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Introduction

Artificial intelligence and machine learning systems became a part of every field of our
lives and are still gaining in popularity. It did not only take over the world of science, but
also revolutionised many branches of industry. The methods of artificial intelligence are
used, among others, in optimization problems, cybersecurity, healthcare, finance, law,
education and media [17, 133].

An important role in artificial intelligence play the algorithms which are able to learn
from the incoming, labelled data. After being fed with the data, they can make a deci-
sion or predict without being programmed to explicité. They form a field of artificial
intelligence called machine learning [72].

A machine learning algorithm designed to be trained on known data in order to as-
sign the unknown objects to a category is known as a classifier. Ensemble classifiers
(classifiers built from multiple models) are of a particular interest to researchers and data
scientists because of their classification quality [72].

Research problem

There are many possible approaches to classifier integration. There is not much research
done yet in the field of geometric approach. It is based on the model representa-
tion in a coordinate system, where the axes are the equivalents of numeric features.
The geometry–based reasoning can lead to interesting, unavailable for other types
of ensemble methods results. Several works show the advantages of using geometric
representation over other techniques, but they are not yet broadly used. One of the
advantages is the better classification quality measured with one of many units. Because
the research area is wide, the implications of using variations of the basic methods are
not fully understood, especially in the field of decision trees [23, 102].



Introduction

Research hypothesis. Utilization of trained decision trees’ decision boundaries al-
lows for building an ensemble of classifiers with a greater value of performance qual-
ity measure than that of the random forest or majority voting using the same set of
trained decision trees.

Motivation and contribution

Geometric approach in classifier integration is not broadly spread in the context of deci-
sion trees. The main goal of these studies is to broaden the knowledge about the creation
of decision tree ensembles by presenting novel algorithms and evaluating them in com-
parison to the existing and commonly used methods. In the experiments, majority voting
and random forest are taken as the references, because of their popularity and effective-
ness. Multiple classification quality measures are involved to account for the imbalanced
datasets. For reliability, several open–source benchmarking datasets from UCI [38] and
KEEL [1] platforms were used to evaluate the proposed methods.

Throughout the course of PhD studies, four different algorithms for classifier integra-
tion were proposed, implemented and evaluated using the datasets mentioned. Statistical
tests conducted to compare the proposed with the referential techniques indicate sig-
nificant improvement in several cases. Related works concerning SVM integration and
purely theoretical considerations around classifier integration were published.

Dissertation layout

This chapter presents the research problem and motivation. The outline of the author’s
contribution is given.

In the chapter 1 the basics of multiclassifier systems are described. Common classi-
fication and ensemble methods are introduced and special consideration is given to the
algorithms relevant to the presented works. The concept of local confidence is mentioned
and several ensemble classifier application examples are given.

The chapter 2 introduces the reader to the idea of geometric representation in the
context of classifier integration. The idea of decision boundary, Voronoi cells as well as
static and dynamic space division is described.

The datasets used in evaluation, technologies used to implement the algorithms and
perform data processing and results analysis are gathered in chapter 3.

The main content of the dissertation – presentation of the published results can be
found in chapter 4. It is divided into four sections, each concerning a different algorithm.

Jędrzej Biedrzycki: Integration of decision trees in geometric space 13
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The layout of all sections is similar – first the method’s basics are described, then the
results of the implementation evaluation are presented together with the statistical tests.

The chapter 5 concludes the dissertation. Additional experimental results can be found
in the appendices A and B. They complement the publications from the first two sections
with the results of the experiments involving a larger group of datasets and quality mea-
sures from the chapter 3.

This work was supported in part by the National Science Centre, Poland under the
grant no. 2017/25/B/ST6/01750.
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Chapter 1

Ensemble learning

Machine learning is an important part of artificial intelligence. It can be divided into
more specialized fields like supervised and unsupervised learning, reinforcement learn-
ing, deep learning, etc. This work concerns supervised learning, hence the following
sections will deliberate on the topics relevant to this area.

1.1. Classification

Classification is one of the methods of machine learning, more specifically – supervised
learning, where the correct labels of the objects are known a priori. The information
about the labels is used in the prediction process to assign the unknown objects to one
of the specified classes according to the similarity of this object to the members of each
class [116].

Classification is a task of assigning a label (class) to an object described by its at-
tributes. The label comes from a finite set of labels Ω = ω1, ω2, . . . , ωC . Each class
contains similar objects, whereas objects of distinct classes are dissimilar. A binary clas-
sification task is a problem involving only 2 classes. A classifier is a specific algorithm
performing the classification. It is denoted in the literature as Ψ(x) ∈ Ω.

The attributes (features) are usually real numbers. They can be continuous (for exam-
ple, blood pressure, voltage, probability), integers (height in centimeters, weight in kilo-
grams, age in years) or categorical (sex encoded as numbers or Boolean values: false as
0 and true as 1). Values of categorical features do not matter for the classification – the
choice is arbitrary and should be able to be changed without affecting the results. Hence,
the classifier can be represented as a function mapping the space of real–valued features
to a class that has the highest probability: RN → Ω or as a set of discriminant functions
{g1, g2, . . . , gK} assigning a probability for every label i:

gi : RN → R, i ∈ 1, 2, . . . , N



1.1. Classification

Ties are usually broken randomly, i.e. the one of the labels with the highest score is cho-
sen [73].

There is a plethora of possible classification algorithms performing differently de-
pending on the data. The right choice is often a hard, critical step in data analysis or its
processing [17, 69, 73].

Classification belongs to a larger group of supervised learning techniques. They are
based on training the classifier using labelled data (training dataset) and then predicting
the class of unknown data (testing dataset) using the obtained model. Unlike supervised
category, unsupervised learning operates on non–labelled data, for example, clustering
is a process of grouping similar objects into pairwise distinct groups (clusters) knowing
only the number of these groups beforehand [17, 73].

Yet another technique is reinforcement learning, where the algorithm operates on un-
labelled data and learning occurs using the information on how well does the algorithm
perform in the environment [69].

This section focuses on the methods essential for the dissertation. Other popular al-
gorithms like Support Vector Machine or Neural Network will be introduced shortly for
completeness.

1.1.1. Feature selection, dimensionality reduction

Every object has a set of features (attributes) which might be qualitative (ordinal, nom-
inal) or quantitative (discrete, real–valued). If the features of the objects compose
real–valued vectors x = [x1, x2, . . . , xN ], the RN space they generate is called a feature
space. The feature space is very often a subject of studies involving integration using ge-
ometrical functionals. Categorical data does not apply to this procedure because of the
irrelevance of the features’ values. Non–numeric values cannot be used with geometrical
transformations [73].

In some cases, the number of features is overwhelming, which leads to high computa-
tional costs and noise. Some features can be naturally correlated with each other, which
leads to unnecessary redundancy. In such a scenario, a procedure called feature selec-
tion is conducted to reduce the count of features taken into consideration [50]. One of
the most common techniques is based on analysis of variance (ANOVA) and selects the
most informative features (features with the greatest variance). Other techniques involve
genetic algorithms, iterative models, etc. [73].
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Another approach is to generate new features, not contained originally in the dataset.
Such an example is principal component analysis (PCA), which generates a new feature
space based on the eigenvectors of the original dataset. This technique, albeit old, is
widely used and is a basis for many variations that keep emerging [5, 116].

1.1.2. Decision tree

Decision tree belongs to the simplest and most intuitive machine learning algorithms.
It works by recursively partitioning the classification space [107]. Although it has been
proposed more than three decades ago [103], decision tree and many its derivatives are
very commonly used today [123]. Easy representation, low computational cost and high
quality make decision tree one of the most powerful and popular approaches in data
science [107].

The idea behind this technique is the partitioning of the input space into cuboid regions
with edges aligned with the axes. The name is derived from the method of obtaining such
a classifier. First, a feature that best divides the objects into two groups is chosen and the
division is made. This split is the root of the decision tree. As a result, two regions are
obtained. In the next step, another division is done in each of the regions. Generally, a
tree of depth b can produce up to 2b regions. The splits are done based on a metric differ-
ent among the possible implementations, for example, information gain (used in CART
implementation [18]) or gini impurity (used in ID3 [103] and C4.5 [104]). The procedure
is conducted recursively until a satisfactory division by means of the metrics mentioned
is obtained or a specific depth of the decision tree is reached [17, 108]. To classify an
object, the region it falls into is determined by starting at the root node of the tree and
following the path down to a specific leaf node according to the split criteria at each node.

The quality of the split is based on decision gain, which is the measure of how does
the information entropy change after the split. Information entropy for a region r created
by a split can be defined as follows:

Er = −
C∑
c=1

pc log2 pc

where pc is the probability of picking the class c, so ∑C
c=1 pc = 1. It can be noticed

that the entropy is lowest when for some c0, pc0 = 1 and pc = 0, when c 6= c0, then
Er = 0. When splitting a region, the entropies of regions are calculated before and after
the possible split and weighted by the number of objects in each branch:

E = −
R∑
r=1

|Dr|
|D|

C∑
c=1

pc log2 pc
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where r = 1, 2, . . . , R iterates over the leaves and Dr denotes the set of objects within
the region r. The goal is to minimize the sum of weighted impurities over every region
(maximize the information gain): IG = Ebefore − Eafter [103].

Other popular metric is gini impurity. The mechanism is the same as described earlier,
but instead of information entropy, gini imbalance is used instead:

GI =
C∑
c=1

pc(1− pc)

The lower the value of GI, the better the decision tree models the data [75]. The classifier
is trained until a stop condition is met or the tree has the maximum depth.

1.1.3. Nearest neighbor

In the non–parametric classification, prototypes are used. A prototype is a representative
element of a class. The classification process is based on the similarity of the object
under test to one or more prototypes. Usually, similarity is defined using a geometrical
definition, for example, the distance in a certain metric – the smaller the distance, the
better the classification [73].

Such an example is the k–nearest neighbor (kNN) algorithm, where the prototypes are
the training objects. Given a training dataset D with no identical objects with different
class labels and some positive integer k, the kNN classifier finds for each object k nearest
neighbors within D and assigns a label based on the plurality voting of the most similar
prototypes.

A special case is 1NN, where the label of a tested object is determined by the single
nearest training object. Graphically, the classification regions obtained by the 1NN rule
can be depicted as Voronoi diagrams, where each region is a set of objects closest to a
prototype x0:

V (x0) = {x, x ∈ RN , d(x, x0) = min
xi∈D

d(x, xi)}

where d(x1, x2) denotes the distance between the objects x1 and x2 in some metric. Eu-
clidean metric is the most intuitive, but others, like Manhattan or Chebyshev’s, can be
less costly.

Usually, it is essential to find a smaller set of prototypes. Firstly, with a smaller number
of prototypes, it is more efficient in terms of time and memory. It is important when deal-
ing with big data. Secondly, in the process of refining the training dataset, some noisy ob-
jects fromD could be filtered out, which could lead to the improvement of classification
quality. To reduce the number of prototypes, either a subset of D is selected (prototype
selection) or a set of new prototypes is created (prototype extraction). There are multiple
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possible methods for finding subsets other than randomly like Hart’s or Wilson’s meth-
ods. Similarly, there is a plethora of extraction methods. The most intuitive one utilizes
means (nearest centroid) to calculate one representative for every class. Other methods
use neural networks (competitive learning), gradient descent, bootstrapping, tabu search
and other heuristics [73].

1.1.4. Other supervised learning methods

There are many other techniques of supervised machine learning. Here, some popular
methods are mentioned for completeness.

1.1.4.1. Support vector machine

One of the most popular classifiers is support vector machine (SVM). It is a decision ma-
chine – it does not provide posterior probabilities, but rather labels for the tested objects.
In its most basic form – with a linear kernel, SVM solves the classification problem using
a model of the form:

y(x) = wTx− b

where x is the object under test, w is the normal vector to the hyperplane separating the
classes and b is an offset [53].

Intuitively, SVMmaximizes themargin between the two classes. Suppose there is a bi-
nary problem with labels encoded as yi ∈ {−1, 1}, the feature space is normalized, so
xi ∈ [0, 1]N . Let us also assume the classes are linearly separable, i.e., there exists a hy-
perplane that perfectly separates the training objects of the two classes. The hyperplane
of course has N − 1 dimensions. If such a hyperplane exists, then there exists an infi-
nite number of hyperplanes fulfilling this requirement. The notion of margin determines
which one of these hyperplanes is the solution to the problem. Since we want to max-
imize the distance between the classification boundary and the training objects, we can
write that wTxi − b ≥ 1 when yi = 1 and wTxi − b ≤ −1 when yi = −1. This can be
simplified as

(wTxi − b)yi ≥ 1 (1.1)

Now the problem is reduced to minimizing ||w|| subject to 1.1. That is because the
shortest distance between the classes and the margin occurs when wTxi − b = 1 for
yi = 1 and wTxi − b = −1 for yi = −1 and is equal to 1

||w|| , so the margin between
the classes is equal to 2

||w|| . This is called the hard margin. In some cases, this cannot be
done analytically and numeric methods are used instead [53].
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The situation where the objects of different classes are linearly separable is rare and
the definition of the hard margin above does not work in this case. To solve this problem,
the requirement in the equation 1.1 needs to be loosened and a penalty for wrong clas-
sification has to be introduced. Now the classification is parameterized with yet another
value – penalty. The problem can be reduced to minimizing the loss function defined as
follows:

1
|D|

|D|∑
i=1

max(0, 1− yi(wTxi − b)) + λ||w||2 (1.2)

where λ is the parameter deciding on the tradeoff between the width of the margin and the
number of misclassified objects. In the first term, hinge loss was introduced to penalize
the misclassified objects. It vanishes when the object is out of range of the margin:
max(0, 1 − yi(wTxi − b)) =⇒ yi(wTxi − b) ≥ 1. This means that even if the
object is properly classified, however, it is in the range of the margin, some penalty is
still applied [17, 53].

1.1.4.2. Artificial neural network

Artificial neural network (ANN) or shorter – neural network has its name derived from
the biological neural networks composing brains of animals. The most basic building
block of ANN are the artificial neurons – perceptrons inspired by the real neurons. They
can take an input like the synapses of neurons and process the sum of inputs using some
non–linear function to produce an output. The result of the processing can then be passed
as an input to another neuron. This way, the neurons are composed of layers, each one
responsible for a different kind of processing. Every neuron has a weight associated with
it. Typically, the weights are assigned randomly at first and updated with each training
iteration to increase or decrease the strength of the signal from the neurons. The first
layer is called an input layer, the last – an output layer and the intermediate ones – hidden
layers. ANN can have any number of hidden layers with any number of neurons in each
layer, the limiting factor is the complexity of the model.

The training of a neural network is an iterative process. Firstly, an architecture
of the ANN is designed (number of layers, number of neurons in each layer, connec-
tions between neurons, recursive flow and other additional elements). Then weights are
initialized (usually randomly or uniformly). Then the labelled training data is split into
batches and for each batch forward and backward propagation occurs.

Jędrzej Biedrzycki: Integration of decision trees in geometric space 20



1.1. Classification

During forward propagation, the output is calculated for every neuron, starting with
the input layer using the formula:

y = f

 I∑
i=1

xiwi + b

 (1.3)

where xi denotes the input from i-th neuron,wi –weight assigned to i-th neuron, b – a bias
and f is an activation function. Activation function is a non–linear function (otherwise
ANN would be a linear classifier or even a set of linear equations) turning an unbounded
input into a value of the unit range: f : RI → [0, 1]. One of the most commonly
used activation functions is the sigmoid function: σ(x) = ex

1+ex . Other useful functions
include:

• relu – returns the input only if it is not negative: f(x) = max(0, x), it discards all the
negative input,
• leaky relu – similar to relu, but allows negative values to "leak" after scaling by some
factor α ∈ (0, 1): f(x) = max(x, αx),
• softmax – turns the input into a result with the probability distribution, hence it is
usually used as the activation function of the output layer; the input is turned into an
exponential function and the outputs are normalized.

Other activation functions include exponential, hyperbolic tangent, selu, elu. Custom
functions can also be used. Using the output of the entire ANN and the encoded label,
the value of a loss function L is calculated.

Having the value of the loss function, an update of the weights of the ANN is con-
ducted in the process of backpropagation. Usually, the stochastic gradient descent (SGD)
algorithm is used to calculate the new values for weights:

wi ← wi − η
∂L

∂wi
(1.4)

where ∂L
∂wi

is the derivative of the loss function with respect to the weight wi and η is
the learning rate. The higher the learning rate, the more aggressively are the weights
updated. The same procedure applies to the bias values. There are more optimizers that
can be used:

• adagrad – an optimizer with specific learning rates; the adaptation relates to how fre-
quently is the parameter updated. The more updates a parameter receives, the smaller
the updates,
• adam – an efficient optimization based on stochastic gradient descent that uses adaptive
estimation of the first–order and second–order moments to accommodate to the sudden
changes.
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Other popular algorithms include adamax, adadelta, nadam, ftrl.
The algorithm 1 presents the process of training the ANN.

Algorithm 1: ANN training.
Input: Training data D, ANN architecture
Output: Trained ANN

1 Initialize the weights of the ANN.
2 while next batch Bi of D exists do
3 Calculate the output of the ANN in forward propagation for the batch Bi

using 1.3.
4 Update the weights of the ANN in backward propagation using 1.4.
5 end

Specialized types of ANN have emerged to solve specific tasks, for example:

• convolutional neural networks – composed of one or more convolutional layers, uses
tied weights and pooling layers, performs image filtering; superior in image and speech
recognition,
• recurrent neural networks – propagate data forward and backward – from later pro-
cessing stages to earlier stages, hence it has a memory; powerful in natural language
processing.

1.2. Combining classifiers

Each pattern is characterized by the feature vector x. The recognition algorithm Ψ maps
the feature space x to the set of class labels Ω according to the general formula:

Ψ(x) ∈ Ω. (1.5)

Let us assume that k ∈ {1, 2, ..., K} different classifiers Ψ1,Ψ2, . . . ,ΨK are available
to solve the classification task. In multiclassifier systems (MCS) these classifiers are
called base classifiers. In the binary classification task,K is often assumed to be an odd
number to avoid ties. Otherwise, the definition must be enhanced with random draws or
weighting. As a result of all the classifiers’ actions, theirK responses are obtained. Usu-
ally, all K base classifiers are applied to make the final decision of the MCS. However,
some methods select a subset of base classifiers from the ensemble, in particular cases
only a single one can be selected. The main goal of creating classifier ensembles is to
provide a better classification quality than of the base models [86].
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The combining method is applied to make the final decision of the ensemble of classi-
fiers (EoC) based on the outputs obtained. One of the most commonly used classification
algorithm–agnostic integration technique is the majority voting [73]. Other techniques
include average, minimum, maximum, median, oracle [68, 72, 89]. These abstract tech-
niques can easily be applied to any type of classification algorithms. Probably the most
widely used integration technique for decision trees as base models is the random for-
est [20].

1.2.1. Ensemble creation phases

In general, the procedure of creating the EoC can be divided into three major, consecutive
steps [73]:

1. Generation – a phase where the classifiers are trained and the pool of base classifiers
is created.

2. Selection – an optional phase where only several models from the committee are
taken to the next phase.

3. Integration – a process of combining the outputs of multiple classifiers to obtain
a single, integrated classification model. This step is optional if the selection phase
results in a single classification model.

In the generation phase, each base model can be trained using the injection of random-
ness into the training set or partitioning of the dataset [109]. In horizontal partitioning,
the original dataset is divided into several sets that include all features, while in vertical
partitioning each base model uses a subset of all features [29]. With this procedure, dif-
ferent base models are obtained. Another way to create diversity in the base models is to
train them with varied parameter values.

During the selection phase, the competence of each base classifier can be used [21].
The simplest way to do this is by measuring the classification quality for each model.
The worst classifiers can be then omitted in the integration phase and the best classifiers
can have a greater impact on the integration process. However, it was noticed that using
local competence provides better results compared to generalizing over the whole feature
space, since the models can perform differently depending on the classification area.
The problem of diversity of base classifiers occurs often. One of the methods to solve it
is by producing a pool of classifiers followed by the selection to choose the models that
are most diverse. Some of the techniques include:

• Using the diversity matrix of base classifiers to select the least related iteratively until
the desired number is reached [46].
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• Clustering the base models using the diversity matrix and picking one model from
every cluster. This procedure is based on the assumption that models from different
clusters make errors in diverse regions [45].
• Using kappa–error plots to remove the subset of the base classifiers [82].

The integration phase can be performed using different types of classifier output [73,
101]:

• a class label,
• a subset of labels ordered by plausibility,
• a vector of all possible labels with the corresponding support values.

One of the most used methods to integrate the class labels of base classifiers is the
majority vote rule (MV). In this method, each base model has the same impact on the
final decision of EoC. In the weighted majority voting rule, the integration phase includes
probability estimators or other factors of the basemodels to the final decision ofMCS [22,
81].

Simple non–trainable combiners can be used to integrate the output of the base clas-
sifiers in the form of vectors of probabilities of each class for a given tested object. Let
us denote such a vector for k-th classifier as [Ψk,1(x),Ψk,2(x), . . . ,Ψk,C(x)], where x is
the object under test. Then the support value of the integrated classifier can be written
as µk(x) = f(Ψk,1(x),Ψk,2(x), . . . ,Ψk,C(x)), where f is a combination function. The
combination function can be given, for example:

• average: µk(x) = 1
C

∑C
c=1 Ψk,c(x),

• maximum: µk(x) = max(Ψk,1(x),Ψk,2(x), . . . ,Ψk,C(x)),
• product: µk(x) = ∏C

c=1 Ψk,c(x).

Generalized means can be used in place of the combiners mentioned or even custom
functions.

Another approach to compose the vectors of support functions is to use trainable com-
biners. This family of techniques is based on an additional validation phase. An example
is the weighted mean, where the weights for base classifiers are derived from the error
estimations [73].

Decision templates are class–independent. The decision template combiner remem-
bers the most specific decision profile for every class, called the decision template, and
then compares it with the decision profile of the object under test using some similarity
measure. The closest match is returned as the label of the tested object [73].
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The selection phase can be omitted and then all models take part in the integration
process. Xu et. al developed several methods in this manner. Every classifier is trained
on the entire space, which means that the base models are competitive rather than com-
plementary. The results on the recognition of totally unconstrained handwritten numbers
indicate that the performance of individual classifiers could be improved significantly by
the combination approach proposed [134].

1.2.2. Majority voting

The majority voting is a combining method that works at the abstract level. This voting
method allows for counting the base classifiers’ outputs as a vote for a class and assigns
the input pattern to the class with the greatest number of votes. There are 3 common
consensus patterns:

• unanimity – all decision makers agree,
• a simple majority – the decision must receive more than 50% of the votes,
• plurality – the decision that receives most of the votes wins.

Plurality is the most widely spread approach in classification, because it avoids the sit-
uations when no decision can be made. It will be referred to by majority voting further
on.

The majority voting algorithm can be written formally as follows [5]:

ΨMV (x) = arg max
ω

K∑
k=1

I(Ψk(x), ω), (1.6)

where I(·) is the indicator function with the value 1 in the case of the correct clas-
sification of the object described by the feature vector x, i.e. when Ψk(x) = ω. In the
majority vote method, each of the individual classifiers takes an equal part in building
EoC unless they are removed in the process of classifier selection, the competence of the
models is irrelevant [5, 73].

The variation of MV technique is weighted majority voting (weighted MV). The clas-
sifiers are trained on the entire classification space similarly to the base method. Af-
terwards, their quality is evaluated using the validation subset and weights are calcu-
lated using the resulting quality measure values [55]. This procedure has proven itself to
yield better results in some cases than unweighted MV, where all classifiers are treated
equally [90].

1.2.3. Random forest

One of the most popular ensemble methods is a Random Forest (RF) introduced by
Breiman in 2001 [20, 110]. This technique has proven itself to be very powerful and
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many related algorithms appeared over the years. In the article [40], 179 different clas-
sification algorithms were evaluated using 121 datasets. The results show that random
forest outperforms the majority of the examined classifiers. It operates on a pool of base
classifiers – decision trees trained on different subsets of the training dataset. The object
under test is classified by every model and the results are gathered. Finally, majority
voting is applied to obtain the most common label.

The random forest is just an integrated classifier consisting of a set of tree–structured
classifiers, each tree grown with respect to some random vector. The differentiation be-
tween the basemodels can be introduced by randomly sampling from the feature set, from
the dataset, or just varying some of the parameters of the classifier. Any combination of
the sources of diversity mentioned will generate a random forest.

Similarly as in simple MV, weights can be introduced in RF. This topic was inves-
tigated by Akash et al. [4]. The weight calculated from the local confidence was as-
signed to each leaf of every decision tree in the pool of the random forest. 25 bench-
marking datasets were used to prove the improvement in classification quality over the
base method. Similar approach was examined by Gwetu et al. [51]. They introduced
two different techniques. The first one is an extension of the idea of the leaf node pu-
rity. The rate of purity convergence and the depth it occurs are taken into consideration.
The second one takes into account the confidence with which a tree makes both correct
and incorrect classifications in a comprehensive manner.

Extreme Gradient Boosting (XGB) is among the most widely spread algorithms, espe-
cially in machine learning competitions [33, 117, 121]. The algorithm works by training
subsequent decision trees, where consecutive models minimize the value of a loss func-
tion generated by its predecessor [44]. Another implementation of Gradient Boosting
Decision Tree aiming at performance, especially in the case of high dimensionality, is
LightGBM [64]. Without loss of performance in classification, the process of training
a model can be sped up up to 20 times.

1.3. Local confidence

Multiple works indicate that treating all classifiers trained on the entire classification
space equally does not necessarily yield the best results [31, 70]. This approach implies
training classifiers on data from some region or qualifying the model in this area. The
metainformation is used to compose the final classifier [124].

In the paper [6] two implementations of linear competence are investigated: coop-
erative and competitive. In the former, a weighted mean of the outputs of the local
perceptrons is calculated with the weight being a function of the distance between the
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input and the perceptron’s position. In the latter model, the cost function implies only
one of the local perceptrons to be the final output. The results show that the proposed
method generalizes much better than the referential multilayered perceptrons and uses
much less memory.

An interesting approach is presented in [36], where Ding et al. introduce local–global
classifier integration. They argue that the local classifier’s focus is to detect a subtle
presentation of the disease, leveraging information in radiology reports that roughly in-
dicates the location of the abnormalities. On the other hand, the global classifier rep-
resents the dominant spatial structure of the image. Finally, the two complementary
models are combined using weighted linear fusion, where the weight of each output is
computed from the confidence probabilities of the two classifiers. The method was eval-
uated on 3 datasets, which demonstrated the improvement of the classification quality of
the local–global fusion method over any base model.

The idea of local confidence was combined with a technique similar to that presented
by Gwetu et al. as mentioned in 1.2.3. Armano and Tamponi have developed a forest
of local trees [8]. The main concept is to train the base decision trees on the subsets of
the training dataset contained in a specific region. The base models become experts in
possibly overlapping regions that compose the entire classification space. Comparative
experimental results have shown that this method performs better than other referencial
ensemble classifiers.

Advantage over common methods like random forest, majority voting, AdaBoost and
diversity regularized ensemble pruning was observed by Cai in [28]. The procedure
consists of two steps. In the first one, base classifiers are trained and pruned. In the
second stage, the pruned models are weighted locally using a fusion method, which is
the nearest neighbor of the testing data points.

1.4. Applications

Classifier ensembles are used in almost every field of science and industry.

1.4.1. Finance

MCSs are broadly used in financial data analysis and provide aid in decision making.
They are effectively used by banks in property valuation, bankruptcy prediction and credit
scoring [3, 49, 77, 128] but also by manufacturers and sellers in demand forecasting –
the process of constructing models to predict the quantities of products that customers
will purchase [59].
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The other area of application is fraud detection. Multiple works on credit card fraud
recognition use real–life data of transactions from an international operation using credit
cards. A comparison of RF, logistic regression and SVM was conducted to determine
the best model in terms of classification quality. The best results were obtained with the
use of RF [11, 133].

Trade based stock market tries to manipulate the stock values by causing artificial traf-
fic. An interesting research track involves the usage of a peer–group analysis for trade
stock manipulation recognition, based on the detection of outstanding values whose dy-
namic behavior differs from that of previously similar stock values [67].

1.4.2. Image analysis

Ensembles of classifiers have found their use in image analysis and classification [71].
They are used in geography in landslide susceptibility and spatial prediction of land-
slides [95, 96]. Manufacturers employ ensembles to detect defects in their products [94].
Many applications in electronics are associated with image classification, for example,
defect detection in sensors and semiconductor manufacturing [112, 131]. Convolutional
networks are often enhanced with integration techniques to improve the classification
quality [63].

Many applications in image analysis are tightly related tomedical imaging. Ensembles
have been applied to the classification of fMRI [97] or structural MRI [125] data.

1.4.3. Medicine and biology

One of the best examples of classifier integration usages is in medical data processing.
They are used in diagnostics of headaches, diabetes, epileptic seizures, cancers [7, 10, 60,
114] and analysis of sensor data like detecting abnormal heart sounds [41, 100]. Medi-
cal imaging is very often enhanced with classification. This helps in finding anomalies
and differentiating between pathologies, for example, between similar cancer types [37]
but also on the molecular level with DNA and RNA defect detection [30, 56, 78]. They
can be helpful in chemical reactions prediction, for example protein–protein interactions
and elucidating themolecular mechanisms underlying protein [2, 76, 130]. Metagenomic
classifiers have the ability to identify taxa at the genus, species, strain levels, quantify the
relative abundances of taxa [83].

Computer Aided Diagnosis (CAD) is based on artificial intelligence. Heterogenous
set of classifiers composed of SVM, Bayesian networks and ANN was found to be ef-
fective in cardiovascular disease diagnosis [39, 133]. Many CAD systems designed to
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diagnose coronary diseases are based on the electrocardiogram. It helps in early predic-
tion of coronary artery disease [34].

1.4.4. Security

Multiple classifiers are employed in face and voice recognition [41]. Masquerade detec-
tion is another field where MCSs are used. Masquerade detection system determines
whether a given computer’s activity corresponds to a target user’s, thereby detecting
whether a masquerader has stolen the computer session of an owner [85, 111]. For any
given cyber–attack, multiple methods of detection have been developed [88, 122]. Re-
sults have been reported thatMCS outperform other approaches in active learning needed
to update the models and keep up with the dynamic changes in the malicious code ver-
sions [115].
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Chapter 2

Geometric approach to classifier
integration

Considerations about classifier integration using their geometrical representation have
been studied for over a decade now [102]. Based on operations in geometrical space
generated by real-valued features, this procedure has proven itself to be effective in com-
parison to others, commonly used integration techniques such as majority voting [23].
Geometric representation enables to leverage additional properties of data even in natural
language processing [58].

2.1. Decision boundary

Several classifier integration approaches based on the geometric representation of the
decision boundary between classes have emerged. It has been noticed that calculating
local confidence based on the distance between the object under test and the decision
boundary can lead to an improvement in classification performance. Trajdos and Burduk
described a method for linear model integration by deriving a scoring function from
the distance to the classification boundary [127]. The probability functions proposed
take into account not only the distance between the recognized object and the decision
boundary but also the prior probability of the class labels. The effectiveness of this
method is demonstrated on 70 open–source benchmarking datasets.

Another work shows two possibilities to calculate the scoring function from the dis-
tance to the classification boundary [126]. Together with 4 different combination meth-
ods, the algorithm was tested and statistical analysis was provided. The result proved
that the combination strategies based on simple average and trimmed average perform
the best in the context of geometrical combination.



2.2. Voronoi cells

Burduk and Kasprzak investigated the usage of geometric mean in thecalculation
of the decision boundaries of the integrated classifier [27]. The experiments were con-
ducted in two-dimensional feature space for binary classification tasks. 3 base classifiers
were integrated. According to Friedman ranked test, the proposed integration algorithm
is better than MV method.

In one of the previous papers, the author together with Burduk have shown signifi-
cant improvement in the classification by applying weighted mean and median functional
to the decision boundaries of the Support Vector Machine (SVM) classifiers [24]. The
paper can be thought of as a continuation of the studies from the previous one by intro-
ducing other functionals and different counts of base classifiers. Similarly, the results
of the experiments and statistical analysis are appealing.

Ksieniewicz and Burduk have enriched this idea by training on clustered data [71].
In their proposal, clustering is first conducted, so that the local expert models can be
trained. Afterwards, the weighted scoring function based on the distance to the classifi-
cation boundaries is calculated and utilized in the integration phase. The effectiveness
of this method is proven by extensive experiments on benchmarking data and statistical
analysis.

Distance from the decision boundary can be used to improve not only the integration
methods as presented in [26]. In this paper, amodification of a gentle AdaBoost technique
is presented, leveraging the distance of the objects from the decision boundary.

Since many powerful methods employing decision boundaries have emerged, effec-
tive techniques for extraction have been developed. Gong proposes an algorithm, which
calculates the boundary not by inspecting the classification mechanism, but rather the
output of the classifier [47]. The experimental results show that the boundary converges
fast.

2.2. Voronoi cells

A geometric approach to the classification problem by Voronoi cells utilization was re-
cently examined by Polianskii and Pokorny [98]. The most common approach utilizes
point–wise cell membership information by means of nearest neighbor lookup and does
not use other geometric information contained in Voronoi cells because the computation
of the Voronoi diagrams is computationally expensive. The authors consider Voronoi
cells instead of points as the basic objects being classified and propose a Monte Carlo
integration–based technique that calculates a weighted integral over the boundaries of the
Voronoi cells. Boundaries of the cells are associated with labels of the closest training
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objects. Then, integration over the boundaries regarding the associated labels is per-
formed to obtain the most probable class. This approach was tested using SVM, nearest
neighbor and random forest classifiers. The experiments indicate that the method pre-
sented performs similarly to Random Forests for large dataset sizes, but the classification
quality for smaller datasets increases significantly.

Nearest neighbor classifiers are proven to be efficient when testing which Voronoi
cell an object belongs to [12], because there is no need to calculate the geometry of ev-
ery Voronoi cell. An efficient search lookup was proposed by Kushilevitz et al. [74].
Originally, the algorithm was employed to improve the performance of computation
in NN classifiers. The algorithm employs a space–efficient data type that allows to ap-
proximate the nearest neighbor in time nearly quadratic regarding dimensionality. This
procedure was found to be especially efficient for imbalanced datasets [118].

However, the nearest neighbor algorithms are difficult in usage regarding specifying
the number of prototypes. Using too many leads to high computational complexity. Too
few prototypes can cause an oversimplified representation of the decision space, espe-
cially for datasets that are not linearly separable, have island–shaped decision space, etc.
Multiple solutions for this problem were proposed. One way to achieve this is to apply
Generalized Condensed Nearest Neighbor rule to obtain a set of prototypes [65]. Each
prototype is an object of the training dataset. The novelty of this method in comparison
to the previous ones is that instead of combining methods based on decision templates by
employing a single prototype for each class, a prototype selection method to obtain a set
of local decision prototypes is used. It represents the decision space better by avoiding
drawbacks caused by insufficient number of training samples, island-shaped decision
space distribution, and classes with highly overlapped decision spaces. To determine
the class of an object, its decision profile is computed and then compared with other
decision prototypes.

Another approach was proposed by Gou et al.: a kNN-based classifier inspired by the
local mean–based k–nearest neighbor and pseudo–nearest neighbor rules [48]. The first
step of the algorithm is to apply the kNN algorithm to obtain a fixed number of proto-
types for every class. Then the local mean vectors are calculated to transform the set
of prototypes to better represent the decision space distribution. The proposed algorithm
is very promising as the results of the experiments on 39 UCI datasets suggest.

Nguyen et al. proposed a method based on the distance from the metaclassifier [91].
A granular prototype for every class from the meta-data from observations from the train-
ing dataset is constructed with the same class label. Every such prototype can be repre-
sented as a vector of intervals, where the fuzziness reflects the uncertainty of the class
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prediction of the base models. The class label during tests is predicted by choosing the
class label of the granular prototype that is the closest to the object under test. Exper-
iments were conducted against AdaBoost, Random Forest, Decision Template, TSES,
Decision Tree C4.5, and L2LSVM using 26 datasets. Statistically significant improve-
ment of performance of the proposed method was shown.

2.3. Combining classifiers using space division

The idea of combining classifiers using a structure, so that the competence of each classi-
fier is not constant across the entire classification space, is not new. There are two major
types of approaches: static and dynamic space division. In the static division, the struc-
ture is known a priori and is unrelated to the input data, whereas in dynamic technique,
the data used determines how is the division conducted [54].

2.3.1. Static space division

The static division technique dates earlier than the dynamic one. Woods et al. notice that,
after training base classifiers, selecting the expert models from the region surrounding
the test object results in a better classification performance in comparison to the approach
where all the classifiers from the pool are treated equally. This technique was compared
with other methods using empirical studies using 5 datasets and the improvement was
confirmed [132].

The author of this dissertation has conducted experiments in the integration of SVM
classifiers. Binary classification tasks are considered. Geometrical representation
as a linear function of SVM models with linear kernel was used. The regions of compe-
tence are set before the training by splitting the classification space along one feature axis
into equisized regions. Then the models are trained and the median functional is applied
to the selected classifiers within each region. This means that the selection procedure
is conducted independently for every region. Since the selection might result in picking
different experts in each area, the integrated classifier, being median of the remaining
models, is not necessarily a linear classifier. This procedure has proven itself to improve
the classification results compared to the referential MV [25].

The topic was studied deeper by the author in [24]. Additional experiments were
conducted to compare the results obtained when using the weighted mean. Significant
improvements were observed in comparison to MV as indicated by statistical tests.
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2.3.2. Dynamic space division

Dynamic approach utilizes the input data to derive the structure used to ensemble the clas-
sification models. This can be done using a simple transformation of the output from
the training classifiers or by employing another learning model [61].

It has been noticed that the local quality for each of the base classifiers might differ.
The objective of classifier selection is to choose one or a subset of possible base classifiers
to perform classification over a region. If the division is known a priori, the selection is
called static. Otherwise, the models are tested for their quality for the new pattern [99].
Kim and Ko [66] favor local confidence over averaging the quality of classification over
the entire space. The method qualifies the local confidence of each model on the training
dataset and during testing the confidence is used to evaluate the outputs of base classifiers.
Combining the complementary characteristics of the basemodels is proven to outperform
individual classifiers and several other integration methods.

Garcia et al. present an ensemble classification technique using feature space parti-
tioning [80]. The main goal of the paper is to improve the classification quality of the
imbalanced datasets. A hybrid metaheuristic was utilized to optimize the parameters
related to the partitioning of the feature space.

An interesting approach is combining weighting with local confidence [120]. Their
target is to improve the quality of the Facial Expression Recognition. The authors
of the mentioned article notice that a classifier trained on a subset of training data should
be limited to the area it spans with an impact on the resulting classifier. A base model
should be assigned a higher weight in the regions near to their training space and a lower
weight in the regions far from them - a Dynamic Weight Majority Voting mechanism
for base classifiers is introduced. The experimentation results indicate that the proposed
approach has the highest generalization ability.

The problem of generalization of majority voting was studied in [52]. The authors are
using a probability estimate calculated as the percentage of properly classified validation
objects over geometric constraints. Separately are considered regions that are function-
ally independent. A significant improvement in the classification quality was observed
when using the proposed algorithm, although knowledge of the domain is needed to
provide a proper division. The authors are using a retinal image and classifying over
anatomic regions.

Another variation on weighted majority voting is the class–wise majority voting cov-
ered in [105], where a substantial number of ensemble strategies have been explored.
Weights are determined for each label separately over the entire validation dataset. This
can lead to the improvement of the performance of the resulting integrated classifier.
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2.4. Diversity between classifiers

Having different basemodels is crucial in ensemble techniques. Themost commonmeth-
ods of diversifying the base classifiers are bagging and boosting. Bagging is a method
for generating multiple versions of a model and combining them to get an aggregated
predictor. During the aggregation, an average over all the versions is taken when predict-
ing a numerical outcome. Multiple versions are created with bootstrapped replicas of the
training set [19]. On that basis more sophisticated methods for dataset partitioning have
emerged [9].

Boosting, albeit not theoretically constrained, imposes a learner improvement by iter-
ative training of weak learners and adding them to the final model. In this approach, the
training data is weighted. Upon adding, the data is reweighted to stress the importance
of the objects classified incorrectly, so that there is a higher probability that the next gen-
eration of the classifier will avoid previous mistakes [113]. The first successful boosting
algorithm was AdaBoost, for which the authors received a Gödel Prize in 2003 [42, 43].
The algorithm of AdaBoost is presented as the algorithm 2 [17]:

Algorithm 2: AdaBoost algorithm.
Input: Number of iterations J , object under test x
Output: Label of the tested object

1 Let D be the cardinality of the training dataset. Initialize the weights for every
object equally: w(1)

i = 1
D , i = 1, 2, . . . , D .

2 for j ← 1 to J do
3 Fit the classifier Ψj by minimizing the error function.

4 Evaluate the quantity εj =
∑D

i=1 w
(j)
i (1−I(Ψj(xi),ωi))∑D

i=1 w
(j)
i

where ωi is the true label of
an object described by the attribute vector xi.

5 Calculate the coefficient αj = ln 1−εj
εj

.
6 Update the weights: w(j+1)

i = w
(j)
i exp (αj(1− I(Ψj(xi), ωi)))

7 end
8 Make prediction using the final model ΨI = sign

(∑J
j=1 αjΨj(x)

)

The diversity between base classifiers can also be obtained by using vertical or hori-
zontal partitioning [107]. It has been proven that for datasets of extreme size (very large
or small), horizontal partitioning (splitting data into disjoint subsets) outperforms other
ensemble methods like bagging or boosting [32]. This provides great possibilities in par-
allelizing model learning in a distributed environment like p2p network [79].

Jędrzej Biedrzycki: Integration of decision trees in geometric space 35



Chapter 3

Experimental setup

This chapter presents details about the implementation of the algorithms and experi-
ments. It describes the technologies and datasets used, metrics calculated and statistical
tests conducted in order to evaluate the proposed methods.

3.1. Datasets

The experiments were conducted using the open–source datasets available on the plat-
forms UCI Machine Learning Repository [38] and KEEL Data Set Repository [1].
Datasets are presented in the table 3.1. The imbalance ratio Imb is shown to stress
the need to use metrics sensitive for highly imbalanced datasets (MCC). For all datasets,
the feature selection process [50, 106] was performed to indicate the two most informa-
tive features.

The imbalance ratio was given to stress the fact that accuracy is not a reliable metric
when comparing the performance of the presented algorithm and the reference. It is
calculated as the quotient of the count of objects with the major label (most frequent)
and the objects with minor label (least common): Imb = #major class objects

#minor class objects [93]. If the
value of Imb equals 1, then the dataset is balanced – all classes have the same number
of instances. The larger the value, the more imbalanced the dataset is. Some of the
datasets are highly imbalanced, because of the low imbalance ratio, so metrics other
than average accuracy should be considered when comparing the performance of the
classifiers. The reason is explained in the following example. Suppose Imb = 9 for a
binary classification problem. When a classifier labels all the test objects with the label
of the major class, its accuracy is ACC = 9

9+1 = 90%. In the parentheses, together
with the names, abbreviations of the datasets’ names were placed by which they will be
further referred to for brevity.



3.1. Datasets

Table 3.1: Description of datasets used in the experiments (name with abbreviation, number of instances,
number of features, imbalance ratio).

Dataset #inst #f Imb
Absenteeism at work (aa) 740 21 208.0

Appendicitis (ap) 106 7 4.0
Banana (ba) 5300 2 5.9

QSAR biodegradation (bi) 1055 41 2.0
Liver Disorders (BUPA) (bu) 345 6 1.4

Cryotherapy (c) 90 7 1.1
Banknote authentication (d) 1372 5 1.2

Ecoli (e) 336 7 71.5
Haberman’s Survival (h) 306 3 2.8

Ionosphere (io) 351 34 1.8
Iris plants (ir) 150 4 1.0
Magic (ma) 19020 10 1.0

Ultrasonic flowmeter diagnostics (me) 540 173 1.4
Phoneme (ph) 5404 5 2.4
Pima (pi) 768 8 1.9

Climate model simulation crashes (po) 540 18 10.7
Ring (r) 7400 20 1.0

Spambase (sb) 4597 57 1.5
Seismic-bumps (se) 2584 19 14.2

Texture (te) 5500 40 1.0
Thyroid (th) 7200 21 1.0
Titanic (ti) 2201 3 2.1

Twonorm (tw) 7400 20 1.0
Breast Cancer (Diagnostic) (wd) 569 30 1.7
Breast Cancer (Original) (wi) 699 9 1.9

Wine quality – red (wr) 1599 11 68.1
Wine quality – white (ww) 4898 11 439.6

Yeast (y) 1484 8 92.6
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3.2. Technologies

Decision tree implementation from Spark was utilised [87]. In the Spark’s implementa-
tion, the bottommost elements (leaves) are classified with a single label. The algorithm
performs a greedy, recursive partitioning in order to maximize the information gain in
every tree node. Gini impurity is used as the homogenity measure. Continuous feature
discretization is conducted using 32 bins. The library was written in Scala and provides
the application programming interface (API) in other popular languages like Python,
Java, R. In the experiments, the native Scala API was used. The statistical tests were
conducted in numpy [92], scipy [62] and pandas [84] using the native Python API. Fig-
ures were plotted using matplotlib [57]. The code used for the implementation of the
presented algorithms is hosted on github, the links will be shared together with each al-
gorithm description. The project for results analysis and conducting statistical tests is
also hosted on github: https://github.com/TAndronicus/classifier-integration-analysis.

3.3. Methodology

The experiments were conducted 10 times for every algorithm and hyperparameter setup.
The obtained results were then averaged to provide reproducible results. In all the pre-
sented algorithms, diverse versions were evaluated together with referential ensemble
techniques: MV and RF.

Let us denote the cells of confusion matrix for a binary classification problem as TP
– true positive, FP – false positive, FN – false negative, TN – true negative. Generally,
for multiclass classification, a confusion matrix can be derived for every class ωc, where
c ∈ {1, 2, . . . , C}: TPc – true positive, FPc – false positive, FNc – false negative, TNc –
true negative. To compare the proposed ensembles with the existing ones, several metrics
were used:

• Accuracy (ACC) – the ratio of properly classified objects, ACC = TP+TN
TP+FP+FN+TN ,

• Matthews Correlation Coefficient (MCC) – more balanced measure than ACC,
MCC = TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FP )
,

• Precision – class agreement with positive labels, Precision = TP
TP+FP ,

• Recall – effectiveness to recognize positive labels, Recall = TP
TP+FN ,

• F− score – harmonic mean of precision and recall, F− score = 2TP
2TP+FP+FN ,

• Precisionµ – microaveraged precision, Precisionµ =
∑C

c=1 TPc∑C

c=1 TPc+FPc
,

• Recallµ – microaveraged recall, Recallµ =
∑C

c=1 TPc∑C

c=1 TPc+FNc
,

• F− scoreµ – microaveraged F-score, F− scoreµ = 2 PrecisionµRecallµ
Precisionµ+Recallµ ,
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• PrecisionM – macroaveraged precision, PrecisionM = 1
C

∑C
c=1

TPc
TPc+FPc ,

• RecallM – macroaveraged recall, RecallM = 1
C

∑C
c=1

TPc
TPc+FNc ,

• F− scoreM – macroaveraged F-score, F− scoreM = 2 PrecisionMRecallM
PrecisionM+RecallM .

When the experiments are conducted onmulticlass datasets, as the classification evalu-
ation metrics micro– and macro–average precision, recall and F-score are used. F-score
is the harmonic mean of precision and recall. For this reason F-score takes both false
positives and false negatives into account. Additionally, the overall accuracy is always
presented. The F-score was computed alongside the accuracy because of the high im-
balance of the multiple datasets used, as it was indicated in the section 3.1 for MCC.
The F-score describes the quality of a classifier much better than the overall accuracy for
the datasets with a high imbalance ratio and gives a better performance measure of the
incorrectly classified cases than the overall accuracy. The accuracy can be in this case
artificially high. The metrics are calculated as defined in [119].

Statistical tests were performed to compare the results obtained for the proposed
algorithms and references. According to Demsar et al. [35] the most reliable are
non–parametric and post–hoc tests. In the presented algorithms, Friedman rank tests
were conducted. Based on the ranks, post–hoc tests were pursued: Bonferroni–Dunn
or Nemenyi, depending on the number of referential methods. The critical values were
calculated for the confidence level of α = 0.1.
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Chapter 4

Proposed algorithms

This section presents the work done in the area of decision tree integration in geometric
space. Every section treats about a different algorithm that was published or is in the
process of publishing. The results in the first two papers do not cover all of the datasets
presented in section 3.1. Extensive experiments on all possible datasets were conducted
for completeness.

4.1. Integration of decision trees using distance to the
centroid and to the decision boundary

The paper [15], concerning integration of decision trees, introduced a novel method,
where the distance of the object from the decision boundary and the center of mass
of the objects belonging to one class are used simultaneously in order to determine
the scoring function. This means that the weights assigned to the class label by each clas-
sifier depend on the distance of the classified object from the centroid and from the deci-
sion boundary. The proposed technique was evaluated using open–source benchmarking
datasets. The results indicated an improvement in the classification quality when com-
pared with the referential ensembling algorithm – random forest.

When considering a two–dimensional space problem, there is a clear–cut representa-
tion of the decision tree as a finite set of rectangular, disjunctive areas with a specified
label building up the complete decision space. In a multidimensional case, the areas are
hypercubes. The article describes a method for obtaining an ensemble classifier inspired
by the nearest centroid algorithm and the geometrical representation described.



4.1. Integration of decision trees using distance to the centroid and to the decision boundary

4.1.1. Proposed method

The proposed algorithm introduces weighting to the majority voting, resulting in a clas-
sifier that assigns the weights to the classes for every tested object. The distances from
the classification boundary and from the centroids are used to compute the final weight
value. The goal of the article was to compare the described integration algorithm with
the referential ensembling method (random forest). Two well–known quality measures
(MCC and ACC) were calculated and used in the statistical tests. Additionally, the influ-
ence of the mentioned distances on the performance of the classification was studied.

As mentioned earlier, two values are calculated during the testing phase for every ob-
ject: the distance from the centroid and the distance from the nearest decision boundary.
The distance from the decision boundary is defined as the minimal distance from an ob-
ject to the point that would be assigned a different label by the decision tree. This can be
formalized using the following equation:

distB(x0,Ψ) = min
x∈X;Ψ(x)6=Ψ(x0)

(dist(x;x0)),

where X denotes the classification space, i.e. the cube generated by the possible linear
combinations of vectors in the feature space. The formula is more general in the sense
that it works for any classification algorithm. When the representation of the trained
model is difficult to describe in terms of analytical functions, the decision space must be
scanned in search for the solution. The case of decision tree is straightforward – for any
given x0, the closest point along the feature axes needs to be found.

By the distance from the centroid, the centroid labelled with the same class as the ob-
ject is meant. The coordinates of the centroids for all labels are computed using the train-
ing subset.

The following equation formalizes the given distance:

f(dist, β, γ) = exp(−γ(dist− β)2). (4.1)

The first step is the feature normalization. This reduces the bias associated with
the calculated distances. In the paper, the β parameter (the mapping function 4.1) for
the distance from the centroid of the class label – ω is fixed as βω = 0 and for the dis-
tance from the decision boundary as βB = 0.5. With that parameter set, the mapping
function reaches its maximum at 0 and minimum at 1 when mapping the distance from
the centroid and maximum at 0.5 and minima at 0 and 1 when mapping the distance
from the decision boundary. This implies, intuitively, that the objects too far or too close
to the decision boundary are scored with the smaller weight and, conversely, the closer
the object to the centroid, the larger the weight associated with it. The γ parameter com-
binations for the respective cases (γω and γB) are depicted in table 4.1. The combination
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γB = 20 and γω = 5 is the base case, where the value of the function for the range of
[0, 1] varies between 0.0067 and 1. This way the minimal value is less than 1%. Addi-
tionally, cases where γB = γω were studied. The α parameter is the share of the distance
from the decision boundary in weight computation. In the experiments, α is the variable.
The mapping functions are visualized in the figure 4.1.1.

Table 4.1: Combinations of γ parameter of the mapping function (4.1) examined.

γB γω

20 5
5 5
20 20
10 10

Figure 4.1: Mapping function for boundary distance (B) and mass center distance (ω) for parameter set:
βB = 0.5, βω = 0, γB = 20, γω = 5.

The weighting function is a linear combination of the mapping function for the dis-
tances from the centroid and from the decision boundary:

w = αf(distB, βB, γB) + (1− α)f(distω, βω, γω), (4.2)

where distB denotes the distance from the decision boundary and distω – from the cen-
troid, 0 ≤ α ≤ 1.
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Formally, the proposed algorithm for classifier integration can be expressed as:

Ψα(x, βB, βω, γB, γω) =

arg max
ωc

K∑
k=1

I(Ψk(x), ωc)(αf(distB(x), βB, γB) + (1− α)f(distω, βω, γω)) (4.3)

Algorithm 3: Classification algorithm based on distance from decision bound-
ary and centroid.
Input: K – The number of base classifiers (Ψ1,Ψ2, . . . ,ΨK), α - share

of the distance from decision boundary in the weight computation
(0 ≤ α ≤ 1), x - classified object

Output: ωc - The label prediction
1 Divide the dataset into K + 1 subsets (K for training base models and 1

for testing).
2 Using training subsets, calculate the centroids for each label using.
3 Train the base classifiers Ψ1,Ψ2, . . . ,ΨK .
4 Determine the label indicated by the decision tree for the classified object, then

calculate the weight for it using the equation 4.2.
5 Sum the weights for the separate labels over all base classifiers.
6 Using the formula 4.3, assign to the object x the label with the largest sum

of weights.

4.1.2. Results and analysis

In the experiments, the feature selection process was performed to reduce the number
of features to the two most informative. Dimensionality reduction followed to avoid
unnecessary complexity. Afterwards, decision trees as base classifiers were trained and
a pool of classifiers consisting of five models was created.

The main goal of the experiments was to compare the quality of the classification
of the proposed method of decision tree ensembling using the geometric representation
with referrential techniques: majority voting (ΨMV ) and random forest (ΨRF ). The vari-
able parameter α is written as a subscript in the classifier notation: Ψα. Four different
values of α were studied: α ∈ {0, 0.3, 0.7, 1}. Two classification measures: Matthews
correlation coefficient (MCC) and accuracy (ACC) were used to conduct statistical com-
parison between the algorithms. Tables 4.2, 4.4, 4.6, 4.8 present the results of ACC and
tables 4.3, 4.5, 4.7, 4.9 – of MCC. Along with the quality measures, the average ranks
obtained in the nonparametric Friedman rank tests are presented in the last column of
each table.
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Table 4.2: ACC values and Friedman rank of majority voting, random forest and integrated classifiers for
γB = 20 and γω = 5.

bi bu c d h io me po se wd wi rank
ΨMV 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 4.23
ΨRF 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 2.59
Ψ0.0 0.715 0.658 0.742 0.915 0.717 0.736 0.777 0.915 0.938 0.906 0.955 2.73
Ψ0.3 0.722 0.497 0.761 0.907 0.691 0.789 0.762 0.914 0.935 0.889 0.937 3.68
Ψ0.7 0.726 0.528 0.769 0.907 0.725 0.730 0.763 0.902 0.926 0.907 0.953 3.68
Ψ1.0 0.692 0.582 0.758 0.921 0.742 0.746 0.713 0.913 0.927 0.888 0.929 4.09

Table 4.3: MCC values and Friedman rank of majority voting, random forest and integrated classifiers
for γB = 20 and γω = 5.

bi bu c d h io me po se wd wi rank
ΨMV 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 3.82
ΨRF 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.59
Ψ0.0 0.435 0.304 0.514 0.828 0.171 0.417 0.484 0.000 0.000 0.801 0.896 2.73
Ψ0.3 0.377 -0.026 0.605 0.815 0.072 0.460 0.501 0.000 -0.003 0.773 0.859 4.09
Ψ0.7 0.405 0.059 0.589 0.817 0.023 0.491 0.524 0.000 0.000 0.804 0.890 3.18
Ψ1.0 0.236 -0.067 0.505 0.843 0.072 0.445 0.437 0.000 0.000 0.767 0.841 4.59

Table 4.4: ACC values and Friedman rank of majority voting, random forest and integrated classifiers for
γB = 5 and γω = 5.

bi bu c d h io me po se wd wi rank
ΨMV 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 4.41
ΨRF 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 3.05
Ψ0.0 0.729 0.624 0.806 0.924 0.637 0.792 0.701 0.917 0.930 0.918 0.961 2.55
Ψ0.3 0.685 0.593 0.800 0.910 0.723 0.769 0.624 0.899 0.933 0.901 0.942 4.41
Ψ0.7 0.718 0.608 0.680 0.915 0.756 0.779 0.750 0.931 0.933 0.906 0.954 2.86
Ψ1.0 0.737 0.494 0.738 0.917 0.768 0.710 0.683 0.926 0.935 0.864 0.928 3.73

Table 4.5: MCC values and Friedman rank of majority voting, random forest and integrated classifiers
for γB = 5 and γω = 5.

bi bu c d h io me po se wd wi rank
ΨMV 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 4.09
ΨRF 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.50
Ψ0.0 0.412 0.175 0.614 0.846 0.027 0.500 0.387 0.000 -0.007 0.827 0.917 2.64
Ψ0.3 0.321 0.145 0.587 0.823 0.093 0.496 0.216 0.000 -0.005 0.790 0.873 4.27
Ψ0.7 0.403 0.113 0.323 0.830 0.193 0.490 0.348 0.000 -0.003 0.793 0.899 3.59
Ψ1.0 0.449 -0.010 0.477 0.838 0.126 0.428 0.378 0.000 0.000 0.710 0.831 3.91
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Table 4.6: ACC values and Friedman rank of majority voting, random forest and integrated classifiers for
γB = 20 and γω = 20.

bi bu c d h io me po se wd wi rank
ΨMV 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 3.77
ΨRF 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 2.68
Ψ0.0 0.705 0.623 0.746 0.907 0.712 0.779 0.732 0.892 0.941 0.907 0.956 3.00
Ψ0.3 0.711 0.571 0.881 0.907 0.694 0.794 0.671 0.878 0.929 0.899 0.959 3.77
Ψ0.7 0.698 0.520 0.721 0.903 0.712 0.771 0.633 0.914 0.934 0.893 0.928 4.86
Ψ1.0 0.702 0.573 0.740 0.911 0.735 0.787 0.747 0.903 0.937 0.914 0.931 2.91

Table 4.7: MCC values and Friedman rank of majority voting, random forest and integrated classifiers
for γB = 20 and γω = 20.

bi bu c d h io me po se wd wi rank
ΨMV 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 3.55
ΨRF 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.55
Ψ0.0 0.402 0.173 0.482 0.816 0.205 0.490 0.454 -0.027 0.033 0.801 0.897 3.00
Ψ0.3 0.408 0.081 0.768 0.811 0.111 0.530 0.367 0.000 -0.003 0.790 0.910 3.09
Ψ0.7 0.327 -0.039 0.448 0.804 0.083 0.460 0.282 0.000 0.000 0.777 0.841 5.09
Ψ1.0 0.203 0.060 0.470 0.822 0.030 0.518 0.467 0.000 0.000 0.817 0.848 3.73

Table 4.8: ACC values and Friedman rank of majority voting, random forest and integrated classifiers for
γB = 10 and γω = 10.

bi bu c d h io me po se wd wi rank
ΨMV 0.720 0.568 0.716 0.912 0.707 0.759 0.753 0.910 0.931 0.900 0.935 3.86
ΨRF 0.724 0.546 0.840 0.919 0.746 0.775 0.727 0.911 0.931 0.909 0.944 2.55
Ψ0.0 0.746 0.632 0.745 0.915 0.730 0.752 0.779 0.907 0.931 0.904 0.925 3.14
Ψ0.3 0.742 0.608 0.768 0.903 0.707 0.758 0.606 0.917 0.942 0.919 0.932 3.14
Ψ0.7 0.734 0.528 0.848 0.914 0.693 0.781 0.643 0.889 0.928 0.895 0.925 4.32
Ψ1.0 0.710 0.530 0.594 0.911 0.715 0.769 0.718 0.914 0.936 0.915 0.924 4.00

Table 4.9: MCC values and Friedman rank of majority voting, random forest and integrated classifiers
for γB = 10 and γω = 10.

bi bu c d h io me po se wd wi rank
ΨMV 0.406 0.095 0.426 0.826 0.032 0.465 0.488 -0.002 0.022 0.791 0.853 3.86
ΨRF 0.415 0.078 0.691 0.836 0.169 0.512 0.468 0.000 -0.003 0.810 0.876 2.73
Ψ0.0 0.434 0.310 0.508 0.829 0.231 0.497 0.592 -0.024 -0.004 0.797 0.825 3.59
Ψ0.3 0.464 0.193 0.574 0.804 0.032 0.503 0.209 0.000 -0.003 0.827 0.845 3.41
Ψ0.7 0.435 0.054 0.705 0.829 -0.017 0.544 0.294 0.000 0.000 0.785 0.839 4.59
Ψ1.0 0.263 0.059 0.358 0.821 0.074 0.515 0.416 0.000 0.000 0.816 0.841 3.82
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Bonferroni–Dunn tests were performed to check whether the examined algorithms
behave differently. For the significance level of 0.1 the critical value of the difference
between Friedman ranks for the test equals 1.44 (5 algorithms are compared with the
reference method, 11 data sets are used). The figures 4.2 – 4.9 present the results of
the statistical analysis. In the experiments, the integration algorithm outperforms the
random forest only in the case of ACC for α ∈ 0, 0.7 and γB = γω = 5 although the
changes are not significant. Integrated classifier created with the parameter α = 0 yields
significantly better results than the majority voting for the parameter pairs: γB = γω = 5
(both ACC and MCC) and γB = 20, γω = 5 (ACC). Additionally, when γB = γω = 5,
ACC of the integrated classifier is significantly better for α = 0.7 than ACC of majority
voting.

Figure 4.2: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for ACC measure, γB = 20 and γω = 5.

Figure 4.3: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for MCC measure, γB = 20 and γω = 5.
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Figure 4.4: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for ACC measure, γB = 5 and γω = 5.

Figure 4.5: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for MCC measure, γB = 5 and γω = 5.

Figure 4.6: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for ACC measure, γB = 20 and γω = 20.
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Figure 4.7: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for MCC measure, γB = 20 and γω = 20.

Figure 4.8: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for ACC measure, γB = 10 and γω = 10.

Figure 4.9: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest for MCC measure, γB = 10 and γω = 10.
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4.1.3. Extended experiments

The published content presented is only a subset of the obtained results. Additionally,
only a part of the datasets from the chapter 3 was used. The experiments were repeated
for a greater number of datasets. This time the confusion matrices were saved to allow
for computing more quality measures (see chapter 3). The obtained results can be found
in the appendix A.

4.1.4. Conclusions

In the presented article, a novel approach to decision tree ensembling in the geometric
space was proposed. The algorithm’s definition is less restrictive than the majority voting
regarding the base classifier count – no matter whether it is odd or even, the algorithm
works without the need to resolve the ties. Additionally, the impact of the distance from
the decision boundary and from the centroid defined by the center of mass was examined.
Statistical tests were performed based on two quality measures: ACC and MCC.

The statistical analysis of the results containing two classification quality mea-
sures was conducted using 11 open–source datasets. Bonferroni–Dunn tests
showed that, in most cases, the proposed algorithm for α = 0 performs
better than MV. The source code used for the experiments can be found
on github: https://github.com/TAndronicus/dtree-merge-scoring.
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4.2. Weighted Scoring in Geometric Space for Decision Tree
Ensemble

In the paper [16] an algorithm was proposed that uses:

• Feature space division into disjoint subspaces.
• Horizontal partitioning of the dataset for training base models, in the proposal decision
trees are used.
• The size and the location of the decision regions defined by the base classifiers
as well as the location of the subspace’s centroid are used to compute the weights
further utilized in the integration phase.

The integration process in the proposed algorithm is based on the geometric represen-
tation. The label is determined for every region based on the mutual location between
the region and the classification subspace.

The objectives of the work are:

• A proposal of a new MCS algorithm that uses mutual location of the decision regions
and the subspaces’ centroids in the integration phase.
• Proving the hypothesis that the proposed algorithm is equivalent to majority voting for
infinite granularity of space division.
• Experiments and statistical analysis for the evaluation of the proposed method.

4.2.1. Proposed method

Decision tree divides the feature space into a set of cubes, each associated with a single
class. In the article, a two-dimensional classification problem is considered. The decision
boundaries can be represented as rectangles. The proposed algorithm ensemblesmultiple
decision trees using this representation. Further on, these atomic areas will be referred
to as classification regions.

The dataset (including training and testing subsets) generates a N–dimensional space.
The static division is introduced and the space is split into disjunctive subsets. Those cu-
bical sets (further referred to as subspaces) are of the same shape as the original dataset,
since the cube is divided into the same number of parts along every dimension (feature
axis) – they are scaled. Subspaces and classification regions are depicted in the fig-
ure 4.10. Three granularity degrees were studied: the edges were divided into 20, 40
and 60 segments. A middle point is determined for every region.
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(a) Subspaces.

(b) Classification regions.

Figure 4.10: Graphical explanation of subspace and classification region.

The label of the classification region spanning over the midpoint of the specific sub-
space is selected as the label of the entire subspace. The weight for every candidate
is calculated based on the function mapping the area (volume) of the classification re-
gion to a value in the range of [0, 1]. In the last step, the intermediate results are aggre-
gated classification region–wise by summing their weights across the base models. Then
the class with the largest aggregated weight is assigned to the subspace in the final model.
Since the resulting classifier assigns labels to every rectangular region of competence,
it is also a decision tree. The resulting classifier is also a decision tree, because it assigns
a single label to every rectangular region of competence.
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From the other perspective, the classification spaces are equal and the labels are de-
termined by their middle points – the classification regions are therefore Voronoi cells.
Hence, the resulting classifier can be considered as 1-NN. In this representation, the
training objects of the NN classifier are located in the center points of every subspace.
This simplifies the reasoning about the resulting model and eases its serialization. Note
that the presented technique can be used as a cardinality reduction technique as an in-
termediate step of any machine learning algorithm. The centers of the subspaces can
be passed as an input to another model. The resolution (or resulting cardinality) can be
customized as any number of the form resn, where res ∈ N+ and n denotes the desired
dimensionality.

For the notation consistency, the model mapping the classification region (all objects
that fall in the region) to the label will be denoted as Υ(A) ≡ ∀x∈AΨ(x). This assumes
that all the objects falling in the classification region A must be classified with the same
label by the classifier Ψ, like the Voronoi cells in decision trees or nearest neighbor clas-
sifiers.

LetRk
l be the l-th classification region of k-th classifier having some labelωi = Υ(Rk

l )
(ωi ∈ Ω), Sm – m-th subspace and x – the object under test. Let us also denote by
M the number of partitions of the classification space into subspaces along one dimen-
sion. This means thatMN subspaces will be generated for the N -dimensional problem.
It is important to notice that the k-th decision tree can be completely represented using
Rk. If we define δR(Rk

l , Sm) as 1 if the midpoint of Sm lies within Rk
l and 0 otherwise

and δS(Sm, x) as 1 if Sm spans x and 0 otherwise, i.e.

δS(Sm, x) =
 1 if x ∈ Sm

0 if x /∈ Sm

δR(Rk
l , Sm) =

 1 ifmid(Sj) ∈ Rk
l

0 ifmid(Sj) /∈ Rk
l

and fm(Rk
l ) as a weighting function, then the proposed algorithm can be written formally

as:

ΨT (x) = arg max
ωi

K∑
k=1

Mn∑
m=1

|Rk|∑
l=1

δS(Sm, x)δR(Rk
l , Sm)fωi(Rk

l ). (4.4)

Letmid(A) be themiddle point of the cubic regionA, the equation 4.4 can be rewritten
as:

ΨT (x) = arg max
ωi

K∑
k=1

Mn∑
m=1

|Rk|∑
l=1

δ(x, Sm, Rk
l )fωi(Rk

l ), (4.5)

where δ(x, Sm, Rk
l ) = δS(Sm, x)δS(Rk

l ,mid(Sm)).
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Figure 4.11: Label determination. The marked midpoint lies within a classification region labeled with
ω0, thus every object in this subspace is assigned label ω0 with weight defined by the function 4.6.

The effective computational complexity is much lower as the majority of the
terms of the equation 4.5 are omitted – in most cases either δS(Sm, x) = 0
or δS(Rk

l ,mid(Sm)) = 0 holds.
The proportional and inversely proportional weighting functions were studied exper-

imentally: fvol(A) = volume(A), finv(A) = 1
volume(A) .

Another important observation is that fωi depends on the label ωi and because it as-
signs the weight to the label, it can be written more compactly as:

fωi(Rk
l ) = fwt(Rk

l )I(Υk(Rk
l ), ωi), (4.6)

where I(·) is the indicator function from the equation 1.6 and wt ∈ {vol, inv}.
The examplary process of weight calculation is shown in the figure 4.11. Since the

middle point of every subspace lies within the classification region classified with some
label ω0, hence the label assigned to the region is ω0. This procedure resolves the labels
and the weights are calculated using the formula 4.6.

Jędrzej Biedrzycki: Integration of decision trees in geometric space 53



4.2. Weighted Scoring in Geometric Space for Decision Tree Ensemble

Algorithm 4: Algorithm to obtain the integrated decision tree using cubic sub-
spaces.
Input: K – The number of the base models (Ψ1,Ψ2, . . . ,ΨK),M - the amount

of splits along every feature axis, N - dimensionality of the problem
Output: Integrated decision tree ΨT

1 Normalize the dataset.
2 Choose the features that are the most informative.
3 Partition the dataset into K + 1 disjoint subsets (K for training base classifiers

and 1 for testing).
4 Train the base classifiers Ψ1,Ψ2, . . . ,ΨK and derive their geometrical

representation (classification regions’ coordinates with the corresponding
labels).

5 Compute the coordinates of theMn static classification regions.
6 For every subspace, determine the classification region that spans its midpoint

and determine the competence of the label with the weighting formula 4.6.
7 Calculate the sum of the weights for every label over every classifier.
8 Assign classes to the subspaces by the greatest sum according to 4.5.

The algorithm is depicted in the figure 4.12. Given the subspace and the weighting
function proportional to the classification subspace area, the first model assigns a weight
to the label ω0 and the second – to ω1, because the middle points lie in the respective
classification regions. The first label – ω0 is assigned a smaller weight than the one asso-
ciated with the second class – ω1, because of the proportional mapping function used –
the larger the area of the classification region, the larger the weight. The integrated model
aggregates the weights and assigns the label ω1 to the considered subspace as the label
with the greatest sum of weights.
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(a) First base classifier.

(b) Second base classifier.

(c) Resulting classification of subspace.

Figure 4.12: Label calculation using two base classifiers and mapping function proportional to area.
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4.2.2. Generalization of majority voting

The problem of generalization of majority voting introduced in [16] was further devel-
oped in [13].

Lemma 1. The (weighted) Majority Voting is a special case of the presented algorithm
for infinitely dense space division.

Proof. Firstly, let us notice that for any training point x, there is only one Sx and Rk
s that

span over x (both classification regions and subspaces are disjoint).
The special case of the proposed algorithm is when the partitioning becomes infinitely

dense. This means that the size of every subspace becomes infinitely small and shrinks
to a single point:

lim
|Sx|→0

mid(Sx) = x (4.7)

By combining the equations 4.7 and 4.4 the following formula can be obtained:

lim
M→∞

ΨT (x) = argmaxω
K∑
k=1

fω(Rk
x), (4.8)

where Rx denotes the decision tree region, that spans over x. This proves the lemma.

In the special case of the function fω(Rk
x) = I(Ψk(x), ω), where I is defined as in the

equation 1.6, the (weighted) majority voting is obtained.

4.2.3. Results and analysis

A pool of models consisting of 5 decision trees having the maximal depth of 3 was
created. As the reference classifiers, random forest and majority voting were used.
The experiments were performed for edge split granularity of 20, 40 and 60 segments.
MN regions of competence were created when dividing the edge into M parts, where
N is the number of dimensions. The algorithm is easily applicable to any number of di-
mensions without any modifications despite being examined using two–dimensional ex-
amples in the presented paper.

Two opposite weighting functions were studied: proportional and inversely propor-
tional to the volume. The weight of every competence region of the decision tree can be
calculated as its area (inverse of the area, respectively). Even influence of every dimen-
sion was assured by normalizing the datasets before the experiments.

Ψweight
M will denote the ensemble classifier, where weight is the weighting function

(vol stands for proportional to the regions’ volume and inv – for inversely proportional to
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the volume) andM - the number of divisions along every dimension. Reference methods
are denoted as Ψalg, where alg stands for the algorithm used: random forest –RF or ma-
jority voting –MV . Tables 4.10 through 4.13 present the experimental results together
with Friedman ranks.

Table 4.10: ACC and mean Friedman rank of majority voting, random forest and integrated classifiers
for the proportional weighting function.

bi bu c d h io me po se wd wi rank

ΨMV 0.723 0.600 0.778 0.907 0.709 0.783 0.654 0.892 0.932 0.924 0.953 2.32
ΨRF 0.719 0.576 0.738 0.899 0.697 0.770 0.577 0.893 0.931 0.924 0.936 4.41
Ψvol

20 0.723 0.594 0.784 0.909 0.706 0.774 0.684 0.890 0.932 0.925 0.953 4.41
Ψvol

40 0.723 0.592 0.764 0.904 0.699 0.778 0.678 0.890 0.932 0.923 0.953 3.23
Ψvol

60 0.723 0.614 0.764 0.913 0.709 0.778 0.677 0.890 0.932 0.918 0.953 2.64

Table 4.11: ACC and mean Friedman rank of majority voting, random forest and integrated classifiers
for the inversely proportional weighting function.

bi bu c d h io me po se wd wi rank

ΨMV 0.723 0.600 0.778 0.907 0.709 0.783 0.654 0.892 0.932 0.924 0.953 2.23
ΨRF 0.719 0.576 0.738 0.899 0.697 0.770 0.577 0.893 0.931 0.924 0.936 4.41
Ψinv

20 0.723 0.583 0.776 0.909 0.704 0.774 0.684 0.890 0.932 0.925 0.953 2.59
Ψinv

40 0.723 0.588 0.764 0.904 0.699 0.778 0.678 0.890 0.932 0.923 0.953 3.14
Ψinv

60 0.723 0.614 0.764 0.913 0.709 0.778 0.677 0.890 0.932 0.918 0.953 2.64

Table 4.12: MCC and mean Friedman rank of majority voting, random forest and integrated classifiers
for the proportional weighting function.

bi bu c d h io me po se wd wi rank

ΨMV 0.415 0.169 0.583 0.815 0.140 0.567 0.328 -0.004 0.000 0.833 0.898 2.55
ΨRF 0.401 0.115 0.463 0.797 0.078 0.538 0.140 0.000 -0.001 0.831 0.860 4.50
Ψvol

20 0.415 0.166 0.594 0.819 0.141 0.543 0.378 -0.005 0.000 0.835 0.898 2.32
Ψvol

40 0.415 0.129 0.594 0.808 0.121 0.554 0.360 -0.005 0.000 0.831 0.898 3.14
Ψvol

60 0.415 0.205 0.594 0.826 0.140 0.554 0.364 -0.005 0.000 0.820 0.898 2.50
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Table 4.13: MCC and mean Friedman rank of majority voting, random forest and integrated classifiers
for the inversely proportional weighting function.

bi bu c d h io me po se wd wi rank

ΨMV 0.415 0.169 0.583 0.815 0.140 0.567 0.328 -0.004 0.000 0.833 0.898 2.36
ΨRF 0.401 0.115 0.463 0.797 0.078 0.538 0.140 0.000 -0.001 0.831 0.860 4.50
Ψinv

20 0.415 0.144 0.581 0.819 0.137 0.543 0.378 -0.005 0.000 0.835 0.898 2.68
Ψinv

40 0.415 0.142 0.594 0.808 0.121 0.554 0.360 -0.005 0.000 0.831 0.898 3.09
Ψinv

60 0.415 0.205 0.594 0.826 0.140 0.554 0.364 -0.005 0.000 0.820 0.898 2.36

To compare the improvement achieved when using the proportional and inversely
proportional weighting function for decision trees with the referential methods, statis-
tical tests were performed. Two classification quality measures were derived: accuracy
and Matthews correlation coefficient.

As it was stated in 3.1, ACC is one of the most commonly used quantities, but it
reflects the quality of the classifier trained on imbalanced datasets poorly. MCC takes
the imbalance of the dataset into account, hence it is more reliable for the case of datasets
used in the experiments, where the imbalance reaches 439.6.

The results of ACC are presented in the tables 4.10 and 4.11 and the results of MCC
– in the tables 4.12 and 4.13. Along with the classification performance measures men-
tioned, Friedman average ranks are included as the last column.

Friedman tests’ p-values are gathered in the table 4.14. Since none of the values exceed
0.01, not all algorithms perform equally. The odd algorithms can be determined using
the post–hoc Bonferroni–Dunn tests.

Table 4.14: p–values of ranked Friedman tests for the examined algorithms.

Quality measure
ACC MCC

Weighting Proportional 0.004 0.006
Inversely proportional 0.004 0.005

The tests were carried out for the entire set of feature space division (the feature space
was divided into 202, 402 and 602 subspaces). The difference in the classification per-
formance in several cases was observed. Bonferroni–Dunn tests require the difference
in the Friedman ranks of at least 1.18 (11 datasets are used, 3 algorithms are compared
with referential) to reject the null hypothesis with a significance level of α = 0.1 [35].

Significantly different results are bolded. For every granularity of the feature space
division and every measure, the ensembles composed using both weighting functions
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perform significantly better when compared to random forest. In addition to that, the pro-
portional weighting function yielded better results than majority voting with respect to
MCC.

(a) Ranks of Friedman test of ACC for proportional weighting function.

(b) Ranks of Friedman test of ACC for inversely proportional weighting function.

(c) Ranks of Friedman test of MCC for proportional weighting function.

(d) Ranks of Friedman test of MCC for inversely proportional weighting function.

Figure 4.13: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest.
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The statistical analysis of the results is depicted in the figure 4.13. The graphs present
the ranks from the Friedman’s tests. The higher the rank, the worse the performance
of the model. The critical difference between the ranks was added in the top–left corner
for the reference. The ranks within the critical segment are marked with the bolded line.
They are indistinguishable according to Bonferroni–Dunn’s test.

4.2.4. Extended experiments

Similarly as in the previous paper, the studies were rerun on a larger base of benchmark-
ing datasets. The results are gathered in the appendix B. Additionally, the weighted MV
was examined. For the weighted majority voting, Ψweight

wMV is used depending on the map-
ping function used. Intuitively, the results depend on the location of the subspaces,
i.e. whether the corner of the subspace is in the point (0, 0) or it is shifted (if the subspace
lattice is shifted by 1

M along any feature axis, they are considered identical). The exper-
iments concerning displacements of the lattice were conducted. If there are L displace-
ments along the feature axis, then the following points are taken as the corner of the
subspace: (0, 0), (0, 1

LM ), . . . , (0, L−1
LM ), ( 1

LM , 0), ( 1
LM ,

1
LM ), . . . , (L−1

LM , L−1
LM ) or in other

words all the combinations of the form
(
l1
LM ,

l2
LM

)
, where l1, l2 ∈ {0, 1, . . . , L − 1}.

The base studies (published in [16]) are the special case, where l1 = l2 = 0 or L = 1.
For brevity this case will be referred to as with no displacements. They were presented
in the section B.1. Section B.2 gathers the results for L = 5, where the results of all the
combinations were averaged.

4.2.5. Conclusions

In the considered article, the algorithm of decision tree integration in the geometric space
was proposed. Two opposing weighting functions were used to perform the experiments.
The algorithm is less restrictive than majority regarding the number of base models. The
possibility of a tie is negligible. The integrated model can be considered as a decision
tree. This approach eases the reasoning about the model and its serialization.

All the subspaces are cubes, having the same shape as the feature space and can be
considered Voronoi cells. Therefore, the resulting ensemble is a 1-NN classifier having
centroids placed in the middle points of every subspace.

It was also proven that the weighted majority voting is a special case of the presented
algorithm, when the division granularity is infinite.
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11 open–source benchmarking datasets were used in the experimental part to per-
form the statistical analysis of the results regarding two classification measures. To-
gether with ACC, MCC was calculated to take the highly imbalanced datasets into ac-
count. Bonferroni–Dunn tests indicated that for every granularity, the proposed algo-
rithm resulted in a better classification quality than the random forest. In addition,
MCC for the proportional weighting function of the ensemble outperformed the ran-
dom forest. The source code used to conduct the experiments is hosted on github:
https://github.com/TAndronicus/dtree-merge.
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4.3. Decision Tree Integration Using Dynamic Regions of
Competence

The further studies were in the area of dynamic regions of competence in decision tree en-
sembles. The first results in this topic were published in [14]. In this paper, the algorithm
using partitioning of the feature space whose split point is determined by the decision
rules of all decision tree nodes. The centroids of the new subspaces are found after divi-
sion and influence the weights needed in the integration phase where the weighted major-
ity voting rule is applied. The experiments involving several open–source benchmarking
datasets demonstrate the effectiveness of the proposedmethodwhen comparedwith other
MCS approaches. To discuss the results of the experiments, micro– and macro–average
classification performance measures are used.

4.3.1. Proposed method

In this work, a novel approach of feature space division into disjoint subspaces is pro-
posed. In this proposal, the partitioning process follows base classifier learning as op-
posed to the clustering and selection methods. No clustering to define a feature subspace
is used in this work. The partitioning of the feature space is determined by the base clas-
sifier models exactly through their decision boundaries. Finally, the centroids of the re-
sulting regions are used in the weighted majority voting to extract the finalMCS decision.

To summarize, the main objectives of this work are as follows:

• A proposal of a new feature space partitioning method whose split is determined
by the decision boundaries of each decision tree.
• A design of a new weighted majority voting rule algorithm dedicated to the fusion
of decision tree models.
• Experimental studies to compare the proposed method with other MCS approaches
employing diverse performance measures.

While the articles presented in the sections 4.1 and 4.2 used static division into regions
of competence, this paper presents an algorithm with a dynamic approach. The main
goal of introducing dynamically generated Voronoi cells is to improve the classification
performance in comparison to using referential methods of decision tree committee en-
sembling: random forest and majority voting.

Firstly, the ANOVA method is used for feature extraction. Before proceeding
with the algorithm, the datasets are normalized to the unit cube (every feature takes values
in the range of [0, 1]) and the two most informative features were extracted.
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The first step of the presented algorithm is training a pool of base models – decision
trees. To make sure that the base trees are indeed different from one another, training
on the random subsets of the dataset is performed. Having a committee of trained deci-
sion trees, rectangular regions fulfilling the following properties are extracted:

• Their area is maximal.
• Regions span over the area of objects equally labelled by the classifier. In other words,
every point they span is labeled with the same label by every single classifier (labels
can differ across different classifiers).

Intuitively, the entire space is divided along every dimension at all the split points of ev-
ery decision tree. This way the regions are of the same class from every base model’s
perspective.

For all subspaces the midpoints are calculated. Let us denote by S the set of the
obtained subspaces and by (xs,1,min;xs,1,max) and (xs,2,min, xs,2,max) the range of the
subspace s along axes x1 and x2 respectively. The midpoint of the subspace s will be
denoted as xs,mid. For every label and every subspace the weight is calculated using the
following formula:

f(Ψi, s0) = 1
σ

∑
s∈S

cs,Ψi(1− d(xs0,mid, xs,mid))δ(s0, s) + cs0,Ψi

2n (4.9)

where cs,Ψi is the number of classifiers that classify the subspace s with the label Ψi,
d(p1, p2) is the Euclidean distance between the points p1 and p2, σ is the correction pa-
rameter to make the weights sum up to 1 and δ(s0, s) is a function that returns 1 if s0

and s are neighbors and 0 otherwise, i.e.:

δ(s0, s) =


1 if xs0,1,min = xs,2,max or xs0,1,max = xs,1,min

or xs0,2,min = xs,2,max or xs0,2,max = xs,2,min

0 otherwise
(4.10)

There is an important observation to be done that given the formula 4.10, the equa-
tion δ(s, s) = 0 holds for every subspace s. This convention was chosen because
the subspace’s influence is contained within the second summand of the equation 4.9.
The term 2n was chosen to normalize the term. As a result, the values for the subspace
s0 sum up to half of the weight’s value, i.e.:

n∑
i=1

cs0,Ψi

2n = 1
2

The figure 4.14 depicts the process of obtaining subspaces. Suppose that the base
models (marked with colorful lines on the subfigure a) are equally oriented. Graphically,
this means that all the points below the decision boundary are labelled by this model
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with a single label, different from all the objects above the line (a binary classification
problem is considered). The regions of competence are generated by splitting the feature
space at the splitpoints of all the base decision trees (subfigure b). Computing the weight
of the label for each region involves the region itself (filled with dark grey in subfigure
c) together with its neighbors (lightgrey in subfigure c). Contributions from the neigh-
bors depend on the distance between its middle point and the middle point of the region
the weight is computed for. The algorithm 5 summarizes the procedure.

Algorithm 5: Classification algorithm using dynamic regions of competence
obtained from decision trees.
Input: K – number of base classifiers (Ψ1,Ψ2, . . . ,ΨK)
Output: Integrated decision tree Ψi

1 Normalize the dataset and select the two most informative features.
2 Split the dataset into K + 1 subsets (K for training every base decision tree

and 1 for testing).
3 Train the base classifiers Ψ1,Ψ2, . . . ,ΨK and obtain their geometrical

representation (splits and labels).
4 Divide the feature space using splits of all the decision trees.
5 For every region and every label calculate the weight using the formula 4.9.
6 Classify every region by picking the label with the highest weight value.
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(a) Base classifiers.

(b) Classification regions.

(c) Specific subspace (darkgrey) with its neighbors (lightgrey). Mid-
points are designated with blue dots.

Figure 4.14: The process of extracting subspaces from base classifiers and determining neighbors for a
subspace.

Jędrzej Biedrzycki: Integration of decision trees in geometric space 65



4.3. Decision Tree Integration Using Dynamic Regions of Competence

4.3.2. Results and analysis

K = 3 was set as the number of base classifiers in the experiments. The studies were
conducted in order to compare the classification quality measures observed when using
the proposed algorithm (with the subscript I) and the commonly used referential meth-
ods: random forest (subscript RF ) and majority voting (subscript MV ). The experi-
ments were performed on multiclass datasets, so micro– and macro–average precision,
recall and F-score (the harmonic mean of precision and recall) were used. The F-score
was computed, because of the high imbalance of multiple datasets used, as it was indi-
cated in the section 3.1. Additionally, the overall accuracy was presented. Table 4.15
shows the results of average accuracy, micro– and macro–averaged F-score and ta-
bles 4.16, 4.17 – of precision and recall, micro– and macro–averaged respectively. To-
gether with the metrics, Friedman ranks are presented – the larger the rank, the worse
the classifier performs. Some of the micro–average performance measures of preci-
sion and recall are equal, because of the frequent single-label per instance problem
(Precisionµ = Recallµ) [129].

Considering all the calculated classification performance measures, the integrated
classifier outperforms the referrential algorithms as indicated by the Friedman ranks.
Post–hoc Nemenyi test after Friedman ranking requires the difference in ranks of at least
0.38 to falsify the null hypothesis of the algorithms being equivalent. This condition
is met for F− scoreµ, which means that the proposed method – ΨI achieves statisti-
cally better results than the references: ΨRF and ΨMV . The micro–average measure is
the fraction of the instances predicted correctly over all classes, hence the micro–average
can be considered a more reliable metric than macro–average in the imbalanced datasets.
Thus, the results indicate the improvement in the recognition, in particular for imbal-
anced data. For micro–average precision and recall the difference in ranks between
ΨI and ΨRF showed statistically significant differences in the results. In the case
of macro–average precision, the obtained results do not indicate a significant difference,
whereas for macro–average recall (see table 4.17) the obtained average Friedman ranks
are equal for ΨI and ΨRF algorithms.
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Table 4.15: Average accuracy and F-scores for the random forest, the majority voting and the proposed
algorithm together with Friedman ranks.

Average accuracy F− scoreµ F− scoreM
Dataset ΨMV ΨRF ΨI ΨMV ΨRF ΨI ΨMV ΨRF ΨI

aa 0.917 0.918 0.919 0.469 0.474 0.477 0.196 0.192 0.176
ap 0.853 0.812 0.863 0.853 0.812 0.863 0.676 0.559 0.692
ba 0.789 0.808 0.815 0.683 0.712 0.722 0.483 0.493 0.502
bi 0.736 0.736 0.702 0.736 0.736 0.702 0.717 0.717 0.561
bu 0.579 0.527 0.536 0.579 0.527 0.536 0.563 0.520 0.512
c 0.762 0.867 0.684 0.762 0.867 0.684 0.773 0.870 0.698
d 0.935 0.935 0.938 0.935 0.935 0.938 0.934 0.934 0.936
e 0.825 0.827 0.825 0.414 0.423 0.414 0.110 0.167 0.106
h 0.637 0.691 0.657 0.637 0.691 0.657 0.480 0.581 0.491
io 0.862 0.868 0.458 0.862 0.868 0.458 0.845 0.853 0.578
ir 0.965 0.961 0.978 0.947 0.942 0.968 0.945 0.943 0.968
ma 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
me 0.582 0.681 0.615 0.582 0.681 0.615 0.583 0.688 0.607
ph 0.771 0.767 0.774 0.771 0.767 0.774 0.720 0.718 0.724
pi 0.699 0.685 0.704 0.699 0.685 0.704 0.661 0.653 0.670
po 0.879 0.872 0.897 0.879 0.872 0.897 0.468 0.466 0.473
r 0.726 0.723 0.728 0.726 0.723 0.728 0.733 0.730 0.735
sb 0.711 0.718 0.712 0.711 0.718 0.712 0.686 0.694 0.686
se 0.924 0.921 0.926 0.924 0.921 0.926 0.520 0.516 0.497
te 0.889 0.890 0.892 0.389 0.392 0.408 0.393 0.387 0.404
th 0.983 0.981 0.982 0.974 0.972 0.973 0.849 0.825 0.851
ti 0.788 0.778 0.681 0.788 0.778 0.681 0.752 0.732 0.405
tw 0.717 0.714 0.724 0.717 0.714 0.724 0.717 0.714 0.724
wd 0.902 0.893 0.918 0.902 0.893 0.918 0.893 0.884 0.911
wi 0.936 0.955 0.944 0.936 0.955 0.944 0.931 0.951 0.941
wr 0.831 0.827 0.823 0.493 0.481 0.468 0.241 0.227 0.225
ww 0.839 0.838 0.840 0.459 0.457 0.464 0.205 0.224 0.208
y 0.866 0.861 0.865 0.349 0.325 0.344 0.223 0.214 0.234

rank 2.00 2.14 1.61 2.00 2.14 1.61 1.93 2.04 1.79
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Table 4.16: Micro–average precision and recall for the random forest, themajority voting and the proposed
algorithm together with Friedman ranks.

Precisionµ Recallµ
Dataset ΨMV ΨRF ΨI ΨMV ΨRF ΨI

aa 0.469 0.475 0.477 0.469 0.473 0.477
ap 0.853 0.812 0.863 0.853 0.812 0.863
ba 0.683 0.712 0.722 0.683 0.712 0.722
bi 0.736 0.736 0.702 0.736 0.736 0.702
bu 0.579 0.527 0.536 0.579 0.527 0.536
c 0.762 0.867 0.684 0.762 0.867 0.684
d 0.935 0.935 0.938 0.935 0.935 0.938
e 0.418 0.424 0.417 0.411 0.423 0.411
h 0.637 0.691 0.657 0.637 0.691 0.657
io 0.862 0.868 0.458 0.862 0.868 0.458
ir 0.947 0.942 0.968 0.947 0.942 0.968
ma 1.000 1.000 1.000 1.000 1.000 1.000
me 0.582 0.681 0.615 0.582 0.681 0.615
ph 0.771 0.767 0.774 0.771 0.767 0.774
pi 0.699 0.685 0.704 0.699 0.685 0.704
po 0.879 0.872 0.897 0.879 0.872 0.897
r 0.726 0.723 0.728 0.726 0.723 0.728
sb 0.711 0.718 0.712 0.711 0.718 0.712
se 0.924 0.921 0.926 0.924 0.921 0.926
te 0.389 0.392 0.408 0.389 0.392 0.408
th 0.974 0.972 0.973 0.974 0.972 0.973
ti 0.788 0.778 0.681 0.788 0.778 0.681
tw 0.717 0.714 0.724 0.717 0.714 0.724
wd 0.902 0.893 0.918 0.902 0.893 0.918
wi 0.936 0.955 0.944 0.936 0.955 0.944
wr 0.493 0.481 0.468 0.493 0.481 0.468
ww 0.459 0.457 0.464 0.459 0.457 0.464
y 0.350 0.325 0.344 0.349 0.325 0.344

rank 2.00 2.14 1.64 2.00 2.14 1.61
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Table 4.17: Macro–average precision and recall for the random forest, the majority voting and the pro-
posed algorithm together with Friedman ranks.

PrecisionM RecallM
Dataset ΨMV ΨRF ΨI ΨMV ΨRF ΨI

aa 0.179 0.171 0.152 0.217 0.218 0.209
ap 0.705 0.557 0.710 0.663 0.563 0.684
ba 0.475 0.475 0.486 0.491 0.512 0.519
bi 0.712 0.712 0.526 0.721 0.721 0.614
bu 0.564 0.521 0.513 0.561 0.520 0.511
c 0.779 0.872 0.702 0.767 0.868 0.693
d 0.936 0.935 0.938 0.932 0.933 0.935
e 0.079 0.123 0.075 0.182 0.259 0.186
h 0.474 0.594 0.485 0.486 0.568 0.500
io 0.860 0.881 0.596 0.831 0.828 0.562
ir 0.944 0.942 0.968 0.945 0.944 0.968
ma 1.000 1.000 1.000 1.000 1.000 1.000
me 0.582 0.683 0.614 0.585 0.692 0.600
ph 0.726 0.721 0.730 0.715 0.716 0.718
pi 0.664 0.652 0.670 0.659 0.655 0.669
po 0.451 0.450 0.451 0.487 0.483 0.496
r 0.742 0.738 0.743 0.724 0.721 0.726
sb 0.723 0.728 0.721 0.653 0.663 0.655
se 0.542 0.527 0.495 0.504 0.507 0.501
te 0.397 0.380 0.400 0.390 0.393 0.409
th 0.816 0.803 0.826 0.886 0.848 0.879
ti 0.853 0.780 0.341 0.673 0.692 0.500
tw 0.718 0.714 0.724 0.717 0.714 0.724
wd 0.894 0.883 0.911 0.892 0.886 0.911
wi 0.926 0.948 0.931 0.935 0.954 0.951
wr 0.246 0.228 0.234 0.236 0.226 0.216
ww 0.226 0.247 0.230 0.189 0.206 0.191
y 0.232 0.200 0.244 0.216 0.230 0.226

rank 1.86 2.07 1.79 2.18 1.82 1.82
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(a) Friedman ranks with the critical Nemenyi test value for average accuracy and F− scoreµ.

(b) Friedman ranks with the critical Nemenyi test value for F− scoreM .

Figure 4.15: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest.

4.3.3. Conclusions

In these studies, a new approach for MCS creation was presented. Contrary to the clus-
tering and selection method, the feature space partition in the proposal is based on the de-
cision boundaries defined by the base classifier models. This involves the trained base
classification models instead of clustering to determine the feature subspace. The cen-
troids of the subspaces are used in the weighted majority voting rule to define the final
MCS decision. In particular, a class label prediction for each feature subspace is based
on adjacent regions of competence.

The experimental results indicate that the proposed method may generate an ensemble
classifier that outperforms the commonly used methods of combining decision tree mod-
els — majority voting and random forest. The results show that the proposed method
statistically improves the classification performance measured by the micro–average
quantities. The source code written to perform the experiments is hosted on github:
https://github.com/TAndronicus/dynamic-dtree.
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4.4. Integration of Decision Tree Models Using the Decision
Boundaries Defined by These Trees

Further research was done in the field of decision tree integration using dynamic regions
of competence. As of this writing, the following work is in the middle of the publication
process. The presented algorithm extends our previous approach that does not use clas-
sical clustering methods to partition the feature space. The decision boundaries defined
by decision trees are used to divide the feature space. Selected subregions of the feature
space are used to determine the weights needed in the integration phase based on the
weighted majority voting rule. The proposal was compared with other state-of-the-art
ensemble methods and with the previous proposal. To discuss the results of our experi-
ments, seven classification performance measures were used.

The algorithm presented in this work is an improvement of the algorithm presented
in the previous work. The novel elements introduced in this method are:

• Bagging is used to provide distinct data for training.
• The distance between the regions is calculated between the average points of the vali-
dation objects inside the region.
• The regions are filtered based on the imbalance ratio of the validation objects within
the region.
• Depending on the outcome of the filtering in the previous point, larger rings of regions
can be taken into account when calculating the weight of the label for each region.

4.4.1. Proposed method

The method relates to the previous work in that sense that it utilizes the division of the
classification space into dynamic regions of competence in order to integrate decision
trees. The goal of dynamically generated Voronoi cells was to improve the classification
quality in comparison with other multiple classifier systems of decision trees: majority
voting and random forest.

To reduce the impact of the magnitude of the datasets’ features, the normalization
to the unit cube was conducted. Every attribute takes values from the range of [0, 1]. The
two most informative features were selected using ANOVA method.

Firstly, the committee of decision treeswas trained. A bagging procedurewas followed
to ensure the classifiers are different. As in the previous studies, the regions of compe-
tence are obtained dynamically based on decision trees’ geometrical representation. They
fulfill the following rules:

• Their area is maximal.
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• They span only single-labelled points from the perspective of every model.

Those requirements split the entire space along every axis at all the split points of the
base classifiers. As a consequence, the regions are labeled with the same class by every
tree.

Every region has a representative point (further referred to as a midpoint). The coor-
dinates of the midpoints are calculated as the means of the respective coordinates of all
the objects from the validation dataset that fall into this region. These points will define
the distance between the regions in the algorithm.

The notation is analogous to the one from the previous article. The set of ob-
tained subspaces will be denoted as S and the range of subspace s along axes x1

and x2 by (xs,1,min;xs,1,max) and (xs,2,min, xs,2,max). Let us also denote the midpoint
of the subspace s as xs,mid. Two regions: s1 and s2 are in a neighbor relation (denoted
as s1 ∼ s2) if one of the following holds: xs0,1,min = xs,2,max, xs0,1,max = xs,1,min,
xs0,2,min = xs,2,max or xs0,2,max = xs,2,min. In other words, for all adjacent regions s1

and s2 the relation s1 ∼ s2 holds.
The weights of the labels in every region are calculated using the following formula:

f(ωi, s0) = 1
σ

∑
s∈S

cs,ωi(1− d(xs0,mid, xs,mid))δ(s0, s) + cs0,ωi

2n (4.11)

where d(p1, p2) denotes the Euclidean distance between the points p1 and p2, Ω 3 ωi

denotes one of the possible labels, cs,ωi is the count of models that classify the subspace
s with the label ωi, σ is the correction used to make the sum of weights equal to 1 and
δ(s0, s) is a neighbor function.

The neighbor function is determined in the following way. First, an intermediate value
δ′ is calculated for every region:

δ′(s0, s) =
 1 if s0 ∼ s and γ(s)

0 otherwise
(4.12)

where γ(s) is true only if the minor class of validation set objects that fall into this region
make up at least 5% of the objects. Visually, the ring of regions around s0 is examined
for the imbalance ratio. Formally:

γ(s) =

 true if ∀ωi∈Ω min( |s3o:label(o)=ωi|
|s| ) ≥ 0.05

false otherwise
(4.13)

where ωi ∈ Ω denotes the set of classes of the dataset and label(o) returns the label
of the object o.

If ∀s∈Sδ′(s0, s) = 0, then the second intermediate parameter is calculated:

δ′′(s0, s) =
 1 if (∃ S\{s0} 3 s′ : s0 ∼ s′ and s′ ∼ s) and γ(s)

0 otherwise
(4.14)

Jędrzej Biedrzycki: Integration of decision trees in geometric space 72



4.4. Integration of Decision Tree Models Using the Decision Boundaries Defined by These Trees

If ∀s∈Sδ′′(s0, s) = 0, then the procedure is repeated analogously until some δn = 1 is
found or the entire classification space is examined. The formulas 4.12 and 4.14 indicate
that δ′(s, s) = δ′′(s, s) = · · · = δn(s, s) = 0 for every subspace s.

The contribution of the subspace itself is included in the second summand of the equa-
tion 4.11. Summing the weights coming from the regions results in 50% of the entire
contribution, i.e.:

n∑
i=1

cs0,Ψi

2n = 1
2

The procedure of obtaining the regions is depicted in the figure 4.14. First, the dataset
is prepared and the pool of decision trees is trained. As stated before, the competence
regions are obtained by splitting the entire space at the split points of all decision trees
(subfigure a). For each region, a midpoint is calculated (subfigure b). If any of the ob-
jects from the validation dataset fall into the region, their mean is taken as the midpoint,
otherwise, a geometrical midpoint is calculated. This procedure is conducted for every
region. When calculating the weight of the label for the region, the lookup throughout
the neighbor regions is done to find the ones who have the minor class with the level
of at least 5%. In the subfigure c none of the regions fulfill the requirement because
of the high imbalance ratio (or no objects at all), so another outer ring of regions is taken
into consideration (subfigure d). In the outer ring, the regions with a sufficient amount
of objects of both classes were found (highlighted with darkgrey) and these objects are
taken into consideration in the label weight calculation in equation 4.11. This procedure
is conducted for every region.

The entire procedure is presented in the algorithm 6.
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(a) Classification regions extracted using the splits of base classifiers.

(b) The entire decision space split into regions of competence with calculated
midpoints.
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(a) The first iteration of label weight calculation.

(b) The second iteration of label weight calculation.

Figure 4.16: The decision tree integration process. Colorful lines depict decision trees, blue and red dots
- validation objects (od two different classes) and black dots - midpoints of the regions.
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Algorithm 6:Algorithm for integration of decision trees using dynamic regions
of competence.
Input: number of base classifiers (Ψ1,Ψ2, . . . ,ΨK) – K, dataset.
Output: Integrated decision tree – ΨI .

1 Normalize the considered dataset to the unit cube and select the two most
informative numeric, non–categorical features.

2 Split the dataset into 3 subsets (for training - K
K+2 of the dataset’s size, validation

- 1
K+2 of the dataset’s size and testing - 1

K+2 of the dataset’s size).
3 Generate K collections of elements from the first subset using bagging for base

classifiers training.
4 Train the base classifiers Ψ1,Ψ2, . . . ,ΨK and extract the regions from their

geometrical representation together with the associated labels for each model.
5 Calculate the midpoints of each region as the average of all the objects from the

validation dataset that fall into this region.
6 Using the formula 4.11 determine the weight for every label in all regions of the

classification space.
7 Assign the label with the highest weight to every region, i.e.:
∀o∈sΨ(o) = arg maxω f(ω, s).

4.4.2. Results and analysis

The integrated classifiers were evaluated against referential methods of ensemble clas-
sification algorithms: majority voting of the base classifiers and random forest. The av-
erage results were presented. Different numbers of base classifiers were examined:
K ∈ {3, 5, 7, 9}.

The experiments were conducted in order to compare the classification quality
of the previously presented algorithm (with IO subscript), the improved version pre-
sented here (with I subscript) and referential ensemble techniques: random forest
and majority voting. The micro– and macro–average precision, recall, and F-score were
utilized in order to evaluate the quality of the algorithms on multiclass problems. Over-
all accuracy is presented alongside the named measurements. The F-score was used
because of the high imbalance ratio of some of the datasets (see section 3.1). It describes
the quality of an algorithm better than the accuracy if tested on a nonbalanced dataset.
Accuracy can be high if all the objects are labeled with the major label, although the
model does not differentiate between the classes. The results of the experiments are pre-
sented in the table 4.18 (average accuracy), 4.19 (F-score), 4.20 and 4.21 (micro– and
macro–average F-score respectively). The last row presents Friedman ranks – the smaller
the rank, the better the quality of the model. All the results presented here were obtained
for the nine base classifiers, because for that count they were the most promising.
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The calculated Friedman ranks indicate that the proposed method outperforms other
algorithms. This applies to all the calculated metrics, i.e., average accuracy, precision,
recall and F-score. Bonferroni–Dunn post–hoc test confirms the hypothesis. According
to [35] the difference between the rank of an integrated algorithm and any other must be
greater than the critical value of 0.75 to discard the null hypothesis that the algorithms
yield the same result at the confidence level α = 0.1 (4 algorithms, 27 datasets).

The micro–average measure counts the fraction of instances correctly predicted across
all classes. For this reason, the micro-average can be a more useful metric than the
macro–average in a highly imbalanced dataset.

The partial results also suggest that the presented method improves the classification
quality. This is especially visible for imbalanced datasets. This conclusion is confirmed
by the difference in ranks between micro–average precision and recall. The critical dif-
ference graphs of Bonferroni–Dunn tests for nine base models for average accuracy,
F− scoreM and F− scoreµ are presented in the figure 4.17.
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Table 4.18: Average accuracy of the majority voting, random forest, the proposed algorithm and the
improved one along with Friedman ranks.

Average accuracy
Dataset ΨMV ΨRF ΨIO ΨI

ap 0.894 0.777 0.842 0.953
ba 0.795 0.790 0.795 0.803
bi 0.723 0.723 0.661 0.718
bu 0.544 0.546 0.558 0.820
c 0.839 0.879 0.839 0.890
d 0.924 0.942 0.925 0.969
e 0.762 0.766 0.762 0.857
h 0.729 0.719 0.760 0.846
io 0.808 0.830 0.762 0.866
ir 0.973 0.990 0.973 0.987
ma 1.000 1.000 1.000 1.000
me 0.534 0.750 0.498 0.917
ph 0.781 0.784 0.781 0.830
pi 0.722 0.698 0.712 0.863
po 0.905 0.905 0.905 0.939
r 0.733 0.728 0.733 0.773
sb 0.714 0.719 0.712 0.742
se 0.931 0.930 0.936 0.937
te 0.892 0.889 0.894 0.917
th 0.985 0.980 0.985 0.987
ti 0.777 0.762 0.734 0.701
tw 0.723 0.722 0.723 0.789
wd 0.901 0.891 0.901 0.965
wi 0.958 0.954 0.953 0.960
wr 0.829 0.844 0.819 0.896
ww 0.835 0.838 0.838 0.873
y 0.863 0.864 0.863 0.912

rank 2.85 2.83 3.04 1.28
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Table 4.19: F-score of the majority voting, random forest, the proposed algorithm and the improved one
along with Friedman ranks.

F− scoreµ F− scoreM
Dataset ΨMV ΨRF ΨIO ΨI ΨMV ΨRF ΨIO ΨI

ap 0.894 0.777 0.842 0.950 0.891 0.651 0.779 0.937
ba 0.692 0.685 0.693 0.711 0.479 0.473 0.483 0.498
bi 0.723 0.723 0.661 0.720 0.698 0.702 0.461 0.638
bu 0.544 0.546 0.558 0.819 0.523 0.535 0.530 0.815
c 0.839 0.879 0.839 0.898 0.856 0.873 0.856 0.891
d 0.924 0.942 0.925 0.969 0.924 0.942 0.926 0.969
e 0.410 0.413 0.410 0.427 0.119 0.121 0.119 0.226
h 0.729 0.719 0.760 0.849 0.575 0.520 0.624 0.800
io 0.808 0.830 0.762 0.866 0.797 0.824 0.751 0.853
ir 0.960 0.985 0.960 0.980 0.963 0.986 0.963 0.980
ma 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
me 0.534 0.750 0.498 0.918 0.549 0.745 0.533 0.912
ph 0.781 0.784 0.781 0.831 0.721 0.734 0.722 0.796
pi 0.722 0.698 0.712 0.864 0.687 0.659 0.674 0.852
po 0.905 0.905 0.905 0.938 0.475 0.475 0.475 0.732
r 0.733 0.728 0.733 0.770 0.741 0.735 0.742 0.777
sb 0.714 0.719 0.712 0.744 0.684 0.690 0.682 0.726
se 0.931 0.930 0.936 0.954 0.482 0.533 0.533 0.655
te 0.408 0.387 0.416 0.545 0.406 0.381 0.415 0.552
th 0.977 0.969 0.978 0.983 0.863 0.807 0.871 0.894
ti 0.777 0.762 0.734 0.741 0.744 0.721 0.702 0.442
tw 0.723 0.722 0.723 0.789 0.724 0.723 0.723 0.789
wd 0.901 0.891 0.901 0.965 0.901 0.890 0.902 0.963
wi 0.958 0.954 0.953 0.961 0.952 0.947 0.948 0.956
wr 0.486 0.533 0.457 0.689 0.230 0.240 0.217 0.497
ww 0.465 0.476 0.475 0.572 0.250 0.250 0.232 0.390
y 0.382 0.386 0.382 0.557 0.224 0.263 0.214 0.589

rank 2.89 2.81 3.06 1.24 2.91 2.74 3.07 1.28
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Table 4.20: Micro–average precision and recall of the majority voting, random forest, the proposed algo-
rithm and the improved one along with Friedman ranks.

Precisionµ Recallµ
Dataset ΨMV ΨRF ΨIO ΨI ΨMV ΨRF ΨIO ΨI

ap 0.894 0.777 0.842 0.950 0.894 0.777 0.842 0.950
ba 0.692 0.685 0.693 0.708 0.692 0.685 0.693 0.713
bi 0.723 0.723 0.661 0.719 0.723 0.723 0.661 0.721
bu 0.544 0.546 0.558 0.824 0.544 0.546 0.558 0.815
c 0.839 0.879 0.839 0.898 0.839 0.879 0.839 0.898
d 0.924 0.942 0.925 0.969 0.924 0.942 0.925 0.969
e 0.410 0.417 0.410 0.427 0.410 0.413 0.410 0.427
h 0.729 0.719 0.760 0.845 0.729 0.719 0.760 0.853
io 0.808 0.830 0.762 0.863 0.808 0.830 0.762 0.869
ir 0.960 0.985 0.960 0.980 0.960 0.985 0.960 0.980
ma 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
me 0.534 0.750 0.498 0.918 0.534 0.750 0.498 0.918
ph 0.781 0.784 0.781 0.832 0.781 0.784 0.781 0.830
pi 0.722 0.698 0.712 0.865 0.722 0.698 0.712 0.862
po 0.905 0.905 0.905 0.938 0.905 0.905 0.905 0.938
r 0.733 0.728 0.733 0.778 0.733 0.728 0.733 0.762
sb 0.714 0.719 0.712 0.742 0.714 0.719 0.712 0.747
se 0.931 0.930 0.936 0.941 0.931 0.930 0.936 0.967
te 0.408 0.387 0.416 0.542 0.408 0.387 0.416 0.548
th 0.977 0.969 0.978 0.984 0.977 0.969 0.978 0.982
ti 0.777 0.762 0.734 0.747 0.777 0.762 0.734 0.734
tw 0.723 0.722 0.723 0.788 0.723 0.722 0.723 0.790
wd 0.901 0.891 0.901 0.965 0.901 0.891 0.901 0.965
wi 0.958 0.954 0.953 0.961 0.958 0.954 0.953 0.961
wr 0.486 0.533 0.457 0.689 0.486 0.533 0.457 0.689
ww 0.465 0.476 0.475 0.565 0.465 0.476 0.475 0.579
y 0.382 0.386 0.382 0.559 0.382 0.386 0.382 0.555

rank 2.89 2.81 3.06 1.24 2.89 2.81 3.04 1.26
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Table 4.21: Macro–average precision and recall of the majority voting, random forest, the proposed al-
gorithm and the improved one along with Friedman ranks.

PrecisionM RecallM
Dataset ΨMV ΨRF ΨIO ΨI ΨMV ΨRF ΨIO ΨI

ap 0.938 0.661 0.792 0.949 0.854 0.652 0.781 0.925
ba 0.460 0.453 0.464 0.477 0.500 0.496 0.504 0.521
bi 0.697 0.700 0.410 0.616 0.698 0.705 0.541 0.662
bu 0.529 0.535 0.543 0.820 0.517 0.535 0.518 0.811
c 0.826 0.833 0.826 0.891 0.895 0.923 0.895 0.891
d 0.927 0.942 0.928 0.969 0.922 0.942 0.924 0.969
e 0.085 0.087 0.085 0.206 0.204 0.204 0.204 0.250
h 0.600 0.521 0.679 0.847 0.553 0.525 0.581 0.758
io 0.801 0.837 0.747 0.872 0.794 0.811 0.756 0.834
ir 0.961 0.983 0.961 0.980 0.966 0.988 0.966 0.980
ma 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
me 0.536 0.749 0.527 0.910 0.577 0.741 0.546 0.913
ph 0.728 0.732 0.728 0.794 0.714 0.736 0.716 0.797
pi 0.687 0.661 0.675 0.851 0.688 0.657 0.673 0.854
po 0.452 0.452 0.452 0.818 0.500 0.500 0.500 0.662
r 0.752 0.744 0.752 0.795 0.731 0.726 0.732 0.760
sb 0.718 0.722 0.714 0.758 0.654 0.660 0.652 0.697
se 0.467 0.593 0.593 0.824 0.498 0.507 0.505 0.544
te 0.400 0.372 0.410 0.556 0.412 0.391 0.420 0.548
th 0.840 0.809 0.856 0.883 0.886 0.805 0.886 0.905
ti 0.835 0.777 0.844 0.373 0.671 0.675 0.601 0.542
tw 0.724 0.723 0.724 0.788 0.723 0.722 0.723 0.790
wd 0.903 0.890 0.904 0.963 0.899 0.890 0.900 0.963
wi 0.953 0.949 0.941 0.959 0.952 0.945 0.956 0.953
wr 0.237 0.237 0.220 0.603 0.223 0.243 0.214 0.423
ww 0.329 0.288 0.270 0.512 0.205 0.224 0.206 0.315
y 0.212 0.261 0.200 0.679 0.239 0.266 0.236 0.520

rank 2.89 2.83 3.00 1.28 2.98 2.69 2.91 1.43
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(a) CD graph of Friedman ranks with Bonferroni–Dunn critical value for average accuracy and 9 base classifiers.

(b) CD graph of Friedman ranks with Bonferroni–Dunn critical value for F− scoreM and 9 base classifiers.

(c) CD graph of Friedman ranks with Bonferroni–Dunn critical value for F− scoreµ and 9 base classifiers.

Figure 4.17: Friedman ranks comparison of the quality of the proposed algorithm, majority voting and
random forest.
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4.4.3. Conclusions

This work presents a new approach to the problem of clustering and selection, signifi-
cant from determining MCS point of view. The feature space is divided into subregions
based on the decision boundaries defined by the base classifier models. The selection
process does not require concerning base classifiers, but the previously determined sub-
spaces of the feature space. In a subspace of the feature space, the centroid of the objects
belonging to it is calculated. The centroids of the selected subspaces of the feature space
form a definition between the regions and are used in the weighted majority voting rule
to define the final MCS decision. Single class label is assigned to all objects belonging
to a specific subspace of the feature space.

The experimental results show that the proposed method obtains better classification
results than the referential techniques and the method proposed earlier. The obtained out-
come indicates an improvement in the quality of the classification, which is statistically
significant. Such results were obtained for seven different performance classification
measures.

The experiments described here were conducted using decision trees, which generate
the decision boundaries necessary for the proposed integration process. Based on the
obtained promising results, future research will focus, among other things, on the use
of other base classifiers or the dynamic selection of the feature space subregions. In the
proposal described in the article, the selection is static and depends on the imbalance ratio
of the minority class in a given subregion. The source code of the evaluating program is
hosted on github: https://github.com/TAndronicus/dynamic-ring.
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Chapter 5

Conclusions

The research in the field of machine learning is very dynamic. One of the most ex-
ploited branches both in science and industry is ensemble learning, which involves cre-
ating a pool of base classifiers. Using the geometric representation has proven itself to
provide promising results, although the approach itself is not as popular as, for example,
classifier stacking.

The research problem presented in the introduction states:

Research hypothesis. Utilization of trained decision trees’ decision boundaries al-
lows for building an ensemble of classifiers with a greater value of performance qual-
ity measure than that of the random forest or majority voting using the same set of
trained decision trees.

The works presented confirm the hypothesis. Multiple algorithms were described,
implemented and evaluated using the open–source benchmarking datasets from UCI
and KEEL platforms as described in the chapter 3 to confirm the statement. Diverse
classification performance measures were computed.

The first work describes an integration algorithm employing two distances in the fea-
ture space with the classification boundaries of trained classifiers: from the centroid
and from the decision boundary. The label for the object under test is assigned according
to the model prediction. The centroid with the corresponding label is taken to calculate
the distance. Both distance values were mapped using the Gaussian function and differ-
ent parameters of the mapping values were examined. The additional mapping serves
two purposes:

• The distances are normalized to the values in the range of [0, 1].



5. Conclusions

• The calculated value intuitively corresponds to the negative impact of too small or large
distance from the decision boundary.

The final classification is done using the linear combination of the contributions calcu-
lated for both distances. Several possible distributions were evaluated to find the model
with the highest quality measure. The statistical tests showed the significant improve-
ment in classification performance when using the presented technique in comparison
to the referential ensemble methods.

The second proposal is an algorithm that utilizes the static space division to produce
the ensemble model. The feature space is divided into equal subspaces whose label is de-
termined by the midpoint classification. Together with the label, the weight is calculated
for the subspaces based on the volume of classification regions. Classification regions
are the cuboids of the highest volume possible spanning over the points assigned a single
label by the trained decision tree. Additional theoretical work presents a formal proof
that the presented algorithm is a generalization of the (weighted) majority voting. The
proposal was also implemented and examined on the datasets to expose the statistically
significant classification quality improvement.

For the completeness of the results according to the experimental setup (see chap-
ter 3), additional experiments were conducted for the algorithms presented in the two
first articles. The extended results can be found in appendixes A and B.

In the third algorithm design, the approachwas changed to dynamic space partitioning.
The division of the feature space is based on the geometric representation of the trained
model. Every competence region is assigned a label based on the classification of the
region itself and its neighbors. Half of the weight is assigned by the subspace itself and
the weights of the neighbors sum up to the other half. The contributions depend on the
distance between the middle points of the subspaces. Similarly as in the previous works,
statistical tests were conducted and the performance improvement against the referential
majority voting and random forest was found.

The last work presented is similar to the previous in the sense that dynamic division
of feature space is applied and the subspaces have an impact on their neighbors’ classifi-
cation. Several novelties were introduced:

• The average of the training points is used instead of midpoints to define the distance
between the neighbors.
• To improve the effectiveness of the presented method for imbalanced dataset, addi-
tional filtering based on the training points distribution is applied.
• A wider range of neighbor subspaces can impact the weight calculation.
• Bagging is utilized in the evaluation process.
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The new technique is examined using the datasets against both referential methods (ma-
jority voting and random forest) and the previously described. Statistically significant
enhancement is observed against all the algorithms mentioned.

The works follow a consistent experimental setup presented in the chapter 3. Multiple
datasets are used in the evaluation for increased reliability. Several classification quality
measures are calculated because of their diverse intent: ACC, MCC and F-score for bi-
nary and micro– and macro–averaged precision, recall and F-score for other problems.
All of the presented algorithms are implemented in Scala using Spark. For reproducibil-
ity the code is hosted on github and is publicly accessible.

This work was supported in part by the National Science Centre, Poland under the
grant no. 2017/25/B/ST6/01750.
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Appendix A

Extended results for the first
algorithm

This appendix contains extended results for the article presented in the section 4.1. It is
divided regarding quality measures.



A.1. Accuracy

A.1. Accuracy

Table A.1: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for γB = 5 and γω = 5.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.912 0.914 0.914 0.922 0.919 0.902
ap 0.852 0.821 0.802 0.825 0.887 0.859
ba 0.784 0.792 0.727 0.786 0.806 0.757
bi 0.723 0.721 0.724 0.727 0.735 0.728
bu 0.580 0.567 0.599 0.536 0.590 0.534
c 0.759 0.808 0.828 0.696 0.892 0.821
d 0.927 0.931 0.932 0.938 0.939 0.917
e 0.812 0.815 0.786 0.800 0.822 0.800
h 0.721 0.708 0.659 0.748 0.694 0.739
io 0.844 0.842 0.844 0.873 0.870 0.826
ir 0.966 0.965 0.973 0.974 0.952 0.946
me 0.669 0.667 0.697 0.592 0.660 0.630
po 0.916 0.915 0.832 0.924 0.901 0.934
ph 0.775 0.774 0.770 0.785 0.767 0.765
pi 0.736 0.735 0.737 0.768 0.733 0.767
ri 0.737 0.737 0.734 0.735 0.727 0.727
sb 0.707 0.712 0.694 0.697 0.708 0.704
se 0.936 0.935 0.939 0.938 0.934 0.931
tw 0.737 0.737 0.744 0.740 0.734 0.729
te 0.890 0.890 0.890 0.891 0.891 0.891
th 0.979 0.980 0.981 0.978 0.979 0.980
ti 0.781 0.774 0.780 0.787 0.782 0.786
wd 0.909 0.908 0.912 0.888 0.896 0.904
wi 0.939 0.940 0.934 0.936 0.926 0.946
wr 0.819 0.823 0.827 0.819 0.826 0.823
ww 0.837 0.839 0.840 0.831 0.839 0.833
y 0.865 0.868 0.868 0.871 0.861 0.862

rank 3.11 3.18 3.04 2.82 3.04 3.61
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Table A.2: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for γB = 20 and γω = 5.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.912 0.914 0.898 0.906 0.910 0.917
ap 0.852 0.821 0.842 0.865 0.897 0.870
ba 0.784 0.792 0.694 0.767 0.786 0.793
bi 0.723 0.721 0.737 0.721 0.774 0.731
bu 0.580 0.567 0.613 0.564 0.636 0.492
c 0.759 0.808 0.728 0.685 0.763 0.834
d 0.927 0.931 0.928 0.926 0.920 0.918
e 0.812 0.815 0.829 0.806 0.808 0.805
h 0.721 0.708 0.740 0.663 0.788 0.690
io 0.844 0.842 0.885 0.803 0.864 0.787
ir 0.966 0.965 0.977 0.990 0.994 0.958
me 0.669 0.667 0.610 0.714 0.798 0.657
po 0.916 0.915 0.785 0.919 0.904 0.903
ph 0.775 0.774 0.774 0.782 0.763 0.782
pi 0.736 0.735 0.743 0.736 0.760 0.737
ri 0.737 0.737 0.737 0.740 0.741 0.742
sb 0.707 0.712 0.718 0.704 0.715 0.707
se 0.936 0.935 0.943 0.938 0.933 0.941
tw 0.737 0.737 0.733 0.744 0.740 0.729
te 0.890 0.890 0.890 0.888 0.890 0.889
th 0.979 0.980 0.978 0.979 0.979 0.979
ti 0.781 0.774 0.777 0.773 0.771 0.802
wd 0.909 0.908 0.870 0.908 0.911 0.919
wi 0.939 0.940 0.921 0.933 0.938 0.954
wr 0.819 0.823 0.814 0.830 0.818 0.831
ww 0.837 0.839 0.846 0.834 0.844 0.839
y 0.865 0.868 0.853 0.866 0.872 0.864

rank 3.14 3.14 3.36 3.61 2.57 3.07
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Table A.3: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for γB = 20 and γω = 20.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.912 0.914 0.904 0.909 0.894 0.912
ap 0.852 0.821 0.628 0.907 0.846 0.877
ba 0.784 0.792 0.700 0.780 0.789 0.812
bi 0.723 0.721 0.721 0.726 0.700 0.741
bu 0.580 0.567 0.607 0.617 0.576 0.553
c 0.759 0.808 0.727 0.707 0.692 0.675
d 0.927 0.931 0.903 0.929 0.938 0.939
e 0.812 0.815 0.811 0.816 0.820 0.821
h 0.721 0.708 0.658 0.688 0.790 0.726
io 0.844 0.842 0.861 0.793 0.767 0.794
ir 0.966 0.965 0.960 0.982 0.981 0.973
me 0.669 0.667 0.598 0.543 0.660 0.683
po 0.916 0.915 0.687 0.925 0.891 0.929
ph 0.775 0.774 0.778 0.761 0.776 0.770
pi 0.736 0.735 0.707 0.761 0.713 0.731
ri 0.737 0.737 0.750 0.734 0.737 0.740
sb 0.707 0.712 0.707 0.715 0.707 0.716
se 0.936 0.935 0.928 0.932 0.946 0.933
tw 0.737 0.737 0.740 0.730 0.734 0.738
te 0.890 0.890 0.889 0.891 0.888 0.888
th 0.979 0.980 0.980 0.979 0.982 0.977
ti 0.781 0.774 0.774 0.783 0.765 0.785
wd 0.909 0.908 0.903 0.938 0.894 0.919
wi 0.939 0.940 0.953 0.931 0.935 0.947
wr 0.819 0.823 0.807 0.806 0.801 0.813
ww 0.837 0.839 0.831 0.843 0.844 0.846
y 0.865 0.868 0.853 0.866 0.862 0.873

rank 3.04 3.07 4 3.21 3.64 2.43
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Table A.4: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for γB = 10 and γω = 10.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.912 0.914 0.908 0.926 0.911 0.901
ap 0.852 0.821 0.752 0.832 0.849 0.838
ba 0.784 0.792 0.740 0.760 0.774 0.776
bi 0.723 0.721 0.724 0.710 0.729 0.702
bu 0.580 0.567 0.580 0.605 0.588 0.567
c 0.759 0.808 0.731 0.683 0.674 0.734
d 0.927 0.931 0.939 0.931 0.941 0.933
e 0.812 0.815 0.848 0.830 0.812 0.813
h 0.721 0.708 0.734 0.755 0.696 0.727
io 0.844 0.842 0.825 0.847 0.778 0.801
ir 0.966 0.965 0.959 0.976 0.964 0.956
me 0.669 0.667 0.703 0.683 0.818 0.644
po 0.916 0.915 0.741 0.922 0.924 0.934
ph 0.775 0.774 0.779 0.775 0.776 0.773
pi 0.736 0.735 0.756 0.731 0.750 0.731
ri 0.737 0.737 0.737 0.743 0.735 0.735
sb 0.707 0.712 0.718 0.699 0.708 0.690
se 0.936 0.935 0.932 0.923 0.937 0.928
tw 0.737 0.737 0.734 0.737 0.740 0.740
te 0.890 0.890 0.889 0.890 0.890 0.891
th 0.979 0.980 0.982 0.982 0.978 0.978
ti 0.781 0.774 0.788 0.764 0.763 0.783
wd 0.909 0.908 0.915 0.930 0.916 0.900
wi 0.939 0.940 0.948 0.937 0.939 0.948
wr 0.819 0.823 0.830 0.822 0.826 0.824
ww 0.837 0.839 0.841 0.841 0.828 0.830
y 0.865 0.868 0.864 0.867 0.87 0.871

rank 3.07 3.11 2.79 2.93 2.96 3.61
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A.2. Microaveraged F-score

A.2. Microaveraged F-score

Table A.5: Extended microaveraged F-score values and Friedman rank of majority voting, random forest
and integrated classifiers for γB = 5 and γω = 5.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7
aa 0.484 0.500 0.442 0.490 0.482
ap 0.856 0.824 0.819 0.825 0.887
ba 0.676 0.687 0.590 0.680 0.709
bi 0.723 0.721 0.724 0.727 0.735
bu 0.580 0.567 0.599 0.536 0.590
c 0.759 0.808 0.828 0.696 0.892
d 0.927 0.931 0.932 0.938 0.939
e 0.442 0.451 0.408 0.453 0.473
h 0.721 0.708 0.659 0.748 0.694
io 0.844 0.842 0.844 0.873 0.870
ir 0.950 0.948 0.959 0.961 0.928
me 0.644 0.668 0.697 0.592 0.660
po 0.916 0.915 0.832 0.924 0.901
ph 0.775 0.774 0.770 0.785 0.767
pi 0.736 0.735 0.737 0.768 0.733
ri 0.737 0.737 0.734 0.735 0.727
sb 0.707 0.712 0.694 0.697 0.708
se 0.936 0.935 0.939 0.938 0.934
tw 0.737 0.737 0.744 0.740 0.734
te 0.395 0.397 0.396 0.402 0.398
th 0.969 0.970 0.972 0.967 0.968
ti 0.781 0.774 0.780 0.787 0.782
wd 0.909 0.908 0.912 0.888 0.896
wi 0.939 0.940 0.934 0.936 0.926
wr 0.480 0.494 0.481 0.484 0.479
ww 0.464 0.469 0.462 0.460 0.457
y 0.359 0.372 0.359 0.372 0.360

rank 3.43 3.11 3.54 2.79 3.43
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A.2. Microaveraged F-score

Table A.6: Extended microaveraged F-score values and Friedman rank of majority voting, random forest
and integrated classifiers for γB = 20 and γω = 5.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.484 0.500 0.485 0.462 0.472 0.504
ap 0.856 0.824 0.842 0.865 0.920 0.877
ba 0.676 0.687 0.541 0.650 0.679 0.689
bi 0.723 0.721 0.737 0.721 0.774 0.731
bu 0.580 0.567 0.613 0.564 0.636 0.492
c 0.759 0.808 0.728 0.685 0.763 0.834
d 0.927 0.931 0.928 0.926 0.920 0.918
e 0.442 0.451 0.472 0.422 0.503 0.387
h 0.721 0.708 0.740 0.663 0.788 0.69
io 0.844 0.842 0.885 0.803 0.864 0.787
ir 0.950 0.948 0.965 0.985 0.991 0.937
me 0.644 0.668 0.610 0.714 0.798 0.657
po 0.916 0.915 0.785 0.919 0.904 0.903
ph 0.775 0.774 0.774 0.782 0.763 0.782
pi 0.736 0.735 0.743 0.736 0.760 0.737
ri 0.737 0.737 0.737 0.740 0.741 0.742
sb 0.707 0.712 0.718 0.704 0.715 0.707
se 0.936 0.935 0.943 0.938 0.933 0.941
tw 0.737 0.737 0.733 0.744 0.740 0.729
te 0.395 0.397 0.396 0.385 0.396 0.392
th 0.969 0.970 0.967 0.969 0.969 0.968
ti 0.781 0.774 0.777 0.773 0.771 0.802
wd 0.909 0.908 0.870 0.908 0.911 0.919
wi 0.939 0.940 0.921 0.933 0.938 0.954
wr 0.480 0.494 0.468 0.490 0.480 0.494
ww 0.464 0.469 0.463 0.466 0.474 0.457
y 0.359 0.372 0.323 0.346 0.360 0.357

rank 3.29 3.00 3.43 3.71 2.46 3.21

Jędrzej Biedrzycki: Integration of decision trees in geometric space 105



A.2. Microaveraged F-score

Table A.7: Extended microaveraged F-score values and Friedman rank of majority voting, random forest
and integrated classifiers for γB = 20 and γω = 20.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.484 0.500 0.388 0.493 0.476 0.484
ap 0.856 0.824 0.628 0.907 0.846 0.877
ba 0.676 0.687 0.550 0.669 0.684 0.717
bi 0.723 0.721 0.721 0.726 0.700 0.741
bu 0.580 0.567 0.607 0.617 0.576 0.553
c 0.759 0.808 0.727 0.707 0.692 0.675
d 0.927 0.931 0.903 0.929 0.938 0.939
e 0.442 0.451 0.418 0.498 0.449 0.483
h 0.721 0.708 0.658 0.688 0.790 0.726
io 0.844 0.842 0.861 0.793 0.767 0.794
ir 0.950 0.948 0.941 0.973 0.972 0.960
me 0.644 0.668 0.598 0.543 0.660 0.683
po 0.916 0.915 0.687 0.925 0.891 0.929
ph 0.775 0.774 0.778 0.761 0.776 0.770
pi 0.736 0.735 0.707 0.761 0.713 0.731
ri 0.737 0.737 0.750 0.734 0.737 0.740
sb 0.707 0.712 0.707 0.715 0.707 0.716
se 0.936 0.935 0.928 0.932 0.946 0.933
tw 0.737 0.737 0.740 0.730 0.734 0.738
te 0.395 0.397 0.387 0.399 0.385 0.386
th 0.969 0.970 0.970 0.969 0.973 0.965
ti 0.781 0.774 0.774 0.783 0.765 0.785
wd 0.909 0.908 0.903 0.938 0.894 0.919
wi 0.939 0.940 0.953 0.931 0.935 0.947
wr 0.480 0.494 0.449 0.494 0.456 0.497
ww 0.464 0.469 0.472 0.449 0.453 0.481
y 0.359 0.372 0.301 0.363 0.345 0.383

rank 3.18 3.00 3.96 3.11 3.75 2.46
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A.2. Microaveraged F-score

Table A.8: Extended microaveraged F-score values and Friedman rank of majority voting, random forest
and integrated classifiers for γB = 10 and γω = 10.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7
aa 0.484 0.500 0.461 0.510 0.444
ap 0.856 0.824 0.752 0.832 0.849
ba 0.676 0.687 0.610 0.640 0.661
bi 0.723 0.721 0.724 0.710 0.729
bu 0.580 0.567 0.580 0.605 0.588
c 0.759 0.808 0.731 0.683 0.674
d 0.927 0.931 0.939 0.931 0.941
e 0.442 0.451 0.468 0.462 0.442
h 0.721 0.708 0.734 0.755 0.696
io 0.844 0.842 0.825 0.847 0.778
ir 0.950 0.948 0.939 0.964 0.946
me 0.644 0.668 0.703 0.683 0.818
po 0.916 0.915 0.741 0.922 0.924
ph 0.775 0.774 0.779 0.775 0.776
pi 0.736 0.735 0.756 0.731 0.750
ri 0.737 0.737 0.737 0.743 0.735
sb 0.707 0.712 0.718 0.699 0.708
se 0.936 0.935 0.932 0.923 0.937
tw 0.737 0.737 0.734 0.737 0.740
te 0.395 0.397 0.389 0.395 0.394
th 0.969 0.970 0.974 0.973 0.967
ti 0.781 0.774 0.788 0.764 0.763
wd 0.909 0.908 0.915 0.930 0.916
wi 0.939 0.940 0.948 0.937 0.939
wr 0.480 0.494 0.491 0.493 0.478
ww 0.464 0.469 0.443 0.464 0.466
y 0.359 0.372 0.355 0.350 0.381

rank 3.04 2.96 3.00 3.04 3.04
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A.3. Macroaveraged F-score

A.3. Macroaveraged F-score

Table A.9: Extended macroaveraged F-score values and Friedman rank of majority voting, random forest
and integrated classifiers for γB = 5 and γω = 5.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.204 0.196 0.201 0.173 0.172 0.230
ap 0.737 0.688 0.701 0.796 0.805 0.691
ba 0.471 0.477 0.466 0.485 0.498 0.450
bi 0.710 0.708 0.708 0.713 0.720 0.704
bu 0.566 0.555 0.563 0.522 0.585 0.547
c 0.768 0.817 0.848 0.735 0.889 0.830
d 0.927 0.931 0.932 0.937 0.938 0.916
e 0.132 0.171 0.107 0.180 0.110 0.147
h 0.588 0.573 0.513 0.586 0.539 0.631
io 0.833 0.829 0.833 0.849 0.860 0.832
ir 0.951 0.948 0.952 0.960 0.933 0.897
me 0.644 0.667 0.714 0.575 0.655 0.649
po 0.478 0.478 0.470 0.480 0.474 0.483
ph 0.726 0.726 0.722 0.742 0.717 0.717
pi 0.710 0.705 0.707 0.742 0.700 0.739
ri 0.748 0.746 0.743 0.745 0.740 0.738
sb 0.684 0.691 0.673 0.672 0.686 0.682
se 0.491 0.487 0.484 0.484 0.531 0.482
tw 0.737 0.737 0.745 0.740 0.734 0.729
te 0.390 0.390 0.395 0.388 0.388 0.385
th 0.830 0.829 0.825 0.824 0.834 0.829
ti 0.745 0.733 0.739 0.745 0.734 0.744
wd 0.902 0.901 0.902 0.876 0.890 0.894
wi 0.933 0.934 0.924 0.931 0.923 0.936
wr 0.221 0.244 0.227 0.241 0.217 0.204
ww 0.173 0.191 0.184 0.186 0.185 0.218
y 0.235 0.242 0.209 0.220 0.240 0.227

rank 2.89 3.00 3.46 3.07 3.11 3.61
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A.3. Macroaveraged F-score

Table A.10: Extendedmacroaveraged F-score values and Friedman rank ofmajority voting, random forest
and integrated classifiers for γB = 20 and γω = 5.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.204 0.196 0.262 0.211 0.223 0.185
ap 0.737 0.688 0.777 0.746 0.833 0.755
ba 0.471 0.477 0.442 0.464 0.478 0.481
bi 0.710 0.708 0.720 0.702 0.765 0.717
bu 0.566 0.555 0.605 0.537 0.617 0.484
c 0.768 0.817 0.726 0.669 0.774 0.832
d 0.927 0.931 0.929 0.927 0.919 0.919
e 0.132 0.171 0.107 0.130 0.209 0.092
h 0.588 0.573 0.613 0.536 0.648 0.535
io 0.833 0.829 0.875 0.795 0.858 0.780
ir 0.951 0.948 0.966 0.983 0.992 0.942
me 0.644 0.667 0.601 0.722 0.794 0.646
po 0.478 0.478 0.459 0.479 0.475 0.474
ph 0.726 0.726 0.720 0.737 0.710 0.732
pi 0.710 0.705 0.709 0.707 0.752 0.714
ri 0.748 0.746 0.745 0.747 0.753 0.749
sb 0.684 0.691 0.697 0.677 0.687 0.683
se 0.491 0.487 0.485 0.516 0.531 0.485
tw 0.737 0.737 0.733 0.744 0.740 0.729
te 0.390 0.390 0.399 0.391 0.386 0.407
th 0.830 0.829 0.808 0.840 0.842 0.841
ti 0.745 0.733 0.737 0.742 0.728 0.752
wd 0.902 0.901 0.864 0.896 0.903 0.913
wi 0.933 0.934 0.916 0.925 0.934 0.948
wr 0.221 0.244 0.224 0.241 0.227 0.225
ww 0.173 0.191 0.182 0.188 0.192 0.175
y 0.235 0.242 0.193 0.212 0.244 0.225

rank 3.50 3.39 3.75 3.54 2.07 3.46

Jędrzej Biedrzycki: Integration of decision trees in geometric space 109
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Table A.11: Extendedmacroaveraged F-score values and Friedman rank ofmajority voting, random forest
and integrated classifiers for γB = 20 and γω = 20.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.204 0.196 0.195 0.201 0.246 0.195
ap 0.737 0.688 0.514 0.764 0.748 0.681
ba 0.471 0.477 0.481 0.463 0.475 0.493
bi 0.710 0.708 0.705 0.720 0.686 0.734
bu 0.566 0.555 0.616 0.609 0.590 0.543
c 0.768 0.817 0.748 0.724 0.667 0.669
d 0.927 0.931 0.904 0.928 0.938 0.937
e 0.132 0.171 0.143 0.165 0.188 0.114
h 0.588 0.573 0.597 0.542 0.638 0.617
io 0.833 0.829 0.847 0.768 0.775 0.784
ir 0.951 0.948 0.942 0.971 0.973 0.961
me 0.644 0.667 0.705 0.649 0.670 0.698
po 0.478 0.478 0.484 0.480 0.471 0.482
ph 0.726 0.726 0.729 0.710 0.728 0.715
pi 0.710 0.705 0.708 0.738 0.691 0.709
ri 0.748 0.746 0.761 0.746 0.750 0.749
sb 0.684 0.691 0.686 0.695 0.684 0.690
se 0.491 0.487 0.544 0.505 0.486 0.483
tw 0.737 0.737 0.740 0.731 0.734 0.738
te 0.390 0.390 0.392 0.412 0.380 0.389
th 0.830 0.829 0.836 0.821 0.864 0.817
ti 0.745 0.733 0.744 0.730 0.712 0.741
wd 0.902 0.901 0.895 0.933 0.888 0.913
wi 0.933 0.934 0.947 0.927 0.927 0.943
wr 0.221 0.244 0.235 0.285 0.230 0.264
ww 0.173 0.191 0.235 0.176 0.187 0.176
y 0.235 0.242 0.193 0.236 0.201 0.216

rank 3.50 3.36 2.86 3.25 3.57 3.32
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Table A.12: Extendedmacroaveraged F-score values and Friedman rank ofmajority voting, random forest
and integrated classifiers for γB = 10 and γω = 10.

ΨMV ΨRF Ψ0.0 Ψ0.3 Ψ0.7 Ψ1.0

aa 0.204 0.196 0.232 0.178 0.180 0.236
ap 0.737 0.688 0.735 0.787 0.836 0.607
ba 0.471 0.477 0.496 0.459 0.459 0.461
bi 0.710 0.708 0.711 0.697 0.710 0.696
bu 0.566 0.555 0.547 0.593 0.571 0.569
c 0.768 0.817 0.767 0.688 0.683 0.752
d 0.927 0.931 0.939 0.931 0.941 0.933
e 0.132 0.171 0.148 0.139 0.104 0.201
h 0.588 0.573 0.629 0.642 0.542 0.613
io 0.833 0.829 0.818 0.825 0.759 0.779
ir 0.951 0.948 0.950 0.962 0.945 0.950
me 0.644 0.667 0.731 0.646 0.815 0.607
po 0.478 0.478 0.494 0.479 0.480 0.483
ph 0.726 0.726 0.731 0.725 0.728 0.722
pi 0.710 0.705 0.726 0.710 0.717 0.704
ri 0.748 0.746 0.747 0.755 0.746 0.741
sb 0.684 0.691 0.696 0.679 0.679 0.671
se 0.491 0.487 0.561 0.509 0.484 0.481
tw 0.737 0.737 0.734 0.737 0.740 0.740
te 0.390 0.390 0.396 0.377 0.385 0.388
th 0.830 0.829 0.836 0.830 0.814 0.828
ti 0.745 0.733 0.758 0.726 0.728 0.742
wd 0.902 0.901 0.912 0.927 0.907 0.892
wi 0.933 0.934 0.943 0.930 0.934 0.944
wr 0.221 0.244 0.280 0.290 0.212 0.237
ww 0.173 0.191 0.176 0.178 0.188 0.170
y 0.235 0.242 0.260 0.247 0.257 0.240

rank 3.25 3.21 2.11 3.11 3.50 3.79
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Appendix B

Extended results for the second
algorithm

This appendix contains extended results for the article presented in the section 4.2. It is
divided regarding quality measures.



B.1. No displacements

B.1. No displacements

B.1.1. Accuracy

Table B.1: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for proportional weighting function.

ΨMV ΨRF Ψvol
wMV Ψvol

20 Ψvol
40 Ψvol

60
ap 0.816 0.805 0.889 0.829 0.668 0.829
ba 0.900 0.909 0.945 0.951 0.720 0.951
bi 0.726 0.724 0.730 0.727 0.704 0.727
bu 0.558 0.520 0.541 0.628 0.606 0.618
c 0.830 0.821 0.864 0.909 0.773 0.909
d 0.934 0.924 0.935 0.952 0.892 0.952
e 0.604 0.604 0.580 0.580 0.580 0.580
h 0.678 0.701 0.694 0.696 0.649 0.696
io 0.840 0.864 0.818 0.818 0.834 0.818
me 0.643 0.591 0.691 0.655 0.577 0.655
po 0.929 0.929 0.907 0.907 0.719 0.907
ph 0.771 0.774 0.775 0.763 0.741 0.763
pi 0.753 0.740 0.778 0.739 0.626 0.739
ri 0.732 0.734 0.739 0.739 0.706 0.739
sb 0.717 0.716 0.705 0.395 0.705 0.395
se 0.929 0.929 0.929 0.929 0.904 0.929
tw 0.740 0.742 0.744 0.752 0.719 0.752
te 0.888 0.881 0.852 0.882 0.902 0.882
th 0.981 0.985 0.981 0.689 0.971 0.689
ti 0.784 0.777 0.801 0.808 0.790 0.808
wd 0.903 0.903 0.879 0.897 0.869 0.897
wi 0.946 0.955 0.954 0.948 0.948 0.948
wr 0.567 0.594 0.558 0.567 0.544 0.567
ww 0.630 0.627 0.637 0.642 0.626 0.642
y 0.683 0.648 0.611 0.630 0.509 0.630

rank 2.43 2.46 2.21 2.07 3.68 2.11
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B.1. No displacements

Table B.2: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for inversely proportional weighting function.

ΨMV ΨRF Ψinv
wMV Ψinv

20 Ψinv
40 Ψinv

60
ap 0.816 0.805 0.864 0.829 0.864 0.829
ba 0.900 0.909 0.951 0.951 0.951 0.951
bi 0.726 0.724 0.727 0.727 0.727 0.727
bu 0.558 0.520 0.562 0.605 0.542 0.605
c 0.830 0.821 0.864 0.909 0.818 0.909
d 0.934 0.924 0.949 0.946 0.949 0.946
e 0.604 0.604 0.580 0.580 0.580 0.580
h 0.678 0.701 0.683 0.696 0.683 0.696
io 0.840 0.864 0.818 0.818 0.818 0.818
me 0.643 0.591 0.726 0.691 0.726 0.691
po 0.929 0.929 0.907 0.907 0.907 0.907
ph 0.771 0.774 0.779 0.773 0.779 0.773
pi 0.753 0.740 0.744 0.729 0.724 0.727
ri 0.732 0.734 0.738 0.736 0.738 0.736
sb 0.717 0.716 0.394 0.404 0.394 0.404
se 0.929 0.929 0.929 0.930 0.929 0.930
tw 0.740 0.742 0.741 0.748 0.741 0.748
te 0.888 0.881 0.838 0.869 0.838 0.869
th 0.981 0.985 0.093 0.960 0.093 0.960
ti 0.784 0.777 0.808 0.808 0.808 0.808
wd 0.903 0.903 0.865 0.878 0.865 0.878
wi 0.946 0.955 0.948 0.948 0.948 0.948
wr 0.567 0.594 0.561 0.559 0.561 0.554
ww 0.630 0.627 0.641 0.642 0.641 0.642
y 0.683 0.648 0.681 0.666 0.681 0.666

rank 2.21 2.29 2.07 1.96 2.39 2.04
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B.1. No displacements

B.1.2. F-score

Table B.3: Extended F-score values and Friedman rank of majority voting, random forest and integrated
classifiers for proportional weighting function.

ΨMV ΨRF Ψvol
wMV Ψvol

20 Ψvol
40 Ψvol

60
ap 0.884 0.880 0.935 0.896 0.773 0.896
ba 0.946 0.952 0.971 0.975 0.836 0.975
bi 0.771 0.770 0.774 0.768 0.744 0.768
bu 0.627 0.607 0.602 0.702 0.682 0.692
c 0.810 0.783 0.895 0.933 0.813 0.933
d 0.926 0.914 0.922 0.943 0.870 0.943
e 0.000 0.000 0.000 0.000 0.000 0.000
h 0.181 0.285 0.316 0.278 0.229 0.278
io 0.756 0.790 0.595 0.629 0.751 0.629
me 0.626 0.609 0.675 0.653 0.556 0.653
po 0.963 0.963 0.951 0.951 0.833 0.951
ph 0.609 0.613 0.622 0.582 0.604 0.582
pi 0.823 0.808 0.843 0.813 0.721 0.813
ri 0.767 0.770 0.759 0.773 0.741 0.773
sb 0.795 0.792 0.786 0.000 0.787 0.000
se 0.000 0.000 0.000 0.000 0.146 0.000
tw 0.746 0.741 0.739 0.755 0.719 0.755
te 0.917 0.915 0.911 0.911 0.922 0.911
th 0.811 0.853 0.822 0.190 0.740 0.190
ti 0.517 0.543 0.594 0.563 0.564 0.563
wd 0.920 0.920 0.904 0.919 0.889 0.919
wi 0.923 0.938 0.927 0.918 0.920 0.918
wr 0.502 0.533 0.459 0.515 0.516 0.515
ww 0.462 0.439 0.523 0.493 0.471 0.493
y 0.764 0.709 0.744 0.726 0.632 0.726

rank 2.50 2.54 2.29 2.46 3.32 2.50
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B.1. No displacements

Table B.4: Extended F-score values and Friedman rank of majority voting, random forest and integrated
classifiers for inversely proportional weighting function.

ΨMV ΨRF Ψinv
wMV Ψinv

20 Ψinv
40 Ψinv

60
ap 0.884 0.880 0.919 0.896 0.919 0.896
ba 0.946 0.952 0.975 0.975 0.975 0.975
bi 0.771 0.770 0.768 0.768 0.768 0.768
bu 0.627 0.607 0.652 0.699 0.632 0.699
c 0.810 0.783 0.895 0.933 0.851 0.933
d 0.926 0.914 0.941 0.938 0.941 0.938
e 0.000 0.000 0.000 0.000 0.000 0.000
h 0.181 0.285 0.229 0.278 0.229 0.278
io 0.756 0.790 0.629 0.629 0.629 0.629
me 0.626 0.609 0.712 0.675 0.712 0.675
po 0.963 0.963 0.951 0.951 0.951 0.951
ph 0.609 0.613 0.634 0.613 0.634 0.613
pi 0.823 0.808 0.805 0.797 0.796 0.803
ri 0.767 0.770 0.762 0.770 0.762 0.770
sb 0.795 0.792 0.000 0.030 0.000 0.030
se 0.000 0.000 0.000 0.031 0.000 0.031
tw 0.746 0.741 0.740 0.749 0.740 0.749
te 0.917 0.915 0.884 0.905 0.884 0.905
th 0.811 0.853 0.109 0.554 0.109 0.554
ti 0.517 0.543 0.563 0.563 0.563 0.563
wd 0.920 0.920 0.894 0.903 0.894 0.903
wi 0.923 0.938 0.918 0.918 0.918 0.918
wr 0.502 0.533 0.516 0.494 0.559 0.503
ww 0.462 0.439 0.520 0.497 0.520 0.497
y 0.764 0.709 0.783 0.764 0.783 0.764

rank 2.21 2.18 2.18 2.07 2.29 1.96
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B.1.3. Area under curve

Table B.5: Extended AUC values and Friedman rank of majority voting, random forest and integrated
classifiers for proportional weighting function.

ΨMV ΨRF Ψvol
wMV Ψvol

20 Ψvol
40 Ψvol

60
ap 0.722 0.671 0.729 0.691 0.590 0.691
ba 0.492 0.500 0.500 0.500 0.381 0.500
bi 0.726 0.725 0.726 0.728 0.710 0.728
bu 0.547 0.512 0.533 0.603 0.584 0.594
c 0.848 0.865 0.875 0.906 0.804 0.906
d 0.936 0.927 0.933 0.955 0.889 0.955
e 0.500 0.500 0.500 0.500 0.500 0.500
h 0.513 0.553 0.575 0.569 0.536 0.569
io 0.809 0.841 0.743 0.751 0.819 0.751
me 0.654 0.597 0.733 0.671 0.567 0.671
po 0.500 0.500 0.500 0.500 0.492 0.500
ph 0.720 0.722 0.727 0.701 0.714 0.701
pi 0.709 0.706 0.731 0.693 0.587 0.693
ri 0.732 0.734 0.739 0.740 0.708 0.740
sb 0.668 0.669 0.654 0.499 0.654 0.499
se 0.499 0.499 0.500 0.500 0.539 0.500
tw 0.740 0.742 0.745 0.752 0.720 0.752
te 0.862 0.813 0.706 0.842 0.888 0.842
th 0.900 0.942 0.915 0.648 0.845 0.648
ti 0.674 0.685 0.712 0.695 0.694 0.695
wd 0.902 0.898 0.876 0.890 0.878 0.890
wi 0.941 0.949 0.945 0.937 0.940 0.937
wr 0.569 0.597 0.559 0.569 0.543 0.569
ww 0.592 0.585 0.614 0.607 0.591 0.607
y 0.643 0.641 0.528 0.581 0.459 0.581

rank 2.5 2.46 2.14 2.25 3.36 2.29
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Table B.6: Extended AUC values and Friedman rank of majority voting, random forest and integrated
classifiers for inversely proportional weighting function.

ΨMV ΨRF Ψinv
wMV Ψinv

20 Ψinv
40 Ψinv

60
ap 0.722 0.671 0.714 0.691 0.714 0.691
ba 0.492 0.500 0.500 0.500 0.500 0.500
bi 0.726 0.725 0.728 0.728 0.728 0.728
bu 0.547 0.512 0.529 0.563 0.513 0.563
c 0.848 0.865 0.875 0.906 0.844 0.906
d 0.936 0.927 0.953 0.949 0.953 0.949
e 0.500 0.500 0.500 0.500 0.500 0.500
h 0.513 0.553 0.551 0.569 0.551 0.569
io 0.809 0.841 0.751 0.751 0.751 0.751
me 0.654 0.597 0.758 0.733 0.758 0.733
po 0.500 0.500 0.500 0.500 0.500 0.500
ph 0.720 0.722 0.736 0.721 0.736 0.721
pi 0.709 0.706 0.735 0.707 0.696 0.685
ri 0.732 0.734 0.740 0.738 0.740 0.738
sb 0.668 0.669 0.498 0.506 0.498 0.506
se 0.499 0.499 0.500 0.508 0.500 0.508
tw 0.740 0.742 0.742 0.748 0.742 0.748
te 0.862 0.813 0.816 0.834 0.816 0.834
th 0.900 0.942 0.502 0.710 0.502 0.710
ti 0.674 0.685 0.695 0.695 0.695 0.695
wd 0.902 0.898 0.858 0.879 0.858 0.879
wi 0.941 0.949 0.937 0.937 0.937 0.937
wr 0.569 0.597 0.564 0.560 0.557 0.553
ww 0.592 0.585 0.615 0.608 0.615 0.608
y 0.643 0.641 0.579 0.587 0.579 0.587

rank 2.18 2.29 2.00 1.93 2.36 2.11
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B.2. 5 displacements

B.2. 5 displacements

B.2.1. Accuracy

Table B.7: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for proportional weighting function.

ΨMV ΨRF Ψvol
wMV Ψvol

20 Ψvol
40 Ψvol

60
ap 0.816 0.805 0.835 0.810 0.692 0.810
ba 0.900 0.909 0.885 0.848 0.696 0.848
bi 0.726 0.724 0.718 0.725 0.694 0.725
bu 0.558 0.520 0.472 0.517 0.563 0.524
c 0.830 0.821 0.867 0.750 0.700 0.750
d 0.934 0.924 0.910 0.926 0.908 0.926
e 0.604 0.604 0.628 0.628 0.628 0.628
h 0.678 0.701 0.717 0.671 0.566 0.671
io 0.840 0.864 0.795 0.745 0.808 0.745
me 0.643 0.591 0.569 0.611 0.669 0.611
po 0.929 0.929 0.952 0.952 0.739 0.952
ph 0.771 0.774 0.765 0.764 0.748 0.764
pi 0.753 0.740 0.770 0.766 0.663 0.766
ri 0.732 0.734 0.736 0.730 0.720 0.730
sb 0.717 0.716 0.686 0.520 0.704 0.520
se 0.929 0.929 0.932 0.930 0.902 0.930
tw 0.740 0.742 0.729 0.733 0.714 0.733
te 0.888 0.881 0.870 0.874 0.923 0.874
th 0.981 0.985 0.969 0.818 0.977 0.818
ti 0.784 0.777 0.771 0.759 0.759 0.759
wd 0.903 0.903 0.909 0.916 0.796 0.916
wi 0.946 0.955 0.935 0.945 0.945 0.945
wr 0.567 0.594 0.585 0.563 0.556 0.561
ww 0.630 0.627 0.622 0.609 0.543 0.609
y 0.683 0.648 0.735 0.720 0.571 0.720

rank 1.96 2.18 2.54 3.00 3.54 2.96
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Table B.8: Extended ACC values and Friedman rank of majority voting, random forest and integrated
classifiers for inversely proportional weighting function.

ΨMV ΨRF Ψinv
wMV Ψinv

20 Ψinv
40 Ψinv

60
ap 0.816 0.805 0.816 0.804 0.816 0.804
ba 0.900 0.909 0.848 0.848 0.848 0.848
bi 0.726 0.724 0.725 0.725 0.725 0.725
bu 0.558 0.520 0.518 0.531 0.517 0.531
c 0.830 0.821 0.773 0.750 0.773 0.750
d 0.934 0.924 0.924 0.925 0.924 0.925
e 0.604 0.604 0.628 0.628 0.628 0.628
h 0.678 0.701 0.673 0.668 0.673 0.668
io 0.840 0.864 0.755 0.752 0.755 0.752
me 0.643 0.591 0.594 0.611 0.594 0.611
po 0.929 0.929 0.952 0.952 0.952 0.952
ph 0.771 0.774 0.760 0.767 0.760 0.767
pi 0.753 0.740 0.769 0.771 0.762 0.772
ri 0.732 0.734 0.729 0.731 0.729 0.731
sb 0.717 0.716 0.418 0.615 0.418 0.615
se 0.929 0.929 0.930 0.930 0.930 0.930
tw 0.740 0.742 0.729 0.733 0.729 0.733
te 0.888 0.881 0.844 0.884 0.844 0.884
th 0.981 0.985 0.475 0.933 0.475 0.933
ti 0.784 0.777 0.759 0.759 0.759 0.759
wd 0.903 0.903 0.907 0.919 0.907 0.919
wi 0.946 0.955 0.945 0.945 0.945 0.945
wr 0.567 0.594 0.572 0.564 0.567 0.561
ww 0.630 0.627 0.612 0.612 0.612 0.612
y 0.683 0.648 0.703 0.712 0.703 0.712

rank 1.75 2.00 2.64 2.36 2.75 2.36
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B.2.2. F-score

Table B.9: Extended F-score values and Friedman rank of majority voting, random forest and integrated
classifiers for proportional weighting function.

ΨMV ΨRF Ψvol
wMV Ψvol

20 Ψvol
40 Ψvol

60
ap 0.884 0.880 0.898 0.876 0.768 0.876
ba 0.946 0.952 0.939 0.917 0.820 0.917
bi 0.771 0.770 0.773 0.774 0.729 0.774
bu 0.627 0.607 0.580 0.579 0.538 0.579
c 0.810 0.783 0.889 0.690 0.625 0.690
d 0.926 0.914 0.903 0.920 0.898 0.920
e 0.000 0.000 0.000 0.000 0.000 0.000
h 0.181 0.285 0.235 0.143 0.251 0.143
io 0.756 0.790 0.643 0.542 0.736 0.542
me 0.626 0.609 0.557 0.577 0.650 0.577
po 0.963 0.963 0.975 0.975 0.848 0.975
ph 0.609 0.613 0.618 0.604 0.559 0.604
pi 0.823 0.808 0.835 0.835 0.753 0.835
ri 0.767 0.770 0.765 0.766 0.762 0.766
sb 0.795 0.792 0.777 0.314 0.786 0.314
se 0.000 0.000 0.000 0.000 0.075 0.000
tw 0.746 0.741 0.728 0.741 0.714 0.741
te 0.917 0.915 0.901 0.902 0.938 0.902
th 0.811 0.853 0.657 0.451 0.771 0.451
ti 0.517 0.543 0.546 0.472 0.472 0.472
wd 0.920 0.920 0.920 0.926 0.818 0.926
wi 0.923 0.938 0.917 0.927 0.923 0.927
wr 0.502 0.533 0.502 0.500 0.542 0.496
ww 0.462 0.439 0.474 0.423 0.365 0.423
y 0.764 0.709 0.812 0.776 0.600 0.776

rank 2.00 2.04 2.39 2.89 3.25 2.96
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Table B.10: Extended F-score values and Friedman rank of majority voting, random forest and integrated
classifiers for inversely proportional weighting function.

ΨMV ΨRF Ψinv
wMV Ψinv

20 Ψinv
40 Ψinv

60
ap 0.884 0.880 0.881 0.871 0.881 0.871
ba 0.946 0.952 0.917 0.917 0.917 0.917
bi 0.771 0.770 0.774 0.774 0.774 0.774
bu 0.627 0.607 0.586 0.586 0.584 0.586
c 0.810 0.783 0.724 0.686 0.724 0.686
d 0.926 0.914 0.918 0.919 0.918 0.919
e 0.000 0.000 0.000 0.000 0.000 0.000
h 0.181 0.285 0.143 0.133 0.143 0.133
io 0.756 0.790 0.534 0.547 0.534 0.547
me 0.626 0.609 0.570 0.573 0.570 0.573
po 0.963 0.963 0.975 0.975 0.975 0.975
ph 0.609 0.613 0.598 0.610 0.598 0.610
pi 0.823 0.808 0.836 0.838 0.832 0.838
ri 0.767 0.770 0.764 0.767 0.764 0.767
sb 0.795 0.792 0.045 0.563 0.045 0.563
se 0.000 0.000 0.007 0.000 0.007 0.000
tw 0.746 0.741 0.738 0.742 0.738 0.742
te 0.917 0.915 0.877 0.910 0.877 0.910
th 0.811 0.853 0.277 0.550 0.277 0.550
ti 0.517 0.543 0.472 0.472 0.472 0.472
wd 0.920 0.920 0.919 0.929 0.919 0.929
wi 0.923 0.938 0.927 0.927 0.927 0.927
wr 0.502 0.533 0.510 0.498 0.505 0.491
ww 0.462 0.439 0.422 0.425 0.422 0.425
y 0.764 0.709 0.758 0.768 0.758 0.768

rank 1.75 1.86 2.68 2.29 2.79 2.32
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B.2.3. Area under curve

Table B.11: Extended AUC values and Friedman rank of majority voting, random forest and integrated
classifiers for proportional weighting function.

ΨMV ΨRF Ψvol
wMV Ψvol

20 Ψvol
40 Ψvol

60
ap 0.722 0.671 0.712 0.757 0.745 0.757
ba 0.492 0.500 0.500 0.484 0.395 0.484
bi 0.726 0.725 0.711 0.725 0.724 0.725
bu 0.547 0.512 0.483 0.531 0.568 0.537
c 0.848 0.865 0.875 0.790 0.771 0.790
d 0.936 0.927 0.909 0.928 0.909 0.928
e 0.500 0.500 0.500 0.500 0.500 0.500
h 0.513 0.553 0.537 0.476 0.468 0.476
io 0.809 0.841 0.737 0.679 0.787 0.679
me 0.654 0.597 0.564 0.616 0.699 0.616
po 0.500 0.500 0.500 0.500 0.447 0.500
ph 0.720 0.722 0.729 0.719 0.686 0.719
pi 0.709 0.706 0.728 0.714 0.618 0.714
ri 0.732 0.734 0.734 0.727 0.717 0.727
sb 0.668 0.669 0.632 0.563 0.655 0.563
se 0.499 0.499 0.500 0.499 0.511 0.499
tw 0.740 0.742 0.728 0.733 0.714 0.733
te 0.862 0.813 0.850 0.850 0.911 0.850
th 0.900 0.942 0.813 0.744 0.919 0.744
ti 0.674 0.685 0.683 0.652 0.652 0.652
wd 0.902 0.898 0.910 0.917 0.794 0.917
wi 0.941 0.949 0.943 0.946 0.940 0.946
wr 0.569 0.597 0.592 0.564 0.558 0.562
ww 0.592 0.585 0.590 0.570 0.511 0.570
y 0.643 0.641 0.678 0.705 0.580 0.705

rank 2.18 2.14 2.46 2.79 3.21 2.79
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Table B.12: Extended AUC values and Friedman rank of majority voting, random forest and integrated
classifiers for inversely proportional weighting function.

ΨMV ΨRF Ψinv
wMV Ψinv

20 Ψinv
40 Ψinv

60
ap 0.722 0.671 0.761 0.753 0.761 0.753
ba 0.492 0.500 0.484 0.484 0.484 0.484
bi 0.726 0.725 0.725 0.725 0.725 0.725
bu 0.547 0.512 0.528 0.543 0.528 0.543
c 0.848 0.865 0.806 0.789 0.806 0.789
d 0.936 0.927 0.926 0.928 0.926 0.928
e 0.500 0.500 0.500 0.500 0.500 0.500
h 0.513 0.553 0.477 0.471 0.477 0.471
io 0.809 0.841 0.682 0.685 0.682 0.685
me 0.654 0.597 0.603 0.616 0.603 0.616
po 0.500 0.500 0.500 0.500 0.500 0.500
ph 0.720 0.722 0.714 0.722 0.714 0.722
pi 0.709 0.706 0.720 0.720 0.710 0.721
ri 0.732 0.734 0.726 0.728 0.726 0.728
sb 0.668 0.669 0.505 0.618 0.505 0.618
se 0.499 0.499 0.501 0.499 0.501 0.499
tw 0.740 0.742 0.729 0.733 0.729 0.733
te 0.862 0.813 0.811 0.861 0.811 0.861
th 0.900 0.942 0.608 0.815 0.608 0.815
ti 0.674 0.685 0.652 0.652 0.652 0.652
wd 0.902 0.898 0.907 0.918 0.907 0.918
wi 0.941 0.949 0.946 0.946 0.946 0.946
wr 0.569 0.597 0.574 0.566 0.568 0.562
ww 0.592 0.585 0.572 0.572 0.572 0.572
y 0.643 0.641 0.688 0.698 0.688 0.698

rank 1.86 1.93 2.57 2.29 2.68 2.29
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Abstract

Popularity of artificial intelligence and machine learning methods is still growing and
can be found in fields like cybersecurity, optimization, finance, medicine and healthcare,
law, media or education.

Supervised learning is one of the methods of machine learning. The classification
algorithms build a model, also called a classifier, with the use of labelled data building
up the training set. The created model is then utilized to label the new, not yet labelled
objects.

An important role among classification algorithms play ensemble classifiers. It was
noticed that utilizing multiple models forming a system leads to improvement in classi-
fication performance.

Research problem

One such approach to classifier integration is by using their geometric representation
expressed by the decision boundaries. Utilizing decision boundaries, which are the result
of classifier training, allows for defining novel algorithms for model integration. These
algorithms do not use the labels’ probability vector or the labels themself.

In the dissertation, four novel algorithms using decision boundaries produced by de-
cision trees are proposed.

The main goal of the study was to broaden the knowledge of diverse multiclassifier
system creation methods based on their geometric features, proposal of new algorithms
and their implementation as well as evaluation against referential techniques: majority
voting and random forest. The research hypothesis of this dissertation is formulated as
follows.



Abstract

Research hypothesis. Utilization of trained decision trees’ decision boundaries al-
lows for building an ensemble of classifiers with a greater value of performance qual-
ity measure than the multiclassifier system like random forest or majority voting using
the same set of trained decision trees.

Designed algorithms of classifier ensembling were compared to other ensemble tech-
niques: (weighted) majority voting and random forest. The following classification
performance measures were used to prove the research hypothesis: accuracy (ACC),
Matthews Correlation Coefficient (MCC) and F-score for binary classification datasets
and accuracy, precision, recall and F-score (three latter both micro– and macroaver-
aged) for the other problems. The experimental studies were performed using testing,
open–source datasets from UCI and KEEL platforms. The proposed research hypothesis
was verified by non–parametric statistical tests involving diverse classification quality
measures.

Four algorithms for decision tree integration employing their geometric representation
were developed, implemented and evaluated. Statistical analysis of the results obtained
for the datasets mentioned indicates that the proposed methods outperform in many cases
the referential integration techniques. In the dissertation it was proven, that the proposed
algorithm is a generalization of weighted majority voting.

Achieved results

The first integration algorithm utilizes two distances in the feature space used as the
coordinate system with the classification boundaries of trained classifiers projected. The
first distance is calculated from the centroid and the second – from the decision boundary.
The object under test is classified by the model of the trained decision tree itself. The
centroid of the corresponding class is taken to compute the distance. Both distances were
mapped with the Gaussian function. Several parameter values of the mapping function
were studied. The additional mapping serves two purposes:

• The distances are normalized to the unit range: [0, 1].
• The calculated value reflects the contribution of the distance from the decision bound-
ary to the weight value.

The final decision was computed as the class label for which the linear combination
of both distances is maximal. Several possible distribution parameters were examined
in order to find the highest quality measure. The statistical tests indicated the significant
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improvement in the classification quality measures: ACC and MCC of the presented
technique in comparison with the referential ensemble methods.

The second proposal is an algorithm where the ensemble model is produced using
the static space division. The feature space is split into equal subspaces, with the same
number of divisions along every axis, whose label is determined by the classification
of the middle point. For the particular label, the weight is computed for the subspaces
based on the volume of classification regions. Classification regions are the cuboids
with the highest volume spanning over the points of a single decision tree classification.
Additional conference article presents a theoretical proof that the presented algorithm is
the generalization of the weighted majority voting. The implementation was examined
using the datasets. Statistically significant classification quality improvement was found,
especially in the quality measures like ACC and MCC.

In the third method proposed, dynamic space partitioning was employed. The geo-
metric representation of the trained model determines the division of the feature space.
For every label, the weight is calculated based on the classification of the region itself
and its neighbors. Half of the weight is assigned from the subspace itself and the weights
of its neighbors sum up to the other half. The weights depend on the distances between
the middle points of the neighboring subspaces. The statistical analysis was conducted
and the performance improvement expressed with microaveraged precision, recall and
F-score in comparison with the referential majority voting and random forest was found.

In the last work, similarly as in the previous one, dynamic division of feature space
is applied and the subspaces’ classification is influenced by the surrounding subspaces.
However, additional improvements were introduced:

• Mean of the training points is used instead of the geometric middle point of the sub-
space in the definition of the distance between the regions. The distance between the
averages is taken as the distance between the subspaces.
• Only the subspaces containing the objects among which the ones with the minor la-
bel made up at least 5% of all the objects in that subspace were taken during weight
calculation.
• A wider range of neighbor subspaces is taken in case the filtering rejects the whole
neighbor ring. The procedure is conducted until a non–empty ring is found.

The discussed algorithm was tested using the datasets mentioned against both referen-
tial methods (majority voting and random forest) and the previously presented, original
algorithm. Statistically significant improvement is observed in the quality performance
against all the reference methods. In particular for the following measures: accuracy,
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micro– and macro–averaged F-score statistically significant difference was found, which
proves the research hypothesis.

A consistent experimental setup is followed in all the studies. Comprehen-
sive evaluation on multiple benchmarking datasets was conducted. Several clas-
sification quality measures are computed to account for diverse datasets’ fea-
tures, like imbalance ratio: ACC, MCC and F-score for binary and micro–
and macro–averaged precision, recall and F-score for other problems. Spark
with Scala was harnessed to implement every presented algorithm. The source
code is hosted and publicly available on github for other researchers working on
machine learning problems to verify: https://github.com/TAndronicus/dtree-merge,
https://github.com/TAndronicus/dtree-merge-scoring, https://github.com/TAndronicus/
dynamic-dtree, https://github.com/TAndronicus/dynamic-ring.

This work was supported in part by the National Science Centre, Poland under the
grant no. 2017/25/B/ST6/01750.
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Streszczenie

Popularność wykorzystania metod sztucznej inteligencji oraz uczenia maszynowego jest
stale rosnąca i zauważalna w takich dziedzinach jak cyberbezpieczeństwo, optymaliza-
cja, finanse, medycyna, opieka zdrowotna, prawo, media czy też edukacja.

Klasyfikacja nadzorowana jest jedną z metod uczenia maszynowego. Algorytmy
klasyfikacji nadzorowanej budują pewien model, który nazywany jest też klasyfika-
torem, z wykorzystaniem poetykietowanych danych tworzących zbiór uczący. Utwo-
rzony model jest następnie wykorzystywany do nadawania etykiet nowym, niepoetykie-
towanym wcześniej obiektom.

Ważną rolę wśród algorytmów klasyfikacji nadzorowanej odgrywają klasyfikatory
łączone. Zauważono, że użycie wielu modeli, które tworzą pewien zespoł prowadzi
do poprawienia jakości klasyfikacji.

Problem badawczy

Jedno z podejść do łączenia klasyfikatorów zakłada użycie ich reprezentacji geome-
trycznej wyrażonej jako granice decyzyjne. Wykorzystanie granic decyzyjnych, które są
efektem uczenia klasyfikatora pozwala na zdefiniowanie nowych algorytmów łączenia
klasyfikatorów. Algorytmy te nie wykorzytują wektora prawdopodobieństw etykiet klas
czy też samych etykiet klas.

W rozprawie zaproponowano 4 autorskie algorytmy wykorzystujące granice de-
cyzyjne wyznaczone przez drzewa decyzyjne.

Głównym celem badań było poszerzenie wiedzy na temat różnorodnych systemów
wielu klasyfikatorów opartych na ich geometrycznych właściwościach, zaprojekowanie
i implementacja nowych algorytmów oraz ich ewaluacja w odniesieniu do metod
referencyjnych: głosowania większościowego i lasu losowego. Hipoteza badawcza
przyjęta w pracy sformułowana jest w następujący sposób.



Streszczenie

Hipoteza badawcza. Wykorzystanie granic decyzyjnych wytrenowanych drzew de-
cyzyjnych pozwala na zbudowanie klasyfikatora łączonego o większej wartości miary
jakości klasyfikacji niż klasyfikator łączony jakim jest las losowy lub głosowanie więk-
szościowe korzystające z tego samego zbioru wytrenowanych drzew decyzyjnych.

Opracowane algorytmy łączenia klasyfikatorów zostały porównane z innymi algo-
rytmami dedykowanymi do zespołu klasyfikatorów: (ważonego) głosowania większoś-
ciowego oraz lasu losowego. Następujące miary jakości klasyfikacji zostały wykorzys-
tane do udowodnienia hipotezy badawczej: dokładność (ACC), współczynnik korelacji
Matthews’a (MCC) oraz współczynnik F1 dla zbiorów binarnych oraz dokładność, pre-
cyzja, czułość i wskaźnik F1 (trzy ostatnie w formie mikro– i makro–uśrednionej) dla
pozostałych problemów. Przeprowadzono badania eksperymentalne z wykorzystaniem
testowych baz danych na licencji open–source pochodzących z platformUCI oraz KEEL.
Zaproponowana hipoteza badawcza została zweryfikowna z wykorzystaniem nieparame-
trycznych testów statystycznych, które uwzględniały różne miary jakości klasyfikacji.

Zaimplementowano i przetestowano cztery algorytmy integracji drzew decyzyjnych
wykorzystujące ich reprezentację geometryczną. Analiza statystyczna otrzymanych
wyników wskazuje, że zaproponowane metody w wielu przypadkach przewyższają
w działaniu referencyjne techniki integracji. W rozprawie wykazano, że zaproponowany
algorytm jest uogólnieniem ważonego głosowania większościowego.

Osiągnięte wyniki

Pierwszy algorytm integracji wykorzystuje dwie odległości w przestrzeni cech
rozpatrywanej jako układ współrzędnych z wyróżnionymi granicami decyzyjnymi
wytrenowanych klasyfikatorów. Pierwsza odległość liczona jest od centroidu, druga –
od granicy decyzyjnej. Testowany obiekt klasyfikowany jest przez wytrenowany model
drzewa decyzyjnego. Następnie centroid dla wybranej klasy determinuje wartość pier-
wszej odległości. Obie wartości mapowane są z użyciem funkcji Gaussa. Zbadano kilka
zestawów parametrów funkcji mapującej, która pełni dwa zasadnicze zadania:

• Normalizacja obu odległości do wartości z zakresu [0, 1].
• Obliczona wartość odzwierciedla wpływ odległości od granicy decyzyjnej na wagę.

Ostateczną odpowiedzią klasyfikatora jest etykieta klasy, której kombinacja liniowa obu
odległości jest maksymalna. Kilka możliwych parametrów rozkładu funkcji mapującej
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zostało przetestowanych w celu znalezienia najwyższej wartości miary jakości klasy-
fikacji. Testy statystyczne wskazują na znaczący wzrost wartości miar klasyfikacji ACC
oraz MCC zaprezentowanej techniki w stosunku do referencyjnych metod łączenia.

Druga propozycja algorytmu korzysta ze statycznego podziału przestrzeni cech w pro-
cesie integracji. Przestrzeń cech podzielona jest na równe podprzestrzenie, z taką samą
liczbą podziałów wzdłuż każdej z osi, których etykiety determinowane są przez klasy-
fikację ich punktów środkowych. Dla każdej podprzestrzeni dla danej etykiety obliczana
jest waga zależna od objętości regionu klasyfikacji. Region klasyfikacji jest hiperkostką
o maksymalnej objętości obejmującą punkty oznaczone tą samą etykietą przez dane
drzewo decyzyjne. Dodatkowo podano teoretyczny dowód na to, że zaproponowana
technika jest uogólnieniem ważonego głosowania większościowego. Implementacja al-
gorytmu została sprawdzona z wykorzystaniem wspomnianych zbiorów danych. Zaob-
serwowano statystycznie znaczącą poprawę jakości klasyfikacji m. in. w takich miarach
jak ACC i MCC.

W trzeciej zaproponowanej metodzie wykorzystano dynamiczny podział przestrzeni
cech. Geometryczna reprezentacja wytrenowanych modeli determinuje podział
przestrzeni cech. Dla każdej etykiety obliczana jest waga na podstawie klasyfikacji
samej podprzestrzeni jak również jej sąsiadów. Połowę wagi stanowi wkład pochodzący
z samej podprzestrzeni, wagi sąsiadujących podprzestrzeni sumują się natomiast do 1

2 .
Wartości wag zależą od odległości między środkami sąsiadujących podprzestrzeni.
Przeprowadzono analizę statystyczną i zaobserwowano poprawę w jakości klasyfikacji
wyrażoną mikrouśrednioną precyzją, czułością i współczynnikiem F1 w porównaniu
z referencyjnymi metodami: głosowaniem większościowym oraz lasem losowym.

W ostatniej pracy, podobnie jak w poprzedniej, wykorzystany jest dynamiczny podział
przestrzeni cech, a wynik klasyfikacji w danej podprzestrzeni zależny jest od pod-
przestrzeni ją otaczających. Wprowadzono dodatkowe udoskonalenia:

• W definicji odległości między podprzestrzeniami wykorzystano średnią z punktów
treningowych w danej podprzestrzeni zamiast jej geometrycznego środka. Odległość
między średnimi jest jednocześnie odległością między podprzestrzeniami.
• W obliczaniu wagi rozpatrywane są jedynie podprzestrzenie, w których obiektów
treningowych każdej klasy jest przynajmniej 5% wszystkich obiektów w danej pod-
przestrzeni.
• Większy zakres sąsiadujących podprzestrzeni jest analizowany w przypadku odfil-
trowania całego pierścienia sąsiadów. Ta procedura powtarzana jest do momentu
aż znaleziony zostanie niepusty pierścień.
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Omawiany algorytm został w badaniach eksperymentalnych porównany z wykorzys-
taniem wspomnianych baz danych z referencyjnymi metodami (głosowaniem większoś-
ciowym i lasem losowym) jak również zaprezentowanym wcześniej, pierwotnym al-
gorytmem. Zaobserwowano statystycznie znaczącą poprawę w jakości klasyfikacji w
stosunku do metod referencyjnych. W szczególności dla miar jakości klasyfikatorów:
dokładności, mikro– i makrouśrednionego współczynnika F1 wykazana została statysty-
cznie znacząca różnica, co dowodzi hipotezy badawczej.

We wszystkich badaniach zachowano spójną strukturę badań. Przeprowadzono wy-
czerpującą ewaluację z użyciem wielu testowych baz danych. Kilka miar jakości
klasyfikacji zostało obliczonych mając na względzie różnorodną charakterystykę baz
danych, na przykład współczynnik niezbalansowania: dokładność, współczynnik ko-
relacji Matthews’a oraz współczynnik F1 dla binarnych oraz dokładność jak również
mikro– i makrouśrednioną precyzję, czułość i współczynnik F1 dla pozostałych prob-
lemów. Do implementacji zaprezentowanych algorytmów wykorzystano framework
Spark i język Scala. Kod źródłowy jest publicznie dostępny na portalu github, między
innymi w celu weryfikacji opracowanych algorytmów przez innych badaczy zajmujących
się problemami uczenia maszynowego: https://github.com/TAndronicus/dtree-merge,
https://github.com/TAndronicus/dtree-merge-scoring, https://github.com/TAndronicus/
dynamic-dtree, https://github.com/TAndronicus/dynamic-ring.

Ta praca została częściowowsparta przez polskie Narodowe CentrumNauki, nr grantu
2017/25/B/ST6/01750.
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