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Don't regret, never regret

that you could have done something

in your life and you didn't.

You didn't, because you couldn't.

STANIS�AW LEM
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Chapter 1

Introduction

Stanisªaw Lem is a writer of science �ction novels that inspire me. The �ction described

in his books is slowly becoming the reality that surrounds us. In 1951, in one of his

�rst novels "The Astronauts" [161], he wrote about a network connecting machines that

worked together and thanks to that they were much more e�cient. This idea can be

compared to the Internet, which was created at the turn of the 1960s. In 1955, in the

novel "The Magellanic Cloud" [162], Lem equipped the crew of the spaceship "Gea" with

a "crystal record" medium, on which any information can be written. Today, it can be

perceived as �oppy disks, CDs, or �ash drives, which were created many years later. In

1961, Lem wrote in the novel "Return from the stars" about a kind of book that today

can be called an e-book reader. "The books were crystals with recorded contents. They

could be read with the aid of an opton, which was similar to a book but had only one page

between the covers. At a touch, successive pages of the text appeared on it." [164]. In

1964, in the story "Tale of the Computer That Fought a Dragon" of the novel "Mortal

Engines" [163], the King Poleander Partobon, the ruler of Cyberia, asks the "machine"

what to do to defeat the dragon. The vision reminds me quite strongly of current systems

or machines that help humans make decisions. Not necessarily a way to get rid of the

dragon, but something more mundane.

The world of science has also had visions that machines might one day equal humans

abilities. In 1950, Alan Turing began his work with the sentence, "I PROPOSE to

consider the question, 'Can machines think?'" [251]. His work describes the proposed

Turing test, also called the "Imitation Game". The goal of this test was to experimentally

obtain an answer to the question posed above. Di�culties in clearly de�ning the meaning

of the word "thinking" resulted in an unwritten change of this question to "Can machines

do what we as thinking entities can do?" [107].

3



4 Chapter 1 Introduction

Time has shown that the answer to the second question is partially a�rmative. Present

technologies based on arti�cial intelligence systems are applied in many areas of human

life. It helps browsing various web resources with intelligent search engines [125]. It

makes easier �nancial market analysis [45], which helps in making some decisions in the

�nancial sector. It can help us to choose or suggest an interesting o�er using the product

recommendation system [76]. The route to work can be determined and planned to avoid

the estimated tra�c jams on the way [169]. Also our email inboxes have sophisticated

systems to �lter incoming messages [15]. One can say that some possibilities provided to

us by these technologies become necessary for normal functioning in the modern world.

Sometimes machines or applications surpass human capabilities in certain activities.

There are many science �elds that support the hypothesis of machines' superiority over

humans in selected life areas. One of them is machine learning [188]. It is a certain

sub�eld of arti�cial intelligence. The dissertation will focus on one branch of machine

learning - classi�cation [270]. In simple words, the classi�cation task focuses on solving

the problem of matching objects with labels [7]. Objects have a description in the form

of attributes and assigned labels to denote class membership. Classi�ers, on the basis of

previous observations, try to model the dependence of objects' membership [27]. There

are many di�erent classi�cation systems dedicated to special related problems. One such

problem is the classi�cation of imbalanced data.

Most of the data usually does not have an even class distribution. However, the prob-

lem arises when these di�erences are signi�cant [79]. This phenomenon is called data

imbalance [140]. Most often, this is associated with binary problems, but it also occurs

in multiclass problems [263]. For binary classi�cation problems, the majority class, the

dominant one, is called negative and the minority class is called positive. In practice, the

highly unequal distribution causes standard classi�ers to overclassify objects as major-

ity [248]. This results in a poor classi�cation ability of positive samples. In addition, a

major problem that accompanies this type of data is conducting a robust evaluation [40].

Data imbalance a�ects common metrics in a highly negative way. Even the aggregate

measures that are generally used do not seem to be the ideal solution [106].

It is worth noting that in imbalanced data, most often the minority class has a very high

misclassi�cation cost [112]. A well illustrative example would be the COVID-19 virus

diagnosis system. Healthy people, which are the majority set, do not create any threat

and will not spread the virus. The sick persons are in a signi�cant minority. They are

much more important to identify. The standard classi�er used in such a system will

get more examples of healthy people, thus it may bias towards the majority class - a

diagnosis as a patient without the virus. Applications that face these di�culties are

fault detection [289], anomaly detection [176], medical diagnosis [265], spam �ltering [2]
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to enumerate only a few. Imbalance can be nulli�ed using preprocessing methods to

balance the data or using algorithms that have special heuristics to improve minority

class classi�cation [218].

In recent times, there has been a continuous growth in the amount of data produced by

people. One of the reasons behind this is the extensive usage of information technology

in many circumstances. This is fostered by social media, VOD services, widespread voice

and text communication, mobile devices, smartwatches, smartbands, which often record

our activities and basic life functions. All of these contribute to the production and

consumption of various types of data in large amounts. Research in the project "DATA

NEVER SLEEPS 6.0" 1 by the DOMO company estimates that in 2020 "for every person

on earth, 1.7 MB of data will be created every second". The world is recently confronting

the COVID-19 pandemic, which is forcing even more people to work, study, or handle

daily activities remotely. This additionally increases the estimated values.

To cope with this situation, the term big data was introduced to describe large, variable,

and diverse datasets that are inherently di�cult to process and analyze, but the knowl-

edge that can be extracted from them is valuable [274]. The 3V model was proposed

de�ning Big data as [199] [158]:

� Volume � large amount of data.

� Velocity � high speed of data processing.

� Variety � diversity of data.

Later, more characteristics have been added as Veracity or Value. One of the examples

for this type of data are streams. In machine learning, data streams are rapidly incoming

high volume pieces of information. Theoretically, the data stream can be in�nite [85].

One of the main problems that arises in the classi�cation of this type of data is the

occurrence of concept drift [88]. It also known as non-stationary data stream. This

means that the incoming data starts to make some �uctuations that signi�cantly a�ect

the predictive performance of the trained classi�cation models [26]. The non-stationary

data stream problem can be well described using the recommendation system as an

example. This kind of system provides products or services to users that are possibly

interesting to them. Prediction is mainly based on the history of buying or browsing the

web. Users' interest in products and services changes for reasons such as current needs,

prevailing trends, user age, etc. Building a model once and expecting it to be reliable in

the future is wrong. Therefore, the model of the recommendation system, which provides

predicted o�ers, must be able to adapt to the changing user's needs.
1https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
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Non-stationary data stream classi�cation requires special treatment. It is important

to identify the concept drift and counteract this phenomenon [175]. Drifts cause some

disturbances resulting in outdated models. To prevent this, di�erent strategies can be

employed - drift detection [13] or incremental learning [74]. There are many additional

di�culties in data stream classi�cation. Some work deals with the problem of label

availability [146]. Other work focuses on the problem of limitations in memory and

computational resources [147]. It means that special attention should be paid to ensure

the ability of algorithms to process the data relatively quickly along with maintaining

certain memory constraints [208]. At the same time, the data stream is a very valuable

source of information that should not be excluded due to its demanding nature [85].

One well-known solution to improve the classi�cation quality of di�cult data is forming

classi�er ensembles [286]. The ensemble is usually composed of several "weak learn-

ers". However, their combined decision greatly gains on the quality [252]. This happens

due to the good generalization ability of the whole committee, which has an advantage

over one "strong learner" [294]. For proper performance, it is necessary to ensure that

the models are well diversi�ed and the sophisticated combination rule is designed [67].

Classi�er committees perform very e�ectively for solving di�cult problems such as non-

stationary drifting streams [98, 143] and strongly imbalanced data [86]. Looking from

the practical side, approaches based on ensembles of classi�ers can be found in many

applications such as: spam detection [173], face recognition [177], cancer diagnosis [151],

fault diagnosis [124], text categorization [203].

Imbalanced data combined with streams signi�cantly increases the di�culty of the prob-

lem [35]. Most often the classi�cation of data streams and imbalanced data is considered

separately. The conducted literature study shows that there are few works that deal with

the problem of classifying data streams that have an imbalanced class distribution [160].

For non-stationary imbalanced data streams, drift can also imply variation in the imbal-

ance ratio, which can be called dynamic imbalanced data [79]. A very special case of such

a change is the temporary or complete disappearance of objects from one of the classes.

For such a circumstance, the classi�cation method based on one-class classi�ers seems

to be a good proposition [75]. It is hard to �nd solutions that use one-class classi�ers

for this type of problem. When data is imbalanced, a widespread solution is to use data

preprocessing [93]. It is worth noting that most approaches for preprocessing imbalanced

data streams do not rely on data accumulation from previous chunks, but use prototype

selection or arti�cial sample generation methods [93]. Therefore, in the dissertation I will

focus on proposing new approaches to imbalanced data stream classi�cation that employ

one-class classi�ers and data preprocessing methods based on data accumulation, be-

cause there are no, or very few similar solutions. In relation to the above, a research

hypothesis was formulated:
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One may design ensemble methods that use data sampling techniques and one-

class classi�ers, which can outperform state-of-the-art ensemble algorithms

for imbalanced data streams classi�cation.

To validate the research hypothesis stated above, the following research objectives have

been formulated:

� Designing a one-class classi�ers ensemble method to solve the problem of imbalanced

data stream classi�cation.

� Extending the one-class classi�ers ensemble method by introducing an improved

weighted decision rule for better adaptation to imbalanced data streams.

� Proposing a classi�er for imbalanced data streams with hybrid data accumulation

sampling technique.

� Upgrading the classi�er with data accumulation a hybrid sampling to a weighted

bagging ensemble for imbalanced data stream classi�cation.

� Improving the imbalanced data stream classi�er with hybrid data accumulation sam-

pling to ensemble method with concept drift detector.

� Designing an ensemble method for imbalanced data stream classi�cation that com-

bines hybrid data accumulation sampling and one-class classi�ers.

The structure of the dissertation will be outlined below. Chapter 2 will present topics

related to the dissertation. Basic concepts associated with machine learning will be dis-

cussed and imbalanced as well as streaming data classi�cation task will be described in

more details. In chapter 3 methods for classifying imbalanced data streams based on

building ensembles of one-class classi�ers will be proposed. Two di�erent approaches

will be presented and evaluated along with a comparative analysis. Chapter 4 focuses

on methods that use hybrid data preprocessing techniques to perform imbalanced data

stream classi�cation. Four di�erent methods will be proposed that attempt to per-

form semi-synthetic oversampling based on collected samples from previous data chunks.

Chapter 5 summarizes this work by answering the previously stated research objectives.





Chapter 2

Selected topics of pattern

classi�cation

This chapter focuses on introducing the topic of this dissertation. A variety of is-

sues related to multiple domains of machine learning are discussed as well as basic

concepts related to the classi�cation task. Then, topics such as ensemble learning,

one-class classi�cation, imbalanced data, and data stream learning are presented,

along with a description of selected methods that address these problems.

2.1 Machine learning

Machine learning is an arti�cial intelligence branch that focuses on creating systems

that use prior knowledge to improve, develop, and achieve certain goals without being

directly programmed to accomplish them. There are several di�erent de�nitions for

machine learning. In 1959, Arthur Samuel de�ned machine learning as a circumstance

where "A computer can be programmed so that it will learn to play a better game of

checkers than can be played by the person who wrote the program." [222]. Tom Mitchell

proposed it as �A computer program is said to learn from experience (E) with respect

to some class of tasks (T ) and performance measure (P ), if its performance at tasks in

T , as measured by P , improves with experience E� [188]. Ethem Alpaydin de�ned it

as "Programming computers to optimize a performance criterion using example data or

experience" [7]. "Machine learning is an area of arti�cial intelligence concerned with

the study of computer algorithms that improve automatically through experience. In

practice, this involves creating programs that optimize a performance criterion through

the analysis of data" was proposed by Martin Sewell [229]. In other words, machine

9



10 Chapter 2 Selected topics of pattern classi�cation

learning algorithms can produce a program capable of solving a problem without using

a directly programmed solution, but based on the knowledge gained.

It may be assumed that machine learning algorithms try to mimic in some degree the

behavior of human beings who, through learning, acquire knowledge and information

as input data, try to achieve a certain goal [188]. One such goal could be pattern

classi�cation, which our brain solves many times in a day. By looking at the objects

around us, we can very easily identify what we see, name it, and place it into some

predetermined category. An example would be an apple and a pear. Each apple and

pear is unique in its way. It has a di�erent shade or color of skin, size, shape, freshness,

and aroma, but still, without precise instructions, we can distinguish between these

two fruits. Similarly, the machine, without the exact code of the program that solves

the problem [242], will be able to distinguish between the two fruits based on previous

examples of apples and pears. Most importantly, the good model should be able to

recognize an apple or a pear that it has never seen before.

When face a new problem, one of the good ideas is to work on problem identi�cation

and de�nition. One of the optimal ways to solve such tasks is to build models which,

collecting essential information from the data, can work out their own methodology to

solve a certain task [159]. Machine learning deals with various approaches to solve these

types of problems. Four di�erent machine learning schemes can be distinguished: super-

vised, unsupervised, semi-supervised, or reinforcement learning. Each of these sub�elds

is highly dependent on the characteristics of the data describing the issue under consider-

ation and the expected result that the program should obtain [7]. At the same time, each

of these approaches has completely di�erent assumptions. Machine learning involves the

technological memorization of certain patterns and behaviors that a machine has already

"experienced" in the past [121]. In addition, it also makes it possible to analyze new

data and look for solutions that have worked in other situations previously known to the

machine.

Supervised learning is one of the machine learning sub�elds, which deals with issues

where having input variables (training data) and a certain output variable, it is possible

to create a mapping function from input to output [27]. Instead of manually setting

precise rules for performing prediction, supervised machine learning relies on using a

certain set of examples [7]. These examples should have correct outcome values for each

of them. These data could be used to "train" a method to automatically predict the

answer in both the examples used for learning and other examples not previously known.

The user who enters the output data is a kind of supervisor who directs the learning

algorithm to correct answers so that eventually the algorithm can return them on its



Section 2.1 � Machine learning 11

own [270]. Two subcategories of supervised learning can be distinguished - classi�ca-

tion and regression. The former focuses on matching objects to classes based on given

data [3]. Having learning data, the algorithm is able to build a certain model describing

the dependencies of objects from particular classes and is able to distinguish them. In

addition, to teach the prediction of correct labels in a classi�cation problem, supervised

learning can also be used in situations where the predicted outcome is a number. The

latter assumes that the output data describes not the membership of objects to classes,

but certain values [77]. Formally, regression is a statistical method that allows estimating

the conditional expected value of a random variable, called the explained variable. This

is done by building a model or function that describes how the expected value of the

explained variable depends on the explanatory variables - the input data.

Unsupervised learning uses data that does not have labels describing the class mem-

bership of objects [109]. The system examines the data and tries to �nd some regularity

inside. The main task that the algorithm wants to perform is to identify patterns and

correlations among the data samples [101]. Looking at this problem from a broader

perspective, unsupervised learning resembles the way humans perceive the world around

them. We use intuition and experience to connect some events into groups. As we gain

more experience, our ability to better categorize or identify certain concepts grows. Ex-

perience gained by machines is de�ned by the amount of input data. This is especially

useful for analyzing very large databases, among which it is di�cult for a human to �nd

dependencies on their own.

Semi-supervised learning combines the previous two schemes of learning. Usually,

data that is produced during various processes do not have proper labels, or these la-

bels are incomplete [293]. The labeling process itself can be quite costly and human

resource intensive [47]. For this reason, one solution is to use a semi-supervised learning

approach that solves tasks with both labeled data inputs (containing corresponding out-

puts, speci�c examples) and unlabeled data inputs (requiring mapping to the outputs,

�nding answers) [297]. Based on the data described by the labels and using residual

analysis of the unlabeled data by unsupervised learning methods or other techniques,

the algorithm attempts to �nd appropriate relationships among the samples. There are

also self-labeling techniques that allow to automatically �ll in missing labels in processed

datasets [99]. Active learning is a very special case of semi-supervised learning in machine

learning [4]. This is very useful when the cost of labeling is high, or for time reasons it

is not possible to label all instances. The method for active learning must indicate for

which samples to take labels so that it selects only those data that have high value for

solving the problem. The main idea is that if a machine learning algorithm can select the

data on which it wants to build a predictive model, it can perform better than traditional

methods with much less data used for training [228].
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Reinforcement learning is a task which was initially formulated by Richard Sut-

ton [212]. It is when a system operates in an unknown environment. There is a lack of

both speci�c input and output data. The only information the learning machine receives

is a so-called reinforcement signal. This signal can be either positive, which can be de-

scribed as a reward, or negative, which can be described as a punishment [127]. The

machine receives some ready-made set of allowed actions, rules, and statements. Acting

within their framework, it analyzes and observes their e�ects. It uses the rules in such

a way as to achieve the desired e�ect. This method can be otherwise called the trial-

and-error method, as the system makes certain decisions that are evaluated later [266].

An example would be playing a new game where we do not know the exact rules, but

we know how to make our moves. After the game is over, we determine whether we won

or lost. We come out better in subsequent games because we start to build our own

strategy based on the results of previous tries.

2.2 Classi�cation

Classi�cation is one of the tasks in supervised learning, where the output variable is

a label with the class name of a given object [7]. The topic of classi�cation will be

discussed much more extensively, as it is the main problem that will be considered in

the dissertation. Classi�ers are algorithms that, based on training data, create models

capable of indicating the class membership of as yet unrecognized objects. They learn the

structure of a data set containing examples separated into groups with labels. Then, the

model receives unseen data and tries to classify new examples into appropriate classes [3].

Sometimes this process can be made in such a way that several sets of classi�cation rules

are generated, and then the optimization process selects the ones that best meet the

posed criterion [18]. Denis Michie de�nes classi�cation as "a learning system that uses

sample data (the training set) to generate an updated basis for improved classi�cation

of subsequent data from the same source" [182]. Although this de�nition is mainly

concerned with the classi�cation problem it is also considered by the author as a good

de�nition of machine learning.

The mathematical formulation of the classi�cation [270] could be presented as follows.

Let us denote X as a feature space and x as a feature vector, so an example is described

by attribute values. Feature set having d attributes:
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x =



x(1)

x(2)

. . .

x(d)


, and x ∈ X = X (1) ×X (2) × · · · × X (d) (2.1)

An essential fact is that most of the data involved in solving a classi�cation task may have

attributes that consist of continuous numerical values. However, it is worth noting that

it should not be explicitly assumed that all attributes have numeric values. One should

still distinguish between nominal and categorical attributes, which are those that consist

of a set of repeated values. Such data should be processed using selected approaches

that transform from categorical to binary data or numerical data. Therefore, it can be

assumed that the feature vector belongs to the set of real numbers:

x ∈ X ⊆ Rd (2.2)

As mentioned earlier, the main task of classi�cation is to �nd the membership of objects

to given classes speci�ed by the feature vector. These classes are described by a certain

set of labels, which can be denoted as M = {1, . . . ,M}. In a formal way classi�cation

is presented as a function Ψ where X is its domain andM � codomain.

Ψ : X →M (2.3)

The main goal that the learning algorithm tries to achieve when training a new model

is to minimize the cost of an incorrect decision. This leads to the introduction of a loss

function to be minimized, but this requires from the user the de�nition of an associated

loss function. Since the user usually cannot formulate this correctly other alternate

criteria are used. This most often leads to the use of zero-one evaluations and error

cost minimization based on classi�cation quality metrics. Typically, the decision made

by the classi�er is primarily based on the supports that can be returned by the model.

Canonical model of the pattern classi�cation assumes that there is a set of discriminative

functions. These are a type of functions that determine the support of a given class, which

can be expressed using distance measure or probability, depending on which classi�er is

used. For example, it could be the output of an arti�cial neural network. Making a

�nal classi�cation decision requires the use of a function indicating maximum from the

resulting model response, or a support set:
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Ψ(x) = max
k∈M

Fk(x) (2.4)

Classi�cation issues

The classi�cation aims to make the predictive performance of the model as good as

possible. A classi�er learns patterns and predicts unknown sample labels with the highest

predictive performance [27]. This process focuses, among other things, on optimizing a

chosen performance metric. Usually as the accuracy or classi�cation error are used as the

learning criterion. It should be noted that three error components could be distinguished.

The �rst one called bias error describes how much the algorithm overgeneralizes its

predictions. This means that a model that generalizes too much may be able to miss

the relevant relations between features and target outputs [65]. On the other hand,

important is model variance error, which determines how well the model is �tted to

the data that was used for learning. The third error that should also be mentioned is

the variance of the irreducible error in the data. This error is mainly related to the

irregularities that occur in the data such as missing values, labels noise, feature noise,

etc. It is an error that cannot be corrected by optimizing the model. These three errors

contribute to one of the most important problems that lie behind supervised learning as

well as classi�cation, called bias-variance dilemma [64].

Another major problem is over�tting. It is a phenomenon that occurs when a model is

too complex [223]. This problem may be magni�ed both when there is a large variance in

the training data and when the model is too �exible. Models should be built according

to the principle of Ockham's razor � "Plurality must never be posited without necessity".

When the model's degrees of freedom exceeds the data's information content, parameter

selection becomes mostly a coincidence. In the classi�cation task, over�tted models can

predict the learning data very well, but they will perform worse when applied to data

that they have not encountered during learning. This means that the model starts to �t

random errors in the training data gaining greater accuracy for that data, and thus its

generalization ability fades away [171]. Accuracy is the concept of measuring how well a

model has learned to solve a speci�c task. It will determine the ability to solve already

known tasks, but generalization will indicate the ability to solve new tasks similar to

those it knows. It is not possible to identify one best solution, it is always some trade-o�

between the data variance and bias [31].

There are theoretical studies dealing with this issue [259], but from the point of view of

practical applications, it is dropped to the stage of experimental evaluation. An example

way to eliminate over�tting is to use a cross-validation procedure. It involves dividing



Section 2.2 � Classi�cation 15

the data sample into subsets, performing an analysis on the learning set, and validating

the analysis on the test set. The purpose of cross-validation is to test the model's ability

to predict new data that was not used to estimate it, to determine whether over�tting

will be a problem for the model [282]. In situations where cross-validation indicates very

poor results despite the model learning process being performed correctly, it may also

be a case of the model under�tting. This occurs when the learned model is too simple

(not enough observations or features) and therefore does not learn well from the training

data.

Another issue is the classi�cation of objects in high-dimensional spaces, in which each

object is described by tens, hundreds, or even thousands of attributes. This phenomenon

is called the curse of dimensionality [257]. The term was probably used �rst by Richard

E. Bellman [20] in the context of optimization over a large number of variables. Such

multidimensional sets are encountered increasingly frequently in real-world datasets. Ac-

cording to the Hughes phenomenon [118], when the number of dimensions is increased

while keeping the sample size unchanged, the model performance decreases signi�cantly.

It results from the fact that in a multidimensional space, the similarity of objects in

this space comes closer to each other [68]. It means that to properly divide the set into

classes, one needs much more objects. Meeting this condition is often di�cult or even

impossible, because there is no unlimited set of data. To ensure the same classi�cation

accuracy as in the case of space with a smaller dimension, the number of samples, i.e.,

the size of the data, must grow exponentially as the dimension of the feature space in-

creases [27]. In addition to the need for increasing data, the number of possible feature

variants grows exponentially, which signi�cantly increases the computational complexity

of algorithms.

Due to the curse of dimensionality, correct classi�cation of objects may prove to be com-

pletely impossible if one decided to use the full set of attributes. For this reason, e�orts

are made to reduce the dimensionality of the feature space by using various methods of

feature selection and information reduction in the classi�cation task [129]. It is worth

noting that in most cases, objects are generally well-de�ned using only a certain subset

of attributes. However, it must be taken into account that while reducing the dimen-

sions, i.e., the number of features taken into consideration during classi�cation, some

information may be lost [34]. Nevertheless, the problem becomes correct identi�cation

of such a subset of attributes, which will enable the classi�cation algorithm to correctly

recognize objects and assign them to appropriate classes.

Such a subset of attributes may be created by selecting a certain number of attributes

from all the possessed features, or by extraction, that is in short, creating new attributes,

but based on a certain set of existing attributes.
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� Feature selection

The goal of feature selection is to choose from all available features such a subset

of attributes, which contains only those ones that are signi�cant from the point

of view of the problem under consideration [42]. In other words, selection can be

understood as removing redundant features that are irrelevant to the speci�c task.

The mentioned subset should contain the minimum number of features that have

the greatest impact on the quality of the model, that is, on the highest possible

classi�cation accuracy. In this way, the discussed irrelevant and redundant features

are discarded.

x =



x(1)

x(2)

. . .

x(d)


→ x̄ =



x̄(1)

x̄(2)

. . .

x̄(d′)


, d′ < d (2.5)

� Feature extraction

It consists in determining completely new attributes, however, those that are func-

tions of the original attributes, i.e., they depend on the features that the objects

have [129]. This allows to signi�cantly reduce the dimensionality of the problem

and to cope with the curse of dimensionality. Very often it also turns out that a

smaller number of new attributes contains almost the same amount of information

about objects as a much larger number of original attributes. Additionally, the

classi�cation algorithm is far less prone to over�tting.

x =



x(1)

x(2)

. . .

x(d)


→ x̄ =



x′(1)

x′(2)

. . .

x′(d
′)


= f





x(1)

x(2)

. . .

x(d)




, d′ < d (2.6)

Selected classi�cation algorithms

Several types of classi�cation models can be speci�ed, which build their predictive ability

in di�erent ways depending on their main assumptions. There are many classi�ers, but

the description will be limited to a few that will be used further in the dissertation

during:
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� Support vector machine

It is one of the most popular kernel machine methods proposed by Vapnik [256]. It

is often used because of several advantages [7], such as Vapnik's principle, that the

actual problem should be solved before the complex problem or the asset of support

vectors which lie close to the boundary and some information can be obtained from

them in classi�cation such as generalization error or the model parameter. Fig. 2.1

presents the basic SVM model in binary classi�cation. The main task is to �nd

optimal separating hyperplane with the maximum margin which divides examples

into two sets [272].

Figure 2.1: SVM model in the binary classi�cation

� Naïve Bayes classi�er

A Naïve Bayes classi�er can be used to determine the probability of classes based

on a set of patterns [213]. It bases its main assumption on the fact that the

variables describing the features are conditionally independent of each other, given

a class. This idea is built on the Bayesian principle. Despite its naive nature, this

method has some classi�cation ability. The most common model using this idea is

the Gaussian Naïve Bayes [120]. The model introduces some a priori assumptions

that the data distribution is close to a Gaussian distribution. Fig. 2.2 shows a

simpli�ed diagram of the classi�cation process using the Naive Gaussian Bayes

algorithm. The black point represents the sample to be classi�ed. Red represents

class 1 and blue represents class 2. The hatched areas indicate the probability

distribution of the class, and the dashed line ending with a cross at the bottom

indicates the average value. The distance between the sample and this point is the
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z-score, which is the value that determines the probability of the sample belonging

to the given class.

Figure 2.2: Guassian Naïve Bayes classi�cation diagram

� Decision tree

A decision tree is a nonparametric, hierarchical model beginning at the root and

�nishing at the leaf. Each decision node contains test function which is applied

on the input data, and the output as branches of discrete values. The lower level

has the next decision node or the leaf terminating the algorithm by giving decision

or the class label. The decision tree breaks down complex problem into a set of

simple rules IF-THEN which is easy to interpret [27]. An example would be a tree

deciding whether to go play golf. In Fig. 2.3, you can see that the data has 3 features

that in�uence the decision � Outlook, Windy, and Humidity. Depending on what

weather conditions are currently met, the model will lead the user through one of

the paths. At the end of each is a decision which is a class label. The most popular

trees used in the classi�cation are C4.5 [207] and Classi�cation And Regression

Tree (CART) [30].

� Multi-layer perceptron

This model includes many individual perceptrons in each the input is multiplied

by weights and the output is the classi�ed data. The �rst perceptron proposed

by Rosenblatt [215] checks the threshold and assign the output as 1 or −1 using

linear function. The function can be also nonlinear, e.g. Heaviside step function,

Continuous Log-Sigmoid function, or Continuous Tan-Sigmoid function [270]. MLP

has at least 3 layers (Fig. 2.4) where the output of the �rst perceptrons' layer is

the input of the next one, and the perceptrons are not connected within one layer.
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Figure 2.3: Decision tree model example on weather data

Input, hidden and output layers contain information about weights and try to

minimize the error [110].

Figure 2.4: Multi layer perceptron structure diagram

� Minimum distance classi�ers

These are models that mainly use pattern distance during classi�cation. The best

known is the k nearest neighbors (KNN) classi�cation algorithm [55]. It is charac-

terized by two particular features - non-parametric and "lazy". The former means

that this algorithm does not assume in advance that it is dealing with a certain

distribution of data. This is a very useful assumption, because in the real world,

data are often not linearly separable or do not map very well to a normal or any
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other distribution. "Lazy", on the other hand, means that the algorithm does not

build a generalizable model of the problem in the learning phase. One can say that

learning is deferred until a pattern is fed into the model that needs to be classi�ed.

In the Fig. 2.5 is presented an example of classi�cation using 1-NN or 3-NN version

of this model. Depending on the k neighbor number, the �nal decision may di�er.

Figure 2.5: K nearest neighbor model example

2.3 One-class classi�ers

The main idea of the one-class classi�cation allows learning a new model using data

without counterexamples or when obtaining them involves a high cost. It means that

the classi�er can generate a model based on objects from only one class. An example of

such an application is the system to analyze the e�ciency of the ship's engine [292]. The

designed system should have the ability to show a certain probability of malfunction.

The moment of failure and the acquisition of data that will determine such a state may

be associated with substantial losses that will have to be su�ered. Applying a one-class

classi�er to this type of problem enables designing such a system without capturing

failure events. One-class classi�ers are also suitable for anomaly detection [75]. Such a

problem focuses on detecting very rare observations or events that are not speci�ed at the

beginning of the learning process but di�er signi�cantly from most known observations.

Among the one-class classi�cation methods, One-Class Support Vector Machine (OCSVM )

has become the most popular approach. One of the �rst ideas is Support Vector Domain

Description [245]. It is an algorithm that creates a hypersphere around the objects from

one class and tries to close all instances in the smallest area. Then Scholkopf et al. [226]

proposed to push the decision limit a little further away from the samples. This method
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allows for di�erent kernel transformations. Fa Zhu et al. [296] proposed a new strategy

for weighted one-class support vector machine. The idea is to increase the weight of the

samples closer to the center of the training dataset and reduce the weight of the more

distant ones. Xing et al. [277] presented the robust sparse coding based on cross entropy

and logarithmic penalty function (RSCCLPF) for OCSVM classi�cation problems.

The general idea of OCSVM is similar to the SVM classi�er, but it is transformed to the

one-class hypersphere minimization. In the basic concept, the SVM classi�er algorithm

tries to solve the following problem:

minimize
w,b,ζ

‖w‖2

2
+ C

ns∑
i=1

ζi

subject to yi(wTφ(xi) + b) ≥ 1− ζi,

ζi ≥ 0, i = 1, ..., ns

(2.7)

where xi ∈ Rp, is training object in binary problem, y ∈ {1,−1}ns is labels vector and

(wTφ(xi) + b) is the separating hyperplane. ζi is distance of samples outside the correct

boundary and C de�nes the strength of this penalty. When this minimization problem

is solved with Lagrange multipliers, the decision function for a data sample x becomes:

f(x) = sgn(

ns∑
i=1

αiyiKr(x, xi) + b) (2.8)

where K(x, xi) is a kernel function and αi is the dual coe�cients. The OCSVM method

proposed by Scholkopf et al. [225] try to solve:

minimize
w, ξi, ρ

‖w‖2

2
+

1

νns

ns∑
i=1

ξi − ρ

subject to (w · φ(xi)) ≥ ρ− ξi for all i = 1, . . . , ns

ξi ≥ 0 for all i = 1, . . . , ns

(2.9)

where ν de�nes an upper bound on the fraction of outliers and lower bound on the

number of training examples used as Support Vector. After solving above equation

using Lagrange multipliers the OCSVM decision function is equal to:
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f(x) =

ns∑
i=1

αiKr(x, xi)− ρ (2.10)

Such a function de�nes the distances of samples to the model decision regions. Its

negative value is for objects outside the classi�cation borders, and positive value for an

object inside:

ψ(x) = sgn(f(x)) (2.11)

However, it is worth noting that there are also proposals based on other classi�ers.

Khan et al. [130] described and compared the implementations of di�erent varieties

of one-class nearest neighbors classi�ers. The authors distinguished four types of this

method. The 11NN, which looks for the �rst pattern belonging to the class, and then

calculates the distance to the �rst nearest neighbors of this pattern. Variant J1NN,

which works similarly to the previous one, except that several patterns are searched and

the average value is calculated. Approach 1KNN, where only one pattern is searched,

but the distance to several neighbors is measured. The next is JKNNN, which combines

rule from both previous and searches for multiple patterns and multiple neighbors. A

certain threshold determines whether the classi�ed sample belongs to a given class or

is an outlier based on the calculated distances. Another idea is to use decision trees

for one-class classi�cation. The one-class decision tree [119] tries to �nd divisions in all

features where objects from one class are located. There are also some methods based on

one-class random forests [60]. Ru� et al. [220] have proposed an idea that uses arti�cial

neural networks with some assumptions of the SVDD [247]. The data is transformed to

be in the smallest possible hyperspherical area.

2.4 Ensemble learning

It is di�cult to determine the exact genesis of the ensemble learning or ensemble decision.

The origins of this idea date to very distant times, where methods of decision making at

the state level were used. Democracy, which in the literal translation is the people' rule,

can be used as one of the examples. It is a system established in ancient Greece, and

more speci�cally in Athens during the reign of Solon, which provides that the supreme

power in the state to be carried out by all citizens who have political rights. Another

real-world example of the ensemble decision making can be found in court. A jury is
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an institution of justice found most commonly in countries with a common law system.

Jury is composed of ordinary citizens, not professional judges with expertise in law.

Adjudication is based on answers (a�rmative or negative) to questions posed by the

professional judge presiding over the trial. On the correctness of these ideas, Marie Jean

Antoine Nicolas de Caritat, Marquis of Condorcet in 1785 formulated Condorcet's jury

theorem in his work Essay on the Application of Analysis to the Probability of Majority

Decisions. In general, this work is concerned with the problem about the probability of

voters independently making mistakes and the relationship of increasing and decreasing

the voters' number [22]. The jury contains many analogies that relate to ensemble

learning ideas.

Returning to the dissertation �eld of study, it is necessary to clearly de�ne what ensemble

learning is in the context of classi�cation and machine learning. In 1984, Valiant [253]

proposed Probably Approximately Correct (PAC) learning. It is a framework in which

the learner obtains random samples based on which it has to choose a generalization

function from among various available ones. Then in 1989, Kearns and Valiant [128]

proposed the concept of weak learnability. In their work, they ask the question, "Can

a set of weak learners create a single strong learner?". In 1990 Shapire [224] a�rmative

answered and developed these concepts. Strong learning means the classi�er has arbi-

trarily good accuracy. In contrast, weak learning means the classi�er performs slightly

better than the random guessing model. Forming a weak learner is a much simpler task.

These ideas are the foundations for ensemble learning.

The most important reason that positively supports the use of ensembles to solve classi�-

cation problems is the ability to increase the predictive performance of weak models [32].

The main assumption of ensemble learning is that one main classi�er, called "ensemble",

is composed of many weak learners. However, the joint decision made by them can be

better or equal as one strong learner [286]. For example, there is some data that is not

linearly separated in any way - two interleaved half circles. No linear classi�er will be

able to prove error-free prediction (Fig. 2.6a). However, using an ensemble of classi�ers

that consists of linear models can solve this classi�cation problem very easily (Fig. 2.6b).

According to Wolpert's theorem [268], there is no single method that will always work

best under di�erent conditions. Another reason which supports the idea of classi�er en-

sembles is that this approach sometimes gains a little more resistance to model over�tting

than a single model [205]. A well-constructed ensemble is a model more robust to this

type of phenomenon due to the fact that the �nal decision is an average of the models'

outputs [148]. Additionally, another noteworthy aspect is the considerable parallelization

capability of the ensemble learning classi�cation algorithm [254]. Con�rmation of the

ensemble learning idea can also be sought in many �elds including the realms of social

life [221].
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(a) Classi�ers (b) Ensemble

Figure 2.6: Decision regions visualisation of linear classi�ers and ensemble of linear classi�ers

Methods based on the idea of ensemble learning place certain requirements on those who

design them. In principle, two essential components can be distinguished that in�uence

the �nal ensemble performance - diversity and combination rule. These two aspects

should be considered inseparably when designing a new method. However, they will be

presented here separately.

One can say that combining models that make identical decisions makes no sense. To

exploit the full potential of the classi�ers' ensemble is to diversify the models at an

appropriate level [271]. If one were to start building models on the same dataset, the dif-

ferences among them would be minimal or none. Therefore, when designing an ensemble

of classi�ers, it is important to create suitable heuristics for learning models, which will

allow for good separation between them [153]. There are many ways to do this, a few

will be listed below:

� Heterogeneous models is one of the ways. It is usually assumed that an ensemble

is built from models derived from the same classi�er, the so-called base classi�er.

It is worth noting that this is not the rule. One diversi�cation technique is to

build ensembles based on di�erent classi�ers. Using models learned by various

algorithms, it is called as heterogeneous ensemble [243].

� Di�erent training data is one of the most well-known ensemble diversi�cation

techniques, which is to provide a variety of data used for learning. These approaches

produce very diverse models. An example is bagging (bootstrap aggregating) [29],

that involves dividing the learning set into smaller subsets using bootstrapping.

In other words, a random sample subsets are drawn with replacement from the

learning dataset.
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� Di�erent input representations is next diversi�cation approach. This method

involves using the same dataset for learning but inserted to classi�ers in di�erent

ways. An example is the random subspace method [115]. It goes by the alternative

name of feature bagging. This approach also has a bit in common with bagging.

The similarity is that a draw with replacement is made, but with features. Instead

of dividing the learning data into various subsets of samples, a partitioning of

the feature space is performed. Speci�cally, this is done in such a way that each

model is learned on a di�erent randomly selected set of attributes. This allows the

variance of the models to be provided, but using the full set of samples that have

been designated for learning.

� Di�erent hyperparameters is another approach to diversify models. This tech-

nique assumes using di�erent settings for the hyperparameters of models. In this

case, a homogeneous ensemble is created, consisting of multiple models replicated

using the same algorithm. The diversity in these models is ensured at the stage of

changing the learning algorithm internal settings. For example, having a k near-

est neighbor classi�er by manipulating the parameter k, one can easily change its

characteristics and how it will classify objects.

� Di�erent outputs can be used as one of the ensemble diversi�cation techniques.

Assuming that multiclass data classi�cation is considered, very often, the problem

is simpli�ed by class decomposition. This usually comes down to the binarization,

which can be done in di�erent ways. This procedure can ensure the diversity

of ensemble models. Three well-known approaches can be distinguished: OVO

(One-versus-one), OVA (One-versus-all) [70] and ECOC (Error Correcting Output

Codes) [61]

An equally important aspect is the measurement how much diversity is present in the

classi�ers' ensemble. For this purpose, certain metrics can be very useful to determine

how much the models di�er from each other. The strength of the model diversi�cation can

be expressed by many di�erent techniques [156]. Some metrics such as the disagreement

measure [232] or double-fault measure [96] are designed to use on pairs of classi�ers. On

the other hand, there are also measures to determine the diversi�cation of the entire

set of classi�ers. For example, the Kohavi-Wolpert variance [134]. In general, there

are many di�erent approaches to measuring diversi�cation. Unlikely, all of them are not

listed above. However, it is important to note that there is no universal metric. Choosing

the right, one depends on the problem under consideration and the e�ect one wants to

achieve.

Another crucial aspect is a properly designed decision rule. It heavily depends on whether

the built ensemble correctly classi�es the data and whether the joint decision improves
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the models' predictive quality [21]. A successful rule construction signi�cantly improves

the classi�ers' competence by coherently combining the decisions and thereby selecting

the most important values from them. Two main categories of combination rules can be

distinguished - label-based and support-based. The �rst focuses on the use of techniques

that combine answers from models that are already speci�cally labelled. Below is a list

of selected ones:

� Majority voting approach is very simple in its operating principle. It is also

known as hard voting. Each of the models that form the ensemble having the same

right to vote. A �nal decision is then made by a certain voting process. Typically,

when a majority of models indicate that a pattern belongs to a particular class

then the pattern will be classi�ed into that class by the ensemble. There are also

some variations of this approach such as where all classi�ers must agree or must

be predicted by at least one more than half the number of classi�ers.

� Weighted voting di�erence from majority voting in that each of the models which

takes part in the decision has a certain �xed weight. These weights determine how

much in�uence a particular model has on the �nal decision. This change means

that no longer each of the models that form the ensemble have the same right to

vote. However, it can often add a lot of value to the classi�cation ensemble. For

example, weighting can be applied that re�ects the predictive ability of the models

in question. Thus, having a function to evaluate how "suitable" a given model is

can adjust the �nal ensemble decision accordingly.

� Stacking is another way to combine responses from models [234]. In this proce-

dure, two types of models can be distinguished: �rst-level learners and second-level

learner, also called meta-lerner. The idea is to train a set of �rst-level learners using

input data and then generate a new training set from the responses of these models.

However, the original class labels are kept. The newly created set of responses is

used to train the second-level learner. In this simple way, a classi�er is used as a

direct combination rule.

The second approach focuses on using a continuous support function coming straight out

of the model. This function describes the estimated support of an object belonging to a

particular class. The use of such combination rules requires models with the ability to

return a support function. Below is a list of selected ones:

� Accumulated support is also known as soft voting. It uses a majority of the

models as well. However, instead of asking the models what labels they predict, the
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answer sought is what support the samples get. It means what is the probability

of classi�cation object to the selected class. Robert Duin [72] proposed a division

into two categories of combination rules - �xed and trained. The former focuses

on using various mathematical functions such as product, sum, maximum, median

rule to combine the �nal decision of the ensemble. The latter concentrates on more

complex techniques that attempt to determine the relative contribution of each

model in the �nal decision. This method is an interesting approach in that it can

signi�cantly change the decisions that will be made by the ensemble compared to

standard majority voting.

� Decision templates is an approach proposed by Kuncheva et al. [155] whose

idea is to create so-called decision pro�les. These are matrices that try to make

estimations for typical classi�er responses for particular classes and predicted data

samples. A critical role here is played by the similarity measure, which is the main

factor in�uencing the �nal decision of the ensemble.

The one-class classi�ers (Sec. 2.3) intuitively seem to be good candidates for creating

the ensemble method [142]. In a one-class committee, the special decision rule should

be designed to exploit individual classi�ers' full potential. Tax and Duin [246] have

developed a set of recommended practical tools for designing such a one-class ensemble.

It is equally important to ensure that the models that make up the committee are

diversi�ed enough. One way is to divide the feature space using a clustering algorithm.

Krawczyk et al. [144] have adopted an approach based on training data segmentation for

OCSVM. A range of experiments and comparisons have shown that such decomposition

signi�cantly improves predictive quality. The ClusterSVDD [100] method works on a

very similar idea. It uses k-means algorithm to create data clusters, and SVDD [247] as

a one-class classi�er. The DBM-EOC [172] method assumes creating clusters of one-class

classi�ers based on density analysis. The analysis allows identifying a subset of data that

is suitable to create a cluster. Moreover, this method has a denoising capability.

2.5 Data imbalance

Imbalanced data classi�cation is one of the issues, which is frequently explored in re-

search. Uneven class distribution occurs in most real data sets, where the number of

objects in di�erent classes is not equal. Imbalance becomes completely di�erent when

these disparities are very signi�cant [112]. While one set of objects describing a class dom-

inates over the others, standard classi�ers tend to overclassify as the dominant class [140].

It is usually associated with a general deterioration in classi�cation performance. Thab-

tah et al. [248] have shown in their extensive research the real impact of imbalanced
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data on the classi�cation quality of selected methods in an experimental way. Usually,

most of the works consider imbalanced data for the binary classi�cation task, but this

problem is also associated with multiclass data. Nevertheless, in the multiclass task,

the relations among classes are not so obvious, i.e., a given class could be a majority

class for one class, but it could play a minority class role for others [81]. Although,

this dissertation focuses on the binary classi�cation task, but it is worth mentioning that

many approaches employ methods for a binary problem to solve multi-class ones, e.g.,

using smart decomposition [139].

Data imbalance can have varying degrees of severity. The Imbalance Ratio (IR) [93]

is used to express the class imbalance intensity. This measure determines the ratio of

majority class objects to minority class objects. In addition to the variation in imbalance

ratio, di�erent types of minority data distribution can be distinguished in relation to the

majority class. Stefanowski and Napierala [191] proposed some division of the imbalanced

data samples. According to their approach, one can determine four types of minority

class instances:

� Safe samples that are in very uniform areas, surrounded only by minority class

examples. Their location should make them much easier to predict and very valu-

able when learning the model (Fig. 2.7). For this reason, this type of instances can

be classi�ed as safe examples, the others belong to the three categories of unsafe

instances.

Figure 2.7: Safe
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� Borderline samples that are in areas near the decision boundary, these are placed

between sets of objects belonging to di�erent classes (Fig. 2.8). Instances of di�er-

ent overlapping due to mixing and the di�culty of de�ning a clear dividing line can

be included in this category. As well as those lying close to the boundary, which

can be determined to a certain degree, but where there is a certain but lesser risk

of incorrect classi�cation.

Figure 2.8: Borderline

� Rare they are represented by pairs or triples of objects belonging to the minority

class placed inside the areas of the majority class. This type of samples can be

treated like noise objects. However, their number is greater than one and they

cannot be ignored. (Fig. 2.9). These samples have a signi�cant impact on the

predictive quality in imbalanced data problems.

Figure 2.9: Rare

� Outliers are samples of a minority class that can easily be confused with the noise

samples. They are actually individual minority class objects that can lie within the
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areas of other classes (Fig. 2.10). If one were to refer to nonminority class samples,

they would be assumed as noise. Because of the high value that minority objects

bring to imbalanced problems, they are an essential component that cannot be

ignored.

Figure 2.10: Outliers

2.5.1 Metrics

Class imbalance also has a very negative e�ect on any training process that is guided

by accuracy or uniform loss functions [71]. Assuming equal importance of all training

instances favors the majority class and leads to the best accuracy. Unfortunately, a bias

towards the majority class will impair the generalization capabilities over the minority

class, thus leading to an ine�cient learning system. Therefore, accuracy is not appropri-

ate metric for imbalanced data classi�cation [40]. One of the challenges in imbalanced

data classi�cation is choosing the right set of metrics. Metrics allow to unambiguously

determine the quality of the performed classi�cation, which is expressed by a numerical

value [102]. However, the metrics have very di�erent characteristics, and it is crucial to

select them properly for the classi�cation problem.

The confusion matrix presented in Tab. 2.1 is used to de�ne metrics mentioned in [236,

270] for binary classi�cation. Actual values is a real class in the data and predicted values

is the decision from the classi�er. There are two classes positive and negative, thus there

are four possibilities of counting examples belonging to speci�c categories. True positive

(TP) and True negative (TN) stand for number of correctly classify objects into the

class 1 or 0 respectively. False positive (FP) and False negative (FN) count misclassi�ed

examples. Using these calculations, it is possible to determine the confusion matrix:
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Table 2.1: Confusion matrix for binary problem

True

Positive (1) Negative (0)

Predicted

Positive (1)
True positive False positive

TP FP

Negative (0)
False negative True negative

FP TN

Typically, the performance of classi�cation methods is presented using metrics rather

than a confusion matrix. Below is a list of metrics along with mathematical formulas

describing how to calculate them:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.12)

Recall =
TP

TP + FN
(2.13)

Specificity =
TN

TN + FP
(2.14)

Precision =
TP

TP + FP
(2.15)

It is possible to measure the e�ectiveness of a method for multiclass classi�cation, but

these equations are slightly di�erent and it can be done in two ways: macro-averaging

or micro-averaging. In the �rst technique, classes are treated evenly in contrast to the

second, larger classes are more important [236]. Not all metrics are appropriate for

classifying imbalanced data [189], some of them such as accuracy prefers the majority

class rather than the minority and it is not a desired outcome.

To illustrate this, let assume that the classi�cation problem under consideration has a

data distribution equal 10% of minority class samples and 90% majority class samples.

The most commonly used metric to compare di�erent methods is accuracy. One can also

assume that to solve such a problem one would use a very strange classi�cation model,

a model that always indicates the majority class as the prediction of any sample. It

is worth noting at this point, that this model, despite its large disability, will get the

accuracy of 90%. This leads to a scenario where a bad predictive model that always
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returns the same answer can achieve a high accuracy score. This is a very undesirable

situation when evaluating a method for imbalanced data classi�cation. To avoid such

confusion, it is useful to pay attention to metrics designed to assess classi�cation in

relation to minority class predictive performance. Another approach is to use aggregate

metrics, [19], which bind the classi�cation quality of the majority class samples as well

as the minority class samples:

Fβ = (1 + β2)
Precision×Recall

(β2 × Precision) +Recall
(2.16)

BAC =
Recall + Specificity

2
(2.17)

Gmean =
√
Recall × Precision (2.18)

Gmeans =
√
Recall × Specificity (2.19)

FPR = 1− Specificity =
FP

TN + FP
(2.20)

FNR = 1−Recall =
FN

TP + FN
(2.21)

In addition, it is worth noting speci�cally that the F1score, is a very special case of the Fβ
(Eq. 2.16), whose parameter value β equals 1. It should be made clear that the problem

of imbalanced data classi�cation evaluation is much more complicated. Eliminating the

basic disturbance in accuracy metrics caused by imbalanced data does not solve the

other problems. Brzezinski et al. [40] presented visualizations of obtained results from

experiments revealing the advantages and disadvantages of using selected metrics to

analyze imbalanced data. These research shows that imbalanced data has a signi�cant

impact on how a metric measures classi�cation performance. Hu and Dong [116] compare

a few metrics on the premise that they contain a cost function related to the class

imbalance ratio. They show that some of the metrics are appropriate for classifying

imbalanced data because the misclassi�cation's cost is higher for the minority class than

for the majority class.

It is worth noting that the available metrics are not ideal for imbalanced data problems.

Despite the use of various aggregate metrics such as BAC, Gmean or F1score there is
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still a chance that the majority class will be favoured. Hand and Christen [106] discused

that using the Fβ for data imbalance should involve an appropriate adjustment of the

beta parameter. This parameter adjusts how much one component (recall or speci�city)

a�ects the �nal score. Unfortunately, since there is no information about the loss function

that determines the signi�cance of each class one is forced to use metrics in this way.

2.6 Imbalanced data classi�ers

There are two main methods for classifying imbalanced data sets that will be described

below.

2.6.1 Data-level

This solution focuses on using various data preprocessing techniques. The data trans-

formation aims at equalizing the number of training examples in each class. Garcia

et al. [93] evaluate how a�ected is the quality with various sampling methods, which

change the imbalanced data into arti�cially balanced data sets. There are three main

approaches: oversampling, undersampling, and hybrid methods, which combine both of

them.

Undersampling tries to reduce the size of the majority class. The simplest example

is Random Undersampling, which randomly drops samples from the majority class. Un-

fortunately, unguided undersampling may remove important objects from the majority

class, leading to incorrect decision boundaries. Most of the guided undersampling ap-

proaches employ various types of prototype selection algorithms [91]. Among them, is a

popular one based on the nearest neighbors algorithm the Condensed Nearest Neighbors

method [108]. This method discards samples from the majority class, depending on the

proximity of the neighborhood. The method uses the 1-Nearest Neighbors rule to at-

tractively decide if the sample should be removed. Near Miss algorithm uses 3 di�erent

types of heuristic rules based on Nearest Neighbors algorithm. An interesting idea is

to resample data using centroid clustering algorithms [288]. It clusters the majority of

data using the selected algorithm, and the number of centroids is equal to the number

of minority class objects. Next, the created centroids are new data from the majority

class. This solution is an approach based on prototype generation.

Oversampling mainly focuses on generating arti�cial minority class samples. Since for

data with a very small number of objects undersampling can lead to a signi�cant degra-

dation of the problem representation. The simplest and unguided approach is Random
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Oversampling. It generates new minority class instances by duplicating randomly chosen

existing objects. One of the most popular method is the SMOTE [48], which generates

new samples through real minority class objects. However, one of the critical SMOTE's

drawbacks is that it assumes the minority class clusters' homogeneity. It ignores the

majority class instances in the neighborhood when it generates new synthetic instances.

Napierala and Stefanowski [190] reported that the minority class might form small dis-

jointed clusters, which could cause the SMOTE to increase the class overlapping and

increase the di�culty of the classi�cation task. Many SMOTE varieties overcome this

drawback and extend this idea to new approaches [80]. One of the best-known version is

Borderline SMOTE [105], which focuses on generating objects close to decision bound-

aries. Safe-level SMOTE [41] and LN-SMOTE [178] try to reduce the risk of generating

synthetic instances inside the majority class region, while ADASYN [111] prioritizes the

di�cult instances. The SWIM [231] uses the Mahalanobis distance, through which it

determines the best position of the new minority class instances, taking into account

the samples from both classes. Koziarski et al. proposed Radial-Based Oversampling

(RBO) [136] that employs potential estimation to generate new minority objects using

radial basis functions. Combined Cleaning and Resampling (CCR) [137] method employs

cleaning the decision border around minority objects and guided synthetic oversampling.

It should be kept in mind that oversampling and undersampling approaches can per-

form in di�erent ways. The selection of the right algorithm is crucial for good predictive

performance.

Combine methods for imbalanced data processing integrate oversampling and under-

sampling. One exmaple is the SMOTE-ENN [16]. This approach generates new minority

class objects with SMOTE and then cleans the data using Edited Nearest Neighbors [267].

Batista et al. [17] proposed also SMOTETomek method. It also uses SMOTE to cre-

ate new samples but Tomek Links method to clean the data. The last category is

to use ensemble balanced methods to process data. Koziarski tried to use the advan-

tages of under- and oversampling at the same time proposing hybrid data preprocessing

called Combined Synthetic Oversampling and Undersampling Technique (CSMOUTE).

It integrates SMOTE oversampling with SMUTE undersampling [138]. Liu et al. [174]

proposed two methods. Balance Cascade creates an ensemble of balanced sets by attrac-

tively under-sampling the imbalanced data set using an estimator, while Easy Ensemble

also creates an ensemble of data set, but using randomly undersampling the original set

of data.
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2.6.2 Algorithm-level

These methods use appropriate techniques to enhance the importance of the minor-

ity class to avoid being dominated by the majority class. One of the most well-known

approaches is cost-sensitive classi�cation. They are intended to apply a cost to the classi-

�er when a misclassi�cation occurs. The imbalanced data is characterized by an uneven

class distribution. This inequality is clearly re�ected in the incurred misclassi�cation

cost [6]. For problems with strong imbalance, most often the minority class has a much

higher cost. Cost-sensitive methods aim to change the importance of minority class ob-

jects during learning [295]. For example, the classi�er allocates a much higher cost to

false negatives in comparison to false positives, thereby highlighting any misclassi�ed or

correctly classi�ed positive � minority class. Some transformations using cost-sensitive

matrices improve the classi�cation of imbalanced data [145].

Another cost-sensitive learning technique applied to the imbalanced dataset is to tune

the decision threshold in regular machine learning algorithms. The selection of an appro-

priate threshold is an e�ective factor that a�ects the performance of learning algorithms.

Domingos proposed MetaCost [63] procedure, which can convert a regular classi�er to

the cost-sensitive method. Other algorithms are usually based on: k nearest neighbors

classi�er distance modi�cations [300], bayesian rule-based classi�er [192], or SVM kernel

modi�cations [280]. Ksieniewicz [149] developed a method that employed some modi�-

cations to support domain decision boundaries.

Cost-sensitive boosting ensemble methods usually apply the boosting strategy to min-

imize the cost. Many of them are implementing the AdaBoost as a baseline and only

some parts are changed, such as the weight update rule to provide an equal treatment

of classes because AdaBoost is based on the accuracy so it is biased toward the majority

class. Fan et al. proposed a modi�cation of AdaBoost � AdaCost. During the boosting

procedure, the training distribution is updated. The algorithm has regard to the cost of

the misclassi�cation in the weight update rule by adding a cost adjustment function. The

weight is lower when the examples are cheaper and adequately higher when examples are

more expensive. The focus of the weight updating rule is on the costly examples because

weights are also increased when the system classi�es incorrectly, weights are decreased

otherwise [78]. CSB is a family of method consist of CSB0, CSB1, CSB2 suggested by

Ting. All of them modify AdaBoost by replacing the weight vector with di�erent equa-

tions. CSB0 is the simplest method developed earlier. In the weight update rule, CSB1

and CSB2 use con�dence-rated predictions and cost which allows to minimize high cost

errors [249].
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It is also worth mentioning hybrid approaches that combine the advantages of data

preprocessing with algorithm-level solutions. SMOTEBoost combines SMOTE algorithm

with boosting procedure [49]. Galar et al. [86] employed data preprocessing (under- and

oversampling) to form classi�er ensemble for imbalanced data classi�cation task.

2.7 Data stream

Substantial amounts of data are currently being produced, which often require continuous

processing and analysis to obtain useful information. Thus, data stream analysis is one

of the frequently studied topics in machine learning. A data stream is a massive set of

data where samples may come continuously in the form of a potentially endless data

stream [85]. This poses new challenges for learning algorithms, as they must adapt

to ever-growing data volume and recent data distributions. Additionally, the classi�er

should respond quickly and its update should also be very fast [26]. The data stream's

processing enforces memory and computation complexity limitations [122]. The excessive

computing time can delay new data which may lead to model outdating. It can even

lead to skipping some samples. It is impossible to memorize all incoming examples.

Therefore, each instance should be processed as few times as possible, preferably at most

once.

Figure 2.11: Sudden drift

One should mention the di�erences between stationary and non-stationary data stream

processing. The lack of variability characterizes the stationary data streams, while the

dynamic ones are associated with the phenomenon called concept drift [88]. This means

that the distribution of feature space changes over time. These changes may occur

suddenly (Fig. 2.11), incrementally (Fig. 2.12), gradually (Fig. 2.13), or recursively

(Fig. 2.14). For example, suppose that a certain data stream consists of two distinct
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distributions of attributes. Therefore, these are called concepts, and when a drift occurs,

a transition is made from one concept to the other. However, it is reasonable to assume

that these changes will continue and new or returning concepts will follow. This usually

negatively a�ects the prediction quality of models. Depending on the speed and how

these changes progress, it is possible to specify di�erent types of concept drifts.

Figure 2.12: Incremental drift

Sudden drift (Fig. 2.11) makes changes abruptly. The transition between concepts hap-

pens very quickly without any smoothing. Incremental drift (Fig. 2.12) makes these

changes extend over a larger amount of time. However, it is also necessary to consider

the situation that the change will continue and a speci�c new concept will never be

achieved. It also means that the incoming data concept changes in a very smooth man-

ner. Gradual drift (Fig. 2.13) is a very speci�c type of drift. It combines the two previous

approaches. The changes are abrupt in a way that there is no �uidity of change between

concepts. However, the di�erence is that they do not move suddenly from one concept to

another, but with a certain distribution, samples from new concept and ole one appear

simultaneously. In the beginning there are more samples from the �rst concept, but over

time the second concept starts to dominate until the stream switches completely to the

new concept. These changes do not cause a smooth transition across the feature space as

in incremental drift, but there are some jumps between the two concepts with smoothly

changing intensity.

There is next type, the recursive drift (Fig. 2.14). It means that after changing the

concept from one to another, eventually next drift will bring it back to origin concept.

Of course, this return may be preceded by many drifts and a comeback after the transition

of several di�erent concepts, but the main idea is to return in some way to the concept

that has already occurred. Recursive drift can be abrupt, incremental, or gradual, so

this type of drift may be treated as a separate characteristic.
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Figure 2.13: Gradual drift

Figure 2.14: Recursive drift

Another obstacle that may arise when classifying data streams is the problem of data

label availability. Data labeling is a process that often requires a substantial amount of

time. Labels that describe how objects belong to classes can appear with a speci�c time

delay [146]. In some cases, this delay is short. An example would be a weather prediction

system whose forecast can be veri�ed relatively quickly for the next day. Similarly, for

algorithms that predict a fall or rise in the stock market, where the share prices are

updated with a certain frequency, for example, every hour. It can take much longer to

evaluate the credit approval system, where feedback on whether the system has evaluated

the customer well can take up to several years. There are also groups of cybersecurity

or fraud detection problems where the con�rmation of the decision may never happen.

Labels arriving with some delay and concept drift can cause that the data is out of date

before use [180]. Considering this assumption, sometimes it is necessary to classify the

data without full labeling during the learning process. One of the ideas for solving such
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a problem is a method based on semisupervised classi�cation. SUN method [273] uses

K-modes clustering algorithm for arti�cial labeling and incremental decision trees for

data classi�cation with concept drift.

Correct identi�cation of the drift type and implementing appropriate learning strategies

may signi�cantly improve classi�cation quality. Ren et al. [209] proposed an algorithm

that can deal with multiple types of concept drift. It is also important that the proposed

classi�er should properly react to the concept drift, i.e., when the drift appears, it should:

� restore a stable predictive performance as quickly as possible,

� minimize the quality deterioration after drift.

Figure 2.15: The restoration time and maximum performance loss metrics on exemplary ac-
curacy and time plot

There are some works which propose how to assess the reaction of the classi�er to the con-

cept drift appearance. Shaker and Hüllermeier [230] proposed the two metrics: restora-

tion time and maximum performance loss (Fig. 2.15). Initially, the proposed measures

based on Accuracy, but any predictive performance measures (as Gmeans or F1score)

could be also used. The restoration time (RT ) is de�ned as:

RT =
t2 − t1
T

∈ [0, 1] (2.22)

where t1 is a chunk number for which model learning curve drops below 95% of the

achieved predictive performance measure, t2 is a chunk number for which model learning

curve restores to 95% of achieved predictive performance measure, and T is the total

number of chunks in a single stream. For each drift appearance, the maximum perfor-

mance loss (MPL) is de�ned as:
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MPL =
PPM(t)− PPM12(t)

PPM(t)
(2.23)

where PPM(t) = min{PPM1(t), PPM2(t)} is the lower predictive performance mea-

sure value of two learning curves surrounding the drift area, and PPM12(t) is the lowest

predictive performance measure achieved in a drift area. Apart from the above metrics,

one can also calculate a mean predictive performance measure for all models. Gathered

values are compared using the Wilcoxon sign-ranked test.

2.7.1 Drift detectors

There are various approaches to dealing with non-stationary data streams. One common

way to deal with concept drifts is to employ drift detectors to analyze the �owing data

and indicate when it occurs. Then when a drift is detected depending on the proposed

algorithm, the model is updated. Barros and Santos [13] made a very interesting experi-

mental analysis of selected methods for drift detection. Their study helps to indicate that

there is really no single best method for drift detection because it depends on what type

of data is present or the type of drift. An interesting observation is that the methods

that are most often cited or popular do not necessarily get the best results. However,

one of the most valuable outcomes of their article is that it collects most of the methods

into one experiment and shows the multitude of approaches that have been developed so

far.

The most popular design is the DDM (Drift Detector Method) [87] that measure the

classi�er error rate with two levels of drift detection. Estimated error rate plus two devi-

ations for warning level and estimated error rate plus three deviations for drift detection.

When DDM reaches the warning level, it begins to remember incoming samples. Lower-

ing the error rate is treated as a false alarm, but increasing the error rate is treated as

a concept drift that has occurred since the warning level. Previously collected samples

are used to learn a new model, in case of false alarm samples are forgotten.

EDDM (Early Drift Detection) [10] is the modi�cation of DDM. The method was devel-

oped to improve detection in the presence of gradual drift, where the distance between

two error classi�cations is used instead of just considering the number of errors. RDDM

(Reactive drift detection method) [12] is another variation of DDM method, but with a

mechanism to periodically decrease the number of instances of a very long and stable

concept, which causes DDM to decrease sensitivity for concept drifts.

ADWIN (Adaptive Windowing Algorithm) [23] is the drift detection method that com-

pares two non-�xed size windows of incoming examples. Drift is detected when the
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di�erence in averages for these windows is higher than the speci�ed threshold. STEPD

method [194] for drift detection uses statistical testing based on proposed formula. It

depends on comparing accuracy from old samples and last one. Ross et al. [216] proposed

a EWMA method which is a di�erent way for drift detection using an exponentially

weighted moving average. This idea of charts was originally proposed by Roberts [214]

for detecting an increase in the mean of a sequence of random variables.

Dries and Ruckert proposed three drift detection methods [69]. The �rst method focuses

on a density estimation approach using a binary representation of the data. In the

second method, the average margin of the linear classi�er induced by the 1-normal SVM

is measured. The third uses the average error rate of the linear SVM classi�er.

Frias-Blanco et al. [84] proposed few similar methodsHDDM for concept drift detection

based on the Hoe�ding's inequality with proposed statistical A-test andW -test to detect

signi�cant changes in the moving average. FHDDM (Fast Hoe�ding Drift Detection

Method) [201] uses stastical test to compare the maximum probability of a correct pre-

dictions and the probability of recent correct prediction. MDDM (McDiarmid Drift

Detection Method) [202] which simmilar idea, but based on McDiarmid [181] inequality

measure.

2.7.2 Online methods

There are two di�erent manners to the data stream classi�cation process. Online learning

where algorithms process single examples appearing one by one in consecutive moments

in time [261], and chunk-based where new examples are available in so-called data chunks

(blocks) consisting of many learning instances [291]. The processing way determines how

a method is designed and what its capabilities are.

Online methods allow to work with single samples. It is related to model learning and

prediction process. This assumption causes the online methods can predict immediately

without gaining more data in one block. Most often the methods are ensemble-based

approaches. Important aspect is the ability to adapt to the progressive caused by the con-

cept drift [183]. However, they require special processing and classi�ers with incremental

learning capabilities.

One of the important methods in online learning is the OB (Online Bagging) [195]. It

is a special way to apply bagging for data stream in sample by sample processing. This

method has been used many times in its original version or with some modi�cations to

other online methods. Main idea is based on using on each sample the Poisson distri-

bution with the λ = 1 to randomly select the model from the ensemble that will be
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enhanced with this sample. Bifet et al. [25] proposed an modi�cation called LB (Lever-

aging Bagging) which uses randomization on the weights of samples from the data stream

for ensemble accuracy improvement.

DDD (Diversity for Dealing with Drifts) [184] is an online data stream method which

base on online bagging with few ensembles with di�erent diversity levels. Diversity levels

are ensured by changing Poisson λ values. Before drift detection there are two ensembles.

One with low diversity is used for prediction and second with high diversity for drift

detection. After drift detection two new low diversity and high diversity ensembles

are created and the main prediction is gathered with majority voting from these four

ensembles. Next, when method reaches some stability it gets back to using only two

ensembles like in the initial phase.

DWM (Dynamic Weighted Majority) [135] is based on weighted majority voting ensem-

ble. It dynamically creates and deletes models from the ensemble in response to changes

in the performance of the method. DWM adds new model when ensemble makes a

mistake. If the model makes a mistake, then DWM reduces its weight.

ADOB (Adaptable Diversity-based Online Boosting) [58] is also based on Online Bag-

ging. This proposition was designed for better e�cient in situations where frequent and

abrupt concept drift appears. The method performs a more e�cient allocation of in-

stances between classi�ers by controlling the diversity based on their accuracies. This

is intended to recover more quickly from problems where concept drifts are frequently

encountered.

BOLE (Boosting-like Online Learning Ensemble) [14] is a method based on a modi�-

cation to ADOB idea. Three major changes were made. Firstly, the rule which keeps

experts from voting has been slightly modi�ed so that if the error exceeds 50%, the

models are still not considered for the �nal decision, but they have the possibility to pro-

cess the data. Secondly, the way weights were calculated was changed, which after the

�rst modi�cation allowed to achieve a negative weight. Thirdly, the drift detector was

replaced from ADWIN to DDM, which increased the adaptability to di�erent problems

and added the possibility of better parameterization.

On the other hand, the AWDOB (Accuracy Weighted Diversity-based Online Boost-

ing) [11] method is a slightly di�erent approach, also heavily inspired by the ADOB

idea. The main modi�cation that has been introduced is a completely new scheme for

determining weights for experts. This scheme focuses on using the accuracy of the cur-

rent expert combined with the sums of correctly and incorrectly classi�ed instances of

all other experts.
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ARF (Adaptive Random Forests) [97] algorithm is an approach for data stream learning

using Random Forests. Leveraging bagging with Poisson binomial distribution is per-

formed on the data. Base models use an adaptation of the Hoe�ding tree classi�er. The

ARF has a two-stage drift detection mechanism. When a drift is detected at the warning

level, new trees are built in the background, which do not a�ect the prediction of the

method. Then, when the drift is detected, the trees are replaced with new ones and the

old ones are removed.

Brzezi«ski and Stefanowski [37] tried to integrate weighting mechanisms and periodical

models evaluations in online learning, which is most often used in chunk-based learning.

The OAUE (Online Accuracy Updated Ensemble) was proposed as new incremental

stream method. The ensemble trains and weights models with each data sample. The

main idea is the cost-e�ective component weighting function, which estimates a models

error based on last data samples, as sliding data window.

In the traditional approach, all models in the ensemble make the decision. Whether

weighted majority votes or support accumulation they always in�uence the �nal predic-

tion in some degree. In AE (Abstaining Ensemble) [141] authors introduced a dynamic

abstaining strategy that can be used to extends abilities of any online ensemble learning

scheme. In their idea, the authors assume that each classi�er included in the ensemble

has the option to abstain from voting. A certain con�dence threshold is set to determine

for each instance whether the classi�er is suitable to make a decision.

Lakshminarayanan et. al [157] introduced a MF (Mondrian Forests) method of random

forests based on Mondrian process idea [219]. It can be trained incrementally and used

for streaming data in online manner. They showed that MF signi�cantly outperforms

selected online random forests in terms of training time as well as number of training

instances required to meet the target accuracy result.

DELM (Dynamic Extreme Learning Machine) [279] for data stream classi�cation is a

method that uses the online learning manner to train Extreme Learning Machine [117]

as basic classi�er with a double hidden layer structure. Proposed method uses two levels

of concept drift detection. The �rst level, called alert level, causes that new hidden layer

nodes are added to the ELM in order to improve the generalization capability. When the

next level is reached the actual ELM model is removed and a new one is built so that it

learns completely from the new concept.
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2.7.3 Chunk-based methods

Another branch of algorithms for classifying non-stationary data streams are methods

based on processing data as data chunks. Such a block of data contains some subset

of samples. This requires a certain accumulation of data, since real problems generate

data instance by instance. However, this kind of processing allows for using classi�ers

not adapted to streams, where each model is trained on a new data chunk and added to

the ensemble.

Most often, ensemble methods for classifying non-stationary data streams have a built-in

mechanism for concept drift detection, which allows to react appropriately when it occurs.

Barros and Santos [57] performed an experimental comparison of selected combinations

of di�erent ensembles with drift detectors. The analysis carried out did not allow the

authors to identify one best method. The predictive performance was dependent on

the considered data stream. However, they article shows the immensity of ensemble

approaches in data stream classi�cation problem.

One of the best known approaches for data stream classi�cation is Learn++ [204].

This method uses each data chunk to build a new model that is included in the classi-

�er committee and then combines their outputs using majority voting. In the original

proposition, multilayer perceptron classi�ers were used. The idea eventually became fun-

damental to most chunk-based methods designed to classify non-stationary data streams.

Learn++NSE (Learn++ for Non Stationary Environments) [73] method based on the

Learn++ idea and trains one new classi�er on each data chunk. The main assumption of

the authors of the method is that there is no certain �xed size of the classi�er committee.

Instead, weights are computed, which determine the level of impact that a particular

model has on the �nal decision. These weights can be zero, which means that a given

model does not a�ect the decision. On the one hand, this is an ideal method that allows

great performance for data streams with recurrent concept drift. However, on the other

hand, the main assumption leads to the problem where an ensemble of classi�ers can be

built from an in�nitely large number of models.

SEA (Streaming Ensemble Algorithm) [237] also uses a learning approach which is sim-

ilar to Learn++ . A certain maximum pool of classi�ers is set to form the ensemble.

When this size is reached, the prediction quality for all models is determined using the

newest data chunk. The one with the worst score is removed. In its place, a new model

trained on the most recent data chunk is inserted.

AWE (Accuracy Weighted Ensemble) [258] works in a very similar way to SEA. The

main di�erence is that the models that build the ensemble of classi�ers are continuously
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evaluated on the latest data chunk. An variant of Mean Square Error is used for this

measure and cross-validation of data. Pruning is also applied, which removes models

performed below a certain threshold and the worst one when the maximum ensemble

size is reached.

AUE (Accuracy Updated Ensemble) [36] is an AWE extension which has some innovative

approaches to the problem. The authors assume that models built on a single data chunk

may have poor predictive ability due to a limited pool of patterns. For this reason, an

approach is proposed that some of the models are updated using a part of the samples

from new data chunks. Furthermore, a way of weighting models with nonlinear error

functions is introduced, where the highest weight is given to the most recent model that

potentially has the best ability to classify the always changing data stream.

The AUE method was extended to AUE2 (Accuracy Updated Ensemble 2) [38] where

some ideas from AWE were abandoned. A new way of weighting the models was de-

veloped that eventually removed the use of cross-validation that appeared in the AWE

method. Additionally, in this approach, all models undergo knowledge updates based on

samples from new data chunks.

KUE (Kappa Updated Ensemble) [44] is a method similar to AUE but with few essential

di�erences. Each model is built on a new data chunk, and then some updates of these

models are done. New models are trained using a di�erent subset of features and updated

with instances from new chunks, but selected according to a Poisson distribution. The

models are also dynamically weighted, but in contrast to AUE, the competence of a given

model is determined using the Kappa statistic.

WAE (Weighted Aging Ensemble) [269] is a next chunk-based ensemble that focuses on

the idea of rebuilding models during the learning process on streaming data. The method

modi�es the composition of the ensemble depending on the chosen diversity measure �

Generalized Diversity [198]. The decision rule is weighted majority voting and the weight

of each classi�er depends on its accuracy and age.

ABE (Adaptive Boosting Ensemble) [53] is another proposition for non-stationary data

streams with the concept drift detector mechanism. This approach is mainly based

on the use of boosting to create ensembles based on simple decision tree classi�ers.

Despite the innovative approach, they retained the fundamental idea of dynamically

assigning weights to samples, but on the other hand, the requirement of multiple data

processing was excluded. In addition, a drift detector based on statistical analysis of the

classi�cation quality of the whole ensemble has been recorded.

IBS (Iterative boosting-based ensemble) [126] is a method with batch-incremental learn-

ing strategy also based on the boosting approach. The method updates models over time
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and adjusts itself to data with new concepts. However, the number of models that will

be added to the committee in a given data chunk is determined based on the accuracy

rate of the ensemble.

BWE (Batch Weighted Ensemble) is a method designed to handle a data stream with

sudden or gradual concept drift occurrence. This is a very simple approach that achieves

fairly good results. The whole idea is based on the approach similar to Learn++, but

using a proprietary Batch Drift Detection Detection Method (BDDM). This detector

uses linear regression to analyze the accumulated classi�cation accuracy of the classi�er

ensemble. The combination of iterative ensemble changes building new models on suc-

cessive data chunks together with a drift detector is a very promising direction to deal

with di�erent types of drifts.

2.8 Imbalanced data stream classi�cation

As was mentioned above, an important problem connected with data stream classi�cation

is that data distribution may change over time. Another often issue is the imbalanced

data classi�cation. Combining these two data di�culties is an additional challenge [35].

Usually, the proposed solutions focus on one of the mentioned di�culties. Methods that

aim to classify data streams do not deal well with data imbalance. Similarly, classify-

ing imbalanced data does not achieve satisfactory results when the concept drift may

appear. When considering the imbalanced data stream classi�cation, it is necessary to

use solutions specially developed for this purpose. Methods based on classi�er ensembles

perform e�ectively with these data di�culties.

One can see that that the drifts present in the data further degrade the classi�cation

quality for imbalanced data. However, it is important to note that this is also related to

metrics evaluation, which becomes even more di�cult when considering non-stationary

data streams with imbalanced distribution (Sec. 2.5.1). Brzezinski et al. [39] made an

extensive research on the real impact of this type of data on various metrics. One of the

most interesting �ndings is that in a data stream with changing class distributions, one

can see that this a�ects the value of aggregate metrics, where the accuracy and precision

remain static. This means that the changes that occur in the data are not exactly well

expressed by all metrics.

It may also happen that the analyzed imbalanced data stream has a dynamic data imbal-

ance [197]. In this circumstance, a class distribution may change over time (Fig. 2.16).

The imbalance ratio drifts similar to the concept drift. This requires additional attention

because a class that was a minority class initially may change into a majority class after
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Figure 2.16: Dynamic imbalance ratio

some time. A very special circumstance of such dynamic imbalance may be a temporary

disappearance of one particular class. For the binary task, one class's disappearance can

be a severe problem to conventional classi�ers. The one-class classi�er (Sec. 2.3) is per-

fectly suited for this kind of data. There are three approaches to classifying imbalanced

binary data using one-class classi�ers. The �rst way assumes that the classi�er is trained

on the majority class examples only. The second way focuses on minority data only.

Both of the previous solutions involve some loss of information caused by missing one of

the classes. However, a much more interesting and informative solution is to classify data

from both classes separately by independent classi�ers. It requires designing appropriate

decision rules that make it possible to combine outcomes from all classi�ers.

Depending on how the data is incoming in the data stream, one may distinguish between

two types of approaches. The �rst is the online approach, where the data stream is

processed object by object [241]. This processing mode does not enforce any quantity

restrictions but requires a special approach when designing the classi�er [283]. A di�erent

approach is based on processing the data stream in the form of data blocks called data

chunks [62]. One data chunk consists of a predetermined number of objects.

When looking for a good classi�cation algorithm that could face many challenges, an

ensemble method is often designed. The ensemble approaches have a high potential for

quick adaptation [57] and the possibility to make modi�cations for improving prediction

on di�cult data [206]. The ensemble learning provides the ability to extend the compe-

tence of single classi�ers [294]. One can say that such an approach has many bene�ts.

However, to take full advantage, it requires good diversi�cation of models [33], e.g., by

training individual models based on di�erent partitions of the training set, i.e., using

vertical partitioning (di�erent sets of feature) [250], horizontal partitioning, or using dif-

ferents feature subspace using the clustering algorithm [239]. Similarly to the methods

for balanced data streams, they can be divided into two subgroups - online and chunk

based methods.
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2.8.1 Online

In the following, selected approaches for imbalanced data streams classi�cation will be

discussed. The methods described will focus on approaches that allow for object-by-

object processing of streams � online methods. This way of processing the data stream

makes it di�cult to build new models, especially when the data comes from an uneven

distribution of classes.

EONN is the online ensemble method based on arti�cial neural network classi�ers [94].

The main idea of this design is to build a two-layer approach. In the �rst layer, an cost-

sensitive arti�cial neural networks are designated to deal with class imbalance, which

means that learning samples from di�erent classes requires di�erent costs to be taken

into account. A higher signi�cance is assigned to errors with the minority class. This is

ensured by adding weights embedded into the arti�cial neural networks objective func-

tion. The inspiration for authors was an work of Fontenla-Romero's cost-sensitive neural

networks [82]. The second layer is an weighted majority voting ensemble to handle class

imbalance and concept drifts. Authors use the Winnow-based classi�er weighting scheme

inspired by Kuncheva work [154].

RLSACP [95] is another method for imbalanced data stream classi�cation based on

online perceptron model. The authors were strongly inspired by the recursive least

square �lter in developing the new model. The changes caused by the occurrence of

the drift concept are reduced by a special forgetting mechanism. The imbalance ratio

is compensated by using di�erent weighting strategies to highlight the minority class

errors. The method has a high adaptability, which is due to the use of two parameters.

The parameters tune the forgetting factor and the weighting of the samples, which can

change dynamically during learning.

Wang, Minku, and Yao have outlined many interesting online methods for classifying

imbalanced data streams. One of them is the OOB and UOB methods, both presented

in the same paper [261]. Both methods consist of three separate modules. Drift detection

module, imbalance detection module, and model learning module. For the imbalance de-

tection module, they propose a certain time decay implementation, which tries to analyze

the actual distribution of class labels in data stream. The next module tries to detect

a drift. Due to the di�culty of imbalanced data, it focuses on each class individually.

This allows the detection of drift along with an indication in which class it occurred and

how much it a�ected the degradation of the predictive performance for that class. The

last module is actually a classi�er that reacts appropriately to detect concept drift or

imbalanced data. OOB and UOB use an online bagging approach based on Poisson dis-

tribution. In OOB, the lambda Poisson distribution parameter is appropriately changed



Section 2.8 � Imbalanced data stream classi�cation 49

to increase the chance of minority class samples. In UOB, the exact opposite happens,

but for the majority class where the probability of using these samples decreases. An

improved version of the OOB and UOB methods was also developed [262]. The main

change was to improve the resampling strategy, making it strongly dependent on the

current level of data imbalance. The second change was the proposal of weighted equiv-

alents of these methods � WOOB and WUOB. They made the �nal prediction more

dependent on the model that had higher quality expressed by the Gmean. The authors

have announced one more approach that develops the previous ideas into an application

for multiclass problems - MOOB and MUOB [260].

ACOG [290] is the imbalanced data stream method that focuses on using second-order

information to enhance the performance of online algorithms. The authors of this al-

gorithm have done some in-depth analysis on the use of di�erent metrics to describe

the performance of classi�ers. This led them to propose their own measure based on

balanced accuracy and weighted error. Then, a method was proposed for classi�cation

based on a linear classi�cation model with an updatable predictive vector. The proposed

measure was used to optimize the model. To solve the optimization problem, authors

use an cost-sensitive online gradient descent algorithm.

WOS-ELM is one of the methods proposed by Mirza et al. [187] that applies extreme

learning machine (ELM) to classify imbalanced data streams. As the authors point out,

existing approaches to classify data streams using ELM [168], did not give successful

results for the imbalanced data due to building models biased towards the majority class.

The proposed WOS-ELM method solves this problem by introducing weights into the

learning model to perform optimization based on the Gmean. However, the approach

has a major drawback as it was designed to use streaming data in which there is no

concept drift.

ESOS-ELM [186] is another approach from the ELM family of methods for classifying

imbalanced data streams, which extends the previous proposal WOS-ELM. Unlike in its

predecessor, ensemble learning based models are used here. The authors create several

ELM models that have varying hidden layer parameters. A special heuristic is also

proposed that decides which model a given data sample will be used for, thus balancing

the training data. A drift detector is also proposed to improve predictive performance

on non-stationary streams.

MCOS-ELM [185] is also an approach related to the previous two, but slightly more

di�erent in concept. In this method the meta-cognition is used to self-regulate the traning

process by selecting appropriate learning strategies for class imbalance and concept drift

data. The proposed approach has the ability to classify binary as well as multi-class

problems which is an important advantage.
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CBCE [241] is method for data stream classi�cation in online processing. This method

relies on the idea of using separate classi�ers for each class of data. Each of these

models is dynamically updated according to the in�ux of new instances. This approach

allows the method to react quickly to changes in the data streams. In addition, the

authors proposed a new method to handle the dynamically evolving imbalance problem

caused by drifts that a�ect the class distribution. The presented method assumes that

each classi�er has a inbuilt mechanism for dynamic data balancing, where samples from

majority classes are discarded when the number of samples signi�cantly deviates from

the size of minority class samples. The removal of samples is performed with a certain

probability distribution that additionally relies on a decay over time.

2.8.2 Chunk-based

Now it will be discussed methods for classifying imbalanced data streams that work in

a chunk-based manner, where data from a data stream is extracted as blocks containing

subsets of patterns. Processing the stream in this way is easier than online and allows for

a variety of preprocessing techniques that are known in applications to static imbalanced

datasets.

Ditzler et al. [62] proposed two methods based on Learn++ [204] algorithm, where new

models are built on a subsequent data chunks. One of them, Learn++CDS, is an

extension of the Learn++NSE [74] method, which was originally designed to classify

non-stationary data streams. The main extension focus on employing data oversampling

method � SMOTE. The combination of these techniques allows an appropriate response

to drifts using a weighted decision rule.

The second method, Learn++NIE, is a slightly more complicated approach. Firstly, a

custom bagging is used to automatically balance the data chunks. This is done by apply-

ing heuristics that select samples from di�erent classes, so that the �nal class distribution

is balanced. This lead to the method where new models that employ the ensemble, are

composed by subset of classi�ers. Weights are calculated in a slightly di�erent way, based

on classi�cation error.

SERA [50] is a method for classifying imbalanced data streams that uses minority class

patterns from previous data chunks to balance the current one. The ampli�cation of these

patterns is performed in the following way. The Mahalonobis distance to the current

minority class data is calculated. The resulting list of distances is sorted from highest

to lowest. Then the few �rst samples selected for ampli�cation are chosen according to

this list in order to obtain a given imbalance ratio of the data chunk. The resulting set

of patterns is used to create a model using bagging technique.
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MuSeRA [52] is the approach that makes several modi�cations to the previous SERA

method. The main change is that instead of using bagging, models are built on subse-

quent data chunks. This is a solution where the ensemble builds over time. In addition,

the generated models have a calculated weight based on predictive performance, which

is taken into account when determining the �nal decision of the whole ensemble of clas-

si�ers.

REA [51] is essentially another method that is a continuation of the previous two ap-

proaches. The biggest innovation of this idea is rule of selection the stored minority

enhance the current data chunk. The Mahalonobis metric is discarded and instead sam-

ple selection using the KNN classi�er is applied. For each retained minority sample,

a label is determined using KNN, where the training data is the current data chunk.

Then their probabilities of belonging to the minority class are saved and a list is created

according to these values starting from those with the highest value. The number of best

matching samples is then selected to get the desired imbalance ratio in the data chunk.

KMC [264] is a slightly di�erent approach to classifying imbalanced data streams. They

based their method on a very interesting data undersampling technique - the K-means

algorithm. Before explaining more precisely the essence of this approach, it is worth

noting that most methods for undersampling data focus on a using prototype selection

techniques. In other words, these methods try to select the best subset of patterns that

will produce a more balanced set, simultaneously obtaining a good predictive perfor-

mance. In this case, the samples are not selected. However, they are replaced by new

ones, but with smaller size. The whole process goes in such a way that the K-means

algorithm determines as many centroids as there are samples of the minority class. Then

these centroids replace the objects of the majority class. A new model is trained this

new data. This process is repeated with each subsequent data chunk. Additionally, the

models are weighted using the AUC.

OUSE [89] is a method that uses several interesting approaches to combat data imbal-

ance and concept drift. First, each data chunk undergoes a twofold balancing. Initially,

a minority class enhancement is performed using samples from the previous data chunk.

Then some undersampling is done to further reduce the di�erences that remain between

the class distributions. This is done in such a way that the majority class data is divided

into enough parts to get an equal amount of patterns with the minority class. Later,

each of these sets, together with a minority class objects, are used to learn a new model.

In this way, both a clever undersampling of the data and also some bagging is done to

create an ensemble of classi�ers.

Ren et al. proposed two very simmilar methods � GRE (Gradual Resampling Ensem-

ble) [210] and SRE (Selection-based Resampling Ensemble) [211], to classify imbalanced
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data streams in online and chunk-based processing. The presented methods focus on

using selectively resampling mechanism. This is a technique that, as in previous algo-

rithms, stores data only from the minority class to enhance the newest data chunk. This

procedure is a bit more complicated and requires special attention. First, the data from

each class is divided into clusters. Then the Mahalanobis distances among these clusters

and the stored patterns are determined. Based on the obtained values, a list is created

according to which new samples are selected to strengthen the minority class of the ac-

tual data chunk. In addition, the authors proposed a mechanism for ensemble pruning,

where the worst performing models are removed, and a method for determining model

weights based on Mean Square Error.

MDE (Minority Driven Ensemble) is an approach proposed by Zyblewski et al. [301].

The method focuses on a simple, but successful idea for the selection of classi�ers. The

ensemble is built by incrementally adding new models, which are trained on subsequent

data chunks. When at least one of the models forming the ensemble indicates that the

object belongs to a minority class, then the ensemble makes a �nal decision based only on

that model. This technique e�ectively improves the model's ability to classify minority

data. This approach has no drift detector, but has a good ability to self-adapt to a

changing data distribution.

DUE (Dynamic Updated Ensemble) [167] is an approach to classify imbalanced data

streams that uses model updating and bagging techniques. One of the main components

of this algorithm is the procedure for building new models. Each data chunk contributes

to the creation of a set of models. This is done using controlled bagging, where samples

are drawn from each class in su�cient numbers to provide a balanced training set for

a single model. In situations where there are too few minority class objects to perform

such a draw well, the SMOTE algorithm is used, which further samples the new patterns.

Then the evaluation and weighting of all models is performed. This is done using a pro-

posed formula consisting of a combination of Mean Square Error and Hellinger Distance

of feature spaces between models. Then those models that get the weakest weight and

are above the assumed ensemble dimension are removed. The ensemble decision is made

by weighted majority voting.

TSCS (Two-Stage Cost-Sensitive) [240] ensemble is a method for classifying imbalanced

data streams that uses a two-stage cost-sensitive learning scheme. In the �rst stage,

feature selection is performed using the Cost-Sensitive Principal Component Analysis

(CSPCA) algorithm. It selects features and balances the data using sample weighting.

Di�erent weights for minority and majority class samples can reduce the dominant role

of majority instances in feature selection. In the next phase, a set of weighted models

is created using cost-sensitive modi�cations. This approach allows dual application of
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data balancing without changing the data distribution. Additionally, the method has an

"adaptive window change detector" built in to indicate when is the best time to build a

new candidate classi�er and adapt to any drift quickly.

2.9 Data noises

One of the equally important problems that arise in data is noise. It is some indispensable

part of real world data. Most studies should take into account the existence of the certain

disturbance in the form of noise, which makes the task of classi�cation even more di�cult.

In the following section, it will be discussed two types of noise that can be distinguished

� label noise and attribute noise. In addition, ways to deal with this type of data will be

presented.

2.9.1 Label noise

The quality of labeling has a signi�cant impact on the predictive quality of the classi-

�ers. The data labeling process is not error-free. It can have a di�erent character and

can be viewed as noise introduced into the learning information. One may consider the

noise caused by a human operator (incorrect imputation) or measurement errors when

acquiring attribute values. Label noise occurs whenever an observation is assigned in-

correct label [299], and can lead to the formation of contradictory learning instances, if

duplicate observations are assigned to di�erent labels [114]. The problem of incorrect

labeling has been considered in the literature for years [92, 227], including a survey by

Frénay and Verleysen [83]. However, relatively few papers focused on the dependency

between data noise and predictive performance of imbalanced data classi�ers [136]. To

start discussing the nature of data noise, one should �rst consider where the information

on the labels is obtained. Human experts give the most common labels, but should be

taken into account:

� man is not infallible, e.g., considering the quality of medical diagnostics, it can be

concluded that the number of errors made by human experts is noticeable [66],

� the distribution of errors committed by experts is not uniform, because labeling

may be subjective,

� human experts may be biased,

� human experts are not available 24/7 and their work is costly.
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Another approach is obtaining labels from non-experts as crowdsourcing. It provides a

scalable and e�cient way to construct labeled datasets. However, creating comprehen-

sive label guidelines for crowd workers is often hard, even for seemingly simple concepts.

Incomplete or ambiguous label guidelines can result in di�ering interpretations of con-

cepts and inconsistent labels. Also data corruption can cause label noise [46], e.g. � data

poisoning [166] and adversarial attacks [285]. The label corruption brings a predictive

performance degradation of classi�cation systems [113]. The label error distribution may

have a di�erent nature, usually dependent on error source and one may distinguish:

� a completely random label noise,

� a random label noise dependent on the true label (asymmetrical label noise),

� a label noise dependent on the true label and features.

There are several methods to combat label noise. One of the most popular is data

cleaning, where e.g., SMOTE is applied with cleaning using the Edited Nearest Neighbors

(ENN) [16]. This approach keeps the relatively high number of observations, and the

number of mislabeled observations is relatively low, allowing to detect improperly labeled

observations. Designing a label noise-tolerant learning classi�cation algorithm is another

approach. It assumes a model of label noise distribution and analyzes the viability of

learning under this model. Angluin and Laird present an example of this approach as a

Class-conditional noise model (CCN) [9].

Finally, the last approach is designing a label noise-robust classi�er. Even if there is no

data denoising, nor any noise is modeled, still produces a model that has a relatively

good predictive performance when the learning set is slightly noisy [83].

2.9.2 Attribute noise

Most real world datasets have some error that decide about quality of the data. When

the classi�er gets the training data with errors, the more di�cult it is to get the model

because such noise distorts the data distribution, which can lead to the model's over-

�tting to noise. The best idea is to create a model for non-noisy data but the manual

data cleaning process is ine�ective, time-consuming and expensive, so it is worth using

preprocessing methods to remove noisy samples, �ll in missing values or revise incorrect

values. However, removing noise from attribute values is more di�cult and less common

in literature than the case of label noise [104], because it is understood that individual

features are not as important as the class. Some features may be redundant or of little

use [298]. Contained noise may result from the experiment or a real situation from which
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the data is collected e.g. faults in apparatus, transcription and transmission errors, and

consequently noise is unpredictable [91]. Zhu and Wu [298] proposed that attribute noise

is consider when errors contain:

� erroneous attribute values

� missing or do not know attribute values

� incomplete attributes or do not care values

Zhu et al. [298] add attribute noise to the training set and the test set, and they make

cross-evaluations to check the classi�cation accuracy. They show that this noise reduces

the prediction performance and it may be bene�cial to not discard all instances but to

adjust them. Attributes may be correlated with each other, and then it is not necessary

to handle the noise of all features because some of them have a greater impact on the

model performance than others. Comparing these two types of noise, attribute and

class noise, they claimed that class noise is more harmful than attribute noise. One of

approaches that tries to combat attribute noise is using class noise �ltering where class is

replaced by each attribute, but it can be applied only when attributes can be predicted

by other attributes, otherwise di�erent techniques should be used, such as clustering, k

nearest neighbors, association analysis.

Yu et al. proposed a learning paradigm to reduce the attribute and label noise from

credit risk assessment datasets [284]. The algorithm has three stages: (1) Calculating

values of information gain, gain ratio, Gini index and Sperman's correlation coe�cient

for each feature; (2) Two-round voting for attribute categorization into di�erent sets;

(3) Processing attribute noise containing di�erent learning strategies for di�erent sets

obtained in the step 2, non-sparse or sparse processing, and de-noising. Yang et al. [281]

proposed the method handling noise of predictive but unpredictable attributes. These

attributes are useful to classi�cation and they cannot be predicted by others features

so it is crucial to dealing with the noise. The attribute noise is identi�ed, cleaned and

measured by proposed conceptual equivalence measurement. PANDA (Pairwise At-

tribute Noise Detection Algorithm) was proposed in [255]. The algorithm compares two

attributes at a time, and assigns Noise Factor to rank attributes from most noisy to

least noisy in order that remove the most noisy attributes and obtain cleaner dataset.

HNOML (Hybrid noise-oriented multilabel learning) [287] is based on bi-sparsity reg-

ularization combined with label enrichment to handle both attribute and label noise in

the multilabel classi�cation.

The above chapter presents the most important issues of machine learning and research

areas that will be partially addressed in this dissertation. Concluding, it is worth noting
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that the classi�cation of imbalanced data streams poses many challenges both from the

side of developing classi�cation methods as well as the research workshop, including

properly conducted experimental evaluation. Moreover, it is worth keeping in mind that

despite the niche nature of the classi�cation of imbalanced data streams, it is important

to remember about the existing contributions to this domain.



Chapter 3

One class classi�er ensembles

This chapter focuses on presenting the methods for classifying imbalanced data

streams using ensembles of one-class classi�ers. Two di�erent approaches are in-

troduced and subjected to experimental evaluation with statistical analysis of the

obtained results. The �rst one concentrates on using the committee with one-class

classi�ers trained on clustered data for each class separately. The next approach

extends the previous one by proposing a new weighted combination rule along with

a much more extensive experimental analysis.

3.1 One class support vector machine classi�er ensemble for

imbalanced data stream

The approach proposed in this section makes a very heavy attempt � using one-class

models for binary imbalance data stream classi�cation. From one side, it is adding

di�culty, because such classi�ers are designed mainly for tasks such as anomaly detection

or novelty detection � one class problems. On the other hand, intuition suggests that

an imbalanced data stream may turn out to be an ideal candidate for becoming such an

approach. First of all, it is worth noting that the drift in imbalanced streams can cause

dynamic changes of the imbalance ratio. In very extreme situations, this can lead to the

temporary or complete disappearance of one class. Class vanishing for a standard binary

classi�er can be a bit of an insurmountable problem, as the lack of counter examples

will not allow the classi�er to keep running. It is in this situation that a one-class

classi�er, which only needs data from one class to build the model correctly, may �nd

an ideal application. Following this idea, a One Class support vector machine classi�er

Ensemble for Imbalanced data Stream (OCEIS ) method has been proposed.

57
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Figure 3.1: OCEIS �ow diagram

The main core of this idea is the use of one-class support vector machines (OCSVM )

to imbalanced binary classi�cation tasks. Classi�cation of imbalanced data streams is a

complex problem. Usually, such tasks are solved by a classi�er ensemble, which has much

better ability to deal with di�cult data. Similarly, in this method, an ensemble composed

by many one-class classi�ers has been designed. This proposition is a chunk-based data

stream method. However, the deployment of ensemble learning involves ensuring that

the required conditions to fully exploit the potential of multiple models. Firstly, the

focus should be on proper ensemble diversi�cation. The idea of this method is to use

clustering of the learning data. Each model is trained on a di�erent set of data. In

addition, a suitable combination rule should also be designed to extract knowledge from

individual models. Fig. 3.1 presents the main idea of the proposed method.

In the �rst step of the Alg. 1, the training data chunk (DSt) is divided into a minority

(DSmt ) and a majority set (DSMt ), where t is current time stamp, m means minority

and M means majority. Then these sets of data are divided into clusters using the clus-

tering algorithm (CA). Krawczyk et al. [144] indicate the importance of this idea. This

decomposition of data over the feature space allows achieving less overlap of classi�ers

decision areas in the ensemble (Fig. 3.2). The K-means algorithm [179] is used to create

clusters. The key aspect is choosing the right number of clusters. One such solution

may be the use of cluster consistency metrics (CM). Silhouette Value (SV ) [217] comes
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(a) Minority classi�ers (b) Majority classi�ers

(c) Both classi�ers (d) Ensemble

Figure 3.2: Decision regions visualisation on the paw dataset from the KEEL repository[5]

with help, which allows calculating how similar an object is to its own cluster compared

to other clusters. Kaufman et al. [165] introduced the Silhouette Coe�cient (SC ) for

the maximum value of the mean SV over the entire dataset. This metric describes how

similar objects are to their cluster compared to other clusters and it is described by the

Eq. 3.1:

SV (x) =
b(x)− a(x)

max{a(x), b(x)}
, (3.1)

Where x is an object from cluster C, a(x) is a measure of how much x dissimilar to
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other clusters and b(x) is a measure of how much x dissimilar to cluster C. Both of

these metrics are calculated based on the average distances which are expressed by the

Euclidean distance measure. In addition to the metric itself, some procedure is needed

to search for the optimal solution. The idea for this is to explore di�erent solutions in a

prede�ned range.

Minority and majority data are divided into two cluster sets (Cmt,k, C
M
t,k) with a di�erent

number of centroids � k from 1 to K, where K is an input parameter. The number of

clusters for minority (n) and majority (N) is selected by the option with the highest

value of CM . This process is performed for minority and majority data. Then the

formed clusters are used to train new OCSVM models (Ψm
t,i, ΨM

t,j). These models are

included in the pool of classi�er committees (Πm, ΠM ). The method is designed by

default to operate on data streams. For this reason, a simple forgetting mechanism, was

implemented. This allows using models trained only on data with a certain time interval.

When the algorithm reaches a value s = t, in each iteration, the models built on the

oldest chunk are removed from the ensemble.

A crucial component of any classi�er ensemble is the combination rule, which makes

decisions based on the predictions of the classi�er ensemble. Designing a good decision

rule is vital for proper operation and obtaining satisfactory classi�cation quality. First

of all, OCEIS uses one-class classi�ers and class clustering technique, which changes the

way how the ensemble works. Well-known decision making based on majority voting

does not allow this kind of committee to make correct decisions [278]. The number

of classi�ers for individual classes may vary signi�cantly depending on the number of

clusters. In this situation, there is a considerable risk that the decision will mainly base

on majority classi�ers. OCEIS uses the original combination rule based on distance from

the decision function which determines the relative distance of classi�ers boundries to

predicted samples. Let fmt,i denotes discrimination function of classi�er Ψm
t,i (Eq. 2.10)

and fMt,j of classi�er ΨM
t,j respectively. The �nal decision of the OCEIS is made according

to the following classi�cation rule:

Ψ(x) =



minority class if max
i∈Πm

(
fmt,i(x)

)
≥ max

j∈ΠM

(
fMt,j (x)

)

majority class otherwise

(3.2)
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Algorithm 1 OCEIS
Input:

DS � data stream
DSt � t-th data chunk of data stream DS
s � maximum size of classi�er ensemble
K � maximum number of clusters
CA � clustering algorithm, e.g. K-means [179]
CM � clusters consistency, e.g. Silhouette Coe�cient metric [165]

Symbols:

DSmt � minority data in the t-th chunk
DSMt � majority data in the t-th chunk
n � number of minority clusters
N � number of majority clusters
Cmt,k � clusters of minority data DSmt
CMt,k � clusters of majority data DSMt
Ψm
t,i � OCSVM model trained on Cmt,i cluster

ΨM
t,j � OCSVM model trained on CMt,j cluster

Πm � minority model set (ensemble)
ΠM � majority model set (ensemble)

Output:

Πt � �nal ensemble for t-th data chunk

1: for t = 1, 2, . . . do
2: Split DSt into minority (DSmt ) and majority (DSMt ) data
3: for k = 1, 2, . . . ,K do

4: Cmt,k ← Create k clusters using CA on DSmt
5: CMt,k ← Create k clusters using CA on DSMt
6: end for

7: n ← argmax
k=1,2,...,K

CM (Cmt,k)

8: for i = 1, 2, . . . , n do
9: Ψm

t,i ← Train OCSVM model on Cmt,i cluster data
10: Πm ← Πm ∪Ψm

t,i

11: end for

12: N ← argmax
k=1,2,...,K

CM (CMt,k)

13: for j = 1, 2, . . . , N do

14: ΨM
t,j ← Train OCSVM model on CMt,j cluster data

15: ΠM ← ΠM ∪ΨM
t,j

16: end for

17: if t > s then
18: Πm ← Πm \Ψm

t−s,j
19: ΠM ← ΠM \ΨM

t−s,i
20: end if

21: end for
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Computational complexity analysis

In this section, the computational complexity of the proposed method will be presented.

OCEIS can be divided into two fragments, which makes up the computational complexity

of the whole algorithm. First is the base classi�er. According to the main idea of this

proposition, an OCSVM classi�er is used here, whose complexity is equal to O(n3
s) [275],

where ns is the number of objects. The second factor a�ecting the complexity is the

method to cluster the data. Since this is a parameter for the OCEIS method, the

complexity of this element may vary depending on choice. In this case, it can be assumed

in advance that the K-means method will be used, which has a complexity equal to

O(ktins) [123] where k is the number of clusters, and ti is the number of iterations. The

�nal complexity of the OCEIS algorithm is O(n3
s + ktins).

3.1.1 Experimental evaluation

The main purpose of this experiment was to check how well the proposed method per-

formed in comparison to the other methods for classifying imbalanced data streams. The

following research question was formulated:

RQ1: Is it possible to design a one class ensemble method with a statistically better or

equal predictive performance than the selected state-of-the-art methods for imbal-

anced data streams?

Setup

Table 3.1: Parameter setup for data stream generator

Parameter Value

Number of samples 100000

Number of chunks 200

Chunk size 500

Number of classes 2

Number of features 10 (8 informative + 2 redundant)

Number of drifts 5

Concept drift types sudden incremental

Random state 1111 2222 3333 4444

Imbalance ratio 10% 20% 30%

All tests were carried out using 24 generated streams (Tab. 3.1 and 30 real streams

(Tab. 3.2). The size of the data chunks in real data was chosen experimentally. Data

chunks were processed in a test-then-train manner [24]. The generated data comes from
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stream-learn [150] generator. The proposed method has been tested with the selected

state-of-the-art methods:

� REA � Recursive ensemble approach [51]

� KMC � K-means clustering undersampling ensemble [264]

� L++CDS � Learn++CDS [62]

� L++NIE � Learn++NIE [62]

� OUSE � Over and undersampling ensemble [89]

� MLPC � Multi-layer perceptron classi�er

Experiments were implemented in Python programming language. The SVM implemen-

tation from the scikit-learn framework [200] was used as the base classi�er for state-of-the-

art methods. OCEIS implementation and the experimental environment is available on

public Github repository1. The experiments were evaluated using �ve di�erent metrics:

� Gmeans

� F1score

� Recall

� Specificity

� Precision

Then results obtained in this way were compared using Wilcoxon pair rank-sum tests.

Experiment 1 - State-of-the-art comparison

The obtained results of the Wilcoxon rank-sum pair statistical tests show that OCEIS

can classify with the similar quality compared to the tested methods. There is a certain

advantage of the L++CDS method over other methods for tested synthetic data streams

(Fig. 3.3). In the second place it can be put L++NIE and OCEIS. For the OUSE and

L++NIE methods, there is a noticeable tendency to classify objects of the minority

class, which is manifested by the higher results in the Recall (TPR), but this causes

a signi�cant drop in Specificity (TNR). The worst in this test was the REA method,

which shows a huge beat in the direction of the majority class. The results are more
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Table 3.2: Overview of real datasets used in experimental evaluation (KEEL [5] and PROMISE Software
Engineering Repository [170]), IR � Imbalance Ratio

Dataset IR Samples Features Chunk size

abalone-17_vs_7-8-9-10 39 2338 8 250

australian 1.2 690 14 50

elecNormNew 1.4 45312 8 500

glass-0-1-2-3_vs_4-5-6 3.2 214 9 30

glass0 2.1 214 9 30

glass1 1.8 214 9 30

heart 1.2 270 13 50

jm1 5.5 2109 21 100

kc1 5.5 2109 21 100

kc2 3.9 522 21 50

kr-vs-k-three_vs_eleven 35 2935 6 250

kr-vs-k-zero-one_vs_draw 27 2901 6 250

page-blocks0 8.8 5472 10 500

pima 1.9 768 8 50

segment0 6 2308 19 100

shuttle-1vs4 14 1829 9 100

shuttle-1vsA 3.7 57999 9 500

shuttle-4-5vsA 3.8 57999 9 500

shuttle-4vsA 5.5 57999 9 500

shuttle-5vsA 17 57999 9 500

vehicle0 3.3 846 18 100

vowel0 10 988 13 50

wisconsin 1.9 683 9 100

yeast-0-2-5-6_vs_3-7-8-9 9.1 1004 8 100

yeast-0-2-5-7-9_vs_3-6-8 9.1 1004 8 100

yeast-0-3-5-9_vs_7-8 9.1 506 8 70

yeast-0-5-6-7-9_vs_4 9.4 528 8 60

yeast-2_vs_4 9.1 514 8 60

yeast1 2.5 1484 8 150

yeast3 8.1 1484 8 150

transparent for real data sets (Fig. 3.4). Despite many ties, the best performing method

is OCEIS. The exceptions are Recall for OUSE and Specificity for REA.
1Repository link: https://github.com/w4k2/oceis-iccs2020

https://github.com/w4k2/oceis-iccs2020
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Figure 3.3: Wilcoxon pair rank sum tests for synthetic data streams. Dashed vertical line is a
critical value with a signi�cance level 0.05 (green � win, yellow � tie, red � lose)
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Figure 3.4: Wilcoxon pair rank sum tests for real data streams. Dashed vertical line is a critical
value with a signi�cance level 0.05 (green � win, yellow � tie, red � lose)

Charts of Gmeans score over the data chunks provide some useful information about the

obtained results. To get a much better readability, the data before plotting was processed

using a Gaussian �lter. This procedure smoothes the edges of the results, which allows

getting much more information from the results. The �rst observation is that OCEIS

does not degrade the quality over time for the incremental drift stream (Fig. 3.5). The

negative e�ect of the concept drift can be seen with the KMC and REA methods, where

the quality deteriorates signi�cantly with the in�ow of subsequent data chunks.
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Figure 3.5: Gmeans score over the data chunks for synthetic data with incremental drift

In sudden concept drift (Fig. 3.6), a certain decrease is noticeable, which is more or less

re�ected on every tested method. However, L++CDS, L++NIE and OCEIS can quickly
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rebuild this quality drop. This does not a�ect the overall quality of the classi�cation

signi�cantly. Other methods perform a little bit randomly on sudden drifts. An example

of the real-time shuttle-4vsA stream (Fig. 3.7) shows the clear advantage of the OCEIS

method over the other tested methods. A similar observation can be seen in other �gures

for real streams.
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Figure 3.6: Gmeans score over the data chunks for synthetic data with sudden drift
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Figure 3.7: Gmeans score over the data chunks for real stream shuttle-4-5vsA

When analyzing the results, one should pay attention to the signi�cant divergences in the

performance of the proposed method for synthetic and real data streams. A large variety
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characterized real data streams, while arti�cial streams were generated using one type

of generator (of course, for di�erent settings). However, the generated data streams are

biased towards one type of data distribution, which probably was easy to analyze by some

of the models, while the bias of the rest of them was not consistent with this type of data

generator. Therefore, in the future, it should be carried out the experimental research

on the expanded pool of synthetic streams generated by other di�erent generators.

3.1.2 Lessons learned

To summarize the experimental evaluation conducted, the answers to the research ques-

tions posed earlier are presented below:

RQ1: Is it possible to design a one class ensemble method with a statisti-

cally better or equal predictive performance than the selected state-of-the-art

methods for imbalanced data streams?

Based on the results obtained from reliable experiments, the formulated research question

receives an a�rmative answer. OCEIS achieves results at a similar level to the compared

methods, but it is worth noticing that it performs best on the real data stream, which

is its important advantage. Another advantage is that there is no tendency towards

the excessive classi�cation of objects into one of the classes. This was a problem in the

experiments carried out using the REA and OUSE methods. Such "stability" contributes

signi�cantly to improving the quality of classi�cation and obtaining satisfactory results.
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3.2 One class support vector machine weighted ensemble

This subsection will describe the One Class support vector machineWeighted Ensemble

(OCWE ) method for the imbalanced data stream classi�cation. It is the chunk-based

ensemble that employs OCSVM classi�ers for binary classi�cation problems. Ensemble

diversity is ensured by feature space clustering, and a specially designed decision rule with

weighted voting adds more versatility to this idea. The pictorial diagram 3.8 presents

the main idea. Let us shortly explain its main components.

Figure 3.8: Overview diagram of OCWE method

OCWE is an extension of the One Class support vector machine classi�er Ensemble

for Imbalanced data Stream (OCEIS ) [132] (Sec. 3.1). Both methods are based on the

ensemble of OCSVM and designed to classify imbalanced data streams However, OCWE

introduces a few important changes:

� The main one is the weighted combination rule, where these weights are based on

four di�erent factors � the distance between models, deterioration, prediction met-

ric, imbalance ratio of class. These factors have additional parameters to determine

how much they in�uence the �nal decision.

� Clustering method and metric to determine the optimal number of clusters were

chosen experimentally.
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� The procedure for selecting the clusters for the majority examples was changed.

The whole method will be described step by step to explain better and justify these

changes.

Ensemble

A crucial aspect of designing the ensemble method is to maintain a strong diversi�cation

of models. One of the well-known strategies is bagging that builds the ensemble using

randomly selected samples from data. Sun et al. [239] proposed Clustering Based Bagging

Algorithm, which �rst divides the samples using the K-means algorithm into clusters

and then draws the samples from these clusters. OCWE provides diversi�cation through

clustered feature space. It means that each of the OCSVM models are trained on a

di�erent data cluster using the selected clustering algorithm. This approach was inspired

by [144] where the authors showed that it improves the predictive quality of OCSVM

ensemble. This idea signi�cantly reduces the overlapping among the classi�ers' decision

regions in the ensemble. The procedure of the proposed method is described in Alg. 2.

Clustering

Each data chunk (DSt) is divided into a minority set (DSmt ) and a majority set (DSMt ).

Then each of these subsets is divided into clusters using a clustering algorithm (CA).

OCWE was designed in such a way that the clustering method is a parameter. Unfortu-

nately, this creates an issue � how to �nd the right number of clusters. One approach may

be to determine this number arbitrarily. However, it is problematic in non-stationary

streams, where the data distribution is a�ected by some changes. The initially deter-

mined number of clusters is unlikely to work well after the concept drift. Another solution

is to use a metric that could how well such clusters were created. Having a metric, it

is possible to determine (within a certain range) what number of clusters gets the best

value and make a decision based on that for every chunk of data.

Therefore, an dynamic way of selecting the best number of clusters is introduced. Mi-

nority set is split multiple times (Cmt,k) into a di�erent number of clusters from 1 to K.

Then the value of the metric (CM) is calculated for every solution. The choice of the

�nal number of clusters (n) for minority class data is made based on the best value of

the metric (CM). The metric is also a parameter that can use any function to calcu-

late the value of consistency for the created clusters. A slightly di�erent approach is

used for majority class objects. Most often, the majority instances form a large subset

of the data chunk. Searching for the best number of clusters using the metric may be



70 Chapter 3 One class classi�er ensembles

Algorithm 2 OCWE
Input:

DS � data stream
DSt � t-th data chunk of data stream DS
s � maximum size of classi�er ensemble
K � maximum number of clusters
CM � selected clustering metric
CA � selected clustering algorithm

Symbols:

DSmt � minority data set of chunk DSt
DSMt � majority data set of chunk DSt
N � number of majority clusters
n � number of minority clusters
Cmt,k � clusters of minority data DSmt
CMt,k � clusters of majority data DSMt
Ψm
t,i � model trained on Cmt,i cluster data using Ψ

ΨM
t,j � model trained on CMt,j cluster data using Ψ

Output:

Πt � �nal ensemble for t-th data chunk

1: for t = 1, 2, . . . do
2: Split DSt into minority (DSmt ) and majority (DSMt ) data
3: for k = 1, 2, . . . ,K do

4: Cmt,k ← Create k clusters with CA on DSmt
5: end for

6: n ← argmax
k=1,2,...,K

CM(Cmt,k)

7: for i = 1, 2, . . . , n do
8: Ψm

t,i ← Train OCSVM model on Cmt,i cluster data
9: wmt,i ← Compute weight for Ψm

t,i according to the Eq. 3.12
10: Πm ← Πm ∪Ψm

t,i

11: end for

12: N ←
⌈
‖DSMt ‖
‖DSmt ‖

⌉
13: CMt ← Create N clusters with CA on DSMt
14: for j = 1, 2, . . . , N do

15: ΨM
t,j ← Train OCSVM model on CMt,j cluster data

16: wMt,j ← Compute weight for ΨM
t,j according to the Eq. 3.13

17: ΠM ← ΠM ∪ΨM
t,j

18: end for

19: if t > s then
20: ΠM ← ΠM \ΨM

t−s,j
21: Πm ← Πm \Ψm

t−s,i
22: end if

23: end for
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computationally intensive. Preliminary experiments have shown that using an approach

with a metric (CM) leads to the formation of many clusters. Unfortunately, in this case,

numerous clusters are associated with numerous majority class models in the ensemble.

As a result, the �nal decision of the committee is too biased towards the majority class.

This trend was visible in the experiment results of OCEIS method [132]. The number

of clusters is determined according to the formula below:

N =

⌈∥∥DSMt ∥∥
‖DSmt ‖

⌉
(3.3)

where N is a number of clusters for majority class data, ‖DSMt ‖ is a number of samples

in the majority data chunk, and ‖DSmt ‖ is the number of samples in the minority data

chunk, i.e., the number of majority clusters is equal to the Imbalance Ratio rounded up.

Then clusters (CMt,k) are created.

Pruning

The clusters (Cmt,k, C
M
t,k) are used to train new models (Ψm

t,i, ΨM
t,j) using OCSVM which

are forming the minority (Πm) and majority (ΠM ) ensemble. In each step, a few new

models are added to the ensemble. It is vital to implement an e�cient mechanism for

pruning models. The main rule is to remove the oldest models from the ensemble when

they exceed a predetermined threshold. When the ensemble size reaches a preset max-

imum threshold (s), the oldest models are removed. Such an approach avoids memory

over�ow and automatically adapts to the potential concept drift in a non-stationary data

stream. This design can also process data streams that are theoretically in�nite.

Weights

After pruning, the weights for each classi�er are calculated based on four factors. The

�rst one is the distance to the nearest classi�er from the opposite class. The higher

is the distance, the higher is the "competence" of this classi�er. However, when two

classi�ers from di�erent classes are very close to each other, their "competence" becomes

much more smaller. Each model in the ensemble is trained on a data cluster (Cmt,k, C
M
t,k)

created on a data chunk. The relative distance between the models is estimated based

on the centroid points (CPmt,k, CP
M
t,k) of these clusters. For the minority class model

Ψm
t,i, this "competence" level is de�ned by a minimum Euclidean distance between CPmt,i

point to CPMt,k points:
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CLmt,i = min
k∈1,...,N

|CPmt,i − CPMt,k | (3.4)

where t is the current data chunk number, i is the index number of minority model

centroid point, k is the index number of majority model centroid point from 1 to N .

Similarly, for a majority class models, "competence" level is de�ned by the minimum

Euclidean distance between CPMt,j point to CPmt,k points:

CLMt,j = min
k∈1,...,n

|CPMt,j − CPmt,k| (3.5)

where t is current data chunk number, j is the index number of majority model centroid

point, k is the index number of minority model centroid point from 1 to n. Another

factor is the quality of the classi�cation, which is evaluated on the current data chunk.

For minority class classi�ers, it is Recall score:

Smt,i =
tp

tp+ fn
(3.6)

where tp is true positive and fn is false negative. For majority class classi�ers Specificity

score:

SMt,j =
tn

tn+ fp
(3.7)

where tn is true negative and fp is false positive. The next factor is the age (Amt,i, A
M
t,j) of

each classi�er. Here the rule is quite simple. For each classi�er, the age is counted. The

factor A is inversely proportional to the di�erence of age of the model and the actual

chunk number. It means that the oldest classi�ers have the smallest weight. For minority

class models, this value is computed as:

Amt,i =
1

T i − t
(3.8)

where T i is the index number of the data chunk on which the model (Ψm
t,i) was created

and t is the current chunk index number. For majority class models:
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AMt,j =
1

T j − t
(3.9)

where T j is the index number of the data chunk on which the model (ΨM
t,j) was created

and t is the current chunk index number. The last factor is the imbalance ratio in a given

data chunk. The higher the imbalance ratio, the higher is the weight of the minority

models, and simultaneously the majority models weight decreases. Minority models

usually have smaller decision regions and are less numerous, which leads to a strong

bias of the whole ensemble decision toward the majority. For minority class models, the

imbalance factor is the imbalance ratio:

IFmt =

∥∥DSMt ∥∥
‖DSmt ‖

(3.10)

where t is the current data chunk number. For majority class models, it is de�ned as the

inverse value of the imbalance ratio:

IFMt =
‖DSmt ‖∥∥DSMt ∥∥ (3.11)

To calculate the �nal weights for minority models, the following weighted sum is used:

wmt,i = α× CLmt,i + β × Smt,i + γ ×Amt,i + δ × IFmt (3.12)

Similarly, for the majority models:

wMt,j = α× CLMt,j + β × SMt,j + γ ×AMt,j + δ × IFMt (3.13)

where (α, β, γ, δ) are responsible for the proper weight tuning.

Prediction

Designing a suitable combination rule is an essential element of each ensemble method.

It is important for better performance and satisfactory predictive quality. Methods such

as OCEIS or OCWE that use one-class classi�ers for binary problems require special

attention. Typical solutions based on majority voting or soft voting cannot produce a

good predictive ability. Both methods use the original combination rule based on the

classi�ers' decision boundary distance to predict samples. The main change that has

been introduced in the OCWE method is the decision weighting of individual classi�ers
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in the ensemble. Many ensemble methods use weights to change the in�uence of decisions

from individual models [36, 258].

Let fmt,i denotes decision function of classi�er Ψm
t,i (Eq. 2.10) and fMt,j of classi�er ΨM

t,j

respectively. The �nal decision of the proposed classi�er Ψ is made according to the

following classi�cation rule:

Ψ(x) =



minority class if max
i∈Πm

(
wmt,if

m
t,i(x)

)
≥ max

k∈ΠM

(
wMt,kf

M
t,k(x)

)

majority class otherwise

(3.14)

Computational complexity analysis

The computational complexity of the OCWE method consists of several factors that

are speci�c parts of the whole algorithm. In order to determine the complexity of the

whole method, it is necessary to determine the complexity for these individual elements

and then make a linear combination of them. The data clustering method has a rel-

atively signi�cant impact to �nal complexity. Because this is a certain parameter for

the OCEIS algorithm, it must be assumed that the K-means method will be used. It

has a complexity equal to O(ktins) [123] where ns is the number of objects, k is the

number of clusters, and ti is the number of iterations. Another important factor is the

procedure that determines the weights for each model. The most aggravating part is

determining the distance between centroids using the Euclidean. Under the worst-case

assumption, it can be determined that this complexity equals O(cp) [8], where cp is the

number of centroid pairs that will be compared to each other. The last piece that a�ects

the complexity of the whole algorithm is the base classi�er, which in the case of this

method is OCSVM. Its complexity is equal to O(n3
s) [275], where ns is the number of

objects. Concluding, the complexity of the proposed method depends on several factors.

The linear combination of these fragments allows to determine the �nal computational

complexity equal to O(n3
s + ktins + cp). The complexity for the Learn++CDS method

is O(n3
s + ns log2 ns) [62] [73] [276]. This means that the proposed OCWE method has

lower theoretical computational complexity than Learn++CDS.

3.2.1 Experimental evaluation

This subsection will describe the experiments' setup and results to explore the properties

of the proposed method and the prediction quality for imbalanced data streams compared
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to selected state-of-the-art methods. Let us formulate the following research hypotheses:

RQ1: What is the best setup of clustering methods and cluster consistency metric in the

OCWE method?

RQ2: What is the best setup of weight parameters in the OCWE method?

RQ3: How �exible is OCWE to the dynamic imbalance ratio and concept drift?

RQ4: What is the predictive quality of OCWE in comparison to the state-of-the-art

methods?

Setup

All experiments and the proposed method have been implemented in the Python pro-

gramming language. The implementation and the full set of results are publicly available

on the Github repository2. The research was conducted on imbalanced data streams from

two di�erent generators � stream-learn [150] and MOA [24]. Tab. 3.3 presents parame-

ters such as a number of objects, chunk size, imbalance ratio, noise level or drift type of

generated synthetic data streams.

Table 3.3: Parameter setup for data stream generators

Parameter Value

Number of samples 100000

Number of chunks 200

Chunk size 500

Number of classes 2

Number of features 10 (8 informative + 2 redundant)

Number of drifts 1 5

Concept drift types sudden incremental

Random state 1111 2222 3333 4444 5555

Stationary

imbalance
5% 10% 15% 20% 30%

Dynamically

imbalance
5% 10% 15% 20% 30%

(a) stream-learn

Parameter Value

Generator type RandomRBFGenerator

Number of samples 100000

Number of chunks 200

Chunk size 500

Number of classes 2

Number of features 10 (8 informative + 2 redundant)

Number of drifts 1 5

Concept drift types sudden incremental

Random state 1111 2222 3333 4444 5555

Stationary

imbalance
5% 10% 15% 20% 30%

(b) MOA

Additionally, selected imbalanced streams of real origin were used (Tab. 3.4). Data

chunks were processed in a test-then-train manner [24]. This means that every data

chunk (except the �rst one) was used initially for evaluation and then for training. One

chunk contains 500 objects. All tested methods were set to maximally store data and
2Repository link: https://github.com/w4k2/ocwe

https://github.com/w4k2/ocwe


76 Chapter 3 One class classi�er ensembles

models from the last 10 data chunks. The OCWE method has been compared with the

selected state-of-the-art chunk-based ensemble methods:

� REA � Recursive ensemble approach [51]

� Number of estimators = 10

� Post balance ratio = 0.5

� KMC � K-mean clustering undersampling ensemble [264]

� Number of estimators = 10

� L++CDS � Learn++CDS [62]

� Number of estimators = 10

� Parameter a = 0.5

� Parameter b = 10

� L++NIE � Learn++NIE [62]

� Number of estimators = 10

� Parameter a = 0.5

� Parameter b = 10

� OUSE � Over and undersampling ensemble [89]

� Number of estimators = 10

� Fixed sampling = True

� MLPC � Multi-layer perceptron classi�er

� Hidden layers = 1

� Neurons in hidden layer = 10

Table 3.4: Real datasets used in experimental evaluation

Dataset samples features IR

covtypeNorm-1-2vsAll 266 000 54 3.91

poker-lsn-1-2vsAll 360 000 10 9.69

The experiments were evaluated on the basis of �ve di�erent metrics � Gmeans [152],

F1score [235], Recall, Specificity, Precision. Experiments were performed with four

base classi�ers using implementations from scikit-learn [200] machine learning library.

List of selected base classi�ers and their acronyms:
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� k-Nearest Neighbors (KNN )

� Support Vector Machine (SVM )

� Gaussian Naive Bayes (GNB)

� Decision Tree CART (DTC )

Experiment 1 - Clustering method and metric

The �rst experiment focuses on testing di�erent clustering algorithms (CA) and metrics

for estimating potentially the best number of clusters (CM). These experiments were

conducted on streams from two generators: MOA and stream-learn. Tab. 3.5 shows

selected parameters to generate synthetic streams, which were used in this experiment.

The obtained results are presented below in the form of radar charts. Both graphs show

the average classi�cation quality expressed in �ve di�erent metrics � F1score, Gmeans,

Precision, Recall, Specificity. More detailed results in the form of waveform charts

can be found on the repository.

Parameter Value

Generator MOA stream-learn

Number of samples 100000

Number of chunks 200

Chunk size 500

Number of classes 2

Number of features 10 (8 informative + 2 redundant)

Number of drifts 1

Concept drift types sudden incremental

Imbalance ratio 10% 20% 30%

Label noise 0% 1% 5%

Table 3.5: Parameter setup for data stream generators

Fig. 3.9a shows the results for the tested �ve di�erent data clustering methods � Agglom-

erative Clustering (Aglom), Spectral Clustering (Spect), Mini Batch K-means (MBKM ),

KMeans, Birch. The main criterion for selecting the above methods was determining the

desired number of clusters and a certain variety of segmentation techniques. The excep-

tion to this diversity was K-means and Mini Batch K-means methods because they are

very similar. They di�er more in implementation than conceptual. Spectral Clustering

uses information from the eigenvalues of special matrices built from the data set. Ag-

glomerative Clustering is a hierarchical clustering method using a bottom-up approach,

which starts from clusters with only one sample and then merges them in. Birch con-

structs the tree's data structure, in which cluster centers are read out of the leaf.
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Figure 3.9: Clustering method and metric setup on radar plots

The obtained results (Fig. 3.9a) indicate that all tested methods for data clustering

obtain quite similar metrics. The Spectral Clustering method, which reaches the highest

value of Specificity, stands out slightly. Unfortunately, it is re�ected in a considerable

loss in the Recall. I chose Mini Batch K-means as the best method because it has the

best values for all metrics except Specificity.

Fig. 3.9b shows the results for the three selected cluster consistency measures. First,

it is a Silhouette Coe�cient score (SCS ) [165] based on Silhouette Value (SV ) [217].

This metric describes how similar objects are to their cluster compared to other clusters.

Another is the Calinski and Harabash score (CHS ) [43], also known as the Variance

Ratio Criterion. It is an average ratio between the within-cluster dispersion and the

between-cluster dispersion. The last metric is Davies-Bouldin score (DBS ) [56], which

is an average ratio of within-cluster distance to between-cluster distance. The results

(Fig. 3.9b) are even closer than in the previous experiment. However, after a closer look

it can be seen that the SCS metric stands out very gently for the best results for all

metrics except Precision. Therefore, this metric was chosen for further experiments.

Experiment 2 - Weight parameters setup

The next experiment is selecting the best values for the parameters α, β, γ, δ, which

de�ne how much weight factors in�uence the �nal decision. Only four representative

data streams were selected for this experiment. The reason for this limitation is the high

computational complexity of the parameter search process. A stream-learn generator
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Alpha

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Be
ta

0.836 0.839 0.847 0.899 0.871 0.888 0.859 0.871 0.869 0.885 0.884

0.882 0.890 0.870 0.869 0.878 0.856 0.877 0.870 0.889 0.891 0.890

0.862 0.888 0.858 0.877 0.883 0.853 0.889 0.874 0.874 0.885 0.856

0.832 0.894 0.878 0.867 0.878 0.886 0.866 0.879 0.885 0.879 0.876

0.892 0.894 0.867 0.874 0.853 0.878 0.883 0.879 0.866 0.870 0.848

0.882 0.881 0.862 0.878 0.856 0.852 0.882 0.882 0.839 0.863 0.889

0.872 0.862 0.865 0.876 0.890 0.891 0.888 0.875 0.861 0.855 0.866

0.905 0.865 0.855 0.848 0.876 0.882 0.853 0.848 0.896 0.883 0.885

0.855 0.885 0.854 0.899 0.838 0.881 0.885 0.884 0.881 0.870 0.879

0.873 0.905 0.871 0.896 0.876 0.876 0.891 0.864 0.871 0.877 0.864

0.883 0.886 0.862 0.861 0.863 0.891 0.877 0.878 0.868 0.858 0.873

(a)
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0.893 0.873 0.898 0.899 0.893 0.871 0.884 0.887 0.878 0.876 0.873

0.847 0.834 0.865 0.886 0.877 0.862 0.905 0.887 0.878 0.880 0.875

0.851 0.849 0.867 0.868 0.897 0.890 0.896 0.870 0.856 0.884 0.874

0.807 0.839 0.829 0.888 0.845 0.841 0.873 0.872 0.882 0.892 0.907
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(b)

Figure 3.10: Weight parameters setup for Gmeans on the stream-learn data stream

generated the �rst stream. The generated stream has a hundred thousand objects, one

sudden concept drift, 1% label noise, and 15% imbalance ratio. The second stream has

identical settings, although it is generated with theMOA generator. The next two are the

"covtypeNorm-1-2vsAll-pruned" and "poker-lsn-1-2vsAll-pruned" real streams described

in Tab. 3.4.

Parameters were combined in pairs � α, β and γ, δ. Then, a grid search was carried

out for values from 0 to 1 with a division into 0.1 steps for these pairs. Several chunks

were taken from each stream to train the classi�er, and then the next chunks were used

to evaluate the results for the selected settings. For streams generated synthetically,

20 chunks of 200 objects were used for training and 5 chunks of 200 objects each for

testing. Real streams have a small number of minority class objects; thus 5 chunks of

2000 objects each for training and 2 chunks of 2000 objects for testing were used. In

further experiments, the samples used here were excluded.

The obtained results are averaged and plotted in the grid tables (Fig. 3.10a and Fig. 3.10b).

Based on these results obtained for each data stream, the best parameter values were

selected and, using such settings, and subsequent experiments were executed.

Experiment 3 - Dynamic imbalance

The following experiment is intended to study how the proposed method works on

streams with a dynamic class imbalance ratio. For comparison, selected state-of-the-art

methods were used. The data for this experiment was generated using a stream-learn

generator (Tab. 3.3). In this part is forced to limit experiments to only one generator

because MOA cannot generate dynamically imbalanced data.
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Figure 3.11: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift and dynamic imbalance ratio. Dashed vertical line is a critical value with a signi�cance
level 0.05 (green � win, yellow � tie, red � loss)

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

SVM

GMEAN

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
F-SCORE

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
PRECISION

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
RECALL

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC
SPECIFICITY

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

KNN

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

GNB

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

DTC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

0 25 50 75

MLPC
OUSE
REA

L++NIE
L++CDS

KMC

Figure 3.12: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift
and dynamic imbalance ratio. Dashed vertical line is a critical value with a signi�cance level
0.05 (green � win, yellow � tie, red � loss)

This experiment's main aim is to show how the proposed method can deal with the

dynamic imbalance ratio compared to other selected methods. A large number of used

data streams forces to make some aggregation of results. The results will be presented

in the form of metrics analysis using the Wilcoxon rank-sum pair statistical tests. The

Fig. 3.11 shows such study for incremental drift streams and the Fig. 3.12 for sudden

drift streams. The OCWE is not the worst in comparison with the tested methods.

Throughout all the metrics, the OCWE performs the best with the GNB and DTC



Section 3.2 � OCWE 81

0 25 50 75 100 125 150 175
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

F 1
sc
or
e

OCWE L++CDS L++NIE KMC REA OUSE MLPC

(a) Sudden drift
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(b) Incremental drift

Figure 3.13: F1score metric over the data chunks for synthetic data stream with 1% label noise
and dynamic imbalance ratio (from 5% to 95%) using the SVM base classi�er

base classi�ers. Looking closer at the results can be seen that for SVM and KNN the

Learn++CDS method performs better. The proposed method has a slight advantage in

Precision and Specificity, indicating a better ability to classify majority class objects.

Fig. 3.13a and Fig. 3.13b shows the quality of the F1score for each data chunk on

selected synthetic streams with dynamic class imbalance. The label noise is at 1% level,

and the imbalance ratio changes from 5% to 95%. For sudden and incremental drift

OCWE obtains quite similar results to other methods. Sometimes it is gaining a little

advantage. In a stream with a sudden drift, the REA and KMC methods at the drift spot

signi�cantly lose quality. They rebuild these losses at the end of the data stream. The

OUSE method loses quality around the 50th data chunk due to a change in imbalance

ratio and not to drift because it appears in the middle of the entire data stream near the

100th data chunk. For data streams with incremental drift, some quality drops are also

less noticeable by most tested methods. More plots showing similar waveforms for the

rest dynamic imbalanced streams and metrics can be found in the project repository.

Experiment 4 - Static imbalance

In this experiment, the methods are tested on the static imbalance ratio streams with

the concept drift. Most of the generator settings are similar to the previous experiment

(Tab. 3.3). The important change is using two independent data generators � stream-

learn and MOA.

As in the previous experiment, such a stream amount generates a substantial number of

results. The results will be presented in the form of metrics analysis using the Wilcoxon

rank-sum pair statistical tests. Fig. 3.14 shows these results for incremental drift streams

and Fig. 3.15 for the sudden drift. It can be observed that the OCWE method does not
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Figure 3.14: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift. Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow �
tie, red � loss)
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Figure 3.15: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift.
Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow � tie,
red � loss)

work on the streams with static imbalance so well as previously. The best results among

all metrics are obtained for Precision. The situation is not much worse for F1score.

There are also some ties for chosen metrics, which means that the method works at a

similar level to others. In most of the presented results, the OCWE method usually

achieves better predictive quality than the REA method and the MLPC method.

Fig. 3.16a and Fig. 3.16b shows the quality of the F1score for each chunk from two

selected synthetic streams with the 5% imbalance ratio and 1% label noise. One can see
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(b) Incremental drift

Figure 3.16: F1score over the data chunks for synthetic data stream with 1% label noise and
static imbalance ratio (5%) using the SVM base classi�er

that the OCWE method did not achieve the worst results, and sometimes it is even the

best method among other tested. For a stream with a sudden drift, the REA method is

initially the best. Near the 100th data chunk, where concept drift appears, the quality

decreases drastically and is not rebuilt. OCWE and Learn++CDS achieve similar good

results. It is worth noting that in the most of the data stream, the OCWE perform better

than Learn++CDS. It refers to the results before and after the occurrence of concept

drift.

A similar situation could be observed for the incremental drifted streams where the REA

method is initially the best. When the concept drift changes are more intense, it loses

signi�cantly on predictive quality. Learn++CDS and OCWE perform the best overall.

Before the drift, OCWE gets better results, but the Learn++CDS method is better after

the drift. More plots showing similar waveforms for the rest imbalanced data streams

and metrics could be found in the project repository.

Experiment 5 - Real data

Previous studies have focused mainly on the testing the method under various and pre-

cisely de�ned conditions. Selection of various settings, such as concept drift types, label

noise, imbalance ratio, etc., provides the opportunity to test the method in a vast range

of data stream characteristics. It is equally important to carry out experiments with

data from real life. Unfortunately, real data streams with a signi�cant high imbalance

ratio are rare. Some methods allow arti�cially changing the imbalance ratio or modify

static data sets as streams with arti�cial concept drift. However, such modi�cations

cause large disturbances. It is most re�ected in changes to the original data distribution,

which results in semi-synthetic streams.
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(a) Stream poker-lsn-1-2vsAll
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(b) Stream covtypeNorm-1-2vsAll

Figure 3.17: Gmeans over the data chunks for real data stream using the SVM base classi�er

For this reason, this work will focus only on two selected real data streams [44] (Tab.3.4).

Nevertheless, these data streams require two small modi�cations. First, it is necessary

to binarize the classes by combining two selected groups of classes. The next change is

to select a particular part from the entire stream to avoid the complete vanishing of any

class because selected state-of-the-art reference methods use binary class-based classi�er

models. With the prepared data, it is possible to experiment with how the proposed

method works on real imbalanced data streams.

As mentioned before, the selection of hyperparameters for the OCWE method was made

before the selected experiments. It was enough for the synthetic streams to generate an

additional data stream on which this process occurred. With real streams, this option

is not possible. This problem is solved so that the �rst ten thousand objects were used

only for setting parameters. However, the �nal experiment to check the performance

was done without this beginning subset of data. The results are presented as waveforms

(Fig. 3.17). The scores for the Gmeans will be discussed in more detail. The rest plots

for other metrics are available on the repository.

OCWE for both real data streams is not the worst than the other tested methods. At

�rst sight, the proposed method for the "poker-lsn-1-2vsAll" stream gets the third-best

result. Around 115th data chunk show some decay, most likely caused by concept drift.

A drop in quality is noticed but is restored in subsequent iterations. Apart from this

incident, the stream OCWE method keeps the result stable without signi�cant drops.

Learn++CDS and KMC were the best methods, with the quality being at a similar level.

Slightly worse results were achieved by the OCWE method for "covtypeNorm-1-2vsAll"

stream. In the initial phase of the stream, the results are very similar to the other

methods. At the 60th data chunk is most likely a concept drift, which causes a signi�cant

drop in scores. Unfortunately, the proposed method does not return to performance

before the drift. The Learn+++NIE and Learn++CDS methods achieved the best

results.
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3.2.2 Lessons learned

One Class Weighted Ensemble is a method that extends the idea of using the one-class

classi�er ensemble to classify binary imbalanced data streams. Diversi�cation of the

ensemble is ensured by decomposition into one-class subsets and clustering of this data.

The changes introduced compared to the original proposal (OCEIS ) [132], indicate a

positive impact on the classi�cation quality. To summarize the experimental evaluation

conducted, the answers to the research questions posed earlier are presented below:

RQ1: What is the best setup of clustering methods and cluster consistency

metric in the OCWE method?

The best clustering method and the best metrics for determining the created clusters'

consistency were selected. Experiments with a small advantage suggest the Mini Batch

K-means as the best method and the Silhouette Coe�cient as the best metric. The rest of

the experiments were performed using this method and the metric. It is impossible to �nd

one optimal con�guration of parameters that determine the strength of the component

weights (α, β, γ, δ). These parameters were chosen for the selected data streams, taken

as representative examples of speci�c streams. However, it is important to note the

OCWE is a parameterized method and leaves the possibility of making modi�cations

depending on the current problem under examination.

RQ2: What is the best setup of weights parameters in the OCWE method?

OCWE introduces the weights that determine the �nal decision of the classi�ers' en-

semble. The performed research shows that the parameterization of these weights and

selecting appropriate settings improve the prediction ability. At the same time, it is

worth noting that in�uence of each parameter depends on what kind of data is being

processed. On the one hand, it does not allow to �nd one ideal setting for all problems

and forces to optimize the parameters each time. However, this has a positive impact on

the overall classi�cation performance and the ability to adapt to various problems.

RQ3: How �exible is OCWE to the dynamic imbalance ratio and concept

drift?

Experiments carried out on a relatively large set of generated streams allowed to thor-

oughly examine the proposed method's behavior. The waveform charts present the most

information about the overall quality. The analysis of these graphs allows concluding
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that the OCWE method is a relatively high-quality ensemble method for imbalanced

data streams. It handles the data with the dynamic imbalance ratio very well. It is

worth noting that the presented plots demonstrate quite a good ability to classify data

streams, where the imbalance ratio is equal to 5%, and there is 1% label noise. Such

results suggest that the method can handle di�cult data � strong imbalance, noises,

concept drift, and dynamic imbalance ratio. At the same time, OCWE can perform

fairly well with imbalanced streams of real origin.

RQ4: What is the predictive quality of OCWE in a comparison to the state-

of-the-art methods?

Wilcoxon pair rank-sum tests provided an extensive comparison of the OCWE with

other selected state-of-the-art methods. By analyzing the obtained results, the method

proposed in this article achieves results that are very similar to others. Overall the

Learn++CDS seems to be the one of the best methods. However, under certain condi-

tions, the predictive performance of the OCWE is better. The most signi�cant advantage

has been gained on dynamic imbalanced data streams. At the same time, OCWE has the

highest number of Wilcoxon pair test wins for the Precision. It may indicate a slight

skew towards the majority class. However, OCWE performs very well at classifying

streams with a very high imbalance ratio.



Chapter 4

Hybrid data preprocessing methods

This chapter introduces a family of methods for classifying imbalanced data streams,

which are relying on the exploitation of data preprocessing methodologies. These

proposed approaches are mainly based on a data accumulation technique for semisyn-

thetic data oversampling. A robust experimental analysis supported by statistical

validation of the obtained results is also presented.

4.1 Deterministic sampling classi�er

Classifying imbalanced data streams involves a few challenges. First, there must be

adequate mechanisms to perform appropriate data balancing. This can be done by

using cost-senstive methods or approaches based on data preprocessing. Deterministic

Sampling Classi�er (DSC ) is a method designed to classify binary imbalanced data

streams that will focus on the latter solution. Furthermore, it is very important to

provide an appropriate technique to the problem of non-stationary data streams, which

are constantly changing and require model adaptation. A very common way is to use

concept drift detection methods and then, once it is detected, rebuild the whole model.

This approach works especially well when a data stream with sudden concept drifts is

considered. Another approach is to use classi�ers that have the ability to update their

knowledge without losing information acquired in previous data chunks. However, this

approach requires models that are able to extend their knowledge. Unfortunately, most

known models do not have such a capability, which excludes them from the application.

DSC method focuses on using an appropriate data accumulation technique, so that it is

possible to use this type of classi�ers. The main idea is based on accumulating data from

previous chunks and in this way, although the model is rebuilt completely from scratch,

it retains knowledge from samples that appeared several data chunk earlier. At the same

87
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time, this technique also solves the problem of imbalanced data. It collects patterns

from a previous data chunk to perform semisynthetic oversampling of the data. Such

a solution is an important part of the proposed method. First, it is worth noting that

enhancing minority class objects with data from previous data chunks is a very interesting

oversampling solution. The method does not remove data from the majority class which

happens in the undersampling approach. Furthermore, completely new patterns are not

created, which in a certain way try to mimic the current distribution of the data to

best match the new samples to the current data chunk. This is a very special case

of oversampling, which uses an existing distribution of data that forms a given data

stream. It is important to note that unlike other methods that use similar solutions [52],

the stored data comes from the minority class and the majority class (Fig. 4.1).

Figure 4.1: Deterministic Sampling Classi�er �ow diagram

Some proposed approaches attempt to do an matching of accumulated samples to the

current data chunk through classi�cation methods [51]. Other approaches focus on the

distances of the data collected to the current data chunk [211]. However, a valuable

approach that may allow such oversampling to have more potential is to include infor-

mation about the majority class. At least a certain part that will preserve the relevant

relationships between classes in the learned model. Otherwise, one may end up with

a situation where some minority patterns used for ampli�cation are patterns that sig-

ni�cantly overlap the majority class and disrupt the decision boundary. Without this

knowledge, a correct classi�cation model will not be trained. Another important assump-

tion of this approach is to process the data stream in a chunk-based manner. This means

that objects arrive in certain blocks of data containing sets of patterns. This approach

uses only one model, which is rebuilt from scratch on each new data chunk. Due to the
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fact that previous data is stored, there is no need for models that have the ability to be

updated.

It is worth noting that the presented DSC approach has a wide set of hyperparameters.

Such a solution increases the ability of the method to adapt depending on the considered

problem. According to Wolpert's theorem [268], there is no single method that will

always works best under di�erent conditions. However, by increasing the ability for

�exible adaptation to the problem, much more better results can be achieved than with

a rigidly planned solution focused strictly on one type of problem. This philosophy has

also guided the design of this approach, where most of the used elements that compose the

entire classi�er allow for minor or major adjustments. One should be also aware that in

order to use the full potential of the method, it is necessary to perform a hyperparameters

calibration process. This step should be repeated each time the model is implemented

in production.

Algorithm

The procedure of learning a new model is carried out in two phases (Alg. 3). First,

undersampling of the data is performed. The method of undersampling is one of several

parameters of this method, which can be freely chosen. Then, the data processed in this

way, which have an equal distribution of classes, are stored in the Accumulated Data

Storage (ADS). This is a certain reservoir that stores S of recent data chunks. This

number is also a parameter that can be set arbitrarily. At this point, the �rst phase is

complete.

In the second phase, the data chunk goes through a couple of processing steps so that

it �nally goes to the selected base classi�er to create a new model. First, it is boosted

with all collected data in ADS. It is obvious that in the �rst iteration, there is no

collected data. Therefore, one essential part of this method is the additional fully syn-

thetic oversampling. It is performed using the selected method for oversampling, which

is also a changeable parameter. After more data chunks arrive (t > S) and samples

are accumulated in ADS, a strong enough set is created that additional oversampling is

no longer necessary. This is regulated by another parameter (BP ) that determines how

high the imbalance level of the data chunk after enhancing from ADS does not require

oversampling of the data. The data chunk prepared in this way goes to the base classi�er

(Ψ) and the second phase comes to an end.
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Algorithm 3 DSC
Input:

DS � data stream
DSt � t-th data chunk of data stream DS
BCL � base classi�er learning method
OSM � oversampling method
USM � undersampling method
BP � balance parameter
S � max size of stored data chunks

Symbols:

ADS � accumulated data storage
DSUt � undersampled t-th data chunk

Output:

Ψt � �nal model for t-th data chunk

1: ADS = ∅
2: for t = 1, 2, . . . do
3: DSUt ← Undersample DSt using USM
4: DSt ← DSt ∪ ADS
5: if IR of DSt > BP then

6: DSt ← Oversample DSt using OSM
7: end if

8: Ψt ← Train model on DSt using BCL
9: ADS ← ADS ∪DSUt
10: if |ADS| > S then

11: ADS ← ADS \DSUt−S
12: end if

13: end for

Computational complexity analysis

The computational complexity of the DSC consists of several components. The most

important part of this method is ADS. There are only two operations performed on ADS

� writing and reading. It takes O(1) time to add a new item to the list of any size [54].

When saving new data, the time complexity can not exceed O(ns), where ns is number of

objects. Reading data from ADS and adding it to the current training data chunk does

not exceed the complexity of O(Sns), where S is the maximum number of chunks stored

in the memory. Then the complexity is a�ected by the chosen method for undersampling

and oversampling. Assuming that random undersampling and random oversampling are

set by default, it can be determined that they have complexity O(n
3
2
s ) [193]. Next, the

base classi�er training and prediction is taking some time in this algorithm. Four of

them were used during the experimental evaluation � Support Vector Machine (SVM),

k-Nearest Neighbors (KNN), Gaussian Naïve Bayes and Decision Tree CART (DTC).
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SVM classi�er has a complexity equal to O(n3
s) [1]. The complexity of the KNN Classi�er

and the Gaussian Naïve Bayes is O(nsd), where d is the number of dimensions [59].

The CART complexity is O(dn2
s) [238]. To summarize the di�erent settings, it can be

estimated that the highest complexity equal to O(n3
s) will be for the situation where the

SVM model is used. In contrast, the lowest possible complexity will be equal to O(n
3
2
s )

when random undersampling and random oversampling and the GNB base classi�er are

used.

4.1.1 Experimental evaluation

In this section, an experimental evaluation of the proposed method will be performed

with a comparative analysis with selected state-of-the-art methods using imbalanced data

streams with various characteristics.

RQ1: What is the best setup of clustering methods and cluster consistency metric in

DSC method?

RQ2: What is the impact of the concept drift and the dynamic imbalance ratio data

stream on DSC ?

RQ3: How �exible is DSC on the imbalance ratio data stream?

RQ4: What is the predictive performance of DSC in comparison to the state-of-the-art

methods?

Setup

All tests using a wide range of synthetic and real-world data streams were conducted

according to the test-then-train experimental protocol [24]. This consists of processing

the data stream as a data chunk and each of these data chunks is used �rst for testing

and then for training the classi�cation method. Exception is in the �rst data chunk,

which is only used for learning. In this way, it is possible to test the method on the

entire data stream without separating the test and training data. The results obtained

are expressed in the form of metrics � Recall, Specificity, Precision, F1score [235]

and Gmeans [152]. Then the obtained scores were subjected to statistical analysis using

Wilcoxon pair rank-sum tests. The study was performed using four base classi�ers:

� k-Nearest Neighbors (KNN )

� Support Vector Machine (SVM )
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� Gaussian Naive Bayes (GNB)

� Decision Tree CART (DTC )

The project was implemented in Python language using scikit-learn library. The imple-

mentation and the full set of results are publicly available on the Github repository1.

The data streams were generated using MOA [24] and stream-learn [150] generators.

Tab. 3.3 presents parameters such as a number of objects, chunk size, imbalance ratio,

noise level or drift type of generated synthetic data streams. The proposed method was

compared with selected state-of-the-art methods:

� REA � Recursive ensemble approach [51]

� KMC � K-means clustering undersampling ensemble [264]

� L++CDS � Learn++CDS [62]

� L++NIE � Learn++NIE [62]

� OUSE � Over and undersampling ensemble [89]

� MLPC � Multi-layer perceptron classi�er

Experiment 1 - Parameter setup

The �rst experiment focused on determining the best setting of the parameters that a�ect

the performance of the method. The parameters consist of three important components:

the data undersampling method, the data oversampling method, and the balance param-

eter (BP ), which determines at what imbalance ratio additional oversampling of the data

should be performed. Given these three parameters, one best combination of settings

will be determined and used in further experiments.

To begin, the best value for BP will be determined. The tests were performed on the

value range from 0.05 to 0.45. The results obtained do not allow a clear verdict which

setting is the most favorable (Fig. 4.2). It is noticeable that the F1score and Specificity

obtain high results with a low value of BP equal to 0.05. This means that despite the

large imbalance ratio that is in the data chunk, no additional oversampling is applied.

The method avoids extra oversampling so that even though the data is imbalanced, it

still �ts the model. It is reasonable that this results in better scores that express the

correctness of the majority class prediction. This unfortunately comes at a cost on the

Recall. Therefore, a much better move would be to choose a value that gets signi�cantly
1Repository link: https://github.com/w4k2/iot-ecml2019

https://github.com/w4k2/iot-ecml2019
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Figure 4.2: Results of di�erent balance parametr (BP ) values. Darker is better, best value is
bold and underscored

better results for Recall. Such a value is BP equal to 0.45. This means that the method

will attempt to balance the data, even if it deviates slightly from an even distribution

of the data. This is also equivalent to a very good Gmeans and not much loss on the

F1score. This value will be used in further experiments.
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Figure 4.3: Results of di�erent undersampling methods. Darker is better, best value is bold and
underscored

Then, the best method for undersampling the data was determined. This included the

following possible methods to choose from:

� Condensed Nearest Neighbors (CNN)

� Edited Nearest Neighbors (ENN)
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� Repeated Edited Nearest Neighbors (RENN)

� All KNN (AllKNN)

� Instance Hardness Threshold (IHT)

� Near Miss (NM)

� Neighbourhood Cleaning Rule (NCR)

� One Sided Selection (OSS)

� Random Under Sampler (RUS)

� Tomek Links (TL)

For this experiment, choosing the best option is fairly straightforward (Fig. 4.3). The

best results in the metrics F1score, Precision, Specificity are obtained by the CNN

method. The slightly weaker results are for the Recall, where the IHS method is the

favorite. However, it is worth noting that the method of undersampling focuses on

selecting a new subset of the majority class data, so it will be much more logical to

rely on metrics that represent the quality of the majority class classi�cation. Hence, the

choice falls on the CNN method, which was used in further experiments.
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Figure 4.4: Results of di�erent oversampling methods. Darker is better, best value is bold and
underscored

The last parameter speci�ed which method of oversampling the data would be used. The

best method among the selected ones was searched for:

� ADASYN (ADASYN)

� Borderline SMOTE (BSMOTE)

� Random Over Sampler (ROS)

� SMOTE (SMOTE)
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� SVMSMOTE (SVMSMOTE)

This experiment also does not allow one signi�cant indication of one signi�cantly better

method (Fig. 4.4). There are very small and even hard to see di�erences between scores.

Looking at the results more closely, it is noticeable that there are two variants that

stand out a bit from the rest. One of them is the ROS method, which is the random

ampli�cation of samples. The results for this method are quite good for the Precision,

it looks a little worse for Recall. The second favorite is the SMOTE method, which

outperforms rest of the methods in the F1score. Since both of these variants have

strongly similar results, for further research, the SMOTE method is chosen, which is

based on a strategy of creating new samples rather than pure randomness like the ROS

method.

Experiment 2 - Static imbalance

Having already prepared the best parameter setup, it is possible to proceed with proper

experiments to verify the predictive performance of the proposed method. First, the

reference methods with the DSC approach will be tested in the classi�cation of data

streams with a static imbalance ratio. This means that from the beginning to the end,

the data stream will have the same distribution of the number of objects belonging to

di�erent classes.
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Figure 4.5: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift. Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow �
tie, red � loss)
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Fig. 4.5 shows the results obtained for data with incremental concept drift. The DSC

method obtains not the worst results. It can be seen that the highest results are ob-

tained in the metrics Gmeans and F1score which is manifested by a large number of

statistically signi�cant advantages with the other approaches. The weakest performance

was for Specificity, where essentially half failed to achieve an advantage with statistical

signi�cance. In addition, it can be concluded that the DSC method performed best when

using SVM or KNN base classi�er.
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Figure 4.6: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift.
Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow � tie,
red � loss)

For the data with sudden concept drift (Fig. 4.6), the results obtained are very similar

to those of the previous experiment. It is hard to see any big di�erences, as there was a

slight decrease in quality in some parts and an improvement in others. The DSC method

is unlikely to show any special di�erence in classifying data streams with a particular

type of drift, as it performs reasonably well in both variants.

Experiment 3 - Dynamic imbalance

The next experiments focus on testing the quality of methods that are subjected to

classi�cation of data with dynamic imbalance. This means that the imbalance ratio will

change with each subsequent data chunk. This change will continue until, in about half

of the data stream, the imbalance ratio reverses between classes and then returns to the

initial value. The changing imbalance is typical for real origin data. It is worthwhile to

test the proposed method against other selected state-of-the-art methods on this type of

data.
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Figure 4.7: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift and dynamic imbalance ratio. Dashed vertical line is a critical value with a signi�cance
level 0.05 (green � win, yellow � tie, red � loss)

The situation is slightly better for data with dynamic imbalance. The results in Fig. 4.7

show the result for data streams with incremental concept drift. The proposed method

obtains very good results. In most of the pairwise comparisons performed, a superiority

with statistical signi�cance is obtained. When the GNB classi�er and DTC are used,

the results are slightly worse. DSC loses mainly with the Learn++CDS or Learn++NIE

method. The best results are obtained using the SVM base classi�er, where there are

actually only wins except for one loss against the Learn++NIE method and two ties

against the REA method. Looking at the results from the metrics side, the best scores

are obtained for Gmeans. Slightly worse but also high on the F1score. The weakest

results are obtained for Precision and Specificity.

Similar results but slightly more favorable for the DSC method were obtained when

testing synthetic data that have sudden concept drift (Fig. 4.8). Comparing this result

and the previous one, it can be seen that there is a negligible improvement. However, it

is su�ciently impressive that previously where DSC was on the border between a draw

and a win it now obtains statistically better results. This applies mainly to the draws of

the DSC method and the Learn++CDS method. The obtained results may indicate that

the proposed method has outperformed Learn++CDS on data that has abrupt changes

in feature distribution.
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Figure 4.8: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift
and dynamic imbalance ratio. Dashed vertical line is a critical value with a signi�cance level
0.05 (green � win, yellow � tie, red � loss)

Experiment 4 - Real data

The last experiment focuses on testing the performance of the proposed method on

imbalanced real-world data streams. Unfortunately, this type of data is quite rare and

di�cult to obtain. Most often, one may �nd data streams that do not have a signi�cant

imbalance ratio or imbalanced data sets that are not a�ected by concept drift. There

are various techniques for combining or generating arti�cial imbalance or drift, but they

usually involve signi�cant interference with the original data distribution. For this reason,

this research will be limited to two real data streams [44], the characteristics of which

can be seen in the table below (3.4):

First, the analysis of the results obtained will focus on the stream "poker-lsn-1-2vsAll".

The plots (Fig. 4.10a�4.10d) show the runtime graph for each of the tested methods using

four di�erent base classi�ers. These graphs represent the quality obtained by a given

method in a given data chunk expressed by the F1score metric. The results presented

indicate that DSC performed best using the DTC and KNN base classi�er. For these

graphs, it is apparent at �rst glance that the DSC method has an advantage over the

other methods. Worse results are obtained for SVM classi�ers and the weakest for GNB.

However, in both these results the performance is not the worst among the compared

methods.

Looking at the scores obtained for the "covtypeNorm-1-2vsAll" data stream, most of the

tested methods obtained highly similar performance. It is slightly noticeable that for the

experiments using DTC classi�er, the proposed method is in the lead competing with
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Figure 4.9: F1score over the data chunks for data stream poker-lsn-1-2vsAll

Learn++NIE method. A similar observation applies to the results for KNN and SVM,

except that the Learn++CDS also is included in the top performers. The results of

the DSC method using the GNB base classi�er were the weakest, where it nevertheless

performs at a very similar level to the other methods.

4.1.2 Lessons learned

To summarize the experimental evaluation conducted, the answers to the research ques-

tions posed earlier are presented below:

RQ1: What is the best setup of clustering methods and cluster consistency

metric in DSC method?

The DSC method has a certain set of parameters and a wide range of possibilities to set

them depending on the problem under consideration. It is quite di�cult to determine

one best setting, because it requires using appropriate strategies to get good results for a

certain type of data. However, it was possible to propose a solution that can be treated

as a default setting. The research and analysis of the obtained results showed that the

best settings for the tested data streams are 0.45 for the balance parameter, SMOTE as

oversampling and Condensed Nearest Neighbors as undersampling method.
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Figure 4.10: F1score over the data chunks for data stream covtypeNorm-1-2vsAll

RQ2: What is the impact of the concept drift and the dynamic imbalance

ratio data stream on DSC?

The tests performed show that the proposed method has a good ability to deal with

di�cult data. This is valid for data streams that have concept drift as well as imbalance.

By analyzing the results, it can be concluded that DSC performs much better for dynamic

imbalance than for static imbalance. It means that the method can manage in much more

di�cult conditions. Moreover, it is worth noting that it achieves satisfactory and equally

good results both when classifying streams with sudden and incremental drift.

RQ3: How �exible is DSC on the real data stream?

The results obtained on real data indicate the good classi�cation ability of the proposed

method on this type of data. It is worth noting that for some base classi�ers DSC

can achieve a signi�cant advantage over other methods. Even in the worst case, where

the obtained predictive performance does not outperform other methods, the results

that DSC achieves are not signi�cantly di�erent from the others. The method has

considerable potential for classifying imbalanced real-world data streams, which is a

very promising feature.
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RQ4: What is the predictive performance of DSC in comparison to the state-

of-the-art methods?

The tests performed on a very wide set of synthetic data streams allowed for a fair

comparison of the proposed method with other selected state-of-the-art approaches. The

analysis of the obtained results allows to conclude that DSC obtains remarkably well

results. In most of the comparisons that were performed using Wilcoxon pair rank-sum

tests, the proposed method obtains a statistically signi�cant advantage. Of course it is

not an absolute advantage, where in each variant of the test DSC is better, but there is

also no method that will always dominate.
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4.2 Deterministic sampling classi�er with weighted bagging

The Deterministic Sampling Classi�er with weighted Bagging (DSCB) is a proposition

of an extension existing Deterministic Sampling Classi�er (DSC ) [28] (Section 4.1) clas-

si�er. It is a chunk-based method for imbalanced data stream classi�cation. In the

original approach, the main innovation was the use of a data accumulation technique

to solve the imbalanced data classi�cation problem. The new method expands on this

idea by using a specially designed weighted bagging to create an ensemble from the ac-

cumulated data. In the rest of this section, the method will be described in much more

detail.

Proposed method

The proposed approach as well as the original DSC method on which it is based, mainly

focuses on the use of data accumulation techniques to deal with the imbalance data

problem. A similar approach that involves collecting some of the patterns from previous

data chunks can be found in other works [90]. However, it is worth noting that most

methods only concentrate on the accumulation of data from the minority class. Then,

by gathering these samples, one can easily oversample the incoming imbalanced data.

Unfortunately, by omitting the majority class, the insight into the whole picture is lost.

Increasing the number of available patterns in this way can very often lead to distorted

decision boundaries. Hence, the innovation of the approach proposed in this work is the

simultaneous accumulation of minority and majority data.

However, it should be kept in mind that this method is designed to solve the imbalance

data classi�cation problem. Storing the entire data chunks will not bring any bene�t

in terms of reducing the imbalance ratio. Therefore, this approach assumes a slightly

di�erent solution, which will ensure data continuity for both classes and at the same time

will be a kind of compromise for data balancing. Each data chunk, before retaining it in

data storage, goes through the undersampling process. This allows to reduce the number

of majority class samples. Then such a data chunk can be stored entirely and used to

enhance subsequent chunks. This method allows the imbalance ratio to be reduced along

with preserving information about the relationship of both classes of objects. At the same

time, it is worth noting that this approach solves another problem that may arise when

storing only minority data. When the amount of minority data that is accumulated grows

to a fairly large size that exceeds the imbalance of a single data chunk, a malfunctioning

situation can occur where ampli�cation of all data will lead to the imbalance toward the

original minority class. It would require additional techniques to regulate the number

of objects used and to determine which samples should be used for ampli�cation. By
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storing data from both classes, such a situation can be avoided because the class samples

are ampli�ed equally.

Despite using the method of data ampli�cation for balancing a data chunk, it is worth

noting that it does not necessarily ensure an even distribution of objects from the two

classes. Especially, such a situation is much more likely at the initial stage of method

activity, when the collected data has a very low size. Therefore, this idea is extended to

an additional method that, after amplifying the data with real-life samples, performs ad-

ditional ampli�cation using arti�cially generated samples. Any method that implements

the technique of oversampling imbalanced data can be used for this. This approach al-

lows to balance the data chunk in a very easy way, even when the amount of collected

data is insu�cient. The �nal imbalance ratio in the data chunk that the algorithm is

trying to achieve is determined by the parameter. This means that only enough syn-

thetic patterns are generated to reach a certain threshold of imbalance. Additionally, it

is worth noting that the oversampling and undersampling methods used in this method

are treated as another parameter, which choice can be adjusted depending on the actual

problem. Then such prepared data chunks can be used to build a classi�cation model.

Primarily in the original DSC approach, the collected data at each iteration forms a new

model built using a chosen base classi�er. However, it is worth noting that the collected

data along with the actual data chunk form a large set of patterns. Such a substantial

dataset seems to be an ideal foundation for building the ensemble of classi�ers. Therefore,

the main innovation that has been proposed with respect to the DSC algorithm is the

formation of classi�er ensembles based on the bagging approach. Using such a technique

will simultaneously increase the classi�cation ability of the method and maintain a better

generalization.

Considering the problem of data stream classi�cation, it is worth noting that the more

recent the data, the potentially much more valuable it is from a model perspective.

Samples stored from previous data chunks were saved at di�erent times. This means

that some patterns are much older and others are fairly new. Such information makes

it possible to assign values to determine the age of each sample. The basic version of

bagging is based on creating certain subsets of data, which consist of drawn patterns

with uniform distribution. The proposition that was used in this algorithm tries to use

the information about the age of the samples when creating the bagging subsets. Hence,

a decay function is proposed that determines the chance of drawing a given sample using

the following formula (Eq. 4.1):

w(xi) = 2πe−
(t−k)γ

2 (4.1)
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where xi is the i− th pattern from a k− th stored data chunk, t is a index of current data

chunk, and γ is a user parameter that allows to adjust the strength of weight degradation

over time. This means that the older the sample is, the much smaller the weights are,

which a�ects the chance of being drawn. Some heuristics have been introduced into the

proposed weight function, which at the beginning of the stream increases the chance of

drawing samples from the minority class. This means that for the �rst few iterations,

the weights for the minority class are calculated in a slightly di�erent way according to

the formula (Eq. 4.2):

w(xi) =

2πe−
(t−k−L)γ

2 if t < dh and xi is minority class sample

2πe−
(t−k)γ

2 otherwise
(4.2)

where L is a parameter that determines the intensity, t is an index of current data chunk

and dh is a parameter that de�nes how long this heuristic should last. Such a procedure

helps to improve the performance of the classi�cation, which is usually very low due to

the poor representation of minority data. Then from these weights, the probability of

each sample being drawn must be calculated, which is done according to the formula

(Eq. 4.3):

Pb(xi) =
w(xi)∑N
n=1w(xi)

(4.3)

where w(xi) is the weight that translates to the chance of drawing a given pattern,

and Ns is the number of total samples contained in the dataset. Then, after drawing

several bagging sets, new models are built using the base classi�er to form ensembles of

classi�ers. The number of models that will be created and at the same time the number

of data sets that will be drawn is determined by the parameter s. The �nal decision that

is made by the method is based on the support accumulation rule that is returned by

the individual models that form the ensemble.

Algorithm

To fully and correctly demonstrate how the proposed method works, it is necessary to

present in pseudocode a loop that simulates the arrival of subsequent data chunks of the

stream. This allows us to specify the t-th element of the method, such as models, stored

samples, etc. However, this is already a part belonging to the evaluation and not to the

method itself. It is known that after each training of the base classi�ers on a new data

chunk, the whole ensemble is returned, which as a trained model is used for prediction.
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Unfortunately, the return statement could imply that the algorithm is interrupted at this

point and the data stream will not be fully processed. Therefore, it is a simpli�cation to

assume that the ensemble is returned after each data chunk.

Figure 4.11: Deterministic Sampling Classi�er with weighted Bagging

The main idea of the proposed method is represented graphically by a diagram 4.11.

A detailed description of the entire learning procedure will be presented to understand

better the idea and how the proposed method is working (Alg. 4). As an input, the

algorithm takes several elements that are necessary for the further stage. First, a data

stream is denoted as DS, which is passed to the algorithm in data chunks (DSt). The

base classi�er learning method (BCL) and the method for oversampling (OSM) and

undersampling (USM) must also be speci�ed. In addition, it is required to indicate the

maximum ensemble size (s), the maximum number of stored data chunks (S), and to set

a value for the balance parameter (BP ).

In the �rst step, the method clears the ensemble of classi�ers. During the �rst iteration,

when t is equal to 1, the ensemble is already empty. However, subsequent iterations

will �ll it with models that should be removed from the ensemble with each new data

chunk. Then the undersampling of the current data chunk (DSt) is performed using

the USM method. The result of this operation is written to DSUt. Later, when the

Accumulated Data Storage (ADS), the storage of the collected data, is not empty, the
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DSt is ampli�ed using the patterns collected there. The next step is to determine if DSt
after ampli�cation has an imbalance ratio (IR) above a predetermined threshold (BP ).

When this condition is met and the data is still too imbalanced, then oversampling is

performed, which is the generation of arti�cial patterns using the OSM method. This

step is usually performed on few �rst data chunks when the method does not gather

enough data.

Then, having the data set already prepared, the procedure of learning new models begins.

The new models make up the ensemble of classi�ers, which are built using the weighted

bagging technique. First, the weights for each sample must be determined according to

the Eq. 4.2. After that, these weights are transformed into an array of probabilities of

drawing a given sample according to the Eq. 4.3. The created probabilities are stored in

an array Pt. Then, m times the process of learning a new model is performed. According

to the predetermined probabilities, samples are drawn with replacement and stored as a

subset of data � Bt. In the next step, these data are used to build a model (Ψt) based on

the selected base classi�er learning method (BCL). The newly created model is added

to the pool of classi�ers (Π).

The next step is to write to ADS the current data chunk (DSUt) that was previously

balanced using the undersampling method. An essential assumption is to perform this

step now. Writing the data to ADS too early could result in a situation where some

objects will be unnecessarily duplicated during DSt ampli�cation. When the size of

ADS exceeds a predetermined threshold for the maximum number of saved chunks (S),

the oldest data chunk (DSUt−S) is removed from it. Finally, the method returns the

created pool of Π classi�ers.

Computational complexity analysis

The computational complexity of the proposed method consists of several components.

First, the chosen base classi�er has a signi�cant in�uence. Four di�erent classi�ers were

used during the experiments � Support Vector Machine (SVM), k-Nearest Neighbors

(KNN), Gaussian Naïve Bayes (GNB) and Decision Tree CART (DTC). Let us as-

sume that ns denotes the number of objects in one data chunk. SVM has a complexity

of O(n3
s) [1]. The complexity of the KNN Classi�er and the Gaussian Naïve Bayes is

equal to O(nsd), where d is the number of dimensions [59]. The CART complexity is

O(n2
sd) [238]. Then the complexity is a�ected by the chosen method for undersampling

and oversampling. Assuming that random undersampling and random oversampling are

set by default, it can be determined that they have complexity O(n
3
2
s ) [193]. Next, it is

important to estimate the complexity associated with accumulated data storage. There
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Algorithm 4 DSCB
Input:

DS � data stream
DSt � t-th data chunk of data stream DS
BCL � base classi�er learning method
OSM � oversampling method
USM � undersampling method
BP � balance parameter
s � maximum size of classi�er ensemble
S � maximum size of stored data chunks

Symbols:

ADS � accumulated data storage
DSUt � undersampled t-th data chunk
Bt � bootstraped samples from t-th data chunk
Pt � probability of selecting samples from t-th data chunk
Ψt � t-th model of ensemble

Output:

Πt � �nal ensemble for t-th data chunk

1: for t = 1, 2, . . . do
2: Π← ∅
3: DSUt ← Undersample DSt using USM
4: if ADS 6= ∅ then
5: DSt ← DSt ∪ ADS
6: end if

7: if IR of DSt > BP then

8: DSt ← Oversample DSt using OSM
9: end if

10: Pt ← Determine the probability of samples according to Eq. 4.3
11: for i = 1 to s do
12: Bt ← Bootstrap samples from DSt according to Pt
13: Ψt ← Train model on Bt using BCL
14: Π← Π ∪Ψt

15: end for

16: ADS ← ADS ∪DSUt
17: if |ADS| > S then

18: ADS ← ADS \DSUt−S
19: end if

20: end for
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are only two operations performed on ADS � writing and reading. It takes O(1) time to

add a new item to the list of any size [54]. When saving new data, the time complexity

can not exceed O(ns). Reading data from ADS and adding it to the current training

data chunk does not exceed the complexity of O(Sns), where S is the maximum number

of chunks stored in the memory. Finally, another component that a�ects the aggregate

complexity of the method is bagging, whose complexity is O(snslog(ns)) [103], where

s is the maximum number of classi�ers. The proposed method has many di�erent pa-

rameters that have a signi�cant impact on the �nal time complexity. The plethora of

di�erent settings do not allow for a clear determination of the time complexity. However,

if one assumes that the SVM is chosen as the base classi�er, then the whole method's

complexity would be O(n3
s) because it is one of the highest complexities. Choosing the

base classi�er Gaussian Naïve Bayes, the complexity will be O(n
3
2
s ), which is due to the

complexity of the undersampling or oversampling method. This complexity should be

considered as one of the scenarios. Other more sophisticated data sampling methods

usually have higher complexity.

4.2.1 Experimental evaluation

The conducted experiments were designed to test the newly proposed DSCB method in

practice. The research focused on two main aspects � �nding appropriate settings for

the method and comparative analysis using data streams with di�erent characteristics.

The following research questions were posed:

RQ1: What is the best parameter setup for DSCB?

RQ2: How robust is the proposed method to data streams with various imbalance ratios?

RQ3: How resilient is DSCB to label noise on di�erent levels?

RQ4: What is the predictive performance of DSCB for dynamic imbalance ratio data

stream?

RQ5: What is the proposed method's predictive performance in a comparison to the

state-of-the-art classi�ers?

Setup

Experimental evaluation was performed according to the test-then-train manner [24] ap-

proach. This means that each data chunk was �rstly used for testing the model and

then for training. The exception is the �rst data chunk, which was omitted from the
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testing phase. To evaluate the classi�cation quality obtained by the methods, the fol-

lowing selected metrics were used: Recall, Specificity, Precision, F1score [235] and

Gmeans [152]. Then the obtained scores were subjected to statistical analysis using

Wilcoxon pair rank-sum tests. The proposed method was compared with selected im-

balanced data stream classi�cation state-of-the-art algorithms:

� REA � Recursive ensemble approach [51]

� KMC � K-means clustering undersampling ensemble [264]

� L++CDS � Learn++CDS [62]

� L++NIE � Learn++NIE [62]

� OUSE � Over and under-sampling ensemble [89]

� MLPC � Multi-layer perceptron classi�er

The implementation of the proposed method along with the experimental environment

was programmed in Python. The project implementations with results are available

on a public Github repository2. Additionally, the environment uses a few ready-made

implementations of the base models from the scikit-learn library [200]. Finally, four

selected base classi�ers were used in all experiments:

� k-Nearest Neighbors (KNN)

� Support Vector Machine (SVM)

� Gaussian Naïve Bayes (GNB)

� Decision Tree CART (DTC)

Three di�erent sets of data streams were used to conduct the experiments � real data

streams and synthetic data streams from two generators. The most important is real

data, because it allows testing methods on data streams that at least try to mimic the

di�culty of real-life classi�cation problems. In addition, the data were supplemented by a

large set of synthetically generated streams, which were provided by two data generators

� MOA [24] and stream-learn [150]. Tab. 3.3 presents parameters such as a number of

objects, chunk size, imbalance ratio, noise level or drift type of generated synthetic data

streams.
2Repository link: https://github.com/w4k2/dscb

https://github.com/w4k2/dscb
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It is also worth describing how the results will be presented. For real data streams

(Tab. 3.4), it is possible to plot runs and analyze the predictive performance expressed

by the chosen metric. The problem arises during the analysis of synthetic data because

their number is signi�cant. This necessitates the use of a suitable technique to aggregate

the results without much loss of information. The Wilcoxon rank-sum statistical test was

chosen for analysis and pairwise comparison with other selected state-of-the-art methods.

Then, depending on whether the result indicates a win, a draw, or a loss, it is indicated

by the corresponding color on the graph (green, yellow, or red) (Fig. 4.18�4.21). In

addition, there is a dashed vertical line on the graph, which is a critical value with a

signi�cance level of 0.05. Crossing this line with a green bar means that the DSCB

method is better with statistical signi�cance. In the �gures, the results are grouped by

metrics (columns) and base classi�ers (rows).

Experiment 1 - Parameter setup

One of the �rst experiments that was conducted was aimed at �nding the best possible

parameter setup for the proposed method. Because of the wide range of parameters,

the in�uence of only selected parameters on the predictive performance of the DSCB

method was investigated. The parameter values were chosen in a global way. It means

that only one setting was searched for, which will be used in all evaluations regardless

of changing data streams. For this study, a certain set of synthetic streams was used

that had similar characteristics to the streams used in the rest of the experiments. These

data had 10 features with numerical values, 100000 samples, 10 attributes, 10%, 20%

or 30% minority class samples and 0% or 5% label noise. However, to avoid over�tting

the proposed method, these data streams are not repeatedly used in any subsequent

experiment. That is, they were used only once to search for the best method settings.

The obtained results are presented in the form of �gures. In each �gure, the medians were

calculated using the obtained metrics values for each stream separately. Then the average

for all streams with one base classi�er was calculated. Results from this experiment are

grouped by the base classi�er and metric.

First, it was investigated how γ parameter a�ects the performance. γ is one of the

components in the formula that determines the weight of the samples (Eq. 4.1) in the

bagging. This parameter is responsible for how fast the degradation of the stored data

chunks progresses over time. At �rst glance, it is apparent (Fig. 4.12) that depending on

how much γ decreases, the resulting metrics increase their scores proportionately. The

exception is Recall, which shows the opposite trend. However, it is worth noting that

the di�erences for the Recall between the worst and the best score are around 20%. For

the Precision, this di�erence is already signi�cantly larger. Since the aggregate metrics
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Figure 4.12: Results of di�erent γ values. Darker is better, best value is bold and underscored

(Gmeans and F1score), obtain the best scores at γ = 0.1, this value is set as the default

for subsequent experiments.
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Figure 4.13: Results of di�erent balance parametr (BP ) values. Darker is better, best value is
bold and underscored

Then the best setting was searched for the parameter controlling the �nal imbalance ratio

after oversampling the data chunk. The results presentend on Fig.4.13 do not make it

easy and unambiguous to determine the best option. It is an interesting observation that

50% ratio, which is an equal distribution of the class samples, does not allow to obtain

signi�cantly the best predictive performance. However, after analysis, the value equal

45% was selected. The results for this setup were usually with the highest score. This

means that the method will not strive to perfectly balance the data, but will maintain a

very slight imbalance.

The next experiment is to select the best techniques for undersampling and oversam-

pling. First, the method for oversampling was searched. Five di�erent approaches were
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Figure 4.14: Results of di�erent oversampling methods. Darker is better, best value is bold and
underscored

proposed as a pool of available solutions. Below is a list of them along with the names

and acronyms used in the presented results:

� ADASYN (ADASYN)

� Borderline SMOTE (BSMOTE)

� Random Over Sampler (ROS)

� SMOTE (SMOTE)

� SVMSMOTE (SVMSMOTE)

The obtained scores presented on Fig. 4.14 do not allow for a quick and unambiguous

selection of the best method. Di�erences between them are very subtle and usually do

not exceed one hundredth of score. However, a much more in-depth analysis reveals

that most often the best score is obtained by the SMOTE method. This advantage is

noticeable for most metrics and base classi�ers. Based on such observations, the SMOTE

method is selected for further experiments as the default oversampling setting.

Then di�erent variants of the undersampling techniques were analyzed. The best method

is sought among a 10 selected approaches. Below is the list of them along with the names

and acronyms used in the results:

� Condensed Nearest Neighbors (CNN)

� Edited Nearest Neighbors (ENN)

� Repeated Edited Nearest Neighbors (RENN)

� All KNN (AllKNN)

� Instance Hardness Threshold (IHT)
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Figure 4.15: Results of di�erent undersampling methods. Darker is better, best value is bold
and underscored

� Near Miss (NM)

� Neighbourhood Cleaning Rule (NCR)

� One Sided Selection (OSS)

� Random Under Sampler (RUS)

� Tomek Links (TL)

As in the previous experiment, clearly identifying the best setup is not an easy task.

The di�erences in the obtained results between the di�erent variants have slightly larger

values (Fig. 4.15). One method that achieves very good results is undersampling using

Tomek Links (TL) technique. Unfortunately, the values of Recall for this method are

on the lowest level among others. The best result in the Recall is obtained by the

Instance Hardness Threshold (IHT) method, but again Specificity is very poor for this

method. The safest compromise between the Recall and Specificity is obtained by the

Random Under Sampler (RUS) method. Furthermore, this method gets the best results

for Gmeans. Due to the above, it is chosen as among other undersampling techniques

and will be used in further experiments.

Experiment 2 - Label noise and imbalance ratio

Next, two experiments were designed to check how the proposed method performs on

data streams with varying imbalance ratio and label noise. To ensure uniform conditions

and eliminate factors that could adversely a�ect the �nal analysis result, a specially
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Figure 4.16: Selected mean results from di�erent imbalance ratio

prepared set of imbalanced data streams with no concept drift was generated. Each of

them consists of 10000 objects, 10 attributes with numerical values, and has 5 di�erent

variants of generator randomness.

The �rst experiment focused on testing the e�ect of the methods on predictive perfor-

mance with varying imbalance ratios. The imbalanced level is denoted as the percentage

of minority class samples in the entire data stream. The prepared data streams had

values ranging from 45% to 5%. The obtained results (Fig. 4.16a, Fig. 4.16b), clearly

indicate that the proposed method does not show a very negative e�ect on the changing

level of imbalance. Some decreasing trend is observed. However, these results are not

very di�erent from each other. Compared with other methods, DSCB performs very well

in this experiment.

The next experiment had similar data conditions as the previous one. However, it focused

on testing the e�ect of the label noise present on the classi�cation quality of the methods.

This noise level represents the percentage of the data whose labels were swapped with the

opposite class. In other words, when the data stream has 50% noise, then half of the labels

describing objects have inverted class labels. For an in-depth study, data streams having

label noise from 5% to 40% were generated. The presented results (Fig. 4.17a, 4.17b)

show that increasing noise levels have a negative e�ect on the performance of all methods.

This negative e�ect applies slightly weaker to DSCB. For the data stream that has 40%,

the proposed method achieves a quality equal to 0.7 in the F1score. However, it is worth

noting that a high label noise is a much more di�cult classi�cation problem.

Experiment 3 - Static imbalance

The main set of experiments focuses on the overall evaluation of the proposed approach

compared to other selected state-of-the-art methods. The conducted tests will be divided
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Figure 4.17: Selected mean results from di�erent label noise

into a few subsections grouped by the type of used data.
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Figure 4.18: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift. Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow �
tie, red � loss)

The next experiment uses synthetic data streams with a static imbalance ratio. The

obtained results presented on Fig. 4.18 contain a data stream with incremental concept

drift. At �rst glance, the proposed method results look quite good since most of the

comparisons are winning. The DSCB method achieves the best score on aggregated

metrics. Compared to rest of the methods, it gets a statistical advantage or is on the

verge of a tie with scores from Gmeans and F1score. DSCB also performs well in the

Recall but unfortunately sometimes is slightly worse for Precision and Specificity.

Analyzing the results from the base classi�ers' point of view, the DSCB method in
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combination with the KNN classi�er performs best. Very similar results are achieved for

streams with sudden drift, which can be seen in Fig. 4.19.
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Figure 4.19: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift.
Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow � tie,
red � loss)

Experiment 4 - Dynamic imbalance

Another experiment was designed to test the DSCB method when classifying data

streams with dynamically changing imbalance ratios. The dynamic imbalance is a char-

acteristic of real-world data. It is helpful to perform tests on data that attempt to

simulate such a phenomenon. Moreover, this can be taken as some factor that increases

the di�culty of the classi�cation problem.

However, despite the increased di�culty, the DSCB method obtains much better results

than in the previous experiment. In most comparisons that are shown in Fig. 4.20

with incremental concept drift, the proposed method obtains a statistically signi�cant

advantage. Learn++NIE is unique in that it achieves better scores for theRecall than the

DSCB method. This is observed for all variants of the base classi�er. Very similar results

are obtained by DSCB for data with dynamic imbalance ratio and sudden concept drift,

as shown in Fig. 4.21. Furthermore, there is an advantage with statistical signi�cance in

most of the comparisons made in this experiment.
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Figure 4.20: Wilcoxon pair rank-sum tests for synthetic data streams with dynamic imbalance
ratio and incremental concept drift. Dashed vertical line is a critical value with a signi�cance
level 0.05 (green � win, yellow � tie, red � loss)
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Figure 4.21: Wilcoxon pair rank-sum tests for synthetic data streams with dynamic imbalance
ratio and sudden concept drift. Dashed vertical line is a critical value with a signi�cance level
0.05 (green � win, yellow � tie, red � loss)

Experiment 5 - Real data

The last experiment examines the predictive performance of DSCB on real data streams.

It is worth noting here a particular problem with this type of data. Real origin data very
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Figure 4.22: F1score over the data chunks for data stream covtypeNorm-1-2vsAll

often does not combine these two issues. This means that it is easy to �nd data with

uneven class distribution, but it is usually a dataset with nothing in common with the

data stream. On the other hand, one can �nd many data streams with di�erent types

of drifts, but most often, they do not have a signi�cant imbalance ratio. Therefore, only

two data streams (Tab. 3.4) that satisfy the above requirements [44] were selected. Since

only two streams of real data were used in this research, it is possible to analyze the

results using waveform graphs. These graphs show the quality of method classi�cation

expressed by metrics in a given data chunk. The abscissa axis describes the data chunk

index and the ordinate axis describes the metrics scores.

First, the obtained results on the stream "covtypeNorm-1-2vsAll" using four di�er-

ent base classi�ers will be analyzed. It is expressed by the F1score and presented in

Fig. 4.22a�4.22d. It is noticeable that the DSCB obtains high predictive performance.

Using base classi�ers DTC (Fig. 4.22a) and KNN (Fig. 4.22b), the metric initially equals

about 0.6. Then it increases to about 0.9 and remains at that level. Compared with the

other methods, DSCB usually achieves the best results. It performs worst for the GNB

base classi�er (Fig. 4.22d). However, it does not deviate signi�cantly from the other

tested methods.

The next chosen stream was "poker-lsn-1-2vsAll". The results expressed by the F1score

are shown in Fig. 4.23a�4.23d. Here the situation is as clear as in the previous experiment.
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Figure 4.23: F1score over the data chunks for data stream poker-lsn-1-2vsAll

The advantage of DSCB over the other methods is superior when using DTC, KNN, or

SVM base classi�er. An interesting observation is given by comparing the best results

obtained over the entire data stream. It can be seen that for the base classi�er DTC,

the DSCB method reaches a certain peak equal to 0.8. At the same point, the other

methods do not exceed the value equal to 0.6. Similarly, but in a much smaller scale are

the results for the base classi�ers KNN and SVM.

4.2.2 Lessons learned

To conclude the experimental evaluation and analysis, the answers to the research ques-

tions posed earlier are presented below:

RQ1: What is the best parameter setup for DSCB?

Selecting the best setup is quite challenging. It should be considered as a more individual

task that should be performed before proceeding to the classi�cation, depending on

the current problem. However, the tests carried out on the selected pool of data have

shown that the proposed method's best settings are to set the parameter γ equal 0.1,

balance parameter equal to 0.45, undersampling method as Random Under Sampling and
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oversampling method as SMOTE. However, it is worth noting that DSCB is a method

with very strong adaptability due to its �exible capability of setting various parameters.

RQ2: How robust is the proposed method to data streams with various im-

balance ratios?

Experimental evaluation has indicated that DSCB is robust to data of varying imbalance

ratios. This capability allows the classi�cation of strongly and slightly imbalanced data

at a reasonable good level. Even with such a high imbalance ratio where there are

only 5% minority class objects in the data stream, the proposed method obtains a very

promising result. Such a feature is very desirable, especially among methods designed for

data stream classi�cation, where there may be a dynamically changing class imbalance.

RQ3: How resilient is DSCB to label noise on di�erent levels?

Similarly, the robustness of the DSCB method to label noise was tested. It is visible

that the quality is not so negatively a�ected. In particular, it is worth noting that

initially low noise does not cause much loss for DSCB. Only as the noise increases to

much higher values, the predictive performance decreases. However, it should be taken

into account that data with label noise equal to 40% poses a great challenge for most

of the classi�cation models. Despite this high di�culty, the proposed method achieves a

quality equal to 0.7 of the F1score.

RQ4: What is the predictive performance of DSCB for dynamic imbalance

ratio data stream?

Subsequent studies have indicated how the proposed method will deal with a stream that

has a dynamic data imbalance. Compared to other methods, the DSCB achieves high

performance and obtains satisfactory scores. Most of the results expressed in di�erent

metrics allow the DSCB method to have a statistically signi�cant advantage over other

methods. Taking into account the results from other experiments leads to the conclusion

that the method obtains a higher advantage with dynamically imbalance data streams

than with statically imbalanced.
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RQ5: What is the proposed method's predictive performance in a comparison

to the state-of-the-art classi�ers?

Comparing the DSCB method to the other selected the state-of-the-art classi�ers one can

easily conclude that it performs at a very high level. This refers to both synthetic data

and real data. The advantage can also be seen with di�erent types of base classi�ers. An

important observation is that in the vast majority of the Wilcoxon pairwise rank-sum

tests performed on a pool of 450 synthetic data streams, DSCB obtains a statistically

signi�cant advantage for the F1score and Gmeans. It is similar to the Recall results,

but with a slightly worse overall success rate. It also does not come at a signi�cant cost

on the quality expressed by Precision and Specificity. In the overall evaluation, the

method obtains outstanding predictive performance compared to other selected methods

of the state-of-the-art.
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4.3 Deterministic sampling ensemble

Deterministic Sampling Ensemble (DSE ) is the chunk based ensemble method for im-

balanced data stream classi�cation. DSE is the extension of the Deterministic Sampling

Classi�er (DSC ) [28] (Sec. 4.1). DSC and DSE base on the data accumulation ap-

proach [90], that involves collecting minority class data from previous data chunks and

using them to balance the current chunk before training a new model. This type of data

balancing avoids deleting the majority data that will be used to train the new model as

part of the data undersampling process. At the same time, it does not require creating

new synthetic objects as it is done during known oversampling methods but uses saved

samples from previous data chunks. To obtain much better predictive quality in DSE

and DSC, an accumulation of the whole set of minority class objects is made, and the

reduced majority class is also saved. The undersampling method is used to reduce the

majority data. This strategy allows us to balance the current data chunk, as well as

retain some memory about the distribution of the majority class. We also run some ex-

periments to identify the best oversampling and undersampling methods. This allowed

us for the �nal resignation from the approach based on random oversampling and un-

dersampling, which was used in the DSC method. It is worth noting that the proposed

method in this article extends the previous idea from a single classi�er to the ensemble

with majority voting. Another important change that was introduced is a part used to

counteract concept drift. Two separate techniques were combined to solve this problem.

The �rst of them is a drift detector to rebuild the entire ensemble and reset the accu-

mulated data when drift is detected. The second is a forgetting mechanism that deletes

the oldest models and the oldest accumulated data chunks when the committee reaches

a �xed size. The idea of DSE is presented in Fig. 4.24, while the Fig. 4.1 and Alg. 5

present its important components.

Proposed method

It is worth paying particular attention to how the drift detection mechanism was designed

in this method. There are a few key elements that need to be presented and justi�ed. The

most frequently used approach is to observe the base learner's performance and apply

appropriate strategies to situations when this performance drops [57]. Similarly, the DSE

uses a classi�er whose quality is observed and analyzed in each data chunk. Klinkenberg

and Renz [133] proposed a drift detection method for sudden concept drift. Their drift

detector is based on checking the actual predictive performance and comparing it to the

arbitrarily determined value of the threshold. When the quality drops below this value,

it means that the concept drift is detected. The threshold is a �xed ratio of the average
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quality and quality of the current data chunk. Inspired by this approach, a similar

strategy for drift detection was implemented in this work.

Figure 4.24: Deterministic Sampling Ensemble

It will now be described how the drift detector proposed in DSE method works (lines 3

to 13 of the Alg. 5). Each data chunk is sent to the drift detector without processing

by the Deterministic Sampling module (Fig. 4.24). In this solution, a classi�er in the

form of a neural network having one hidden layer with 10 neurons was used. This is

a parameter, so it is possible to select a di�erent classi�er. When the �rst data chunk

arrives (DS0), this part is limited only to the drift detection classi�er's initialization and

training (DDC). Here, any classi�er that has the ability to update the model can be used.

MLP classi�er with one hidden layer and 10 perceptrons was used in the experimental

evaluation. However, in every next iteration (DSi, i > 1) when the DDC is trained and

can make predictions, its quality is measured. For this purpose, the selected metric is

calculated and saved in the Score variable. In prexperiments, the Gmeans was chosen.

Then this value is inserted to the ScoreL list. The number of these scores increases with

each data chunk. The next step is to calculate the mean of the obtained values and

write to ScoreM . In the Alg. 5 line 7 is the main part of the drift detection mechanism

in this method. The Score for the last data chunk is divided by the average values

(ScoreM ) from previous data chunks. When this value reaches less than the threshold

parameter - T , it means that there has been positive drift detection. In other words, drift

is detected when there is a certain drop in quality compared to the average. After drift

detection, the associated procedure is started � the memory containing accumulated data
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is cleared, all models from the committee are removed, and the DDC prediction quality

list from previous data chunks is deleted (Fig. 4.24 � Drift detector). In addition to the

drift detector, the oldest models' forgetting was also implemented in this ensemble. A

�xed percentage of the quality drop threshold during detection allows good cooperation

between two independently performing mechanisms to deal with concept drift. The

drift detector has been adapted to react to sudden drifts, where the quality decreases

noticeably, and the forgetting mechanism is used for incremental drift.

The rest of the method performs the processing mentioned above and balancing of data

chunks. This module is called Deterministic Sampling and it is presented in the detailed

diagram in Fig. 4.25. The whole procedure is described in pseudocode lines 14 to 21 of the

Alg. 5. The t-th data chunk (DSt) is balanced using the selected undersampling method

(USM) and saved to the t-th undersampled data chunk DSUt. Any data processing

algorithm that allows reducing the size of the majority class can be used as USM . The

DSE ensemble classi�er is implemented in such a way that the USM method is a param-

eter that can be easily replaced by any method for the undersampling algorithm during

initialization. After undersampling, it is checked whether the accumulated data storage

(ADS) already have some stored data. In the case where there are data chunks from

previous iterations, the current data chunk is enhanced with whole ADS and overwritten

as new DSt. Then the Imbalance Ratio (IR) of the DSt is checked. When this value

is lower than the Balance Parameter (BP ) set during DSE initialization, oversampling

is performed using the OSM method. Here, similar to the undersampling, the OSM

method is a parameter for the DSE algorithm, and it is selected during initialization.

These data are overwritten in place of the current data chunk DSt. The last step in

this part is to save to ADS current data chunk after undersampling DSUt. This allows

storing the entire set of minority class objects and a partial set of majority class objects.

The data is now intentionally added to ADS. This avoids learning a new model twice

on the same data chunk. If DSUt was added to ADS immediately after undersampling,

the current model would be learned twice using the same data from the minority class

and some part of the majority data. It would be possible because the current data chunk

is reinforced by the entire data set stored in ADS and the DSUt undersampled data

chunk would already be in ADS. Such a situation is very unwanted and could cause

unnecessary confusion during the learning process of the new model.

The �nal phase of the DSE method is to extend the classi�er committee of a new model.

This procedure is described in lines 22 to 27 of the Alg. 5. Having already prepared

and properly balanced data chunk, it is possible to train the new model. This model is

created using a selected base classi�er learning method (BCL). Then it is saved to the Ψt

variable, and added to the ensemble Π. When the size of the classi�ers ensemble exceeds

the set maximum value s, the oldest model Ψt−s is removed. A similar operation is
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Figure 4.25: Deterministic Sampling

performed on ADS where the oldest data chunk DSUt−s is removed to avoid storing data

from the entire stream. At the same time, it ful�lls a certain function of the forgetfulness

mechanism, which counteracts the concept drift problem. The entire process described

above is carried out until the entire data stream has been processed.

Computation complexity analysis

Let us present an analysis of the time complexity of the proposed algorithm. The time

complexity of this method (TDSE) consists of several components. Time complexity

associated with operations on accumulated data storage (TADS). The time complexity

of the drift detector (TDDC). The time complexity of the oversampling method (TOSM ).

The time complexity of the undersampling method (TUSM ) and time complexity of the

base classi�er (TCLF ).

TDSE = TADS + TDDC + TOSM + TUSM + TCLF (4.4)

First of all, it is the complexity associated with accumulated data storage (TADS). The

operations performed on this data are writing and reading. Let us assume that ns
denotes the number of objects in one data chunk. It takes O(1) time to add a new

item to the list of any size [54]. When saving new data, the time complexity does not

exceed O(ns), because in the worst case, the whole data chunk will be saved. Reading

data from ADS and adding it to the current training data chunk does not exceed the

complexity of O(Sns), because a maximum S chunks are stored in the memory. The
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Algorithm 5 DSE
Input:

DS � data stream
BCL � base classi�er learning method
s � maximum size of classi�er ensemble
OSM � oversampling method
USM � undersampling method
DDC � drift detector classi�er
T � threshold parameter

Symbols:

DSt � t-th data chunk of data stream DS
ADS � accumulated data storage
DSUt � undersampled t-th data chunk
Score � drift detector score
ScoreL � drift detector scores list
ScoreM � drift detector mean score
Ψt � t-th model of ensemble

Output:

Πt � �nal ensemble for t-th data chunk

1: for t = 1, 2, . . . do
2: if t > 1 then
3: Score ← Evaluate metric for DDC on DSt
4: ScoreL ← ScoreL ∪ Score
5: ScoreM ← Mean ScoreL
6: if Score/ScoreM < T then

7: ADS ← ∅
8: Π← ∅
9: ScoreL ← ∅
10: end if

11: end if

12: Train DDC on DSt
13: DSUt ← Undersample DSt using USM
14: if ADS 6= ∅ then
15: DSt ← DSt ∪ ADS
16: end if

17: if IR of DSt < BP then

18: DSt ← Oversample DSt using OSM
19: end if

20: ADS ← ADS ∪DSUt
21: Ψt ← Train model on DSt using BCL
22: Π← Π ∪Ψt

23: if |Π| > s then
24: Π← Π \Ψt−s
25: ADS ← ADS \DSUt−s
26: end if

27: end for
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drift detector classi�er is another factor a�ecting the time complexity (TDDC). In this

idea, the Multi Layer Perceptron classi�er with one hidden layer and ten neurons was

used. The approximate complexity is O(nsp
h), where h is the number of hidden layers,

and p is the number of neurons in layer. Then these are the data sampling methods

(TOSM , TUSM ). The complexity a�ecting the entire method is highly dependent on

their selection. After carrying out the experiments for selecting the best parameters,

the SVMSMOTE method for oversampling was selected. The complexity of this method

is O((nm(R + 1) + nM )3), where nm is the number of minority class objects and nM

is the number of majority class objects, and R is the fraction of additional randomly

selected minority class samples [244]. Assuming that the minority class does not count

more than 50% of all samples, in the worst case, this method has the complexity of the

size O(11
2n

3
s). The Neighborhood Cleaning Rule method was selected for undersampling.

The complexity is O(n2
s) because this method must �nd the nearest neighbors for each

point in the data chunk. The last element a�ecting the �nal method complexity is

the base classi�er (TCLF ). Four di�erent classi�ers were used during the experiments

� Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Gaussian Naïve Bayes

and Decision Tree CART. SVM has a complexity of O(n3
s) [1]. The complexity of the

KNN Classi�er and the Gaussian Naïve Bayes is equal to O(nsd), where d is the number

of dimensions [59]. The complexity of the CART is O(dn2
s) [238]. After substituting

the individual components of the time complexity of DSE method into the formula, the

result is:

TDSE = O(10ns) +O(10ns) +O(1
1

2
n3
s) +O(n2

s) +O(n3
s) (4.5)

The con�guration on which the experiments were carried out in this article has a com-

plexity of O(11
2n

3
s), because it is the largest complexity of all components. It should

be noted that the method has been designed in a �exible way. It allows the selection

of other base classi�ers and oversampling or undersampling methods, depending on the

needs of lower time complexity.

4.3.1 Experimental evaluation

The experiments carried out in this article were mainly intended to check how the pro-

posed method for classifying imbalanced data streams works compared to other state-of-

the-art methods. The following research hypotheses were formulated:

RQ1: What is the best setting of DSE, i.e., how proposed method works with di�erent

base classi�ers and di�erent preprocessing methods?

RQ2: How �exible is DSE to changing the imbalance ratio?
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RQ3: How robust is proposed method to label noise?

RQ4: What is the predictive performance of the proposed method in a comparison to the

state-of-the-art classi�ers?

Setup

The experimental environment has been implemented in Python programming language

and is publicly available on the Github repository3. The research was carried out using

four basic classi�ers. Used implementations are from scikit-learn [200] machine learning

library for the Python. Each tested ensemble method built a maximum of 10 models

of the base classi�er during the experiment on one data stream. List of selected base

classi�ers:

� k-Nearest Neighbors (KNN)

� Support Vector Machine (SVM)

� Gaussian Naive Bayes (GNB)

� Decision Tree CART (DTC)

Evaluation was executed in the test-then-train manner [24]. Each data chunk except

the �rst is used for testing the model and then for training. This approach allows the

entire data stream to be used without splitting the data into training and test sets.

The experiments were evaluated on the basis of �ve di�erent metrics � Gmeans [152],

F1score [235], Recall, Specificity, Precision. The proposed method has been tested

and compared with the performance of selected state-of-the-art methods for the classi-

�cation of imbalanced data streams. To obtain the possibility of adequate comparison,

all comparative experiments were also performed with these methods. Besides, the mul-

tilayer neural network classi�er was used as the baseline. Below is a list and acronyms

for these methods used later in this work:

3Repository link: https://github.com/w4k2/DSE

https://github.com/w4k2/DSE
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� REA � Recursive ensemble approach [51]

� KMC � K-means clustering undersampling ensemble [264]

� L++CDS � Learn++CDS [62]

� L++NIE � Learn++NIE [62]

� OUSE � Over and under-sampling ensemble [89]

� MLPC � Multi-layer perceptron classi�er

The main purpose of the experimental evaluation is to check the predictive performance

of the proposed method and compare it with state-of-the-art methods. For this purpose,

extensive research has been conducted on generated and real data streams (Tab. 3.2).

The size of the data chunks in real data was chosen experimentally. Synthetic data

streams come from two di�erent generators � MOA [24] and stream-learn [150]. All data

streams are two-class problems. Separate sets of data streams have been prepared for

each experiment which di�er in parameter setup. Tab. 4.1 presents parameters such as

a number of objects, chunk size, imbalance ratio, noise level or drift type of generated

synthetic data streams.

Parameter Value

Number of samples 100000

Number of chunks 200

Chunk size 500

Number of classes 2

Number of features 10 (8 informative + 2 redundant)

Number of drifts 1 5

Concept drift types sudden incremental

Random state 1111 2222

Label noise 0% 10%

Imbalance ratio 10% 20% 30%

(a) stream-learn

Parameter Value

Generator type RandomRBFGenerator

Number of samples 100000

Number of chunks 200

Chunk size 500

Number of classes 2

Number of features 10 (8 informative + 2 redundant)

Number of drifts 1 5

Concept drift types sudden incremental

Random state 1111 2222

Label noise 0% 10%

Imbalance ratio 10% 20% 30%

(b) MOA

Table 4.1: Parameter setup for data stream generators

Experiment 1 - Parameter setup

The �rst experiment was carried out to determine the best hyperparameters of the pro-

posed method. This will allow us to choose the right settings so that the method is

presented from the best side. The plan of this experiment is to set hyperparameters
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globally, so-called best default settings. The method has 5 di�erent hyperparameters.

The maximum number of models and the base classi�er are depending on the assump-

tions of the experiment and the size of the data, so they will not be included in this

study. The next is the level of imbalance ratio of oversampling to increase balance. The

last two are undersampling and oversampling algorithms. Four di�erent data streams

were used for this experiment. Two di�erent types of drift � incremental and sudden

and two di�erent generators MOA and stream-learn. All streams in this part had 10000

samples, 10 attributes, 10% imbalance ratio and 0% label noise. The results for the

combination of selected oversampling and undersampling methods [79] were evaluated

and the results analyzed. The medians were calculated from the obtained metrics values

for each data stream separately. Then the average for all streams with one base classi�er

was calculated. The tables show the results obtained from this experiment grouped by

base classi�er and metric. List of selected undersampling methods:

� Condensed Nearest Neighbors (CNN)

� Edited Nearest Neighbors (ENN)

� Repeated Edited Nearest Neighbors (RENN)

� All KNN (AllKNN)

� Instance Hardness Threshold (IHT)

� Near Miss (NM)

� Neighbourhood Cleaning Rule (NCR)

� One Sided Selection (OSS)

� Random Under Sampler (RUS)

� Tomek Links (TL)

List of selected oversampling methods:

� ADASYN (ADASYN)

� Borderline SMOTE (BSMOTE)

� Random Over Sampler (ROS)

� SMOTE (SMOTE)

� SVMSMOTE (SVMSMOTE)
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The �rst analysis of the results focuses on the selection of the best oversampling method.

At this point, Random Undesampling is treated as the starting solution. At �rst glance,

it is hard to pick the best candidate (Fig. 4.26). The di�erences between the methods are

quite subtle. After a more in-depth analysis, SVMSMOTE obtained the highest quality

for di�erent metrics. Therefore, this method was chosen for further research.
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Figure 4.26: Results of Random Under Sampling combination with oversampling methods.
Darker is better, best value is bold and underscored

In the next step, the best method for data undersampling was determined. This experi-

ment focused on �nding the best result for the combination of the SVMSMOTE method

with the selected undersampling method. For this purpose, all possible variations were

tested. At �rst glance, it can be seen that the results do not di�er signi�cantly (Fig. 4.27).

Depending on the chosen metric, di�erent method achieves the best results in this test.

However, it can be seen that for Gmeans and Recall the Neighborhood Cleaning Rule

(NCR) method has the best result and rest of the metrics do not stand out signi�cantly

from the other methods. The choice of NCR will complement the overall quality clas-

si�cation with SVMSMOTE, which has the opposite tendency to achieve good results

in Precision and Specificity. Then all possible combinations of the NCR method with

other oversampling methods were compared. This test con�rmed the previous choice

that the NCR method is best suited for SVMSMOTE (Fig. 4.28).

The last of the hyperparameters is Balance Parameter (BP). It is a parameter determin-

ing the threshold of data imbalance, when the DSE method has to additionally balance

the data chunk with oversampling. The BP threshold is compared to the imbalance ratio

of the data chunk after strengthening it using samples stored in ADS. Unfortunately, the

obtained results do not allow to indicate the best value (Fig. 4.29). Depending on the

analyzed metric, the BP hyperparameter goes into high or low values for the best result.

Finally, a decision was made to select and maintain the value initially adopted � 50%

objects of each class. Because the tests carried out do not allow for the explicit selection

of the best value, the method will aim for a perfect class balance.
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Figure 4.27: Results of SVMSMOTE combination with undersampling methods. Darker is
better, best value is bold and underscored
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Figure 4.28: Results of NCR combination with oversampling methods. Darker is better, best
value is bold and underscored
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Figure 4.29: Balance parameter setup experiment. Darker is better, best value bold and under-
score

Experiment 2 - Label noise and imbalance ratio

In this experiment, the e�ect of changing the imbalance ratio and label noise of a data

stream was examined. For more accurate results without major interference, the tested
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Figure 4.30: Selected results from noise and balance experiments (Gmeans metric and KNN
base classi�er)

data did not have any concept drift. Imbalance ratio and label noise varied depending

on the tested property. The results obtained were averaged over the entire stream.

The imbalance ratio of the data stream has an impact on the quality of the proposed

method. In the presented plot (Fig. 4.30b) it can be seen that with only 5% of minor-

ity class objects the quality in comparison to an equally balanced stream signi�cantly

decreases. Similarly, the phenomenon can be observed in the case of other metrics or

other base classi�ers used in this experiment. However, an essential observation is that

this problem also applies to compare other methods. It means that the data di�culty

associated with a strong imbalance does not cause a very negative e�ect in the DSE

algorithm, and compared to other methods, remains at a similar level. Looking at the

other methods, REA behaves quite atypically, and its quality decreases at a much lower

data imbalance. This may indicate that the method was designed to operate on strongly

imbalance data. From the whole pool of methods, the best results in this experiment

were obtained by KMC.

A similar situation occurs in research with various label noise (Fig. 4.30a). The experi-

ment was carried out to check how much the level of noise a�ects the quality of methods.

The range of the tested area is from 5% to 40% of the label noise in the stream. Higher

noise seems unnecessary because the stream begins to become very random. It follows

that the higher the noise, the lower the results obtained. This applies to all tested scenar-

ios with various base classi�ers and metrics. In the presented results, the most vulnerable

methods are Learn++NIE and REA. OUSE and Learn++CDS show the highest noise

immunity. The DSE and KMC is roughly in the middle.
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Experiment 3 - Synthetic data

In this experiment full set of data will be used (Tab. 4.1). Evaluation of all streams

will generate substantial number of results. This must be multiplied by four variants of

the base classi�er and the calculation of �ve di�erent metrics. This makes it impossible

to review all results one by one. Aggregation of metrics into averages will not allow

us to draw accurate conclusions. For the analysis of such results, a special statistical

tool should be used, which will collect everything on several charts and will not cause

a signi�cant loss of information. The main intention of this experiment is to compare

DSE with other methods. For this purpose, the results obtained were analyzed using the

Wilcoxon rank-sum pair statistical tests divided into di�erent streams. Then the obtained

results will be collected into win-tie-loss charts, which will allow an easy way to assess the

quality of the tested method in a given metric compared to other methods. Additionally,

critical di�erence values were determined for each chart, indicating whether the compared

DSE method is statistically better with the results obtained in this experiment.

In the beginning, the results of synthetic streams with the incremental drift of the concept

are analysed (Fig. 4.31). Looking at the graph, it can be seen that for incremental drifts

DSE achieves slightly weaker results when it uses Gaussian Naive Bayes as the base

classi�er. The second observation is that with some methods it loses in Specificity and

Precision. In contrast, DSE in Gmeans, F1score and Recall for almost every base

classi�er is statistically better in these data streams.

The next picture shows the results obtained for the generated sudden data drift streams

(Fig. 4.32). It is evident that compared to the incremental drift, the proposed method

is doing a little worse, but it is not much worse. Still, in comparison to other methods

for Gmeans, F1score, and Recall, in most cases, DSE is signi�cantly statically better

for the results obtained in this experiment. However, Precision and Specificity are at

a lower level compared to other methods. It can be seen that Learn++CDS is one of

the best methods in this experiment. These results show a very interesting observation

about the REA method. The method seems to be much better than DSE in Recall. The

situation is entirely opposite for Precision and Specificity, where REA has very low

results. This method has a very high tendency to classify objects as a minority class.

This is an example of a method that tries to balance the data excessively, which results

in a bias toward the minority class. This will result in a poor predictive quality.

It is worth analyzing and presenting an example graphs (Fig. 4.33) of a selected metric

over the data chunks of one data stream. A data stream with �ve concept drifts was

selected. The plot and results were previously smoothed using a Gaussian �lter for better

readability. The graph shows that the DSE method is performing very well. In the drift
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Figure 4.31: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift. Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow �
tie, red � loss)
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Figure 4.32: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift.
Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow � tie,
red � loss)
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Figure 4.33: Gmeans score over the data chunks for synthetic data with sudden drift

spots there are quality drops. It is understood in case of sudden drift. However, it can be

seen that DSE most often has the smallest drop compared to other methods. This means

good adaptability of the method to sudden drift. It is also visible that REA performs the

worst, not taking into account MLPC, which is the baseline classi�er. Other methods are

at a fairly similar level. Slightly larger drops after drift can be observed among the KMC

and Learn++CDS methods compared to Learn++NIE and OUSE, which perform more

stable after drift. Similar results are achieved for incremental data stream (Fig. 4.34).

Additionally, tests were carried out on the metrics presented in Sec. 2.7 to analyze be-

havior of the method with concept drifts. We used the maximum performance lossMPL

(Eq. 2.23) and restoration time RT (Eq. 2.22). Both metrics are calculated based on

Gmeans. The results are presented in Tab. 4.2,� 4.5.

Most of the results obtained are similar. It is noticeable that the Tab. 4.2 presenting the

results of performance loss on generated incremental streams shows some advantage of

the DSE method over the others. The other results do not show a clear leader, but most

often, the L++CDS method dominates. It is worth noting that the presented average

results do not di�er much from each other, and the standard deviation is high compared

to the mean values.
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Figure 4.34: Gmeans score over the data chunks for synthetic data with incremental drift

Table 4.2: Mean performance loss with standard deviation on generated incremental streams (less is
better, best result in bold)

SVM KNN GNB DTC

DSE 0.0677±0.0390 0.0462±0.0209 0.0744±0.0304 0.0598±0.0336

KMC 0.0867±0.0823 0.0542±0.0219 0.0658±0.0225 0.0705±0.0279

L++CDS 0.0730±0.0290 0.0523±0.0214 0.0821±0.0403 0.0835±0.0511

L++NIE 0.3670±0.3862 0.0835±0.0634 0.1319±0.1147 0.0785±0.0441

REA 0.4233±0.2916 0.2033±0.1029 0.3675±0.2270 0.3542±0.2639

OUSE 0.1205±0.0552 0.0978±0.0338 0.0930±0.0332 0.0908±0.0261

MLPC 0.5916±0.4081 0.5737±0.4234 0.5970±0.3886 0.5747±0.3803

Experiment 4 - Real data

The last experiment focus on the real data streams (Fig. 4.35). The di�erence that is

noticeable compared to the other results is quite a lot of draws. This may be due to the

small size of these data streams, which caused similar method performance. However, in

most combinations, the DSE method achieves statistically better or the same predictive

quality compared to the results of other methods. It means that DSE performs on real

data streams just as well as the state-of-the-art methods. For these data streams, there
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Table 4.3: Mean performance loss with standard deviation on generated sudden streams (less is better,
best result in bold)

SVM KNN GNB DTC

DSE 0.2508±0.2070 0.2086±0.1464 0.1908±0.1323 0.2213±0.1391

KMC 0.2366±0.2076 0.2090±0.1520 0.1843±0.1581 0.1986±0.1137

L++CDS 0.2486±0.2257 0.1833±0.1068 0.1832±0.1185 0.2072±0.0913

L++NIE 0.4574±0.3171 0.1814±0.0797 0.2012±0.0963 0.1740±0.0620

REA 0.5711±0.2896 0.3426±0.1948 0.4495±0.2125 0.4144±0.2003

OUSE 0.2278±0.1250 0.2166±0.1415 0.1862±0.1115 0.1771±0.0597

MLPC 0.6394±0.3737 0.6052±0.3624 0.5881±0.3890 0.6085±0.3738

Table 4.4: Mean recovery time with standard deviation on generated incremental streams (less is better,
best result in bold)

SVM KNN GNB DTC

DSE 0.0078±0.0047 0.0060±0.0018 0.0069±0.0035 0.0062±0.0025

KMC 0.0091±0.0054 0.0067±0.0031 0.0063±0.0026 0.0066±0.0030

L++CDS 0.0072±0.0030 0.0055±0.0010 0.0064±0.0024 0.0062±0.0018

L++NIE 0.0074±0.0036 0.0073±0.0035 0.0071±0.0033 0.0070±0.0028

REA 0.0083±0.0041 0.0079±0.0038 0.0083±0.0035 0.0087±0.0042

OUSE 0.0064±0.0024 0.0076±0.0034 0.0063±0.0021 0.0069±0.0032

MLPC 0.0112±0.0076 0.0102±0.0063 0.0099±0.0056 0.0102±0.0067

Table 4.5: Mean recovery time with standard deviation on generated sudden streams (less is better, best
result in bold)

SVM KNN GNB DTC

DSE 0.0082±0.0035 0.0067±0.0028 0.0085±0.0042 0.0093±0.0050

KMC 0.0123±0.0070 0.0100±0.0047 0.0095±0.0043 0.0115±0.0064

L++CDS 0.0066±0.0018 0.0058±0.0012 0.0064±0.0016 0.0071±0.0018

L++NIE 0.0067±0.0025 0.0059±0.0013 0.0065±0.0016 0.0064±0.0017

REA 0.0190±0.0148 0.0179±0.0135 0.0152±0.0098 0.0157±0.0108

OUSE 0.0075±0.0022 0.0088±0.0039 0.0072±0.0017 0.0067±0.0016

MLPC 0.0141±0.0111 0.0154±0.0121 0.0160±0.0128 0.0132±0.0091

is no apparent weakness in the results of Precision and Specificity, which were visible

in the synthetic data streams.
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Figure 4.35: Wilcoxon pair rank-sum tests for real data streams. Dashed vertical line is a
critical value with a signi�cance level 0.05 (green � win, yellow � tie, red � loss)

4.3.2 Lessons learned

To summarize the experimental evaluation conducted, the answers to the research ques-

tions posed earlier are presented below:

RQ1: What is the best set of DSE, i.e., how proposed method works with

di�erent base classi�ers and di�erent preprocessing methods?

The DSE method is strongly parameterized. It required conducting appropriate ex-

periments to identify the best hyperparameters. The result is the choice of Neighbor-

hood Cleaning Rule as the undersampling method and SVMSMOTE as the oversampling

method. Unfortunately, the best setup for Balance Parameter (BP) has not been deter-

mined in analysis. However, 50% of the objects in each class were selected as the default

value. The justi�cation for this choice is to aim for an ideal class distribution.

RQ2: How �exible is DSE to changing the imbalance ratio?

Tests carried out indicate that a change in the imbalance level does not have a very

negative impact than other tested methods. There is a certain decrease in the quality of

the prediction, while the level of imbalance increases. It is a fairly obvious phenomenon
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because the problem's di�culty increases signi�cantly, which is re�ected in a decrease in

quality.

RQ3: How robust is proposed method to label noise?

The DSE is also very robust to the label noise. Similar to imbalance ratio, the method

reacts to higher label noise with a slightly lower quality of prediction. When the noise

increases, there is a decrease in predictive performance. However, DSE does not di�er

much from the others. High label noise has a negative impact because it also increases

the di�culty of the problem.

RQ4: What is the predictive performance of the proposed method in compar-

ison to the state-of-the-art classi�ers?

Based on the conducted experiments, one can observe that the proposed method works

very well for both noisy and no-noise data. The obtained results show that the DSE

method is statistically better than the selected state-of-the-art methods for most data

streams on which it was tested using various base classi�ers, especially using Decision

Tree CART and Support Vector Machine. DSE achieves good results with both sud-

den and incremental drifts. Looking through the selected metrics' prism, the proposed

method performs the least well for a Specificity score compared to other methods.

However, the high level of Gmeans, F1score, and Recall indicates that this is fairly well

compensated for the correct minority class prediction. It is quite an important feature

of the method for imbalanced data because the cost of making a mistake is much higher

for objects of a minority class than for a majority class. The tests performed on the

performance loss and recovery time did not indicate the best performing method clearly,

but DSE is not doing the worst.
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4.4 Deterministic sampling ensemble of one class support

vector machine classi�ers

The proposed method is designed to classify the imbalanced data streams. This data

is associated with many di�culties which this method will attempt to solve. The main

idea is to combine the best techniques derived from two solutions that have also been

designed for imbalanced data stream classi�cation. These approaches, despite having

many features in common, are signi�cantly di�erent. The �rst one is Deterministic

Sampling Ensemble � DSE (Sec. 4.3), a method that focuses on using oversampling and

undersampling of data along with the accumulation of data from previous chunks, to

use this knowledge in further stages of learning. The second One Class support vector

machine classi�er Ensemble for Imbalanced data Stream � OCEIS (Sec. 3.1) approach,

which uses One Class SVM models built on di�erent feature subspaces determined by

clustering. To better understand the idea of combining these two methods and to point

out the novelties introduced to the method, the whole concept will be presented with

more details.

The Deterministic Sampling Ensemble of One Class Support Vector Machine classi-

�ers (DSE-OC ) is a method which processes the data stream in a chunk-based manner

(Fig. 4.36 a). The main foundation of it is to use a data accumulation approach from pre-

vious data chunks [90]. These saved data are then used to increase the number of minority

class objects in subsequent chunks (Fig. 4.36 b). This can be called an semisynthetic

oversampling technique. It has many bene�ts when looking at the data distribution,

which is a�ected by the imbalance. First, the issue of uneven class distribution is solved.

For this, oversampling is used, but without creating new arti�cial samples. Minority

data is ampli�ed using older minority data from earlier iterations of the data stream.

This gives quite a lot of potential to this method because no new patterns are produced

that may not necessarily �t into the current distribution. At the same time, there is no

need to apply undersampling methods to the current data chunk, which could involve

the loss of information.

This idea is not a complete novelty, but most of the authors using this strategy decided

to accumulate data only from the minority class [51]. The innovation is to accumulate

data from the majority class, but in reduced quantities. This reduction in number is

done by the undersampling method, where it aligns with the number of minority class

objects. It is also worth noting that extending data accumulation to selected subsets of

the minority class allows to ensure continuity with the stored data. Saving only samples

from one class could lead to signi�cant decomposition disturbances. This could lead to
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a kind of imbalance in the other direction, where after introducing too many patterns

from the minority class, it would dominate the majority class.

Figure 4.36: Overview diagram of DSE-OC method

The second crucial core of this method is an modi�cation of the OCEIS method used as a

base classi�er (Fig. 4.36 c). The approach focuses on the use of one-class SVM (OCSVM)

models for solving the problem of classifying a binary imbalanced data stream. Despite

the many challenges posed by this di�cult data, the method also faces the issue of

using OCSVM on binary data. Originally, the OCSVM method was designed to solve

anomaly detection [75] or other related to this task. However, one can see some new

trends of applying such models to classify binary data [131] [277]. Such application

requires appropriate steps to decompose the data and then combine the models into one

decision.

To obtain the predictive ability of one-class models in binary problems, it is necessary

to split the training set into two di�erent classes. Then each model is learned on one

set and then a decision is made based on what both classi�ers indicate. This idea is

good, until at the same time both classi�ers indicate membership in their decision area

or worse both indicate no membership. Then there is the serious problem of a sample

that has not been clearly classi�ed into either of the two possible options and remains

unlabeled. The solution to this may be the use of supports that are returned by one-class

models. Then, with a certain margin of error, it is possible to determine the higher or

lower probability of an object belonging to a given model. Unfortunately, most of this

type of models have some limitations that do not allow us to accurately indicate the

probability of belonging due to the lack of counterexamples. The similar happens in this
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method. However, instead of using the support function, some measure of the distance

to the decision boundary is used, which is de�ned by Eq. 2.10.

An essential condition that must be ensured when designing the ensemble method is

adequate model diversi�cation. One of the approaches that will allow this is to build

models on subsets of data. Such subspaces can be obtained by clustering. However,

there is a problem of determining the number of clusters that should be created. The

original approach implies that the number of clusters should be selected before applying

the algorithm to data learning. The most preferable way is to automatically select the

best number of clusters. The main motivation is that data describing various problems

have very di�erent characteristics of data distribution and class sizes. This problem is

common in a data stream where the distribution can change in time. At this point,

�nding the best number of clusters is an issue. If the majority data will be divided into

more clusters, it will be a sort of data balancing by segmentation. On the other hand,

when the minority data will be divided into the same number of subsets, the problem

returns to the original imbalance ratio or even worsens in some cases.

This raises the idea that it is best to determine these numbers for each class separately.

However, doing this manually would require much work and �nally it would not be a

good solution from the perspective of using this method for further development. Hence,

an idea emerged to do some automation, which would allow, in a dynamic way, to make

a fast and relatively successful optimization of the number of clusters for each set of

patterns from a given class. Such choices are made possible by using a metric that

provides some measurable indicator of the clusters' quality. For example, the Silhouette

Coe�cient [165] metric can be used (Eq. 3.1 in Sec. 3.1).

Procedure

For better understanding, the entire algorithm procedure will be presented descriptively

along with psuedocode (Alg. 6). In the �rst iteration, the part responsible for drift

detection is omitted. Therefore, it can be said that the core of the algorithm starts from

line 13 of the pseudocode. In the �rst step, the classi�er responsible for drift detection

(DDC) is trained. The whole algorithm is designed in such a way that this is treated

as a certain parameter with the possibility to change it easily. However, it must be a

classi�er with the ability to be trained. In this implementation proposed here, an MLP

classi�er with one hidden layer and ten perceptrons was used. In the next step, the data

chunk is processed using the undersampling method (USM) in such a way that the equal

imbalance ratio of the data is achieved and saved in DSUt. However, it is important

to note that the original data chunk is maintained. Then, when the accumulated data
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storage (ADS) is not empty, this original data chunk is ampli�ed with the samples from

there. It is obvious that in the �rst iteration this will not be possible. After this step is

the undersampled data chunk (DSUt) is added to the accumulated data storage (ADS).

This prevents the original data chunk from being enhanced with its undersampled version.

With the data already prepared, DSE-OC proceeds to build the model using the base

classi�er. This whole process is described by Alg. 7. First, the data is divided into two

sets of samples from the minority class and the majority class. Then, these partitioned

data are clustered using the K-Mean algorithm. However, this method requires an input

of the number of clusters into which the submitted data set will be divided. This num-

ber is determined in a dynamic way. Minority data and majority data are separately

segmented into clusters whose number varies from 2 to K. Values are then computed for

the created sets using a selected metric that determines the consistency of the clusters.

Those with the best metric scores are passed on as the solution to select the optimal

number of clusters, respectively, for each class. In some ways, this is a brute-force check

of all possibilities with a maximum bound equal to K. However, it allows to determine

the number of clusters in a dynamic way. OCSVM models are then built on these data

clusters. In this way, a subensemble consisting of one class classi�ers is generated.

Then, once a model of the base classi�er is built, which is a kind of subensemble, the

algorithm adds it to the main ensemble. In the last step, it is checked if the size of

this main ensemble does not exceed a given value. When it does, the oldest models are

removed. At the same time, the oldest chunks are removed from the accumulated data

storage to avoid storing data from the entire stream, which is a very undesirable practice.

Moreover, the base classi�er is itself an ensemble of classi�ers, which requires the design

of a decision rule to determine the �nal decision. For such an ensemble, the problem

is much more complicated, because it consists of one-class models that are intended to

perform the prediction on the binary data. The approach based on majority voting

or support accumulation will not produce good results. The OCEIS uses the original

combination rule based on distance from the decision function which determines the

relative distance of classi�ers boundries to predicted samples. Let fmi denotes decision

function of classi�er Ψm
i (see Eq. 2.10) and fMj of classi�er ΨM

j respectively. The �nal

decision of OCEIS is made according to the following classi�cation rule:

Ψ(x) =



minority class if max
i∈Πm

(fmi (x)) ≥ max
j∈ΠM

(
fMj (x)

)

majority class otherwise

(4.6)
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Algorithm 6 DSE-OC
Input:

DS � data stream
DSt � t-th data chunk of data stream DS
s � maximum size of classi�er ensemble
OSM � oversampling method
USM � undersampling method
DDC � drift detector classi�er
T � threshold parameter

Symbols:

ADS � accumulated data storage
DSUt � undersampled t-th data chunk
Score � drift detector score
ScoreL � drift detector scores list
ScoreM � drift detector mean score
Ψt � t-th model of ensemble

Output:

Πt � �nal ensemble for t-th data chunk

1: for t = 1, 2, . . . do
2: if t > 1 then
3: Score ← Evaluate metric for DDC on DSt
4: ScoreL ← ScoreL ∪ Score
5: ScoreM ← Mean ScoreL
6: if Score/ScoreM < T then

7: ADS ← ∅
8: Π← ∅
9: ScoreL ← ∅
10: end if

11: end if

12: Train DDC on DSt
13: DSUt ← Undersample DSt using USM
14: if ADS 6= ∅ then
15: DSt ← DSt ∪ ADS
16: end if

17: ADS ← ADS ∪DSUt
18: Ψt ← OCEIS(DSt) . Alg. 7
19: Π← Π ∪Ψt

20: if |Π| > s then
21: Π← Π \Ψt−s
22: ADS ← ADS \DSUt−s
23: end if

24: end for
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Algorithm 7 OCEIS
Input:

LS � learning set
s � maximum size of classi�er ensemble
K � maximum number of clusters
CA � clustering algorithm K-means [179]
CM � clusters consistency metric Silhouette Coe�cient [165]

Symbols:

LSm � minority data
LSM � majority data
n � number of minority clusters
N � number of majority clusters
Cmk � clusters of minority data LSm
CMk � clusters of minority data LSM
Ψm
i � OCSVM model trained on Cmi cluster

ΨM
j � OCSVM model trained on CMj cluster

Πm � minority model set (ensemble)
ΠM � majority model set (ensemble)

Output:

Ψ(x) � Final ensemble with combination rule (Eq. 4.6)

1: Split LS into minority (LSm) and majority (LSM ) data
2: for k = 1, 2, . . . ,K do

3: CMk ← Create k clusters using CA on LSM
4: Cmk ← Create k clusters using CA on LSm
5: end for

6: n ← argmax
k=1,2,...,K

CM(Cmk )

7: for i = 1, 2, . . . , n do
8: Ψm

i ← Train OCSVM model on Cmi cluster data
9: Πm ← Πm ∪Ψm

i

10: end for

11: N ← argmax
k=1,2,...,K

CM(CMk )

12: for j = 1, 2, . . . , N do

13: ΨM
j ← Train OCSVM model on CMj cluster data

14: ΠM ← ΠM ∪ΨM
j

15: end for
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It is also worth noting how the drift detector works. As it has already been written, it

is a classi�er with relearning capabilities. Skipping the �rst iteration, every chunk data,

it calculates the predictive performance of the drift detector classi�er (Score), which

is expressed by the selected metric. This result is compared with the average value

(ScoreM ) from the previous data chunks. When the ratio of the current quality and the

average from previous iterations is less than the threshold parameter - T , the detector

reports the occurrence of drift. In other words, if the current quality falls by a certain

percentage compared to the average value, this is treated as a concept drift. Then, all

data contained in the accumulated data storage is deleted. In addition, the models are

deleted and the average value obtained by the drift detector is set to zero.

There are a few important points to note about the proposed drift detection method.

The choice of the Gmeans for the drift detector and 70% threshold value was determined

experimentally in the initial phase of the method design. The idea of using a �xed

value was inspired by the work of Klinkenberg and Renz [133], where their drift detector

proposal contains a similar scheme using an arbitrarily determined value of the threshold.

In addition to the drift detector, the forgetting of the oldest models was also used in this

ensemble. It can be argued that DSE-OC has a dual drift protection. However, it is

important to note that both of these mechanisms perform their respective roles. The

forgetting mechanism removes the oldest models from the ensemble, which protect the

method from slow and incremental drifts. On the other hand, the drift detector will

allow a fast reaction when a sudden concept drift arrives, minimizing the time required

to rebuild the whole ensemble. A �xed percentage of the quality drop threshold during

detection allows good cooperation between two independently performing techniques and

complements each other well to counter di�erent types of concept drifts that occur in

non-stationary data streams.

Computation complexity analysis

Let us present the analysis of the time complexity for the DSE-OC algorithm. This

method combines two di�erent solutions. The �nal time complexity is the linear com-

bination of several components. First, it is important to determine the appropriate

computational complexity for ADS that stores the collected data. Assuming that ns
will denote the number of samples in one data chunk, and S will denote the maximum

number of stored data chunks, one can determine the complexity from usage the ADS.

Two main operations are performed, retrieving the data and uploading the data. Fetch-

ing the entire dataset equals O(Sns), since the number of samples and data chunks

cannot be exceeded. On the other hand, the complexity of adding a new data chunk is

O(ns), since loading one element into the list [54] has a complexity of O(1). The drift
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detector is another factor a�ecting the time complexity. In this method, the Multi Layer

Perceptron classi�er with one hidden layer and ten neurons was used. The approximate

complexity is O(nsp
h), where h is the number of hidden layers, and p is the number

of neurons. Another quite important piece is the method for undersampling the data.

Because the complexity is quite dependent on the choice of method that will be used,

it can be assumed that the method used will be Instance Hardness Threshold, whose

complexity is equal to O(n2
s) [233]. The method for determining clusters has an equally

important in�uence. This is also a method that can be changed at will and is treated as

a parameter. In this case, it can be assumed that the K-means approach will be used to

cluster the data, which has a complexity equal to O(n2
s) [196]. The last element is the

complexity of the base classi�er. According to the concept of the algorithm the OCSVM

classi�ers is used, which complexity is equal to O(n3
s) [275]. Summarizing the above

analysis, it can be determined that the complexity of the DSE-OC method is equal to

O(n3
s), as it is the highest value of all factors.

4.4.1 Experimental evaluation

This section will present the experimental evaluation to check the performance of the

method under various imbalanced data streams compared to selected state-of-the-art

methods. Let us formulate the following research hypotheses:

RQ1: What is the impact of DSE-OC on the concept drift in the imbalanced data stream?

RQ2: How �exible is DSE-OC to the dynamic imbalance ratio data?

RQ3: What is the predictive performance of DSE-OC in comparison to the state-of-the-

art methods?

Setup

Experiments were performed on various synthetic imbalanced data streams with the

presence of concept drifts. The data streams were generated using MOA [24] and stream-

learn [150] generators. Tab. 3.3 presents parameters such as a number of objects, chunk

size, imbalance ratio, noise level or drift type of generated synthetic data streams. This

gives a total of one hundred thousand objects per data stream. The samples had 10

attributes with �oating-point values described by labels from two classes � positive and

negative. The stream-learn framework was used to generate such diverse data. The

proposed method was compared with selected state-of-the-art algorithms:
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� REA � Recursive ensemble approach [51]

� KMC � K-means clustering undersampling ensemble [264]

� L++CDS � Learn++CDS [62]

� L++NIE � Learn++NIE [62]

� OUSE � Over and undersampling ensemble [89]

� MLPC � Multi-layer perceptron classi�er

The testing procedure was based on the test-then-train approach, where each chunk was

�rst used to test and then to learn the model. In this way, it is possible to test almost

the entire stream without the problem of duplicate samples. This method of evalua-

tion was provided by the stream learn [150] library. The results were evaluated using 5

selected classi�cation metrics � Gmeans, F1score, Precision, Recall, Specificity. Sta-

tistical analysis was performed on these scores. Pairwise rankings were generated using

Wilcoxon rank-sum tests. The project along with the experimental environment has been

implemented in Python programming language. The full implementation and results are

available on the Github repository4. Four selected base classi�ers implemented in the

scikit-learn [200] library were used:

� k-Nearest Neighbors (KNN )

� Support Vector Machine (SVM )

� Gaussian Naive Bayes (GNB)

� Decision Tree CART (DTC )

The performed experiments were designed to verify how the proposed method deals with

classifying imbalanced data streams with varying characteristics in comparison to selected

state-of-the-art methods. The results obtained for each data type will be presented below.

Experiment 1 - Dynamic imbalance

The �rst experiment focused on testing the method using imbalanced data streams with

dynamically changing imbalance ratio. In these streams, the class distribution evolves

incrementally. Each new data chunk has a di�erent imbalance ratio. Initially, the data

stream has 5% positive class objects. Then the number of positive samples increases with
4Repository link: https://github.com/w4k2/dse-oc

https://github.com/w4k2/dse-oc
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subsequent data chunks. In about half of the data stream, it reaches 95% of positive

class objects. At the same time, the opposite class has 5% of samples. In the following

iterations, this ratio returns to the original level, which is 5% of the positive class objects.

Firstly, it is worth paying close attention to the waveform graph in Fig. 4.37. The

results are shown as the values of F1score for particular data chunks. At �rst glance, it

can be seen that for the selected data stream, the proposed method achieves predictive

performance at the highest level compared to other methods. The OUSE method in

the 75th data chunk experiences some collapse which results in a very strong drop.

Apparently, this is a very negative response to the changing imbalance level.
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Figure 4.37: Gmeans score over the data chunks for synthetic data with sudden drift and
dynamic imbalance using GNB base classi�er

Then, the ranking results for these data are presented in Fig. 4.38. Here it is possible

to show how the DSE-OC method performs compared to other methods but on more

data streams. Looking at the rankings for the synthetic data streams with incremental

drift and dynamic imbalance, it can be seen that the proposed method obtains very good

results for the base classi�ers DTC and GNB. It outperforms the other methods in large

majority obtaining a statistically signi�cant advantage. For the other base classi�ers,

the Learn++CDS method dominates over the DSE-OC method. The other methods

depending on the metric looked at receive di�erent scores.

For the same data but with sudden drift, the situation is very similar (Fig. 4.39). It is

noticeable that slightly more draws occur. DSE-OC similarly obtains good results for

the GNB base classi�er and DTC. For the SVM classi�er, half of the compared methods

are statistically worse than DSE-OC. It can be said that Learn++CDS approach still
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Figure 4.38: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift and dynamic imbalance ratio. Dashed vertical line is a critical value with a signi�cance
level 0.05 (green � win, yellow � tie, red � loss)

performs best when it comes to SVM and KNN base classi�er. Also occasionally with

the DTC classi�er, it obtains better results in more data streams.

Experiment 2 - Static imbalance

In the next experiment, the data no longer has a dynamic data imbalance ratio. This

means that the imbalance is �xed once and remains unchanged until the end of the

stream. However, it is still a non-stationary data stream that has a drift concept that

occurs in the middle of the stream. This drift concept is once abrupt and once incre-

mental. This is also how the data was divided inside this experiment.

First, it will be described a Fig. 4.40 showing the waveform for a selected data stream

that has a static imbalance ratio and a sudden concept drift. In the presented graph it

can be seen how well DSE-OC performs compared to other tested methods. It is also

worth noting that after a drift occurs, the proposed method is able to recover after a

few data chunks. This is an essential capability that is useful especially when classifying

a data stream with sudden drifts. It is also apparent that not all methods are able to

rebuild their predrift performance, and that some methods such as OUSE completely

lose their classi�cation rate until nearly the very end of the stream.
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Figure 4.39: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift
and dynamic imbalance ratio. Dashed vertical line is a critical value with a signi�cance level
0.05 (green � win, yellow � tie, red � loss)
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Figure 4.40: Gmeans score over the data chunks for synthetic data with sudden drift using
GNB base classi�er

Looking at the aggregated results from the ranking tests (Fig. 4.41), the situation is

already slightly worse than for the data with dynamic imbalance. Similarly, the best
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Figure 4.41: Wilcoxon pair rank-sum tests for synthetic data streams with incremental concept
drift. Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow �
tie, red � loss)

results are obtained for DTC and GNB classi�ers, but not always with statistical signif-

icance. For the others base classi�ers, it performs worse. However, it obtains more often

an advantage for the REA or OUSE method. Looking at the REA results, one can see

that this method quite often classi�es the data as the minority class. This tendency is

strongly re�ected in the results, where Recall is at a very high level, but with the cost

of a low score in Precision, Specificity or in the aggregated metrics. Similar results are

achieved with sudden data streams (Fig. 4.42).

Experiment 3 - Real data

The last experiment is to validate the method using imbalanced real data streams. How-

ever, acquiring di�cult real data with such demanding characteristics (imbalance and

concept drifts) is not quite a simple task. Combining these two problems in a single

real-life dataset is rather a rarity. Creating semisynthetic data where an arti�cial imbal-

ance or concept drift injection is made will cause it to lose its original character and real

origin. Therefore, two selected datasets will be used [44]. Their characteristics can be

found in the Tab. 3.4.

The �rst of these "covtypeNorm-1-2vsAll" streams is featured by the occurrence of three

concept drifts (Figure ). These can be seen around the �rst 20 chunks, then around the
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Figure 4.42: Wilcoxon pair rank-sum tests for synthetic data streams with sudden concept drift.
Dashed vertical line is a critical value with a signi�cance level 0.05 (green � win, yellow � tie,
red � loss)

60th chunk of data and between the 100th and 120th chunk. From the waveform plot,

it can be seen that the proposed method solves this problem with not too bad results.

At the �rst drift, the DSE-OC classi�cation quality performs quite poorly. Then in

subsequent data chunks the prediction improves and reaches a level comparable to other

methods. The next drift causes a crucial drop. However, this is rebuilt with subsequent

iterations of the data stream. DSE-OC performs quite well compared to other methods,

achieving similar performance.

The results obtained by the proposed method on the second stream "poker-lsn-1-2vsAll"

at �rst glance seem to be much better compared to the other algorithms (Fig. 4.44). It is

very clear thatDSE-OC dominates for most of the data stream and only in some moments

its predictive performance falls below Learn++NIE. The worst result is obtained by the

REA method, which apparently cannot manage this data stream. It is also possible that

this stream is much more di�cult to classify. Compared to the previous one, because the

highest score is around 0.40, and for the stream "covtypeNorm" most of the methods at

some point get a score over 0.80. Better results indicate that the ability of DSE-OC to

classify di�cult data problems is signi�cantly better.
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Figure 4.43: F1score over the data chunks for "covtypeNorm-1-2vsAll" using GNB base clas-
si�er
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Figure 4.44: F1score over the data chunks for "poker-lsn-1-2vsAll" using GNB base classi�er

4.4.2 Lessons learned

To summarize the above analysis of the obtained results, answers to the research ques-

tions stated earlier will be formulated:
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RQ1: How �exible is DSE-OC to the dynamic imbalance ratio data?

The performed experiments on a large collection of data streams with dynamic imbalance

ratio supported by statistical analysis allows to conclude that the proposed method is

robust to this type of data. This seems to be proven by the fact that for the static imbal-

anced data, the quality is noticeably worse than for the dynamically imbalanced data.

Furthermore, compared to most state-of-the-art methods, the results are statistically

better for dynamically imbalanced streams. The performed tests lead to the conclusion

that the proposed method performs well on this type of data.

RQ2: What is the impact of DSE-OC on the concept drift in the imbalanced

data stream?

It is obvious that the concept drift has a very negative e�ect on the proposed method.

However, some important facts must be noted. DSE-OC has a very good ability to

recover from a drift. This is particularly evident in the concept drift plots, where one

can see how the proposed method can return to the predictive performance of the previous

concept. Unfortunately, it cannot be assumed that such a situation is fully repeatable

because it also depends on how challenging the new concept is. It is possible to conclude

that DSE-OC has a good potential to deal with concept drift.

RQ3: What is the predictive performance of DSE-OC in comparison to the

state-of-the-art methods?

Compared to other selected state-of-the-art methods, DSE-OC does not appear to be

the worst. Likewise, to say that it is the best method in every situation would be a

complete mistake. However, it is worth noting that in some situations � DTC or GNB

base classi�er and dynamic imbalance � the results are very satisfactory and better with

statistical signi�cance. The situation is similar for real origin data, where for two selected

streams once DSE-OC dominates and in the other stream it performs at a medium level.

Nevertheless, in answer to the stated research question, it must be clearly noted that the

method obtains good results compared to selected state-of-the-art methods.



Chapter 5

Conclusions and future research

directions

This dissertation focused on solving binary imbalanced data stream classi�cation prob-

lems with concept drift using hybrid sampling techniques with data accumulation and

one-class models. The conducted research and the obtained results provide an unambigu-

ous conclusion that the proposed approaches have considerable potential, and the results

obtained by the invented methods often equal or outperform the selected state-of-the-art

algorithms. The posed research hypothesis:

One may design ensemble methods that use data sampling techniques and one-

class classi�ers, which can outperform state-of-the-art ensemble algorithms

for imbalanced data streams classi�cation.

has been to be proved by the realized research objectives:

� Designing the one-class classi�ers ensemble method to solve the problem

of the imbalanced data stream classi�cation.

This objective was achieved by proposition of the imbalanced data streams classi-

�cation algorithm based on the one-class classi�er ensemble - OCEIS. The method

achieves results at a similar level to the compared methods, but it is worth notic-

ing that it performs best on real stream data, which is its important advantage.

Another advantage is that there is no tendency towards the excessive classi�cation

of objects from one of the classes. Such "stability" contributes signi�cantly to

improving the quality of classi�cation and obtaining satisfactory results.

Proposition of OCEIS was published in [132].

157
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� Extending the one-class classi�ers ensemble method by introducing the

improved weighted decision rule for better adaptation to imbalanced

data streams.

This objective was achieved by designing the novel method for the classi�cation of

imbalanced data streams - OCWE. It is the method based on one-class classi�cation

ensembles, extending the original idea from the OCEIS approach [132]. Introduced

modi�cations and extensive research resulted in some improvements and e�ective-

ness of classifying imbalanced data streams. Compared to other state-of-the-art

methods, OCWE is not the worst one and can obtain predictive performance at

a similar level to other methods. Under some conditions, OCWE achieves better

performance. This method is ideally suited for the classi�cation of strongly imbal-

anced data. The multiplicity of parameters provides a good adaptation ability to

the currently handled problem.

� Proposing the classi�er for imbalanced data streams with hybrid data

accumulation sampling technique.

This objective was achieved by developing method for imbalanced stream classi�-

cation. DSC performed favorably in comparison with other dedicated algorithms.

The evaluation of the predictive abilities of the techniques was conducted on the

basis of computer experiments. The algorithm utilizes memory bu�er in order to

propagate the instances from the previous data chunks that were chosen as the

representatives. Since the bu�er is �xed size, after it is full some instances must be

removed from it. In the current implementation, the oldest examples are deleted.

Proposition of DSC was published in [28]

� Upgrading the classi�er with data accumulation hybrid sampling to the

weighted bagging ensemble for imbalanced data stream classi�cation.

This objective was achieved by introducing the new method for imbalanced data

stream classi�cation. DSCB develops the idea of DSC algorithm with the solution

that is a kind of bagging. The proposed DSCB method is basically a set of clas-

si�ers. The main idea focuses on creating by weighted bagging new models using

data that have been accumulated from previous chunks. The proposed approach

obtains good results, which can be veri�ed by the performed comparative analysis

with state-of-the-art methods.

� Improving the imbalanced data stream classi�er with hybrid data accu-

mulation sampling to the ensemble method with concept drift detector.

This objective was achieved by proposition of the novel, e�ective classi�er ensem-

ble method couple with a preprocessing framework for a drifting imbalanced data
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stream classi�cation task. The main idea of DSE bases on the accumulation of

selected samples from previous chunks for later strengthening and balancing the

data. It allows for speci�c oversampling that does not require generating arti�cial

data. The research conducted on a wide range of real and computer-generated

data streams con�rmed the e�ectiveness of the proposed solution. It highlighted

its strengths in comparison with state-of-the-art methods and its high robustness

to the label noise.

� Designing the ensemble method for imbalanced data stream classi�cation

that combines hybrid data accumulation sampling and one-class classi-

�ers.

This objective was achieved by establishing the new method for imbalanced data

stream classi�cation - DSE-OC, which integrates two di�erent approaches. It is the

combination of best features from DSE and OCEIS propositions. In one method

there is at the same time an adaptation of binary problems for classi�cation using

one class SVM models with a method that accumulates data for semi-synthetic

oversampling of imbalanced data. The performed tests concluded that the pre-

sented method has a reasonably good ability to classify imbalanced data streams.

The evaluation including statistical comparative analysis showed that the method

repeatedly gains a better result with statistical signi�cance than selected state-of-

the-art methods.
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on Intelligent Data Engineering and Automated Learning, pages 340-352, Springer,

Cham, 2019.
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Under review:
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Computing (Sec. 4.2)
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Future works

Further research development on the methods and problems presented in the dissertation

can be extended to:

� The proposition of new drift detector that can be implemented in DSE and DSE-

OC methods. It is worthwhile to consider a drift detector technique that does not

rely on the use of predictive performance measures.
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� The automatic cluster number selection technique used in the OCEIS, OCWE,

and DSE-OC methods should be rebuilt in such a way that it does not perform a

brute force search in a limited area, but selects the best number of clusters using

intelligent algorithms.

� All proposed methods have the potential to extend research to multiclass problems.

Special attention should be paid to methods based on one-class classi�ers, which

could be very easily adapted to multiclass problems without using decomposition

techniques.

� From the perspective of di�cult data, which was the main topic of the dissertation,

an interesting direction of development would be to try to use the proposed methods

for problems that do not have full data labelling, employing additionally di�erent

active learning approaches.

� An essential part of future development will be to expand the pool of real imbal-

anced data streams. However, as mentioned earlier, there is currently not much

availability for this type of real origin data.
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