Statistical parameters for a white noise signal clipped at 5 standard deviations, block 
size N=214 
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 Figure 5-17 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviations, block size N=216 

 

 

 Figure 5-18 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 5 standard deviations, block size N=216 – 

Generalised Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07405 0.01859 0.01822 0.12584 
Exponentiated 
Weibull 

0.00000 0.11434 0.13545 0.04061 N/A 

Generalised 
Extreme Value 

0.97169 0.07405 0.01828 0.04307 0.16068 

 Table 5-12 Statistical parameters for the white noise signal clipped at 5 standard deviations, block 
size N=216 
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 Figure 5-19 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviations, block size N=218 

 

 

 Figure 5-20 The The best fitted distribution for damage values for the searched population 
for the white noise signal, with a signal clipped at 5 standard deviations, block size N=218 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07443 0.00947 0.04591 0.10077 
Exponentiated 
Weibull 

0.83862 0.07442 0.00942 0.05495 0.10941 

Generalised 
Extreme Value 

0.81481 0.07445 0.00948 0.05448 0.11006 

 Table 5-13 Statistical parameters for the white noise signal clipped at 5 standard deviations, block 
size N=218 
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5.4.2 Wide band random signal analysis  

Research for the wide band signal introduced four different block sizes: 212, 214, 216 and 218. The 
Kolmogorov-Smirnov criterium, which assesses the probability of a distribution, was used for fitting the 
distribution. For the test different distribution types available in Python library [62] and [63] were used. 
The best fitted distributions were narrowed down to 3 with the highest probability of fitting: Gaussian, 
Exponentiated Weibull and Generalised Extreme Value distributions.  

It should be noted that the mean value of damage is presented in Table 5-14 through Table 5-21, and 
for which 0.13% (taken -3 standard deviation in Gaussian distribution as a base) of the population have 
no lower damage and 9.73% (taken -3 standard deviation in Gaussian distribution as a base) of the 
population have no higher damage.  

In Figure 5-21, Figure 5-23, Figure 5-25 and Figure 5-27 corresponding damage values were presented 
for the searched population for the white noise signal for the 4 mentioned block sizes for a signal clipped 
at 3 standard deviations. Per analogy the same results for a signal clipped at 5 standard deviations is 
presented in Figure 5-29, Figure 5-31, Figure 5-33 and Figure 5-35. 

The best fitted distributions visualisation for a signal clipped at 3 standard deviations for 4 block sizes is 
presented in Figure 5-22, Figure 5-24, Figure 5-26 and Figure 5-28. Per analogy results for a signal 
clipped at 5 standard deviations is presented in Figure 5-30, Figure 5-32, Figure 5-34 and Figure 5-36. 

Table 5-14 through Table 5-17 introduce a populational research results summary made for a white 
noise signal clipped at 3 standard deviation, and Table 5-18 through Table 5-21 a summary of results for 
a signal clipped at 5 standard deviations. 

  

 Figure 5-21 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviations, block size N=212 
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 Figure 5-22 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=212 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.04252 0.01208 0.00672 0.07645 
Exponentiated 
Weibull 

0.98142 0.04252 0.01208 0.01615 0.08288 

Generalised 
Extreme Value 

0.55531 0.04250 0.01207 0.01467 0.08307 

 Table 5-14 Statistical parameters for a wide band signal clipped at 3 standard deviations, block 
size N=212 

 

  

 Figure 5-23 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviations, block size N=214 
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 Figure 5-24 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=214 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.01451 0.04376 0.00598 0.02577 0.06039 
Exponentiated 
Weibull 

0.00000 0.04393 0.00710 0.03018 0.07194 

Generalised 
Extreme Value 

0.96553 0.04377 0.00601 0.02814 0.06105 

 Table 5-15 Statistical parameters for wide band signal clipped at 3 standard deviation N=214 

  

 

 Figure 5-25 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviation, block size N=216 
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 Figure 5-26 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=216 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.07936 0.04379 0.00298 0.03482 0.05208 
Exponentiated 
Weibull 

0.00068 0.04381 0.00301 0.03533 0.05154 

Generalised 
Extreme Value 

0.31657 0.04380 0.00302 0.03578 0.05225 

 Table 5-16 Statistical parameters for a wide band signal clipped at 3 standard deviations N=216 

 

 Figure 5-27 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviations, block size N=218 
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 Figure 5-28 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=218 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.88312 0.04390 0.00150 0.03938 0.04808 
Exponentiated 
Weibull 

0.00000 0.04353 0.00199 0.03871 0.04876 

Generalised 
Extreme Value 

0.51925 0.04390 0.00151 0.03970 0.04788 

 Table 5-17 Statistical parameters for a wide band signal clipped at 3 standard deviations N=218 

 

 

 Figure 5-29 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=212 
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 Figure 5-30 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 5 standard deviations, block size N=212 – 

Generalised Extreme Value distribution  

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07370 0.07526 0.00040 N/A 
Exponentiated 
Weibull 

0.14008 0.07230 0.06554 0.01693 0.50903 

Generalised 
Extreme Value 

0.94652 0.07474 0.13719 0.01630 0.70982 

Table 5-18 Statistical parameters for a wide band signal clipped at 5 standard deviations, block size 
N=212 
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 Figure 5-31 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=214 

 

 Figure 5-32 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 5 standard deviations, block size N=214 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07787 0.04330 0.00070 N/A 
Exponentiated 
Weibull 

0.30890 0.07729 0.03824 0.03053 0.29481 

Generalised 
Extreme Value 

0.91468 0.07779 0.04322 0.02998 0.34413 

 Table 5-19 Statistical parameters for a wide band signal clipped at 5 standard deviations, block 
size N=214 
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 Figure 5-33 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=216 

 

 

 Figure 5-34 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 5 standard deviations, block size N=216 – Generalised 

extreme distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07959 0.02271 0.01232 0.14343 
Exponentiated 
Weibull 

0.75042 0.07949 0.02194 0.04491 0.18512 

Generalised 
Extreme Value 

0.99548 0.07958 0.02251 0.04467 0.19482 

 Table 5-20 Statistical parameters for a wide band signal clipped at 5 standard deviations, block 
size N=216 
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 Figure 5-35 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=218 

 

 

 Figure 5-36 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 5 standard deviations, block size N=218 – Generalised 

Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07919 0.01075 0.04683 0.10909 
Exponentiated 
Weibull 

0.00000 0.48911 0.79548 0.05511 N/A 

Generalised 
Extreme Value 

0.97556 0.07920 0.01075 0.05712 0.12081 

 Table 5-21 Statistical parameters for a wide band signal clipped at 5 standard deviations, block 
size N=218 
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5.4.3 Narrow Band random signal analysis  

Research for the narrow band signal introduced four different block sizes: 212, 214, 216 and 218. The 
Kolmogorov-Smirnov criterium, which assesses the probability of a distribution, was used for fitting the 
distribution. For testing different distribution types available in Python library [62] and [63] were used. 
The best fitted distributions were narrowed down to 3 with the highest probability of fitting: Gaussian, 
Exponentiated Weibull and Generalised Extreme Value distributions.  

It is worth noting that the mean value of damage is presented in Table 5-22 through Table 5-29 and 
0.13% (taken -3 standard deviation in Gaussian distribution as a base) of the population have no lower 
damage and 9.73% (taken -3 standard deviation in Gaussian distribution as a base) of the population 
have no higher damage.  

In Figure 5-37, Figure 5-39, Figure 5-41 and Figure 5-43 corresponding damage values are presented for 
the searched population for the white noise signal for the 4 mentioned block sizes for a signal clipped 
at 3 standard deviations. Per analogy the same results for a signal clipped at 5 standard deviations are 
presented in Figure 5-45, Figure 5-47, Figure 5-49 and Figure 5-51. 

The best fitted distributions visualisation for a signal clipped at 3 standard deviations for the 4 block 
sizes are presented in Figure 5-38, Figure 5-40, Figure 5-42 and Figure 5-44. Per analogy results for a 
signal clipped at 5 standard deviations are presented in Figure 5-46, Figure 5-48, Figure 5-50 and Figure 
5-52. 

Table 5-14 through Table 5-25 introduce a populational research results summary made for a white 
noise signal clipped at 3 standard deviations, and Table 5-26 through Table 5-29 a summary of results 
for a signal clipped at 5 standard deviations. 

 

  

 Figure 5-37 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=212 
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 Figure 5-38 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=212 – 

Generalised Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00001 0.04197 0.01204 0.00636 0.07583 
Exponentiated 
Weibull 

0.00000 0.35253 0.54951 0.01281 N/A 

Generalised 
Extreme Value 

0.41095 0.04195 0.01202 0.01362 0.08131 

 Table 5-22 Statistical parameters for a narrow band signal clipped at 3 standard deviations, block 
size N=212 
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 Figure 5-39 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=214 

 

 Figure 5-40 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=214 – Normal 

distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.48454 0.04320 0.00606 0.02496 0.06006 
Exponentiated 
Weibull 

0.00000 0.04398 0.00680 0.02598 0.05774 

Generalised 
Extreme Value 

0.09376 0.04322 0.00614 0.02746 0.06117 

 Table 5-23 Statistical parameters for a narrow band signal clipped at 3 standard deviations N=214 
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 Figure 5-41 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=216 

  

 Figure 5-42 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Generalised Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.09135 0.04338 0.00306 0.03416 0.05190 
Exponentiated 
Weibull 

0.00000 0.39407 0.74436 0.03261 N/A 

Generalised 
Extreme Value 

0.34343 0.04339 0.00310 0.03520 0.05210 

 Table 5-24 Statistical parameters for a narrow band signal clipped at 3 standard deviations N=216 
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 Figure 5-43 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=218 

  

 Figure 5-44 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=218 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.83739 0.04347 0.00154 0.04776 0.03883 
Exponentiated 
Weibull 

0.00142 0.04349 0.00155 0.03910 0.04739 

Generalised 
Extreme Value 

0.06752 0.04348 0.00156 0.03921 0.04770 

 Table 5-25 Statistical parameters for a narrow band signal clipped at 3 standard deviations N=218 
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 Figure 5-45 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=212 

 

 Figure 5-46 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 5 standard deviatios,n block size N=212 – 

Generalised Extreme Value distribution  

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07023 0.06723 0.00038 N/A 
Exponentiated 
Weibull 

0.05966 0.06896 0.05749 0.01649 0.44323 

Generalised 
Extreme Value 

0.44168 0.07087 0.09430 0.01584 0.60087 

Table 5-26 Statistical parameters for a narrow band signal clipped at 5 standard deviations, block size 
N=212 
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 Figure 5-47 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=214 

 

 

 Figure 5-48 The best fitted distribution for the damage values for the searched population 
for the narrow band signal, with a signal clipped at 5 standard deviations, block size N=214 – 

Generalised Extreme Value Distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07571 0.04098 0.00072 N/A 
Exponentiated 
Weibull 

0.20369 0.07473 0.03573 0.02783 0.26912 

Generalised 
Extreme Value 

0.96212 0.07567 0.04147 0.02880 0.32958 

 Table 5-27 Statistical parameters for narrow band signal clipped at 5 standard deviation, block 
size N=214 
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 Figure 5-49 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=216 

 

 

 Figure 5-50 The best fitted distribution for the damage values for the searched population 
for the narrow band signal, with a signal clipped at 5 standard deviations, block size N=216 – 

Generalised Extreme Value Distribution 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07803 0.02162 0.01365 0.13861 
Exponentiated 
Weibull 

0.00000 0.07488 0.02568 0.03951 0.15844 

Generalised 
Extreme Value 

0.57211 0.07802 0.02135 0.04329 0.18299 

 Table 5-28 Statistical parameters for a narrow band signal clipped at 5 standard deviations, block 
size N=216 
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 Figure 5-51 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=218 

 

 

 Figure 5-52 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 5 standard deviations, block size N=218 – 

Generalised Extreme Value Distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.07877 0.01128 0.04480 0.11015 
Exponentiated 
Weibull 

0.00000 0.53129 0.94674 0.05451 N/A 

Generalised 
Extreme Value 

0.63124 0.07879 0.01126 0.05571 0.12250 

 Table 5-29 Statistical parameters for a narrow band signal clipped at 5 standard deviations, block 
size N=218 
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5.4.4 Summary and conclusions of the populational research   

The summary of conducted computer experiments using two combined methods: FEM, the Monte Carlo 
method and Python programming, allows to identify the high variability of the damage value depending 
on the frequency resolution used in IFFT. This phenomenon was not introduced by Dirlik. 

Research results presented in this paper show that the legacy methods (Narrow Band, Lalanne, Dirlik) 
used in commercial software for stochastic loading scenarios provide an accurate mean value of damage 
but have no opportunity to assess the variability of damage, which depends on e.g., the block size in 
IFFT.  

Introducing a new method of calculation (based on the combined frequency and time approach) of the 
damage under the random loading scenario allows for more robust damage estimation in the time 
domain while keeping the efficiency benefit related to the frequency domain calculation (the basis of 
the time domain calculation are results from the linear dynamic harmonic analysis). The new proposed 
approach allows to estimate the mean value of damage, distribution of damage and variation, which 
depends on the IFFT block size. Using the novel method introduced in this paper allows to obtain higher 
accuracy of the results than with the legacy method, and a higher efficiency of computation than with 
the legacy method. The novel method also enables analysis of time series population to assess the 
damage variation, which is not possible using the legacy method.  

The research results reveal that damage variation occurs (damage variability depends on the block size 
used in IFFT), and therefore the conclusion is that for the considered test equipment the frequency 
resolution parameter defines the variability of the damage. This issue should be considered when sizing 
the unit and developing a test procedure taking into account the test aperture used for final testing of 
the considered unit.  

An additional conclusion is that for the populational analysis it is recommended to use the best fitting 
among three proposed methods of distribution: Exponentiated Weibull, Gaussian and Generalised 
Extreme Value. The research shows that for different block sizes for different signal types it is possible 
to use one distribution from these three, which accurately describes the damage distribution. 

The research results show that for a white noise signal clipped at three standard deviations, the best 
fitted distribution for low block size is Generalised Extreme Value distribution, but when the block size 
increases a better distribution method is Weibull, while for a block size higher than N=216, normal 
distribution fits the damage distribution (see Figure 5-6, Figure 5-8, Figure 5-10, Figure 5-12 and Table 
5-6 through Table 5-9). For a signal clipped at five standard deviations, we observed that Exponentiated 
Weibull and Generalised Extreme Value distributions best fit the experiment damage distribution (see 
Figure 5-14, Figure 5-16, Figure 5-18, Figure 5-20 and Table 5-10 through Table 5-13). 

The research results shows that for a wide band signal clipped at three standard deviations, Generalised 
Extreme Value distribution fits well for a low value of block size N=212  (Exponentiated Weibull is also 
characterised by fitting the experiment damage well) –see Figure 5-22, Figure 5-24, Figure 5-26, Figure 
5-28 and Table 5-14 through Table 5-17. For a signal clipped at five standard deviations the Generalised 
Extreme Value distribution fits best to the experiment damage distribution – see Figure 5-30, Figure 
5-32, Figure 5-34, Figure 5-36 and Table 5-18 through Table 5-21. 

The research results show that for a narrow band signal clipped at three standard deviations, the 
Generalised Extreme Value and Normal distribution methods fit well – see Figure 5-38, Figure 5-40, 
Figure 5-42, Figure 5-44 and Table 5-22, Table 5-14 through Table 5-25. For a signal clipped at five 
standard deviations, Generalised Extreme Value distribution best fits the experiment damage 
distribution – see Figure 5-46, Figure 5-48, Figure 5-50, Figure 5-52 and Table 5-26 through Table 5-29. 
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These three distributions can be applied for statistical consideration in all cases where a signal is clipped 
at three and five standard deviations and for a non-clipped signal, as this set of distribution allows to 
describe the damage variability process and derived the damage range, which depend on IFFT block size 
(see Table 5-6 through Table 5-29). These distributions can be applied for white noise, wide band, and 
narrow band signals.  

Another aspect is that the algorithm can also be adjusted to the frequency resolution (block size) during 
real testing to assess the variability of damage to the test equipment. As for a block size smaller than 
N=214 the variability might increase, which can imply under-testing. In real testing there is a limitation 
for N used for defining ‘Block size’, and applying a high value of N can imply an increasing variation PSD 
profile from the predefined one, therefore it is proposed to apply the low value of N and modify the 
PSD reference input curve to meet following criteria:  

                            𝐷𝑖_0.13%(𝑁2𝑖) ≥   𝐷20_99.73%(𝑁220) Eq. 5.3 

  

Where: 

N– Block size 

𝐷𝑖_0.13%(𝑁2𝑖)  – damage for which 0.13% of the population has no lower damage – for the block size 

used during the testing 

𝐷20_99.73%(𝑁220) – damage for which 99.73% of the population has no higher damage – when N is equal 
to 1048576 = 220 

Meeting the above criteria ensures that the unit will not be under-tested during real testing, when the 
block size used during the testing is limited. Graphical representation of the proposed criteria is 
presented in Figure 5-53, Figure 5-54 and Figure 5-55 respectively for the white noise, wide band and 
narrow band signals. 

  

 Figure 5-53 Damage correction for a different number of block sizes in IFFT – the white noise 
signal 
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 Figure 5-54 Damage correction for a different number of block sizes in IFFT – the wide band signal 

   

 Figure 5-55 Damage correction for a different number of block sizes in IFFT – the narrow band 
signal 

 



-117- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

CHAPTER 6 DEVELOPING A METHOD FOR VIBRATION DAMAGE ESTIMATION UNDER 
COMBINED RANDOM AND DETERMINISTIC LOADING   

6.1 Research for developing a new method - introduction  

The Rainflow Cycle Counting algorithm in the frequency domain is commonly used for vibration damage 
estimation under stochastic loading of linear systems in synergy with FEM analysis. The precursor of 
Rainflow Cycle Counting algorithm in frequency domain were Bendat and Rice [15], [16], [17] and [19], 
who provided a method used for narrow band signals. The next milestone was the development of the 
Rainflow Cycle Counting algorithm in the frequency domain made by Dirlik, using the Monte Carlo 
method [18]. This approach is now considered one of the most accurate techniques used in commercial 
software ([28], [30]) for assessment of damage under random loading. Other researchers included 
Lalanne ([20], [21] and [22]) and Steinberg [23], who provided methods for Rainflow Cycle Counting in 
the frequency domain. All of these methods have been tested by Halfpenny ([6], [13] and [14]), although 
only for evaluation damage under pure stochastic loading.  

The methods were developed for vibration damage estimation purely for stochastic loading. However 
these methods have been adopted for more general usage, i.e. damage estimation under combined 
stochastic and deterministic loading by the Bishop, Sweitzer, Schlesinger, Woodward, Kerr, Murthy, 
Datta, Atkins in their publications ([3], [4], [5], [8], [9], [10], [11], [64] and [65]). The loading scenario for 
using this method are e.g., the simultaneous deterministic sine sweep and random load – see Figure 
6-1. This combination is required by the US Department of Defence Test Method Standard [66] or other 
specific requirements driven by military aircraft manufacturers. 

The first stage of research introduced in this paper shows that using the abovementioned methods 
resulting in high conservative damage results.  

The second stage of research was development of a novel method for precise damage estimation under 
combined loads, which introduces the combined frequency and time domain calculation instead of only 
frequency domain for vibration damage estimation in legacy methods. The superposition of stochastic 
and deterministic loading approach was introduced by NASA [67]. The novel method presented in this 
paper assumes extension of this approach for analysis of the PSD response of the system, making the 
stochastic and deterministic signals superposition and damage analysis using the Monte Carlo Method. 
The novel method introduced in this paper is much more accurate, and can replicate the test parameter, 
e.g., a clipping stochastic signal at considered sigma level. Additionally, this method allows to consider 
a large population of time series to assess the damage distribution for the considered PSD input curve.  

In this paper, for combined loads we used a simultaneous deterministic linear sine sweep – which 
represents, e.g. shooting with a variable firing gun installed on an aircraft or helicopter and stochastic 
loads defined by a PSD input curve (Figure 6-1) – which represent normal operating dynamic loading, 
e.g. turbulences.  
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 Figure 6-1 Sine waves sweep simultaneous with a random background 

The novel technique introduced in this paper expands research done by Dirlik with regards to the 
frequency resolution, populational studies [52] and [68], a combination of stochastic and deterministic 
loading and additionally using FEM for transfer function estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-119- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

6.2 Legacy methods – vibration damage estimation under combined stochastic and deterministic 
loading in the frequency domain 

The methodology introduced in Chapter 2 of this paper is the basis for damage estimation only under 
stochastic loading. Research done by Bishop, Sweitzer, Schlesinger, Woodward, Kerr, Murthy, Datta, 
and Atkins in their publications ([3], [4], [5], [8], [9], [10], [11], [64] and [65]), describe the aim of damage 
estimation based on superimposing spectral moments generated by random and deterministic loads. 
The abovementioned approach was used. 

The Transfer Function (Hi(f)), which consist of e.g., Huber-Mises-Hencky complex stress or critical plane 
stress, needs to be evaluated for finite – i numbers of frequency sub-ranges, e.g., for a sweep between 
100-150Hz it needs to be evaluated for the considered sub-range size, e.g., 0.1Hz. For each subrange a 
single sine wave is considered, and a signal statistic needs to be introduced. 

The response function – S(f) is then evaluated based on the Transfer Function – H(f), and sine sweep 
amplitude (G(f)) as in the equation Eq. 6.1. 

                                                 Si(fi) = √Hi(fi) ∙ Gi(fi)  Eq. 6.1 

The Root Mean Square of the single sine wave (RMS) can be evaluated as in the equation Eq. 6.2 

                                                RMS =
√2

2
∙ Si(fi) 

 Eq. 6.2 

The next step is evaluation of spectral moments for every considered single sine wave function using 
the following equation for the 0, 1st, 2nd, 4th spectral moments (see equation Eq. 6.3 through equation 
Eq. 6.6). 

                                                m0_sine_wave(fi) = RMS
2 

 Eq. 6.3 

                                                       m1_sine_wave(fi) = m0(fi) ∙ fi  Eq. 6.4 

                                                         m2_sine_wave(fi) = m0(fi) ∙ fi
2  Eq. 6.5 

                                                        m4_sine_wave(fi) = m0(fi) ∙ fi
4  Eq. 6.6 

Where: 

fi – is the considered frequency 

Signal statistics in the frequency domain are based on a spectral analysis performed iteratively for the 
considered frequency sub-ranges e.g., 0.1Hz sub-ranges width. Spectral moments from deterministic 
loading (m0_sine_wave, m1_sine_wave, m2_sine_wave, m4_sine_wave) need to be the sum of the spectral 
moments from a stochastic background (m0, m1, m2, m4)  as introduced in equation Eq. 6.7 through 
equation Eq. 6.10. 

 

                                                    m0_mixed_mode(fi) = m0+ m0_sine_wave(fi)  Eq. 6.7 

                                    m1_mixed_mode(fi) = m1+ m1_sine_wave(fi)  Eq. 6.8 

                                   m2_mixed_mode(fi) = m2+ m2_sine_wave(fi)  Eq. 6.9 

                                   m4_mixed_mode(fi) = m4+ m4_sine_wave(fi)  Eq. 6.10 
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Where: 

m0_mixed_mode(fi) – is the spectral 0 moment for the superimposed signal at the considered frequency 
m1_mixed_mode(fi) – is the spectral 1st moment for the superimposed signal at the considered frequency 
m2_mixed_mode(fi) – is the spectral 2nd moment for the superimposed signal at the considered frequency 
m4_mixed_mode(fi) – is the spectral 4th moment for the superimposed signal at the considered frequency 
 
It is worth noting that in the superposition of the spectral moment, the sum used for the full moment 

from the stochastic part of the load (𝑚0, 𝑚1, 𝑚2, 𝑚4) as the allowable number of cycles is also calculated 

iteratively for the considered  𝑇𝑖  which is equal to the total time of exposure to random and 
deterministic loading – 𝑇𝑇𝑜𝑡𝑎𝑙 , divided by the number of sub-rages – see equation Eq. 6.11. 
 

                                               𝑇𝑖 =
𝑇𝑇𝑜𝑡𝑎𝑙
𝑛

  Eq. 6.11 

 
where: 

n – is the number of sub-ranges  

Rainflow Cycle Counting in the frequency domain evaluated by the Dirlik or Narrow Band Method / 
damage assessment are provided for each sub-range in the same way as introduced in section 2 of this 
paper: 

The number of actual cycles as per Dirlik Rainflow Cycle Counting in the frequency domain – 
𝑛𝑖 – see equation Eq. 6.12. 

                                                              𝑛𝑖 = 𝑃𝐷𝐹𝑖(𝑆) ∙ 𝑇𝑖 ∙ 𝐸𝑖[𝑃]  Eq. 6.12 

Where: 

𝑃𝐷𝐹𝑖(𝑆) – is the Probability Density Function at the considered stress bin 

𝐸𝑖[𝑃] – is the number of peaks at the considered stress bin 

The damage value for the considered sub-range (Di) – see equation Eq. 6.13. 

                                                        𝐷𝑖 =
𝑛𝑖

𝑁(𝑆)𝑖
  Eq. 6.13 

Where: 

𝑁(𝑆)𝑖 – is the allowable number of cycles at the considered stress bin based on the considered S-N 
curve  

The total damage (𝐷𝑇𝑜𝑡𝑎𝑙) under combined stochastic and deterministic loading is the sum of damage 
from each sub-range – see equation Eq. 6.14. 

                                                                     𝐷𝑇𝑜𝑡𝑎𝑙 =∑𝐷𝑖

𝑛

𝑖=1

 
 Eq. 6.14 

The damage value obtained by created an algorithm has been benchmarked against the damage value 
obtained using commercial software and obtained a good correlation (exemplary results are presented 
in section 6.4 of this paper). 
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6.3 Combined frequency and time domain vibration damage estimation under combined stochastic and 
deterministic loading – the new proposed method  

The frequency domain stochastic signal is retrieved in the time domain using the approach presented 
in Chapter 4 of this paper.  

The specified linear sine sweep frequency (𝑓𝑠𝑝𝑒𝑐(𝑡)) dependence from time can be written as a function 

of time and frequency – see equation Eq. 6.15, [52]. 

 

                                                                     𝑓𝑠𝑝𝑒𝑐(𝑡) = f1 + K · T 
 Eq. 6.15 

Where: 

T – is the total sweep time 

K – is the sweep rate  

f1   – is the initial sweep frequency  

 

The specified frequency (𝑓𝑠𝑝𝑒𝑐(𝑡)) can be written in alternative form as in the equation Eq. 6.16): 

                                                     𝑓𝑠𝑝𝑒𝑐(𝑡) = 𝑓1 + (𝑓2 − 𝑓1)
𝑡

𝑇
    Eq. 6.16 

 

𝑓2 – is the end sweep frequency  

t – is the time variable   

The sine sweep frequency (f(t)) is the integral of the specified frequency and can be written as in the 
equation Eq. 6.17. 

                    𝑓(𝑡) = ∫𝑓𝑠𝑝𝑒𝑐(𝑡)𝑑𝑡 = 𝑓1 · 𝑡 +
𝑓2 − 𝑓1
𝑇

·
𝑡2

2
  Eq. 6.17 

The input sine sweep (G(t)) with a constant acceleration amplitude can be written as in the equation  
Eq. 6.18. 

 

                     𝐺(𝑡) = 𝑢(𝑡) · 𝑠𝑖𝑛(𝜔𝑡) = 𝑢(𝑡) · 𝑠𝑖𝑛(2𝜋𝑓(𝑡) · 𝑡) 
 Eq. 6.18 

Where: 

𝑢(𝑡)– is the displacement in time  

𝜔 – circular frequency  

And an equivalent version for implementation in Python programming language ([62] and [63]) can be 
written as in the equation Eq. 6.19. 

                         𝐺(𝑡) = 𝑢(𝑡) · 𝑠𝑖𝑛 (2𝜋 · 𝑡 · (𝑓1 +
𝑓2 − 𝑓1
𝑇

·
𝑡

2
))  Eq. 6.19 
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The sine sweep frequency is deterministic, and depends on time, therefore the sine sweep function can 
be scaled by the transfer function H(f) to obtain a time series sweep including the system response as 
presented in Figure 6-2. 

 

 Figure 6-2 Sine sweep system response in the time domain, with a sweep rate K=0.095367 Hz/s 

 

The sine sweep response (S(t)) can be written as in the equation Eq. 6.20.  

                         𝑆(𝑡) = √𝐻(𝑡) ∙ 𝐺(𝑡)  Eq. 6.20 

Where: 

H(f) – is the transfer function  

G(t) – is the input sine sweep acceleration  

This signal, which consists of the PSD response stress values, can now be superimposed to a random 
time series PSD response retrieved with the Monte Carlo method (assuming linearity of system, with 
restriction that the time sequence of the retrieved random signal matches the time sequence of the 
sine sweep) – see Figure 6-3.  
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 Figure 6-3 The superimposed stochastic and deterministic responses in the time domain 

For the superimposed signal, the Rainflow Cycle Counting algorithm in the time domain can be used, 
the SN curve for stress life method needs to be introduced, and the damage for combined stochastic-
deterministic input can be evaluated.  

It should also be noted that the sweep rate can be fitted to background random loading to obtain one 
sweep during an operating random load if there is no specific requirement driven by the aircraft 
manufacturer. 

It has been checked that n number of sine sweeps with n times higher than the reference sweep rate 
(see Figure 6-4 for n=2 and Figure 6-5 for n=4) causes the same theoretical damage as one sweep with 
the reference sweep rate. The reference signals have been integrated in a theoretical way – the is no 
continuous link between sweeps, however it has negligible impact on the quoted damage as the 
maximum stress cycles for the considered samples is much higher than in the linked area.  It should be 
emphasises that only one sweep acting during the duration of the random loading should give a high 
level of damage, as an increasing sweep rate can cause the system to not respond with full amplitude 
during the resonance, with the maximum resonance amplitude decreasing. 
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 Figure 6-4 Sine sweep system response in the time domain, with a sweep rate K·2=0.190735 Hz/s 

 

 

 Figure 6-5 Sine sweep system response in the time domain, with a sweep rate K·4=0.38147 Hz/s 

 

The proposed algorithm flow chart for damage estimation under combined stochastic and deterministic 
loading in the time domain is presented in Figure 6-6. 
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 Figure 6-6 Algorithm flow chart for damage estimation under combined stochastic and 
deterministic loading in the time domain 
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6.4 Comparison results obtained for the legacy method and the proposed method  

The above-mentioned legacy method for combined stochastic deterministic loading proved to be highly 
conservative. Two loops of analysis under vibration loading were calculated. The 1st Loop, based on 
algorithms for vibration damage estimation under deterministic loading (pure sine sweep), obtained a 
damage value of 0.009 for the critical integration point. The 2nd Loop was based on algorithms for 
combined stochastic deterministic loading and a low level non-damaging random load (giving 0 damage 
after evaluation using the algorithm for pure random loading, peaking at 9MPa of 5σ stress). For the 
combined load scenario, a damage of 0.58 was calculated for the same sine sweep as in the 1st Loop 
(resulting in 0.009 of damage). The results above show that the legacy approach is highly conservative 
and initialised further research. A summary of the obtained result is in Table 6-1. 

Note: Even if we assume that the maximum stress from resonance for the sine sweep (258MPa) occurs 
for every cycle in the sweep (conservatively assuming that maximum peak in the resonance occurs 
through 50Hz) and superimposes a 5σ stress amplitude equal to 9MPa, the obtained damage is equal 
0.21. 

No. 
Damage 

proposed 
method 

Damage 
legacy 

method 
with the 
author’s 

algorithm 
for 

combined 
loading 

Damage 
legacy 

method 
using the 
MSC CAE 
Fatigue 

algorithm for 
combined 

loading 

Damage for the 
sine sweep 

only using the 
author’s 

algorithm for 
deterministic 

harmonic 
loading 

Damage for the 
sine sweep 

only using the 
MSC CAE 
Fatigue 

algorithm for 
determini-stic 

harmonic 
loading 

1 0.00875 0.58110 0.60804 0.00875 0.00944 

2 0.06718 1.00792 1.07479 0.00875 0.00944 

 Table 6-1 Comparison damage evaluated using the spectral method in the frequency domain 
(legacy method) and the new proposed method (damage evaluated in the time domain) 

Note: In this section we used the FEM model and material model presented in section 3.3.1 and section 
3.3.2 for consideration. 

The research results show that the legacy method is highly conservative, and therefore there is a need 
to develop a new method for this loading scenario, to remove the conservativism during damage 
estimation. This is important for aerospace, especially with regard to military application, where e.g., 
the mass of the component can be reduced. 
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6.5 Additional considerations on the proposed method  

Research results from the pure stochastic loading scenario shows that the damage can vary, and the 
variation depends on the block size (N) used in Inverse Fourier Transformation. To obtain information 
about statistics of the damage, the research was extended to search a large population consisting of 
5000 samples (for which observed stabilization distribution parameters), to obtain the damage 
distribution. This section presents the research results quoted in the author’s publication [69], which 
intruded a white noise signal and extended these considerations to the narrow band and wide band 
signal. 

It should be noted that the populational analysis was performed for a critical integration point in the 
FEM discrete model.  

6.5.1 White noise random signal analysis  

Research for the white noise signal introduced 3 different block sizes: 212, 214 and 216. The Kolmogorov-
Smirnov criterium, which assesses the probability of a distribution, was used for fitting the distribution. 
Different distribution types available in the Python library [62] were used for the testing. The best fitted 
distributions were narrowed down to 3 with the highest probability of fitting: Gaussian, Exponentiated 
Weibull and Generalised Extreme Value distributions.  

It is worth noting that the mean value of damage is quoted in Table 8-2 through Table 6-7 and 0.13% 
(taken -3 standard deviation in Gaussian distribution as a base) of the population has no lower damage 
and 9.73% (taken -3 standard deviation in Gaussian distribution as a base) of the population has no 
higher damage.  

In Figure 6-7, Figure 6-9 and Figure 6-11 corresponding damage values are presented for the searched 
population for the white noise signal for the 3 mentioned block sizes for a signal clipped at 3 standard 
deviations. Per analogy the same results for a signal clipped at 5 standard deviations are presented in 
Figure 6-13, Figure 6-15 and Figure 6-17. 

The best fitted distributions visualisation for a signal clipped at 3 standard deviations for 3 block sizes is 
presented in Figure 6-8, Figure 6-10 and Figure 6-12. Per analogy results for a signal clipped at 5 standard 
deviations are presented in Figure 6-14, Figure 6-16 and Figure 6-18. 

In Table 6-2 through Table 6-4 a populational research results summary for a white noise signal clipped 
at 3 standard deviations is presented, and in Table 6-5 through Table 6-7 the summary of results for a 
signal clipped at 5 standard deviations. 
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 Figure 6-7 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=212 

 

 Figure 6-8 The best fitted distribution for damage values for the searched population for the 
white noise signal, with a signal clipped at 3 standard deviations, block size N=212 – Normal distribution 

 

Distribution type Distribution 
fitting 

probability 
[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% of 
samples not 
lower than 
the quoted 

value of 
damage 

[-] 

99.73% of 
samples not 

higher than the 
quoted value of 

damage 
[-] 

Normal 0.27452 0.16697 0.01341 0.12660 0.20427 
Exponentiated 
Weibull 

0.00000 0.15973 0.04217 0.11231 0.33518 

Generalised 
Extreme Value 

0.00091 0.16708 0.01380 0.13093 0.20641 

 Table 6-2 Statistical parameters for a white noise signal clipped at 3 standard deviations, block 
size N=212 
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 Figure 6-9 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=214 

 

 Figure 6-10 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 3 standard deviations, block size N=214 – 

Exponentiated Weibull distribution 

 

Distribution type Distribution 
fitting 

probability 
[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% of 
samples not 
lower than 
the quoted 

value of 
damage 

[-] 

99.73% of 
samples not 

higher than the 
quoted value of 

damage 
[-] 

Normal 0.80900 0.16763 0.01217 0.13098 0.20149 
Exponentiated 
Weibull 

0.90471 0.16763 0.01217 0.13269 0.20201 

Generalised 
Extreme Value 

0.05506 0.16768 0.01235 0.13450 0.20164 

 Table 6-3 Statistical parameters for a white noise signal clipped at 3 standard deviations N=214 
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 Figure 6-11 Damage values for the searched population for the white noise signal, with a signal 
clipped at 3 standard deviations, block size N=216 

  

 Figure 6-12 The best fitted distribution for damage values for the searched population for 
white the noise signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Exponentiated Weibull distribution 

Distribution type Distribution 
fitting 

probability 
[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% of 
samples not 
lower than 
the quoted 

value of 
damage 

[-] 

99.73% of 
samples not 

higher than the 
quoted value of 

damage 
[-] 

Normal 0.49042 0.16785 0.01161 0.13287 0.20016 
Exponentiated 
Weibull 

0.99708 0.16783 0.01162 0.13473 0.20152 

Generalised 
Extreme Value 

0.26514 0.16789 0.01175 0.13660 0.20064 

 Table 6-4 Statistical parameters for a white noise signal clipped at 3 standard deviations N=216 
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 Figure 6-13 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviation, block size N=212 

 

 

 Figure 6-14 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 5 standard deviations, block size N=212 – 

Generalised Extreme Value distribution  

 

Distribution type Distribution 
fitting 

probability 
[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% of 
samples not 
lower than 
the quoted 

value of 
damage 

[-] 

99.73% of 
samples not 

higher than the 
quoted value of 

damage 
[-] 

Normal 0.00000 0.17292 0.01933 0.11472 0.22669 
Exponentiated 
Weibull 

0.00001 0.17277 0.01827 0.12702 0.23245 

Generalised 
Extreme Value 

0.00049 0.17313 0.01932 0.13327 0.24754 

Table 6-5 Statistical parameters for a white noise signal clipped at 5 standard deviations, block size 
N=212 
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 Figure 6-15 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviations block size N=214 

 

 Figure 6-16 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 5 standard deviations, block size N=214 – 

Exponentiated Weibull distribution 

 

Distribution type Distribution 
fitting 

probability 
[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% of 
samples not 
lower than 
the quoted 

value of 
damage 

[-] 

99.73% of 
samples not 

higher than the 
quoted value of 

damage 
[-] 

Normal 0.00000 0.17498 0.01547 0.12840 0.21801 
Exponentiated 
Weibull 

0.68282 0.17495 0.01541 0.13748 0.22694 

Generalised 
Extreme Value 

0.07246 0.17512 0.01576 0.13901 0.22855 

 Table 6-6 Statistical parameters for a white noise signal clipped at 5 standard deviations, block 
size N=214 
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 Figure 6-17 Damage values for the searched population for the white noise signal, with a signal 
clipped at 5 standard deviations, block size N=216 

 

 

 Figure 6-18 The best fitted distribution for damage values for the searched population for 
the white noise signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Exponentiated Weibull distribution 

 

Distribution type Distribution 
fitting 

probability 
[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% of 
samples not 
lower than 
the quoted 

value of 
damage 

[-] 

99.73% of 
samples not 

higher than the 
quoted value of 

damage 
[-] 

Normal 0.00193 0.17462 0.01354 0.13384 0.21230 
Exponentiated 
Weibull 

0.83692 0.17463 0.01354 0.13902 0.21650 

Generalised 
Extreme Value 

0.52516 0.17467 0.01370 0.14047 0.21627 

 Table 6-7 Statistical parameters for a white noise signal clipped at 5 standard deviations, block 
size N=216 
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6.5.2 Wide band random signal analysis  

Research for the wide band signal introduced 3 different block sizes: 212, 214 and 216. The Kolmogorov-
Smirnov criterium, which assesses the probability of a distribution, was used for fitting the distribution. 
Different distribution types available in the Python library [62] were used for testing. The best fitted 
distributions were narrowed down to 3 with the highest probability of fitting: Gaussian, Exponentiated 
Weibull and Generalised Extreme Value distributions.  

It is worth noting that the mean value of damage is quoted in Table 6-8 through Table 6-13 and 0.13% 
(taken -3 standard deviation in Gaussian distribution as a base) of the population has no lower damage 
and 9.73% (taken -3 standard deviation in Gaussian distribution as a base) of the population has no 
higher damage.  

In Figure 6-19, Figure 6-21 and Figure 6-23 the corresponding damage values are presented for the 
searched population for the wide band signal for the 3 mentioned block sizes, for a signal clipped at 3 
standard deviations. Per analogy the same results for a signal clipped at 5 standard deviations are 
presented in Figure 6-25, Figure 6-27 and Figure 6-29. 

The best fitted distribution visualisation for a signal clipped at 3 standard deviations for the 3 block sizes 
are presented in Figure 6-20, Figure 6-22 and Figure 6-24. Per analogy, the results for a signal clipped at 
5 standard deviations are presented in Figure 6-26, Figure 6-28 and Figure 6-30. 

Table 6-8 through Table 6-10 present a populational research results summary for a white noise signal 
clipped at 3 standard deviations, and Table 6-11 through Table 6-13 show a summary of results for a 
signal clipped at 5 standard deviations. 

  

 Figure 6-19 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviations, block size N=212 
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 Figure 6-20 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=212 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.29958 0.16262 0.01308 0.12324 0.19900 
Exponentiated 
Weibull 

0.78456 0.16261 0.01308 0.12452 0.20055 

Generalised 
Extreme Value 

0.00821 0.16273 0.01346 0.12774 0.20147 

 Table 6-8 Statistical parameters for a wide band signal clipped at 3 standard deviations, block size 
N=212 
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 Figure 6-21 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviations, block size N=214 

 

 Figure 6-22 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=214 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.47102 0.16359 0.01166 0.12789 0.19635 
Exponentiated 
Weibull 

0.94591 0.16355 0.01164 0.12845 0.19709 

Generalised 
Extreme Value 

0.01435 0.16367 0.01200 0.13121 0.19658 

 Table 6-9 Statistical parameters for a wide band signal clipped at 3 standard deviations N=214 

  



-137- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

 

 Figure 6-23 Damage values for the searched population for the wide band signal, with a signal 
clipped at 3 standard deviations, block size N=216 

  

 Figure 6-24 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.04568 0.16371 0.01150 0.12907 0.19572 
Exponentiated 
Weibull 

0.79828 0.16370 0.01151 0.13097 0.19755 

Generalised 
Extreme Value 

0.11025 0.16377 0.01169 0.13317 0.19711 

 Table 6-10 Statistical parameters for a wide band signal clipped at 3 standard deviations N=216 
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 Figure 6-25 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=212 

 

 

 Figure 6-26 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 5 standard deviations, block size N=212 – 

Exponentiated distribution  

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.16800 0.01872 0.11161 0.22009 
Exponentiated 
Weibull 

0.00125 0.16808 0.01842 0.12710 0.23543 

Generalised 
Extreme Value 

0.00015 0.16820 0.01883 0.12819 0.23822 

Table 6-11 Statistical parameters for a wide band signal clipped at 5 standard deviations, block size 
N=212 
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 Figure 6-27 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=214 

 

 Figure 6-28 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 5 standard deviations, block size N=214 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00003 0.16934 0.01492 0.12440 0.21086 
Exponentiated 
Weibull 

0.23695 0.16936 0.01490 0.13266 0.21921 

Generalised 
Extreme Value 

0.02024 0.16947 0.01521 0.13422 0.22032 

 Table 6-12 Statistical parameters for a wide band signal clipped at 5 standard deviations, block 
size N=214 
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 Figure 6-29 Damage values for the searched population for the wide band signal, with a signal 
clipped at 5 standard deviations, block size N=216 

 

 

 Figure 6-30 The best fitted distribution for damage values for the searched population for 
the wide band signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00133 0.16994 0.01369 0.12870 0.20804 
Exponentiated 
Weibull 

0.95236 0.16990 0.01370 0.13447 0.21289 

Generalised 
Extreme Value 

0.53781 0.17000 0.01389 0.13581 0.21295 

 Table 6-13 Statistical parameters for a wide band signal clipped at 5 standard deviations, block 
size N=216 
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6.5.3 Narrow Band random signal analysis  

Research for the narrow band signal introduced 3 different block sizes: 212, 214 and 216. The Kolmogorov-
Smirnov criterium, which assesses the probability of a distribution, was used for fitting the distribution. 
Different distribution types available in the Python library [62] were used for testing. The best fitted 
distributions were narrowed down to 3 with the highest probability of fitting: Gaussian, Exponentiated 
Weibull and Generalised Extreme Value distributions.  

It is worth noting that mean the value of damage is presented in Table 6-14 through Table 6-19 and 
0.13% (taken -3 standard deviation in Gaussian distribution as a base) of the population has no lower 
damage and 9.73% (taken -3 standard deviation in Gaussian distribution as a base) of the population 
has no higher damage.  

In Figure 6-31, Figure 6-33 and Figure 6-35, the corresponding damage values are presented for the 
searched population for the white noise signal for the 3 mentioned block sizes for a signal clipped at 3 
standard deviations. Per analogy the same results for a signal clipped at 5 standard deviations is 
presented in Figure 6-37, Figure 6-39 and Figure 6-41. 

The best fitted distribution visualisation for a signal clipped at 3 standard deviations for the 3 block sizes 
is presented in Figure 6-32, Figure 6-34 and Figure 6-36. Per analogy results for a signal clipped at 5 
standard deviations are presented in Figure 6-38, Figure 6-40 and Figure 6-42. 

Table 6-14 through Table 6-16 present a populational research results summary made for a white noise 
signal clipped at 3 standard deviations, and Table 6-17 through Table 6-19 show a summary of results 
for a signal clipped at 5 standard deviations. 

 

  

 Figure 6-31 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=212 
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 Figure 6-32 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=212 – 

Generalised Extreme Value distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00083 0.34861 0.03687 0.23757 0.45120 
Exponentiated 
Weibull 

0.00000 0.33173 0.07133 0.23564 0.60820 

Generalised 
Extreme Value 

0.03591 0.34886 0.03767 0.25722 0.46721 

 Table 6-14 Statistical parameters for a narrow band signal clipped at 3 standard deviations, block 
size N=212 
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 Figure 6-33 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=214 

 

 Figure 6-34 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=214 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.22580 0.35176 0.02916 0.26395 0.43289 
Exponentiated 
Weibull 

0.96216 0.35188 0.02948 0.27058 0.44086 

Generalised 
Extreme Value 

0.05754 0.35192 0.02992 0.27664 0.44180 

 Table 6-15 Statistical parameters for a narrow band signal clipped at 3 standard deviations N=214 
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 Figure 6-35 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 3 standard deviations, block size N=216 

  

 Figure 6-36 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Exponentiated Weibull distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.11812 0.35225 0.02672 0.27180 0.42658 
Exponentiated 
Weibull 

0.86662 0.35226 0.02672 0.27958 0.43174 

Generalised 
Extreme Value 

0.38807 0.35234 0.02706 0.28253 0.43104 

 Table 6-16 Statistical parameters for a narrow band signal clipped at 3 standard deviations N=216 
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 Figure 6-37 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=212 

 

 Figure 6-38 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 5 standard deviations, block size N=212 – 

Generalised Extreme Value distribution  

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.37092 0.06488 0.17315 0.55046 
Exponentiated 
Weibull 

0.02536 0.37100 0.06116 0.23792 0.57440 

Generalised 
Extreme Value 

0.05581 0.37100 0.06214 0.25992 0.64275 

Table 6-17 Statistical parameters for a narrow band signal clipped at 5 standard deviations, block size 
N=212 
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 Figure 6-39 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=214 

 

 

 Figure 6-40 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 5 standard deviations, block size N=214 – 

Generalised Extreme Value Distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00000 0.37690 0.04532 0.24042 0.50299 
Exponentiated 
Weibull 

0.00000 0.38449 0.05469 0.26607 0.51474 

Generalised 
Extreme Value 

0.15329 0.37714 0.04549 0.28295 0.55160 

 Table 6-18 Statistical parameters for a narrow band signal clipped at 5 standard deviations, block 
size N=214 
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 Figure 6-41 Damage values for the searched population for the narrow band signal, with a signal 
clipped at 5 standard deviations, block size N=216 

 

 

 Figure 6-42 The best fitted distribution for damage values for the searched population for 
the narrow band signal, with a signal clipped at 3 standard deviations, block size N=216 – 

Generalised Extreme Value Distribution 

 

Distribution type Probability 
of the fitted 
distribution 

[-] 

Mean 
damage 

[-] 

Standard 
deviation of 
damage [-] 

0.13% not 
lower than 
the quoted 

value of 
damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

Normal 0.00003 0.37701 0.03514 0.27120 0.47476 
Exponentiated 
Weibull 

0.14226 0.37657 0.03452 0.27863 0.47898 

Generalised 
Extreme Value 

0.39537 0.37714 0.03539 0.29151 0.48909 

 Table 6-19 Statistical parameters for a narrow band signal clipped at 5 standard deviations, block 
size N=216 
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6.5.4 Summary and conclusions for the new proposed method 

A summary of the conducted computer experiments using two combined methods: FEM, the Monte 
Carlo method and Python programming allows to identify the high conservativism of the legacy 
frequency domain-based method. Research results presented in this paper show that the legacy 
method used by commercial software for combined stochastic-deterministic loading scenario gives high 
conservative damage results, which can result in oversizing military aircraft or helicopter units and any 
other unit exposed to this load scenario. 

The introduction of a new method of calculating damage (based on the combined frequency and time 
approach) in the aforementioned loading scenario allows for precise damage estimation in the time 
domain while keeping the efficiency benefit related to the frequency domain calculation (as the base 
for the time domain calculation is the result of a linear dynamic harmonic analysis). The novel method 
introduced in this paper allows to obtain more accurate results than the legacy method and as high 
efficiency of computation as with the legacy method.  

The research results reveal that the damage variation decreases when the block size in IFFT increases 
(the same phenomena as quoted in related research [68] and Chapter 5 of this paper for only stochastic 
loading). The novel method also allows for analysis of the time series population to assess the damage 
variation, which is impossible using the legacy method. An additional conclusion is that for the 
populational analysis it is recommended to use the best fitted distribution from the three selected 
during the research (see Table 6-2 through Table 6-19; Figure 6-8, Figure 6-10, Figure 6-12, Figure 6-14, 
Figure 6-16 and Figure 6-18 for white noise signal; Figure 6-20, Figure 6-22, Figure 6-24, Figure 6-14, 
Figure 6-16 and Figure 6-18 for the wide band signal; Figure 6-32, Figure 6-34, Figure 6-36 Figure 6-38, 
Figure 6-40 and Figure 6-42 for the narrow band signal): Exponentiated Weibull, Generalised Extreme 
Value and Gaussian distributions for statistical consideration for all cases where a signal is clipped at 
three and five standard deviations for the white noise, wide band, and narrow band signal.  

An additional benefit related to using the proposed method is that a signal can be clipped with a 
requested standard deviation level, e.g., in the aerospace industry it is common to clip the input to 3 
standard deviations. Therefore, this method can replicate real test conditions, which is not possible 
using the spectral method.  

Another aspect is that the algorithm can also be fitted to align with the frequency resolution (block size) 
during a real test to assess the variability of damage to the test rig equipment. As for a block size smaller 
than N=214, the variability could increase, which would imply under testing. 

Additionally, equation Eq. 5.3 should also be met for this loading scenario, with the exception that value 
of the 𝑙𝑜𝑔2(N) might be lower than 20 if we observe a low damage variation for the lower value of block 
size – this is only to reduce the cost of the computation.  
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CHAPTER 7 USAGE DEVELOPED ALGORITHMS FOR VIBRATION DAMAGE PREDICTION 
OF AIRCRAFT TRANSMISSION SHAFTS  

This chapter introduces an assessment of the impact of the dynamic load at an exemplary transmission 
shaft. For these purposes tools and algorithms used for vibration damage assessment under stochastic 
loading and combined loading (stochastic and deterministic) are presented and expanded in Chapter 3 
through Chapter 6. Legacy methods (used by commercial software, e.g., MSC CAE Fatigue) were used 
for the analysis, which were then compared against a modified legacy method (e.g., the Narrow Band 
and Lalanne method) or a new method was developed from scratch – Chapter 6 presents a new method 
for vibration damage assessment using combined time and frequency domains. The analysis provided 
in this section aims to demonstrate the developed methods on the example of a transmission shaft.  
 

7.1 The transmission shaft geometry model and discrete model description  

 Figure 7-1 shows a simplified shaft geometry, which replicates the dynamic characteristics of a real 
transmission shaft. It should be noted that simplified geometry was used also to avoid sharing any 
confidential technical company data.  

 

 Figure 7-1 Transmission shaft simplified geometry and graphical representation of the control 
point and boundary condition 

The shaft was simplified to just a tube, with the end fitting not modelled – it is worth noting that the 
resonance characteristics for simplified assembly had a good correlation with the test results. 
Additionally, the simplified model is used to provide information about the impact of the dynamic load 
on shaft itself – the end fitting is not part of the consideration to reduce the task size.  
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 Figure 7-2 Discrete model, element C3D8R, 8-nodes linear brick, reduced integration 

Figure 7-2 shows a discrete model of the considered transmission shaft. The quadratic shape function 
of the element prevents the shear locking phenomena that can occur in linear elements with full 
integration and can therefore replicate the resonance characteristic stress in the considered area. Using 
linear function element with full integration can help obtain equivalent Huber-Mises-Hencky stress 
94.38 MPa versus 93.38 MPa (as per Figure 7-3) for the quadratic element for the first most significant 
mode in the considered frequency bandwidth. Therefore, to build a discrete model we used 8-node 
brick hexagonal elements with a reduced integration shape function with to reduce the task size and 
demonstrate the results of the created algorithms. Using these elements allowed us to obtain 
resonance characteristics consistent with the test results, as shown in the following section`.  
 

 

Figure 7-3 Red curve – the Huber-Mises-Hencky stress quadratic shape function, the blue curve 
Huber-Mises-Hencky stress linear shape function  
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7.2 Numerical environment correlation with test results 

For the initial loop of correlation, we used the Half-Power Bandwidth method [70] to assess the critical 
dumping value. After the first loop, the FEM model was tuned to obtain a matching resonance frequency 
and amplification level to the test results. The critical damping value for the obtained aligned response 
is 2.1%.  
Figure 7-4 shows initial resonance characteristics real unit test results for the Y direction of the 
transmission shaft assembly.  

  

Figure 7-4  Test resonance characteristics of the transmission shaft 

  

Note: The initial resonance search was made using a logarithmic sweep rate of 0.0167 octave/min.  

Figure 7-5 shows the resonance characteristic obtained using the correlated FEM model in the Abaqus 
environment – resonance frequency and amplification differences in the FEM model are below 1% 
versus the test results. 
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 Figure 7-5  FEM resonance characteristics obtained from the correlated numerical environment 
(critical damping 2.1%)  
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7.3 Assessment of the impact of a stochastic dynamic load on an exemplary transmission shaft using 
the developed methods – damage estimation under stochastic loading 

This section presents a vibration damage assessment of a transmission shaft under stochastic dynamic 
loading using a legacy approach – frequency domain damage estimation, and the proposed approach – 
combined frequency domain consideration. Additionally, we present the results for vibration damage 
estimation in the frequency domain using modification of the legacy methods introduced in this paper 
(e.g., modified Lalanne and Narrow Band methods or the new approach for integration spectral 
moments). 

7.3.1 Frequency domain damage estimation 

For frequency domain damage estimation, we used the same material as in Chapter 3, however for Kt 
equals 1 (as the hot spot area is in the centre of the shaft – an area without stress concentration). The 
S–N curve of considered material is presented in Table 7-1 . 

 

S-N curve definition steel 17-4PH 
(H1025) 

Cycles N [-] Stress [MPa] 

1.00E+02 1020 

1.00E+03 845 

1.00E+05 610 

1.00E+06 479 

1.00E+07 375 

1.00E+08 307 

1.00E+09 252 

1.00E+10 206 

4.97E+10 6 

Table 7-1 The S-N curve definition for steel 17-4PH (H1025) [49] 

 

Table 7-2 shows the PSD input curve for Loop 1 and Loop 2 in the case under consideration. Loop 1 in 
this case is the initial input for the frequency domain calculation, and combined frequency and time 
domain consideration. As the original theoretical PSD input* implies that the PSD response signal is a 
narrow band signal for which modification of the legacy method proposed in this paper gives a similar 
result as for legacy methods (except Lalanne), we added new theoretical PSD input* curve definition, 
which makes the PSD response signal a wide band signal. For the wide band signal the differences of 
the legacy approach for the signal statistic in the frequency domain and time domain increased – as 
shown in Chapter 5 of this paper.  

*It should be noted that the theoretical PSD input and new theoretical PSD input were selected to 
obtain a not negligible damage value, and for which the stress amplitudes are within the range of use 
of the stress life method. These theoretical PSD input curves are not consistent with the normative 
curve [2], [66], and are used only demonstration of the tools and algorithm created within this paper.  
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PSD input curve definition Loop 1 

Frequency 
[Hz] 

PSD input  
[g2/Hz] 

1 1.8 

200 1.8 

PSD input curve definition Loop 2 

Frequency 
[Hz] 

PSD input  
[g2/Hz] 

1 0.5 

100 0.5 

101 20 

200 20 

Table 7-2 PSD input curves for Loop 1 and Loop 2 of the considered vibration damage  

  

Table 7-3 shows Loop 1 of the damage estimation in the frequency domain under consideration for the 
critical integration point of the element. The considered PSD curve and shaft transfer function obtained 
a narrow band PSD response signal, therefore based on the research presented in this paper the legacy 
method and the method with proposed modifications gives a close damage value (except Lalanne 
method). All the considered method – modified Lalanne, Dirlik and Narrow Band methods, give close 
damage results for the narrow band PSD response. The damage results evaluated in the frequency 
domain are close to the mean damage value estimated in the time domain using the Monte Carlo 
method – a PSD response with less than 10% differences for a signal clipped with 5 and 3 standard 
deviations.  

It should be noted that the mean value of damage comes from the populational research presented in 
7.3.2 of this paper. 

Although the results for all the aforementioned methods give close results to the mean of the time 
series damage value, the deviation of damages need to be taken into account. This study is presented 
in section 7.3.2.  
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Impact of stochastic dynamic loading on an exemplary transmission shaft Loop 1 

A signal clipped at five standard deviations 

Damage estimation method Full integration 
Reduced 

integration 
(77.5%) 

Full 
integration/Reduced 

integration 

Legacy Narrow Band 0.110 0.108 1.02 

Proposed modified Narrow 
Band (replaced EP with E0) 

0.102 0.102 1.00 

Dirlik 0.101 0.101 1.00 

Legacy Lalanne 2.436E-06 1.868E-06 1.30 

Proposed modified Lalanne 0.102 0.102 1.00 

Time domain mean damage 
value 

0.094 

A signal clipped at three standard deviations 

Damage estimation method Full integration 
Reduced 

integration 
(77.5%) 

Full 
integration/Reduced 

integration 

Legacy Narrow Band 0.036 0.036 1.02 

Proposed modified Narrow 
Band (replaced EP with E0) 

0.036 0.034 1.08 

Dirlik 0.033 0.032 1.03 

Legacy Lalanne 2.436E-06 1.868E-06 1.30 

Proposed modified Lalanne 0.034 0.034 1.00 

Time domain mean damage 
value 

0.031 

Table 7-3 A summary of the vibration damage estimation results for Loop 1 of the case under consideration  

 

Figure 7-6 and Figure 7-7 show exemplary Dirlik damage results on a discrete model using the author’s 
tool for signals slipped a five standard deviations and three standard deviations.  
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 Figure 7-6 Vibration damage estimation using the Dirlik method with reduced spectral moments 
integration for a PSD Response clipped at five standard deviations using the author’s tool 

 

 

 Figure 7-7 Vibration damage estimation using the Dirlik method with reduced spectral moments 
integration for a PSD Response clipped at three standard deviations using the author’s tool 
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To show the benefits of modification of the legacy method we present Loop 2 of the research only 
within the frequency domain calculation (without quoting the time series damage value as we did not 
present the populational research for Loop 2, while the populational research for the wide band and 
white noise signals can be found in Chapter 5 of this paper – the research shows that  the conclusion 
reached for the narrow band signal is analogical with that for the wide band and white noise signal). 
Table 7-4 shows a summary of the damage result for a three and five standard deviations PSD response 
signal clipping, using frequency domain-based methods. The result show that modifying the legacy 
methods provides damage results close to the Dirlik method (this method gives damage results close to 
the time domain damage results using the Monte Carlo method as per Chapter 5 of this paper). The 
results show the modification of the Narrow Band method allow to obtain two times less conservative 
damage results, and for the modified Lalanne method give a much more accurate damage value than 
for the Legacy Lalanne method. 

 

Impact of stochastic dynamic loading on an exemplary transmission shaft Loop 2 

A signal clipped at five standard deviations 

Damage estimation 
method  

Full integration  
Reduced integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.482 0.398 1.21 

Proposed modified 
Narrow Band (replaced 

EP with E0) 
0.252 0.247 1.02 

Dirlik 0.283 0.240 1.18 

Legacy Lalanne  2.170E-05 1.492E-05 1.45 

Proposed modified 
Lalanne 

0.254 0.248 1.03 

A signal clipped at three standard deviations 

Damage estimation 
method  

Full integration  
Reduced integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Legacy Narrow Band  0.117 0.097 1.21 

Proposed modified 
Narrow Band (replaced 

EP with E0) 
0.061 0.060 1.02 

Dirlik 0.059 0.057 1.03 

Legacy Lalanne  2.170E-05 1.492E-05 1.45 

Proposed modified 
Lalanne 

0.063 0.061 1.04 

 Table 7-4 A summary of the vibration damage estimation results for Loop 2 of the case under 
consideration 
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7.3.2 Combined frequency and time domain damage estimation under stochastic loading  

This section presents the populational research made on 5000 samples (for which observed stabilization 
distribution parameters),  the calculation was provided based on the transfer function for the critical 
integration point in the transmission shaft. The input loading is the same as defined in section 7.3.1. 
The populational research aims to obtain the distribution of the damage and assess the variability of 
damage, as the research introduced in section 5.4 reveals a high variability of the damage value, which 
depends on the frequency resolution used in IFFT. Table 7-5 shows a summary of the damage for a PSD 
response clipped at three and five standard deviations for different frequency resolutions in IFFT. The 
damage results as presented using the three best fitted distributions recommended in Chapter 5 
(Exponentiated Weibull, Generalised Extreme Value and Gaussian distributions). The obtained results 
show that the damage variation stabilises for N=216 for the three standard deviations signal clipping. 
For the low frequency resolution, the damage variability is very high – the maximum damage for which 
99.73% of samples have lower damage is around two times higher than the mean value. This shows that 
the damage results estimated using the frequency domain-based method quoted damage value of 
0.031 are consistent with the mean damage. However, the damage can vary within the range 0.010 to 
0.059, e.g., if during the test a low resolution was, such as N=212. A value close to the 0.059 suggests 
over-testing, although a value of 0.010 suggests under-testing and can be critical in terms of structural 
integrity. Therefore, the modification of the PSD input curve proposed in 5.4.4 – which proposes to 
increase the PSD input value to meet the condition that the damage value for which 0.13% of the test 
sample has no lower damage, will be higher than the damage for which 99,73% of the population does 
not exceed the quoted damage value for the reference PSD input curve for IFFT block size N=220. 

For a signal clipped at five standard deviations, we can observe that the mean damage value for block 
size N=212 is not representative, showing stabilisation of the mean damage value at N=218. Additionally 
for this clipping we can observe far more damage variability – a damage value for which 0.13% of the 
population has no lower damage is 38% lower than the mean value, damage value for which 99.73% of 
population have higher damage is 171% higher than mean value (a comparison made for block size 
N=220). The same comparison for a three sigma PSD response clipping is 6% and 5% respectively.  

A graphical representation of the obtained result is presented in Figure 7-8 and Figure 7-9.  
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Three standard deviations clipping  

𝒍𝒐𝒈𝟐(N)  
[-] 

N [-] 
Mean damage 

[-] 

0.13% not lower 
than the quoted 

value of damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

12 4096 0.02988 0.01006 0.05926 

14 16384 0.03070 0.01842 0.04446 

16 65536 0.03077 0.02437 0.03730 

18 262144 0.03084 0.02735 0.03406 

20 1048576 0.03086 0.02911 0.03249 

  

Five standard deviations clipping 

𝒍𝒐𝒈𝟐(N)  
[-] 

N [-] 
Mean damage 

[-] 

0.13% not lower 
than the quoted 

value of damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

12 4096 0.06872 0.01072 1.07656 

14 16384 0.08322 0.01963 1.00431 

16 65536 0.08875 0.03184 0.66266 

18 262144 0.09211 0.04519 0.41469 

20 1048576 0.09397 0.05785 0.25467 

 Table 7-5 A summary of the damage results for combined frequency and time domains vibration 
damage estimation  

 

 

 Figure 7-8 Graphical representation of the damage deviation for different IFFT frequency 
resolution for a signal clipped at three standard deviations   
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 Figure 7-9 Graphical representation of the damage deviation for different IFFT frequency 
resolution for a signal clipped at five standard deviations   
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7.4 An assessment of the impact of combined stochastic and deterministic dynamic loading on an 
exemplary transmission shaft – damage estimation under combined stochastic and 
deterministic loading  

This section presents the impact of combined stochastic and deterministic loading on an exemplary 
transmission shaft using the current state of knowledge – a legacy method and the new proposed 
author’s method introduced originally in [69] and developed further in Chapter 6 of this paper. As an 
example, we used the PSD input curve and constant amplitude sine sweep defined in Table 7-6. The 
research assumed that a random background is applied at frequency range 1-200Hz with a simultaneous 
sine sweep with amplitude 5g, acting at 15-35Hz (the frequency range for the sine selected to overlap 
the sine sweep input with a resonance frequency to obtain high damage value). As an example, we used 
the linear sine sweep.  

 

Stochastic signal definition in the frequency domain 

Frequency 
[Hz] 

PSD input  [g2/Hz] Total time of exposure [s] 

1 1.0 2621 

200 1.0 2621 

Deterministic signal definition in the frequency domain at frequency 
bandwidth <15Hz; 35Hz> 

Frequency 
[Hz] 

Sine sweep amplitude 
[g] 

Linear sine sweep rate 
[Hz/s] 

15 5 0.00763 

35 5 0.00763 

 Table 7-6 The stochastic and deterministic signal definition for vibration damage estimation under 
combined loading 



-162- 
 

 

        

 MSc Michał Ptak                                                                    PhD Thesis   

 

7.4.1 Frequency domain damage estimation under combined stochastic and deterministic loading  

The first loop of the research used a legacy technique – a calculation based purely on the frequency 
domain. As introduced in the author’s publication [69] and Chapter 6, this method is highly conservative 
and the damage is quoted here as a reference for the new developed method. Table 7-7 shows a 
summary of the damage results using the legacy method – frequency based. Using the Dirlik method 
the obtained damage exceeded 1 and is therefore quoted also for 0.75% of the amplitude of the initial 
deterministic sine sweep. As introduced in Chapter 5 and Chapter 6, the Dirlik damage is consistent with 
the mean value of the sample population under consideration. Based on the results quoted in the table 
below, the damage for the initial sine sweep amplitude exceeds 1, however the mean damage value for 
a large population for block size N=216 is 0.081 (see section 7.4.2, Table 7-8). Even when applying 0.75% 
of the initial sine sweep amplitude, we obtained damage of 0.691 for reduced integration. This shows 
that the legacy technique overestimates the damage value. It should be noticed that also the damage 
variation should be considered – see 7.4.2.  

 

The impact of combined deterministic and stochastic dynamic loading on an exemplary 
transmission shaft 

A non-clipped signal 

Damage estimation method  
Full 

integration  

Reduced 
integration 

(77.5%) 

Full 
integration/Reduced 

integration  

Dirlik full deterministic signal amplitude >1 >1 N/A 

Dirlik 0.75% of deterministic signal 
amplitude 

0.6930 0.6909 1.00 

The time domain mean damage value for 
a non-clipped signal 

0.081 

 Table 7-7 A summary of the damage under combined stochastic and deterministic loading using 
the frequency domain methods (the time domain results are presented as a reference)  
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7.4.2 Combined time and frequency domain damage estimation under combined stochastic and 
deterministic loading  

This section introduces the second loop of assessment of combined stochastic and deterministic loading 
on a transmission shaft, based on the new proposed combined frequency and time domain calculation 
method – as introduced in Chapter 6. 

Figure 7-10 shows the response of the transmission shaft in the time domain for combined random 
loading and a sine sweep for the considered example. Figure 7-11 shows a Rainflow Cycle Counting 
histogram for Rainflow response presented in Figure 7-10 using the author’s Rainflow Cycle Counting 
algorithm introduced in section 4.2.  

 

 Figure 7-10 A combined stochastic and deterministic response of the transmission shaft in the 
time domain  
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 Figure 7-11 A Rainflow Cycle Counting histogram for combined stochastic and deterministic 
loading  

Table 7-8 shows a summary of the populational damage analysis (based on 5000 samples for which 
observed stabilization distribution parameters) under combined simultaneous random loading and the 
linear sine sweep for the considered shaft example. The considered case takes into account signals 
clipped with three and five standard deviations and a non-clipped signal (to compare the new method 
with the legacy method). Three block sizes were used in all the cases, and we observed stabilisation of 
the mean damage and variation of damage. For a signal clipped with three standard deviations the 
differences between the mean and the damage, for which 0.13% of the population had no lower value, 
is 43%. The differences between the mean and damage value, for which 99.73 of the considered 
population has no higher damage value, is 63%. The response same differences for a signal clipped with 
five standard deviations are 61% and 584% respectively, and for a non-clipped signal 60% and 591% 
respectively. These results imply that, especially assuming a non-clipped signal or a low-clipped signal, 
the damage variation is high, which show how important it is to search the population of the example 
to properly assess the damage mean value and the potential damage variation. Additionally, taking into 
account the damage variability, the legacy technique (frequency domain based) is much more 
conservative than the proposed method (for the legacy technique the damage exceeds 1, while for the 
proposed method the damage, for which 99.73% of the considered population has a lower value, is 0.56 
assuming that the signal is not clipped). Normally, for most aerospace application, the signal is clipped 
at three standard deviations, but the conservativism of the legacy technique is very high and implies 
oversizing of the unit for this load condition requirement. The new proposed method allows for precise 
damage estimation consistent with the requirement (e.g., many aerospace requirements allow for a 
signal clipped with three standard deviations), which implies reducing the conservativism and oversizing 
the unit in terms of vibration requirements. 

Figure 7-12 through Figure 7-14 show a graphical representation of the transmission shaft damage 
variability under combined stochastic and deterministic loading presented in a summary presented in 
Table 7-8. These figures show that the damage, for which 0.13% of the population has a lower value, is 
stable in opposition to the damage value for which 99.73% of the population has a lower damage value.  
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A stochastic signal clipped with three standard deviations 

𝒍𝒐𝒈𝟐(N)  
[-] [-] 

N [-] Mean damage [-] 
0.13% not lower 
than the quoted 

value of damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

12 4096 0.04966 0.02636 0.10112 

14 16384 0.05011 0.02776 0.08478 

16 65536 0.05014 0.02871 0.08191 

  

A stochastic signal clipped with five standard deviations 

𝒍𝒐𝒈𝟐(N)  
[-] 

N [-] Mean damage [-] 
0.13% not lower 
than the quoted 

value of damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

12 4096 0.07257 0.02787 0.67955 

14 16384 0.07890 0.03123 0.58560 

16 65536 0.08159 0.03162 0.55803 

  

A non-clipped stochastic signal 

𝒍𝒐𝒈𝟐(N)  
[-] 

N [-] Mean damage [-] 
0.13% not lower 
than the quoted 

value of damage [-] 

99.73% not 
exceeding the 

quoted value of 
damage [-]  

12 4096 0.07354 0.02753 0.70834 

14 16384 0.08025 0.03110 0.64071 

16 65536 0.08136 0.03267 0.56250 

 Table 7-8 A damage summary for combined stochastic deterministic dynamic loading for a signal 
clipped with three, five standard deviations, and a non-clipped signal 

 

Note that the non-clipped signal was mentioned in this section only as a direct comparison with the 
legacy method, as for the legacy method clipping a random signal is not allowed. Normally in the 
aerospace industry it is allowed to clip a random signal at three standard deviations [2]. 
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 Figure 7-12 Graphical representation of the damage deviation under combined stochastic and 
deterministic loading for different IFFT frequency resolutions for a signal clipped at three standard 

deviations   

 

 

 Figure 7-13 Graphical representation of the damage deviation under combined stochastic and 
deterministic loading for different IFFT frequency resolutions for a signal clipped at five standard 

deviations   
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 Figure 7-14 Graphical representation of the damage deviation under combined stochastic and 
deterministic loading for different IFFT frequency resolutions for a non-signal clipped response    
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CHAPTER 8 CONCLUSIONS AND FURTHER RESEARCH  

 

A summary of the conducted computer experiments using two combined methods: FEM and the Monte 
Carlo method and Python programming allows for identifying gaps in the empirical description of the 
signal statistic in the frequency domain for signals other than the narrow band. For the white noise 
signal, the number of peaks obtained using empirical equations is more than 50% different than the 
number of peaks obtained in the time domain signal retrieved using the Monte Carlo and IFFT methods 
(for the narrow band signal empirical parameters in the frequency domain match the signal parameters 
in the time domain). The research results help to modify the existing method for vibration damage 
assessment via modification of the equation for evaluation of the PDF function (Lalanne method), 
modifying the equation for the actual number of cycles calculation (Bendat method). Additionally, the 
proposed new approach for integrating spectral moments uses the Monte Carlo and IFFT methods, 
which helps to obtain signal statistic parameters in the frequency domain matched to signal statistics in 
the time domain – which is not the case for the wide band signal and the white noise signal using the 
legacy theory (only the narrow band signal statistic parameters in the frequency domain matched to 
the signal statistic parameters in the time domain). Reduced integration of the 1st, 2nd and 4th spectral 
moments allows for precise derivation of signal statistics in the frequency domain and using this 
approach with the modified Lalanne and Bendat methods (based on research introduced in this paper) 
allows to obtain close damage results with the Dirlik method. It is worth noting that the damage 
evaluated using the Dirlik method is treated as a reference, as it is the best for general usage, for a  
general value of the irregular factor based on publications [3] and [4] and based on conducted research. 
The research result therefore helps to developed two methods –based on the legacy Bendat and 
Lalanne method, which enables precise damage estimation for all signals (narrow band, wide band, 
white noise) with accuracy close to the Dirlik method. The new modified method has a much less 
complicated empirical formulation – which is important in engineering usage in Collins Aerospace 
Company.  

The research revealed that the damage variation depends on the block size (N) used in IFFT – this 
phenomenon was not research by Dirlik. This reveals that the legacy method for vibration damage 
estimation under stochastic loading estimates the mean damage, however in reality the damage values 
variate and the damage ranges (which depend on the block size) need to be estimated. In his research, 
Dirlik used a relatively low value of block size – N = 20 x 210, and in the current research noticed that the 
damage variability is close to +/-60%. This can be critical in terms of the accuracy of the Dirlik method, 
which does not consider a frequency resolution variable during real testing. What needs to be noticed 
is the fact that Dirlik’ s examined population was only 10 samples, which was potentially not enough to 
obtain a good statistical description of the examined population. Therefore, the research presented in 
this paper has been extended to taken into account a large population of sample (5000, for which 
observed stabilization distribution parameters) – using computer techniques for testing, based on the 
Monte Carlo and IFFT methods. This helps to assess the impact of the population size and block size on 
the damage statistic and damage distribution. An additional aspect taken into account is the impact on 
the tested units with apertures, which normally have a limited frequency resolution (limited block size) 
– This could imply significant under-testing for the low value of the frequency resolution used for 
testing. 
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To estimate the damage range, it is recommended to use one of three best fitted distribution types: 
Generalised Extreme Value, Exponentiated Weibull and Gaussian distributions – as these distributions 
characterise the best fitting damage distributions from among many others taken into account. 
Additionally, it was proposed to use the criteria defined in Eq. 5.3, which says that damage for which 

0.13% of the population has no lower damage – for the block size used during the testing – 𝐷𝑖_0.13%(𝑁2𝑖) 

needs to be higher than the damage for which 99.73% of the population has no higher damage – when 
N is equal to 1048576 = 220 – (𝐷20_99.73%(𝑁220)). Meeting the criteria introduced above guarantees 
that there is no under-testing during real testing, when the block size used during the testing is limited. 
The graphical representation of the proposed criteria is shown in Figure 5-53, Figure 5-54 and Figure 
5-55 for the white noise, wide band and narrow band signals respectively. 

Another important aspect of the presented work was developing a method for precise vibration damage 
assessment, originally presented in the author’s publication [69], for the white noise signal and 
extended for the wide band and narrow band signals in this document. The new approach is to use 
combined frequency and time domain consideration and Rainflow Cycle Counting in the time domain 
instead of the legacy technique to process all calculations in the frequency domain. This approach helps 
keep the legacy efficiency of the linear dynamic method analysis in the frequency domain with a high 
level of accuracy of the time domain approach of Rainflow Cycle Counting in time domain. This work 
introduced how conservative is the legacy method and might implies oversizing aerospace units to meet 
dynamic loading requirement. Using the new method is a milestone for analysis this loading scenario 
for Collins Aerospace Company. Proposed novel method can be used for civilian and military aircrafts 
as well. Using this method will help to reduce weight, increase reliability and safety of aircraft units.  

Additionally, this approach helps to assess the damage ranges (damage variability) – in a similar way as 
the damage assessment for pure random loading. To estimate the damage ranges, it is recommended 
to use one of the three best fitted distribution types: Generalised Extreme Value, Exponentiated Weibull 
and Gaussian distribution – as these distributions best fit the experiment damage distribution from 
among many others taken into account as per analogy to vibration damage estimation under pure 
random loading. For simultaneous random and deterministic loading it is also proposed to meet the 
condition described by inequality presented in Eq. 5.3 – as meeting this criteria guarantees not under-
testing during real testing, when the block size used during the testing is limited. 

All the developed methods were used for assessment of the dynamic loading impact on an exemplary 
transmission shaft in Chapter 7, where two cases were considered. The first related to the pure random 
loading impact on a transmission shaft, and the second assume a simultaneous random and 
deterministic sine sweep loading scenario. This analysis aims to demonstrate the author’s tools and 
method with using the research results and methods introduced in this document. The demonstration 
was made on a transmission shaft, which was tested – the test results were used for correlation of the 
FEM model used for derivation of the transfer function. The obtained transfer function of the 
transmission shaft was used as the input for the created tools. The conducted analysis shows that using 
the legacy method for vibration damage estimation under random loading can be critical in terms of 
the structural integrity of the considered unit, as it does not take into account the damage variation, 
which depends on the block size. In terms of the second load scenario – the vibration damage estimation 
under combined stochastic and deterministic loading, the legacy technique is very conservative and  
could imply oversizing the units. The new proposed method derived an accurate damage value taking 
into account random signal clipping and block size using during real testing. The new method also allows 
for estimating the damage ranges, not just the mean value as with the legacy method.  
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The stress-based approach was used for demonstrating the algorithm, and additionally this approach is 
widely used in the related research ([3] through [14]), and commercial software as nCode [30] and MSC 
CAE Fatigue [28], for isotropic material. Future research will also focus on developing an algorithm using 
the Critical Plane approach, which is treated as a more robust approach for multiaxial fatigue damage 
assessment ([28], [29], [30], [35], [36], [37] and [38]. This approach is much more computationally 
intensive, as calculations need to be provided per each e.g., 10°, from 0° to 180°, as proposed in 
commercial software [30]. It should be noted that expanding the new developed method for vibration 
damage estimation under simultaneous random and deterministic sine sweep loading is allowed – a 
suitable calculation procedure needs to be developed.  

Additionally, further research will focus also on the possibility to use the proposed method in synergy 
with the energetic fracture mechanics model, as used in publication [39], [40] and [41], where the 
Cohesive Zone Model was used for assessing damage and life prediction. 

It should be noted that this method was originally developed for isotropic, metallic material, and any 
other consideration to use this method for orthotropic material will be the subject of future research. 

The research presented in this paper introduced the stress life method as an example. Further research 
and publication will focus on using the strain life method, using e.g. Morrow or Smith-Watson-Topper 
Mean Stress Correction and Neuber correction [42], [43] and [44] for expanding the proposed method 
to allow fatigue consideration, when a local plasticity region occurs due to the high level of loading 
occurrence.  
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