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Abstract

Metabolomics, a comprehensive study about metabolites, investigates dynamic changes in the

concentrations of low-molecular-weight molecules (approx. 1-1.5 kDa) to provide insights into

biological conditions influenced by various stressors. The identification of metabolites is commonly

achieved using analytical techniques such as nuclear magnetic resonance (NMR) and mass

spectrometry (MS), often coupled with separation techniques. Recently, numerous studies have

explored the correlation between metabolite concentrations and conditions like diseases, genetic

disorders, and cancer progression. Despite its significance in understanding complex biochemical

processes, much of the existing metabolomics software remains inaccessible, unsupported, or behind

paywalls, with most tools focusing on isolated steps of the analysis process rather than offering

comprehensive, automated solutions.

This thesis addresses the growing need for robust and reproducible pipelines in metabolomics.

To tackle these challenges, it introduces NASQQ, an open-source Nextflow pipeline specifically

designed for the analysis of 1D proton NMR spectra. NASQQ integrates existing solutions with

advanced machine learning models and pathway enrichment analysis to provide a robust and

reproducible solution for metabolomics research. The implementation of the NASQQ pipeline

includes a modular metabolomic workflow written in Nextflow framework, covering spectral

processing and data analysis modules, including both univariate and multivariate approaches and

pathway analysis.

In this work, the pipeline was evaluated using an open dataset on Familial Dysautonomia,

involving the analysis of raw serum spectra from both patients and healthy relatives. This evaluation

demonstrated the pipeline's effectiveness and applicability in disease studies. The application

of NASQQ on Familial Dysautonomia samples highlighted significant findings from the spectral

processing, univariate tests, machine learning assessments, and pathway enrichment analysis.

By leveraging open-source bioinformatics tools, custom functions and machine learning, NASQQ

offers an accessible end-to-end workflow that standardizes signal assignment methodologies, reduces

operational confusion, and enhances reproducibility through automation and parallelization in a stable

containerized environment. The pipeline effectively links raw spectral data with biological

interpretation, while also paving the way for future improvements and expanded applications

in metabolomics research.

keywords: Bioinformatics, Metabolomics, 1D 1H nuclear magnetic resonance, Machine learning,

Pipeline, Nextflow.
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Streszczenie

Metabolomika, dziedzina zajmująca się badaniem metabolitów, analizuje dynamiczne zmiany

w stężeniach molekuł o niskiej masie cząsteczkowej (ok. 1-1.5 kDa), aby dostarczyć wgląd

w biologiczne warunki panujące pod wpływem różnych stresorów. Identyfikacja metabolitów jest

zazwyczaj realizowana za pomocą technik analitycznych, takich jak magnetycznego rezonans

jądrowy (NMR) i spektrometria mas (MS), często w połączeniu z technikami separacji. W ostatnich

latach liczne badania skupiały się na korelacjach pomiędzy stężeniami metabolitów a stanami

chorobowymi, zaburzeniami genetycznymi oraz progresją nowotworów. Pomimo swojego znaczenia

w zrozumieniu złożonych procesów biochemicznych, wiele istniejącego oprogramowania

do metabolomiki pozostaje niedostępne, niewspierane lub płatne, a większość narzędzi koncentruje

się na pojedynczych etapach analizy, zamiast oferować kompleksowe, zautomatyzowane rozwiązania.

Niniejsza praca odpowiada na rosnącą potrzebę kompetentnych i powtarzalnych potoków

przetwarzania danych (ang. pipelines) w metabolomice. Aby sprostać tym wyzwaniom, stworzono

NASQQ, otwarty i ogólnodostępny potok przetwarzania danych, zaprojektowany do analizy

jednowymiarowych protonowych widm NMR. NASQQ integruje istniejące rozwiązania

z zaawansowanymi modelami uczenia maszynowego i analizą wzbogacenia ścieżek, aby zapewnić

stabilne i powtarzalne rozwiązania dla badań metabolomicznych. Implementacja NASQQ obejmuje

modułową metabolomiczną sekwencję zadań (ang. workflow) napisaną w języku Nextflow,

obejmującą przetwarzanie widm i moduły analizy danych, w tym zarówno podejścia

jednowymiarowe, jak i wielowymiarowe oraz analizę ścieżek biologicznych.

W ramach pracy potok przetwarzania danych został zwalidowany za pomocą otwartego

zestawu danych obejmującego Dysautonomię rodzinną (ang. Familial Dysautonomia), obejmującego

analizę surowych widm surowicy zarówno pacjentów z tą chorobą, jak i ich zdrowych krewnych.

Ewaluacja wykazała skuteczność i przydatność NASQQ w badaniach nad chorobami. Co więcej,

zastosowanie NASQQ do próbek Dysautonomii rodzinnej podkreśliło w testach wielowymiarowych

oraz w analizie wzbogacenia ścieżek biologicznych istotne odkrycia w przetwarzanych widmach.

Wykorzystując otwarte narzędzia bioinformatyczne, niestandardowe funkcje i uczenie maszynowe,

NASQQ oferuje ogólnodostępny i skuteczny przepływ pracy, który standaryzuje metody

przypisywania sygnałów, redukuje błędy operacyjne i zwiększa powtarzalność poprzez automatyzację

i równoległe przetwarzanie w stabilnym środowisku opartym na kontenerach (ang. containerized

environment). Potok przetwarzania danych skutecznie łączy surowe dane widmowe z interpretacją

biologiczną, a także otwiera nowe perspektywy na przyszłe usprawnienia i rozszerzone zastosowania

w badaniach metabolomicznych.

słowa kluczowe: Bioinformatyka, Metabolomika, 1D 1H magnetyczny rezonans jądrowy, Uczenie

maszynowe, Potok przetwarzania danych, Nextflow.
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Motivation and thesis outline

The motivation behind this thesis is to address the growing need for robust and reproducible

pipelines in metabolomics, specifically targeting the niche in solutions for analyzing one-dimensional

proton nuclear magnetic resonance (1D 1H NMR) spectra. Metabolomics, a key discipline within

systems biology, holds the promise of advancing our understanding of disease mechanisms through

the detailed study of small molecules within biological systems. However, the complexity and

variability inherent in metabolomic data necessitate advanced bioinformatics tools that can ensure

accurate and consistent results. This thesis presents the NASQQ (Nextflow Automatization and

Standardization for Qualitative and Quantitative 1H NMR Metabolomic) pipeline, specifically

designed for 1D 1H NMR analysis, and evaluates its performance and applicability in metabolomics

research, with a focus on disease studies. The majority of methodology and results are part

of the original scientific paper on the NASQQ pipeline by Pruss, L et al., 2024, which is currently

under resubmission.

The main objective of this thesis is to perform automated bioinformatic analysis of metabolite-derived

signals on blood serum spectra obtained by 1D 1H NMR proton magnetic resonance. The side goals

include:

● Using bioinformatics tools and machine learning methods to standardize signal assignment

methodology and minimize confusion in assigning metabolites to the appropriate signals.

● Automation of the translation process of raw NMR spectra signals, parallelization

of the whole process.

● Moving from metabolic profiles to qualitative-quantitative analysis in targeted metabolomics

in a fully automated manner.

The thesis aims to explore the following hypotheses:

1) At each stage of the automated pipeline, there is a set of parameters that significantly affect

the accuracy of the results obtained.

2) The use of machine learning methods will significantly improve the quality and accuracy

of identifying significant metabolites in disease progression.

3) The time required for analysis using the NASQQ pipeline will be much less than manual

curation of raw signals while maintaining similar quality.
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The following section provides an overall description of all chapters included in the thesis,

outlining the scope and content of the work. Chapter I: Introduction establishes the foundational

knowledge necessary for understanding the rest of the thesis. It begins with an exploration

of the fundamental principles of metabolomics within the broader context of systems biology,

highlighting various approaches for investigating the metabolome. This chapter then explores the

general concepts of nuclear magnetic resonance, with a focus on one-dimensional proton NMR.

It further discusses the applications of metabolomics in disease research, detailing studies conducted

by the research team as well as by external groups. Finally, the chapter introduces computational

methods including bioinformatics, emphasizing its crucial role in metabolomics data analysis, and

reviews relevant databases and state-of-the-art tools.

Next chapter, Chapter II: Methodology - Evaluation of NASQQ pipeline on 1H 1D NMR

Spectra details the methodology employed in the evaluation of the NASQQ pipeline. It provides

a general overview of the metabolomic workflow, emphasizing the implementation of NextFlow and

the use of a containerized computing environment. The spectral processing of raw 1D spectra and the

identification of metabolites are meticulously described, followed by an explanation of the data

analysis module, which encompassess both univariate tests and multivariate approaches, including

machine learning models. The chapter concludes with a description of the biological interpretation

of features derived from the data analysis module.

Third chapter, Chapter III: Results - Application of NASQQ pipeline on Familial

Dysautonomia serum samples presents the results of applying the pipeline to an open dataset of raw

spectra from serum samples of patients with Familial Dysautonomia. It covers the preparation

of the raw spectra and corresponding metadata, the outcomes of the spectral processing modules, and

the results from the univariate module tests. Additionally, it assesses the metabolites classified

by machine learning models and discusses the intersection of metabolomic pathways based

on the KEGG database.

The final chapter, Chapter IV: Discussion - General conclusion and perspectives, offers

a comprehensive discussion on the general conclusions drawn from the usage of the NASQQ pipeline

for metabolomic analysis. It addresses the limitations of the methodologies utilized and proposes

future directions and perspectives for further development of the pipeline. The chapter aims to provide

a balanced view of the pipeline's strengths and areas for improvement, setting the stage for continued

advancements in the field of metabolomics.

The appendix includes supplementary materials that support the main content of the thesis,

providing additional data, methodological details, and relevant information alongside full results that

enhances the overall understanding of the research conducted.
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I. Introduction

I.1 Fundamental principles of metabolomics within systems biology

Metabolomics is the large-scale, comprehensive analysis of chemical processes that provides

valuable insights into biological conditions by analyzing quantitative and qualitative alterations

of metabolites [1]. Metabolites are small organic compounds typically ranging in molecular weight

from 30 (formaldehyde, methanol, methylamine) to 1500 (somatostatin, aquacobalamin) daltons [Da]

that are substrates, intermediate or final products of metabolism within biological systems. These

molecules are omnipresent within cells, biofluids, tissues, organs or whole organisms, where they play

crucial roles in cellular functions and physiological processes [2]. Metabolomics, alongside

disciplines such as genomics, epigenomics, transcriptomics, and proteomics, is an integral part

of “Systems Biology” – a holistic approach to understanding biological systems at the molecular level

(see Figure 1). While each discipline focuses on distinct aspects of cellular function, they collectively

contribute to a comprehensive understanding of biological processes [3].

Figure 1. Categorization of omics within the systems biology framework.

Source: Adapted from [3], created in Biorender.com.

Genomics examines the complete set of genes within an organism, providing insights into

DNA sequences and genetic variations [4-6]. Epigenomics focuses on the study of epigenetic

modifications that influence gene expression without altering the underlying DNA sequence. These

modifications, which include DNA methylation, histone modifications, and non-coding RNA

regulation, play a significant role in regulating gene activity and cellular function. Epigenomics

complements other omics disciplines by providing a deeper understanding of the regulatory
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mechanisms that affect gene expression and cellular function [7-8]. Transcriptomics studies gene

expression patterns by focusing on the transcriptome, encompassing all RNA molecules transcribed

from the genome [9]. Proteomics explores the entire complement of proteins expressed within a cell

or organism, shedding light on protein structure, function, and interactions [10]. Metabolomics offers

insights into the dynamic interaction of small molecules (1-1.5 kDa) within biological systems.

The complete set of metabolites inside a biological system and their interactions at any given time

point are known as the metabolome. The metabolome represents the complete set of metabolites

in a biological cell, tissue, organ, or organism, which are the substrates, intermediate substances

or products of cellular processes. By quantifying and characterizing metabolite

profiles or metabolomes, the study has a chance to unravel the metabolic pathways, regulatory

networks, and metabolic signatures underlying cellular processes and responses to internal and

external stimuli, ultimately contributing to our understanding of health, disease, and environmental

interactions [11-12].

I.1.1 Approaches for investigating the metabolome

Over the years, the field of metabolomics has undergone significant evolution, driven

by advancements in analytical chemistry and computational biology (demonstrated on Figure 2) [13].

In 2000, shortly after the conceptualization of metabolomics, Fiehn et al. [14] demonstrated gas

chromatography (GC) and mass spectrometry (MS) for metabolomic analysis in plants. In the early

days of metabolomics, basic analytical techniques such as gas chromatography and mass spectrometry

were primarily relied upon to characterize metabolite composition in biological samples. These

techniques laid the foundation for metabolomic studies by offering initial insights into the broad

spectrum of metabolites presented in biological systems. This approach enabled the analysis

of volatile and thermally stable metabolites, making it well-suited for the study of small molecules

like amino acids, organic acids, fatty acids etc. [15-16]. Similarly, liquid chromatography coupled

with mass spectrometry (LC-MS) has arisen as a powerful analyzing system in metabolomics,

offering high sensitivity and selectivity for detecting and quantifying metabolites. LC-MS combines

the separation capabilities of liquid chromatography with the detection and quantification capabilities

of mass spectrometry, allowing for the analysis of a wide range of metabolites, including polar and

non-polar compounds. This technique has been used in the identification and quantification

of metabolites in complex biological samples such as blood, urine, and tissue extracts [17-18].
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Figure 2. Timeline of significant events in the field of metabolomics.

Source: Based on [13], created in Draw.io.

However, as metabolomics evolved, so did the need for more sophisticated devices and

computational tools to address the complexity of biological samples. In 2004, Plumb et al. [19]

presented a significant breakthrough with the introduction of ultra-performance liquid

chromatography (UPLC), enhancing separation technology for metabolomics. The development

of high-resolution mass spectrometry (HRMS) platforms, such as Fourier transform ion cyclotron

resonance (FT-ICR) and Orbitrap mass analyzers, revolutionized metabolomic analyses by offering

enhanced mass resolution, accuracy, and dynamic range [20]. Time-of-flight (TOF) and

quadrupole-based mass analyzers allow identification of metabolites based on their mass spectra,

contributing to the characterization of metabolic pathways and metabolic signatures associated with

various physiological conditions [21].

Concurrently, nuclear magnetic resonance (NMR) spectroscopy has also played a significant

role in metabolomic analyses by offering a non-destructive and highly reproducible method

for studying metabolite structure and dynamics in unmodified biological samples. In contrast to MS,

NMR provides quantitative results with minimal sample preparation without the need of separation

methods like liquid or gas chromatography. Furthermore, NMR analysis preserves samples without

causing any damage during the process of acquiring spectrum. Samples analysis can be accomplished

in just a few minutes, which allows immediate confirmation of the structure of a small molecule

compound. These capabilities, coupled with the ability to automatically collect data from numerous

samples, have made NMR widely accessible across various public institutions, including colleges,

universities, and private chemical or pharmaceutical companies [22-23]. In 1998, Steve Oliver and

colleagues coined the term “Metabolome” setting the stage for advancements in metabolomics [24].

Shortly thereafter, Nicholson et al. introduced NMR-based metabonomics for the analysis of biofluids,
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tissues, and cells [25]. Building on this progress, Raamsdonk et al. demonstrated the application

of NMR-based metabolomics specifically in yeast in 2001 [26]. Consequently, NMR has become

an essential tool for diverse research programs. Early NMR studies provided foundational insights

into metabolite composition and metabolic pathways, laying the groundwork for further advancements

in the field. The combination of HRMS and NMR spectroscopy has significantly expanded the

analytical capabilities of metabolomics, allowing to obtain complementary information about

metabolite identities, concentrations, and interactions within biological systems [27-29].

Nowadays, the field encompasses a wide range of methodologies and techniques developed

over time to measure and investigate metabolites. Each method comes with its own set of advantages

and limitations, making the selection of an appropriate approach a mandatory step in study design.

Metabolomic studies typically adopt either a targeted or untargeted approach, each guiding decisions

related to experimental design, sample preparation, and analytical techniques. Untargeted methods

aim to comprehensively analyze samples, detecting and quantifying as many metabolites as possible

without prior assumptions. In contrast, targeted approaches focus on specific metabolite groups

to investigate treatment effects or genetic modifications. Within these general frameworks,

a problem-dependent choice from a multitude of techniques is made, with MS and NMR spectroscopy

still emerging as primary tools on the global stage, owing to their versatility and robustness

in metabolite analysis [30-32].

I.1.2 General concepts of nuclear magnetic resonance

Nuclear magnetic resonance spectroscopy is a spectroscopic technique that utilizes as its core

the unique behavior of various atomic nuclei, such as 1H, 13C, 31P, 15N. Fundamentally, NMR

spectroscopy relies on the nuclear resonance, wherein atomic nuclei reorient themselves in response

to an external magnetic field, resonating at characteristic frequencies [33]. This phenomenon operates

based on the principle of the Larmor equation, which describes the resonance frequency

(ω in Hz or MHz) of a nucleus with a magnetic moment (γ) in an external magnetic field (B0 in T):

(1.1)ω = γ𝐵
0
 

where:

● ω is the resonance frequency,

● is the gyromagnetic ratio (specific to each nucleus),γ

● B0 is the strength of the external magnetic field.

This resonance behavior originates from the property of atomic nuclei known as spin [34].

Each nucleus possesses an native angular momentum or spin (I), which is quantized in discrete units.

The associated magnetic moment ( ) of a nucleus is collinear with its spin moment ( ) and is givenµ
→

𝐼
→

by:
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(1.2)µ
→

 = γℏ𝐼
→
  

Here, γ represents the gyromagnetic ratio of the nucleus, expressed in rad T-1 s-1, and ℏ is Planck's

constant ( ) divided by 2π. All atomic nuclei characterized by a non-zeroћ =  1. 054 ×  10−34 𝐽 · 𝑠

spin moment ( ) are observable by NMR. When there is no external magnetic field present,𝐼 ≠  0

the nuclear spins within the ensemble are randomly oriented, where each nucleus behaves like a bar

magnet. However, once an external magnetic field is applied , the nuclei respond by aligning𝐵
0

→
>  0

themselves (see Figure 3).

Figure 3. Alignment of nuclear spins in the presence of a magnetic field.

Source: Based on [34], created in Biorender.com.

For a given nucleus, the spins can exist in two states: and , corresponding to two+ ½ − ½

potential orientations of the magnetic moment ( ). For instance, the proton of 1H has a spinµ
→

𝐼 =  ½

and is the most recorded nucleus in NMR due to its high gyromagnetic ratio (42.576 MHz/T) and

natural abundance of more than 99.98 %. Consequently, 1H NMR provides a fundamental framework

for analyzing the structures and dynamics of molecules across various chemical and biological

systems. The widespread presence of hydrogen in known molecules and the highly distinctive nature

of NMR spectra for individual compounds and functional groups further enhances its utility

in scientific investigations, particularly those of organic compounds [35-36].

By manipulating magnetic fields and applying radiofrequency (RF) pulses and flipping

the nuclei from its position to the , NMR spectroscopy generates complex signals known+ ½ − ½

as free induction decays (FID), which contain information about the molecular composition and

structure [37]. The frequency is determined by the equation:
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(1.3)∆𝐸 =  ℎ𝑣
0
 

where ΔE represents the energy difference between two spin states, is Planck’s constant andℎ 𝑣
0

is resonant frequency corresponding to the energy gap between two spin states induced by B0. More

detailed information is included in Figure 4.

Figure 4. Spin orientation and energy transitions in NMR.

Source: Adapted from @steve_woodley NMR principle template, created in Biorender.com.

In NMR spectroscopy, the initial magnetization (M0) of the sample plays a significant role

in determining the outcome of pulse sequences. Before any RF pulses are applied, the sample's

nuclear spins are aligned along the direction of the external magnetic field (B0), resulting

in an equilibrium magnetization represented by M0. Precise control and manipulation of M0 are

essential for designing effective pulse sequences that influence nuclear spins during NMR

experiments. Following this, each spin experiences precession at its unique Larmor frequency around

the z-axis, thereby inducing a signal in the receiver coil. However, motions within the solution that

lead to time-varying magnetic fields result in spin relaxation, causing the received FID signal

to gradually diminish [38-39].

The chemical environment of a nucleus influences its resonance frequency through the

shielding effect. Shielding of the nucleus alters the resonance frequency, leading to different chemical

shifts for nuclei in distinct environments. Chemical shifts are reported relative to a reference signal,

often e.g. tetramethylsilane (TMS), in parts per million (ppm), providing valuable structural
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information. The dispersion of chemical shift values varies among nuclei, with 1H signals exhibiting

a small dispersion compared to other nuclei. Understanding this information is crucial for interpreting

NMR spectra and revealing molecular structures [41-42].

The Fourier transformation (FT) of the free induction decay data obtained from nuclear

magnetic resonance spectroscopy enables the conversion of time-domain signals into

frequency-domain spectra. This transformation enables the identification and analysis of various

molecular properties, including chemical shifts [43]. Mathematically, the Fourier transform

is represented by the equation:

(1.4)𝐹(ν) =  
−∞

∞

∫ 𝑓(𝑡)𝑒−𝑖2πυ𝑡𝑑𝑡  

where is the frequency-domain spectrum, is the time-domain signal (FID), is𝐹(ν) 𝑓(𝑡) υ

the frequency, represents the imaginary unit and is the time interval between data points in the𝑖 𝑑𝑡

FID. This transformation allows analysis of the spectral components of the signal in terms of their

frequencies rather than their amplitudes over time. The Fourier transform aids in determining

molecular structures and dynamics by revealing resonance peaks corresponding to specific atomic

nuclei and their interactions (see Figure 5) [44].

Figure 5. Converting time-domain FID to frequency-domain spectrum using Fourier transform (FT).

Source: Created in GIMP, own elaboration.

I.1.3 One-dimensional 1H nuclear magnetic resonance

The construction of an NMR device involves integrating diverse components to enable

precise manipulation and analysis of atomic nuclei within a sample (see Figure 6) [45-46]. At its core

lies a powerful magnet that generates a strong and uniform magnetic field that is essential for NMR

experiments. Surrounding the magnet is a vacuum chamber that maintains the required environment,
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including liquid nitrogen and liquid helium for cooling purposes. The sample is positioned within the

bore, held by a sample lift mechanism that uses air to move the sample. Supporting this setup

is a magnet controller, featuring sophisticated electronic configurations and controls to regulate

magnetic field intensity and stability. Helium and nitrogen ports allow for the controlled introduction

of cooling agents. The device includes an RF transmitter calibrated to emit radiofrequency pulses

targeted at the sample, inducing transitions between nuclear spin states and emitting NMR signals.

These signals are captured by a sensitive detector located in the probe section, equipped with

specialized coils and electronics. Finally, advanced data acquisition and processing units, including

manufacturer software algorithms and computing resources, analyze and interpret the acquired NMR

data.

Figure 6. Schematic diagram of an NMR spectrometer build.

Source: Based on [46], created in Biorender.com.

In an NMR experiment, one (1D) or a series (2D, 3D) of free induction decay curves are

detected and recorded [47]. The process of one-dimensional NMR spectroscopy typically involves

three phases: sample preparation, pulse (application of radiofrequency pulses to manipulate

magnetization), and signal detection (followed by further data analysis). During the pulse phase,

a specific pulse program is applied to manipulate the spin system and achieve a desired state, causing

precession at each spin's unique Larmor frequency. However, spin relaxation occurs due to motions

in the solution, gradually diminishing the received FID signal. To address this, NMR multi-pulse

sequences like CMPG1D have been developed, incorporating RF pulses, timed delays, and magnetic

field gradients for systematic manipulation of nuclear spins. To enhance the signal-to-noise ratio

(SNR), experiments are repeated multiple times, and the data are summed before undergoing Fourier
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transformation to produce the final 1D spectrum. Following preparation and detection, the measurable

signal (FID) is acquired over several seconds, accumulating over repeated scans to improve SNR. [48]

Analyzing peak positions and intensities in the resulting spectrum provides insights into

the chemical composition, structure, and dynamics of molecules in the sample, aiding

in understanding molecular properties and interactions. Analysis of such data involves techniques like

peak integration, spectral fitting and where applicable, deconvolution. Spectral alignment and peak

integration ensure accurate comparison and integration of data across samples. Deconvolution helps

distinguish and quantify individual components from complex mixtures, enabling detailed

characterization and understanding of molecular structures and interactions. However, due to its

complexity, deconvolution is often considered an auxiliary approach in spectroscopic studies. Despite

challenges in metabolite identification due to sample complexity, advances in spectral databases and

computational tools have improved capabilities. These tools extract valuable information from NMR

spectra, revealing chemical shifts, molecular connectivity, and quantitative data about metabolites

[49]. Innovative computational methods, such as pattern recognition algorithms [50-51], machine

learning approaches [52], and metabolic pathway analysis tools [53], are also employed for metabolite

identification and characterization. These methods utilize spectral features, chemical properties, and

biological context to accurately annotate metabolites and infer metabolic pathways. By combining

multiple analytical techniques and data integration strategies, it is possible to enhance metabolite

identification and gain deeper insights into metabolic processes and disease mechanisms [54].

Since its inception in the mid-20th century, 1D NMR and its applications have undergone

significant evolution, expanding over the years to accommodate a wide range of research needs [55].

The emphasis of the work in this thesis is primarily on one-dimensional solutions, while leaving room

for potential integration of multidimensional input handling in the future.

I.2 Metabolomics applications in disease research

Recent evidence increasingly supports the significance of specific metabolites in various

diseases, spanning civilization diseases, genetic neurological disorders, and cancer [56-58].

Metabolites detected and analyzed in biological samples act as biomarkers, offering valuable insights

into disease onset, progression, and treatment. Analyzing shifts in metabolite concentrations holds

promise for assessing biomarkers of disease susceptibility, refining diagnostic methodologies,

evaluating treatment efficacy, and optimizing pharmaceutical dosing regimens. This emphasizes

metabolomics as a powerful tool for biomarker discovery and disease diagnosis, crucial in disease

research [59].
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I.2.1 Importance of metabolomics shown in own research

In the following section, a description of the research conducted by our team is provided,

as documented in publications [64, 67]. These studies highlight our exploration into autoimmune

diseases and antibiotic resistance through advanced metabolomics approaches. Autoimmune diseases

encompass a diverse group of conditions where the body's immune system mistakenly targets

its tissues, leading to chronic inflammation and tissue damage. This dysregulation can result from

a complex interplay of genetic predisposition and environmental triggers [60]. For instance,

rheumatoid arthritis, characterized by joint inflammation and destruction, is influenced by both

genetic factors and environmental exposures such as smoking [61]. Similarly, systemic lupus

erythematosus involves the immune system attacking various organs and tissues, with genetic

susceptibility and environmental factors like infections contributing to its development [62]. Multiple

sclerosis, an autoimmune disorder affecting the central nervous system, is thought to arise from

a combination of genetic predisposition and environmental triggers [63]. Understanding

aforementioned factors is essential for advancing disease research, aiding in the development

of precise therapies, and enhancing patient outcomes. In study [64], metabolomics analyses were

conducted to investigate alterations in low-molecular-weight compounds across patients diagnosed

with rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA).

Metabolomics analyses were conducted at three intervals: before treatment initiation and at 3 and

6 months following the administration of a biologic agent. This approach enabled the detailed tracking

of biochemical changes over time, providing insights into the metabolic pathways affected by these

diseases and their treatments. Tracking parameters like DAS28 (Disease Activity Score using 28 joint

counts, assessing disease activity in rheumatoid arthritis based on joint tenderness and swelling) and

CRP (C-reactive protein, indicating inflammation) in RA patients showed notable improvement after

6 months, with partial improvement noted at 3 months. Analysis of AS-tracking parameters showed

improvements after 3 months, however, PsA patients showed unsatisfactory disease activity

parameters even after 6 months. The study identified several metabolite alterations: RA showed

increases in alanine, tryptophan, tyrosine, glutamine, leucine, isoleucine, and keto acids like

2-oxoisocaproate and 3-methyl-2-oxovalerate, alongside a rise in citrate. AS patients exhibited

elevated levels of glutamine, tryptophan, histidine, leucine, citrate, and formic acid, while isobutyrate

and acetone levels decreased. In PsA, notable changes included a decrease in acetate and ethanol

levels.The study identified several metabolite alterations: RA showed increases in alanine, tryptophan,

tyrosine, glutamine, leucine, isoleucine, and keto acids like 2-oxoisocaproate and

3-methyl-2-oxovalerate, alongside a rise in citrate. AS patients exhibited elevated levels of glutamine,

tryptophan, histidine, leucine, citrate, and formic acid, while isobutyrate and acetone levels decreased.

In PsA, notable changes included a decrease in acetate and ethanol levels. Study has demonstrated

a link between DAS28 and histidine, among other amino acids, indicating treatment effectiveness,
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as lower inflammation is associated with higher levels of specific amino acids. Furthermore,

associations between TLR4 gene polymorphisms and RA progression, as well as response to anti-TNF

therapy, suggest a role for the microbiome in the development of rheumatic diseases. In summary, the

study emphasizes the significance of metabolomics in uncovering potential biomarkers and

understanding the biochemical mechanisms of autoimmune diseases. It also highlights the difficulties

in treating PsA and proposes that targeted therapies, such as microbiome modulation, could enhance

treatment outcomes for rheumatic diseases.

Metabolomics emerges its value in enhancing our understanding of antibiotic resistance

mechanisms of microbiota [65]. Leveraging NMR spectroscopy, key metabolites and pathways

implicated in antibiotic resistance can be pinpointed, laying the groundwork for targeted interventions

and improvements in disease management strategies [66]. For instance, in a recent study [67],

the metabolic profiles of two strains of Pseudomonas aeruginosa, encompassing both

antibiotic-susceptible and antibiotic-resistant phenotypes, were analyzed. Pseudomonas is a genus

of bacteria known for its adaptability to diverse environments, ranging from soil and water

to the human body. Certain species, such as Pseudomonas aeruginosa, are notorious pathogens

capable of causing a wide range of infections, particularly in immunocompromised individuals [68].

Investigation yielded direct molecular insights into P. aeruginosa's response to antibiotics,

highlighting metabolic disparities between resistant and susceptible strains. Notably, these differences

appear to correlate with the activation of antibiotic resistance mechanisms. Comparative analysis

of intracellular and extracellular metabolite profiles unveiled distinct metabolic signatures between

drug-resistant and drug-susceptible Pseudomonas aeruginosa strains, particularly within

the intracellular amino acid pool. The study identified significant alterations, including decreased

pyruvate and increased lactate levels in the resistant strain, suggesting a more intense reduction

reaction of pyruvate. Additionally, branched-chain amino acids (valine, leucine, and isoleucine) were

upregulated, while isocitrate levels were lower, and succinate levels were higher in the resistant strain.

Most intracellular amino acids were elevated in the resistant strain, except for glycine, glutamate, and

tyrosine, which were also higher in this strain. Moreover, UMP levels were notably lower

in the resistant strain, which is significant as UMP is involved in virulence and biofilm formation.

The concentration of intracellular free amino acids reflects a balance between various processes,

including protein synthesis, environmental uptake, biosynthesis, and degradation. This comprehensive

understanding of metabolic dynamics holds promise in guiding the selection of optimal therapeutic

approaches and identifying potential targets for future drug development, thus advancing our arsenal

against antibiotic-resistant pathogens. These metabolomics-driven findings have significant

implications for both current treatment strategies and the development of novel therapeutics to combat

antibiotic resistance, ultimately advancing our arsenal against antibiotic-resistant pathogens.
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I.2.2 Other examples of metabolomics importance

In functional genomics, metabolomics serves as an invaluable resource for identifying

phenotypic changes resulting from genomic alterations [69]. Familial dysautonomia (FD) stands

as a rare genetic neurologic disorder characterized by impaired neuronal development and progressive

degeneration affecting both the peripheral and central nervous systems. The condition is monogenic,

with the majority of patients harboring an identical point mutation in the elongator acetyltransferase

complex subunit 1 (ELP1) gene, rendering it a relatively straightforward genetic landscape for

the identification of modifiable factors influencing its pathology [70-71]. As demonstrated in

the FD studies [72-73], gastrointestinal symptoms and metabolic deficits are prevalent among

FD patients, reinforcing the notion that the gut microbiome and metabolome undergo alterations and

dysfunction compared to those of healthy individuals. Investigation revealed significant discrepancies

in gut microbiome composition, as evidenced by 16S rRNA gene sequencing of stool samples,

alongside distinct profiles in stool and serum metabolomes determined through NMR analysis, when

comparing a cohort of FD patients with their healthy cohabitating relatives. In terms of identified

metabolites, FD patients exhibited significantly lower levels of xanthine and methanol in their serum,

alongside elevated levels of urea. Additionally, stool samples from FD patients showed significantly

elevated choline levels, which correlated with lower microbiome alpha diversity and decreased

richness. These findings align with clinical reports suggesting metabolic energy deficits in FD patients

and highlight additional metabolic pathways implicated in the disease's phenotypic expression.

Overall, the study provides evidence linking ELP1 gene mutation in FD with profound metabolic

alterations, offering insights into potential therapeutic targets for mitigating neurodegeneration

in FD patients. Additionally, analysis demonstrated that key discoveries made in human subjects are

also replicated in a neuron-specific Elp1-deficient mouse model.

Metabolomics has found intriguing application in research investigating multi-omics samples

from rodent models subjected to gravity conditions. In a recent study [74], liver tissues from mice

transported to the International Space Station (ISS) underwent histological, transcriptomic, and

proteomic analyses. Pathway analysis was subsequently performed on the data from these animals

to uncover molecular changes elucidated by omics techniques. The findings revealed significant

alterations in lipid localization, as well as lipid and fatty acid metabolism and processing, irrespective

of strain or flight conditions. The analysis revealed fluctuations in pathways, with notable similarities

to metabolic changes observed in NAFLD (nonalcoholic fatty liver disease). Specifically, disruptions

in lipid metabolism were evident, resembling early stages of NAFLD characterized by insulin

resistance and altered fatty acid metabolism, leading to liver lipid accumulation. Proteomic analysis

highlighted inhibition of apolipoproteins, potentially increasing NAFLD risk, along with

dysregulation of glucagon (GCG) and insulin pathways. Activation of glucose metabolism pathways

and upregulation of cell cycle pathways further suggested disturbances in lipid metabolism associated
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with NAFLD. Disrupted circadian rhythm in microgravity environments may exacerbate NAFLD

progression, potentially through increased lipid deposition in the liver. Findings suggest persistent

activation of NAFLD-related pathways in space, indicating gradual lipid deposition in the liver and

increased risk of NASH and irreversible liver fibrosis. Metabolomics alongside other omics has

proven valuable in exploring the impact of gravity conditions. Nevertheless, further studies are

necessary to understand the underlying mechanisms and assess risks to astronauts during

longer-duration spaceflight missions.

The examples provided demonstrate that metabolomics alone, as a component of systems

biology, offers numerous advantages in disease research. However, when integrated into a more

comprehensive approach like multi-omics, its potential becomes even more pronounced. Multiomics

methodologies aim to simultaneously analyze diverse molecular components, enabling a more

comprehensive grasp of biological processes, disease mechanisms, and complex phenotypes.

Nevertheless, implementing such approaches necessitates not only meticulous experimental design,

appropriate equipment, and skilled personnel but also relies on advanced computational methods and

substantial computing resources, particularly vital in deciphering multi-omics samples [75].

Bioinformatics approaches are crucial for processing and analyzing the vast amount of data generated

in metabolomics studies. Bioinformatics tools and algorithms assist in identifying metabolites,

analyzing pathways, and integrating metabolomic data with other omics datasets like genomics

and proteomics. This integration enables a comprehensive understanding of disease mechanisms and

facilitates the discovery of biomarkers.

I.3 Computational methods in metabolomics

Within metabolomics research, several computational methods are employed to dissect and

interpret the complex metabolic data. Bioinformatics plays a crucial role in processing and analyzing

large-scale metabolomic datasets to unravel metabolic pathways and identify biomarkers associated

with physiological states or diseases [76]. Bioinformatics emerged as a field at the intersection

of biology and computer science, aiming to analyze and interpret biological data using computational

tools and techniques [77]. The roots of bioinformatics can be traced back to the latter half of the 20th

century with the development of early algorithms for sequence alignment and protein structure

prediction. These pioneering efforts laid the foundation for the modern era of bioinformatics,

characterized by the explosion of biological data generated by high-throughput technologies, which

have become increasingly available since the turn of the 21st century and continue to evolve [78].

Artificial Intelligence (AI) is now integral to this evolution, providing a variety of approaches

for pattern recognition, predictive modeling, and data integration. These technologies enhance the

ability to derive meaningful insights from complex datasets, further advancing the field

of metabolomics.
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I.3.1 The role of bioinformatics in metabolomics data analysis

Bioinformatics methods encompass a wide range of computational techniques and analytical

approaches used to extract meaningful insights from biological data including those

metabolomic-derived. To obtain reliable results, comprehensive software is needed to allow

for precise analysis of raw spectra [79]. According to the sources [80-81] where an extensive

collection of current metabolomics tools and databases were presented, among the most commonly

used programming languages in metabolomics, Python, R, Ruby, and Matlab clearly dominate with

BASH scripting being essential for automating data processing pipelines and integrating various

bioinformatics tools. Additionally, authors mentioned that scripting languages are increasingly

combined with “low-level” languages such as C, C++, or Rust. In addition to software and

programmed methods, bioinformatics has embraced the adoption of automated workflows known

as pipelines. These pipelines have gained popularity in recent years due to their ability to streamline

and standardize complex data analysis tasks in bioinformatics. By automating the sequential execution

of multiple software tools and algorithms, pipelines facilitate the efficient processing, analysis, and

interpretation of large-scale biological datasets. They offer a systematic approach to reproducibly

perform bioinformatics analyses, saving time and minimizing errors. Moreover, pipelines often

include built-in documentation and version control mechanisms, enhancing transparency and

reproducibility in bioinformatics research [82]. Luigi [83], SnakeMake [84], and Nextflow [85] are

examples of workflow management systems used in bioinformatics. Luigi is a Python-based

workflow management system developed by Spotify, designed to handle complex pipelines

in a simple, scalable, and maintainable way. SnakeMake, another Python-based workflow

management system, focuses on enabling reproducible and scalable data analysis workflows.

Nextflow, on the other hand, is a data-driven computational workflow framework written in Groovy

that enables scalable and reproducible scientific workflows using software containers such as Docker

[86] or Singularity [87]. Supporting containerization, enabling users to encapsulate software

dependencies and ensure reproducibility across different computing environments. It also features

built-in support for task parallelization, data parallelization, and fault tolerance, making it suitable for

large-scale data analysis on local workstations, high-performance computing (HPC) clusters, and

cloud platforms. Additionally, Nextflow provides extensive logging, monitoring, and visualization

capabilities for workflow management and optimization. Overall, while all three workflow

management systems serve the purpose of orchestrating and automating bioinformatics pipelines, their

differences in syntax, scalability, and community support make them suitable for different use cases

and preferences within the bioinformatics community [88-89]. Despite the evident potential, there

remains a minority of publicly available metabolomics software that supports NMR spectra analysis,

while focusing more on various variants of mass spectrometry equipment (e.g. GC/ LC-MS).
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Moreover, authors develop their tools mainly focusing on individual steps in metabolomic analyses,

indicating a clear lack of comprehensive and fully automated pipelines.

I.3.2 Metabolomics data interpretation: preprocessing

Metabolomics data, from the initial phase of data acquisition to the statistical analysis,

undergoes a series of processing steps. Each of these steps ensure the quality of the data and facilitate

the accurate interpretation of the results. During the data acquisition stage, raw data is gathered from

various sources, such as mass spectrometry or nuclear magnetic resonance spectroscopy. This raw

data often contains noise and artifacts that might mask meaningful signals. Thus, preprocessing

techniques are employed to clean and process the data, including baseline correction, spectra phasing,

peak alignment, and normalization [90-91]. Baseline correction involves removing or adjusting

the underlying signal, known as the baseline, from the raw data. The baseline represents the noise

or background signal present in the data, such as solvent effects, chemical impurities, or instrumental

artifacts which can obscure the true metabolite peaks of interest. Baseline correction methods aim

to accurately estimate and subtract this baseline to improve the accuracy of peak detection

and quantification. Common techniques include polynomial fitting, spline interpolation, and

wavelet-based methods [92-93]. Peak alignment in NMR metabolomics involves aligning peaks

across multiple spectra to correct for variations in chemical shift caused by differences

in experimental conditions, sample preparation, or instrument settings. Since chemical shift values are

sensitive to factors such as pH, temperature, and solvent composition, peak alignment ensures that

corresponding peaks are aligned in all spectra, enabling accurate comparison and

interpretation of metabolite profiles. Alignment algorithms in NMR data typically rely on

the identification of reference peaks or spectral regions shared across samples, followed by alignment

based on chemical shift values. NMR spectra may exhibit variations in signal intensity due

to differences in sample concentration or total spectral area [94]. Normalization methods in NMR

metabolomics aim to remove these systematic variations by scaling the spectral intensities across

samples to a common reference. Common normalization approaches include total spectral area

normalization, probabilistic quotient normalization (PQN), or normalization based on internal

standards or reference peaks. By normalizing the spectra, impact of technical variability is minimized

and the reliability of comparative analyses and biomarker discovery are enhanced [95]. Additionally,

scaling techniques such as Pareto scaling, which reduces the influence of high-intensity metabolites

while preserving variability, and unit variance scaling, which standardizes the data by dividing each

variable by its standard deviation, are commonly used [96]. These methods are essential

in metabolomics data analysis, as they ensure that differences observed are due to biological factors

rather than technical artifacts, thereby improving the accuracy of downstream statistical and machine

learning models.
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Overall, preprocessing steps aim to enhance the quality and reliability of the data

by minimizing technical variations and noise introduced during data acquisition. Following data

preprocessing, the processed data undergoes statistical analysis to extract meaningful insights and

identify significant metabolites or metabolic patterns. Statistical methods such as multivariate

analysis, hypothesis testing, and machine learning algorithms are applied to unravel complex

relationships within the data and discern relevant biological information [97].

I.3.3 Metabolomics data interpretation: univariate and multivariate perspectives

In spite of significant advancements in metabolomics and bioinformatics, challenges persist

in maximizing the full potential of metabolomic data. One such challenge is the complexity of data

interpretation, integration across multiple omics layers [98] and evaluating complex spectra [99]. Both

univariate and multivariate analysis methods are commonly employed to extract meaningful insights

from this data, aiming to reveal biological insights relevant to the investigated issue [100]. Univariate

methods in metabolomics analysis offer a straightforward approach to investigating individual

metabolites' behavior and their association with various experimental or clinical factors. These

methods, such as t-tests, ANOVA, fold change analysis, and correlation analysis, focus on examining

one variable at a time, making them suitable for initial exploration or hypothesis testing

in metabolomics studies. For instance, t-tests and ANOVA are commonly employed to compare

the means of metabolite levels between different groups, aiding in the identification of significant

differences associated with factors like disease state or treatment response. Non-parametric

alternatives like the Wilcoxon rank-sum test and Kruskal-Wallis test accommodate data that do not

adhere to normality assumptions, ensuring robust statistical analysis [101-102]. Fold change analysis

highlights metabolites that exhibit substantial alterations in abundance between experimental

conditions, guiding towards potential biomarkers or biologically relevant molecules. Additionally,

correlation analysis explores relationships between metabolite levels and clinical parameters,

shedding light on metabolic pathways or physiological processes influenced by these associations.

Univariate methods provide valuable insights into individual metabolite behavior and their relevance

to biological phenomena in metabolomics research. However, they are often supplemented with

multivariate approaches to capture the complex interactions and patterns present in high-dimensional

metabolomics data comprehensively [103].

Concerning NMR-based metabolomics, the data typically manifest as spectra, which are then

segmented into regions of predetermined width. Generally, these methodologies yield voluminous and

complicated datasets. Initially, the number of observations ( ) in metabolomics experiments is often𝑛

significantly lower than the number of peaks (or variables) ( ) in a spectrum . In such𝑝 𝑛 ≪  𝑝

instances, utilizing standard parametric statistical methods like regression is challenging due

to insufficient data for parameter estimation. Furthermore, numerous metabolites may not
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be correlated with the trait under examination, contributing irrelevant variation that complicates

comprehensive data analysis [104]. Given these challenges, there exists a genuine necessity

for multivariate dimension-reducing techniques capable of accommodating data complexities and

unveiling any latent relationships. Multivariate analysis techniques, such as principal component

analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), are commonly used

for dimensionality reduction and visualization of complex metabolomics datasets. These methods

facilitate the identification of patterns and clusters that differentiate between experimental groups

or conditions [105]. Principal components analysis, an unsupervised multivariate statistical method,

strategically employs orthogonal transformations to convert potentially correlated variables into

linearly uncorrelated variables known as principal components. PCA is a prevalent technique

for metabolomic data analysis, offering a straightforward non-parametric approach to projecting NMR

or MS spectra into lower-dimensional space, revealing inherent data structure, and providing

a compact representation of the original data. Despite its widespread adoption, PCA suffers from

several limitations. Notably, it lacks an associated probabilistic model, making assessment of its fit

to the data challenging and constraining its application scope. Additionally, PCA may fail to unveil

underlying subject groups within the data, potentially presenting a distorted view of the data structure.

Other drawbacks include its inability to appropriately handle missing data [106]. In metabolomics

studies, alongside metabolomic data, other phenotypic data such as age, gender, BMI, or disease status

are often generated. Incorporating these covariates into multivariate models is highly beneficial

for comprehensive data analysis. Additionally, there is a struggle with data unification, as contributors

often provide different answers and do not always read the questions carefully. Partial Least Squares

Discriminant Analysis is a supervised multivariate statistical technique commonly used

in chemometrics and various fields of data analysis, including omics data analysis. It is particularly

useful when dealing with high-dimensional datasets where the number of variables (features) exceeds

the number of samples or observations , and when there is a need to classify or predict sample𝑝 ≫  𝑛

classes from phenotypic data based on the given features. PLS-DA can be viewed as a “supervised”

counterpart to PCA, integrating dimensionality reduction with group information. Consequently, it not

only reduces dimensionality but also enables feature selection and classification [107-108].

From a data analysis perspective, in order to address tasks such as feature selection and

classification, metabolomics is beginning to see benefits from the adoption of machine learning (ML)

and deep learning (DL) methods [109-111]. In feature selection, ML algorithms are used to identify

a subset of relevant features (metabolites) from the large pool of measured variables. These algorithms

assess the importance of each feature based on criteria such as predictive power or importance scores,

enabling the selection of the most informative features for further analysis. Common ML techniques

for feature selection in metabolomics include Recursive Feature Elimination (RFE) and LASSO

(Least Absolute Shrinkage and Selection Operator) [112-113]. In classification, ML algorithms are

employed to categorize samples into different groups based on their metabolic profiles. These
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algorithms learn patterns from labeled training data and then use these patterns to predict the class

labels of unseen samples. Popular ML classification algorithms in metabolomics include Support

Vector Machines (SVM), Random Forest (RF), k-Nearest Neighbors (k-NN) and Neural Networks

(NN). These algorithms enable accurate classification of samples into predefined categories, such

as healthy versus diseased or treated versus control [114]. Cross-validation techniques, such as k-fold

cross-validation or leave-one-out cross-validation, are commonly used to evaluate the performance

of ML models in feature selection and classification tasks [115]. These techniques partition the data

into training and validation sets multiple times, allowing for robust assessment of model performance

and generalization to unseen data. ML algorithms thanks to their ability to handle high-dimensional

data can uncover hidden relationships between metabolites and disease phenotypes, predict disease

outcomes, and identify novel biomarkers [116]. By leveraging machine learning, the limitations

of traditional statistical methods can be overcome, uncovering novel insights into disease

mechanisms.

I.3.4 Metabolomics data interpretation: insights into biological processes

Pathway analysis is a computational method used in bioinformatics to gain insights into

biological processes by analyzing sets of genes, proteins, or metabolites within the context of known

biological pathways [117]. Pathway analysis begins with the identification of biological pathways

relevant to the experimental context. This can be achieved through various pathway databases,

literature mining, or computational methods that compile information on known pathways from

published studies and curated databases [118-120]. It typically takes as input a list of genes, proteins,

or metabolites that are differentially expressed or otherwise associated with a particular biological

condition, such as a disease state or experimental treatment. These input molecules can be identified

through high-throughput omics technologies such as microarrays, RNA sequencing, mass

spectrometry, or metabolomics. The input list of molecules is then analyzed to determine whether they

are significantly enriched in any particular biological pathways compared to what would be expected

by chance. This is typically done using statistical methods such as Fisher's exact test, hypergeometric

test, or gene set enrichment analysis (GSEA) [121]. Enrichment analysis helps identify pathways that

are biologically relevant to the experimental condition under investigation. The results are often

visualized using pathway diagrams or networks, where input molecules are mapped onto their

respective pathways. This visualization allows researchers to interpret the biological significance

of the findings and identify key pathways or biological processes that may be dysregulated

in the experimental context [122-123].

Another captivating method in pathway analysis involves the utilization of knowledge graphs.

These graphs serve as repositories of information, utilizing a graph-structured data model or topology

to manage and illustrate data [124]. They aggregate data about metabolites from various sources,
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including databases, literature, and experimental studies, providing extensive annotations that

encompass chemical structures, biochemical properties, metabolic reactions, and biological functions.

Through the integration of this information into a unified framework, knowledge graphs aid

to annotate metabolites identified in metabolomics experiments and contextualize their roles within

cellular metabolism [125-126]. Additionally, knowledge graphs can be integrated with other omics

data, such as transcriptomics and proteomics, to construct multi-omics knowledge networks

(see Figure 7). This integration enables the linking of metabolites to genes, proteins, and biological

pathways, facilitating exploration of the relationships between metabolic changes and alterations

in gene expression or protein abundance. Such an integrative approach enhances understanding

of metabolic regulation and coordination across different molecular levels in complex biological

systems [127].

Figure 7. Diagram of an exemplary multi-omics knowledge graph.

Source: Based on [128], created in Biorender.com.

Furthermore, knowledge graphs enable the inference of metabolic relationships and pathway

associations using existing biological knowledge. By analyzing connectivity between metabolites,

enzymes, and pathways within the graph, novel metabolic connections can be uncovered, and
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potential metabolic pathways or pathway crosstalk can be predicted [129]. This capability enables

generation of hypotheses about metabolic interactions underlying observed changes in metabolite

levels or metabolic phenotypes in metabolomics experiments. Knowledge graphs encode detailed

representations of metabolic pathways, illustrating the sequential steps of biochemical reactions

involved in metabolite transformations. These pathway representations include information about

enzyme-catalyzed reactions, substrate-product relationships, and regulatory interactions. Visualizing

metabolic pathways as interconnected nodes and edges within the graph, can help to explore the flow

of metabolites through different biochemical pathways and identify potential metabolic flux

alterations associated with physiological conditions or perturbations.

I.4 Databases and state-of-the-art tools

In recent years, metabolomic research has significantly advanced, leading to an increasing

number of records deposited in databases. This reflects the unified actions to document and share

metabolomic data, enhancing accessibility and analysis worldwide. Metabolomic databases serve

as repositories for storing extensive datasets generated from diverse experiments, providing curated

information for querying, analyzing, and interpreting metabolomic data [130-131]. The FAIR

principles, introduced in 2016 with a focus on making data Findable, Accessible, Interoperable, and

Reusable, were initially aimed at fostering the reuse of scientific data and enhancing data

management. Over time, these principles were expanded to encompass research software and

workflows, aiming for greater uniformity and reusability across scientific endeavors [132]. FAIR

initiative alongside continuously updated and expanded databases contribute significantly

in advancing our understanding of metabolic pathways, biomarkers, and physiological processes

[133]. In the following sections, state-of-the-art databases and bioinformatic tools are discussed.

For easier reference, these materials are compiled in Table 1.

33



Table 1: Metabolomic state-of-the-art databases and bioinformatic tools.

Source: Based on literature research, own elaboration.

I.4.1 An overview of metabolomics data repositories

For the past three decades, the Biological Magnetic Resonance Data Bank (BMRB) has stood

as the principal repository for spectral and derived data from nuclear magnetic resonance

spectroscopy of biological systems. BMRB was established in 1988, distinguishing itself from other

biophysical data banks, by housing primary time-domain data acquired by NMR spectrometers,
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Type Name Source [Reference]

Database Biological Magnetic Resonance Data

Bank

https://bmrb.io/ [134]

CyanoCyc https://cyanocyc.org/ [145]

HumanCyc https://humancyc.org/ [144]

Human Metabolome Database https://hmdb.ca/ [152]

Kyoto Encyclopedia of Genes and

Genomes

https://www.genome.jp/kegg/ [143]

MetaboLights https://www.ebi.ac.uk/metabolights/ [157]

MetaCyc https://metacyc.org/ [142]

Protein Data Bank https://www.rcsb.org/ [135]

Reactome https://reactome.org/ [148]

UniPathway https://www.uniprot.org/database/DB-0170 [147]

Software Bruker TopSpin https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html

[166]

Chenomx NMR Suite https://www.chenomx.com/ [168]

MetaboAnalyst https://www.metaboanalyst.ca/ [175]

Mnova https://mnova.pl/ [167]

NMRProcFlow https://www.nmrprocflow.org/ [170]

R

package

ASICS https://bioconductor.org/packages/release/bioc/html/ASICS.html [173]

metaboanalystR https://github.com/xia-lab/MetaboAnalystR [177]

PepsNMR https://www.bioconductor.org/packages/release/bioc/html/PepsNMR.html [172]

https://bmrb.io/
https://cyanocyc.org/
https://humancyc.org/
https://hmdb.ca/
https://www.genome.jp/kegg/
https://www.ebi.ac.uk/metabolights/
https://metacyc.org/
https://www.rcsb.org/
https://reactome.org/
https://www.uniprot.org/database/DB-0170
https://www.bruker.com/en/products-and-solutions/mr/nmr-software/topspin.html
https://www.chenomx.com/
https://www.metaboanalyst.ca/
https://mnova.pl/
https://www.nmrprocflow.org/
https://bioconductor.org/packages/release/bioc/html/ASICS.html
https://github.com/xia-lab/MetaboAnalystR
https://www.bioconductor.org/packages/release/bioc/html/PepsNMR.html


processed spectra, spectral peak attributes, assigned spectral peak chemical shifts, and derived data

such as relaxation parameters [134]. Database also includes atomic coordinates for certain smaller

molecules. BMRB has developed advanced technologies for annotating and processing chemical shift

data archived within its repository, as well as the chemical shift and constraint data supporting

NMR-based structures in the Protein Data Bank (PDB) – open-access digital repository housing

three-dimensional structural data of biological macromolecules [135]. BMRB, adhering to FAIR data

principles, serves as a repository for NMR experimental and derived data on biologically relevant

molecular systems. It encompasses six primary data repositories: quantitative NMR spectral

parameters and derived data, time-domain spectral data, atomic coordinates for small molecules,

NMR constraints, CS-Rosetta structures, and a growing database of 1D and 2D NMR spectra

for biological molecules. Validation reports for chemical shift entries and MolProbity reports for PDB

entries are available on the BMRB website. Moreover, BMRB is affiliated with the Center for NMR

Data Processing and Analysis, offering the NMRbox platform, a cloud-based computing platform

facilitating access to existing NMR software tools and computational resources. NMRbox aims

to enhance NMR data reproducibility, streamline depositions to BMRB and other public databases,

and develop new data analysis tools. Various software services are provided for querying the archive,

performing data visualizations, file format conversions, data validation, and structure calculations

[136]. Data in BMRB are linked to literature citations and other public databases through Basic Local

Alignment Search Tool (BLAST) searches algorithm [137]. BMRB acquires data through depositor

submissions via multiple deposition systems, including OneDep, ADIT-NMR, and SMSDep

[138-139]. The NMR-STAR data format is utilized, supported by tools for editing and handling

NMR-STAR files. The NMR-STAR ontology facilitates data reusability by providing comprehensive

information on archived experimental data [140].

The landscape of biomolecular NMR is continually evolving, with emerging NMR techniques

presenting opportunities for studying diverse biological molecular systems, from larger proteins

to nucleic acids, molecular machines, and membrane-bound biopolymers. BMRB supports

metabolomics and natural products research by offering a library of 1D and 2D NMR spectra of pure

compounds, including metabolites, natural products, drugs, and screening compounds. It adopts

ALATIS compound and atom identifiers, based solely on the 3D structure of the compound and

the InChI convention, alongside providing spin matrices in the GISSMO convention for an increasing

number of small molecules [141]. Overall, its commitment to facilitating access to high-quality NMR

resources and support services make it an indispensable resource for metabolome investigation

worldwide.

MetaCyc and Kyoto Encyclopedia of Genes and Genomes (KEGG) are expansive metabolic

pathway database projects with over twenty years of development history [142-143]. They both offer

reference pathways utilized in predicting organismal metabolic pathways from annotated genomes.

MetaCyc is a comprehensive database of metabolic pathways and enzymes, serving as a valuable
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resource in bioinformatic, molecular biology, and related fields. MetaCyc contains curated

information on biochemical reactions, metabolic pathways, enzymes, and metabolites across

all domains of life. MetaCyc's significance extends to its utilization in predicting pathways within

the BioCyc database collection and other Pathway/Genome Databases globally such as HumanCyc

and CyanoCyc [144-145]. Meanwhile, KEGG consists of a reference pathway DB and projections

of these pathways onto organisms with sequenced genomes, widely adopted in research. Initially,

KEGG focused on genes and genomes, providing extensive resources for understanding biological

pathways, functions, and interactions. Over time, KEGG expanded its scope to include metabolomics

data, incorporating metabolic pathway maps, compound databases, and related information.

The integration of metabolomics-related content into KEGG occurred gradually, with continuous

updates and improvements to reflect advances in metabolomics research. In a study [146],

a comprehensive comparison of the contents of the KEGG and MetaCyc pathway DBs was conducted

in order to recognize the multidimensional nature of pathway databases, which encompass various

types of data. Examination encompassed metabolites, reactions, and pathways, excluding other

aspects like orthology data or genome-based pathway predictions. Notably, both databases boast

substantial metabolic reactions and pathways compared to other similar resources like UniPathway

and Reactome [147-148]. KEGG includes significantly more compounds compared to MetaCyc,

while MetaCyc encompasses a substantially greater number of reactions and pathways than KEGG.

However, the number of reactions within pathways is quite similar between the two databases.

MetaCyc and KEGG are frequently utilized for various purposes in metabolomics studies.

Firstly, they are employed for pathway analysis, where the extensive metabolic pathway information

available in these databases is utilized to map experimental metabolite data onto known pathways.

This enables the identification of affected pathways in diverse biological contexts or experimental

conditions. Moreover, databases serve as invaluable tools for metabolite annotation. Comparing

experimental metabolomic data with entries in these databases allows to annotate detected metabolites

based on their known chemical structures and metabolic pathways. Another common application

in metabolomics research is pathway enrichment analysis [149]. Comparison lists of differentially

expressed metabolites are created to known metabolic pathways in the databases, identifying

overrepresented pathways and gaining insights into the biological significance of observed

metabolomic changes. Additionally, MetaCyc and KEGG enable metabolic network reconstruction

[150]. These databases provide the essential information needed to construct comprehensive

metabolic networks, representing interconnected metabolic pathways within organisms. These

networks are essential for systems-level analysis, modeling, and simulation of metabolic processes

[151]. Furthermore, MetaCyc and KEGG are utilized for comparative metabolomics studies.

These databases enable the comparison of metabolomic data across different organisms

or experimental conditions, allowing the identification of conserved or divergent metabolic features

across biological systems.
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The Human Metabolome Database (HMDB) stands as the largest and most comprehensive

metabolomic database dedicated to human organisms [152]. Created at the University of Alberta

in Canada in 2007, HMDB offers an extensive array of data concerning the structures, chemical

properties, concentrations in various biological fluids and tissues, and metabolic pathways associated

with each metabolite. HMDB's information is meticulously curated from a diverse range of sources,

including scientific literature, high-throughput experimental studies, and computational analyses,

ensuring the reliability and accuracy of its content. Through its user-friendly interface, HMDB

facilitates browsing, searching, and analysis of metabolite data, enhancing exploration of metabolic

pathways, pinpointing potential biomarkers, and unraveling the connections between metabolites and

human health or disease states. Unlike general metabolism databases or spectral repositories, such

as BMRB, KEGG, MetaCyc or Reactome, HMDB serves as a dynamic and vividly illustrated online

encyclopedia, providing in-depth coverage of human metabolites and metabolism.

Since its inception, HMDB has undergone significant evolution and enhancement to meet the

evolving needs of the metabolomics community. Over the years, HMDB has expanded dramatically,

from its initial release containing data on 2,180 human metabolites to its latest version, HMDB 5.0,

which boasts more than 200,000 annotated metabolite entries, alongside over 1,5 mln unannotated

derivatized metabolite entries for GC–MS [153-155]. This latest iteration introduces numerous

improvements, including enhanced metabolite descriptions, a new Chemical Functional Ontology

(ChemFOnt), and advanced visualization tools. This database is utilized in various ways to advance

understanding of human metabolism and its implications for health and disease. One significant

application of HMDB is in biomarker discovery. The database is used to identify potential biomarkers

by comparing metabolomic data from biological samples to HMDB's extensive library of metabolites.

By identifying molecules that are indicative of specific biological processes or disease states,

improvements can be made in diagnostic and prognostic approaches, providing insights into disease

mechanisms. Another key use of HMDB is in metabolite annotation. The database provides detailed

information on metabolite structures, properties, and metabolic pathways, allowing to annotate

metabolites detected in metabolomics experiments. This enables the verification of metabolite

identities and provides significant insights into their biological functions and roles in metabolic

pathways. Where identification of perturbed metabolic pathways associated with specific conditions

or treatments, provides insights into underlying biological mechanisms. In pharmacology and drug

discovery, HMDB is used for the examination of how drugs are metabolized, the identification

of metabolites formed during drug metabolism, and the assessment of their pharmacological activities

and potential toxicity. Additionally, HMDB data is integrated into computational models of biological

systems for systems biology modeling. By incorporating HMDB's metabolite information, predictive

models of cellular metabolism can be developed, metabolic fluxes investigated, and the effects

of genetic or environmental perturbations on metabolic pathways explored [156].
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In essence, HMDB serves as an invaluable tool in advancing our comprehension of human

metabolism and its multifaceted implications for physiology, pathology, and personalized medical

interventions. Its latest version represents a significant milestone in metabolite database development,

with substantial enhancements in data quality, accessibility, and analytical capabilities.

A comprehensive collection of selected metabolites included in the database enables innovative

research and contributes to advancements in human health and biology.

MetaboLights serves as the open-access repository adapted for metabolomics investigations,

offering a collection of raw experimental data and associated metadata [157]. Operated by a leading

open-access data provider in molecular biology, MetaboLights serves as an resource for probing

biological functioning and understanding systemic perturbations induced by factors like diseases,

dietary habits, and environmental influences. The MetaboLights database was founded in 2012

by the European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI).

Since its creation, it has been widely utilized in the fields of metabolomics and bioinformatics.

Its usage has steadily grown over the years as metabolomics research has gained momentum, with

relying on MetaboLights as a primary resource for storing, sharing, and analyzing metabolomics data.

The database continues to play a crucial role in advancing metabolomics research by providing

a centralized platform for data management and collaboration within the scientific community [158].

MetaboLights operates on two primary fronts: as a repository for the global metabolomics community

to exchange findings, data, and methodologies across various metabolomic studies, and as a reference

layer containing meticulously curated information about metabolites. Rather than seeking to supplant

specialized resources, MetaboLights is customized to complement existing databases and collaborates

extensively with them to ensure seamless data exchange and address gaps in global knowledge. Close

partnerships with key stakeholders, including the Metabolomics Society, Metabomeeting, and

the Metabolomics Standards Initiative (MSI), underscore commitment to capitalizing on prior

expertise in the field. MetaboLights actively pursues formal data-sharing agreements with major

resources such as HMDB and Chemical Entities of Biological Interest (ChEBI), hence by referencing

identified metabolites from external databases, it avoids redundant information and instead provides

users with a unified, metabolite-centric perspective. As of September 2023, the database has attracted

users from nearly 100 countries across the globe, with a significant increase in registered studies

— from 1432 at the beginning 2020 to almost 8 times more in the third quartile of 2023. These studies

are categorized into different stages, including public, in review, in curation, and submitted, indicating

the platform's pivotal role in data storage and processing throughout the research lifecycle. The data

hosted on MetaboLights have expanded substantially, now encompassing over 270,000 samples,

2,700 assays, 439,000 data files, and 1.6 million metabolites/ unknowns/ features [159]. This wealth

of data covers a wide range of organisms, with a notable focus on human samples, followed by model

organisms like mice and Arabidopsis thaliana. LC-MS dominates as the preferred analytical

technique, highlighting the prevalence of untargeted studies and unassigned features. MetaboLights
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reflects the evolving landscape of metabolomics research, with a growing emphasis on complex data

types, advanced acquisition techniques, and multi-omics integration. Studies incorporate quality

control measures and cutting-edge technologies, such as MS2 acquisition and data-independent

acquisition. Efforts to streamline multi-omics integration are underway through collaborations with

consortia like HoloFood, linking metabolomics data with genomic and metagenomics data from other

EMBL-EBI resources [160]. These developments underscore the importance of MetaboLights

as a central hub for metabolomics data management and collaboration within the scientific

community.

I.4.2 State-of-the-art bioinformatics tools for metabolomics

Metabolomics has undergone a renaissance, largely driven by the integration of multi-omics

analyses, aimed at uncovering insights beyond what individual omics studies can provide alone [161].

The extensive research efforts in metabolomics have led to a significant rise in data deposited

in databases [162]. With advancements in metabolite detection accuracy and the ability to integrate

multiple omics datasets, the field is rapidly evolving. As access to open data continues to increase and

there is a growing demand for understanding the connections between metabolites and organism

phenotypes, there is a crucial need to develop tools that allow transition from raw data

to the biological interpretation of analyzed samples [163]. Bioinformatics tools for metabolomics

analyses encompass a spectrum ranging from straightforward command-line utilities to more complex

programs featuring graphical interfaces, as well as standalone web services [164-165]. These tools are

developed by bioinformatics companies or public institutions, offered under open-source licenses

or commercial arrangements (refer to Table 1 for state-of-the-art databases and bioinformatic tools).

Bruker TopSpin is a software package designed for the processing, analysis, and visualization

of nuclear magnetic resonance data. Developed by Bruker Biospin, it is specifically adapted for use

with Bruker NMR spectrometers, providing users with a powerful suite of tools to extract valuable

information from NMR spectra [166]. Bruker TopSpin has a user-friendly interface, offering

an intuitive platform for engaging with NMR data in a straightforward manner. The software provides

a wide range of functionalities for spectral processing, including baseline correction, phasing, and

referencing, allowing enhancement of the quality of spectra for further analysis. In addition to basic

spectral processing, Bruker TopSpin offers advanced analysis tools for peak picking, integration, and

spectral fitting. These tools enable identifying and quantifying peaks corresponding to different

metabolites or molecular components present in the sample. Furthermore, the software supports

various 1D and 2D NMR experiments, facilitating the characterization of complex molecular

structures and interactions. Software also includes features for data visualization and interpretation,

allowing users to visualize their NMR data in various formats, such as stacked spectra, contour plots,

or 2D spectra. The TopSpin supports customizable plotting options and interactive tools for exploring
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spectral features, aiding in the identification of metabolites and the elucidation of biochemical

pathways. One noteworthy feature is the availability of automation tools and customizable workflows,

which efficiently streamline data processing and analysis tasks. Users have the flexibility to design

custom processing scripts or employ built-in automation tools, ensuring the execution of routine tasks

with reproducibility and ease.

Overall, Bruker TopSpin stands out as a top choice, offering essential functionalities

to effortlessly process, analyze, and interpret NMR data with precision. The latest version of TopSpin

is compatible with various operating systems, including Windows 10 and 11, Linux-based systems

such as AlmaLinux 9.2 or CentOS 7, and macOS.

Another software broadly used in metabolomics analysis, Mnova (short for Mestrelab NMR

and MS Analysis) is a package designed for the processing, analysis, and visualization of NMR and

MS data [167]. Developed by Mestrelab Research, Mnova offers a wide range of tools and

functionalities with an intuitive environment for users to interact with their metabolomics-derived

data. The software provides a suite of tools for spectral processing, including phasing, baseline

correction, peak picking, integration, and spectral alignment. In addition to basic spectral processing,

Mnova offers advanced analysis capabilities, such as deconvolution, structure elucidation,

quantification, and metabolite identification. The software supports a wide range of 1D and 2D NMR

experiments, as well as various MS techniques, allowing users to analyze complex datasets and

investigate molecular structures and interactions. Mnova also includes visualization tools for data

exploration and interpretation. Users can visualize their NMR and MS data in different formats, such

as stacked spectra, contour plots, and 2D spectra. The software supports customizable plotting options

and interactive tools for exploring spectral features, facilitating the identification of metabolites,

compounds, and biomarkers. Furthermore, Mnova offers integration with other software tools and

databases, allowing users to import and export data in standard formats and access external resources

for compound identification and spectral database searching. Like Bruker TopSpin, Mnova

is a versatile software tool that goes beyond just NMR analysis. In addition to NMR spectra,

Mnova is also capable of analyzing MS data, offering a comprehensive solution across both domains.

Chenomx NMR Suite, a specialized software designed for metabolomics research, offers

a comprehensive platform for the analysis of NMR spectra [168]. At its core, Chenomx features

an extensive metabolite library, providing a vast repository of reference spectra for accurate

metabolite identification [169]. This library is continually updated and expanded to encompass a wide

range of metabolites, ensuring comprehensive coverage across various biological samples

and experimental conditions. In addition to quantification, Chenomx presents tools for quality

control and validation of spectral data, empowering to assess the reliability and integrity of results.

This ensures the accuracy and reproducibility of metabolite measurements, which are crucial

in metabolomics experiments. Furthermore, Chenomx affords a variety of statistical analysis and

metabolic pathway exploration, enabling them to uncover correlations, trends, and biological insights
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within analyzed data. By linking identified metabolites to known metabolic pathways, the software

helps elucidate the underlying biological mechanisms driving observed metabolic changes. Beyond its

technical capabilities, Chenomx is supported through documentation, tutorials, and direct engagement

of the developing team.

Bruker TopSpin, Mnova, and Chenomx play distinct yet complementary roles in NMR

spectroscopy and metabolomics research, offering commercial solutions for data processing, analysis,

and interpretation across various applications and experimental contexts. Chenomx complements both

Bruker TopSpin and Mnova by providing specialized tools for metabolomics analysis. Users utilize

Chenomx to precisely identify and quantify metabolites in NMR spectra, supplementing structural

analysis from TopSpin and multi-omics integration from Mnova. The coexistence of commercial and

open-source tools in metabolomics reflects diverse needs and preferences, alongside the evolving

nature of the field. Commercial tools offer advanced functionalities, expert support, and compatibility

with proprietary technologies, catering to users ranging from academic researchers to industry

practitioners. Conversely, open-source tools promote accessibility, collaboration, and transparency,

facilitating broader participation and knowledge exchange among users. NMRProcFlow exemplifies

such open-source software, streamlining the processing and analysis of NMR spectroscopy data.

It provides a workflow for various preprocessing and analytical tasks on NMR datasets, promoting

reproducibility by granting users access to underlying algorithms and methodologies [170]. Key

features include preprocessing functions like Fourier transformation, phase correction, baseline

correction, and spectral alignment, enhancing signal-to-noise ratio and artifact correction [171].

The software enables spectral calibration by referencing chemical shifts to known standards, ensuring

accurate reporting and facilitating comparison with databases. NMRProcFlow includes algorithms for

automated peak detection and integration, quantifying peak intensity and converting to concentration

values. Users can explore data, visualize spectra, compare samples, and identify patterns indicative

of biological or chemical phenomena. Facilitating interpretation, NMRProcFlow aids in drawing

conclusions about sample composition, structure, or properties. This involves comparing experimental

spectra with references and conducting further analyses for validation. NMRProcFlow is designed

to be compatible with multiple operating systems including Windows, macOS and Linux.

NMRProcFlow emphasizes automation and reproducibility through customizable processing

workflows implemented using Python scripts. While it does not provide a traditional graphical

interface, users can create and execute processing pipelines using command-line interfaces

or scripting environments.

PepsNMR and ASICS are additional examples of software that utilize command-line

interfaces or custom scripts for operation [172-173]. PepsNMR, an innovative R package, specializes

in robust data pre-processing for metabolomic studies, particularly in 1H NMR spectra analysis.

By offering transparency, automation, and a wide array of processing options, PepsNMR fills the gap

left by proprietary software from instrument manufacturers such as Bruker TopSpin. It covers crucial
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steps in analysis like solvent signal suppression, baseline correction, and bucketing, enhancing

methodological transparency and efficiency. Contrary to the previously mentioned commercial

software featuring graphical interfaces, PepsNMR operates through command-line interfaces

or customized scripts for data analysis, making it primarily geared towards users with programming

skill set. Nevertheless, its adaptability to automation renders it suitable for incorporation into

automated workflows or pipelines. For instance, ASICS (Automatic Statistical Identification

in Complex Spectra) provides a solution for automatic metabolite identification and

quantification in NMR data analysis workflows. Based partially on the method proposed in PepsNMR,

R package ASICS underwent refinement and enhancement to fine-tune parameters, improve results,

and reduce computational costs. It integrates preprocessing of spectra, post-quantification statistical

analyses, and comprehensive documentation, offering flexibility, ease of installation, and integration

into existing workflows. ASICS introduced a collection of pure metabolite spectra that serves

as a benchmark for identifying and measuring metabolite concentrations within the spectra of interest,

which often contain complex mixtures. Moreover, the package offers functionalities to include

or exclude certain spectra from the reference library or to utilize an alternative library provided by

the user.

Together, PepsNMR and ASICS address the critical need for robust and automated data

processing and analysis in metabolomics. They enhance the efficiency, reproducibility, and reliability

of metabolomic studies, empowering researchers to extract meaningful insights from complex NMR

spectra data. Noteworthy is the validation of both platforms' efficacy through metabolomic case

studies, demonstrating superior information retrieval and predictive capability [174]. Nevertheless,

despite the presence of numerous tools for NMR data analysis, the field of metabolomics continues

to face a shortage of comprehensive tools that integrate bioanalytical, bioinformatics, and machine

learning methodologies to offer a comprehensive understanding of metabolic dysregulation

in diseases. The large volume of data generated by metabolomic studies necessitates advanced

computational and statistical methods for processing, analyzing, and integrating multi-omics datasets.

This work’s endeavor aims to address the gap in the availability of a comprehensive and standardized

pipeline for translating raw 1H 1D NMR data into biological insights, while providing access

to the results of each individual analysis step.

An example worth showcasing is MetaboAnalyst – a widely utilized web-based platform

for metabolomics analysis that offers a user-friendly interface accessible via web browsers,

simplifying data uploading and analysis for users without specialized computational expertise [175].

MetaboAnalyst features a wide range of analysis modules covering data preprocessing of both

targeted and untargeted metabolomics studies utilizing LC–MS. Through interactive visualization

tools like heatmaps, volcano plots, pathway diagrams, and enrichment maps, the platform streamlines

data exploration and interpretation. While primarily designed for mass spectrometry data, it is also

capable of handling statistical analysis, pathway analysis, and metabolite set enrichment analysis
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(MSEA) for NMR-derived preprocessed metabolites. Furthermore, it integrates with various

metabolite and pathway databases such as HMDB or KEGG, enriching analyses with annotation and

pathway information. Users can construct customized analysis workflows by linking multiple

modules, streamlining the process of conducting complex analyses. Version 6.0 of MetaboAnalyst

introduces a novel MS2 data processing workflow, providing a comprehensive, web-based platform

for analyzing mass spectrometry metabolomics data. This workflow encompasses everything from

processing raw MS spectra to identifying compounds to conducting functional analysis [176].

In addition to web-based solutions, there exists the R package metaboanalystR, providing

users with the capability to access MetaboAnalyst's features programmatically from within R scripts

or environments [177]. This simplifies the automation and customization of analyses. Being

an R package, metaboanalystR integrates with other R packages and tools, enabling the incorporation

of metabolomics analysis into pre-existing R-based data analysis pipelines. This ensures flexibility

in customization, enhances the reproducibility of analyses, and facilitates the sharing of workflows

via open-access repositories. MetaboAnalyst and MetaboAnalystR offer an extensive and adaptable

toolkit for metabolomics data analysis, accommodating both those who favor a web-based interface

and those who prefer programmatic access within the R environment.
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II. Methodology: Evaluation of NASQQ pipeline on 1H 1D NMR spectra

II.1 General overview of metabolomic workflow

Taking into account the considerations outlined in the introduction section, the doctoral thesis

research was aimed to automate the analysis of proton nuclear magnetic resonance (1H NMR) spectra

for evaluating signals originating from metabolites found in urine and serum samples. This involved

devising a systematic approach to streamline the interpretation of NMR data, particularly focusing

on identification and quantification of metabolites. Through the automation of these processes,

the goal was to enhance efficiency, reproducibility, and ultimately deepen comprehension

of metabolomics in biological samples. Introducing NASQQ, an open-source Nextflow pipeline

designed for the automated analysis of 1D 1H NMR proton magnetic resonance spectra [178]. It aimed

to combine existing methods to create a metabolomic workflow that encompasses data preprocessing

of raw Bruker FIDs, feature extraction, and biological interpretation. By evaluating signals and

conducting data analysis alongside exploration of biological pathways, the pipeline generates intuitive

outcomes, facilitating the understanding of metabolomics in analyzed subjects without requiring

extensive domain knowledge. This pipeline extends the capabilities of the existing R packages

PepsNMR [172] and ASICS [173], representing state-of-the-art methods for converting raw signals

from 1D 1H NMR spectroscopy into a comprehensive set of metabolites. Furthermore, it introduces

a novel approach for signal translation regularization, with the overarching goal of bridging the gap

between raw spectral information and biological insights through the integration of machine learning

methods.

The pipeline is constructed in a modular fashion [refer to Figure 8], with its primary features

comprising:

● Automated and scalable workflow: The process of metabolomic analysis is automated

by using Nextflow version 23.10.1 framework and designed to scale and adjust to available

computing resources, reducing manual intervention and ensuring reproducibility across

multiple datasets simultaneously.

● Comprehensive analysis: The pipeline encompasses spectral preprocessing, metabolite

identification, data analysis, and pathway enrichment, offering a comprehensive perspective

of the metabolomic data.

● Machine learning integration: NASQQ integrates machine learning techniques to connect raw

spectral information with biological insights, enhancing the interpretability and utility

of the analysis results.
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Figure 8. Graphical depiction of the NASQQ pipeline.

Source: https://github.com/ardigen/nasqq/, available under a CC-BY-4.0 license.

https://github.com/ardigen/nasqq/


II.1.1 NextFlow implementation and containerized computing environment

The pipeline utilizes Docker, an open-source platform tailored for constructing, deploying,

and executing applications within containers. This methodology encapsulates each task or process

within the computational workflow into Docker containers. These containers provide a lightweight

and portable solution for packaging software and its dependencies, ensuring consistency across

different computing environments. With Docker, pipeline’s modules and scripts can be packaged once

and run on any target system, including macOS or Windows. While it's feasible to run individual

scripts in dedicated Docker containers, it's recommended to execute the entire pipeline for enhanced

management and efficiency. For pipeline execution, two containers were devised. The first container,

r_utils:1.0.0 [https://github.com/ardigen/nasqq/blob/main/docker/R/Dockerfile], encompasses

the “rutils” package, established and installed using scripts pathway_analysis_utils.R

[https://github.com/ardigen/nasqq/blob/main/docker/R/r_utils/R/preprocessing_utils.R] and preproces

sing_utils.R [https://github.com/ardigen/nasqq/blob/main/docker/R/r_utils/R/pathway_analysis_utils.

R], which contain custom supplementary functions essential for the “Spectral Preprocessing” and

“Metabolites Identification” stages. Each of these functions serves a specific purpose in the workflow

of processing, analyzing, and visualizing NMR data, ensuring efficient and consistent handling of the

datasets. The subsequent container, python_utils:1.0.0 [https://github.com/ardigen/nasqq/blob/main/do

cker/Python/Dockerfile], hosts the script ml_helpers.py [https://github.com/ardigen/nasqq/blob/main/d

ocker/Python/ml_helpers.py] utilized in the “Data Analysis” stage. Functions prepared

in ml_helpers.py collectively enable a comprehensive framework for preparing data, evaluating

models, and visualizing results in a machine learning pipeline. Following clean code programmatic

principles, all software dependencies are addressed within Docker containers (see Table 2 for detailed

versions of utilized packages and libraries), leveraging base images rocker/r-base:4.2.2 and

python:3.9. The Dockerfiles alongside instructions on how to build and utilize them can be found

within the NASQQ Github repository [https://github.com/ardigen/nasqq/tree/main/docker].
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Table 2: Software components in the NASQQ pipeline.

Source: https://github.com/ardigen/nasqq.
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Programmic Language Package Version Docker

R ASICS 2.14.0 r_utils:1.0.0

BiocManager 1.30.22

dplyr 1.1.4

FELLA 1.18.0

ggplot2 3.4.4

igraph 1.5.1

optparse 1.7.4

PepsNMR 1.16.0

Rnmr1D 1.3.2

svglite 2.1.2

visNetwork 2.1.2

testthat 3.2.1

Python scikit-learn 1.4.0 python_utils:1.0.0

scipy 1.12.0

seaborn 0.13.0

shap 0.44.1

kaleido 0.2.1

matplotlib 3.4.3

numba 0.58.1

numpy 1.26.3

pandas 1.3.3

plotly 5.3.1

pyarrow 5.0.0

pytest 8.0.0

https://github.com/ardigen/nasqq


Resource management within Nextflow involves utilizing containers and configuration files

that define the execution environment and behavior of the entire workflow. In addition

to the nextflow.config [https://github.com/ardigen/nasqq/blob/main/nextflow.config] file containing

global parameters such as maximum available resources, four additional files were created

for pipeline purposes: base.config [https://github.com/ardigen/nasqq/blob/main/conf/base.config], mo

dules.config [https://github.com/ardigen/nasqq/blob/main/conf/modules.config], profiles.config [https:

//github.com/ardigen/nasqq/blob/main/conf/profiles.config], and reports.config [https://github.com/ar

digen/nasqq/blob/main/conf/reports.config]. The base.config file contains base configuration settings

for the workflow, encompassing global settings applicable across all processes and tasks. This

configuration file establishes error handling and resource management within a Nextflow process.

It includes directives for errorStrategy, maxRetries, maxErrors, cache, as well as resource

requirements such as cpus, memory, and time. The errorStrategy determines how errors are managed

based on the number of attempts and specified parameters. Cache is enabled to optimize performance

by reusing previous results. Resource allocations for CPUs, memory, and time increase with each

attempt of the task. The modules.config sets parameters for all modules in the NASQQ pipeline. Each

stage, as follows “spectral_preprocessing”, “data_analysis” and “pathway_analysis” is defined with

empty arguments for special execution cases and designated directories for publishing results.

Additionally, results are published by a unique identifier for each module. The profiles.config

specifies settings related to Docker and execution profiles. Docker containers are run with user and

group IDs matching the current user, with temporary directory management set to “auto”.

The execution profile named 'standard' specifies that tasks will be executed locally. Parameters are

used to define directories for output, reports, working directory, and launch directory, providing

flexibility in configuration. Lastly, reports.config orchestrates reporting features within the Nextflow

pipeline. It includes settings for generating timeline, trace and Directed Acyclic Graph (DAG)

visualizations. Timeline reports provide visual representations of task execution timelines within

a computational pipeline. Trace reports in the context of computational pipelines provide detailed logs

and records of the execution process. DAGs are used in workflow management systems to visualize

the structure of pipeline, allowing to understand the order of task execution and identify potential

dependencies between tasks. Each feature specifies its output file path using the current date and time,

alongside the designated reports directory. If any existing reports or DAG files are present, they will

be overwritten accordingly. Upon initiating the Docker environment setup and before execution

pipeline, manifest.csv and params.yml files need to be created. The manifest.csv [https://github.com/ar

digen/nasqq/blob/main/tests/manifest.csv] is a comma-separated file detailing the dataset information

includes columns such as dataset name, batch name (defaulting to “None”), absolute paths to NMR

datasets in Bruker format, metadata files for dataset merging, selected sample names, ppm value

for the internal reference spectra (defaulting to 0), referencing range (if different from default,

otherwise “None”), and the range of the informative part of the spectra. The params.yml
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[https://github.com/ardigen/nasqq/blob/main/tests/params.yml] file outlines various inputs such

as the absolute paths to the manifest.csv file, output directories for storing results and reports,

intermediate work files directory, launch directory, maximum retry attempts for task processing, error

handling strategy, pulse program for processing, bucketing and warping options, merging datasets

for analysis, number of threads allocated for quantification, log1p normalization option, metadata

column for analysis, and axis reversal option (please refer to Table 3). Moreover, the run.sh

[https://github.com/ardigen/nasqq/blob/main/tests/run.sh] script containing execution commands is

included in the workflow repository. Although, it is feasible to manually execute the workflow using

the provided command directly in the command prompt (CMD).

Table 3: Required input parameters for configuring NASQQ pipeline execution.

Input Description Data type

manifest Absolute path to the manifest.csv file containing metadata information for the analysis string

outDir Absolute path to the directory where the output files will be stored string

reportsDir Absolute path to the directory where the analysis reports will be generated string

workDir Absolute path to the directory where the intermediate work files will be stored string

launchDir Absolute path to the directory from which the pipeline is launched string

maxRetries Number of attempts the pipeline should make to process a task before giving up integer

errorStrategy The strategy to handle errors during pipeline execution (terminate/ignore/retry) string

check_pulse_samples The pulse program specified in the manifest file for processing string

run_bucketing Enable/disable bucketing for simplifying the density of peaks before metabolite

quantification

boolean

run_warping Enable/disable warping for spectra re-alignment based on a reference spectrum boolean

run_combine_project_batches Enable/disable merging datasets for data analysis where batch is not “None” boolean

ncores The number of threads allocated for the ASICS quantification task integer

log1p Enable/disable log1p normalization of metabolites before data analysis boolean

metadata_column The column containing binary state information for the data analysis module string

reverse_axis_samples Specifies whether to invert the axis for all samples or selected samples based on a

threshold

string

Source: https://github.com/ardigen/nasqq.
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Initial testing of the scripts for the “Spectral Preprocessing” and “Metabolites Identification”

stages utilized raw FIDs from Pseudomonas Aeruginosa bacteria from our work [67]. While

the NASQQ pipeline initially targeted human metabolomics, particularly serum samples, subsequent

modular tests exclusively involved human experiments. The Familial Dysautonomia open dataset [73]

served as a use case during the end-to-end testing phase. Detailed descriptions of the case study are

provided in the results section “Results: Application of NASQQ pipeline on Familial Dysautonomia

serum samples”. Testing and results generation took place on a local machine, specifically the Lenovo

Thinkpad T14 equipped with AMD Ryzen 7 PRO 4750U with Radeon Graphics and 32 GB RAM.

II.2 Spectral processing of raw 1D spectra and metabolites identification

The NASQQ pipeline consists of three primary stages: “Spectral Preprocessing”, “Data

Analysis” and “Biological Interpretation”. Each stage has specific objectives, input/output

requirements, and detailed procedures, which are summarized in Table 4. Due to the large size of

the scripts, only descriptions are included here. However, on the NASQQ GitHub repository the full

modules [https://github.com/ardigen/nasqq/tree/main/modules] and all scripts [https://github.com/ardi

gen/nasqq/tree/main/bin] are available. In the “Spectral Preprocessing” stage, 13 mandatory and

2 optional modules written in R programmatic language handle the preprocessing tasks,

with metabolite quantification as the final step. While some established functions were utilized,

the primary innovation involved the creation of custom scripts from scratch. These scripts were

designed to efficiently manage the computational environment, handle I/O operations, and facilitate

data preprocessing through wrapper functions. Additionally, the scripts focused on storing results,

transferring data between modules, and effectively visualizing outcomes. The transformation from

standalone scripts to structured Nextflow components represents a significant advancement

in the field. The core functionalities of the original scripts were retained but adapted to integrate into

Nextflow's architecture. This integration highlights efficient data flow management through channels,

robust error handling, and the use of Nextflow-specific features. The workflow was designed based

on thorough literature research to ensure alignment with current best practices and advancements

in the field. Testing was performed on real laboratory data and open datasets, confirming

the robustness and reliability of the workflow. This structured approach not only enhances

the reproducibility and scalability of the analyses but also marks a novel contribution to the field

of metabolomics, particularly in the context of unification of NMR spectral data preprocessing.

The intention behind elaborating on each module within the subsequent sections of Chapter II

is to offer a comprehensive grasp of its functionality and objectives within the NASQQ pipeline. Each

description focuses on a specific module, detailing its input parameters, processing steps,

methodology and output formats. This methodical approach allows comprehension of the data flow

and the efforts invested in the development of end-to-end solution. For detailed insights into
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the complexities of the scripts, one can refer to dedicated readme files within the GitHub repository's

auxiliary documents [https://github.com/ardigen/nasqq/tree/main/docs].
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Table 4: Modules overview in the NASQQ Pipeline.

Stage Module Objective Input Output

Spectral

Preprocessing

load_fids.nf Load raw FIDs from a given path, select

sample names and filter pulse program.

● raw FIDs path ● raw FIDs RDS file

raw_fids_visualisation.nf Visualise raw FIDs. ● raw FIDs RDS file ● plots RDS file

● plots SVG files

group_delay_correction.nf Remove Bruker Group Delay. ● raw FIDs RDS file ● post group delay removal FIDs RDS file

● plots RDS file

● plots SVG files

solvent_suppression.nf Estimate and remove residual solvent signal

from the FIDs.

● raw FIDs RDS file

● post group delay removal

FIDs RDS file

● post solvent suppression FIDs RDS file

● plots RDS file

● plots SVG files

apodization.nf Increase spectral signal-to-noise ratio. ● raw FIDs RDS file

● post solvent suppression FIDs RDS file

● post apodization

FIDs RDS file

● plots RDS file

● plots SVG files

zero_filling.nf Improve the visual representation of spectra

by adding zeros.

● raw FIDs RDS file

● post apodization

FIDs RDS file

● post zero filling

FIDs RDS file

● plots RDS file

● plots SVG files

fourier_transformation.nf Apply Fourier transformation, transition from

time domain FIDs into the frequency domain

spectra.

● raw FIDs RDS file

● post zero filling

FIDs RDS file

● spectra RDS file

● plots RDS file

● plots SVG files

zero_order_phase_correction.nf Phase spectra for the real part to be in pure ● raw FIDs RDS file ● post phasing spectra RDS file



Stage Module Objective Input Output

absorptive mode. ● spectra RDS file ● plots RDS file

● plots SVG files

internal_referencing.nf Align spectra with an internal reference

compound.

● raw FIDs RDS file

● post phasing spectra RDS file

● post internal referencing spectra RDS file

● plots RDS file

● plots SVG files

baseline_correction.nf Estimate and remove spectral baseline from

the spectral profiles.

● raw FIDs RDS file

● post internal referencing

spectra RDS file

● post baseline correction

spectra RDS file

● plots RDS file

● plots SVG files

negative_values_zeroing.nf Reduce to zero all negative values in spectra. ● raw FIDs RDS file

● post baseline correction

spectra RDS file

● post negative zeroing

spectra RDS file

● plots RDS file

● plots SVG files

warping.nf (Optional) Warp and realign spectra based on

Semi-Parametric Time Warping technique.

● raw FIDs RDS file

● post negative zeroing

spectra RDS file

● post warping

spectra RDS file

● plots RDS file

● plots SVG files

window_selection.nf Select the informative part of spectra. ● raw FIDs RDS file

● post negative zeroing spectra (or post warping)

spectra RDS file

● post window selecting

spectra RDS file

bucketing.nf (Optional) Simplify density of spectra peaks. ● post window selecting

spectra RDS file

● post bucketing spectra RDS file

● plots RDS file

● plots SVG files

normalization.nf Normalize the spectra. ● raw FIDs RDS file

● post window selecting (or post bucketing)

● post normalization

spectra RDS file



Stage Module Objective Input Output

spectra RDS file ● post normalization spectra TXT file

● plots RDS file

● plots SVG files

metabolites_quantification.nf Identify and quantify metabolites based on

normalized spectra.

● post normalization

spectra TXT file

● quantified

metabolites RDS file

● quantified metabolites TXT file

Data Analysis

add_metadata.nf Merge metadata with quantified metabolites

relative abundances.

● quantified metabolites TXT file

● metadata CSV file

● quantified metabolites with metadata CSV

file

combine_dataset_batches.nf (Optional) Combine batches from the dataset

before performing data analysis.

● multiple quantified metabolites with metadata

CSV files

● quantified metabolites with metadata batch

combined CSV file

features_processing.nf Load, scaling and conduct sanity checks. ● quantified metabolites with metadata w/wo batch

combined CSV file

● preprocessed metabolites PARQUET file

exploratory_data_analysis.nf Perform Principal Component Analysis,

create exploratory analysis visualizations.

● preprocessed metabolites PARQUET file ● plots SVG files

univariate_analysis.nf Detect outliers, check data normality and

perform univariate statistical tests.

● preprocessed metabolites PARQUET file ● outliers TXT file

● univariate results CSV file

multivariate_analysis.nf Analyze metabolite data using various

machine learning models.

● preprocessed metabolites PARQUET file ● multivariate results CSV file

● plots SVG files

Biological

Interpretation

pathway_analysis.nf Create pathway enrichment using KEGG

database entries.

● univariate/ or multivariate results TSV file ● pathway enrichment RDS file

● pathway enrichment HTML file

● plots PNG files

Source: Own elaboration.



II.2.1 Raw FIDs loading and visualization

The load_fids.nf module is configured with four input arguments, governing the project id,

the path of provided spectra, the type of presaturation pulse program, and an optional parameter

determining whether to remove duplicated sample names. This module reads FIDs from the specified

path, verifies the correct passage of the pulse program, and ensures consistent sample names with

the respective pulse programs. If the optional argument is provided, duplicated sample names are

removed. Following this, a list object containing raw FIDs alongside their corresponding metadata

is stored in the R Data Store (RDS) object. RDS is a file format utilized in the R programming

language for storing serialized R objects. The resulting RDS object is then utilized in the subsequent

module, raw_fids_visualization.nf, for plot generation. Plots are configured with the X-axis

represented in microseconds [µs] and Y-axis showcasing intensity of signal. Raw FIDs figures are

created and output is written to both Scalable Vector Graphics (SVG), an XML-based vector image

format, and RDS objects.

II.2.2 Group delay correction

The group_delay_correction.nf module requires two input arguments: project ID and raw

RDS. As Bruker FID signals commonly display a phenomenon called “group delay” - a time delay

in the initial segment of the FID - the module executes a function to eliminate this portion of the FID.

Information about this phase shift, resulting from a group delay, is accessible when loading

the FID using PepsNMR::ReadFids function and is stored in a raw RDS file from the previous step

of analysis. Module generates comparison plots pre- and post-correction, preserves SVG plots,

compiles a list of plots in RDS, and stores the corrected FIDs in an RDS object.

II.2.3 Solvent suppression

The input parameters for the solvent_suppression.nf module include the project ID, as well

as RDS files containing raw FID objects and FID post-Group Delay removal. FIDs naturally exhibit

a wavy shape, and assuming water is the main compound in the analyzed samples, its signal can

be represented by smoothing the FIDs. Subsequently, this smoothed signal, referred to as the solvent

residuals resonance signal, is subtracted from the original FIDs. The presence of solvent residuals

in the spectrum has the potential to obscure relevant signals from the molecules of interest. In this

stage, the module employs a Whittaker smoother [179] implemented

in PepsNMR::SolventSuppression function to estimate and eliminate the residual solvent signal from

the FIDs in the time domain. The Whittaker smoother, a function represented by formula:

(1.5)𝑉 + λ𝑅
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is composed of two terms – the sum of squared differences between the original and smoothed signals

( ) and a measure of the roughness of the estimated signal ( ). Where, lambda ( ) represents𝑉 𝑅 λ

the penalty on roughness utilized in calculating the smoothed version of the FID. A higher value

of lambda results in a smoother estimated solvent signal. The module generates comparison plots

before and after solvent suppression, SVG plots, along with a list of plots stored in RDS format.

Additionally, the corrected FIDs are saved in an RDS object.

II.2.4 Apodization

The apodization.nf module's input parameters encompass the project ID and RDS files

containing raw FID objects, both raw FID and post-solvent suppression. Apodization is employed

to enhance the spectral signal-to-noise ratio by multiplying the FID signal with a positive signal,

typically exhibiting decay [180]. This technique leverages the fact that signal intensity diminishes

over time, unlike noise, which maintains a constant amplitude, resulting in a noisy tail at the end

of the FID. As the area under the spectral peak remains constant, a quicker decay leads to decreased

peak heights in spectra, thereby diminishing spectral resolution. The FID captured by the 1H NMR

instrument comprises both real and imaginary components of the decaying signal, consisting

of numerous data points. It reflects the aggregate of distinct signal components originating from

various proton nuclei. A typical FID, represented as:

(1.6)𝑠
0
𝑒𝑥𝑝(𝑖2πν𝑡)𝑒𝑥𝑝( −𝑡

𝑇 )

exhibits a spectral peak at frequency with a width inversely proportional to . Where, the equation𝑣 𝑇

describes a signal with an initial amplitude ( ), oscillating sinusoidally at frequency ( ), and𝑠
0

𝑣

decaying exponentially with a decay constant of over time . The spectral peak, referred1
𝑇 (𝑡)

to as a spectral line, and its width, termed spectral width, are crucial throughout the process.

In the apodization function utilized in the module, exponential multiplication is implemented, where

the decaying exponential is expressed as:

(1.7)𝑒𝑥𝑝(− 𝑡( 1
𝑇 + 𝐿𝐵))

A smaller decay time ( ), which satisfies , leads to broader spectral lines. As time𝑇* 1

𝑇* + 𝐿𝐵 =  1
𝑇

( ) progresses, the exponential term decreases, signifying the signal's decay. Hence, line broadening𝑡

( ) parameter, balances between enhancing SNR and degrading spectral resolution. To avoid𝐿𝐵

substantial sensitivity and resolution losses, identifying optimal trade-off parameters

for the apodization signal is crucial. As per the PepsNMR R package documentation [181],

is recommended for NOESY, while is suitable for CMPG presaturation𝐿𝐵 =  0. 3 𝐿𝐵  − 0. 01 
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pulse sequences. If the user hasn't specified the check_pulse_samples in the global parameters

configuration (params.yml file), the default value is set to 0.3. After completing this procedure,𝐿𝐵 

the module generates comparison plots before and after apodization, SVG plots, and a list of stored

plots in RDS format. Additionally, the corrected FIDs are stored in an RDS object.

II.2.5 Zero filling

The input parameters for the zero_filling.nf module include the project ID and RDS files

containing both raw FID objects and those post-apodization. Zero filling enhances the visual

representation by creating more distinct lines in the spectra. This involves appending a specified

number of zeros at the end of the FIDs, rounded to the nearest power of 2 to aid the subsequent

Fourier Transform. Following this, the module produces comparison plots before and after

zero-filling, SVG plots, and a list of stored plots alongside the corrected FIDs in RDS format.

II.2.6 Fourier transformation

The input parameters for the fourier_transformation.nf module include the project ID and

RDS files containing raw FID objects and those post-zero filling. The Fourier Transform, as described

in the “General concepts of nuclear magnetic resonance” of the Introduction section, extracts signals

from the time domain and translates them into peaks in a spectrum with specific characteristics.

The transformation implemented in the module utilizes the PepsNMR::FourierTransform function.

The resulting spectrum is initially calibrated in Hertz [Hz] based on spectrometer acquisition

parameters and is then converted into a chemical shift scale in ppm. Output includes comparison plots

before and after transformation in SVG format, along with a list of stored plots alongside

the corrected FIDs in RDS format.

II.2.7 Phase correction

The input parameters of the module zero_order_phase_correction.nf consist of the project ID

and RDS files containing both raw Fourier-transformed spectra objects and those post-transform.

Due to technical factors like incorrect magnetization, the spectrum may display a zero-order phase

shift error of a certain angle ( expressed asφ
0
)

(1.8)𝐹 = 𝐹
𝑝ℎ𝑎𝑠𝑒𝑑

 𝑒𝑥𝑝(𝑖φ
0
)

where represents the ideally phased spectrum. This phase shift remains constant for all𝐹
𝑝ℎ𝑎𝑠𝑒𝑑

signal vectors, irrespective of spectral frequencies. Consequently, the real and imaginary components

of the signal produce a blend of absorptive and dispersive mode line shapes, necessitating phase

correction. Utilizing the principle that a perfectly phased signal ( ) exhibits a real part starting𝐹
𝑝ℎ𝑎𝑠𝑒𝑑
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at maximum and an imaginary part starting at 0, with the resulting spectrum featuring a positive real

part in absorptive mode and an imaginary part in dispersive mode including positive and negative

peaks, an optimal angle can be automatically determined. This is achieved by maximizing a suitable

criterion related to the positivity of the spectrum's real part.

The PepsNMR::ZeroOrderPhaseCorrection function implemented in module quantifies positivity

criteria using the root mean square (rms) criterion, representing the ratio between the sum of squares

of positive intensities and the sum of squares of all intensities in the spectrum. The function identifies

an optimal angle by maximizing criteria related to the positivity of the real part of the spectrum and

rotates each spectrum in the spectral matrix, resulting in processed spectra with their respective

rotation angles. The module generates comparison plots before and after the phasing process in SVG

format. Additionally, it produces a list of stored plots and saves the phased spectra in RDS format.

II.2.8 Internal referencing

The module internal_referencing.nf requires project ID and RDS files containing both raw

FIDs and post-phasing spectra as mandatory input parameters. Additionally, optional arguments

include range_type (default “nearvalue”, with options: “nearvalue”, “all”, “window” based

on the range from PepsNMR::InternalReferencing function), target_value (default 0), and fromto_RC

(default NULL, relevant if range_type is set to “window”, representing a list with numerical vectors

indicating the extremities of intervals to search for the referencing peak). For improved accuracy,

it's advantageous to calibrate the scale using a well-established standard, usually an internal reference

compound that remains stable against external influences such as temperature or concentration.

Ideally, this reference compound should be situated outside the spectral region to ensure clear

identification. Trimethylsilyl propionate (TSP) or 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS)

are commonly used internal reference compounds in NMR, with their standard peaks traditionally set

at 0 ppm. For reference compounds other than TSP or DSS, a non-null ppm value in target_value

requires manual adjustment by the user. After phase correction, residual artifacts from a first-order

phase shift may persist, possibly resulting in inverted spectra. When over half of the spectra intensities

are negative, the spectra are inverted to maintain accurate ppm values. The output includes visuals

depicting spectra before and after internal referencing, saved in RDS and SVG files. Furthermore,

the post-correction object containing spectra is stored in the RDS file.

II.2.9 Baseline correction

The module baseline_correction.nf input arguments include the project ID, RDS files

containing raw FIDs objects, and post-referencing spectra. In addition to the mandatory inputs, there

are two optional arguments: p_bc and lambda_bc. These parameters influence the behavior

of the function employing asymmetric least squares (ASL) for baseline correction [182]. The baseline
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correction aims to ensure that the signal predominantly comprises positive peaks, which represent

metabolites present in the samples. This signal is typically superimposed on a baseline, ideally

reflecting the absence of any metabolite and maintaining a consistent zero value. Given

the assumption that

(1.9)𝐹* =  𝐹 − 𝑍

where denotes the initial spectrum and represents its estimated baseline, the corrected𝐹 𝑍

spectrum is derived by subtracting from once is approximated. In this module for each𝐹* 𝑍 𝐹 𝑍

spectrum, its baseline is estimated and subsequently subtracted. Because negative signals pose issues,

the estimated baseline aims to prevent negative values in the corrected spectrum, .𝐹 − 𝑍

Consequently, in the objective function to be minimized, the squared differences are(𝐹 − 𝑍) 

weighted by if or by if . To prevent the baseline from matching𝑝 𝐹 − 𝑍 > 0 1 − 𝑝 𝐹 − 𝑍 < 0

the peaks exactly and to maintain smoothness, a penalty term on is incorporated into the objective𝑍

function. The significance of this constraint is governed by 𝜆. Hence, two additional parameters

in module, p_bc and lambda_bc, represent 𝑝 and λ respectively, with default values as follows: p_bc

=0.0001, where a smaller value makes the baseline less reactive to peaks below the function while

striving to remain beneath it. For lambda_bc, the default is 5e+06, with a larger value resulting

in a smoother baseline. Setting lambda_bc to 0 renders the baseline identical to the signal, effectively

zeroing the corrected signal. The output comprises visual representations of the spectra before and

after the correction process, preserved in both RDS and SVG formats. Furthermore, the RDS file

retains the post-baseline correction object containing the spectra.

II.2.10 Negative values Zeroing

The input parameters for the negative_values_zeroing.nf module include the project ID and

pre-processed RDS files, containing both the raw FIDs object and the baseline-corrected spectra.

If there are residual negative values in the spectrum due to incomplete phase or baseline correction,

it can complicate further interpretation. To resolve this issue, any remaining negative intensities are

adjusted to zero. The output comprises figures showcasing the spectra both before and after setting

all negative values to zero, saved in RDS and SVG formats. Additionally, the RDS file stores the

object containing the corrected spectra.

II.2.11 Warping

The optional module warping.nf takes input arguments such as the project ID, RDS files

containing spectra after setting negative values to zero, and raw FID objects. Implemented within

PepsNMR::Warping, this module applies a warping function to a normalized spectrum . This𝑊(𝑣) 𝐹*
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function distorts the ppm axis through a combination of a polynomial term and a penalized B-splines

(P-splines) term. Mathematically, the warping function is defined as:𝑊(𝑣)

(2.0)𝑊(𝑣) =  
𝑘=0

𝐾

∑ 𝛽𝑘𝑣𝑘

+
𝑙=1

𝐿

∑ 𝛼
𝑙
𝐵

𝑙
(𝑣)

In this equation, the first term represents a polynomial of order , where are
𝑘=0

𝐾

∑ 𝛽𝑘𝑣𝑘

𝐾 𝛽𝑘

the corresponding polynomial coefficients. The second term is a weighted sum
𝑙=1

𝐿

∑ 𝛼
𝑙
𝐵

𝑙
(𝑣)

of B-splines, with being the number of B-splines and as the coefficient for the th B-spline .𝐿 𝛼
𝑙

𝑙 𝐵
𝑙
(𝑣)

These B-spline curves are assembled from polynomial segments and smoothly connected. Afterward,

the normalized and distorted spectral profile is derived by interpolating from the discrete warping

function. The essence of warping lies in constructing to minimize the distance between𝑊(𝑣)

a warped spectrum and the reference spectrum. Once the similarity between the transformed𝐹(𝑊(𝑣))

spectrum and the chosen reference spectrum is improved, the module proceeds to realign the spectra

to enhance profile resemblance. Without prior information, this robust reference selection process

enables the selection of the spectrum that minimizes the sum of squared distances with all other

spectra after warping. The output comprises figures illustrating the spectra before and after applying

the warping function, saved in RDS and SVG formats. Additionally, the post-warping object

is preserved in the RDS file.

II.2.12 Window selection

The window_selection.nf module takes as input the project ID and the RDS file containing

spectra after either setting negative values to zero or applying warping. Optionally, it also accepts

a ppm range specified as a list. The module utilizes a function to select the informative part

of the spectra based on the provided ppm range and saves it to an RDS file. The default ppm range

is set from 0 to 10. The output includes spectra after processing saved in RDS format.

II.2.13 Bucketing

In the optional module bucketing.nf, the input parameters include the project ID and an RDS

file containing spectra after the selection of the informative part. The abundance of data points and

subtle residual peak shifts can pose challenges for future multivariate analyses. To address this,

bucketing is employed to condense the original spectral intensities into predefined intervals. This

process, also known as data reduction, effectively decreases the number of data points from 𝑚

(often >35,000) to (default value is configured to be 5000), where represents the original𝑚𝑏 𝑚

number of points and denotes the number of buckets. The bucketing function within the module𝑚𝑏
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utilizes the trapezoidal method, which involves creating trapezoidal shapes between adjacent data

points and calculating the area under each trapezoid, thereby balancing the preservation of spectral

information with the removal of peak shifts. The module stores visual representations of the spectra

before and after bucketing in both RDS and SVG file formats. Additionally, the RDS file retains

the object containing the spectra data itself. Figure 9 illustrates the effects of bucketing on NMR

spectral data. The left plot shows the original spectral intensities with a high number of data points.

The right plots depict the spectra after applying bucketing to reduce the number of data points, with

the top-right plot showing the data reduced to 500 buckets ( 500) and the bottom-right plot𝑚𝑏

showing the data reduced to 100 buckets ( 100).𝑚𝑏

Figure 9. Impact of bucketing on NMR spectral data reduction using different numbers of buckets.

Source: Created in Biorender.com, own elaboration.

II.2.14 Normalization

The normalization.nf module requires specific inputs, such as the project ID and RDS files

containing both raw FID objects and spectra selected post-windowing or post-bucketing. Furthermore,

an optional parameter enables users to specify the desired normalization method. The available

choices include: “mean”, “pqn”, “median”, “firstquartile”, or “peak”. The objective of normalization
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is to ensure that the overall intensity distributions across samples are comparable, simplifying

the identification of genuine biological differences between samples. Normalization methods like

mean, median, and quartile normalization can be represented by a single equation:

(2.1)𝑋
𝑖𝑗
' =

𝑋
𝑖𝑗

𝑓(𝑋
𝑖
)

Here, represents the normalized intensity of the th variable in the th spectrum, is the original𝑋
𝑖𝑗
' 𝑗 𝑖 𝑋

𝑖𝑗

intensity, and stands for the normalization factor calculated based on the chosen method𝑓(𝑋
𝑖
)

(mean, median, or quartile) for the th spectrum. Peak normalization scales each spectrum𝑖

by the maximum peak intensity within a specified interval. Probabilistic quotient normalization

(PQN) corrects systematic biases by normalizing each spectrum against a reference spectrum,

typically the median spectrum [183]. It follows the equation:

(2.2)𝑋
𝑖𝑗
' = 𝑋

𝑖𝑗
×(

𝑚𝑒𝑑𝑖𝑎𝑛(𝑋
𝑗
)

𝑋
𝑖𝑗

)

where, represents the median intensity across all spectra. By default, the water resonance𝑚𝑒𝑑𝑖𝑎𝑛(𝑋
𝑗
)

area (4.5-5.1 ppm) is excluded from serum spectra before normalization. After the normalization

process concludes, the module produces post-normalization RDS files containing comparison plots

and spectra. It also generates stacked spectra plots for all samples using the manually adjusted

rnmr1d::plotSpecMat function [170]. Lastly, the module outputs a TXT file containing the normalized

spectra.

II.2.15 Metabolites quantification

The metabolites_quantification.nf module requires a project ID, a TXT file with

the normalized spectra, and the number of processor cores for computation. Optionally, users can

specify a quantification method from those available in the ASICS::ASICS function (“FWER”,

“Lasso”, or “both”, with “both” as the default if none is chosen) [184]. The ASICS method

for metabolite quantification involves deconvoluting NMR spectra into individual metabolite signals

via a reference library of pure spectra. Metabolite identification and quantification in the complex

mixture spectrum are carried out using both the previously preprocessed complex mixture spectrum

and the pure metabolite spectra from the reference library from the ASICS R package. The reference

library consists of pure spectra of 191 known metabolites. Each spectrum in the library represents

a unique metabolite, characterized by its chemical shifts and peak patterns. The process starts with

finding the reference spectrum and involves utilizing FFT cross-correlation [185]. This technique

helps identify the spectrum in the pure metabolite reference library that most closely matches

the complex mixture spectrum. Once the reference spectrum is identified, alignment between
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the mixture spectrum and the reference spectrum is achieved using FFT cross-correlation along with

a hierarchical classification approach. The hierarchical classification approach systematically narrows

down the list of potential matches, ensuring both accuracy and efficiency. Subsequently, individual

peaks of each library spectrum undergo alignment via local linear regression centered around each

peak, enhancing the robustness of metabolite identification through techniques like Least Absolute

Shrinkage and Selection Operator (Lasso) [186] and Family-Wise Error Rate (FWER) [187]. These

methods aid in navigating the complexity of NMR data by penalizing less probable solutions, thereby

focusing on the most likely metabolites present in the sample. Lasso regression, characterized

by shrinkage towards a central point like the mean, promotes simpler, sparser models with fewer

parameters. The lasso regression minimizes the following cost function:

(2.3)𝑚𝑖𝑛
𝛽

1
2𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖
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𝑖
𝛽)2 +  𝜆
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where, is residual sum of squares (RSS), This term measures the difference1
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between the observed values and the predicted values . It is essentially the mean squared error𝑦
𝑖

𝑋
𝑖
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of the model's predictions. The regularization term (L1 Norm) adds the absolute values𝜆
𝑗=1

𝑝

∑ 𝛽
𝑗| |

of the coefficients ​. This L1 norm encourages sparsity by shrinking some coefficients to exactly𝛽
𝑗| |

zero, effectively performing feature selection. FWER is a method to control the probability of making

one or more false discoveries (type I errors) when performing multiple hypothesis tests. In the context

of metabolite quantification, this approach ensures that the identification of metabolites is statistically

robust. The Bonferroni correction

(2.4)α
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

= α
𝑚

is a simple and commonly used method to control the FWER. It adjusts the significance level

for multiple comparisons by dividing by the number of tests ( . By controlling the FWER,(α) α 𝑚)

function minimizes the risk of false positives, enhancing the reliability of the metabolite identification

process. Once the metabolites are identified, their concentrations are quantified based on their signal

intensities relative to the reference spectra. This quantification is done in a way that accounts

for potential overlaps in spectral peaks. The module’s output consists of a quantified ASICS object

with metabolite quantification in RDS format. Additionally, a table containing the relative abundances

of quantified metabolites is provided in both RDS and TXT formats.

To summarize, the FIDs are imported from specified paths, subjected to various corrections

and noise removal processes, and then transformed via Fourier transformation to generate spectra.
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This transformation converts the FIDs' time domain into the frequency domain, which is then

expressed as the chemical shift. The spectra undergo phase correction and alignment to an internal

reference compound. The spectral baseline is estimated and removed, with negative values set to zero.

Subsequent modules offer an optional warping function, using polynomials and P-Splines to adjust

the chemical shift axis, enhancing the similarity between the transformed and reference spectra.

The final steps involve selecting informative spectral regions, optional bucketing, and normalization.

Finally, the normalized signals are quantified into metabolites using a pure reference library object

from the ASICS R package. After completing the spectral processing and metabolite identification

cycle, a datatable with the relative abundances of detected metabolites is prepared for the next stage

of the NASQQ pipeline.

II.3 Data analysis module - univariate tests

II.3.1 Features processing

The “Data Analysis” stage introduces an original approach to handling data and evaluating

significant metabolites. This innovative method improves the efficiency and accuracy of metabolite

analysis, providing a well-built framework for identifying and interpreting significant metabolites

related to specified class within the datasets. In this stage, three modules utilizing Python scripts are

executed concurrently: Exploratory Data Analysis (EDA), univariate analysis, and multivariate

analysis. This stage starts with the add_metadata.nf module, which integrates additional metadata that

includes patient state information (e.g., disease/healthy). This step is followed by an optional

logarithmic (log1p) transformation of metabolite abundances. Batch information can also

be incorporated if available. The module require several input parameters: “input_path”, which

is the directory path for the input data file; “disease_state”, the column indicating the disease status

of the samples; “batch”, which specifies batch column for the samples; “log1p”, a flag for applying

the transformation; and “metadata”, the path to the metadata file. The data can then𝑙𝑜𝑔(1 +  𝑥)

be optionally merged by batch using the combine_dataset_batches.nf module, allowing for the data

analysis of batches either separately or as a combined dataset.

The features_processing.nf module is responsible for loading and preprocessing quantified

metabolite data. It requires inputs including metadata merged with the relative abundances

of metabolites, the column names for disease state and patient IDs, and optionally the column name

indicating batch type. The module removes columns with a high percentage of zero or empty values,

with a default threshold of 0.7 across all features. It also performs metadata checks to ensure class

balance and feature availability. The sanity check criteria include a minimum count of 3 for each

class and a minimum class percentage of 0.03 to prevent edge-case model training and numerical

instability. The output is a PARQUET file containing the preprocessed features.
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II.3.2 Univariate tests

The univariate_analysis.nf module as an input requires a PARQUET file from the previous

features_processing.nf module along with the names of the disease state column and patient IDs

column. The process begins by employing the Shapiro-Wilk test [188] to evaluate the normality

distribution of individual features. Based on the results of this assessment, it proceeds to conduct

either a Student t-test [189] for normally distributed data or a Mann-Whitney U test [190]

for non-normal distributions. The Student t-test is utilized to ascertain whether there exists

a significant difference between the means of two independent groups, assuming normality and equal

variances. Conversely, the Mann-Whitney U test, a non-parametric alternative, compares two

independent groups without relying on the assumption of normality, instead ranking all observations

from both groups and evaluating differences in central tendency. Following either test, FDR correction

[191] is applied to the states specified in the metadata groups column. Considering the increased

likelihood of obtaining at least one significant result due to multiple statistical tests, FDR evaluates

the expected proportion of falsely rejected null hypotheses (false positives) among the rejections. In

addition, the module applies the Local Outlier Factor (LOF) outlier detection method [192]. The LOF

algorithm is an unsupervised anomaly detection technique that calculates the local density deviation

of a data point relative to its neighbors. Samples with significantly lower density compared to their

neighbors are identified as outliers. The output is saved as a TXT file containing the names of outliers

and a CSV file presenting the results of the univariate tests, with columns as follows: “Feature”,

“Test”, “Statistic”, “p-value” and “FDR”.

II.4 Data analysis module - multivariate approach and machine learning models

II.4.1 Exploratory data analysis

Simultaneously to the univariate_analysis.nf module, the exploratory_data_analysis.nf and

multivariate_analysis.nf modules analyze metabolite data. The exploratory_data_analysis.nf

is performed in order to summarize the main characteristics of a dataset with visual methods. Essential

inputs encompass metadata merged with metabolite relative abundances in PARQUET format, along

with the disease state column name and patient IDs column. Optionally, a batch column name can

be provided, leading to additional plots for investigating potential batch effects on the data.

The module standardizes features by subtracting the mean and scaling to unit variance. In this process,

the standard score of a sample is computed as𝑥

, (2.5)𝑧 = (𝑥 − 𝑢)
𝑠  

where is the mean of the training samples and is the standard deviation of the training samples.𝑢 𝑠

Following that, the module conducts PCA and produces visualizations for exploratory data analysis.
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The resulting plots comprise: the explained variance of PCA (scree plot), a matrix of scatter plots

depicting the first four principal components, box plots, and distribution plots for 10 randomly chosen

features. Furthermore, cluster maps displaying feature-wise and patient-wise correlations are

generated.

II.4.2 Multivariate analysis

The multivariate_analysis.nf module requires the PARQUET file previously used

in the univariate module, as well as the specification of the columns for disease state and patient IDs.

The multivariate module analyzes metabolite data using iterations of logistic regression and random

forest models [193-194]. The models list include:

● “Logistic regression L1 (C=0)”,

● “Logistic regression L1 (C=1)”,

● “Logistic regression L2 (C=0)”,

● “Logistic regression L2 (C=1)”,

● “Logistic regression L1/L2 (elastic net), 3-fold cross-validation”,

● and “Random Forest (num_trees = 100)”.

Here, represents the strength of the L1 or L2 regularization component, and num_trees𝐶

is the number of decision trees used for predictions in the random forest classifier. The training and

validation process is executed using a multi-split cross-validation method, specifically

the StratifiedShuffleSplit function from the sklearn Python package. This function ensures that each

fold of the cross-validation preserves the same proportion of samples for each class as the original

dataset. StratifiedShuffleSplit works by randomly shuffling the data and then splitting it into

a specified number of train/test splits. In this context, 30% of the samples are reserved for validation

splits in each iteration. During the cross-validation process, multiple iterations are performed

to ensure that the model's performance is robust and not dependent on a particular train/validation

split. After evaluating the performance of various models across these splits, the model with

the highest mean Receiver Operating Characteristic Area Under the Curve (ROC AUC) is selected

[195]. This metric provides a comprehensive measure of the model's ability to distinguish between

classes. Once the best-performing model is identified, Shapley values are computed to understand

the contribution of each feature to the model's predictions [196]. Shapley values, derived from

cooperative game theory, assign a value to each feature representing its contribution to the prediction

[197]. These values are then used to calculate the relative importance of each feature according to

the provided equation, offering insights into which features most significantly impact the model's

decisions.

, (2.6)𝑖𝑚𝑝 =  1
𝑚
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where, denotes a matrix containing Shapley values, represents a vector indicating the mean𝑠ℎ𝑎𝑝 𝑖𝑚𝑝

absolute Shapley values for each feature (metabolite), and corresponds to the total number𝑚

of samples. An individual component of the relative importance vector, designated as , can𝑗 𝑟𝑒𝑙𝑖𝑚𝑝
𝑗

be formulated as follows:

, (2.7)𝑟𝑒𝑙𝑖𝑚𝑝
𝑗

=
𝑖𝑚𝑝

𝑗

||𝑖𝑚𝑝||
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where is the norm. Subsequently, the selected features are determined by initially arranging|| · ||
1

𝐿
1

the vector in descending order of the features with the most pronounced signal (highest𝑟𝑒𝑙𝑖𝑚𝑝

absolute Shapley value). The maximum features are then selected such that their cumulative𝑘

absolute importance remains below the threshold of 0.95. The generated output is saved as a CSV file

containing the results of the multivariate analysis. This file includes the outcomes of each model

evaluated across stratified randomized folds of training and evaluation data, along with metabolites

arranged according to their relative importance Shapley values from the best-performing model.

If the optimal model happens to be a logistic regression model, a feature importance plot is also

produced and stored as an SVG file.

For the analysis of spectral data, employing both univariate and multivariate methods offers

significant advantages. Univariate analysis allows for the examination of data on a single-feature

basis, which is particularly useful for identifying local changes and variations within individual

metabolites in specific classes such as disease state. This approach is beneficial for pinpointing

specific alterations that might be missed when considering the data in aggregate. In contrast,

multivariate analysis considers the data as a whole, enabling the identification of the most important

dimensions and patterns that emerge from the combined effects of multiple features. This holistic

perspective is crucial for understanding the underlying structure and relationships within the data,

providing insights that are not apparent from univariate analysis alone. Additionally, exploratory

visualization helps in understanding the correlation between features and/or patients, revealing

potential relationships and patterns that might otherwise go unnoticed. EDA visualizations also aid

in detecting internal biases, such as batch effects, which can significantly impact the validity

of the analysis. By identifying and accounting for these biases, more accurate and reliable results can

be ensured. In summary, combining univariate and multivariate methods in spectral data analysis

allows for a comprehensive understanding from both localized and holistic perspectives, while

exploratory visualization enhances the interpretability and reliability of the analysis by revealing

correlations and potential biases.

67



II.5 Biological interpretation of features derived from data analysis module

In the “Biological Interpretation” stage, the FELLA R package [198] and the KEGG database

[143] are used to identify overlaps among biological pathways. The pathway_analysis.nf module

is designed for metabolomics data interpretation, starting with a list of affected metabolites from

either univariate or multivariate analysis modules, sorted by importance to potentially highlight key

biological pathways. This module requires a KEGG organism identifier, with the default set to “hsa”

for human samples, and optionally allows defining the number of metabolites for inclusion in pathway

enrichment analysis, defaulting to 20 features (metabolites). Since the metabolite list generated during

the “Spectral Processing” and “Data Analysis” stages comprises general compound names, it needs

to be translated into KEGG database identifiers. To obtain KEGG identifiers, the metabolite list

is matched against an internal dictionary of corresponding metabolites sourced from the KEGG

database (http://rest.kegg.jp/list/compound, accessed on 29 Feb 2024). After standardizing the input

data, the module builds a hierarchical representation of the organism's biochemistry using KEGG

data. This knowledge graph spans various molecular levels and connects metabolites to pathways

through intermediate entities like reactions, enzymes, and KEGG modules. These connections are

directly sourced from KEGG annotations. The KEGG database-centric pathway enrichment

is achieved by finding a sub-network from the whole KEGG graph that is statistically relevant

for a list of input metabolites. The hypergeometric distribution is employed to evaluate if a biological

pathway has a greater number of hits within the input metabolite list than expected by chance,

considering its size. Pathways are then ranked based on their p-values after multiple testing

corrections. Inclusion of a metabolite in a pathway is determined by its ability to be reached from

the metabolite in the upward-directed KEGG graph, following the KEGG hierarchy from compound

level to pathway. Consequently, metabolites associated with enzymes within a pathway will be

considered part of the pathway, even if they were not originally defined in the KEGG pathway. After

the initial data enrichment process, an enriched FELLA object is subjected to a propagation algorithm,

namely an undirected heat diffusion model, to score the nodes within the graph [199]. This algorithm

helps to propagate information across the graph, allowing for the assessment of the relevance and

importance of each node. The input metabolites initiate a unitary flow within the network, which can

only exit through pathway nodes. This requirement compels the flow to propagate through

the intermediate entities, including reactions, enzymes, and modules, as well. To ensure statistical

normalization of the scores obtained from the propagation algorithm, normality approximations are

computed using parametric z-scores. This involves transforming the raw scores into z-scores, which

represent the number of standard deviations a particular score is from the mean. Normalization

through z-scores results in p-scores, which are defined as:

, (2.8)𝑝𝑠
𝑖

= 1 − Φ(𝑧
𝑖
)
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where is the p-score of node , is its z-score and is the cumulative distribution function𝑝𝑠
𝑖

𝑖 𝑧
𝑖

Φ

of the standard gaussian distribution. This normalization process helps to standardize the scores and

allows for more meaningful comparisons across different nodes in the graph, where nodes are ranked

using increasing p-scores. The module outputs encompass a pathway enrichment object stored

in an RDS file, along with a static plot and an interactive KEGG-based visualization saved in PNG

and HTML formats, respectively.

The approach used in the “Biological Interpretation” stage has the potential to significantly

improve understanding of enrichment results by offering new insights into the alterations occurring

within the biochemistry of the studied organism. It can serve as a valuable starting point for further

exploration and investigation into the underlying biological mechanisms driving these changes.

By providing a more comprehensive and interactive visualization of pathway enrichment, it allows

better identification of key pathways and potential metabolic pathways involved in the observed

physiological or pathological processes. The deeper understanding can lead to more targeted research

efforts and potentially uncover novel therapeutic targets or diagnostic biomarkers.
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III Results: Application of NASQQ pipeline on Familial Dysautonomia

serum samples

III.1 Open dataset raw spectra and corresponding metadata preparation

In PhD research work, the NASQQ pipeline was employed to transition from raw spectra

to data analysis and pathway enrichment [178]. The main objective was to assess the effectiveness and

functionality of the workflow using a publicly available dataset. The original dataset's authors also

analyzed stool samples and conducted a detailed analysis utilizing mice models to investigate

the interplay of the microbiome in FD pathology. However, our workflow focused solely on the serum

samples, representing only a part of the original comprehensive analysis. The complexity

of the original study, which included both human and animal models as well as various types

of biological samples, highlights the multifaceted nature of FD research. Due to the rarity

of the disease, samples were collected from various shipments around the world, adding another layer

of complexity in terms of batch effects and variability. The approach that utilized the NASQQ

pipeline in this work aimed to analyze a subset of this dataset, demonstrating the pipeline's potential

for revealing significant metabolic alterations. More details about the disease and the broader scope

of the original study can be found in the “Other examples of metabolomics importance” section

of the Introduction chapter. The analyzed case study involved 101 serum samples from individuals

with Familial Dysautonomia, distributed across five distinct batches, representing separate shipments:

“ACSC_HumanSerum_11_5_19”, “ACSC_HumanSerumFD_11_1_19”, “Human_Serum_2019_Nove

mber_Shipment_Round_1”, “Human_Serum_2020_Feb_March_Shipments” and “Human_Serum_202

0_January_Shipment”. These included 53 samples from healthy individuals and 48 from FD patients.

The raw serum spectra, obtained from a Bruker AVANCE III 600 MHz spectrometer, were retrieved

from the Metabolights database [157] under MTBLS5138 reference number [73]. The corresponding

metadata — namely HumanFDProject_MasterMetaData.xlsx and README_HumanSerum_NMRFile

s_MasterMapFile.xlsx — were downloaded from https://ftp.ebi.ac.uk/pub/databases/metabolights/stud

ies/public/MTBLS5138/ on February 29, 2024. Given that the original metadata files contained

additional information irrelevant to pipeline execution, a new input file was generated, path to the file

was included in manifest.csv and params.yml was adjusted. The FD_Serum_Metadata_Curation.R

script used for manual metadata creation in the case studies with additional comments, may

be provided upon request. Data processing via the NASQQ pipeline integrated the five originally

deposited batches of raw spectra.
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III.2 Spectral processing module outcomes

In accordance with the methodology described in source publication [73], proton NMR

measurements were conducted using the “zgesgp” pulse sequence (in Bruker notation). The chemical

shift was corrected relatively to the internal standard resonance signal at 0.000 ppm. Fourier

transformation and phase correction were then performed. After selecting the informative segment

of the spectra, an optional bucketing step was executed with the number of data points set to 5,000.

Baseline correction was carried out using the default pipeline parameters (lambda_bc = 5e+06 and

p_bc = 1e-04), followed by normalization using the “pqn” algorithm. All remaining steps

in the “Spectral Preprocessing” stage were carried out using the default pipeline parameters, while

the warping step was skipped.

The module load_fids.nf and subsequent raw_fids_visualization.nf module generated three

outputs for each FD batch: raw FIDs RDS files, a plots RDS file, and plots SVG files. The raw FIDs

RDS file is a list object containing two data frames: FIDinfo and FIDdata. FIDinfo includes metadata

information, while FIDdata contains the real and imaginary parts of the FIDs. All this information

was collected from the acqu, acqus, fid, and pulseprogram files in the main sample folder.

The FIDinfo metadata is consistent across all batches. For a comprehensive description of FIDinfo

metadata, please refer to the PepsNMR R package manual [181]. Below is an explanation of specific

fields in FIDinfo, along with their values for all samples:

● TD: 65536 (Time domain size)

● BYTORDA: 0 (Determinant of the endianness [200] of stored data)

● DIGMOD: 1 (Digitization mode)

● DECIM: 2773.333 (Decimation rate of the digital filter)

● DSPFVS: 20 (DSP firmware version)

● SW_h: 7211.538 (Sweep width in Hz)

● SW: 12.01657 (Sweep width in ppm)

● O1: 2815.482 (Spectrometer frequency offset)

● GPRDLY: 67.98589 (Group delay)

● DT: 6.933333e-05 (Dwell time in microseconds)

Regarding the FIDdata and SVG plot files, FIDdata originally consisted of 32,768 points.

Due to its size, only representative groups are presented in the results section. Specifically, data from

sample number 320 representative FD patients from the dataset “ACSC_HumanSerum_11_5_19”

and sample number 160 representatives of healthy relatives from the dataset

“Human_Serum_2020_Feb_March_Shipments” are shown in figure format. However, all files are

available upon request.
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Figure 10 shows the real part of the Free Induction Decay signal in the time domain.

The x-axis indicates the time scale in units of microseconds multiplied by 1000, while the y-axis

indicates the signal intensity. The plot displays the FID signal as a line plot, where the intensity of the

signal is plotted against time. Initially, there is a sharp and high-intensity signal that quickly decays

and oscillates before stabilizing around zero. This behavior is characteristic of FID, where

the intensity starts high and then decays over time due to relaxation processes in the sample.

Figure 11 consists of two subplots comparing the FID signals before and after group delay removal.

The top subplot shows the real part of the FID signal with group delay. The x-axis and the y-axis

represent time and intensity. The signal starts with minimal oscillation before exhibiting pronounced

oscillations and gradually decaying in amplitude. This indicates the presence of group delay, where

the initial part of the signal is delayed, causing the oscillations to appear later. The bottom part

of the plot displays the real part of the FID signal after the group delay has been removed. In this

subplot, the signal begins with immediate, significant oscillations and then decays over time.

The removal of the group delay has resulted in the immediate onset of the expected oscillatory decay

pattern. Both plots are zoomed in on the initial portion of the FID signal to highlight the effects

of group delay and its removal. The comparison clearly shows how the removal of group delay

corrects the initial delay, resulting in a more accurate representation of the FID signal's true behavior

from the onset. Figure 12 displays the comparison of the real part of the FID signal and the estimated

solvent residuals signal over time. The x-axis and y-axis are labeled similarly as previous figures.

The plot features a black line representing the FID signal and a red line representing the estimated

solvent residuals signal. The FID signal starts with high intensity, quickly decays, and exhibits

oscillations before stabilizing near zero. The estimated solvent residuals signal follows a smoother

trajectory, illustrating the impact of solvent residuals on the FID signal. In the bottom subplot,

similarly to the top subplot, the FID signal begins with high intensity and quickly decays,

but the oscillations appear more immediate and pronounced. The estimated solvent residuals signal is

displayed for comparison, showing the effect of the residuals post-processing. Both subplots focus

on the initial portion of the FID signal to highlight the differences in signal behavior before and after

accounting for solvent residuals. This comparison underscores the impact of solvent residuals

on the accuracy of the FID signal's representation. Figure 13 illustrates the comparison of FID signals

over time after an apodization step, which aims to enhance the signal-to-noise ratio. The focus is

on the real part of the signals in a zoomed-in view. The gray line represents the apodized FID signal,

while the blue line shows the difference between the apodized and solvent-suppressed FID signals:

. Although the changes in the presented samples are subtle, the figureΔ(𝐹𝐼𝐷 𝐴𝑝𝑜𝑑 − 𝐹𝐼𝐷 𝑆𝑆)

demonstrates how the initial noise is smoothed out after processing, leading to an improved SNR and

making the data more suitable for further analysis via Fourier transformation.
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Figure 10. The real part of raw FID for exemplary samples numbers 320 and 160.
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Figure 11. The comparison of FID pre and post-gdc removal FID for exemplary samples numbers

320 and 160.
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Figure 12. The comparison of FID pre and post-solvent removal FID for exemplary samples numbers

320 and 160.
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Figure 13. The comparison of post-apodization FID for exemplary samples numbers 320 and 160.
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Figure 14 displays the spectrum after performing Fourier Transformation. The x-axis

represents the chemical shift in parts per million, ranging from 0 to 10 ppm, while the y-axis shows

the signal intensity. The spectrum reveals several peaks at different ppm values, indicating

the presence of various components within the sample. However, the spectrum is plotted upside-down

due to residual artifacts from a first-order phase shift, likely caused by a strong water signal. Incorrect

phase adjustment results in an inverted spectrum where peaks appear negative instead of positive.

Despite this, the transformation effectively converted time-domain data into the frequency-domain

spectrum, with proper phase correction addressed in a subsequent module. Figure 15 presents

the spectrum after applying zero-order phase correction. Following this correction, the peaks

in the spectrum are properly oriented with positive intensities, and the baseline is correctly aligned,

enhancing the clarity and accuracy of the spectral data. This adjustment ensures that the peaks

correspond to the correct chemical shifts, facilitating further analysis and interpretation

of the sample’s composition. Figure 16 shows a spectral plot that represents data from spectra

following internal referencing. The black lines denote the spectra, while the vertical red line signifies

a reference peak position utilized during the internal referencing process. This red line, marked

as “peak location” in the legend on the right side of the plot, is set at 0 ppm to ensure that the spectra

are aligned for accurate comparison. Figure 17 comprises two spectral plots, each depicting

the results of baseline correction on the same set of spectra. In the top subplot the black lines represent

the raw spectral data, while the red line indicates the baseline that has not been corrected. The red

baseline is visible below the spectra, indicating unwanted background noise that can affect

the accuracy of the peak measurements. The bottom subplot illustrates the same spectral data after

the baseline correction process has been applied. In this subplot, the previously visible baseline noise

has been removed, resulting in a cleaner spectrum where the peaks are more pronounced and clearly

distinguishable. However, after automatic baseline correction, some values may still fall slightly

below zero. This is because the method depends on the p_bc and lambda_bc parameters, as described

in the “Spectral processing of raw 1D spectra and metabolites identification” section

of the Methodology chapter. This issue is addressed in the subsequent module. Figure 18 displays two

spectral subplots: the top subplot shows the spectra before zeroing these values, while the bottom

subplot shows the spectra after zeroing them. Figure 19 consists of two spectral subplots,

demonstrating the effects of window selection and bucketing. The top subplot shows the spectral data

after applying window selection, highlighting specific regions of interest while excluding irrelevant

areas. The bottom subplot presents the spectral data after applying the bucketing process, which

groups the spectral data into discrete bins and averages the intensity values within each bin.

This results in a smoother representation of the spectra, making it easier to identify and analyze

trends. Comparing the two subplots, the spectra after bucketing (bottom subplot) appear less noisy and

more consolidated than those after window selection (top subplot), facilitating a clearer interpretation

of the data.
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Figure 14. The spectrum after Fourier transformation for exemplary samples numbers 320 and 160.
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Figure 15. The spectrum after zero order phase correction for exemplary samples numbers

320 and 160.
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Figure 16. The spectrum after internal referencing for exemplary samples numbers 320 and 160.
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Figure 17. The comparison of spectrum pre and post baseline correction for exemplary samples

numbers 320 and 160.
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Figure 18. The spectrum after negative values zeroing for exemplary samples numbers 320 and 160.
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Figure 19. The comparison of spectrum pre and post bucketing for exemplary samples numbers

320 and 160.
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Figure 20 illustrates the intensity (y-axis) against the chemical shift in ppm (x-axis) after

applying Probabilistic Quotient Normalization to the spectra. The black lines indicate the spectral

data, ranging from 0 to 10 ppm on the x-axis. The normalization process has adjusted the intensity

values, making the spectra more comparable across samples. This results in a more uniform baseline

and consistent peak heights, allowing accurate comparisons and analyses of the spectral features.

The peaks are more distinct and well-aligned, indicating that PQN has effectively mitigated

the variability caused by different sample concentrations. To compare the quality of normalization,

Figures 21-25 present stacked spectra plots for all datasets after the complete preprocessing stage.

Similar to other plots, these figures show intensity versus chemical shift in ppm, with values

decreasing from 10 ppm to 0 ppm. The spectra are displayed with each spectrum stacked on top

of the other, allowing for a clear visualization of multiple spectra simultaneously. The intensity values

range from 0 to 8e+08. The plots use a rainbow color scheme to differentiate between individual

spectra, highlighting the variability and patterns within the dataset. This visualization aids

in identifying consistent peaks and patterns across the preprocessed spectra. Figures 26-27 present

a comparison of fully preprocessed spectra, highlighting the similarities in results obtained

by the NASQQ in-house pipeline and the external methodology used by the authors of the original FD

paper. The top spectrum, generated using the NASQQ pipeline, shows a clear representation

of the data with distinct peaks and minimal baseline noise, spanning from 9 to 0 ppm. The peak

at 0 ppm was deliberately removed as it represents the reference standard. The bottom spectrum was

produced using the methodology described by the authors of the FD paper, also spanning from

9 to 0 ppm but presented in a slightly different style. Both spectra display similar features, offering

a clean and refined representation of the spectral data. This comparison indicates that, despite

potential differences in preprocessing techniques, the overall quality between the two methodologies

is essentially equivalent, validating the quality of the NASQQ pipeline against the manually

performed preprocessing.
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Figure 20. The spectrum after PQN normalization for exemplary samples numbers 320 and 160.
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Figure 21. Stacked spectra of “ACSC_HumanSerum_11_5_19” dataset following complete preprocessing.



Figure 22. Stacked spectra of “ACSC_HumanSerumFD_11_1_19” dataset following complete preprocessing.



Figure 23. Stacked spectra of “Human_Serum_2019_November_Shipment_Round_1” dataset following complete preprocessing.



Figure 24. Stacked spectra of “Human_Serum_2020_Feb_March_Shipments” dataset following complete preprocessing.



Figure 25. Stacked spectra of “Human_Serum_2020_January_Shipment” dataset following complete preprocessing.



Figure 26. A comparison of preprocessed spectra between the original FD paper and NASQQ

pipeline for exemplary sample number 320.
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Figure 27. A comparison of preprocessed spectra between the original FD paper and NASQQ

pipeline for exemplary sample number 160.
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The results from the metabolite quantification module are presented in two main files:

“grouped_Spectrum_data_Quantified.rds” and “asics_normalized_metabolites.txt”. Due

to the batch-wise nature of the analysis, metabolite quantification was also conducted in batches,

resulting in five dataset-specific outcomes. A total of 140 metabolites were consistently quantified

across all batches. Despite each batch highlighting slightly different most concentrated metabolites,

D-glucose, D-fucose, and glyceric acid were frequently observed across all batches.

III.3 Results of univariate module tests

The entire flow of the “Data Analysis” stage followed the default pipeline parameters. After

integrating metadata with all batches, the resulting table comprised 189 metabolites, 3 metadata

columns (“patient_no”, “batch”, and “Disease.state”), and 101 samples. During feature processing,

7 metabolites were excluded, and the relative abundances were log1p transformed. The outcomes

of the univariate module produced two files: outliers.txt and univariate_analysis.csv. The outliers

identified by the LOF algorithm included samples numbers 180, 240, 50, 140, and 180. In terms

of the univariate statistical tests, a normal distribution was observed for 18 metabolites, while

164 metabolites exhibited a non-normal distribution. Among the metabolites deemed significant,

as indicated by a p-value below the threshold of 0.05, only D-fucose showed significance in the T-test.

In contrast, the Mann-Whitney U test identified several significant metabolites, including uracil,

β-hydroxyisovaleric acid, L-aspartate, hypoxanthine, and 5-amino valeric acid. Despite D-fucose

showing a significant p-value of 0.0212, its FDR value of 0.9727 suggests a high likelihood of false

discoveries when adjusting for multiple testing. Similarly, for the other metabolites in the T-test, their

significance is questionable after applying multiple testing corrections. In the Mann-Whitney U test,

while several metabolites exhibit p-values below 0.05, only uracil remains significantly different

in abundance between FD patients and their relatives after accounting for multiple testing,

with an FDR value of 0.1210. Detailed results of the univariate tests are available

in Supplementary Table 1 and Supplementary Table 2.

III.4 Assessment of metabolites classified by machine learning models

The EDA module generated multiple plots to characterize samples and features. Since a batch

column name was provided, additional plots were created to investigate potential batch effects

on the data. Figure 28 shows a series of boxplots comparing the distribution of randomly chosen

metabolites’ abundances across all five available batches. Randomization is handled by setting a seed

to ensure that resulting metabolites are consistent across different runs. Each boxplot represents

a random, yet consistently selected 10 metabolites, with the x-axis listing the metabolite names and

the y-axis showing their relative abundances. The central line within each boxplot indicates

the median value, while the boxes represent the interquartile range (IQR). Whiskers extend
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to the smallest and largest values within 1.5 times the IQR from the quartiles, and outliers are

displayed as individual points beyond the whiskers. Notable observations include the varying

distributions and presence of outliers among the batches, with some metabolites such as L-glutamic

acid and glycerol showing significant differences in variability across the batches. The same box plot

comparisons were performed for classification groups, specifically disease status (see Figure 29).

Although there are no major changes visible, the median for both statuses varies slightly across

metabolite abundances.

Another dataset characteristic depiction is presented in Figures 30 and 31

in the form of density plots. The purpose of these density plots is to visualize the distribution and

variability of metabolite abundances across different batches and disease statuses. Each subplot shows

the density distribution of a specific metabolite, with the x-axis representing the metabolite values and

the y-axis representing the density. In Figure 30, the colors in each plot correspond to different

batches as indicated in the legend. Notable observations include varying peak heights and spreads

across the batches for metabolites such as L-aspartate, lactate, 2-hydroxyphenylacetic acid, uracil,

argininosuccinic acid, D-galactose, L-glutamic acid, methylamine, glycerol, and 3-methyl-L-histidine.

Differences in the distributions highlight batch effects on metabolite levels, with some metabolites

showing significant variability between batches. Interestingly, in Figure 31, it is visible that relatives

have higher density in multiple metabolite abundances, indicating potential differences in metabolite

profiles between FD patients and their healthy relatives.
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Figure 28. Box plot comparison of 10 randomly selected metabolites’ log1p abundances across

batches.

Figure 29. Box plot comparison of 10 randomly selected metabolites’ log1p abundances across

disease status.
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Figure 30. Density plot comparison of 10 randomly selected metabolites’ log1p abundances across batches.



Figure 31. Density plot comparison of 10 randomly selected metabolites’ log1p abundances across disease status.



Figure 32 displays a heatmap featuring hierarchical clustering applied to both rows and

columns, providing a visual representation of the relationship and clustering of metabolites. The color

gradient, ranging from blue to red on the left side, signifies negative to positive correlation values

respectively. Darker shades denote stronger correlations. Dendrograms situated at the top and left side

of the heatmap illustrate the hierarchical clustering of metabolites, with closer proximity

in the dendrogram indicating greater similarity in correlation patterns. The axes list the names

of the metabolites, and each cell within the heatmap denotes the Pearson correlation between

the corresponding metabolites of its row and column. The diagonal line represents the perfect

correlation of each metabolite with itself. Clusters of metabolites exhibiting similar correlation

patterns are evident in the heatmap. Strong correlations are highlighted by darker red or blue shades.

Hierarchical clustering aids in identifying groups of metabolites with akin correlation profiles.

The top-left cluster comprises metabolites such as 2-propanol, trans-aconitic acid, methylamine,

L-valine, and 2-oxobutyrate, demonstrating strong positive correlations. Their close grouping

in the dendrogram suggests shared biochemical pathways or co-regulation. A distinct middle cluster

consists of metabolites like malonate, succinate, pantothenic acid, glycerophosphocholine, and

ethylmalonic acid, displaying varying degrees of positive correlations. The bottom cluster

encompasses metabolites like glutaconic acid, argininosuccinic acid, L-carnosine, L-proline, and

phenethylamine, showing strong positive correlations within the cluster. Their tight clustering

in the dendrogram implies involvement in closely related metabolic processes. Prominent strong

positive correlations are observed in the top-left and middle clusters, while lighter colors, particularly

around the diagonal, indicate weak or no correlation between certain metabolite pairs.
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Figure 32. Heatmap of metabolites’ Pearson correlations alongside hierarchical clustering.
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Figure 33 presents a heatmap illustrating the correlation matrix of samples, organized

by batch, with hierarchical clustering applied to both rows and columns. The color spectrum spans

from blue (denoting strong negative correlations) to red (indicating strong positive correlations),

with intermediate shades indicating varying degrees of correlation. Samples are annotated

with batch-specific details, such as “180_ACSC_HumanSerumFD_11_1_19”

or “510_Human_Serum_2020_January_Shipment”. Hierarchical clustering reveals that samples from

the same batch tend to cluster together, displaying higher intra-batch correlations. For instance,

samples from the “ACSC_HumanSerumFD_11_1_19” batch form a cohesive cluster, indicating robust

correlations within this batch. Disparities in correlation patterns between different batches and

shipments are noticeable. While some batches exhibit more uniform clustering

(e.g. “Human_Serum_2020_Feb_March_Shipments”), others demonstrate greater variability, hinting

at potential batch effects or discrepancies in sample processing and handling across shipments.

The branching structures illustrate the hierarchical relationships between samples, with closely related

samples merging earlier in the tree. The robust grouping of samples within identical batches

underscores the existence of batch effects in the dataset, while the dense clusters within particular

batches indicate substantial sample homogeneity.
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Figure 33. Heatmap of samples’ Pearson correlations across batches alongside hierarchical clustering.
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Following generating heatmaps, the EDA module produced Scree plots and conducted PCA

matrices. Scree plot shown in Figure 34 displays the explained variance for the first 10 principal

components from a PCA. The plot includes two elements: blue bars representing the individual

explained variance for each principal component and a blue line indicating the cumulative explained

variance. The x-axis represents the principal components, numbered from 1 to 10, while the y-axis

represents the explained variance ratio, which is the proportion of the dataset's total

variance explained by each principal component. The first principal component explains

the highest variance, as indicated by the tallest bar. The explained variance decreases for subsequent

principal components, with the first four components showing relatively higher values than the rest.

The cumulative explained variance line starts at the explained variance of the first principal

component and increases as additional components are included. The cumulative variance approaches

0.7 by the tenth principal component, indicating that these ten components together explain about

70% of the total variance in the dataset. Scree plot suggests that the first few principal components

capture the majority of the variance, while additional components contribute progressively less.

Figure 34. Scree plot showing explained variance by principal components.
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Figure 35 and Figure 36 are a scatter plots matrix representing the first four principal

components (PCs) from a principal component analysis of metabolite abundances. Each subplot

displays the pairwise relationships between the principal components, allowing for the visualization

of﻿ clustering patterns among the samples. The x-axis and y-axis of each subplot are labeled

with the principal components (PC 1, PC 2, PC 3, and PC 4), with the percentage of variance

explained by﻿ each component indicated in parentheses. In Figure 35 different colors represent

different batches of serum samples: “ACSC_HumanSerum_11_5_19” (blue), “ACSC_HumanSerum_1

1_11_19” (green), “Human_Serum_2019_November_Shipment_Round_1” (red),﻿ “Human_Serum_202

0_Feb_March_Shipments” (purple), and “Human_Serum_2020_January_Shipment” (orange). Distinc

t clustering of samples based on their batch is observed. Samples from the same batch are grouped

together, indicating similar variance captured by the principal components. Notably, PC 1, explaining

19.1% of the variance, delineates clear separations among several batches. Further differentiation is

observed through PC 2, which accounts for 17.7% of the variance. PC 3 and PC 4, contributing 15.1%

and 10.2% of the variance respectively, reveal even finer separations within the clusters. In Figure 36

the data points are color-coded to distinguish between two groups: "Patient" (blue) and "Relative"

(red). This coloring aids in visualizing clustering and separation patterns among the samples across

disease status. In several subplots, particularly those involving PC 1 and PC 2, there are distinct

clusters of blue and red points. The separation between the groups suggesting these components are

significant in distinguishing between the two groups, clustering patients and relatives into separate

regions.
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Figure 35. PCA scatter plot matrix of first four components of metabolite abundances across all batches.



Figure 36. PCA scatter plot matrix of first four components of metabolite abundances across disease status.



The multivariate analysis generated two key files: models_stratification.csv and

multivariate_analysis_logistic_regression_c_1__features_relative_importance.csv. The first file

provides a comprehensive table with performance metrics and configurations for various machine

learning models. This table comprises 1600 rows, each representing a specific model configuration

and detailing its performance across several metrics. The six columns include:

● Model: Specifies the machine learning model along with its configuration.

● Cycle: Indicates the number of iterations performed during the fitting process.

● Fit Time: Represents the time taken to fit the model, measured in seconds.

● Score Time: Represents the time taken to score the model, measured in seconds.

● Estimator: Describes the specific estimator used, including any relevant hyperparameters.

● Test Score: Indicates the test score achieved by the model, reflecting its performance (ROC

AUC statistic).

The best-performing model was Logistic Regression with C=1, achieving the highest mean

ROC AUC of 0.6425 and a standard deviation of 0.0855 across 200 iterations of shuffled test/train

dataset. The selection criteria for the best-performing model are detailed in Chapter II, section

“Multivariate analysis”. Table 5, extracted from the models_stratification.csv file, lists the top

20 models sorted in descending order of mean ROC AUC. This table demonstrates the variability

in model performance across different shuffles of the data and underscores the choice

of the best-performing model based on mean ROC AUC.

Table 5: Performance metrics and configurations for top 20 machine learning models.

Model Cycle Fit

time

Score

time

Estimator Test

score

Logistic regression (C=1) 49 0.0132 0.0011 LogisticRegression(random_state=0) 0.8709

Logistic regression (C=0) 173 0.0119 0.0013 LogisticRegression(C=0.1, random_state=0) 0.8387

Logistic regression (C=1) 173 0.0136 0.0014 LogisticRegression(random_state=0) 0.8387

Logistic regression L1

(C=1)

166 0.0101 0.0008 LogisticRegression(penalty='l1', random_state=0,

solver='saga', tol=0.01)

0.8387

Logistic regression L1

(C=1)

173 0.0098 0.0008 LogisticRegression(penalty='l1', random_state=0,

solver='saga', tol=0.01)

0.8387
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Model Cycle Fit

time

Score

time

Estimator Test

score

Logistic regression L2

(C=0)

173 0.0062 0.0010 LogisticRegression(C=0.1, random_state=0, solver='saga',

tol=0.01)

0.8387

Logistic regression L2

(C=1)

173 0.0069 0.0007 LogisticRegression(random_state=0, solver='saga', tol=0.01) 0.8387

Random forest 122 0.0962 0.0057 ExtraTreesClassifier(random_state=0) 0.8387

Logistic regression (C=1) 120 0.0090 0.0011 LogisticRegression(random_state=0) 0.8064

Logistic regression L1

(C=1)

4 0.0093 0.0008 LogisticRegression(penalty='l1', random_state=0,

solver='saga', tol=0.01)

0.8064

Logistic regression L1

(C=1)

146 0.0093 0.0007 LogisticRegression(penalty='l1', random_state=0,

solver='saga', tol=0.01)

0.8064

Logistic regression L1

(C=1)

182 0.0076 0.0006 LogisticRegression(penalty='l1', random_state=0,

solver='saga', tol=0.01)

0.8064

Logistic regression L1

(C=1)

186 0.0087 0.0008 LogisticRegression(penalty='l1', random_state=0,

solver='saga', tol=0.01)

0.8064

Logistic regression L2

(C=0)

49 0.0076 0.0011 LogisticRegression(C=0.1, random_state=0, solver='saga',

tol=0.01)

0.8064

Logistic regression L2

(C=1)

49 0.0067 0.0008 LogisticRegression(random_state=0, solver='saga', tol=0.01) 0.8064

Logistic regression

(CV=2)

146 5.1095 0.0011 LogisticRegressionCV(cv=2, l1_ratios=array([0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9]), max_iter=10000,

penalty='elasticnet', random_state=0, solver='saga')

0.8064

Logistic regression

(CV=2)

173 5.3120 0.0014 LogisticRegressionCV(cv=2, l1_ratios=array([0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9]), max_iter=10000,

penalty='elasticnet', random_state=0, solver='saga')

0.8064

Random forest 161 0.1026 0.0054 ExtraTreesClassifier(random_state=0) 0.8064

Logistic regression (C=0) 49 0.0069 0.0011 LogisticRegression(C=0.1, random_state=0) 0.7741

Logistic regression (C=0) 120 0.0082 0.0013 LogisticRegression(C=0.1, random_state=0) 0.7741

Source: Based on [178], outcome from NASQQ pipeline execution.
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The second key file from multivariate analysis contains a table listing the features' relative

importance in descending order, as determined by the best performing machine learning model.

Through multivariate analysis, 50 metabolites that significantly contributed to the best model's feature

stratification across all samples, covering 70% of the relative importance of all Shapley values, were

identified (refer to Supplementary Table 3). These quantified metabolites may be categorized into

distinct groups, including their derivatives: carbohydrates (D-glucuronic acid, D-galactose, xylitol,

D-glucose-6-phosphate), amino acids (L-anserine, 3-methyl-L-histidine, creatinine, L-arginine,

L-cysteine, L-glutamine, L-serine, L-methionine), organic acids (trans-4-hydroxy-L-proline, threonic

acid, succinate, pyruvic acid, citrate, isobutyrate, saccharic acid, glycerol, isocitric acid, malic acid,

glycolic acid, isovaleric acid, oxypurinol, methanol, butyrate, acetoacetate), nucleotides

(UMP, argininosuccinic acid, 7-methylxanthine, dihydrothymine, IMP, dAMP, GMP), and

miscellaneous metabolites (spermidine, dimethylamine, vanillic acid, 2-aminobutyric acid,

glycerophosphocholine, 2-propanol, trans-acotinic acid, TMAO, sarcosine, ascorbic acid).

III.5 KEGG-based metabolomic pathways intersection

During the “Biological Interpretation” stage, the top 20 metabolites from the multivariate

results underwent a FELLA-like pathway analysis. The univariate module, however, did not yield

enough significant metabolites (N=6) to provide robust statistical power for further pathway analysis

(N=20) and is therefore not included in the results section. The pathway analysis outcomes offered

valuable insights into various metabolic pathways, enzyme functions, and reactions significantly

associated with the FD dataset. This analysis highlighted potential alterations in metabolomic

pathways, including the citrate cycle, arginine and proline metabolism, beta-alanine metabolism,

glucagon signaling pathway, ABC transporters, mTOR signaling pathway, and carbon metabolism,

as well as the carbon metabolism in cancer pathway (refer to Supplementary Table 4). The identified

pathways encompassed a range of metabolic processes crucial for cellular function and health. Several

pathways exhibited notably low p-value scores, indicating their strong correlation with the dataset.

Particularly noteworthy are the citrate cycle (TCA cycle), ascorbate and aldarate metabolism, arginine

and proline metabolism, histidine metabolism, and beta-alanine metabolism. Numerous enzymes

with significant p-scores, underscoring their vital roles in the associated metabolic pathways. Major

enzymes included L-xylulose reductase, aldose reductase, malate dehydrogenase, isocitrate

dehydrogenase, nitric-oxide synthase, and various peptidases and oxidoreductases. These enzymes are

involved in critical biochemical reactions, such as redox reactions, amino acid catabolism, and peptide

processing, reflecting their diverse functions in cellular metabolism. The highlighted reactions with

significant associations provided detailed insights into specific biochemical transformations.

Reactions such as ATP phosphotransferase, L-alanine:2-oxoglutarate aminotransferase, succinate

+ oxidoreductase, and various aminotransferases represent key metabolic steps in glycolysis, the TCA
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cycle, and amino acid metabolism. The involvement of reactions like L-cysteine oxidoreductase and

gamma-L-glutamyl-L-cysteinyl-glycine oxidoreductase underscored the importance of redox balance

and polyamine metabolism. The pathway analysis underscored metabolic reactions, offering

an in-depth comprehension of the biochemical transformations and metabolic alterations within

the FD dataset.

Supplementary Table 4 is visually represented in Figure 37, with the results also accessible

as an interactive HTML object (provided upon request). This figure illustrates a network visualization

derived from a KEGG enrichment analysis, encompassing metabolic pathways, enzymes, reactions,

and compounds. In the visualization, nodes symbolize various biological entities: pathways are

depicted as large red circles, modules as pink circles, enzymes as orange circles, reactions as yellow

circles, compounds as small blue circles, and input compounds as green squares. The edges

connecting these nodes delineate the relationships among them, providing insight into the connectivity

within the metabolic network. Dense clusters of nodes indicate areas of heightened connectivity and

interaction, serving as focal points within the metabolic network. Larger nodes, such as pathways

and modules, offer a broader categorical context, while smaller nodes, like compounds and input

compounds, provide detailed insights into specific biochemical substances. Figure 37 offers

a comprehensive view of the intricate interactions and relationships within metabolic pathways,

pinpointing key areas of metabolic activity and potential avenues for further investigation.

The pathway analysis showcases the metabolic background linked to the FD dataset,

underscoring the vital functions of energy metabolism, amino acid processing, redox homeostasis, and

enzymatic activities in maintaining cellular health and responding to metabolic demands. These

results provide a valuable foundation for further investigation into the specific biological processes

and their implications in the studied context. Understanding these metabolic pathways and enzyme

functions could lead to new insights into the metabolic reprogramming associated with the FD dataset.

This knowledge can help in identifying potential therapeutic targets and developing strategies

to modulate these metabolic pathways for better disease management and treatment outcomes.

The detailed insights into specific biochemical transformations offer a promising direction for future

research, aiming to unravel the complex metabolic networks and their roles in cellular health and

disease progression.
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Figure 37. Network visualization of KEGG pathways intersection for top 20 metabolites identified

by multivariate analysis.

Source: Based on [178], created in GIMP.
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IV Discussion

IV.1 General conclusions of pipeline usage for metabolomic analysis

As demonstrated in the results section for the Familial Dysautonomia use case, the NASQQ

pipeline offers users a comprehensive, end-to-end solution, providing control over each step

of the analysis process. It ensures access to processed data tables and visual representations in figures,

allowing users to easily track progress and identify discrepancies in the data flow. These discrepancies

can be identified either visually or by loading specific RDS objects into the R environment. It was

proved that this approach provides a flexible framework for loading objects, adjusting parameters, and

reiterating the analysis. The comparison between the Familial Dysautonomia originally preprocessed

spectra and those obtained using the NASQQ pipeline reveals that, with appropriate parameter

configuration, the pipeline can produce results of comparable quality. The pipeline’s capability

to deliver high-quality results, ensures that the spectra quality from NASQQ closely matches that

of the benchmark study.

In the context of the metabolite identification module, identifying too many metabolites can

lead to poorer quality quantifications for metabolites which are at the low concentration level.

This issue often arises because these low-abundance metabolites are difficult to distinguish

from noise. The problem may stem not only from the quantification process itself but also

from preceding preprocessing steps meant to enhance the quality of the complex spectrum being

analyzed. A crucial preprocessing step in the ASICS method implemented in the pipeline involves

aligning every pure spectrum from the reference library with the analyzed complex mixture. However,

identification and quantification tools, regardless of the method used, are typically designed to process

complex spectra individually. This approach is inefficient when spectra come from the same

experiment under similar conditions and share similarities [201]. Consequently, many metabolites

were quantified at insignificant abundances and discarded during the data analysis stage.

While the foundational ASICS method relies on predefined libraries, the tool's design inherently

supports the use of custom reference libraries. This adaptability makes it highly suitable for various

research applications, allowing results to be validated both in silico and in the laboratory.

This versatility was a crucial factor in choosing ASICS as the leading method, influencing the final

choice of methodology used in the pipeline during the design stage.

The data analysis approach employed in NASQQ integrates traditional univariate methods

with advanced machine learning-based multivariate techniques. This comprehensive methodology has

been thoroughly reviewed based on existing literature and has resulted in a published review on data

analysis methods in immune checkpoint therapy (ICT) [202]. Figures from exploratory data analysis,

such as distribution plots or PCA, presented in the results section, revealed batch effects across

multiple shipments in the original FD dataset. To address these issues and mitigate the impact
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of lower-quality quantifications of metabolites, the multivariate module is designed to handle large

metabolomics datasets, encompassing various time points, patient conditions, and diseases. It employs

an iterative process to select the optimal model by computing the mean ROC AUC to assess model

performance. The method determines the relative importance of metabolites using Shapley values,

which provide a measure of each metabolite's contribution to the outcome. This helps differentiate

significant metabolites from artifacts. In the final stage of the pipeline, Shapley values are integrated

into KEGG-based pathway analysis, linking identified metabolites to specific biological pathways.

This approach ensures the accurate identification of biomarkers while minimizing the inclusion

of irrelevant data.

In the original study on Familial Dysautonomia, metabolites like xanthine, urea, and

methanol showed significantly different levels in serum samples of affected patients compared to their

healthy relatives [73]. In a NASQQ pipeline case study, methanol as a metabolite with significantly

increased abundance was also identified. However, the identification of other metabolites was

hindered by potential discrepancies in the reference database used for quantification during our

analysis (xanthine and urea were not part of the pure library reference, hence could not be identified).

Since the study's focus diverged from replicating or correcting published findings—due to our

fundamentally different analysis workflow design, especially at the metabolites identification

stage—this open dataset was chosen as a case study because of its thorough raw data preparation and

well-organized metadata. These discrepancies highlight the sensitivity of results to specific data

processing workflows employed, which can significantly influence the outcome. Furthermore,

univariate approaches often lack the statistical power to detect subtle yet significant changes

in metabolite levels, particularly when handling high-dimensional metabolomics data. This limitation

was evident in the current analysis, where the univariate testing did not yield a sufficient number

of metabolites for a valid KEGG-based pathway analysis. This shortfall underscores

the necessity of using machine learning models in parallel. The ML approach enhanced the sensitivity

and specificity of metabolite detection, allowing for the identification of a wider range of biologically

significant metabolites and the integration of information from multiple metabolites to identify more

reliable biomarkers. Consequently, it enabled a more comprehensive and accurate mapping

of metabolic pathways, offering deeper insights into the biological processes underlying the condition

under chosen case study. With results from the multivariate analysis module, further biological

interpretation revealed potential alterations in several metabolomic pathways, including the citrate

cycle, arginine and proline metabolism, beta-alanine metabolism, glucagon signaling pathway, ABC

transporters, mTOR signaling pathway, carbon metabolism, and the carbon metabolism in cancer

pathway. The altered metabolites identified by NASQQ, despite their structural and functional

diversity, may share common roles within these cellular processes and metabolic pathways.

For example, amino acids such as L-glutamine, L-serine, and L-arginine, which are involved

in neurotransmitter synthesis [203], are also integral to several of the identified pathways.
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L-glutamine can feed into the citrate cycle through conversion to alpha-ketoglutarate, influencing

energy production and biosynthesis. While L-arginine plays a key role in arginine and proline

metabolism, contributing to the synthesis of polyamines like spermidine, which are crucial for cell

growth, differentiation, and regulation of apoptosis. L-serine is involved in the biosynthesis

of beta-alanine, important for muscle function and neurotransmission. Polyamines like spermidine,

essential for cell growth, differentiation, and regulation of apoptosis [204-205], also intersect with

these pathways. Spermidine can influence the mTOR signaling pathway, vital for cell growth and

metabolism regulation, and serve as substrates for certain ABC transporters involved in cellular

detoxification and homeostasis. Dysfunctions in neurotransmitter function, including defective release

or signaling, along with dysregulation of polyamine metabolism, could impact neuronal development

and function, contributing to the observed pathophysiology in Familial Dysautonomia [206].

The glucagon signaling pathway, which influences glucose metabolism, may also involve regulatory

roles for amino acids like L-glutamine and L-arginine. Additionally, pathways such as carbon

metabolism are linked to overall cellular metabolic activity, with metabolites like L-glutamine serving

as key intermediates.

In conclusion, the discovery of altered metabolites and their associated pathways through

the NASQQ pipeline provides a comprehensive understanding of FD's functional background.

This identification and interpretation of metabolic alterations offer valuable insights into disease

mechanisms and suggest potential therapeutic targets. With further refinement and calibration,

the NASQQ pipeline could facilitate more detailed investigations into the metabolic signatures

of various diseases, advancing both diagnostic and therapeutic strategies. While the pipeline's capacity

for automated analysis of complex metabolic data remains promising, it is important to note

the limitations and challenges, which are detailed in the section below.

IV.2 Utilized methodologies limitations

The NASQQ pipeline, designed specifically for 1D 1H NMR analysis, has several limitations.

First, the workflow begins with raw data in Bruker format and currently does not support other data

formats. This limitation is mostly by design of version 1.0.0. of the pipeline, even though the baseline

function used for loading raw FIDs includes support for other formats, during testing, it was found

that other formats were not as straightforward for extracting metadata and required more error

handling. Additionally, the pipeline is configured for experiments using a consistent presaturation

pulse program. If the pulse program varies among samples within an experiment directory,

the pipeline may encounter issues, either failing to execute when the pulse program is provided

incorrectly by the user or including only those sample names that match the pulse program specified

in the configuration file. The impact of the pulse program on the LB parameter during the apodization
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step is crucial, as described in the “Spectral processing of raw 1D spectra and metabolites

identification” section.

The complexity of preparing and processing NMR spectra and the potential pitfalls of a fully

automated solution should not be overlooked. However, unifying the pipeline should enhance

the reproducibility of results in cross-laboratory projects. Parameters in modules such as zero-order

phase correction and baseline correction should be carefully considered, as the automated nature

of the pipeline does not allow for real-time flexible adjustments, unlike web-based or standalone tools

with built-in graphical user interfaces. While default parameters are sufficient for basic analysis,

Nextflow allows rerunning sessions with different parameters if adjustments are needed. The tables

and plots generated at each step of the analysis make it easy to identify any issues during

preprocessing. Additionally, the prepared individual scripts and Docker environment enable users

to load outcome objects and make manual corrections or test multiple parameter settings. The pipeline

is ideally suited for analyzing samples derived from human biofluids such as plasma, serum, or urine.

Feces, however, have a much more complex and variable composition, containing a high diversity

of microorganisms, undigested food particles, and a wide range of metabolites. This complexity can

complicate the analysis, and therefore, fecal samples were not included as a primary target for pipeline

validation in this work. Metabolite quantification is based on a reference object from the ASICS R

package, which includes 191 compounds and serves as input for the “Biological Interpretation” stage.

Additionally, the pathway enrichment process relies on the KEGG database. If a metabolite identified

during quantification does not have a corresponding KEGG identifier, it is excluded from the

enrichment analysis—this affects 11 metabolites in the current dataset.

Due to the workflow's sequential execution order, NextFlow's potential for parallelization

appears to be underutilized. Although the framework supports simultaneous execution of multiple

processes once preceding steps are completed and resources are available, the pipeline primarily

achieves maximum efficiency during metabolite quantification and machine learning stages.

Furthermore, the absence of a GUI may pose a challenge for users who lack basic programming and

command line skills. The manuals found in the GitHub repository offer guidance on setting up

the workflow across multiple operating systems, preparing inputs, and using individual scripts.

However, they do not provide thorough explanations of NextFlow's operational mechanics and

debugging methods. This knowledge gap may initially hinder less technically proficient users from

effectively using the workflow, particularly when starting first analyses.

In summary, the NASQQ pipeline efficiently processes 1D 1H NMR data, but while effective

for standardized experiments, its dependency on Bruker format and consistent presaturation pulse

programs may limit adaptability across diverse experimental setups. Automation simplifies basic

analysis but requires manual intervention for nuanced parameter adjustments, highlighting the need

for user proficiency with command-line interfaces and basic NMR processing knowledge. Future
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improvements in interface usability and workflow flexibility could broaden its application

in metabolomics research.

IV.3 Future directions and perspectives for further development

Considering the vast and complex nature of the metabolomic analysis, even with

the development of a comprehensive pipeline, there remains room for further additions and

refinements. Additionally, as an open system, the NASQQ pipeline is easily adaptable

for incorporating new modules as needed. Its modular design facilitates the expansion of current

functionalities and the integration of additional modules in the future. For instance, the “Spectral

Preprocessing” stage could be extended to support 2D 1H-13C NMR spectra, offering improved peak

resolution and revealing additional cross-peak information, particularly useful for analyzing complex

mixtures. Another valuable enhancement would be the capability to analyze other metabolomics

techniques, such as mass spectrometry. Integrating with pipelines like metaboigniter (https://github.co

m/nf-core/metaboigniter/tree/2.0.0) would further enhance the workflow's versatility and usability

in the metabolomics field. Furthermore, incorporating custom subworkflows that exclude

the preprocessing of spectra could allow for more flexible handling of semi-preprocessed input data,

thereby accommodating varying preprocessing needs and improving the adaptability of the pipeline.

Creating a custom reference library of pure metabolites can significantly enhance

the identification and quantification of metabolites in preprocessed NMR spectra. By validating this

library in wet laboratories, it is possible to include specific metabolites relevant to the targeted study,

which may be absent in standard libraries. This approach ensures that the analysis aligns more closely

with the unique metabolic profile of the samples, thereby improving the accuracy and precision

of metabolite identification and quantification.

To enhance the statistical power and performance of the “Data Analysis” stage, it would

be beneficial to expand the range of machine learning models to include deep learning techniques

such as Convolutional Neural Networks (CNNs). These advanced models can handle complex

patterns and interactions within the data, potentially leading to more accurate and insightful results

compared to traditional models. Additionally, incorporating feature selection methods across different

models can improve the robustness of the analysis by identifying the most relevant variables.

Implementing automated batch correction processes would further ensure data integrity by addressing

batch effects utilizing methods such as ComBat [207], thereby enhancing the overall reliability and

validity of the results.

Enhancing the workflow with additional downstream analyses using R packages such

as ROTS [208] for differential expression analysis and metaboAnalystR [177] for metabolite set

enrichment analysis (MSEA) would significantly improve result interpretability. Expanding

the workflow to incorporate multi-omics tools and approaches, along with leveraging pathview
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for comprehensive biochemical pathway representation, would provide a more holistic understanding

of the data. Improvements could also include additional graphical representations with interactive

plots and the creation of PDF reports or markdown documents consolidating all results, thereby

enhancing the user experience. Augmenting the pipeline's computing capabilities by integrating other

executors, such as Kubernetes (K8s) or cloud computing platforms like AWS Batch and Azure Batch,

is a promising direction for future development. Collaboration with communities like NF-core

remains crucial to address potential bugs and further optimize the NASQQ pipeline’s performance.

Lastly, improving the accessibility of the tool should be a key focus. More detailed manuals

and guides for users with limited programming and NMR analysis knowledge should be incorporated

into the GitHub repository. Ideally, long-term support for the project should include developing

a graphical user interface for the pipeline, a standalone application, or at least a web interface such

as MaCWorP [209]. Such enhancements would significantly increase the likelihood of the pipeline

being adopted by various scientific groups.

In summary, the NASQQ pipeline offers a production-wise approach compared to established

and widely used methods like NMRprocFlow [170] and Metaboanalyst [175]. Its functionality extends

beyond preprocessing and univariate analysis, incorporating machine learning approaches to elucidate

biological interactions within pathway analysis modules. NASQQ serves as a valuable alternative

to existing tools, particularly suitable for automated analysis implementations. Unlike web-based

solutions that require a connection to external servers—often impractical due to data

confidentiality—pipeline operates locally, ensuring data security. Additionally, compared

to GUI-based solutions, NASQQ allows for programmatic adjustments and leverages Docker

containers to provide a stable environment, accelerating the analysis of multiple spectra and ensuring

tidy data output. The continuous data processing capabilities of NASQQ are especially important

for enterprises and industrial implementations where maintaining data integrity and confidentiality

is paramount. This local, automated pipeline ensures efficient handling of large-scale data while

safeguarding sensitive information, making it a robust choice for production environments. Despite

their differences, both NASQQ and traditional existing approaches contribute significantly

to the advancement of metabolomics, each offering unique strengths and applications.

IV.4 Final remarks of the thesis

In conclusion, the main and secondary objectives outlined in the “Motivation and thesis

outline” section—namely, the automated bioinformatic analysis of metabolite-derived signals in blood

serum spectra obtained through 1D 1H NMR proton magnetic resonance—have been successfully

achieved, as demonstrated in the FD case study. The study also validated the reliability

of the proposed hypotheses for this type of analysis.
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Firstly, at nearly every stage of the NASQQ pipeline, a set of user-defined parameters

significantly impacts the final outcome. In the “Spectral Preprocessing” stage, parameters such

as the pulse program, which influences subsequent apodization line broadening settings, internal

referencing parameters (range_type and target_value), baseline correction parameters (p_bc and

lambda_bc), the number of buckets (mb) in bucketing, and the type of normalization used, all shape

the data analysis process and the resulting insights.

Secondly, custom machine learning methods markedly enhance the identification and

accuracy of significant metabolites in disease progression. A comparison of significant metabolites

identified through univariate methods corrected by multiple testing and those identified through

multivariate machine learning approaches supports this hypothesis. Machine learning models handle

high-dimensional data and capture complex, nonlinear interactions and dependencies between

metabolites that univariate methods might overlook. Models proposed in the “Data Analysis” stage

effectively manage correlated features, avoiding issues like multicollinearity, and advanced techniques

such as Shapley values make them more interpretable, revealing the contribution of each metabolite

to the model's predictions. Additionally, machine learning models may facilitate the integration

of NMR data with other omics data types, enabling comprehensive multi-omics analyses.

Lastly, the efficiency in computation time is notable. For average-power personal computers,

as described in the “NextFlow implementation and containerized computing environment” section,

the analysis of 101 FD serum samples took approximately 5 hours and 30 minutes, with metabolite

quantification consuming the bulk of this time. This level of efficiency is difficult to achieve

manually, even for experienced chemists using standalone state-of-the-art tools. Moreover, with more

computing power, such as a dedicated server, the scalability and speed of the analysis increase

significantly.

Overall, the study successfully demonstrates the feasibility and effectiveness of automated

metabolite analysis using advanced bioinformatics pipelines and machine learning methods, providing

a robust framework for future research and clinical applications
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Supplementary Materials

Supplementary Table 1: Univariate results of T-test of metabolites abundances between FD patients

and their relatives (significant metabolite with a p-value below the threshold of 0.05 are marked with

an asterisk [*]).

No Feature Test Statistic p-value FDR

1 D-fucose* T-test -2.3416 0.0212 0.9727

2 methylguanidine T-test -1.9139 0.0585 0.9727

3 L-citrulline T-test -1.4594 0.1476 0.9727

4 CMP T-test 1.3700 0.1737 0.9727

5 formate T-test -1.3466 0.1811 0.9727

6 phenylglyoxylic acid T-test 1.2604 0.2104 0.9727

7 L-alanine T-test -1.2529 0.2131 0.9727

8 4-hydroxyphenyl acetic acid T-test 1.0714 0.2865 0.9727

9 adipic acid T-test -1.0384 0.3016 0.9727

10 ethylmalonic acid T-test -0.9263 0.3565 0.9727

11 2-oxoisovalerate T-test -0.8659 0.3885 0.9727

12 D-glucose T-test 0.7849 0.4343 0.9727

13 UTP T-test 0.4754 0.6355 0.9727

14 pyroglutamic acid T-test 0.3328 0.7399 0.9727

15 hippuric acid T-test -0.3067 0.7596 0.9727

16 1-methylhydantoin T-test 0.2001 0.8417 0.9727

17 nicotinuric acid T-test -0.0530 0.9577 0.9727

18 L-asparagine T-test 0.0453 0.9639 0.9727
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Supplementary Table 2: Univariate results of Mann-Whitney U test of metabolites abundances

between FD patients and their relatives (significant metabolite with a p-value below the threshold of

0.05 are marked with an asterisk [*]).

No Feature Test Statistic p-value FDR

1 uracil* Mann-Whitney U 1773 0.0006 0.1210

2 beta-hydroxyisovaleric acid* Mann-Whitney U 944 0.0259 0.9727

3 L-aspartate* Mann-Whitney U 962 0.0353 0.9727

4 hypoxanthine* Mann-Whitney U 977 0.0452 0.9727

5 5-amino valeric acid* Mann-Whitney U 978 0.0459 0.9727

6 valerate Mann-Whitney U 1004 0.0688 0.9727

7 choline chloride Mann-Whitney U 1020 0.0872 0.9727

8 2-picolinic acid Mann-Whitney U 1026 0.0950 0.9727

9 cytosine Mann-Whitney U 1514 0.1005 0.9727

10 methylmalonic acid Mann-Whitney U 1031 0.1008 0.9727

11 levulinic acid Mann-Whitney U 1031 0.1019 0.9727

12 L-arabitol Mann-Whitney U 1038 0.1041 0.9727

13 2-methylglutaric acid Mann-Whitney U 1038 0.1123 0.9727

14 glyceric acid Mann-Whitney U 1503 0.1170 0.9727

15 L-tyrosine Mann-Whitney U 1047 0.1268 0.9727

16 allantoin Mann-Whitney U 1486 0.1463 0.9727

17 glycogen Mann-Whitney U 1484 0.1503 0.9727

18 syringic acid Mann-Whitney U 1483 0.1522 0.9727

19 L-cysteine Mann-Whitney U 1079 0.1703 0.9727

20 L-leucine Mann-Whitney U 1074 0.1792 0.9727

21 7-methylxanthine Mann-Whitney U 1083.5 0.2007 0.9727

22 trigonelline Mann-Whitney U 1086 0.2069 0.9727

23 2-amino adipic acid Mann-Whitney U 1087 0.2095 0.9727

24 indoxyl sulfate Mann-Whitney U 1088 0.2120 0.9727
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No Feature Test Statistic p-value FDR

25 adenosine Mann-Whitney U 1455 0.2145 0.9727

26 3-hydroxybutyrate Mann-Whitney U 1091 0.2196 0.9727

27 putrescine Mann-Whitney U 1452 0.2222 0.9727

28 D-fructose Mann-Whitney U 1450 0.2274 0.9727

29 acetoacetate Mann-Whitney U 1101 0.2459 0.9727

30 L-arginine Mann-Whitney U 1413 0.2470 0.9727

31 L-valine Mann-Whitney U 1102 0.2490 0.9727

32 L-threonine Mann-Whitney U 1103 0.2518 0.9727

33 lactose Mann-Whitney U 1104 0.2546 0.9727

34 1,3-diaminopropane Mann-Whitney U 1439 0.2575 0.9727

35 3-methyladipic acid Mann-Whitney U 1106 0.2603 0.9727

36 trans-acotinic acid Mann-Whitney U 1432 0.2687 0.9727

37 2-deoxyadenosine Mann-Whitney U 1430 0.2841 0.9727

38 L-isoleucine Mann-Whitney U 1114 0.2841 0.9727

39 GABA Mann-Whitney U 1115 0.2872 0.9727

40 GTP Mann-Whitney U 1116 0.2903 0.9727

41 D-glucose-6-phosphate Mann-Whitney U 1426 0.2961 0.9727

42 4-ethyl phenol Mann-Whitney U 1121 0.3060 0.9727

43 citrate Mann-Whitney U 1125 0.3069 0.9727

44 trans-4-hydroxy-L-proline Mann-Whitney U 1418 0.3081 0.9727

45 L-carnosine Mann-Whitney U 1421 0.3125 0.9727

46 CDP Mann-Whitney U 1420 0.3158 0.9727

47 kynurenic acid Mann-Whitney U 1417 0.3257 0.9727

48 lactate Mann-Whitney U 1131 0.3393 0.9727

49 pimelic acid Mann-Whitney U 1134 0.3497 0.9727

50 N-acetyl-L-aspartic acid Mann-Whitney U 1137 0.3603 0.9727
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51 adenine Mann-Whitney U 1407 0.3603 0.9727

52 L-serine Mann-Whitney U 1140 0.3634 0.9727

53 glycerophosphocholine Mann-Whitney U 1402 0.3664 0.9727

54 dimethylglycine Mann-Whitney U 1401 0.3822 0.9727

55 ethanolamine Mann-Whitney U 1400 0.3859 0.9727

56 myo-inositol Mann-Whitney U 1146 0.3906 0.9727

57 pantothenic acid Mann-Whitney U 1396 0.4009 0.9727

58 IMP Mann-Whitney U 1394 0.4083 0.9727

59 levoglucosan Mann-Whitney U 1390 0.4242 0.9727

60 dehydroascorbic acid Mann-Whitney U 1388 0.4321 0.9727

61 ATP Mann-Whitney U 1388 0.4321 0.9727

62 dihydro thymine Mann-Whitney U 1160.5 0.4472 0.9727

63 L-ornithine Mann-Whitney U 1161 0.4480 0.9727

64 spermidine Mann-Whitney U 1381 0.4518 0.9727

65 threonic acid Mann-Whitney U 1364.5 0.4529 0.9727

66 L-tryptophane Mann-Whitney U 1162 0.4564 0.9727

67 dimethyl sulfone Mann-Whitney U 1177 0.4602 0.9727

68 3-phenylpropionic acid Mann-Whitney U 1381 0.4606 0.9727

69 L-glutathione-reduced Mann-Whitney U 1374 0.4633 0.9727

70 CTP Mann-Whitney U 1168 0.4815 0.9727

71 nicotinic acid Mann-Whitney U 1170 0.4900 0.9727

72 betaine Mann-Whitney U 1170.5 0.4921 0.9727

73 trimethylamine Mann-Whitney U 1372 0.4984 0.9727

74 trans-ferulic acid Mann-Whitney U 1369.5 0.5026 0.9727

75 acetone Mann-Whitney U 1176 0.5160 0.9727

76 quinolinic acid Mann-Whitney U 1176 0.5160 0.9727
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77 L-histidine Mann-Whitney U 1365 0.5293 0.9727

78 phenethylamine Mann-Whitney U 1179 0.5293 0.9727

79 2-deoxyguanosine Mann-Whitney U 1365 0.5293 0.9727

80 guanidinoacetic acid Mann-Whitney U 1362.5 0.5293 0.9727

81 homovanillic acid Mann-Whitney U 1363 0.5376 0.9727

82 L-cystine Mann-Whitney U 1363 0.5382 0.9727

83 TMAO Mann-Whitney U 1183 0.5413 0.9727

84 3-methyl-L-histidine Mann-Whitney U 1357 0.5556 0.9727

85 methanol Mann-Whitney U 1189 0.5672 0.9727

86 L-glycine Mann-Whitney U 1355 0.5747 0.9727

87 propylene glycol Mann-Whitney U 1355 0.5747 0.9727

88 alpha-hydroxyisobutyric acid Mann-Whitney U 1191 0.5840 0.9727

89 taurine Mann-Whitney U 1351 0.5934 0.9727

90 azelaic acid Mann-Whitney U 1195.5 0.6047 0.9727

91 2-oxoglutarate Mann-Whitney U 1196 0.6074 0.9727

92 succinate Mann-Whitney U 1347 0.6100 0.9727

93 UMP Mann-Whitney U 1347 0.6121 0.9727

94 L-proline Mann-Whitney U 1197 0.6124 0.9727

95 isovaleric acid Mann-Whitney U 1201 0.6260 0.9727

96 D-mannose Mann-Whitney U 1200 0.6268 0.9727

97 uridine Mann-Whitney U 1202.5 0.6389 0.9727

98 L-glutamine Mann-Whitney U 1339.5 0.6464 0.9727

99 creatine Mann-Whitney U 1205 0.6494 0.9727

100 isocitric acid Mann-Whitney U 1338 0.6556 0.9727

101 UDP Mann-Whitney U 1207 0.6609 0.9727

102 hypotaurine Mann-Whitney U 1208 0.6658 0.9727
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103 L-glutamic acid Mann-Whitney U 1336 0.6658 0.9727

104 fumaric acid Mann-Whitney U 1333 0.6807 0.9727

105 D-gluconic acid Mann-Whitney U 1332 0.6857 0.9727

106 xylitol Mann-Whitney U 1328 0.6872 0.9727

107 dAMP Mann-Whitney U 1216.5 0.7076 0.9727

108 urocanic acid Mann-Whitney U 1217 0.7109 0.9727

109 beta-alanine Mann-Whitney U 1219 0.7210 0.9727

110 inosine Mann-Whitney U 1325 0.7210 0.9727

111 NADP Mann-Whitney U 1221 0.7312 0.9727

112 argininosuccinic acid Mann-Whitney U 1231.5 0.7441 0.9727

113 D-glucuronic acid Mann-Whitney U 1317 0.7567 0.9727

114 2-hydroxyphenyl acetic acid Mann-Whitney U 1226 0.7570 0.9727

115 L-anserine Mann-Whitney U 1226.5 0.7586 0.9727

116 ascorbic acid Mann-Whitney U 1227 0.7616 0.9727

117 1-methyl-L-histidine Mann-Whitney U 1316 0.7673 0.9727

118 mandelic acid Mann-Whitney U 1228.5 0.7695 0.9727

119 L-phenylalanine Mann-Whitney U 1229 0.7723 0.9727

120 GDP Mann-Whitney U 1311 0.7934 0.9727

121 O-acetyl-L-carnitine Mann-Whitney U 1310 0.7986 0.9727

122 4-amino hippuric acid Mann-Whitney U 1234 0.7987 0.9727

123 glycerol Mann-Whitney U 1308 0.8081 0.9727

124 L-lysine Mann-Whitney U 1305 0.8250 0.9727

125 2-hydroxybutyric acid Mann-Whitney U 1303 0.8356 0.9727

126 2-oxobutyrate Mann-Whitney U 1303 0.8356 0.9727

127 D-maltose Mann-Whitney U 1243 0.8463 0.9727

128 glutaconic acid Mann-Whitney U 1300.5 0.8489 0.9727
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129 phosphocholine Mann-Whitney U 1244 0.8516 0.9727

130 GMP Mann-Whitney U 1245.5 0.8595 0.9727

131 benzoic acid Mann-Whitney U 1245.5 0.8596 0.9727

132 dimethylamine Mann-Whitney U 1297 0.8643 0.9727

133 butyrate Mann-Whitney U 1249 0.8718 0.9727

134 S-acetamido-methylcysteine Mann-Whitney U 1248 0.8730 0.9727

135 ADP Mann-Whitney U 1295 0.8783 0.9727

136 galactitol Mann-Whitney U 1249 0.8783 0.9727

137 acetaminophen Mann-Whitney U 1293.5 0.8789 0.9727

138 glycolic acid Mann-Whitney U 1251 0.8831 0.9727

139 3-hydroxyphenyl acetic acid Mann-Whitney U 1292 0.8842 0.9727

140 cadaverine Mann-Whitney U 1251 0.8891 0.9727

141 sebacic acid Mann-Whitney U 1293 0.8891 0.9727

142 isobutyrate Mann-Whitney U 1253 0.8907 0.9727

143 creatinine Mann-Whitney U 1252 0.8926 0.9727

144 oxypurinol Mann-Whitney U 1291 0.8951 0.9727

145 L-methionine Mann-Whitney U 1255 0.9047 0.9727

146 3-methylxanthine Mann-Whitney U 1290 0.9052 0.9727

147 L-carnitine Mann-Whitney U 1289 0.9106 0.9727

148 malonate Mann-Whitney U 1257 0.9206 0.9727

149 pyruvic acid Mann-Whitney U 1286.5 0.9226 0.9727

150 2-propanol Mann-Whitney U 1286.5 0.9240 0.9727

151 2-deoxycytidine Mann-Whitney U 1286 0.9268 0.9727

152 2-aminobutyric acid Mann-Whitney U 1259 0.9285 0.9727

153 NAD Mann-Whitney U 1285.5 0.9295 0.9727

154 D-galactose Mann-Whitney U 1260 0.9356 0.9727
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155 N-(2-furoyl)glycine Mann-Whitney U 1260 0.9376 0.9727

156 methylamine Mann-Whitney U 1284 0.9376 0.9727

157 saccaric acid Mann-Whitney U 1260.5 0.9400 0.9727

158 sarcosine Mann-Whitney U 1261 0.9430 0.9727

159 malic acid Mann-Whitney U 1262 0.9481 0.9727

160 UDPG Mann-Whitney U 1282 0.9483 0.9727

161 N-acetylglycine Mann-Whitney U 1264 0.9593 0.9727

162 pyrocatechol Mann-Whitney U 1280 0.9593 0.9727

163 AMP Mann-Whitney U 1278.5 0.9674 0.9727

164 vanillic acid Mann-Whitney U 1269 0.9864 0.9864

Supplementary Table 3: Multivariate results of the best-performing model for metabolite

abundances between FD patients and their relatives, arranged by Shapley values-based relative

importance.

No Feature Relative importance

1 D-glucuronic acid 0.03535

2 trans-4-hydroxy-L-proline 0.02681

3 L-anserine 0.02428

4 threonic acid 0.02326

5 spermidine 0.02221

6 3-methyl-L-histidine 0.02169

7 succinate 0.02105

8 pyruvic acid 0.02090

9 creatinine 0.02028

10 L-arabitol 0.01940

11 xylitol 0.01796

12 citrate 0.01790

13 dimethylamine 0.01747
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No Feature Relative importance

14 isobutyrate 0.01728

15 D-galactose 0.01560

16 saccaric acid 0.01468

17 guanidinoacetic acid 0.01454

18 L-arginine 0.01437

19 L-cysteine 0.01420

20 vanillic acid 0.01393

21 glycerol 0.01393

22 isocitric acid 0.01365

23 malic acid 0.01290

24 2-aminobutyric acid 0.01278

25 UMP 0.01253

26 glycerophosphocholine 0.01246

27 glycolic acid 0.01232

28 2-propanol 0.01226

29 trans-acotinic acid 0.01218

30 TMAO 0.01193

31 argininosuccinic acid 0.01102

32 7-methylxanthine 0.01065

33 sarcosine 0.01064

34 D-glucose-6-phosphate 0.01055

35 L-serine 0.01049

36 homovanillic acid 0.01043

37 L-glutamine 0.01009

38 isovaleric acid 0.01007

39 oxypurinol 0.00978

40 dihydrothymine 0.00976

41 L-methionine 0.00924

42 IMP 0.00907
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No Feature Relative importance

43 methylmalonic acid 0.00903

44 methanol 0.00899

45 ascorbic acid 0.00877

46 butyrate 0.00837

47 acetoacetate 0.00837

48 dAMP 0.00814

49 GMP 0.00814

50 dimethyl sulfone 0.00811

Supplementary Table 4: KEGG-based FELLA enrichment analysis results for significant

metabolites from multivariate module.

KEGG.id Entry.type KEGG.name p.score

hsa00020 pathway citrate cycle (TCA cycle) - Homo sapiens (human) 0.0066

hsa00053 pathway ascorbate and aldarate metabolism - Homo sapiens (human) 0.0008

hsa00330 pathway arginine and proline metabolism - Homo sapiens (human) 0.0000

hsa00340 pathway histidine metabolism - Homo sapiens (human) 0.0088

hsa00410 pathway beta-alanine metabolism - Homo sapiens (human) 0.0003

hsa01200 pathway carbon metabolism - Homo sapiens (human) 0.0226

hsa02010 pathway ABC transporters - Homo sapiens (human) 0.0082

hsa04150 pathway mTOR signaling pathway - Homo sapiens (human) 0.0005

hsa04614 pathway renin-angiotensin system - Homo sapiens (human) 0.0000

hsa04922 pathway glucagon signaling pathway - Homo sapiens (human) 0.0004

hsa04972 pathway pancreatic secretion - Homo sapiens (human) 0.0001

hsa04974 pathway protein digestion and absorption - Homo sapiens (human) 0.0000

hsa05230 pathway central carbon metabolism in cancer - Homo sapiens (human) 0.0000
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KEGG.id Entry.type KEGG.name p.score

M00010 module citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate 0.0013

M00012 module glyoxylate cycle 0.0019

M00014 module glucuronate pathway (uronate pathway) 0.0172

M00015 module proline biosynthesis, glutamate => proline 0.0004

M00029 module urea cycle 0.0216

M00047 module creatine pathway 0.0000

M00133 module polyamine biosynthesis, arginine => agmatine => putrescine => spermidine 0.0001

M00134 module polyamine biosynthesis, arginine => ornithine => putrescine 0.0000

M00135 module GABA biosynthesis, eukaryotes, putrescine => GABA 0.0096

M00171 module C4-dicarboxylic acid cycle, NAD - malic enzyme type 0.0181

M00173 module reductive citrate cycle (Arnon-Buchanan cycle) 0.0003

M00970 module proline degradation, proline => glutamate 0.0002

M00972 module proline metabolism 0.0000

1.1.1.10 enzyme L-xylulose reductase 0.0000

1.1.1.14 enzyme L-iditol 2-dehydrogenase 0.0033

1.1.1.21 enzyme aldose reductase 0.0000

1.1.1.38 enzyme malate dehydrogenase (oxaloacetate-decarboxylating) 0.0033

1.1.1.40 enzyme malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) 0.0202

1.1.1.41 enzyme isocitrate dehydrogenase (NAD+) 0.0220

1.13.11.20 enzyme cysteine dioxygenase 0.0083

1.14.11.16 enzyme peptide-aspartate beta-dioxygenase 0.0000

1.14.11.18 enzyme phytanoyl-CoA dioxygenase 0.0002

1.14.11.2 enzyme procollagen-proline 4-dioxygenase 0.0000

1.14.13.39 enzyme nitric-oxide synthase (NADPH) 0.0004

1.2.1.24 enzyme succinate-semialdehyde dehydrogenase (NAD+) 0.0201
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KEGG.id Entry.type KEGG.name p.score

1.5.1.2 enzyme pyrroline-5-carboxylate reductase 0.0000

1.5.3.13 enzyme N1-acetyl polyamine oxidase 0.0000

1.5.3.16 enzyme spermine oxidase 0.0000

1.5.5.2 enzyme proline dehydrogenase 0.0004

1.5.5.3 enzyme hydroxyproline dehydrogenase 0.0000

2.1.1.2 enzyme guanidinoacetate N-methyltransferase 0.0000

2.1.1.22 enzyme carnosine N-methyltransferase 0.0000

2.1.4.1 enzyme glycine amidinotransferase 0.0000

2.3.3.1 enzyme citrate (Si)-synthase 0.0000

2.3.3.8 enzyme ATP citrate synthase 0.0000

2.5.1.16 enzyme spermidine synthase 0.0081

2.5.1.22 enzyme spermine synthase 0.0000

2.6.1.19 enzyme 4-aminobutyrate---2-oxoglutarate transaminase 0.0046

2.7.11.2 enzyme [pyruvate dehydrogenase (acetyl-transferring)] kinase 0.0106

2.7.3.2 enzyme creatine kinase 0.0000

3.2.1.22 enzyme alpha-galactosidase 0.0020

3.2.1.23 enzyme beta-galactosidase 0.0050

3.4.11.3 enzyme cystinyl aminopeptidase 0.0000

3.4.11.7 enzyme glutamyl aminopeptidase 0.0000

3.4.11.9 enzyme Xaa-Pro aminopeptidase 0.0000

3.4.13.18 enzyme cytosol nonspecific dipeptidase 0.0000

3.4.13.20 enzyme beta-Ala-His dipeptidase 0.0000

3.4.14.5 enzyme dipeptidyl-peptidase IV 0.0000

3.4.15.1 enzyme peptidyl-dipeptidase A 0.0214

3.4.16.2 enzyme lysosomal Pro-Xaa carboxypeptidase 0.0000

3.4.16.5 enzyme carboxypeptidase C 0.0012
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KEGG.id Entry.type KEGG.name p.score

3.4.17.1 enzyme carboxypeptidase A 0.0000

3.4.17.15 enzyme carboxypeptidase A2 0.0000

3.4.17.2 enzyme carboxypeptidase B 0.0000

3.4.17.20 enzyme carboxypeptidase U 0.0000

3.4.17.23 enzyme angiotensin-converting enzyme 2 0.0001

3.4.21.1 enzyme chymotrypsin 0.0000

3.4.21.26 enzyme prolyl oligopeptidase 0.0000

3.4.21.35 enzyme tissue kallikrein 0.0037

3.4.21.39 enzyme chymase 0.0001

3.4.21.4 enzyme trypsin 0.0000

3.4.21.70 enzyme pancreatic endopeptidase E 0.0000

3.4.21.71 enzyme pancreatic elastase II 0.0000

3.4.23.1 enzyme pepsin A 0.0000

3.4.23.15 enzyme renin 0.0119

3.4.24.11 enzyme neprilysin 0.0000

3.4.24.16 enzyme neurolysin 0.0000

3.4.24.18 enzyme meprin A 0.0000

3.4.24.63 enzyme meprin B 0.0000

3.5.3.1 enzyme arginase 0.0000

3.5.3.17 enzyme guanidinopropionase 0.0000

4.1.1.11 enzyme aspartate 1-decarboxylase 0.0003

4.1.1.17 enzyme ornithine decarboxylase 0.0001

4.1.1.19 enzyme arginine decarboxylase 0.0005

4.2.1.3 enzyme aconitate hydratase 0.0001

5.6.1.6 enzyme channel-conductance-controlling ATPase 0.0133

6.3.2.11 enzyme carnosine synthase 0.0000
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KEGG.id Entry.type KEGG.name p.score

6.4.1.1 enzyme pyruvate carboxylase 0.0013

7.2.2.13 enzyme Na+/K+-exchanging ATPase 0.0005

7.4.2.14 enzyme ABC-type antigen peptide transporter 0.0215

7.6.2.4 enzyme ABC-type fatty-acyl-CoA transporter 0.0187

7.6.2.8 enzyme ABC-type vitamin B12 transporter 0.0187

R00199 reaction ATP:pyruvate,water phosphotransferase 0.0075

R00200 reaction ATP:pyruvate 2-O-phosphotransferase 0.0093

R00206 reaction ATP:pyruvate,phosphate phosphotransferase 0.0207

R00217 reaction oxaloacetate carboxy-lyase (pyruvate-forming) 0.0010

R00220 reaction L-serine ammonia-lyase 0.0128

R00258 reaction L-alanine:2-oxoglutarate aminotransferase 0.0030

R00344 reaction pyruvate:carbon-dioxide ligase (ADP-forming) 0.0155

R00351 reaction acetyl-CoA:oxaloacetate C-acetyltransferase (thioester-hydrolysing) 0.0000

R00352 reaction acetyl-CoA:oxaloacetate C-acetyltransferase

[(pro-S)-carboxymethyl-forming, ADP-phosphorylating]

0.0000

R00369 reaction L-alanine:glyoxylate aminotransferase 0.0105

R00396 reaction L-alanine:NAD+ oxidoreductase (deaminating) 0.0033

R00400 reaction L-alanine:oxaloacetate aminotransferase 0.0103

R00402 reaction succinate:NAD+ oxidoreductase 0.0027

R00405 reaction succinate:CoA ligase (ADP-forming) 0.0008

R00489 reaction L-aspartate 1-carboxy-lyase (beta-alanine-forming) 0.0002

R00551 reaction L-arginine amidinohydrolase 0.0000

R00552 reaction L-arginine iminohydrolase 0.0000

R00557 reaction L-arginine,NADPH:oxygen oxidoreductase (nitric-oxide-forming) 0.0003
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KEGG.id Entry.type KEGG.name p.score

R00558 reaction L-arginine,NADPH:oxygen oxidoreductase

(N-(omega)-hydroxyarginine-forming)

0.0001

R00562 reaction N2-(D-1-carboxyethyl)-L-arginine:NAD+ oxidoreductase

(L-arginine-forming)

0.0133

R00565 reaction L-arginine:glycine amidinotransferase 0.0000

R00566 reaction L-arginine carboxy-lyase (agmatine-forming) 0.0027

R00567 reaction arginine racemase 0.0008

R00646 reaction ascorbate + oxygen + H2O <=> threonate + oxalate 0.0000

R00670 reaction L-ornithine carboxy-lyase (putrescine-forming) 0.0031

R00671 reaction L-ornithine ammonia-lyase (cyclizing; L-proline-forming) 0.0024

R00782 reaction L-cysteine hydrogen-sulfide-lyase (deaminating; pyruvate-forming) 0.0000

R00891 reaction L-serine hydro-lyase (adding hydrogen sulfide, L-cysteine-forming) 0.0001

R00892 reaction L-cysteine:NAD+ oxidoreductase 0.0058

R00893 reaction L-cysteine:oxygen oxidoreductase 0.0084

R00894 reaction L-glutamate:L-cysteine gamma-ligase (ADP-forming) 0.0009

R00897 reaction O3-acetyl-L-serine:hydrogen-sulfide 2-amino-2-carboxyethyltransferase 0.0158

R00901 reaction L-cysteine hydrogen-sulfide-lyase (adding sulfite; L-cysteate-forming) 0.0045

R00904 reaction 3-aminopropanal:NAD+ oxidoreductase 0.0151

R00907 reaction L-alanine:3-oxopropanoate aminotransferase 0.0001

R00908 reaction beta-alanine:2-oxoglutarate aminotransferase 0.0004

R00912 reaction L-arginine:beta-alanine ligase (ADP-forming) 0.0027

R01001 reaction L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming) 0.0035

R01093 reaction galactitol:NAD+ 1-oxidoreductase 0.0016

R01095 reaction galactitol:NADP+ 1-oxidoreductase 0.0022

R01098 reaction D-galactose:oxygen 6-oxidoreductase 0.0185

155



KEGG.id Entry.type KEGG.name p.score

R01101 reaction melibiose galactohydrolase 0.0128

R01103 reaction raffinose galactohydrolase 0.0041

R01159 reaction S-adenosyl-L-methionine:L-histidine N-methyltransferase 0.0000

R01164 reaction L-histidine:beta-alanine ligase (ADP-forming) 0.0002

R01166 reaction Nalpha-(beta-alanyl)-L-histidine hydrolase 0.0000

R01194 reaction 3-O-alpha-D-galactosyl-1D-myo-inositol galactohydrolase 0.0156

R01248 reaction L-proline:NAD+ 5-oxidoreductase 0.0063

R01251 reaction L-proline:NADP+ 5-oxidoreductase 0.0099

R01252 reaction L-proline,2-oxoglutarate:oxygen oxidoreductase (4-hydroxylating) 0.0000

R01322 reaction citrate:CoA ligase (ADP-forming) 0.0020

R01324 reaction citrate hydroxymutase 0.0000

R01325 reaction citrate hydro-lyase (cis-aconitate-forming) 0.0001

R01431 reaction xylitol:NADP+ oxidoreductase 0.0000

R01566 reaction creatine amidinohydrolase 0.0008

R01588 reaction dimethylamine:electron-transferring flavoprotein oxidoreductase 0.0000

R01686 reaction L-arginine:taurine amidinotransferase 0.0057

R01758 reaction L-arabitol:NAD+ 1-oxidoreductase 0.0000

R01759 reaction L-arabitol:NADP+ 1-oxidoreductase 0.0000

R01881 reaction ATP:creatine N-phosphotransferase 0.0009

R01883 reaction S-adenosyl-L-methionine:guanidinoacetate N-methyltransferase 0.0000

R01884 reaction creatinine amidohydrolase 0.0000

R01896 reaction xylitol:NAD+ 2-oxidoreductase (D-xylulose-forming) 0.0000

R01903 reaction L-arabinitol:NAD+ 4-oxidoreductase (L-xylulose-forming) 0.0000

R01904 reaction xylitol:NADP+ 4-oxidoreductase (L-xylulose-forming) 0.0000
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R01914 reaction spermidine:(acceptor) oxidoreductase 0.0000

R01915 reaction spermidine:(acceptor) oxidoreductase 0.0000

R01917 reaction gamma-L-glutamyl-L-cysteinyl-glycine:spermidine ligase (ADP-forming) 0.0000

R01918 reaction gamma-L-glutamyl-L-cysteinyl-glycine:spermidine amidase 0.0000

R01920 reaction S-adenosylmethioninamine:putrescine 3-aminopropyltransferase 0.0000

R01989 reaction L-arginine:4-aminobutanoate amidinotransferase 0.0000

R01992 reaction alpha-aminobutyryl histidine hydrolase 0.0188

R02144 reaction S-adenosyl-L-methionine:carnosine N-methyltransferase 0.0000

R02164 reaction succinate:quinone oxidoreductase 0.0181

R02441 reaction L-arabitol:NAD+ 2-oxidoreductase (L-ribulose-forming) 0.0000

R02509 reaction N,N-dimethylformamide amidohydrolase 0.0043

R02511 reaction trimethylamine:electron-transferring flavoprotein

oxidoreductase(demethylating)

0.0000

R02512 reaction trimethylamine-N-oxide formaldehyde-lyase 0.0000

R02575 reaction ATP:guanidoacetate N-phosphotransferase 0.0000

R02752 reaction D-glucarate hydro-lyase 0.0000

R02754 reaction 5-dehydro-4-deoxy-D-glucarate tartronate-semialdehyde-lyase 0.0197

R02869 reaction S-adenosylmethioninamine:spermidine 3-aminopropyltransferase 0.0003

R02922 reaction creatinine iminohydrolase 0.0000

R02957 reaction D-glucuronolactone:NAD+ oxidoreductase 0.0000

R03260 reaction O-succinyl-L-homoserine succinate-lyase (adding cysteine) 0.0052

R03277 reaction 2-Hydroxy-3-oxopropanoate + Pyruvate <=>

2-Dehydro-3-deoxy-D-glucarate

0.0198

R03286 reaction N(pi)-methyl-L-histidine:beta-alanine ligase (ADP-forming) 0.0000
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R03288 reaction beta-alanyl-N(pi)-methyl-L-histidine hydrolase 0.0000

R03291 reaction trans-4-hydroxy-L-proline:NAD+ 5-oxidoreductase 0.0000

R03293 reaction trans-4-hydroxy-L-proline:NADP+ 5-oxidoreductase 0.0000

R03295 reaction trans-4-hydroxy-L-proline:quinone oxidoreductase 0.0000

R03296 reaction trans-4-hydroxy-L-proline 2-epimerase 0.0000

R03355 reaction beta-D-galactosyl-1,4-beta-D-glucosylceramide galactohydrolase 0.0095

R03617 reaction D-galactosyl-N-acylsphingosine galactohydrolase 0.0014

R03618 reaction globotriosylceramide galactohydrolase 0.0222

R03733 reaction L-threonate:NAD+ 3-oxidoreductase 0.0000

R05364 reaction 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate acylhydrolase 0.0000

R05377 reaction 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate carboxy-lyase 0.0096

R05831 reaction xylitol:NAD oxidoreductase 0.0000

R05961 reaction H2O + globotriaosylceramide <=> D-galactose + lactosylceramide 0.0000

R06010 reaction GM1 + H2O <=> GM2 + D-galactose 0.0000

R07152 reaction xylitol:oxygen oxidoreductase 0.0000

R07274 reaction O-phospho-L-serine:hydrogen-sulfide 2-amino-2-carboxyethyltransferase 0.0007

R07420 reaction phosphocreatine <=> creatinine + orthophosphate. 0.0000

R07807 reaction G01977 + H2O <=> G13073 + D-galactose 0.0000

R08056 reaction D-glucarate hydro-lyase 0.0000

R08197 reaction L-arginine:pyruvate aminotransferase 0.0000

R08346 reaction citalopram:oxygen oxidoreductase(deaminating)(flavin-containing) 0.0002

R08714 reaction putrescine:pyruvate aminotransferase 0.0119

R09076 reaction spermidine:oxygen oxidoreductase (spermidine-forming) 0.0000

R09077 reaction spermidine:oxygen oxidoreductase (3-aminopropanal-forming) 0.0000
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R09081 reaction carboxyspermidine carboxy-lyase (spermidine-forming) 0.0002

R09124 reaction trimethylamine:coenzyme M methyltransferase 0.0000

R09477 reaction xylitol:NAD+ oxidoreductase 0.0000

R09999 reaction dimethylamine:coenzyme M methyltransferase 0.0000

R10090 reaction citrate:N6-acetyl-N6-hydroxy-L-lysine ligase (AMP-forming) 0.0200

R10343 reaction succinyl-CoA:acetate CoA-transferase 0.0042

R11031 reaction L-arginine:NAD+ oxidoreductase (deaminating) 0.0000

R11032 reaction L-arginine:NADP+ oxidoreductase (deaminating) 0.0000

R11033 reaction L-arginine <=> N(omega)-hydroxyarginine 0.0005

R11604 reaction L-arginine:oxygen oxidoreductase (deaminating) 0.0000

R11711 reaction L-arginine,reduced-flavodoxin:oxygen oxidoreductase

(nitric-oxide-forming)

0.0081

R11712 reaction 2 L-arginine + 2 reduced flavodoxin + 2 oxygen <=> 2

N(omega)-hydroxyarginine + 2 oxidized flavodoxin + 2 H2O

0.0053

R11819 reaction trans-4-hydroxy-L-proline hydro-lyase 0.0000

R12212 reaction oxaloacetate carboxy-lyase (pyruvate-forming) 0.0141

R12308 reaction L-2,3-diaminopropanoate:citrate ligase (AMP,

2-[(L-alanin-3-ylcarbamoyl)methyl]-2-hydroxybutanedioate-forming)

0.0116

R12353 reaction D-ornithine:citrate ligase (AMP-forming) 0.0017

R12707 reaction octopine + H2O + acceptor <=> L-arginine + pyruvate + reduced acceptor 0.0172

R13137 reaction succinate:ferricytochrome-c oxidoreductase 0.0207

C00022 compound pyruvate 0.0000

C00042 compound succinate 0.0000

C00062 compound L-arginine 0.0000

C00077 compound L-ornithine 0.0070

C00097 compound L-cysteine 0.0000
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C00099 compound beta-alanine 0.0000

C00124 compound D-galactose 0.0000

C00135 compound L-histidine 0.0133

C00158 compound citrate 0.0000

C00300 compound creatine 0.0007

C00315 compound spermidine 0.0000

C00379 compound xylitol 0.0000

C00386 compound carnosine 0.0212

C00532 compound L-arabitol 0.0000

C00543 compound dimethylamine 0.0000

C00581 compound guanidino acetate 0.0000

C00596 compound 2-hydroxy-2,4-pentadienoate 0.0005

C00791 compound creatinine 0.0000

C00818 compound D-glucarate 0.0000

C01152 compound N(pi)-methyl-L-histidine 0.0000

C01157 compound hydroxyproline 0.0000

C01262 compound beta-alanyl-N(pi)-methyl-L-histidine 0.0000

C01620 compound threonate 0.0000

C02305 compound phosphocreatine 0.0085

C02632 compound 2-methylpropanoate 0.0000

C06582 compound 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate 0.0004
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