
WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Multi-objective optimization to train
classifiers on feature subspaces

by

Joanna Klikowska

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Information and Communication Technology

Department of Systems and Computer Networks

May 2024

http://pwr.edu.pl/
joanna.klikowska@pwr.edu.pl
Faculty Web Site URL Here (include http://)
http://www.kssk.pwr.edu.pl/?lang=en

Acknowledgements

I am deeply indebted to my supervisor, prof. dr hab. Michał Woźniak for his invaluable

patience and feedback.

Words cannot express my gratitude to my husband, dr inż. Jakub Klikowski supported

me both scientifically and privately. He paved the way for my scientific and educational

path and supported me at every stage of my journey.

I am also grateful to my coworkers from the Department of Computer Systems and

Networks for their valuable comments on my diploma thesis.

Podziękowania

Przede wszystkim chciałabym podziękować mojemu promotorowi, prof. dr hab. Michałowi

Woźniakowi za nieocenioną cierpliwość i wszelką pomoc w trakcie powstawania tej pracy.

Ogromne podziękowania należą się mojemu mężowi, dr inż. Jakubowi Klikowskiemu,

który wspierał mnie w zakresie naukowym, jak i prywatnym. Przecierał szlak ścieżki

naukowo-dydaktycznej i był wsparciem na każdym etapie mojej drogi.

Dziękuję także współpracownikom z Katedry Systemów i Sieci Komputerowych za cenne

uwagi dotyczące mojej pracy dyplomowej.

iv

Abbreviations

5x2 CV Repeated Stratified K-Fold 5-splits × 2-fold cross-validation

AI artificial intelligence

Attr. number of attributes

AUC area under curve

BAC balanced accuracy

CR crossover constant, parameter in DE

DE differential evolution algorithm

DE − Forest differential evolution forest

DT CART decision tree classifier

Ex. number of examples

FN false negative - number of wrong classified positive examples

FNR false negative rate

FP false positive - number of wrong classified negative examples

FPR false positive rate

FS feature selection

FSIRSVM feature selection imbalance ratio SVM

GA genetic algorithm

GA− a GA with objective function accuracy

GA− ac GA with objective function accuracy and features’ cost

v

Gmean geometric mean of precision and recall

Gmeans geometric mean of specificity and recall

GNB gaussian naive bayes classifier

ID dataset identifier

IR imbalance ratio

kNN k-nearest neighbors classifier

LHS latin hypercube sampling

MOEA/D multi-objective evolutionary algorithm based on decomposition

MOLO multi-objective local optimization forest

MOLO −HG MOLO with optimization criteria Hellinger and Gmean

MOLO −MD MOLO with optimization criteria Margin and Diversity

MOLO −MDH MOLO with optimization criteria Margin, Diversity and Hellinger

MOLO −HG_h MOLO with optimization criteria Hellinger and Gmean using holdout

MOLO −MD_h MOLO with optimization criteria Margin and Diversity, using holdout

MOLO −MDH_h MOLO with optimization criteria Margin, Diversity and Hellinger, using holdout

MOO multi-objective optimization

MOOforest multi-objective optimization forest

NSGA− II non-dominated sorting genetic algorithm II

PF pareto front

PS non-dominated solution set

RandomFS random forest

RandomFSb random forest with bootstrapping

RBF radial basis function kernel of SVM

RF random forest

RS random subspace ensemble

SEMOOS SVM ensemble with multi-objective optimization selection

SEMOOSb SEMOOS with bootstrapping

SEMOOSbp SEMOOS with bootstrapping and pruning

SVM support vector machine classifier

TN true negative - number of correct classified negative examples

TNR true negative rate (specificity)

TP true positive - number of correct classified positive examples

TPR true positive rate (recall, sensitivity)

Symbols

Ai the i-th non-dominated set

B number of bootstrapped subsets

bi ith subset from bootstrapping

C regularization parameter of SVM

D sum of distances

Di ith distribution

d number of attributes (features)

dH Hellinger distance

dim dimension of the searched space

dis distance between root r and example

e coefficient of polynomial and sigmoid kernels of SVM

ens list of ensembles from all optimization steps

eta the parameter of the NSGA-II algorithm

eta_c the parameter of the NSGA-II algorithm for crossover

eta_m the parameter of the NSGA-II algorithm for mutation

Fβ F-score classification metric with parameter β

Fi ith fitness function

G support function

Gmax number of generations

ix

γ kernel coefficient of SVM

h degree (dimension of the new feature space)

i class label

K feature map

LS learning set

M number of objectives

mi ith model

M set of labels (classes)

MB the list of BAC metrics of models

MS the list MB sorted descending

n ensemble size

N number of examples, dataset’s size

Π pool of base classifiers

Ψ classification algorithm

p pruning parameter

Pt the t-th generation of the population

prev list of models from previous iteration

Q parameter of Q-statistic, pairwise diversity measure

Qt the t-th generation of the offspring population

r root of center-based bootstrapping

R results from criteria metrics

R+ the sum of ranks where the second algorithm won in the Wilcoxon signed ranks test

R− the sum of ranks where the first algorithm won in the Wilcoxon signed ranks test

Si ith bootstrapped subset

T neighborhood size

U population size

V a single feature vector

v the number of votes for specific class

W number of iterations of center-based bootstrapping

x feature vector

xi ith example

x̂ selected subset of features

x center of center-based bootstrapping

X feature space

y class label vector

Abstract

The thesis focused on the use of multi-objective optimization for employing feature selec-

tion to classify mainly imbalanced data. Feature selection determines a feature subspace

for each model, and this mechanism ensures the diversity of models in the ensemble.

Research in this area has shown that optimizing for feature selection gives good results,

and the proposed methods sometimes outperform state-of-the-art methods. An addi-

tional advantage of the proposed algorithms using multi-objective optimization is the

ability to select the most appropriate solution, which classical methods do not offer.

The following research objectives confirmed the research hypothesis formulated at the

beginning.

Using multi-objective optimization to train classifiers on feature subspaces

produces models with no worse prediction quality than state-of-the-art meth-

ods and allows choosing a solution tailored to a user’s needs.

Several objectives were formulated to prove the hypothesis.

• Development of feature selection methods based on Multi-Objective Op-

timization for constructing single classifiers.

This objective was met by proposing methods using optimization to perform fea-

ture selection. The methods use optimization algorithms such as GA in the single-

criteria version and NSGA-II in the multi-objective version. The advantage of

using optimization is taking into account not only the quality of the built classi-

fier but also the cost of features, which is particularly important in cost-sensitive

learning. Simultaneous optimization of two criteria, maximizing performance and

minimizing cost, in the case of multi-objective optimization, gives a set of solutions

from which the user can choose the most suited to his needs. The proposed meth-

ods achieved comparable quality to classical methods, but the latter do not allow

the possibility of choosing from a solution set and returning only one solution.

1

Symbols 2

• Development of a multi-objective method for training classifier ensem-

bles using learning Support Vector Machines base classifiers on sub-

spaces of the feature space.

This goal was achieved by proposing the SEMOOS method. SEMOOS is an en-

semble consisting of single SVM classifiers using multi-objective optimization and

the NSGA-II algorithm to search the feature space and find two parameters of

SVM classifiers. NSGA-II returns a set of such solutions, and each of them is used

to train a model, which is then added to the pool, creating an ensemble classifier.

Using the proposed center-based bootstrapping and model pruning in the method

is optional. The method was tested on many imbalanced datasets and achieved

satisfactory results compared to reference methods.

• Development of a method for training classifier ensemble using learn-

ing decision tree base classifiers on subspaces of the feature space and

aggregated criteria.

The objective was completed by presenting the DE-Forest method using the Dif-

ferential Evolution optimization algorithm to find the best feature vector for the

entire ensemble relative to various aggregated metrics. Such a vector is appropri-

ately prepared, and based on it, individual decision tree models can be trained

to create an ensemble. The proposed method often outperforms state-of-the-art

methods.

• Development of a multi-objective method for training classifier ensemble

using learning decision tree base classifiers on subspaces of the feature

space to form the non-random forest.

The goal was achieved by proposing the MOOforest method, an ensemble built

from individual decision trees using the MOEA/D multi-objective optimization

algorithm. MOEA/D searches the feature space for the entire ensemble based on

two criteria simultaneously: Precision and Recall. Thanks to this, it returns a set of

solutions from which one solution is selected using the PROMETHEE II function.

The models are trained based on this solution that makes up the final ensemble.

The proposed method, in many cases, outperforms the reference methods.

• Development of a multi-objective method for training classifier ensemble

using learning base classifiers on subspaces of the feature space and local

optimization.

The goal was achieved by proposing the MOLO method. It is a novel method using

multi-objective local optimization to build a diverse ensemble. Each base DT model

is trained on one bootstrapped subset. The optimization searches through possible

Symbols 3

solutions in each step and adds one model to the ensemble. The restrictions prevent

the search from spreading to a considerable extent, and thanks to it, the algorithm

selects the paths that provide the best results at a given moment. The MOLO

method has been tested for two sets of dual criteria and can also handle the three

criteria case. Finally, MOLO returns several ensembles from which the user can

choose the best one for his needs. Extensive tests for imbalanced data comparing

the proposed and reference methods showed MOLO advantage.

• Experimental evaluation of the obtained methods.

This objective was achieved by comparing all proposed methods: SEMOOS, DE-

Forest, MOOforest, and MOLO. Statistical tests and detailed results for each

dataset showed each method’s characteristics and competence areas.

Streszczenie

W pracy skupiono się na zastosowaniu optymalizacji wielokryterialnej w zadaniu se-

lekcji cech w klasyfikacji głównie danych niezbalansowanych. Selekcja cech wyznacza

podprzestrzeń cech dla każdego modelu, a mechanizm ten zapewnia różnorodność mod-

eli w zespole. Badania w tym obszarze wykazały, że optymalizacja pod kątem selekcji

cech daje dobre rezultaty, a proponowane metody czasami przewyższają metody refer-

encyjne. Dodatkową zaletą proponowanych algorytmów wykorzystujących optymaliza-

cję wielokryterialną jest możliwość wyboru najlepszego rozwiązania, czego nie oferują

metody klasyczne. Przedstawione poniżej cele badawcze potwierdziły postawioną na

wstępie hipotezę badawczą.

Zastosowanie optymalizacji wielokryterialnej do uczenia klasyfikatorów na

podprzestrzeniach cech pozwala uzyskać modele o jakości predykcji nie gorszej

niż metody referencyjne i pozwala na wybór rozwiązania dostosowanego do

potrzeb użytkownika.

Aby udowodnić hipotezę, sformułowano kilka celów.

• Opracowanie metod selekcji cech w oparciu o optymalizację wielokryte-

rialną do konstruowania pojedynczych klasyfikatorów.

Cel ten został osiągnięty poprzez zaproponowanie metod wykorzystujących opty-

malizację do przeprowadzenia selekcji cech. Metody wykorzystują algorytmy opty-

malizacyjne takie jak GA w wersji jednokryterialnej i NSGA-II w wersji wielokry-

terialnej. Zaletą stosowania optymalizacji jest uwzględnienie nie tylko jakości

zbudowanego klasyfikatora, ale także kosztu funkcji, co jest szczególnie ważne

w uczeniu uwzględniającym koszty. Jednoczesna optymalizacja dwóch kryteriów,

maksymalizacja wydajności i minimalizacja kosztów, w przypadku optymalizacji

wielokryterialnej daje zestaw rozwiązań, spośród których użytkownik może wybrać

najbardziej dopasowane do swoich potrzeb. Zaproponowane metody osiągnęły

jakość porównywalną z metodami klasycznymi, przy czym te ostatnie nie pozwalają

na możliwość wyboru ze zbioru rozwiązań i zwracają tylko jedno rozwiązanie.

5

Symbols 6

• Opracowanie wielokryterialnej metody uczenia zespołów klasyfikatorów

z wykorzystaniem uczenia maszyn wektorów nośnych (Support Vector

Machines), które opierają klasyfikatory na podprzestrzeniach przestrzeni

cech.

Cel ten osiągnięto proponując metodę SEMOOS. SEMOOS jest zespołem składa-

jącym się z pojedynczych klasyfikatorów SVM wykorzystujących optymalizację

wielokryterialną i algorytm NSGA-II do przeszukiwania przestrzeni cech i zna-

jdowania dwóch parametrów klasyfikatorów SVM. NSGA-II zwraca zestaw ta-

kich rozwiązań, a każde z nich służy do uczenia modelu, który następnie jest

dodawany do puli, tworząc klasyfikator zespołowy. Stosowanie w tej metodzie

proponowanego losowania zbioru treningowego i testowego (center-based bootstrap-

ping) oraz usuwanie modeli z finalnego zespołu klasyfikatorów (pruning) jest opcjon-

alne. Metoda została przetestowana na wielu niezbalansowanych zbiorach danych

i uzyskała zadowalające wyniki w porównaniu z metodami referencyjnymi.

• Opracowanie metody uczenia zespołu klasyfikatorów z wykorzystaniem

klasyfikatorów bazowych drzew decyzyjnych na podprzestrzeniach przestrzeni

cech i zagregowanych kryteriów.

Cel został zrealizowany poprzez zaprezentowanie metody DE-Forest wykorzystu-

jącej algorytm optymalizacyjny Differential Evolution w celu znalezienia najlep-

szego wektora cech dla całego zespołu w odniesieniu do różnych zagregowanych

metryk. Taki wektor jest odpowiednio przygotowany i na jego podstawie można

wytrenować poszczególne modele drzew decyzyjnych, aby utworzyły zespół. Za-

proponowana metoda często przewyższa metody referencyjne.

• Opracowanie wielokryterialnej metody uczenia zespołu klasyfikatorów

z wykorzystaniem klasyfikatorów bazowych drzew decyzyjnych na pod-

przestrzeniach przestrzeni cech w celu utworzenia lasu nielosowego.

Cel ten osiągnięto proponując metodę MOOforest, czyli zespół zbudowany z poszczegól-

nych drzew decyzyjnych przy użyciu algorytmu optymalizacji wielokryterialnej

MOEA/D. MOEA/D przeszukuje przestrzeń cech dla całego zestawu w oparciu o

jednocześnie dwa kryteria: Precision i Recall. Dzięki temu zwraca zbiór rozwiązań,

z których przy pomocy funkcji PROMETHEE II wybierane jest jedno rozwiązanie.

Modele są trenowane w oparciu o to rozwiązanie, które składa się na finalny zespół.

Zaproponowana metoda w wielu przypadkach przewyższa metody referencyjne.

• Opracowanie wielokryterialnej metody uczenia zespołu klasyfikatorów z

wykorzystaniem klasyfikatorów bazowych na podprzestrzeniach przestrzeni

cech i optymalizacji lokalnej.

Symbols 7

Cel został osiągnięty poprzez zaproponowanie metody MOLO. Jest to oryginalna

metoda wykorzystująca wielokryterialną optymalizację lokalną w celu zbudowania

zróżnicowanego zespołu. Każdy podstawowy model DT jest trenowany na jed-

nym wylosowanym podzbiorze. Optymalizacja przeszukuje możliwe rozwiązania na

każdym etapie i dodaje jeden model do zespołu. Ograniczenia w znacznym stop-

niu zapobiegają rozprzestrzenianiu się poszukiwań, dzięki czemu algorytm wybiera

ścieżki, które w danym momencie zapewniają najlepsze wyniki. Metodę MOLO

przetestowano dla dwóch zestawów podwójnych kryteriów i może ona również ob-

służyć przypadek trzech kryteriów. Na koniec MOLO zwraca kilka zestawów,

spośród których użytkownik może wybrać ten, który najlepiej odpowiada jego

potrzebom. Obszerne testy na danych niezbalansowanych, porównujące metody

proponowane i referencyjne, wykazały przewagę metody MOLO.

• Eksperymentalna ocena otrzymanych metod.

Cel ten osiągnięto poprzez porównanie wszystkich zaproponowanych metod: SE-

MOOS, DE-Forest, MOOforest i MOLO. Testy statystyczne i szczegółowe wyniki

dla każdego zestawu danych wykazały charakterystykę każdej metody i obszary ich

kompetencji.

Contents

Acknowledgements iv

Abbreviations v

Symbols ix

1 Introduction 11

2 Related works 15
2.1 Machine learning . 15
2.2 Classification . 16
2.3 Multi-objective optimization . 30
2.4 Multi-objective optimization in ensemble learning 35

3 Feature selection method 39
3.1 Experimental evaluation . 42
3.2 Results . 45
3.3 Lessons learned . 48

4 SVM Ensemble with Multi-Objective Optimization Selection 51
4.1 Algorithm . 52
4.2 Experimental evaluation . 57
4.3 Experiments . 59
4.4 Lessons learned . 67

5 Ensemble learning on feature subspace methods 71
5.1 DE-Forest – optimized decision tree ensemble 71
5.2 MOOforest – multi-objective optimization to form decision tree ensemble . 83

6 Multi Objective Local Optimization Forest 93
6.1 Experimental evaluation . 98
6.2 Results . 101
6.3 Lesson learned . 103

7 Comparison of proposed algorithms 105

8 Conclusion and future research directions 113

Bibliography 119

9

Chapter 1

Introduction

The industrial revolution [65] has been changing the world since the 18th century. Sub-

sequent industrial revolutions include the invention of the steam engine, the introduction

of electricity and production lines in the 19th century, and the development of informa-

tion and communication technologies in the 20th century. In the 21st century, we are

in the middle of an Artificial Intelligence (AI) [73] revolution. Each revolution changed

the way of production, trade, and work and led to societal changes. Companies and

countries that are the most technologically advanced tend to develop faster. Like any

revolution, AI raises particular societal concerns, such as the loss of employment or even

the domination of machines. AI is already being used in many fields on an increasingly

broader scale. Examples include chatbots [8] using AI to communicate with customers

of online stores, ChatGPT [131] that conducts a conversation with the user on various

topics, or medical systems allowing for faster and cheaper diagnosis [101].

AI is a general term that includes subcategories such as Natural Language Processing

(NLP) [30], Image Processing [167], and Machine Learning (ML) [170]. The last one

includes, among others, classification, in which an effective model training process leads

to the assignment of appropriate labels to the data. Classification is one of the main

topic of this dissertation.

The industrial revolution also led to the optimization of production processes. Such

processes have many criteria, so defining appropriate optimization objectives can be

problematic. Hence, a natural solution is to use a more significant number of criteria,

the simultaneous optimization of which leads to obtaining the best possible results tai-

lored to a given problem. This approach is called multi-objective optimization (MOO)

[42]. An example would be a production line implementation, which has increased facto-

ries’ efficiency with a shorter time to produce an item, minimized losses, and improved

financial management. Such optimization task has three criteria. When an algorithm

11

Chapter 1 – Introduction 12

optimizes a problem based on multiple criteria, it returns a set of best solutions instead

of a single one. Then, depending on the user’s priorities, the final solution is more tai-

lored to his needs. The user can choose which criterion is most important and choose

the solution that achieves a better result for this particular criterion.

A wide selection of solutions is an advantage of multi-objective algorithms compared to

single-objective ones. Single-criteria algorithms often use aggregated criteria. However,

this does not produce the same effect as simultaneous optimization of two or more,

often contradictory, criteria. The aggregated criterion does not provide sufficient control

over the optimization process. It has little information because the aggregated criterion

cannot be returned to the individual values of the components [69].

On the other hand, the industrial revolution also means greater exploitation of the nat-

ural environment – fuel and electricity, often from non-renewable energy sources, power

all machines use daily. Environment protection is becoming an increasingly important

topic because we can already see the harmful effects of progress. However, in order not

to thoroughly criticize progress and research into new technologies, it is worth mention-

ing Green AI [126], which decreases AI ’s carbon footprint. Deep learning or training

NLP models consume many resources, and researchers strive for the best possible per-

formance result. However, Green AI is gaining popularity, and more attention is being

paid to its environmental aspects. Researchers must consider many criteria, not only the

performance of their methods but also the cost and efficiency.

The cost criterion is easy to visualize in medicine [127]. Data is collected from patients

differently, and each technique has an associated cost. One of the cheapest ways to

collect data is to interview the patient. This data may include personal information

such as age, weight, type of work, or information about pain that affects the diagnosis.

However, various medical tests give more specific information, and the cost of the tests

must be considered. The more complicated the test or the more advanced the tools,

the more expensive the test is. All the information mentioned is treated as features of

a dataset containing data from many patients, i.e., many examples. Each feature may

have an assigned cost to obtain it.

Cost can also be understood as the cost of incurring an incorrect decision. The system

classifies the patient whether he or she has cancer; hence, two cases can be indicated.

The patient is healthy, and the system determines that the patient has cancer. In the

second case, the patient is sick, and the system says he or she is healthy. The costs of

both errors may have different values, but it is challenging to provide a specific value

for a given error in this case. It can be concluded that the latter error has much more

significant consequences because the disease is not detected, and the cost of such a

decision is very high for the patient [157].

Chapter 1 – Introduction 13

Considering the aspects mentioned above, the thesis focuses on using multi-objective

optimization (MOO) algorithms, which provide greater possibilities for the user’s choice

of solution than single-criteria algorithms. Some proposed approaches also use methods

to select a solution automatically but still consider the user’s needs. This work uses

MOO algorithms to select features in the classification task by individual and classifiers

ensemble. A research hypothesis is formulated as follows:

Using multi-objective optimization to train classifiers on feature subspaces

produces models with no worse prediction quality than state-of-the-art meth-

ods and allows choosing a solution tailored to a user’s needs.

In order to verify the above research hypothesis, the following research objectives were

proposed:

• Developing feature selection methods based on multi-objective optimization for

constructing single classifiers.

• Proposing a multi-objective method for building classifier ensembles using learning

Support Vector Machines trained on subspaces of the feature space.

• Developing a classifier ensemble forming algorithm using decision tree classifiers

trained on subspaces of the feature space and aggregated criteria.

• Developing a multi-objective method using learning decision trees on subspaces of

the feature space to form the non-random forest.

• Employing a multi-objective optimization to form a classifier ensemble using clas-

sifiers trained on the feature space subspaces and local optimization.

• Experimental evaluation of the developed algorithms.

The structure of the thesis is as follows. Chapter 2 introduces the concepts and literature

review related to the topic of the work, starting with machine learning and classification

and ending with the equally extensive topic of multi-objective optimization. Chapter 3

proposes and compares various feature selection techniques, including single- and multi-

objective genetic algorithms, and then classifies multi-class data. Chapter 4 presents the

SEMOOS algorithm – an approach based on multi-objective optimization which returns

a pool of non-dominated solutions. Chapter 5 shows two classifiers ensemble built on the

decision tree and feature subspaces found by optimization algorithms. The first classifier

uses Differential Evolution as a single-criteria algorithm (Sec. 5.1), and the second uses

MOEA/D as a multi-objective algorithm (Sec. 5.2). Chapter 6 describes the MOLO

method, which employs the local optimization algorithm to add different models to the

Chapter 1 – Introduction 14

ensemble, thus creating the ensemble that achieves the best classification quality at a

given moment. Chapter 7 compares all the proposed methods and performs a statistical

analysis of selected datasets. Chapter 8 summarizes the entire work and indicates future

research directions.

Chapter 2

Related works

This chapter introduces the reader to the dissertation topic. It covers the subjects
of machine learning and classification, detailing imbalanced data classification. The
work describes various classifiers, including ensembles and preprocessing methods,
such as feature selection and extraction. A vital element of the dissertation is multi-
objective optimization. The chapter ends with a section on using multi-objective
optimization in ensemble learning.

2.1 Machine learning

Machine learning, derived from artificial intelligence, teaches a computer how to per-

form a task without programming it specifically for that. The computer receives input

data and, through experience, acquires knowledge that allows it to solve various prob-

lems. The machine learning process is very similar to the human learning. Arthur

Samuel coined the term machine learning in 1959, and since then, there have been many

definitions of the concept [170].

Machine learning is divided into four categories (Fig. 2.1): supervised learning, unsu-

pervised learning, semi-supervised learning, and reinforcement learning. If the algorithm

receives labeled training data, i.e., each sample is assigned a class, it is supervised learn-

ing. Suppose it is unlabeled data – unsupervised learning. A combination of the two

approaches mentioned above is semi-supervised learning, which usually has a more ex-

tensive set of unlabeled data and uses knowledge from a small amount of labeled data.

Reinforcement learning is a slightly different case because these algorithms do not use

training data directly but rather the environment from which they automatically down-

load data. The agent performs interactions in the environment using policy to obtain

the maximum reward [137].

15

Chapter 2 – Related works 16

Dimensionality reduction and clustering fall into the category of unsupervised learning.

The former uses algorithms to reduce the number of features and leave only features with

important information. The latter aims to group instances with similar characteristics

into categories, thus creating subsets that represent the population [45].

Supervised learning algorithms try to find the relationship between the input and output

of the learning process. The model receives prepared features and tries to predict target

output based on them. In regression, the answer is continuous, while in classification,

the answer is discrete, i.e., class labels.

Machine
Learning

Unsupervised
Learning

Supervised
Learning

Reinforcement
Learning

Regression

Classification

Dimensionality
Reduction

Clustering

Semi-
supervised
Learning

Figure 2.1: Taxonomy of Machine Learning

Since the proposed algorithms classify data, this subject will be described in more detail

in the next section.

2.2 Classification

Classifiers are algorithms that perform classification on data and return the answer in

the form of a class label. The model receives properly prepared training data with a class

assigned to each instance. Then, it learns from this data which label (class) corresponds

to which feature values. After this, it can classify an unseen incoming sample.

Let us present the mathematical notation of classification [5, 153]. Let X denotes a

feature space, and d a number of features, so a feature vector x is

x =
[
x(1), x(2), . . . , x(d)

]T
, and x ∈ X = X (1) ×X (2) × · · · × X (d) (2.1)

Chapter 2 – Related works 17

The distance between two examples is an attribute, which can be numerical or categorical.

The first category is divided into discrete values (e.g., number of visits) and continuous

values (e.g., height in cm). The categorical contains the following elements: nominal

(unorder, e.g., male/female) and ordinal (ordered, e.g., low/medium/high). When using

categorical attributes, an appropriate data encoding technique must be used to convert

the categories to numbers because most machine learning models only consider numerical

values. The most commonly used encoders are label encoder, one-hot encoder, or dummy

encoder. We may assume that attributes belong to a set of real numbers R [33]

x ∈ X ⊆ Rd (2.2)

The main task of the classification algorithm Ψ is to assign a label from the set of labels

(classes)M to a new sample that enters the system using its feature vector x. Suppose

X is a domain andM is a codomain. The function Ψ is

Ψ : X →M (2.3)

The classifier makes a decision using so-called support functions (G1, G2, ..., Gi) that

returns support for the corresponding class [153]. Then, the maximum rule is used

Ψ(x) = max
k∈M

(Gk(x)) (2.4)

Fig. 2.2 shows the classification pipeline, from obtaining raw data to output as the

classifier’s performance. In the first phase – preprocessing, the input data is annotated.

It is an essential task at the data preparation stage, where errors that affect further

classification may appear. The following process is data preparation, including cleaning

them, fixing errors, and filling empty gaps. Dimensionality reduction mechanisms, such

as feature extraction and selection, are often used when the data contains many features.

Then, a model must receive the prepared dataset, so the dataset is divided into train

and test data, which makes it possible to assess the quality of the model. The train

data is used during learning, and this data is denoted as learning set LS, where xN is

Nth sample, and iN is a label of Nth sample, N is the size of the dataset given at the

beginning

LS = {(x1, i1), (x2, i2), . . . , (xN , iN)} (2.5)

Chapter 2 – Related works 18

The second phase is learning. The classifier is the output of the selected machine learning

algorithm Ψ, and it receives training data. It learns what feature values cause selecting

one of the available labels. The final phase is algorithm evaluation. This time, the

trained algorithm receives test data and makes predictions. Then, the classifier checks

its responses with actual labels. On this basis, the program calculates metric performance

that indicates how well the classifier performed its task.

Preprocessing

Learning

Evaluation

Data

Machine Learning
algorithm

Dimensionality reduction

Feature extraction

Feature selection

Dataset

Performance

Data annotation

Data preparation

Data splitting

Training
data

Classifier

Testing
data

Figure 2.2: Classifier learning process

The classifier’s performance must be measured to choose the best classifier for a given

problem. In the case of binary data, where we only have positive and negative classes,

a confusion matrix can be used (Fig. 2.3). This matrix compares the actual values with

the values predicted by the algorithm. Values marked as True Positive (TP) and True

Negative (TN) are correctly recognized classes. False Positive (FP) and False Negative

(FN) indicate incorrect classification. FP is when the classifier recognizes the negative

class as a positive, FN otherwise.

Confusion matrix is the basis for determining frequently used metrics: Accuracy, Recall,

Specificity, Precision.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.6)

Chapter 2 – Related works 19

True
Positive
(TP)

False
Positive
(FP)

False
Negative

(FN)

True
Negative

(TN)

P
re

di
ct

ed
 v

al
ue

s

P
os

iti
ve

N
eg

at
iv

e

Positive Negative

Actual values

Figure 2.3: Confusion matrix for two class problem

Recall =
TP

TP + FN
(2.7)

Specificity =
TN

TN + FP
(2.8)

Precision =
TP

TP + FP
(2.9)

Based on the primary metrics, aggregated metrics are also listed: Geometric mean based

on Precision and Recall (Gmean), Geometric mean based on Specificity and Recall

(Gmeans), False Positive Rate (FPR), False Negative Rate (FNR), Fβ , F1score, and

BAC.

Gmean =
√
Precision×Recall (2.10)

Gmeans =
√
Specificity ×Recall (2.11)

FPR = 1− Specificity =
FP

TN + FP
(2.12)

FNR = 1−Recall =
FN

TP + FN
(2.13)

Chapter 2 – Related works 20

Fβ = (1 + β2)
Precision×Recall

(β2 × Precision) +Recall
(2.14)

F1score is a particular case of the Fβ metric where β = 1:

F1score = 2× Precision×Recall

Precision+Recall
(2.15)

The Balanced Accuracy (BAC) metric is used to classify imbalanced data because regular

Accuracy gives misleading results in this case

BAC =
Recall + Specificity

2
(2.16)

All metrics and formulas described above can only be used for two-class problems. In the

case of multi-class datasets, it is also possible to use some metrics, but then the Micro-

averaging or Macro-averaging mechanism must be used. The Micro strategy favors

classes that occur more frequently, while the Macro strategy averages the results across

all classes. Branco et al. [16] collected metrics equations used in multi-class classification

and grouped them into Recall -based, Precision-based, and general metrics.

After the theoretical description of the classification, we present examples of specific

models. Only selected basic classifiers that were used in the thesis will be described.

Vapnik proposed the Support Vector Machine (SVM) [144], and Burges presented

a paper devoted to a detailed description of this method for the pattern recognition

task [23]. Currently, SVM is mainly used for classification but can also be used for

regression or outlier detection tasks. The main goal of SVM is to find the optimal

hyperplane, i.e., the decision boundary between data points from different classes in the

feature space. Support vectors are the closest points to the hyperplane; their distance

is called the margin. The algorithm is designed to maximize margin, which leads to

better classification performance. One of the essential parameters of SVM is the kernel.

It is a mathematical function that maps the original data points into high-dimensional

feature space, making the kernel work well for nonlinear-separable problems. There are

several kernel functions: linear, polynomial, radial basis function (RBF), and sigmoid

[153]. The kernel functions are defined as the dot product of vectors mapped by feature

map K(xi, xj), where xi and xj are the following examples from the learning set LS, h

is the degree (dimension of the new feature space), γ is the kernel coefficient parameter

(γ = 1
2σs), and e is a coefficient of polynomial and sigmoid [125]:

• K(xi, xj) = ⟨xi, xj⟩ – linear

Chapter 2 – Related works 21

• K(xi, xj) = (γ⟨xi, xj⟩+ e)h – polynomial

• K(xi, xj) = exp(−γ||xi − xj ||)2 – RBF

• K(xi, xj) = tanh (γ⟨xi, xj⟩+ e) – sigmoid

Two parameters γ and C used in kernel functions are essential for SVM performance. The

γ parameter determines how much influence a single training example has on a function’s

performance. The larger γ, the closer the other examples must be for the effect to be

significant. The C parameter is a penalty or regulation parameter. It determines the

trade-off between minimizing error and maximizing the classification margin. Changing

the value of C controls the training and testing error, number of support vectors, and

SVM margin [138].

Decision tree (DT) is a non-parametric method for classification and regression. It is

a hierarchical model of many decision nodes containing tests of attribute values and final

leaves having the algorithm’s output. The decision-making process starts at the root,

goes through branches, and to another node, each time implementing a test function.

Once the algorithm reaches a leaf, the value stored there is the DT ’s response. The DT

divides the problem into smaller sub-problems until it can select the final class. One

of the main advantages of a tree is its interpretability. A tree’s clear structure can be

turned into a set of if-then rules [5].

Many individual classifiers connected by a combination rule create ensemble classifiers,

also known as multiple classifier systems or committees. Fig. 2.4 presents creating the

ensemble classifier. The classifier pool is

Π = {Ψ1,Ψ2,Ψ3, . . . ,Ψn} (2.17)

Ensemble methods train base learners on training data. Examples of base learners might

be DT or SVM. The base learners form a homogeneous ensemble if they are the same

type. Suppose they are different, then the ensemble is heterogeneous. Base learners

can be imperfect classifiers because the combination of even weak classifiers results in a

good ensemble. Each base learner has an area of competence where it achieves the best

classification. Thanks to this, when combined, they create a diverse ensemble [82].

Unfortunately, achieving diversity in an ensemble is not easy, and the concept of diversity

needs to be formulated better. Hence, there are many diversity measures, but none are

universal. Kuncheva and Whitaker [83] tested ten diversity measures, including Q statis-

tics, the disagreement measure, and Kohavi-Wolpert variance. The authors’ assumptions

Chapter 2 – Related works 22

. . .Classifiers

Predictions . . .

Final prediction

Combination rule

Figure 2.4: Ensemble classifier

about the correlation between already proposed diversity measures and average Accuracy

did not come true in every case, which was a surprising conclusion.

Ensembles can have different combination rules, the most famous of which fall into the

Aggregating or Voting categories. Aggregating involves collecting outputs from base learn-

ers and averaging them. This group includes Simple Averaging and Weighted Averaging.

Voting collects votes from each individual classifier in the form of an exact class value

or class probability. The second category, Voting rule, is divided into Majority Voting,

Plurality Voting, Weighted Voting, and Soft Voting. There are also many other rules,

such as Stacking and Algebraic methods. Depending on the selected combination rule,

the ensemble classifier collects responses from base learners and makes the final decision

on the class to which to assign each data sample [169].

An essential aspect of building ensembles is not only adding models but also removing

them or selecting them from the pool, i.e., pruning. It leads to a reduction in the number

of models in the ensemble and improves predictive performance. Typically, pruning is

based on a metric, such as performance, diversity, or margin. Rankings can be determined

based on the metrics, and then it is rank-based pruning, where each model in the ensemble

receives its rank. Ensemble selects only the highest-ranking models, thus creating the

best possible ensemble for the selected metrics. Models get higher ranks when the metric

achieves more satisfactory values; this can be a minimum or maximum, depending on

the metric. Mohammed et al. [104] present order-based pruning metrics.

Chapter 2 – Related works 23

An example of an ensemble classifier is a Random Forest (RF). RF is a method built of

decision trees for classification and regression tasks. The algorithm constructs each tree

on a random subset containing different features. The RF then collects the responses

of all the trees and uses Majority Voting or Averaging to make the final decision. Each

tree is different, providing a larger coverage area and ensuring diversity [19].

2.2.1 Imbalanced data

When the number of instances in one class is significantly lower than in the others

– dataset is imbalanced. For the binary task, a more numerous class is called the

majority (negative) class, while the other is the minority (positive) [97]. Because the

consequences of making a mistake might be pretty substantial, special care is used while

classifying positive cases [43].

In imbalanced data classification, the disproportion among the different classes is not the

sole issue of learning difficulties. One may quickly devise an example where the instance

distributions from different classes are well-separated. Napierała and Stefanowski ob-

served that the minority class samples often may form scattered clusters of an unknown

structure [106]. An additional complication arises from the possibility that there may

be an insufficient number of minority class samples for a classifier learning algorithm to

achieve an adequate level of generalization, resulting in overfitting [29].

One may divide imbalanced data classification algorithms into three groups [98].

Data preprocessing methods concentrate on decreasing the number of examples from

the majority class (undersampling) or generating new minority class samples (oversam-

pling). These mechanisms aim to balance the number of objects from considered classes.

Oversampling randomly replicates existing samples or generates new samples in a guided

manner. SMOTE is the most recognized algorithm [27] that generates new minority sam-

ples between two randomly selected objects. Unfortunately, methods such as SMOTE

may change the characteristic of the minority class and, as a result, overfit the classifier.

Therefore, several modifications of SMOTE have been proposed that can identify the

samples to be copied more intelligently, such as Borderline SMOTE [62] that generates

new minority class samples close to the decision border. Safe-Level SMOTE [22] and

LN-SMOTE [100] reduce the probability of generating synthetic minority instances in

areas where the predominant objects are that of the majority class. Koziarski et al.

proposed RBO [78] and CCR that enforce instances from the majority-class to be relo-

cated from the areas where the minority-class instances are present [79]. The alternative

preprocessing approach is undersampling. Such methods employ randomly removing the

Chapter 2 – Related works 24

instances from the majority class or removing them from the areas so that the classifier’s

quality is not disrupted using neighborhood analysis [98].

Inbuilt mechanisms modify existing classification algorithms for imbalanced tasks,

focusing on predictive performance for both classes. One approach is one-class classifi-

cation [71], which aims to learn the decision areas associated with one class. Initially,

an approach based on building models for the majority class was proposed due to the

sufficiently large number of objects representing it, and the minority class was treated

as so-called outliers. Krawczyk et al. proposed a different approach in [80], where a

one-class classifier was trained on a minority class. In turn, cost-sensitive classification

considers the asymmetrical loss function that assigns a higher misclassification cost of

minority class [63, 81, 98, 171].

Hybrid methods combine the advantages of methods using data preprocessing with the

different classification methods. One of the most popular approaches is the hybridization

of under- and oversampling with ensemble classifiers [52]. This approach allows the data

to be independently processed for each base model. It is also worth noting methods based

on ensemble classification [152], such as SMOTE Boost [28] and AdaBoost.NC [147].

Classification of imbalanced data can also be treated as an optimization task, for which,

among others, Evolutionary Algorithms (EA) are used. EA includes, among others,

genetic algorithms, swarm intelligence methods, and multi-objective optimization algo-

rithms. Pei et al. [115] presented a survey describing many EA methods for classifying

imbalanced data. Because EAs have good global search ability, they are suitable for data

sampling, especially undersampling. Garcia and Herrera [54] proposed eight GA-based

evolutionary undersampling methods that ensure a good trade-off between the balance

of distribution of classes and the performance of the methods. In [85], the proposed

clustering method reduces computational costs, which is a particular problem in the case

of large-scale datasets. EA is also used in cost-sensitive learning. In [87], a method based

on multi-objective optimization provides a trade-off between the generalization ability

and the case-weighting factors using a cost matrix.

The imbalanced data classification cannot be based on the Accuracy metric because it

does not indicate the correct results and biases the model towards the majority class.

Accuracy may be high due to the proper classification of the majority class, but then the

minority class is omitted [21]. Therefore, choosing the right metrics to classify imbalanced

data is crucial. Basic metrics, such as Precision and Recall, considering only one class at

a time, are good choices. However, sometimes classifiers require aggregate metrics that

return their performance. Instead of using Accuracy, Balanced Accuracy or Gmean is a

more practical alternative [60].

Chapter 2 – Related works 25

2.2.2 Preprocessing

Preprocessing is a crucial step in the classification process. Preprocessing techniques

prepare data before passing it to the algorithm, which makes it more effective. Data can

contain an extensive number of features, which is called Bellman’s concept – the curse of

dimensionality [10]. Additionally, a more significant number of features does not guaran-

tee better classification because some features may be non-informative. Even increasing

features may lead to a decreasing classifier performance, assuming an unchanged num-

ber of observations, which is called the Hughes effect [66]. In this case, the classifier’s

performance could only be improved if the training set’s size increased with the number

of features. It is a challenging task, especially in the case of real data, so the aim is

to reduce dimensionality, thus excluding irrelevant and redundant data, which ensures

better classification, faster calculations, and a better understanding of the data [163].

One of the basic dimensionality reduction techniques is feature selection (FS). FS

selects some of the features from the original dataset and creates a new feature set.

Using feature selection gives better classification performance than the performance on

the complete set of features. Cai et al. [24] presented the division of feature selection

methods into five categories, referring to the following aspects:

1. Labeled, unlabeled, or partially labeled training data – supervised, unsupervised,

and semi-supervised feature selection methods.

2. Relationship with learning methods – filter, wrapper, and embedded methods.

3. Evaluation criterion – correlation, Euclidean distance, consistency, dependence,

and information measure criteria.

4. Search strategies – forward increase, backward deletion, random, and hybrid mod-

els.

5. The type of the output – feature rank (weighting) and subset selection methods.

Let us focus on 2 because we use these methods for feature selection later in the work.

Filter methods use statistical measures to select features, such as Information gain, Chi-

square, Fisher score, correlation coefficient, and variance threshold [145]. Ikram and

Cherukuri mentioned that Chi-square is the best method for multi-class problems [135].

The Chi-square test statistic applied to the Select K-best function chooses K-best features

from the datasets that are the most relevant to the classification process.

Feature selection depends on a classifier in wrapper methods. The classifier may use opti-

mization algorithms. In this case, the population consists of vectors with binary-encoded

Chapter 2 – Related works 26

features. Many papers address the feature selection problem using one-objective opti-

mization such as Genetic Algorithms (GA) [44]. GA searches a population, and through

iteration, it evaluates and uses genetic operators (selection, mutation, crossover) to find

the best solutions [41]. As confirmed by the survey [40], many types of metaheuristics,

such as multi-objective ones, can be used in the feature selection task. Some wrapper

methods make selections based on analyzing the results of a specific classifier [15, 117].

Embedded methods use ensemble classifiers for feature selection. An example of such a

classifier is Random Forest, which consists of many decision-making models [19]. Also,

some statistical methods are applied to select features: ANOVA [15], i.e., the analysis of

the variance and Pearson’s correlation coefficient [24, 119] which are better at a single

criterion task.

Feature extraction is the second dimensionality reduction technique. It involves trans-

forming features from the original set into a new set. Transformation reduces the size

of the feature vector [163]. Unfortunately, unlike feature selection, extraction, by trans-

forming and merging certain features, loses the ability to reproduce them. This process

is irreversible and may result in loss of interpretability of the classifier’s response. These

days, it is undesirable because explainability is valuable in detection systems.

Despite this, many feature extraction methods have been developed, and the most pop-

ular of them are Principal Component Analysis (PCA) [141], Linear Discriminant Anal-

ysis (LDA), Multi-Dimensional Scaling (MDS), Isometric Mapping (ISOMAP), Locally

Linear Embedding (LLE) and many more [7]. Methods based on deep learning are in-

creasingly being used, where deep learning means that the system learns from experience

and uses a hierarchy of concepts [55].

2.2.3 Evaluation

A new method must be well-tested to demonstrate its usefulness among other methods.

We strive to ensure the algorithm has the lowest possible classification error concerning

the relevant metrics. However, according to Wolpert’s "no free lunch" theory, there are

no ideal methods, and each has its area of competence. Therefore, a lot depends on data.

Selection of an appropriately diverse dataset or focus on one problem, if the purpose of

the experiments is to find a method for a specific dataset, is vital. The learning set LS
should be divided into a training set (TS) and a validation set (VS). TS is used to train

the classifier, and VS is used to test it. The most basic method is hold-out; for example,

70% or 80% is allocated to TS and the remaining 30% or 20% to VS.

Chapter 2 – Related works 27

However, there are better methods than this because some problems may arise when

validation is run only once. Some datasets are small, and when divided into two sets,

they contain too few examples, or the examples are outliers that do not represent the

learning set well. Generalization may occur, and the measured metrics will not indicate

correct values.

Therefore, there must be at least several replications. One of the methods is cross-

validation. The TS and VS sets must contain an appropriate number of examples. It

is possible to divide the original dataset into k parts for large datasets and then assign

them to TS and VS. However, dividing the same dataset by k times is usually used.

One of the popular approaches is k-fold cross-validation , where the size of k is in-

versely proportional to the size of LS. The larger LS, the smaller k, usually k equals 10

or 30. Fig. 2.5 shows a 10-fold cross-validation, determining one testing part and nine

training parts from a dataset divided into ten sets. In subsequent iterations, the testing

part contains further subsets, i.e., 1st iteration – first subset, 2nd iteration – second

subset, etc. The remaining subsets from the dataset are allocated to the training part.

Each iteration returns the performance, and at the end, it is averaged.

Test set

. .
 .

Train setDataset 1st iteration

2nd iteration

10th iteration

P1

Test set Train set

P2

Test set Train set

P3
3rd iteration

Test set Train set

P3

Figure 2.5: k-fold cross validation

If validation is repeated several times, we have Repeated Stratified K-Fold, for example,

5-splits × 2-fold cross-validation – 5× 2 CV (Fig. 2.6). In each iteration, the algo-

rithm shuffles the dataset, learns on the first part of the dataset, and tests on the second

part. In the next step, each iteration gives two performance results. This mechanism is

repeated, so we obtain ten performance measures because we have ten folds (5× 2).

Chapter 2 – Related works 28

Dataset

Shuffle
dataset

1st iteration

2nd iteration

5th iteration

. . .

Shuffle
dataset

Shuffle
dataset

Train setTest set

Train set Test set

P1,1

P1,2

Train setTest set

Train set Test set

P2,1

P2,2

Train setTest set

Train set Test set

P5,1

P5,2

. . .

Figure 2.6: 5x2 cross validation

Another way to determine TS and VS is bootstrapping, which is a suitable method,

especially for small datasets. Samples may overlap more than in cross-validation. Boot-

strapping draws examples with replacements from the learning set and creates a training

and validation sets.

After training and validating the algorithms, they are compared in several ways. The

misclassification error is checked using the performance metrics detailed at the beginning

of this chapter, such as Accuracy or Gmean. The computational or time complexities of

the methods and the cost of the classifier’s decisions can be compared [153].

A crucial element is to conduct statistical tests that enable comparison of classifiers. An

appropriate method should be selected depending on the number of compared algorithms

and datasets. Tests are called parametric when the population distribution is strongly

defined by certain assumptions, and nonparametric tests when these assumptions are

weaker. In the case of two algorithms and one dataset, this may be a parametric Two-

Matched-Samples t test. In case of multiple datasets, nonparametric Sign Test or Paired

t-test. Comparing two algorithms regardless of how many datasets can be accomplished

by the nonparametric Wilcoxon’s Signed-Rank Test for Matched Pairs, which is based

Chapter 2 – Related works 29

on t test. When appropriately modified, the tests mentioned above can also compare

many classifiers. However, referring to the definition of statistical tests, an ANOVA test

(parametric) or a Friedman’s test (nonparametric) are used when experiments involve

the comparison of more than two methods on multiple datasets. The last two statistical

tests should also use a post hoc test, such as the Nemenyi or Bonferoni-Dunn Post

hoc test [72]. The Bergmann-Hommel or Shaffer ’s procedure can be used in multiple

comparisons [53].

Demsar in [37] argues that more preference should be given to nonparametric tests like

Wilcoxon rather than parametric tests like ANOVA. Nonparametric tests are more likely

to reject a null hypothesis. They do not assume normal distributions or homogeneity of

variance. Tests can be performed for various performance measures and even computa-

tion time. Derrac et al. also agree with this statement about using nonparametric tests

for evolutionary or swarm intelligence methods for continuous optimization problems in

multi-problem examination because they are reliable [39].

The Wilcoxon signed-ranks test [37] compares two classifiers for each dataset by

counting ranks for positive and negative differences. Hence, we have R+ as the sum of

ranks for all datasets on which the second algorithm won and R− as the sum of ranks

on which the first algorithm won. di is the difference in performances of two classifiers

on the i-th dataset, with N of all datasets. If there are ties, i.e., di = 0, then R+ and

R− receive equally half of the votes. When there is an odd number of ties, one rank is

omitted.

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (2.18)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (2.19)

where rank() denotes a statistic function that tests the null hypothesis if the two sets of

measurements come from the same distribution. For datasets N > 25, the statistic z is

distributed normally

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

(2.20)

where T is the minimum of positive and negative sums, T = min(R+, R−). If the

significance of p < 0.05, the results obtained with the proposed method are statistically

Chapter 2 – Related works 30

significantly different from the reference method. However, for p ≥ 0.05, the proposed

method does not differ statistically significantly from the reference method.

2.3 Multi-objective optimization

Nature has always been an inspiration for researchers, including in the case of optimiza-

tion algorithms. The idea of natural selection and Darwin’s evolution gave rise to the

Genetic Algorithm (GA). GA has a mathematical representation of evolution and uses

concepts such as offspring population, crossover, and mutation. Observing the behavior

of ants creating paths using pheromone concentration contributed to the Ant Colony Op-

timization (ACO) algorithm proposal. Artificial Bee Colony (ABC) is another algorithm

based on animals, this time on bees, whose colony is divided into groups performing dif-

ferent tasks: employed bees (forager bees), onlooker bees (observer bees), and scouts.

The phenomenon of fish schooling and bird flocking in nature also contributed to the

proposal of the Particle Swarm Optimization (PSO) algorithm. Flower Pollination Al-

gorithm (FPA) is a slightly newer proposition with a multi-objective version. These are

a few examples of nature-inspired optimization algorithms [159].

The optimization process is finding the best solution from a pool of possible answers.

Various algorithms solve the task and find its solutions. Exhaustive algorithms guarantee

finding a solution if it exists and searching the entire space, but they are only suitable

for small tasks. More advanced methods, such as Genetic Algorithm, should be used if

the search space is ample.

The Genetic Algorithm is based on the principles of natural evolution and uses its

definitions. A genotype (population) is a potential solution to a problem consisting

of vectors. The algorithm searches the population in different directions until it finds

the best solution. In each generation, solutions are evaluated by the objective (fitness)

function, and only those that are good enough remain. They are then transformed by

genetic operators such as crossover and mutation. Crossover involves combining parents’

chromosomes and exchanging parts of them to obtain diverse offspring. A mutation

randomly changes one or more genes in a chromosome, which provides variability in the

population [102].

Another widespread algorithm is Differential Evolution (DE) algorithm [134]. DE

works on the differences between individuals from the population. It is a single-criterion

algorithm that combines the advantages of local search and genetic algorithms. It uses

classical crossover operators and search mechanisms typical for topological spaces. DE

searches the continuous space. Hence the solution obtained from this algorithm is real

Chapter 2 – Related works 31

numbers. DE is looking for new solutions close to the best in earlier iterations. However,

it does not use a predefined scheme or distribution. Subsequent generations of DE lead

to finding the optimal state. Fig. 2.7 presents this process. The algorithm selects three

random points from the population Xr1 , Xr2 , and Xr3 , and then the difference between

the two selected points Xr2 − Xr3 is scaled by the λ control parameter λ(Xr2 − Xr3).

After adding this to the remaining point Xr1 , we obtain the current reference point and

differential mutation vector Xr1 + λ(Xr2 −Xr3) [47].

Figure 2.7: Differential Evolution algorithm

In real problems, one criterion is often insufficient, and many objectives are used. Single-

objective algorithms can consider several criteria, but only in an aggregated form, re-

ducing the function to returning one value. Simultaneous optimization of many con-

tradictory criteria is called multi-objective optimization (MOO) or multi-criteria

optimization. MOO is much more complex than single-objective optimization because

the algorithm must find a trade-off between different criteria [42].

The criteria are successive objective functions F1, F2, ..., FR, which can be minimized or

maximized. For example, suppose the algorithm is designed to optimize only two criteria.

In that case, we can graphically present it on a two-dimensional plot (Fig. 2.8). Each

axis reflects one criterion, and each of them should be minimized. All found solutions are

Chapter 2 – Related works 32

minimize

m
in
im
iz
e

non-dominated
solutions

Figure 2.8: Multi-objective optimization

presented as two-colored dots because some of the solutions are non-dominated. These

are solutions that dominate other solutions, i.e., the values of both criteria are better

than for the dominated solutions. Non-dominated solutions are an approximation of a

Pareto Front (PF). In Fig. 2.8, pink solutions dominate yellow ones. In a formal way,

let Fi is an objective function, z1 and z2 are different solutions, and z1 dominates z2,

then:

Fi(z1) ≤ Fi(z2) ∀i ∈ 1, 2, ..., R (2.21)

The answer to the problem using multi-objective optimization is a set of non-dominated

solutions. The first issue is choosing the right solution. A set of solutions gives the user

many options. The user has many criteria, so he may favor some of them and then may

pay more attention to those solutions that achieve the best results for the most important

criteria. Understanding the data is essential here, so the right person should make this

decision. Choosing a solution is an advantage of multi-objective optimization because

single-criteria algorithms return only one solution, and the user cannot directly influence

the final choice. In some cases, this is a minus because the user is responsible for choosing

the final solution, even though he still chooses from the non-dominated solutions, where

there are no worse solutions.

Therefore, algorithms have been created to support this decision, belonging to the multi-

criteria decision-making (MCDM), including TOPSIS [161], VIKOR [112], PROMETHEE

Chapter 2 – Related works 33

[17], GAIA [18], SIR [156], and AHP [122]. PROMETHEE is frequently used, so we

also used it to select a solution from the non-dominated set in our several methods.

PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evalua-

tions) has many versions using intervals, fuzzy numbers, or group decision-making. This

method supports the user but does not make the final decision for him.

PROMETHEE applies weights to each criterion, determining each criterion’s priority

and making a decision based on the preference function. Preference degree means how

much one alternative (solution) is preferred to another (z1, z2), and always has a value

from 0 to 1.

0 ≤ Pj(z1, z2) ≤ 1 (2.22)

If the criterion is maximized, the preference function can be defined as

∀z1, z2 ∈ A Pj(z1, z2) = Fj [dj(z1, z2)] (2.23)

where A is a finite set of possible alternatives and dj(z1, z2) is the difference of evaluations

among two alternatives

dj(z1, z2) = gj(z1)− gj(z2) (2.24)

where g is a criterion.

The algorithm takes different parameters depending on the selected preference function.

There are several types of functions, and from here, we have different types of generalized

criteria: Usual, U-shape, V-shape, Level, V-shape with indifference, and Gaussian. The

basis of the PROMETHEE II version is net flows and output in the form of a ranking

of alternatives [113]. A frequently used combination is PROMETHEE with the visual

interactive module GAIA [17].

Obtaining a set of solutions gives the user greater opportunities to find an excellent final

solution, but the result is only sometimes satisfactory. Hence, the second problem is the

quality of the resulting non-dominated set. Fortunately, various quality metrics from

the literature allow us to extract more information from PF. Laszczyk and Myszkowski

[84] presented a broad overview of 38 Quality Measures along with their advantages

and disadvantages from various categories, such as distance, cardinality, dominance, and

volume. Different measures answer different questions: how close is the approximation

to the real PF, how many PF solutions are there, and how diversified are they.

Chapter 2 – Related works 34

The necessary element of MOO is algorithms specially adjusted to adopt more than one

criterion. Most multi-objective optimization algorithms are global methods [32], where

approximate solutions are returned. They may be grouped into: (i) Weighted Objectives

Methods, (ii)Hierarchical Optimization Methods, (iii) Trade-Off Methods, (iv) Methods

of Distance Functions, Min-Max Methods, (v) Goal Programming Methods, (vi) Genetic

Methods.

Among the latter methods, NSGA, NSGA-II, NPGA, and FFGA [3] should be mentioned.

One of their most popular is NSGA-II (Non-dominated Sorting Genetic Algorithm II)

[35], a modification of single-criteria GA. First, NSGA-II initializes the population P0,

then sorts based on non-domination criteria and selects individuals based on rank and

crowding distance. Then, it uses genetic operators and performs selection, crossover,

and mutation, thus obtaining the offspring Q0. Fig. 2.9 shows the t-th generation of

the algorithm. The combined population, Rt of size 2N , consists of the population Pt

and offspring population Qt. Then the algorithm performs non-dominated sorting of

solutions, and these solutions go to non-dominated sets A1, A2, A3, . . . , which means

that front A1 dominates A2, A2 dominates A3, etc. The set A1 contains the best solutions

with Rt. Only the best solutions that fit up to size N (dashed line on the graph) are

transferred to the next population Pt+1, i.e., crowding distance sorting is performed.

The advantages of NSGA-II are speed in non-dominated sorting and crowded distance

estimation [162]. Lin et al. [92] present NSGA-II modification and test various method

variants.

Rejected

Non-dominated
sorting

Crowding
distance
sorting

Figure 2.9: NSGA-II algorithm

Another proposition on how to solve optimization tasks is worth mentioning. One uses

Chapter 2 – Related works 35

the surrogate-assisted Particle Swarm Optimization with the Pareto active learning al-

gorithm [96], which has a relatively low computational cost, fast convergence, and good

diversity. Convergence is good when the solutions are close to the Pareto front, and good

diversity in the objective space means that the solutions are evenly distributed in space

and are not just at one point.

Multi-objective evolutionary algorithms (MOEAs) are eagerly developed and bring sig-

nificant benefits, especially in large-scale MOO problems. In this case, the decision space

is grouped into several subspaces, is reduced, or novel search strategies are used [139].

The algorithm based on decomposition (MOEA/D) is gaining popularity. It decomposes

an optimization problem into several scalar optimization subproblems and optimizes

them simultaneously [165]. Nguyen et al. [108] modified the MOEA/D algorithm and

proposed two decomposition methods based on multiple reference points, static and dy-

namic. The developed method gave satisfactory results in the feature selection in the

classification. Ma et al. [99] proposed the LSMOEA/D method using reference vectors

in the control variable analysis. The experiments confirmed high quality for the vast test

problems with 2–10 objectives and 200–1000 variables.

In multiple newer works, the MOEA/D method is the most potent competitive method,

and many proposed multi-objective algorithms are based on it, compared to the NSGA-

II method, which usually achieves weaker results and is treated as a reference point

[120, 140, 166]. In [25], NSGA-II is even omitted, and the proposed method uses support

vector regression and MOEA/D.

2.4 Multi-objective optimization in ensemble learning

Considering the advantages of MOO, this optimization is widely used for classification

and is suitable for various tasks. MOO performs parameter tuning and selects a set of

appropriate ones for classifiers, selects features, creates ensemble classifiers, and is used

to classify difficult data, e.g., imbalanced.

Feature selection in classification meets two contradictory criteria. It strives to obtain the

highest possible model performance while minimizing the number of features. Therefore,

it is a classic example of a MOO where various criteria must be compromised. MOO

methods for feature selection result in non-dominated feature subsets and a more inter-

pretable model than deep learning. Jiao et al. [74] presented an extensive survey and

proposed dividing multi-objective feature selection methods into six categories depending

on their components. These categories along with examples are: Solution Representation

Chapter 2 – Related works 36

[105], Evaluation Function [168], Initialization [155], Offspring Generation [95], Environ-

mental Selection [146], and Decision Making [13].

Proposing a new framework in [90] led to a more diverse set of features of the non-

dominated solutions in less time. The MOO task is solved here by an auxiliary single-

objective feature selection task, which creates single subtasks from a multi-objective

problem and searches the solution space in distinct directions. The method presented in

[75] reformulates the feature selection task into a constrained form and assumes perfor-

mance constraints for each solution in the form of a feature subset.

Several papers combine SVM classifiers with optimization algorithms that solve the fea-

ture selection problem. The article [164] used NSGA-III for the feature subset selection

and CNN-SVM (Convolutional Neural Network - Support Vector Machine) for software

defect prediction with an imbalance problem.

Researchers dealing with neural networks also often employ MOO. Jin et al. [160] solved

the problem of multi-objective optimization of the structure and parameters of the neural

network using evolutionary methods (NSGA-II). The MO-SELM method [154] has been

tested for classification and regression. It relies on optimizing parameters and structure

learning of the Extreme Learning Machine network to cope with the overfitting problem.

GEMONN [158] employed a gradient-guided evolutionary approach containing the ad-

vantages of gradient descent and evolutionary algorithms to train deep neural networks.

Optimization is used to determine weights for the network, while multi-objective opti-

mization is used simultaneously for the network sparsity and the training loss. MOO

is often applied to real-world problems, e.g., in the iron and steel industry. In [148],

a multi-objective convolutional neural networks ensemble learning method for quality

prediction was proposed.

Mierswa [103] showed the possibility of using multi-objective optimization techniques in

SVM learning, pointing out that thanks to this approach, it is possible to turn away

from aggregated optimization criteria as a combination of opposing criteria. Addition-

ally, Pareto-optimal solutions allow complexity analysis so the user can easily see which

solutions are overfitted. The combination of SVM classifier to detect malicious traffic

and a Genetic Algorithm to optimize hyperparameters is used in the article [123].

Chandra and Yao proposed DIVACE (DIVerse and Accurate Ensemble Learning Algo-

rithm) [26], which employs multi-objective optimization to the ensemble learning task

to find a trade-off between diversity and accuracy. Abbas [1] developed Memetic Pareto

Artificial Neural Network (MPANN), which optimizes similar criteria that are essen-

tial when creating ensembles. Gu et al. [61] focused on classifier ensemble generation,

Chapter 2 – Related works 37

proposing a solution that is also a compromise between accuracy and diversity ensemble.

They also showed that the proposed solution could outperform single-objective methods.

In [150], the authors optimize the weights of the models in the ensemble and select

the non-dominated solution using the PROMETHEE method. Other works focus on

ensembles of DT [76], recursive networks [129], or fuzzy rules [70], which prove the

possibility of using this approach. However, the number of works devoted to employing

multi-objective optimization to classifier ensemble design is relatively small, especially

compared to the common problem of designing the ensemble using a single criterion.

Answers to critical questions require further research, i.e., which models are best suited to

the multi-objective task and whether it is possible to develop algorithms that effectively

combine different decision models. Developing methods for forming the base classifier

and creating combination rules that connect them in the multi-objective optimization

task is also necessary.

Fletcher et al. [51] proposed a non-specific ensemble classification algorithm that uses

multi-objective optimization to select base classifiers and minimize user-defined parame-

ters. Ribero and Reynoso-Meza [118] developed a two-stage ensemble learning framework

that generates a set of diverse classifiers and prunes a pool of models. The same authors

[6] analyze different MOOD approaches for ensemble learning and propose a taxonomy

of multi-objective ensemble learning. Olivera et al. [110] employed multi-objective opti-

mization to select the base classifier’s valuable features and then choose the best ensemble

line-up. Onan et al. [111] developed an ensemble method that employs a static classifier

selection involving majority voting error, forward search, and a multi-objective differen-

tial evolution algorithm. Liang et al. [89] described an ensemble learning model based on

multimodal multi-objective optimization. Asadi and Roshan [9] formulated an intriguing

proposition that focuses on the bagging procedure, considering the number of bags and

the diversity simultaneously of the trained classifiers.

Only a few works on imbalanced data classification employ multi-objective optimiza-

tion methods. It is worth mentioning the work of Bhowan et al. [11], who proposed to

build a classifier ensemble based on Pareto-optimal classifiers. In turn, Soda [130] sug-

gested training the classification system named Reliability-based Balancing, using multi-

objective optimization methods and maximizing two criteria related to the frequency of

correct decisions and Gmean. They simultaneously used the data preprocessing technique

based on feature and prototype selection obtained from multi-objective optimization.

Li et al. [88] proposed a data preprocessing method Adaptive Multi-objective Swarm

Crossover Optimization, which used both over- and under-sampling simultaneously. This

approach selected the best proportion between majority and minority samples by multi-

objective optimization. Bhowan et al. [12] proposed a two-step approach to evolving

Chapter 2 – Related works 38

ensembles using genetic programming for imbalanced data classification. The optimal

classifiers non-dominated set form an initial pool of classifiers, and then ensemble pruning

methods based on genetic programming were employed. Fernandez et al. [48] employed

a decision tree ensemble and multi-objective optimization to find the best combination

between feature and instance selections for the multi-class imbalanced task.

Felicioni et al. [46] developed an algorithm that took fourth place in the ACM RecSys

Challenge 2020, organized by Twitter. The challenge aimed to predict the probability of

user engagement based on past interactions on the Twitter platform. Authors employ

feature extraction and gradient boosting for decision trees and neural networks and

build the ensemble using multi-objective optimization. A broad review of evolutionary

computation methods for classifying imbalanced data is presented in [115]. A particular

case of difficult data is an imbalanced data stream, for which MOO algorithms are also

helpful. It was confirmed in [143], where a Pareto-based ensemble for imbalanced and

drifting data streams was proposed.

Chapter 3

Feature selection method

This chapter aims to propose a feature selection algorithm based on multi-objective
optimization. Its quality will be compared with the classical approach and the
genetic algorithm in single- and multi-objective versions. Additionally, the compu-
tational complexity of the proposed method will be estimated. Extensive research
for each dataset permits us to answer research questions about the classifier’s choice
impact on the proposed method, the differences between the aggregated criterion
and the multi-objective approach, and the comparison of the proposed method with
state-of-the-art methods.

Feature acquisition involves a cost assigned to each feature, and not all feature selection

methods consider this cost. When the upper limit of the budget is predetermined, high-

cost and non-informative features should not be selected. It is an essential aspect of cost-

sensitive learning that is worth considering when designing feature selection methods.

We propose a feature selection approach and assume that obtaining a lower total test

cost and comparable Accuracy (not worse) to reference methods is possible.

Let us propose two objective functions that could be used for feature selection. Firstly,

the maximum Accuracy score indicated as GA-a.

maximize GA-a = Accuracy (3.1)

Secondly, we may aggregate the Accuracy score and acquisition cost of used features to

obtain a cost-sensitive classifier marked as GA-ac.

maximize GA-ac =
Accuracy

cost
(3.2)

39

Chapter 3 – Feature selection method 40

This criterion does not provide a precise solution to the individual Accuracy and cost

values because the function value is aggregated. Using only one-objective can be insuffi-

cient, and even the aggregating process is not enough. Therefore, from the point of view

of a user who wants to know the exact values of both metrics, a better solution is to use

multi-objective optimization, where each criterion is considered separately [44]. From

several algorithms, we chose NSGA-II (Non-dominated Sorting Genetic Algorithm II)

[35], the updated multi-objective version of GA, for the feature selection problem [128].

In the experiment, NSGA-II is applied with two fitness functions. The Accuracy has to

be maximized and the total cost – minimized.

maximize F1 = Accuracy

minimize F2 = cost
(3.3)

The diagram of the general genetic algorithm is in Fig. 3.1. The binary representation

is an example of six features of the liver dataset. The bit string is a vector of features

called an individual or a solution, where 1 means that the algorithm selects the feature

and 0 – is not selected. In the beginning, random sampling is performed, so the initial set

of solutions is created. Then, the binary tournament random mating selection is used.

N -individuals are selected in each tournament, where n = 2 in our case. Individuals are

compared, and the winner is taken to the next generation population. It is a simple and

efficient solution that ensures diversity [116]. Next, two genetic operators are applied

to produce new offspring: the binary point crossover and the bitflip mutation. The

selection is used to choose significant solutions to create the population, and genetic

operators explore the search space. As shown in Fig. 3.1, the crossover swaps the part

of the bit string, and the mutation replaces the bit with the opposite value. The search

is over when the algorithm reaches the population size (steps 1-5 in Alg. 3.1).

The NSGA-II algorithm (described in Sect. 2.3) returns the non-dominated set of so-

lutions (called the non-dominated solution set PS) from which one solution must be

chosen to contain a subset of the best features (step 6). These features are used to learn

the classifier and obtain the best performance and the lowest total cost. However, the

best features are different when there are distinct user’s expectations. Sometimes, the

total test cost or the Accuracy is more important, but sometimes, there is a need to have

two good criteria. Unfortunately, during the experiments, we did not have access to a

user who could specify the preference. Hence, multi-criteria decision rules were proposed

to select a solution from an estimated Pareto front. It is also done to confirm the first

part of the research hypothesis of this work that the proposed methods based on multi-

objective optimization allow obtaining solutions that are no worse than those based on

single criteria. Therefore, we applied three approaches to select solutions:

Chapter 3 – Feature selection method 41

Population
at Tn

Bit string

Population
at Tn+1

101101

110110
111100

010111

101101

110110
111100
010111

Mcv, Alkphos, Sgpt, Sgot, Gammagt, Drinks

101101
110110
111100
010111

101101

110100
111110

010101Mutation

Crossover

111101
110110
111100

.

.

.
010111

Initial
population

Fitness function
evaluation

Selection

No

Yes

Satisfy
termination
criterion?

Result

Figure 3.1: Diagram of the genetic algorithm and operators

1. NSGA-a – the criterion based on the maximum Accuracy.

2. NSGA-c – the solution with the minimum cost.

3. NSGA-p – the PROMETHEE II approach [77] described in Sect. 2.3.

At the end, we obtain a classifier model (step 7), different depending on the choice of

classifier in the experiments. In the tested case, it will be CART Decision Tree Classifier,

Support Vector Machines, Gaussian Naive Bayes or K-Nearest Neighbors Classifier.

Computational complexity analysis

Several methods have been proposed above, which consist of different components.

Therefore, the computational complexity is given for individual components. The single-

criteria genetic algorithm has a computational complexity of O(dim2), where dim is the

size of the search space [121]. For the multi-objective case, the NSGA-II algorithm is

used. Its complexity is O(MU2), M is the number of objectives, and U is the population

size [35]. The research used four different classifiers, so their complexity should also be

considered. The complexity of the CART Decision Tree is O(dN × log2N), where d is

the number of attributes, and N is the number of samples [124]. The time complexity of

Support Vector Machines is O(N3) [2]. Gaussian Naive Bayes and K-Nearest Neighbours

classifiers have the same complexity, O(N × dim) [38].

Chapter 3 – Feature selection method 42

Algorithm 3.1: Classification with multi-objective feature selection
Input:
LS = {(x1, i1), (x2, i2), . . . , (xN , iN)} – learning set
V alidate() – validation function
Evaluate() – evaluation function
PROMETHEE II – algorithm to choose one solution

Symbols:
U – population size
x – feature vector
Ψ – classification algorithm
PS – non-dominated solution set

Output:
m – final model classifier

1: for i = 1 to U do
2: xi ← features from LS ▷ after using genetic operators (selection, crossover,

mutation)
3: V alidate(xi)
4: PS ← Evaluate(xi) ▷ based on eq. 3.3
5: end for
6: solution← PS ▷ according to the best Accuracy, the least cost or PROMETHEE

II function
7: m← Ψ(solution)

3.1 Experimental evaluation

We compare all methods described previously and believe the multi-objective optimiza-

tion approach can achieve a more inexpensive total cost without an Accuracy drop com-

pared to other methods. To prove our hypothesis, we conducted an experimental evalu-

ation. Our research tries to find answers to two research questions:

RQ1: How do the proposed feature selection methods work for a given classi-

fier?

RQ2: How does multi-objective optimization differ from an aggregated opti-

mization criterion?

RQ3: Can feature selection methods based on multi-objective optimization

outperform classical feature selection and methods based on one-objective

optimization?

Chapter 3 – Feature selection method 43

3.1.1 Setup

Datasets with the corresponding features’ cost are obtained from the UCI Machine Learn-

ing Repository [91]. All of them are medical datasets where the total cost of tests is

essential, so classification is a challenging task. The information about the number of

examples, attributes, and classes is in Table 3.1. The aim of the first dataset, heart-

disease, is to predict if a patient has heart disease. The hepatitis dataset contains infor-

mation about patients with Hepatitis disease and decision 1 or 2 (die or survive). The

liver-disorders dataset has the smallest number of features. Based on them, the decision

of a person who has alcoholism is made. The pima-indians-diabetes contains only female

medical data from the Pima Indians group (Native Americans), in which the class says

if a person has diabetes or not. The last dataset, thyroid-disease, is the biggest and has

many features. It contains three classes that decide if an individual is average or suffers

from hyperthyroidism or hypothyroidism (1, 2, or 3). Our experiment only considers

these datasets where information about feature acquisition cost was given.

Table 3.1: Datasets

dataset ex. attr. classes

heart-disease 303 13 4

hepatitis 155 19 2

liver-disorders 345 6 2

pima-indians-diabetes 768 8 2

thyroid-disease 7200 21 3

The project is implemented in the Python programming language, and it is available in

the GitHub repository 1 along with results from the experiment. A few libraries were

used: Pymoo [14], Matplotlib [67], Pandas [149], Numpy [109] and scikit-learn [114].

From the last one, we used the following classifiers with the default parameters:

• DT – CART Decision Tree Classifier (the criterion is Gini impurity, the splitting

strategy is best, the minimum number of samples required to split an internal node

equals 2)

• SVM – Support Vector Machines (the parameter C = 1, the kernel is RBF, γ is

scaled)

• GNB – Gaussian Naive Bayes (variance = 1× 10−9)
1https://github.com/joannagrzyb/moofs

https://github.com/joannagrzyb/moofs

Chapter 3 – Feature selection method 44

• kNN – K-Nearest Neighbors Classifier (the number of neighbors is 5, weights are

uniform, the algorithm used to compute the nearest neighbors is automated, leaf

size is 30, the metric used for distance computation is Minkowski, power parameter

is 2)

Before experiments, all datasets must be preprocessed:

1. Missing values were replaced with the most frequent ones.

2. Data and features’ costs were normalized.

The number of examples is relatively tiny, so 5 × 2 CV was used to avoid overfitting.

Mechanisms of feature selection described in the beginning were used. Genetic algo-

rithms GA and NSGA-II have the same parameters: the population size is 100, and

the evaluation’s number is 1000. These algorithms use Random Sampling, Two Point

Crossover (GA uses Half Uniform Crossover), and Bitflip Mutation. A constraint was

imposed as a percentage of selected features to prevent the algorithms from selecting all

features. The exact value was used for the K-best algorithm.

The proposed algorithm finds many solutions and returns only the non-dominated set

while using multi-objective optimization. Fig. 3.2 shows three non-dominated solutions

in black dots, each with corresponding values of the Accuracy score and the total cost

of the selected features. The greater the Accuracy, the higher the cost, so choosing an

appropriate solution is crucial. Hence, we applied three criteria described in the beginning

to select the best solution. As it was mentioned earlier, selecting only one solution

from the set obtained from the multi-criteria optimization algorithm was necessary to

compare it with the single-objective approach. Therefore, multi-criteria decision making

techniques were used. If this were a real problem, the user could decide the most suitable

solution. Because there is no end user in the cases studied, the solution selection must

be done more automatically. One of the techniques is PROMETHEE II. In research,

PROMETHEE II approach takes a weight of 0.4 for the Accuracy and a weight of 0.6

for the cost.

Feature selection methods using optimization algorithms were compared with the classi-

cal approach, and we refer to it as FS (Feature Selection). The Chi-square test statistic

is applied to the Select K-best function. The experiment compares six feature selection

methods and four classifiers tested on five datasets. The number of features changes

from 1 to the maximum features in the dataset. All approaches to the feature selection

problem with the abbreviation coming up in figures are presented in Table 3.2.

Chapter 3 – Feature selection method 45

0.88 0.90 0.92 0.94 0.96
Accuracy

0.0

0.5

1.0

1.5

2.0

Co
st

Objective Space

Figure 3.2: Non-dominated solutions, dataset: hepatitis

methods objectives criteria abbr.

Select K-best (Chi-square)

Feature Selection
- - FS

Genetic Algorithm
max. Accuracy - GA-a

max. (Accuracy/cost) - GA-ac

Non-dominated Sorting

Genetic Algorithm II

max. Accuracy

min. cost

max. Accuracy NSGA-a

min. cost NSGA-c

PROMETHEE NSGA-p

Table 3.2: Methods’ abbreviation

3.2 Results

Firstly, the preprocessing experiments were run, and then, based on the Accuracy score

measuring the performance, methods were compared. Twenty-four micro charts show

results for each dataset, in which an orange line represents the Accuracy and a blue line

– the total cost. The cost of each feature is normalized to a value from 0 to 1, so the

total cost is the sum of these values, not the original ones from the UCI, and it is on the

second y-axis on the right. The y-axis on the left contains the Accuracy score, and the

x-axis – the number of features.

Fig. 3.3a shows the results for the heart dataset. For optimization methods, the total

cost is similar to the exponential function. Unlike the classical approach FS, the total

cost grows very fast. For SVM and kNN, the Accuracy is stable for all methods, so

choosing the smaller number of features is cost-effective because the Accuracy is almost

the same, but the total cost is much smaller for GA-ac, NSGA-c, and NSGA-p. In this

Chapter 3 – Feature selection method 46

case, the optimal number of features is 4 or 5. The tendency is different for remaining

classifiers, and too many features lead to a deterioration of the classification’s quality.

Fig. 3.3b shows the results for the hepatitis dataset. Using all features to learn the

classifier is not always the best idea. This dataset contains 19 features, and for GNB,

many features disturb good classification. We can obtain the same Accuracy level for

other classifiers but a much smaller total cost using only five features and optimization

methods with the cost criterion. Fig. 3.4 shows the Accuracy and total cost values for all

tested approaches using the SVM classifier in the hepatitis. The Accuracy is very stable

among all methods and through various selected features. Furthermore, as we observed

earlier, the total cost is much smaller for the GA-ac, NSGA-c, and NSGA-p methods.

0.45

0.50

0.55

Ac
cu

ra
cy

FS GNB GA-a GNB GA-ac GNB

0.45

0.50

0.55

Ac
cu

ra
cy

NSGA-a GNB NSGA-c GNB NSGA-p GNB

0.45

0.50

0.55

Ac
cu

ra
cy

FS SVM GA-a SVM GA-ac SVM

0.45

0.50

0.55

Ac
cu

ra
cy

NSGA-a SVM NSGA-c SVM NSGA-p SVM

0.45

0.50

0.55

Ac
cu

ra
cy

FS kNN GA-a kNN GA-ac kNN

0.45

0.50

0.55

Ac
cu

ra
cy

NSGA-a kNN NSGA-c kNN NSGA-p kNN

0.45

0.50

0.55

Ac
cu

ra
cy

FS DT GA-a DT GA-ac DT

1 3 5 7 9 11 13
Features

0.45

0.50

0.55

Ac
cu

ra
cy

NSGA-a DT

1 3 5 7 9 11 13
Features

NSGA-c DT

1 3 5 7 9 11 13
Features

NSGA-p DT

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Co
st

Dataset heart

(a) heart dataset

0.6

0.7

0.8

Ac
cu

ra
cy

FS GNB GA-a GNB GA-ac GNB

0.6

0.7

0.8

Ac
cu

ra
cy

NSGA-a GNB NSGA-c GNB NSGA-p GNB

0.6

0.7

0.8

Ac
cu

ra
cy

FS SVM GA-a SVM GA-ac SVM

0.6

0.7

0.8

Ac
cu

ra
cy

NSGA-a SVM NSGA-c SVM NSGA-p SVM

0.6

0.7

0.8

Ac
cu

ra
cy

FS kNN GA-a kNN GA-ac kNN

0.6

0.7

0.8

Ac
cu

ra
cy

NSGA-a kNN NSGA-c kNN NSGA-p kNN

0.6

0.7

0.8

Ac
cu

ra
cy

FS DT GA-a DT GA-ac DT

1 3 5 7 9 11 13 15 17 19
Features

0.6

0.7

0.8

Ac
cu

ra
cy

NSGA-a DT

1 3 5 7 9 11 13 15 17 19
Features

NSGA-c DT

1 3 5 7 9 11 13 15 17 19
Features

NSGA-p DT

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Co
st

Dataset hepatitis

(b) hepatitis dataset

Figure 3.3: Accuracy and cost results for all methods depend on the number of features

The liver dataset (Fig. 3.5a) has the smallest number of features, so the difference

between classical approaches and optimization ones is slight, especially for the cost,

which is almost linear. However, the Accuracy for non-classical methods has a bigger

value than for FS. The optimal feature number is 3 for SVM and kNN, where methods

prefer the Accuracy (GA-a, GA-ac, NSGA-a) and keep the low total cost. Even if there

is no need to use the cost-sensitive classifier, it is better not to use FS because it has a

more minor performance.

Chapter 3 – Feature selection method 47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of selected features

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Accuracy for dataset hepatitis and base classifier SVM

FS
GA-a
GA-ac
NSGA-a
NSGA-c
NSGA-p

(a) Accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number of selected features

0

1

2

3

4

Co
st

Cost for dataset hepatitis and base classifier SVM
FS
GA-a
GA-ac
NSGA-a
NSGA-c
NSGA-p

(b) cost

Figure 3.4: Bar charts for dataset hepatitis and SVM classifier

In the pima dataset in Fig. 3.5b, the cost is the smallest for methods with the cost

criterion (GA-ac, NSGA-c, NSGA-p), but they obtain minor Accuracy simultaneously.

As in the previous case, the optimal number of features is 3. At that point, the GA-a and

NSGA-a for GNB achieve the highest Accuracy, over 75%, and the lowest cost under 1.

As in the previous dataset, the thyroid dataset (Fig. 3.6) has a similar cost shape to the

Chapter 3 – Feature selection method 48

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

FS GNB GA-a GNB GA-ac GNB

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

NSGA-a GNB NSGA-c GNB NSGA-p GNB

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

FS SVM GA-a SVM GA-ac SVM

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

NSGA-a SVM NSGA-c SVM NSGA-p SVM

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

FS kNN GA-a kNN GA-ac kNN

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

NSGA-a kNN NSGA-c kNN NSGA-p kNN

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

FS DT GA-a DT GA-ac DT

1 2 3 4 5 6
Features

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

NSGA-a DT

1 2 3 4 5 6
Features

NSGA-c DT

1 2 3 4 5 6
Features

NSGA-p DT

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Co
st

Dataset liver

(a) liver dataset

0.65

0.70

0.75

Ac
cu

ra
cy

FS GNB GA-a GNB GA-ac GNB

0.65

0.70

0.75

Ac
cu

ra
cy

NSGA-a GNB NSGA-c GNB NSGA-p GNB

0.65

0.70

0.75

Ac
cu

ra
cy

FS SVM GA-a SVM GA-ac SVM

0.65

0.70

0.75

Ac
cu

ra
cy

NSGA-a SVM NSGA-c SVM NSGA-p SVM

0.65

0.70

0.75

Ac
cu

ra
cy

FS kNN GA-a kNN GA-ac kNN

0.65

0.70

0.75

Ac
cu

ra
cy

NSGA-a kNN NSGA-c kNN NSGA-p kNN

0.65

0.70

0.75

Ac
cu

ra
cy

FS DT GA-a DT GA-ac DT

1 2 3 4 5 6 7 8
Features

0.65

0.70

0.75

Ac
cu

ra
cy

NSGA-a DT

1 2 3 4 5 6 7 8
Features

NSGA-c DT

1 2 3 4 5 6 7 8
Features

NSGA-p DT

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

0

1

2

0

1

2

0

1

2

Co
st

Dataset pima

(b) pima dataset

Figure 3.5: Accuracy and cost results for all methods depend on the number of features

GA-ac, NSGA-c, and NSGA-p methods, and they achieve minimal total cost. For them,

along with SVM and kNN, the optimal number of selected features is 9, with a cost close

to 0 and an Accuracy of around 95%. Overall, for this dataset, the classification quality

is much bigger than in other datasets because the thyroid has a few thousand times more

instances.

3.3 Lessons learned

After conducting experiments, we can answer the research question posed at the begin-

ning of this section:

RQ1: How do the proposed feature selection methods work for a given classi-

fier?

GNB is not recommended as the Accuracy is usually smaller than for other classi-

fiers, and it has a more significant discrepancy among different numbers of features.

Otherwise, SVM and kNN give the stable Accuracy score among all feature selec-

tion techniques in heart-disease, hepatitis, and thyroid datasets. Unlike these data,

Chapter 3 – Feature selection method 49

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

FS GNB GA-a GNB GA-ac GNB

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

NSGA-a GNB NSGA-c GNB NSGA-p GNB

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

FS SVM GA-a SVM GA-ac SVM

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

NSGA-a SVM NSGA-c SVM NSGA-p SVM

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

FS kNN GA-a kNN GA-ac kNN

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

NSGA-a kNN NSGA-c kNN NSGA-p kNN

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

FS DT GA-a DT GA-ac DT

1 3 5 7 9 11 13 15 17 19 21
Features

0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

NSGA-a DT

1 3 5 7 9 11 13 15 17 19 21
Features

NSGA-c DT

1 3 5 7 9 11 13 15 17 19 21
Features

NSGA-p DT

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

0

1

2

3

0

1

2

3

0

1

2

3

Co
st

Dataset thyroid

Figure 3.6: Accuracy and cost results for all methods depend on the number of features for
thyroid dataset

the Accuracy varies in each technique through different numbers of selected fea-

tures from 5% to 10% in liver-disorders and pima-indians-diabetes datasets. DT

is similar to other methods.

RQ2: How does multi-objective optimization differ from an aggregated opti-

mization criterion?

Suppose there is a need for a good performance classification and a low total cost.

In that case, it is worth considering the multi-objective optimization algorithms

to select the best features. The quality of the classification depends on the data.

However, it can be helpful in the medical environment, where some tests can be

costly. Thanks to this approach, a person can select only tests that give good

results during the classification of the disease, and at the same time, the cost will

be low.

RQ3: Can feature selection methods based on multi-objective optimization

outperform classical feature selection and methods based on one-objective

optimization?

The tested methods use a genetic algorithm to search for appropriate features to

achieve a level of quality comparable to the classical feature selection approach.

An important factor is the selection of appropriate criteria; when selecting a larger

Chapter 3 – Feature selection method 50

number of them, multi-objective methods give an advantage in better adaptation

to the problem. The advantage of multi-criteria optimization is the obtained set

of solutions from which the user can choose the solution that best meets his/her

needs.

The chapter aimed to propose a method and compare a few different feature selection

approaches in the cost-sensitive classification task. The selection of K-best features with

the Chi-square statistic, Genetic Algorithm in the form of the one-objective and multi-

objective optimization were applied to classifiers, such as Gaussian Naive Bayes, Support

Vector Machines, K-Nearest Neighbors, and DT classifier. The experiments showed that

the proposed approach achieves accuracy similar to other methods but simultaneously

considers the cost of features and strives to minimize it. Depending on the dataset, the

one-objective or two-objective methods should be used to obtain better results than the

classical approach, so our proposition is a promising approach. The work was published

at the conference [56].

Chapter 4

SVM Ensemble with

Multi-Objective Optimization

Selection

This chapter proposes the SEMOOS algorithm that optimizes criteria related to the
prediction quality of minority and majority classes. SEMOOS returns a pool of non-
dominated solutions from which the user may choose the model that best suits him.
The proposed approach trains an SVM classifier ensemble for the imbalanced data
classification task. The experimental evaluations on many benchmark datasets con-
firm the proposed method’s usefulness and answer research questions related to the
proposed method’s parameters, classification quality compared to other variants of
the proposed method and reference methods, and diversity.

Among imbalanced data classification methods, one of the most promising directions

is using models based on classifier ensembles. Two elements are essential in ensemble

learning. On the one hand, the algorithm should obtain the best possible prediction

quality, and on the other hand, it must ensure appropriate diversification of the base

classifiers. Most of the work on classifying imbalanced data analyzes simple metrics

such as Recall, Precision or Specificity. However, aggregate metrics such as Gmean,

AUC, or F-measure are adopted due to the desire to express the quality assessment of

a method by a single value. Their undoubted disadvantage is that they assume a fixed

relationship between simple criteria, e.g., in the case of Gmean, it is the geometric mean

of Precision and Recall. It is also worth noting that these criteria ignore the imbalance

ratio or the misclassification costs on objects of different classes. Additionally, the values

of these aggregated criteria are ambiguous. Based on their values, it is unclear how the

given model behaves, i.e., what values the simple criteria take since a given value of

51

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 52

the aggregated criterion can be achieved for many pairs of Precision and Recall values.

Considering the above, it seems interesting to consider the problem of classifier learning

for imbalanced data as a multi-criteria optimization task. As a result of such algorithms,

we should obtain not a single solution but a set of non-dominated solutions, from which

the selection of a single solution can either be automated or left to the user to decide.

Let us propose the SVM Ensemble with Multi-Objective Optimization Selection – SE-

MOOS method dedicated to training an SVM classifier ensemble for imbalanced data

[59]. Its pseudocode is presented in Alg. 4.1 and in Fig. 4.1. The main idea is to find a

pool of SVM s that gives a diversified ensemble. To achieve that, we look for the setting

of two parameters C and γ of the SVM RBF kernel (Sec. 2.2). Additionally, the feature

selection for each base classifier is performed to ensure the high diversity of the ensem-

ble. The multi-objective optimization is used to select the best SVM parameter setting,

including feature selection [136]. When Pruning is not used, the entire set of solutions

obtained from multi-objective optimization is used to build the classifier ensemble.

Bootstrapping generates data subspaces. Optimization based on this data results in

differentiated SVM parameters from a given range and determines which features will

be selected. The best non-dominated solutions were used to create a model, and then

such a model was added to the ensemble of classifiers.

4.1 Algorithm

Let us quickly analyze Alg. 4.1, which starts with the learning set LS as an input.

Suppose the center-based Bootstrapping mechanism is enabled (Bootstrapping = True).

In that case, it is repeated W -times and divides each dataset fold into subsets Si. A root

r is selected randomly from the set of examples only for the first iteration (r1), and this

point becomes a center x. The distribution list Di is built based on the sum of distances

D and every distance from the root r to each sample in the LS. Then, Di is used as

a probability in the sampling with replacement. It creates the subset Si composed of

examples from LS. The following root ri+1 is the furthest point from the center of mass.

If xc is the center of the time k−examples and d is the dimension of the x, then the

center of k + 1 examples is given by the following formula:

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 53

Algorithm 4.1: SEMOOS, SEMOOSb, SEMOOSbp
Input:
LS = {(x1, i1), (x2, i2), . . . , (xN , iN)} – learning set
SVM() – SVM classifier training method based on the SVM parameters C, γ, and

selected subset of features x̂
Symbols:

Bootstrapping – boolean parameter Bootstrapping
Pruning – boolean parameter Pruning
W – number of iterations of center-based bootstrapping

Output:
Π – pool of the SVM base classifiers

1: Π← ∅
2: if Bootstrapping then
3: for i = 1 to W do
4: solutions← ∅
5: if i == 1 then
6: x← r1
7: end if
8: D ←

∑N
k=1 dis(ri, xk)

9: for k = 1 to N do
10: Di(k) =

D−dis(ri,xk)
(N−1)D

11: end for
12: Si ← sampling with replacement from LS according to distribution list of Di

13: choose ri+1 that dis(ri+1, x) = max
k∈1,N

dis(xk, x)

14: x← center(x, i, ri+1) according to eq. 4.1
15: PS ← Optimization(Si)
16: for each (C, γ, x̂) ∈ PS do
17: if Pruning then
18: calculate Precision and Recall for (C, γ, x̂)
19: unique← find records in solutions with the same Precision and Recall
20: if unique == ∅ then
21: solutions← solutions ∪ (C, γ, x̂)
22: end if
23: else
24: solutions← solutions ∪ (C, γ, x̂)
25: end if
26: end for
27: for each (C, γ, x̂) ∈ solutions do
28: Π← Π ∪ SVM(C, γ, x̂)
29: end for
30: end for
31: else
32: PS ← Optimization(LS)
33: for each (C, γ, x̂) ∈ PS do
34: Π← Π ∪ SVM(C, γ, x̂)
35: end for
36: end if

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 54

Center-based bootstrapping

True
i = 1

Select the farthest
sample as root

Select
random root

False

Multi-objective optimization - NSGAII

Calculate
distances

Choose samples with
replacement based on

probabilities
Subset of dataset

Add SVM models
to the ensemble

Fitness functions
evaluationGenetic operators

Pareto optimal set

Learn models

j = m
True

Input:
dataset

Calculate
probabilities using

distances

i = i+1

False

True

Initial population:

j = j+1
False

i = W

Bootstrapping
True

False

Bootstrapping

False

Output:
ensemble

Prune the ensemble Pruning

True True

False

Figure 4.1: Diagram of proposed methods: SEMOOS, SEMOOSb (when bootstrapping is used),
SEMOOSbp (when bootstrapping and pruning are applied)

center(xc, k, x) =
1

k + 1



kx
(1)
c + x(1)

kx
(2)
c + x(2)

...

kx
(d)
c + x(d)


(4.1)

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 55

An example of the algorithm’s operation in two-dimensional space is shown and described

in Fig. 4.2.

y

x

(a) The randomly selected root r1 is the cen-
ter x1. The next root r2 is the furthest exam-
ple from the center x1.

y

x

(b) The middle point between r1 and r2 is the
new center x2, and the furthest example from
it, is the root r3.

y

x

(c) After connecting three roots, the triangle
is created, and its centroid is the new center
x3.

Figure 4.2: Center-based Bootstrapping in 2D space. The blue dots are examples, and the
arrows from x1 or x2 to examples are distances.

In each iteration, the subset Si is used as the input to the multi-objective optimization

fulfilled by the NSGA-II algorithm [35]. Equation 4.2 presents two fitness functions, F1

and F2 that the optimization algorithm uses to maximize Precision and Recall

maximize F1(C, γ, x̂) = Precision

maximize F2(C, γ, x̂) = Recall
(4.2)

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 56

The metrics are calculated during the validation process inside the optimization with the

base estimator SVM and different values of its hyperparameters C and γ that have vari-

ous lower and upper limits in the set of real numbers: C ∈ [1e 6, 1e 9] and γ ∈ [1e-7, 1e-4].

x̂ is a binary vector containing selected features. These three parameters (C, γ, x̂) form

an initial population. The optimization is repeated until the maximum number of evalu-

ations (m) is reached. It returns the non-dominated solution set containing results such

as C, γ, and selected features.

Then, the estimator is trained and added to the ensemble for each result. The version

SEMOOSbp with the Pruning does not add all models to the ensemble. It finds unique

values of fitness functions (Precision and Recall) and, based on these indexes of solutions,

trains the estimator on (C, γ, x̂). Finally, the algorithm returns the ensemble of classifiers.

The prediction is based on Average Support Vectors.

This method depends on several parameters, but we distinguish two main versions of

SEMOOS – SEMOOSb and SEMOOSbp. SEMOOSb employs an original bootstrapping

method to increase the diversity of the ensemble (Bootstrapping is true). SEMOOSbp also

employs pruning to remove similar models from the ensemble (Pruning is true). The basic

version of SEMOOS is much simpler. It starts from the multi-objective optimization

described above, but the input is LS. Subsequently, solutions from the non-dominated

solution set PS such as (C, γ, x̂) are used to train the model, and all models are added

to the ensemble.

Computational complexity analysis

The computational complexity depends on a few aspects of the proposed method. Firstly,

the time complexity of the base classifier SVM is O(N3) [2], where N denotes the size of

the dataset, so it is the number of examples in the learning set. Let us assume that M is

the number of objectives and U is the population size. The computational complexity of

NSGA-II is O(MU2) [35]. In our case, M = 2, the complexity is O(2U2). The last part

of the method is Bootstrapping, and its complexity is given by O(N). The complexity

of each possible step of SEMOOS is O(N3) + O(MU2) + O(N) = O(N3) + O(MU2),

and the highest of them is the overall computational complexity of all versions of the

proposed methods.

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 57

4.2 Experimental evaluation

The experiments described in this section are used to test the proposed methods and

answer the research questions posed below.

RQ1: What is the impact of the SEMOOS ’s parameters (especially Bootstrap-

ping and Pruning) on its quality?

RQ2: How do variants of the SEMOOS affect classification quality?

RQ3: Can SEMOOS methods outperform state-of-the-art algorithms?

RQ4: What is diversity of SEMOOS ensemble compared to the reference

methods?

4.2.1 Setup

Experiments were prepared using the Python programming language and a few libraries:

Pymoo [14], scikit-learn [114], Numpy [109], Matplotlib [67], Pandas [149]. The imple-

mentation of the experiments is available in the GitHub repository1.

As the proposed method aims to train an ensemble of SVM s, the Random Subspace

method is also based on SVM, which randomly performs feature selection for base clas-

sifiers. By choosing the right features for each base classifier, diversity is assured. The

other reference algorithms do not use the classifier ensemble paradigm, i.e., simple SVM

classifiers without feature selection and two SVM models based on feature selection.

Below is a description and parameters of the SEMOOS algorithm’s variants and the

reference methods used in the experiments.

• SEMOOS – SVM Ensemble with Multi Objective Optimization Selection (SVM is

the base classifier, the optimization algorithm NSGA-II has 100 populations, use

genetic operators Random Sampling, Polynomial Mutation and Bitflip Mutation,

Simulated Binary Crossover and Two Point Crossover ; a constraint’s representa-

tion x̂ is 75%, number of evaluations is 1000, the ensemble size is 10)

• SEMOOSb – SVM with Multi Objective Optimization Selection with Bootstrapping

(SVM is the base classifier, the optimization algorithm NSGA-II has 100 popu-

lations, use genetic operators Random Sampling, Polynomial Mutation and Bitflip

Mutation, Simulated Binary Crossover and Two Point Crossover ; a constraint’s
1https://github.com/w4k2/SEMOOS_cv

https://github.com/w4k2/SEMOOS_cv

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 58

representation x̂ is 75%, number of evaluations is 1000, the ensemble size 10 is

multiplied by the number of iterations (5 iterations) of the Bootstrapping, and the

final ensemble consists of 50 classifiers)

• SEMOOSbp – SVM Ensemble with Multi Objective Optimization Selection with

Bootstrapping and Pruning (SVM is the base classifier, the optimization algorithm

NSGA-II has 100 populations, use genetic operators Random Sampling, Polyno-

mial Mutation and Bitflip Mutation, Simulated Binary Crossover and Two Point

Crossover ; a constraint’s representation x̂ is 75%, number of evaluations is 1000,

the ensemble size 10 is multiplied by the number of iterations (5 iterations) of the

Bootstrapping, and the ensemble consists of 50 classifiers, but when using Pruning

its size cannot be specify in advance)

• RS – Random Subspace SVM Ensemble [64] (the number of classifiers is 100 and

the number of subspaces is 3 yield the output shape of subspaces, the base classifier

is SVM)

• SVM – Support Vector Machines [132] (the regularization parameter C = 1.0, the

kernel is RBF, kernel coefficient γ scaled, probability estimates are set to True)

• FS – Feature Selection SVM (uses Chi-square statistic and the K-best function,

where K is 75% of features)

• FSIRSVM – Feature Selection Imbalance Ratio SVM (uses Chi-square statistic

and the K-best function, where K is 75% of features, the class weight parameter

of SVM is IR)

Three versions of the proposed method (SEMOOS, SEMOOSb, SEMOOSbp) will be

compared with the following benchmark solutions: SVM, an ensemble RS, and two clas-

sifiers with feature selection (FS and FSIRSVM). FS is a classical approach to Feature

Selection. It is based on the Chi-square statistic [135] and the K-best function, which

chooses K-best features. FSIRSVM is almost the same as FS, but it has an additional

parameter, IR – Imbalance Ratio of each fold, which is applied to the SVM as the class

weight parameter. FS and FSIRSVM select 75% of features from each dataset. RS

creates random subspaces, and it has 100 models in the ensemble. The Support Vector

Machines (SVM) classifier with the default parameters was used as a base classifier for

all methods except all variants of SEMOOS.

All SEMOOS variants use SVM and optimize its parameters C and γ. The rest of the

parameters of SVM are default. Our methods use the optimization algorithm NSGA-II

described in Sec. 2.3 by 100 populations with the diverse representation, because C and

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 59

γ are real values, and x̂ is a binary vector of selected features. After pre-experiments, ge-

netic operators were used, such as Random Sampling, Polynomial Mutation (for the real

representation) and Bitflip Mutation (for the binary representation), Simulated Binary

Crossover (for the real representation), and Two Point Crossover (for the binary repre-

sentation). The eta parameter of Simulated Binary Crossover and Polynomial Mutation

was set to 5. A constraint’s representation x̂ is 75%, meaning that 75% of features are se-

lected and their value in the vector is 1. The process of optimizing parameters is done by

1000 evaluations. The size of the ensemble depends on the variant of our methods. The

parameter determines the ensemble size in the SEMOOS methods, which is ten models.

In SEMOOSb, this value is multiplied by the number of iterations (five iterations) of the

Bootstrapping, and the final ensemble consists of 50 classifiers. Due to the Pruning in

SEMOOSbp, we cannot specify its size in advance.

As the experimental protocol, the 5 × 2 CV described in Sec. 2.2.3 was chosen. Such

cross-validation was also applied inside the optimization to avoid overfitting. Results

were saved as csv files for each dataset fold and metric. Then, we performed Wilcoxon

statistical rank-sum tests to see if one method was statistically significantly better than

the other in pairwise rankings. Five metrics were used to measure the quality of methods:

BAC – Balanced Accuracy, Gmean, Recall, and Precision.

All imbalanced datasets used in the experiments are listed in 4.1, where ID — is the

dataset identifier, Dataset — is the name of the dataset, IR – is the Imbalance Ratio,

Ex. – is the number of examples, Attr. – is the number of attributes. They were loaded

from the KEEL dataset repository [142], where these datasets were divided according to

IR. The first 19 datasets are separated with the line and have IR lower than 9. The rest

of the datasets have IR higher than 9. We keep up this division in our results to check the

effectiveness of our methods on data with low and high imbalances. Most datasets are

multi-class problems but have already been prepared as binary classification problems.

For example, the glass-0-1-2-3_vs_4-5-6 dataset combines 0, 1, 2, 3 classes of the original

dataset as a negative class (majority) and 4, 5, 6 as a positive class (minority). Fernandez

et al. [49, 50] characterizes the extended description with class names.

4.3 Experiments

We carried out four groups of experiments to answer the research questions:

• Selection of the best hyperparameters of the SEMOOS algorithm (Experiment 1).

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 60

Table 4.1: Description of datasets

id dataset ir ex. attr.

1 glass1 1.82 214 9

2 wisconsin 1.86 683 9

3 pima 1.87 768 8

4 iris0 2.00 150 4

5 glass0 2.06 214 9

6 yeast1 2.46 1484 8

7 haberman 2.78 306 3

8 vehicle2 2.88 846 18

9 vehicle1 2.90 846 18

10 vehicle3 2.99 846 18

11 glass-0-1-2-3_vs_4-5-6 3.20 214 9

12 vehicle0 3.25 846 18

13 new-thyroid1 5.14 215 5

14 newthyroid2 5.14 215 5

15 segment0 6.02 2308 19

16 glass6 6.38 214 9

17 yeast3 8.10 1484 8

18 ecoli3 8.60 336 7

19 page-blocks0 8.79 5472 10

20 ecoli-0-3-4_vs_5 9.00 200 7

21 yeast-2_vs_4 9.08 514 8

22 ecoli-0-6-7_vs_3-5 9.09 222 7

23 ecoli-0-2-3-4_vs_5 9.10 202 7

24 yeast-0-3-5-9_vs_7-8 9.12 506 8

25 yeast-0-2-5-7-9_vs_3-6-8 9.14 1004 8

26 yeast-0-2-5-6_vs_3-7-8-9 9.14 1004 8

27 ecoli-0-4-6_vs_5 9.15 203 6

28 ecoli-0-1_vs_2-3-5 9.17 244 7

29 ecoli-0-2-6-7_vs_3-5 9.18 224 7

30 glass-0-4_vs_5 9.22 92 9

31 ecoli-0-3-4-6_vs_5 9.25 205 7

32 ecoli-0-3-4-7_vs_5-6 9.28 257 7

33 yeast-0-5-6-7-9_vs_4 9.35 528 8

34 vowel0 9.98 988 13

35 ecoli-0-6-7_vs_5 10.00 220 6

36 ecoli-0-1-4-7_vs_2-3-5-6 10.59 336 7

37 led7digit-0-2-4-5-6-7-8-9_vs_1 10.97 443 7

38 ecoli-0-1_vs_5 11.00 240 6

39 glass-0-6_vs_5 11.00 108 9

id dataset ir ex. attr.

40 ecoli-0-1-4-7_vs_5-6 12.28 332 6

41 cleveland-0_vs_4 12.62 177 13

42 ecoli-0-1-4-6_vs_5 13.00 280 6

43 shuttle-c0-vs-c4 13.87 1829 9

44 yeast-1_vs_7 14.30 459 7

45 glass4 15.46 214 9

46 page-blocks-1-3_vs_4 15.86 472 10

47 abalone9-18 16.40 731 8

48 dermatology-6 16.90 358 34

49 zoo-3 19.20 101 16

50 glass-0-1-6_vs_5 19.44 184 9

51 shuttle-6_vs_2-3 22.00 230 9

52 glass5 22.78 214 9

53 yeast-2_vs_8 23.10 482 8

54 lymphography-normal-fibrosis 23.67 148 18

55 car-good 24.04 1728 6

56 car-vgood 25.58 1728 6

57 kr-vs-k-zero-one_vs_draw 26.63 2901 6

58 kr-vs-k-one_vs_fifteen 27.77 2244 6

59 yeast4 28.10 1484 8

60 poker-9_vs_7 29.50 244 10

61 kddcup-guess_passwd_vs_satan 29.98 1642 41

62 abalone-3_vs_11 32.47 502 8

63 yeast5 32.73 1484 8

64 kr-vs-k-three_vs_eleven 35.23 2935 6

65 ecoli-0-1-3-7_vs_2-6 39.14 281 7

66 abalone-17_vs_7-8-9-10 39.31 2338 8

67 abalone-21_vs_8 40.50 581 8

68 yeast6 41.40 1484 8

69 kddcup-land_vs_portsweep 49.52 1061 41

70 kr-vs-k-zero_vs_eight 53.07 1460 6

71 poker-8-9_vs_6 58.40 1485 10

72 shuttle-2_vs_5 66.67 3316 9

73 abalone-20_vs_8-9-10 72.69 1916 8

74 kddcup-buffer_overflow_vs_back 73.43 2233 41

75 kddcup-land_vs_satan 75.67 1610 41

76 kr-vs-k-zero_vs_fifteen 80.22 2193 6

77 poker-8_vs_6 85.88 1477 10

78 kddcup-rootkit-imap_vs_back 100.14 2225 41

• Comparison of the main variants of the proposed method, i.e., investigation of the

effect of bootstrapping and ensemble pruning on the quality of SEMOOS (Exper-

iment 2).

• Comparison of the variants of the proposed method with selected reference algo-

rithms (Experiment 3).

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 61

• Evaluation of classifier ensemble diversity of the proposed variants of SEMOOS

(Experiment 4).

4.3.1 Experiment 1: Setting hyperparameters

Our methods have a few parameters, so we conducted pre-experiments to choose values

of these parameters that get the best quality. We tested SEMOOSb on four datasets

(ecoli-0-3-4-7_vs_5-6, glass5, vehicle3, yeast-2_vs_4) and averaged results to present

figures.

Firstly, we check the eta parameter of crossover and mutation for each metric for values

[2, 5, 10, 20]. Deb et al. in [36] point out that small eta values for crossover provide

a diverse search among solutions. Fig. 4.3 shows exemplary results for one dataset

yeast-2_vs_4, where eta_m and eta_c are eta parameters for mutation and crossover

accordingly. Figures presenting the rest datasets are available in the GitHub repository2

3. The best results is a black square with bold, white font inside. After analyzing all

datasets, the results shown in Fig. 4.3 proved that the parameters achieving the highest

BAC, Gmean, and Recall are eta_c = 5 and eta_m = 5. Precision is not the highest

for these values, but the metric equal 0.916 are not much worse.

Next, the number of iterations of bootstraps and the percent of selected features were

tested, and ecoli-0-3-4-7_vs_5-6 dataset is shown in Fig. 4.4. This situation is similar to

the previous one, BAC, Gmean, and Recall indicate the highest metrics for bootstrap = 5

and features = 75%.

4.3.2 Experiment 2: Comparison of three variants of SEMOOS

Based on the parameters selected in the previous experiment, tests are conducted com-

paring the proposed SEMOOS, SEMOOSb, and SEMOOSbp methods. The results from

the folds and all datasets are averaged, and Wilcoxon rank-sum statistical tests are per-

formed. In the figures of the Wilcoxon test (Fig. 4.5, 4.6), rows are different metrics

(BAC, Gmean, Recall, Precision), and columns are labeled with methods. The green

color means that the method wins, yellow – ties, and red – loses to the method located

at the bar on the chart. The black dashed line indicates the statistical significance of

the method as winning. Fig. 4.5 shows a test for datasets with the Imbalance Ratio

of less than 9. It can be noticed that SEMOOS and SEMOOSbp win with statistical
2https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment0_set_crossmut/grid/

plots
3https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment0_set_featboot/grid/

plots

https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment0_set_crossmut/grid/plots
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment0_set_crossmut/grid/plots
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment0_set_featboot/grid/plots
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment0_set_featboot/grid/plots

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 62

2 5 10 20
Eta_c

20

10

5

2

Et
a_
m

0.776 0.777 0.782 0.780

0.772 0.768 0.778 0.789

0.774 0.797 0.785 0.781

0.783 0.773 0.769 0.769

BAC

2 5 10 20
Eta_c

20

10

5

2

Et
a_
m

0.743 0.746 0.750 0.749

0.737 0.731 0.746 0.761

0.740 0.771 0.756 0.749

0.753 0.738 0.734 0.732

Gmean

2 5 10 20
Eta_c

20

10

5

2

Et
a_
m

0.558 0.562 0.569 0.565

0.550 0.542 0.562 0.585

0.554 0.600 0.577 0.569

0.573 0.554 0.546 0.542

Recall

2 5 10 20
Eta_c

20

10

5

2

Et
a_
m

0.910 0.904 0.913 0.919

0.904 0.898 0.918 0.918

0.907 0.916 0.912 0.899

0.918 0.891 0.888 0.929

Precision

Figure 4.3: First pre-experiment: setting eta parameter for mutation and crossover (the best
result – the black square)

significance with the SEMOOSb method, especially in the first three metrics, i.e., BAC,

Gmean, and Recall. In Fig. 4.6, there are 59 datasets where IR > 9. Similar conclusions

can be drawn from it that SEMOOS is statistical significance better than SEMOOSb,

but the other methods are similar.

4.3.3 Experiment 3: Comparison with reference methods

A vital element of each method is to compare it with state-of-the-art methods to check

whether the proposed new method is statistically significantly better than the others.

This experiment will compare three proposed variants of the SEMOOS method and the

reference methods RS, SVM, FS, FSIRSVM. In the GitHub repository45, there are tables

with the exact results of the metrics averaged over the folds together with the standard

deviation for each dataset. The best result for a given dataset is marked in bold. Each
4https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_

cross_val_in_opt_9l/raw_results
5https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_

cross_val_in_opt_9h/raw_results

https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9l/raw_results
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9l/raw_results
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9h/raw_results
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9h/raw_results

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 63

0.25 0.5 0.75
Features

10

5

1

Bo
ot
st
ra
ps

0.644 0.739 0.741

0.703 0.732 0.758

0.684 0.723 0.750

BAC

0.25 0.5 0.75
Features

10

5

1

Bo
ot
st
ra
ps

0.492 0.650 0.686

0.596 0.670 0.709

0.552 0.647 0.704

Gmean

0.25 0.5 0.75
Features

10

5

1

Bo
ot
st
ra
ps

0.290 0.483 0.485

0.410 0.468 0.519

0.373 0.453 0.503

Recall

0.25 0.5 0.75
Features

10

5

1

Bo
ot
st
ra
ps

0.871 0.840 0.964

0.843 0.935 0.953

0.830 0.926 0.965

Precision

Figure 4.4: Second pre-experiment: setting iteration of Bootstrapping and the percent of selected
features (the best result – the black square)

0 10
SEMOOSbp
SEMOOSbBAC

SEMOOSSEMOOSSEMOOSSEMOOS
BACBAC

0 10
SEMOOSbp
SEMOOS

SEMOOSbSEMOOSbSEMOOSbSEMOOSb

0 10
SEMOOSb
SEMOOS

SEMOOSbpSEMOOSbpSEMOOSbpSEMOOSbp

0 10
SEMOOSbp
SEMOOSbGMEANGMEANGMEAN

0 10
SEMOOSbp
SEMOOS

0 10
SEMOOSb
SEMOOS

0 10
SEMOOSbp
SEMOOSbRECALLRECALLRECALL

0 10
SEMOOSbp
SEMOOS

0 10
SEMOOSb
SEMOOS

0 10
SEMOOSbp
SEMOOSbPRECISIONPRECISIONPRECISION

0 10
SEMOOSbp
SEMOOS

0 10
SEMOOSb
SEMOOS

Figure 4.5: Wilcoxon rank-sum test of proposed methods for datasets with IR < 9 (green –
win, yellow – tie, red – loss)

table contains a different metric. The results of the proposed methods are compared

with the reference ones. Sometimes, the quality is slightly higher or lower, but it is not

easy to pinpoint a winning method.

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 64

0 20 40
SEMOOSbp
SEMOOSbBAC

SEMOOSSEMOOSSEMOOSSEMOOS
BACBAC

0 20 40
SEMOOSbp
SEMOOS

SEMOOSbSEMOOSbSEMOOSbSEMOOSb

0 20 40
SEMOOSb
SEMOOS

SEMOOSbpSEMOOSbpSEMOOSbpSEMOOSbp

0 20 40
SEMOOSbp
SEMOOSbGMEANGMEANGMEAN

0 20 40
SEMOOSbp
SEMOOS

0 20 40
SEMOOSb
SEMOOS

0 20 40
SEMOOSbp
SEMOOSbRECALLRECALLRECALL

0 20 40
SEMOOSbp
SEMOOS

0 20 40
SEMOOSb
SEMOOS

0 20 40
SEMOOSbp
SEMOOSbPRECISIONPRECISIONPRECISION

0 20 40
SEMOOSbp
SEMOOS

0 20 40
SEMOOSb
SEMOOS

Figure 4.6: Wilcoxon rank-sum test of proposed methods for datasets with IR > 9 (green –
win, yellow – tie, red – loss)

Therefore, Wilcoxon statistical tests showed how many datasets each proposed method

won. As in the previous section, the figures are grouped by Imbalance Ratio above or

below 9. Each SEMOOS variant is compared to all reference methods for the five metrics.

All SEMOOS variants work similarly in Fig. 4.7, and they are statistically significantly

better than RS and FSIRSVM for BAC, Gmean, and Recall metrics. They also achieved

many wins compared to the RS method. However, only SEMOOS for the Recall metric

shows a statistically significant win.

The results in Fig. 4.8 differ slightly for data with high imbalance. There are many more

datasets in this case. All variants of the SEMOOS method win with static significance

with the RS method for BAC, Gmean, and Recall metrics. There are also fewer draws

between the methods for these three metrics. For the Precision metric, all variants of

the SEMOOS method win with statistical significance over the RS method and tie with

the remaining ones on many datasets. An important goal for us was to correctly identify

the minority class that is represented by Recall.

Analysis of the non-dominated solution set in the objective functions space is presented

in Fig. 4.9. Triangles represent the reference methods. Our method proposals fall

into two categories: the method name with PF (non-dominated set), and the method

name alone is the quality of the final constructed ensemble. These scatter plots show

how the non-dominated solutions are located relative to the final built ensembles and

the reference methods. Fig. 4.9a shows an exemplary broad non-dominated set, which

provides more diverse models. The reference methods are behind the non-dominated

solutions; when comparing them to ensembles, they obtain a lower Precision value. Fig.

4.9b shows more focused non-dominated solutions than Fig. 4.9a. SEMOOS variants

obtain a similar value for both metrics and win over the reference methods. In these

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 65

0 10
FSIRSVM

FS
SVM
RS

BAC

SEMOOSSEMOOSSEMOOSSEMOOS

BACBAC

0 10
FSIRSVM

FS
SVM
RS

SEMOOSbSEMOOSbSEMOOSbSEMOOSb

0 10
FSIRSVM

FS
SVM
RS

SEMOOSbpSEMOOSbpSEMOOSbpSEMOOSbp

0 10
FSIRSVM

FS
SVM
RS

GMEANGMEANGMEAN

0 10
FSIRSVM

FS
SVM
RS

0 10
FSIRSVM

FS
SVM
RS

0 10
FSIRSVM

FS
SVM
RS

RECALLRECALLRECALL

0 10
FSIRSVM

FS
SVM
RS

0 10
FSIRSVM

FS
SVM
RS

0 10
FSIRSVM

FS
SVM
RS

PRECISIONPRECISIONPRECISION

0 10
FSIRSVM

FS
SVM
RS

0 10
FSIRSVM

FS
SVM
RS

Figure 4.7: Wilcoxon rank-sum test for datasets with IR < 9 (green – win, yellow – tie, red –
loss)

0 20 40
FSIRSVM

FS
SVM
RS

BAC

SEMOOSSEMOOSSEMOOSSEMOOS

BACBAC

0 20 40
FSIRSVM

FS
SVM
RS

SEMOOSbSEMOOSbSEMOOSbSEMOOSb

0 20 40
FSIRSVM

FS
SVM
RS

SEMOOSbpSEMOOSbpSEMOOSbpSEMOOSbp

0 20 40
FSIRSVM

FS
SVM
RS

GMEANGMEANGMEAN

0 20 40
FSIRSVM

FS
SVM
RS

0 20 40
FSIRSVM

FS
SVM
RS

0 20 40
FSIRSVM

FS
SVM
RS

RECALLRECALLRECALL

0 20 40
FSIRSVM

FS
SVM
RS

0 20 40
FSIRSVM

FS
SVM
RS

0 20 40
FSIRSVM

FS
SVM
RS

PRECISIONPRECISIONPRECISION

0 20 40
FSIRSVM

FS
SVM
RS

0 20 40
FSIRSVM

FS
SVM
RS

Figure 4.8: Wilcoxon rank-sum test for datasets with IR > 9 (green – win, yellow – tie, red –
loss)

examples, the methods score is both high Precision and Recall, but this is not a rule for

all datasets.

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 66

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

SEMOOS PF
SEMOOS
SEMOOSb PF
SEMOOSb
SEMOOSbp PF
SEMOOSbp
RS
SVM
FS
FSIRSVM

(a) Dataset glass-0-1-2-3_vs_4-5-6

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

SEMOOS PF
SEMOOS
SEMOOSb PF
SEMOOSb
SEMOOSbp PF
SEMOOSbp
RS
SVM
FS
FSIRSVM

(b) Dataset vehicle0

Figure 4.9: Scatter plots with non-dominated solutions and reference methods

4.3.4 Experiment 4: Evaluating SEMOOS ensemble diversity

The last experiment focuses on evaluating the diversity of models in the ensemble. We

conducted tests for four diversity metrics proposed in [82] for three SEMOOS variants

and one reference ensemble RS. Fig. 4.10 shows the Q-statistic metric, while all other

metrics are available on the remote GitHub repository6 7.
6https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_

cross_val_in_opt_9h/diversity_plot
7https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_

cross_val_in_opt_9l/diversity_plot

https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9h/diversity_plot
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9h/diversity_plot
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9l/diversity_plot
https://github.com/w4k2/SEMOOS_cv/tree/main/results/experiment_server/experiment5_cross_val_in_opt_9l/diversity_plot

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 67

Q-statistic is a pairwise diversity measure. It can assess two classifier outputs and return

the decision on their similarity. Q is in the range from −1 to 1, where Q = 0 means that

classifiers are statistically independent; Q < 0 – classifiers make mistakes on different

objects; Q > 0 – classifiers correctly recognize the same objects.

From Fig. 4.10a, it may be concluded that the method diversity hardly differs for data

with a slight imbalance. However, these differences are significant for a more significant

imbalance (Fig. 4.10b). The result of the SEMOOS method is closest to the value 0,

which means that the models in this method are the most diverse, compared to RS, the

difference is 0.3.

SEMOOS SEMOOSb SEMOOSbp RS
Methods

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
st

at
ist

ic

(a) Datasets with IR < 9

SEMOOS SEMOOSb SEMOOSbp RS
Methods

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
st

at
ist

ic

(b) Datasets with IR > 9

Figure 4.10: Diversity measure: Q statistic

4.4 Lessons learned

Let us try to answer the research questions considering the results obtained from the

experiments.

RQ1: What is the impact of the SEMOOS ’s parameters (especially Bootstrap-

ping and Pruning) on its quality?

During pre-experiments, four parameters were examined: eta_c for crossover and

eta_m for mutation, the number of Bootstrap iterations, and the number of fea-

tures. The quality of the eta parameter for both genetic operators depends on the

selected metric. The most significant difference between the best and worst results

is 0.3, but it is usually only a few hundredths. Combining different values of the

eta_c and eta_m parameters does not give unequivocal results. The analysis of

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 68

these cases showed that good results were obtained for the values of eta_c = 5

and eta_m = 5. It is easier to draw the following conclusions for the other two

parameters. The greater the number of features selected, the higher the value of

most metrics. The results are the worst for the 1 and 10 iterations of Bootstrapping.

Therefore, we selected 75% of the features and five iterations of Bootstrapping for

further experiments to obtain the highest classification quality. Bootstrapping and

Pruning as parameters of the SEMOOS method improve the quality of the tested

metric.

RQ2: How do variants of the SEMOOS method affect classification quality?

None of the proposed methods shows a statistically significant difference compared

to the others. Therefore, we included all three variants in further experiments.

However, based on the presented statistical test results, SEMOOS and SEMOOSbp

are better than the SEMOOSb for all datasets.

RQ3: Can SEMOOS methods outperform state-of-the-art algorithms?

Each variant of the SEMOOS method has been compared with four state-of-the-

art methods, and the statistical test results for each SEMOOS variant are similar

if we consider the number of wins. However, depending on the level of dataset

imbalance, the results vary. For datasets with the Imbalance Ratio below 9, the

proposed methods exceed the FSIRSVM and RS methods with statistical signifi-

cance. However, statistical significance is obtained for the Imbalance Ratio above

9 for the RS algorithm.

RQ4: What is diversity of SEMOOS ensemble compared to the reference

methods?

The last element of the research shows that all proposed methods are more diver-

sified than the Random Subspace (RS) method. When analyzing the figure with a

greater Imbalance Ratio with a larger number of datasets, it is noticeable that the

SEMOOS method works best.

The main goal of this work was to use multi-objective optimization (NSGA-II) in the

form of two independent fitness functions, Precision and Recall, to classify imbalanced

data. Three classifiers ensemble using SVM as a base model were proposed: SEMOOS,

SEMOOSb, and SEMOOSbp. SEMOOS is a basic version that adds all SVM mod-

els obtained from optimization. SEMOOSb has the additional option of Bootstrapping,

i.e., resampling a dataset with replacement is performed to get more samples from one

dataset. The last version is SEMOOSbp, and the method includes both the Bootstrapping

and Pruning needed to remove redundant models from the ensemble. The experiments

were performed according to the experimental protocol on 78 imbalanced datasets. First,

Chapter 4 – SVM Ensemble with Multi-Objective Optimization Selection 69

SEMOOS hyperparameters were set to select the parameter values that produce the best

results for this kind of data. Then, the three versions of the SEMOOS method were com-

pared with each other, but none of the methods showed statistical significance. Therefore,

all versions were selected for further research. The main experiment was to compare the

proposed methods with various state-of-the-art methods, such as single SVM classifier,

classifier ensemble (RS), and two methods using feature selection (FS and FSIRSVM).

Statistical tests showed that the SEMOOS variants outperform the RS and FSIRSVM

methods with statistical significance. The work’s last element was to compare models’

diversity in ensemble methods. The presented results show that the proposed methods

are more diversified than the state-of-the-art solutions.

Chapter 5

Ensemble learning on feature

subspace methods

This chapter presents two ensemble classifiers built on decision tree and feature
subspaces found by optimization algorithms. The first classifier uses Differential
Evolution as a single-criteria algorithm, and the second – MOEA/D as a multi-
objective algorithm. Each proposed approach presents a description of the method,
its computational complexity, and experimental evaluation with statistical analysis.
The conducted experiments allow for answering the formulated research questions
summarizing the proposed methods. The questions concern the impact of hyper-
parameters, optimization criteria and their number, the non-dominated solution
characteristics, and the overall performance of the proposed methods compared to
reference methods.

5.1 DE-Forest – optimized decision tree ensemble

Classifier ensembles are one of the most promising directions in data classification. The

critical problem is to ensure an adequate diversity level of the base classifiers included in

the ensemble. One of the most popular approaches is manipulating the base classifiers’

input, i.e., vertical or horizontal partitioning. While horizontal partitioning does not

yield good results, attribute selection is one of the most promising techniques [82]. The

most popular approach is random attribute selection proposed in Random Subspace [64]

and further developed for Random Forest (rf) [19], where base classifiers were decision

trees (dt). Further, they are trained on bootstrapped samples to boost the diversity

of the individual predictors. The selection of classifiers for a pool, i.e., the attribute

selection for each model, is random, which may lead to a poor-quality ensemble in a

worst-case scenario. The random nature of the described approaches may also affect

71

Chapter 5 – Ensemble learning on feature subspace methods 72

their stability. Hence, it seems an attractive approach to propose a feature selection

for each base classifier in the optimization process. It guarantees a qualitatively better

choice than the random search, e.g., by Random Forest.

Let us propose the method DE-Forest [57] – the ensemble consisting of optimized decision

tree classifiers using Differential Evolution. DE selects the best set of decision trees that

uses chosen attributes. As the fitness function, a performance metric could be used, e.g.,

BAC, Gmean, or AUC. The choice of the metric is one of the DE-Forest parameters. The

d×n dimensional vector PS represents a feature selection. d is the number of attributes

and n stands for ensemble size. Thus, the PS[k] describes if the
(
⌈kd⌉
)
th decision tree

uses the
(
k − ⌊kd⌋d

)
th attribute.

The proposed algorithm can also employ dataset bootstrapping to increase the diversity

of the returned decision trees as well as classifier ensemble pruning techniques. The use

of them is also DE-Forest parameter.

Figure 5.1 and Algorithm 5.1 present the DE-Forest. Let us briefly describe the primary

step of the proposed method. The ensemble uses base classifiers returned from the

optimization process using the learning set LS. If bootstrapping is disabled (step 2.),

then there is additional 5× 2 CV within the DE optimization. It ensures that the input

data is split into training and test data to evaluate the classifiers properly. In contrast,

cross-validation is no longer necessary with bootstrapping enabled (step 5.) because

there are B subsets from the dataset randomly selected with replacement (step 8.).

Then, optimization using the DE algorithm is used (step 10). Each population in DE

consists of d × n values. The algorithm searches for the population by crossover and

evaluates it through the fitness function. Optimization runs until the maximum number

of populations is reached and returns a solution (PS – a vector list). Because DE returns

solutions represented by real numbers as shown in Figure 5.2, we have to binarize them

using simple thresholding (step 13.). In step 11., j is a consecutive vector, and in step

12., m is a consecutive bit in the vector. The thresholding process changes values in the

vector in such a way: if the value is greater than 0.5 for a given feature – it is selected.

Otherwise, the feature is not selected. After this process, a vector consisting of True and

False values is partitioned into subspaces for each model in the ensemble. A single model

is trained on the feature subspace (step 15.) and added to the ensemble (step 16.). An

additional option is model pruning (step 19.). The BAC metric is calculated for each

model and then added to the list MB (step 20.), which is sorted descending – MS (step

21.). The p parameter determines the percentage of models removed from the ensemble

from the end of the MS list. The method’s output is the ensemble classifier (step 22.).

Chapter 5 – Ensemble learning on feature subspace methods 73

Algorithm 5.1: DE-Forest method
Input:
LS = {(x1, i1), (x2, i2), . . . , (xN , iN)} – learning set
TrainDT () – DT classifier training method based on the selected subset of features
Bootstrapping – boolean parameter Bootstrapping

Symbols:
B – number of bootstrapped datasets
n – number of models in the ensemble
Bootstrapping – boolean parameter stands for applying bootstrapping
Pruning – boolean parameter stands for applying ensemble pruning

Output:
Π – pool of DT base classifiers

1: if not Bootstrapping then
2: B ← 1
3: end if
4: for i = 1 to B do
5: if Bootstrapping then
6: Si ← resampling with replacement from LS
7: else
8: Si ← LS
9: end if

10: PS ← Optimization(Si) ▷ PS is (f ∗ n) dimensional vector
11: for j = 1 to n do
12: for m = 1 to f do
13: PS[j +m− 2]← ⌈PS[j +m− 2]− 0.5⌉
14: end for
15: DT ← TrainDT ([PS[(j − 1) ∗ f + 1], ..., PS[j ∗ f]]
16: Π← Π ∪DT (x̂j)
17: end for
18: end for
19: if Pruning then
20: MB ← calculate metric for each DT (x̂) in Π
21: MS ← sort MB array in descending order
22: Π← Π−DT (x̂) ▷ Remove p% models with the worst metric based on MS
23: end if

Chapter 5 – Ensemble learning on feature subspace methods 74

DE-Forest

DE optimization

Fitness function
evaluation (BAC, G-

MEAN or AUC)

Solution

s = pop_size
True

Initial population:

s = s+1

False

Learning base
models on selected

features

Classifier
ensemble

Dividing the feature
vector into
subspaces

bootrapping

False

True

pruning

False

True

Subset of datasetCross-validation

Converting the
representation

Deleting
p models

Input:
dataset

Output:
final ensemble

Population:

Genetic
operators

Figure 5.1: The DE-Forest method diagram

Computational complexity analysis

To analyze the computational complexity of the proposed method, let us first introduce

the complexity of the CART Decision Tree – O(dN × log2N), where d is the number of

attributes, and N is the number of samples [124]. Thus, the computational complexity

of training n DT s is O(ndN × log2N). Additionally, since the computational complexity

of Differential Evolution is O(P × dim × Gmax), where P – the population size, dim –

the dimension of the searched space, and Gmax is the fixed number of generations [34].

Then, the overall computational complexity of the DE-Forest is O(ndN × log2N + P ×
dim×Gmax).

Chapter 5 – Ensemble learning on feature subspace methods 75

Representation example

0.47717582 0.60756837 0.00865658 0.76877852
0.48371613 0.78133213

 0.52932508 0.05367786 0.18205767 0.52411076

Solution from DE:

[0, 1, 0, 1, 0, 1, 1, 0, 0, 1]

Solution after binarization:

value > 0.5
True

feature = 1

False

feature = 0

Figure 5.2: The representation example

5.1.1 Experimental evaluation

We performed a series of computer experiments to verify the quality of the proposed

method. In the course of them, we intended to answer the following research questions:

RQ1: What is the impact of hyperparameters on the proposed method and

classification quality?

RQ2: How do various optimization criteria affect the DE-Forest method per-

formance?

RQ3: Can the proposed algorithm outperform state-of-the-art methods?

Setup

This section thoroughly overviews all the constituents needed to conduct reliable exper-

iments. Thanks to this description, it is possible to reproduce the research.

The implementation of methods and the experimental environment are done using the

Python programming language and a few libraries: Pymoo [14], scikit-learn [114], Imbalanced-

learn [86], Numpy [109], Matplotlib [67], Pandas [149]. Complete source code, sufficient

to repeat the experiments, was made available at GitHub repository1. Additionally, we

provided the complete results of the experiments that were conducted.

All used datasets are obtained from Keel-dataset repository [4], presented in Table 5.1

sorted by the Imbalance Ratio. Columns in this table are as follows: ID – the number of

datasets, Dataset – the name of the dataset, IR – Imbalance Ratio, Ex. – the number of

instances, Attr. – the number of attributes. These are two-class problems. Datasets are
1https://github.com/w4k2/DE-Forest

https://github.com/w4k2/DE-Forest

Chapter 5 – Ensemble learning on feature subspace methods 76

used to relate to problems such as diseases, the quality of the wine, types of glass, and

much more. The problem of complex, imbalanced data dictates the selection of these

datasets. The selected datasets have a wide range of parameters, particularly the IR,

and are considered benchmarks for this problem [107].

Table 5.1: Description of datasets

id dataset ir ex. attr.

1 glass1 1.82 214 9

2 vehicle3 1.92 846 18

3 vehicle1 1.97 846 18

4 haberman 2.78 306 3

5 yeast3 8.10 1484 8

6 page-blocks0 8.79 5472 10

7 yeast-2_vs_4 9.08 514 8

8 ecoli-0-6-7_vs_3-5 9.09 222 7

9 glass-0-1-5_vs_2 9.12 172 9

10 yeast-0-3-5-9_vs_7-8 9.12 506 8

11 yeast-0-2-5-6_vs_3-7-8-9 9.14 1004 8

12 ecoli-0-1_vs_2-3-5 9.17 244 7

13 ecoli-0-2-6-7_vs_3-5 9.18 224 7

14 ecoli-0-6-7_vs_5 10.00 220 6

15 glass-0-1-6_vs_2 10.29 192 9

16 ecoli-0-1-4-7_vs_2-3-5-6 10.59 336 7

17 glass-0-1-4-6_vs_2 11.06 205 9

18 cleveland-0_vs_4 12.31 173 13

19 page-blocks-1-3_vs_4 15.86 472 10

20 abalone9-18 16.40 731 8

id dataset ir ex. attr.

21 glass-0-1-6_vs_5 19.44 184 9

22 yeast-2_vs_8 23.10 482 8

23 flare-F 23.79 1066 11

24 yeast4 28.10 1484 8

25 winequality-red-4 29.17 1599 11

26 poker-9_vs_7 29.50 244 10

27 winequality-white-9_vs_4 32.60 168 11

28 abalone-17_vs_7-8-9-10 39.31 2338 8

29 abalone-21_vs_8 40.50 581 8

30 yeast6 41.40 1484 8

31 abalone-19_vs_10-11-12-13 49.69 1622 8

32 kr-vs-k-zero_vs_eight 53.07 1460 6

33 ecoli1 63.75 336 7

34 winequality-red-3_vs_5 68.10 691 11

35 ecoli2 70.00 336 7

36 abalone-20_vs_8-9-10 72.69 1916 8

37 kddcup-buffer_overflow_vs_back 73.43 2233 41

38 poker-8_vs_6 85.88 1477 10

39 kddcup-rootkit-imap_vs_back 100.14 2225 41

40 abalone19 129.44 4174 8

The methods, their abbreviations, and the parameters used in the experiments are pre-

sented below.

• DT – CART Decision Tree Classifier [20]. We used its scikit-learn implementation

with default parameters such as:

– criterion of split – Gini impurity

– maximum number of features – None indicates no maximum value

• DE-Forest – Differential Evolution Forest ensemble with DT as the base classi-

fication model (the same default parameters as presented earlier). Experiment 1

set hyperparameters of DE-Forest : bootstrapping, metric’s name, the number of

classifiers, and population size. Another hyperparameter is pruning, but it was not

used in the presented experiments.

Chapter 5 – Ensemble learning on feature subspace methods 77

• RandomFS – Random Forest native implementation on the basis of the original

paper [19]. This implementation differs from the RF implementation from scikit-

learn. One of the differences is prediction, scikit-learn RF combines classifiers by

averaging their probabilistic prediction, but it used majority voting in the original

idea. In RandomFS, the parameter max features is equal to
√
d, where d – the

number of features. For each model, features are chosen randomly. DT (with the

same default parameters presented earlier) has been chosen. No bootstrapping has

been applied.

• RandomFS_b – the method described above (RandomFS) with the bootstrapping

option set to True.

Optimization algorithm Differential Evolution (DE) that we used in our method based

on Pymoo implementation, with the following parameters:

• population size is set during experiment 1

• sampling is Latin Hypercube Sampling (LHS)

• common variant is DE/rand/1/bin, where rand is selection individuals to be per-

turbed, 1 is the number of difference vector and bin is the crossover type

• Crossover Constant is CR = 0.9

Methods compared during experiments based on stratified datasets using 5× 2 CV [37].

We chose the widely used metrics to evaluate all methods: Balanced Accuracy (BAC),

Geometric Mean Score (Gmean), Recall, Specificity and Precision. Gmean is based on

Precision and Recall metrics.

To summarize the results for all datasets, the Wilcoxon statistical rank-sum test at a

significance level of 0.05 was chosen [133]. The repository linked in Section 5.1.1 shows

more accurate results for each dataset.

5.1.2 Results

The section presents the tuning of parameters in experiment 1 and experiment 2, com-

paring the proposed method and reference methods.

Chapter 5 – Ensemble learning on feature subspace methods 78

Experiment 1 – tuning hyperparameters using SMAC

Before proceeding with the main experiments comparing the proposed method and refer-

ence methods, it is necessary to select hyperparameters that will make the method obtain

the best possible quality. For this purpose, the SMAC3 library version V2.0.0a1 was used

[68, 94]. This tool uses Bayesian Optimization and aggressive racing mechanism to opti-

mize parameters. It can perform optimization in many instances. In the case of the ex-

periment, the instances are five different datasets (glass0, kddcup-rootkit-imap_vs_back,

kr-vs-k-zero_vs_eight, page-blocks-1-3_vs_4, winequality-red-8_vs_6-7). The method

hyperparameters selected for optimization are listed in Table 5.2, which includes the

range of each parameter and the value after using the SMAC algorithm. Only one of the

values listed in the bootstrap and metric_name hyperparameters are selected. Gmean

metric is indicate as GM. However, ranges are given in the other two hyperparameters,

and SMAC independently selects numbers from this range. A maximum value of 25

determines the number of classifiers in the ensemble because a larger number of models

does not indicate a significant improvement in the algorithm’s quality, as noted by Lin et

al. in the article [93] after conducting an experiment determining the number of models

in the ensemble.

Table 5.2: Hyperparameters optimization

Hyperparameters Range Values

bootstrap {True, False} True

metric_name {BAC, AUC, GM } BAC

n_classifiers [5, 25] 15

p_size [100, 500] 107

Figure 5.3 shows the dependence of the four examined hyperparameters on the BAC

metric in subsequent iterations of the SMAC algorithm. The algorithm searches the

solution space in each iteration and selects a value for each parameter. As a result of

the SMAC algorithm, those parameter values are selected to obtain the highest BAC

metric value. Each subgraph concerns one hyperparameter being optimized, the name

and possible values of which are on the left y-axis. The hyperparameter value in each

iteration is a stem plot – blue lines perpendicular to a baseline at each location from the

baseline to heads, and a circle marker there. On the right y-axis is the BAC performance,

and the solid purple line indicates the value of this metric in a given iteration. The

iteration number of the SMAC algorithm is marked on the x-axis. In the case of this

experiment, it is the seventh iteration, where BAC = 0.858. Comparing the second

iteration, where the quality is very similar, the number of classifiers remains similar (13

classifiers), but the remaining hyperparameters have entirely different values. Hence, the

Chapter 5 – Ensemble learning on feature subspace methods 79

appropriate number of classifiers is significant in obtaining a high-quality metric. Other

iterations did not improve the metric.

2 4 6 8 10 12
Iterations

0

5

10

15

20

25

n_
cla

ss
ifi

er
s

The number of classifiers

2 4 6 8 10 12
Iterations

0

100

200

300

400

p_
siz

e

Population size

2 4 6 8 10 12
Iterations

False

True

Bo
ot

st
ra

p

Bootstrapsping

2 4 6 8 10 12
Iterations

AUC

GM

BAC

m
et

ric
_n

am
e

Metric name

0.5

0.6

0.7

0.8

0.9

1.0

BA
C

sc
or

e

0.5

0.6

0.7

0.8

0.9

1.0

BA
C

sc
or

e

0.5

0.6

0.7

0.8

0.9

1.0

BA
C

sc
or

e

0.5

0.6

0.7

0.8

0.9

1.0

BA
C

sc
or

e

SMAC optimization

Figure 5.3: SMAC optimization analysis

Experiment 2 – comparative study

The main experiment aimed to compare the quality of the proposed method in the version

with constraints and without, a Random Forest classifier (RandomFS) with bootstrap-

ping and without, and (DT) learned on all attributes. The exact tabular results are in

the repository linked in Section 5.1.1. As an illustration, the individual fold scores for

each dataset were averaged and presented using the Wilcoxon rank-sum statistical test.

The proposed method is compared with three state-of-the-art methods whose names are

on the left in each small figure. Green in the figure means that the DE-Forest method

outperformed the method in a given row, yellow means a tie, and red means a loss.

The black dashed vertical line indicates the level of statistical significance. The x-axis

represents the number of datasets.

Figure 5.4 shows the results for the proposed method without any constraints within

the DE optimization. After setting the hyperparameters in the previous experiment,

the DE-Forest method has bootstrapping set to True. Comparing it with RandomFS_b,

the BAC, Specificity, and Precision metrics, the method achieves better results with

statistical significance. Compared to the RandomFS method without bootstrapping,

Chapter 5 – Ensemble learning on feature subspace methods 80

the proposed method wins for over half of all datasets. DE-Forest is better with static

significance than the DT method for Gmean, Recall, and Specificity metrics.

On the other hand, high scores for some metrics of DT indicate favor towards the ma-

jority class, which is not desirable when classifying imbalanced data. The runtime for all

methods based on this experiment is in the repository linked in Section 5.1.1. DE-Forest

does not achieve the best times because optimization is time-consuming compared to

other methods. Nevertheless, the DE algorithm searches for feature subspaces to build

models that achieve the best possible results.

Figure 5.4: The Wilcoxon test of DE-Forest method with reference methods (green – win, yellow
– tie, red – loss)

The second tested case is the DE-Forest method, which constrains the number of features

to 50% of the original set of features within the DE optimization. Furthermore, the

optimization does not search the entire subspace but is limited to half the features

in advance. The advantage of this approach is the reduction of search time by the

optimization algorithm, and the entire calculations are faster than DE-Forest without

constraints. The reference methods and hyperparameters of the DE-Forest method are

the same as in the previous case. Analyzing the individual metrics in Figure 5.5, it can

be concluded that the classification quality is not much worse than the unconstrained

version of the method. For the RandomFS and RandomFS_b methods, the number of

wins does not fall below 20 datasets for each metric. DE-Forest only wins against DT

for Recall with statistical significance.

5.1.3 Lesson learned

Considering the presented results, let us answer the research questions.

RQ1: What is the impact of hyperparameters on the proposed method and

classification quality?

Chapter 5 – Ensemble learning on feature subspace methods 81

Figure 5.5: The Wilcoxon test of DE-Forest method with constraints inside the optimization
with reference methods (green – win, yellow – tie, red – loss)

Bayesian Optimization showed the dependence of hyperparameter values and the

impact of settings on the final quality of the model. Depending on the input data,

the proposed method may take different parameters. When testing the method on

imbalanced data, specific hyperparameters were selected.

RQ2: How do various optimization criteria affect the DE-Forest method per-

formance?

DE optimization tested three criteria metrics. The fitness function (criteria) was

one of the method’s hyperparameters. The values were selected during experiment

1. The most common metric with the highest quality in experiment 1 was BAC

and AUC. The final metric selection is BAC.

RQ3: Can the proposed algorithm outperform state-of-the-art methods?

The proposed algorithm achieves good results compared to the reference meth-

ods. DE-Forest outperforms with statistical significance with at least one reference

method for each metric. When designing our method, we wanted an acceptable

classification of imbalanced data, primarily a minority class, with which many

classifiers do not cope well. The DE-Forest method obtains satisfactory results by

analyzing the Recall metric reflecting the classification of the minority (positive)

class.

The section proposed a novel classifier ensemble training method DE-Forest. Ensemble

diversity was ensured by training each ensemble member on different attributes. Unlike

algorithms known from the literature, such as Random Forest, the selection of the features

was not random. Still, it resulted from an optimization algorithm based on Differential

Evolution approach. Such an approach made it possible to build an ensemble of decision

tree models based on regularly searched subsets of features, ensuring an appropriate

diversity of the individual models. A vital element of the experiments was tuning the

Chapter 5 – Ensemble learning on feature subspace methods 82

hyperparameters of the DE-Forest using Bayesian Optimization, which allowed obtaining

the best possible classifier for selected ranges of parameters and on selected imbalanced

datasets. Such a procedure is essential if the method has to be applied to a real-life

classification task. The experiments showed that the proposed approach achieves better

results with statistical significance than reference methods such as DT classifier and the

native Random Forest implementation. The promising results encourage us to continue

working on developing the proposed method. Despite DE-Forest receiving good quality

classifiers, it should be mentioned that the proposed metadata is characterized by high

computational complexity and thus requires significantly more computational resources

than reference.

Chapter 5 – Ensemble learning on feature subspace methods 83

5.2 MOOforest – multi-objective optimization to form de-

cision tree ensemble

An essential element of forming ensembles is to keep a diverse pool of base classifiers so

that the ensemble can leverage its strength. In the problem of imbalanced data, proper

classification of minority data is particularly important, with which many non-ensemble

classifiers cannot cope and direct their answers toward the majority class. One way to

ensure this is feature selection, where different feature subspaces from the dataset are

selected for each model. The primary method of randomly selecting attributes’ subspaces

is Random Forest [19]. The downside of this approach is randomness, which we do not

influence, and it can lead to lower quality metrics and, thus, worse classification. The

solution to this problem is the intelligent attribute selection done by single- or multi-

objective optimization (moo). Methods using one-criteria optimization only sometimes

give satisfactory results. When objectives conflict, an aggregated metric often used as

a single criterion does not offer the same capabilities as the moo approach. In moo,

optimizing for many often incompatible criteria is possible, and a compromise is found.

The solution is sought in the space of these criteria, and the moo algorithm returns a

set of solutions from which the user may choose the most compelling one. Increasingly,

moo optimization is used to train ensembles to classify imbalanced data.

The choice of the optimization algorithm is crucial to adequately searching the solution

space. Wojciechowski [151] analyzed this space by comparing known optimization algo-

rithms on many problems. The results are available in 2. The author compared, among

others, NSGA-II and MOEA/D. The results indicate that the MOEA/D algorithm pro-

duces solutions distributed more widely depending on the set reference directions vectors.

The solutions are not concentrated in one place, allowing for the building of a diverse

ensemble. Hence, it was decided to use MOEA/D in this research.

We propose the MOOforest [58] – classifier ensemble method using multi-objective op-

timization for imbalanced data classification. MOOforest employs multi-objective op-

timization, providing a diverse selection of feature subspaces for each DT model (base

classifier). Figure 5.6 presents a schema of the training model procedure, and Algorithm

5.2 explains the method in more detail. These elements will allow us to describe how

MOOforest works.

At first, the method gets learning set LS. Then, such a set is transferred to the MOEA/D

optimization algorithm with the appropriate parameters (step 2). To estimate classifier

performance, LS is divided into training and test sets using cross-validation. The popu-

lation x̂s of sth generation is a vector of size d×n, where d is the number of features for
2https://github.com/swojciechowski/pymoo-benchmark

https://github.com/swojciechowski/pymoo-benchmark

Chapter 5 – Ensemble learning on feature subspace methods 84

a given dataset, and n is the set number of models in the ensemble. The initial popula-

tion x̂0 is created during optimization algorithm initialization. The MOEA/D algorithm

looks for different vector values based on the fitness function (eq. 5.1) and strives to

maximize the Precision and Recall metrics simultaneously.

maximize F1(x̂) = Precision

maximize F2(x̂) = Recall
(5.1)

The one feature vector V is later selected using the PROMETHEE II algorithm (step

3) and is transformed into a binary representation to indicate which feature was chosen

unambiguously. Each real number in the vector is transformed binary representation,

i.e., 1 means that the feature has been selected, 0 to the contrary. The vector with the

solution V must be split into features for each model separately. Finally, the models are

trained on the found subspaces (step 8) and added to the ensemble (step 9). The output

of the algorithm is a classifier ensemble.

MOOforest

MOEA/D multi-objective optimization

Fitness function
evaluation

(Precision and Recall)

Pareto optimal set

s = n_gen
True

Initial population:

s = s+1

False

Learning base
models on selected

features

Classifier
ensemble

Dividing the
feature vector into

subspaces

Converting the
representation

Input:
learning set

Output:
final ensemble

Population:

Choosing one
solution from

Pareto set using
PROMETHEE

Figure 5.6: Diagram of proposed method.

Computational complexity analysis

The computational complexity of the proposed method consists of a few constituents.

The complexity of the CART Decision Tree is O(dN × log2N), where d is the number of

attributes, and N is the number of samples [124]. Thus, the computational complexity

Chapter 5 – Ensemble learning on feature subspace methods 85

Algorithm 5.2: MOOforest method
Input:
LS = {(x1, i1), (x2, i2), . . . , (xN , iN)} – learning set
TrainDT () – DT classifier training method based on the selected subset of features
PROMETHEE II – algorithm to choose one solution

Symbols:
n – number of models in the ensemble
d – number of features in the dataset

Output:
Π – pool of DT base classifiers

1: Π← ∅
2: PS ← Optimization(LS) ▷ PS is (d ∗ n) dimensional vector
3: V ← PROMETHEE II (PS)
4: for j = 1 to n do
5: for m = 1 to d do
6: V [j +m− 2]← ⌈V [j +m− 2]− 0.5⌉
7: end for
8: DT ← TrainDT ([V [(j − 1) ∗ d+ 1], ..., V [j ∗ d]]
9: Π← Π ∪DT (Vj)

10: end for

of training n decision trees is O(ndN × log2N). The main element of the computational

complexity of the method is the MOEA/D optimization algorithm, whose computational

complexity is O(MUT) – M is the number of objectives, U is the population size, T is

the size of the neighborhood [165]. In our case, M = 2, the complexity is O(2UT). The

entire computational complexity of the MOOforest method is O(ndN × log2N +MUT).

5.2.1 Experimental evaluation

The purpose of the experimental study is to answer the following research questions:

RQ1: What are the non-dominated solutions characteristics returned by MOOfor-

est?

RQ2: Does the number of optimization criteria significantly impact the final

quality of the method?

RQ3: Can the MOOforest outperform state-of-the-art methods?

Chapter 5 – Ensemble learning on feature subspace methods 86

Setup

The implementation of the experimental environment and methods are done using the

Python programming language and a few libraries: Pymoo [14], scikit-learn [114], Mat-

plotlib [67], Numpy [109], Pandas [149]. Complete source code, sufficient to repeat the

experiments, is available at GitHub repository3. Additionally, we provided the complete

results of the experiments that were conducted.

All used datasets are obtained from Keel-dataset repository [4], presented in Table 5.3

sorted by the Imbalance Ratio. Columns in this table are ID — the number of datasets,

Dataset — the name of the dataset, IR – Imbalance Ratio, Ex. -– the number of instances,

Attr. -– the number of attributes. These are binary problems.

Table 5.3: Description of datasets

id dataset ir ex. attr.

1 glass1 1.82 214 9

2 haberman 2.78 306 3

3 yeast3 8.10 1484 8

4 page-blocks0 8.79 5472 10

5 yeast-2_vs_4 9.08 514 8

6 ecoli-0-6-7_vs_3-5 9.09 222 7

7 glass-0-1-5_vs_2 9.12 172 9

8 yeast-0-3-5-9_vs_7-8 9.12 506 8

9 yeast-0-2-5-6_vs_3-7-8-9 9.14 1004 8

10 ecoli-0-1_vs_2-3-5 9.17 244 7

11 ecoli-0-2-6-7_vs_3-5 9.18 224 7

12 ecoli-0-6-7_vs_5 10.00 220 6

13 glass-0-1-6_vs_2 10.29 192 9

14 ecoli-0-1-4-7_vs_2-3-5-6 10.59 336 7

15 glass-0-1-4-6_vs_2 11.06 205 9

16 cleveland-0_vs_4 12.31 173 13

17 page-blocks-1-3_vs_4 15.86 472 10

18 abalone9-18 16.40 731 8

id dataset ir ex. attr.

19 glass-0-1-6_vs_5 19.44 184 9

20 yeast-2_vs_8 23.10 482 8

21 flare-F 23.79 1066 11

22 yeast4 28.10 1484 8

23 winequality-red-4 29.17 1599 11

24 poker-9_vs_7 29.50 244 10

25 winequality-white-9_vs_4 32.60 168 11

26 abalone-17_vs_7-8-9-10 39.31 2338 8

27 abalone-21_vs_8 40.50 581 8

28 yeast6 41.40 1484 8

29 abalone-19_vs_10-11-12-13 49.69 1622 8

30 kr-vs-k-zero_vs_eight 53.07 1460 6

31 winequality-red-3_vs_5 68.10 691 11

32 abalone-20_vs_8-9-10 72.69 1916 8

33 kddcup-buffer_overflow_vs_back 73.43 2233 41

34 poker-8_vs_6 85.88 1477 10

35 kddcup-rootkit-imap_vs_back 100.14 2225 41

36 abalone19 129.44 4174 8

The methods, their abbreviations, and the parameters used in the experiments:

• MOOforest – Multi-Objective Optimization Forest is the proposed method. The

number of base models is 15 classifiers, the same for the other reference methods.

• DT – CART Decision Tree Classifier [20]. We used its scikit-learn implementation

with default parameters such as:

– criterion of split – Gini impurity
3https://github.com/w4k2/MOOforest

https://github.com/w4k2/MOOforest

Chapter 5 – Ensemble learning on feature subspace methods 87

– maximum number of features – None indicates no maximum value

• DE-Forest – Differential Evolution Forest ensemble with DT as the base classifica-

tion model. It is our previous proposed method using single-objective optimization.

• RandomFS – based on the original article [19], RandomFS is a native implemen-

tation of Random Forest. The original concept relied on the majority vote. The

value of the RandomFS parameter max features is
√
d, where d is the total number

of features. Features are randomly picked for every model. DT as the base model

has been selected using the same pre-presented default settings. Bootstrapping has

not been used.

• RandomFS_b – the method described above (RandomFS) with the bootstrapping

option set to True.

The reference methods selected for the experiments correspond to or are part of the

proposed algorithm. DT is the base classifier used in MOOforest, so checking the DT

performance can indicate whether creating an ensemble improves. The second refer-

ence method is DE-Forest, a single-criteria version of MOOforest. In this case, checking

whether the multi-objective method can outperform the algorithm based on the aggre-

gated criterion is essential. The last benchmark algorithm is RandomFS in two versions,

i.e., Random Forest with or without bootstrapping. In this case, we inspect what wins:

randomly selected features (Random Forest) or optimized feature selection according to

two criteria (MOOforest).

MOOforest uses optimization algorithm MOEA/D, which is based on Pymoo implemen-

tation, with the following parameters: number of generation is 200, number of neighbors

is 15, sampling is Random, crossover is Simulated Binary, mutation is Polynomial.

Methods compared during experiments based on stratified datasets using 5× 2 CV [37].

We chose the widely used performance metrics to evaluate all methods: Balanced Accu-

racy (BAC), Geometric Mean Score (Gmean), Recall, Specificity, and Precision. Gmean

is based on Precision and Recall metrics. To summarize the results for all datasets, the

Wilcoxon statistical rank-sum test at a significance level of 0.05 was chosen [133].

5.2.2 Results

Since it is a multi-objective method, it returns a set of non-dominated solutions from

which the user can choose the solution appropriate to the criteria he has set. Fig. 5.7

and 5.8 show an example set of solutions for selected datasets. Presenting graphs for all

datasets is impossible because they are not average values. The solutions shown are in

Chapter 5 – Ensemble learning on feature subspace methods 88

Precision (x-axis) and Recall (y-axis) space. Blue points indicate different solutions. Fig.

5.7 shows the results for the winequality-white dataset. Even though, in this case, the

method returns over 40 solutions, their values are located in three points. The solution

set is not broad, unlike in the yeast dataset (Fig. 5.8). In this case, the algorithm found

more solutions in a shape similar to the rotated exponential function. The user can

choose the most essential solution because a larger pool of solutions is available. The

number and arrangement of solutions in the fitness functions space depend primarily

on the dataset and even on the selected part of the dataset after division using cross-

validation. Metric values also vary due to data difficulties.

0.65 0.70 0.75 0.80 0.85 0.90
Precision

0.66

0.68

0.70

0.72

0.74

Re
ca

ll

non-dominated solution set

Figure 5.7: Scatter plot of non-dominated solutions in Precision and Recall space – winequality-
white-9_vs_4 dataset

The final results averaged after cross-validation, and the standard deviation for the Recall

(Tab. 5.4) and Precision (Tab. 5.5) metrics. The best result is in bold 4. Only these

metrics are shown because they are used as criteria inside optimization. Other results are

included in the repository. Results of MOOforest are better than the reference methods

for about half of the datasets. Optimization returns non-dominated solutions in the

Precision and Recall space. The results presenting these solutions in figures are in the

repository. Depending on the dataset and the selected fold, the charts may differ in

the placement and number of non-dominated solutions. Some datasets give a broader

non-dominated solution set, while others have solutions in only a few points.
4Detailed results are available in the GitHub repository 5

Chapter 5 – Ensemble learning on feature subspace methods 89

0.88 0.90 0.92 0.94 0.96 0.98
Precision

0.55

0.60

0.65

0.70

0.75

0.80

Re
ca

ll

non-dominated solution set

Figure 5.8: Scatter plot of non-dominated solutions in Precision and Recall space – yeast-
2_vs_4 dataset

The summary results are presented in Fig. 5.9. The Wilcoxon statistical rank-sum test

for five metrics compares the proposed MOOforest method with state-of-the-art methods

on the left. The results have been averaged, and this ranking test shows wins in green,

ties in yellow, and losses in red. If the dashed line on the graph is crossed in green,

the MOOforest method won with statistical significance. The x-axis shows the number

of tested datasets. The best results can be seen with the aggregate metric Gmean.

The proposed method wins with statistical significance with four reference methods.

MOOforest wins over the RandomFS and RandomFS_b methods, also above the level of

statistical significance, for the remaining metrics (BAC, Specificity, Precision). On the

other hand, the Recall metric shows a significant advantage of the proposed method over

DT, which indicates a good classification of the minority class. The MOOforest method

classifies imbalanced data well. Bootstrapping in the case of the tested data does not

improve the classification quality at all, so this option was not used in the proposed

method.

Based on Fig. 5.9, we can compare the impact of the number of criteria on the clas-

sification quality. The proposed MOOforest method uses multi-objective optimization

and uses the basic Precision and Recall metrics as objectives. On the other hand, the

DE-Forest method is a single-criteria version where the aim is the aggregated Balanced

Accuracy metric. As previously described, MOOforest scores high on the Gmean metric,

so compared to the DE-Forest method, it wins by statistical significance. It is better for

Chapter 5 – Ensemble learning on feature subspace methods 90

Table 5.4: Results of Recall metric with the standard deviation, of all datasets sorted by IR. It is a
comparison between proposed method and reference methods. The highest result for each metric and
dataset is bold.

id MOOforest DT DE-Forest RandomFS RandomFS-b

1 0.795 ± 0.032 0.731 ± 0.026 0.787 ± 0.031 0.805 ± 0.046 0.797 ± 0.039

2 0.706 ± 0.034 0.654 ± 0.027 0.673 ± 0.025 0.724 ± 0.031 0.724 ± 0.012

3 0.939 ± 0.007 0.932 ± 0.007 0.936 ± 0.008 0.890 ± 0.001 0.891 ± 0.001

4 0.971 ± 0.003 0.965 ± 0.003 0.971 ± 0.003 0.968 ± 0.003 0.967 ± 0.004

5 0.947 ± 0.008 0.941 ± 0.011 0.950 ± 0.010 0.916 ± 0.011 0.924 ± 0.017

6 0.947 ± 0.018 0.937 ± 0.021 0.941 ± 0.014 0.909 ± 0.012 0.904 ± 0.016

7 0.895 ± 0.019 0.853 ± 0.033 0.895 ± 0.013 0.893 ± 0.016 0.897 ± 0.006

8 0.909 ± 0.004 0.855 ± 0.019 0.906 ± 0.010 0.902 ± 0.001 0.902 ± 0.002

9 0.923 ± 0.005 0.896 ± 0.010 0.927 ± 0.005 0.907 ± 0.003 0.905 ± 0.003

10 0.954 ± 0.012 0.936 ± 0.012 0.948 ± 0.013 0.937 ± 0.012 0.934 ± 0.015

11 0.938 ± 0.013 0.931 ± 0.016 0.930 ± 0.017 0.904 ± 0.018 0.914 ± 0.013

12 0.957 ± 0.015 0.950 ± 0.021 0.950 ± 0.014 0.918 ± 0.014 0.917 ± 0.010

13 0.881 ± 0.027 0.851 ± 0.035 0.909 ± 0.007 0.903 ± 0.015 0.914 ± 0.007

14 0.951 ± 0.010 0.936 ± 0.020 0.952 ± 0.009 0.923 ± 0.007 0.927 ± 0.006

15 0.900 ± 0.021 0.847 ± 0.029 0.912 ± 0.009 0.912 ± 0.013 0.918 ± 0.006

16 0.926 ± 0.014 0.908 ± 0.026 0.939 ± 0.015 0.927 ± 0.009 0.930 ± 0.009

17 0.995 ± 0.004 0.984 ± 0.011 0.991 ± 0.007 0.987 ± 0.004 0.986 ± 0.005

18 0.946 ± 0.007 0.917 ± 0.009 0.946 ± 0.004 0.940 ± 0.006 0.943 ± 0.004

19 0.958 ± 0.021 0.964 ± 0.026 0.961 ± 0.018 0.966 ± 0.011 0.957 ± 0.010

20 0.974 ± 0.005 0.953 ± 0.011 0.969 ± 0.009 0.959 ± 0.001 0.959 ± 0.000

21 0.957 ± 0.002 0.939 ± 0.010 0.947 ± 0.008 0.960 ± 0.001 0.959 ± 0.001

22 0.963 ± 0.004 0.947 ± 0.006 0.966 ± 0.003 0.966 ± 0.001 0.966 ± 0.001

23 0.963 ± 0.002 0.937 ± 0.011 0.967 ± 0.001 0.967 ± 0.001 0.967 ± 0.001

24 0.971 ± 0.010 0.963 ± 0.012 0.967 ± 0.000 0.971 ± 0.004 0.967 ± 0.000

25 0.974 ± 0.009 0.952 ± 0.018 0.968 ± 0.008 0.971 ± 0.008 0.967 ± 0.010

26 0.974 ± 0.003 0.962 ± 0.005 0.976 ± 0.001 0.975 ± 0.001 0.975 ± 0.000

27 0.977 ± 0.008 0.971 ± 0.005 0.977 ± 0.006 0.977 ± 0.007 0.976 ± 0.003

28 0.976 ± 0.004 0.968 ± 0.007 0.979 ± 0.003 0.977 ± 0.001 0.976 ± 0.001

29 0.978 ± 0.003 0.960 ± 0.007 0.980 ± 0.001 0.980 ± 0.001 0.980 ± 0.000

30 0.995 ± 0.003 0.996 ± 0.003 0.995 ± 0.003 0.982 ± 0.001 0.982 ± 0.001

31 0.982 ± 0.005 0.973 ± 0.006 0.985 ± 0.002 0.985 ± 0.002 0.986 ± 0.000

32 0.985 ± 0.002 0.979 ± 0.003 0.986 ± 0.001 0.986 ± 0.000 0.986 ± 0.000

33 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001

34 0.989 ± 0.002 0.980 ± 0.008 0.988 ± 0.001 0.988 ± 0.001 0.988 ± 0.001

35 1.000 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.001 1.000 ± 0.001

36 0.992 ± 0.000 0.983 ± 0.003 0.992 ± 0.000 0.992 ± 0.000 0.992 ± 0.000

almost all datasets tested. In the remaining metrics, MOOforest shows a better classi-

fication in about half of the datasets. The proposed method is worth using because it

gives better results and has more possibilities.

5.2.3 Lesson learned

Based on the presented results, let us answer the research questions:

RQ1: What are the non-dominated solutions characteristics returned by MOOfor-

est?

The Pareto front approximation is distinct depending on the data sample, i.e., the

type of data – the selected dataset and the selected subset. For some problems,

Chapter 5 – Ensemble learning on feature subspace methods 91

Table 5.5: Results of Precision metric with the standard deviation, of all datasets sorted by IR. It is
a comparison between proposed method and reference methods. The highest result for each metric and
dataset is bold.

id MOOforest DT DE-Forest RandomFS RandomFS-b

1 0.794 ± 0.033 0.736 ± 0.028 0.788 ± 0.036 0.803 ± 0.049 0.799 ± 0.041

2 0.670 ± 0.043 0.659 ± 0.031 0.643 ± 0.031 0.621 ± 0.089 0.633 ± 0.083

3 0.935 ± 0.008 0.934 ± 0.008 0.931 ± 0.009 0.815 ± 0.044 0.815 ± 0.045

4 0.970 ± 0.003 0.965 ± 0.003 0.970 ± 0.003 0.967 ± 0.003 0.966 ± 0.004

5 0.945 ± 0.010 0.941 ± 0.010 0.947 ± 0.012 0.909 ± 0.035 0.916 ± 0.039

6 0.946 ± 0.017 0.939 ± 0.021 0.942 ± 0.013 0.873 ± 0.046 0.876 ± 0.046

7 0.844 ± 0.046 0.852 ± 0.027 0.836 ± 0.035 0.848 ± 0.045 0.812 ± 0.010

8 0.897 ± 0.013 0.862 ± 0.014 0.884 ± 0.035 0.828 ± 0.033 0.833 ± 0.041

9 0.913 ± 0.007 0.899 ± 0.009 0.919 ± 0.007 0.902 ± 0.014 0.883 ± 0.038

10 0.953 ± 0.013 0.938 ± 0.013 0.950 ± 0.012 0.939 ± 0.014 0.935 ± 0.022

11 0.935 ± 0.016 0.936 ± 0.011 0.922 ± 0.038 0.869 ± 0.050 0.886 ± 0.052

12 0.957 ± 0.017 0.951 ± 0.017 0.948 ± 0.018 0.891 ± 0.046 0.890 ± 0.044

13 0.845 ± 0.024 0.861 ± 0.018 0.841 ± 0.029 0.857 ± 0.038 0.855 ± 0.041

14 0.949 ± 0.009 0.942 ± 0.016 0.951 ± 0.013 0.912 ± 0.028 0.919 ± 0.028

15 0.863 ± 0.031 0.859 ± 0.019 0.845 ± 0.019 0.864 ± 0.037 0.859 ± 0.037

16 0.904 ± 0.034 0.906 ± 0.019 0.919 ± 0.042 0.886 ± 0.039 0.883 ± 0.040

17 0.995 ± 0.004 0.985 ± 0.012 0.991 ± 0.006 0.988 ± 0.004 0.985 ± 0.005

18 0.932 ± 0.013 0.919 ± 0.010 0.933 ± 0.015 0.914 ± 0.029 0.916 ± 0.026

19 0.961 ± 0.021 0.970 ± 0.019 0.948 ± 0.031 0.969 ± 0.008 0.939 ± 0.028

20 0.974 ± 0.004 0.956 ± 0.011 0.959 ± 0.023 0.923 ± 0.014 0.919 ± 0.000

21 0.933 ± 0.013 0.935 ± 0.004 0.932 ± 0.007 0.921 ± 0.002 0.921 ± 0.002

22 0.953 ± 0.008 0.949 ± 0.005 0.954 ± 0.013 0.932 ± 0.001 0.932 ± 0.001

23 0.937 ± 0.005 0.940 ± 0.005 0.943 ± 0.014 0.937 ± 0.006 0.938 ± 0.011

24 0.963 ± 0.020 0.957 ± 0.017 0.936 ± 0.000 0.956 ± 0.020 0.936 ± 0.000

25 0.958 ± 0.022 0.951 ± 0.016 0.946 ± 0.015 0.945 ± 0.018 0.941 ± 0.011

26 0.966 ± 0.004 0.963 ± 0.003 0.970 ± 0.005 0.956 ± 0.009 0.955 ± 0.008

27 0.976 ± 0.008 0.970 ± 0.006 0.967 ± 0.014 0.971 ± 0.012 0.960 ± 0.011

28 0.972 ± 0.005 0.973 ± 0.004 0.976 ± 0.005 0.956 ± 0.008 0.953 ± 0.001

29 0.962 ± 0.003 0.962 ± 0.002 0.961 ± 0.000 0.961 ± 0.000 0.961 ± 0.000

30 0.995 ± 0.004 0.996 ± 0.003 0.995 ± 0.003 0.963 ± 0.001 0.963 ± 0.001

31 0.972 ± 0.002 0.973 ± 0.003 0.971 ± 0.000 0.971 ± 0.000 0.971 ± 0.000

32 0.979 ± 0.004 0.978 ± 0.003 0.974 ± 0.002 0.973 ± 0.000 0.973 ± 0.000

33 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.001

34 0.979 ± 0.006 0.979 ± 0.006 0.977 ± 0.001 0.977 ± 0.001 0.977 ± 0.001

35 1.000 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 0.999 ± 0.001 1.000 ± 0.001

36 0.985 ± 0.000 0.985 ± 0.000 0.985 ± 0.000 0.985 ± 0.000 0.985 ± 0.000

the optimization solution contains several dozen solutions distributed in the Preci-

sion and Recall space. Often, these solutions take the same Precision and Recall,

marked as one point in the graphs, but the representation of these solutions may

differ. In most datasets, non-dominated solutions have lower precision and recall

metrics than the final classifier.

RQ2: Does the number of optimization criteria significantly impact the final

quality of the method?

The number of criteria in the MOOforest and DE-Forest methods and the type of

these criteria are of great importance for the final quality of the obtained classifier.

As shown in the experimental part, the proposed method with multi-objective

optimization achieves better results. One of the advantages of this method is the

Chapter 5 – Ensemble learning on feature subspace methods 92

Figure 5.9: The Wilcoxon test of MOOforest method with reference methods (green – win,
yellow – tie, red – loss)

selection of more specific and objective criteria than the aggregated metric. Multi-

objective optimization returns a set of solutions from which we can choose a solution

more suited to our needs and consider the criteria according to user selection.

RQ3: Can the MOOforest outperform state-of-the-art methods?

The MOOforest method has great potential compared to the reference methods. It

wins for many datasets, which means it classifies the minority and majority classes

well. In particular, it can be seen by analyzing the Gmean metric, in which the

proposed method wins over most of the state-of-the-art algorithms. The advantage

of the MOOforest method is that it is a set of solutions from which a potential user

can choose a solution tailored to his/her needs. Depending on various criteria, the

choice may fall on a solution directed more towards the first or second criterion,

which allows the user to establish priorities.

The section presents a new MOOforest method for imbalanced data classification. It

forms a classifier ensemble that builds models on feature subspaces obtained from multi-

criteria optimization. Hence, the diversity of underlying models is ensured, and the

subspaces are not randomized, as is the case in the classic Random Forest approach.

The experimental analysis confirmed our assumptions about the benefits of using more

criteria than just one aggregate optimization criterion, i.e., the returned solution based

on the Precision and Recall criteria performed better than the solution based on the

aggregated metric as Balanced Accuracy. Compared to other reference methods, the

MOOforest proves to classify data well and gains an advantage in statistical tests. An

interesting issue is the observation of the non-dominated solution set approximation. The

non-dominated solutions may look different in each dataset and data sample’s Precision

and Recall spaces. The arrangement and number of solutions differ from the selected

data slice.

Chapter 6

Multi Objective Local Optimization

Forest

This chapter describes the MOLO method. It is a classifier ensemble built based on
decision trees to classify imbalanced data. The local optimization algorithm adds
different models to the ensemble, thus creating the ensemble that achieves the best
classification quality at a given moment. Statistical analysis experiments compare
the proposed method with state-of-the-art methods and allow answering research
questions about the impact of the ensemble’s size and local optimization’ steps, the
optimization criteria number, and the comparison of the proposed method with ref-
erence methods.

Multi-objective optimization offers much greater possibilities than single-objective op-

timization. By selecting appropriate criteria, the user can adjust the method and pay

attention to critical elements. In ensemble formation, optimization can be used to create

a subspace of features used to train each model, and the resulting ensemble is diverse.

Additionally, the ensemble is not created randomly, as is the case with the popular

Random Forest approach.

The proposed method Multi-Objective Local Optimization Forest (MOLO) is the ensem-

ble composed of decision tree classifiers. The method creates many ensembles during

local optimization by selecting base models in each iteration step. Ultimately, the fi-

nal ensemble with the highest performance metric in imbalanced data classification is

selected.

The operation of our method is presented in Alg. 6.1. Initially, the algorithm gets an

LS dataset. It divides it into bootstraps {b1, b2, b3, . . . , bB}, i.e., sets created by random

drawing with replacement and creates a given number B of subsets (step 1.), as shown

93

Chapter 6 – Multi Objective Local Optimization Forest 94

in Fig. 6.1. Then, each such sample is used to build a DT model (step 8.). This way,

we have an available pool of B models, from which we form the classifier ensemble.

Algorithm 6.1: MOLO method
Input:
LS = {(x1, i1), (x2, i2), . . . , (xN , iN)} – learning set
B – maximum number of bootstrapped sets = maximum number of trained models
Ψ – model classifier
Ksteps – maximum number of local optimization steps
P – the maximum number of ensembles in each level

Symbols:
Train() – base classifier training method
bi – ith bootstrapped sample
prev – list of models from previous iteration
R – results from criteria metrics
Evaluate – evaluate based on specified criteria
FindNonDominated – find non-dominated solutions, Pareto front approximation
final – final results from one optimization loop
ens – list of ensembles from all optimization steps
w – the worst ensembles in ens list according to one of criteria
ENSEMBLE – the final list of ensembles

Output:
Π – pool of DT base classifiers

1: (bi, bB)← resampling with replacement from LS
2: prev ← ∅
3: ens← ∅
4: for k = 1 to Ksteps do
5: Π← ∅
6: Π← Π ∪ prev
7: for j = 1 to mB do
8: Ψj ← Train(b)
9: Π← Π ∪Ψj

10: R← Evaluate(Π)
11: end for
12: PF ← FindNonDominated(R)
13: if length(PF) ≥ P then
14: final← ens− w
15: end if
16: end for
17: G← the ensemble from final with the highest performance metric
18: ENSEMBLE ← G

The main loop contains the most essential operations to obtain local optimization (step

4.). Fig. 6.2 shows an exemplary way of the ensemble forming. When k = 1, we have

individual models trained on bootstraps, from which we create an ensemble in the next

step. With each subsequent step, the number of models in the ensemble increases, i.e.,

Chapter 6 – Multi Objective Local Optimization Forest 95

Dataset

. . .

. . .

Figure 6.1: Bootstrapping and learning base models

k = 2 – two models, k = 3 – three models, etc. It is a form of pruning described in Sect.

2.2 based on rankings from the selected metrics, also known as order-based pruning.

. . .

. . .

List of ensembles

Figure 6.2: Optimization steps, creating ensembles and pruning

Let us follow the algorithm process for k = 2 in more detail. All possible pairs of models

from the pool [m1, . . . ,mB] are created. In the case of k = 3 and more, models from

the previous iteration of the selected ensembles should be added to the created ensemble

Chapter 6 – Multi Objective Local Optimization Forest 96

(step 6.), and then each model from the pool [m1,mB] (step 9.). Then, the metrics

(criteria) are calculated for each ensemble (step 10.) – the Evaluate function. The

function is based on two

max
x∈X

(f1(x), f2(x))

or three

max
x∈X

(f1(x), f2(x), f3(x))

criteria. In the case of two criteria, we have two different sets. The first contains Hellinger

Distance and the Gmean quality metric 6.1, and the second – Margin and the Diversity

metric 6.2. The three-criteria case is a specific combination of non-aggregated metrics,

and they are: Margin, Diversity and Hellinger Distance 6.3.

maximize F1(x̂) = HellingerDistance

maximize F2(x̂) = Gmean
(6.1)

maximize F1(x̂) = Margin

maximize F2(x̂) = Diversity
(6.2)


maximize F1(x̂) = Margin

maximize F2(x̂) = Diversity

maximize F3(x̂) = HellingerDistance

(6.3)

Margin [104] is defined as follows:

fm(xi) = log

(∣∣∣∣∣∣v
(i)
yi − v

(i)
ŷi

M

∣∣∣∣∣∣
)

(6.4)

where M – number of classes, xi – attribute vector values, yi – the true class label, v –

the number of votes for specific class; and Diversity [104]:

Chapter 6 – Multi Objective Local Optimization Forest 97

fd(xi) = log(
v
(i)
yi

M
) (6.5)

The Hellinger Distance is a similarity between the probabilities P1 and P2. It uses the

True Positive Rate (TPR) and the False Positive Rate (FPR), and it is formulated as

follows [31]:

dH(TPR,FPR) =

√
(
√
TPR−

√
FPR)2 + (

√
1− TPR−

√
1− FPR)2 (6.6)

Since we have two or three criteria, it is not possible to select the best classifiers un-

equivocally, and it is required to find non-dominated solutions. The FindNonDominated

function (Alg. 6.2) searches the list with values from the criteria and rejects all values

less than other points in this list. The non-dominated solution set is created, which takes

into account two or more criteria at the same time.

Algorithm 6.2: FindNonDominated function
Input:

R – results from criteria metrics
Output:

PF – the list of non-dominated solutions

1: PF ← ∅
2: Mmax ← length(R)
3: for m = 1 to Mmax do
4: if Rm ≥ Rm+1 then
5: PF ← PF ∪Rm

6: end if
7: end for

The last element in the main loop is the pruning of the ensemble, which uses Beam search.

It makes the method faster because it does not store all the ensembles in memory, and

with large numbers of B and Ksteps, this could prove to be a challenge. The parameter

P set at the beginning determines the maximum number of ensembles saved in each

iteration (steps 13., 14.). Fig. 6.2 shows an example. Selected models are marked

with a red frame. In step k = 1, m1, and m3 are selected, then in step k = 2, each

combination with these selected models is checked, and the metrics are calculated to

select the best ensemble. The models m3 and m11 were selected in the example. This

procedure is repeated as often as Ksteps. Finally, we have two ensembles [m1,m3,m4]

and [m3,m11,m13]. Having a list of ensembles, we can choose the final classifier with the

highest performance metric (steps 17., 18.).

Chapter 6 – Multi Objective Local Optimization Forest 98

Computational complexity analysis

The fundamental element of computational complexity is the proposed approach’s com-

plexity. It is O(P), where P is the maximum number of ensembles saved in each iteration.

The method uses CART Decision Tree whose complexity is O(dN × log2N), where d is

the number of attributes, and N is the number of samples [124]. Suppose we train n deci-

sion trees, then the complexity is O(ndN × log2N). The total computational complexity

of the proposed MOLO method is O(P + ndN × log2N).

6.1 Experimental evaluation

To confirm the suggested strategy’s efficacy, we ran several computer tests. We aimed

to address the following research questions during them:

RQ1: What effect does the number of candidate models have on the quality

of the method?

RQ2: Does the number of criteria affect the quality of the MOLO method

positively or negatively?

RQ3: Can the suggested approach outperform state-of-the-art methods?

6.1.1 Setup

This section comprehensively describes all the elements required to carry out valid ex-

periments. The description makes it feasible to replicate the study.

All experiments were performed in the Python programming language using several li-

braries: scikit-learn [114], Imbalanced-learn [86], Numpy [109], Matplotlib [67], Pan-

das [149]. Detailed results of the experiments are available on the GitHub repository1.

The methods are tested on many imbalanced datasets, which are considered benchmark

datasets [107]. The selected datasets are a two-class problem with a wide range of class

imbalances. The datasets were fetched from the Keel-dataset repository [4]. Columns in

the Table 6.1 are as follows: ID – the number of the dataset, Dataset – the name of the
1https://github.com/w4k2/MOLO-Forest

https://github.com/w4k2/MOLO-Forest

Chapter 6 – Multi Objective Local Optimization Forest 99

dataset, IR – the Imbalance Ratio, Ex. – the number of instances, Attr. – the number

of attributes.

Table 6.1: Description of datasets

id dataset ir ex. attr.

1 glass1 1.82 214 9

2 pima 1.87 768 8

3 glass0 2.06 214 9

4 yeast1 2.46 1484 8

5 haberman 2.78 306 3

6 vehicle1 2.90 846 18

7 vehicle3 2.99 846 18

8 ecoli1 3.36 336 7

9 ecoli2 5.46 336 7

10 yeast3 8.10 1484 8

11 ecoli3 8.60 336 7

12 page-blocks0 8.79 5472 10

13 yeast-2_vs_4 9.08 514 8

14 ecoli-0-6-7_vs_3-5 9.09 222 7

15 glass-0-1-5_vs_2 9.12 172 9

16 yeast-0-3-5-9_vs_7-8 9.12 506 8

17 yeast-0-2-5-6_vs_3-7-8-9 9.14 1004 8

18 ecoli-0-1_vs_2-3-5 9.17 244 7

19 ecoli-0-2-6-7_vs_3-5 9.18 224 7

20 yeast-0-5-6-7-9_vs_4 9.35 528 8

21 ecoli-0-6-7_vs_5 10.00 220 6

22 glass-0-1-6_vs_2 10.29 192 9

23 ecoli-0-1-4-7_vs_2-3-5-6 10.59 336 7

24 glass-0-1-4-6_vs_2 11.06 205 9

25 glass2 11.59 214 9

26 cleveland-0_vs_4 12.31 173 13

27 yeast-1_vs_7 14.30 459 7

28 glass4 15.46 214 9

29 page-blocks-1-3_vs_4 15.86 472 10

30 abalone9-18 16.40 731 8

id dataset ir ex. attr.

31 zoo-3 19.20 101 16

32 glass-0-1-6_vs_5 19.44 184 9

33 yeast-1-4-5-8_vs_7 22.10 693 8

34 glass5 22.78 214 9

35 yeast-2_vs_8 23.10 482 8

36 flare-F 23.79 1066 11

37 yeast4 28.10 1484 8

38 winequality-red-4 29.17 1599 11

39 poker-9_vs_7 29.50 244 10

40 yeast-1-2-8-9_vs_7 30.57 947 8

41 winequality-white-9_vs_4 32.60 168 11

42 yeast5 32.73 1484 8

43 winequality-red-8_vs_6 35.44 656 11

44 ecoli-0-1-3-7_vs_2-6 39.14 281 7

45 abalone-17_vs_7-8-9-10 39.31 2338 8

46 abalone-21_vs_8 40.50 581 8

47 yeast6 41.40 1484 8

48 winequality-white-3_vs_7 44.00 900 11

49 winequality-red-8_vs_6-7 46.50 855 11

50 abalone-19_vs_10-11-12-13 49.69 1622 8

51 kr-vs-k-zero_vs_eight 53.07 1460 6

52 winequality-white-3-9_vs_5 58.28 1482 11

53 poker-8-9_vs_6 58.40 1485 10

54 winequality-red-3_vs_5 68.10 691 11

55 abalone-20_vs_8-9-10 72.69 1916 8

56 kddcup-buffer_overflow_vs_back 73.43 2233 41

57 poker-8-9_vs_5 82.00 2075 10

58 poker-8_vs_6 85.88 1477 10

59 kddcup-rootkit-imap_vs_back 100.14 2225 41

60 abalone19 129.44 4174 8

The experiments compare six of our methods proposed in the article with seven refer-

ence methods. Table 6.2 lists all tested methods and highlights the criteria within those

methods. Legend of markings in methods: H – Hellinger, G – Gmean, M – Margin, D

– Diversity, RE – Reduced Error, C – Complementariness, m – Margin (the implemen-

tation from library), h – holdout.

All methods use a DT classifier as the base model and Majority Voting as a prediction.

MOLO methods assume values of the number of bootstrap parameter from 25 to 200.

The number of bootstrap means the number of candidate models to enter the ensemble.

Optimization within these methods is performed by Ksteps = 20 iterations. Pruning

value P = 10, so there can be a maximum of ten ensembles after each optimization

Chapter 6 – Multi Objective Local Optimization Forest 100

Method / Criterion Hellinger Gmean Margin Diversity Reduced Error Complementariness None

MOLO-HG ✓ ✓

MOLO-MD ✓ ✓

MOLO-MDH ✓ ✓ ✓

MOLO-HG_h ✓ ✓

MOLO-MD_h ✓ ✓

MOLO-MDH_h ✓ ✓ ✓

Ens-all ✓

OBPE-M ✓

OBPE-D ✓

OBPE-MD ✓ ✓

OBPE-RE ✓

OBPE-C ✓

OBPE-m ✓

Table 6.2: Criteria for each of the tested methods

step. MOLO methods ending in h (holdout) mean that inside the method, there is an

additional division of data into a training part (60%) and a test part (30%). Bootstraps

are determined from the training part. Methods without this option are used as a test

to set all method inputs (X, y) and bootstrap them.

The Ens-all method is an ensemble comprising all candidate base models trained on

bootstrap (100 bootstraps). The OBPE (Order Base Pruning Ensemble) methods [104]

are reference methods in a version with different criteria marked in Table 6.2. These

methods have the following parameters: the number of bootstraps equals 100, and the

pruning value equals 20. In the case of the OBPE-MD method containing aggregated

Margin and Diversity criteria, the value α = 0.5. Other parameters not listed have

default values.

All these methods are compared in experiments on sixty datasets using 5× 2 CV [37].

We chose the broadly utilized measurements to assess all methods: Balanced Accuracy

(BAC), Geometric Mean Score (Gmean), Recall, Specificity and Precision. Gmean is

based on Precision and Recall metrics.

Statistical tests are needed to summarize the results for all datasets; in this case, the

Wilcoxon statistical rank-sum test at a significance level of 0.05 [133] is used.

Chapter 6 – Multi Objective Local Optimization Forest 101

6.2 Results

Two experiments were designed to answer the research questions. The first examines

the influence of the number of models in the ensemble, while the second compares the

proposed methods with state-of-the-art methods. The experiments carried out will help

answer the previously posed research questions.

6.2.1 Experiment 1

One of the parameters of the MOLO methods is the ensemble size, i.e., the number of base

models in the classifier ensemble. At the same time, it is the Ksteps parameter defining

the maximum number of steps in the local optimization. Therefore, this experiment

investigates the dependence of ensemble size on Gmean quality and, simultaneously,

allows for determining the value of the Ksteps parameter.

The results for the selected datasets are presented in Fig. 6.3. The y-axis indicates the

number of models in the ensemble, ranging from 1 to 20, and the x-axis is the Gmean

metric, a criterion measured within the method, where the value of 1 means the best

quality. Depending on the problem, the value of ensemble size varies. For most datasets,

Gmean is set to a given level after reaching ensemble size values above 5 and below 10

(Fig. 6.3a, 6.3b, 6.3f). In Fig. 6.3c, the value stabilizes, but quite late, around model 17.

In the case of the vehicle3 dataset (Fig. 6.3e), the Gmean metric continues to increase

as the ensemble grows.

It is impossible to determine one best value of the Ksteps parameter for so many datasets,

so ultimately, the parameter Ksteps = 20 for further experiments. This value allows for

obtaining an outstanding quality Gmean metric for most datasets and thus does not

cause excessive calculations. The larger Ksteps was, the more loops would have to be

performed in the optimization, which would significantly extend the computation time

and would not provide measurable results. Suppose there is one problem, i.e., a specific

dataset in which classification is to be performed. In that case, this parameter can be

adapted to the needs of such a problem, ensuring maximum quality and reduction of

calculations.

6.2.2 Experiment 2

The main experiment is to compare the proposed approach with other reference methods

using the statistical test. The Wilcoxon statistical rank-sum test checks whether the

selected method is statistically significantly better than the other in pairwise rankings.

Chapter 6 – Multi Objective Local Optimization Forest 102

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

Dependence of ensemble size on G-mean

(a) glass1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

Dependence of ensemble size on G-mean

(b) haberman

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

Dependence of ensemble size on G-mean

(c) pima

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

Dependence of ensemble size on G-mean

(d) vehicle1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

Dependence of ensemble size on G-mean

(e) vehicle3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

G-
m

ea
n

Dependence of ensemble size on G-mean

(f) yeast3

Figure 6.3: Dependence of the number of models in the classifier ensemble on the Gmean metric

After preliminary analysis, the MOLO_MDH method was selected for comparison with

other methods. There are three colors in Fig. 6.4 and they indicate respectively: green

– the MOLO_MDH method won compared to another method (y-axis) on the number

of datasets given on the x-axis, yellow – it tied, red – it lost. The black dashed line

is an indication of statistical significance. If the number of wins (green) exceeds the

dashed line at approximately 38 datasets, the MOLO_MDH method wins with statistical

significance over the compared method. The rankings were performed for four metrics:

BAC, Recall, Precision, Gmean.

When comparing the 3-criteria and 2-criteria MOLO method, MOLO_MDH wins for a

dozen or so datasets, loses for a similar number of datasets (depending on the metric),

but usually there is a draw for about 30 datasets. MOLO methods are comparable, and

Chapter 6 – Multi Objective Local Optimization Forest 103

there is no advantage of any of them.

The best results comparing MOLO_MDH with reference methods are shown for the

Recall metric. The proposed method wins with statistical significance and outperforms

the following methods based on the Margin, Diversity, Reduced Error, and Complemen-

tariness criteria (OBPE-M, OBPE-D, OBPE-MD, OBPE-m, OBPE-RE, and OBPE-C),

and Ens-all. High scores for the Recall metric reflect the good classification of the mi-

nority class, which is important in classifying imbalanced data. The method shows the

least advantage for the Precision metric. Gmean is a metric averaged from Precision

and Recall, so despite high Recall, Gmean does not achieve statistical significance over

state-of-the-art methods. The BAC show statistical significance for MOLO_MDH over

four methods OBPE-M, OBPE-D, OBPE-MD, OBPE-m.

0 10 20 30 40 50 60

OBPE-m
OBPE-C
OBPE-RE
OBPE-MD
OBPE-D
OBPE-M
Ens-all

MOLO-MD
MOLO-HG

BAC

0 10 20 30 40 50 60

OBPE-m
OBPE-C
OBPE-RE
OBPE-MD
OBPE-D
OBPE-M
Ens-all

MOLO-MD
MOLO-HG

RECALL

0 10 20 30 40 50 60

OBPE-m
OBPE-C
OBPE-RE
OBPE-MD
OBPE-D
OBPE-M
Ens-all

MOLO-MD
MOLO-HG

PRECISION

0 10 20 30 40 50 60

OBPE-m
OBPE-C
OBPE-RE
OBPE-MD
OBPE-D
OBPE-M
Ens-all

MOLO-MD
MOLO-HG

GMEAN

MOLO-MDH

Figure 6.4: Wilcoxon ranking, comparison with reference methods

6.3 Lesson learned

Extensive research allows us to answer the following questions.

RQ1: What effect does the number of candidate models have on the quality

of the method?

The number of models is one of the parameters of the proposed MOLO method,

which reflects not only the size of the ensemble but also the number of steps in

local optimization (parameter Ksteps). Generally, the larger the size of the classifier

ensemble, the better the classification and, therefore, the higher the performance

metric value. However, in some cases, there is a point at which this relationship no

longer holds, and increasing the number of models does not change the classification

quality. It all depends on the problem, i.e., the dataset on which the classification

takes place. 60 datasets were examined in the experiments, and the value of the

Ksteps parameter was set to 20 to ensure stabilization of the best possible quality

for datasets that need more models in the ensemble for this purpose.

Chapter 6 – Multi Objective Local Optimization Forest 104

RQ2: Does the number of criteria affect the quality of the MOLO method

positively or negatively?

The criteria adopted by the MOLO method are Margin, Diversity, and Hellinger

Distance. The number of criteria in the MOLO method does not impact quality

much as one might expect. None of the methods shows a statistically significant

difference between the MOLO methods.

RQ3: Can the suggested approach outperform state-of-the-art methods?

Yes, especially for the Recall metric, which translates into a good classification of

the majority class, vital in the case of imbalanced data. Average metrics (BAC

and Gmean) also confirm some advantages over the other methods.

The chapter proposes a novel MOLO method for building ensembles employing local

optimization using bootstrapping and order-based pruning. The ensemble consists of

decision tree models and classifies imbalanced data. MOLO can accept two or three op-

timization criteria, including performance metrics and diversity. The conducted research

shows the advantage of the proposed method over state-of-the-art methods.

Chapter 7

Comparison of proposed algorithms

The chapter summarizes performance of all the methods proposed in this work. We
compared the methods on selected datasets through a statistical test and tables with
detailed results for individual metrics. A thorough analysis of the results allowed
for describing the purpose of each proposed method.

Since almost all the methods proposed in this work are ensemble classifiers, it is possible

to compare them. The exception is the method proposed in Chapter 3 – an algorithm

for feature selection. This algorithm prepares data, especially with a cost assigned to

each feature. So, in this particular case, the algorithm is not a classifier. Well-known

classifiers can use it to select features. In the case of our four proposed classifiers, feature

selection is built-in, and there is no need to use it a second time in the data preparation

phase.

Each of the methods compared in the experiments is described in detail in individual

chapters:

• SEMOOS – SVM Ensemble with Multi-Objective Optimization Selection (Section

4)

• DE-Forest – Differential Evolution Forest (Section 5.1)

• MOOforest – Multi-Objective Optimization Forest (Section 5.2

• MOLO – Multi Objective Local Optimization Forest (Section 6)

All methods take their default parameters. The research is carried out on selected

datasets from the Keel repository, sorted by increasing Imbalance Ratio (IR). The exper-

imental protocol is 5 × 2 CV. The results are for the following metrics: BAC, Gmean,

105

Chapter 7 – Comparison of proposed algorithms 106

Recall, Specificity, and Precision. The tables show the average results for each dataset

separately, while the graphs are the Wilcoxon rank-sum test at a significance level of

0.05.

The tables present average results from folds and standard deviation for selected datasets

and the four compared methods. Depending on the metric, different methods show

advantages. The best result for each dataset is bolded, thus ensuring better readability

of the table.

For the Balanced Accuracy metric (Tab. 7.1), the MOLO-MDH method achieves the

highest values. It has lower values for a few datasets, but the difference is insignificant

and usually within the standard deviation.

Table 7.1: Balanced Accuracy

dataset MOOforest SEMOOS DE-Forest MOLO-MDH

glass1 0.758 ± 0.038 0.501 ± 0.028 0.740 ± 0.033 0.736 ± 0.033

haberman 0.557 ± 0.037 0.513 ± 0.017 0.537 ± 0.031 0.568 ± 0.042

yeast3 0.806 ± 0.025 0.813 ± 0.031 0.759 ± 0.048 0.843 ± 0.026

page-blocks0 0.905 ± 0.016 0.771 ± 0.036 0.902 ± 0.014 0.914 ± 0.011

yeast-2-vs-4 0.788 ± 0.047 0.758 ± 0.053 0.801 ± 0.042 0.839 ± 0.058

ecoli-0-6-7-vs-3-5 0.813 ± 0.055 0.667 ± 0.088 0.749 ± 0.076 0.826 ± 0.069

yeast-0-3-5-9-vs-7-8 0.578 ± 0.022 0.566 ± 0.025 0.560 ± 0.034 0.628 ± 0.033

yeast-0-2-5-6-vs-3-7-8-9 0.681 ± 0.021 0.614 ± 0.037 0.680 ± 0.028 0.730 ± 0.028

ecoli-0-1-vs-2-3-5 0.796 ± 0.051 0.696 ± 0.074 0.748 ± 0.070 0.793 ± 0.062

ecoli-0-2-6-7-vs-3-5 0.763 ± 0.079 0.661 ± 0.079 0.686 ± 0.095 0.826 ± 0.043

ecoli-0-6-7-vs-5 0.828 ± 0.094 0.745 ± 0.093 0.784 ± 0.092 0.864 ± 0.060

ecoli-0-1-4-7-vs-2-3-5-6 0.780 ± 0.054 0.703 ± 0.090 0.751 ± 0.041 0.817 ± 0.074

cleveland-0-vs-4 0.616 ± 0.081 0.693 ± 0.112 0.620 ± 0.092 0.703 ± 0.084

page-blocks-1-3-vs-4 0.964 ± 0.028 0.694 ± 0.077 0.938 ± 0.039 0.930 ± 0.052

abalone9-18 0.602 ± 0.046 0.671 ± 0.054 0.560 ± 0.025 0.632 ± 0.046

glass-0-1-6-vs-5 0.786 ± 0.131 0.638 ± 0.121 0.676 ± 0.153 0.767 ± 0.153

yeast-2-vs-8 0.728 ± 0.080 0.725 ± 0.034 0.673 ± 0.124 0.727 ± 0.071

yeast4 0.568 ± 0.028 0.531 ± 0.015 0.546 ± 0.029 0.600 ± 0.036

poker-9-vs-7 0.623 ± 0.097 0.500 ± 0.000 0.500 ± 0.000 0.570 ± 0.095

abalone-17-vs-7-8-9-10 0.570 ± 0.030 0.587 ± 0.048 0.558 ± 0.027 0.620 ± 0.026

abalone-21-vs-8 0.710 ± 0.084 0.678 ± 0.097 0.591 ± 0.096 0.738 ± 0.091

yeast6 0.618 ± 0.044 0.540 ± 0.041 0.602 ± 0.048 0.660 ± 0.036

kr-vs-k-zero-vs-eight 0.887 ± 0.068 0.622 ± 0.085 0.887 ± 0.082 0.972 ± 0.055

abalone-20-vs-8-9-10 0.553 ± 0.043 0.557 ± 0.060 0.504 ± 0.011 0.590 ± 0.039

kddcup-buffer-overflow-vs-back 1.000 ± 0.000 0.983 ± 0.017 1.000 ± 0.000 1.000 ± 0.000

poker-8-vs-6 0.531 ± 0.094 0.603 ± 0.173 0.500 ± 0.000 0.542 ± 0.080

kddcup-rootkit-imap-vs-back 0.982 ± 0.030 0.982 ± 0.022 0.959 ± 0.032 1.000 ± 0.000

In the case of the Gmean metric (Tab. 7.2), MOOforest wins, achieving the best results

for all datasets even though the Gmean metric is an aggregated metric from Precision

Chapter 7 – Comparison of proposed algorithms 107

(Tab. 7.3) and Recall (Tab. 7.4), for these two metrics, MOOforest does not have the

highest scores for each dataset but still has the majority. DE-Forest best classified the

remaining datasets.

Table 7.2: Gmean

dataset MOOforest SEMOOS DE-Forest MOLO-MDH

glass1 0.795 ± 0.032 0.151 ± 0.157 0.738 ± 0.034 0.659 ± 0.042

haberman 0.688 ± 0.038 0.155 ± 0.144 0.519 ± 0.035 0.358 ± 0.070

yeast3 0.937 ± 0.007 0.794 ± 0.039 0.737 ± 0.060 0.732 ± 0.030

page-blocks0 0.971 ± 0.003 0.736 ± 0.051 0.899 ± 0.015 0.858 ± 0.013

yeast-2-vs-4 0.946 ± 0.009 0.717 ± 0.080 0.786 ± 0.050 0.711 ± 0.081

ecoli-0-6-7-vs-3-5 0.946 ± 0.018 0.542 ± 0.215 0.718 ± 0.098 0.688 ± 0.117

yeast-0-3-5-9-vs-7-8 0.903 ± 0.008 0.360 ± 0.077 0.435 ± 0.066 0.340 ± 0.053

yeast-0-2-5-6-vs-3-7-8-9 0.918 ± 0.006 0.474 ± 0.087 0.632 ± 0.040 0.552 ± 0.049

ecoli-0-1-vs-2-3-5 0.954 ± 0.012 0.618 ± 0.122 0.717 ± 0.087 0.656 ± 0.092

ecoli-0-2-6-7-vs-3-5 0.936 ± 0.014 0.532 ± 0.202 0.625 ± 0.152 0.682 ± 0.059

ecoli-0-6-7-vs-5 0.957 ± 0.016 0.683 ± 0.153 0.758 ± 0.119 0.741 ± 0.058

ecoli-0-1-4-7-vs-2-3-5-6 0.950 ± 0.010 0.621 ± 0.152 0.722 ± 0.053 0.646 ± 0.128

cleveland-0-vs-4 0.915 ± 0.023 0.602 ± 0.175 0.504 ± 0.175 0.470 ± 0.136

page-blocks-1-3-vs-4 0.995 ± 0.004 0.610 ± 0.138 0.936 ± 0.041 0.850 ± 0.077

abalone9-18 0.939 ± 0.010 0.580 ± 0.094 0.402 ± 0.056 0.366 ± 0.114

glass-0-1-6-vs-5 0.959 ± 0.021 0.433 ± 0.307 0.556 ± 0.264 0.544 ± 0.255

yeast-2-vs-8 0.974 ± 0.005 0.669 ± 0.048 0.561 ± 0.228 0.506 ± 0.101

yeast4 0.958 ± 0.006 0.234 ± 0.089 0.336 ± 0.091 0.281 ± 0.089

poker-9-vs-7 0.967 ± 0.014 0.000 ± 0.000 0.178 ± 0.000 0.183 ± 0.247

abalone-17-vs-7-8-9-10 0.970 ± 0.003 0.388 ± 0.157 0.363 ± 0.066 0.308 ± 0.050

abalone-21-vs-8 0.977 ± 0.008 0.552 ± 0.228 0.392 ± 0.219 0.531 ± 0.151

yeast6 0.974 ± 0.005 0.227 ± 0.170 0.461 ± 0.093 0.364 ± 0.069

kr-vs-k-zero-vs-eight 0.995 ± 0.003 0.445 ± 0.216 0.876 ± 0.095 0.929 ± 0.081

abalone-20-vs-8-9-10 0.982 ± 0.003 0.255 ± 0.224 0.134 ± 0.054 0.254 ± 0.102

kddcup-buffer-overflow-vs-back 1.000 ± 0.000 0.983 ± 0.017 1.000 ± 0.000 1.000 ± 0.000

poker-8-vs-6 0.984 ± 0.004 0.244 ± 0.385 0.107 ± 0.003 0.140 ± 0.243

kddcup-rootkit-imap-vs-back 1.000 ± 0.001 0.981 ± 0.023 0.958 ± 0.033 1.000 ± 0.000

For the Specificity metric (Tab. 7.5), SEMOOS is the winner with a considerable advan-

tage, reaching the metric close to 100%.

Despite presenting accurate metric values, choosing the best method is challenging.

Therefore, it is necessary to perform statistical tests. The Wilcoxon rank-sum test was

chosen for this purpose (Fig. 7.1). Each subsection (a-d) has five metrics and a com-

parison between the method listed at the top of the graph and the other methods on

the left side of each small graph. The charts’ green, yellow, and red colors mean to win,

draw, and lose, respectively. The method wins with statistical significance if the green

bar crosses the dashed line.

Chapter 7 – Comparison of proposed algorithms 108

Table 7.3: Precision

dataset MOOforest SEMOOS DE-Forest MOLO-MDH

glass1 0.794 ± 0.033 0.189 ± 0.179 0.788 ± 0.036 0.670 ± 0.048

haberman 0.670 ± 0.043 0.325 ± 0.326 0.643 ± 0.031 0.368 ± 0.057

yeast3 0.935 ± 0.008 0.806 ± 0.020 0.931 ± 0.009 0.750 ± 0.042

page-blocks0 0.970 ± 0.003 0.883 ± 0.036 0.970 ± 0.003 0.874 ± 0.018

yeast-2-vs-4 0.945 ± 0.010 0.868 ± 0.093 0.947 ± 0.012 0.720 ± 0.098

ecoli-0-6-7-vs-3-5 0.946 ± 0.017 0.778 ± 0.327 0.942 ± 0.013 0.699 ± 0.163

yeast-0-3-5-9-vs-7-8 0.897 ± 0.013 0.872 ± 0.137 0.884 ± 0.035 0.369 ± 0.051

yeast-0-2-5-6-vs-3-7-8-9 0.913 ± 0.007 0.830 ± 0.111 0.919 ± 0.007 0.621 ± 0.079

ecoli-0-1-vs-2-3-5 0.953 ± 0.013 0.883 ± 0.133 0.950 ± 0.012 0.708 ± 0.128

ecoli-0-2-6-7-vs-3-5 0.935 ± 0.016 0.826 ± 0.307 0.922 ± 0.038 0.684 ± 0.108

ecoli-0-6-7-vs-5 0.957 ± 0.017 0.983 ± 0.050 0.948 ± 0.018 0.744 ± 0.140

ecoli-0-1-4-7-vs-2-3-5-6 0.949 ± 0.009 0.912 ± 0.062 0.951 ± 0.013 0.631 ± 0.155

cleveland-0-vs-4 0.904 ± 0.034 0.781 ± 0.214 0.919 ± 0.042 0.521 ± 0.200

page-blocks-1-3-vs-4 0.995 ± 0.004 0.853 ± 0.175 0.991 ± 0.006 0.836 ± 0.118

abalone9-18 0.932 ± 0.013 0.822 ± 0.123 0.933 ± 0.015 0.479 ± 0.184

glass-0-1-6-vs-5 0.961 ± 0.021 0.582 ± 0.422 0.948 ± 0.031 0.561 ± 0.276

yeast-2-vs-8 0.974 ± 0.004 1.000 ± 0.000 0.959 ± 0.023 0.561 ± 0.107

yeast4 0.953 ± 0.008 0.610 ± 0.269 0.954 ± 0.013 0.379 ± 0.128

poker-9-vs-7 0.963 ± 0.020 0.000 ± 0.000 0.936 ± 0.000 0.256 ± 0.388

abalone-17-vs-7-8-9-10 0.966 ± 0.004 0.626 ± 0.260 0.970 ± 0.005 0.383 ± 0.082

abalone-21-vs-8 0.976 ± 0.008 0.842 ± 0.304 0.967 ± 0.014 0.603 ± 0.202

yeast6 0.972 ± 0.005 0.490 ± 0.388 0.976 ± 0.005 0.403 ± 0.095

kr-vs-k-zero-vs-eight 0.995 ± 0.004 0.825 ± 0.354 0.995 ± 0.003 0.919 ± 0.104

abalone-20-vs-8-9-10 0.979 ± 0.004 0.347 ± 0.293 0.974 ± 0.002 0.352 ± 0.141

kddcup-buffer-overflow-vs-back 1.000 ± 0.000 0.983 ± 0.050 1.000 ± 0.000 1.000 ± 0.000

poker-8-vs-6 0.979 ± 0.006 0.133 ± 0.299 0.977 ± 0.001 0.233 ± 0.396

kddcup-rootkit-imap-vs-back 1.000 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000

The Wilcoxon test shows that SEMOOS (Fig. 7.1a) wins with statistical significance

overall methods for the Specificity metric. In terms of other metrics, he has many losers.

The DE-Forest method (Fig. 7.1b) wins regarding statistical significance in the Recall

and Precision metrics over the SEMOOS and MOLO-MDH methods. It obtains good

results for the Gmean metric. MOOforest (Fig. 7.1c has the most wins of all methods. It

wins with statistical significance against at least one method for each metric. It achieves

the best results for the Gmean metric. The last method MOLO-MDH (Fig. 7.1d)

wins on many datasets in the BAC metric and, like SEMOOS, achieves good results in

Specificity.

MOOforest is the best method for imbalanced data classification because it obtains the

most promising results for the Gmean metric responsible for the minority class classifi-

cation and the aggregated BAC metric. It is also a multi-objective method, so users can

Chapter 7 – Comparison of proposed algorithms 109

Table 7.4: Recall

dataset MOOforest SEMOOS DE-Forest MOLO-MDH

glass1 0.795 ± 0.032 0.055 ± 0.098 0.787 ± 0.031 0.650 ± 0.060

haberman 0.706 ± 0.034 0.047 ± 0.054 0.673 ± 0.025 0.351 ± 0.090

yeast3 0.939 ± 0.007 0.645 ± 0.065 0.936 ± 0.008 0.716 ± 0.055

page-blocks0 0.971 ± 0.003 0.550 ± 0.074 0.971 ± 0.003 0.842 ± 0.023

yeast-2-vs-4 0.947 ± 0.008 0.527 ± 0.108 0.950 ± 0.010 0.709 ± 0.118

ecoli-0-6-7-vs-3-5 0.947 ± 0.018 0.345 ± 0.185 0.941 ± 0.014 0.691 ± 0.136

yeast-0-3-5-9-vs-7-8 0.909 ± 0.004 0.136 ± 0.051 0.906 ± 0.010 0.316 ± 0.070

yeast-0-2-5-6-vs-3-7-8-9 0.923 ± 0.005 0.234 ± 0.078 0.927 ± 0.005 0.493 ± 0.056

ecoli-0-1-vs-2-3-5 0.954 ± 0.012 0.400 ± 0.153 0.948 ± 0.013 0.617 ± 0.125

ecoli-0-2-6-7-vs-3-5 0.938 ± 0.013 0.327 ± 0.164 0.930 ± 0.017 0.691 ± 0.093

ecoli-0-6-7-vs-5 0.957 ± 0.015 0.490 ± 0.187 0.950 ± 0.014 0.760 ± 0.136

ecoli-0-1-4-7-vs-2-3-5-6 0.951 ± 0.010 0.411 ± 0.183 0.952 ± 0.009 0.675 ± 0.147

cleveland-0-vs-4 0.926 ± 0.014 0.398 ± 0.227 0.939 ± 0.015 0.443 ± 0.172

page-blocks-1-3-vs-4 0.995 ± 0.004 0.393 ± 0.154 0.991 ± 0.007 0.871 ± 0.105

abalone9-18 0.946 ± 0.007 0.348 ± 0.111 0.946 ± 0.004 0.286 ± 0.085

glass-0-1-6-vs-5 0.958 ± 0.021 0.285 ± 0.244 0.961 ± 0.018 0.560 ± 0.304

yeast-2-vs-8 0.974 ± 0.005 0.450 ± 0.067 0.969 ± 0.009 0.470 ± 0.149

yeast4 0.963 ± 0.004 0.063 ± 0.031 0.966 ± 0.003 0.212 ± 0.070

poker-9-vs-7 0.971 ± 0.010 0.000 ± 0.000 0.967 ± 0.000 0.150 ± 0.200

abalone-17-vs-7-8-9-10 0.974 ± 0.003 0.176 ± 0.098 0.976 ± 0.001 0.252 ± 0.054

abalone-21-vs-8 0.977 ± 0.008 0.357 ± 0.194 0.977 ± 0.006 0.486 ± 0.183

yeast6 0.976 ± 0.004 0.081 ± 0.084 0.979 ± 0.003 0.332 ± 0.071

kr-vs-k-zero-vs-eight 0.995 ± 0.003 0.245 ± 0.169 0.995 ± 0.003 0.946 ± 0.109

abalone-20-vs-8-9-10 0.985 ± 0.002 0.115 ± 0.120 0.986 ± 0.001 0.185 ± 0.078

kddcup-buffer-overflow-vs-back 1.000 ± 0.000 0.967 ± 0.033 1.000 ± 0.000 1.000 ± 0.000

poker-8-vs-6 0.989 ± 0.002 0.221 ± 0.373 0.988 ± 0.001 0.086 ± 0.158

kddcup-rootkit-imap-vs-back 1.000 ± 0.001 0.964 ± 0.045 0.999 ± 0.001 1.000 ± 0.000

adapt it to their needs. Due to the experiments, we had to select one balanced solution

from the solutions’ set returned from MOOforest using the PROMETHEE II algorithm.

The SEMOOS method is also a multi-objective method. However, it uses the entire set of

solutions the optimization algorithm returns to train the models, and then an ensemble

is created from them. The solution was selected at the end by pruning models from the

finished ensemble. This process contrasts the MOLO method, where the selection of

possible solutions (created ensembles) was performed at each algorithm step using the

Beam search function. This process allowed us to speed up the calculations and not

consume memory with all possible combinations of individual models.

However, the purpose of the proposed methods was not to select a solution automat-

ically but to show the various possibilities of the methods. The user can choose the

more meaningful solution for him or her, which we did not choose in our experiments.

Chapter 7 – Comparison of proposed algorithms 110

Table 7.5: Specificity

dataset MOOforest SEMOOS DE-Forest MOLO-MDH

glass1 0.721 ± 0.046 0.946 ± 0.055 0.692 ± 0.039 0.822 ± 0.037

haberman 0.408 ± 0.050 0.979 ± 0.025 0.401 ± 0.041 0.786 ± 0.036

yeast3 0.673 ± 0.045 0.981 ± 0.003 0.583 ± 0.089 0.970 ± 0.007

page-blocks0 0.840 ± 0.030 0.991 ± 0.004 0.832 ± 0.026 0.986 ± 0.002

yeast-2-vs-4 0.628 ± 0.087 0.990 ± 0.008 0.652 ± 0.076 0.968 ± 0.012

ecoli-0-6-7-vs-3-5 0.679 ± 0.100 0.988 ± 0.022 0.557 ± 0.142 0.962 ± 0.026

yeast-0-3-5-9-vs-7-8 0.246 ± 0.043 0.997 ± 0.003 0.213 ± 0.060 0.940 ± 0.015

yeast-0-2-5-6-vs-3-7-8-9 0.439 ± 0.039 0.993 ± 0.005 0.433 ± 0.053 0.966 ± 0.012

ecoli-0-1-vs-2-3-5 0.639 ± 0.094 0.993 ± 0.009 0.549 ± 0.130 0.970 ± 0.015

ecoli-0-2-6-7-vs-3-5 0.588 ± 0.150 0.994 ± 0.012 0.442 ± 0.175 0.961 ± 0.021

ecoli-0-6-7-vs-5 0.699 ± 0.177 0.999 ± 0.003 0.617 ± 0.171 0.968 ± 0.023

ecoli-0-1-4-7-vs-2-3-5-6 0.609 ± 0.101 0.995 ± 0.003 0.551 ± 0.077 0.959 ± 0.021

cleveland-0-vs-4 0.305 ± 0.156 0.989 ± 0.010 0.301 ± 0.171 0.962 ± 0.019

page-blocks-1-3-vs-4 0.933 ± 0.052 0.995 ± 0.006 0.886 ± 0.074 0.988 ± 0.010

abalone9-18 0.259 ± 0.086 0.994 ± 0.004 0.174 ± 0.046 0.977 ± 0.014

glass-0-1-6-vs-5 0.615 ± 0.247 0.992 ± 0.012 0.391 ± 0.294 0.974 ± 0.025

yeast-2-vs-8 0.482 ± 0.156 1.000 ± 0.000 0.377 ± 0.240 0.983 ± 0.009

yeast4 0.173 ± 0.057 0.999 ± 0.001 0.125 ± 0.057 0.987 ± 0.006

poker-9-vs-7 0.274 ± 0.187 1.000 ± 0.000 0.033 ± 0.000 0.991 ± 0.018

abalone-17-vs-7-8-9-10 0.166 ± 0.060 0.998 ± 0.002 0.139 ± 0.053 0.989 ± 0.004

abalone-21-vs-8 0.442 ± 0.165 0.999 ± 0.002 0.205 ± 0.188 0.991 ± 0.006

yeast6 0.259 ± 0.086 0.998 ± 0.002 0.225 ± 0.094 0.987 ± 0.004

kr-vs-k-zero-vs-eight 0.778 ± 0.132 1.000 ± 0.001 0.779 ± 0.161 0.998 ± 0.002

abalone-20-vs-8-9-10 0.120 ± 0.084 0.999 ± 0.001 0.021 ± 0.023 0.995 ± 0.001

kddcup-buffer-overflow-vs-back 1.000 ± 0.000 1.000 ± 0.001 1.000 ± 0.000 1.000 ± 0.000

poker-8-vs-6 0.073 ± 0.185 0.985 ± 0.034 0.012 ± 0.001 0.998 ± 0.002

kddcup-rootkit-imap-vs-back 0.964 ± 0.060 1.000 ± 0.000 0.919 ± 0.063 1.000 ± 0.000

Depending on the prioritization of the criteria, the solution may be more tailored to the

case each time.

Single-criteria methods usually aggregate metrics, which makes it impossible to obtain

information about the exact values of individual components. The opposite is multi-

objective methods that treat each criterion separately. This way, more easily accessible

information, such as model preferences for specific classes, is retained. An example is the

Gmean metric, i.e., the geometric mean of Precision and Recall. Single-criteria methods

will use the aggregated Gmean metric, and multi-objective methods can treat Precision

and Recall separately as two distinct criteria. The fitness functions can search for the

minimum or maximum independently, which provides excellent opportunities for metrics

other than classifier performance, e.g., cost metrics.

Choosing the most satisfactory method may be difficult or even impossible because

Chapter 7 – Comparison of proposed algorithms 111

0 10 20
MOLO-MDH
MOOforest
DE-Forest

BAC

0 10 20
MOLO-MDH
MOOforest
DE-Forest

GMEAN

0 10 20
MOLO-MDH
MOOforest
DE-Forest

RECALL

0 10 20
MOLO-MDH
MOOforest
DE-Forest

SPECIFICITY

0 10 20
MOLO-MDH
MOOforest
DE-Forest

PRECISION
SEMOOS

(a) SEMOOS vs other methods

0 10 20
MOLO-MDH
MOOforest
SEMOOS

BAC

0 10 20
MOLO-MDH
MOOforest
SEMOOS

GMEAN

0 10 20
MOLO-MDH
MOOforest
SEMOOS

RECALL

0 10 20
MOLO-MDH
MOOforest
SEMOOS

SPECIFICITY

0 10 20
MOLO-MDH
MOOforest
SEMOOS

PRECISION
DE-Forest

(b) DE-Forest vs other methods

0 10 20
MOLO-MDH
DE-Forest
SEMOOS

BAC

0 10 20
MOLO-MDH
DE-Forest
SEMOOS

GMEAN

0 10 20
MOLO-MDH
DE-Forest
SEMOOS

RECALL

0 10 20
MOLO-MDH
DE-Forest
SEMOOS

SPECIFICITY

0 10 20
MOLO-MDH
DE-Forest
SEMOOS

PRECISION
MOOforest

(c) MOOforest vs other methods

0 10 20
MOOforest
DE-Forest
SEMOOS

BAC

0 10 20
MOOforest
DE-Forest
SEMOOS

GMEAN

0 10 20
MOOforest
DE-Forest
SEMOOS

RECALL

0 10 20
MOOforest
DE-Forest
SEMOOS

SPECIFICITY

0 10 20
MOOforest
DE-Forest
SEMOOS

PRECISION
MOLO-MDH

(d) MOLO-MDH vs other methods

Figure 7.1: Wilcoxon ranking

performance depends on many factors and, significantly, on the dataset. Referring to

Wolpert’s "no free lunch" theorem, there is no algorithm that would solve all problems

with equally acceptable solution quality. Based on the results presented in this chap-

ter, for instance, MOLO-MDH performs better in Balanced Accuracy with statistical

significance than other methods for problems such as yeast, ecoli, or abalone. For most

datasets, the MOOforest method has the best performance, but DE-Forest is more suit-

able at classifying highly imbalanced data, where there are few instances of the minority

class, so it is essential to classify minority class well. Therefore, all the proposed methods

in this work should be considered when designing AI systems because, depending on the

specific decision-making problem, the methods should give promising results.

Chapter 8

Conclusion and future research

directions

The thesis focused on the use of multi-objective optimization for employing feature selec-

tion to classify mainly imbalanced data. Feature selection determines a feature subspace

for each model, and this mechanism ensures the diversity of models in the ensemble.

Research in this area has shown that optimizing for feature selection gives good results,

and the proposed methods sometimes outperform state-of-the-art methods. An addi-

tional advantage of the proposed algorithms using multi-objective optimization is the

ability to select the most appropriate solution, which classical methods do not offer.

The following research objectives confirmed the research hypothesis formulated at the

beginning.

Using multi-objective optimization to train classifiers on feature subspaces

produces models with no worse prediction quality than state-of-the-art meth-

ods and allows choosing a solution tailored to a user’s needs.

Several objectives were formulated to prove the hypothesis. Let us discuss if they were

achieved.

• Development of feature selection methods based on Multi-Objective Op-

timization for constructing single classifiers.

This objective was met by proposing methods using optimization to perform fea-

ture selection. The methods use optimization algorithms such as GA in the single-

criteria version and NSGA-II in the multi-objective version. The advantage of

using optimization is taking into account not only the quality of the built classi-

fier but also the cost of features, which is particularly important in cost-sensitive

113

Chapter 8 – Conclusion and future research directions 114

learning. Simultaneous optimization of two criteria, maximizing performance and

minimizing cost, in the case of multi-objective optimization, gives a set of solutions

from which the user can choose the most suited to his needs. The proposed meth-

ods achieved comparable quality to classical methods, but the latter do not allow

the possibility of choosing from a solution set and returning only one solution.

Methods for feature selection in the classification task have been published in [56].

• Development of a multi-objective method for training classifier ensem-

bles using learning Support Vector Machines base classifiers on sub-

spaces of the feature space.

This goal was achieved by proposing the SEMOOS method. SEMOOS is an en-

semble consisting of single SVM classifiers using multi-objective optimization and

the NSGA-II algorithm to search the feature space and find two parameters of

SVM classifiers. NSGA-II returns a set of such solutions, and each of them is used

to train a model, which is then added to the pool, creating an ensemble classifier.

Using the proposed center-based bootstrapping and model pruning in the method

is optional. The method was tested on many imbalanced datasets and achieved

satisfactory results compared to reference methods. The SEMOOS method was

published in [59].

• Development of a method for training classifier ensemble using learn-

ing decision tree base classifiers on subspaces of the feature space and

aggregated criteria.

The objective was completed by presenting the DE-Forest method using the Dif-

ferential Evolution optimization algorithm to find the best feature vector for the

entire ensemble relative to various aggregated metrics. Such a vector is appropri-

ately prepared, and based on it, individual decision tree models can be trained

to create an ensemble. The proposed method often outperforms state-of-the-art

methods. The DE-Forest method was presented in [57].

• Development of a multi-objective method for training classifier ensemble

using learning decision tree base classifiers on subspaces of the feature

space to form the non-random forest.

The goal was achieved by proposing the MOOforest method, an ensemble built

from individual decision trees using the MOEA/D multi-objective optimization al-

gorithm. MOEA/D searches the feature space for the entire ensemble based on two

criteria simultaneously: Precision and Recall. Thanks to this, it returns a set of

solutions from which the user can select one solution. Since we did not have access

to users during the experiment and wanted to show that the obtained solutions

do not differ qualitatively from state-of-the-art solutions that use single-objective

Chapter 8 – Conclusion and future research directions 115

optimization, we used multi-criteria decision-making methods with predefined se-

lection rules. The MOOforest method uses the PROMETHEE II function to select

one solution and to be able to conduct experiments and compare with reference

methods. The models are trained based on this solution that makes up the final en-

semble. The proposed method, in many cases, outperforms the reference methods.

The MOOforest method was published in [58].

• Development of a multi-objective method for training classifier ensemble

using learning base classifiers on subspaces of the feature space and local

optimization.

The goal was achieved by proposing the MOLO method. It is a novel method using

multi-objective local optimization to build a diverse ensemble. Each base DT model

is trained on one bootstrapped subset. The optimization searches through possible

solutions in each step and adds one model to the ensemble. The restrictions prevent

the search from spreading to a considerable extent, and thanks to it, the algorithm

selects the paths that provide the best results at a given moment. The MOLO

method has been tested for two sets of dual criteria and can also handle the three

criteria case. Finally, MOLO returns several ensembles from which the user can

choose the best one for his needs. Extensive tests for imbalanced data comparing

the proposed and reference methods showed MOLO advantage.

• Experimental evaluation of the obtained methods.

This objective was achieved by comparing all proposed methods: SEMOOS, DE-

Forest, MOOforest, and MOLO. Statistical tests and detailed results for each

dataset showed each method’s characteristics and competence areas.

Future works

The methods and research presented in the thesis can be extended in various ways:

• Future research on feature selection methods based on Multi-Objective Optimiza-

tion may use other multi-objective optimization methods newer than NSGA II.

• Experiments for all proposed methods can be carried out for larger numbers of

datasets. A precious experiment would be conducted for a specific real-world prob-

lem for which appropriate classification methods have yet to be found. Then, the

proposed multi-objective approach could indicate solutions to the problem that

would be more satisfactory for the user.

Chapter 8 – Conclusion and future research directions 116

• It would be possible to test the methods for multi-class data. However, appropriate

metrics must be used to measure the classification performance, and some metrics

of the optimization criteria have to be changed.

• Future research could include examining many different optimization criteria within

methods. Not only changing performance metrics but also various diversity metrics

or metrics directly related to the data, such as feature cost.

• Most studies were conducted for only two criteria except the MOLO method. It

would be worth conducting experiments for three or more criteria to have greater

control over the final solution and adjustment to various criteria according to the

user’s priorities.

• The result of multi-objective methods is a non-dominated solution set, from

which one solution is often selected. Trying other solution selection methods than

PROMETHEE II or using more than one final solution would be worth testing.

• The proposed methods could use different optimization algorithms and classifiers.

• Comparison of the proposed methods could use more state-of-the-art methods.

Publications

Grzyb Joanna is my maiden name, which I changed at the end of 2023, so I now use the

surname Klikowska Joanna.

• Grzyb, Joanna, Mariusz Topolski, and Michał Woźniak. "Application of multi-

objective optimization to feature selection for a difficult data classification task."

International Conference on Computational Science. Cham: Springer International

Publishing, 2021.

CORE: A, MNiSW: 140

• Grzyb, Joanna, Jakub Klikowski, and Michał Woźniak. "Hellinger distance weighted

ensemble for imbalanced data stream classification." Journal of Computational Sci-

ence 51 (2021): 101314.

IF: 3.3, MNiSW: 100

• Klikowska, Joanna, Michał Woźniak. "Using multi-objective optimization to build

non-random forest." Logic Journal of the IGPL, 2024. (after the first revision,

where reviewers formulated minor comments only)

IF: 1.0, MNiSW: 100

Chapter 8 – Conclusion and future research directions 117

• Grzyb, Joanna, and Michał Woźniak. "SVM ensemble training for imbalanced data

classification using multi-objective optimization techniques." Applied Intelligence

53.12 (2023): 15424-15441.

IF: 5.3, MNiSW: 70

• Grzyb, Joanna, and Michał Woźniak. "DE-Forest–Optimized Decision Tree En-

semble." International Conference on Computational Collective Intelligence. Cham:

Springer Nature Switzerland, 2023.

CORE: C, MNiSW: 20

• Grzyb, Joanna, and Michał Woźniak. "MOOforest–Multi-objective Optimization

to Form Decision Tree Ensemble." Proceedings of the XXI Polish Control Confer-

ence. Cham: Springer Nature Switzerland, 2023.

MNiSW: 20

Acknowledgements

This work was supported by the Polish National Science Centre under the grant No.

2019/35/B/ST6/04442.

Bibliography

[1] H.A. Abbass. Pareto neuro-evolution: constructing ensemble of neural networks

using multi-objective optimization. In The 2003 Congress on Evolutionary Com-

putation, 2003. CEC ’03., volume 3, pages 2074–2080 Vol.3, 2003.

[2] Abdiansah Abdiansah and Retantyo Wardoyo. Time complexity analysis of support

vector machines (svm) in libsvm. International Journal Computer and Application,

128(3):28–34, 2015.

[3] Ajith Abraham and Lakhmi Jain. Evolutionary Multiobjective Optimization, pages

1–6. Springer London, London, 2005.

[4] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, Salvador

García, Luciano Sánchez, and Francisco Herrera. KEEL data-mining software tool:

data set repository, integration of algorithms and experimental analysis framework.

Journal of Multiple-Valued Logic & Soft Computing, 17:255–287, 2011.

[5] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[6] Victor Henrique Alves Ribeiro and Gilberto Reynoso-Meza. Ensemble learning by

means of a multi-objective optimization design approach for dealing with imbal-

anced data sets. Expert Systems with Applications, 147:113232, 2020.

[7] Farzana Anowar, Samira Sadaoui, and Bassant Selim. Conceptual and empirical

comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle,

isomap, le, ica, t-sne). Computer Science Review, 40:100378, 2021.

[8] Uroš Arsenijevic and Marija Jovic. Artificial intelligence marketing: Chatbots. In

2019 International Conference on Artificial Intelligence: Applications and Innova-

tions (IC-AIAI), pages 19–193. IEEE, 2019.

[9] Shahrokh Asadi and Seyed Ehsan Roshan. A bi-objective optimization method

to produce a near-optimal number of classifiers and increase diversity in bagging.

Knowledge-Based Systems, 213:106656, 2021.

119

Bibliography 120

[10] Richard E Bellman. Adaptive Control Processes: A Guided Tour. Princeton Uni-

versity Press, 1961.

[11] Urvesh Bhowan, Mark Johnston, Mengjie Zhang, and Xin Yao. Evolving diverse

ensembles using genetic programming for classification with unbalanced data. IEEE

Transactions on Evolutionary Computation, 17(3):368–386, 2013.

[12] Urvesh Bhowan, Mark Johnston, Mengjie Zhang, and Xin Yao. Reusing genetic

programming for ensemble selection in classification of unbalanced data. IEEE

Transactions on Evolutionary Computation, 18(6):893–908, 2014.

[13] Ying Bi, Bing Xue, and Mengjie Zhang. Multitask feature learning as multiobjec-

tive optimization: A new genetic programming approach to image classification.

IEEE Transactions on Cybernetics, 53(5):3007–3020, 2023.

[14] J. Blank and K. Deb. Pymoo: Multi-objective optimization in python. IEEE

Access, 8:89497–89509, 2020.

[15] Andrea Bommert, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, and Michel

Lang. Benchmark for filter methods for feature selection in high-dimensional clas-

sification data. Computational Statistics and Data Analysis, 143:106839, 2020.

[16] Paula Branco, Luís Torgo, and Rita P. Ribeiro. Relevance-based evaluation metrics

for multi-class imbalanced domains. In Jinho Kim, Kyuseok Shim, Longbing Cao,

Jae-Gil Lee, Xuemin Lin, and Yang-Sae Moon, editors, Advances in Knowledge

Discovery and Data Mining, pages 698–710, Cham, 2017. Springer International

Publishing.

[17] Jean-Pierre Brans and Yves De Smet. Promethee methods. In Salvatore Greco,

Matthias Ehrgott, and José Rui Figueira, editors, Multiple Criteria Decision Anal-

ysis: State of the Art Surveys, pages 187–219, New York, NY, 2016. Springer New

York.

[18] Jean-Pierre Brans and Bertrand Mareschal. The promcalc & gaia decision support

system for multicriteria decision aid. Decision Support Systems, 12(4):297–310,

1994.

[19] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[20] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Clas-

sification and regression trees. Routledge, 2017.

[21] Dariusz Brzezinski, Jerzy Stefanowski, Robert Susmaga, and Izabela Szczęch.

Visual-based analysis of classification measures and their properties for class im-

balanced problems. Information Sciences, 462:242 – 261, 2018.

Bibliography 121

[22] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap.

Safe-level-smote: Safe-level-synthetic minority over-sampling technique for han-

dling the class imbalanced problem. In Thanaruk Theeramunkong, Boonserm Ki-

jsirikul, Nick Cercone, and Tu-Bao Ho, editors, Advances in Knowledge Discovery

and Data Mining, pages 475–482, Berlin, Heidelberg, 2009. Springer Berlin Heidel-

berg.

[23] Christopher J.C. Burges. A tutorial on support vector machines for pattern recog-

nition. Data Mining and Knowledge Discovery, 2(2):121–167, Jun 1998.

[24] Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine

learning: A new perspective. Neurocomputing, 300:70–79, 2018.

[25] Leilei Cao, Lihong Xu, Erik D. Goodman, Chunteng Bao, and Shuwei Zhu. Evolu-

tionary dynamic multiobjective optimization assisted by a support vector regres-

sion predictor. IEEE Transactions on Evolutionary Computation, 24(2):305–319,

2020.

[26] Arjun Chandra and Xin Yao. Ensemble learning using multi-objective evolutionary

algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445, Dec

2006.

[27] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intel-

ligence Research, 16:321–357, 2002.

[28] Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer.

Smoteboost: Improving prediction of the minority class in boosting. In Nada

Lavrač, Dragan Gamberger, Ljupčo Todorovski, and Hendrik Blockeel, editors,

Knowledge Discovery in Databases: PKDD 2003, pages 107–119, Berlin, Heidel-

berg, 2003. Springer Berlin Heidelberg.

[29] Xue-wen Chen and Michael Wasikowski. Fast: a roc-based feature selection metric

for small samples and imbalanced data classification problems. In Proceedings of

the 14th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’08, page 124–132, New York, NY, USA, 2008. Association for

Computing Machinery.

[30] K. R. Chowdhary. Natural language processing. In Fundamentals of Artificial

Intelligence, pages 603–649, New Delhi, 2020. Springer India.

[31] David A Cieslak, T Ryan Hoens, Nitesh V Chawla, and W Philip Kegelmeyer.

Hellinger distance decision trees are robust and skew-insensitive. Data Mining and

Knowledge Discovery, 24(1):136–158, 2012.

Bibliography 122

[32] Carlos A. Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evolutionary

Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Com-

putation). Springer-Verlag, Berlin, Heidelberg, 2006.

[33] Mwamba Kasongo Dahouda and Inwhee Joe. A deep-learned embedding technique

for categorical features encoding. IEEE Access, 9:114381–114391, 2021.

[34] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: A

survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation,

15(1):4–31, 2011.

[35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,

6(2):182–197, 2002.

[36] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. Self-adaptive simulated

binary crossover for real-parameter optimization. In Proceedings of the 9th An-

nual Conference on Genetic and Evolutionary Computation, GECCO ’07, page

1187–1194, New York, NY, USA, 2007. Association for Computing Machinery.

[37] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine learning Research, 7:1–30, dec 2006.

[38] Zhenyun Deng, Xiaoshu Zhu, Debo Cheng, Ming Zong, and Shichao Zhang. Effi-

cient knn classification algorithm for big data. Neurocomputing, 195:143–148, 2016.

Learning for Medical Imaging.

[39] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Herrera. A prac-

tical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm and Evolution-

ary Computation, 1(1):3–18, 2011.

[40] Tansel Dokeroglu, Ayça Deniz, and Hakan Ezgi Kiziloz. A comprehensive survey

on recent metaheuristics for feature selection. Neurocomputing, 494:269–296, 2022.

[41] Laura Emmanuella A. dos S. Santana and Anne M. de Paula Canuto. Filter-based

optimization techniques for selection of feature subsets in ensemble systems. Expert

Systems with Applications, 41(4, Part 2):1622–1631, 2014.

[42] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science &

Business Media, 2005.

[43] Charles Elkan. The foundations of cost-sensitive learning. In International joint

conference on artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum

Associates Ltd, 2001.

Bibliography 123

[44] Grandchamp Enguerran, Mohamed Abadi, and Olivier Alata. An hybrid method

for feature selection based on multiobjective optimization and mutual information.

Journal of Informatics and Mathematical Sciences, 7(1):21–48, 2015.

[45] Absalom E. Ezugwu, Abiodun M. Ikotun, Olaide O. Oyelade, Laith Abualigah, Jef-

fery O. Agushaka, Christopher I. Eke, and Andronicus A. Akinyelu. A comprehen-

sive survey of clustering algorithms: State-of-the-art machine learning applications,

taxonomy, challenges, and future research prospects. Engineering Applications of

Artificial Intelligence, 110:104743, 2022.

[46] Nicolò Felicioni, Andrea Donati, Luca Conterio, Luca Bartoccioni, Davide Yi Xian

Hu, Cesare Bernardis, and Maurizio Ferrari Dacrema. Multi-objective blended

ensemble for highly imbalanced sequence aware tweet engagement prediction. In

Proceedings of the Recommender Systems Challenge 2020, RecSysChallenge ’20,

page 29–33, New York, NY, USA, 2020. Association for Computing Machinery.

[47] Vitaliy Feoktistov. Differential Evolution: In Search of Solutions, volume 5.

Springer Science & Business Media, 2007.

[48] Alberto Fernández, Cristobal José Carmona, María José del Jesus, and Francisco

Herrera. A pareto-based ensemble with feature and instance selection for learning

from multi-class imbalanced datasets. International Journal of Neural Systems,

27(06):1750028, 2017. PMID: 28633551.

[49] Alberto Fernández, María José del Jesus, and Francisco Herrera. Hierarchical

fuzzy rule based classification systems with genetic rule selection for imbalanced

data-sets. International Journal of Approximate Reasoning, 50(3):561–577, 2009.

Special Section on Bayesian Modelling.

[50] Alberto Fernández, Salvador García, María José del Jesus, and Francisco Herrera.

A study of the behaviour of linguistic fuzzy rule based classification systems in the

framework of imbalanced data-sets. Fuzzy Sets and Systems, 159(18):2378–2398,

2008.

[51] Sam Fletcher, Brijesh Verma, and Mengjie Zhang. A non-specialized ensemble

classifier using multi-objective optimization. Neurocomputing, 409:93–102, 2020.

[52] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and

Francisco Herrera. A review on ensembles for the class imbalance problem:

Bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4):463–484,

2012.

Bibliography 124

[53] Salvador Garcia and Francisco Herrera. An extension on "statistical comparisons of

classifiers over multiple data sets" for all pairwise comparisons. Journal of Machine

Learning Research, 9(12), 2008.

[54] Salvador García and Francisco Herrera. Evolutionary Undersampling for Classifi-

cation with Imbalanced Datasets: Proposals and Taxonomy. Evolutionary Com-

putation, 17(3):275–306, 2009.

[55] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[56] Joanna Grzyb, Mariusz Topolski, and Michał Woźniak. Application of Multi-

objective Optimization to Feature Selection for a Difficult Data Classification Task.

In Maciej Paszynski, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J.

Dongarra, and Peter M.A. Sloot, editors, Computational Science – ICCS 2021,

pages 81–94, Cham, 2021. Springer International Publishing.

[57] Joanna Grzyb and Michał Woźniak. DE-Forest – Optimized Decision Tree En-

semble. In Ngoc Thanh Nguyen, János Botzheim, László Gulyás, Manuel Núñez,

Jan Treur, Gottfried Vossen, and Adrianna Kozierkiewicz, editors, Computational

Collective Intelligence, pages 806–818, Cham, 2023. Springer Nature Switzerland.

[58] Joanna Grzyb and Michał Woźniak. MOOforest – Multi-objective Optimization

to Form Decision Tree Ensemble. In Marek Pawelczyk, Dariusz Bismor, Szymon

Ogonowski, and Janusz Kacprzyk, editors, Advanced, Contemporary Control, pages

108–117, Cham, 2023. Springer Nature Switzerland.

[59] Joanna Grzyb and Michał Woźniak. SVM ensemble training for imbalanced data

classification using multi-objective optimization techniques. Applied Intelligence,

53(12):15424–15441, Jun 2023.

[60] Qiong Gu, Li Zhu, and Zhihua Cai. Evaluation measures of the classification

performance of imbalanced data sets. In Zhihua Cai, Zhenhua Li, Zhuo Kang,

and Yong Liu, editors, Computational Intelligence and Intelligent Systems, pages

461–471, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[61] Shenkai Gu, Ran Cheng, and Yaochu Jin. Multi-objective ensemble generation.

WIREs Data Mining and Knowledge Discovery, 5(5):234–245, 2015.

[62] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-

sampling method in imbalanced data sets learning. In De-Shuang Huang, Xiao-Ping

Zhang, and Guang-Bin Huang, editors, Advances in Intelligent Computing, pages

878–887, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Bibliography 125

[63] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Trans-

actions on Knowledge and Data Engineering, 21(9):1263–1284, 2009.

[64] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[65] Pat Hudson. The industrial revolution. Bloomsbury Publishing, 2014.

[66] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Trans-

actions on Information Theory, 14(1):55–63, 1968.

[67] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(03):90–95, may 2007.

[68] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In Carlos A. Coello Coello, editor,

Learning and Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011.

Springer Berlin Heidelberg.

[69] H. Ishibuchi, Y. Nojima, and Tsutomu Doi. Comparison between single-objective

and multi-objective genetic algorithms: Performance comparison and performance

measures. In 2006 IEEE International Conference on Evolutionary Computation,

pages 1143–1150, 2006.

[70] Hisao Ishibuchi and Yusuke Nojima. Fuzzy Ensemble Design through Multi-

Objective Fuzzy Rule Selection, pages 507–530. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2006.

[71] Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection ap-

proach to classification. In Proceedings of the 14th International Joint Conference

on Artificial Intelligence - Volume 1, IJCAI’95, pages 518–523, San Francisco, CA,

USA, 1995. Morgan Kaufmann Publishers Inc.

[72] Nathalie Japkowicz and Mohak Shah. Evaluating learning algorithms: a classifica-

tion perspective. Cambridge University Press, 2011.

[73] Yuchen Jiang, Xiang Li, Hao Luo, Shen Yin, and Okyay Kaynak. Quo vadis

artificial intelligence? Discover Artificial Intelligence, 2(1):4, Mar 2022.

[74] Ruwang Jiao, Bach Hoai Nguyen, Bing Xue, and Mengjie Zhang. A survey on

evolutionary multiobjective feature selection in classification: Approaches, appli-

cations, and challenges. IEEE Transactions on Evolutionary Computation, pages

1–1, 2023.

Bibliography 126

[75] Ruwang Jiao, Bing Xue, and Mengjie Zhang. Solving multi-objective feature selec-

tion problems in classification via problem reformulation and duplication handling.

IEEE Transactions on Evolutionary Computation, pages 1–1, 2022.

[76] Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski. Ensembles of multi-

objective decision trees. In Joost N. Kok, Jacek Koronacki, Raomon Lopez de

Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron, editors, Machine

Learning: ECML 2007, pages 624–631, Berlin, Heidelberg, 2007. Springer Berlin

Heidelberg.

[77] Gang Kou, Pei Yang, Yi Peng, Feng Xiao, Yang Chen, and Fawaz E. Alsaadi. Eval-

uation of feature selection methods for text classification with small datasets using

multiple criteria decision-making methods. Applied Soft Computing, 86:105836,

2020.

[78] Michał Koziarski, Bartosz Krawczyk, and Michał Woźniak. Radial-based approach

to imbalanced data oversampling. In Francisco Javier Martínez de Pisón, Rubén

Urraca, Héctor Quintián, and Emilio Corchado, editors, Hybrid Artificial Intelligent

Systems, pages 318–327, Cham, 2017. Springer International Publishing.

[79] Michał Koziarski and Michał Woźniak. CCR: A combined cleaning and resam-

pling algorithm for imbalanced data classification. International Journal of Applied

Mathematics and Computer Science, 27(4), 2017.

[80] Bartosz Krawczyk, Michał Woźniak, and Bogusław Cyganek. Clustering-based

ensembles for one-class classification. Information Sciences, 264:182–195, 2014.

Serious Games.

[81] Bartosz Krawczyk, Michał Woźniak, and Gerald Schaefer. Cost-sensitive decision

tree ensembles for effective imbalanced classification. Applied Soft Computing,

14:554–562, 2014.

[82] Ludmila I Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.

Wiley Publishing, 2nd edition, 2014.

[83] Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classi-

fier ensembles and their relationship with the ensemble accuracy. Machine Learn-

ing, 51(2):181–207, May 2003.

[84] Maciej Laszczyk and Paweł B. Myszkowski. Survey of quality measures for multi-

objective optimization: Construction of complementary set of multi-objective qual-

ity measures. Swarm and Evolutionary Computation, 48:109–133, 2019.

Bibliography 127

[85] Hoang Lam Le, Dario Landa-Silva, Mikel Galar, Salvador Garcia, and I. Triguero.

A hybrid surrogate model for evolutionary undersampling in imbalanced classifi-

cation. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages 1–8,

2020.

[86] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-

learn: A python toolbox to tackle the curse of imbalanced datasets in machine

learning. Journal of Machine Learning Research, 18(17):1–5, 2017.

[87] Hui Li, Xi Yang, Yang Li, Li-Ying Hao, and Tian-Lun Zhang. Evolutionary ex-

treme learning machine with sparse cost matrix for imbalanced learning. ISA

Transactions, 100:198–209, 2020.

[88] Jinyan Li, Simon Fong, Raymond K. Wong, and Victor W. Chu. Adaptive multi-

objective swarm fusion for imbalanced data classification. Information Fusion,

39:1–24, 2018.

[89] Jing Liang, Panpan Wei, Boyang Qu, Kunjie Yu, Caitong Yue, Yi Hu, and Shilei

Ge. Ensemble learning based on multimodal multiobjective optimization. In Lin-

qiang Pan, Jing Liang, and Boyang Qu, editors, Bio-inspired Computing: Theories

and Applications, pages 299–313, Singapore, 2020. Springer Singapore.

[90] Jing Liang, Yuyang Zhang, Boyang Qu, Ke Chen, Kunjie Yu, and Caitong Yue. A

multiform optimization framework for multi-objective feature selection in classifi-

cation. IEEE Transactions on Evolutionary Computation, pages 1–1, 2023.

[91] Moshe Lichman et al. UCI Machine Learning Repository, 2013.

[92] Anping Lin, Peiwen Yu, Shi Cheng, and Lining Xing. One-to-one ensemble mecha-

nism for decomposition-based multi-objective optimization. Swarm and Evolution-

ary Computation, 68:101007, 2022.

[93] Weiwei Lin, Ziming Wu, Longxin Lin, Angzhan Wen, and Jin Li. An ensemble

random forest algorithm for insurance big data analysis. IEEE Access, 5:16568–

16575, 2017.

[94] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,

Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.

SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Opti-

mization. Journal of Machine Learning Research, 23(54):1–9, 2022.

[95] Zhengyi Liu, Bo Chang, and Fan Cheng. An interactive filter-wrapper multi-

objective evolutionary algorithm for feature selection. Swarm and Evolutionary

Computation, 65:100925, 2021.

Bibliography 128

[96] Zhiming Lv, Linqing Wang, Zhongyang Han, Jun Zhao, and Wei Wang. Surrogate-

assisted particle swarm optimization algorithm with pareto active learning for ex-

pensive multi-objective optimization. IEEE/CAA Journal of Automatica Sinica,

6(3):838–849, 2019.

[97] Victoria López, Alberto Fernández, Salvador García, Vasile Palade, and Francisco

Herrera. An insight into classification with imbalanced data: Empirical results

and current trends on using data intrinsic characteristics. Information Sciences,

250:113–141, 2013.

[98] Victoria López, Alberto Fernández, Jose G. Moreno-Torres, and Francisco Herrera.

Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification.

open problems on intrinsic data characteristics. Expert Systems with Applications,

39(7):6585–6608, 2012.

[99] Lianbo Ma, Min Huang, Shengxiang Yang, Rui Wang, and Xingwei Wang. An

adaptive localized decision variable analysis approach to large-scale multiobjective

and many-objective optimization. IEEE Transactions on Cybernetics, 52(7):6684–

6696, 2022.

[100] Tomasz Maciejewski and Jerzy Stefanowski. Local neighbourhood extension of

smote for mining imbalanced data. In 2011 IEEE Symposium on Computational

Intelligence and Data Mining (CIDM), pages 104–111, 2011.

[101] Spyros Makridakis. The forthcoming Artificial Intelligence (AI) revolution: Its

impact on society and firms. Futures, 90:46–60, 2017.

[102] Zbigniew Michalewicz. Evolutionary Programming and Genetic Programming,

pages 283–287. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[103] Ingo Mierswa. Regularization through multi-objective optimization. In Alexander

Hinneburg, editor, LWA 2007: Lernen - Wissen - Adaption, Halle, Deutschland,

September 2007, Workshop Proceedings, pages 94–101. Martin-Luther-University

Halle-Wittenberg, 2007.

[104] Amgad M. Mohammed, Enrique Onieva, Michał Woźniak, and Gonzalo Martínez-

Muñoz. An analysis of heuristic metrics for classifier ensemble pruning based on

ordered aggregation. Pattern Recognition, 124:108493, 2022.

[105] Kaustuv Nag and Nikhil R. Pal. Feature extraction and selection for parsimo-

nious classifiers with multiobjective genetic programming. IEEE Transactions on

Evolutionary Computation, 24(3):454–466, 2020.

Bibliography 129

[106] Krystyna Napierala and Jerzy Stefanowski. Identification of different types of mi-

nority class examples in imbalanced data. In Emilio Corchado, Václav Snášel, Ajith

Abraham, Michał Woźniak, Manuel Graña, and Sung-Bae Cho, editors, Hybrid Ar-

tificial Intelligent Systems, pages 139–150, Berlin, Heidelberg, 2012. Springer Berlin

Heidelberg.

[107] Krystyna Napierala and Jerzy Stefanowski. Types of minority class examples and

their influence on learning classifiers from imbalanced data. Journal of Intelligent

Information Systems, 46:563–597, 2016.

[108] Bach Hoai Nguyen, Bing Xue, Peter Andreae, Hisao Ishibuchi, and Mengjie Zhang.

Multiple reference points-based decomposition for multiobjective feature selection

in classification: Static and dynamic mechanisms. IEEE Transactions on Evolu-

tionary Computation, 24(1):170–184, 2020.

[109] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[110] Luiz S. Oliveira, Marisa Morita, Robert Sabourin, and Flávio Bortolozzi. Multi-

objective genetic algorithms to create ensemble of classifiers. In Carlos A.

Coello Coello, Arturo Hernández Aguirre, and Eckart Zitzler, editors, Evolutionary

Multi-Criterion Optimization, pages 592–606, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg.

[111] Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut. A multiobjective weighted vot-

ing ensemble classifier based on differential evolution algorithm for text sentiment

classification. Expert Systems with Applications, 62:1–16, 2016.

[112] Serafim Opricovic. Multicriteria optimization of civil engineering systems. Faculty

of Civil Engineering, Belgrade, 2(1):5–21, 1998.

[113] Jason Papathanasiou and Nikolaos Ploskas. Multiple criteria decision aid. Methods,

Examples and Python Implementations, 136:131, 2018.

[114] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[115] Wenbin Pei, Bing Xue, Mengjie Zhang, Lin Shang, Xin Yao, and Qiang Zhang.

A survey on unbalanced classification: How can evolutionary computation help?

IEEE Transactions on Evolutionary Computation, pages 1–1, 2023.

[116] Noraini Mohd Razali and John Geraghty. Genetic algorithm performance with

different selection strategies in solving TSP. In Proceedings of the World Congress

Bibliography 130

on Engineering, volume 2, pages 1–6. International Association of Engineers Hong

Kong, 2011.

[117] Beatriz Remeseiro and Veronica Bolon-Canedo. A review of feature selection meth-

ods in medical applications. Computers in Biology and Medicine, 112:103375, 2019.

[118] Victor Henrique Alves Ribeiro and Gilberto Reynoso-Meza. A multi-objective

optimization design framework for ensemble generation. In Proceedings of the Ge-

netic and Evolutionary Computation Conference Companion, GECCO ’18, page

1882–1885, New York, NY, USA, 2018.

[119] Diah Risqiwati, Adhi Dharma Wibawa, Evi Septiana Pane, Wardah Rahmatul

Islamiyah, Agnes Estuning Tyas, and Mauridhi Hery Purnomo. Feature Selection

for EEG-Based Fatigue Analysis Using Pearson Correlation. In 2020 International

Seminar on Intelligent Technology and Its Applications (ISITIA), pages 164–169,

2020.

[120] Miao Rong, Dunwei Gong, Witold Pedrycz, and Ling Wang. A multimodel predic-

tion method for dynamic multiobjective evolutionary optimization. IEEE Trans-

actions on Evolutionary Computation, 24(2):290–304, 2020.

[121] Bart Ian Rylander. Computational complexity and the genetic algorithm. University

of Idaho, 2001.

[122] Thomas L. Saaty. Decision making with the analytic hierarchy process. Interna-

tional Journal of Services Sciences, 1(1):83–98, 2008.

[123] Kshira Sagar Sahoo, Bata Krishna Tripathy, Kshirasagar Naik, Somula Ramasub-

bareddy, Balamurugan Balusamy, Manju Khari, and Daniel Burgos. An Evolution-

ary SVM Model for DDOS Attack Detection in Software Defined Networks. IEEE

Access, 8:132502–132513, 2020.

[124] Habiba Muhammad Sani, Ci Lei, and Daniel Neagu. Computational complexity

analysis of decision tree algorithms. In Max Bramer and Miltos Petridis, editors,

Artificial Intelligence XXXV, pages 191–197, Cham, 2018. Springer International

Publishing.

[125] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

[126] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green AI. Commun.

ACM, 63(12):54–63, nov 2020.

Bibliography 131

[127] Mohammad Shehab, Laith Abualigah, Qusai Shambour, Muhannad A. Abu-

Hashem, Mohd Khaled Yousef Shambour, Ahmed Izzat Alsalibi, and Amir H.

Gandomi. Machine learning in medical applications: A review of state-of-the-art

methods. Computers in Biology and Medicine, 145:105458, 2022.

[128] Utkarsh Singh and Shyam Narain Singh. Optimal Feature Selection via NSGA-II

for Power Quality Disturbances Classification. IEEE Transactions on Industrial

Informatics, 14(7):2994–3002, 2018.

[129] Christopher Smith and Yaochu Jin. Evolutionary multi-objective generation of

recurrent neural network ensembles for time series prediction. Neurocomputing,

143:302–311, 2014.

[130] Paolo Soda. A multi-objective optimisation approach for class imbalance learning.

Pattern Recognition, 44(8):1801 – 1810, 2011.

[131] Bernd Carsten Stahl and Damian Eke. The ethics of ChatGPT – Exploring the

ethical issues of an emerging technology. International Journal of Information

Management, 74:102700, 2024.

[132] Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer

Science & Business Media, 2008.

[133] Katarzyna Stąpor, Paweł Ksieniewicz, Salvador García, and Michał Woźniak. How

to design the fair experimental classifier evaluation. Applied Soft Computing,

104:107219, 2021.

[134] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global Opti-

mization, 11(4):341–359, Dec 1997.

[135] Ikram Sumaiya Thaseen and Cherukuri Aswani Kumar. Intrusion detection model

using fusion of chi-square feature selection and multi class SVM. Journal of King

Saud University - Computer and Information Sciences, 29(4):462–472, 2017.

[136] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A

review. Data Classification: Algorithms and Applications, page 37, 2014.

[137] Akbar Telikani, Amirhessam Tahmassebi, Wolfgang Banzhaf, and Amir H. Gan-

domi. Evolutionary machine learning: A survey. ACM Comput. Surv., 54(8), oct

2021.

[138] Alaa Tharwat. Parameter investigation of support vector machine classifier with

kernel functions. Knowledge and Information Systems, 61(3):1269–1302, Dec 2019.

Bibliography 132

[139] Ye Tian, Langchun Si, Xingyi Zhang, Ran Cheng, Cheng He, Kay Chen Tan, and

Yaochu Jin. Evolutionary large-scale multi-objective optimization: A survey. ACM

Comput. Surv., 54(8), oct 2021.

[140] Michał K. Tomczyk and Miłosz Kadziński. Decomposition-based interactive evo-

lutionary algorithm for multiple objective optimization. IEEE Transactions on

Evolutionary Computation, 24(2):320–334, 2020.

[141] Mariusz Topolski and Marcin Beza. Modification of the principal component analy-

sis method based on feature rotation by class centroids. JUCS: Journal of Universal

Computer Science, 28(3), 2022.

[142] Isaac Triguero, Sergio González, Jose M. Moyano, Salvador García, Jesús Alcalá-

Fdez, Julián Luengo, Alberto Fernández, Maria José del Jesús, Luciano Sánchez,

and Francisco Herrera. KEEL 3.0: An Open Source Software for Multi-Stage Anal-

ysis in Data Mining. International Journal of Computational Intelligence Systems,

10(1):1238–1249, Jan 2017.

[143] Muhammad Usman and Huanhuan Chen. Pro-IDD: Pareto-based ensemble for im-

balanced and drifting data streams. Knowledge-Based Systems, 282:111103, 2023.

[144] Vladimir Vapnik. Estimation of dependences based on empirical data. Springer

Science & Business Media, 2006.

[145] B. Venkatesh and J. Anuradha. A review of feature selection and its methods.

Cybernetics and Information Technologies, 19(1):3–26, 2019.

[146] Peng Wang, Bing Xue, Jing Liang, and Mengjie Zhang. Differential evolution-based

feature selection: A niching-based multiobjective approach. IEEE Transactions on

Evolutionary Computation, 27(2):296–310, 2023.

[147] S. Wang, H. Chen, and X. Yao. Negative correlation learning for classification en-

sembles. In The 2010 International Joint Conference on Neural Networks (IJCNN),

pages 1–8, July 2010.

[148] Xianpeng Wang, Yao Wang, Lixin Tang, and Qingfu Zhang. Multi-objective en-

semble learning with multi-scale data for product quality prediction in iron and

steel industry. IEEE Transactions on Evolutionary Computation, pages 1–1, 2023.

[149] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan

van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science

Conference, volume 445, pages 56 – 61, 2010.

[150] Weronika Węgier, Michał Koziarski, and Michał Woźniak. Multicriteria classifier

ensemble learning for imbalanced data. IEEE Access, 10:16807–16818, 2022.

Bibliography 133

[151] Szymon Wojciechowski. Multi-objective evolutionary undersampling algorithm for

imbalanced data classification. In Maciej Paszynski, Dieter Kranzlmüller, Vale-

ria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M.A. Sloot, editors, Compu-

tational Science – ICCS 2021, pages 118–127, Cham, 2021. Springer International

Publishing.

[152] Michał Woźniak, Manuel Graña, and Emilio Corchado. A survey of multiple clas-

sifier systems as hybrid systems. Inf. Fusion, 16:3–17, March 2014.

[153] Michał Woźniak. Hybrid classifiers: methods of data, knowledge, and classifier

combination, volume 519. Springer, 2013.

[154] Yu Wu, Yongshan Zhang, Xiaobo Liu, Zhihua Cai, and Yaoming Cai. A multiob-

jective optimization-based sparse extreme learning machine algorithm. Neurocom-

puting, 317:88–100, 2018.

[155] Hang Xu, Bing Xue, and Mengjie Zhang. Segmented initialization and offspring

modification in evolutionary algorithms for bi-objective feature selection. In Pro-

ceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO

’20, page 444–452, New York, NY, USA, 2020.

[156] Xiaozhan Xu. The sir method: A superiority and inferiority ranking method

for multiple criteria decision making. European Journal of Operational Research,

131(3):587–602, 2001.

[157] Jiali Yan, Kristin A. Linn, Brian W. Powers, Jingsan Zhu, Sachin H. Jain, Jen-

nifer L. Kowalski, and Amol S. Navathe. Applying machine learning algorithms

to segment high-cost patient populations. Journal of General Internal Medicine,

34(2):211–217, Feb 2019.

[158] Shangshang Yang, Ye Tian, Cheng He, Xingyi Zhang, Kay Chen Tan, and Yaochu

Jin. A gradient-guided evolutionary approach to training deep neural networks.

IEEE Transactions on Neural Networks and Learning Systems, pages 1–15, 2021.

[159] Xin-She Yang. Nature-inspired optimization algorithms. Academic Press, 2020.

[160] Yaochu Jin, T. Okabe, and B. Sendhoff. Neural network regularization and ensem-

bling using multi-objective evolutionary algorithms. In Proceedings of the 2004

Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), volume 1,

pages 1–8 Vol.1, June 2004.

[161] K Yoon. Multiple attributes decision making methods and applications. Springer-

Verlag, Nowy Jork, 1981.

Bibliography 134

[162] Yusliza Yusoff, Mohd Salihin Ngadiman, and Azlan Mohd Zain. Overview of

NSGA-II for Optimizing Machining Process Parameters. Procedia Engineering,

15:3978–3983, 2011. CEIS 2011.

[163] Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan

Saeed. A comprehensive review of dimensionality reduction techniques for fea-

ture selection and feature extraction. Journal of Applied Science and Technology

Trends, 1(2):56–70, 2020.

[164] Nana Zhang, Shi Ying, Weiping Ding, Kun Zhu, and Dandan Zhu. WGNCS: A

robust hybrid cross-version defect model via multi-objective optimization and deep

enhanced feature representation. Information Sciences, 570:545–576, 2021.

[165] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm

based on decomposition. IEEE Transactions on Evolutionary Computation,

11(6):712–731, 2007.

[166] Qingyang Zhang, Shengxiang Yang, Shouyong Jiang, Ronggui Wang, and Xiaoli

Li. Novel prediction strategies for dynamic multiobjective optimization. IEEE

Transactions on Evolutionary Computation, 24(2):260–274, 2020.

[167] Xin Zhang and Wang Dahu. Application of artificial intelligence algorithms in

image processing. Journal of Visual Communication and Image Representation,

61:42–49, 2019.

[168] Yu Zhou, Yan Qiu, and Sam Kwong. Region purity-based local feature selection:

A multiobjective perspective. IEEE Transactions on Evolutionary Computation,

27(4):787–801, 2023.

[169] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[170] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021.

[171] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with

methods addressing the class imbalance problem. IEEE Transactions on Knowledge

and Data Engineering, 18(1):63–77, 2006.

	Acknowledgements
	Abbreviations
	Symbols
	1 Introduction
	2 Related works
	2.1 Machine learning
	2.2 Classification
	2.3 Multi-objective optimization
	2.4 Multi-objective optimization in ensemble learning

	3 Feature selection method
	3.1 Experimental evaluation
	3.2 Results
	3.3 Lessons learned

	4 SVM Ensemble with Multi-Objective Optimization Selection
	4.1 Algorithm
	4.2 Experimental evaluation
	4.3 Experiments
	4.4 Lessons learned

	5 Ensemble learning on feature subspace methods
	5.1 DE-Forest – optimized decision tree ensemble
	5.2 MOOforest – multi-objective optimization to form decision tree ensemble

	6 Multi Objective Local Optimization Forest
	6.1 Experimental evaluation
	6.2 Results
	6.3 Lesson learned

	7 Comparison of proposed algorithms
	8 Conclusion and future research directions
	Bibliography

