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Abstract

Electronic structure engineering of group IV crystals for optoelectronic applications
– first principles study

by

Norbert Janik

Wrocław University of Science and Technology

This dissertation concerns the theoretical studies of the influence of different types
of band structure engineering on electronic properties of group IV semiconducting
materials. The aim is to find such systems that allow for optoelectronics applications.

Four methods to manipulate the parameters of the material were presented along
with step by step procedure how to achieve and process the results of calculations to
acquire necessary properties. For some specifications more detailed explanation was
needed, due to difficulties in interpretation or the way of conducting the calculations.
In case of each method: strains, alloying, structural changes and spacial confinement,
the most important physical effects are shown along with the explanation of the
mechanism. Also in the materials where the electronic properties allow to use
in optoelectronics systems, the most important parameters for applications, e.g.
electrons and holes mobility, are estimated.

In addition to presenting results and their analysis, the dissertation contains
expanded theoretical introduction, related to all discussed problems. Also some
useful derivations and proofs can be found in the Appendix attached to the thesis.
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Streszczenie

Inżynieria struktury elektronowej kryształów z grupy IV do zastosowań w
optoelektronice – obliczenia ab initio

Norbert Janik

Politechnika Wrocławska

Niniejsza rozprawa dotyczy teoretycznych badań wpływu różnych typów inżynierii
struktury elektronowej na elektronowe własności materiałów półprzewodnikowych
z grupy IV. Celem rozprawy jest znalezienie takich układów, które pozwolą na
zastosowanie w optoelektronice.

Cztery metody wpływu na własności materiałów zostały zaprezentowane wraz z
opisem jak krok po kroku przeprowadzać obliczenia, aby uzyskać porządane wyniki.
W przypadku niektórych etapów obliczeń konieczne były szczegółowe wyjaśnienia
ze względu na trudności związane z interpretacją lub sposobem przeprowadzania
pewnych obliczeń. Dla każdej z wymienionych metod: odkształeń, stopów, zmi-
anyn strukturalnych oraz czynnika przestrzennego, najważniejsze efekty fizyczne
zostały pokazane wraz z wyjaśnieniem mechanizmów nimi sterujących. Także, dla
materiałów, których własności pozwalają na zastosowanie w optoelektronice, na-
jważniejsze parametry aplikacyjne (jak masy efektywne czy mobilność ładunku)
zostały oszacowane.

Dodatkowo do zaprezentowanych wyników wraz z analizą, rozprawa zawiera
rozszerzony wstęp teoretyczny powiązany z poruszanymi zagadnieniami. Na koniec,
w załączniku znaleźć można użyteczne wyprowadzenia stosowane w pracy.
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Chapter 1

Introduction

1.1 Motivation
Semiconductor materials are basics of modern world technology. Their usage

is wide and spreads for most of the aspects in human live. Wherever to look,
one can find semiconductors put to use. Cell phones, computers, laptops, servers,
photovoltaic panels, microcontrolers, etc. Most commonly they are electric circuits
and electronic devices, both overtaken by silicon technology. Despite the fact that
there are many more suitable, in case of physical and chemical properties, materials
for electronic applications, none has dethroned silicon. Although a few of them, e.g.
graphene, has been hailed successor of silicon. Until now, no material emerged as a
substitute, and for a good reason. Silicon has a very well developed technological
process. Czochralski’s method enabled mass production of silicon wafers with
unparalleled purity and low defects rate. Moreover at low cost. Such attributes still
keeps silicon as a base material for electronic devices.

The situation differs a lot in case of optoelectronics which bases on photons as
carrier of the information, rather than electrons. Such solution requires different
physical properties from material than conventional electronics. Materials from
which the devices are to be built must be able to emit and detect light with high
efficiency. Because of that silicon, due to indirect fundamental band gap, has no
use in this area of technology. Obviously, there are suitable materials to do so but
one must remember that optoelectronics is not standalone. It requires connection to
conventional electronics. That is where the problem lies. Integrating optoelectronics
with electronics is not easy. It involves usage of other type of devices that will
convert photonic information to electronic one. This elements are blocky and don’t
allow onboard integration directly printed into the electric circuit. Moreover, their
electronic properties must be very strict. Not only direct fundamental band gap is
required but also high carrier mobility due to the fact that photons are a lot faster
than the electrons. This implies that the information conversion from photonic
to electronic one must be fast enough to not bottleneck the speed of photonic
information flow.

The motivation for this work is to expand the capabilities and versatility of
silicon technology, by finding new materials. Ones that will be integral with the
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CHAPTER 1. INTRODUCTION

silicon technological process and meet the optoelectronic devices requirements. The
range of materials suitable for this task is wide. If fact too wide to focus on all
of them. That is why a choice of certain group of materials must be made. This
work focuses on group IV elements. Main argument is easy integration with silicon
technology. Carbon, germanium or tin are isovalent with silicon, which means
that they possess the same number of valence electrons. This allows to adapt the
technological process used with silicon to them as well. At first glance it might seem
that those materials have been already thoroughly investigated and their physical
properties are well known. Most of papers that can be found are quite old. Since
then technology has improved significantly, allowing us to produce materials of lower
dimensionality, higher precision of admixtures or their placement in lattice. This
opens new opportunities and a chance to obtain the material composed of group IV
elements that will meet optoelectronics requirements. As we know basic group IV
materials do not fulfill given expectations. To achieve desirable properties electronic
structure engineering must be implemented.

1.2 Band structure engineering
There are mainly 4 ways to make modifications in electronic structure of a

material. Those are:

1. strains

2. alloying

3. alternative crystal structures

4. quantum confinement

Strains are relatively easy to implement, e.g. by chemical pressure from lattice
mismatch during material growth on different base. Depending on material used
and type of stains, it gives different effects on electronic structure of a material.
They can be isotropic, planar or axial. Isotropic ones do not change the symmetry
of crystal, it extends or shortens the length of lattice vectors, but does not change
angles between them. Planar or axial strains usually break symmetry of crystal
resulting not only in band gap modifications but may also result in band inversions
or band splittings.

Alloying is another way to obtain different properties usually by mixing a few
materials or doping one with another. Often, the outcome material’s parameters
are a mixture of properties of entering components, although rarely the feature we
investigate behaves linearly with the doping rate. In many cases the relationship
is of a parabolic type, which also may lead to new properties of the alloy. With
this method of modifications also symmetry breaks, due to atom substitutions or
additions in the lattice. Moreover, in case of low doping rate and break of periodicity
of crystal, band tend to blur and new bands may emerge in the process.

2



1.3. THEORETICAL BACKGROUND

Alternative crystal structures are more difficult to apply. This method is basically
based on a synthesis of metastable crystal structures, i.e. in a space group which
differs from that of stable one. New deposition technologies, like molecular beam
epitaxy (MBE) or metal–organic chemical vapor deposition (MOCVD), open such
opportunities. Usually the structure is induced by the substrate (e.g. wurtzite
structure by the (111) surface of zinc blende crystal). As a result a metastable
structure is formed. However, the systems must be thermodynamically stable which
does not always happen. Obviously, this should lead to new properties of outcome
material, and such effect has already been observed and will be discussed in this
work.

Quantum confinement, the last method presented, bases on revealing quantum
nature of a subject. That can be achieved in many ways, usually by imposing some
additional spacial confinement, like in superstructures (systems of quantum wells).
Such situation takes place also nanowires or quantum dots. Any kind of discontinuity
small enough to show off quantum effects may lead to enormous changes in electronic
structure, e.g. bands can fold straightening the fundamental gap.

All methods presented above have been addressed in this work. The theoret-
ical investigations using the large scale, density functional theory (DFT) based
computational studies have been performed.

1.3 Theoretical background
All the computations done in this work have been based on the density functional

theory (DFT), whose theoretical foundations have been established in the middle
60s of previous century, by P. Hohenberg, W. Kohn [33] and W. Kohn, L. J. Sham
[40]. In practice the investigations into various properties of atomic systems begin
with solving self–consistently the Kohn–Sham equations:(

−1
2∇

2
r + V̂ KS(r)

)
ψi(r) = Eiψi(r), (1.1)

where

V̂ KS(r) = V̂ ext(r) + δEH

δn(r) + δEXC

δn(r) = V̂ ext(r) + V̂ H(r) + V̂ XC(r). (1.2)

is the so called Kohn–Sham potential, containing 3 contributions: the external
potential V̂ ext(r), the Hartree potential V̂ H(r) and the exchange–correlation (XC)
potential V̂ XC(r). As it can be seen in Eq. 1.2, two of the contributions, the Hartree
potential and the XC potential are functional derivatives with respect to electron
density of respective energies. The Hartree energy is just the Coulomb interaction
of electron density with itself 1

2
∫ ∫ n(r)n(r′)

|r−r′| dr dr and the XC energy is a correction
resulting from all the quantum specific interactions (exchange and correlation) in
the electronic system. The latter term requires approximations from which the
most popular are the local density approximation (LDA) and the general gradient
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Initial estimate

n(r)

Kohn–Sham potential calculation
V̂ KS(r) = V̂ ext(r) + V̂ H [n(r)] + V̂ XC [n(r)]

Solving Kohn-Sham equations
(− 1

2∇2
ri + V̂ KS)ψi(ri) = Eiψi(rt)

Determination of the new solution∑
i |ψi(ri)|2 = n(r)

Converged?

End of the procedure

Determination of the properties: energy, forces, etc.

yes

no

Figure 1.1: Self–consistent procedure of solving Kohn–Sham equations.

approximation (GGA). In fact, constructing various approximations for the XC
energy has developed into a separate and, in some extent, independent branch of
DFT. One can find a whole gallery of approximations offered by ab initio codes, and
usually some numerical experiments are the only way to decide which approximation
suits best to the system under investigation. This is the most fragile point in the
DFT.

It should be noted that all the potentials are local and are the density functionals
(except the external one). The electronic density in the theory reads:

n(r) =
∑
k=occ

|ψk(r)|2 , (1.3)

where ψk(r) are eigenfunctions of the Kohn–Sham equations (Eq. 1.1) and the
summation runs over all the occupied states. Now, the statement above that the
Kohn–Sham equations must be solved self–consistently, becomes obvious. This
means that starting from some probe density we solve the eigenvalue problem, find
new density and repeat the procedure until the total energy is converged (see Fig.
1.1).

In fact the density of an electronic system and its total energy (being a functional
of the density, and whose explicit form is known) are the only two physical outputs

4



1.3. THEORETICAL BACKGROUND

of the DFT theory. This seems not too much, but as it will be shown later, many
physical properties can be addressed using those two quantities. In that context an
interesting fact is that the Kohn–Sham eigenenergies and eigenfunctions in principle
have no physical meaning, in particular they can not be treated as the single-particle
energies. However, they are often treated as a good first approximation to e.g.
electronic band structures in crystals, or form a starting point for the post–DFT
methods, like many body perturbation theory (GW). Moreover, in a pure DFT
there are some energy functionals which are specially designed to reproduce well
the energy bands, among which the most popular are meta–GGA [11] and hybrid
functionals.

There are some technical issues which should be also mentioned in this section,
these are: representation of the Kohn–Sham equations, representation of atoms and
k–space integration.

The Kohn–Sham equations in Eq. 1.1 are given in the position vector represen-
tation and in such form are used e.g. in the calculations for atoms. In this case
however, the spherical symmetry approximation is exploited which allows to reduce
the formula to 1 dimension, and then, as a common practice, a non–uniform grid is
used to discretize the equations. In bigger systems like molecules and in particular
the periodic systems the position vector representation is not convenient (although
also used). In the case of localized systems some localized basis functions are an
obvious choice, and one can find here various options (spherical harmonics, gaussians,
some specially designed functions etc.). In this thesis periodic systems are dealt
with and in this case the plane–wave basis is most suitable. Of course the basis is
infinite and must be somehow limited. A convenient way of limiting the basis is to
set the maximum kinetic energy which can be reproduced, which is also related to
spacial resolution, as in quantum mechanics kinetic energy is proportional to spacial
frequency. Thus, the base is limited with the parameter called energy cut–off Ecut,
and the maximum wave vector in the basis must obey the condition: 1

2G
2 < Ecut

(in Hartree units). The parameter Ecut must be subjected to careful convergence
study because it is responsible for the quality of the approximation which consists
in reducing the solution of the Kohn–Sham equations to certain subspace spanned
on a limited basis. The parameter is also responsible for the spacial resolution, i.e.
how the fine structure of the wave–functions (e.g. the core atomic regions) will be
reproduced. Popular plane–wave codes, Abinit (free) [27, 28] and VASP (comercial)
[41, 42] have been used in this work.

Most of atoms have complicated internal electronic structure, which would need
a huge plane–wave basis to be well reproduced. However, a good news is that the so
called core electrons in atoms have little influence on atomic systems properties, at
normal conditions. First, some of them are energetically much below the typical
energies of states forming chemical bonds. Second, a part of electrons are localized
enough (close to atomic nucleus) to play a role only in the screening of the nuclear
charge. Those two facts inspired the development of, in some extent, independent
branch of DFT called pseudopotentials and related methods, like very popular
projector augmented waves (PAWs) [8, 84]. The latter is the most general approach
to representation of atoms, from which all the other approaches can be derived.

5
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As it has been mentions above, the DFT requires the calculation of electronic
density given by Eq. 1.3. In principle this is the summation over moduli squared
of Kohn–Sham functions but in crystals the functions have the Bloch form and are
labelled by 2 indexes: n – an integer assigned to a particular electronic band, and k
a wave–vector a (real, continuous numbers). Thus, a summation in Eq. 1.3 must be
replaced by the summation over n and integration with respect to k over the Brillouin
Zone (BZ). The latter looks difficult since the BZ is a polyhedron. Fortunately,
the modulus squared of the Bloch function is periodic both in the r–space and
in the k–space. This allows to replace the integration with the summation over
certain set of k–points (special k points), which is equivalent to cutting the Fourier
series expansion of a periodic function at certain term. The most popular is the
Monkhorst–Pack scheme [50], where a regular grid of special k–points is set and then
reduced, using crystal symmetry, to irreducible part of BZ. Obviously, the denser is
the grid the more accurate is the integration. The number of special k–points used
for the BZ integration is an important computational parameter which determines
the quality of results and thus must be subjected to careful convergence study.

A detailed description of particular approximations, methods, schemes, used in
this work will be given in the following chapters, as they may differ depending on
the problem treated.

All the calculations provided here were performed with ABINIT [27, 28, 48]
software package or VASP (Vienna Ab initio Symulation Package) [41, 42] (podz-
iękowania centrom obliczeniowym na końcu)
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Chapter 2

Strains
In this section the first of the listed in the introduction methods of band structure

engineering, the strains, will be addresses. The considerations presented were
published in [37].

2.1 Computational method
Applying strains to a material is an easiest way of modifying it’s physical

properties. In practice many experimental solutions can be found. For example one
can apply isotropic (hydrostatic) strains by using diamond anvils or via chemical
pressure. The biaxial (planar) strains can be induced by depositing considered
material on the surface of another material having different lattice constant (the
substrate induced strain). Modern technologies like molecular beam epitaxy (MBE)
or metal–organic vapour deposition (MOCVD) provide such opportunities.

In this work three types of strains are considered:

• isotropic (hydrostatic)

• uniaxial (along an axis)

• biaxial (in plane)

In the case of anisotropic strains, crucial is the direction of strain. Different type
will usually result in various changes in electronic structure. To have a complete
view over the straining effect, in the investigation every meaningful direction must
be considered. The choice depends on crystal symmetry and in the case of diamond
structure, typical of C, Si, Ge and Sn (α allotrope), relevant directions of strains are
[100], [110] and [111]. The directions define both: axial strain (along a direction)
and biaxial ones (in plane perpendicular to a direction) denoted as (100), (110) and
(111). Other strains can be represented as a linear combination of those. Figure 2.1
shows conventional cell of diamond structure with marked straining directions.

After defining strain types, the range of staining must be set. In the literature
many articles can be found, both experimental and theoretical, concerning strains
and their effects on electronic properties [36, 52, 77]. Both compressive and tensile
strains are investigated, usually in the range of maximum 4 ∼ 5% of equilibrium
lattice constants, which is dictated by practical reasons and technological limitations.

7



CHAPTER 2. STRAINS

b

c

a

Figure 2.1: Relevant strain directions in the diamond structure: [100], [110], [111].

In this work the range of strains considered is up to 4%. The tensile strains will
be represented by positive numbers, while the compressive ones by negative numbers.
Although of the main interest was the effect of strain on electronic structure, the
investigation began with studying the structural properties, i.e. the effect of strains
on lattice parameters and atomic positions.

Thus, the computational procedure was as follows. At first, for every system, a
respective elementary cell (supercell) was constructed, which for anisotropic strains
differed from the diamond primitive cell (see Figs. 2.2 and 2.3). Then, strains
were applied by shortening/elongating respective lattice parameter, the remaining
structural degrees of freedom optimized (the other lattice parameters and atomic
positions), and induced stresses evaluated.

The supercells lattice vectors a′1, a′2 and a′3 can be related to conventional cell
lattice vectors a1, a2 and a3 by transformation matrices, for [100] and [110] strains:

a
′
1
a′2
a′3

 =

 0.5 0.5 0
−0.5 0.5 0

0 0 1


a1
a2
a3

 , (2.1)

and for [111] strains:

a
′
1
a′2
a′3

 =

 0.5 0 0.5
−0.5 −0.5 0
−1 1 1


a1
a2
a3

 . (2.2)

All the strains were applied in the range between −4% and 4% of the frozen
respective lattice parameter and the structures were optimized without imposed
symmetries (except identity) to avoid symmetry induced fixing of atomic positions.
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b

c

a

Figure 2.2: Supercell for [100] and [110] strains.

b

c

a

Figure 2.3: Supercell for [111] strains.

2.1.1 Structural and elastic properties
To characterize the structural changes, the Poisson’s ratio was used, defined both

for the axial and biaxial strains as:

ν = − εopt
εind

, (2.3)

where εind, εopt are respectively an induced and an optimized relative change in
the linear dimension along the considered direction and in the plane perpendicular
to it. It should be mentioned that the isotropic behavior of a system around
chosen axis takes place only for [100] and [111] directions. For [110] Poisson’s ratio
defined above is not a well established quantity since under axial strain the relative
expansion/contraction is not uniform around the axis and is the highest for [001]
and the lowest for [11̄0]. Similarly, a uniform strain around [110] axis leads to
non–uniform stress. Nevertheless, the [110] direction has also been considered, with
the plane degrees of freedom naturally optimized under axial strain and biaxial
strain applied uniformly, which may take place if a substrate in epitaxial technology
is the (110) surface of a cubic symmetry crystal. It is worth mentioning here that,
from the definition, Poisson’s ratio is defined for uniaxial strain, and falls within
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CHAPTER 2. STRAINS

the range of 0− 0.5. To be able to compare results from uniaxial and biaxial strain
types, pseudo–Poisson’s ratios ware also calculated for biaxially strained systems
(later also called Poisson’s ratio).

The resulting stresses (σ) appearing at induced strains are described by respective
elastic constants, first (C1) and second order (C2), so that the stress is given by the
formula:

σ = C1 · εind + C2 · ε2
ind. (2.4)

In the above formula εind is a fractional relative change (induced) of a given
dimension and the constants C1 and C2 are expressed in GPa. For the case of [110]
uniform biaxial strain there are two values of C1 and C2, corresponding to [001]
and [11̄0] directions. It should be noted that the elastic constants defined above
are the standard elastic matrix elements. However, for verification purposes the
standard elastic constants have been derived from presented results and compared
with the textbook data. In the case of cubic symmetry there are only three non-zero
and independent elastic constants (c11, c12, c44). All of them have been calculated
from C1 and C2 values via the specially derived transformation rules.1

Because of small differences in results for different strain directions, the average
values and standard deviations are given in Tab 2.5.

From the report [30] it is clear that, for realistic structural properties, LDA
functional is most suitable for all the four materials studied. The PAW [8, 84] atomic
data have been taken as the complementary to LDA, due to resulting realistic forces
and stresses.

2.1.2 Electronic structure
In the next step, the electronic structure was studied. The supercell representation

of structures is convenient in studying the structural effects of strains but are
inconvenient for the band structure analysis, mainly because of the band folding
effect which makes it difficult to find meaningful points in the BZ and to identify
bands. To avoid this problem, after respective optimization, the representation
have been transformed back to BZ–like primitive cell. The detailed derivation of
transformation is described in Appendix A. Owing to such an approach the changes
in the electronic band structure could have been easily followed since the relative
positions of characteristic points in the deformed by strain BZ remained unchanged
with respect to the equilibrium state BZ. Of the main focus were characteristic
energy gaps between VB and CB, Γ–Γ (direct band gap), Γ – minimum along ∆
directions and Γ – minimum along Λ. The expected splittings of energies within ∆
and Λ stars caused by an intrinsic for anisotropic strains symmetry breaking can be
observed.

As it will be seen in the results some energy gaps exhibit non-smooth behavior
with strains, usually when the strain passes through the equilibrium state. To
understand better the non–smoothness, the orbital composition of bands have been

1Derivation of elastic constants from obtained results can be found in Appendix A
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evaluated. This is realized by finding an individual contribution of each orbital of
every atom in the system to band energies. Then, the contribution can be traced
with straining, which allows to identify the band inversions and band splittings, due
to symmetry breaking. This information is sufficient to explain the non smooth
behavior of the band gap changes with strains.

In the case of electronic structure calculations, the most prominent choice is
mBJLDA [11, 85] approximation for the XC potential [11], which is known for
providing realistic band gaps at relatively low computational costs. Characteristic
of this potential is the c_TB09 parameter (Eq. 3 in [11]), which in principle is
calculated self–consistently but can be also set by hand to adjust the band gap
value. In the case of strained systems, where there is a lack of experimental data,
the c_TB09 parameter (called her just c) was set as follows

cst = cstsc ·
ceqfit
ceqsc

, (2.5)

where st means strained, eq – equilibrium, fit – fit to experiment, sc – self-
consistent value.

Unfortunately, ABINIT lacks support for PAW atomic data along with mBJLDA,
so the HGH [60] pseudopotential has been used instead.

2.1.3 Effective masses and related carriers mobility
Having known the band structures also the effective masses could have been

evaluated as functions of strains. The calculations of effective masses were performed
by fitting the 3rd order polynomial at bands extrema, which was necessary because
of the appearing often asymmetry of bands at these points. For the sake of reliability,
5 to 9 points around band extrema were taken into consideration, and the densities
of points along k–space path were subjected to convergence studies. In the CB the
effective masses at Γ point as well as at the valleys along Γ-X and Γ-L directions
have been calculated, taking into account also the star–degeneracy removal due
to the broken symmetry under strain. In the VB only the top of the band at Γ
point has been considered, whether it was the heavy or the light hole band (due to
inversion of bands). The effective masses were evaluated from the inversion of the
second derivative of fitted polynomial at the extremum.

2.1.4 Deformation potentials
The deformations potentials are important characteristics of the semiconductor

crystals. They are used e.g. in the band alignment evaluation in semiconductor
superstructures or in the calculations of electron–phonon interaction. In this work,
the standard deformation potentials av, adir, aind b, d, Ξ∆

u , ΞL
u , as defined in [89]

were calculated. In the calculations of av, b, and d, which are absolute in the sense
that they describe the changes in absolute positions of some points in bands, the
crucial point is to establish the unified energy reference point, i.e. the reference
point which do not flow with the strain. For that purpose there have been used the
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natural slab method [92] in which it is assumed that the energy level in vacuum
should not change under strain, and thus defines the energy reference point. There
are also a few rules one should keep in mind preparing the calculations:

• for both the slab and the bulk calculations, it is crucial to set the same k–point
grid. In a slab a good practice is to adjust the number of k–points to the slab
size. E.g. when in bulk the k–points grid is set to 10×10×10, a corresponding
grid for the slab in [100] direction of 5 layers of material and 5–layer–long
vacuum is set to 10 × 10 × 1. In that way the slab layer and the bulk have
exactly the same k–points distribution.

• vacuum must be long enough for the potential plateau to be clearly visible.

• the flat area should be wide enough for a small potential fluctuations to be
averaged, and the vacuum level well established.

Figure 2.4 illustrates where the partial data are taken from in the calculations
of av in Si under isotropic strain. To establish the unified energy reference point
we apply the following assumptions: i) the vacuum level should not change under
strain, ii) The rates of the changes in the self–consistent potentials at chosen point
in bulk and equivalent point in the slab, under strain, should be the same. Thus,
when defining the linear coefficients of lines in Fig. 2.4: aF – VBM, aV b – self–
consistent potential value at chosen point in bulk (maximum), aV b – self–consistent
potential value at an equivalent point in the slab, aEvac – energy level in vacuum,
the deformation potential av can be calculated from the formula:

av = (aF − aV b + aV s − aEvac) · 100/3, (2.6)

where the factor 100/3 comes from the transformation from percent to fraction,
and from linear to volume change.

The corresponding uncertainties have been calculated from linear coefficients
uncertainties in ab initio data approximations, assuming the ”worst case”:

∆(av) = [∆(aF ) + ∆(aV b) + ∆(aV s) + ∆(aEvac)] · 100/3. (2.7)

The described procedure was used in the calculations of all the absolute deforma-
tion potentials. In the calculation of the relative deformation potentials adir, Ξ∆

u , ΞLu
the above procedure is not necessary because in the energy differences (e.g. Ec−Ev)
the subtracted energies are always given with respect to the same energy reference
point.

Thus, in the calculations the same supercell as for the [100] and [110] structure
optimizations have been used except a vacuum layer has been added, i.e. 3 − 4
layers of optimized supercell and 6 − 7 supercell–layers–long distance of vacuum.
The total potential across the whole supercell (in the direction perpendicular to the
slab) was evaluated for slabs with and without separating vacuum layer. As a result
the energy variation slopes described above were found, corresponding to respective
deformation potentials.
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Figure 2.4: Illustration to the deformation potential determination procedure, for
Si under isotropic strain. Upper figure: the lattice used and the self–consistent
potential throughout this lattice (red line) as well as corresponding potential in bulk
(blue line). Lower graph, the strain induced energy variations necessary to evaluate
the deformation potential.

2.2 Results
In this section the results of calculations are presented and discussed.

2.2.1 Structural and elastic properties
We begin the discussion of the results from structural and elastic properties

of investigated structures, at equilibrium and at applied strains. Table 2.1 shows
experimental and calculated (in this work and from the literature) lattice constants.
An excellent agreement of calculated values with the experimental ones confirms
the appropriate choice of the exchange–correlation functional and PAW data, which
also enhances the credibility of other results.

As mentioned previously the strains are applied with respect to [100], [110], and
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Table 2.1: Lattice constants (Å).

material this work LDA reference [30] exp. [30]
C 3.530 3.536 3.544
Si 5.402 5.407 5.415
Ge 5.627 5.632 5.639
Sn 6.471 6.481 6.474

[111] directions, axial (along the directions) and biaxial (in the planes perpendicular
to the directions). In Fig. 2.5 the strains are shown schematically together with
the relations between relative changes in a linear dimension: optimized (εopt) and
corresponding induced change (εind).

As explained in the previous chapter, in the case of [110] direction and for
the axial strain only the maximum value of the εopt is shown, i.e. at [100]. The
corresponding Poisson’s ratios are listed in Tab. 2.2.

Table 2.2: Poisson’s ratios (ν) for axial (type 1) and biaxial (type 2) strains.

material 100 110 111
1 2 1 2 1 2

C 0.12 0.27 0.13 0.01 0.15 0.05 0.11
Si 0.29 0.81 0.38 0.07 0.55 0.19 0.46
Ge 0.29 0.77 0.38 0.03 0.48 0.17 0.40
Sn 0.34 1.00 0.49 0.04 0.66 0.22 0.57

Some interesting features of the optimized structures can be observed:

1. the induced changes under axial strain are in all the cases significantly smaller
than under biaxial strain, with the biggest difference in Sn [100] (0.34 vs 1.00),

2. generally the Poisson’s ratios increase from C to Sn, except for Si and Ge where
in most cases a sudden drop (between Si and Ge) in the values is observed,

3. the highest value of ν = 1 is for Sn [100] biaxial (which means that the released
lattice parameter changes as much as the fixed one),

4. the smallest one ν = 0.01 for C [110] axial (which means that the released
lattice parameter almost does not change when the fixed one is varied.

Thus the ν varies in a large range of values (from 0.01 to 1.00) and no systematic
behavior can be found (except for features mentioned above).

The strains lead to symmetry breaking which is characterized in Tab. 2.3. In
the table one can find the numbers of space groups of equilibrium and strained
diamond–like lattices, as well as the names and multiplicity of chosen high symmetry
points in the BZ. As it can be seen, in six cases the star–degenerate energies in
equilibrium X and L points split into two classes, which is also reflected in the
energy gaps graphs which may behave quite differently for split points.
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Table 2.3: Space groups changes of characteristic BZ points in strained diamond
type lattice (numbers in parentheses denote the multiplicity of a given point).

equil. 100 110 111
space
group # 227 141 74 166

special
points

Γ Γ Γ Γ
X(6) X(4)/M(2) X(2)/R(4) FB(6)
L(8) N(8) T(4)/S(4) L(6)/T(2)

To provide a better comprehension of the changes the BZ for each occurring
space groups are visualized in Fig. 2.6.

The applied strains, on the one hand, lead to changes of the released degrees of
freedom but on the other they induces stresses, as a response of the system. For
axial strain for a given axis the stress appears on the plain perpendicular to the axis,
whereas for biaxial strain the stress appears on the plains parallel to the axis. The
axial symmetry exists except for [110] direction and biaxial uniform strain, where
there is a maximum value of the stress at (100) plane and minimum one at (110)
plane. The relationship between stress and strain is represented by the first (C1)
and the second order (C2) elastic constants in the quadratic function approximation.
The elastic constants described above are presented in Tab. 2.4. Here, the chemical
trend is clear: the bigger is the atomic number of the element the smaller is the
elastic constant. The biggest value of the linear constant C1 is for C at isotropic
strain (14.4 GPa), and the smallest one for Sn [100] axial strains (0.45 GPa). As
for the second order coefficients, which account for the bowing of the stress vs strain
curve, the biggest value is again for C isotropically strained (−0.85 GPa) and the
smallest one for Sn biaxially strained with respect to [110] axis (−0.0014 GPa). The
negative values of C2 correspond to concave behavior. It is easy to note that at
considered strains the resulted strain do not exceed 100 GPa (in diamond) and a
few GPa in Sn.

Table 2.4: First (C1) and second order (C2) elastic constants defined in this work
(GPa). The ’a’ stands for axial, while, ’b’ for biaxial.

param. 100 b 100 a 110 b 110 a 111 b 111 a isotropic

C C1 1230 1070 1240 1380 1210 1340 1250 1440
C2 -4480 -624 -3910 -6410 -3670 -6020 -3730 -8480

Si C1 175 124 185 227 162 223 180 298
C2 -595 -224 -99 -444 -385 -722 -88 -2050

Ge C1 133 93.9 142 180 128 172 143 223
C2 -610 -205 -145 -538 -362 -884 -19 -1680

Sn C1 68.3 44.6 76.4 101 64.9 96.6 74.3 141
C2 -292 -143 -26 -1880 -116 -442 -81 -1100

For verification purposes, the standard elastic constants (for linear regime) have
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Figure 2.6: Brillouin Zones of strained systems.
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been evaluated from our C1 and C2 constants. The results are presented in Tab.
2.5 and show satisfactory agreement with the textbook data [56].

Table 2.5: Standard elastic constants (GPa) evaluated from data presented in Tab.
2.4 and their comparison with the textbook values[56].

C Si Ge Sn
calc. c11 1100 ±50 160 ±20 120 ±25 66 ±9
exp. c11 1079 166 126 73.3
calc. c12 160 ±30 70 ±6 52 ±7 50 ±4
exp. c12 124 64 44 67.7
calc. c44 490 ±40 62 ±8 59 ±4 23 ±10
exp. c44 578 79.6 67.7 2.19

2.2.2 Band structures
The evolution of the electronic band structures with applied strains have been

represented by changes in the energy differences between the VB maxima and
and CB minima at Γ point (direct band gaps) and between the VB maxima and
conduction band minima along high symmetry directions ∆ and Λ (indirect band
gaps). This choice is justified by the fact that the density of states extrema are
present at these points and the direct and indirect optical transitions, observed in
various spectroscopy experiment take place. The rule of the band gaps presentation,
for Ge isotropically strained, is shown in Fig. 2.7. For completeness we also present
the evolution of the LH–HH band splitting (Tab. 2.6).

Table 2.6: Linear coefficients for LH–HH bands splitting as function of strain (eV/%).

strain C Si Ge Sn
100 biaxial -0.22 -0.14 -0.11 -0.09
100 axial 0.19 0.09 0.08 0.06
110 biaxial 0.11 0.11 0.06 0.06
110 axial -0.10 -0.11 -0.06 -0.06
111 biaxial -0.04 -0.11 -0.04 -0.05
111 axial 0.02 0.07 0.05 0.04

The analysis begins from the discussion of typical qualitative behavior of bands
which is shown in Fig. 2.8. The orbital character visualization has been used,
i.e. the dots of varying color represent a contribution of atomic orbitals to a wave
function corresponding to a particular point on the energy diagram (for details see
the figure caption), i.e. the color stands for the kind of atomic orbital (spherical
harmonics, s, p, d, ...) and the intensity for the relative contribution. Two cases are
presented there: isotropically strained Sn, whose behavior is similar to that of Ge,
and biaxially strained Si with respect to [100] axis, which represents behavior of
diamond–like lattices under non–isotropic strains.
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Figure 2.7: Pictorial diagram of the band gaps presentation, on the example of
isotropically strained Ge. a) shows how band gaps change with strain, while b), c)
and d) visualize band structures under given stains.

In the first case (Fig. 2.8 a,b,c) three situations can be distinguished:

a) at a range of strain represented here by −6% compressive strain, the open
direct band gap exists, with Γ−7 (irreducible representation) CB minimum,
degenerate VBM Γ+

8 and SO split-off band Γ+
7 ,

b) at a range of strain represented here by −4% compressive strain the direct
gap is closed, Sn becomes semi–metallic, and the Γ−7 point goes below the
degenerate Γ+

8 (negative direct band gap),

c) at a range of strain represented here by −1% compressive strain, Γ−7 goes
below the split-off band Γ+

7 .

In the case b) and c) it may happen that certain region of CB goes below the
Fermi level and then Sn becomes a metal. Similar situation can be observed in
Ge (although at different ranges of strain), as well as in GeSn alloy, at specific
composition/strain ranges [63]. In the second case (Fig. 2.8 d,e,f) also the three
typical situations appear:

d) at a range of strains (biaxial, with respect to [100]), represented here by −4%
compressive strain, the degeneracy of HH and LH bands is removed (due
symmetry break) and inversion of HH and LH bands appears,
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Figure 2.8: Typical qualitative features of bands behavior as a function of strain for
diamond-like group IV crystals, on the example of isotropically strained Sn in a)
−6% b) −4% and c) −1% , and biaxially strained Si with respect to [100] direction
Si in d) −4%, e) 0% (equilibrium structure) and f) 4%. "Fat bands" representation
is used, i.e. the color stands for the kind of orbital and the intensity for the relative
contribution; the green colour denotes p atomic orbital and red - s orbital; the
values of gaps are not correct because the calculations have been done with the LDA
functional (PAW atomic data), and the known deficiency of DFT (the band gap
problem) is exhibited.

e) at equilibrium lattice constant, there is a quite big direct band gap (about 2.3
eV), degenerate at Γ HH and light hole LH bands, and slightly detached SO
split-off band; in this case Si (and also C) the isotropic strain results only in
the vertical movement of bands and no inversion is observed,

f) at a range of strains, represented here by +4% tensile strain, the degeneracy
of HH and LH bands is removed but no band inversion takes place.

It should be stressed out that the values of the band gaps given above were
calculated with LDA functional, and therefore are not correct. They are here only
for schematic representation of the behavior of the bands and their symmetries under
strain. The expected correct values are given in Fig. 2.10a and Tabs. tables 2.7
to 2.11, where the mBJLDA functional has been used.

The defined above gaps as functions of strain, for all systems and all applied
strains are presented in Fig. 2.10a and Tabs. tables 2.7 to 2.11, whose meaning is
explained in Fig. 2.7. A striking feature of almost all the plots (except for isotropic
case) is a sharp change in the value of the linear coefficient between the tensile and
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Figure 2.9: Band gaps in diamond–like crystal. Bottom–left graph – isotropic strain;
Above – left column: biaxial strain, right column: axial strain. From the first to the
last row, respectively: strains with respect to directions [100], [110], [111]. Purple
line is the difference between light and heavy hole bands, green lines are direct band
gaps, red and orange are indirect band gaps (Γ-X), blue are indirect band gaps
(Γ-L). Dashed lines are with respect to the top of the heavy hole band, continuous
to the top of the light hole band.
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Figure 2.10: Band gaps in diamond–like crystal. Bottom-left graph – isotropic strain;
Above – left column: biaxial strain, right column: axial strain. From the first to the
last row, respectively: strains with respect to directions [100], [110], [111]. Purple
line is the difference between light and heavy hole bands, green lines are direct band
gaps, red and orange are indirect band gaps (Γ-X), blue are indirect band gaps
(Γ-L). Dashed lines are with respect to the top of the heavy hole band, continuous
to the top of the light hole band.

22



2.2. RESULTS

the compressive strain (even its sign) at the zero strain point. As it has been already
explained the reason for such behavior is the inversion of HH and LH bands, as
demonstrated in Fig. 2.8 (d,e,f). This is due to the opposite direction of movements
of HH and LH bands at applied compressive and tensile strains (see Tab. 2.6).
The only situation at which this not happens is the isotropic strain, and here the
change of gaps is monotonic in the full range of strain. Various behavior of bands
in directions from Γ to X and L star points (∆ and Λ lines, respectively) has been
observed due to strain induced symmetry breaking, which is a known feature, and
the appropriate distinction is made in Tabs. tables 2.7 to 2.11. Another rather
obvious feature is that the plots for tensile and compressive strains are qualitatively
similar except they are "reflected" with respect to zero–strain vertical line. This is
because applying the biaxial/axial compressive strain leads to the qualitative change
in the structure the same as under the axial/biaxial tensile strain. The changes in
the structures under biaxial strains are more pronounced than under axial ones,
because the Poisson ratios are higher, and that is why the changes in the gaps are
bigger. Another distinct feature is that in most cases the changes in the gaps are
almost linear. There are, however, some exceptions, like direct band gaps in Ge at
[110] and [111] case where big bowings at compressive strains can be seen. From
applications point of view the most interesting are the cases where indirect–direct
gap transition induced by strain appears, which in the case of Ge takes place in
almost all biaxial strains (except [111]) as well as at isotropic strain. Also in Sn
at uniform compressive strain a direct open gap appear. It should be mentioned
that strain is often applied jointly with mixing of elements (alloying) (see e.g. [63]),
which opens large opportunities of band structure formations towards wanted in
particular applications features.

Table 2.7: Equilibrium band gaps (eV) and the linear coefficients of gap changes
(eV/%) for isotropic strains.

Γ− Γ Γ−X Γ− L

C gap 7.38 5.53 8.79
lin. coef. -0.08 -0.04 -0.12

Si gap 3.20 1.32 2.34
lin. coef. -0.02 0.06 -0.10

Ge gap 0.89 0.94 0.74
lin. coef. -0.30 0.04 -0.11

Sn gap -0.31 0.66 0.11
lin. coef. -0.23 0.03 -0.08

Both band structures and orbital compositions were calculated for all considered
systems. Although not shown here, the database of this results is kept, and can be
shared on request.

A good verification of presented here results is their comparison with available
experimental data [29, 67, 76, 83], presented in below (Fig.2.11). As it can be
seen, for the LH–HH splitting the agreement is excellent. Also for direct gap in
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Table 2.8: Linear coefficients of band gap changes for axial compressive strains
(eV/%).

gap C Si Ge Sn
Γ− Γ [100] 0.20 0.08 0.02 -0.07
Γ−X [100] 0.02 0.03 0.02 -0.06
Γ−M [100] 0.31 0.15 0.14 0.04
Γ−N [100] 0.21 0.07 0.06 -0.03
Γ− Γ [110] 0.26 0.14 0.01 -0.06
Γ−X [110] 0.02 0.07 0.03 -0.04
Γ−R [110] 0.10 0.10 0.08 0.01
Γ− T [110] 0.24 0.10 0.08 0.01
Γ− S [110] 0.26 0.02 -0.01 -0.07
Γ− Γ [111] 0.09 0.09 0.003 -0.04

Γ− FB [111] 0.02 0.08 0.05 0.002
Γ− L [111] 0.09 -0.01 -0.03 -0.06
Γ− T [111] 0.02 0.15 0.13 0.07

Table 2.9: Linear coefficients of band gap changes for axial tensile strains (eV/%).

gap C Si Ge Sn
Γ− Γ [100] -0.13 -0.05 -0.09 0.05
Γ−X [100] -0.16 -0.06 -0.07 -0.011
Γ−M [100] 0.09 0.05 0.05 0.09
Γ−N [100] -0.17 -0.08 -0.06 -0.0008
Γ− Γ [110] -0.16 -0.09 -0.11 0.04
Γ−X [110] -0.22 -0.1 -0.09 -0.04
Γ−R [110] 0.02 -0.002 0.002 0.05
Γ− T [110] -0.10 -0.005 -0.006 0.04
Γ− S [110] -0.10 -0.13 -0.11 -0.04
Γ− Γ [111] -0.25 -0.16 -0.12 0.03

Γ− FB [111] -0.03 -0.03 -0.02 0.01
Γ− L [111] -0.24 -0.09 -0.08 -0.03
Γ− T [111] 0.02 0.07 0.06 0.09
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Table 2.10: Linear coefficients of band gap changes for biaxial compressive strains
(eV/%).

gap C Si Ge Sn
Γ− Γ [100] 0.09 0.06 -0.07 -0.06
Γ−X [100] 0.17 0.13 0.13 0.05
Γ−M [100] -0.16 -0.03 -0.06 -0.1
Γ−N [100] 0.10 0.08 0.04 -0.01
Γ− Γ [110] 0.16 0.12 -0.05 -0.05
Γ−X [110] 0.22 0.19 0.16 0.10
Γ−R [110] 0.02 0.04 0.02 -0.03
Γ− T [110] 0.10 -0.10 -0.11 -0.13
Γ− S [110] 0.10 0.11 0.08 0.04
Γ− Γ [111] 0.23 0.21 -0.04 -0.05

Γ− FB [111] 0.02 0.11 0.08 0.02
Γ− L [111] 0.16 0.05 0.03 -0.001
Γ− T [111] -0.12 -0.16 -0.18 -0.20

Table 2.11: Linear coefficients of band gap changes for biaxial tensile strains (eV/%).

gap C Si Ge Sn
Γ− Γ [100] -0.27 -0.13 -0.20 0.10
Γ−X [100] -0.06 -0.01 -0.005 0.10
Γ−M [100] -0.35 -0.17 -0.17 -0.05
Γ−N [100] -0.33 -0.16 -0.14 -0.002
Γ− Γ [110] -0.26 -0.16 -0.22 0.06
Γ−X [110] -0.02 -0.05 -0.03 0.03
Γ−R [110] -0.10 -0.05 -0.04 0.02
Γ− T [110] -0.24 -0.18 -0.15 -0.06
Γ− S [110] -0.26 -0.07 -0.05 0.03
Γ− Γ [111] -0.15 -0.10 -0.21 0.03

Γ− FB [111] -0.05 -0.03 -0.02 0.01
Γ− L [111] -0.18 -0.05 -0.04 0.01
Γ− T [111] -0.12 -0.22 -0.20 -0.12
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Figure 2.11: Computational results vs. experimental data for germanium; upper left
panel: direct gap [100] axial strain (according to [29]), upper right panel: [100] biaxial
[76] (the reductions of the experimental direct gaps are induced by temperature,
300K), bottom panel: [100] biaxial strain LH-HH[83], [100] axial LH-HH[67].

Ge the agreement is very good, taking into account the fact that the measurement
was performed at room temperature, whereas the calculations correspond to zero
temperature. Considering about 10% temperature induced reduction in the band
gap at 300K (tabular value) makes the agreement of obtained results with experi-
ment very good. Finally, the reported in [75] indirect–to–direct band gap crossing
point at 1.94% [100] biaxial strain agrees very well with given prediction (see Fig.
2.10a). The presented below comparison strongly point at credibility of the provided
computational results, since, the calculations are consistent regarding the methods
applied.
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2.2.3 Deformation potentials
To have a complete image of the electronic band structure behaviour under

strains the deformation potentials av, adir, aind, b, d, Ξ∆
u , ΞL

u , as defined defined in
[89], have been calculated. The deformation potentials are the parameters describing
the strain induced characteristic energies variation. The results are gathered and
compared with the literature data in Tab. 2.12. The main conclusion from the
presented data is that the values of the relative deformation potentials (describing
the changes in energy differences) agree well with the literature data, whereas the
absolute ones (describing the changes in energies given with respect to the absolute
energy reference point) differ significantly. At this stage explanation of the variation
in results remains unknown, however, in [93] an experimental value of av = −12.7 eV
for Ge, and in [7] a theoretical values for Ge of av = −12.4 eV and for Si av = −10.2
eV are reported. These number differ significantly from those quoted in Tab. 2.12,
which means that even in the literature there is a big discrepancy of data. In this
work the calculation procedure is precisely described (see Sect. 2.1) which establishes
a frame for future discussion.

Table 2.12: Deformation potentials.

Si Si ref. Ge Ge ref.
∆0 0.05 0.04 [89] 0.29 0.30 [89]
av -0.30±0.43 2.46 [89] -4.0±0.55 1.24 [89]
b -1.39±1.03 -2.35 [89] -6.72±0.90 -2.55 [89]
d -0.37±1.01 -5.32 [89] -10.00±3.19 -5.50 [89]
adir -0.65±0.02 -0.48 [89] -9.59±0.42 -9.48 [89]
aind 1.74±0.05 1.72 [89] -3.53±0.05 -2.78 [89]
Ξ∆
u 8.80±0.09 8.70 [89] 9.50±0.10 9.02 [55]

ΞL
u 14.30±0.04 13.85 [55] 15.70±0.20 16.30 [89]

2.2.4 Effective masses
There are rather few results in the literature of the theoretical calculations of

effective masses and, in particular, their dependencies on strains. Some calculations
using various methods, ab initio, TB, k · p, are reported eg. in [9, 70, 90]. In this
work a systematic first principles computational study has been performed of chosen
effective masses dependence on strains, using the method described in Sect. 2.1.
The results are presented in Figs. figs. 2.12a, 2.12b, 2.13a and 2.13b.

Before we start the discussion, it should be pointed out that the data provided
agree well with those reported in [9, 70, 90] and experimental values referenced there
(see Tab. 2.13). This fact enhances the credibility of the results and the discussion
of the effect of strains.

First, it should be noted that in all the dependencies presented in Figs. figs. 2.12a,
2.12b and 2.13a, as expected, the qualitative behaviors for biaxial and axial strains
are inverse with respect to zero strain, for the reason discussed previously. One
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Table 2.13: Effective masses (in units of electron mass) in chosen BZ points calculated
in this work and compared with the literature reference data. ’h’ stands for holes.

meff this work GW [70] EPM [70] k · p [70] TB [9] DFT [90] expt.

Si

Γ [∆] 0.676 0.158
Γ [Λ] 0.514
X 0.798 0.925 0.89 0.928 0.891 0.915 0.916 [70]
L 1.92 1.8083 1.855 1.704 3.433 2.0 [9]

h [∆] 0.327 0.276 0.22 0.275 [9]
h [Λ] 0.811 0.734 0.66 0.738 [9]

Ge

Γ [∆] 0.047 0.037 0.038 [90]
Γ [Λ] 0.05
X 0.674 0.881 0.964 0.874 0.701 0.9 [9]
L 1.69 1.626 1.763 1.59 1.584 1.66 1.58 [70]

h [∆] 0.236 0.173 0.211 [9]
h [Λ] 0.602 0.531 0.502 [9]

can distinguish a few characteristic cases of different qualitative behavior. In the
conduction band, for example, a very big increase in the Si effective mass can be
observed, at Γ in Γ−X direction, with [100] axial tensile (or biaxial compressive)
small (1%) strain. Such a behavior is connected with "flattening" of the band, and
what is interesting, this does not happen in the Γ-L direction. A large increase
can also be seen at X under [110] strains, both in Si and Ge, but at higher strains
(3 − 4%), and at X under [111] strains. On the other hand, very small effective
masses (0.04 at equilibrium) can be found in Ge at Γ, but an interesting fact is that
at some strains ([110] biaxial, [111] biaxial, isotropic) the effective mass clearly tends
to zero, which is connected with closing the direct gap, and results in high mobility
of CB electrons which has a practical meaning. Apart from that there is a variety
of cases where the change in the effective masses is regular but not very big (up to
100%, like at [110] strains in Si) or looks almost constant but is irregular (like at X
[100] strain, both in Si and Ge), which must be due to numerical noise (the results
are extremely sensitive to any numerical uncertainties). In the VB the effective
mass behavior is very spectacular because a described previously inversion of bands.
Thus, a sudden drop or increase of the effective mass is observed, depending on
which band (HH or LH) is actually on the top. The most spectacular change (by
one order of magnitude) caused by this effect can be seen in Si isotropic strain.

28



2.2. RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
e
ff

a
t

(m
e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

[100] uniaxial

Si

Ge

X dir

L dir

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
e
ff

a
t

(m
e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

[100] biaxial

Si

Ge

X dir

L dir

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
e
ff

a
t

X
(m

e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

Si

Ge

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
e
ff

a
t

X
(m

e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

Si

Ge

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
e
ff

a
t

L
(m

e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

Si

Ge
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
e
ff

a
t

L
(m

e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

Si

Ge

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m
e
ff

o
f

h
o

le
s

a
t

(m
e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

Si

Ge

X dir

L dir

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m
e
ff

o
f

h
o

le
s

a
t

(m
e
)

-4 -3 -2 -1 0 1 2 3 4

ind (%)

Si

Ge

X dir

L dir
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2.2.5 Charge carriers mobility
In addition to calculation of effective masses, the effect of strain on carrier

mobility has been estimated. The mobility is related to effective mass by scattering
time, as follows

µ = q

m∗
τ̄ , (2.8)

where q is an elementary charge, and τ̄ is the average scattering time. The scattering
time, in general, depends on many factors connected with the scattering mechanisms
which is not considered here. Instead, an empirical model based on Monte Carlo
simulations was used to evaluate the average scattering time for electrons [26]:

τ̄n =τ0 + τ1 · exp

C1 ·
(

Tn
300K + C0

)2

+

+ C2 ·
(

Tn
300K + C0

)
+ C3 ·

(
TL

300K

) (2.9)

where Tn is the electron temperature, TL is the lattice temperature, while all of
the τ and C are material dependent constants (shown in Tab. 2.14). Formula 2.9
has been used here for calculating the scattering time of electrons. In the case of
holes the scattering time is independent of carrier and lattice temperatures:

τ̄p = τ2. (2.10)

Table 2.14: Material parameters for average scattering time ( Eq. 2.9) [26]. τ are
given in (ps).

τ0 τ1 C0 C1 C2 C3 τ2
Si 1 -0.538 0 0.0015 -0.09 0.17 0.4
Ge 0.26 1.49 0 -0.434 1.322 0 0.4

For given temperatures, the mobility changes are completely established by
effective mass (Eq. 2.9). For unstrained materials the mobilities for both electrons
and holes are known. For Si it is ≤ 1400 cm2

V ·s and ≤ 450 cm2

V ·s for electrons and holes
respectively, and for Ge similarly ≤ 3900 cm2

V ·s and ≤ 1900 cm2

V ·s (according to NSM
Archive [56]). If we assume that the strain does not affect the scattering time, the
strain dependent mobilities can be evaluated. Examples of such calculations are
presented in Fig. 2.14. First of all one can see that presented results agree well with
tabular data at equilibrium state. It can be also observed that the strain induced
changes in effective masses affect significantly the mobilities. In extreme cases they
can change even by an order of magnitude.
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Figure 2.14: Carrier mobility examples calculated for Tn, TL = 300K.

2.2.6 Precision and accuracy of the results
When DFT results are presented the question about their precision and accuracy

always arises. The term ”precision” in this context refers to the precision of
calculations at given methods used within DFT, i.e. their deviation from the exact
result if it existed. Since the ”exact” result does not exist, the only way of estimating
the precision is to compare the results with analogous ones, given by other codes,
among which the full potential implementations seem to be most credible. This issue
is widely discussed in [45] where a special parameter ∆ is introduced as a measure
of discrepancy between EOS for a sample of crystals calculated by a given pair of
codes. This parameter, when used in reference to full potential codes becomes a
measure of precision.

In turn, the term ”accuracy” refers to the agreement of computational results
with experimental data, and it seems that an ultimate criterion to value various
DFT methods/codes is to compare the results with the experiment. In the light of
these remarks the discussion of the results presented is conducted below.

The table in Fig.4 in [32] shows a comparisons of ∆ parameter for most known
DFT methods, in reference to full–potential methods. The PAW JTH/ABINIT,
used in this work (in even newer version than in [32]), has there a very good (0.6)
value. Only VASP and various full potential codes show slightly better values (the
lowest average value is 0.5 and the highest is 13.3). In the results presented here,
this kind of PAW datasets has been used in all the structural calculations and in
the case of deformation potentials as well. Taking into account that the rigorous
convergence tests have been performed, the precision of presented results should be
high. Regarding the accuracy, it is also very satisfactory, as shows the comparison
with the available experimental data. E.g. Tab. 2.1 shows an excellent agreement of
the calculated lattice constants with experimental ones. Also the elastic constants,
although defined here in an unconventional way, when transformed to the standard
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Figure 2.15: Comparison between Wien2k (red line) and ABINIT with mBJLDA
(blue line) band structure of Ge in equilibrium state.

ones agree well with the textbook data (see Tab. 2.5).
The calculations of band energies, gaps and effective masses have been performed

using different method (HGH joined with the mBJLDA XC potential, see Sect. 2.1),
and thus require a separate discussion of precision and accuracy. As described in
Sect. 2.1, the mBJLDA c_TB09 parameter (called here c) has been fitted to get
correct (experimental band gaps) and specially treated for strained systems (Eq.
2.5). Figure 2.15 shows a comparison of Ge band structure obtained in this work
and by Wien2k code. And one can see that the agreement is very good. This means
that conducted calculations are expected to be highly precise. As far as the accuracy
is concerned the agreement with the available experimental data shown in Fig. 2.11
is very good.

The accuracy of effective masses is an important issue to comment, since this is a
known fact that the mBJLDA functional overestimates effective masses by 20− 30%
[38], which is then a systematic error. Surprisingly the approach used in this work
does not quite reflect this tendency. As Tab. 2.13 shows, the effective masses calcu-
lated here (in a very strict mathematical approach) sometimes are even lower than
the experimental ones, but the overall agreement is quite satisfactory. Nevertheless,
the results presented here can certainly be regarded as a good qualitative picture
(with rather low quantitative uncertainty) of masses vs. strains variation.

The calculations of the deformation potentials, particularly those describing the
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absolute changes in energies, are a delicate issue. For the top of VB, they have been
done with the use of PAW atomic datasets. The same which gave very satisfactory
structural parameters. Here, the DFT band gap problem does not exist since we
consider only the VB top energy with respect to the unified energy reference point.
Thus, the discrepancy of provided results with the literature data is surprising. For
this reason there have been included a precise description of the method used (see
Sect. 2.1), so that the reproduction of the data or questioning the approach would
be possible.
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Chapter 3

Alloying
The second method of band structure engineering which will be discussed here is

a formation of the alloys. The papers published on the subject within our research
group are [64, 78], although the author of this dissertation contributed only to the
second paper ([78]), oriented towards the application of ab initio data (from [64]) in
device modelling. As it will be explained in the following section a direct application
of DFT results in device modelling is very inconvenient and some intermediate
representation of the electronic structure must be used. In [78] the 30–bands k · p
method has been proposed for that purpose and my contribution consisted in
preparation of ab initio data, via computational alchemy, to be suitable for fitting
the k · p parameters.

3.1 Computational method
Creating alloys and admixtures of different materials (even slightly) can drastically

change materials properties, especially in the case of semiconductors, which are
known for their huge sensitivity for impurities. The main difference between alloying
and doping is percentage of admixture. It is worth noting that low (light) doping
is considered to be, when one dopant atom is added per 100 million atoms, while
heavy (high) doping per ten thousand atoms. In an alloy, two (or more components)
are mixed at any proportion.

The concept of alloy is quite vast and covers many different material types.
From uniform materials to multi–phase ones, including all types of doping in atomic
scale. A doping atom can substitute the host material atom or fit in an interatomic
position. That gives a large field of study. In this work only a uniform phase with
substituting the host material is taken under consideration. It is also assumed that
the atoms distribution is perfectly random, which in ab initio calculations with the
supercell approach is emulated by the so called special quasirandom structure (SQS),
described below.

The active region of modern optoelectronic devices (detectors, light emitting
diodes, lasers, etc.) is often based on semiconductor alloys. They offer an opportunity
of tuning the band gap by varying their composition. One of materials of interest in
the field is the Ge1−xSnx alloy [14, 34, 47, 87, 95]. Its direct gap can be tuned in
the range of 0.89− 0 eV by varying the composition [64, 81, 91, 99]. Additionally, it
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exhibits an interesting property, where by varying the alloy composition, a transition
from indirect to direct band gap takes place. This transition appears at a relatively
small admixture of Sn in Ge (around 6.5%) (e.g. [64]). This feature, joined with the
observed high mobility of carriers, makes this material a promising candidate for
optoelectronic applications. This fact has been a reason for an intensive experimental
and theoretical investigations of this material, e.g. [1, 3, 10, 12, 13, 16, 18, 20, 31,
35, 43, 44, 51, 59, 64, 66, 73, 80, 81, 91, 94, 96, 97, 99, 100]. In particular a number
of DFT based ab initio theoretical studies have been conducted [10, 12, 18, 20, 35,
44, 51, 59, 64, 66, 73, 80, 94, 97, 99, 100].

It is a known fact that the ab initio methods provide very realistic predictions of
properties of atomic systems. In the case of alloys, the method of choice is the use
of periodically repeated supercells containing up to a few hundred atoms of species
forming the system, which makes the calculations computationally challenging [18,
64, 66, 100]. The most prominent advantage of this method is the ability to take into
account the lattice distortion around impurities, vacancies and interatomic position
dopants. However, in such an approach only a discrete number of compositions can
be analyzed. Moreover, the problem emerges, even if big supercells are used, that
the system is always cell–periodic, which seems to be far from the perfectly random
alloy which is the subject of analysis. Nevertheless, within the supercell approach we
can emulate to some extent the perfectly random alloy by applying the SQS (Special
Qausirandom Structures) [101] technique. In principle, the technique consists in
choosing the atomic positions in the supercell in such a way that the correlations
between the numbers of atoms of the same kind in subsequent coordination zones
are as close to the known correlations in the perfectly random structure as possible.
Obviously, the bigger is the supercell the better is the approximation, but also the
bigger is the computational cost, and thus some compromise must be established.

Another inconvenience appearing when large supercells are used are numerous
folded bands which makes the interpretation of the picture of the band structure
rather complicated. The necessary unfolding procedure [72] provides an effective
band structure represented in the form of spectrally weighted eigenvalues, which
are torn and blurred at some compositions. This, and also big size of the wave
function files, makes the direct application of supercell representation of the band
structure in modeling of semiconductor devices very inconvenient. For this reason,
in device modeling other representations of electronic bands are most often used,
among which the k · p method seems to be the most popular [19, 24, 25, 46, 69].
These methods require certain number of parameters which are found from fitting
either to experimental data or to large scale ab initio calculations.

In [78], to which the author of this dissertation contributed, an approach which
joins large scale ab initio calculations with 30–bands k · p method is applied. The
latter method is known to correctly reproduce the electronic band structure in the
full BZ. The approach allows to find the values of the parameters used in the k · p
method. Finding them directly from ab initio supercell data would be difficult (if
possible at all), due to the character of the obtained band structures. Therefore, it is
proposed to make an intermediate step which is based on other ab initio approaches.

Apart from the supercell method there are basically three other methods suitable
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for alloy modeling. First, and the simplest one, is the Virtual Crystal Approximation
[4] (VCA) which in principle relies on the linear interpolation of band energies of
component materials. The approximation is very crude, in particular it is not able
to reproduce the band gap bowings, often present in the alloys (particularly the
highly mismatch ones), and being a result of local lattice distortions. The advantage
of this method is the low computational cost. However, VCA was a useful starting
point to create some modified methods, suitable for specific group of materials [65,
68].

The second approach is so–called Coherent Potential Approximation (CPA). It
is physically the most sophisticated method and is supposed to model adequately
the scattering properties of disordered system. This approach is appropriate for
Green’s function formalism, in which KKR method is implemented. Unlike VCA,
the CPA instead of mixing potentials, it mixes, at given proportion, the Green’s
functions of the component crystals to form an alloy Green’s function. That way,
it approximates a configurationally random alloy with an effective medium that is
determined self–consistently from the condition of stationary scattering. On the
other hand, it is insufficient for the geometry optimisation or for the total energy
calculations. Due to that, the impurities which highly distort lattice will not be well
represented.

The third method available is called the Computational Alchemy and consists in
superposition of pseudopotentials on atomic level. In that way a kind of alchemical
atom is formed which represents the scattering properties of composing atoms at a
given proportion. Then the ideal periodic structure is formed from the alchemical
atoms, and this is the main shortcoming of the method: it is not able to reproduce
the local lattice distortions, which are due to different sizes of atoms composing the
alchemical atom.

Because the CPA method requires Green’s function approach and as an output
gives Bloch’s spectral function instead of typical band structure, that method also
was rejected for device modeling purpose. On the other hand VCA is not accurate
enough. Thus, in this work, a computational alchemy was chosen.

The approach has already been exploited in a number of works, e.g. [5, 17, 49,
74]. The ABINIT package was used with implementation of the computational
alchemy, called the Alchemical Mixing (AM). The AM itself is known to provide
rather poor description of electronic structure, particularly for highly mismatched
alloys (HMA), mainly because it does not account for the local distortions of the
lattice [79]. However, when used as a model containing additional fitting parameters
it is able to accurately reproduce the band structure for any composition of an alloy
at low computational costs. Thus, at the first step, the AM method is used to
approximate the reference supercell unfolded band structures. Next, the continuous
AM bands are used to find the values of the parameters of 30–band k · p model,
through a specially designed optimization method. As a result, an effective full BZ
electronic band structure description of the Ge1−xSnx alloy in the full composition
range is obtained.

As mentioned above, to approximate the ab initio supercell band structure we
the concept of computational alchemy has been used, as implemented in the ABINIT
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code [28] and called the alchemical mixing (AM) there. The implementation uses
the following construction [27]:

• the local potentials are mixed in the proportion given by mixing coefficients,

• the form factors of the non–local projectors are all preserved,

• the scalar coefficients of the non–local projectors are multiplied by the propor-
tion of the corresponding type of atom,

• the characteristic radius of the core charge is a linear combination of the
characteristic radii of the core charges,

• the core charge function f(r/rc) is a linear combination of the core charge
functions.

In all the linear combinations the mixing coefficients reflect the proportion at
which particular atoms enter the alloy are used. In the approach only the atoms with
the same valence electronic configuration can be taken (isovalent elements, like e.g.
Ge and Sn). In this work the Hartwigsen–Goedecker–Hutter (HGH) pseudopotentials
[60] have been used.

There is a lot of freedom in choosing the mixing proportions, the only constrains
are that the overall formula Ge1−xSnx must be fulfilled at every composition, and
that the content of an element in an alchemical atom must not be negative. In
this work a scheme has been used which, on the one hand, guarantees a consistency
of mixing for any composition and, on the other hand, allows, in some extent, to
check the effect of mixing proportions on the results. The two alchemical atoms
representing two sublattices in BZ structure, A1 and A2, are composed from Ge and
Sn atoms according to the formulas:

A1 = Ge[(1− x) + αx(1− x)] + Sn[(x)− αx(1− x)]
A2 = Ge[(1− x)− αx(1− x)] + Sn[(x) + αx(1− x)]

(3.1)

where α is a parameter responsible for the proportion of mixing and can be varied
in the range [0, 1]. The mixing parameter α, if non–zero, allows to add a bowing to
the mixing curve versus the amount of admixture, and what follows, to not equally
occupy chosen site by component atoms. Testing it’s impact on results is important.
Value of α resembles the arrangement of atoms in supercell. What follows, in larger
cells with higher number of independent sites, the obtained results can be sensitive
to the choice of mixing parameter.

One of the advantages of the AM approach is a significant reduction of system
size to be analyzed from first principles, which can be reduced to a primitive cell.
However, the accuracy of such approach is questionable, in particular it does not
account for the local distortions of the lattice [79], which is significant in HMAs
where the local relaxation effects play a crucial role [62]. Nevertheless, the AM
approximation, when used together with supercell calculations [64] as reference, can
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be very useful. When properly adjusted to the supercell data, they may provide
a very good approximation of electronic bands with continuous curves. Therefore,
a procedure of utilizing the AM approach was designed in a way that allows to
reproduce results obtained with more accurate methods, including supercell DFT
calculations and experimental measurements. In this chapter the applicability of
the method is demonstrated with results of DFT supercell calculations serving as
reference.

In the AM method there are only two key parameters necessary to achieve
realistic band gaps:

1. lattice constant,

2. c (c_TB09) parameter from mBJLDA.

From computational experience we know that the variation of the lattice constant
mainly affects the relative energies of CB minima (Γ and L valley), while the variation
of the c parameter mainly leads to the movement of the whole CB with respect to
the energy axis, and this fact has been utilized in the fitting procedure.

Thus, the fitting procedure was as follows. First, the parameters for the parent
crystals (Ge and Sn) were found. The parameters that would give proper band
gaps on boundaries (pure Ge and Sn) must be found. In the case of GexSn1−x the
parameters could be taken from the strain calculations presented in the previous
chapter.

Then, Vegard’s law, representing the composition (x) dependence of any physical
quantity (O) (including some parameter) with the bowing mediated by the b (bowing)
parameter at quadratic term:

OAB1−xCx = O(x) = xOAC + (1− x)OAB − bx(1− x), (3.2)
has been applied to the lattice constant and the c parameter to get proper

behavior of direct and indirect band gaps, in particular a proper band gaps crossover
composition.

Having the necessary parameters as functions of composition, the band structure
calculations can be performed. The procedure for the calculations, as well as
estimating the effective masses of charge carriers, is the same as in the case of strain
studies that was described in previous chapter.

In all the ab initio calculations described in this section the ABINIT package
[28] has been used, with LDA, HGH pseudopotentials [27, 60], Perdew and Wang
correlation part of the functional [61] (PAW), and the Tran and Blaha modified
Becke Johnson functional TB–mBJ (sometimes referred to as mBJLDA) [86] for the
exchange part, known for quantitatively improving the electronic band structure
while preserving a reasonable time of calculations. As a result of convergence studies,
the energy cutoff was set to 60 Hartree, the k–points sampling for BZ integration
was (10× 10× 10) for all the calculations. The energy convergence criteria in the SC
run was set to 10−9 Ha and the residual wave function convergence criteria in the
non–SC part was 10−12. In the investigations the computational alchemy technique
has been used.
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Table 3.1: Lattice and c parameters achieved from fitting procedure.

parameter Ge Sn b

lattice const. (Å) 10.636 12.25 -1.08
c_TB09 1.037 0.99 -0.02

3.2 Results

3.2.1 Mixing parameter
At the beginning, the effect of the mixing parameter α (Eq. 3.1) on band

structure was tested.
The tests performed have shown that the calculated band structures rather

weakly depend on the parameter α, namely, when it is varied in the range [0, 1],
the maximum band gap variation does not exceed 0.05 eV. Moreover, this effect is
overshadowed by the adjusting procedure described in the next section. In provided
calculations the value α = 0.1 has been used, to assure the symmetry breaking from
diamond to BZ, induced by the fact that the alchemical atoms in the primitive cell
are not the same. One should note that in the alloy there is no symmetry at all,
except for identity, but the BZ symmetry emerging in AM approach has no effect
on the results but speeds up the calculations.

3.2.2 AM vs. supercell band structure
As described in the previous section the aim of this work was to reproduce

the unfolded supercell band structure with the smooth curves given by DFT AM
approximation, in particular a proper behavior of the direct and the indirect band
gaps. Two parameters: the lattice constant a and the c (c_TB09) have been found,
for the parent materials Ge and Sn, and for the alloy at composition x via the
bowing parameter b in Vegard’s law 3.2. For practical reasons only the range up to
≈ 30% (closing the band gap) has been considered in this work. As a reference the
data from [64] have been used. The results are given in Tab. 3.1.

In Fig. 3.1 the AM and the DFT supercell band gaps ([64]) variations, direct
and indirect, are compared, and it can be seen that in the range of composition of
interest the agreement is very satisfactory, the discrepancy is not higher than 0.03
eV.

To validate the method even more, in Fig. 3.2 the band structures for parent
materials, Ge and Sn, and the unfolded GeSn alloy band structures for chosen
compositions (from [64]) are compared with those obtained in this work. It can
be seen that the smooth AM curves provide a very good approximation for the
supercell bands.

Finally, the effective masses of electrons at Γ and L valleys have been evaluated
and compared with those reported in [64]. Also in this case the agreement is very
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Figure 3.1: Band gaps from AM calculations vs supercell ones taken from [64]; red –
direct, blue – indirect.

good which confirms the validity of the method.
To summarize, in this work the computational alchemy approximation has been

used to represent the DFT supercell electronic band structure of GeSn alloy with
smooth, well fitted curves. The results have been used in [78] to represent the
band structure with the 30–bands k · p method, suitable in semiconductor device
modelling.
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Figure 3.2: AM vs supercell band structures – continuous blue line represents AM
results.
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Chapter 4

Alternative crystal structures
The third method of electronic structure engineering, mentioned in the intro-

duction, is the formation of alternative (metastable) crystal structures. Modern
deposition technologies, like molecular beam epitaxy (MBE) or metal–organic chem-
ical vapor deposition (MOCVD), open such opportunities. Usually the structure is
induced by the substrate (e.g. wurtzite structure by the (111) surface of zinc blende
crystal). In principle any crystal structure can be formed, but the most important
issue is the stability and thermodynamic stability of the system. It is a known fact
that the diamond structure is the stable one for Si and Ge, however, for C itself
(diamond) is a metastable structure, and although rather difficult to be formed it is
a well known system and has various applications, in jewelery in particular, but not
only. Diamond owing to its exceptional hardness, very high thermal conductivity
(phonon induced), very good electrical insulation properties, transparency for light,
has various applications in technics, e.g. diamond anvil cells for creating the high
pressure environment. This example shows, that the formation of metastable crystal
structures is an open way in the band structure engineering.

In this work only the wurtzite structure will be taken into consideration, since
it is energetically very close to the diamond one, and relatively easy to obtain, by
deposition on the (111) zinc blende plane. Some properties of such structures of
Si and Ge are already known [2, 21–23, 39, 98], in particular it turns out that the
fundamental band gap in Ge is direct, (unlike in the diamond structure) which
is a crucial feature in optoelectronics. It is worth mentioning that mostly Si was
investigated, while Ge barely exists in the literature. The available data range from
achievement of Si wurtzite nanowires [23], ab initio studies of strained Si, through
vibrational [2] and doping properties [21, 22], up to Raman spectrum of Si [39].
Apart from the formation energies, the elastic constants and the Poisson ratio, the
systematic investigations of the effect of strains has been performed, for C, Si and
Ge. The isotropic (pressure), biaxial (perpendicular to c–axis) and axial (along
c–axis) strains have been considered. In particular the effect of strains on the band
structure and its crucial features: band gaps (identification of fundamental gaps)
and effective masses. Such calculations have allowed also to evaluate the deformation
potentials, crucial parameters in the calculations of superstructures electronic bands
and of the electron–phonon coupling.
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4.1 Computational method
For all of the calculations presented here, VASP [41, 42] software package was

used, mainly due to implementation of mBJLDA on PAW pseudopotential. The
procedure was similar to the one presented in Chpt. 2. Although, there are a few
differences in methodology:

1. The anisotropic strains are considered only with respect to one, [001] axis,
which is typical when the structure is grown on (111) ZB substrate. The
wurtzite cell is presented in Fig. 4.1.

c

ba

Figure 4.1: Conventional cell of wurtzite (#186).

2. The conventional cell reflects the symmetry of the system, and its possible
breaking in the case of anisotropic strains. In wurtzite structure the [001]
strains do not lower the symmetry of the cell. What follows the BZ stays the
same, and no additional points must be observed. The BZ of wurtzite is shown
in Fig. 4.2.

3. The differences in the formation energies between WZ and ZB structures is
evaluated, to show the energetic preference. This also gives some hints about
stability, especially while straining the system. The thermodynamic stability
remains still an open question which require an independent investigations
(lattice dynamics).

4. In wurtzite materials two additional values seem to play important role as
k · p parameters: the ∆so and ∆cr. They are connected to SO coupling and
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crystal field, and are known to be present in wurtzite crystals, and calculated
as follows [6]:

∆so = ∆1 + ∆2

2 − 1
2
c

a2 ·
√

∆ (4.1)

∆cr = ∆1 + ∆2

2 + 1
2
c

a2 ·
√

∆ (4.2)

where

∆1 = HH − LH (4.3)
∆2 = HH − CH (4.4)

∆ =
(
c

a2

)−2

· (∆1 + ∆2)2 − 4 · a
2

c

(
(∆1 + ∆2)2 − (∆1 −∆2)2

)
(4.5)

5. Because of different symmetry compared to the diamond one the deformation
potentials also differ as well as the way of calculating them. For wurtzite
systems (including SO) band structure deformation potential (D1 to D6) are

47



CHAPTER 4. ALTERNATIVE CRYSTAL STRUCTURES

defined by the equations [6]:

∆E1 = E1 − E0
1 = (D1 +D3)εzz + (D2 +D4)(εxx + εyy)+

+
D6(E0
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3)(ε2
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yz) +D5E
0
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2)(E0
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3) , (4.6)
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∆E3 = E3 − E0
3 = (D1 −D3

E0
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3
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+ (D2 −D4
E0

3
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)(εxx + εyy)−
E0

2E
0
3

(E0
2 − E0

3)3 (D3εzz +D4(εxx + εyy))2+
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3)(E0
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From Eq. eqs. (4.6) to (4.8) under pure εzz strain, D1 and D2 can be derived,
while under planar strains D3 and D4. To achieve D5 and D6 shear strains
are necessary, in particular εxz or εyz and εxy, respectively. The derived
deformation potentials are as follows:

D1 = 1
εzz

(∆E1 + ∆E2 + ∆E3 − 2εzz∆E1)

D2 = 1
εxx + εyy

(∆E1 + ∆E2 + ∆E3 − 2(εxx + εyy)∆E1)

D3 = 1
εzz

(∆E2 + ∆E3 − 2εzz∆E1)

D4 = 1
εxx + εyy

(∆E2 + ∆E3 − 2(εxx + εyy)∆E1)

D5 =
√√√√∆E1(E0

1 − E0
2)(E0

1 − E0
3)

4E0
1ε

2
xy

D6 =
√√√√ ∆E1(E0

1 − E0
2)(E0

1 − E0
3)

(E0
1 − E0

2 − E0
3)(ε2

xz + ε2
yz)

(4.9)
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4.2 Results

4.2.1 Structural and elastic properties
As in the Chapt. 2, the investigations began with achieving parameters of

equilibrium wurtzite structures for investigated materials (C, Si and Ge). The
symmetry of this type of systems has a unique feature. Some of the atomic sites
may flow along c lattice vector direction without changing the symmetry. Thus an
additional parameter u is present in the relaxation procedure. In Fig. 4.1 blue arrow
represents ~c lattice vector, while orange one represents u · ~c. The bulk modulus B0,
it’s pressure derivative B′0 and elastic constants (from c11 to c33) were also evaluated.

Table 4.1: Elastic parameters.

C Si Si–ref [71] Ge
a (Å) 2.498 3.823 3.828 4.005
c (Å) 4.159 6.323 6.325 6.594
u 0.374 0.374 0.374 0.375

B0 (GPa) 450 94 92.8 67
B′0 3.65 4.57 4.24 4.71

c11 (GPa) 1219 187 237 - c12 125
c12 (GPa) 106 54 237 - c11 54
c13 (GPa) 19 38 317 22
c33 (GPa) 1332 213 313 162

The only reference data found in the literature are for Si [71]. Very satisfactory
agreement of these data with those obtained in this work can be seen (see Tab. 4.1).
The lattice constants differ on third decimal point, while the bulk modulus and the
elastic constants differ no more than 10 GPa.

In Tab. 4.2 the pressure related to isotropic strain is presented in the form of
the linear (b) and the quadratic (a) coefficients.

Table 4.2: Pressure coefficients.

C Si Ge
a (GPa) -0.79 -0.19 -0.14
b (GPa) 13.45 2.81 2.00

The Poisson ratios, both for uniaxial and biaxial strains are shown in Tab. 4.3.
The formation energies as functions of strain are presented in Fig. 4.3
Because of the lack of experimental data, the elastic properties are compared

with those of the zinc blend ones. Despite the change in the structure, the chemical
trends are preserved. Both the elastic constants and the bulk modulus are very
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Table 4.3: Poisson’s ratios (ν) for axial (type 1) and biaxial (type 2) strains.

material 1 2
C 0.02 0.03
Si 0.16 0.38
Ge 0.13 0.29
Sn 0.18 0.44
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Figure 4.3: Formation energy of group IV materials (calculated as energy per atom
in zinc blend minus wurtzite). pl stands for planar strains in zinc blend (111) and
wurtzite (001), while iso stands for isotropic strains for both systems.

high for C and decrease while moving downward the periodic table. The related to
isotropic strains hydrostatic pressure also shows the toughness of diamond. As in
zinc blend structure, wurtzite systems show slight non–linear behaviour of pressure
induced by strain. Calculated Poisson’s ratios shows similar behavior to the zinc
blende ones. At biaxial strains they are bigger than at axial ones, and the more
massive atom the higher is the value (with exception of Ge, which has lower value
than for Si). On the contrary, the ratios do not exceed 0.5, even in biaxial cases.

The analysis of the formation energy as dependent on strain shows that only Sn
seems to energetically prefer the wurtzite structure, under tensile isotropic strain. In
every other case, preferable is the zinc blend structure. Moreover, the more strained
system (no matter compressive or tensile) the more energetically preferable is the
zinc blend over wurtzite structure. On the other hand, the value of difference of
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energy per atom is rather small (excluding isotropic Sn, below −0.001 eV ) which
means that the energetic criterion is of a lower meaning in determination of system
preferences.

4.2.2 Electronic structure
The second part of the results concern the electronic structure properties. As in

Chpt. 2, the main focus is given to strain effects. In the first step the electronic band
structures along paths containing high symmetry directions have been evaluated.
This allowed us to the find direct and the indirect gaps and, what is of crucial
meaning, to identify the fundamental gaps. In the following steps the effective
masses at band extrema have been evaluated and finally the deformation potentials.
Table 4.4 shows the basic parameters at equilibrium state along with deformation
potentials for each of the investigated materials.

Table 4.4: Electronic band structure parameters.

C Si Ge
EΓ
g (eV) 6.517 1.649 0.362

EM
g (eV) 5.800 1.015 0.897

EK
g (eV) 5.318 1.471 1.879

∆so (eV) 0.011 0.048 0.272
∆cr (eV) 0.516 0.351 0.251
D1 0.43 5.38 0.34
D2 0.50 0.46 -0.07
D3 0.16 3.59 0.19
D4 0.225 0.24 1.31
D5 0.275 1.18 1.1
D6 0.24 0.27 0.64

There is no reference data for the deformation potentials but they seem to have
reasonable values. The method itself for calculating the deformation potentials is
precisely described and have strong physical foundations as well as the parameters
used for ab initio calculations were rigid.

The table above 4.4 shows in particular the gaps for Ge, which proves that
there is a direct band gap at equilibrium state. As for the other materials, the
indirect band gap prevails but certain perspective still exists that under the strain
the situation may change in favour of the direct band gap. To observe this, the
fundamental band gaps under strain are presented (Fig. 4.4a along with effective
masses of carriers (Fig. 4.4b) at Γ k–point (for holes) and at fundamental gap
k–point (for electrons). Both in ∆ and Λ directions.

In Fig. 4.4a one can see that in the case of Ge the direct band gap appears at
almost all applied strains. Only at biaxial compressive strain higher than 2%, the
gap is indirect. Moreover, the value of the direct gap may vary from actually closed
one (at biaxial tensile and axial compressive strain) to even more than 0.6 eV (in

51



CHAPTER 4. ALTERNATIVE CRYSTAL STRUCTURES

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

−4 −3 −2 −1 0 1 2 3 4

C

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

−4 −3 −2 −1 0 1 2 3 4

Si

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −3 −2 −1 0 1 2 3 4

Ge

E
g

(e
V

)

strain (%)

Γ− Γ
M − Γ
K − Γ
L− Γ
U − Γ
axial

biaxial
isotropic

E
g

(e
V

)

strain (%)

E
g

(e
V

)

strain (%)

(a) Fundamental band gaps.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−4 −3 −2 −1 0 1 2 3 4

C

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−4 −3 −2 −1 0 1 2 3 4

Si

0

0.2

0.4

0.6

0.8

1

1.2

−4 −3 −2 −1 0 1 2 3 4

Ge

m
ef

f
(e

V
)

strain (%)

CBM∆

CBMΛ

V BM∆

V BMΛ

axial
biaxial

isotropic

m
ef

f
(e

V
)

strain (%)

m
ef

f
(e

V
)

strain (%)

(b) Effective mass of charge carriers.

Figure 4.4: Band structure parameters in wurtzite system group IV materials.
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isotropic compressive strain). This fact together with the fact that the effective
masses of electrons and holes in ∆ direction are below 0.2 me, opens interesting
perspectives for applications of this material in infrared optoelectronics. Apart from
Ge, only Si appears to have direct band gap under biaxial tensile strain, but only
above 4%, which is a quite high value.

The data obtained in this work for Si can be compared with the literature data
[71], which are also theoretical. The lattice constants differ on second decimal point
and the fundamental band gap value differs around 0.2 eV, although the type of gap
is the same (Γ−M). The equilibrium state band gaps are almost the same. The
transitions of type of fundamental gap is exactly at the same strain value for all
three straining types. The difference can be seen in the slope of band gap changes,
in presented results it is slightly lower and in biaxial strains the parabolic behaviour
is more distinct, unlike in the reference. Nevertheless, the agreement is good enough
to enhance the credibility of the rest of the investigated materials.

For the full picture ∆so and ∆cr were also calculated for all the types of strains
and their range. The results are shown in the Fig. 4.5.
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Figure 4.5: Strain dependence of ∆so and ∆cr in wurtzite group IV systems.

While there are almost no changes in the ∆so parameters, the ∆cr vary signifi-
cantly, up to 4-times in Ge at biaxial strain.
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Spacial Confinement
The last method of electronic structure engineering listed in the introduction is

the spatial confinement. This is a well known method which consists in formation of
various nano–structures (quantum dots, superstructures, etc.), where some additional
built-in potential (apart from crystal cell periodic) emerges [54, 82]. E.g. in
superstructures, which are systems of semiconductor layers, the quantum wells are
formed where a spacial confinement leads to shifts of energy levels present in the bulk
systems or creation of new levels. Similarly in quantum dots, where the external
confining potential (often modeled as a parabolic one) leads to localisation of carriers
whose basic properties are determined by the bulk crystal structure of the material
the quantum dot is formed of.

In this work the idea of a digital alloy is exploited. The digital alloy, is a
mixed system of 2 or more semiconductors, but at variance with random alloy they
are mixed in ordered way, most often in the form of layered system (e.g. [53]).
Formation of such systems is possible owing to modern epitaxial technologies, and
the advantage is that the structural parameters are well determined whereas in
random alloys there is always a question about the level of randomness, the effect of
components segregation etc. The random alloys in modeling are usually assumed
to be perfectly random, which in ab initio calculations is emulated in terms of
supercells, the special quasirandom structure (SQS) technique and the following
unfolding procedure approach which leads to the spectral character of the band
structure (at each k-point there is certain energy spectrum instead of discrete energy
levels). In the case of the digital alloy there is no such problem. Although the
supercells must still be used, they form an ordered structure which reflects the
real situation. The supercell becomes an elementary cell which has additional
implications, namely the indirect gap may become a direct one simply by the folding
effect and the energy spectrum at each k-point remains discrete.

In this work the digital alloy of Si–Ge is considered. Both semiconductors in
the bulk form exhibit indirect fundamental band gap. However, the formation
of an ordered layered system leads to a new crystal structure and corresponding
BZ in such a way that the indirect band gap can be folded into the direct one.
Moreover, the layered system is always formed on some substrate and an additional
strain is induced which leads to the modification of the component material band
structure, as it was shown in Chpt. 2. Those two facts (the band structure folding
and strains) lead to unpredictable features of the band structure of a digital alloy,
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whose knowledge requires dedicated investigations. To my best knowledge the idea
presented in this chapter is original, i.e. no such investigations has been reported
in the literature so far. The only found Si or Ge digital alloy systems are the ones
layered with Mn to achieve magnetic ordering [15, 57, 58].

5.1 Computational method
Digital alloys can be formed e.g. by molecular beam epitaxy method which

means that the substrate determines the in–plane lattice constants. The calcula-
tions presented in this work have a preliminary character and are limited to (100)
surface, pure Si and Ge as substrates and 2-layer systems SiSiGeGe. However, the
investigations will be continued with bigger number of layers per material and also
for (111) plane. The bigger number of layers per material makes Brillouin Zone and
the band folding different, thus may have a strong impact on the band structure.
Similarly the choice of (111) plane results in the folding in other direction than in
the case of (100) plane. This means that both the number of layers per material and
the digital alloy formation direction may have a crucial meaning for the electronic
band structure.

As a preliminary outlook both (100) and (111) structures are visualized. The
elementary cells were drawn and presented in Figs. 5.1a and 5.1b.

a

b

c

(a) [100] direction.

a c

b

(b) [111] direction.

Figure 5.1: Conventional cell of digital alloys structures.

Also the BZ for those structures are presented to analyze which points and paths
should be considered during electronic calculations. The BZ were drawn from VASP
POSCAR files using online tool SeeK-path. The BZ are illustrated in Fig. 5.2a and
5.2b.

Due to the fact that here one must work with bigger systems (relaxation procedure
of volume shape and atomic positions) and it might require significant amount of
computational resources, a test was performed whether it is possible to use Poisson’s
ratio, calculated in 2 instead of relaxing each of the investigated systems. For 2
atomic layers per material systems, the test results showed that the use of Poisson’s
ratio sufficiently represents the atomic structure, which significantly reduces the
computational effort and can be applied for bigger systems.

After that the electronic calculations were performed. The most desirable result
from digital alloys investigation is the change of fundamental band gap while moving
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(a) [100] direction. (b) [111] direction.

Figure 5.2: BZ of digital alloys structures.

through the layers in the growth direction. To be able to analyse it, this was necessary
to use VASP code, due to the fact that it has mBJLDA implemented (which gives
accurate band gaps) along with PAW which allows for orbital decomposition (so–
called fatbands). Also DOS can be decomposed for each atom separately which may
be beneficial for more precise band gap changes evaluation.

All of the testing calculations were performed using ABINIT software package
with PAW–LDA combination, while electronic calculations with VASP code along
with mBJLDA exchange–correlation functional.

5.2 Results
In the beginning, Poisson’s ratio test results were evaluated. The difference of

atomic positions and lattice vectors between relaxation procedure and Poisson’s
ratio on testing structures prove to be on the fourth decimal point or below. This is
sufficient enough to use Poisson’s ratio and atomic position of previous calculations
instead of relaxation procedure. It should be stated here that this was possible only
due to the usage of the same XC functional and pseudopotential as it was practiced
in the investigations of the strain effects (Chpt. 2).

5.2.1 Band structure
Although the bulk crystal structures of the component materials are the the

diamond ones, due to layered nature, the BZ of the system differs (as it has been
explained above). It is not known to which points the focus should be given so
the path was chosen to cover all of the characteristic points and to be the most
representative. For the [100] direction the path was set to Y − Γ−X − U − Z − Γ.
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The crucial criterium was to cover both in–plane and along crystal growth directions
to analyze how the electrons will behave in both directions.
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Figure 5.4: Atomic decomposition of band structure of [100] direction on Ge sub-
strate.
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CHAPTER 5. SPACIAL CONFINEMENT

As a preliminary results, in Figs. 5.3 and 5.4 the band structures are shown for
the cases of (100) plane and Si and Ge substrates, together with the decomposition
for each atom in elementary cell. Some interesting features of the band structures
can be observed. In both systems the direct gap of the order of 1eV can be observed,
which is presumably a result of Si Γ-X band folding. However, in the case of Si
substrate, the fundamental gap seems to be indirect, from Γ point to U point, but
the situation looks different when looking at the atom projected band structures.
Here, considering the Ge2 and Si1 atoms, the band gap is direct. Moreover, the
X − U direction is perpendicular to the layered system, and a question arises about
spatial distribution of band gap energies in the direction perpendicular to the layered
systems. Here, a kind of quantum well system can be expected, which can be studied
by evaluating the spatially resolved band gaps, for the vertical direction. In the case
of Ge substrate the band gap is direct around Γ, is smaller than 1eV , and in the
direction Γ− Z (perpendicular to the layers) has a nesting character, wheres at U
point the bands at CB minimum are degenerate.

The presented results show that the idea of the Ge-Si digital alloy is promising and
deserves further attention. Some interesting features of electronic band structures
have been demonstrated here, leading to important questions which should be
addressed: 1. what is the effect of increasing number of a given material layers,
2. how the band structures will look like for (111) direction, 3. how the spatially
resolved band gaps (in the vertical direction) behave, and what are the consequences
of this behavior for optical properties, 4. what are the oscillator strengths of identified
possible optical transitions, and how they, together with the energetic structure
affect the optical response. Another intriguing perspective is an extension of the
investigations on the Ge-Si digital alloys in wurtzite structures, discussed in Chpt.
4, where germanium exhibits already a direct fundamental gap, independently of
strains, and the role silicon should be determined. Here, the c-direction seems
to be natural to form such an alloy, and the band folding in this direction can
introduce unpredicted effects. All those issues will be a subject of the planned
further investigations
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Chapter 6

Summary
This disertation is devoted to the band structure engineering of group IV atomic

systems. Of particular interest are well known semiconductors Si, Ge and also Sn
which itself can be semiconducting at special external conditions (strain) or when
admixed to Ge or Si can modify their properties. For consistency purposes also
carbon has been included in investigations. This work, on the one hand, contains a
rich collection of results which pretend to be systematic and in many cases original,
but on the other hand it is a kind of review of possible methods in the band
structure engineering. Four methods have been distinguished: strains, alloying,
structural changes and quantum confinement. Strains (Chpt. 2), when applied, lead
to a significant modification of the electronic structure, band gaps, and effective
masses. All those features have crucial meaning in applications. Strains are also
accessible in technologies, mainly via substrate induced strains, but also via chemical
pressure, when large grains of a material are surrounded by another material in a
coherent crystal lattice having certain intermediate crystal parameters. Alloying
(Chpt. 3), as it has been demonstrated on the example of the GeSn system, is
a very promissing method, which in particular leads to the indirect–direct band
transition. Various concepts appear in this context, like formation of ternary and
quaternary alloys, including strains, not isovalent doping, etc. The formation of
alternative crystal structures (Chpt. 4) is a method relatively less exploited, perhaps
because of technological difficulties. However, it is a known fact that such systems
exist and are known to have properties needed in applications, like eg. Ge in
wurtzite structure, exhibiting not only direct band gaps but also low effective messes.
Finally, the quantum confinement (Chpt. 5) is realized e.g. in quantum dots or
superstructures. In this case and additional ”external” (although built-in) potential
is present in the system and in the resulting quantum wells some quantum levels
appear which, when superimposed with the crystal electronic structure, lead to
a significant modification of the electronic structure. In this work an idea of the
Si–Ge digital alloy is introduced, which to the author best knowledge has never been
exploited so far. Here, only some preliminary results are presented, but the obtained
band structures and orbital compositions are very promising, and prove that the
idea should be subjected to further detailed investigations.

To summarize, this work forms a rich, systematic, consistent report on various
methods of electronic structure modification, on the example of the group IV
elements. A lot of results are original and other are compared and verified with the
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CHAPTER 6. SUMMARY

literature data, which enhances the credibility of the reported computational work.
An open way for further and very promising investigations is also defined.

A lot of results from Chpts. 4 and 5 are original and will be a subject of
publications in the nearest future.
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Appendix A

Chosen proofs and derivations
In this chapter will be presented chosen proofs and derivations used it certain

parts of the thesis above.

Elastic constants derivation
This derivation shows the path of transformations done to achieve elastic con-

stants. In general case, during change of Cartesian system, all of the matrix
components play it’s role in transformation. As it is shown in here [88]. Each
tensor row represent different cube wall, while each column sets the direction of
strain/stress (Fig. A.1).

ε12

ε13

ε11

ε22

ε23

ε21

ε32

ε33

ε31

Figure A.1: Interpretation of strain/stress tensor elements.

In the equations below, such notation is used, that strain and stress tensors are
represented by vectors made of independent tensor elements:

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⇒


ε1(ε11)
ε2(ε22)
ε3(ε33)

ε4(ε23 = ε32)
ε5(ε13 = ε31)
ε6(ε12 = ε21)


. (A.1)
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Such a conversion may be used, due to symmetry of strain/stress tensor, inde-
pendently of space group, which is also visible on Fig. A.1. This symmetry will
occur even in the case of unorthogonal lattice vectors.

All the desired elastic properties, in this part of work, are for pure group IV
materials, which crystallize in diamond structure (#227). The symmetry also affects
the stress tensor equation which, for diamond structure, is as follows:



σ1
σ2
σ3
σ4
σ5
σ6


=



c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 0c44





ε1
ε2
ε3
ε4
ε5
ε6


. (A.2)

For that specific space group, elastic tensor has only three non-zero independent
elements: c11, c12 and c44.

The matrix equation A.2 can be simply written as:

σi =
∑
j

cijεj (A.3)

Space group symmetry slightly simplifies the system of equations, from which
will be chosen ones to derive elastic constants, to four:


σ1 = c11ε1 + c12ε2 + c12ε3

σ2 = c12ε1 + c11ε2 + c12ε3

σ3 = c12ε1 + c12ε2 + c11ε3

σ4 = c44ε4.

(A.4)

From first equation of Eq. A.4 c11 is derived:

σ1 − c12(ε2 + ε3) = c11ε1

c11 = σ1 − c12(ε2 + ε3)
ε1

(A.5)

and from second equation c12:

σ2 = c12(ε1 + ε3) + ε2
σ1 − c12(ε2 + ε3)

ε1

c12(ε1 + ε3)− c12
(ε2 + ε3)ε2

ε1
= σ2 − σ1

ε2

ε1

c12(ε1 + ε2 −
(ε2 + ε3)ε2

ε1
) = σ2 − σ1

ε2

ε1

(A.6)

The equations above (Eq. A.5, A.6) along with fourth equation from Eq. A.4
gives general solution for diamond structure elastic constants in form:
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c11 = σ1

ε1
−

(σ2−σ1
ε2
ε1

)(ε2+ε3)
ε1(ε1+ε2)−ε2(ε2+ε3)

c12 =
σ2−σ1

ε2
ε1

ε1+ε2−
ε2(ε2+ε3)

ε1

c44 = σ4
ε4

(A.7)

Due to technical limitations of relaxation algorithms implemented in ABINIT
code, at least one lattice vector had to be orthogonal to the other vectors. Supercells
used in relaxation process are presented on figs. 2.2 and 2.3. Strains could be applied
only in lattice vectors directions. Therefore, the results obtained in relaxation
process do not include shear strain and stress.

To solve the equations A.7 there must be chosen certain systems, from which
data (stress / strain) will be taken. For calculation of c11 and c12 [100] straining
direction will be the most suitable, due to fact, that σ1 = σ2, ε1 = ε2 and σ4 = σ5 =
σ6 = ε4 = ε5 = ε6 = 0.

To calculate c44, shear strain must be inducted. Therefore, [110] or [111] straining
direction must be used here. Due to less complicated system, [110] direction was
chosen for further analysis. The c44 elastic constant is described as:

c44 = σ4

ε4
= σ5

ε5
= σ6

ε6
. (A.8)

In general, ε can be described by tangent of an angle in strained system. For
[110] direction, in plane lattice constants (a1 and a2) has different value due to shear
strain, which leads to ε6 in form:

ε6 = tan∆ϑ = tan(π/4− atan(a2

a1
)). (A.9)

Unfortunately, σ6 = 0 in this case as well (definition of supercell required it), but
it can be taken directly from here[88] in form:

σ6 = (σ2 − σ1)sin∆ϑcos∆ϑ. (A.10)
where ϑ is an angle of triangle made by supercell lattice vectors a1 and a2 (which
are orthogonal).

After a few trivial algebraic transformations, the final equations for calculating
elastic constants are as follow:

c11 = σ1
ε1
− ε1+ε3

ε1
σ3ε1−σ1ε3

2ε2
1−ε3(ε1+ε3)

c12 = σ3ε1−σ1ε3
2ε2

1−ε3(ε1+ε3)

c44 = (σ2 − σ1)sin2∆ϑ
(A.11)

It should be noted that elastic constants, as all of the associated theory, work
in linear regime, which is not apparent in higher strains. In fact, even in the case
of 1% of deformation, non-linearity is noticeable enough to give slightly different
results in compressive and tensile strains. Therefore, results given in chapter 2 are
arithmetic average of both types of strain.

71



APPENDIX A. CHOSEN PROOFS AND DERIVATIONS

Supercell to primitive cell transformation
The primitive cell of diamond structure can be defined through transformation

matrix from conventional cell as
a
′
1
a′2
a′3

 =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0


a1
a2
a3

 , (A.12)

while transformation from [100] and [110] strain direction supercell as
a
′
1
a′2
a′3

 =

 0.5 0.5 0
−0.5 0.5 0

0 0 1


a1
a2
a3

 , (A.13)

and for [111] as
a
′
1
a′2
a′3

 =

 0.5 0 0.5
−0.5 −0.5 0
−1 1 1


a1
a2
a3

 . (A.14)

Converting the supercell to primitive cell requires transformation matrix. Not
only to follow changes in lattice vectors but also the vectors defining atomic positions
in unit cell. Due to chosen relaxation algorithm they can vary as well. In case of
equilibrium systems the transformation is rather obvious but it can be useful as
testing object. Of higher importance are distorted structures. To avoid problems
with numerical representation of long decimal numbers, which occur concerning
little deformations, as an outcome only length and angles between lattice vectors
are given, instead of Cartesian representation.

Matrix multiplication is not commutative, thus there is a need to find inversions
of supercell matrices. As a result matrix from supercells to conventional cells are
given below. For [100] and [110] strain directions

a
′
1
a′2
a′3

 =

1 −1 0
1 1 0
0 0 1


a1
a2
a3

 , (A.15)

and for [111] direction
a
′
1
a′2
a′3

 =

 2/3 −2/3 −1/3
−2/3 −4/3 1/3
4/3 2/3 1/3


a1
a2
a3

 . (A.16)

With inversions given, the final transformations can be built. Multiplication
from conventional cell to primitive cell times supercell to conventional cell, in that
exact order, gives required matrix transformations. From [100] and [110] strain
directions to primitive cell
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a
′
1
a′2
a′3

 =

−0.25 0.25 0.5
0.25 0.25 0.5

0 0.5 0


a1
a2
a3

 , (A.17)

and for [111] directiona
′
1
a′2
a′3

 =

−0.75 0.25 0.5
−0.25 0.5 0.75

0 −0.25 0.25


a1
a2
a3

 . (A.18)
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LIST OF ACROMINS

List of acromins

ab initio a Latin term meaning "from the beginning", in scientific context
means "from first principles". 4, 12, 27, 35–37, 39, 45, 51, 55, ,
79

AM Alchemical Mixing. 37–40,
ansatz an educated guess or an additional assumption made to help

solve a problem, and which is later verified to be part of the
solution by its results.

BZ first Brillouin Zone. x, xi, 6, 10, 14, 16, 28, 36–40, 46, 55–57, ,
79

CB conduction band. 10, 18, 19, 28, 39,
CH crystal–field split–off holes. 47,
conventional cell conventional cell is the smallest unit cell that contains the same

point group symmetries as the overall lattice. 72,
CPA coherent potential approximation. 37,

DFT Density Functional Theory. ix, 3–6, 20, 28, 32, 34–36, 39–41,
DOS density of states. 57,

EOS equation of state. 32,

GGA Generalized Gradient Approximation. 4,

HGH Hartwigsen-Goedecker-Hutter pseudopotential. 11, 33, 38, 39,
HH heavy holes. x, xi, 18–20, 23, 26, 28, 47,
HMA highly mismatched alloys. 37, 38,

KKR Korringa–Kohn–Rostoker method. 37,

LDA Local Density Approximation. ix, 3, 10, 14, 20, 39, 57,
LDOS local density of states.
LH light holes. x, xi, 18–20, 23, 26, 28, 47,

mBJLDA modified Becke–Johnson Local Density Approximation. x, 11,
20, 33, 39, 46, 57,

PAW Projector Augmented Wave method. 5, 10, 11, 13, 32, 34, 39,
46, 57,
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LIST OF ACROMINS

PBE Perdew, Burke, Ernzerhof functional.
primitive cell smallest unit cell that contain only one lattice point. 38, 40, 72,

SC self–consistent. 39,
SO spin–orbit interaction. 19, 20, 46, 47,
SQS Special Qausirandom Structures. 35, 36, 55,

TB tight-binding. 27,

VB valence band. 10, 18, 28, 34,
VBM valence band maximum. 12, 19,
VCA virtual crystal approximation. 37,

XC exchange–correlation. 3, 4, 11, 33, 57,
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LIST OF SYMBOLS

List of symbols
εind constrained change of length relative to equilibrium length.
εopt change of length in relaxed direction relative to equilibrium length.

ν Poisson’s ratio.

σ stress induced by straining material.

Etot Total energy of system.
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List of URL
VESTA – visualization program http://www.jp-minerals.org/vesta/en/

ABINIT – ab initio program https://www.abinit.org/

VASP – ab initio program https://www.vasp.at/

Bilbao – online crystallographic server https://www.cryst.ehu.es/

WCNS – Wrocław Centre of Networking and Supercomputing https://www.wcss.pl/en/

SeeK-path – online tool for BZ visualization
https://www.materialscloud.org/work/tools/seekpath

Cyfronet AGH – Academic Computer Centre Cyfronet AGH
https://www.cyfronet.krakow.pl/en/4421,main.html

79

http://www.jp-minerals.org/vesta/en/
https://www.abinit.org/
https://www.vasp.at/
https://www.cryst.ehu.es/
https://www.wcss.pl/en/
https://www.materialscloud.org/work/tools/seekpath
https://www.cyfronet.krakow.pl/en/4421,main.html

	Acknowledgments
	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Band structure engineering
	Theoretical background

	Strains
	Computational method
	Structural and elastic properties
	Electronic structure
	Effective masses and related carriers mobility
	Deformation potentials

	Results
	Structural and elastic properties
	Band structures
	Deformation potentials
	Effective masses
	Charge carriers mobility
	Precision and accuracy of the results


	Alloying
	Computational method
	Results
	Mixing parameter
	AM vs. supercell band structure


	Alternative crystal structures
	Computational method
	Results
	Structural and elastic properties
	Electronic structure


	Spacial Confinement
	Computational method
	Results
	Band structure


	Summary
	Bibliography
	Chosen proofs and derivations
	List of acromins
	List of symbols
	List of URL

