
Doctoral Dissertation

Selected Topics on Randomized
Algorithms

Dominik Bojko

Supervisor: prof. dr hab. Jacek Cichoń

Branch of science: Mathematics

September, 2021



2



Acknowledgements

A dissertation in front of you is unduly long and solves a variety of problems.
However, I still did not find a solution for one bothering question, namely: ”How
to beat my supervisor in unconscious hide and seek game?” It is not always
easy to find Jacek Cichoń, however, when it finally happens while I have some
perplexing issue, he usually simplifies it in some magical way, what usually ac-
celerates my work. I would like to acknowledge my supervisor for this property
and for a not to short introduction to a world of science. I would also like to
thank my co-authors for teaching me many different styles of work, as well as all
my colleagues from the science world, since I can always rely on them and they
always guarantee positive aura. I would like to thank for support from Polish
National Science Center grant 2018/29/B/ST6/02969 during my work on one
of parts of this thesis. I would like to sincerely acknowledge big-hearted Hania
Loch-Olszewska for her unexpected move at the beginning of our PhD stories,
which made more sense to continue, and probably let me finish this adventure.
I cannot forget about my dear friend, Artur Rutkowski, who was from an early
age and still is my dispenser of competitive (not only mathematical) motivation.
Since we were sucked in a neverending spiral of positive rivalry, we keep it until
this day. I think that our PhD studies were reflections of our childhood and I
hope that it will be so in the future. I would like to thank my parents for being
a balanced support for my whole life. There is no possibility to build a solid
building without good foundations. Finally, I would like to admit, that I will
not be able to finish my PhD travel without my friends. It definitely helps when
we meet more or less regularly and play board games, quizes, drink some beers
or simply talk. These meetings let me reset before I can back again to math. I
just cannot name them all in here, so I leave a fill-up box for them:
”I would like to thank .” I also really appreciated situa-
tions, when someone was bothering me randomly at night just to ask how my
PhD thesis is going. It was in fact quite motivating. During PhD period it
was not easy to keep a very good physical health and work very effectively at
the same time, so I really admired every time I spent on sport with my friends,
especially when we were presenting some good football in SZPN. I believe that
all the aforementioned issues were intrinsic parts of my PhD story.

3



4



Contents

1 Introduction 11
1.1 An outline of the PhD thesis . . . . . . . . . . . . . . . . . . . . 11

1.1.1 An outline of the Introduction . . . . . . . . . . . . . . . 11
1.1.2 An outline of Leader Election Algorithms part . . . . . . 11
1.1.3 An outline of Reservoir Sampling Algorithms part . . . . 13
1.1.4 An outline of Differential Privacy of Probabilistic Coun-

ters part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.5 Rest of the dissertation . . . . . . . . . . . . . . . . . . . 14

1.2 Notations and an overview of special functions . . . . . . . . . . 15
1.2.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Norm and scalar product . . . . . . . . . . . . . . . . . . 16
1.2.3 Order relation . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.4 Sums, products, derivatives and integrals . . . . . . . . . 17
1.2.5 Asymptotics: Bachmann—Landau and Vinogradov nota-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.6 Exponents and logarithms . . . . . . . . . . . . . . . . . . 20
1.2.7 Binary representations of numbers and messages . . . . . 21
1.2.8 Factorials, Euler’s Gamma and Binomials . . . . . . . . . 22
1.2.9 Harmonic numbers . . . . . . . . . . . . . . . . . . . . . . 23
1.2.10 Riemann’s Zeta function . . . . . . . . . . . . . . . . . . . 23
1.2.11 PolyLogarithms . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.12 W-Lambert multi-function . . . . . . . . . . . . . . . . . . 24
1.2.13 Bernoulli numbers and polynomials . . . . . . . . . . . . . 25
1.2.14 Faulhaber’s formula and Euler summation formula . . . . 26

1.3 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 General definitions and notations . . . . . . . . . . . . . . 27
1.3.2 Order statistics . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Stochastic processes with discrete time . . . . . . . . . . . 29
1.3.4 Probabilistic Counters . . . . . . . . . . . . . . . . . . . . 29
1.3.5 Variants of probability distributions . . . . . . . . . . . . 30
1.3.6 Uniform Distributions . . . . . . . . . . . . . . . . . . . . 31
1.3.7 Bernoulli, Binomial and Normal distributions . . . . . . . 31
1.3.8 Exponential and Laplace distributions . . . . . . . . . . . 32
1.3.9 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . 32

5



6 CONTENTS

1.3.10 Geometric-Like Distributions . . . . . . . . . . . . . . . . 33
1.3.11 Zipf Distribution . . . . . . . . . . . . . . . . . . . . . . . 34
1.3.12 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . 35
1.3.13 Distance between discrete probability distributions . . . . 35

1.4 Useful standalone theorems . . . . . . . . . . . . . . . . . . . . . 35
1.4.1 Banach fixed point theorem . . . . . . . . . . . . . . . . . 35
1.4.2 Weierstrass’ Product Inequality . . . . . . . . . . . . . . . 36
1.4.3 Cauchy—Schwarz inequality . . . . . . . . . . . . . . . . . 37
1.4.4 Weierstrass Extreme Value Theorem . . . . . . . . . . . . 37
1.4.5 Stević Theorem . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.6 Bernoulli Inequality . . . . . . . . . . . . . . . . . . . . . 37
1.4.7 Fatou’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . 38
1.4.8 Tonelli’s Theorem . . . . . . . . . . . . . . . . . . . . . . 38

1.5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.1 A brief introduction to graph theory . . . . . . . . . . . . 38
1.5.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Leader Election Algorithms 41
2.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . 41
2.2 A brief history of LEAs . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Urn model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 A description of a model . . . . . . . . . . . . . . . . . . . 48
2.3.2 A discussion about generality of urn model and its effi-

ciency potential . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 General block of Leader Election algorithm . . . . . . . . . . . . 52

2.4.1 Beeping model, single-hop and multi-hop arrangements . 53
2.4.2 Probability of Choosing Unique Maximal Element . . . . 55

2.5 Non-anonymous Leader Election Algorithm . . . . . . . . . . . . 56
2.5.1 A description of a problem and definitions . . . . . . . . . 56
2.5.2 Optimization of the Probability of Success . . . . . . . . . 57
2.5.3 Approach via probabilities of non-last urns . . . . . . . . 62
2.5.4 Duel case (n = 2) . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.5 Approximation of the optimal distribution . . . . . . . . . 66
2.5.6 A number of bits for NALEA according to the optimal

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.6 Uniform Leader Election (ULE) . . . . . . . . . . . . . . . . . . . 71

2.6.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . 71
2.6.2 Monotonicity of success probability . . . . . . . . . . . . . 72
2.6.3 Miscellaneous remarks and main result . . . . . . . . . . . 73
2.6.4 Role of the factor lg

(
ε−1
)

. . . . . . . . . . . . . . . . . . 75
2.7 Previous Developments of Leader Election . . . . . . . . . . . . . 77

2.7.1 How to select a loser? . . . . . . . . . . . . . . . . . . . . 77
2.7.2 Leader Green Election . . . . . . . . . . . . . . . . . . . . 78
2.7.3 Distributed splitting and naming procedures . . . . . . . 81

2.8 Geometric Green Leader Election . . . . . . . . . . . . . . . . . . 89
2.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 89



CONTENTS 7

2.8.2 GeoGLE Algorithm . . . . . . . . . . . . . . . . . . . . . 89
2.8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.8.4 Implementation details . . . . . . . . . . . . . . . . . . . . 96
2.8.5 Simplified solution . . . . . . . . . . . . . . . . . . . . . . 97

2.9 A mixture of Geometric and Uniform LEA . . . . . . . . . . . . 98
2.9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.9.2 Possible scenarios and monotonicity . . . . . . . . . . . . 99
2.9.3 Maximum of Geometric distributions . . . . . . . . . . . . 101
2.9.4 Limitations on failures probabilities . . . . . . . . . . . . 102
2.9.5 Derivation of parameters . . . . . . . . . . . . . . . . . . 103
2.9.6 Main contribution . . . . . . . . . . . . . . . . . . . . . . 107
2.9.7 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.10 Summary, comparisons and future work . . . . . . . . . . . . . . 109

3 Big Data 113
3.1 Introduction to Reservoir sampling . . . . . . . . . . . . . . . . . 113
3.2 Sliding Window model . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2.2 Previous constructions . . . . . . . . . . . . . . . . . . . . 116
3.2.3 High level description of our contribution . . . . . . . . . 116
3.2.4 Devil’s Staircase . . . . . . . . . . . . . . . . . . . . . . . 118
3.2.5 A Fundamental Algorithm . . . . . . . . . . . . . . . . . . 121
3.2.6 Properties of the Devil’s Staircase . . . . . . . . . . . . . 123
3.2.7 Uniform Sample . . . . . . . . . . . . . . . . . . . . . . . 123
3.2.8 Examples of Non-uniform Sampling . . . . . . . . . . . . 126
3.2.9 Extension with m-root strictly concave functions . . . . . 129
3.2.10 Other extensions . . . . . . . . . . . . . . . . . . . . . . . 131
3.2.11 A class of DS-admissible distributions . . . . . . . . . . . 132
3.2.12 Application . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.2.13 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.3 Power Law of Update . . . . . . . . . . . . . . . . . . . . . . . . 135
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.3.2 Power Law of Update . . . . . . . . . . . . . . . . . . . . 137
3.3.3 General Properties . . . . . . . . . . . . . . . . . . . . . . 137
3.3.4 Fixed value . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.3.5 Sublinear Case . . . . . . . . . . . . . . . . . . . . . . . . 139
3.3.6 Linear Case . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.3.7 Subquadratic Case . . . . . . . . . . . . . . . . . . . . . . 143
3.3.8 Quadratic Case . . . . . . . . . . . . . . . . . . . . . . . . 144
3.3.9 Superquadratic Case . . . . . . . . . . . . . . . . . . . . . 146
3.3.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 146



8 CONTENTS

4 Inherent Privacy of Probabilistic Counters 151
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 Differential Privacy Preliminaries . . . . . . . . . . . . . . . . . . 153
4.3 Probabilistic Counters . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3.1 Morris Counter . . . . . . . . . . . . . . . . . . . . . . . . 155
4.4 MaxGeo Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.4.1 Probabilistic Counting with Stochastic Averaging . . . . . 158
4.4.2 HyperLogLog . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.5 Probabilistic Counters Privacy Properties . . . . . . . . . . . . . 159
4.5.1 Morris Counter Privacy . . . . . . . . . . . . . . . . . . . 159
4.5.2 MaxGeo Counter Privacy . . . . . . . . . . . . . . . . . . 164
4.5.3 Comparison of Morris and MaxGeo Counters’ Privacy . . 166

4.6 Private Survey via Probabilistic Counters . . . . . . . . . . . . . 167
4.7 Previous and Related Work . . . . . . . . . . . . . . . . . . . . . 171
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.8.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . 173
4.8.2 Conclusions and Future Work . . . . . . . . . . . . . . . . 174

Appendices 174

A Optimal Distributions for NALEA 175
A.1 Optimal distributions for 3 devices . . . . . . . . . . . . . . . . . 175
A.2 Approximations of the optimal solutions . . . . . . . . . . . . . . 175

A.2.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 176

B The proof of Theorem 2.8.1 and remarks 179
B.1 Collision Probability in GeoGLE Algorithm . . . . . . . . . . . . 179

B.1.1 Definitions and crucial properties . . . . . . . . . . . . . . 179
B.2 Constraints of accurate GeoGLE algorithm . . . . . . . . . . . . 182
B.3 Maximal number of devices — a case n = N . . . . . . . . . . . . 187
B.4 Proof of Theorem 2.8.1 for n < N . . . . . . . . . . . . . . . . . 191
B.5 Is it worth to extend agents’ memory by 1 bit? . . . . . . . . . . 193

C Limitation of specific sums 195

D Special cases of Power Law of Update 197
D.1 Specific linear case . . . . . . . . . . . . . . . . . . . . . . . . . . 197
D.2 Heuristic recursive approach with formal series . . . . . . . . . . 199

D.2.1 Problem for a case α = 1
2 . . . . . . . . . . . . . . . . . . 200

D.2.2 Problem for cases α = r
q . . . . . . . . . . . . . . . . . . . 202

E Technical Results for Morris Counter 205
E.1 Proofs of δ-lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 205

E.1.1 The proof of Lemma 12 . . . . . . . . . . . . . . . . . . . 205
E.1.2 The proof of Lemma 13 . . . . . . . . . . . . . . . . . . . 206

E.2 Main lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



CONTENTS 9

E.2.1 Formulation and proof of Lemma 26 . . . . . . . . . . . . 208
E.3 Final lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



10 CONTENTS



Chapter 1

Introduction

1.1 An outline of the PhD thesis

This doctoral dissertation gathers results from different projects related to prob-
ability theory, stochastic processes and algorithmic. It is divided into three main
branches: Leader Election Algorithms, Reservoir Sampling Algorithms and Dif-
ferential Privacy of Probabilistic Counters.

1.1.1 An outline of the Introduction

Chapter 1 is divided in five sections. This Section 1.1 presents the outline of the
thesis. Section 1.2 gathers the notation used in this dissertation. We omit the
commonly utilized symbols and focus on those not widely used or confusing ones.
Section 1.2.1 is devoted to present basic symbols. Further part of Section 1.2
mainly concerns basic facts related to special functions. In Section 1.3, at first we
present basic notation, definitions and properties related to probability theory
in general. Further we present utilized random variables and theirs variants. In
Section 1.4 we recall several standalone theorems used in the thesis and finally
in Section 1.5 we shortly present a summary of fundamental concepts needed to
understand the whole thesis.

1.1.2 An outline of Leader Election Algorithms part

Chapter 2 is devoted to Leader Election algorithms. Motivation behind this
concept and descriptions of possible general arrangements of such the procedures
are provided in Section 2.1. A succinct history of Leader Election algorithms is
the subject of Section 2.2. In Section 2.3 we describe an idea of Leader Elections
via urn model and justify a generality of the procedure in this arrangement.

In Section 2.4 we provide a general block of randomized leader election algo-
rithm consistent with urn model. Especially, we introduce single-hop, multi-hop
and beeping models. In Section 2.4.2 we present a general formula for a proba-
bility of successful selection of a unique leader by Leader Election in urn model.

11



12 CHAPTER 1. INTRODUCTION

Section 2.5 bears the first substantial contribution — for a given number
of competitors n and a finite, linearly ordered set A, we attain a distribution
of random variable X(n,A), which has the range A and satisfies the following
condition: if all the competitors use urn model according to the distribution
of X(n,A), then the probability of successful choice of a leader is optimal in
a class of Leader Election algorithms designated for n competitors using urn
model, where urns are signed by the elements of A. Namely, in Section 2.5.2
and Section 2.5.3, we provide formulas that allow to determine atoms of distri-
butions X(n,A) for different n and A. In Section 2.5.4, we consider a case n = 2
separately, for which a distribution of X(2, A) simplifies to uniform one on A.
Other fixed cases are considered in Appendix A. Calculation of the probability
mass function of the variable X(n,A) for big values of n occurs to be time-
consuming, so in Section 2.5.5 we also provide relatively precise approximations
for atoms of distribution of X(n,A). They are utilized in a proposition of effi-
cient, easy and quick to calculate approximations of the optimal distributions.
This part is postponed until Appendix A, where we provide comparisons of op-
timal solution and the approximated ones via numerical calculations. In the
last Section 2.5.6, we provide an astonishing fact about the necessary and suffi-
cient memory supplies (and simultaneously bounds on the runtime) to guarantee
reliable non-anonymous Leader Election in urn model.

A next Section 2.6 is a foundation of the rest of the chapter. It introduces
a very simple quasi-anonymous Uniform Leader Election algorithm, consistent
with randomized urn model, realized according to the uniform distribution. We
show that similar results were considered before, however in slightly different
language. Further we provide a novel, yet very natural result, showing the
monotonicity of the success probability with respect to the number of competi-
tors. Further we provide several remarks related to Uniform Leader Election.
In Section 2.6.4 we provide a general and optimal lower bound on the time com-
plexity of quasi-anonymous Leader Election algorithms and we compare it with
results for Uniform Leader Election and the similar result from Section 2.5.6 for
non-anonymous algorithms.1

Further, in Section 2.7, we describe previously known results closely related
to our contribution. In particular, the one considered to be the present state-
of-the-art of universal Leader Election algorithms. Moreover, we briefly analyze
accuracy of these procedures and theirs alternative versions, proposed in this
section.

Next Section 2.8 generalizes the concept of quasi-anonymous Leader Green
Election algorithm according to geometric distribution, which was proposed by
P.Jacquet [64]. We refine some crucial ideas of P.Jacquet and produce more
flexible solution, called Geometric Green Leader Election (shortly GeoGLE).
Our procedure utilizes restricted version of geometric distribution with precisely
tuned parameters. In Section 2.8.2 we present GeoGLE algorithm in the single-
hop arrangement of urn model and further we provide Theorem 2.8.1, which
appoints the parameters of GeoGLE algorithm, for a given minimal probabil-

1To the best of our knowledge, such the bound was known before only for specific solutions.



1.1. AN OUTLINE OF THE PHD THESIS 13

ity of a successful Leader Election and a constraint on the maximal number of
competitors. A technical proof of Theorem 2.8.1 is postponed to Appendix B.
A discussion about GeoGLE solution and its effectiveness are included in Sec-
tion 2.8.3. An implementation’s details are the topic of Section 2.8.4.

The latter crucial contribution in Chapter 2 is described in Section 2.9. It
combines the advantages of Uniform Leader Election and GeoGLE algorithms
from Section 2.6 and Section 2.8 by juxtaposition of both procedures. We show
that our solution is almost as good in terms of a total runtime as GeoGLE
algorithm and it can be still rectified. A part of calculations are postponed to
Appendix C. A summary of all the considered Leader Election algorithms is
provided in Section 2.10.

1.1.3 An outline of Reservoir Sampling Algorithms part

Next Chapter 3 is devoted to a particular domain of Big Data analysis, namely to
Reservoir Sampling algorithms. Section 3.1 describes the essential ideas behind
this kind of procedures, including theirs short history, starting from the famous
Algorithm R. In Section 3.2 we introduce a concept of sliding window algorithms
and provide a general Reservoir Sampling algorithm in a sliding window of
the fixed discrete size assumed a priori. A fundamental algorithm bases on
devil’s staircase Markov chains, described in Section 3.2.4. After we present
the basic Reservoir sampling algorithm and the constraint of its applicability in
Section 3.2.5, we present several artful tricks, which improve the efficiency of
our solution and next we show how to extend our algorithm to a case of uniform
sampling in Section 3.2.7. In further sections we generalize the extension to
a wider class of distributions. In Section 3.2.8 we analyze several examples
of possible distributions of samples in the sliding window together with theirs
properties. We end up Section 3.2 with a description of admissible class of
distributions, that can be modelled thanks to our contribution and present an
exemplary application.

In Section 3.3 we provide a Reservoir Sampling algorithm with update proba-
bilities taken according to a Power Law of Update which depends on the number
of data items already explored. An idea and general algorithm are presented
in Section 3.3.1. Section 3.3.2 itemizes diverse laws of convergence, together
with asymptotical expected values of the pointers of the data sampled by our
algorithm, with respect to cases dependent on the definitions of update prob-
abilities. Further, Section 3.3.3 contains general properties of Power Law of
Update model of Reservoir Sampling algorithms. Next 6 consecutive subsec-
tions: 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8 and 3.3.9 provide the analysis for each of
the cases specified in Section 3.3.2, dependent on the exponent of the Power
Law of Update. In Section 3.3.10 we present several ideas of applications of
Power Law of Update solution. Appendix D provides more precise results for
some particular cases of Power Law of Update model with rational exponents.



14 CHAPTER 1. INTRODUCTION

1.1.4 An outline of Differential Privacy of Probabilistic
Counters part

The last Chapter 4 is devoted to differential privacy of probabilistic counters.
Section 4.1 provides basic intuitions beneath notions of differential privacy prop-
erty and a motivation to analyze probabilistic counters in terms of this attribute.
We evoke standard examples of Morris and MaxGeo counters and theirs po-
tential applications. The rest of chapter Chapter 4 is organized as follows.
Firstly, in Section 4.2 we recall differential privacy definition. In Section 4.3
we define both Morris and MaxGeo counters and state Fact 4.3.1, which is
a useful reformulation of the standard differential privacy definition for prob-
abilistic counters.2 It worth to emphasize, that the concept of probabilistic
counter is ambiguous in literature and we provide its formal, general definition
in Section 1.3.4. Formulation of our most significant technical contribution is
presented in Section 4.5, where we analyse how both aforementioned counters
behave under differential privacy regime. Namely, we prove that under certain
assumptions about the minimal number of requests, both probabilistic counters
are differentially private by design, with some parameters, which tends to 0,
as the number of users grow.3 For the sake of clarity some technical proofs
and lemmas are moved to Appendix E. It worth to note, that the authors
of [33] showed that probabilistic counters do not preserve differential privacy
when they are utilized to estimate a set cardinality with a strict constraint that
the adversary is able to extract the intermediate values of counter. We attain
the opposite result by easing this restriction. We also recall some applications
of MaxGeo Counter, which, thanks to our contribution, can be trivially trans-
formed to differentially private mechanisms. In Section 4.6 we demonstrate how
probabilistic counters can be used for constructing a data aggregation protocol
in a very particular, yet natural, scenario. We also provide several possible
directions of applications of our results. Further, we compare these protocols
with state-of-the-art Laplace method based solution, which provides differential
private data aggregation mechanism using extra randomization. In Section 4.7
we recall work related to main topics of Chapter 4 and some popular examples
of other probabilistic counters, which are not considered in this chapter. Finally,
in Section 4.8 we summarize our contribution, present conclusions and several
future work propositions.

1.1.5 Rest of the dissertation

After appendices, we placed lists of all tables, figures and algorithms present in
the thesis for a convenient navigation. A bibliography closes this dissertation.

2In fact it provides a convenient sufficient condition that guarantees differential privacy of
probabilistic counters.
3The closer the parameters are to 0, the more private is the mechanism.



1.2. NOTATIONS AND AN OVERVIEW OF SPECIAL FUNCTIONS 15

1.2 Notations and an overview of special func-
tions

1.2.1 Symbols

First we want to present some symbols, used in the dissertation, which can be
unknown or confusing. When we want to define some symbol s via formula F ,
then we depict it as s := F .4 We denote the cardinality of a set A by card (A).

In order to not settle the dispute if 0 is a natural number or not, we dis-
ambiguate the notation by using two different symbols: N – which is a set of
positive integers – and N0 := N ∪ {0} – a set of non-negative integers. For
a, b ∈ Z, a 6 b, we define a discrete interval [a : b] := [a, b] ∩ Z. If a > b, then
[a : b] = ∅. We eventually allow b to be ∞. Then [a : b] is a set of all integers,
greater or equal to a. Especially, for n ∈ N, we define [n] := [1 : n]. It is useful
to slightly extend this definition, so we denote [∞] = N.
A set of all integers, rational, real and complex numbers are denoted respec-
tively as Z, Q, R and C. <z denotes the real part of a complex number z.
A half of the length of the circumference of a unit circle is denoted by π.

For x ∈ R, we define a fractional part of x, i.e. {x}f := x− bxc.5 Rounding
a number x is given as bxe and it is defined as the closest integer to x. When
2x is odd integer, then bxe = x+ 1

2 .
By (cn)bn=a we indicate a sequence c defined on [a : b]. When sometimes the

domain do not need a particular attention, we omit it and write simply (cn)n.6

When an element of a sequence cn emerges in pseudo-code, when we denote it
by c[n] instead. A concatenation of two sequences c = (cn)kn=1 and d = (dn)ln=1

is given as

(c‖d)n :=

{
cn , when n ∈ [k] ,

dn−k , when n ∈ [k + 1 : k + l] .
7

Alternatively, if d = (dn)k+l
n=k+1, then we simply define concatenation of se-

quences (c)n and (d)n by (c ∪ d)n.
We define horizontal vectors similarly to sequences. Indeed, if v ∈ V n, then

we denote them as [vi]
n
i=1, where all vi ∈ V . Another matrices will be defined,

when needed.
Intuitively, the concatenation is just glueing the second sequence after the

end of the first one.

4:= notation is utilized in Pascal programming language to assign data to variables. When
we want to assign the left hand side to the right one, we use =: instead.
5Note that in the literature, the fractional part of x is usually denoted by {x}. However

we add ”f” in the subscript in order to distinguish this notation from the one of a singleton
of element x.
6Sometimes it is convenient to write the sequence in the reversed order. We indicate this

by swapping the positions of a and b (when a 6 b).
7We assume that k ∈ N and l ∈ N ∪ {∞} with a notational convention that k +∞ =∞.



16 CHAPTER 1. INTRODUCTION

Indicator of a set A is a function defined as:

11A (x) :=

{
1 , when x ∈ A ,

0 , when x /∈ A .

If E is a statement, then an Iverson bracket of E is defined as a function of
the free variables in E:

[[E]] =

{
1 , if E is true ,
0 , if E is false .

The Iverson bracket is a generalization of both Kronecker’s δ and indicator
notation. Indeed, [[x = y]] = δxy and [[x ∈ A]] = 11A (x).

Let a ∈ R and f be a function defined on a subset of R, continuous in
some vicinity of a (possibly excluding a). Then by f(x)|x=a we denote either
evaluation of f at a (i.e. f(a)) or a limit as x tends to a (i.e. lim

x→a
f(x)). When

the limit does not exist, but there exist one-side limits, then we write f(x)|x=a+

or f(x)|x=a− , respectively, for right-side or left-side limit.
We use uniqueness quantification, when we want to pay attention that ex-

actly one of the terms E(x) is fulfilled by the non-free variable x. We indicate
it by addition of ’!’ sign: (∃! x)E(x).

If a, b ∈ Z, then GCD(a, b) depicts the greatest common divisor of |a| and
|b|. Let a ∈ R and b > 0. Then we define a mod b as c ∈ [0, b), such that
a+ kb = c, for some k ∈ Z. Then a÷ b = a−a mod b

b .8

Where we want to indicate that a function f constantly equals c, then we
write f ≡ c.

1.2.2 Norm and scalar product

Let n ∈ N and x, y ∈ Rn. We are going to utilize two standard norms on spaces
of finite sequences:For general definitions see any coursebook on functional anal-
ysis.

� `1-norm, defined as

‖x− y‖1 =
∑
i∈[n]

|xi − yi| ,

� `2-norm, defined as

‖x− y‖2 =

√∑
i∈[n]

(xi − yi)2 .

8Usually mod and ÷ are used for a > 0 and b ∈ N.



1.2. NOTATIONS AND AN OVERVIEW OF SPECIAL FUNCTIONS 17

Moreover, a scalar product is defined as

〈x, y〉 =
∑
i∈[n]

xiyi .

Apart from them, we are going to define another one, called total variation
distance (defined in Section 1.3.13), which is closely related to `1 norm.

1.2.3 Order relation

If �⊂ X ×X is reflexive (x � x), antisymmetric (((x � y) ∧ (y � x))⇒ x = y)
and transitive (((x � y)∧ (y � z))⇒ (x � z)) relation,9 then we call it a partial
order on X. If the partial order � satisfies (∀ x, y ∈ X) x � y∨y � x, then it is
a linear order on X. If the linear order � has the property that for each A ⊂ X,
there exists a ∈ A such that (∀ x ∈ A\{a}) a � x, then we call � a well order. If
� is the partial order, then �∗ defined as {(x, y) ∈ X ×X : y � x} is a reversed
order with respect to �. If an order � is reversed to some well order �∗, then
one can define max�(A), as the biggest element of the subset A, i.e. the smallest
element this set with respect to �∗ order. If � is a partial order on X and 6 is
a partial order on Y , then one can define a lexicographic order on X×Y by the
formula: {((x1, y1), (x2, y2)) ∈ (X × Y )2 : x1 � x2 ∨ ((x1 = x2) ∧ (y1 6 y2))}.

Fact 1.2.1. Every partial order can be extended to some linear order.

1.2.4 Sums, products, derivatives and integrals

We use standard notation for sums, products and integrals. However, for conve-
nience, we highlight the convention of the limits of these operations. Indeed, if

a, b ∈ N and b < a, then
b∑

n=a
cn = 0 and

b∏
n=a

cn = 1, since they are empty opera-

tions. Nevertheless, if a, b ∈ R and b < a, then naturally
b∫
a

c(x)dx = −
a∫
b

c(x)dx.

Fact 1.2.2. If (a0, a1, . . . , an) is a sequence of real numbers, then

n∑
k=1

k(ak − ak−1) = nan −
n−1∑
k=0

ak . (1.1)

A discrete simplex of k-parts compositions of integers from [n] (see e.g. [47]
for definition of the composition of integer) is defined as

Simn
(k) :=

{
l̄ = [li]

k
i=1 ∈ Nk0 :

k∑
i=1

li 6 n

}
.

9All conditions are for all x, y, z ∈ X.



18 CHAPTER 1. INTRODUCTION

Derivatives of product of functions

Usually we denote a derivative of function f by f ′. If a function f has more
than one variable or uses some parameters, then when it is not clear from the
context, we write ∂f

∂x to denote that we calculate the derivative of f with respect
to x variable (or eventually a parameter).

If functions f, g are n-times differentiable, then f (n) denotes the n-th deriva-
tive of f and

(f ·g)(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x) . (1.2)

Theorem 1.2.1 (Mean Value Theorem). If f : [a, b] → R has continuous
derivative, then

f(b)− f(a) = f ′(c)(b− a) ,

for some c ∈ [a, b].

Series forms of functions

We say that f has

� an expansion to a Taylor series at z0, when:

f(z) =

∞∑
n=0

an(z − z0)n , 10

� an expansion to a Laurent series at z0, when:

f(z) =

∞∑
n=−∞

an(z − z0)n .

Let r ∈ R. By [(z − z0)r]f(z) we understand an extraction of a coefficient
corresponding to (z − z0)r in the formal power series of f(z).11 We call it a
(z − z0)-term extractor.12 When we deal with Taylor or Laurent series, then r
are respectively from N0 and Z. However, in Appendix D we will also consider
r ∈ Q case, i.e. series with rational powers.

Integral approximation of a sum

If f is a non-decreasing, integrable function on A and [a− 1 : b+ 1] ⊂ A, then

b∫
a−1

f(x)dx 6
b∑

n=a

f(n) 6

b+1∫
a

f(x)dx . (1.3)

10When z0 = 0, then we obtain Maclaurin series.
11Formal power series is an algebraic interpretation of the notion of series of powers of some

variable (z in this case). When a power series is convergent in some region, then we may
consider it analytically in this set.
12Especially, when z0 = 0, we call it z-term extractor.



1.2. NOTATIONS AND AN OVERVIEW OF SPECIAL FUNCTIONS 19

Convergence tests

Consider a sequence a := (ai)
∞
i=0 and its corresponding ordinary generating

function13:

Aa(z) :=

∞∑
i=0

aiz
i ,

we define a radius of a series Aa as R(a) :=

(
lim sup
n→∞

n
√
|an|

)−1

.

Fact 1.2.3 (Cauchy root test).

� Aa(z) is point-wise convergent in a disk {z ∈ C : R(a) > |z|},

� If R(a) > |z|, then Aa(z) diverges.

We call a sequence a ∈ RN an alternating, if all terms (−1)nan have the same
sign. If a is alternating and a sequence (|an|)n converges to 0 monotonically,
then a is a Leibniz’s type sequence.

Fact 1.2.4 (Leibniz’s test). If a is Leibniz’s type, then

Aa(1) =

∞∑
i=1

an
14

is convergent and each consecutive partial sum provides more precise approxi-
mation of Aa(1). Moreover, for any two consecutive partial sums, one is bigger
than Aa(1) and the second is smaller than Aa(1).

1.2.5 Asymptotics: Bachmann—Landau and Vinogradov
notations

We would like to introduce few asymptotics notations. First are due to Bach-
mann and Landau and are gathered in a family of so called Bachmann—Landau
notation family. It worth to mention, that the presently used notation is due
to Knuth (see the book of Knuth et al. [54] for the history of the notation and
wider description).

A class of all open sets which contains a point x, we denote by B(x).
Let f be a real (or complex) function and g be a positive function. Moreover,

let f and g have a common domain, which contains some A ∈ B(x0).
In Table 1.1, we present a definitions of different Bachmann—Landau sym-

bols. We also allow x0 to be ±∞, which is a typical case of application. We
sometimes write equations of a form f(x) = h(x) + O (g(x)), what is equiva-
lent to f(x) − h(x) = O (g(x)),15 where O () notation can be substituted with

13Ordinary generating function is sometimes called ordinary formal power series. The at-
tribute ”ordinary” is due the simple form of the i-th coefficient — ai.
14This type of series we also call a Leibniz’s type series.
15One sometimes write f(x)−h(x) ∈ O (g(x)) to indicate that O (g(x)) is a class of functions.



20 CHAPTER 1. INTRODUCTION

Notation Definition
f(x) = O (g(x)) if (∃M > 0)(∃ A ∈ B(x))(∀ x ∈ A) |f(x)| 6Mg(x)

f(x) = o (g(x)) if (∀ ε > 0)(∃ A ∈ B(x))(∀ x ∈ A) |f(x)| < εg(x)

f(x) = Ω (g(x)) if (∃ ε > 0)(∃ A ∈ B(x))(∀ x ∈ A) |f(x)| > εg(x)

f(x) = ω (g(x)) if (∀M > 0)(∃ A ∈ B(x))(∀ x ∈ A) |f(x)| > Mg(x)

f(x) = Θ(g(x)) if f(x) = O (g(x)) and f(x) = Ω (g(x))

f(x) ∼ g(x) if (∀ ε > 0)(∃ A ∈ B(x))(∀ x ∈ A)
∣∣∣ f(x)
g(x) − 1

∣∣∣ 6 ε

Table 1.1: Definitions of several Bachmann—Landau symbols, as x→ x0.

other Bachmann—Landau notations (excluding ∼). We also allow to write these
asymptotics notations on both sides of equations if there exists a function, which
can be satisfied by both conditions.

In 1930s, Vinogradov introduced another, convenient alternative notation
for O (): f � g ⇔ f(x) = O (g(x)).16

One can also define similar multivariable notation. It can be naturally gen-
eralized by defining open sets as products of open sets over disjoint coordinates.

1.2.6 Exponents and logarithms

A Neper—Euler constant e is defined as the limit lim
n→∞

(
1 + 1

n

)n
.

An exponential function with base e, is written either as ex or exp(x) and is
given by Maclaurin series:

ex =

∞∑
n=0

xn

n!
. (1.4)

A natural logarithm (of base e) is denoted by ln(x) and its Taylor series at
x = 1 can be rewritten as

ln(1 + x) =
∞∑
n=1

(−1)n−1xn

n
. (1.5)

Directly from the above we may obtain that for x ∈ (0, 1),

−x
(

1 +
x

2(1− x)

)
< ln(1− x) < −x

(
1 +

x

2

)
. (1.6)

By lg(x) we denote a binary logarithm (of base 2). An iterated logarithm (also
known as log-star), denoted by lg∗(x) is a function defined as min{i ∈ N :

lg[i](x) 6 2}, where lg[1](x) = lg(x) and lg[i+1](x) = lg(lg[i](x)), for i ∈ N. The
iterated logarithm is the function, which intuitively ascends very slowly. There

16In fact, this notation is antisymmetric version of du Bois-Reymond’s notation from 1871.
See e.g. [54] for a wider context.



1.2. NOTATIONS AND AN OVERVIEW OF SPECIAL FUNCTIONS 21

N 1 4 5 16 17 216 216+1 2216

2216

+1

lg∗N 1 1 2 2 3 3 4 4 5

Table 1.2: Several crucial values of lg∗ function.

is one function commonly used in computability theory, called inverse Acker-
mann’s function, which is rising slower than the iterated logarithm in terms of
Bachmann—Landau notation (see e.g. [27] for more details). In Table 1.2, we
present some values of lg∗ function, which indicates the arguments at which lg∗

is incremented. According to [92], the number 2216

has 19 729 digits.17 In this
paper, we will only consider integer arguments of the above function.

1.2.7 Binary representations of numbers and messages

Natural languages are not intelligible for computers per se. However any mes-
sage can be translated for example, to some binary representation, which in
digitalized form can be read by a machine. If this device know the arrangement
of the translation, then the message can be ”understood” by the computer. A
binary representation of a message msg is a finite sequence (bi) of numbers from
the set {0, 1}. Usually messages are meant to be just some sentences in some
natural languages or some communicates. Such the symbols can be written, for
instance, in ASCII or Unicode, which are naturally translatable either to natural
numbers or to binary representations. Therefore sentences or communicates can
be easily translated to sequences of zeros and ones. Moreover, often messages
are simultaneously interpreted as some big natural numbers. For the sake of
clarity we assume that all the messages are simply the non-negative integers. By
BIN(msg) we denote the binary representation of msg ∈ N0 message. Precisely,
if b = BIN(msg) and dlg(msg + 1)e = K, then b consists of K bits, numbered
in inverted order from K − 1 down to 0, i.e. b = (bi)

0
i=K−1. We assume that

BIN(0) = (0) and BIN(1) = (1). Moreover, for msg 6 2 and s = msg mod 2,
we can define b recursively as a concatenation of BIN(msg−s

2 ) and (s). Then
naturally b0 = msg mod 2 and

msg =

K−1∑
i=0

bi2
i .

For example BIN(11) = (1, 0, 1, 1) and 11 = 1·20 +1·21 +0·22 +1·23. Moreover,
for a given K ∈ N, we can define a mapping BINK(msg) for msg ∈ [0 : 2K − 1].
Indeed, we put a concatenation of a sequence consisting of k := K − dlg(msg +
1)e zeros and BIN(msg). This way we always get a binary representation of
length K.

17One can recognize that 22
16

= 2 ↑↑ 5 in terms of Knuth’s up-arrow notation (see [70] for
definition). One can realize that the inverse of the function 2 ↑↑ x is closely related to lg∗ x.



22 CHAPTER 1. INTRODUCTION

1.2.8 Factorials, Euler’s Gamma and Binomials

Factorials

When n ∈ N0, then n! is n-factorial defined as
n∏
k=1

k.

Let r ∈ C and s ∈ N. A s-th falling factorial of r is defined as

[r]s :=

s−1∏
i=0

(r − i) .

Euler’s Gamma and Beta Functions

When z ∈ C and <(z) > 0, then we can define Gamma function Γ(z) =
∞∫
0

tz−1e−tdt. For z ∈ N, Γ(z) = (z − 1)!. Moreover Gamma function can

be extended to C\{−n : n ∈ N0} in such the way that

Fact 1.2.5. zΓ(z) = Γ(z + 1).

We define B (a, b) := Γ(a)Γ(b)
Γ(a+b) , whenever the right hand side makes sense.

Alternatively, for a, b > 0, we can define it by the formula B (a, b) =
1∫
0

ta−1(1−

t)b−1dt.

Binomial coefficients

Let n, k ∈ N0 and n > k. Then we define Newton’s binomial
(
n
k

)
as n!

k!(n−k)! .

When r ∈ C and k ∈ N, we can define Newton’s binomial by
(
r
k

)
= [r]k

k! .

Fact 1.2.6 (Newton’s Binomial Formula). If n ∈ N and |x| < 1, then

(1 + x)n =

n∑
k=0

(
n

k

)
xk .

If r /∈ N and |x| < 1, then

(1 + x)r =

∞∑
k=0

(
r

k

)
xk .

Fact 1.2.7 (From [108]). Let z ∈ C and n ∈ N0 such that arg(n− z) 6= π (i.e.
n− z is not a negative real number), then(

z

n

)
=

Γ(z + 1) sin(π(n− z))
πkz+1

(
1 +

(z + 1)z

2n
+ O

(
n−2

))
,

as n→∞.



1.2. NOTATIONS AND AN OVERVIEW OF SPECIAL FUNCTIONS 23

1.2.9 Harmonic numbers

Hn is n-th harmonic number, defined as Hn =
n∑
i=1

1
i .

Hn
(k) =

n∑
i=1

1
ik

is the generalized n-th harmonic number of the k-th kind. In

particular Hn
(1) = Hn. Usually we consider only k > 1.

Fact 1.2.8. An Euler—Mascheroni constant γ = 0.577215 . . . is a limit of a
sequence (Hn − lnn)

∞
n=1.

Fact 1.2.9. An asymptotics of harmonic numbers when n→∞ is as follows:

Hn = lnn+ γ +
1

2n
− 1

12n2
+ O

(
n−4

)
. (1.7)

Next two facts can be obtained e.g. via Euler—Maclaurin summation for-
mula (1.14):

Fact 1.2.10. If a > 1, then the following formula is useful:

Hn
(a) −Hk

(a) =
k1−a − n1−a

a− 1
+ fa(k) + O (1) ,

as n→∞, where |fa(k)| 6 k−a.

Fact 1.2.11. When a = 1, we deal with the standard harmonic numbers and
achieve the following approximation:

Hn −Hk = ln(n)− ln(k) + f1(k) + O
(
n−1

)
,

as n→∞, where |f1(k)| 6 k−1.

1.2.10 Riemann’s Zeta function

When a real part of complex number z satisfies <z > 1, we can define Riemann’s
Zeta function for such the argument as:

ζ(z) =

∞∑
n=1

1

nz
.

Fact 1.2.12. For k > 1, lim
n→∞

Hn
(k) = ζ(k).

Fact 1.2.13. ζ(2) = π2

6 and ζ(3) = 1.2020569 . . . < π3

25 .

1.2.11 PolyLogarithms

Polylogarithm (or Jonquiére’s function) Lik (x) is defined as
∞∑
n=1

xn

nk
, whenever

the series converges.18 A name of polylogarithm can be partially justified by the
short form of Li1 (x), which is a Maclaurin expansion of a function − ln(1− x).
18Do not confuse polylogarithm with polylogarythmic function, which is a polynomial in

the logarithm of a variable.



24 CHAPTER 1. INTRODUCTION

Figure 1.1: Plots of real values of two basic branches of W -Lambert function.

1.2.12 W-Lambert multi-function

W -Lambert function is defined as an inverse of the complex function f(x) = xex,
i.e. y = W (x) if x = yey. In fact it is a multi-function, because f is not injective
and in consequence W can take more than one value at some points. In order
to disambiguate the values, the multifunction is divided into separate functions,
called branches (just like for a complex logarithm). A whole multi-function is
thence a union of all the possible branches. From a point of applications, the
most interesting are two real valued branches, denoted by W0 (principal branch,
sometimes referred as Wp) and W−1 (negative branch, sometimes referred as
Wm). The first one takes real values in the interval [−e−1,∞), (it is defined for
all complex numbers; −e−1 is its branch point and the halfline (−∞,−e−1) is its
branch cut) and the second in [−e−1, 0) (the branch point for all non-principal
branches of W -Lambert function is always 0 and theirs branch cuts are halflines
(−∞, 0)) (compare with Figure 1.1).

It is implemented in all the most popular mathematical software packages
(e.g. ProductLog in Wolfram Mathematica19, lambertw in Matlab and Octave
or LambertW in Maple).

Fact 1.2.14. For |x| < 1
e , the foregoing formula is satisfied (from [26]):

W0 (x) =

∞∑
i=1

(−1)i−1 ii−2

(i− 1)!
xi (1.8)

19An inversion of ex function is a logarithm. Moreover W -Lambert function is an inver-
sion of product of x and ex. Therefore this is the genesis of the function name in Wolfram
Mathematica.



1.2. NOTATIONS AND AN OVERVIEW OF SPECIAL FUNCTIONS 25

Fact 1.2.15. The beneath formula give a useful approximation for the positive
branch of W -Lambert function:

W0(x) = ln(x)− ln(ln(x)) + O

(
ln(ln(x))

ln(x)

)
, (1.9)

when x→∞.

Fact 1.2.16. When x < 0, then the beneath formula give a useful approximation
for negative W -Lambert function:

W−1(x) = ln(−x)− ln(− ln(−x)) + O

(
ln(− ln(−x))

ln(−x)

)
, (1.10)

as x→ 0−

The above facts can be found in [26] or [1]. One can also check them for
more properties and details.

1.2.13 Bernoulli numbers and polynomials

Definition of Bernoulli numbers

In 1713, Jacob Bernoulli defined a sequence of numbers, which commonly occur
in combinatorics. Let us provide a definition of these numbers by its exponential
generating function:

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.20

By calculation of derivatives of both sides, we can deduce the values of (Bn)n
sequence. Astonishingly, Bernoulli numbers vanish for odd indices except for B1.
Moreover, all values of this sequence are rational. In Table 1.3 we present non-
zero values of the Bernoulli sequence for the smallest indices. One can realize
an elegant property of Bernoulli numbers, namely B4n+2 > 0 and B4n+4 < 0
for n ∈ N0.

n 0 1 2 4 6 8 10

Bn 1 − 1
2

1
6 − 1

30
1
42 − 1

30
5
66

Table 1.3: First non-zero values of the Bernoulli sequence (Bn)n

20There exist also another, slightly different sequences with the same name. They differs in
signs of some elements.
The left hand side of the equation is often referred to as Bernoulli function.



26 CHAPTER 1. INTRODUCTION

Definition of Bernoulli polynomials

Bernoulli numbers are closely related to Bernoulli polynomials, which can be
defined by the following exponential generating function:

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (1.11)

However, an explicit formula, given by the Bernoulli numbers is more wieldy in
practise:

Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k .

We may briefly see that:

B0 (x) = 1,

B1 (x) = x− 1
2 ,

B2 (x) = x2 − x+ 1
6 ,

B3 (x) = x3 − 3
2x

2 + 1
2x,

B4 (x) = x4 − 2x3 + x2 − 1
30 .

Note that Bn(0) = Bn.
A useful bound on the values of Bernoulli polynomial in the interval [0, 1] is

presented e.g. in [73]:

Fact 1.2.17.

|Bn(x)| 6 2n!

(2π)n
ζ(n) .21 (1.12)

1.2.14 Faulhaber’s formula and Euler summation formula

A sum of powers of consecutive natural numbers were investigated since ancient
times (e.g. by Pythagoras or Archimedes). However, in XVII-th century Johann
Faulhaber proposed to give the result in a form of polynomials (see e.g. [71]).
Formulas provided by Faulhaber were rectified by Jacob Bernoulli in his work
from 1713 [12] (however, without a proof). Let p ∈ N. A sum of p-powers of
natural numbers, known as Faulhaber’s formula is given as:

n∑
k=1

kp =
np+1

p+ 1
+
np

2
+

p∑
k=2

Bk
k!

[p]k−1n
p−k+1 .22 (1.13)

21for n 6= 0
22Note that if we change the definition of B1 to 1

2
, then the right hand side is

p∑
k=0

Bk
k!

[p]k−1n
p−k+1.



1.3. PROBABILITY THEORY 27

The Bernoulli numbers for even indices combined with binomial coefficients
increase in magnitude very rapidly and alternate in sign as well, so providing a
good approximation of sums of relatively big powers p may be challenging.

A useful extension of Faulhaber’s formula is so called Euler—Maclaurin sum-
mation formula (see e.g. [54, 4]).

Theorem 1.2.2 (Euler—Maclaurin formula). Let a, b, s ∈ N, f be continuous,
integrable, real (or complex) valued function on [a, b]. Then

b∑
i=a

f(i) =

b∫
a

f(x)dx+
f(b) + f(a)

2
+

b s2 c∑
i=1

B2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
+ rs ,

(1.14)
where the remainder is given by:

rs = (−1)s+1

b∫
a

f (s)(x)
Bs ({x}f )

s!
dx . (1.15)

1.3 Probability Theory

1.3.1 General definitions and notations

In probability theory notation often varies from source to source, therefore we
present in here a concise introduction to this field, together with utilized sym-
bols.

A universe Ω denotes a set of all elementary events ω. A probability of
an event A is denoted by Pr[A]. We denote random variable X by upper-
case letter, and its realizations either by the relevant lower-case letter x or
X(ω), whenever ω is inherently necessary. When X has a distribution D with
a vector of parameters Θ, then we denote such the relation as X ∼ D(Θ). By
E[X] and Var[X] we denote respectively an expected value and a variance of a
random variable X. Its cumulative distribution function (abbreviated to CDF)
we usually depict by FX (i.e. FX(x) = Pr[X 6 x])23.

� If FX is absolutely continuous with respect to Lebesgue measure on R,
then X has a probability density function(or shortly pdf24) and it is de-
noted by fX (i.e. fX(x) = F ′X(x)). In this case, a set {x : fX(x) > 0} is
a support of X.

� If X is a discrete random variable, then an atom of X is such x that
pX(x) := FX(x)− lim

t→x−
FX(t) > 0.25 In this case, a set of all atoms of X

23We assume that CDF is càdlàg, i.e. right continuous with left limits
24The term ”pdf” is also a common abbreviation for ”partial differential equation”, however

in this thesis it has only one meaning.
25WhenX is a discrete random variable and A is a set of all atoms ofX, then

∑
x∈A

pX(x) = 1.



28 CHAPTER 1. INTRODUCTION

is its support, pX(x) denotes a mass of atom x and pX is a probability mass
function of X (abbreviated to pmf). In some cases a domain of pmf is
given a priori. Then each point x from this domain, for which pX(x) = 0
is called a null atom.

In both cases we denote the support of X as Range(X). When a random variable
is known from the context, then we often omit the subscripts and simply write
F (x), f(x) and p(x).

Fact 1.3.1. If Pr[X > 0] = 1, then

� E[X] =
∞∫
0

Pr[X > x] dx, if X has probability density function,

� E[X] =
∞∑
k=1

Pr[X > k], if X has probability mass function.

By X|Y we denote a conditional random variable, which satisfies

Pr[X ∈ A|Y ∈ B] Pr[Y ∈ B] = Pr[X ∈ A, Y ∈ B]

for every measurable A and B in ranges of X and Y respectively.
If a sequence (Xi) of random variables is stochastically independent and

each Xi has the same distribution, then we write shortly that (Xi) are i.i.d.
(independent and identically distributed).

A simplex of probability distributions on [L] is defined as

SimL :=

{
p̄ ∈ [0, 1]L :

L∑
i=1

pi = 1

}
.26

A boundary of SimL consists of all the distributions on [L], which have at least
one null atom.

An infinite sequence X1, X2, . . . of real-valued random variables is said to
converge in distribution (or weakly) if there exists a CDF F such that

lim
n→∞

FXn(x) = F (x) ,

for every x ∈ R such that the function F is continuous at x. We denote this
fact by FXn

d−→
n→∞

F . When (Xn)n converges in distribution to X, then for every

bounded and continuous function f , the following is satisfied:∫
R

f(x)dFXn
n→∞−→

∫
R

f(x)dFX .27

26Let us point out that this notation is very similar to this of discrete simplex (see Sec-
tion 1.2.4).
27See e.g. [14].



1.3. PROBABILITY THEORY 29

1.3.2 Order statistics

When X1, . . . , Xm are independent random variables, then we can order them
from the smallest, to the biggest. Then order statistic Ordi:m(X1, . . . , Xm), for
i ∈ [m], describes the i-th smallest variable amongst them.

Fact 1.3.2. If X1, . . . , Xm are independent random variables and F is a com-
mon CDF of each Xi, then the CDF of Ordi:m(X1, . . . , Xm) variable is given
by the formula:

m∑
j=i

(
m

j

)
(F (x))j(1− F (x))m−j .

Note that in particular Ord1:m(X1, . . . , Xm) = min(X1, . . . , Xm) and sym-
metrically Ordm:m(X1, . . . , Xm) = max(X1, . . . , Xm), so one can use the above
fact to obtain:

Fact 1.3.3. If X1, . . . , Xm are independent random variables and F is a com-
mon CDF of each Xi, then the CDF of max(X1, . . . , Xm) variable is Fm and
the CDF of min(X1, . . . , Xm) is 1− (1− F )m.

1.3.3 Stochastic processes with discrete time

A stochastic process X with discrete time is a sequence of random variables Xn,
where n is element of either [n] (for some n ∈ N), N or N0. If X is a process
with discrete time and has the property

(∀ n) Pr

[
Xn ∈ An|

n−1∧
i=1

(Xi ∈ Ai)

]
= Pr[Xn ∈ An|Xn−1 ∈ An−1] , 28

whenever the above probabilities are well defined, then X is called a Markov
chain. For more precise definition and properties, see e.g. [87].

1.3.4 Probabilistic Counters

The notion of probabilistic counter is ambiguous, so for reader’s convenience,
we provide a general definition of probabilistic counter, in the following way:

Definition 1.3.1. We call a stochastic process M a probabilistic counter if

Mn+1 = f(Mn, X(Mn))

where Mn is the value of the counter after n incrementation requests, X(Mn) is
a random variable, possibly dependent on Mn and f is an arbitrary, non-negative
function.

28When we define the process on N0, then we should also consider X0 in conditioning.



30 CHAPTER 1. INTRODUCTION

Note that, using this definition, any probabilistic counter can be described
with a tuple {M0, (f(·, ·), X(.))}. Moreover, we sometimes consider a case,
when probabilistic counter is interpreted as an mechanism, which receives some
queries. Such the query may either provoke next incrementation request (de-
noted as ’1’) or induce a fake request (denoted as ’0’), which does not change
the state of the probabilistic counter.

In Figure 1.2 one can see a graphical representation of the probabilistic
counter. 1 denotes the incrementation request and 0 denotes fake request. The
dice depicts the randomness (namely X(Mn)) from Definition 1.3.1 and ”Incre-
ment” means that the application of f(Mn, X(Mn)) 6= Mn, so the probabilistic
counter changes its value.29

Figure 1.2: Graphical depiction of probabilistic counter.

Probabilistic counters are usually used in order to estimate some quantity
G, like e.g. size of a database. Then there exists some estimator of the property
G given by some function Ψ, i.e. Ψ(Mn) is an estimate of G (which depends on
n). Then it is important to measure an accuracy of the estimator Ψ. We define

it in a standard way as
√

Var[ψ(Mn)]

n .

1.3.5 Variants of probability distributions

Notions of some distributions are commonly ambiguous. Often distributions,
which vary slightly, have the same name. In order to distinguish them in a
convenient way, we introduce some terms and symbols, which indicates an actual
variant.

First of all, let us define restricted (or truncated) version of variables.
Namely, when L ∈ N and X ∼ D(Θ), then we say that Y is a restricted version
of random variable X if Y = max(X,L), i.e. we restrict X to the interval
(−∞, L].30 Then we denote that Y ∼ D(Θ, L).

We also define conditionally truncated version of variables. Namely, let X ∼
D(Θ), with some support S and A ⊂ S. We say that Y is called a version of X

29Probabilistic counters are usually non-decreasing with respect to the number of incre-
mentation request n, hence we signed this step as ”Increment”. However, sometimes they are
also allowed to reset the value, so the nomenclature remained unchanged, although we have
generalized the definition of probabilistic counter to Definition 1.3.1.
30In fact, we usually consider X with support N or N0, so we restrict it to [L] or [0 : L]

respectively.



1.3. PROBABILITY THEORY 31

conditionally truncated to A, if Y = (X|X ∈ A). It implies, for instance, that

for B ⊂ A, Pr[Y ∈ B] =
Pr[X ∈ B]

Pr[X ∈ A]
. Then we denote Y ∼ (D(Θ)|A).31

Let us also define shifted versions of discrete distributions. Some of distribu-
tions have the same name for the same concept, but ”shifted” by one in either
of two sides of real line. Let X ∈ D(Θ) be discrete random variable. Then
Y = X + 1 is called R-shifted version of X and Z = X − 1 is L-shifted version
of X. We denote these facts as Y ∼ D→(Θ) and Z ∼ D←(Θ) respectively.32

We are going to use the same names of variants for the distributions as well.
For instance, we will consider G with R-shifted version of geometric distribution,
conditionally truncated to [n].

1.3.6 Uniform Distributions

We denote a (discrete) uniform distribution on the set [n] by Uni (n). If U ∼
Uni (n), then Pr[U = k] = 1

n for k ∈ [n].
We say that random variable U has a (discrete) uniform distribution on a

finite set S of size n, if Pr[U = s] = 1
n for any s ∈ S. We denote it shortly by

U ∼ Uni (S). Especially, when we are drawing a random bit uniformly, it states
for a choice from a set S = {0, 1}. Note that E[U ] is a mean of the values from
the set S. Especially, when S = [n], we get E[U ] = n+1

2 .
Let a < b. By Uni (a, b) we denote a (real-valued) uniform distribution on the

interval (a, b). If U ∼ Uni (a, b), then pdf of U is fU (x) = 1
b−a11(a,b) (x). Then

simply E[U ] = a+b
2 . If A is Borel-measurable subset of R with finite, non-zero

Lebesgue measure, then we denote U ∼ Uni (A) with pdf fU (x) = 1
λ(A)11A (x).

Theorem 1.3.1 (Inverse transform sampling (Smirnov method)).

1. Let FX be absolutely continuous CDF of X. Then U = FX(X) has
Uni ((0, 1)) distribution.
If U ∼ Uni ((0, 1)), then F−1

X (U) has the same distribution as X.

2. Let X has discrete distribution. If U ∼ Uni ((0, 1)), then min{x : U 6
FX(x)} has the same distribution as X.

1.3.7 Bernoulli, Binomial and Normal distributions

A random variable B has Bernoulli distribution Ber (p) if Pr[B = 1] = p =
1− Pr[B = 0]. Then E[B] = p and Var[B] = p(1− p).

31Note that terms ”conditionally truncated” and ”truncated” may be a little bit confusing.
Nevertheless, we decided to only add an adjective ”conditionally” in order to distinguish this
case from the one given by rectification of the distribution via max operation and to emphasize
that the resulting distribution is obtained by conditioning the support of the initial one in
contrast to the second variant.
32To abbreviate the notation, we sometimes evoke them as R-versions and L-versions of

random variables.



32 CHAPTER 1. INTRODUCTION

A random variable S has Binomial distribution Bin (n, p) if it can be given
as a sum of n i.i.d. random variables with Ber (p) distribution. Naturally,
E[S] = np and Var[S] = np(1− p).

A random variable N has Normal distribution N (µ, σ) if it has pdf

f(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
.

Then E[N ] = µ and Var[N ] = σ2. A distribution N (0, 1) is called standard
Normal distribution. Cumulative distribution function of N (0, 1) is a special
function denoted by Φ.33 In Chapter 2 will utilize the fact, that Φ−1(0.99) ≈
2.325.

Theorem 1.3.2 (de Moivre—Laplace). Let (Bi)
∞
i=1 be a sequence of i.i.d. ran-

dom variables with Ber (p) distribution and N ∼ N (0, 1). Then

n∑
i=1

Bi − np√
np(1− p)

d−→
n→∞

N .

Let us mention that Theorem 1.3.2 is the simplest version of Central Limit
Theorem.

1.3.8 Exponential and Laplace distributions

A random variable E has an exponential distribution with parameter λ > 0
(denoted by E ∼ Exp (λ)) if its support is [0,∞) and Pr[E > x] = e−λx for each
x > 0. A pdf of this distribution is fE(x) = 11[0,∞) (x)λe−λx. If E ∼ Exp (λ),
then E[E] = 1

λ , which is called an intensity of exponential distribution.34

A random variable X has a Laplace distribution with parameter λ > 0 (
denoted by X ∼ L(λ)), if its probability density function is

f(x) =
1

2λ
exp

(
−|x|
λ

)
.

Then E[X] = 0 and Var[X] = 2λ−2.

1.3.9 Beta distribution

A random variable B has Beta distribution with parameters a, b > 0 (B ∼
B (a, b)) if its support is [0, 1] and its density is given by the function fB(x) =
xa−1(1−x)b−1

B(a,b) . If B ∼ B (a, b) then E[B] = a
a+b .

33Φ is closely related to, so called, error functions. For definition and properties, see e.g.
[1].
34Note that in the literature, λ parameter is often the intensity of the distribution.



1.3. PROBABILITY THEORY 33

1.3.10 Geometric-Like Distributions

Let us fix a number p ∈ (0, 1) and let q = 1−p. A random variable G with values
in N has a geometric distribution with parameter p (denoted by G ∼ Geo (p))
if Pr[G = k] = pqk for k ∈ N0. It represents the first moment of success in a
process, where in each step, the probability of success is p. E[G] = q

p
A random variable X has a restricted geometric distribution with parameters

p ∈ (0, 1) and L ∈ N (indicated by X ∼ Geo (p, L)) if there exists a random
variable G ∼ Geo (p) such that X = min(G,L).

Fact 1.3.4. Notice that if X ∼ Geo (p, L), then

Pr[X = k] =

{
pqk if k ∈ [0 : L− 1]

qL if k = L .

A random variable M has maximal geometric distribution MGeo (n, p) (usu-
ally abbreviated to “MaxGeo”) if there exist i.i.d. random variables X1, . . . , Xn,
with the distribution Geo (p), such that

M = max(X1, . . . , Xn) .35

Fact 1.3.5. For k ∈ N, Pr[M 6 k] =
(
1− pk

)n
.

Random variables with MGeo (n, p) distribution were studied in several pa-
pers (see e.g. [99, 22]).

Fact 1.3.6. If M ∼ MGeo (n, p), then E[M ] = 1
2 + Hn

− ln(1−p) + P (n) + O
(

1
n

)
,

where P (n) is a periodic function with small amplitude.

From equations (1.7) and (1.5), we attain E[M ] ∼ 1
2 + lnn+γ

p , as p→ 0+ and
n→∞.

Fact 1.3.7. If M ∼ MGeo (n, p) and C > 0 is some constant, then

Pr

[
M > C

lnn

lnQ

]
6

1

nC−1
,

where Q = 1
1−p = q−1.

Proof. If G ∼ Geo (p) and k ∈ N, then Pr[G > k] = qk. Therefore Pr[M > k] 6
nqk,36 hence

Pr

[
M > C

lnn

lnQ

]
6 n exp

(
C

lnn

lnQ
ln q

)
=

1

nC−1
.

35In Chapter 4 we will use MaxGeo name for a variable with a distribution MGeo→(n, p).
However it will be clearly pointed out.
36By inclusion—exclusion principle.



34 CHAPTER 1. INTRODUCTION

Definition 1.3.2. A random variable Wn,p has a distribution WMGeo (n, p)
if there are independent random variables G1, . . . , Gn with distribution Geo (p)
such that

Wn,p := card ({k : Gk = max(G1, . . . , Gn)}) .

Using the Mellin transform or the Rice method one can derive the following
approximation (see e.g. [68, 21] for details):

Theorem 1.3.3. Let a, n ∈ N, p ∈
(
0, 1

2

)
and Wn,p ∼WMGeo (n, p). Then the

distribution of Wn,p can be estimated by:

Pr[Wn,p = a] = − 1

ln(1− p)
pa

a
+ rp ,

where |rp| < − (a+1)2

12a pa ln(1− p).

Fact 1.3.7 may be used to find such a number k that Pr[Wn,p > k] is very
small and Theorem 1.3.3 will be utilized in Section 2.7.2 for finding the proba-
bility of success in LEAs based on geometric distributions.

Remark It worth to notice that the right side of formula from Theorem 1.3.3
makes an impression of being independent of n. In fact the number Pr[Wn,p = a]
depends on n, but the influence of n is negligibly small for all p < 1

2 (see [21])
and is hidden in the expression rp. Also notice that from Theorem 1.3.3 it
follows that Pr[Wn,p = 1] = 1 − p

2 + O
(
p2
)

as p tends to 0 (compare with a
notice about the probability of collision from Section 2.7.2).

We introduce auxiliary notations related to the distribution WMGeo (n, p).
Namely, let us define Wk,n,p := Pr[Wn,p = k] and W>2,n,p := Pr[Wn,p > 2],
where Wn,p ∼ WMGeo (n, p) . Obviously, then we may determine W1,n,p =
1−W>2,n,p.

Beneath we present one of the results from [21]:

Theorem 1.3.4. Let a, n ∈ N, p ∈
(
0, 1

2

)
and Wn,p ∼WMGeo (n, p). Then the

distribution of Wn,p can be bounded by:

Pr[Wn,p > a] < − pa

a(1− 2p) ln(1− p)
− (a+ 1)2pa ln(1− p)

12a(1− 2p)
.

We say that X has R-shifted geometric distribution, conditionally truncated
to [n], if its probability mass functions is given by the formula Pr[X = k] =
pqk−1

1−qn , for k ∈ [n], p ∈ (0, 1) and q = 1− p. We denote it as X ∼ (Geo→(p)|[n]).
Note that this distribution is different from Geo (p, n).

1.3.11 Zipf Distribution

We say that X has Zipf Z(n,m) distribution, if Pr[X = k] = 1
kmHn(m) , for

k ∈ [n], where m > 1 is fixed. Then F (k) = Hk
(m)

Hn(m) , for k ∈ [n]. Naturally,

E[X] = Hn
(m−1)

Hn(m) .



1.4. USEFUL STANDALONE THEOREMS 35

1.3.12 Poisson Distribution

Let λ > 0. Then X has Poisson Pois(λ) distribution, if Pr[X = k] = λk

k! e
−λ, for

k ∈ N0. Moreover E[X] = λ.
We say that X has R-shifted Poisson distribution, conditionally truncated

to [n], if Pr[X = k] = λk−1

an(k−1)!e
−lm, for k ∈ [n], where an =

n−1∑
i=0

λi

i! e
−λ is a

normalizing constant. We denote it as X ∼ (Pois→(λ)|[n]).

1.3.13 Distance between discrete probability distributions

Denote Pr[X ∈ A] by PX(A). Let X and Y be defined on the common proba-
bility space X = (Ω,F ,P).

Total Variation distance

We define total variation distance between PX and PY as supA∈F |PX(A) −
PY (A)|, denoted by ‖PX , PY ‖TV . Alternatively, ‖PX , PY ‖TV can be written by
the norm in `1 space as 1

2‖PX − PY ‖1.

Kullback—Leibler divergence

Let X and Y have a common support. Kullback—Leibler divergence (or relative
entropy) from PY to PX is defined as

DKL(PX‖PY ) =
∑

i∈Range(X)

PX({i}) lg

(
PX({i})
PY ({i})

)
.

It worth to mention that Kullback—Leibler divergence is not symmetric, so
usually DKL(PX‖PY ) 6= DKL(PY ‖PX).

Fact 1.3.8. Relation between total variation distance and relative entropy is

given by the inequality: ‖PX , PY ‖TV 6
√

1
2DKL(PX‖PY ) .

1.4 Useful standalone theorems

1.4.1 Banach fixed point theorem

Theorem 1.4.1 (Banach fixed point theorem). Let (X , d) be a non-empty com-
plete metric space with mapping T : X → X with contraction constant

Λ := sup{λ ∈ R : (∀ x, y ∈ X ) d(T (x), T (y)) 6 λd(x, y)} .

Then T admits a unique fixed-point x∗ ∈ X . Furthermore, x∗ = lim
n→∞

xn where

x0 is an arbitrary element of X and xn = T (xn−1) for n > 1. (xn)n is called a
Banach sequence. Then also

d(x∗, xn) 6
Λn

1− Λ
d(x1, x0) .



36 CHAPTER 1. INTRODUCTION

1.4.2 Weierstrass’ Product Inequality

Theorem 1.4.2 (Extension of Weierstrass’ Product Inequality). (see [69] for
a proof) Let I be some finite set and (∀ i ∈ I) ai ∈ [0, 1]. Then

1−
∑
i∈I

ai 6
∏
i∈I

(1− ai) 6 1−
∑
i∈I

ai +
∑
i∈I

∑
j∈I\{i}

1

2
aiaj .

We will refer to Theorem 1.4.2 shortly via ”WPI” (usually as an indicator
over the 6 symbol). We are going to provide a more general result, which was
originally presented in [69] via elementary symmetric polynomials. Nevertheless
we are going to present it together with a short proof in an other form utilizing

multi-indices. A multi-index of order n is a vector κ ∈ Nn. We define |κ| =
n∑
i=1

κi

and max{κi : i ∈ [n]} to be respectively length and depth of κ. If x ∈ Cn and

κ ∈ Nn, then we write shortly xκ instead of
n∏
i=1

xκii .

If κ, ι are multi-indices, then we write κ‖ι for theirs concatenation.37 A set of all
multi-indices of order n, length L and depth at most d is denoted as M(n,L, d).
We also define ./r to be 6, when r is even number and >, when r is odd.

Theorem 1.4.3 (Generalized Weierstrass’ Product Inequality). For r 6 n and
a sequence (xi) ∈ [0, 1]n, the following inequalities are satisfied:

n∏
i=1

(1− xi) ./r
r∑

L=0

∑
κ∈M(n,L,1)

(−1)Lxκ . (1.16)

Proof. We use the induction with respect to n. A standard combinatorial argu-
ment shows that when n = r, then the equality holds.
Assume, that the formula (1.16) is true for some n ∈ N. We will show, that the
similar will be true for n+ 1. Indeed,

n+1∏
i=1

(1− xi)
xn+161
./r (1− xn+1)

r∑
L=0

∑
κ∈M(n,L,1)

(−1)Lxκ

= 1 +

r∑
L=1

∑
κ∈M(n,L,1)

(−1)Lxκ − xn+1

r∑
L=0

∑
κ∈M(n,L,1)

(−1)Lxκ

= 1 +

r∑
L=1

∑
κ∈M(n,L,1)

(−1)Lxκ‖(0) +

r−1∑
L=0

∑
κ∈M(n,L,1)

(−1)L+1xκ‖(1)

− xn+1

∑
κ∈M(n,r,1)

(−1)rxκ = . . .

37Just like in the definition from Section 1.2.1.



1.4. USEFUL STANDALONE THEOREMS 37

. . . = 1 +

r∑
L=1

∑
κ∈M(n+1,L,1)

(−1)Lxκ − xn+1

∑
κ∈M(n,r,1)

(−1)rxκ

xn+1>0
./r

r∑
L=0

∑
κ∈M(n+1,L,1)

(−1)Lxκ .

In fact, the formula (1.16) and the above proof are more explicit, precise and
concise than relevant equivalents from [69].38

1.4.3 Cauchy—Schwarz inequality

Theorem 1.4.4 (Cauchy—Schwarz inequality). Let x, y be vectors from a uni-
tary space with norm ‖.‖2. Then

|〈x, y〉| 6 ‖x‖2 · ‖y‖2 .

Especially, if x, y ∈ `2(Ω), then∣∣∣∣∣∑
i∈Ω

xiyi

∣∣∣∣∣ 6
√∑
i∈Ω

x2
i ·
√∑
i∈Ω

y2
i .

1.4.4 Weierstrass Extreme Value Theorem

Theorem 1.4.5 (Weierstrass Extreme Value Theorem). If C ∈ Rd is bounded
and closed set and f : C → R is a continuous function, then there exist a, b ∈ C
such that

(∀ x ∈ C) f(a) 6 f(x) 6 f(b).

1.4.5 Stević Theorem

Theorem 1.4.6 (From [96]). Let f : (0, α) → (0, α), where α > 0, be a con-
tinuous function such that (∀ x ∈ (0, α)) 0 < f(x) < x and f(x) = x − axk +
bx2k−1 + o

(
x2k−1

)
, when x → 0+, where k > 1, a, b > 0. Let x0 ∈ (0, α) and

xn+1 = f(xn) for n ∈ N0. Then

xn = (a(k − 1)n)
− 1
k−1 − (ka2 − 2b) lnn

2(a(k − 1))2(a(k − 1))
1
k−1n

k
k−1

+ o

(
lnn

n
k
k−1

)
.

1.4.6 Bernoulli Inequality

Theorem 1.4.7. Let x > −1 and k > 1. Then

(1 + x)k > 1 + kx .

38In our proof there is other base case of the induction.



38 CHAPTER 1. INTRODUCTION

1.4.7 Fatou’s Lemma

Lemma 1 (Fatou’s Lemma). Let fn : X → [0,∞) be a sequence of Lebesgue-
measurable functions on X. Then∫

X

lim inf
n→∞

fn(x)dx 6 lim inf
n→∞

∫
X

fn(x)dx .

1.4.8 Tonelli’s Theorem

Theorem 1.4.8 (Discrete Tonelli’s Theorem). Let I, J be (at most) countable
sets. and a(i, j) > 0 for all (i, j) ∈ I × J . Then∑

i∈I

∑
j∈J

a(i, j) =
∑
j∈J

∑
i∈I

a(i, j) .

There exists also a more general version of Tonelli’s Theorem for functions
defined on product of σ-finite measure spaces. This result is closely related to
Fubini’s Theorem.

1.5 Other

1.5.1 A brief introduction to graph theory

A simple graph G is a pair (V,E), where V is a set, which elements are called
vertices and E is a relation on V , which is antireflexive ((∀ v ∈ V ) ¬(v, v) ∈ E)
and symmetric ((∀ v, w ∈ V ) (v, w) ∈ E ⇒ (w, v) ∈ E). An element (v, w) of E
is called an edge. card (V ) is called an order of the graph. A graph, in which E =
V ×V is called a clique or a complete graph. A set Nv := {w ∈ V : (v, w) ∈ E} is
called a neighbourhood of v. card (Nv) is called a degree of vertex v. A sequence
of vertices (v1, v2, . . . , vk) is called a path if (∀ i ∈ [k − 1]) (vi, vi+1) ∈ E. We
say that the graph is connected if for all v, w ∈ V , there exists a path between
v and w. Otherwise we call it non-connected. If all vertices has degree 2 and
the graph is connected, then the graph is called a ring. H = (V ′, E′) is called
an induced subgraph of G = (V,E), if E

∣∣
V ′×V ′ = E′.

1.5.2 Networks

A network N is a communication structure with a topology given by a graph
GN . The vertices V (GN ) are called nodes and the edges E(GN ) are called
ports. Each node may be interpreted as a device or a user and ports between
them may be interpreted as the possible channels of communication (i.e. one
device may send some data to the other one). It may be either assumed that
a node communicates his message via all the neighbouring ports at the same
moment or by one of the neighbouring ports. In the second approach, usually
the sequence of communication queries are planned by routing tables. We may



1.5. OTHER 39

itemize different properties of the networks. Let us notice that some of the
properties of the graph GN may be not known a priori to the nodes. For
example, nodes order of the network card (V (GN )) may not be known to all of
the nodes at the very beginning of an execution of algorithm. However, it is
possible that some of the nodes will attain card (V (GN )) (or other properties)
during the communication. We will delve into this distinction in Section 2.1. We
usually denote the order of GN by n. Another intrinsic property is a diameter
of the network, which is a maximal number of hops that are needed to transmit
any message. In other words it is the maximal distance in the topology induced
by the graph GN . We say that a network is static if the topology of the graph
GN either does not change or routing table of the network (whenever it exists)
is established only once and remain unchanged.39 Otherwise, i.e. when the
topology of the network change in time, we describe it as dynamic network.
A specific type of dynamic network is Ad Hoc network, in which there is no
structure given a priori and the topology of the network can evolve significantly
over time. This arrangement is typical for e.g. mobile wireless networks.

39A routing table consists of lists of different neighbours of the particular node, which defines
the direction of a transfer of a message to any device in the network. For different destination
points, the corresponding list can be different. If the port of the first choice on the list is
unavailable for some reason (e.g. a technical issue), the next port on the list is used instead,
etc.



40 CHAPTER 1. INTRODUCTION



Chapter 2

Leader Election Algorithms

2.1 Introduction and motivation

Commence our considerations with an arrangement, where a group of some
devices1 like e.g. computers, stations of radio-network, robots, drones, vehicles,
register processes or household appliances, cannot establish a consensus.

Example 1. As an introduction to a framework of a problem, let us consider two
autonomous vehicles, which ride side by side and want to share the same road
lane at the same time, what inevitably will cause a road accident. For instance,
such the issue can be solved in the following trivial way: a vehicle A decides
which of the vehicles should use the disputed lane, further A communicate the
decision to a vehicle B, which agrees with the statement and proceeds accordingly
to proposed recommendations.

The above solution can be abstracted to a conception of Leader Election
Algorithm (hereinafter referred to as LEA). It is a distributed process,2 which
executed by a group of conflicted devices, should provide a unique winner,
who will be obliged to lead the group. Customarily such the node is called a
leader or a coordinator.3 When an execution of LEA correctly chooses a unique
leader, then we call such the realization successful. Otherwise it is interpreted
as a failure. Leader Election problem may be easily confused with a leadership
election, in which the leader of some party should be chosen. We have to
distinguish these two phrases, nevertheless LEA somehow encompass a case of
leadership election, which can be conducted in the party to appoint leadership
via appropriate execution of Leader Election Algorithm.

1Devices are often referred to as processes or stations, however we also use other names
like competitors, contestants, agents, appliances or simply nodes (of the network).
2Distributed processing is an arrangement, in which algorithms can be executed by more

than a single individual (e.g. appliances or register processes) in order to increase capabilities
of a system of individuals.
3The leader is sometimes interpreted as a loser (like in [89]), since the coordinator usually

lose more energy than the other agents.

41



42 CHAPTER 2. LEADER ELECTION ALGORITHMS

A multitude of ideas for Leader Election Algorithms has brought a wide
variety of scenarios, what motivated researchers to categorize them with respect
to protocols’ properties. However a nomenclature is not perfectly specified yet,
so some of variants’ names differ or even interfere.

In here we would like to provide a brief outline of various approaches, which
we find the most crucial from the point of further considerations. Differing
properties are mostly connected with a configuration, model of communication
or a designation of the network.

From a configuration of the network point of view, there are two intrinsic
distinctions. First of all, elections can be utilized both for unchanging configura-
tions like static networks, where once connected devices remains in the network,
as well as for the dynamic ones, like e.g. Ad Hoc networks, where appliances
often change theirs connection statuses. When it is not stated straightforwardly,
we assume that we deal with dynamic network, which is more general case. On
the other hand, a structure of connections in the network influence the execu-
tion. The simplest possible setup is complete, where each of the processes can
directly send information to all the others (so called single-hop arrangement).
Otherwise, some of the communication has to be passed through some nodes in
order to reach receiver, when direct bypasses are not available (multi-hop ar-
rangement). These concepts are described e.g. in [10], nevertheless, we will also
take a closer look on them in Section 2.4.1. Some of the solutions on Leader
Election problem were designed for specific types of topology of the network
(like e.g. trees, meshes, rings, toruses or hypercubes)4. However, in this disser-
tation we only consider so called universal Leader Election algorithms, which
can be designated for any type of the topology. For completeness, let us men-
tion about alternative model with a population protocol, which is quite similar
to multi-hop arrangement, but in this case, every communication is performed
via direct interactions, every realized by exchanging the internal states of two
neighbouring stations (agents cannot communicate with more than one station
at the time). Such the arrangement of LEAs was considered in plenty of papers
(e.g. [2, 52, 97] to mention a few). Especially it worth to indicate [11], which
provides optimal results with respect to the number of states and expected num-
ber of interactions. Nevertheless, we will not consider this population protocol
routines.

It is straightforward that network’s configuration has an inevitable impact
on communication in the network and naturally should be taken into account.
However, for a sake of clarity, in this dissertation, we do not pay much attention
to this topic. We only mention here several from a broad spectrum of solutions.
In order not to get rid of this problem too carelessly, we focus on very easy, low-
level beeping model, introduced by Cornejo and Kuhn in [28] (we present the
idea of the model in Section 2.4.1). This setup requires the communication to
be divided into synchronized rounds.5 The beeping model can be arrange with
or without a collision detection (abbreviated to CD) option. In this dissertation
4See e.g. [93].
5Alternatively one may assume other models, where each device can send and receive

messages at any time, optionally simultaneously (see e.g. [77]).



2.1. INTRODUCTION AND MOTIVATION 43

we consider a simpler version of the model, which do not utilize CD. A serious
profit of our attitude is that the beeping model without CD can be simply
adapted to more complicated variants of communication. We delve into this
topic in Section 2.4.1. Let us point out, that there are many approaches to
Leader Elections via beeping model both with CD (like e.g. in [107, 83]) and
without CD (e.g. in [82]).

In this dissertation we always assume that all the communication is per-
formed in a single multi-access channel, where every agent receives the same
messages, if they are active and in the range of communication. However some
of researchers consider more complicated, multi-channel model of communica-
tion as well (see e.g. the survey [61] for several approaches and challenges).

One of the most important aspects of Leader Election is to inform all the
devices who the leader is. This task can be realized in universal LEAs via
a natural framework by extrema propagation techniques (see e.g.[8, 9, 23]),
initialized in a node, which becomes a leader, so we omit this part of LEAs
in our considerations. Let us only remark, that under some circumstances this
process can be coarsely simplified. For instance, for fully-connected networks
the elected leader can directly send the information about his identity directly to
all the other processes. We are going to raise the issue of extension to connected
graphs in Section 2.4.1.

A second wide branch of properties of LEAs are based on theirs designation,
which also can be partially dependent on the configuration of the network.

If a number of all competitors of LEA is unknown in advance, then we call
it anonymous and when initially all the competitors know theirs total number
n, then such LEA is called non-anonymous. There exists also a specification of
anonymous algorithms, in which an upper bound N on the number of devices
in the network is given, i.e. it is known that n ∈ [N ]. We name such the
number N as a network’s capacity.6 In order to distinguish this arrangement
of the network, we name it quasi-anonymous. For completeness, if there are no
size nor capacity of the network given a priori, then we call the leader election
algorithm a fully-anonymous one. In order to simplify further descriptions, we
designate similar names both for algorithms and networks, in which LEAs are
performed. It worth to remark that, a fully-anonymous arrangement can be
simply utilized as a quasi-anonymous, and in consequence, a non-anonymous
one.

Note that the quasi-anonymous algorithms are strongly constrained, com-
pared with non-anonymous ones. Therefore, either non-anonymous or fully-
anonymous algorithms with unbounded time of termination, which mainly con-
sider on asymptotic correctness and properties are mostly considered in the
literature.

The request of quasi-anonymity is crucial for considerations in this disser-
tation, since it is inextricably linked with practical applications. Namely, we
may use such the algorithms for any arbitrary subsets of the set of all nodes.
6Let us mention that ”network’s capacity” sometimes refers to the accumulated capacity

of messages that can be transmitted via links of the network over time. However, in this
dissertation we do not investigate such the details of the communication.



44 CHAPTER 2. LEADER ELECTION ALGORITHMS

For example, we may consider only these nodes which are equipped with some
specific sensors or which have sufficient energy resources or which observed some
unusual phenomenon (e.g. a forming of eye of cyclone or a malfunction of some
machine) are chosen to compete for the leader position.

Note, that if the network’s configuration is dynamic, then it is highly prob-
able that the devices do not know each other, so in particular then it can take
some time to establish a total number of agents in such the setup. Hence, it
is easier to consider that the network, like e.g. Ad hoc network, is anonymous.
Remark that when some of the devices know the size of the network while the
others are not aware of this size, then there is still a possibility to perform
anonymous Leader Election.

We naturally assume that every contestant in the network wants to be the
leader 7, so we should guarantee the election to be righteous. If all the com-
petitors have equal chances to become the leader, then we say that LEA is fair.
Otherwise we call such the algorithm unfair.

Imagine a situation when Leader Election is performed in some static net-
work with few devices of the same type and the winner is the one with the
biggest identity on the nameplate. If all the identifiers are distributed equally
likely amongst all the devices, then such the election is fair. However, if we
would like to repeat the elections, then the same device will win every time.
Therefore we also specify an idea of repetitive fairness of LEA, which is fulfilled
if the process is fair in every single, independent run. If the leader eventually
resigns after some time after the election, then a new coordinator should be cho-
sen and meanwhile a structure of the network may change (when the network
is dynamic), like for instance, when energy of some devices have depleted. This
argument affirms the assumption of repetitive fairness.

Researchers sometimes distinguish two kinds of fair algorithms: oblivious
and “uniform” ones. It worth to mention, that there is also a type of algorithms,
straightforwardly connected with those two, but irrelevant of fairness. They
are called “non-uniform” ones. Descriptions of these three arrangements can
be found e.g. in [82, 83]. Let us note that all these types assume that the
Leader Election procedures are divided in synchronized rounds (time steps).
An oblivious algorithm is the routine, in which, at each round, every contestant
have the same probability to send a message (in the case of beeping model,
message consists of one bit). These probabilities can be different for every time
step, but have to be provided a priori (they do not depend on the history of past
transmissions and receptions registered by a particular station). In Section 2.6
we provide, so called, Uniform Leader Election algorithm, which is independent
from the idea of “uniform” arrangement of algorithm, described e.g. in [83].
Therefore in this dissertation, we rename the concepts from [83] as a network-
uniform and a network-non-uniform algorithms. In the first of these two, at
each time step, every agent sends a message with the same probability, which

7Otherwise we may specify a subgroup of such the devices with analogous assumptions
restricted to this subgroup and perform Leader Election amongst them. All the other devices
should can be eventually used as middlemen in communication between the competitors in
the subgroup, especially when a subgraph induced by the subgroup is non-connected.



2.1. INTRODUCTION AND MOTIVATION 45

is dependent on the history of the evaluation. The idea of network-non-uniform
algorithms additionally allows the devices to act dependent on theirs own history
of communication. 8

We also define a quitting algorithm, which allows the contestants to eventu-
ally power off (fall asleep) during the execution and remain in this state until
the end of the procedure in order to save energy9. Otherwise, if the algorithm
is network-uniform, then we call it non-quitting.

If LEA is deterministic (like e.g. in the aforementioned nameplate example),
then there is no possibility for repetitive fairness. Also deterministic approach
cannot ensure that LEA is totally reliable (see impossibility result from [93].
Therefore we only focus on randomized algorithms.

From the practical point of view, there are two universal types of random-
ized LEAs: Las Vegas10 and Atlantic City algorithms11. The first one always
either returns a unique leader or informs about a failure. However its runtime
differs depending on the input and can be eventually very long and even un-
bounded. The latter one was originally defined as an algorithm, which has at
most polynomial runtime (with respect to the network’s size), but it can obtain
uncertain result with probability at most 0.25. Nevertheless, in this disserta-
tion, we curtail the notion, to at most logarithmically bounded runtime (with
respect to the number of devices) and we restrain the algorithm to perform
incorrectly with probability smaller than mistake frequency ε (given a priori).
In general, when LEA successfully finds a leader with probability at least 1− ε,
then we say that it is (1 − ε)-reliable. Note that each Atlantic City algorithm
is inseparably connected with it mistake frequency and Las Vegas algorithm
may or may not have such the parameter. Let us note, that when we consider
quasi-anonymous (1− ε)-reliable algorithm, then we do not demand it to keep
the reliability threshold, when the number of devices is bigger than the capacity
of the network assumed a priori.

The previous partition of randomized LEAs is closely related to a termina-
tion problem. Randomized algorithms, which always return correct result but
have uncertain termination (that terminates with probability close to 1) were
widely considered before (see e.g. [89, 43]). Remark that these algorithms can
be truncated to some number of steps (dependent on the initial parameters)
and be treated as Atlantic City algorithms (probability of uncertain termina-
tion should be then included at a part of mistake frequency). Then we should
have an idea how to properly choose a moment of artificial termination in order
to guarantee demanded reliability. An algorithm, which utilize the truncated
distribution is simply called a restricted one.

8Conversely to network-uniform algorithm, it does not force all the stations to perform in
same way. Especially, some devices may be inactive in some rounds and may further wake-up
to continue the process.
9For instance we can abuse the setup of oblivious or network-uniform in such the way, that

the devices that are aware that are not more needed to obtain a leader may just turn off and
wait for the procedure to end.
10Idea introduced by László Babai in 1979 in [5] as a dual approach to Monte-Carlo algo-

rithms.
11Proposed in 1982 as a response to Las Vegas algorithms.



46 CHAPTER 2. LEADER ELECTION ALGORITHMS

To sum up, in this dissertation we mainly provide universal, repetitively fair,
oblivious-quitting, Atlantic City Leader Election algorithms with arbitrary small
mistake frequencies, which are performed in single-channel, in fully-connected
networks, in the arrangement of beeping model without collision detection. We
will consider both non-anonymous and quasi-anonymous cases. We will also
consider some other known solutions to compare the results.

2.2 A brief history of LEAs

In this section we present a short historical overview of Leader Election algo-
rithms. An election of a leader is a fundamental problem in distributed systems
and as we saw in Section 2.1, it is studied in a variety of contexts and scenarios.

A concept of Leader Election is often attributed to LeLann, who considered
a problem of replacing a lost token in ring network in his paper from 1977 ([72]).
He reformulated this problem in terms of Leader Election.

One of the most important early works on the problem of selection of a
leader is the Dijkstra Prize-winning paper [50] from 1983, written by Gallager,
Humblet and Spira. A core part of theirs solution is finding of a minimal-weight
spanning tree of a network with disjoint weights of edges. Despite the fact that
the Leader Election problem is a classic issue with many different solutions,
especially when some specific topology of the network is given, an intensive
research is still being carried out in this field.

In this section we focus on randomized solutions in clique topology, which
can be easily generalized to algorithm appropriate for all connected topologies
via extrema propagation technique (see e.g. [8, 9, 23]).

Therefore let us shortly discuss several examples of solutions for complete
topology case from the literature.

Example 2. At first, let us consider some popular variant of a very simple
non-anonymous LEA which is, in fact, a core element of the Ethernet protocol
from [78] from 1976, where each station sends some signal with probability p =
1
n . Let ε > 0 be a mistake frequency, K be a number of synchronized rounds
and consider the following procedure: each station x selects independently a
sequence bx = (x1, . . . , xK) of bits in such a way that Pr[xi = 1] = 1

n , for
every i ∈ [K]. Then x sends some signal at round i whenever xi = 1. Let
Li = card ({x : xi = 1}). Notice that Pr[Li = 1] =

(
n
1

)
1
n

(
1− 1

n

)n−1 ≈ 1
e . Let

S denotes the event
K∨
i=1

(Li = 1) that exists a round in which a single station is

audible (only one device is sending the signal). Then the first such the round
marks a single agent, which can be designated as a leader. Note that Pr[S] ≈
1−

(
1− 1

e

)K
, from which we can deduce that if

K >
ln
(

1
ε

)
ln
(

e
e−1

) ≈ 2.18019 . . . ln

(
1

ε

)
,



2.2. A BRIEF HISTORY OF LEAS 47

then Pr[S] > 1 − ε. This observation can be transformed into a simple non-
anonymous oblivious Atlantic City LEA, which requires

⌈
2.18019 ln

(
1
ε

)⌉
rounds

in a single-hop model that is (1− ε)-reliable.

It worth to mention that in the above example the probability p of sending
the signal is selected in such a way that Pr[S] is maximal (irrespective of K).

In 1993, H.Prodinger, in his paper titled ”How to select a loser” [89], pro-
posed a simple non-anonymous oblivious-quitting Las Vegas LEA via sequence
of elimination rounds based on fair coin tossing. In this framework, the ”loser”
is equivalent to the nowadays leader. That nomenclature is quite intuitive, since
it forces the agent who becomes a loser to work by flipping the coin. More de-
tailed analysis was given by J.A. Fill, H. M. Mahmoud and W. Szpankowski in
1994 [43]. In [65, 76] LEAs based on biased coin tossing are concerned as well.
We will present some of the results for fair coin case in Section 2.7.1 and provide
a new contribution related to it, since Prodinger’s algorithm is closely related
to one of our contributions from Section 2.6.

In 1986, Dan Willard introduced two network-uniform Las Vegas LEAs. The
first one in quasi-anonymity arrangement, which terminates in lg lgN + O (1)
steps on average (where N is the network’s capacity). The expected number of
rounds of the second one is lg lg n+ o (lg lg n) in fully-anonymity arrangement,
where n is the number of all devices in the network. In years 1998-2002, K.
Nakano and S. Olariu [81, 82, 83] proposed several fully-anonymous Las Vegas
LEAs. One of them is network-non-uniform and terminates with probability
1 − ε in at most lg lg n + 2.28 lg

(
1
ε

)
+ o

(
lg lg n+ lg

(
1
ε

))
time steps. Their

another efficient solution is oblivious and terminates with probability 1−ε in at
most O

(
min

(
(lg n)2 +

(
lg
(

1
ε

))2
, ε−

3
5 lg n

))
time steps. They also showed that

Willard’s second algorithm terminates with probability 1 − ε, for ε ∈ O (en),

in at most lg lg n + Ω
(√

1
ε

)
rounds. Let us remark that these restrictions

enable easy reformulations of the algorithms to theirs truncated, Atlantic City
versions. An additional assumption about the network’s capacity also allows
to provide theirs quasi-anonymous versions. However, it worth to bear in mind
that, by definition, oblivious algorithms are simpler that network-uniform and
network-not-uniform algorithms. Let us note that in [83], the authors provided
an illustrative comparison of theirs oblivious algorithm and second Willard’s
protocol. For instance, when n = 106, a Monte-Carlo experiment with 106

repetitions of the Willard’s routine gave 9 runs which needed over 1000 rounds
to correctly attain a leader and an appropriate test for the solution of Nakano
and Olariu gave 14 runs with more than 40 rounds and maximally 52 time steps.
It also worth to mention, that in 2013, in [51], Ghaffari et al. have considered
an adaptation of Willard’s fully-anonymous algorithm in multi-hop network.

Another interesting universal work has also been written in 2013 ([64]) by P.
Jacquet, D. Milioris and P. Muhlethaler and concerns an energy efficient LEA
which utilize random variable with geometric distribution. Due to its efficiency,
the algorithm is often referred to as Leader Green Election (LGE). A precise
description will be provided in Section 2.7.2 together with several propositions of



48 CHAPTER 2. LEADER ELECTION ALGORITHMS

more efficient adaptations, since one of our main contributions from Section 2.8
uses the main idea from this paper, however attributed with several technical
rectifications.

Next, well known solution, was proposed in 2015 by Y. Métivier, J.M. Rob-
son and A. Zemmari in [79]. Theirs algorithms are called Splitting and Nam-
ing. They firstly splits the competitors in disjoint groups and further use ran-
dom identity naming procedure in order to distinguish the identities inside the
groups. The biggest identity in the group with the highest split-sign becomes
the leader. Authors provided two methods to split and name the devices. Split-
sign together with identity forms a label of the agent. Splitting and Naming
are fully-anonymous, Las Vegas algorithms. The first proposed algorithm is
successful ”with high probability” (i.e. 1− o

(
n−1

)
; abbreviated to w.h.p.), the

size of the labels is O (lg(n)) w.h.p. and the expected value of this size is also
O (lg(n)). On the other side, the latter of proposed algorithms is successful
”with very high probability” (i.e. 1 − o (n−c) for any c > 1; abbreviated to
w.v.h.p.), the size of the labels is O

(
lg(n) lg∗(n)2

)
w.v.h.p., however the ex-

pected value of labels’ size is O (lg(n) lg∗(n)). Let us note, that one can restrict
the splitting phase of the procedure in order to provide Atlantic City algorithm.
According to the aforementioned properties, it is possible to terminate them in
such the way that mistake frequency ε(n) parameters asymptotically tend to 0
as the number of devices n tends to ∞. Let us remark that the Splitting and
Naming arrangements are sometimes referred to as the state-of-the-art of Leader
Election algorithms, however as we will see in Section 2.7.3, both solutions are
unreliable for small number of devices and moreover, the second performs even
worse in this case. This shows in particular, that they should not be used as
quasi-anonymous Atlantic City algorithms.

2.3 Urn model

2.3.1 A description of a model

Commence with a description of a simple real life idea for LEA via tossing
balls into labelled urns. We want to deal with this approach in details and also
it has several meanings (for instance, in [76], a different model was proposed),
hence this interpretation was postponed to separate section. One may recognize
this model as a typical toy example, nevertheless the below description is very
intuitive, yet quite general. Consider the following procedure:

� Assume that there are L urns, each signed with a unique number from the
set [L] (alternatively we may assume that labels come from some linearly
ordered set of cardinality L, so especially we often also concern the set
[0 : L− 1]).

� Imagine that there are n competitors: v1, . . . , vn. Each competitor has a
unique ball with its personal identifier (like e.g. ID from a nameplate or
a signature) and tosses the ball into one of the urns according to some



2.3. URN MODEL 49

rule given by tossing generator12. Tossing generator may be interpreted
as a random number generator, which draws a number according to some
distribution.

� The competitor whose ball is in the urn with the biggest number amongst
the non-empty urns becomes a winner.

2 31 4 5 6 7 L-2 L-1 L. . .

Figure 2.1: A schematic situation of Leader Election in urn model.

There are two possible results of such the arrangement. First of all, there may
be exactly one winner — the leader. Then we say that the election is successful.
This case is depicted in Figure 2.1, where a yellow agent chooses the urn L− 1
and the rest competitors pick lower numbers. Otherwise, there are more winners
and some additional steps are needed in order to achieve a unique leader. For
instance, if we forget about the yellow agent from Figure 2.1, then there are two
winners (green and grey), who choose 6-th urn. Urn model can be categorized
as a kind of Atlantic City algorithm, which fails to provide unique leader, when
there are multiple winners. Obviously we are interested in omitting the multiple
winners case. Each such the situation is a conflict (since winners repeat the
same value). When a conflict occurs, then the procedure may be reset and
started in the same arrangement. However, it may be also wisely modified in
order to reduce a chance of a next conflict or it may be extended to shortens
the additional execution. Particularly, the procedure may be ran only by the
winners of the previous instance of the procedure. This simple trick is utilized
in several LEAs (e.g. in those presented in Section 2.7.2 and Section 2.7.3). Let
us remark, that when we apply this idea to quitting algorithm, then after this
manipulation, it remains quitting.

12When the rule is given a priori, then it provides oblivious algorithm and otherwise we
deal either with network-uniform or network-non-uniform procedure.



50 CHAPTER 2. LEADER ELECTION ALGORITHMS

2.3.2 A discussion about generality of urn model and its
efficiency potential

We would like to heuristically justify that the urn model is the general approach
to Leader Elections. Namely, we may think that each competitor draws a ran-
dom property (the label). If the procedure is successful, one of the contestants
becomes the leader, so he stands out in some sense — in other words he has
”the best property”. However ”the best” implies an existence of some partial
order on the set of possible properties, which defines the way we compare them.
Note that every partial order (X,�) may be extended to some linear order
(X,�∗) (see Section 1.2.3) that can be used instead in urn model. Then, for
an arbitrary draw of properties, if (X,�) determines the leader, then so does
(X,�∗). Hence, as long as we are interested in efficient approaches13, we should
use linear orders, so the one which arise in urn model.

Remark that urn model does not straightforwardly support a case, when
each of the competitors choose some part of a property, which can be obtained,
when all the chunks are known. However such the solution is unwieldy, because
every contestant has to know all the parts, what can be memory consuming
when the number of agents becomes big and it is also more complicated to
execute in distributed systems or in anonymous networks, since every device
need to get all the parts and know where they are from to omit duplicates.
According to [93], ”Every collective behaviour can be made homogeneous.”, so
one can always simplify the solution to symmetric and independent one. Namely,
such the approach can be identified as drawing properties with some random
partial order, that have to be established a posteriori, based on the randomness
of tossing generators of each individual station. However such the solution is
unnecessarily complicated, since in a case of class of fair algorithms in can be
naturally substituted by one linear order.14

Example 3. Consider the foregoing scenario of the election via urn model —
in a group of competitors, there are at least two pretenders, who really want to
win and they are capable to choose the urn of their will. Then, naturally, they
always choose the urn with the biggest value. This scenario leads to nonsense
— a never-ending conflict contest. Theoretically we may force somehow the
algorithm to allow at most one of competitors to choose the urn with value L.
However, such the idea is either unfair or the ball which is tossed to the urn
with the sign L had to be chosen uniformly at random. Such the solution also
requires a trusted curator, who is going to draw a winner, thus this curator act
as a temporary leader. Hence this approach either fully simplifies the problem
or leads to an absurd. These arguments show that we rather do not want LEAs

13Here, efficient means that we would like to optimize the probability of success of LEA.
14Each agent uses initially one tossing generator. Every contestant can instead choose

uniformly a tossing generator amongst all used by competitors (with eventual repetitions if
the same independent tossing generator is used by more than one device). Then, for every
partial order, each node has the same probability of win, so the procedure remains repetitively
fair. Also the linear order can be established in such the way to maximize the probability of
success.



2.3. URN MODEL 51

to be deterministic or dependent on some outer decision-makers.

In fair LEA, all the competitors are equally likely to win. A simple and very
natural solution is to let them put the balls according to the same distribution
over the set of urns (e.g. numbered by elements of [L]). Nevertheless there
is also a possibility of an arrangement, which allow the competitors to choose
different distributions and still remain fair.

Example 4. Assume that there are two participants of LEA in urn model on [3],
where the first competitor uses the uniform distribution Uni (3) and the second
uses a tossing generator with simple probability mass function: Pr[X = 1] =
Pr[X = 3] = 1

2 .
Then a tie in urn model occurs with probability 2 · 1

2 ·
1
3 = 1

3 . The second
participant wins with probability 1

2 ·
2
3 = 1

3 , hence the first one also wins with the
same probability, so such the LEA is repetitively fair.

At the first glance such the solution seems all right. However, in practise,
this type of approach is a little bit problematic. Imagine that the leader was
established by similar method, but he disconnects from a network and a new
leader has to be chosen. Could competitors use the same tossing generator as
before and preserve the fairness? A next example shows that sometimes in such
the model, the probability distributions should be rearranged, what is a serious
snag, especially when the network is anonymous:

Example 5. Assume that there are 3 competitors of LEA, each with different
probability mass functions, given by the vectors: D1 = (0, 1, 0), D2 =

(
2
3 , 0,

1
3

)
and D3 =

(
1
3 ,

1
3 ,

1
3

)
. It is easy to check that every contestant has the same prob-

ability of win in the urn model — 2
9 .

Imagine that the third competitor suddenly disconnects. Then the first competi-
tor now has a chance of win – 2

3 – and the second one – 1
3 – so the fairness is

not preserved.

Note that it is not known how to change the distributions when a new com-
petitor appears or some group of the competitors withdraw. Moreover, if some
of competitors resigns during the execution of LEA, then the relative chances
of election of the rest of the active competitors can change. A similar situation
can happen when a new device connects to the network and the present leader
decides to perform a reelection. For this reason this asymmetric arrangement is
perplexing. From now on we will assume that the procedure is fully symmetric,
so in particular all the competitors use the same probability distribution and
Leader Elections are repetitively fair.

To sum up, we say that LEA follows the urn model if it chooses a winner
according to beneath rules:

� Every user in the group use tossing generator, which independently draws
some identity according to the same discrete distribution p̄(L) over [L]15,

15We eventually allow the distribution p̄(∞) to be defined on N, which is the countable
set contrary to [L]. This variant is especially important, when one want to obtain reliable
fully-anonymous algorithm.



52 CHAPTER 2. LEADER ELECTION ALGORITHMS

� A user with the biggest identity becomes the group leader,

� If at least 2 of the competitors draw the same maximal identity amongst
all contestants, then a conflict occurs.

2.4 General block of Leader Election algorithm

Consider the following simple, yet quite general, restricted Leader Election
pseudo-code:

ALGORITHM 1: Base Leader Election Algorithm Block
procedure Select(D,Θ,L) // For each node

1 generate X ∼ D(Θ)
2 broadcast m := min(X,L)
3 calculate maximum value M of all messages send by all nodes
4 Leader := [[m = M ]]

An input of Algorithm 1 consists of three parameters: a probability distri-
bution D ranged in N, a set of distribution parameters Θ of the distribution D
and a threshold L ∈ N∪{∞}. First of all, each process generates a random vari-
able X according to the distribution D(Θ). Further each of devices restrict the
obtained realization of X to the set [L], so every value exceeding L is therefore
substituted by L.16 Note that one can initially assume that D has a support
constrained to [L] and that Algorithm 1 is compliant with the urn model with L
urns. During the third step, all the devices communicate the attained restricted
identifiers to all the other nodes and establish the maximal value M among
them. Note that this part mainly depends on a topology of the network and
a model of transmission. All the processes which own the restricted identifier
that equals to M , become leaders. This latter fragment of the algorithm may
be completed with the extrema propagation methods mentioned in Section 2.1,
which inform all the other processes about the present leader.

A natural goal is to search for the parameters D, Θ and L, for which LEA
would be successful with reasonable probability and for the communication
model in which these parameters guarantee possibly simple transmission. In
order to fulfil the first requirement, we demand the algorithm to be (1 − ε)-
reliable. The second condition can be attained by a minimization of L parame-
ter, so the complexity of the longest possible message (containing identifier) is
maximally reduced and therefore the runtime of the algorithm as well. Let us
denote K := dlg(L)e to be a time cost. We further justify such the designation.
Note that since this protocol is distributed, we mainly focus on the maximum
of costs taken by the devices, not the sum of these outlays. Nevertheless, the
second yardstick is also very interesting and will be referred to as total energy
cost. Realize that both measures used for optimizations are closely related to a
16Note that we allow the algorithm to have senseless constraint, when L =∞. It is for the

purpose of fully-anonymous algorithms.



2.4. GENERAL BLOCK OF LEADER ELECTION ALGORITHM 53

problem of minimization of energy consumption of the contestants. Indeed, the
longer is the message, the more energy has to be used to sent it.

2.4.1 Beeping model, single-hop and multi-hop arrange-
ments

In practise, messages can be sent in very simple, so called, beeping model (in-
troduced by Cornejo and Kuhn in [28]). In this paradigm of communication, an
execution of a distributed algorithm is divided into synchronized disjoint rounds.
Every time step, each process can either send a BEEP signal to its neighbours
or listen to a transmission channel (receive BEEPs from its neighbours).17 It
worth to mention that in practise each device may differ, and so can a setup of
broadcasting parameters. For example, beeping can have different frequencies
or amplitudes of power. Therefore when a node hears more than a single BEEP
at once (during one round) when listening, then he can potentially distinguish
such a signal from a single BEEP. Hence a case of multiple BEEPs is called a
collision and if devices can distinguish a single BEEP from a collision, then we
say about beeping model with collision detection.

If a graph of topology of a network is complete, then the network is in a
single-hop arrangement (every communication between any two devices in the
network can be done with a single step/hop). Otherwise, when some of the
transmissions between devices has to be bypassed, we say that the network has
a multi-hop arrangement.

In single-hop arrangement, we can use beeping model and a method from
[64] to provide the foregoing algorithm:

ALGORITHM 2: Beeping Model of Communication designated for
Leader Election in Urn Model
procedure Send(D,Θ, L) // For each node

1 Leader = true
2 generate X ∼ D(Θ)
3 msg = min(X,L)
4 K = dlg(L)e
5 B = BINK(msg − 1)
6 for i = K − 1 down to 0 do
7 if [[B[i] = 1]] then
8 send BEEP
9 else
10 listen
11 if hear BEEP or collision then // other node transmits
12 Leader = false
13 break

17Since we have assumed (see Section 2.1) that the communication is performed via single-
channel, the messages are heard by all the neighbours, which are listening to and are in the
range of transmission.



54 CHAPTER 2. LEADER ELECTION ALGORITHMS

Algorithm 2 is an adaptation of Algorithm 1 to beeping model in single-
channel single-hop arrangement. A message msg corresponds to m from Algo-
rithm 1. We would like to represent it in binary form, so it is better to subtract
1 from it or alternatively consider distributions D on [0 : L − 1] instead18. K
is the minimal number of bits needed to transmit msg and B is a binary form

of msg − 1. Remark that msg − 1 =
K−1∑
i=0

Bi2
i. Therefore

K−1∑
i=0

Mi2
i, where Mi

is maximal Bi amongst the competitors, is exactly M in terms of Algorithm 1.
Note that in Algorithm 2, if some device hears BEEP or collision at some round
i, then its B[K − i] = 0 and there is at least one agent which sends BEEP in
that round. Then all senders has B[K − i] = 1. According to the observation
about M , all those active listeners do not have maximal msg, so they cannot be
leader. Therefore they sets Leader = false, interrupt the transmission and re-
signs (lines 11-13 of Algorithm 2). Realize that the termination can be realized
as the sleeping phase of quitting algorithm in order to save energy.19 In order
to perform a correct Leader Election, all the contestants should initially believe
that they are the potential winners, so in line 1 we set Leader = true.

1 0 1 0 0 0 1 0

0 1 1 1 1 0 1 1

1 0 0 1 1 0 1 0

1 0 1 0 1 0 0 0

0 0 1 1 0 0 0 1

1 0 1 0 1 1 1 1

1 2 3 4 5 6 7 8
Rounds

Figure 2.2: An example of beeping model of communication for Leader Election
in urn model for 6 devices (colorful balls) in complete network. Devices previ-
ously generated messages (msg): 163, 124, 155, 169, 50 and 176 respectively (in
order from top to bottom).

In Figure 2.2 we present an illustration of exemplary LEA performed by
6 agents according to Algorithm 2, where msg − 1 are drawn independently
from the distribution Uni

(
[0 : 28 − 1]

)
(K = 8). Red squares denote BEEP and

grey indicate inactive nodes (those which terminated the communication). Let

18However then one should care about slight changes in definitions of K and B. Whenever
we use this shifted approach in next sections, we indicate it manifestly.
19Note that every device know the number of the time steps that remain until the end of

the algorithm.



2.4. GENERAL BLOCK OF LEADER ELECTION ALGORITHM 55

us consider the presented process for a while. Two devices (red and orange)
resign during the first round, since they hear that other nodes BEEP (they
have drawn msg 6 128). Therefore the red agent did not transmit in the second
round although its B6 = 1. All the other devices has B6 = 0, so nobody BEEPs
in the second round. Note that the winner (yellow ball) has to transmit till the
end, although all the others are inactive since the 7-th round. One can also see
that the leader BEEPs 6 times in the example. This is also the total number of
BEEPs of all other devices. It worth to realize that the lower is msg of a device,
the faster it falls asleep (on average).

Note that Algorithm 2 can be carried out even in more general model with-
out collision detection. We sometimes refer to K as an efficiency rate (also
alternatively time complexity or time cost) of Algorithm 1.

An algorithm which takes some redundant rounds may be interpreted as a
software bloat. This affirms our decision to optimize the efficiency rate of LEAs.

In the case of multi-hop network one may use an emulation of an algorithm
in single-hop arrangement, performed in multi-hop one ([10]) or the well-known
extrema propagation algorithm (presented in [8, 9, 23]). Let us only mention
that these algorithms are directly proportional with respect to a diameter of the
network. Therefore Algorithm 1 can be also adapted to multi-hop environment.
However we omit a full description of this procedure, since it is not the main
topic of our interest.

2.4.2 Probability of Choosing Unique Maximal Element

Let us assume that there are n competitors, which use Algorithm 1 in order to
obtain a leader. Let (Xi)i∈[n] be a sequence of i.i.d. random variables with a
distribution ranged in some linearly ordered set (Ω,�). Hereinafter, we interpret
that each random variable Xi selects an urn behalf the competitor denoted by
number i. We would like to establish a probability of successful LEA (i.e. there
exists only one competitor which selects the element max�{Xi : i ∈ [n]}). We
start with a general result about this probability. Specifically Ω can be a subset
of N and � is a linear order defined on Ω (e.g. 6 in the case of subsets of N).

Theorem 2.4.1. Let n > 1 and X1, . . . , Xn be a sequence of i.i.d. random
variables with values in the set N. Let S denotes the event that there is a unique
maximum amongst X1, . . . , Xn:

(∃ i ∈ [n])(∀ j ∈ [n]\{i}) (Xj < Xi) .

Then

Pr[S] = n

∞∑
k=2

Pr[X1 = k] Pr[X1 < k]
n−1

. (2.1)

Before a proof, let us remark several observations:

� If (Xi)i∈[n] are random i.i.d. identities of competitors used to establish
a leader by choosing the one with the biggest identity, then S can be



56 CHAPTER 2. LEADER ELECTION ALGORITHMS

interpreted as the event that the algorithm returns a unique leader (i.e.
the procedure is successful),

� Every agent is equally likely to become the leader,

� The leader has to draw at least value 2,

� All the others has to draw smaller numbers.

Note that Theorem 2.4.1 allows the set of urns to be countable. However it can
be easily truncated to a finite number of urns by setting 0 for the probability of
tossing a ball into the urns with labels exceeding some threshold.

Proof. The random variables X1, . . . , Xn are identically distributed, so

Pr[(∀ j 6= a) (Xj < Xa)] = Pr[(∀ j 6= b) (Xj < Xb)]

for all a, b ∈ [n]. Hence Pr[S] = nPr

[
n∧
j=2

(Xj < X1)

]
. Therefore

Pr[S] = n

∞∑
k=1

Pr

 n∧
j=2

(Xj < X1)

∣∣∣∣∣∣X1 = k

Pr[X1 = k] =

n

∞∑
k=1

Pr

 n∧
j=2

(Xj < k)

Pr[X1 = k] = n

∞∑
k=2

Pr[X1 < k]
n−1

Pr[X1 = k] .

Note that general formula for the success probability of Leader Election
algorithm in urn model is given by Eq. (2.1). It is difficult to analyze the
properties of this formula in its basic form for an arbitrary distribution. However
for some probability distributions, which are important for applications, we can
use (2.1) and derive specific formulas which can be approximated with required
precision.

2.5 Non-anonymous Leader Election Algorithm

2.5.1 A description of a problem and definitions

We assume that there exists a group of n devices and we desire to provide a group
leader by a repetitively fair and non-anonymous Leader Election (abbreviated
to NALEA) in urn model. Basing on the dispute from Section 2.4.2, we may
identify each person with a random variable.

Let n ∈ N and X,X1, X2, . . . , Xn be i.i.d. random variables ranged in [L]
(note that we technically allow the distribution to have some null atoms, so
it has to be taken into considerations). Xi corresponds to an identity of i-th



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 57

person in the group, for i ∈ [n]. Moreover, let pj(L) := Pr[X = j] for j ∈ [L].
Consider an event Sn that there exists exactly one maximum in a multi-set
Zn := MSet{x1, x2, . . . , xn}, where xi is a realization of the variable Xi (with
i ∈ [L]).20 In the context from Section 2.1 and Section 2.3, we may alternatively
interpret Sn as the success of Leader Election algorithm, based on Algorithm 2
with D(Θ) = p̄(L), in urn model and this event can be defined directly by the
formula: Sn := [[card (xi : xi = max(Zn)) = 1]]. We will consider how Pr[Sn]
depends both on n and L, so we are going to denote this relationship explicitly
by Pr

[
p̄(L), n

]
instead.

We would like to provide reliable algorithms, hence our goal is to optimize
Pr
[
p̄(L), n

]
for any given n and L. More precisely, for fixed n and L, we are

searching for such the distribution (denoted by p̄(n)(L)), which maximizes the
success probability Pr

[
p̄(L), n

]
. In Section 2.5.2 we will show that such the

distribution is unique.

2.5.2 Optimization of the Probability of Success

Realize that for any n > 2, we may rewrite formula (2.1) from Theorem 2.4.1
in this case in the following way:

Pr
[
p̄(L), n

]
= n

L∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−1

. (2.2)

Remark that the function (2.2) is continuous in Euclidean topology on RL
and takes values from the interval [0, 1].

By Weierstrass Extreme Value Theorem (Theorem 1.4.5), Pr
[
p̄(L), n

]
reaches

its minimum and maximum in SimL (see Section 1.2 for definition). A boundary
of SimL consists of all the distributions, for which there exists some j ∈ [L]
such that pj(L) = 0. However, when it happens, then we can think of it as a
distribution on [L − 1], because we can shift all the atoms pi(L) for i > j by
one index. Hence, without a loss of generality, we may assume that pL(L) = 0.
Since there may be more than one null atoms, we may assume that there exists
such the m < L that pi(L) > 0 for i 6 m and pi

(L) = 0 for i > m. We will
prove that such the degenerated distribution cannot maximize the probability
of success:

Lemma 2. Let n > 2 and m,L ∈ N be fixed and m < L. Moreover, let
p̄(L) ∈ SimL be such that pi(L) = 0 for i > m. Then there exists p̄′(L) ∈ SimL

such that Pr
[
p̄(L), n

]
< Pr

[
p̄′(L), n

]
.

Proof. Assume that p̄(L) maximizes Pr
[
p̄(L), n

]
. We show that then exists a

distribution p̄′(L) which has higher probability of success. Let us define p′i
(L) =

pi
(L) for i 6 m − 1 and p′m

(L) = 1
2pm

(L) = p′m+1
(L). Moreover, p′i = 0 for

20Multi-set is a collection of elements, which allows multiple instances of the same element
in contrast to a set.



58 CHAPTER 2. LEADER ELECTION ALGORITHMS

i ∈ [m+ 2 : L]. Then by Eq. (2.2), we get

Pr
[
p̄(L), n

]
= n

m∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−1

,

so by the definition of p̄′(L), we have

Pr
[
p̄′(L), n

]
= n

m−1∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−1

+
n

2
pm

(L)

(
m−1∑
k=1

pk
(L)

)n−1

+

+
n

2
pm

(L)

(
m−1∑
k=1

pk
(L) +

1

2
pm

(L)

)n−1

.

The comparison of two probabilities attained above bears

Pr
[
p̄(L), n

]
− Pr

[
p̄′(L), n

]
=
n

2
pm

(L)

(
m−1∑
k=1

pk
(L)

)n−1

+

− n

2
pm

(L)

(
m−1∑
k=1

pk
(L) +

1

2
pm

(L)

)n−1

< 0 .

We have just proved that the distribution which maximize the probability of
success has the biggest possible support [L], or in other words, the probability
of success is maximized in an interior of SimL.

Theorem 2.5.1. Let n > 2 and L ∈ N be fixed. There exists a unique distribu-
tion p̄(L) ∈ SimL, which maximizes the probability of success of non-anonymous
Leader Election in urn model for n competitors. This distribution satisfies two
recursive relations, for any j ∈ [L]:

pj(n)(L) =

(
j−1∑
k=1

pk(n)(L)

)n−1

n− 1
−
j−1∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2

(
j−1∑
k=1

pk(n)(L)

)n−2

and
pj(n)(L+1) = pj(n)(L) · (1− pL+1(n)(L+1)) .

Lemma 3. There exists a unique distribution p̄(L), which maximizes (2.2), i.e.

n

L∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−1

.



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 59

Proof. The proof utilizes the method of Lagrange multipliers (see e.g.[13] for
details of the method). Obviously all atoms of any discrete random variable
sum up to 1, so from (2.2), for any λ ∈ R:

Pr
[
p̄(L), n

]
= n

L∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−1

− λ

(
L∑
i=1

pi
(L) − 1

)
.

In order to find extrema of the above function, we would like to check the signs
of derivatives of Pr

[
p̄(L), n

]
with respect to all pj(L) variables. For any j ∈ [L],

we obtain

∂Pr
[
p̄(L), n

]
∂pj

= n(n− 1)

L∑
i=j+1

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−2

− λ+ n

(
j−1∑
k=1

pk
(L)

)n−1

.

Note that, when j = 1, then the last summand vanishes.
If all the derivatives of the first order are zeros, then both sides of the beneath

formula equal to λ
n(n−1) (for any j ∈ [L]):

L∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−2

=

L∑
i=j+1

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−2

+

(
j−1∑
k=1

pk
(L)

)n−1

n− 1
.

After a subtraction of a common part of the above equation we obtain:

(n− 1)

j∑
i=2

pi
(L)

(
i−1∑
k=1

pk
(L)

)n−2

=

(
j−1∑
k=1

pk
(L)

)n−1

(2.3)

for j ∈ [2 : L]. Note that Pr
[
p̄(L), n

]
is a polynomial function of the coordinates

of p̄(L), hence it is continuous. It is defined on the simplex SimL, which is closed
and bounded set in RL, hence it is compact as well. By Weierstrass Extreme
Value Theorem 1.4.5, Pr

[
p̄(L), n

]
reaches its maximum and minimum in SimL.

However, Lemma 2 shows that on the boundary of the simplex, the polynomial
(2.2) does not achieve maximum, so it is realized in the stationary point in an
interior of the simplex.

Now, realize that in Eq. (2.3), the term pj
(L) appears only once, on the left

hand side. The rest depends only on atoms pi(L), for i < j, and the number of
competitors n. Therefore, for j > 2, the stationary point satisfies:

pj(n)(L) =

(
j−1∑
k=1

pk(n)(L)

)n−1

n− 1
−
j−1∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2

(
j−1∑
k=1

pk(n)(L)

)n−2 (2.4)



60 CHAPTER 2. LEADER ELECTION ALGORITHMS

together with the boundary condition

L∑
i=1

pi(n)(L) = 1 . (2.5)

From Eq. (2.4), by simple transformations, we can find the dependence between
pj(n)(L) and p1(n)(L), for any j ∈ [2 : L]. Namely, let us denote aj(n)(L) =
pj(n)(L)

p1(n)(L) . Note that for any j ∈ [2 : L], both numerator and denominator of the

right hand side of Eq. (2.4) are polynomials in variables pi(n)(L) (where i ∈ [j])
of degrees n−1 and n−2 respectively and in both cases, there are no monomials
of lower degrees. Therefore, we can omit (L) in superscript of aj(n)(L), because
it is not dependent on L parameter, and consequently Eq. (2.5) can be rewritten

to a form C(n)(L) · p1(n)(L) = 1, where C(n)(L) :=
L∑
i=1

ai(n).21 Therefore

p1(n)(L) = 1
C(n)(L) and any pj(n)(L) (for j ∈ [2 : L]) can be obtained recursively

from Eq. (2.4) as well. This shows that the stationary point is unique, so it
also has to maximize the probability of success from Eq. (2.2).

Note that C(n)(L) from the proof of Lemma 3 is explicitly dependent only
on n, but in fact, C(n)(L) is also dependent on L, since it arise as a sum of L
terms ai(n).

The following lemma justifies the linear relation between atoms pj(n)(L) and
p1(n)(L) (for j ∈ [2 : L]) and suggests a way by which C(n)(L) can be computed:

Lemma 4. For any n ∈ N, there exists a sequence of functions (ai(n))i∈N such
that for any L ∈ N and j ∈ [L]

pj(n)(L) = aj(n)p1(n)(L) . (2.6)

Moreover, a1(n) = 1 and, for j ∈ [2 : L], (ai(n))i satisfies the foregoing recur-
sion:

aj(n) =

j−1∑
k=1

ak(n)

n− 1
−

j−1∑
i=2

ai(n)

(
i−1∑
k=1

ak(n)

)n−2

(
j−1∑
i=1

ai(n)

)n−2 . (2.7)

Proof. First of all, realize that a1(n) = 1 simply fulfills (2.6).
Assume that (2.7) and (2.6) are satisfied for all k 6 j, for some j ∈ [L − 1].

21It is formally proved in Lemma 4



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 61

Then from (2.4) we attain

pj+1(n)(L) =

(
j∑

k=1

pk(n)(L)

)n−1

n− 1
−

j∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2

(
j∑

k=1

pk(n)(L)

)n−2

=

(
j∑

k=1

ak(n)p1(n)(L)

)n−1

n− 1
−

j∑
i=2

ai(n)p1(n)(L)

(
i−1∑
k=1

ak(n)p1(n)(L)

)n−2

(
j∑

k=1

ak(n)p1(n)(L)

)n−2

=

j∑
k=1

ak(n)p1(n)(L)

n− 1
−

j∑
i=2

ai(n)

(
i−1∑
k=1

ak(n)

)n−2

· p1(n)(L)

(
j∑

k=1

ak(n)

)n−2 .

Note that according to Eq. (2.7), we can simply calculate that a2(n) = 1
n−1 .

Remark that the relation (2.7) between pj(n)(L) and p1(n)(L) does not de-
pend on L (it depends on j), so for any given n ∈ N, the sequence (ai(n))i∈N is
universal. The foregoing lemma justifies this observation:

Lemma 5. Fix L, n ∈ N and let i ∈ [L]. Then

pi(n)(L+1) = pi(n)(L) · (1− pL+1(n)(L+1)) . (2.8)

Proof. From (2.5) and Lemma 4 we have

1 =

L∑
i=1

pi(n)(L) =

L∑
i=1

ai(n)p1(n)(L) ,

thence, for any n,L ∈ N, we get

p1(n)(L) =

(
L∑
i=1

ai(n)

)−1

. (2.9)

From (2.6) we attain pi(n)(L) = ai(n)p1(n)(L) and

pi(n)(L+1) = ai(n)p1(n)(L+1) = pi(n)(L) p1(n)(L+1)

p1(n)(L)
.



62 CHAPTER 2. LEADER ELECTION ALGORITHMS

However, thanks to (2.9) we obtain

p1(n)(L+1)

p1(n)(L)

(2.9)
=

L∑
i=1

ai(n)

L+1∑
i=1

ai(n)

= 1− aL+1(n)
L+1∑
i=1

ai(n)

= 1− aL+1(n)p1(n)(L)

L+1∑
i=1

ai(n)p1(n)(L)

(2.6)
= 1− pL+1

(L+1)

L+1∑
i=1

pi(n)(L+1)

(2.5)
= 1− pL+1

(L+1) ,

what ends the proof.

Lemmas 3, 4 and 5 together prove Theorem 2.5.1.
Lemma 5 shows that, for every n ∈ N\{1}, the sequence (ai(n))i∈N is de-

creasing. Realize that (2.6), (2.7) and (2.9) combined together enable us to
provide the optimal distribution explicitly. We present some simple examples
of such the distributions in Appendix A.

2.5.3 Approach via probabilities of non-last urns

Assume that we use urn model of Leader Election, according to probability
p̄(n)(L), obtained in Section 2.5.2. Then a probability that a single ball is not
tossed into the last amongst L urns is 1− pL(n)(L). Since Lemma 5 showed the
importance of this term, let us denote it by qL(n).

We are going to show surprisingly compact recursive relation of first order
satisfied by sequences (qL(n))L:

Theorem 2.5.2. Let p(n)(L) ∈ SimL be optimal distribution for n competitors
for the problem of non-anonymous Leader Election in urn model and qL(n) =
1− pL(n)(L). Then

qL+1(n) =
n− 1

n− qL(n)n−1
(2.10)

with the initial condition q1(n) ≡ 0.

Proof.

qL+1(n)
(2.4)
= 1−

(
L∑
k=1

pk(n)(L+1)

)n−1

n− 1
−

L∑
i=2

pi(n)(L+1)

(
i−1∑
k=1

pk(n)(L+1)

)n−2

(
L∑
k=1

pk (n) (L+1)

)n−2



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 63

. . .
(2.8)
= 1−

L∑
k=1

pk(n)(L) · qL+1(n)

n− 1

+

L∑
i=2

pi(n)(L) · qL+1(n)

(
i−1∑
k=1

pk(n)(L) · qL+1(n)

)n−2

(
L∑
k=1

pk (n) (L) · qL+1(n)

)n−2

= 1− qL+1(n)


L∑
k=1

pk(n)(L)

n− 1
−

L∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2

(
L∑
k=1

pk(n)(L)

)n−2


(2.5)
= 1− qL+1(n)

 1

n− 1
−

L∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2


By comparing the marginal expressions of the above chain of transformations
we attain:

qL+1(n) =
n− 1

n− (n− 1)
L∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2 .

Realize that for n > 2 the above formula can be alternatively expressed as

qL+1(n) =
n− 1

n− Pr
[
p̄(n)(L), n− 1

] . (2.11)

Let us note that naturally, in (2.11),

Pr
[
p̄(2)(L), 1

]
= 1 6= 1− p1(2) =

L∑
i=2

pi(2)(L)

(
i−1∑
k=1

pk(2)(L)

)0

.

Nevertheless, hereinafter we interpret Pr
[
p̄(n)(L), n− 1

]
formally as

(n− 1)

L∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)n−2

,

even for n = 2.
For j ∈ [L], let us denote the j-th partial sum of Pr

[
p̄(n)(L), b

]
by the

expression Pr
[
p̄(n)(L), b, j

]
, i.e.

Pr
[
p̄(n)(L), b, j

]
:= b

j∑
i=2

pi(n)(L)

(
i−1∑
k=1

pk(n)(L)

)b−1

. (2.12)

We are going to prove the beneath auxiliary lemma:



64 CHAPTER 2. LEADER ELECTION ALGORITHMS

Lemma 6. Let n,L > 2. Then

Pr
[
p̄(n)(L), n− 1

]
=

(
L−1∑
k=1

pk(n)(L)

)n−1

= qL(n)n−1 .

Proof. Indeed, we will show even more.
Formula (2.3) holds for the distribution p̄(n)(L), thence from (2.12) we may

briefly see that for j ∈ [2 : L] and n > 2, we have

Pr
[
p̄(n)(L), n− 1, j

]
=

(
j−1∑
k=1

pk(n)(L)

)n−1

.

In particular, for j = L, we attain

Pr
[
p̄(n)(L), n− 1

]
=

(
L−1∑
k=1

pk(n)(L)

)n−1

= qL(n)n−1 ,

what ends the proof of Lemma 6.

Hence from (2.11) and Lemma 6 we attain formula (2.10). The initial condi-
tion q1(n) ≡ 0 can be briefly extracted from p1(n)(1) ≡ 1, what ends the proof
of Theorem 2.5.2.

Instantly from Eq. (2.10), for L > 1, we may provide the following useful
formula:

1− qL+1(n) =
1− qL(n)n−1

n− qL(n)n−1
.22 (2.13)

Beneath result shows that the knowledge about the sequence (qi(n))
L
i=1 en-

tails possibility of cognition of the distribution p̄(n)(L):

Theorem 2.5.3. For any n,L ∈ N and j ∈ [L], p̄(n)(L) is given by the following
formula:

pj(n)(L) = (1− qj(n)) ·
L∏

i=j+1

qi(n) . (2.14)

Especially, when j = 1, we obtain

p1(n)(L) =

L∏
i=2

qi(n) .

22Note that this formula is independent of the interpretation of Pr
[
p̄(n)(L), n− 1

]
, so it can

be utilized even for n = 2.



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 65

Proof. Note that p1(n)(1) = 1− q1(n) = 1 for L = 1.
Moreover, if formula (2.14) is true for some L and j ∈ [L], then from (2.6), for
j < L, pj(n)(L+1) = pj(n)(L)qL+1(n), so

pj(n)(L+1) = (1− qj(n)) ·
L∏

i=j+1

qi(n) · qL+1(n) ,

what ends the proof.

Note that instead of using formulas (2.4) and (2.5) to attain the optimal
distribution p̄(n)(L), we may alternatively utilize Theorem 2.5.3 together with
Theorem 2.5.2.

2.5.4 Duel case (n = 2)

Real life solutions and problems

In real life, it is quite common to solve disputes in some form of a duel. Although,
it is not a usual case of application in networks, let us consider a case n = 2
for a while. Remark that, in particular, such the arrangement differs from a
leadership election of one amongst two candidates, which can be conducted e.g.
via ballot in some specified group. We can interpret a duel case as an encounter
between 2 participants of LEA.

Example 6. Popular real life solution for this particular problem is to designate
a winner by a classical “rock, paper, scissors” game. One can try to interpret
this game in terms of ”cheated” urn model. The ”cheated” attribute is due to
a randomization of a choice of a linear order of urns (labelled with symbols:
rock, paper and scissors), designated to determine a winner, which have to be
established via consensus between the competitors.23 Although this solution is
fair, we showed in Section 2.1 that such the approach is problematic when the
number of competitors changes. In fact, ”rock, paper, scissors” game is highly
not effective when the number of player gets bigger. Even for n = 2, in the
classic ”rock, paper, scissors” with uniform and independent choice of symbols,
agents tie with probability 1

3 . Fortunately, there exist rectified versions of this
game, like e.g. ”rock, paper, scissors, lizard, Spock”, where there are 5 symbols
and every of them beats 2 other symbols and looses to 2 other symbols. It lowers
the probability of the tie to 1

5 , however it does not resolve efficiently the problem
of many players.

Analysis of the optimal duel in urn model

From Section 2.5.3 we already know what kind of solution should be used in
repetitively fair and optimal non-anonymous LEA in urn model. First, let us
provide a simple fact about qL(2):

23This case was mentioned in Section 2.3.2. The consensus should be emerged basing on
the randomness used to draw a symbol.



66 CHAPTER 2. LEADER ELECTION ALGORITHMS

Theorem 2.5.4. For any L ∈ N, there qL(2) = 1− 1
L .

Proof. If L = 1 then 1− 1
1 = 0 = q1(2). Assume that, for some L ∈ N, qL(2) =

L−1
L . Then by formula (2.10), qL+1(2) =

1

2− L−1
L

= L
L+1 = 1− 1

L+1 .

Now, we are able to provide the foregoing theorem:

Theorem 2.5.5. For any L ∈ N, p̄(2)(L) is Uni (L) distribution.

Proof. By the formula (2.14) and Theorem 2.5.4, we obtain

pk(2)(L) = (1− qk(2)) ·
L∏

i=k+1

qi(2) =
1

k
·

L∏
i=k+1

i− 1

i
=

1

L
,

for any k ∈ [L], so all pk(2)(L) values are the same.

A simple conclusion from Theorem 2.5.5 is that one should use uniform
distribution of draws in urn model when there are only 2 competitors. Moreover,
note that the probability of a tie for 2 agents is the same as for ”rock, paper,
scissors” (L = 3) and ”rock, paper, scissors, lizard, Spock” (L = 5) games.

Let us announce that the result Theorem 2.5.5 is related to Theorem 2.6.1,
where a case of anonymous arrangement of the network is considered, where an
election is conducted according to Uni (L) distribution.

Let us provide a toy example of an application of Theorem 2.5.5 in a dis-
tributed procedure:

Example 7. Assume that there are two competitors and each of them has a
similar deck of 13 different cards with the same suit, assuming some natural lin-
ear order of cards’ ranks (both of them have cards with the same number of pips
or the same faces on respective cards). Each of them draws uniformly one card
from self deck and sends the rank of the chosen card to the second competitor.
The higher rank wins the election. Note that, when the contestants can meet,
then they can draw the cards from one deck without repetitions, what eliminates
the possibility of a tie. Note that in a case of non-anonymous distributed LEA
for n = 2, the problem of eventual repetitions can be easily resolved. Namely,
one of the agents should redraw (without repetition) the card which caused the
tie. In a case of bigger n, the problem is slightly more complicated in distributed
network arrangement.

2.5.5 Approximation of the optimal distribution

Approximation of probabilities of non-last urns

Commence with a definition of a function Qn(x) = n−1
n−xn−1 . Realize that Eq.

(2.10) provides that Qn(qi(n)) = qi+1(n) for any i ∈ N. Next, we show some
basic properties of the sequence (qi(n))i∈N:

Lemma 7. The sequence (qi(n))i∈N is ascending and convergent to 1.



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 67

Proof. Note that from (2.10), q2(n) = n−1
n > q1(n) ≡ 0.

Assume that qL(n) > qL−1(n) for some L ∈ N\{1} and calculate the following
proportion:

qL+1(n)

qL(n)

(2.10)
=

n− qL−1(n)n−1

n− qL(n)n−1
= 1 +

qL(n)n−1 − qL−1(n)n−1

n− qL(n)n−1
> 1 .24

Hence the sequence (qi(n))i∈N is rising and bounded, so convergent.
We already know that for n, i ∈ N\{1}, qi(n) > n−1

n . Let x, y ∈ [1 − 1
n , 1] and

x > y. Then

Qn(x)−Qn(y) = (n− 1)
n− yn−1 − n+ xn−1

(n− xn−1) (n− yn−1)

6
n− 1

(n− 1)2

(
1n−1 −

(
n− 1

n

)n−1
)

n>2
<

1− e−1

n− 1
.

Hence, for any n > 2, Qn is a contraction mapping on [1− 1
n , 1]. Then, accord-

ing to the Banach Fixed Point Theorem 1.4.1, (qi(n))i∈N\{1} is then Banach’s
sequence and has a unique fixed point, which is also the limit of this sequence.
We only need to note that 1 = n−1

n−1n−1 = Qn(1), so from (2.10), we attain that
the sequence (qi(n))∞i=1 converges to 1.

From Lemma 7 we briefly see that 1 − Qn(1) = 0. In order to find an
asymptotics of (qi(n))∞i=1 we may consider a behaviour of a function 1−Qn(1−x)
in a vicinity of x = 0 to obtain an asymptotics of (1− qi(n))∞i=1 instead. More
precisely we are interested in finding the first coefficients of Maclaurin expansion
of 1−Qn(1− x).

Theorem 2.5.6. For any n > 2

qL(n) = 1− 2

Ln
+

(2n− 4) ln(L)

3L2n2
+ o

(
ln(L)

L2

)
,

as L→∞.

Proof. All the calculations are made with the assumption n 6= 1. Then we
attain:

−∂Qn(1− x)

∂x
= (n− 1)

(n− 1) (1− x)
n−2(

n− (1− x)
n−1
)2 ,

so −∂Qn(1)
∂x = (n−1)2

(n−1)2 = 1. Moreover, we get

−∂
2Qn(1− x)

∂x2
=

(n− 1)2 (1− x)
n−3(

n− (1− x)
n−1
)3

[
−(n− 2)

(
n− (1− x)

n−1
)

−2(n− 1) (1− x)
n−1
]
,

24Note that n− qL(n)n−1 > n− 1, because qL(n) is a probability of not drawing L.



68 CHAPTER 2. LEADER ELECTION ALGORITHMS

hence −∂
2Qn(1)
∂x2 = (n − 1)2−(n−2)(n−1)−2(n−1)

(n−1)3 = (−(n− 2)− 2) = −n. It can
be obtained that

−∂
3Qn(1− x)

∂x3
=

(n− 1)2n(1− x)n−4

((1− x)n−1 − n)
4

[
(n+ 1)(1− x)2(n−1)+

+4(n− 2)n(1− x)n−1 + (n− 3)(n− 2)n
]
,

hence −∂
3Qn(1)
∂x3 = n(n+ 1). Moreover

−∂
4Qn(1− x)

∂x4
=

(n− 1)2n(1− x)n−5

((1− x)n−1 − n)
5

[
(n+ 1)(n+ 2)(1− x)3(n−1)+

+(n− 2)n(11n+ 7)(1− x)2(n−1)+

+(n− 2)n2(11n− 29)(1− x)n−1 + (n− 4)(n− 3)(n− 2)n2
]
,

thence, −∂
4Qn(1)
∂x4 = −n(n2 + 5n− 2) and consequently

1−Qn(1− x) = x− n

2
x2 +

n(n+ 1)

6
x3 − n(n2 + 5n− 2)

24
x4 + o

(
x4
)
,

as x→ 0+. Now, according to S. Stević Theorem 1.4.6,

1− qL(n) =
2

Ln
−

n2

2 −
n(n+1)

3
n2

2

ln(L)
n
2L

2
+ o

(
ln(L)

L2

)
=

2

Ln
− (2n− 4) ln(L)

3L2n2
+ o

(
ln(L)

L2

)
,

(2.15)

as L→∞.

Note that in particular we may obtain

1− qL(2) =
1

L
+ o

(
ln(L)

L2

)
,

as L→∞, from Theorem 2.5.6, however the schema used in the proof of Stević
Theorem (in [96]) may be extended in order to obtain that in fact 1−qL(2) = 1

L
(what coincides with Theorem 2.5.4).

Compact form approximation of pj(n)(L)

It worth to mention that one can use (2.10) and (2.14) in order to provide the
exact value of each pj(n)(L). However, it occurs, that usually, i.e. when n or L
is big, such the calculation lasts very long and can be burdened with numerical
errors. According to (2.15), we may assume that

qL(n) ≈ 1− 2

nL
.



2.5. NON-ANONYMOUS LEADER ELECTION ALGORITHM 69

Hence, from (2.14), for j ∈ [L], we attain

pj(n)(L) = (1− qj(n)) ·
L∏

i=j+1

qi(n) ≈ 2

nj
·

L∏
i=j+1

(
1− 2

ni

)
.

Then we can calculate (see Section 1.2.6 and Section 1.2.9 for approximations
of logarithms and harmonic numbers)

ln
(
pj(n)(L)

)
≈ ln

(
2

nj

)
+

L∑
i=j+1

ln

(
1− 2

ni

)
≈ ln

(
2

nj

)
− 2

n

L∑
i=j+1

1

i

= ln

(
2

nj

)
− 2(HL −Hj)

n
≈ ln

(
2

nj

)
− 2

n
ln

(
L

j

)
,

so for j ∈ [L], we may provide

pj(n)(L) ≈ 2

nj

(
j

L

) 2
n

. (2.16)

The approximation (2.16) should be more accurate for bigger values of j, because
it arises from the asymptotical formulas as L→∞. Note that for n = 2, (2.16)
gives exactly the demanded distribution pj(n)(L) = 1

L .
Establishment of errors of the proposed approximation is postponed to future

work.
In Appendix A, we will provide some examples of numerical representations

of optimal distributions and efficient approximations of optimal solutions, which
can be obtained much faster without a significant loss of probability of success.

2.5.6 A number of bits for NALEA according to the op-
timal distribution

Let us search for an optimal solution for a given number of bits K := dlgLe,
in order to find minimal necessary memory. Let us consider (1 − ε)-reliable
LEA, with an assumption that a number of devices is exactly n. The def-
inition of p̄(n)(L) and Lemma 6 show that qL(n)n−1 = Pr

[
p̄(n)(L), n− 1

]
6

Pr
[
p̄(n)(L), n

]
. We will show that qL(n)n−1 is non-increasing with respect to n.

Lemma 8. For 0 6 x 6 1 a sequence
((

k
k+x

)k)
k

is non-increasing.

Proof. (
k

k+x

)k
(

k+1
k+1+x

)k+1
=

(
k(k + 1 + x)

(k + x)(k + 1)

)k
k + 1 + x

k + 1
= . . .



70 CHAPTER 2. LEADER ELECTION ALGORITHMS

. . . =

(
k2 + kx+ k

k2 + kx+ k + x

)k
k + 1 + x

k + 1

=

(
1− x

(k + x)(k + 1)

)k
k + 1 + x

k + 1
.

Note that the expression in parentheses is from the interval (0, 1), so from

Bernoulli Inequality (Theorem 1.4.7), we can obtain
(

1− x
(k+x)(k+1)

)k
> 1 −

xk
(k+x)(k+1) . Therefore(

k
k+x

)k
(

k+1
k+1+x

)k+1
>

(
1− kx

(k + x)(k + 1)

)(
1 +

x

k + 1

)

= 1 +
x2

(x+ k)(k + 1)

(
1− k2 + kx

k2 + kx+ k + x

)
= 1 +

x2

(x+ k)(k + 1)2
> 1 .

Theorem 2.5.7. A sequence
(
qL(n)n−1

)
n∈N is non-increasing.

Proof. For L = 1, qL(n) = 0, independent on n. Assume that for some L,
qL(n)n−1 > qL(n + 1)n. Then, according to Eq. (2.10), qL+1(n + 1)n =(

n
n+1−qL(n+1)n

)n
6
(

n
n+1−qL(n)n−1

)n
. From Lemma 8, for k = n − 1 and

x = 1− qL(n)n−1 we have

qL+1(n)n−1

qL+1(n+ 1)n
>

(
n−1

n−qL(n)n−1

)n−1

(
n

n+1−qL(n)n−1

)n > 1 ,

what ends the proof.

Note that Theorem 2.5.7 together with Lemma 6 and Theorem 2.5.4 entail
that qL(n)n−1 = Pr

[
p̄(n)(L), n− 1

]
6 Pr

[
p̄(n)(L), n

]
6 1 − 1

L , so the mini-
mal number of bits K per agent needed to perform (1 − ε)-reliable NALEA is
d− lg(ε)e. Moreover, from Lemma 7, qL(n) is the increasing sequence (with re-
spect to L), so from Theorem 2.5.6, we can obtain Pr

[
p̄(n)(L), n

]
> qL(n)n−1 >(

1− 2
Ln

)n−1
> 1− 2

L ,25 in what shows that K = d− lg(ε)e+ 1 bits are enough
to perform any optimal non-anonymous LEA.

25In fact, one can use the technique presented in [96] in order to expand o
(

lnL
L2

)
part from

Theorem 2.5.6 to a form of
∞∑
j=2

cj
Lj

, where all cj are positive constants which can be described

in a language of Riemann’s Zeta function (see Section 1.2.10 for definition) and generalized
harmonic numbers Hn(k), where k ∈ N (see Section 1.2.9 for definitions). The proof of this



2.6. UNIFORM LEADER ELECTION (ULE) 71

Example 8. Consider a simple example, where n = 3 and ε = 1
2 . We will

consider two cases: L = 2 (K = 1) and L = 4 (K = 2). According to (2.10),
one can see, that p̄(3)(2) =

(
2
3 ,

1
3

)
and p̄(3)(4) =

(
184
421 ,

92
421 ,

230
1263 ,

205
1263

)
and, by

formula (2.1), the probabilities of successful Leader Election are respectively 4
9

and 1119364
1595169 = 0.70172 . . .. Therefore one bit (

⌈
lg
(
ε−1
)⌉

= 1) is not enough to
perform 1

2 -reliable NALEA for n = 3, however K = 2 is sufficient. This shows
that sometimes

⌈
lg
(
ε−1
)⌉

+ 1 bits are necessary.
Nevertheless, note that, when ε = 0.49 instead of 0.5, then

⌈
lg
(
ε−1
)⌉

= 2, so
for n = 3, the lower bound is realized.

2.6 Uniform Leader Election (ULE)

2.6.1 Basic properties

In Section 2.5 we have obtained some optimal and approximated results for LEA
when the number of agents n is known by all the nodes in the network. We
have also obtained that in non-anonymous, urn model, the tossing generator
with uniform distribution is the best possible one when there are exactly 2 com-
petitors (Theorem 2.5.5). Moreover in this arrangement, from Theorem 2.5.3
and Lemma 7 we can presume that for ”big supports” [L] of the optimal distri-
bution, pj(n)(L) ≈ pj−1(n)(L), as j is ”relatively close” to L26. This conjecture
together with Theorem 2.5.5 expound our next goal. Namely, we would like to
consider a quasi-anonymous LEA in urn model, where the tossing generator fol-
lows D(Θ) = Uni (L) distribution (according to notation from Algorithm 2).27

Therefore we call this solution Uniform Leader Election (or shortly ULE).
We commence our considerations from the reformulation of Theorem 2.4.1:

Theorem 2.6.1. Let n ∈ N\{1} and X1, . . . , Xn be a sequence of i.i.d. ran-
dom variables, where X1 ∼ Uni (L). Let Sn,Uni(L) denotes the successful ULE
algorithm for n devices, i.e. the event (∃ k)(∀ j 6= k) (Xj < Xk). Then

Pr
[
Sn,Uni(L)

]
=

n

Ln

L−1∑
j=1

jn−1 . (2.17)

Note that the result analogous to (2.17) was claimed in [43], for slightly
different LEA, based on the idea from [89]. More details will be provided in
Section 2.7.1.

fact is a recursive application of the proof of Stević Theorem 1.4.6, hence even the exact
formula for c2 is quite difficult to obtain, but one can relatively easy verify, that all elements
cj (for j ∈ N\{1}) are positive. Since the exact form of the constants is not very informative,
we abandon this purely technical proof.
26One can justify this approximation, basing on tables of distributions from Appendix A or

the universality and monotonicity of sequences (ai(n))i∈N from Section 2.5.2
27We may alternatively utilize Uni (A), where A is some linearly ordered set of cardinality

L.



72 CHAPTER 2. LEADER ELECTION ALGORITHMS

Proof. First of all, notice that for any i ∈ [n], Pr[Xi = j] = 1
L and Pr[Xi < j] =

j−1
L . Hence from Theorem 2.4.1 we get

Pr
[
Sn,Uni(L)

]
= n

L∑
j=2

1

L

(
j − 1

L

)n−1

=
n

Ln

L−1∑
j=1

jn−1 .

Theorem 2.6.2. With the same notations and assumptions as in Theorem 2.6.1
we obtain

Pr
[
Sn,Uni(L)

]
=

n−1∑
j=0

(
n

j

)
Bj
Lj

= 1− n

2L
+R2 ,

where 0 6 R2 6 1
6

(
n
L

)2
.

Proof. The sum
L−1∑
j=1

jn−1 can be expressed by the classical Faulhaber’s formula

(see Eq. (1.13)):

L∑
j=1

jn−1 − Ln−1 =
Ln

n
− Ln−1

2
+

n−1∑
j=2

(
n

j

)
BjL

n−j

n
=
Ln

n

n−1∑
j=0

(
n

j

)
Bj
Lj

.

However, computationally it begins to be unwieldy as n becomes large. In-
stead of coping with this approach, we use Euler—Maclaurin summation for-
mula (1.14) for the polynomial w(x) = xn−1:

L−1∑
j=0

jn−1 =

L∑
j=0

jn−1 − Ln−1 =
1

n
Ln − 1

2
Ln−1 +

n− 1

12
Ln−2 + r2 , (2.18)

where r2 = −
L∫
0

B2({x}f )
2 (n− 1)(n− 2)xn−3dx (by (1.15)) and B2(t) = t2− t+ 1

6

is the second Bernoulli polynomial. By inequality (1.12) and Fact 1.2.13, we get
|B2(t)| 6 1

6 for t ∈ [0, 1], so |r2| 6 n−1
12 Ln−2. The final equation follows directly

from this upper bound and Theorem 2.6.1.28

2.6.2 Monotonicity of success probability

It is intuitive that the chance of becoming a leader should be lower, when there
are more competitors, that is Pr

[
Sn,Uni(L)

]
should decrease with respect to n.

It is formally confirmed by the beneath:

28One can simply rectify the result to a more precise one. Since the odd elements of
Bernoulli’s sequence are zeros (except B1), therefore we may simply obtain an alternative
bound via the same technique, where r2 is substituted by r3, and by (1.12) and Fact 1.2.13,
one can get |r3| < (n−1)(n−2)

100
Ln−3. Then Pr

[
Sn,Uni(L)

]
= 1 − n

2L
+

n(n−1)

12L2 + R3 with

|R3| < 1
100

(
n
L

)3.



2.6. UNIFORM LEADER ELECTION (ULE) 73

Theorem 2.6.3 (Monotonicity). With the same notations as in Theorem 2.6.1,
the following inequality holds Pr

[
Sn,Uni(L)

]
> Pr

[
Sn+1,Uni(L)

]
for each n > 2

and L > 2.

Proof. Let us introduce an abbreviation:

∆n,L :=

L−1∑
j=1

(
(n+ 1)jn − Lnjn−1

)
.

Observe that Pr
[
Sn+1,Uni(L)

]
− Pr

[
Sn,Uni(L)

]
=

∆n,L

Ln+1 . Therefore, our goal is to
show that ∆n,L < 0. At start, realize that ∆n,2 = 1 − n < 0. Let us define
another auxiliary notation — Dn,L := ∆n,L+1 −∆n,L. Fix n and note that, if
for each L > 2, Dn,L < 0, then Theorem 2.6.3 will be proved.

From the definition, we attain

Dn,L =

L∑
j=1

(
(n+ 1)jn − (L+ 1)njn−1

)
−
L−1∑
j=1

(
(n+ 1)jn − Lnjn−1

)
= (n+ 1)Ln − (L+ 1)nLn−1 −

L−1∑
j=1

njn−1 = Ln − n
L∑
j=1

jn−1 .

From (1.3) we obtain
L∑
j=1

jn−1 >
L∫
0

xn−1dx = 1
nL

n (alternatively from (2.18)),

hence Dn,L < Ln − nL
n

n = 0 , what ends the proof.

It worth to mention that, to the best of our knowledge, this type of mono-
tonicity result was not considered before, although, it seems quite intuitive.29

However, not every LEA has this property (see e.g. Section 2.7.3 or Section B.4).
This problem seems rather easy at the first glance, however, to highlight the
level of difficulty, let us note, that this is on of two of considered LEAs, for
which we were able to provide such the property (the other one is provided in
Section 2.9).

2.6.3 Miscellaneous remarks and main result

Remark 1 We should use Theorem 2.6.2 only when n � L. Intuitively, in
this case the approximation Pr

[
Sn,Uni(L)

]
≈ 1 − n

2L is very precise. Figure 2.3
shows the result of numerical experiments with n = 5 and L varying from 1 to
500. The grey line is the plot of the function y(L) = 1− 5

2L .

29Often, the authors provide some bounds on the probability of success (usually they utilize
Landau notation), which are monotonic with respect to the number of competitors. However,
dispute on the monotonicity property for the probabilities of success is usually omitted.



74 CHAPTER 2. LEADER ELECTION ALGORITHMS

Figure 2.3: Precision of the approximation Pr
[
Sn,Uni(L)

]
≈ 1 − n

2L for n = 5
and L varying from 1 to 500. For each L we carried out 5000 experiments and
calculated the frequency of success.

Remark 2 Let us compare our result with the probability bn,L that a random
uniform sample, which consists of n elements from the universe of L elements,
has no duplicates (note that this is a general arrangement of the Birthday Para-
dox). Namely, for n �

√
L, we have bn,L ≈ 1 − n2

2L (see e.g [47]). The goal
of reliable LEA is to omit duplicates only for the biggest chosen element, so
naturally bn,L < Pr

[
Sn,Uni(L)

]
≈ 1− n

2L .

Remark 3 Consider a connected graph with countable number of nodes. Let
us think about a process, in which nodes choose theirs labels according to
Uni (L) distribution, one by one, until some node draws the same value as a
previous maximum. Then the process stops. Consider an expected stopping
time E[CL] of such the process. A first vertex establishes the first maximum.
Every next node has the probability 1

L to draw the present maximum. That
implies E[CL] = 1 + E

[
Geo

(
1
L

)]
= L + 1. Hence, for L � 1, we should rather

expect the first collision after about L steps.
However, in practise, the network has finite cardinality n and if n � L (see
Remark 1), then a duplicate rather should not happen. Remark that, when a
repetition occurs after k < n steps and we continue the drawing process until
we reach n steps, then the new unique maximum may be still find after the
step k, which resolve the problem of Leader Election in such the arrangement



2.6. UNIFORM LEADER ELECTION (ULE) 75

although the repetition occurred before. The smaller is the present maximum
at k-th time step, the bigger is the chance that it will be resolved until the n-th
round.

Remark 4 Let us finally consider (1−ε)-reliability of ULE. As we have seen in
previous Remark, when one increase the value of L, the probability of collision
lowers, so let L = 2K in order to optimize the support for a given number
of rounds K. Notice that according to Theorem 2.6.2, we would like to fulfil
Pr
[
Sn,Uni(L)

]
> 1− n

2K+1 > 1− ε, where the second inequality is equivalent to

K > lg(n) + lg
(
ε−1
)
− 1 . (2.19)

This way we have obtained a lower bound on the number of bits of memory
necessary for the execution of (1 − ε)-reliable ULE exactly for n agents. Note
that this result coincides with the one from Section 2.5.4, i.e. when n = 2,
then K >

⌈
lg
(
ε−1
)⌉

. Nevertheless, in general, there is approximately lg(n)− 1
overhead relative to the optimal solutions for non-anonymous LEA (see Sec-
tion 2.5.6). However we have assumed quasi-anonymity of the network, so let
N be the capacity of the network known a priori by all the nodes. Then, from
Theorem 2.6.3, K should be at least lg(N) + lg

(
ε−1
)
− 1 (it should be also in-

tuitive from the inequality (2.19)). Similarly as in Section 2.5.6, a role of factor
lg
(
ε−1
)

seems inherent and it takes an essential share in K (especially when we
want ε to be very small), side by side with the factor lg(N).

Formulation of main result for ULE

Now we are ready to formulate a main theorem of this section, which provides
the parameters for quasi-anonymous ULE algorithm:

Theorem 2.6.4. Let 0 < ε < 1 and N ∈ N. Moreover, let

1. K =
⌈
lg(N) + lg

(
ε−1
)⌉
− 1,

2. L = 2K .

Then for every n ∈ [N ], the following is satisfied Pr
[
Sn,Uni(L)

]
> 1− ε.

From Theorem 2.6.4, we can easily obtain the number of bits needed by the
devices in order provide (1− ε)-reliable quasi-anonymous ULE algorithm.

2.6.4 Role of the factor lg (ε−1)

We have highlighted that the factor lg(ε−1) plays a crucial role in the estimation
of a proper parameter K of ULE. Beneath we are going to explicate this thread
in general.

Theorem 2.6.5. Let 0 < ε < 1 and N ∈ N. Let D be a probability distribution
with linearly ordered support of cardinality L and Sn,D be an event of success-
ful LEA in urn model, where tossing generators draw identities independently



76 CHAPTER 2. LEADER ELECTION ALGORITHMS

according to distribution D. If (∀ n 6 N) Pr[Sn,D] > 1 − ε, then the minimal
number of bits K that are needed to save any identity drawn according to dis-
tribution D is given by the formula

⌈
lg
(
ε−1
)⌉

.
Moreover K is non-decreasing with respect to N .

Proof. Consider a case when n = 2 nodes generates an i.i.d. realization of the
same random variable ranged in [2K ] and LEA in urn model decides which of
the nodes become a leader. This procedure will fail if both of them choose the
same numbers. We can model this process as follows: there are two independent
random variables X and Y with the same distribution ranged in [2K ]. Then

Pr[X = Y ] =
∑
i∈[2K ]

p2
i .

Observe that from Cauchy—Schwarz inequality (Theorem 1.4.4), we obtain

1 =

 ∑
i∈[2K ]

pi

2

6

 ∑
i∈[2K ]

p2
i

 ∑
i∈[2K ]

12

 = 2KPr[X = Y ] ,

so Pr[X = Y ] > 2−K . Therefore, a constraint Pr[X 6= Y ] > 1 − ε implies that
one needs K > lg(ε−1) bits of memory in order to break a tie with probability
at least 1 − ε in urn model. However, note, that in quasi-anonymous arrange-
ment, when one increase the network’s capacity N , then one get additional
constraints. In consequence, an optimal probability distribution (for a given
N), which maximizes min{Pr[Sn,D] : n 6 N}, may only enlarge the efficiency
rate, when one wants to guarantee (1 − ε)-reliability of the quasi-anonymous
LEA (if the solution for smaller N is optimal, then it has minimal number of
bits, so after the increase of N , the number of bits cannot be smaller). The
above argument shows that K > lg

(
ε−1
)

for any quasi-anonymous LEA.

Remark 5 Realize that when n = 2, then lg(ε−1) = lg(n) + lg(ε−1)− 1 which
is the number of rounds K of ULE algorithm. According to Section 2.5.4,
Pr
[
S2,Uni(2K)

]
= 1− 1

2K
. One may easily see that this result coincides with the

approximation provided for ULE in a case of n = 2 in Theorem 2.6.2.
This shows that the lower bound provided in Theorem 2.6.5 is reachable and

that in Theorem 2.6.2, Rn may be 0 (the worst possible case).

Remark 6 Realize that, according to Theorem 2.6.4, a node which becomes
a leader has to send at most K ≈ lg

(
N
2ε

)
BEEPs. However, when we think of

total energy cost (number of all BEEPs), then it occurs to be O (N), as N →∞.
Intuitively, in first round half of the devices sends BEEP on average, because
there is the same probability that k and n − k devices transmit. Due to the
same argument, a quarter part of all devices send a signal on average (if k of
devices were transmitting in the first round, then k

2 transmit in the second one
on average and with the same probability n−k

2 transmit in this round)30, and
30The only exception is when all devices in the first round are listening to, however, this

event has negligible probability.



2.7. PREVIOUS DEVELOPMENTS OF LEADER ELECTION 77

so on. This argument gives
K∑
i=1

n
2i < N BEEPs plus some negligible number of

additional signals, which are a consequence of the rounds, in which everybody
are listening to.

2.7 Previous Developments of Leader Election

2.7.1 How to select a loser?

Description of Prodinger’s algorithm

One of the first remarkable works that can be assigned to a class of universal
randomized LEAs is the classical Prodinger’s algorithm from [89], written in
1993. In here, we would like to provide a brief description of this approach.

At start of the procedure, there is a party of n contestants. Everyone is
tossing a fair coin,31 where ”heads” are denoted by ’1’ and ”tails” are denoted
by ’0’. After this step, there are two groups obtained: ’0’-party and ’1’-party
(each agent is present in the party marked by his last toss). The procedure is
then repeated within the ’0’-party if it is not empty or in ’1’-party otherwise.
The last man standing in the ’0’-party becomes the loser. It is an example of
oblivious Las Vegas algorithm. It was shown that on average, lg(n)+ 1

2 +δ(lg(n))
tossing rounds are needed in order to provide the loser, where δ is some periodic
function with very small amplitude.32 In the nomenclature of beeping model,
that means, that we need K ≈ lg(n) + 1

2 bits on average in order to terminate
the election (of a loser) successfully. Moreover, Prodinger showed that there are
2n coin tosses on average in his model. Hence the expected total energy cost is
exactly n.

First of all, note that if we substitute the term ”loser”, with ”leader”, we
will obtain a randomized LEA. Moreover, we can artificially assume that when
at some round an agent tosses ’1’ and ’0’-party is not empty, then this agent
will continue tossing, but it does not count into the election process. This way
every device generates a sequence of tosses or alternatively ’0’s and ’1’s and
when the procedure stops, each of devices has binary sequence of the same
length K. When we swap ’1’s with ’0’s and write down such the sequences from
left to right, then each agent will have a binary representation of length K of
some number form the interval [0 : 2K − 1]. Realize that this solution can be
also investigated in terms of Algorithm 2, where L = 2K and D(Θ) = Uni (L).
Note that in beeping model, when a device hears a BEEP or collision at some
round, then he resigns from being the leader and stops the transmission. A
similar situation occurs in Prodinger’s algorithm — if an agent has heads at
some round and sees that there are other contestants, who have tails, then he
resigns from further tossing. Since the function BINK is a bijection between
{0, 1}K and the set [2K ], we deduce that the binary sequences which control the

31Both probability of heads and tails equals to 1
2

.
32For more details see [89].



78 CHAPTER 2. LEADER ELECTION ALGORITHMS

behaviour of the nodes are generated uniformly (and independently). However,
note that K is unknown in advance and is unbounded.

Efficiency of restricted version of Prodinger’s algorithm

Note that we may obtain a restricted version of Prodinger’s algorithm, where
we resolve the aforementioned problem by proceeding exactly K tossing rounds
for some a priori chosen parameter K. The previous argument bears that such
the restricted version of algorithm is equivalent with ULE.33

We may apply Theorem 2.6.1 to deduce that the probability of successful
election of a leader by restricted Prodinger’s algorithm is given by formula

Pr
[
Sn,Uni(2K)

]
=

n

2K

2K−1∑
j=1

jn−1 ≈ 1− n

2K+1
,

where the last approximation is very precise when n� 2K .
Moreover, the equivalence of restricted version of Prodinger’s algorithm and

ULE one justifies the Remark 6 from Section 2.6.4, that the expected total
energy cost of ULE algorithm is at most N .

2.7.2 Leader Green Election

In Section 2.6 we have considered LEA, where identities of the devices were
drawn according to Uni (L) distribution in urn model.

Leader Green Election (LGE) was introduced by P. Jacquet et al. in [64].
Here we present an idea of the main block of this algorithm: fix a small
number p ∈ (0, 1) (say, as authors propose, p = 10−2), use Algorithm 2 with
D(Θ) = Geo (p) and L = ∞. LGE is Las Vegas algorithm, however, when one
wants to restrict it in order to obtain Atlantic City version of LGE, then one
need to choose some sufficiently large parameter L.

When one use Geo (p) distribution in urn model of LEA, then the probability
of a conflict is circa p

2 (see Theorem 1.3.3), hence authors of [64] advise to
use the main block several times in order to reduce the mistake frequency.
More precisely, they suggest to repeat it k times, where k is such that

(
p
2

)k
is

sufficiently small (e.g. < ε according to our definition of mistake frequency from
Section 2.1). Besides, some confusion is connected with the choice of parameter
L and will be dispelled later.

Let us announce that in Section 2.8 we will provide more efficient, restricted
solution, which execute a single run with appropriately chosen parameter p of
the applied geometric variables. This changes sounds insignificantly at first,
however a precise analysis entails somewhat astonishing effect. In particular,
we will establish p depending on a maximal size of the network N (given a priori)

33There is a subtle difference — from a technical point of view, restricted Prodinger’s
algorithm is non-anonymous and ULE is quasi-anonymous. However, both can be considered
in both arrangements without a loss of quality.



2.7. PREVIOUS DEVELOPMENTS OF LEADER ELECTION 79

and the required reliability. Usually the parameter p occurs to be much smaller
than 10−2 (proposed by Jacquet). Moreover, contrary to LGE approach, we
run the procedure only once and know the number of transmission rounds K
in advance. Realize that, as we mainly focus on the number of bits needed to
save the identities, the repetitions of the procedure (like in LGE algorithm) may
force us to conduct many unwanted rounds when we want to reach the required
accuracy.

Propositions of rectifications of LGE algorithm

In this part, we are going to dilate the discussion from [21], since our further
contribution is a natural continuation of this paper. For attention, let us fix
p = 0.01, network’s capacity N = 1026 and mistake frequency ε = 10−23.

Notice that one can employ Fact 1.3.7 in order to conclude that if M ∼

MGeo (N, p) then Pr

[
M > 2 lnN

ln( 1
1−p )

]
< N−1.34 When we put our parameters

into this formula, then we get Pr[M > 12500] < 10−26, what is negligible from
a practical point of view. Therefore we expect that during the execution of
LGE algorithm for N contestants, there will not be any realization of geometric
distribution above 12500. Then K = blg (12500)c + 1 = 14, hence only 14 bits
are required to run the main block of LGE algorithm in the framework of Al-
gorithm 2 with D(Θ) = Geo (0.01) to achieve the reduction with probability of
at least 1− 10−26.35 Note that the less devices participate in LGE, the lower is
Pr[M > 12500]. Hence one can choose L = 12500 by an additional cost of less
than 10−26 included in the mistake frequency.
Let Sn,Geo(0.01,12500) denotes an event of successful LEA according to the main
block of LGE algorithm. In terms of Section 1.3.10, this event is equivalent
to W1,n,p.36 Theorem 1.3.3 shows that Pr

[
Sn,Geo(0.01,12500)

]
≈ 1 − 0.01

2 , hence
the probability of failure is quite large. This is the reason why authors of [64]
suggested to use the main block of procedure 10 times for p = 0.01. Then
the probability of success of restricted version37 of LGE should be at least
1−

(
0.01

2

)10 − 10 · 10−26 > 1− 10−23. This way we have provided a restricted,
quasi-anonymous, Atlantic City version of Leader Green Election, which is(
1− 10−23

)
-reliable and uses K = 10 · 14 = 140 bits of memory per device.

When one use L = 214 − 1 instead of 12500, then the algorithm will be more
reliable and the number of bits remains the same. It worth to mention that this
solution is fully-anonymous Atlantic City algorithm.

One can easily generalize the above approach via manipulations of param-
eters p, N , ε and the number of repetitions. However, a more difficult task is
to optimize the solution with respect to those parameters. We will explicate

34Note, that one can tune up the constant C from Fact 1.3.7 in order to obtain other bounds,
respective to N assumed a priori.
35Since the support of Geo (p) is N0, therefore, the restriction by the operation min(., L)

entails that K = dL+ 1e.
36See Section 1.3.10 for definition of the event
37Every main block is restricted to [12500].



80 CHAPTER 2. LEADER ELECTION ALGORITHMS

the above idea partially in Section 2.8, where we use a single run of a carefully
modified LGE.

We can still use the main block of LGE in more efficient way. Namely, from
Theorem 1.3.4, we may deduce that

Pr
[
Wn, 1

100
> 13

]
< 7.823 · 10−26

for any n > 1. Thence we may treat main block of LGE as a method for a quick
reduction of an arbitrary collection of nodes to a small subgroup (when p = 0.01,
then with probability at least 1− 7.823 · 10−26 this subgroup has cardinality at
most 12). This evince that the most difficult part of LGE is to determine the
unique maximum for small values of n. To develop a really efficient algorithm, we
have to deal properly with quasi-anonymous Leader Election for small N (in this
case: N = 12). Namely, we want Leader Election to be juxtaposed two phases:
the first one is restricted main block of LGE algorithm according to Geo (p, L)
distribution (with e.g. L = 214 − 1, as proposed earlier) and the another one
(which is quasi-anonymous LEA per se) with some other distribution, which
resolves the problem efficiently for small N .

Authors of [21] suggested to use solutions provided in [89] (fair coin toss
described in Section 2.7.1), in [65, 76] (biased coin toss). However they did not
investigated these solutions. Let us slightly dilate into some of the cases.

Since restricted version of solution from [89] is equivalent with ULE algo-
rithm, let us commence with this case. In Section 2.6, we have showed that
ULE algorithm is quite efficient for N � L, so especially for small N . We
have to remember about the first phase of Leader Election, in which we uti-
lize Geo (p, L) distribution, which deteriorates the admissible mistake frequency
(for assumed parameters, the reduction is at most 7.823 · 10−26 + 10−26)38. We
naturally have to care the reduction to be less than ε assumed a priori. Let
us denote the difference between ε and the reduction by ε̃. Recall that in ULE
phase, the number of needed bits is K = dlg(N)− lg(ε̃)e − 1. Also note that
lg(12) − 1 = 2.58496 . . ., so this solution will give at most K = d− lg(ε̃)e + 3
bits.39 In our case we have

d− lg(ε) + lg(12)e − 1 = d76.4043 . . .+ 3.5849 . . .e − 1 = d78.9893 . . .e = 79

and

d− lg(ε̃) + lg(12)e − 1 = d76.4171 . . .+ 3.5849 . . .e − 1 = d79.0021 . . .e = 80 .

This shows that the in some situations, we may lose an additional bit of memory.
We can eventually modify N parameter of ULE phase or L in the Geo (p, L),
but it may eventually increase the number of needed bits even more, so it has
to be carried out carefully.
The solution presented above uses 14+80 = 94 bits of memory per device, which

38We have to add the probability 10−26 that the maximum exceeds L
39When one cares to keep ε ≈ ε̃, then d− lg(ε̃)e = d− lg(ε)e.



2.7. PREVIOUS DEVELOPMENTS OF LEADER ELECTION 81

effectively reduces the previous one (140). We highlight that this time we also
deal with fully-anonymous oblivious Atlantic City LEA. The above example is
a presage of an algorithm, which we will consider in Section 2.9.

Let us note, that if the first phase does not return a single winner, then it is
the most probable (circa p

2 = 0.005) that there will be two competitors in the
second phase. Section 2.5.4 have showed that in this case the best solution is
ULE algorithm. The probability that there will be at least 3 contestants in the
second phase is given by Theorem 1.3.4: Pr[Wn,0.01 > 3] = 3.38478 . . . · 10−5.
This justifies the approach that the distribution utilized in the second phase
should be efficient mainly for the case n = 2.

In the second phase of efficient algorithm one can alternatively try to use
the optimal solutions from Section 2.5 like e.g. p̄(12)(L) for some L or theirs
approximations (provided in Section A.2). Another idea is to use a convex
combination of such the distributions. However we postpone the analysis of the
above ideas to future work.

2.7.3 Distributed splitting and naming procedures

Now we are going to analyze one of the most recent solutions, from 2015. Con-
sider a fully-anonymous network with n devices. In [79], Métivier, Robson and
Zemmari proposed two, closely similar Las Vegas LEAs that fit in urn model.
The first one is called a Splitting and Naming algorithm with high probability
(S-N w.h.p.), i.e. the procedure is successful with probability 1 − o

(
n−1

)
, as

n → ∞. The second one is referred as a Splitting and Naming algorithm with
very high probability (S-N w.v.h.p.), i.e. for any c > 1, the procedure is suc-
cessful with probability 1− o (n−c), as n→∞. Names of those two algorithms
suggest that they are reliable. Nevertheless, the exact rates of convergence were
not provided in [79]. Hence we take this topic under investigation.

Both procedures consist of two phases of random draws, which will be pre-
sented in next sections.

General Splitting and Naming procedure

Let us explain an execution of the basic algorithm. At first, every device in
the network independently draws bits uniformly at random (’0’s and ’1’s) until
the first occurrence of a bit ’1’. Such the number of bits is called a lifetime of
the node and is indicated by tv. Naturally tv ∼ Geo

(
1
2

)
+ 1. After this phase

vertices are splitted by theirs lifetimes into disjoint groups. Further, each vertex
v chooses its identity idv (a name) uniformly at random from some set of the
form [0 : f(tv) − 1], where f is some given function, defined on N. Finally,
every agent saves its label as a couple (tv, idv). Realize that a set of all possible
couples (labels) is naturally ordered by lexicographic order (see Section 1.2.3),
so an every finite subset has a maximum (i.e. the reversed order is well on
this set). Algorithm 3 presents a general base of Splitting and Naming election
procedure. Note that it cannot be directly treated as a tossing framework of
Algorithm 2. In order to provide a restricted version of Splitting and Naming



82 CHAPTER 2. LEADER ELECTION ALGORITHMS

algorithm, firstly Algorithm 2 should be used with D(Θ) = Geo
(

1
2

)
and the

provided L, and the second phase should run a version of Algorithm 2, which
omits the lines 1 and 3 and further utilize D(Θ) = Uni ([0 : f(tv)− 1]) (here,
there is no truncation needed, so in the second case the support of distribution is
bounded per se. Therefore, the whole algorithm in beeping model is as presented

ALGORITHM 3: General base of Splitting and Naming draw
procedure SelectLabel(f ) // For each node

1 generate G ∼ Geo
(
1
2

)
2 tv = G+ 1
3 generate a name idv ∼ Uni ([0 : f(tv)− 1])
4 labelv = (tv, idv)

in Algorithm 4. Note that one may rewrite Algorithm 4 in such the way that
the bits of B1 and B2 are attained only when needed in ”for” loops (i.e. utilized
draws are performed lazily). Let us indicate, that standard versions of Splitting
and Naming algorithms assume L = ∞. Nevertheless, for any L ∈ N ∪ {∞},
this procedure is fully-anonymous.

Two types of Splitting and Naming procedures

Consider Algorithm 4. In this section, we assume that p = 1
2 . Moreover the

first Splitting and Naming algorithm (S-N w.h.p.) provided in [79] utilizes the
function f1(x) = x32x and a definition of the function of the second procedure
(S-N w.v.h.p) involves lg∗ function (see Section 1.2.6 for definition), namely it
uses f2(x) = 2x lg∗(x).

The authors of [79] took notice, that lg∗ can be exchanged with any other
slowly growing function, however we are going to analyze only the original case.

Splitting and Naming frameworks naturally follow a lexicographic orders (see
Section 1.2.3 for definition): firstly, fissured by lifetimes of nodes of the network,
and secondly, by names of devices in each separated group (which consist of the
nodes with the same lifetimes).

Realize that in both algorithms, the draw of lifetime tv determines the num-
ber of bits that are necessary in order to save the name idv in the Naming phase,
hence according to approach via two runs of Algorithm 2, some of the devices
(which are not the winner of Splitting phase) may resign to execute Naming
phase, hence this algorithm may be interpreted as a quitting one.

Probability of failure for Splitting and Naming ”with high probabil-
ity”

As mentioned before, tv follows Geo
(

1
2

)
+ 1 distribution. Thence we are go-

ing to analyze random variables with the geometric distribution instead of the
stopping time of bits-drawing process described at the start of Section 2.7.3.
Without a loss of generality we attribute each vertex with different number
from the set [n].



2.7. PREVIOUS DEVELOPMENTS OF LEADER ELECTION 83

ALGORITHM 4: General Splitting and Naming algorithm in Beep-
ing Model of communication in Urn Model
procedure Send(L, p, f) // For each node

1 Leader = true
2 generate X ∼ Geo (p)
3 msg1 = min(X,L)
4 K1 = dlg(L+ 1)e
5 B1 = BINK1(msg1)
6 for i = K1 − 1 down to 0 do
7 if [[B1[i] = 1]] then
8 send BEEP
9 else
10 listen
11 if hear BEEP or collision then // other node transmits
12 Leader = false
13 break
14 X ∼ Uni ([0 : f(msg1 + 1)− 1])
15 msg2 = X
16 K2 = dlg(f(msg1 + 1))e
17 B2 = BINK2(msg2)
18 for i = K2 − 1 down to 0 do
19 if [[B2[i] = 1]] then
20 send BEEP
21 else
22 listen
23 if hear BEEP or collision then // other node transmits
24 Leader = false
25 break



84 CHAPTER 2. LEADER ELECTION ALGORITHMS

Let n > 2 and assume that G1, G2, . . . Gn are i.i.d. random variables with
distribution Geo

(
1
2

)
. Moreover, assume that for every vertex i ∈ [n], Ui ∼

Uni
(
[0 : 2gi+1(gi + 1)3 − 1]

)
, where (g1, g2, . . . , gn) is a realization of the ran-

dom vector (G1, G2, . . . , Gn). All variables Gi and Uj |Gj , for i, j ∈ [n], are
independent.

Let us find some constraints on a failure of the S-N w.h.p. procedure. Let
Fn,S−Nw.h.p. denotes the event when at least 2 of n agents draw the same,
maximal lifetime (amongst all the competitors) and have the identical, maximal
names amongst all vertices with the same lifetimes, when using f(x) = x32x.
Fn,S−Nw.h.p. is then an event which represents failure during the execution of
Splitting and Naming w.h.p. procedure. For simplification let us denote a set
of all nodes, which choose the lifetime m by Vm.40 A particular instance of the
failure take place when all devices belong to V1 and there are at least 2 vertices,
which choose 1 in the second phase (then (Ui|Gi = 1) ∼ Uni ({0, 1}) for each
i ∈ [n]). Let us investigate an another case — when 2 realize the maximum
amongst lifetimes of the processors in the Splitting phase. Then contestants
from V2 use Uni

(
[0 : 25 − 1]

)
distribution in the second part of the algorithm

to resolve the problem. Intuitively, this option, compared to the previous one,
creates more opportunity to choose different identities, especially it is more
probable to reach the unique maximum. Naturally this trend is satisfied in
general — as the maximal lifetime gets bigger, then it is easier to choose a
unique maximum in the second draw. We would like to find a lower bound on
Pr[Fn,S−Nw.h.p.], so we can, for instance, consider only two first aforementioned
situations. However, let us commence with the probability bounded only by the
first described case (with n > 1):

Pr[Fn,S−Nw.h.p.] > Pr

[
n∧
i=1

Gi = 1,¬(∃! k) Uk = 1

]
= 2−n(1− n2−n) > 2−(n+1).

Let us define I1(n) := 2−n(1− n2−n).
It is obvious that B1(n) is quite essential for small n, so this procedure works

inaccurate, until n is big. Sometimes, in Ad Hoc networks, small sub-networks
are created in order to struggle with some assignments,

Now, let us consider an exact probability of the collision for n = 2 for S-N
w.h.p. via polylogarithm41:

Pr[F2,S−Nw.h.p] = Pr[G1 = G2, U1 = U2]

=

∞∑
t=1

(
1

2

)2t
1

2tt3
= Li3

(
1

8

)
= 0.12703 . . . .

As we can clearly see, Splitting and Naming algorithm w.h.p. fails once in 8
tries when there are only two competitors, what is absolutely unacceptable from
a practical point of view.

40It is a random set.
41For a definition of polylogarithm see Section 1.2.11.



2.7. PREVIOUS DEVELOPMENTS OF LEADER ELECTION 85

An analogous, slightly complicated calculation can be done for n = 3. Then
the adequate probability of the failure can be divided as follows:

Pr[F3,S−Nw.h.p] =Pr[G1 = G2 = G3, U1 = U2 = U3]

+ 3Pr[G1 = G2 = G3, U1 = U2 > U3]

+ 3Pr[G1 = G2 > G3, U1 = U2]

We are going to calculate each part separately. First of all

Pr[G1 = G2 = G3, U1 = U2 = U3] =

∞∑
t=1

(
1

2

)3t(
1

2tt3

)2

=

∞∑
t=1

(
1

2

)5t
1

t6
= Li6

(
1

32

)
.

Moreover

Pr[G1 = G2 = G3, U1 = U2 > U3] =

∞∑
t=1

(
1

2

)3t 2tt3∑
i=2

(
1

2tt3

)2
i− 1

2tt3

=

∞∑
t=1

(
1

2

)6t+1
1

t9
(
2tt3 − 1

) (
2tt3

)
=

∞∑
t=1

(
1

2

)4t+1
1

t3
−
∞∑
t=1

(
1

2

)5t+1
1

t6

=
1

2
Li3

(
1

16

)
− 1

2
Li6

(
1

32

)
.

Similarly, we can calculate the latter term:

Pr[G1 = G2 > G3, U1 = U2] =

∞∑
t=2

(
1

2

)2t
(

1−
(

1

2

)t−1
)

1

2tt3

=

∞∑
t=2

(
1

2

)3t
1

t3
−
∞∑
t=2

(
1

2

)4t−1
1

t3

= Li3

(
1

8

)
− 1

8
− 2Li3

(
1

16

)
+

1

8

= Li3

(
1

8

)
− 2Li3

(
1

16

)
.

Therefore

Pr[F3,S−Nw.h.p] = 3Li3

(
1

8

)
− 4.5Li3

(
1

16

)
− 0.5Li6

(
1

32

)
= 0.0819669 . . . ,

so when n = 3, the algorithm falls short approximately once every 12 runs,
which is still unacceptable.



86 CHAPTER 2. LEADER ELECTION ALGORITHMS

Probability of failure for Splitting and Naming ”with very high prob-
ability”

It can be shown that the second algorithm from [79] (S-N w.v.h.p.) behaves
even worse than the first one, when there are only two nodes. Let Fn,S−Nw.v.h.p
denotes the event when at least 2 of n devices draw the same, maximal lifetime
(amongst all the competitors) and have the identical, maximal names amongst
all vertices with the same lifetimes, when f(x) = 2x lg∗(x), what can be identified
as the failure of Splitting and Naming algorithm w.v.h.p.

Then

Pr[F2,S−Nw.v.h.p.] =

∞∑
t=1

1

2t lg∗(t)

(
1

2

)2t

>

4∑
t=1

1

23t
= 0.14284 . . . ,

what is indeed bigger than Pr[F2,S−Nw.h.p.] = 0.12703 . . . (and we only included
first four expressions of the series).42 On the other hand

Pr[F2,S−Nw.v.h.p.] = Pr[G1 = G2, Y1 = Y2] <

∞∑
n=1

(
1

2

)3n

=
1

7
= 0.14286 . . . ,

so 0.14284 < Pr[F2,S−Nw.v.h.p.] < 0.14287.
Let us use the same assumptions and notations as previously (for S-N w.h.p).

Additionally, let now Υi ∼ Uni
(
[0 : 2gi lg∗(gi) − 1]

)
, where for i ∈ [n], gi are

realizations of Gi. Naturally we assume that all Gi and Υi|Gi are independent.
We are going to find a precise lower bound of Pr[Fn,S−Nw.v.h.p.]. When

a node draws 2 in the first phase, then in the next one it draws according
to Uni

(
[0 : 22 − 1]

)
distribution (instead of Uni

(
[0 : 25 − 1]

)
, as before). This

fact provoke additional collisions with substantial probability, so we decided
to investigate this particular case as well, when looking for the tolerable lower
boundary. Namely, we add the case, when some of devices pick 2 at first and
the maximum is not unique in the latter draw. The above argument convinces,
that, for small n, an accuracy of S-N w.v.h.p. is worse than for S-N w.h.p.,
conversely to theirs names. Beneath we calculate the appropriate limitation for
the failure’s probability:

Pr[Fn,S−Nw.v.h.p.] > Pr

[
n∧
i=1

Gi = 1,¬(∃! s)Υs = 1

]
+

+

n∑
k=2

Pr

[
|V2| = k, |V1| = n− k,¬(∃! s ∈ V2) max

i∈V2

{Υi} = Υs

]

= I1(n) +

n∑
k=2

(
n

k

)
2−(n−k)2−2k

(
1− k

4
4−k+1 − k

4
2−k+1 − k

4

(
3

4

)k−1
)

= . . .

42One can change slightly the definition of lg∗ to increase the reliability in exchange for a
one bit of memory. It is also possible to utilize other slowly growing function as was suggested
in [79].



2.7. PREVIOUS DEVELOPMENTS OF LEADER ELECTION 87

Figure 2.4: Comparison of simulated probabilities of success of the Splitting–
Naming algorithms with high probability (blue dots) and with very high proba-
bility (orange squares), depending on the number of devices n ∈ [200]. For each
n we executed Monte Carlo algorithms with 105 experiments and obtained the
average probabilities of success.

. . . = 2−n

[
1− n2−n +

n∑
k=2

(
n

k

)
2−k

(
1− k4−k − k

2
2−k − k

3

(
4

3

)−k)]
Fact 1.2.6

= 2−n

{
1− n2−n +

[(
3

2

)n
− n

2
− 1

]
− n

8

[(
9

8

)n−1

− 1

]

−n
8

[(
5

4

)n−1

− 1

]
− n

8

[(
11

8

)n−1

− 1

]}

= 2−n

[
−n2−n +

(
3

2

)n
− n

8

(
1 +

(
9

8

)n−1

+

(
5

4

)n−1

+

(
11

8

)n−1
)]

.

Let Sn,alg denotes the event opposite to Fn,alg, where alg ∈ {S−Nw.h.p., S−
Nw.v.h.p.}. In Figure 2.4 we present a comparison of Pr[Sn,S−Nw.h.p] and
Pr[Sn,S−Nw.v.h.p.] with respect to n ranged in [200], where each of the proba-
bilities is simulated as Monte Carlo algorithm with 105 repetitions of Leader
Election experiments. A slight surprise emerges for n < 200, when the theo-
retically more reliable algorithm performs even worse. Figure 2.4 shows that
Splitting and Naming algorithms behave properly for a large number of nodes
(authors studied theirs asymptotic maintenance), but they behave unsatisfac-
torily for a small number of nodes.

From Figure 2.4 it is difficult to judge, when the hypothetically better algo-
rithm begins (with respect to the number of contestants) to be more reliable.



88 CHAPTER 2. LEADER ELECTION ALGORITHMS

However, note that 2x lg∗(x) > x32x whenever x > 10 (we only consider x ∈ N).
However, from Fact 1.3.5, we get that Pr[M > 10] = 1 −

(
1− 1

210

)n
, where

M ∼ MGeo
(
n, 1

2

)
. Especially, when n = 29 = 512, Pr[M > 10] ≈ 1 − e− 1

2 =
0.393469 . . ., so for n 6 512 devices, S-N w.v.h.p. performs worse than S-N
w.h.p.

Number of rounds

Consider a sequence of i.i.d. random variables (Gi)
n
i=1 with Geo

(
1
2

)
distribution

and let Mn = max(G1, G2, . . . , Gn).
We would like to find some restriction on a number of bits K to save a max-

imum identifier drawn during the S-N w.h.p. Let mn be realization of Mn vari-
able (the maximum of all lifetimes) during the first phase of the algorithm. Then
the second phase will be conducted according to Uni

(
[0 : 2mn+1(mn + 1)3 − 1]

)
distribution. To save such the identifier, we need dlgmn + 1e bits for the first
one and mn + 1 + d3 lgmn + 1e bits for the latter one.

By Fact 1.3.5, Pr[Mn > k] = 1−
(

1−
(

1
2

)k)n
. In a case, when n� 2k, we

may use inequality Pr[Mn > k] > n2−k−
(
n
2

)
2−2k (see Fact 1.2.6). Let 0 < ε < 1.

If we assume n2−k = ε, then Pr[Mn > lg(n)− lg(ε)] > ε(1 − ε
2 ). Therefore

at least approximately lg(n) − lg(ε) + 4 lg (lg(n)− lg(ε)) bits are needed with
probability close to ε to save the biggest lifetime. If we would like to provide
restricted, Atlantic City version of S-N w.h.p. with (1 − ε)-reliability, then we
need at least the aforementioned number of bits, which is strictly greater than
the respective parameter of ULE algorithm (see Equation 2.19). It worth to
realize that Splitting and Naming procedure was designed as fully-anonymous
algorithm, however, the above argument shows that the sizes of labels of some of
the devices grows approximately logarithmic with respect to the number of all
devices. Moreover, note that in the S-N w.v.h.p., with the similar assumptions
we obtain, that approximately lg(n)−lg(ε)+lg (lg(n)− lg(ε))+lg∗(lg(n)−lg(ε))
bits are needed, which is still greater than for ULE algorithm. One can compare
that when ε < 2−5, then the restricted, Atlantic City version of S-N w.v.h.p.
needs more rounds than the restricted Atlantic City two-phases version of LGE,
provided before.43 This section makes one aware that Splitting and Naming
algorithm provided in [79] should not be used in other arrangements than Las
Vegas and fully-anonymous. It can be utilized when one do not care about the
memory of devices and whenever it is used, then the number of devices should
be enormous with high probability.

It worth to mention that Splitting and Naming with very high probabil-
ity is sometimes treated as the state-of-the-art of Leader Election algorithms.
For instance, a well known paper about Leader Election in radio networks with
Signal-to-Interference-plus-Noise-Ratio (SINR) model of communication was in-
vestigated by M.M. Halldórsson et al. in [57] in 2019. Theirs solution utilized
Splitting and Naming algorithm with f(x) = x42x, which is slightly more reli-
able than S-N w.h.p., but more energy is needed to send the information about

43This fact is irrespective of the number of devices.



2.8. GEOMETRIC GREEN LEADER ELECTION 89

the identifiers. Surprisingly, the solution of M.M. Halldórsson et al. was created
independently of the one from [79].

2.8 Geometric Green Leader Election

2.8.1 Introduction

The name of this section refers to already mentioned (in Section 2.7.2) Leader
Green Election algorithm proposed by P.Jacquet et al. in [64]. In Section 2.7.2
we have seen, that some of the parameters of LGE algorithm can be changed
in order to provide more efficient solution and also that restricted version of
LGE can be utilized as well. We would like to delve into the idea of Leader
Elections in urn model according to restricted geometric distribution Geo (p, L)
in order to improve the LGE procedure to Geometric Green Leader Election
algorithm (further abbreviated to GeoGLE algorithm) with judicious bounds
on the failure’s probability and the time complexity.

Namely, we are going to discuss a universal, fair, quasi-anonymous, oblivious-
quitting, (1−ε)-reliable Atlantic City LEA in single-hop beeping model without
collision detection, in urn model according to distribution Geo (p, L). For a
given capacity of the network N ∈ N and mistake frequency ε > 0, we would
like to determine such parameters p and L which guarantee that the considered
algorithm will be (1− ε)-reliable for an arbitrary number of nodes n ∈ [N ].

Our main goal is to find such the algorithm that optimize the number of
necessary rounds K to achieve the required reliability. Specifically we limit
ourselves to a class of GeoGLE algorithms described before.

2.8.2 GeoGLE Algorithm

In GeoGLE algorithm, each node generates independently its identity according
to Geo (p, L) distribution. In the terms of Algorithm 2 it can be simply done by
putting D(Θ) = Geo (p). Since the support of geometric distribution is defined
to be N0, there may some consternation about L parameter in restriction op-
eration, so Algorithm 5 presents a pseudo-code of the aforementioned GeoGLE
algorithm in the arrangement of Algorithm 2.

Properties

Now we discuss basic properties of GeoGLE algorithm. Especially, we will
show how to choose such parameters p and L that GeoGLE algorithm ends
successfully with controlled probability.

Similarly to the notation from Section 2.6, let Sn,Geo(p,L) denotes the follow-
ing event: ”if random variables X1, . . . , Xn are i.i.d. with Geo (p, L) distribu-
tion, then card ({i : Xi = max{Xj : j 6 n}}) = 1”. In other words, Sn,Geo(p,L)

holds if our GeoGLE algorithm successfully elects a leader when applied to a
network where n nodes compete.



90 CHAPTER 2. LEADER ELECTION ALGORITHMS

ALGORITHM 5: Beeping Leader Election Algorithm
procedure Select(p, L) // For each node

1 Leader = true
2 generate G ∼ Geo (p)
3 X = min(G,L)
4 K = dlg(L+ 1)e
5 B = BINK(X)
6 for i = K − 1 down to 0 do
7 if [[B[i] = 1]] then
8 Send BEEP
9 else
10 listen
11 if hear BEEP or collision then // other node transmits
12 Leader = false
13 break

Let us signal that the beneath fact is a result of application of classical
formulas for cubic equations:

Fact 2.8.1. If c ∈ (0, 4) and ε = c2

(c+2)3 , then

c = −
(
1− i

√
3
)

3
√

54ε2 + 6
√

3
√

27ε4 − 2ε3 − 18ε+ 1

6ε

+

(
1 + i

√
3
)

(12ε− 1)

6ε
3
√

54ε2 + 6
√

3
√

27ε4 − 2ε3 − 18ε+ 1

− 6ε− 1

3ε
,

where i is an imaginary unit.

A main contribution of this part is Theorem 2.8.1. Its formulation includes
two branches of W -Lambert function (see Section 1.2.12).

Theorem 2.8.1. Suppose that 0 < ε < 2
27 and N ∈ N.44 Moreover, let

1. c ∈ (0, 4) be such that ε = c2

(c+2)3 ,

2. C(N, ε) = (1 +
√

(c+ 2)ε) (c+2)ε
2(N−1)

3. C̃(N, ε) =
1+
√

6N−6
N+4

2
27

2 ε,

4. ε̃ = ε−min(C(N, ε), C̃(N, ε)),

44Let us mark, that the case of small N is slightly problematic, especially when ε is close to
2
27

. This is the usual case when C̃(N, ε) is necessary. Nevertheless, when one does not want
to use this formula, it is sufficient to choose slightly bigger N .



2.8. GEOMETRIC GREEN LEADER ELECTION 91

5. τ = 1− ln(1−3ε)
3 ,

6. K =

lg

1−
W−1

(
− 2ε̃

e2(N − 1)2

)
4ε̃


,

7. L = 2K − 1,

8. p = 1−

(
−2W0

(
−
√

τ
8L

)
N − 1

) 1
L

.

Assume that moreover λN := (N − 1)(1 − p)L <
√

(c+ 2)ε. Then for every
n ∈ [N ] we have Pr

[
Sn,Geo(p,L)

]
> 1− ε.

Note that c (provided explicitly in Fact 2.8.1) and τ depend only on parame-
ter ε. Moreover C(N, ε), C̃(N, ε) and ε̃ depend only on the initial parameters N
and ε. These five auxiliary notations are designated to present the thesis of main
part of the Theorem 2.8.1 and its proof in much simpler form. One can wonder
if ε̃ > 0. However, in Appendix B, we will show Corollary 10, which states
that ε̃ > ε

6 .45 The sixth emphasized formula in Theorem 2.8.1 let us attain the
number of the rounds K for Algorithm 5. Let us remark, that we will show that
one can provide (1 − ε)-reliable GeoGLE algorithm, if the number of atoms of

distribution L used in GeoGLE algorithm is at least

−
W−1

(
− 2ε̃

e2(N − 1)2

)
4ε̃

.

This let us choose different L, however we should bear in mind that an increase
of L gives an additional opportunity to avoid collisions (similar argument was
provided for non-anonymous model in the proof of Lemma 3), but on the other
side, it can eventually raise the number of needed bits K. As long as we do
not want to exceed provided minimal number of rounds K, we should choose
L of the form 2K − 1 (see line 4 of Algorithm 5). This is why Theorem 2.8.1
firstly provide a formula for K with respect to parameters N and ε and then
assume L = 2K − 1. We also should remember that the value of K provided
in Theorem 2.8.1 may not be optimal for a given N and ε parameters, so in
some cases, there may be possible to provide (1 − ε)-reliable LEA designated
for the network with capacity N , which uses slightly less bits. The last itemized
point of the Theorem 2.8.1 is to assume such parameter p that the distribution
Geo (p, L) will guarantee (1− ε)-reliability of GeoGLE algorithm. For the sake
of clarity, a lengthy, technical proof of Theorem 2.8.1, together with miscel-
laneous remarks which emerge from the proof, are postponed to Appendix B.
Let us only mention that the assumption about λN in the formulation of The-
orem 2.8.1 is a technical condition, which is unavoidable, when one wants to
provide any (1 − ε)-reliable GeoGLE algorithm, when ε < 2

27 . This notation

45This inequality is inefficient. Usually ε̃ ≈ ε.



92 CHAPTER 2. LEADER ELECTION ALGORITHMS

will be highly exploited in Appendix B. As we have highlighted, the formula-
tion of Theorem 2.8.1 utilize two different real branches of W -Lambert function.
However, let us recall that in majority of program languages and mathematical
packages those functions are implemented and also can be easily approximated
(see Section 1.2.12).

2.8.3 Discussion

Let us consider the arrangement of parameters of GeoGLE algorithm provided
in Theorem 2.8.1. Remark that formula (1.10) provides

−W−1

(
− 2ε̃

e2(N − 1)2

)
≈ 2 + 2 ln(N − 1)− ln(2ε̃) .

Therefore our algorithm runs in constant number46 of approximately

K ≈ lg

(
1 + ln

N√
2ε̃

)
+ lg

(
ε̃−1
)
− 1 = lg

(
ln

eN√
2ε̃

)
+ lg

(
ε̃−1
)
− 1 (2.20)

rounds in single-hop arrangement of beeping model. Remark that the term
lg
(
ε−1
)

is unavoidable (see the discussion in Section 2.6.4 and the result for the
simpler model in Section 2.5.6) in the general model of oblivious LEAs. Note
also that lg(ln(N)) term grows very slow as N become very large. Therefore
Geometric Green Leader Election Algorithm fits in the reasoning of P. Jacquet
et al. [64], who have described theirs algorithm with an adjective ”Green”,
connoted with low energy solutions. Nevertheless, let us highlight that usually
in practise we are not interested in the asymptotic properties of algorithm.47

In Table 2.1 we present examples of parameters p for GeoGLE algorithm
obtained from Theorem 2.8.1 for ε ∈ {10−6, 10−9} and some arbitrary network
capacities N . Realize that in all cases in Table 2.1, p is relatively close to ε.
Moreover, in Appendix B we show that the parameter p from Theorem 2.8.1
satisfies p < 3ε.

Basing on these remarks, one may be likely to assume that p = ε naively.
On the other hand Figure 2.5 shows that this hypothesis may have relatively
big impact on the probability of failure and should be rejected. Basing on
Figure 2.5, we can also guess, that it is relatively careful to slightly overestimate
the parameter p.

Example 9. Indeed, assume that n = 200 devices in the network compete in
the election using GeoGLE algorithm. Let us consider the case when N =
200 and ε = 0.001. Then, from Theorem 2.8.1 we obtain K = 13 and p =
0.0012372817 . . .. In this case one can we obtain that Pr

[
S200,Geo(ε,213−1)

]
=

0.9980388299 . . . ≈ 1− 2ε, but Pr
[
S200,Geo(p,213−1)

]
= 0.9993504638 . . . > 1− ε.

This show that solution proposed in Theorem 2.8.1 meets the assumptions of

46Since N and ε are given a priori
47Section 2.7.3 emphasized dangers, which may arise when one focus only on such the

properties.



2.8. GEOMETRIC GREEN LEADER ELECTION 93

ε
=

10
−

6
ε

=
1
0−

9

N
ε̃

K
p

ε̃
K

p

10
8.

88
57

4.
..·

10
−

7
23

1.
25

34
7.
..·

10
−

6
8
.8

8
8
7
9.
..·

1
0−

1
0

33
1
.6

2
7
5
7.
..·

1
0−

9

20
9.

47
21

9.
..·

10
−

7
23

1.
34

25
4.
..·

10
−

6
9
.4

7
3
6
4.
..·

1
0−

1
0

33
1
.7

1
4
5
6.
..·

1
0−

9

50
9.

79
53

4.
..·

10
−

7
23

1.
45

54
8.
..·

10
−

6
9
.7

9
5
9
0.
..·

1
0−

1
0

33
1
.8

2
4
8
5.
..·

1
0−

9

10
0

9.
89

87
0.
..·

10
−

7
23

1.
53

93
2.
..·

10
−

6
9
.8

9
8
9
8.
..·

1
0−

1
0

34
9.

7
3
5
3
4.
..·

1
0
−

1
0

20
0

9.
94

96
1.
..·

10
−

7
23

1.
62

25
5.
..·

10
−

6
9
.9

4
9
7
4.
..·

1
0−

1
0

34
1
.0

1
4
1
7.
..·

1
0−

9

50
0

9.
97

99
0.
..·

10
−

7
23

1.
73

21
4.
..·

10
−

6
9
.9

7
9
9
6.
..·

1
0−

1
0

34
1
.0

6
7
6
8.
..·

1
0−

9

10
00

9.
98

99
6.
..·

10
−

7
23

1.
81

48
9.
..·

10
−

6
9
.9

8
9
9
9.
..·

1
0−

1
0

34
1
.1

0
8
0
9.
..·

1
0−

9

20
00

9.
99

49
8.
..·

10
−

7
23

9.
69

44
9.
..·

10
−

7
9
.9

9
5
0
0.
..·

1
0−

1
0

34
1
.1

4
8
4
6.
..·

1
0−

9

50
00

9.
99

79
9.
..·

10
−

7
24

1.
02

40
8.
..·

10
−

6
9
.9

9
8
0
0.
..·

1
0−

1
0

34
1
.2

0
1
8
2.
..·

1
0−

9

10
00

0
9.

99
90

0.
..·

10
−

7
24

1.
06

54
0.
..·

10
−

6
9
.9

9
9
0
0.
..·

1
0−

1
0

34
1
.2

4
2
1
7.
..·

1
0−

9

20
00

0
9.

99
95

0.
..·

10
−

7
24

1.
10

67
2.
..·

10
−

6
9
.9

9
9
5
0.
..·

1
0−

1
0

34
1
.2

8
2
5
2.
..·

1
0−

9

50
00

0
9.

99
98

0.
..·

10
−

7
24

1.
16

13
4.
..·

10
−

6
9
.9

9
9
8
0.
..·

1
0−

1
0

34
1
.3

3
5
8
6.
..·

1
0−

9

10
00

00
9.

99
99

0.
..·

10
−

7
24

1.
20

26
5.
..·

10
−

6
9
.9

9
9
9
0.
..·

1
0−

1
0

34
1
.3

7
6
2
0.
..·

1
0−

9

Table 2.1: Parameters p nad K provided for ε ∈ {10−6, 10−9} and several
selected values of capacity N , established according to Theorem 2.8.1.



94 CHAPTER 2. LEADER ELECTION ALGORITHMS

Figure 2.5: Plot of exact probabilities of success of Geometric Green Leader
Election for n = 200, ε = 0.001, K = 13 for p ∈ [0.0009, 0.0025].

LEA in contrast to the solution with p = ε. Moreover, a maximal probability
of success using GeoGLE algorithm for n = 200 and K = 13 can be found
numerically and it equals Pr

[
S200,Geo(pmax,213−1)

]
= 0.99935046444 . . ., where

pmax = 0.0012376712 . . ..
One can also easily see that

Pr
[
S200,Geo(pmax,213−1)

]
− Pr

[
S200,Geo(p,213−1)

]
= 6.067879 . . . ·10−10 < ε3 ,

what affirms the effectiveness of solution proposed in Theorem 2.8.1.
Now let us choose a bigger number of admissible devices in the rivalry e.g.

N = 1000. Then with the same number of stations n = 200 and the same
ε, we attain p = 0.00143399705 . . . and K = 13. Again by Theorem 2.8.1, it
occurs that Pr

[
S200,Geo(p,213−1)

]
= 0.99928160414 . . . > 1 − ε. Naturally, the

bigger value of N has negative influence on the choice of p parameter, because
it should be adequate for a wider class of networks. Consequently and naturally
it has negative influence on the probability of success as well.

The aforementioned examples get attention to a fact that the correct choice
of the parameter p very subtly depends on the parameters N and ε and confirm
the usability and quality of Theorem 2.8.1.

In Figure 2.6 we present a plot of failure’s probability Pr
[
F100,Geo(p,223−1)

]
(q50, depicted as an orange polyline) for the arrangement of Leader Election
according to Geo

(
p, 223 − 1

)
distribution for n = 100 devices.48 According

48See e.g. [86] for an introductory to interval estimation theory.



2.8. GEOMETRIC GREEN LEADER ELECTION 95

Figure 2.6: Plot of 1 − Pr
[
S100,Geo(p,223−1)

]
(denoted by q50) together with

respective confidence intervals ([q1, q99]) at confidence level 0.98, simulated by
Monte Carlo simulations with 2·108 repetitions for different p from [1.3·10−6, 1.8·
10−6] with stride 0.025 · 10−6.

to Theorem 2.8.1, in GeoGLE with initial parameters N = 100 and ε = 10−6,
we should use Geo

(
1.5393203 . . . · 10−6, 223 − 1

)
distribution. The smallest esti-

mated value of failure’s probability (amongst presented in Figure 2.6) is obtained
for p = 1.5 ·10−6 and equals 7.5 ·10−7. For comparison, we have conducted simi-
lar Mote Carlo experiment for p = 1.5393203 . . .·10−6, what gave the estimation
of Pr

[
F100,Geo(1.5393203...·10−6,223−1)

]
as 6.8 · 107, which is smaller than the one

for p = 1.5 · 10−6. This experiment affirms the quality of parameters provided
in Theorem 2.8.1. One can easily see that, when p < 1.4 ·10−6, then probability
of failure harshly grows as p parameters gets smaller. For instance, the smallest
parameter p from the plot give an estimation of Pr

[
F100,Geo(1.25·10−6,223−1)

]
as

4.51 · 10−6 ≈ 4.5ε. Moreover, similar experiment for p = ε provided estimation
of Pr

[
F100,Geo(10−6,223−1)

]
as 0.00025094 > 250ε. This confirms our previous

speculation from Example 9 that we should not use naively p = ε.
Apart from the failure’s probabilities per se, in Figure 2.6 we have also pre-

sented confidence intervals of particular estimators, at confidence level 0.98.
qi denotes the approximation of the i-th quantile of the distribution of the
estimator of the probability of failure. According to de Moivre—Laplace The-

orem 1.3.2, qi (for i ∈ [100]) can be approximated by µ + Φ
(
i

100

)√µ(1−µ)
reps ,

where µ is the average number of simulated failures, Φ is the cumulative distri-
bution function of standard normal distribution N (0, 1) and reps is the num-
ber of repetitions of Monte Carlo algorithm. Therefore, for each parameter p,
Pr
[
F100,Geo(p,223−1)

]
∈ [q1(p), q99(p)] (between green and blue polylines) with

probability ∼ 0.98. Basing on Figure 2.6, it is difficult to judge, which parame-
ter p is the best in this case. For instance p = 1.5·10−6 or p = 1.65·10−6 seem all



96 CHAPTER 2. LEADER ELECTION ALGORITHMS

0 1 2 3 4 . . . 2K − 2 2K − 1

1− p 1− p 1− p 1− p 1− p 1− p 1− p

p p p p p p 1p

Figure 2.7: Graphical representation of standard method of drawing a realiza-
tion of a random variable with Geo

(
p, 2K − 1

)
distribution. Arrows from the

urns (depicted as squares) directed downwards denote, that the appropriate
value is chosen.

right. However, Figure 2.6 shows that it is quite probable, that p = 1.625 · 10−6

is insufficient. Therefore, convinced by the whole experiment, we highly recom-
mend, to use p provided in Theorem 2.8.1.

Let us mention that in Section B.5 we will try to answer the question — how
much should we increase the capacity of the network N in order to increase K
by 1? It shows that expanding the memory a little bit, usually allows to exceed
significantly the capacity of the network provided a priori with a preservation
of (1− ε)-reliability regime.

2.8.4 Implementation details

From Table 2.1 we read that for N = 104 and ε = 10−6 we should use
p = 1.0654 . . . · 10−6 as the parameter of Geo (p, L) distribution, utilized in
reliable GeoGLE algorithm. Let us note, that we have to remember that in the
framework of Algorithm 5, a draw is taken from Geo (p) distribution and further
it is restricted to the interval [0 : L]. When p ≈ 10−6, the the generation of a
number according to Geo (p) is simple. We may even use a trivial algorithm,
which counts tosses of unfair coin before it falls heads up, where the probability
of such the event in a single toss is p. To be more precise, we draw a number
from Geo (p, L) distribution (with L = 2K − 1), so once we toss a coin L times,
then we reach the last possible value, hence the process stops. This schema is
presented in Figure 2.7. The expected number of such the tosses is then O

(
1
p

)
.

Note that this method is not efficient as p is close to 0. Let us remark that usu-
ally efficient (in terms of runtime) pseudo-random number generators become
inexact when p is very small.

When it comes to satisfy much stricter constraint for reliability of GeoGLE
algorithm, a problem may arise. Indeed, for instance, if we choose ε = 10−12

(and N = 104), then we should use parameter p = 1.41009426 . . . · 10−12. In
that case a naive implementation of a random number generator with a geo-
metric distribution Geo (p) may be burdened with significant numerical errors.
To avoid this problem, we may use a clever method described in the paper
of K. Bringmann and T. Friedrich [18] from ICALP’13. A main idea of this



2.8. GEOMETRIC GREEN LEADER ELECTION 97

method is to divide the draw of G ∼ Geo (p) into two independent parts. First
one is a := G ÷ 2k, where k ∈ N is given as b− lg(p)c. The second part is
b := G mod2k. It may be not obvious at a first glance, but these two variables
are, in fact, independent. In the first phase, we draw a number a according
to Geo

(
1− (1− p)2k , L+1

2k
− 1
)

. Note that 3
4 > 1 − (1 − p)2k > 1 − e− 1

2 , so
here we can use the standard method. The latter part is more technical. We
repetitively draw b ∼ Uni

(
[0 : 2k − 1]

)
until B = 1, where B ∼ Ber

(
(1− p)b

)
is drawn after every redraw of b and the draws are independent. This clever
trick utilize a rejection method in order to approximate a draw according to
Geo

(
p, 2k − 1

)
. Note that when p is very close to 0, then probability mass

functions of Uni
(
[0 : 2k − 1]

)
and Geo

(
p, 2k − 1

)
are quite similar. The above

rejection method is used in order to rectify the distortion and only needs a finite
number of trials on average. Realize that then a · 2k + b gives is stochastically
equivalent to Geo (p, L) distribution. Additionally, we can decrease the imple-
mentation runtime. Indeed, b can be obtained lazily (bits of memory, where
b is allocated are only determined when needed), since sometimes the most
significant bits of b are enough to determine B. For more details, see [18].

2.8.5 Simplified solution

Let us also mention a simplified, approximated version of Theorem 2.8.1. It
may be useful, when one has flexible approach to reliability and allows it to be
slightly lower than 1− ε.

Theorem 2.8.2. Suppose that 0 < ε < 2
27 and N ∈ N\{1}. Let

1. K =

lg

1−
W−1

(
− 2ε
e2(N−1)2

)
4ε


2. L = 2K − 1

3. p =
ln
(

(N − 1)
√

2L
)

L

Then for every n ∈ [N ] we have Pr[Sn,Geo(p,L)] ≈ 1− ε.

As one can briefly see, first two formulas (for K and L) are very similar to
theirs analogues from Theorem 2.8.1. The latter formula can be justified by Eq.
(B.19) from Appendix B. Let us only note, that when ε is reasonably small, then
parameters K and L are usually the same for Theorem 2.8.1 and Theorem 2.8.2.
Moreover, parameters p are quite similar in both cases, especially when N is
big and ε is small.49

49Then ε is a good approximation of ε̃ from Theorem 2.8.1, as one can see in Table B.1.
Therefore the differences in the definitions of parameters are negligible as well in such the
case.



98 CHAPTER 2. LEADER ELECTION ALGORITHMS

2.9 A mixture of Geometric and Uniform LEA

2.9.1 Motivation

We have already provided that in the case of only two nodes (i.e. n = 2) the
optimal probabilistic distribution (such that minimizes Pr[X = Y ]) on the set
[L] is the uniform distribution (see Section 2.5.4). In this case one may consider
the following algorithm: nodes choose independently random numbers from the
set [0 : 2K − 1] uniformly at random and the leader is the one which choose the
biggest one. Nevertheless this approach is far from optimal (see Section 2.6).

We may also utilize a restricted version of geometric distribution instead
of uniform distribution. Recall that properly used geometric random variables
quickly reduce large groups of nodes to some small subsets.

However, it is possible to consider a mixture of both distributions: in the
first phase we may use the restricted geometric distribution and the uniform
one in the second phase. This solution was considered as a rectification of LGE
algorithm in Section 2.7.2. Now, we are going to selected parameters properly,
in order to improve slightly the reliability and sometimes spare some bits.

A description of GULE

Consider a quasi-anonymous Atlantic City (1 − ε)-reliable Leader Election al-
gorithm. Assume that the procedure is divided in two phases, both compatible
with Algorithm 2 or more precisely, it uses Algorithm 4 with some parameters
L1, p and f(x) ≡ L2 − 1. The first phase is GeoGLE block, which is utilized to
reduce the number of competitors for the leader title. All winners of the first
part, continue the Election by executing the second phase, which is conducted
according to ULE algorithm. We can assume, that all nodes take part in both
elections and adapt the concept of the lexicographically ordered set of labels
from Section 1.2.3 (just like in Section 2.7.3). Let N be the capacity of the
network. We will only consider a case n = N , because of the monotonicity
argument (see Theorem 2.9.1). We call this procedure a Geometric-Uniform
Leader Election algorithm or shortly GULE algorithm.

Arbitrary simulations

In the first phase we concern urn model with Geo
(
p, 2K1 − 1

)
distribution and

another urn model with Uni
(
2K2

)
distribution for the second phase, for some

K1,K2 ∈ N, which will be obtained further (i.e. we assume L1 = 2K1 − 1 and
L2 = 2K2). Recall that q = 1− p ad let us denote K = K1 +K2.

Notice, that we have already considered the example of GULE algorithm
with parameters p = 0.01, K1 = 14, K2 = 80, for network’s capacity N = 1026

and mistake frequency ε = 10−23 (in Section 2.7.2). This approach assumes
that p = 0.01 and find some sufficient parameters K1 and K2 and proves that
94 bits are enough. Can we do better, when p is not fixed at start?

Let us commence with a comparable example of performance of GULE al-
gorithm.



2.9. A MIXTURE OF GEOMETRIC AND UNIFORM LEA 99

Figure 2.8: Plot of probabilities of failure (denoted by q50) together with re-
spective confidence intervals ([q1, q99]) at confidence level 0.98, simulated by
Monte Carlo algorithms with 108 repetitions, according to GULE algorithm
with K = 23 bits of memory in total, for n = 100 devices. A number of bits
devoted to the first phase K1 is given on abscissa. GeoGLE block is provided
according to Geo

(
p, 2K1

)
distribution, with p = 0.1 · 27−K1 . The second phase

of the algorithm utilize 23−K1 bits in ULE block.

Figure 2.8 is a equivalent of Figure 2.6 for a mixture of GeoGLE and ULE
algorithms with the same number of bits K = 23 in total and some arbitrary
chosen parameters p, which depends on the number of rounds in the first phase
of the algorithm, namely p = 0.1 · 27−K1 . For GeoGLE algorithm, the most
reliable parameter p occurred to be the one given by Theorem 2.8.1, which gave
the average probability of failure for GeoGLE algorithm equals to 6.8 · 10−7. In
Figure 2.8, the better results were obtained for K1 ∈ {9, 10, 11, 19} and the best
was 6 · 10−7 (for K1 = 9). Figure 2.8 affirms the efficiency of the mixture of
GeoGLE and ULE blocks. Note that the parameter p was not even chosen very
carefully. However, one can see, that there probably is some minimal number of
bits needed to conduct the first phase in order to provide reliable LEA. Notice,
that a case of K1 = 23 is exactly GeoGLE algorithm. In this scenario, it
seems, that for the assumed p, GeoGLE performs slightly worse than most of
simulated GULE algorithms. Confidence intervals were provided again by de
Moivre—Laplace Theorem 1.3.2, like for Figure 2.6.

2.9.2 Possible scenarios and monotonicity

In Table 2.2 we specify some possible events of GULE algorithm for n devices
that we are going to discuss.

If one of the scenarios Scn
(1a), Scn

(1b) holds, then we shortly denote it as a



100 CHAPTER 2. LEADER ELECTION ALGORITHMS

i Scenario Scn
(i) Pr

[
Scn

(i)
]

1a. Successful GeoGLE block α

1b. Unsuccessful GeoGLE block, rectified by ULE one β

2. Two or more devices draws 2K1 − 1 in GeoGLE phase < ε1

3. Both GeoGLE and ULE blocks fail, < ε2

when at most one node drawn 2K1 − 1 in the first phase

Table 2.2: Possible scenarios of a single run of GULE algorithm and theirs
parametrized probabilities.

scenario Scn
(1), which entails a successful Leader Election (with an additional

unnecessary condition, that there is no collision in L1-th urn in the first phase).
Briefly, Scn

(3) must not end with the choice of the unique leader and Scn
(2) may

be eventually resolved in ULE phase. Therefore, we assume, that α+ β > 1− ε
and ε1 + ε2 6 ε, in order to provide (1− ε)-reliable LEA.

Theorem 2.9.1 (Monotonicity of probabilities of successful GULE algorithm).
Let ε > 0, N ∈ N\{1} and Scn

(1)[p,K1,K2] denotes the successful GULE algo-
rithm for parameters p,K1 and K2. If Pr

[
ScN

(1)[p,K1,K2]
]
> 1− ε, then

(∀ n < N) 1− ε < Pr
[
ScN

(1)[p,K1,K2]
]
< Pr

[
Scn

(1)[p,K1,K2]
]
.

Proof. Fix p,K1,K2 and let Li = 2Ki − 1, for i ∈ [2]. At first realize, that then
Pr
[
ScN

(2)
]
> Pr

[
ScN−1

(2)
]
. Indeed, the 2. scenario occurs when no more than

1 device draws L1, so Pr
[
ScN

(2)
]

= 1−
(
1− qL1

)N−NqL1
(
1− qL1

)N−1
. Hence

Pr
[
ScN

(2)
]
− Pr

[
ScN−1

(2)
]

= qL1
(
1− qL1

)N−1
+ (N − 1)

(
qL1
)2 (

1− qL1
)N−2

− qL1
(
1− qL1

)N−1

= (N − 1)
(
qL1
)2 (

1− qL
)N−2

> 0 .

By induction, we obtain Pr
[
ScN

(2)
]
> Pr

[
Scn

(2)
]

for n < N .
The 3. scenario is more complex. Consider that (Ti)

N
i=1 are i.i.d. random

variables with Geo (p, L1) distribution. Let [ti]
N
i=1 be a realization of a ran-

dom vector [Ti]
N
i=1. We want to compare probabilities of some events using

tuples (t1, . . . , tN ) and (t1, . . . , tN−1). Let us denote a situation when the first
tuple elects a leader correctly and the second one falls into ScN−1

(3) by AN ,
and a situation when the second tuple elects a leader correctly and the first
one falls into ScN

(3) by BN . Let m := max(t1, . . . , tn−1). AN means that
tN > m and there are at least two indices i ∈ [n−2], j ∈ [i+1 : n−1] such that
ti = tj = m, for which ULE phase does not resolve the collision, hence Pr[An] <



2.9. A MIXTURE OF GEOMETRIC AND UNIFORM LEA 101

qm+1Pr[W>2,n−1,p]. BN occurs, for instance, when there was the unique max-
imum in the set {t1, . . . , tn−1} and tn = m, hence Pr[Bn] > pqmPr[W1,n−1,p].
Realize that Theorem 1.3.3 and p < 1

2 gives

Pr[Bn]− Pr[An]

qm
> pPr[W1,n−1,p]− (1− p)(1− Pr[W1,n−1,p])

= Pr[W1,n−1,p] + p− 1 > p− 1− p

ln(1− p)
+
p

3
ln(1− p)

p< 1
2

> 0 .

Therefore we obtained Pr
[
ScN

(3)
]
> Pr

[
ScN−1

(3)
]
. Again, a similar induction

ends the considerations for the 3. scenario. Finally, after putting together the
results for both problematic scenarios we receive the thesis.

Theorem 2.9.1 let us consider only a non-anonymous GULE with N devices,
since it will be appropriate for all n < N as well.

2.9.3 Maximum of Geometric distributions

Definition 2.9.1. Let t ∈ N and (Gi)
n
i=1 be a sequence of i.i.d random variables

with distribution Geo (p). We define MG>t(n) := card ({i ∈ [n] : Gi > t}), i.e.
how many of n realizations of independent geometric variables are at least t.

Proposition 1. Let t ∈ N. Then

Pr[MG>t(n) < 2] =
(
1 + (n− 1)qt

) (
1− qt

)n−1
.

Proof. For k ∈ [0 : n] we have

Pr[MG>t(n) = k] =

(
n

k

)
Pr[G1 > t]

k
Pr[G1 < t]

n−k
=

(
n

k

)(
qt
)k (

1− qt
)n−k

,

(2.21)

therefore, in particular

Pr[MG>t(n) < 2] =
(
1− qt

)n
+ nqt

(
1− qt

)n−1
=
(
1 + (n− 1)qt

) (
1− qt

)n−1
.

Corollary 1. Let L ∈ N and λ = (n− 1)qL. Then

Pr[MG>L(n) < 2] = (1 + λ)

(
1− λ

n− 1

)n−1

.

Proposition 2. Let L ∈ N and λ = (n− 1)qL < 1. Then

λ2 1− λ
2

< Pr[MG>L(n) > 2] < λ2 .



102 CHAPTER 2. LEADER ELECTION ALGORITHMS

Proof. From the definition, λ ∈ (0, n− 1), so from Corollary 1 and Weierstrass’
Product Inequality (Theorem 1.4.2) we conclude that

Pr[MG>L(n) > 2] = 1− (1 + λ)

(
1− λ

n− 1

)n−1

(2.22)

WPI
> 1− (1 + λ)

(
1− λ+

(n− 2)λ2

2(n− 1)

)
= λ2

(
1− (n− 2)(1 + λ)

2(n− 1)

)
> λ2 1− λ

2
. (2.23)

Again, from (2.22) and Weierstrass’ Product Inequality (Theorem 1.4.2) we get
Pr[MG>L(n) > 2] < 1− (1 + λ)(1− λ) = λ2.

Note that Scn
(2) is stochastically equivalent with (MG>L(n) > 2).

Let us announce that part of the proof of Proposition 2 will be utilized in
the proof of Theorem 2.8.1 in Appendix B.

2.9.4 Limitations on failures probabilities

Lemma 9. Assume that λ = (n− 1)qL1 < 1 and

−L1 ln(1− p) > ln(n)− 1

2
ln(ε1) .

Then the condition Pr
[
Scn

(2)
]
< ε1 is satisfied.

Proof. From Proposition 2, λ2 < ε1 is sufficient to provide Pr
[
Scn

(2)
]
< ε1.

However that entails qL1 <
√
ε1

n−1 or equivalently −L1 ln(1 − p) > ln(n − 1) −
1
2 ln(ε1).

Lemma 10. Let p < 1
2 . Then Pr

[
Scn

(3)
]
< p

L2(1−p)2 for any n ∈ N.

Proof. By Fa,Uni(L2) we denote a failure in ULE block of algorithm for a devices,
i.e. that there is not a unique maximum amongst a i.i.d. realizations of variables
with Uni (L2) distribution. From Theorem 1.3.3, we know that Pr[Wa,n,p] <

− pa

a ln(1−p) −
(a+1)2pa ln(1−p)

12a for any n ∈ N. Theorem 2.6.2 bears an inequality

Pr
[
Fa,Uni(L2)

]
< a

2L2
, so from a fact that ln 2 > − ln(1− p) > p, we provide the

following:

n∑
a=2

Pr[Wa,n,p] Pr
[
Fa,Uni(L2)

]
<

n∑
a=2

(
− pa

a ln(1− p)
− (a+ 1)2pa ln(1− p)

12a

)
a

2L2

<
1

2L2

n∑
a=2

(
pa−1 +

(a+ 1)2pa ln 2

12

)



2.9. A MIXTURE OF GEOMETRIC AND UNIFORM LEA 103

In Appendix C we will prove Lemma 22, which shows that:

n∑
a=2

(
pa−1 +

(a+ 1)2pa ln 2

12

)
<

p

(1− p)2
.

It remains to realize to realize that, if there is a collision in Leader Election
algorithm in urn model, according to Geo (p) (without restriction), and the
maximum amongst identifiers is less than L1, then in its restricted version,
according to Geo (p, L1) does not affect any of the identities, so

Pr
[
Scn

(3)
]
<

n∑
a=2

Pr[Wa,n,p] Pr
[
Fa,Uni(L2)

]
.

2.9.5 Derivation of parameters

Minimizing the number of rounds in both phases

For a concise path of determining the parameters we combine the results from
Lemma 9:

L1 + 1 > −
ln(n− 1)− 1

2 ln(ε1)− ln(1− p)
ln(1− p)

>
ln(n− 1)− 1

2 ln(ε1)

p
(2.24)

with the one from Lemma 10:

L2 >
p

2(1− p)2ε2
. (2.25)

When we change the notation via substitutions L1 = 2K1 − 1 and L2 = 2K2 , we
obtain

2K1+K2 >
ln(n− 1)− 1

2 ln(ε1)

2(1− p)2ε2
. (2.26)

We show further that ε1 and ε2 can be derived from n and ε, so we may assume
that all the variables on the right side of the above inequality are provided a
priori. We desire to optimize the time complexity, i.e. K1 + K2 rounds. From
the formula (2.26) we find its minimal possible value:

µ(K1 +K2) :=

⌈
lg

(
ln(n− 1)− 1

2 ln(ε1)

ε2

)⌉
− 1 . (2.27)

We assumed that p < 1
2 , so (1 − p)2 varies in a set ( 1

4 , 1). It is necessary to
convince that we can reach threshold from (2.27), but from (2.26) we can easily
see, that it is only possible when (1− p)2 > 1

2 , so we can assume without a loss
of generality that p < 1− 1√

2
.

Analogically, from inequalities (2.24) and (2.25) we deduce that

K1 >

⌈
lg

(
ln(n− 1)− 1

2
ln(ε1)

)
− lg p

⌉



104 CHAPTER 2. LEADER ELECTION ALGORITHMS

and

K2 >

⌈
− lg(ε2)− 1 + lg

(
p

(1− p)2

)⌉
.

Let us therefore define{
e1(p) := lg

(
ln(n− 1)− 1

2 ln(ε1)
)
− lg p

e2(p) := − lg(ε2)− 1 + lg
(

p
(1−p)2

)
and mj(p) := dej(p)e for j ∈ [2]. Realize that dae+ dbe > da+ be, so

m1(p) +m2(p) >

⌈
lg

(
ln(n− 1)− 1

2
ln(ε1)

)
− lg(ε2)− 1− 2 lg(1− p)

⌉
>

⌈
lg

(
ln(n− 1)− 1

2 ln(ε1)

ε2

)⌉
− 1 = µ(K1 +K2)

and if the number of used bits is indeed µ(K1 + K2) then the equalities must
hold. Note that dae+ dbe = da+ be, when {a}f + {b}f > 1.50 Since we want to
minimizem1(p)+m2(p), we are interested in such p, that {e1(p)}f+{e2(p)}f > 1
and

−2 lg(1− p) 6 1−
{

lg

(
ln(n− 1)− 1

2 ln(ε1)

ε2

)}
f

. (2.28)

Let say that p0 is the biggest p, which satisfies (2.28).
We are going to consider the aforementioned expressions with abandoned

fractional parts in order to optimize µ(K1 +K2), depending on a priori param-
eters n and ε. It was mentioned that we will establish ε1 and ε2, basing only
on n and ε. Here comes the time to reveal the secret. One may choose ε

2 for
both parameters, but we prefer to do this more optimally, because the arbitrary
apportionment can not guarantee the minimal time complexity. We naturally
assume that ε1 + ε2 = ε and we are going to utilize Lagrange multipliers (this
method is described e.g.[13]). Let us define a function:

h(ε1, ε2) :=
ln(n− 1)− 1

2 ln(ε1)

ε2
+ (ε1 + ε2 − ε)λ .51

Then ∂h(ε1,ε2)
∂ε1

= − 1
2ε1ε2

+ λ and ∂h(ε1,ε2)
∂ε2

= − ln(n−1)− 1
2 ln(ε1)

ε22
+ λ. Moreover,

if ε < 0.6, then a Hessian matrix of h is positively defined for any pair (ε1, ε2)
from the interval {(x, ε− x) : x ∈ (0, ε)}:52

H =


1

2ε2
1ε2

1

2ε1ε2
2

1

2ε1ε2
2

2 ln(n− 1)− ln(ε1)

ε3
2


50Recall that {x}f is a fractional part of x.
51It should be clear that h(ε1, ε2) = m1(p) +m2(p).
52Roughly speaking, a Hessian of a function f , which has continuous all second partial

derivatives with respect to all k variables, is a square matrix
[
∂2

∂i∂j
f
]
k×k

.



2.9. A MIXTURE OF GEOMETRIC AND UNIFORM LEA 105

(since 4 ln(n− 1)− 2 ln(ε1)− 1 > 0 whenever n > 2 or ε1 < e−
1
2 = 0.6065 . . .).

Hence h reaches minimum when 1
2ε1ε2

=
ln(n−1)− 1

2 ln(ε1)

ε22
or alternatively ε2 =

ε1 (2 ln(n− 1)− ln(ε1)), what provides

ε = ε1 (1 + 2 ln(n− 1)− ln(ε1)) = ε1 ln

(
(n− 1)2e

ε1

)
.

We easily see that
−ε

(n− 1)2e
=

ε1

(n− 1)2e
ln

(
ε1

(n− 1)2e

)
, what can be trans-

lated to

exp

(
W

(
−ε

(n− 1)2e

))
=

ε1

(n− 1)2e
.

Multiplication by W
(

−ε
(n−1)2e

)
shows that

−ε
(n− 1)2e

=
ε1W

(
−ε

(n−1)2e

)
(n− 1)2e

, what

finally results in:
ε1 = − ε

W

(
−ε

(n− 1)2e

) . (2.29)

The argument of the above W -Lambert (multi-)function is negative, so two real
values are adaptable for a result. Quick look shows that we have to take W−1

branch (see e.g. Figure 1.1). If we assume a priori the value of ε, then we can
attain an optimal ε1 given by above formula (2.29) and put ε2 = ε− ε1 .

After obtaining ε1, we can struggle easily withm1. Since− lg(p) is decreasing
function and p 6 p0, we realize that

m1(p) >

⌈
lg

(
ln(n− 1)− 1

2
ln(ε1)

)
− lg p0

⌉
.

Let assume for a while that we prefer to minimize m1(p) rather than m2(p).
In this situation, the above inequality turns into equality. This way a new
boundary for p is at our fingertips, namely:

− lg(p) + lg(p0) = e1(p)− e1(p0) 6 1−
{

lg

(
lnn− 1

2
ln(ε1)

)
− lg(p0)

}
f

.

Let us define p1 in such a way that e1(p1) = m1(p0), what bears p1 < p < p0.

Observation 1. Note that, if we do not want to minimize m1(p), we may define
pk := p1

2k−1 and consider p ∈ (pk, pk−1), which provides m(p) = m(p0) + k.

With the above capture, we may now deal with m2(p). It is easy to obvious

that lg
(

p
(1−p)2

)
is ascending and negative function for p < 1− 1√

2
, so depending

on previously chosen k,53

m2(p) =

⌈
− lg(ε2)− 1 + lg

(
pk

(1− pk)2

)⌉
53A range of admissible k will be provided later.



106 CHAPTER 2. LEADER ELECTION ALGORITHMS

Remark that now m1(p) is fixed and we are not able to increase m2(p), so the
inequality has been displaced by the equality. We also achieved an additional
constraint for p, namely:

lg

(
p

(1− p)2

)
− lg

(
pk

(1− pk)2

)
6 1−

{
− lg(ε2)− 1 + lg

(
pk

(1− pk)2

)}
f

.

Let us define p′k in such the way that e2(p′k) = m2(pk). This way we reach
pk < p < min(pk−1, p

′
k).

Proposition 3. p′k < 2pk.

Proof. From definition of p′k, we know that lg
(

p′k
(1−p′k)2

)
− lg

(
pk

(1−pk)2

)
< 1 or

equivalently p′k
(1−p′k)2 < 2 pk

(1−pk)2 . But pk < p′k, so (1−pk)2 > (1−p′k)2. It proves
that p′k < 2pk.

Remark Realize that for any appropriate k 6= 1, p′k < 2pk = pk−1. From the
definition of p1, it should also be clear that p0 < 2p1.

For now, we established some limitations on p, m1(p) and m2(p). Let us
return to the condition {e1(p)}f + {e2(p)}f > 1 mentioned at the beginning:

Theorem 2.9.2. If p ∈ (pk,min(pk−1, p
′
k)), then {e1(p)}f + {e2(p)}f > 1.

Proof. Realize that {e1(pk)}f = 0 and {e2(p′k)}f = 0 from the definitions of
pk and p′k respectively. By Proposition 3 and definitions of pk and p′k, we also
know that be2(p)c = be2(pk)c for p ∈ (pk, p

′
k). Notice that ∂

∂pe1(p) = − 1
p < 0

and ∂
∂pe2(p) = 1

p + 2
1−p > 0, so ∂

∂p (e1(p) + e2(p)) = 2
1−p > 0. This shows that

{e1(p)}f is continuous and descending for p ∈ (pk, p
′
k) and by Proposition 3

{e2(p)}f is continuous and ascending on [pk, p
′
k). Since e1(p) is continuous and

decreasing for p > 0, and {e1(pk)}f = 0, we obtain that

lim
p→p+k

{e1(p)}f = 1 . (2.30)

From Mean Value Theorem 1.2.1 we obtain

e1(p) + e2(p) = e1(pk) + e2(pk) +
2(p− pk)

1− p∗
,

for p ∈ (pk, p
′
k) and some p∗ ∈ (pk, p). Since 1

1−p∗ >
1

1−pk and (2.30), we attain

{e1(p)}f + {e2(p)}f > 1 + {e2(pk)}f +
2(p− pk)

1− pk
> 1

for p ∈ (pk, p
′
k). By Proposition 3, the original statement is also true.

Theorem 2.9.2, together with the previous argument, clarify a manner of
choice of all parameters except k and p.



2.9. A MIXTURE OF GEOMETRIC AND UNIFORM LEA 107

Motivation of choice of k and p parameters

Let us realize that Scn
(2) does not need to imply a failure of the GULE algorithm,

contrary to Scn
(3). Therefore we want to tune up the parameter k in such the

way that it maximizes the probability that ULE block of algorithm will resolve
the collision from the first phase. Note that, when we increase K2 by 1, then:

� K1 decreases by 1,

� p parameter increases approximately twice,

� λ is quite similar, because λ = (n−1)(1−p)2K1−1 ≈ (n−1)(1−2p)2K1−1−1,

� A number of devices, which draws 2K1 − 1-th urn in the first phase is
closely the same. Indeed, from (2.21) and a constraint λ <

√
ε, we get

Pr[MG>L(n) = a] =
[n]a
a!

qLa
(

1− λ

n− 1

)n−k
≈ λa

a!
e−λ ,

which does not change significantly,

� Pr
[
Fa,Uni(2K2)

]
decreases approximately twice for the same number of

competing devices in the second phase (see Theorem 2.6.2).

Therefore we suggest to choose the biggest possible K2, which is related to
k = 1.54

Let us notice that parameter p does not need to be chosen as precise as in
Theorem 2.8.1, since, the second phase of GULE algorithm resolves collisions
and p is mainly used to reduce the initial number of stations. However, according
to Theorem 1.3.3, the probability of collisions slightly increases with respect
to p, so we should be likely to choose possibly small parameter p ∈ (p1, p0).
Nevertheless, we cannot simply use p1, hence we may, for instance, put p =
0.99p1 + 0.01p0.

2.9.6 Main contribution

The beneath theorem summarize all the previous arguments gathered in this
section:

Theorem 2.9.3. Let N be a capacity of the network and ε < 0.6. Moreover,
let us define:

1. ε1 = − ε

W−1

(
−ε

(N − 1)2e

) ,

2. ε2 = ε− ε1,
54Let us mention, that at some point, some of the above approximations may begin to be

inaccurate, hence the biggest possible K2 does not have to be the best solution. Nevertheless,
the previous argument guarantees the appropriate level of reliability.



108 CHAPTER 2. LEADER ELECTION ALGORITHMS

3. p0 = 1− 2−
`0
2 , where:

`0 = −2 lg(1− p0) = 1−
{

lg

(
ln(N − 1)− 1

2
ln(ε1)

)
− lg (ε2)

}
f

,

4.

K1 =

⌈
lg

(
ln(N − 1)− 1

2
ln(ε1)

)
− lg(p0)

⌉
5. p1 = p02−`1 , where:

`1 = − lg

(
p1

p0

)
= 1−

{
lg

(
ln(N − 1)− 1

2
ln(ε1)

)
− lg(p0)

}
f

.

6.

K2 =

⌈
− lg(ε2)− 1 + lg

(
p0

1− p0

)⌉
7. L1 = 2K1 − 1, L2 = 2K2 , p = 0.99p1 + 0.01p0.

Let Sn,GULE(p,L1,L2) denotes a successful GULE algorithm with the first phase
according to Geo (p, L1) distribution and the second one, with Uni (L2) distribu-
tion. Then

(∀ n 6 N) Pr
[
Sn,GULE(p,L1,L2)

]
> 1− ε .

Let us remark, that according to Section 2.9.5, one can modify some of the
parameters provided in Theorem 2.9.3.

2.9.7 Comparisons

Let us consider two examples which was mentioned at the very beginning of
Section 2.9.

The first was analyzed in Section 2.7.2, with initial parameters N = 1026

and ε = 10−23, where we have obtained p = 0.01, K1 = 14 and K2 = 80, so
K = 94 rounds in total. Theorem 2.9.3 provides p = 0.0218802 . . ., K1 = 12 and
K2 = 71, hence K = 83 in total. According to our argument in Section 2.9.5,
one can alternatively choose p = 0.01094 . . ., K1 = 13 and K2 = 70, what shows
that in Section 2.7.2 the parameters were provided rather inefficiently. Let us
note, that in this scenario, Theorem 2.8.1 provides even better K = 82, however
with p = 1.832883 . . . · 10−23, which is theoretically better than GULE, however
it this case, evaluation can be easily burdened with significant numerical errors.

Second example is related to Figure 2.8, which was plotted for n = 100 and
ε = 10−6. Theorem 2.9.3 provides p = 0.0518567 . . ., K1 = 8 and K2 = 16,
what adds up to K = 24. On the other hand, Theorem 2.8.1 gives K = 23 and
p = 1.53932 . . . 10−6 = 0.100881 · 2−16 in the same scenario. Thence, GeoGLE
solution is theoretically better. However, let us note, that in Figure 2.8 we



2.10. SUMMARY, COMPARISONS AND FUTURE WORK 109

also included a case of GeoGLE algorithm55 with parameters K = 23 and
p = 0.1 · 10−16, which are very close to these from Theorem 2.8.1. As we can
easily see in Figure 2.8, GULE algorithm still can perform better than GeoGLE
algorithm in similar arrangement. This remark sheds a new light on GULE
solution. Indeed, in the optimization of the total number of bits that have to
be use for reliable algorithm, we have omitted a case in Scn

(2), when ULE block
resolves collisions. We postpone the rectification of GULE algorithm to the
future work. It is not excluded, that rectified version can use even less bits than
GeoGLE algorithm.

2.10 Summary, comparisons and future work

At first, in Section 2.5 we attained optimal distributions for Leader Election
algorithms in urn model, in non-anonymous arrangement (in terms of reliability,
for a given support). In Section 2.5.6 we showed that these optimal solutions
always utilize either −dln(ε)e + 1 or −dln(ε)e bits of memory, independent of
the given network’s size, where ε is the mistake frequency. In Appendix A we
provide also efficient approximations of these optimal distributions, which can
be obtained much faster than the optimal ones.

We showed that two classical Leader Election algorithms from [89] and [64]
are based on the same framework, described in Section 2.3, whose idea consists in
choosing the node with the largest randomly generated identifier. We proposed
Uniform Leader Election (ULE) algorithm in Section 2.6 and showed that it
is a restricted version of procedure from [89]. We provided a monotonicity
property of ULE with respect to the number of nodes. Such the property of
Leader Election algorithms is often not easy to prove explicitly and usually it is
even not satisfied (as we have showed e.g. for Geometric Green Leader Election
(GeoGLE) algorithm in Section B.4).

In Section 2.8 we proposed an alternative adaptation of Green Leader Elec-
tion algorithm from [64], namely GeoGLE algorithm with very precisely set
parameters. We justified why the parameters of this LEA should be established
very carefully. We also presented in Section 2.8.4 some implementation details
inextricably linked with drawing numbers according to geometric distribution
with small parameter p, basing on a known solution.

We showed that Splitting and Naming procedures from [79] can be adapted
to urn model and we provided several results concerning probabilities of success
of these algorithms for small number of devices, which questions the utility of
this LEAs in such the scenario.

In Section 2.9 we provided GULE algorithm, which utilizes the rectified ver-
sion of Splitting and Naming framework (Algorithm 4) and we showed that
this arrangement is comparable (in terms of time complexity) with GeoGLE
algorithm and that GULE solution can be still improved. Nevertheless GULE
solution can be still utilized instead of GeoGLE one, when p parameter in the

55It is a GULE algorithm with K2 = 0.



110 CHAPTER 2. LEADER ELECTION ALGORITHMS

second arrangement is unimaginably small, since the execution of GeoGLE so-
lution may be then burdened with significant numerical errors, what can impact
the reliability.

We mainly focused on the number of bits needed to perform a (1−ε)-reliable
Leader Election. Therefore we analyzed this property in all arrangements afore-
mentioned above and we provided several examples of rectifications of some of
these algorithms. We showed, that in the regime of quasi-anonymous networks,
our solution (GeoGLE algorithm) is the best amongst the considered in this
dissertation, and to the best of our knowledge, there are not any others, which
are competitive except GULE presented in Section 2.9.

In order to summarize the results of quasi-anonymous Leader Election algo-
rithms, let us compare almost all of the aforementioned procedures in similar
conditions (we omit GULE algorithm, since we know that it is not well opti-
mized), i.e. we restrict the memory reserved to save identifiers to K = 15 bits
and assume the network’s capacity to be N = 500. Results are presented in Fig-
ure 2.9. Splitting and Naming procedures had to be divided in two restricted
parts. In order to accomplish it effectively, we utilize at most K1 = 3 bits in
S-N w.h.p. and K1 = 4 bits in S-N w.v.h.p. for the first blocks of algorithms.
The second phases were provided with Uni

(
max

(
f(tv), 2

15−K1
))

in order to
reduce the collisions (tv is the maximal identifier from the first phase and f is
determined by particular algorithm.

Figure 2.9: Comparison of simulated probabilities of success of five Atlantic City
versions of Splitting and Naming algorithms restricted to 15 bits of memory. We
conducted 105 experiments for each size of the network n ∈ [500] and each of
the algorithms.

One can easily see, that both LGE and GeoGLE algorithms keep almost
constant reliability for all n ∈ [500], ULE one is linearly dropping the reliability.
Splitting and Naming algorithms together with GeoGLE one performs definitely



2.10. SUMMARY, COMPARISONS AND FUTURE WORK 111

better than the latter two, so in Figure 2.10 we consider only the best 3, with
the higher precision and wider interval. One can briefly realize that Splitting
and Naming solutions performs terribly for n < 50 and n < 150, respectively
in w.h.p and w.v.h.p. versions of protocol. Moreover, S-N w.h.p. outperforms
the other two for n ∈ [50, 100], however it further looses the reliability approxi-
mately linearly. However, for n > 150 both rectified version of S-N w.v.h.p. and
GeoGLE operate comparably. Indeed, we have checked that the mean of sim-
ulated reliabilities for n > 150 are respectively 0.999824 and 0.99981, however,
for all n ∈ [750], the means change to 0.998002 and 0.999811. This affirms that
GeoGLE algorithm keeps the reliability on the same level, which one cannot say
about Splitting and Naming algorithms.

Figure 2.10: Comparison of simulated probabilities of success of two Atlantic
City versions of Splitting and Naming algorithms restricted to 15 bits of memory.
We conducted 3 · 105 experiments for each size of the network n ∈ [750] and
each of the algorithms.

Future work

A quality of approximations of optimal NALEAs from Appendix A was not
considered in the terms of the number of bits. We would like to consider it in
the future, as well as the improvement of GULE algorithm. Moreover, we would
like to delve into the concept of substituting ULE block in the second phase of
GULE with a convex combination of optimal distributions from Section 2.5 (we
mentioned it in Section 2.7.2).



112 CHAPTER 2. LEADER ELECTION ALGORITHMS



Chapter 3

Big Data

3.1 Introduction to Reservoir sampling

Reservoir sampling is a randomized algorithm, which chooses some number of
items from some population of unknown size N in a single pass over the items.1

Remark that when the population is small, then all the items can be saved into
the limited memory. Therefore, the arrangement of reservoir sampling makes
sense only, when N is enormous and only some sample, of some given size k, of
the population, can be saved. Let us highlight, that once the algorithm reveals
an item, then it can be either saved or dismissed and the procedure cannot get
another access to the dismissed element.

There are two types of reservoir sampling algorithm — with or without re-
placement. The first one allows to save the same item more than once, and the
second restricts the sample to contain at most one instance of each item. Note
that, when there is a reservoir sampling algorithm, which has a sample of size
1, then k independent repetitions of it give k-sample with replacement.

Without a loss of generality, we focus on the population in a form of an online
data stream {St}. We assume that each item St is forwarded to the algorithm
as an input in order compliant with this of indices t. The each data item from
the stream can be given either in equitemporal steps or at any moment. Then t
index can be associated with time of arrival of the data St. However, note that
the data flows in some order, so t can be used to number the data in the order of
revelations. In this dissertation we will assume the second of these approaches,
so either t ∈ [n] for some unknown number of items n, or simply t ∈ N. We
usually refer to them as time steps.

First, classical and simultaneously the most popular reservoir sampling algo-
rithm is so called Algorithm R, attributed to Alan Waterman. The best known
description of this procedure is provided by Vitter in the paper [105] from 1985.

1In fact, sampling is sometimes considered in more general arrangements. Especially when
the number of items is know in advance, when the algorithm has instant access to any of the
items from the population. However, these cases are not of our interest, so we constrain our
definition. For more general solutions one can see e.g. [100].

113



114 CHAPTER 3. BIG DATA

A core idea of Algorithm R is as follows: we denote the stored element by sample
and count the number of steps taken by n. After getting an element item from
the data stream, we call the code from Algorithm 6.

ALGORITHM 6: Algorithm R
Data: a new data element item; present sampled element sample; counter n

(initially 0)
Result: element sample

1 n = n+ 1
2 if (random() < 1

n
) then

3 sample = item

We use random(), which is pseudo-random generator of real numbers from
the interval [0, 1], mimicking a uniform random generator. Therefore, Algo-
rithm 6 saves the n-th data (i.e. Sn) with probability 1

n . One may easily check,
that the index of saved element is uniformly distributed in [n], where n is the
present number of revealed items. Algorithm 6 provides 1-sample, however Vit-
ter, in [105], has provided more general Algorithm R, which saves k-sample
without replacements, where the number of indices of elements of the sample
are uniformly distributed in [n].2

Random sampling might be necessary in many situations where the amount
of data generated (e.g. by the sensors) is huge. Streaming, collecting and
analyzing all the data generated might be extremely ineffective due to the com-
munication and computation overhead, while in many cases accurate diagnostics
may be achieved basing on a relatively small data sample. One may especially
wants to monitor the state of a cyber-physical system, where it is not necessary
to analyze the whole historic data, but instead one may consider a sample drawn
from a window of the last n values from the stream. For the same reason, it is
not enough the keep only the last value(s), as then it might be impossible to
observe dynamics of the system state.

Realize that, in order to capture the dynamics of the system, the statistics
may require applying diverse probability distributions when choosing a random
sample. For instance, we may need a higher precision of sampling for the most
recent data items (high density of samples), and only a moderate accuracy for
the older ones (a low number of samples). We should concern not only uniform
samples, as in case of Algorithm R. Therefore, in this chapter, we focus on
different distributions of random samples.

For a broad introduction to reservoir sampling algorithms, see [100].

3.2 Sliding Window model

2There are two changes: probability of a save is 1 until the k-th item of the stream and k
n

later, and also when one wants to save an obtained item, then it should uniformly at random
substitute one of k already saved elements.



3.2. SLIDING WINDOW MODEL 115

3.2.1 Introduction

In this part we concern a sampling data from an online data stream {St} in
a sliding window arrangement, introduced in 2002 by M. Datar, A. Gionis, P.
Indyk, and R. Motwani in [31]. It concerns processing of a data stream where
we are only interested in the most recent elements of the stream and the expired
ones must not be taken into account. Such an approach is important for many
applications (see, e.g., [6] and [32]), while some new applications may emerge,
including, for instance, controlling cloud storage services (proof-of-storage). Ne-
cessity of using the sliding window model may also follow from legal regulations
stating the data retention period in terms of a strict time limit.

We define sliding window as follows:

� n ∈ N is a fixed size of sliding window,

� at a moment t a sampler should hold a value St+1−j , where j ∈ [n],

� regardless of t, j ∈ [n] should be chosen according to a priori specified
probability distribution D3,

� the sampler has a constant memory while n might be large, so he forgets
almost all of the recent n values of the stream except for a few ones.

The problem is that the window of the last n elements changes at each step
and when we have to re-sample, then almost all values from which we have to
choose are already forgotten.

A case of a sampler with constant memory and D ∼ Uni (n) has been con-
sidered by Braverman, Ostrovsky and Zaniolo ([17]) in 2013. We present an
alternative generic approach based on devil’s staircase Markov chains. It gen-
erates a sample according to any admissible distribution D on the window of
a size n and uses memory of size O (1). We provide a sufficient condition for
the distribution to be admissible. While the class of admissible distributions
is quite wide from the point of view of practical applications, we show some
natural limitations for this class.

This section is devoted to one of the most fundamental processing primitives
for sliding window processing — random sampling:

Definition 3.2.1 (Sliding window sampler). Given a window size n, a prob-
ability distribution D over [n] and a data stream {St}, at time t, the sampler
should return a single data item St+1−j, where j ∈ [n] is chosen according to the
probability distribution D. Especially, we focus on constant memory samplers
that can store at most c values Si at a time, where c ∈ N is a small constant.

Construction of a sampler compliant with Definition 3.2.1 is a non-trivial
task. Indeed, a sampled element must be eventually discarded – at the latest
when it does not fit into the sliding window. At this moment the sampler has no

3Then jt can be considered as a specific probabilistic counter (see Section 1.3.4), which
takes values in [n]



116 CHAPTER 3. BIG DATA

choice and simply takes the most recent element from the stream as the sample
value. The main problem is that the window of the last n elements changes at
each step and when we have to re-sample, then almost all values from which
we have to choose are already forgotten and we only can save the last observed
element from the stream.

Note that Definition 3.2.1 concerns drawing a single stream item from the
sliding window. In order to build a meaningful statistics it is almost always
necessary to have more than one value. Therefore we are able to use several
independent samplers described in Definition 3.2.1 to provide a bigger sample.

3.2.2 Previous constructions

The first non-trivial algorithm for sliding window sampling from a data stream
appeared in the paper [7] from 2002 under the name chain-sample algorithm.
A clear explanation of this algorithm and its properties can be found in [56].
The chain-sample procedure constructs a chain of moments, when a sample has
to be modified. The expected length of such the structure is bounded by a
constant e and with a high probability its length is bounded by O (log n).4 A
non-constant size of the chain arise to be a serious disadvantage if the sampler
must work extremely efficiently in order to process data arriving at a high rate.

In 2012, V. Braverman, R. Ostrovsky and C. Zaniolo in [17] published a
constant memory sliding window sampler. Their algorithm is based on the
following very simple, but clever idea. Namely, if U, V,W are finite and pairwise
disjoint sets such that |U | = |W |, X ∼ Uni (V ∪W ), Y ∼ Uni (U), where X
and Y are independent, and Z is a random variable defined as

Z(ω) =

{
X(ω) : X(ω) ∈ V
Y (ω) : X(ω) /∈ V

, (3.1)

where ω ∈ Ω. The authors of [17], observed that then Z ∼ Uni (U ∪ V ), what
can be easily transformed into a simple sliding window sampler that divides
the entire data stream into segments of length n (called buckets), constructs
a uniformly distributed sample for each of the buckets using Algorithm 6 and
returns one sample on the request amongst the last two samples using formula
(3.1).

3.2.3 High level description of our contribution

We present a new approach to construct a constant memory sliding window
sampler (according to Definition 3.2.1). First we show how to construct a ran-
dom variable X with a distribution given a priori from so called strictly concave
class of distributions on {1, . . . , n} in order to control the position of a sample in
the stream. Further we provide admissible operations, which extend this class.
For instance, our construction can be utilized in order to attain uniform sample,
however it is different from the design of the algorithm from [17]:

4According to the authors, with probability at least 1− n−c, for some constant c.



3.2. SLIDING WINDOW MODEL 117

� we construct independent random variables X,Y from [n] such that the
random variable max(X,Y ) ∼ Uni (n),

� variables X and Y control the positions of the appropriate two samples
from the stream

� max(X,Y ) monitors the position of a uniform sample from the stream.

This way we maintain a uniform sample of size 1 over the sliding window of
size n, satisfying constant memory requirements. The key point is that our
algorithm, unlike the algorithm from [17], can be naturally extended to many
non-uniform distributions. Another crucial advantage is that in our approach
we never keep a sample that does not fall into the current sliding window (in
[17] it is sometimes needed to outstay some elements for almost 2n steps,5 while
in [7] the relevant number of steps is even unbounded). This property can be
important from a practical point of view, e.g. when a sliding window sampler
with a strictly defined window size can be motivated by a legal requirement. In
particular, the data in the stream may fall into the category of personal data.
Consequently, authorization to process this data longer than for a stated step
T may be forbidden.

Our algorithm is a derivative of Algorithm R (see Algorithm 6). A core idea
of our algorithm is as follows: we denote the stored element by sample and use
a probabilistic counter X ranged in the set [n] in order to denote the position in
the sliding window (i.e. at the moment t, sampler keeps the element St+1−X).6

After getting an element elem from the data stream we call the update method
Algorithm 7, which can change X and sample.

ALGORITHM 7: Basic reservoir sampling Algorithm
Data: sliding window’s size n, a new data element elem
Result: pointer X; element sample

1 if (X == n) or (random() < q[X]) then
2 X = 1
3 sample = elem
4 else
5 X = X + 1

Probabilities qi ∈ [0, 1], for i ∈ [n−1],7 are used to adjust the solution to the
target probability distribution D of the pointer X. The method of initializing
the variable sample and the counter X will be discussed later. Let us only
remark that in any case the initial value of the counter X will be some number
from the set [n].

Notice that if q1 = q2 = . . .= qn−1 = 0, then this method turns to a trivial
cyclic refreshment method of the sample element from the stream – once the

5However, it can be easily rectified.
6See Section 1.3.4 for a definition of probabilistic counter.
7Note that the value of qn does not matter.



118 CHAPTER 3. BIG DATA

1

2

3

4

n-1

n

•
•

•

q1

q2

q3

q4

qn−1

qn = 1

p1

p2

p3

p4

pn−2

pn−1

Figure 3.1: Schematic representation of Devil’s Staircase. Arrows denote possi-
ble transitions between states together with theirs probabilities.

current sample leaves the sliding window, the freshly arrived stream element is
taken instead. Similarly, if qi = 0 for some i and the sampled element is the
i-th recent one, then the new element in the stream will not replace the sampled
one. On the other hand, if qi = 1 for some i ∈ [n − 1], then sample will never
store any element from positions [i + 1 : n] of the current sliding window and
the window is effectively reduced to [i]. In order to exclude these degenerated
cases, we assume that 0 < qi < 1 for all i ∈ [n− 1].

3.2.4 Devil’s Staircase

Definition 3.2.2. A Markov chain M on the set of states [n] is called a devil’s
staircase8, if for i ∈ [n − 1] the only allowed transitions are from the state
i either to the state i + 1 or to the state 1. Moreover, for the state n the
only transition is to the state 1. Let pi = Pr[M(t+ 1) = i+ 1|M(t) = i] and
qi = Pr[M(t+ 1) = 1|M(t) = i]. Then pi + qi = 1 for i ∈ [n] and qn = 1. We
call the devil’s staircase proper, if 0 < pi < 1 for each i ∈ [n− 1].

In Figure 3.1, a schematic representation of such the Markov chain is pre-
sented. Arrows symbolize the transitions between the states.

Let us observe that the evolution of the random variable X from Algorithm 7
may be considered as a proper devil’s staircase. Moreover, it is easy to see that

8Term according to [47], page 352.



3.2. SLIDING WINDOW MODEL 119

each proper devil’s staircase is ergodic, hence it has a stationary distribution
(see e.g. [87] for basics of Markov chain theory).

Concavity of Cumulative Distribution Functions

A function f : [0 : n]→ R is discrete concave (see [66]) if

f(i+ 1) + f(i− 1)

2
6 f(i) (3.2)

for each i ∈ [n − 1]. If this inequality is strict, then the function f is called
discrete strictly concave. For the future use, note that the inequality f(i +
1)− f(i) 6 f(i)− f(i− 1) is a convenient reformulation of the condition (3.2).
Naturally, if f is discrete (strictly) concave on [n], then its piece-wise linear
extension to a function defined on the interval [0, n] is also (strictly) concave.

Proposition 4. Let π = (πi)i∈[n] be a probability distribution on the set [n].

Let F (k) =
k∑
i=1

πi for k ∈ [n] and F (0) = 0. Then the following conditions are

equivalent:

1. π is a stationary distribution of some proper devil’s staircase on the state
space [n];

2. F is strictly monotonic and discrete strictly concave.

Proof. Let π be the stationary distribution of a proper devil’s staircase Markov
chain M with the transition probabilities defined as in Definition 3.2.2. We know
that 0 < pi < 1 for all i ∈ [n− 1]. Since π is stationary, we attain πi+1 = πi · pi,
hence πi+1 < πi. As F (i + 1) − F (i) = πi+1 < πi = F (i) − F (i − 1), it follows
that F is discrete strictly concave. Strict monotonicity of F is also clear, since
πi > 0 for all i ∈ [n].

Suppose now that F is strictly monotonic and discrete strictly concave. Then
πi > 0 for i ∈ [n]. Strict concavity of F means that πi+1 < πi for i ∈ [n −
1]. Let M be the proper devil’s staircase Markov chain on [n] with transition
probabilities pi = πi+1/πi (i ∈ [n − 1]) and let ρ = (ρi)i∈[n] be its stationary
distribution. Then ρi+1 = ρi · pi = ρi · πi+1/πi. Consequently, ρi = ρ1 · πi/π1.
Since

∑
i∈[n] ρi =

∑
i∈[n] πi = 1, this implies that ρi = πi for i ∈ [n].

Let us note, that according to Proposition 4, we may provide another, short
reformulation of the condition (3.2), in a language of stationary distribution,
namely πi > πi+1.

Modelling Devil’s Staircase

Let F : [0 : n]→ [0, 1] be strictly monotonic, discrete strictly concave, F (0) = 0
and F (n) = 1. According to the proof of Proposition 4, F defines a devil’s



120 CHAPTER 3. BIG DATA

staircase Markov chain M on the state space [n], with the stationary distribution

πk = F (k)− F (k − 1) (3.3)

and the probabilities pk of transitions from the state k to k + 1 given by the
formula

pk =
F (k + 1)− F (k)

F (k)− F (k − 1)
=
πk+1

πk
(3.4)

for k 6 n − 1. Note that discrete strict concavity of F is equivalent to a
decreasing monotonicity of the sequence (πk)k∈[n] (see remark after Eq. 3.2).

We can use Eq. (3.4) and Algorithm 7 to simulate the resulting Markov chain
in order to build a sliding window sampler for window size n and CDF function
F . This naive approach correctly sample the data according to F , however it
requires generating a random real number at each step. From computational
complexity point of view, such implementation would be inconvenient, especially
for high rate data streams.

In order to reduce the computational complexity, we determine instead the
time steps when transitions to the state 1 occur. This is enough, since we need
to refresh the sampled values only at these moments. Periods between the time
steps, in which the process returns to 1 are called jumps.

Let s ∈ [n], and M be the resulting Markov chain which satisfies M(0) = s.
Let us define a random variable

Js = min{k > 1 : M(k) = 1} .

Then Js represents the number of steps that have to be taken between the
current moment and the very next update of the sample variable, assuming
that, currently the sample stores the s-th most recent element got from the
data stream. Then, for 0 6 k 6 n− s, we have

Pr[Js > k] =

s+k−1∏
i=s

pi =

s+k−1∏
i=s

πi+1

πi
=
πs+k
πs

=
F (s+ k)− F (s+ k − 1)

F (s)− F (s− 1)

and Pr[Js > k] = 0 for k > n− s. Therefore, for k 6 n− s,

Pr[Js 6 k] = 1− F (s+ k)− F (s+ k − 1)

F (s)− F (s− 1)
(3.5)

and obviously Pr[Js 6 n− s+ 1] = 1.

Proposition 5. E[Js] = 1−F (s−1)
πs

.

Proof.

E[Js] =

n−s∑
k=0

Pr[Js > k] =

n−s∑
k=0

F (s+ k)− F (s+ k − 1)

F (s)− F (s− 1)

=
F (n)− F (s− 1)

F (s)− F (s− 1)
=

1− F (s− 1)

πs
.



3.2. SLIDING WINDOW MODEL 121

ALGORITHM 8: Basic update procedure
procedure Init()

1 L = 0
2 sample = nil
3 sampleL = -1
4 state = random element from [n] chosen according to the stationary

distribution of the Markov chain
5 z = random element from [n+ 1− state] chosen according to the

distribution of the variable Jstate
6 jump = state + z -1
procedure Process(elem)

1 L++
2 state++
3 if state > jump then
4 state = 1
5 sampleL = L
6 sample = elem
7 jump = random element from [n] chosen according to the distribution

of the variable J1
function Get()

1 return sample

Corollary 2. E [J1] = 1
F (1) .

3.2.5 A Fundamental Algorithm

Based on Eq. (3.5), we can build a quite effective sampling algorithm from
the window of length n, according to the distribution with CDF F . Namely,
we can simulate moves on the devil’s staircase during reading data from the
stream. We start from state = 1 and calculate a random element j1 according
to the distribution of J1. Then at each step we increase state counter until it
reaches j1. At this moment we replace the sampled value by the current element
from the stream, skip to the state 1, and again calculate j1 according to the
distribution of the variable J1. We continue in this way as long as the elements
from the string are coming in.

Another problem to solve is that the time of convergence of the considered
Markov chain to the stationary distribution is quite long. A possible workaround
for this issue is to start the process according to its stationary distribution.
Notice that the algorithm constructed in this way will provide a sample after
the first data will be stored according to the stationary distribution.

Our routine is described in Algorithm 8. It utilizes five variables:

� sample— which stores the actual sampled element from the data stream,

� state — which stores the current state of the devil’s staircase,



122 CHAPTER 3. BIG DATA

� jump — which stores the next state after which the state of the devil’s
staircase would become 1,

� sampleL — which stores the position of the sample element in the data
stream,

� L— which is a counter that stores the number of already observed elements
from the data stream.

Let us remark that the last two variables are redundant, however they will be
helpful for formulating an invariant used to show the correctness of our method.

First let us discuss the initialization of the sampler (the procedure Init).
Its main objective is to start the process in the stationary distribution. For
this purpose we may imagine that the stream has already started (L = 0) and
this moment there exists a stored sample taken from the last n (imaginary,
never seen) elements from the data stream. As a consequence, sample initially
stores the value nil to imitate the stored imaginary element. The second issue
is to initialize the position of this element in the sliding window of size n –
we do it according to the stationary distribution and store the result in the
variable state. Therefore we commence in a hypothetical situation in which
the imaginary element is on the position in the sliding window indicated by
the variable state and it has not been replaced yet by a newer sample. Note
that the imaginary sample has to be replaced at the latest after (n+ 1−state)
steps, while the number of steps to be executed before the update of sample is a
random variable Jstate. Therefore we choose a realization of the variable Jstate
and add it to state in order to determine the moment when the transition to
the state 1 should occur. The role of jump variable is to control state, in order
to trigger the next replacement of the sampled element by the latest element
from the data stream.

The main procedure Process of Algorithm 8 is executed when a new element
from the data stream arrives. We simulate a move on the devil’s staircase:
First, we temporarily increment state by 1. We will leave it so unless the
devil’s staircase process has to return to the state 1. We test if it is the time
to jump to the state 1 by checking the condition state > jump at each step.
In case when this condition is satisfied, we substitute the variable sample with
the current element of the stream, put state = 1 and calculate the next jump
position according to the distribution of the variable J1. The function Get of
Algorithm 8 is trivial: it returns the current sample element of the stream stored
in the variable sample.

It is easy to check that since the first moment when we put sample=elem (line
6 of procedure Process), the equation L-sampleL+1 = state is satisfied, which
shows that element sample is generated according to the stationary distribution
of the devil’s staircase. Moreover, let us observe that L-1 ∈ [n] when we assign
sample = elem for the first time, so our algorithm surely returns a correct
sample after reading the first n elements from the stream (remark that L is
incremented before the aforementioned assignment).



3.2. SLIDING WINDOW MODEL 123

Let us highlight that our solution is not based on a standard approach to
irreducible Markov chains, which generally slowly converge to theirs stationary
distributions (see e.g. [87] for a description of this approach). Indeed, our
solution guarantees that the stationary distribution will be achieved after at
most n steps.

3.2.6 Properties of the Devil’s Staircase

By Proposition 4, the stationary distribution of a proper devil’s staircase is de-
scribed by a strictly monotonic and discrete strictly concave cumulative distribu-
tion function. Simple examples of such CDFs are functions F (k) =

(
k
n

)α
, for any

α ∈ (0, 1). Indeed, the strict concavity of the function F results from the nega-
tivity of the second derivative of the natural continuous extension F̃ (x) =

(
x
n

)α
of F to a function on the interval [0, n].

Note that when α = 1, we get the CDF of the uniform distribution on [n],
which is not strictly concave, so Algorithm 8 and the devil’s staircase cannot be
used to get a sample with the uniform distribution in the sliding window. The
next result shows a general limitation of strictly concave cumulative distribution
functions.

Theorem 3.2.1. Suppose that the CDF of a random variable X with values in
[n] is discrete strictly concave. Then

E[X] <
n+ 1

2
.

Proof. Let F be the CDF of X. and πi = F (i) − F (i − 1). Since F is discrete

strictly concave on [n], we have π1 > π2 > . . . > πn. As
n∑
i=1

πi = 1 we get

immediately F (k) > k
n for each k ∈ [n− 1]. From this inequality and Eq. (1.1)

we get that if X is a random variable with CDF F , then

E[X] =

n∑
k=1

k(F (k)− F (k − 1)) = n−
n−1∑
k=1

F (k) < n−
n−1∑
k=1

k

n
=
n+ 1

2
.

3.2.7 Uniform Sample

The devil’s staircase utilized in Algorithm 8 provides an elegant sampler, how-
ever it cannot yield a uniform sample and, by Theorem 3.2.1, no sample ac-
cording to a probability distribution that is not biased towards the more recent
values.

In this section we show that one can apply two devil’s staircases to build
a uniformly distributed sample from the sliding window of size n. In further
sections we will show that this approach can be utilized more generally. The
main idea behind our solution is based on the following observation:



124 CHAPTER 3. BIG DATA

ALGORITHM 9: Getting uniformly distributed sample
procedure Init()

1 for i=1 to 2 do
2 sample[i] = nil
3 x = random()
4 X =

⌈
nx2

⌉
5 state[i] = X
6 x = random()
7 C = (1− x)(

√
X −

√
X − 1)

8 jump[i] = min(n+ 1, 1
4
(C + 1/C)2)− 1

procedure Process(elem)
1 for i=1 to 2 do
2 state[i]++
3 if state[i] > jump[i] then
4 sample[i] = elem
5 state[i] = 1
6 x = random()
7 jump[i] = min(n+ 1,

⌈
1
4

(x(2− x)/(1− x))2
⌉
)− 1

function Get()
1 if state[1] > state[2] then
2 return sample[1]
3 else
4 return sample[2]

Proposition 6. Suppose that X and Y are independent random variables with

the same cumulative distribution function F (k) =
√

k
n , where k ∈ [n]. Then

Z = max(X,Y ) is uniformly distributed in [n].

Proof. It is enough to observe that, according to Section 1.3.2,

Pr[Z 6 k] = Pr[X 6 k] · Pr[Y 6 k] =

(√
k
n

)2

= k
n .

A distribution with CDF F (k) =
√

k
n on [n] we call Square-Root distribution,

and denote by SR(n).

The Algorithm

Based on Proposition 6, our strategy is to run two independent instances of
Algorithm 8 according to SR(n) distribution and derive the sample using the
property from Proposition 6. The pseudo-code of our algorithm is presented in
Algorithm 9.

The general main points of Algorithm 9 are as follows:



3.2. SLIDING WINDOW MODEL 125

1. We run in parallel two independent instances of Algorithm 8 according to
SR(n) distribution (F (k) =

√
k/n, for k ∈ [n]) and thereby create two

independent copies of the devil’s staircase. These instances are described
by the variables
(Li, sampleLi, statei, jumpi, samplei) for i = 1, 2. Since always L1 = L2,
we replace them by a single variable L.

2. As there are no interaction between the instances of devil’s staircases,
the variables state1 and state2 are independent and both follow the
stationary distribution SR(n) of the modelled Markov chain.

3. Once sample1 6= nil and sample2 6= nil, then L−sampleL1 +1 = state1
and L−sampleL2+1 = state2, so both statei follows the same stationary
distribution SR(n) (independently).

4. By Proposition 6, the random variable U = max(state1, state2) is uni-
formly distributed in [n]. Therefore if U = state1, then our algorithm
returns sample1, otherwise it returns sample2.

Similarly as in Algorithm 8, variables L and sampleLi, for i = 1, 2, are redundant
in Algorithm 9.

Below we explain some details of the aforementioned approach.
During Init procedure we need to initialize statei according to the sta-

tionary distribution of the devil’s staircase. Note that for x ∈ (0, 1) we have

min
{
k : x 6

√
k/n

}
=
⌈
nx2

⌉
. This observation is used in lines 2-4.

The next task is to generate a realization of random variable Js, where s is
given by statei. Here the situation is slightly more complicated. For a given
x ∈ (0, 1) we have to find minimal k such that x 6 Pr[Js 6 k]. For k = n−s+1,
this inequality always holds. By Eq. (3.5), if k 6 n − s, then x 6 Pr[Js 6 k]

translates to (
√
s+k−

√
s+k−1)

(
√
s−
√
s−1)

6 1− x, that is

√
s+ k −

√
s+ k − 1 6 (1− x)(

√
s−
√
s− 1) . (3.6)

Let C = (1−x)(
√
s−
√
s− 1). We can simplify (3.6) to

√
s+ k−

√
s+ k − 1 6 C.

After squaring both sides, reduction of the common terms and some simplifica-
tions, we get s+ k−

√
(s+ k)(s+ k − 1) 6 1

2 (C2 + 1) and s+ k− 1
2 (C2 + 1) 6√

(s+ k)(s+ k − 1). After squaring both sides again, a few simplifications and
taking into account that Pr[Js 6 n− s+ 1] = 1, we obtain the final formula:

min{k : x 6 Pr[Js 6 k]} = min
(
n+ 1,

⌈
1
4

(
C + 1

C

)2⌉)− s , (3.7)

used in lines 6-8 of Init. Notice that, according to the definition of Js, the
first transition to the state 1, starting from the state s will take place after the
variable state reaches the value s + Js − 1. For s = 1, Eq. (3.7) simplifies to
the following form used in the lines 6-7 of Process:

min{k : x 6 Pr[J1 6 k]} = min

(
n+ 1,

⌈
1
4

(
x(2−x)

1−x

)2
⌉)
− 1 .



126 CHAPTER 3. BIG DATA

Use of Randomness

There are two places in Algorithm 9 where we call pseudo-random generator.
First time we use it twice in the initialization phase. In the procedure Process
the random number generator is called once when the variable state exceeds
the value jump. From Corollary 2, we get E[J1] = (F (1))−1 =

√
n. Hence the

expected time period between successive calls to the pseudo-random number
generator by each copy of modelled devil’s staircase is

√
n.

Remark that the algorithm provided by Braverman et al. in [17] can be
analogically adapted to a version with jumps in order to reduce a number of
updates. Such an adaptation has smaller number of expected updates than
Algorithm 9 for uniform distribution in the sliding window. Indeed, the i-
th element from a bucket is saved with probability 1

i , so there are Hn jumps
within every bucket of size n on average. However, we have to bear in mind
that the adaptation of algorithm from [17] cannot be naturally generalized to
any other distributions, conversely to our approach. Since it is applicable only
for a specific distribution, it is quite common, that it performs better than the
general solution in the same arrangement. As we mentioned in Section 3.1,
non-uniform solutions may be significant from a point of applications.

3.2.8 Examples of Non-uniform Sampling

Examples of discrete strictly concave distributions on [n]

We now turn our attention to the class of probabilistic distributions that can be
modelled using the single devil’s staircase. From Section 3.2.6 we know that if
the CDF F is discrete strictly concave on [n], then F is a stationary distribution
of some devil’s staircase on [n]. We present several known examples of such
functions:

� functions Fα(k) =
(
k
n

)α
, for α ∈ (0, 1) and k ∈ [n],

� R-shifted version of geometric distributions, conditionally truncated to
[n], i.e. (Geo→(p)|[n]) — the probability mass functions of these random
variables are given by the formula Pr[X = k] = pqk−1

1−qn , where k ∈ [n] (see
Section 1.3.10),

� Zipf distributions Z(n,m)— the probability mass functions of these ran-
dom variables are given by the formula Pr[X = k] = 1

kmHn(m) , for k ∈ [n]

(see Section 1.3.11).

Any distribution listed above can be realized with one copy of the devil’s
staircase and all formulas required for the implementation can be derived with
a little effort (what will be presented further). As we have seen, there are many
probability distributions that do not fall to this category, with the prominent
example of the uniform distribution.



3.2. SLIDING WINDOW MODEL 127

Conditionally truncated examples

Consider a class N of distributions with support N, whose CDFs are strictly
monotonic and discrete strictly concave. For a given n ∈ N, we may define a
class Nn of distributions from N conditionally truncated to [n], namely

Nn :=

{
F(n) : [n]→ [0, 1] : F ∈ N , F(n)(k) =

F (k)

F (n)

}
.

Note that every function F(n) from Nn is strictly rising and discrete strictly
concave, because F (k + 1) > F (k) and F (k + 1)− F (k) > F (k)− F (k − 1) for
any k ∈ [n− 1].

Let us realize that both Z(n,m) (for m > 1) and (Geo→(p)|[n]) belong to
Nn.

Just to mention a few other examples from this class, let us enumerate:
a diadic distribution – with pdf given by Pr[X = k] = 2−k

1−2−n , a logarithmic

distribution – with pdf given by Pr[X = k] = 1
an

pk

−k ln(1−p) , where an is a nor-
malizing constant given by the first n non-zero terms of Maclaurin series of
− ln(1 − p) with respect to p, or (Pois→(λ)|[n]) (for λ 6 1) – with pdf given
as Pr[X = k] = 1

an
λk−1

(k−1)!e
−λ, where an is a normalizing constant, given by the

first n non-zero terms of Maclaurin series of eλ with respect to λ.

Derivations of expected jumps

According to Eq. (3.5), when we want to generate a realization of random vari-
able Js for a given X ∼ F(n) ∈ Nn, we need to find:

min

{
k ∈ [n− s+ 1] : 1− x > Pr[Js > k] =

F(n)(k + s)− F(n)(k + s− 1)

F(n)(s)− F(n)(s− 1)

}
.

Realize that we can transform the internal inequality to

Pr[X = s] = (F (s)− F (s− 1)) >
F (k + s)− F (k + s− 1)

(1− x)
=

Pr[X = k + s]

(1− x)
,

(3.8)
for k ∈ [n − s] and 0 < x < 1, and note that 1 − x > Pr[Js > n− s+ 1] = 0 is
trivially fulfilled for x ∈ (0, 1).

Let us consider X ∼ Z(n,m) at first.

Proposition 7. Z(n,m) is discrete strictly concave on [n].

Proof. Let X ∼ Z(n,m) and i ∈ [n− 1]. Then

Pr[X = i] =
1

imH
(m)
n

>
1

(i+ 1)mH
(m)
n

= Pr[X = i+ 1] .



128 CHAPTER 3. BIG DATA

Now we consider how we can simply generate a jump Js related to Z(n,m)
distribution. According to Eq. (3.8),9 we are searching for

min

{
k ∈ [n− s+ 1] : (k + s)m >

sm

(1− x)

}
.

The internal inequality can be easily transformed to k > s
m
√

1−x − s. There-
fore, in order to generate a realization of Js for devil’s staircase with Z(n,m)
distribution, we need to generate x ∈ Uni (0, 1) and then put

js = min

(
n+ 1,

⌈
s

m
√

1− x

⌉)
− s .

Thanks to Proposition 5, we know that E[Js] = sm
(
H

(m)
n −H(m)

s−1

)
. Espe-

cially, when s = 1, we have E[J1] = H
(m)
n . However, notice, that for m > 1,

E[J1] < ζ(m) = O (1).10 Especially, when m > 2, then ζ(m) 6 π2

6 = 1.6449 . . .,
hence the reduction by jumps is so meager, it does not make much sense in this
case. However, when m = 1, then E[Js] = s(Hn −Hs−1) ≈ s ln

(
n
s−1

)
for s > 1

and in particular E[J1] = Hn ≈ ln(n) + γ. In this special case, the skipping is
more practical.

Now let us consider X ∼ (Geo→(p)|[n]).

Proposition 8. (Geo→(p)|[n]) is discrete strictly concave on [n].

Proof. Let X ∼ Geo (p, n) and i ∈ [n− 1]. Then

Pr[X = i] =
qi−1p

1− qn
>

qip

1− qn
= Pr[X = i+ 1] .

We may relatively easy generate a jump Js related to (Geo→(p)|[n]) distri-
bution. Indeed, according to Eq. (3.8), we are searching for

min

{
k ∈ [n− s+ 1] :

(1− p)k+s−1 − (1− p)k+s

(1− p)s−1 − (1− p)s
< 1− x

}
.

Now we can briefly see that the left hand side of the inequality in the condition
of the above minimum is simply

(1− p)s−1
(
(1− p)k(1− (1− p))

)
(1− p)s−1(1− (1− p))

= (1− p)k ,

so we obtain k > ln(1−x)
ln(1−p) . Therefore, in order to generate Js for this distribution,

we need to generate x ∈ Uni (0, 1) and then put

js = min

(
n+ 1− s,

⌈
− ln(1− x)

− ln(1− p)

⌉)
.

9Note that this formula also applies for m = 1.
10See Section 1.2.10 for definition of Riemann’s Zeta function.



3.2. SLIDING WINDOW MODEL 129

Let us note, that this approach is not as problematic for very small parameter
p as the one considered in Section 2.8.4.

Thanks to Proposition 5, we know that

E[Js] =

(
1− 1− qs−1

1− qn

)
1− qn

pqs−1
=

1− qn−s+1

p
,

what for s = 1, reduces to E[J1] = 1−qn
p . Remark, that when p = c

n for some

constant c � n, then E[J1] ≈ n(1−ec)
c . In this case, queries send to pseudo-

random generator are very rare.
Now, let us concern a diadic distribution. In this case, Eq. (3.8) provides

simply that we are searching for

js = min
{
k ∈ [n− s+ 1] : 2−k < 1− x

}
= min (n− s+ 1, d− ln(1− x)e) .

Moreover, from Proposition 5 we get

E[Js] =

(
1− 1− 2−s+1

1− 2−n

)
1− 2−n

2−s
=

2−s+1 − 2−n

2−s
= 2− 2−n+s ,

which approximately equals 2, hence we obtained similar result to this for Zipf
distribution for m > 2.

Let us consider a logarithmic distribution. By Eq. (3.8), we want to find

min

{
k ∈ [n− s+ 1] :

pk+s

k + s
< (1− x)

ps

s

}
.

Using positive branch of W -Lambert function (see Section 1.2.12) in order to
obtain:

js = min

n+ 1,
W0

(
− ln(ps)
ps(1−x)

)
− ln(p)

− s .
With Proposition 5 it is possible to obtain that

E[Js] =

n−s∑
i=0

spi

s+ i
.

Let us mention, that it is to provide simple analogous formulas for R-shifted
Poisson distribution, conditionally truncated to [n], hence we omit them.

3.2.9 Extension with m-root strictly concave functions

First we generalize the method used for solving the case of the uniform distri-
bution.

Definition 3.2.3. A CDF F : [n] → [0, 1] is m-root strictly concave, if the
function m

√
F is discrete strictly concave.



130 CHAPTER 3. BIG DATA

If m ∈ N and CDF F is m-root discrete strictly concave, then we can build
a sampler which utilizes m independent instances of the devil’s staircase with
the stationary distribution m

√
F in order to provide the distribution F on the

sliding window of size n. Correctness of this solution is based on the following
fact:

Pr[max(X1, . . . , Xm) 6 x] =
(
m
√
F (x)

)m
= F (x) .11

Natural examples of such CDFs are of the form Fα(k) =
(
k
n

)α
for α ∈ (0,m).

Samplers with cumulative distribution functions Fα for α > 1 may be used in
the situations when the old values from the stream are more interesting than
the current ones.

The following result gives natural bounds on the class of probability distri-
butions, which can be modelled by the aforementioned method:

Theorem 3.2.2. If the CDF of a random variable X is m-root discrete strictly
concave on [n], then

E[X] <
m

m+ 1
n+

1

2
+ O

(
1

n

)
.

Proof. A proof of this result is analogous to the one of Theorem 3.2.1.
Let F be the CDF of X and let H = m

√
F . Then H is discrete strictly

concave on [n], so H has a piece-wise linear extension to a strictly concave
function H̃ on the interval [0, n]. Therefore, for each x ∈ [0, n] we have

H̃(x) = H̃
((

1− x

n

)
0 +

x

n
n
)
>
(

1− x

n

)
H(0) +

x

n
H(n) =

x

n
.

Hence F (x) >
(
x
n

)m
. From this inequality, Eq. (1.1) and the classical Faul-

haber’s Formula (1.13), we get

E[X] =

n∑
k=1

k(F (k)− F (k − 1)) = n−
n−1∑
k=1

F (k)

< n−
n−1∑
k=1

(
k

n

)m
=

m

m+ 1
n+

1

2
+ O

(
1

n

)
.

The following simple observation provides the monotonicity of m-root strict
concavity property:

Proposition 9. If f is m-root (strictly) concave, then it is m+1-root (strictly)
concave.

Proof. Observe that f
1

m+1 = (f
1
m )

m
m+1 and the function g(x) = x

m
m+1 is concave

on (0,∞). Moreover, a superposition of two concave functions is concave, what
ends the proof.
11According to Section 1.3.2.



3.2. SLIDING WINDOW MODEL 131

Figure 3.2: An example of U-shaped probability mass function associated with
cumulative distribution function: 0.75F0.1 + 0.25F10 for n = 100.

Proposition 9 bears the following observation: if FX is m-root strictly con-
cave for some m ∈ N, but it is not m− 1-root strictly concave, then one should
use at most m independent devil’s Markov chains in order to generate X. Nev-
ertheless, for many CDFs (for m > 3), with such the property, we have not been
able to determine whether it is possible to provide appropriate samplers, which
utilize less than m independent random variables or not. It is quite challenging,
open problem.

3.2.10 Other extensions

Convex combinations

Let us finally observe that from independent samplers with CDF functions F
and G one can construct samplers for any convex combination αF + βG where
α, β > 0 and α + β = 1. For example, the probability mass function related to
cumulative distribution function 0.75F0.1 + 0.25F10 is U -shaped as presented in
Figure 3.2.12 In this case we run two samplers – one for F0.1 and one for F10 –
and finally output the sample provided by the first sampler with probability 0.75
and by the second sampler with probability 0.25. Note that this observation
can be used for any finite number of independent samplers, which a reservoir
sampling algorithm can fit into memory.

12This kind of distributions are called bathtub curve distributions and are related e.g. to
the failure rates over time in the reliability theory ([75]).



132 CHAPTER 3. BIG DATA

Order statistics solution

Assume for a while, that we have m independent samplers, modelled by variables
X1, . . . , Xm. Then, one can form a (potentially) new sampler, modelled by
any order statistic Ordi:m(X1, . . . , Xm), for i ∈ [m]. Note that, when i =
m, then this method provides max(X1, . . . , Xm), so it can be identified as a
generalization of the m-root strictly concave approach. Especially, one may
utilize min(X1, . . . , Xm) (a case i = 1). A correctness of this approach can be
justified by the fact, that by operation Ordi:m we can only obtain positions from
the set {X1, . . . , Xm}, so such the new sampler has an access to the sample from
the appropriate position, which corresponds to the variable, which realized the
order statistic.

3.2.11 A class of DS-admissible distributions

We call a distribution DS-admissible, if it can be modelled by a finite number
of devil’s staircases.13

Naturally, discrete strictly concave distributions are DS-admissible. They
are applicable, for instance, when one wishes to sample mostly the recent ele-
ments from the stream.

We have seen in Section 3.2.9 that m-root strictly concave distributions
are DS-admissible and are produced via max operation from m copies of i.i.d.
variables with discrete strictly concave distribution. The subclasses of m-root
strictly concave distributions (for m 6 2 are designated to sample more often the
older elements from the sliding window. If such the phenomenon is preferred,
then the generalization described in Section 3.2.9 should be applied.

As provided in Section 3.2.10, one can also utilize other order statistics like
e.g. min.

In some applications it may be justified to use e.g. U-shaped distributions,
which can be obtained by convex combinations of m-root strictly concave dis-
tributions (see Section 3.2.10).

Therefore DS-admissible class is closed under the operations of order statis-
tics Ordi:m (in particular max and min operations) and convex combinations.14

The class of discrete strictly concave distributions plays a role of a generator
of DS-admissible class, i.e. every distribution from DS-admissible class can be
achieved from some finite number of discrete strictly concave distributions by
the allowed operations.

However, finding an elegant characterization of the class of DS-admissible
distributions is an open problem. Also a very interesting and challenging prob-
lem can be a way of an extension of this class by allowing operations, which do
not assume the independence of the variables.

13Note that DS is an abbreviation of devil’s staircase.
14We have been assuming the independence of the variables, on which the aforementioned

operations act.



3.2. SLIDING WINDOW MODEL 133

3.2.12 Application

We are going to analyze a dataset of size 2500 of shares’ prizes of General
Electric in a period from 30-12-2010 to 5-12-2020 (one data item per day). Let
us consider a sliding window of size n = 1500 in two arrangements: the first
one – according to SR(n) distribution, and the second – according to Uni (n)
distribution in the sliding window of size n. In both cases we utilize k = 250
independent copies of appropriate reservoir sampler, in order to obtain a sample
with replacements.

Figure 3.3: Precision of an approximation of General Electric shares’ prizes by
250 independent copies of reservoir sampler, according to SR(1500) distribution.

In Figure 3.3 we present all the shares from a period from 17-12-2014 to 5-
12-2020 (1500 data items, depicted in blue) juxtaposed with 250 single samples,
given by our algorithm (discrete strictly concave case), which samples from
SR(1500) distribution in that period. In order to provide approximation, we use
linear interpolation of the obtained samples, together with two additional points,
given by samples saved on 17-12-2014 and 5-12-2020. This approximation is
presented in orange.

In Figure 3.4 we can see an analogous plot of the same shares’ prizes juxta-
posed with 250 single samples, but provided by our algorithm (2-root strictly
concave case), which samples from Uni (1500) distribution in the aforementioned
period. Again, a linear interpolation of the samples is depicted in orange.

It is visible that the approximation in Figure 3.3 is very precise for the most
recent period and there are merely several data items sampled from 2015 year,
which provides the garbled interpolation of the data from this period. This ap-



134 CHAPTER 3. BIG DATA

proach is definitely desirable when one wants to analyze the data from the given
sliding window, basing mainly on the recent items and the plenty of old realiza-
tions. Similarly, it is clear from Figure 3.4 that the second approach provides
the relatively good approximation over the whole sliding window. However, as
we can see in Figure 3.4, in the first semester of 2020 (hence in the recent pe-
riod), the interpolation omitted some quite significant fluctuations of the shares’
prizes. This affirms the statement, that in cases, when the recent data items have
higher priority than the others, then the approach with uniformly distributed
sample is insufficient.

Figure 3.4: Precision of an approximation of General Electric shares’ prizes by
250 independent copies of reservoir sampler, according to Uni (1500) distribu-
tion.

3.2.13 Final remarks

We have presented a collection of methods that together with the paradigm of
the devil’s staircase can be used to design sliding window samplers with different
probability distributions for the position of the sample.

Our solution is more flexible than the one proposed in [6]. However, in the
special case of uniform distribution it uses more calls to pseudo-random number
generator than the solution from [6].

The effectiveness of our implementation will depend on the computational
complexity of the procedure of determining the smallest number k such that
Pr[Js 6 k] > x (see Eq. (3.5)) for x ∈ (0, 1).

As mentioned in Section 3.1, any of described methods, which provide the



3.3. POWER LAW OF UPDATE 135

single elements with positions in the sliding window provided randomly accord-
ing to some DS-admissible distributions, can be simply extended to produce
r-sample in the sliding window by running r independent copies of the appro-
priate algorithm. Of course, this method produces a sample of r elements with
replacements.

A memory cost of our method is linear with respect to the (constant) size
of the sample and is only dependent on the distribution of positions of the
sample in the sliding window. Especially, Algorithm 9 performs similarly to the
state-of-the-art algorithm from [17] (in the sense of the size of used memory).

3.3 Power Law of Update

The foregoing part is devoted to a certain class of probabilistic snapshots for
elements of the observed data stream. We show how one can control their prob-
abilistic properties with probabilistic counters (see Section 1.3.4) and present
some of the potential applications. Our solution can be used to store information
from the observed history with limited memory (similarly as in sliding window
model, but without a constraint of the expiration of some elements after some
time. It can be used for both web server applications and Ad Hoc networks. For
example, for automatic snapshots taking from online video stream of unknown
size.

3.3.1 Introduction

Suppose that we are observing an online and infinite data stream {St}∞t=1. Our
goal is to keep an element from this stream with a prescribed position.15 For
instance, we may be interested to keep the element Si, with index i being close
to
⌊
n
2

⌋
after reading first n elements from the stream. Of course this problem

is trivial if we have a direct access to all elements S1, . . . , Sn at any time (in
particular, at the moment when Sn is read). However, in our arrangement, we
deal with large amount of data and keeping all the information into memory is
exaggeratedly expensive and thence undesirable. We have to keep in mind that
our memory resources are substantially limited.

In this section we investigate plenty of randomized procedures which intu-
itively allow us to choose elements located near the required position in the
stream of data. All these procedures are based on the same schema. Funda-
mentally, they only differ on a choice of a sequence (αn) of probabilities which
are used to control updates of reservoir sample. In this section we consider a
case of sample of size 1. However, according to the previous arguments (e.g.
from Section 3.1), one can easily provide a k-sample with replacements via in-
dependent copies of the algorithm. More precisely, αn is the probability, that
Sn will be saved in the reservoir at the time step, when it arrives. Naturally, we
do not want to keep blank samples, so the first revealed data provided by the
stream is always saved, hence α1 = 1.

15Similarly to the approach of Section 3.2, but without the sliding window constraint.



136 CHAPTER 3. BIG DATA

ALGORITHM 10: Reservoir sampling algorithm according to up-
date sequence (αn)n

procedure Init()
1 K= 0
2 n= 0
3 sample= nil
procedure Process(elem)

1 n= n+1
2 if random() 6 α[n] then
3 K= 1
4 sample = elem
5 else
6 K= K+1
function Get()

1 return sample

In a description of our Algorithm 10 we utilize three variables:

� K – which stores present value of probabilistic counter,

� n – which is the number of elements of the stream, which have been already
read,

� sample – which stores presently sampled element in the reservoir of size
1 — a probabilistic snapshot.

and an update sequence αn of transition probabilities.
Algorithm 10 is a modification of classical Algorithm 6:
Initialization sets the appropriate values of three utilized variables before

revealing the first data item. In the procedure Process we use random() function
which is a high quality pseudo-random number generator of real numbers from
the interval [0, 1]. The function α[n] represents an update sequence (αn)n of
probabilities of saving the n-th data item provided by the stream. Note that K
is either reset to 1 every time a data item is saved into the reservoir. Otherwise
it is increased by 1. It can be interpreted as a discrete process, similar to devil’s
staircase (see Definition 3.2.2), but with N as a support and with transition
probabilities dependent on the present time step. Therefore it can be interpreted
in terms of probabilistic counter (see Section 1.3.4). Note that K is utilized to
control the position of the present sample in the stream.

Connection with Algorithm R

Suppose that we use Algorithm 10 with the update sequence αn = 1
n . This

way, we obtain the classical Vitter’s Algorithm R (Algorithm 6) published in
[105]. Let Kn denotes the value of the random variable K after reading n data
items from the stream. It is well known that in this case (i.e. when αn = 1

n ) we



3.3. POWER LAW OF UPDATE 137

have Pr[Kn = i] = 1
n for each i ∈ [n]. In other words, Kn ∼ Uni (n). Therefore

E[Kn] = n+1
2 (see Section 1.3.6).

3.3.2 Power Law of Update

In this part we present, so called Power Law of Update model (or shortly PLU
model). PLU implies the special form of update sequences (αn)n. Namely,
αn = min

(
1, g

nα

)
, where α > 0 and g > 0 are some fixed parameters.16 PLU

owns its name to the expression of nα in the denominator of the crucial part of
the formula for αn. This approach allows to apply appropriate update sequence
in order to control the history of a massive streams of data. The aforementioned
case αn = 1

n (i.e. update sequence for Algorithm R) is also a very special case
of PLU approach to Algorithm 10.

In a series of subsections we will analyze a behaviour of the random vari-
able Kn for different update sequences in PLU model. Beneath we present a
summary of our results:17

� if α = 0 and g ∈ (0, 1), then the random variable Kn
d−→

n→∞
Geo→g, hence

E[Kn] ∼ 1
g ,

� if α ∈ (0, 1), then the random variable Kn
nα

d−→
n→∞

Exp (g), hence E[Kn] ∼
nα

g ,

� if α = 1, then the random variable Kn
n

d−→
n→∞

B (1, g), hence E[Kn] ∼ n
g+1 ,

� if α ∈ (1, 2), then E[Ln] = g
2−αn

2−α + O
(

max
(

1, 11{ 3
2} (α) lnn, n3−2α

))
,

� if α = 2, then E[Ln] = g ln(n) + O (1),

� if α > 2, then E[Ln] = O (1).18

3.3.3 General Properties

Let (αn)n be an update sequence ranged in the interval [0, 1] with starting
condition α1 = 1. Moreover, let Kn be a sequence of consecutive integers
tracing the value of the variable K from Algorithm 10 after n runs of Process
with the update sequence αn. Clearly, Kn ∈ [n] for each n.

Notice that the interpretation of (αn)n instantly gives Pr[K1 = 1] = 1,
Pr[Kn = 1] = αn and

Pr[Kn+1 = k + 1] = (1− αn)Pr[Kn = k] , (3.9)

16Minimum operation is only to restrict the values to [0, 1], since αn is a probability.
17For definitions of the convergence in distribution and the utilized distributions see Sec-

tion 1.3.
18All O () and ∼ notations are as n→∞.



138 CHAPTER 3. BIG DATA

which can be easily expanded to the explicit formula:

Pr[Kn = k] = αn−k+1

n∏
i=n−k+2

(1− αi) .19 (3.10)

Formula (3.10) can be interpreted in such the way: probabilistic snapshot was
taken at the time step n − k + 1 and after this moment, there were k − 1
consecutive time steps without a substitution in a reservoir. By omitting the
first event (i.e. the update of the sample at time step n−k+ 1), we may obtain
the probability that probabilistic counter has at least value k:

Pr[Kn > k] =

n∏
i=n−k+2

(1− αi) , (3.11)

where n ∈ N and k ∈ [n]. For our convenience, from now until the end of this
section, we will denote Pr[Kn = k] by pk(n).

The next theorem shows that the sequence E[Kn] satisfies simple linear first
order difference equation:

Theorem 3.3.1. Let (αn)n be a sequence of real numbers from the interval [0, 1]
with a starting condition α1 = 1. Moreover, let (Kn)n be a stochastic process
which satisfies Pr[Kn = 1] = αn and (3.9) for any n ∈ N and k ∈ [n]. Then
E[K1] = 1 and

E[Kn+1] = 1 + (1− αn+1)E[Kn] .

Proof. Let βn = 1− αn. The first part of the proof is a straightforward conse-
quence of the constraint α1 = 1 and the second expression follows directly from
the recurrence (3.9):

E[Kn+1] =

n+1∑
k=1

kp
(n+1)
k = αn +

n+1∑
k=2

kp
(n+1)
k

(3.9)
= αn +

n+1∑
k=2

k(1− αn+1)p
(n)
k−1

= αn + βn+1

n∑
k=1

(k + 1)p
(n)
k = αn + βn+1

n∑
k=1

kp
(n)
k + βn+1

n∑
k=1

p
(n)
k

= αn + βn+1

n∑
k=1

kp
(n)
k + βn+1 = 1 + (1− αn+1)E[Kn] .

Sometimes we would also like to utilize the foregoing random variable: Ln :=
(n+1)−Kn. It controls an index of a presently sampled data item. From formula
(3.10), we immediately get

Pr[Ln = k] = αk

n−k−1∏
i=0

(1− αn−i) . (3.12)

19Here n ∈ N and k ∈ [n].



3.3. POWER LAW OF UPDATE 139

Lemma 11. Monotonicity Let (αn)n and (α′n)n be update sequences of (Kn)n
and (K ′n)n respectively. If (∀ n ∈ N) 0 6 αn 6 α′n 6 1, then (∀ n ∈
N) E[Kn] > E[K ′n].

Proof. The proof is a simple induction. Theorem 3.3.1 guarantees E[K1] =
E[K ′1 = 1]. Now, assume that E[Kn] > E[K ′n] for some n ∈ N. Then, by
Theorem 3.3.1 once again,

E[Kn+1] = 1 + (1− αn+1)E[Kn] > 1 + (1− α′n+1)E[K ′n] = E
[
K ′n+1

]
.

3.3.4 Fixed value

We start our considerations with a case of α = 0 and g < 1. This way we get
simply αn ≡ g for each n > 1 (we naturally exclude n = 1, since α1 = 1).
This arrangement allows to provide a closed formula for E[Kn]. Namely, from
equation (3.10), we immediately get

Pr[Kn = k] =

{
g(1− g)k−1 : 1 6 k < n

(1− g)n−1 : k = n
.

From the above formula, we deduce that:

1. Variables Kn have R-shifted version of Geo (g, n− 1) distribution, for n ∈
N,

2. The sequence (Kn)n of random variables converges in distribution to the
R-shifted version of Geo (p) distribution,

3. E[Kn] = 1
g (1− (1− g)

n
), for each n ∈ N.

Therefore the probabilistic counter Kn in this case may be used for control-
ling a behaviour of a stream at a vicinity of the

⌊
1
g

⌉
-th time step apart from

the present moment. In other words, we expect, that after the n-th time step
(where 1

g � n),20 we sample contains one of the neighbours of the data item
Sn+1−b 1

g e from the stream.

3.3.5 Sublinear Case

In this part we consider the case when αn = min
(
1, g

nα

)
for some fixed g > 0

and α ∈ (0, 1). We show that the normalized random variable Kn
nα converges in

distribution to the exponential Exp (g) distribution.

20Obviously, when n ≈ 1
g

, then E[Kn] ≈ 1−e−1

g
. Hence the condition 1

g
� n is quite

crucial.



140 CHAPTER 3. BIG DATA

Theorem 3.3.2. Let g > 0, α ∈ (0, 1), αn = min(1, g
nα ) and x > 0. Then

lim
n→∞

Pr

[
Kn

nα
6 x

]
= 1− e−gx .

Proof. Let k := bnαxc. Using formula (3.11) we obtain

Pr

[
Kn

nα
> x

]
= Pr[Kn > nαx] = Pr[Kn > k] =

n∏
i=n−k+1

(
1− g

iα

)
(for sufficiently large n).21 Therefore

Pr

[
Kn

nα
> x

]
<
(

1− g

nα

)k
6
(

1− g

nα

)nαx−1

(3.13)

and

Pr

[
Kn

nα
> x

]
>

(
1− g

(n− k + 1)α

)k
>

(
1− g

(n− bnαxc)α

)nαx

=

1− g

nα
(

1− bn
αxc
n

)α
nαx

,

so we see that both bounds on Pr
[
Kn
nα > x

]
converge to the same limit e−gx

when n tends to infinity.

We conclude from Theorem 3.3.2, that
(
Kn
nα

)
n

converges in distribution to
X ∼ Exp (g).

Theorem 3.3.3. If g > 0, α ∈ (0, 1) and αn = min
(
1, g

nα

)
, then

lim
n→∞

E
[
Kn

nα

]
=

1

g
.

Proof. From Theorem 3.3.2 and Fatou’s Lemma 1 we get 1
g 6 lim inf

n→∞
E
[
Kn
nα

]
.22

On the other hand, inequality (3.13) bears (for sufficiently large n > gα
−1

):

lim
n→∞

E
[
Kn

nα

]
= lim
n→∞

∞∫
0

Pr

[
Kn

nα
> t

]
dt 6 lim

n→∞

∞∫
0

(
1− g

nα

)nαt−1

dt

= lim
n→∞

− 1

(nα − g) ln(1− g
nα )

=
1

g
.

Corollary 3. If g > 0 and αn = min
(
1, g

nα

)
then E[Kn] = nα

g + o (nα), as
n→∞.
21For n such that (n − bnαxc + 1)α > g. It worth to mention that this condition depends

on x, so this assumption is satisfied earlier for smaller x.
22Recall that if E ∼ Exp (g), then E[E] = 1

g
.



3.3. POWER LAW OF UPDATE 141

Remark We know a more precise results in some special cases. For example,
if αn = 1√

n
then E[Kn] =

√
n− 1

2 + 1
2
√
n

+ 1
8n + O

(
n−

3
2

)
, as n→∞. We will

take a closer look at such cases in Appendix D.

3.3.6 Linear Case

In this section we consider the case of α = 1, i.e. when αn = min
(
1, gn

)
for

some fixed g > 0. We show that the normalized random variable Kn
n converges

in distribution to the B (1, g) distribution.

Theorem 3.3.4. Let g > 0, αn = min
(
1, gn

)
and x ∈ (0, 1). Then

lim
n→∞

Pr

[
Kn

n
6 x

]
= 1− (1− x)g .

Proof. Analogously to the reasoning from the proof of Theorem 3.3.2, let k :=
bnxc. Then we attain

Pr

[
Kn

n
> x

]
= Pr[Kn > nx] = Pr[Kn > k] =

n∏
i=n−k+1

(1− αi) .

Therefore, for each x ∈ (0, 1), there exists sufficiently large n, that we have

Pr

[
Kn

n
> x

]
=

n∏
i=n−k+1

(
1− g

i

)
.

Hence

ln

(
Pr

[
Kn

n
> x

])
=

n∑
i=n−k+1

ln
(

1− g

i

)
(1.5)
= −

n∑
i=n−k+1

∞∑
a=1

1

a

(g
i

)a
= −g

n∑
i=n−k+1

1

i
−
∞∑
a=2

ga

a

n∑
i=n−k+1

1

ia
.

Notice that
n∑

i=n−k+1

1
i = Hn − Hn−k (see Section 1.2.9). Thence according to

Fact 1.2.11, we obtain

−g(Hn −Hn−k) = −g
(

ln(n)− ln(n− k) + O

(
1

n

)
+ O

(
1

n− bnxc

))
= ln

(
n− bnxc

n

)g
+ O

(
1

n

)
,

(3.14)

as n→∞. Therefore lim
n→∞

(−g(Hn −Hn−bnxc)) = ln((1− x)g). Moreover, let

An,k :=

∞∑
a=2

ga

a

n∑
i=n−k+1

1

ia

(
=

∞∑
a=2

ga

a

(
H(a)
n −H

(a)
n−k+1

))
.



142 CHAPTER 3. BIG DATA

Note that the summands of beneath are non-negative, hence when n−bnxc > 2g,
according to Tonneli’s Theorem 1.4.8 we obtain

0 < An,k <

∞∑
a=2

ga
∞∑

i=n−k+1

1

ia
=

∞∑
i=n−k+1

∑
a>2

ga

ia

=

∞∑
i=n−k+1

g2

i2
1

1− g
i

< 2g2
∞∑

i=n−k+1

1

i2
.

Consequently we get

An,k < 2g2
∞∑

i=n−k+1

1

i(i− 1)
=

2g2

n− k
=

2g2

n− bnxc
= O

(
1

n

)
(3.15)

as n→∞. Thus from (3.14) and (3.15) we attain

ln

(
Pr

[
Kn

n
> x

])
= ln

(
1− bnxc

n

)g
+ O

(
1

n

)
,

as n→∞, and consequently

Pr

[
Kn

n
> x

]
=

(
1− bnxc

n

)g
eO( 1

n ) (1.4)
=

(
1− bnxc

n

)g
+ O

(
1

n

)
,

as n→∞, so lim
n→∞

Pr
[
Kn
n > x

]
= (1− x)g.

Corollary 4. If g > 0 and αn = min
(
1, gn

)
then lim

n→∞
E
[
Kn
n

]
= 1

g+1 .

Proof. Notice that Kn
n 6 1, hence the sequence

(
Kn
n

)
n∈N is bounded, therefore

the convergence in distribution of the sequence
(
Kn
n

)
n∈N to a random variable Y

with B (1, g) distribution (Theorem 3.3.4) implies the convergence of moments
(see e.g. [14]), hence

lim
n→∞

E
[
Kn

n

]
=

1∫
0

x
d

dx
(1− (1− x)g) dx =

1

1 + g
.

Corollary 5. If g > 0 and αn = min
(
1, gn

)
, then E[Kn] = n

g+1 + o (n), as
n→∞.

Remark A slightly more complicated calculus shows that in the case consid-
ered in this section, one can obtain E[Kn] = n+1

g+1 + O (n−g), as n→∞. We will
also have a closer look at this particular case in Appendix D.



3.3. POWER LAW OF UPDATE 143

3.3.7 Subquadratic Case

In this subsection we consider the case when αn = min
(
1, g

nα

)
for some fixed

g > 0 and α ∈ (1, 2). For α > 1 the behaviour of Kn slightly changes, so
as we announced before, we are going to use the auxiliary random variable
Ln = n + 1 −Kn instead. Let us define g0 =

⌈
g

1
a

⌉
− 1. Realize that αk = g

kα

for k > g0 + 1. Thus we briefly see that Pr[Ln = k] = 0, whenever k 6 g0, and
otherwise, according to formula (3.12), we get

Pr[Ln = k] =
g

kα

n−k−1∏
i=0

(
1− g

(n− i)α

)
.

In foregoing calculations let k > g0. Let us commence with a consideration
about a lower bound, obtained with a use of standard Weierstrass’ Product
inequality (Theorem 1.4.2):

Pr[Ln = k] >
g

kα

(
1−

n∑
i=k+1

g

iα

)
=

g

kα

(
1− g

(
Hn

(α) −Hk
(α)
))

. (3.16)

To find the upper limitation, we apply more precise extension of Weierstrass’
Product Inequality (Theorem 1.4.2):

Pr[Ln = k]
WPI
6

g

kα

1−
n∑

i=k+1

g

iα
+

n−1∑
i=k+1

n∑
j=i+1

g2

(ij)α


6

g

kα

1−
n∑

i=k+1

g

iα
+

1

2

n∑
i=k+1

n∑
j=k+1

g2

(ij)α

 .

(3.17)

Hence, by repeating the same trick as in (3.16) we attain:

Pr[Ln = k] 6
g

kα

(
1− g

(
Hn

(α) −Hk
(α)
)

+
g2

2

(
Hn

(α) −Hk
(α)
)2
)
.

We would like to find close confinements for an expected value of Ln.
In the following consideration of a lower limitation of E[Ln] (which is easier to
analyze), we extensively abuse Fact 1.2.10 and Fact 1.2.11:

E[Ln]
(3.16)

>
n∑

k=g0+1

g

kα−1

(
1− g

(
Hn

(α) −Hk
(α)
))

= g
(
Hn

(α−1) −Hg0
(α−1)

)
− g2

n∑
k=g0+1

k1−α−n1−α

α−1 + fα(k)

kα−1

= g
n2−α

2− α
− g2

(
Hn

(2α−2) −Hg0
(2α−2)

)
− n1−α (Hn

(α−1) −Hg0
(α−1)

)
α− 1

+ O (1)

=
gn2−α

2− α
− g2

[
− n3−2α

(α− 1)(2− α)
+

(
Hn

(2α−2) −Hg0
(2α−2)

)
α− 1

]
+ O (1) = . . .



144 CHAPTER 3. BIG DATA

. . . =


gn2−α

2−α −
g2n3−2α

(3−2α)(α−1) + g2n3−2α

(α−1)(2−α) + O (1) ; for α < 3
2 ,

gn2−α

2−α −
g2Hn
α−1 + O (1) ; for α = 3

2 ,
gn2−α

2−α + O (1) ; for α > 3
2 ,

=


gn2−α

2−α −
g2n3−2α

(3−2α)(2−α) + O (1) ; for 1 < α < 3
2 ,

gn2−α

2−α −
g2Hn
α−1 + O (1) ; for α = 3

2 ,
gn2−α

2−α + O (1) ; for 2 > α > 3
2 ,

as n→∞, where |fα(k)| < k−α (see Fact 1.2.10).23

The second bound can be attained in similar way:

E[Ln] 6



gn2−a

2−a −
g2n3−2a

(3−2a)(2−a) + g2n4−3a

(4−3a)(3−2a)(2−a) + O (1) ; for 1 < a < 4
3 ,

gn2−a

2−a −
g2n3−2a

(3−2a)(2−a) + g3Hn
2(a−1)2 + O (1) ; for a = 4

3 ,
gn2−a

2−a −
g2n3−2a

(3−2a)(2−a) + O (1) ; for 4
3 < a < 3

2 ,
gn2−a

2−a −
g2Hn
a−1 + O (1) ; for a = 3

2 ,
gn2−a

2−a + O (1) ; for 2 > a > 3
2 ,

as n→∞.
Let us summarize all the cases:

Corollary 6. If g > 0 is fixed, α ∈ (1, 2) and αn = min
(
1, g

nα

)
, then

E[Ln] =


gn2−α

2−α −
g2n3−2α

(3−2α)(2−α) + O
(
max

(
lnn, n4−3α

))
; for α < 3

2 ,
gn2−α

2−α −
g2Hn
α−1 + O (1) ; for α = 3

2 ,
gn2−α

2−α + O (1) ; for α > 3
2 ,

as n→∞.

Remark One can use more precise generalization of Weierstrass’ Product In-
equality (Theorem 1.4.3) in order to provide better approximations of E[Ln],
however, with every additional expression, the calculations get complicated sig-
nificantly.

3.3.8 Quadratic Case

In this subsection we consider the case of α = 2, i.e. when αn = min
(
1, gn2

)
for some fixed g > 0. For computational purpose let introduce some auxiliary
symbols: g0 :=

√
g and h := dg0e. Again we will focus on the random variable

Ln = n+1−Kn. Our main goal is to achieve an approximation for its expected
value. It is easy to realize that Pr[Ln > k] = 1, when k < h. In the other cases,

we use (3.11) to reach Pr[Ln > k] = 1−
n∏
i=k

(
1− g

i2

)
.

23Let us note that
∞∑
k=1

fα(k)

kα−1 6 ζ(2α− 1), which is finite for α > 1.



3.3. POWER LAW OF UPDATE 145

Theorem 3.3.5. Let g > 0 and αn = min
(
1, gn2

)
. Then E[Ln] = g lnn+O (1),

as n→∞.

Proof. Commence with some simple facts. The first one uses a discrete version
of Fact 1.3.1:

E[Ln] =

n∑
k=1

Pr[Ln > k] = h− 1 +

n∑
k=h

(
1− g

k2

)
. (3.18)

The next applies inequality (1.3):

n∑
i=k

i−2 6

n∫
k−1

x−2dx = −(n−1 − (k − 1)−1) (3.19)

Now, we are ready to find an upper bound for Pr[Ln > k] (for k > h) using
standard Weierstrass’ Product Inequality (Theorem 1.4.2) and (3.19):

Pr[Ln > k] 6 1−
n∏
i=k

(
1− g

i2

)
6 1−

(
1−

n∑
i=k

g

i2

)
6 g

(
1

k − 1
− 1

n

)
.

From the above formula and (3.18), we obtain:

E[Ln] 6 h− 1 + g

n∑
k=h

(
1

k − 1
− 1

n

)
= gHn−1 − gHh−2 + h− 1− g + O

(
n−1

)
= g lnn+ O (1) ,

as n→∞.
In order to achieve the opposite bound on the expected value of Ln, we are

going to utilize the formula (3.16):24

E[Ln]
(3.16)

>
n∑
k=h

g

k

(
1− g

(
Hn

(2) −Hk
(2)
))

(3.19)

> g(Hn −Hh−1)− g2
n∑
k=h

(
1

(k − 1)k
− 1

nk

)
= g lnn− g2

(
1

h− 1
− 1

n
− Hn −Hh−1

n

)
+ O (1) = g lnn+ O (1) ,

as n→∞.

Remark Let us mention that the first version of the proof of Theorem 3.3.5
utilized Exponential Integrals Ei and E1 (see [1] for definitions and properties)
and several additional formulas. However the presented proof is much simpler.
24Although this formula was provided, when we concerned the case α < 2, it is still in use,

when α = 2.



146 CHAPTER 3. BIG DATA

Remark Using falling factorial (see Section 1.2.8 for definition) and the equa-
tion in the formula (3.18), we can write:

E[Ln] = h2 [n+ h]h
[n]h

n∑
k=h

[k − 1]h−1

[k + h]h

as n → ∞.Let us highlight that the above sum can be attained by Gosper—
Zeilberger algorithm ([53, 106, 110]). Nevertheless the precise calculation is
quite complicated and will be omitted.

Remark The case α = 2 may be recognized as some kind of exception, since
the crucial term is related to Hn. However, one may notice that there exists a
pattern for the expected value of Ln, which extrapolates from the case 1 < α < 2
to the one with α = 2.

Corollary 7. If h ∈ N, g = h2 and αn = min
(
1, gn

)
, then E[Kn] = n + 1 −

gHn + O (1), as n→∞.

3.3.9 Superquadratic Case

Finally, in this section we consider the case when αn = min
(
1, g

nα

)
for some

fixed g > 0 and α > 2. This case is the least useful in our purpose, but we
concisely consider a case a > 2 for completeness. Again, we apply random
variable Ln = n+ 1−Kn. The foregoing obvious fact is fulfilled:

Pr[Ln = k] = αk

n−k−1∏
i=0

(1− αn−i) 6 αk = min
(

1,
g

kα

)
.

Moreover, the foregoing formula provides an easy majorization of the expected
value:

E[Ln] 6

⌊
g

1
α

⌋∑
k=1

k + gHn,α−1 <
g

1
α + 1

2
g

1
α + gζ(α− 1) <∞ .

Corollary 8. If α > 2, g > 0 and αn = min
(
1, g

nα

)
, then E[Kn] = n−O (1).

Remark Ln is a number of update of algorithm which saved the last snapshot.
We should expect that our algorithm save only data from the very beginning.
In this case, the algorithm is redundant, so we don’t consider this case anymore.
Nevertheless this case arises a quite challenging mathematical problem to study.

3.3.10 Applications

Here we enumerate some possible applications of our contribution from this
Section 3.3:



3.3. POWER LAW OF UPDATE 147

� The solution may be utilized to store fixed number of snapshots from an
observed movie of unknown length. For example, we may want to store
short samples (a single frame or a fragment of the movie) taken at times
close to 0, 1

10T , 2
10T . . . 9

10T , T from a movie of length T .25 In this case
we should use linear PLU. We will take a closer look on this case later.

� We may need a sample of data from times close to n, n−C, n− 2 ·C,. . . ,
n−k ·C, where n is an index of current item, C is a fixed time length and k
is a reasonably small natural number. For instance, when we are observing
a sensor which measures temperature each second, it is not very likely for
the temperature to change roughly. Moreover, we may be interested to
know only the approximation of the lowest and the highest temperatures in
each day. In such the situation, C should be tuned up to reflect 12 hours.
This way we obtain the information of the extremal temperatures from the
last k+1

2 days. When one wants to achieve more certain information, it is
also possible to repeat independently the aforementioned procedure, but
shifted in time by e.g. half an hour (i.e. the second run of the algorithm
starts half an hour later). In order to handle this scenario, we need to
apply independent versions of fixed PLU with k + 1 different parameters.

� We may need to observe a sample from a stock market in such a way that
the snapshots from the past should be less rare than snapshots from times
close to the present. This can be done by utilizing sublinear PLU.

Linear sampling

Let us assume that we are observing a data stream and after reading n-th item
we would like to have access to elements laying near points

{
k
10 · n : k ∈ [0 : 10]

}
.

Of course, there is no problem with the element laying near 0
n ·n — it is sufficient

to store the first element from the stream. As an element laying near 10
10 · n we

may take the current item. So we must propose some mechanism for dealing
with remaining 9 points.

Let us consider a series K1
n, . . . ,K

M
n of independent random variables gen-

erated by the control sequence αn = 1
n . We know (see Section 3.3.6) that

this is a sequence of independent random variables uniformly distributed in
the set [n]. Let Xn =

{
K1
n, . . . ,K

M
n

}
. Let us fix some 0 < ε < 1

10 . Let
Ik = {a ∈ N :

∣∣ a
n −

k
10

∣∣ < ε}. Let us observe that Pr[Ik ∩Xn = ∅] ≈ (1− 2ε)M .
This approximation is accurate for large n. So, for simplicity we shall assume
that we have an equality. Therefore

Pr

[
9∨
k=1

(Ik ∩Xn = ∅)

]
6 9 · (1− 2ε)M .

The solution of inequality 9 ·(1−2ε)M 6 η is given by M >
ln
(
η
9

)
ln(1− 2ε)

. Putting

in this formula ε = 1
100 and η = 10−10 we get M > 1248.5. Therefore, if we

25This example justifies the name ”probabilistic snapshot” per se.



148 CHAPTER 3. BIG DATA

take M = 1250 snapshots then

Pr

[
9∧
k=1

(Ik ∩Xn 6= ∅)

]
> 1− 1

1010
.

Hence, with a very high probability for each k ∈ [0 : 10] we are able to choose
a point from the set Xn which approximates kn

10 with precision 1%.

Bitcoin capitalization

In Figure 3.5 we compared bitcoin cap data from [90] with experimental approx-
imation by probabilistic snapshots concentrated at the end of the data stream
(the plot has reversed time, so the latest data items are indicated by the low-
est numbers in Figure 3.5, i.e. 1 refers to the date 2017-12-31 and 1439 – to
2013-09-30). The aforementioned data stream consists of 1439 records, from
2013-09-30 to 2017-12-31 (one record per day). Since this length is relatively
short, we decided to use only 100 probabilistic snapshots with update sequence
αn = 0.1√

n
. From Section 3.3.5 we know that in this case the expected value of

time steps that elapsed since the last update of the snapshot was taken is close
to 10

√
1439 ≈ 379.

We added to generated probabilistic snapshots to points: the first one, and
the last one and further completed the plot via linear interpolation (we con-
nected the points given by the snapshots). Note that despite the large fluctu-
ations in the bitcoin market at the end of 2017, only 100 snapshots makes it
possible to reproduce the main trend of this parameter of the bitcoin market
quite faithfully.26

26Let us recall, that the main trend of bitcoin cap has dramatically changed in 2017, what
makes it more difficult to approximate. This is why we consider here this old dataset.



3.3. POWER LAW OF UPDATE 149

Figure 3.5: Precision of bitcoin cap approximation by 100 independent snap-
shots with update sequence αn = 0.1√

n
.



150 CHAPTER 3. BIG DATA



Chapter 4

Inherent Privacy of
Probabilistic Counters

4.1 Introduction

Since Big Data related topics widely developed in recent years, solutions which
focus on saving memory resources have become very popular. We are going
to consider probabilistic counters, which are well known tools often used for
space-efficient cardinality estimation of dynamically counted events. We would
like to indicate occurrence of n events using very small (significantly less than
lg n) number of bits. We assume that n is unknown in advance and may change.
Clearly a simple information-theoretic argument convinces us that is not feasible
if we demand an exact representation of the number of events. Nevertheless,
there are some very efficient solutions via probabilistic counters that require only
Θ(lg lgn) bits and guarantee sufficient accuracy for a wide range of applications.
Probabilistic counters are known in the literature since the seminal Morris’
paper [80] followed by its thorough mathematical analysis by Flajolet in [44].
They are used as building blocks in many space-efficient algorithms in the field
of data mining or distributed data aggregation in networks (like [8] or [20]) just
to mention a few.

In this chapter we investigate probabilistic counters from the perspective of
privacy protection. The analysis is based on differential privacy notion, which
is commonly considered as the only state-of-the-art approach. The differential
privacy has the undeniable advantage of being mathematically rigorous and for-
mally provable in contrary to previous anonymity-derived privacy definitions.
This approach to privacy-preserving protocols can be used to give formal guar-
antee for privacy which is resilient to any form of post-processing. For a survey
about differential privacy properties see [40] and references therein. The analy-
sis of protocols based on the differential privacy is usually technically complex,
but by using it we are immune against e.g. linkage attacks (see for example
[84, 85]).

151



152CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

Informally, the idea behind differential privacy is as follows: for two ”neigh-
bouring” scenarios that differ only in participation of a single user (individual),
a differentially private mechanism should provide a response chosen from very
similar distributions. Roughly speaking, the differential privacy is described by
two parameters: ε – which controls the similarity of probabilities of common
events – and δ – which is related to the probability of uncommon events. The
smaller the parameters, the better from the privacy point of view. In effect,
judging by the output of the mechanism one cannot say if a given individual
was taken into account for producing a given output. Intuitively, probabilistic
counters should provide high level of differential privacy, since statistically many
various number of events should be ”squeezed” into a small space of possible
output results. However, it turned out, that providing a precise, formal anal-
ysis of differential privacy parameters of probabilistic counters is surprisingly
difficult and needs a very careful approach.

Our primary motivation is to find possibly accurate privacy parameters of
two most fundamental probabilistic counter protocols, namely Morris Counter
from [80] and MaxGeo Counter from [99]. Note that the second one is used
for yet another popular algorithm — HyperLogLog [45].1 One may realize that
these two counters are relatively old, but they, and their modifications, are
extensively used until these days. Morris counter is often used in Big Data solu-
tions, for example for measurement of network’s capabilities [41]. We mention
the most crucial examples of refinements of HyperLogLog algorithm in Sec-
tion 4.7. We claim that a high precision analysis in the case of probabilistic
counters is particularly crucial. This is due to the fact that even a mechanism
with a very good privacy parameters may cause a serious privacy breach when
used multiple times (see e.g. [40]). Clearly, probabilistic counters in realis-
tic scenarios may be used as very fundamental primitives and subroutines in
more complex protocols, since the differential privacy property is immune to
post-processing.

We also show that they can be used safely without any additional random-
ization, even in a very demanding settings. It is commonly known that no de-
terministic algorithm can provide non-trivial differential privacy. Probabilistic
counters, however, possess inherent randomness, which achieves desired privacy
parameters. In other words, one can say that probabilistic counters are safe by
design and we do not need any additional privacy oriented methods. In particu-
lar, a fact that existing and working implementations do not need to be changed
if we start demanding a provable privacy of a system.

Finally we demonstrate how our results can be used for constructing a data
aggregation protocol based on probabilistic counters that can be used in some
specific distributed scenarios and compare the properties of counter-based solu-
tions and a standard Laplace method.

1Let us point out, that we have already considered MaxGeo variables in Chapter 2.



4.2. DIFFERENTIAL PRIVACY PRELIMINARIES 153

4.2 Differential Privacy Preliminaries

In this section we briefly recall differential privacy. For more details see for
example [40]. We assume that there exists a trusted curator who holds, or
securely obtains, the data of individuals in a (possibly distributed) database
x.Every row consists of the data of some individual. By X we denote a space of
all possible rows. The goal is to protect the data of every single individual, even
if all users except one collude with an adversary to breach privacy of this single,
uncorrupted user. On the other hand, the curator is responsible for producing
a release — a possibly accurate response to a requested query. The curator
may be solicited be either one of the users or some external entity to answer the
query. Release is then publicly posted, hence it is allowed to perform statistical
analysis on it. The differential privacy is by design resilient to post-processing
attacks, so even if the adversary obtains the public release, he will not be able
to infer anything about specific individuals participating in that release.

For simplicity we interpret databases as theirs histograms in Ncard(X )
0 , so we

may just focus on unique rows and the numbers of theirs occurrences.

Definition 4.2.1. A distance between two databases x and y is defined as `1
norm of x − y, where xi and yi are number of occurrences of an item (an
individual) i in databases x and y accordingly, i.e.

‖x− y‖1 =
∑
i∈X
|xi − yi|.

Then ‖x‖1 measures a size of the database x.

A privacy mechanism is a randomized algorithm used by the curator that
takes as input a database, and produces the output (the release) using random-
ization.

Definition 4.2.2 (Differential Privacy (formulation from [40])). A randomized
algorithm M with domain Ncard(X ) is (ε, δ)-differentially private, if for all S ⊆
Range(M) and for all x, y ∈ Ncard(X ) such that ‖x− y‖1 6 1 the following
condition is satisfied:

Pr[M(x) ∈ S] 6 eε · Pr[M(y) ∈ S] + δ,

where the probability space is over the outcomes of the mechanism M.

In case, when δ = 0, M is called (ε)-differentially private mechanism.
An intuition of (ε, δ)-DP is as follows: if we choose two consecutive databases

(that differ exactly on one record (row)), then the mechanism is very likely to
return indistinguishable values. In other words, it preserves privacy with high
probability, but it is admissible for mechanism to be out of control with some
negligible probability δ.

Example 10 (Laplace noise). In central model, a standard, widely used mecha-
nism with (ε)-differential privacy property is, so called, Laplace noise. Let c(x)



154CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

be a number of rows in x, which satisfy an arbitrary property. Imagine that an
aggregating mechanism is defined as follows: M(x) = c(x) + L(ε−1). Then M
is (ε)-differentially private (for more precise properties of Laplace noise method
see [40]).

4.3 Probabilistic Counters

For a general description of probabilistic counters, see Section 1.3.4. Throughout
this chapter, we denote probabilistic counters as M = (Mn)n∈N0 and interpret
them in terms of a mechanism, defined on space Ω = X of all possible inputs.

Let us recall that each increase of the data source which is being counted
by the probabilistic counter is called the incrementation request (’1’). Due
to randomized nature of probabilistic counters it may increase the value of
the counter, but not necessarily. For the sake of generality, we also assume
that the counter can get as an input a fake request (’0’), and in such case
it simply does nothing. This is useful for some real-life scenarios, e.g. data
aggregation (see Section 4.6). We would like to emphasize that obviously only
incrementation requests are impacting the final result of the counter, hence
hereinafter n indicates the number of incrementation requests, when we are
considering Mn. We would like to show that if we reveal the final result it does
not expose any sensitive data about any single record. Moreover, note that
if x and y differs only by one ’0’ input, then Pr[M(x) ∈ S] = Pr[Mn ∈ S] =
Pr[M(y) ∈ S], where n is the number of incrementation requests both in x and
y. See that then the condition in Definition 4.2.2 is trivially fulfilled.

Fact 4.3.1. Let M be a probabilistic counter with a discrete support A. More-
over assume that, for all n,m > 1 such that |n − m| 6 1, there exists such
Sn ⊂ A that for all s ∈ Sn

Pr[Mn = s] 6 exp(ε) · Pr[Mm = s] (4.1)

and
Pr[Mn /∈ Sn] 6 δ . (4.2)

Then M is (ε, δ)-DP.

Note that, for our setting, Fact 4.3.1 is fully compatible with the intuition
of regular differential privacy (Definition 4.2.2). Indeed, Fact 4.3.1 can be easily
derived from the observation that any set B ⊂ A is a disjoint union of B ∩ Sn
and B ∩ S′n.

Let us emphasize that ε and δ in Fact 4.3.1 can be treated as functions of
n parameter. Thence we are able to interpret (ε(n), δ(n))-differential privacy
of (Mn)n as the property of a mechanism which got exactly n incrementation
request in its input. This approach let us to provide precise dependence of
privacy parameters of the counter as the number of incrementation requests
gets large.



4.3. PROBABILISTIC COUNTERS 155

4.3.1 Morris Counter

We begin with a short description of Morris Counter (originally referred to as
an approximate counter [80, 44]). Let us fix a > 1. Algorithm 11 is a very
simple adaptation of pseudo-code of Morris Counter from [80].

ALGORITHM 11: Morris Counter Mechanism
procedure Init()

1 M = 1
procedure Aggregate() // on incrementation request

1 if random() < a−M then
2 M = M + 1

procedure Get()
1 return M

Roughly speaking, we start with counter M set to 1 (procedure Init).2 Each
incoming incrementation request triggers a random event realized by random()
(pseudo-random number generator), which draws a real number uniformly from
the interval (0, 1). This event increments the counter (line 1 of Aggregate) with
probability a−M .

Note that this approximate counting protocol can be easily distributed. In-
deed, any entity who wants to increment the counter, only has to send the
request to increment it. These requests can be queued on the server and re-
solved one after another.

Note that the standard Morris Counter algorithm consists of methods Init
and Aggregate. However, in order to adapt it to differential privacy notion,
we added Get method, which should be invoked by the curator when all the
requests have been already read, in order to publish the aggregated counter.

A detailed description of the approximate counting method can be found
in [80, 44]. Throughout this dissertation we examine only a standard Morris
Counter, i.e. the one with the base a = 2.

Fact 4.3.2. Morris Counter can be represented as the general counter according
to Definition 1.3.1, for M0 = 1, X(Mn) ∼ Ber

(
2−Mn

)
and f(x, y) = x+ y.

Morris Counter can be also defined recursively in the following way:

Definition 4.3.1. Morris Counter is a Markov process (Mn)n∈N0
which satis-

fies:

� Pr[M0 = 1] = 1 ,

� Pr[Mn+1 = l|Mn = l] = 1− 2−l ,

� Pr[Mn+1 = l + 1|Mn = l] = 2−l ,

2Note, that one can initially set M = 0. However this subtle change causes the butterfly
effect by complicating the proofs. Nevertheless, one can still choose the version with M = 0
and subtract 1 from the estimate.



156CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

for any l ∈ N and n ∈ N0.

Note that Definition 4.3.1 can be derived directly from a run of Algorithm 11.
From now on, let Pr[Mn = l] =: pn,l. Directly from Definition 4.3.1 we get the
following recursion:

pn+1,l = (1− 2−l)pn,l + 2−l+1pn,l−1 (4.3)

for l ∈ N and n ∈ N0 with starting and boundary conditions p0,1 = 1, p0,l = 0
for l > 2 and pn,0 = 0 for n ∈ N0. Let us signal that Eq. (4.3) is a core of proof
of majority of lemmas about Morris Counter presented further.

Accuracy versus Differential Privacy

An accuracy of Morris Counter has been thoroughly analysed in various classical
papers. First detailed analysis was proposed by Philippe Flajolet in [44]. Here
we present the essence of theorems presented in [44], which will be useful later
on:

Fact 4.3.3. Let Mn denote Morris Counter after n successive incrementation
requests. Then this random variable has an expected value E[Mn] = lg(n) −
0.273225 . . . and variance Var[Mn] = 0.763177 . . ..

Realize that Fact 4.3.3 guarantees good accuracy3 of Morris Counter and
also high concentration of Mn around its average — a characteristic desirable in
order to satisfy differential privacy definition. Fact 4.3.3 justifies the definition
of moving intervals:

In = [max (1, dlg(n)e − 4) : min (n+ 1, dlg(n)e+ 4)] ,

which will emerge as a crucial point of our further considerations of this Markov
process in terms of differential privacy in Section 4.5. Namely, we will show,
that Mn ∈ In with reasonable probability.

A lion’s share of applications of Morris Counter is based on counting a num-
ber of occurrences, that is the number of incrementation requests. In order to
estimate this value, we may use (4.3) and simply obtain E

[
2Mn+1

]
= E

[
2Mn

]
+1,

so together with the assumption M0 = 1 we obtain

E
[
2Mn

]
= n+ 2 . (4.4)

Hence Ψ(Mn) = 2Mn − 2 is an unbiased estimator4 of number of increments
n. Remark that n can be saved in dlg(n)e bits. On the other hand, Fact 4.3.3
shows that on average, lg(lg(n)) + O (1) bits are required to save Mn. This is
the most crucial advantage of Morris Counter. Moreover, analogically to (4.4)
one may obtain

Var
[
2Mn − 2

]
=
n(n+ 1)

2
. (4.5)

Formulas (4.4) and (4.5) will be used in the analysis of a data aggregation
example in Section 4.6.
3See Section 1.3.4 for the definition of accuracy.
4An estimator is unbiased, if its expected value is exactly the estimated quantity.



4.4. MAXGEO COUNTER 157

4.4 MaxGeo Counter

We begin with a short description of MaxGeo Counter. Algorithm 12 shows an
adaptation of its pseudo-code.

ALGORITHM 12: MaxGeo Counter Mechanism
procedure Init()

1 C = []
2 M = 0

procedure Aggregate() // on incrementation request
1 generate r ∼ Geo→

(
1
2

)
2 append r to C
3 M = max(C)

procedure Get()
1 return M

Speaking informally, we initialize an empty array C and set the MaxGeo
Counter M to 0 (Init). Then, for each incrementation request, the server
execute Aggregate to generate a random variable according to Geo→

(
1
2

)
dis-

tribution and append it to C. The final result is the maximum taken over all
these generated random variables.

In differential privacy notion, the curator can publish the result via Get
method.

Note that the variable M is in fact redundant, however it was left for clarity.
When we erase the latter line both in Init and Aggregate and substitute the
line of Get method by return max(C) in Algorithm 12, then we obtain a simpler
version of pseudo-code.

Fact 4.4.1. MaxGeo counter can be represented by the general counter from
Definition 1.3.1 for M0 = 0, X(Mn) ∼ Geo→

(
1
2

)
and f(x, y) = max(x, y).

The above fact shows that Algorithm 12 can be easily rewritten to save only
the present maximum and freshly drawn number r instead of a (potentially big)
array C and number r.

The expectation and variance of a maximum of n i.i.d. geometric variables
have already been analysed in the literature. For instance, Szpankowski and
Rego [99] provided exact formulas for expected value and variance of such the
variables. However they are impractical for application fo bigger n. Hence
they also provided asymptotics (here, for maximum of n independent Geo→

(
1
2

)
distributions): E[Mn] = lg(n)+O (1) and Var[Mn] ≈ π2

6 ln(2)2 + 1
12 = 3.507048 . . .5

and thus, similarly to Morris Counter, on average only lg(lg(n)) + O (1) are
required to save MaxGeo Counter after n incrementation requests.

However, MaxGeo Counter was utilized as the aggregating algorithm by
P. Flajolet and G.N. Martin in [46] for the first time. They calculated that

5A difference between the approximation of Var[Mn] and its exact value is a function with
very small amplitude. For details, see [99].



158CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

E
[

2Mn

ϕ

]
≈ n,6 where the magic ”Flajolet—Martin constant” (the name ac-

cording to [103]) is defined as follows:

ϕ =
eγ√

2
· 2

3

∞∏
n=1

(
(4n+ 1)(4n+ 2)

4n(4n+ 3)

)εn
, (4.6)

where γ = 0, 57721 . . . is Euler—Mascheroni constant (see Section 1.2.9) and εn
is {−1, 1}-Morse—Thue sequence (if ν(n) is the number of occurrences of digit
’1’ in BIN(n), then εn = (−1)ν(n)).

4.4.1 Probabilistic Counting with Stochastic Averaging

Here we recall shortly more general Probabilistic Counting with Stochastic Av-
eraging algorithm from [46].

Let m be of form 2k, for some k ∈ N. Assume that there are m, initially
empty lots. For each incrementation request we connect it with one of the
groups uniformly at random. Finally we perform Algorithm 12 separately and
independently for each lot, obtaining MaxGeo Counters M [1],M [2], . . . ,M [m].
By ςn(m) we denote a sum of these m MaxGeo Counters after total number of
incrementation requests n. Let us introduce introduce an estimator:

Ξn(m) :=

⌊
m

ϕ
2
ςn(m)
m

⌋
.

Then (according to [46]), for any m = 2k, k ∈ N,

E[Ξn(m)] = n

(
1 +

0.31

m
+ ψ1(m,n) + o(1)

)
, with |ψ1(m,n)| 6 10−5 (4.7)

and

Var[Ξn(m)] = n2

(
0.61

m
+ ψ2(m,n) + o(1)

)
, with |ψ2(m,n)| 6 10−5 . (4.8)

Note that averaging reduces the variance of the probabilistic counter. Remark
that ”Stochastic Averaging” in PCSA algorithm refers to the random choice of
the numbers of entities in each group and it slightly differs from the standard
averaging solution via Monte Carlo method with groups of equal size.

4.4.2 HyperLogLog

The maximum of geometric variables is used as a primitive in well known
HyperLogLog algorithm (see [45]), therefore its privacy properties are impor-
tant both from theoretical and practical point of view. See that essentially in
HyperLogLog we have k independent MaxGeo counters M [1], . . . ,M [k] and for

6Here the approximation is given with respect to some periodic multiplier of amplitude
less than 10−5 and mean value 1.



4.5. PROBABILISTIC COUNTERS PRIVACY PROPERTIES 159

each incrementation request we choose one of the counters uniformly at random.
Let us denote the chosen counter by M [j]. Then we generate random variable
with X ∼ Geo→

(
1
2

)
distribution and update M [j] := max(M [j], X). The final

estimation is

HyperLogLog := αkk
2

 k∑
j=1

2−M [j]

−1

,

where αk is a constant dependent only on k (see details in [45]). It worth to
note that HyperLogLog related algorithms (mentioned in Section 4.1) are the
best known procedures designated for cardinality estimation and they are close
to optimum (according to [62]).

According to [45], for m = 2k, where k > 4,

E[HyperLogLogn] = n(1 + ψ3(n) + o(1)), with |ψ3(n)| < 5 · 10−5

and

Var[HyperLogLogn] = n2

(
βm√
m

+ ψ4(n) + o(1)

)2

, with |ψ4(n)| < 5 · 10−4 ,

where βm
m→∞−→

√
2 lg(2)− 1 = 1.03896 . . . and βm 6 1.106 for m > 16.

4.5 Probabilistic Counters Privacy Properties

4.5.1 Morris Counter Privacy

In this subsection we investigate Morris Counter in terms of (ε, δ)-DP in order
to obtain the following

Theorem 4.5.1. Let M denote Morris Counter and assume |n−m| 6 1. Then

Pr[Mn = l] 6

(
1− 16

n

)−1

· Pr[Mm = l] + δ,

where δ < 0.00033, so M is (L(n), 0.00033)-DP with

L(n) = − ln

(
1− 16

n

)
=

16

n
+

128

n2
+ O

(
n−3

)
6

16

n− 8
.

To do so, we take the following steps. First we consider a concentration of
Morris Counter in the vicinity of its mean value. More precisely, we show that
Morris Counter after n incrementation requests takes values in relatively small
intervals In with probability at least 1 − δ (then Mn satisfies the condition
(4.2) for S(n) = In), where δ is some small constant arose from the proof.
Note that In may be interpreted as confidence intervals at level 1 − δ (see
e.g. [86]). Afterwards, we provide some lemmas which let us establish a bound
for ε(n) parameter in formula (4.1) in interval In for n > 27. Finally we obtain



160CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

analogous results for smaller number of incrementation requests n numerically
(the argument for n > 27 from the proof does not extrapolate for smaller n,
although the claim remains true).

The following theorem, provided by Flajolet, will be useful in our reasoning:

Theorem 4.5.2 (Proposition 1 from [44]). The probability pn,l that the Morris
Counter has value l after n incrementation requests is

pn,l =

l−1∑
j=0

(−1)
j

2−j(j−1)/2
(

1− 2−(l−j)
)n j∏

i=1

(
1− 2−i

)−1
l−1−j∏
i=1

(
1− 2−i

)−1
.

Notice that Theorem 4.5.2 presents an explicit formula for Pr[Mn = l], which
(as we may experience in Appendix E) is not convenient to analyze. However it
is simple enough to find the values numerically (also note that recursive Defini-
tion 4.3.1 provides those probabilities as well, but this approach is not efficient
in terms of memory and time for big number of incrementation requests n). We
are going to use Theorem 4.5.2 in technical proofs of lemmas in Appendix E.

Let us commence with a reminder. First of all, Mn is ranged in N0 and
moreover In ⊂ [dlg(n)e − 4 : dlg(n)e+ 4]. We provide few facts about the con-
centration of the distribution of the random variable Mn, or more precisely the
probability that Mn will be outside the interval In:

Lemma 12. Let Mn be the state of the Morris Counter after n incrementation
requests. Then

δ1 := Pr[Mn 6 dlg(n)e − 5] 6 0.000006515315 . . . .

Lemma 13. Let Mn be the state of the Morris Counter after n incrementation
requests. Then

δ2 := Pr[Mn > dlg(n)e+ 5] 6 0.000325521 . . . .

The proofs of both lemmas 12 and 13 are presented in Appendix E.

Theorem 4.5.3. The state of the Morris Counter after n incrementation re-
quests is not in a set In with probability δ < 0.00033.

Proof. Realize that Pr[Mn ∈ [n+ 1]] = 1. This observation, together with lem-
mas 12 and 13 bears a conclusion that

δ := Pr[Mn /∈ In] = δ1 + δ2 < 0.00033 .

In the second part of the investigation, we try to establish ε(n) parameter
of DP property of Mn. In fact, it remains to examine the property (4.1) in the
interval In, since Theorem 4.5.3 entails (4.2) for Sn = In. Therefore, we are



4.5. PROBABILISTIC COUNTERS PRIVACY PROPERTIES 161

interested in finding the upper bound for maximal privacy loss for any n ∈ N
and k ∈ In:

ε(n) = max

(∣∣∣∣ln(pn±1,k

pn,k

)∣∣∣∣ : k ∈ In
)
. (4.9)

Actually, we may consider ′+′ sign instead of ± in (4.9), because | ln(x)| =∣∣ln ( 1
x

)∣∣. However, when In 6= In±1, we have to behave carefully, so in particular,
an additional check of privacy loss with ′−′ sign is needed when n is of a form
2l + 1 for some l ∈ N.

Claim 1. For k > 7, we have p2k+1,k+4 6 27p2k+1,k+5.

The above claim is result of a simple application of Lemma 26 from Ap-
pendix E.

Claim 2. If for any given n, there exists an ascending and positive sequence
(αi)

n
i=1 such that (∀ i ∈ [n]) pn,i = 2iαipn,i+1, then there also exists an ascend-

ing and positive sequence (α′i)
n+1
i=1 such that

(∀ i ∈ [n+ 1]) (pn+1,i = 2iα′ipn+1,i+1) ∧ (∀ i ∈ [n]) (α′i < αi) .

This claim emerges from lemmas 27 and 28 from Appendix E. We are going
to use Claim 2 in order to guarantee appropriate starting conditions for the next
Lemma 14 (i.e. we would like to provide minimal l ∈ N such that n = 2l−1 and
pn+1,l+c−1 6 2c+3pn+1,l+c for every c in an interval [−l + 1 : 4]). Moreover, let
us mention that in order to apply Lemma 14 we are going to use Claim 1 from
Appendix E as well. Claim 1 assumes that n > 27 +1, therefore we would like to
gather some information about the distribution of M27+1, before we are going
to apply our milestone results. Namely, we are interested in the behaviour of
θi =

p129,i

p129,i+1
for i 6 11 (presented in the Table 4.1). In Table 4.1 we briefly

i θi 2i−4 24−iθi

1 9.6205 . . . · 10−24 0.125 7.6964 . . . · 10−23

2 1.73351 . . . · 10−9 0.25 6.93402 . . . · 10−9

3 0.000119359 . . . 0.5 0.000238718 . . .
4 0.0140238 . . . 1 0.0140238 . . .
5 0.158163 . . . 2 0.0790814 . . .
6 0.771817 . . . 4 0.192954 . . .
7 2.67702 . . . 8 0.334628 . . .
8 7.83367 . . . 16 0.489604 . . .
9 20.8095 . . . 32 0.650297 . . .
10 52.0472 . . . 64 0.813238 . . .
11 125.065 . . . 128 0.977073 . . .

Table 4.1: Ratios of probabilities of adjacent atoms of distribution of M27+1

variable, compared with the exponential function of the base 2.

recognize at least exponential trend of proportions θi, so we are able to use



162CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

Claim 2 for n > 27 + 1. At the first glance, the choice of n seems arbitrary, but
it occurs that a distribution of M26+1 does not preserve necessary properties of
privacy loss (note that nevertheless M26+1 still is able to satisfy the property of
(ε(n), δ)-DP with parameters given in Theorem 4.5.1).

Lemma 14. Let l ∈ N and n = 2l−1. If pn+1,l+c−1 6 2c+3pn+1,l+c for every c
in an interval [−l + 1 : 4], then

(∀ N > n+ 1)(∀ c ∈ [−l + 1 : 4]) pN,l+c−1 < 2c+3pN,l+c .

Proof. Realize that for c = −l + 1, the required inequality is a straightforward
conclusion from Definition 4.3.1. Therefore we can safely consider c ∈ [−l+2 : 4]
and any N > n + 1 with an assumption that pN,l+d−1 < 2d+3pN,l+d for d ∈
{c− 1, c}. Then

pN+1,l+c−1
(4.3)
= pN,l+c−1(1− 2−l−c+1) + pN,l+c−22−l−c+2

6 23+cpN,l+c(1− 2−l−c+1) + 23+(c−1)pN,l+c−12−l−c+2

< 23+c(pN,l+c(1− 2−l+c) + 2−l−c+1pN,l+c−1) = 23+cpN+1,l+c .

The thesis is the result of an appropriate application of inductions.

Claims 1 and 2, together with Table 4.1 enable us to apply Lemma 14 for
n = 2k + 1 for any k > 7.

Theorem 4.5.4. Let n > 27 = 128 and k ∈ In. Then

1− 16

n
6
pn±1,k

pn,k
6 1 +

16

n
.

Proof. According to the previous discussion about the formula (4.9), we exam-
ine:

pn+1,k

pn,k

(4.3)
=

pn,k(1− 2−k) + 2−k+1pn,k−1

pn,k
= 1 + 2−k

(
−1 + 2

pn,k−1

pn,k

)
.

Let us denote l = dlg(n)e and c = k − l ∈ [−4 : 4]. Then Lemma 14 bears
pn,k−1 6 2c+3pn,k, so

pn+1,k

pn,k
6 1 + 2−l−c(−1 + 2c+4) < 1 + 2−l+4 = 1 +

16

2dlg(n)e < 1 +
16

n
.

Realize that if n = 2l−1 +1 for some l ∈ N, then a little adjustment is necessary.
Indeed, let now c − 1 = k − l ∈ [−4 : 4], and once again, Lemma 14 provides
pn−1,k−1 < 2c+2pn−1,k. However, it still holds that:

pn,k
pn−1,k

= 1 + 2−k
(
−1 + 2

pn−1,k−1

pn−1,k

)
6 1 + 2−l−c+1

(
−1 + 2c+3

)
< 1 +

16

n
.

On the other hand, we obviously have inequalities pn+1,k >
(
1− 2−l−c

)
pn,k

and pn,k >
(
1− 2−l−c

)
pn−1,k for any c ∈ [−4 : 4], so in both cases, 1 − 2−l−c

exceed 1− 16
n .



4.5. PROBABILISTIC COUNTERS PRIVACY PROPERTIES 163

Figure 4.1: Exact values of ε(n) parameter for n 6 160 compared with plots of
sequences − ln

(
1− 16

n

)
and − ln

(
1− 8

n

)
.

Remark that Theorem 4.5.4 only provides ε(n) 6 − ln
(
1− 16

n

)
for n > 128

(compare with (4.9)). However, in Figure 4.1 we present the first 160 exact
values of ε(n), defined by Eq. (4.9) compared with sequences

(
− ln

(
1− 16

n

))160

n=1

and
(
− ln

(
1− 8

n

))160

n=1
. We may briefly see that inequality ε(n) 6 − ln

(
1− 16

n

)
is still satisfied for smaller number of requests n as well. Moreover, in almost
all of the cases ε(n) > − ln

(
1− 8

n

)
(especially for n > 16). We can also observe

that ε(n) ≈ 24−dlg(n)e in this interval. Note that dlg(n)e 6 4 for n 6 16,
so dlg(n)e − 4 < 1, but M is always positive. This can be seen as a reason of
chaotic behaviour of the process for n 6 16. Nevertheless, Figure 4.1 affirms the
quality of ε(n) parameter established in Theorem 4.5.1. Moreover, we present
the following

Observation 2. The constant 16 in Theorem 4.5.1 cannot be improved. See
that

p33,1

p32,1
=

1

2
= 1− 16

32
.

Having all the technical lemmas, we are finally ready to prove Theorem 4.5.1.

Proof. Suppose that S(n) = In in Fact 4.3.1. Then from theorems 4.5.3 and
4.5.4 we can easily see that Pr[Mn /∈ S(n)] < 0.00033 and

(∀ m ∈ {n− 1, n+ 1}) (∀ l ∈ S(n)) Pr[Mn = l] 6

(
1− 16

n

)−1

· Pr[Mm = l] ,



164CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

hence from Fact 4.3.1 we obtain the main result.

4.5.2 MaxGeo Counter Privacy

In this subsection we present a theorem which shows the privacy guarantees
of MaxGeo Counter. Assume that we have n incrementation requests. In case
of MaxGeo Counter, it means that we generate random variables X1, . . . , Xn,
where Xi ∼ Geo→

(
1
2

)
are pairwise independent. Ultimately the result of the

counter is maximum over all Xi’s, namely X = max(X1, . . . , Xn). We present
the following

Theorem 4.5.5. Let M denote the MaxGeo counter and n denote the number
of incrementation requests. Consider m such that |n −m| 6 1. Fix ε > 0 and
δ ∈ (0, 1) and let

lε =

⌈
log

(
eε

e−ε − 1

)⌉
.

If

n >
ln(δ)

ln (1− 2−lε)

(
≈ − ln(δ)

ε

)
, (4.10)

then
Pr[Mn ∈ S] 6 eε · Pr[Mm ∈ S] + δ,

so M is (ε, δ)-DP.

Proof. After n incrementation requests for MaxGeo Counter M , the result of
the mechanism is X = max(X1, . . . , Xn), where Xi ∼ Geo→

(
1
2

)
are pairwise

independent. First we observe that if n = m then the counter trivially satisfies
differential privacy, as the probability distribution of X does not change at all.
From now on we assume that |n−m| = 1. See that

Pr[X 6 l] =

n∏
i=1

Pr[Xi 6 l] = (Pr[X1 6 l])
n

=

(
1− 1

2l

)n
=

(
2l − 1

2l

)n
.

Furthermore

Pr[max(X1, . . . , Xn) = l] = Pr[X = l] = Pr[X 6 l]− Pr[X 6 (l − 1)]

=

(
2l − 1

2l

)n
−
(

2l−1 − 1

2l−1

)n
=

(
2l − 1

)n − (2l − 2
)n

2l·n
.

Now we need to calculate the following expression

Pr[max(X1, ...Xn) = l]

Pr[max(X1, ...Xn, Xn+1) = l]
=

(
2l − 1

)n − (2l − 2
)n

2l·n(
2l − 1

)n+1 −
(
2l − 2

)n+1

2l·(n+1)

= . . .



4.5. PROBABILISTIC COUNTERS PRIVACY PROPERTIES 165

. . . =

((
2l − 1

)n − (2l − 2)n
)
· 2l

(2l − 1)
n+1 − (2l − 2)n+1

=
2l

2l − 1
·
((

2l − 1
)n − (2l − 2)n

)(
(2l − 1)

n − (2l−2)n+1

2l−1

)
6

2l

2l − 1
·
((

2l − 1
)n − (2l − 2)n

)(
(2l − 1)

n − (2l−2)n+1

2l−2

)
=

2l

2l − 1
= 1 +

1

2l − 1
.

For fixed ε value we need to satisfy the following inequality∣∣∣∣ln( Pr[max(X1, ..., Xn) = l]

Pr[max(X1, ..., Xn, Xn+1) = l]

)∣∣∣∣ 6 ε ,

which gives

ln

(
1 +

1

2l − 1

)
6 ε . (4.11)

From (4.11) we can see that the greater l is, the smaller ε can be. More-
over, inequality (4.11) is true for l > lε. Therefore, we have to assure that
Pr[X 6 lε] 6 δ. See that

Pr[X 6 lε] =
(
1− 2−lε

)n
.

It is easy to see that the above expression decreases with respect to n. Therefore(
1− 2−lε

)n
6 δ ⇐⇒ n >

ln(δ)

ln(1− 2−lε)
≈ − ln(δ)

ε
,

where the approximation is a result of substitution of lε without ceiling.

Ultimately it means that for fixed privacy parameters (ε, δ) we can calculate
the minimum number of incrementation requests that is necessary to satisfy
given privacy parameters. This can be done by artificially adding them before
actually collecting data. Of course it has to taken into account that the initially
added value should be subtracted from the final estimation of the appropriate
cardinality before a publication and this change can impact on the precision of
the estimation. See that if we can perform such a preprocessing, then for every
(ε, δ) we can easily know how many artificial counts have to be added.

Note that from differential privacy perspective, HyperLogLog is an arbitrary
postprocessing performed on k MaxGeo counters. Moreover, as each response
goes to one counter only, they are independent from each other, which means
that we can use parallel composition theorem (see [40]). This gives us the
following

Observation 3. Assume we have k MaxGeo counters M [1], . . . ,M [k], which
are used in HyperLogLog algorithm. If j-th MaxGeo counter is (εj , δj)-DP then
HyperLogLog is (max

i
εi,max

i
δi)-DP.



166CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

4.5.3 Comparison of Morris and MaxGeo Counters’ Pri-
vacy

In this subsection we compare privacy and storage properties of data aggrega-
tion algorithms based on one of the investigated counters or standard Laplace
method.

We start with auxiliary remarks for the privacy of MaxGeo Counter. For
instance, see that for fixed δ and n we may obtain from Theorem 4.5.5 that

ε(n) >

(
2

⌊
− lg

(
1−δ

1
n

)⌋
− 1

)−1

=: ε0(n) . (4.12)

We want to optimize ε(n), so we are going to consider ε0(n) defined as the right
hand side of (4.12). In order to limit let us consider the following function of
x ∈ R+:

ψ(x, δ) :=

((
1− δ 1

x

)−1

− 1

)−1

= − ln(δ)

x
+

ln(δ)2

2x2
− ln(δ)3

6x3
+O

(
x−4

)
, (4.13)

as x → ∞, so ε(n) > ψ(n, δ) = − ln(δ)
n + O

(
n−2

)
, as n → ∞. Since ψ is

decreasing with respect to x, we are going to consider when ε0(n) changes.
More precisely, consider a minimal k such that ε0(n) < ψ(n− k, δ) 6 ε0(n− k),
which occurs to be the neat upper bound for ε(n). However, since ε0(n) is the
non-ascending step function, we realize that

ε0(n−k) >

(
2

⌊
− log

(
1−δ

1
n

)⌋
−1 − 1

)−1

= −2 ln(δ)

n
+

3 ln(δ)2

n2
−13 ln(δ)2

3n3
+O(n−4) ,

as n→∞. If we denote φ(n, δ) :=

(
2

⌊
− log

(
1−δ

1
n

)⌋
−1 − 1

)−1

, then we can sum

up our recent considerations shortly by: ψ(n, δ) 6 ε(n) < φ(n, δ). Thence, in
the case when we fix parameter δ = 0.00033, we obtain

8.0164 . . .

n
+

32.13147 . . .

n2
+O

(
n−3

)
6 ε(n) 6

16.0328 . . .

n
+

192.789 . . .

n2
+O

(
n−3

)
,

as n → ∞. On the other hand, from Theorem 4.5.1, we know that when
δ = 0.00033, then for Morris Counter (with ε(n) defined by (4.9)) the quite
similar relation holds:

ε(n) 6 − ln

(
1− 16

n

)
=

16

n
+

128

n2
+ O

(
n−3

)
,

as n→∞. This shows that both Morris Counter and MaxGeo Counter behave
quite similarly under comparable conditions and Figure 4.2 confirms this obser-
vation. Indeed, in Figure 4.2 we may see that the difference between the values
of ε(n) parameters for both counters shrinks as n gets bigger.

Realize that previous conclusions remain true if δ(n) is not constant. This
short observation enable us to obtain a more general result:



4.6. PRIVATE SURVEY VIA PROBABILISTIC COUNTERS 167

Figure 4.2: Values of ε(n) parameters for Morris and MaxGeo Counters com-
pared with boundaries for ε(n) for MaxGeo Counter: the lower one — ψ(n, δ)
and the upper one — φ(n, δ) (n 6 160 and δ = 0.00033).

Example 11. Let δ(n) = n−c for some constant c > 0. Then

ε(n) 6 φ(n, δ(n)) =
2c ln(n)

n
+

3c2 ln(n)2

n2
+ O

(
c3 ln(n)3

n3

)
as n → ∞, so MaxGeo Counter is (φ(n, δ(n)), δ(n))-DP for any n ∈ N. Both
sequences of parameters tend to 0, which may be used as an advantage when
an expected number of incrementation requests D is very large. However, we
emphasize that this requires δ(n) to be negligible.

4.6 Private Survey via Probabilistic Counters

In this section we present an example scenario for data aggregation using prob-
abilistic counters. We assume that there is a server (alternatively we call it
aggregator) and a collection of nodes (e.g. mobile phone users) and we want to
perform a boolean survey with a sensitive question. Namely, each user sends
’0’ if his/her answer is no and ’1’ if the answer is yes. We assume that the
connections between users and the server are perfectly secure and the data can
safely get to the trusted server. This can be performed using standard cryptog-
raphy solutions. The goal of the server is to publish the sum of all ’1’ responses
in a privacy-preserving way. Such goal could obviously be achieved by simply
collecting all the data and adding an, appropriately calibrated, Laplace noise



168CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

(see [40]), but we aim to show that probabilistic counters have inherently suffi-
cient randomness to be differentially private, without any auxiliary randomizing
mechanism.

We can present the general scenario in the following way:

1. each user sends his/her bit of data to the server using secure channels,

2. server plugs the data points sequentially into the counter,

3. if the data point is ’1’, the counter receives incrementation request, other-
wise, the data is ignored,

4. each incrementation request is being processed by the counter and may
lead (depending on randomness) to an increase of the value of the counter,

5. when all data is processed, the value of the counter is released to the
public.

Note that we assume that the adversary has access only to the released value.
See also that we released just the counter value itself, which is not actually
an estimation of ’1’ responses. Such estimation is a function of released value,
which is different for Morris or MaxGeo Counter and there also can be various
ways to estimate the actual number using counter value. However, this does not
really matter for our case, as differential privacy is, conveniently, fully resilient
to post-processing (see [40]). The graphical depiction of our considered scenario
is presented in Figure 4.3.

Figure 4.3: Scenario for data aggregation using probabilistic counters. We as-
sume that the Adversary does not have any way to extract information from
within the rectangle.

Adversary Our assumptions about the adversary are the same as in most
differential privacy papers. Namely, he may collude with any subset of the par-
ticipants (e.g. all except the single user whose privacy he wants to breach).



4.6. PRIVATE SURVEY VIA PROBABILISTIC COUNTERS 169

On the other hand, the aggregator is trusted. See that even though we have
a distributed system in mind, this is, in fact, a central differential privacy sce-
nario. We do not assume pan-privacy. It means that the internal state of the
algorithm is not subject to the constraints of differential privacy. Obviously if
the adversary would know the internal state of the counter at any time or could
observe whether after receiving data from specific user the server has to perform
computations to potentially increment the counter (implying a ’1’ response) or
not, he would easily violate the privacy. We also do not assume privacy under
continual observation, the survey is not published iteratively, but one time only,
after it is finished. To sum it up, the adversary cannot

� extract or tamper with the internal state of the counter,

� extract any information from the server or channels between users and
server.

The adversary can

� collude with any subset C of the participants (e.g. know their data or
make them all send ’0’ to the server) in order to breach privacy of user
not belonging to C,

� obtain the final result of the aggregation and perform any desired post-
processing on it.

Note that, in light of our theorems 4.5.1 and 4.5.5 both Morris Counter and
MaxGeo Counter preserve differential privacy in such scenario. Assume we
have at least n users holding ’1’, therefore at least n incrementation requests.
See that we can either know it based on domain knowledge (e.g. we expect that
at least some fraction of users will send ’1’ based on similar surveys) or add
artificial n counts to the counter initially. Obviously, in case of artificial counts
it has to be taken into account when estimating the final sum. Using Morris
Counter we obtain (L(n), 0.00033)-DP with

L(n) = − ln

(
1− 16

n

)
6

16

n− 8
.

We present the following

Example 12. Assume we have at least n = 200 incrementation requests. From
Theorem 4.5.1, we have L(n) 6 16

n−8 6 0.08334. Therefore, using Morris
Counter, the survey presented above is (0.08334, 00033)-DP.

On the other hand, using MaxGeo Counter for a given ε and δ we get (ε, δ)-

DP as long as n > ln(δ)
ln(1−2−lε )

, where lε =
⌈
log
(

eε

e−ε−1

)⌉
. Here we present an

example.

Example 13. Let ε = 0.5 and δ = 1
D2 , where D is the the number of all

survey participants. After using Theorem 4.5.5 and straightforward calculations
we have n > 7 ln(D) . Say we will have e20 = 4.85165 . . . ·108 participants. Then
if we have at least 140 incrementation requests, we satisfy

(
0.5, 1

D2

)
-DP.



170CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

Method Laplace noise Morris counter m MaxGeo counters

L
(
n
16

)
Mn

(
M

(i)
n

)m
i=1

(ε, δ)-DP
(

16
n , 0

)
-DP ( 16

n−8 , δ)-DP (∼ 16.033
n , δ)-DP

Estimator Ψ(n) n+ L
(
n
16

)
2Mn − 2

⌊
m
ϕ 2

ςn(m)
m

⌋
Var[Ψ(n)] n2

128
n2+n

2 ∼ 0.78
m · n2

Avg. memory lg(n) + O (1) lg(lg(n)) + O (1) m lg
(
lg
(
n
m

))
+ O (1)

Table 4.2: A juxtaposition of data aggregation techniques. The standard one is
based on Laplace method and the rest are based on probabilistic counters. Recall
that δ = 0.00033 and ϕ = 0.77351 . . . (O () terms are provided for n→∞).

In Table 4.2 we present a summary of three mechanisms with comparable
differentially private properties. The first one is based on Laplace method and
the other two are based on probabilistic counters. The first one has the biggest
memory use, however it is the most accurate. We may briefly see that prob-
abilistic counters may be used for data aggregation in order to decrease the
memory usage by a cost of small positive δ parameter of differential privacy and
a slightly bigger variance, which equivalently worsen the accuracy. Notice that
both counters performs very similar, however Morris Counter is better, since we
have to bear in mind, that one can use a mean of independent estimators of sev-
eral probabilistic counters in order to improve the accuracy in exchange for an
increase of memory cost (proportionally to the number of used counters). This
argument justifies the usability of such the mechanisms, when one is interested
in very memory-efficient protocols, which are quite accurate and first of all –
differentially private.

Example 14. Imagine that 100 million people take part in a general health
survey with 100 yes/no sensitive questions. For every question, we would like to
provide an estimation of the number of people who answered yes, but we want
to guarantee differential privacy property at reasonable level. Realize that if the
number of yes answers is very small for some questions (e.g. when the question
refers to a very rare disease), then the number of no answers may be counted
instead. According to Table 4.2, if we use Laplace method, then we may need
approximately 100 lg(108) = 2657.54 . . . bits to store the counters. However, if
we use Morris Counter instead, then about 100 lg(lg(108)) = 473.20 . . . bits are
needed.

One may complain about a heavy use of pseudo-random number generator
that probabilistic counters make. However this problem may be resolved by
generating the number of incrementation requests, which have to be forgotten
until the next update of the counter by utilizing appropriate geometric distri-
butions (compare with jumps in Section 3.2 or see e.g. [74] for similar approach



4.7. PREVIOUS AND RELATED WORK 171

applied to reservoir sampling algorithm). This way the use of PRNG can be
substantially reduced.

4.7 Previous and Related Work

In this chapter we take a unusual perspective on probabilistic counters. Namely,
we focus on their inherent privacy guarantees in the sense of differential privacy.
The idea of differential privacy has been introduced for the first time in [38],
however its precise formulation in the widely used form appeared in [35]. There
is a long list of papers concerning differential privacy, e.g. [36, 37, 39]. Most
of these papers focus on a centralised model, namely a database with trusted
party holding it. See that in our paper, despite the distributed setting, we have
the same trust model. The curator is entitled to gather and see all participants’
data in the clear and releases the computed data to wider (possibly untrusted)
audience. Comprehensive information concerning differential privacy can be
found in [40].

The idea of probabilistic counters, along with the well known Morris Counter
was presented in the seminal paper [80]. Very detailed analysis by Flajolet can
be found in [44]. MaxGeo Counter was first proposed and analysed in [99].
More detailed and precise analysis can be found in [42]. Most important ap-
plication of MaxGeo Counter can be found in [45], where the authors propose
the well-known HyperLogLog algorithm. Its practical applications are widely
described in [58]. There are several widely used improvements of HyperLogLog
algorithm: HyperLogLog+ [58], Streaming HyperLogLog with sketches based
either on historic inverse probability [25] or martingal estimator [101] or em-
pirically adjusted HyperBitBit (proposed by R.Sedgewick [94]). A main goal
of these adjustments is a reduction of the memory requirements (see e.g. [109]
or [102]). For instance, some of the above solutions are used in database’ sys-
tems for queries’ optimization or for document classification purpose. Moreover,
MaxGeo counter was used in [88], for an adjustment of ANF tool, developed
for data mining from extensive graphs, which enables to answer many different
questions, based on some neighbourhood function defined on the graph.

Probabilistic counters were previously considered in terms of privacy preser-
vation for set cardinality estimators. The authors of [33] show that in the
scenario of using probabilistic counters for set cardinality estimation with the
adversary being able to extract the intermediate values of counter, the privacy
is not preserved. In this chapter we perform data aggregation instead of cardi-
nality estimation, moreover we assume that the adversary is not able to extract
any intermediate values from the counter. To the best of authors knowledge,
Morris counter has not been considered for data aggregation under differential
privacy regime before. Nevertheless, there are a few very recent papers (prob-
ably all were written at the same time) presenting privacy preserving protocols
that use Flajolet—Martin sketch as a building block. We independently con-
cerned more general concept of MaxGeo counter, which is a core of this sketch
or HyperLogLog sketch, however it can be used in other arrangements as well.



172CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

In all the cases the conclusion is positive in the sense that the protocol itself
provides some level of DP without adding extra randomness.

� In [95], authors introduce its differentially private version of Flajolet—
Martin sketch via the same trick (adding artificial utilities) and provide
its accuracy, when used to count the number of elements in a multisets.
Accidentally, a proof of basic theorem from [95] uses incorrect argument
(inappropriate utilization of Hoeffding’s inequality), so it is difficult to
compare the results precisely. Nevertheless the overlap of results between
our paper and [95] is only partial.

� In [19], authors also consider Flajolet—Martin sketch as a subroutine. Af-
ter a careful analysis, they show that it is asymptotically (ε, δ = negl(λ))-
differentially private (with respect to the numbers of different elements),
when the number of elements counted by the mechanism is at least
8Kλmax( 1

ε , 1), where K is some accuracy parameter, λ is some security
parameter and negl(x) is some negligible function of argument x (Theo-
rem 4.2 in [19]). Nevertheless the analysis does not explain how to choose
parameters K and λ in order to obtain (ε, δ)-differential privacy for a given
ε and δ parameters. Moreover, a consideration of asymptotic behaviour
(with respect to the number of unique elements n) is not relevant, when
the hash function restricts the possible result to the size bounded by its
domain. Our analysis of MaxGeo counter provides exact (non-asymptotic)
dependence between n and parameters ε and δ.

� In [59], authors deeply analyze Flajolet—Martin sketch, and entail an al-
gorithm, which is able to determine a minimal number of unique elements
needed to guarantee (almost) (ε, δ)-differential privacy. The algorithm is
quite complicated, but very efficient in terms of time of execution. Nev-
ertheless, the authors of [59] actually proved conditions which look quite
similar to (ε, δ)-differential privacy (or rather Fact 4.3.1), but in fact, these
conditions are slightly weaker (in Sec. 5.2.2). Again this oversight makes
it hard to compare the results from [59] with our contribution for MaxGeo
counter.

Unsurprisingly one of the main applications of approximate counter is to
compute a size of a database or its specific subset. A set of such applications can
be found in [46]. In [104] the authors use Morris Counter for online, probabilistic
and space efficient counting over streams of fixed, finite length. Authors of
[24] proposed an application of a system of Morris Counters for flash memory
devices. Another application, presented in [30], is a revisited version of Morris
Counter designed for binary floating-point numbers. In [55] Morris Counter is
used in a well-known problem of counting the frequency moments of long data
streams. The authors of [34] focused on making probabilistic counters scalable
and accurate in concurrent setting. Paper on probabilistic counters in hardware
can be found in [91].



4.8. SUMMARY 173

In random graphs theory, Morris Counter is usually connected to greedy
structures. For instance, in an arrangement of a random labelled graph in
Gilbert model G(n, p), it is possible to construct a greedy stable set Sn, which
size has the same distribution as Morris Counter Mn of the base a = (1− p)−1

(see e.g. [48] or [16] for fundamentals of random graph theory).
There are several birth processes7 that are quite similar to Morris Counter,

which are applicable in variety of disciplines like biology, physics or theory of
random graphs. Short descriptions of such examples can be found in [29].

When talking about probabilistic counters, it worth to mention about Bloom
filters [15] – the space efficient probabilistic data structures, which are the rep-
resentations of sets. There exists a counter which approximates the number of
elements represented by a given Bloom filter [98].

Other common examples of probabilistic counters are Fp counters [3], [63],
which approximate the p-th moments of frequencies of occurrences of different
elements in the database.

One may note that all the mentioned probabilistic counters have equivalent
versions which are are consistent with Definition 1.3.1.

4.8 Summary

4.8.1 Our contribution

The main contribution of this chapter is as follows:

� We prove that the Morris Counter satisfies (L(n), 0.00033)-Differential Pri-
vacy property (Definition 4.2.2 is provided in Section 4.2), where L(n) =
− ln

(
1− 16

n

)
≈ 16

n (Theorem 4.5.1 in Section 4.5). In Observation 2 we
show that constant 16 cannot be improved.

� We prove that MaxGeo Counter satisfies (ε, δ)-Differential Privacy prop-
erty if a number of incrementation requests n (see Section 1.3.4 for defi-

nition) is at least
ln(δ)

ln (1− 2−lε)
, where lε =

⌈
log
(

eε

e−ε−1

)⌉
(Theorem 4.5.5

in Section 4.5).

� We construct a privacy-preserving distributed survey protocol based on
probabilistic counters in Section 4.6 and compare it with Laplace method,
which is the actual state-of-the-art and does not use probabilistic counters.

In this chapter we have investigated probabilistic counters from privacy-
protection perspective. We have shown that both Morris Counter and MaxGeo
Counter have differential privacy guarantees inherently from the mechanism
itself, provided that there is at least a small, fixed number of incrementation
requests. Otherwise the counter has too low value and, intuitively, the result

7Roughly speaking, birth processes either remain unchanged, increments or decrements the
value by 1 at the time.



174CHAPTER 4. INHERENT PRIVACY OF PROBABILISTIC COUNTERS

is not randomized enough. We have also shown, that constant in our Morris
Counter result cannot be improved further.

4.8.2 Conclusions and Future Work

We have shown how to perform data aggregation, namely a distributed sur-
vey, in a privacy-preserving manner by using probabilistic counters. Note that
the security model was somewhat optimistic. Unfortunately, in such setting
there is little incentive to use them, other than the situation when we already
have them deployed and working as aggregators due to e.g. memory-efficiency
requirements. This would, however, change tremendously if we could weaken
these assumptions. This seems to be a promising way to continue our research
from this dissertation. Namely, we focused on privacy here, and are still missing
the ability to weaken the security assumptions and allow the adversary to ex-
tract information from channels between users and the aggregator. That would
put us in the, so called, Local Model, where each user is responsible for the data
randomization. However, such approach require us to be able to perform prob-
abilistic counter in an oblivious manner which, to the best of our knowledge,
was not explored before.

In Section 4.3.1 we have mentioned that there exists a concept of more
general Morris Counter (for bases a > 1). Analysis of privacy properties of
such variants of Morris Counters and various probabilistic counters presented
for example in [30], [49] may also be promising direction of further research.

Morris Counter and MaxGeo Counter are considered as the most popular
counters. However, results of this chapter shed a new light on the properties
of probabilistic counter in general. There is a possibility to provide analogous
differential privacy properties for other probabilistic counters. Moreover, this
chapter enables to provide differentially private algorithms for other applica-
tions, especially those, which base on Morris or MaxGeo counter.

Another interesting direction of further work may be k-DP property of Mor-
ris and MaxGeo counters. This approach generalizes the described DP property
to pairs of databases that are not only identical or neighbouring, but can differ
even in at most k rows.



Appendix A

Optimal Distributions for
NALEA

A.1 Optimal distributions for 3 devices

According, to formula (2.10), we may obtain few first elements of the sequence
(qL(3))L (see Table A.1). One can see, that (qL(3))L at first rise harshly, and

a\b 1 2 3 4 5
0 0 0.66666 . . . 0.78260 . . . 0.83768 . . . 0.87021 . . .
1 0.89177 . . . 0.90713 . . . 0.91865 . . . 0.92761 . . . 0.93478 . . .
2 0.94065 . . . 0.94554 . . . 0.94969 . . . 0.95325 . . . 0.95633 . . .
3 0.95904 . . . 0.96142 . . . 0.96355 . . . 0.96545 . . . 0.96716 . . .
4 0.96871 . . . 0.97012 . . . 0.97141 . . . 0.97259 . . . 0.97367 . . .
5 0.97468 . . . 0.97561 . . . 0.97647 . . . 0.97728 . . . 0.97803 . . .

Table A.1: Elements of a sequence (q5a+b(3))5a+b, where a ∈ [0 : 5] and b ∈ [5].

further ascends very slowly.
Basing on Table A.1, one can obtain for example p̄(3)(10) or p̄(3)(20) which we

present in the forms of tables A.2 and A.3. In both we can see that the masses
of atoms decrease and in Table A.3 we may realize that the values begins to
stabilize the descent. One may also compare the appropriate masses in two
tables and see that, for instance p4(3)(10) ≈ 0.09 and p4(3)(20) ≈ 0.058, hence
the values significantly differ.

A.2 Approximations of the optimal solutions

Remark that Eq. (2.10) is quite unwieldy in practise. Indeed, we can obtain
qi(n) recursively, however the computations are relatively long and memory re-
quirements are relatively big, when we want to obtain precise results. Notice

175



176 APPENDIX A. OPTIMAL DISTRIBUTIONS FOR NALEA

a\b 1 2 3 4 5
0 0.24508 . . . 0.12254 . . . 0.10211 . . . 0.091018 . . . 0.083631 . . .
1 0.078204 . . . 0.073972 . . . 0.070538 . . . 0.067669 . . . 0.065219 . . .

Table A.2: Elements of a sequence (p5a+b(3)(10))5a+b, where a ∈ [0 : 1] and
b ∈ [5].

a\b 1 2 3 4 5
0 0.15656 . . . 0.078281 . . . 0.065234 . . . 0.058144 . . . 0.053425 . . .
1 0.049958 . . . 0.047255 . . . 0.045060 . . . 0.043228 . . . 0.041663 . . .
2 0.040304 . . . 0.039108 . . . 0.038044 . . . 0.037087 . . . 0.036220 . . .
3 0.035429 . . . 0.034704 . . . 0.034034 . . . 0.033414 . . . 0.032837 . . .

Table A.3: Elements of a sequence (p5a+b(3)(20))5a+b, where a ∈ [0 : 3] and
b ∈ [5].

that one have to remember all the values of qi(n) to provide pj(n)(L). Therefore
one can accept an eventual loss of precision by utilizing approximated distribu-
tion in order to speed up the computations.

We would like to compare different approximations of optimal distributions.
In order to do so, for k < L, let us introduce an estimator

Λj(k, n, L) =



2
nj

(
j
L

) 2
n for j ∈ [k + 1 : L] ,

1−
L∑

i=k+1

2
ni

(
i
L

) 2
n

k∑
i=1

ai(n)

aj(n) for j ∈ [k] ,

where numbers aj(n) are given by Eq. (2.7). Remark that for j > k, the estima-
tor is defined as in Eq. (2.16). As announced in Section 2.5, the approximation
of the atoms (2.16) is rather more precise for bigger values of j. Moreover,
note that (2.16) is quite simple to calculate, however it does not define the dis-
tribution, since the sum of all approximated atoms usually does not equal 1.

However, as one can easily see, for any k ∈ [L],
L∑
j=1

Λj(k, n, L) = 1, so every

(Λj(k, n, L))
L
j=1 defines some distribution on [L].

A.2.1 Numerical results

We are going to compare approximations Λ(k, n, L) aforementioned before with
the optimal distribution p̄(n)(L) for some arbitrary chosen n and L. First, we
will provide some numerical results for simple examples of such the distributions
and further we are going to utilize two distance measures on the simplex SimL of
probability distributions on [L]: total variation distance and Kullback—Leibler
divergence (see Section 1.3.13 for definitions and properties).



A.2. APPROXIMATIONS OF THE OPTIMAL SOLUTIONS 177

i\D pi(10)(8) Λi(1, 10, 8) Λi(2, 10, 8) Λi(3, 10, 8) Λi(4, 10, 8)

1 0.71050 . . . 0.705196 . . . 0.70288 . . . 0.70426 . . . 0.70587 . . .

2 0.078945 . . . 0.075785 . . . 0.078098 . . . 0.078251 . . . 0.078430 . . .

3 0.053733 . . . 0.054791 . . . 0.054791 . . . 0.053261 . . . 0.053382 . . .

4 0.041890 . . . 0.043527 . . . 0.043527 . . . 0.043527 . . . 0.041617 . . .

5 0.034776 . . . 0.036411 . . . 0.036411 . . . 0.036411 . . . 0.036411 . . .

6 0.029955 . . . 0.031469 . . . 0.031469 . . . 0.031469 . . . 0.031469 . . .

7 0.02644 . . . 0.027818 . . . 0.027818 . . . 0.027818 . . . 0.027818 . . .

8 0.023751 . . . 0.025 0.025 0.025 0.025

Table A.4: Numerical comparison of the atoms of distributions on [8], for n = 8.

D Pr[SD] ‖.− p̄‖TV DKL(.‖p̄)
p̄(10)(8) 0.805462 . . . 0 0

Λ̄(1, 10, 8) 0.80516 . . . 0.00846963 . . . 0.000268871 . . .

Λ̄(2, 10, 8) 0.80517 . . . 0.00846963 . . . 0.000230498 . . .

Λ̄(3, 10, 8) 0.80519 . . . 0.00741141 . . . 0.000207217 . . .

Λ̄(4, 10, 8) 0.80523 . . . 0.00577422 . . . 0.000161841 . . .

Table A.5: Comparison of: probabilities of successful leader election, total vari-
ation distances and Kullback—Leibler divergences.
D states for a distribution, SD is an event of a success of leader election algo-
rithm in urn model, according to the distribution D.

As one can realize in Table A.4, the bigger the first parameter of Λ, the more
precise is the approximation. Also, even, for the smallest of these parameters,
the masses of atoms do not differ significantly. Moreover note, that in practise,
Λ(1, n, L) or even Λ(2, n, L) are very easy to obtain.

Recall that according to a remark from the end of Section 2.5.6, there is
no need to use more than d− lg εe + 1 bits in order to provide (1 − ε)-reliable
non-anonymous LEA. Therefore parameter L = 8 is appropriate for ε > 0.25.
Thence, in Table A.5, we have obtained the probability of success of at least 0.75,
when using p̄(10)(8) distribution. Note that all the approximations provided in
Table A.5 have relatively close probability of success to the optimal one, what
affirms the design of the estimators. The same conclusion we may draw, when
we take a closer look on columns with measures of similarity of distributions.

In Table A.6 and Table A.7 we presented comparisons of exact optimal
distributions and the second estimator Λ(2, n, L), for n ∈ [3 : 6] and L > 2.
When we take a closer look, we can realize that, for small n, the estimation is
more efficient than for bigger ones (like in Table A.4). However, let us notice
that the range of L in Table A.7 is shorter. This is due to time and memory
complexity of execution of the exact distributions for bigger L. This clearly
affirms the introduction of approximated distributions.



178 APPENDIX A. OPTIMAL DISTRIBUTIONS FOR NALEA

L\D p̄(3)(L) Λ̄(2, 3, L) p̄(4)(L) Λ̄(2, 4, L)
2 0.44444 . . . 0.44444 . . . 0.421875 0.421875
3 0.61247 . . . 0.61240 . . . 0.58938 . . . 0.58925 . . .
4 0.70172 . . . 0.70165 . . . 0.68055 . . . 0.68041 . . .
5 0.75727 . . . 0.75721 . . . 0.73819 . . . 0.73805 . . .
6 0.79525 . . . 0.79520 . . . 0.77801 . . . 0.77789 . . .
7 0.82289 . . . 0.82284 . . . 0.80722 . . . 0.80711 . . .
8 0.84392 . . . 0.84387 . . . 0.82957 . . . 0.82948 . . .
9 0.86045 . . . 0.86042 . . . 0.84725 . . . 0.84716 . . .
10 0.87381 . . . 0.87378 . . . 0.86158 . . . 0.86150 . . .
11 0.88482 . . . 0.88479 . . . 0.87343 . . . 0.87336 . . .
12 0.89406 . . . 0.89403 . . . 0.88340 . . . 0.88334 . . .
13 0.90192 . . . 0.90189 . . . 0.89191 . . . 0.89186 . . .
14 0.90869 . . . 0.90866 . . . 0.89926 . . . 0.89921 . . .
15 0.91458 . . . 0.91456 . . . 0.90566 . . . 0.90562 . . .
16 0.91976 . . . 0.91974 . . . 0.91130 . . . 0.91126 . . .

Table A.6: Comparison of success probabilities Pr[SD] in leader elections ac-
cording to optimal distributions and theirs second approximations for n ∈ {3, 4}
and L ∈ [2 : 16].

L\D p̄(5)(L) Λ̄(2, 5, L) p̄(6)(L) Λ̄(2, 6, L)
2 0.4096 0.4096 0.40187 . . . 0.40187 . . .
3 0.57655 . . . 0.57638 . . . 0.56837 . . . 0.56818 . . .
4 0.66864 . . . 0.66844 . . . 0.66100 . . . 0.66076 . . .
5 0.72735 . . . 0.72715 . . . 0.72036 . . . 0.72012 . . .
6 0.76816 . . . 0.76798 . . . 0.76178 . . . 0.76155 . . .
7 0.79822 . . . 0.79805 . . . 0.79237 . . . 0.79217 . . .
8 0.82130 . . . 0.82116 . . . 0.81592 . . . 0.81574 . . .
9 0.83961 . . . 0.83948 . . . 0.83463 . . . 0.83446 . . .
10 0.85448 . . . 0.85437 . . . 0.84985 . . . 0.84970 . . .
11 0.86681 . . . 0.86671 . . . 0.86248 . . . 0.86234 . . .
12 0.87720 . . . 0.87711 . . . 0.87314 . . . 0.87301 . . .
13 0.88607 . . . 0.88599 . . . 0.88225 . . . 0.88214 . . .

Table A.7: Comparison of success probabilities Pr[SD] in leader elections ac-
cording to optimal distributions and theirs second approximations for n ∈ {5, 6}
and L ∈ [2 : 13].



Appendix B

The proof of Theorem 2.8.1
and remarks

This appendix is dedicated mainly to the proof of Theorem 2.8.1 and is divided
in several parts. We commence with several useful definitions and properties
of random variables. Further we provide some observations, which describe
necessary conditions that have to be satisfied in order to provide adequate pa-
rameters of reliable GeoGLE algorithm. After the preparation, we utilize the
aforementioned observations to show that the parameters provided in Theo-
rem 2.8.1 enables to execute (1 − ε)-reliable GeoGLE algorithm in a case of
election amongst exactly N devices. In the latter part, we prove that these pa-
rameters are also appropriate for (1− ε)-reliable GeoGLE algorithm, whenever
the number of nodes in the network is n 6 N .

In Section B.5 we will consider how much can we exceed the capacity of the
network when using one bit of memory more to preserve the (1− ε)-reliability.

B.1 Collision Probability in GeoGLE Algorithm

B.1.1 Definitions and crucial properties

In Section 2.7.2, we have analyzed the faultiness of using urn model according
to Geo (p) distribution with infinite support. Thence we do not use directly a
geometric distribution like in [64]. Nevertheless, we can take advantage of some
of the results for such the model in an analysis of LEA with restricted version
of geometric distribution. Hereinafter, we assume that: Gi ∼ Geo (p) are i.i.d.
for i ∈ [n], q = 1− p, L is the maximal value of the restricted random variable
Geo (p, L) and we introduce λ := (n− 1)qL.1

Let us define two approximations of p parameter: p̂ := p(2−p)(3−5p)
6(1−p) and

p̃ := p
(1−p) + 2p2

3

(
1 + p

2(1−p)

)
. It worth to mention that p̂ ∼ p ∼ p̃ as p → 0+.

1If the value of n is not clear from the context, then we will write λn for disambiguation.

179



180 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

Remark that
p̃ = p− 7

6
p2 − 1

3
p3 + O

(
p4
)

and
p̂ = p+

5

3
p2 +

4

3
p3 + O

(
p4
)
,

as p → 0+. The beneath lemma shows boundaries for W>2,n,p (and conse-
quently, for W1,n,p):

Lemma 15. Let n ∈ N and p ∈
(
0, 2

3

)
. Then p̂ < 2W>2,n,p < p̃ .

Proof. Commence with the upper bound for W1,n,p, using Theorem 1.3.3 and
inequalities (1.6):

W1,n,p < −
p

ln(1− p)
− p ln(1− p)

3
(B.1)

<
p

p+ p2

2

+
p

3

(
p+

p2

2(1− p)

)
=

1

1 + p
2

+
p2

3
+

p3

6(1− p)

< 1− p

2
+

7p2

12
+

p3

6(1− p)
= 1− p(2− p)(3− 5p)

12(1− p)
= 1− p̂

2
. (B.2)

Moreover, again from Theorem 1.3.3 and inequalities (1.6)

W1,n,p > −
p

ln(1− p)
+
p ln(1− p)

3
(B.3)

>
1

1 + p
2(1−p)

− p2

3

(
1 +

p

2(1− p)

)
p< 2

3

> 1− p

2(1− p)
− p2

3

(
1 +

p

2(1− p)

)
= 1− p̃

2
.

By the complements of events we abruptly procure the thesis.

We will utilize some of the above inequalities to find an upper bound for a
probability of the failure of GeoGLE algorithm.

Lemma 16. Let n ∈ N and p ∈
(
0, 1

2

)
. Then

1− − ln(1− p)
2

− ln2(1− p)
6

< W1,n,p < 1− − ln(1− p)
2

+
ln2(1− p)

2
.

Proof. For x ∈ (0,∞) and � ∈ {+,−}2, let us define the following auxiliary
function:

F�(x) =
1− e−x

x

(
1� x2

3

)
.3 (B.4)

2The operation � should be interpreted polymorphically. Both as a unary operation, which
prefixes either plus or minus sign to a real number and also as a binary operator of either
addition or subtraction of real numbers.
3Remark that the first factor of F�(x) is the inversion of a generating function of Bernoulli

numbers (compare with Eq. (1.11) in Section 1.2.13).



B.1. COLLISION PROBABILITY IN GEOGLE ALGORITHM 181

The series representations of the above two functions will be helpful in ap-
proximations of success probability in the further part of the proof. Note that
from Eq. (1.4), F�(x) and both its factors have Maclaurin series representa-
tions, so all theirs derivatives have limits at x = 0. Moreover, realize that(

1� x2

3

)′
= � 2x

3 ,
(

1� x2

3

)′′
= � 2

3 and
(

1� x2

3

)
(k) = 0 for k ∈ N\{1, 2}.

Hence, according to formula (1.2),

lim
x→0+

F�
(n)(x) = lim

x→0+

2∑
k=0

[[n > k]]

(
n

k

)(
1� x2

3

)
(k)

(
1− e−x

x

)
(n−k) .4 (B.5)

Moreover, realize that
(

1� x2

3

)∣∣∣
x=0

= 1 and
(

1� x2

3

)′∣∣∣∣
x=0

= 0. From Eq.

(1.4) we know that
1− e−x

x
=

∞∑
n=0

(−x)n

(n+ 1)!
. (B.6)

According to Eq. (B.6),
[
xn

n!

]
1−e−x
x = lim

x→0+

(
1−e−x
x

)
(n) = (−1)n

n+1 for every

n ∈ N0. Therefore from Eq. (B.5):

lim
x→0+

F�
(n)(x) = lim

x→0+

(
1− e−x

x

)
(n) � lim

x→0+

2

3
[[n > 2]]

(
n

2

)(
1− e−x

x

)
(n−2)

=
(−1)n

n+ 1
� [[n > 2]]

(−1)n−2n(n− 1)

3(n− 1)
=

(−1)n

n+ 1
� [[n > 2]]

(−1)nn

3

and therefore the Maclaurin formula for F�(x) is:

F�(x) = 1− x

2
+

∞∑
n=2

(
1

(n+ 1)!
� 1

3(n− 1)!

)
(−x)n

= 1− x

2
+

∞∑
n=2

(
3� n(n+ 1)

3(n+ 1)!

)
(−x)n .

Realize that lim
n→∞

n

√∣∣∣ (−1)n

n+1 �
(−1)nn

3

∣∣∣ = 1, so one may utilize Cauchy root test

(see Fact 1.2.3), to show that the radii of convergence of both power series equals

to 1. Note that both
(

1
(n+1)!

)
n

and
(

1
3(n−1)!

)
n

are decreasing sequences, which

tend to 0. Now, let us consider a sequence (cn)∞n=2, where cn = 3−n(n+1)
3(n+1)! . First

of all, we may briefly see that, for n ∈ N\{1}, 3 − n(n + 1) < 0. On the other
hand

−cn+1

−cn
=

(n2 + 3n− 1)(n+ 1)!

(n2 + n− 3)(n+ 2)!
=

n2 + 3n− 1

n3 + 3n2 − n− 6
=

1

n
+

6

n(n3 + 3n2 − n− 6)

4Note that according to observation about Maclaurin series representation, the right hand
side makes sense.



182 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

and n3 +3n2−n−6 > 12 for n ∈ N\{1}, so (cn)∞n=2 is non-decreasing and tends
to 0. The last few facts entail that, in both cases � ∈ {+,−},

∞∑
n=2

(
3� n(n+ 1)

3(n+ 1)!

)
(−x)n

are Leibniz’ type series for x ∈ (0, 1) (see Fact 1.2.4) and thence

F+(x) = 1− x

2
+
x2

2
− 5x3

24
+

23x4

360
+ O

(
x5
)
6 1− x

2
+
x2

2
(B.7)

and

F−(x) = 1− x

2
− x2

6
+
x3

8
− 17x4

360
+ O

(
x5
)
> 1− x

2
− x2

6
.5 (B.8)

Finally, we justify the introduction of those auxiliary functions. Indeed, from
the definition, F−(− ln(1 − p)) = − p

ln(1−p) + p ln(1−p)
3 and F+(− ln(1 − p)) =

− p
ln(1−p) −

p ln(1−p)
3 . Moreover, from inequalities (B.3) and (B.1) in the proof of

Theorem 1.3.3 and inequalities (B.8) and (B.7), we attain:

1− − ln(1− p)
2

− ln2(1− p)
6

< W1,n,p < 1− − ln(1− p)
2

+
ln2(1− p)

2
.

Observation 4. Notice that Sn,Geo(p,L) can be treated as stochastically identical
event to (MG>L(n) < 2) ∩ (Wn,p = 1).6 An intuition behalf this stochastic
equivalent of success is as follows — first, we need to draw a number G according
to Geo (p) distribution and further we restrict the value by taking max(G,L).
Then, if all the agents have drawn identities in range [0 : L], then the truncation
does not change values of realizations. Hence if there is exactly one maximum
among them, then there is so for the truncated values. Otherwise, if there is
exactly one node i, who have drawn a realization Gi ∼ Geo (p), which exceeds or
equals to L, then the truncation affects only agent i and the changed identifier
is unique and the biggest. Conversely, if there are more such the nodes, which
drew at least value L, then theirs truncations will provide L and therefore a
collision.

B.2 Constraints of accurate GeoGLE algorithm

Lemma 17. Let n ∈ N\{1} and 0 < λ < 1. Then

0 < e−λ −
(

1− λ

n− 1

)n−1

6
λ2

2(n− 1)
.

5Both O () terms are concerned as x→ 0.
6for definition of (MG>L(n) < 2), see Section 2.9.3.



B.2. CONSTRAINTS OF ACCURATE GEOGLE ALGORITHM 183

Proof. Let us observe that from Eq. (1.4) and Newton’s Binomial Formula (see
Fact 1.2.6), we obtain:

e−λ −
(

1− λ

n− 1

)n−1

=

∞∑
k=0

(−λ)k

k!
−
n−1∑
k=0

(
n− 1

k

)(
− λ

n− 1

)k

=

n−1∑
k=2

(−λ)k

k!

1−

k−1∏
i=1

(n− 1− i)

(n− 1)k−1

+

∞∑
k=n

(−λ)k

k!
.

The above function is given by the alternating power series of form
n−1∑
k=2

(−λ)kak+

∞∑
k=n

(−λ)kbk, where ak = 1
k!

(
1−

k−1∏
i=1

(
1− i

n−1

))
and bk = 1

k! . Realize that the

product embraced in the formula for ak can be easily bounded by 1 or its first
factor, so for k ∈ [2 : n− 2], we attain:

ak+1

ak
=

1

k + 1

(
1−

k∏
i=1

(
1− i

n−1

))
(

1−
k−1∏
i=1

(
1− i

n−1

)) =
1

k + 1

(
1−

(
1− k

n−1

) k−1∏
i=1

(
1− i

n−1

))
(

1−
k−1∏
i=1

(
1− i

n−1

))

=
1

k + 1

1 +

k
k−1∏
i=1

(
1− i

n−1

)
(n− 1)

(
1−

k−1∏
i=1

(
1− i

n−1

))


6
1

k + 1

1 +
k

(n− 1)
(

1−
(

1− 1
n−1

))
 = 1 .

Obviously bk > bk+1 for k ∈ N\[n − 1], so we would like to connect the above
monotonicity properties. Therefore we are going to check the ratio:

bn
an−1

=
1

n

1(
1−

n−2∏
i=1

(
1− i

n−1

)) 6
1

n
(

1−
(

1− 1
n−1

)) < 1 .

In a result, a concatenation of these sequences – (ak)n−1
k=2 ∪ (bl)

∞
l=n – forms a

decreasing sequence.7 Therefore e−λ −
(

1− λ
n−1

)n−1

can be represented as
Leibniz’ type series for 0 < λ < 1, so Fact 1.2.4 provides the bounds from the
formulation of this lemma.
7Remark that λ2a2 = λ2

2(n−1)
(when n = 2, the bound is given by (bk)∞k=2 sequence, so the

(strict) upper bound may be given by λ2b2 = λ2

2
= λ2

2(n−1)
); see Section 1.2.1 for definitions

of concatenation.



184 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

In here we introduce assumptions commonly used in the further part of this
appendix:

Asm.1 n ∈ N\{1}, L ∈ N and p ∈ (0, 1),

Asm.2 c ∈ (0, 4) and ε 6 c2

(c+2)3 ,

Asm.3 Pr
[
Sn,Geo(p,L)

]
> 1− ε.

Lemma 18. Let us assume (Asm.1) and (Asm.2). Then, from (Asm.3) we
entail λ <

√
(c+ 2)ε < 2

3 .

Proof. First, note that (Asm.2) bears
√

(c+ 2)ε 6 c
c+2

c<4
< 2

3 .
Realize that according to Observation 4, (MG>L(n) > 2) implies the col-

lision in GeoGLE algorithm, hence from (Asm.3), Pr[MG>L(n) > 2] < 1 −
Pr
[
Sn,Geo(p,L)

]
< ε. Now, we will show that λ < 2

3 as well. Indeed, with

(Asm.2), let us define h(c) := c2

(c+2)3 . Realize that h′(c) = 2c(c+2)3−3(c+2)2c2

(c+2)6 =
c(4−c)
(c+2)4 > 0, so for c ∈ (0, 4), h is increasing and consequently ε < lim

c→4−
h(c) =

2
27 = 0.(074). Since

((
1− λ

n−1

)n−1
)∞
n=1

is ascending sequence, we briefly see

from (2.22) that
(1 + λ)e−λ > Pr[MG>L(n) < 2] . (B.9)

Suppose for a while that λ > 2
3 and let g(λ) := (1 +λ)e−λ, which is positive

for any λ > 0. Its derivative satisfies g′(λ) = −λe−λ < 0 for λ > 0. Hence g(λ)
reaches a maximum in the domain [ 2

3 ,∞) for λ = 2
3 . Then, from (B.10), we

obtain ε > 1− (1 + λ)e−λ > 1− 5
3 exp

(
− 2

3

)
= 0.144305 . . . > 0.(074).

Let us define next auxiliary function f(λ) := λ2 1−λ
2 . We will show that

f(λ) < ε (compare with (2.23)) implies that λ <
√

(c+ 2)ε. It is clear that
f(λ) is positive for 0 < λ < 1. It is also ascending for λ ∈

(
0, 2

3

)
since f ′(λ) =

λ
2 (2−3λ) > 0. Realize that f(

√
(c+ 2)ε) = c+2

2 ε(1−
√

(c+ 2)ε). Imagine that
f(
√

(c+ 2)ε) < ε, what is equivalent to 1− 2
c+2 = c

c+2 <
√

(c+ 2)ε, so finally

ε > c2

(c+2)3 , contrary to (Asm.2), what shows that f(λ) < f(
√

(c+ 2)ε). Both

arguments are less than 2
3 , so λ <

√
(c+ 2)ε as well.

Observation 5. Let us focus on the fact, that we have concluded from (Asm.2),
that ε < 2

27 . Moreover, if Pr[MG>L(n) > 2] < ε, then ε < 2
27 entails that λ < 2

3 .
In other words, if λ > 2

3 , then, by Observation 4, (Asm.3) cannot be fulfilled.

Corollary 9. If assumptions (Asm.1), (Asm.2) and (Asm.3) are fulfilled, then

(1 + λ)e−λ > Pr[MG>L(n) < 2] > (1 + λ)

(
e−λ − λ2

2(n− 1)

)
. (B.10)

The above is a conclusion from Lemma 17 and (2.22).



B.2. CONSTRAINTS OF ACCURATE GEOGLE ALGORITHM 185

Observation 6. According to the monotonicity of function h from the proof
of Lemma 18, ε = h(c) has exactly one solution for c ∈ (0, 4). Therefore we
can denote this root by c(ε). Note that then, every c > c(ε) is appropriate for
(Asm.2), but the most strict bound for λ in the formulation of Lemma 17 is
realized by c(ε). Therefore, primarily we would like to consider only c = c(ε) to
get the most efficient constraints.

Remark that according to Observation 4, and (B.10), for any n ∈ [2 : N ],
we obtain the following lower bound for success probability:

Pr
[
Sn,Geo(p,L)

]
= W1,n,pPr[MG>L(n) < 2] > W1,n,p(1 + λ)

(
e−λ − λ2

2(n− 1)

)
= W1,n,p(1 + λ)e−λ −W1,n,p(1 + λ)

λ2

2(n− 1)
. (B.11)

Lemma 19. If (Asm.1), (Asm.2) and (Asm.3), then p < 3ε.

Proof. According to (B.11) and (B.2) from the proof of Lemma 15 we get

1− ε < Pr
[
Sn,Geo(p,L)

]
< W1,n,p < 1− p(2− p)(3− 5p)

12(1− p)
,

which shows that 12ε > p(2−p)(3−5p)
1−p . Assume for a while that p > 3ε. Then

12ε > 3ε(2−3ε)(3−15ε)
1−3ε and consequently, from Observation 5:

4 >
6− 39ε+ 45ε2

1− 3ε
= 6 +

−21ε+ 45ε2

1− 3ε
= 6− 21ε+

−18ε2

1− 3ε

> 6− 14

9
− 8

63
> 6− 106

63
> 4 ,

what shows the contradiction.

In order to provide the appropriate parameters of the algorithm we would
like to omit somehow a problematic part Λn := −W1,n,p(1+λ) λ2

2(n−1) in the lower
bound for the success probability in (B.11). Nevertheless, this part is essential
and cannot be omitted (see Lemma 17). It can be showed that it cannot be
compensated e.g. by inequality (B.3). 8 In return, we are going to bypass this
problem via the following trick — we will find an upper uniform bound C for
Λn and we will try to fulfil the condition Pr

[
Sn,Geo(p,L)

]
> 1− ε+ C instead.

Observation 7. With (Asm.1), (Asm.2) and (Asm.3), we may briefly see from
inequality (2.23) and Lemma 18 that

ε

λ2
> 1− (n− 2)(1 + λ)

2(n− 1)
> 1− 5(n− 2)

6(n− 1)
=

n+ 4

6n− 6
,

8This calculation is purely technical, do not utilize any uncommon techniques and is not
significant from a point of view of further considerations, hence it will be omitted.



186 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

so consequently

λ2 <
6n− 6

n+ 4
ε 6 (n− 1)ε .

Therefore from (2.23) once again and Observation 5, we may obtain:

(1 + λ)
λ2

2(n− 1)
<

1 +
√

6n−6
n+4

2
27

2
ε , (B.12)

what can be useful to efficiently bound the left hand side of inequality (B.12),
especially for small values of n. Note that 6n−6

n+4 < 6 for any n ∈ N and from
Lemma 18, λ2 < (c + 2)ε, where c + 2 < 6 as well. Moreover, this bound has
sense only when 6n−6

n+4 < c+2, or equivalently for n 6 4c+14
4−c . The right hand side

is ascending with respect to c, so the bigger the c, the broader is the applicability
of (B.12). Nevertheless, we should bear in mind Observation 6, so primarily we
would like c parameter to be the least possible.

Consider the beneath alternatives of (Asm.1), (Asm.2) and (Asm.3):

Asm∗.1 N ∈ N, n ∈ [2 : N ], L ∈ N and p ∈ (0, 1),

Asm∗.2 0 < ε < 2
27 and c := c(ε) ∈ (0, 4) be such that ε = c2

(c+2)3 ,

Asm∗.3 λn = (n− 1)(1− p)L <
√

(c+ 2)ε < 2
3 .

Beneath lemma shows the core idea of the aforementioned trick:

Lemma 20. Assume (Asm∗.1), (Asm∗.2) and (Asm.3). Moreover, let us de-
note

C(n, ε) := (1 +
√

(c+ 2)ε)
(c+ 2)ε

2(n− 1)
.9 (B.13)

Then

(∀ n ∈ [2 : N ]) Pr
[
Sn,Geo(p,L)

]
+ C(N, ε) >W1,n,p(1 + λn)e−λn . (B.14)

Proof. Recall that we treat λ as a function of parameters n, q and L. However,
let as fix q and L for a while. Recall that λn = (n − 1)(1 − p)L. First of all,

realize that λ2
n

2(n−1) = (n−1)q2L

2 , so it is positive and, perversely, it is ascending
with respect to n. Thence, after taking into account that W1,n,p < 1, we briefly
see that from Lemma 18 we procure:

W1,n,p(1 + λn)
λ2
n

2(n− 1)
6 (1 +

√
(c+ 2)ε)

(c+ 2)ε

2(N − 1)
. (B.15)

Now, from (B.11) and (B.15) we simply gather the property (B.14).

Observation 8. Assume (Asm∗.1), (Asm∗.2) and (Asm∗.3). Realize that
(B.15) is fulfilled, since (Asm∗.3) interchanged Lemma 18. Therefore, from
(B.13), (B.15) and Lemma 20 we conclude that(
W1,n,p(1 + λn)e−λn > 1− ε+ C(N, ε)

)
⇒
(
Pr
[
Sn,Geo(p,L)

]
> 1− ε

)
. (B.16)

9Recall that by Observation 6 and Observation 5, c is unique and is only dependent on ε,
so c is not listed as an argument of C.



B.3. MAXIMAL NUMBER OF DEVICES — A CASE N = N 187

Remark Realize that W1,n,p(1 + λn)e−λn < 1, so if C(N, ε) > ε, then the
condition of (B.16) cannot be fulfilled. With (Asm∗.2), C(N, ε) = 2c+2

c+2
(c+2)ε
2(N−1) =

(c+1)ε
N−1 , so C(N, ε) < ε, whenever N > c + 2. However, note that for N 6 6,

we may use different uniform bound C̃, which takes Observation 7 into account
instead of the general bound C. Indeed, by (B.12), we can use alternatively:

W1,n,p(1 + λn)
λ2
n

2(n− 1)
6

1 +
√

6N−6
N+4

2
27

2
ε =: C̃(N, ε) .

Note that C̃(N, ε) < 5
6ε, for any N ∈ N. Therefore, we are always able to

guarantee

Corollary 10. min(C(N, ε), C̃(N, ε)) < ε.

Remark Let us assume for a while that min(C(N, ε), C̃(N, ε)) ≈ 5
6ε. In-

tuitively it means that we are going to provide almost
(
1− ε

6

)
-reliable leader

election instead of (1−ε)-reliable one. According to Section 2.5.6, then we need
approximately at least lg 6 bits more to provide such the LEA. Hence we are
rather interested in more efficient bounds min(C(N, ε), C̃(N, ε)). On the other
hand, we have to bear in mind, that in practise we are usually interested in big
parameter N (e.g. N = 109) and small parameter ε (e.g. ε = 10−10), which,
according to (Asm∗.2) gives small values of c (c ∼

√
ε, as ε→ 0+). In such the

case, C(N, ε)� ε, so then this detriment is negligible.10

Realize that from inequality (B.8) and Lemma 19 we get

W1,n,p > 1+
ln(1− p)

2
− ln(1− p)2

6
> 1+

ln(1− p)
2

(
1− ln(1− 3ε)

3

)
. (B.17)

Thence, let us define the last factor as:

τ :=

(
1− ln(1− 3ε)

3

)
= 1 + ε+ 1.5ε2 + O

(
ε3
)

(B.18)

as ε→ 0+.11

B.3 Maximal number of devices — a case n = N

Our goal is to find such the parameter p, which minimizes the number of needed
rounds K. Naturally, then the image of the geometric draw has L + 1 = 2K

elements (the less L is, the less is the probability Pr[MG>L(n) < 2]). Moreover,
we would like to show that if the algorithm is accurate for n = N devices, then
is so for n < N processors. Therefore, from now until the end of this section,

10Otherwise we may always assume bigger N that demanded. C(N, ε) should be treated
then as inefficient approximation of deficiency of unreliability of algorithm.
11The approximation is given by a truncation of Taylor series from Eq. (1.5)



188 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

we assume that n = N and we try to establish such the parameters p and L
that the GeoGLE algorithm is accurate. Moreover, we may assume that p, and
consequently λ, are functions of L parameter. As long as n = N is fixed, we
may write that λ(L) = (N − 1)(1− p(L))L, so

−
ln
(
λ(L)
N−1

)
L

= − ln(1− p(L)) . (B.19)

A statement of Theorem 2.8.1, exactly for the number of devices equals to the
capacity of the network is given as follows:

Theorem B.3.1. Assume N ∈ N, (Asm∗.2) and (Asm∗.3). Moreover, let

1. C(N, ε) = (1 +
√

(c+ 2)ε) (c+2)ε
2(N−1)

2. C̃(N, ε) =
1+
√

6N−6
N+4

2
27

2 ε,

3. ε̃ = ε−min(C(N, ε), C̃(N, ε)),

4. τ = 1− ln(1−3ε)
3 ,

5. K =

lg

1−
W−1

(
− 2ε̃

e2(N − 1)2

)
4ε̃


,

6. L = 2K − 1,

7. p = 1−

(
−2W0

(
−
√

τ
8L

)
N − 1

) 1
L

.

Then Pr
[
SN,Geo(p,L)

]
> 1− ε.

Proof. Realize that (Asm∗.1) is satisfied.12 Now, we are going to consider the
right hand side of the inequality (B.14) for n = N , then apply (B.17) and
substitute (B.18) and (B.19) in order to obtain:

W1,N,p(1 + λ)e−λ >

1 + τ
ln
(

λ
N−1

)
2L

 (1 + λ)e−λ

> τ
ln
(

λ
N−1

)
2L

+ (1 + λ)e−λ .

(B.20)

12Note that K ∈ N, what follows easily from the fact that W−1(x) < −1 for x ∈
(
− 1
e
, 0
)

(see Section 1.2.12).



B.3. MAXIMAL NUMBER OF DEVICES — A CASE N = N 189

Therefore let us define

s(λ;L) := τ
ln
(

λ
N−1

)
2L

+ (1 + λ)e−λ . (B.21)

First of all, realize that we think of s as the function of argument λ and a
parameter L. Note that, if we do not change λ and increase L, then both
the probability of success and s(λ;L) increase. However, first of all, we should
minimize the number of bits K. Therefore we should always choose L of the
form 2K − 1 and we are interested in maximizing the function s with respect to
λ, for some fixed unknown parameter L, which will be established later. This
way we will optimize the difference between our approximation and the actual
probability of success. Let us compute the following derivative:

∂

∂λ
s(λ;L) =

τ

2λL
+ e−λ − (1 + λ)e−λ =

τ

2λL
− λe−λ .

If ∂
∂λs(λ;L) = 0, then τ

2L = λ2e−λ, or equivalently: −
√
τ√

8L
= −λ2 e

−λ2 . Using

W -Lambert function, λ(L) = −2W
(
−
√
τ√

8L

)
. The argument of W -Lambert

multi-function is negative, so there are two possible solutions of this equation.
Note that since ε < 2

27 , then K > −
⌈
(lg
(

27
2

)⌉
= 4, so L > 24 − 1 = 15.

Moreover, realize that from Eq. (B.19) emerges:

λ = (N − 1)

1−
ln
(

(N − 1)
√

2L
)

L

L

6 (N − 1) exp
(
− ln

(
(N − 1)

√
2L
))

=
1√
2L

6
1√
30

<
2

3
.

Thence we know that W
(
−
√
τ√

8L

)
> − 1

3 , so we need to use the positive branch

of W-Lambert function (see Section 1.2.12). In particular, from formula (1.8)
we get

W0

(
−
√
τ√

8L

)
=

∞∑
i=1

(−1)i−1 ii−2

(i− 1)!

(
−
√
τ√

8L

)i
= −

∞∑
i=1

ii−2

(i− 1)!

(√
τ

8L

)i
= −

√
τ

8L
− τ

8L
− 3

2

( τ

8L

) 3
2 − 8

3

( τ

8L

)2

+ O
(
L−

5
2

)
< −

√
τ

8L
,

as L→∞.13 The beneath calculation shows the concavity of s with respect to
λ:

∂2

∂λ2
s(λ;L) = − τ

2λ2L
+ λe−λ − e−λ = − τ

2λ2L
− (1− λ)e−λ < 0 ,

13Note that τ → 1 as ε→ 0+ according to (B.18). The inequality can be straightforwardly
obtained from the concavity of W0 and the derivative W ′0(0) = 1. Note that according
to Section 2.5.6 or Section 2.6.4 and observation that L = 2K − 1, we can conclude that
L+ 1 > 1

ε
, so when ε is close to 0, then the approximation is relatively efficient.



190 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

because we consider only 0 < λ < 2
3 .

Hence the maximal value of s is obtained for λ(L) = −2W0

(
−
√
τ√

8L

)
>
√

τ
2L

and

W1,N,p(1 + λ)e−λ > s

(
−2W0

(
−
√
τ√

2L
;L

))
> s

( √
τ√

2L
;L

)

=
τ ln

( √
τ

(N−1)
√

2L

)
2L

+

(
1 +

√
τ√

2L

)
e
−
√
τ√
2L

> −τ
ln
(

(N−1)
√

2L√
τ

)
2L

+

(
1 +

√
τ√

2L

)(
1−

√
τ√

2L

)

= 1− τ
ln
(

(N−1)
√

2L√
τ

)
2L

− τ

2L
.

(B.22)

We desire to keep the probability of success above 1− ε, so according to Obser-
vation 8, we want to solve the following inequality:

ε̃ > τ
ln
(

(N−1)
√

2L√
τ

)
2L

+
τ

2L
=

τ

2L
ln

(
e(N − 1)

√
2L√

τ

)
(B.23)

or equivalently

− τ

e2(N − 1)22L
ln

(
e2(N − 1)22L

τ

)
>

−2ε̃

e2(N − 1)2
=: H(ε̃) .14

Let `(L) := − ln
(
e2(N−1)22L

τ

)
for a while. Then, we can rewrite the above in-

equality as `(L)e`(L) > H(ε̃). Realize that `(L) < −1, so `(L) can be constrained
in terms of H function in a language of the alternative branch of W -Lambert
multi-function — `(L) 6 W−1(H(ε̃)) < −1. We exponentiate both sides of
inequality, then multiply by W−1(H(ε̃)) to find out that

H(ε̃) = W−1 (H(ε̃)) eW−1(H(ε̃)) 6W−1 (H(ε̃)) e`(L)

or explicitly

− 2ε̃

e2(N − 1)2
6W−1

(
− 2ε̃

e2(N − 1)2

)
τ

(N − 1)2e22L
,

so L > −
τW−1

(
− 2ε̃
e2(N−1)2

)
4ε̃

and therefore:

2K > 1−
τW−1

(
− 2ε̃

(N−1)2e2

)
4ε̃

(1.10)
≈ 1 + τ

2 + 2 ln(N − 1)− ln(2ε̃)

4ε̃
.

14H does not treat N as an argument, since it is only considered in this section (where N
is fixed).



B.4. PROOF OF THEOREM 2.8.1 FOR N < N 191

Hence K should be attained as the smallest natural number, which fulfils the
above inequality. Then we put L = 2K − 1. Moreover, from (B.19), we obtain:

p = 1−
(

λ(L)

(N − 1)

) 1
L

= 1−

(
−2W0

(
−
√

τ
8L

)
N − 1

) 1
L

.

Observation 8 ends the proof of Theorem B.3.1.

B.4 Proof of Theorem 2.8.1 for n < N

In this part we show that parameters established in Section B.3, in Theo-
rem B.3.1 are also appropriate for n < N and in conclusion, Theorem 2.8.1
is satisfied.

Proof of Theorem 2.8.1. From (B.17) and Observation 4, we obtain

Pr
[
Sn,Geo(p,L)

]
= W1,n,pPr[MG>L(n) < 2]

>

(
1− − ln(1− p)

2
− ln(1− p)2

6

)
Pr[MG>L(n) < 2] .

(B.24)

Thence let us define

χn,p,L :=

(
1− − ln(1− p)

2
− ln(1− p)2

6

)
Pr[MG>L(n) < 2]

and ξk =
(

1− − ln(1−p)
2 − ln(1−p)2

6

) (
1− qL

)N−k−1
for k ∈ [N − 1].15 We claim

that χn,p,L is a decreasing sequence with respect to n for n ∈ [N ] when p and
L are fixed. Namely, from Proposition 1, Lemma 18 and Weierstrass’ Product
Inequality (Theorem 1.4.2), we have

χN,p,L − χN−k,p,L = ξk

[(
1 + (N − 1)qL

) (
1− qL

)k − (1 + (N − k − 1)qL
)]

WPI
6 ξk[

(
1 + (N − 1)qL

)(
1− kqL +

k(k − 1)

2
q2L

)
−
(
1 + (N − k − 1)qL

)
] <

kq2Lξk

(
−(N − 1) +

(1 + λ)(N − 1)

2

)
= (N − 1)kq2Lξk

λ− 1

2

Lem.18
< 0 .

In Section B.3, we have already proved that

χN,p,L > s(λN ;L)−min(C(N, ε), C̃(N, ε)) > 1− ε .

Consequently, for n ∈ [N ], Pr
[
Sn,Geo(p,L)

]
> χn,p,L > χN,p,L > 1− ε.

15Note that ξk is defined in such a way, that it is not dependent on n. This shows the
necessity of using (B.17) in (B.24).



192 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

Final remarks

It worth to mention that we proved that, for fixed p and L, the sequence χn,p,L
is monotonic with respect to n, as n 6 N . However it does not imply that the
similar fact is true for the sequence Pr

[
Sn,Geo(p,L)

]
. In Figure B.1 we present

a comparison of Pr
[
Sn,Geo(0.012423...,29−1)

]
and χn,0.012423...,29−1 for n ∈ [20].16

One may realize that with p = 0.012423 . . .,

Pr
[
S2,Geo(p,29−1)

]
< Pr

[
S3,Geo(p,29−1)

]
> Pr

[
S4,Geo(p,29−1)

]
,

so indeed the probability of success does not have to be monotonic. Naturally,
for all n ∈ [20], a condition

Pr
[
Sn,Geo(0.012423...,29−1)

]
> χn,0.012423...,29−1

is satisfied, in accordance with the proof of Theorem 2.8.1. It worth to note
that the differences between those two sequences are relatively big, however it
is an aftermath of quite big fluctuations of W1,n,0.012423... (see Theorem 1.3.3).

Figure B.1: Comparison of probability of success of GeoGLE algorithm ac-
cording to Geo

(
0.012423 . . . , 29 − 1

)
distribution in urn model and elements

χn,0.012423...,29−1.

In Section B.2 we have showed that both C(n, ε) and C̃(n, ε) are increasing
functions with respect to n parameter, however we do not know anything about
monotonicity of s(λn;L) with respect to n, so the conclusion of the correctness
for n < N is not straightforward.

16Realize that Pr
[
S1,Geo(0.012423...,29−1)

]
is obviously 1, since there is no other station,

which can force the only one to fall asleep.



B.5. IS IT WORTH TO EXTEND AGENTS’ MEMORY BY 1 BIT? 193

B.5 Is it worth to extend agents’ memory by 1
bit?

Now, let us try to answer a question: how much should we increase the capacity
of the network N in order to increase K by 1? Consider a case when capacity
of the network changes from some N assumed a priori to some N∗, which is
sufficient to increase the number of rounds K by 1 (i.e. when we replace N by
N∗ in Theorem 2.8.1). Moreover, when ε ≈ ε̃, then it is justified to substitute
ε̃ by ε in (2.20) in order to simplify a difference in efficiency rate for networks
with capacities N∗ and N (and the same ε):

lg

(
ln

(
eN∗√

2ε̃

)
− lg

(
ln

(
eN√

2ε̃

)))
≈ lg

 ln
(
eN∗√

2ε̃

)
ln
(
eN√

2ε̃

)
 .

Assuming ε ≈ ε̃, the right hand side of above approximation is 1 whenever
N∗ = eN2

√
2ε

. Therefore, a function B(N ; ε) := eN2√
2(ε−C(N,ε))

may be used to

provide an approximation of the capacity of the network, for which the number
of rounds increases by 1 with respect to the network defined by parameters N
and ε. 17 We can use the k-times composition of function B(N ; ε)18 to increase
the number of bits by k.

Note that the closer ε̃(N, ε) and ε̃(B(N ; ε), ε) are to ε, the more efficient
the approximation become. This is the effect of reduced impact of error, which
arise during the substitution ε by ε̃ in (2.20).

In Table B.1, we can see how K depends on the capacity of the network N
and mistake frequency ε. Note that in Table B.1 the transformation B(N, ε)
usually increases the number of bits by 1, as expected. However, in two cases,
this number remains the same. Such the situation suggests that B(N, ε) slightly
underestimate the capacity, which doubles L. In Table B.1 we also provided
parameters ε̃. One can see, that when ε gets smaller, then the fraction ε̃

ε slightly
increases. Also, this ratio raises as the capacity of the network N gets higher.
Both tendencies can also be seen in Table 2.1. Note also, that − lg

(
10−3

)
≈ 10

and − lg
(
10−6

)
≈ 20, so in the cases compared in Table B.1, when N < 1010,

then there are at most 4 additional bits needed with respect to the minimal
threshold of −dlg(ε)e (compare with Section 2.5.6 and Section 2.6.4).

17C(N∗, ε) < C(N, ε), so the affirmation of the approximation ε ≈ ε̃ for parameter N ,
entails the same for capacity N∗.
18Here, ε is a parameter and N is an argument, so the compositions are taken with respect

to the N argument.



194 APPENDIX B. THE PROOF OF THEOREM 2.8.1 AND REMARKS

Initial parameters x =
⌈
eN2
√

2ε̃

⌉
ε ε̃(N, ε) N K ε̃(x, ε) x K

10−3 8.78227...·10−4 10 13 9.99831...·10−4 6486 14

10−3 9.42318...·10−4 20 13 9.99956...·10−4 25047 14

10−3 9.77634...·10−4 50 13 9.99993...·10−4 153685 14

10−3 9.88930...·10−4 100 13 9.99998...·10−4 611219 14

10−3 9.94493...·10−4 200 13 9.99999...·10−4 2438028 14

10−3 9.97804...·10−4 500 13 9.99999...·10−4 1.52124...·107 14

10−3 9.98903...·10−4 1000 13 9.99999...·10−4 6.08160...·107 14

10−3 9.99452...·10−4 2000 13 9.99999...·10−4 2.43197...·108 14

10−3 9.99781...·10−4 5000 13 9.99999...·10−4 1.51973...·109 14

10−3 9.99890...·10−4 10000 13 9.99999...·10−4 6.07860...·109 14

10−3 9.99945...·10−4 20000 13 9.99999...·10−4 2.43137...·1010 14

10−3 9.99978...·10−4 50000 14 9.99999...·10−4 1.51958...·1011 14

10−3 9.99989...·10−4 100000 14 9.99999...·10−4 6.07830...·1011 15

10−6 8.88574...·10−7 10 23 9.99995...·10−7 203907 24

10−6 9.47219...·10−7 20 23 9.99999...·10−7 789977 24

10−6 9.79534...·10−7 50 23 9.99999...·10−7 4.855230 24

10−6 9.89870...·10−7 100 23 9.99999...·10−7 1.93193...·107 24

10−6 9.94961...·10−7 200 23 9.99999...·10−7 7.70791...·107 24

10−6 9.97990...·10−7 500 23 9.99999...·10−7 4.81012...·108 24

10−6 9.98996...·10−7 1000 23 9.99999...·10−7 1.92308...·109 24

10−6 9.99498...·10−7 2000 24 9.99999...·10−7 7.69039...·109 24

10−6 9.99799...·10−7 5000 24 9.99999...·10−7 4.80577...·1010 25

10−6 9.99900...·10−7 10000 24 9.99999...·10−7 1.92221...·1011 25

10−6 9.99950...·10−7 20000 24 9.99999...·10−7 7.68865...·1011 25

10−6 9.99980...·10−7 50000 24 9.99999...·10−7 4.80534...·1012 25

10−6 9.99990...·10−7 100000 24 9.99999...·10−7 1.92213...·1013 25

Table B.1: A comparison of the number of bits K with respect to different capac-
ities of a network, obtained according to Theorem 2.8.1 with ε ∈ {10−3, 10−6},
together with appropriate ε̃ parameters.



Appendix C

Limitation of specific sums

We this appendix, we are going to find upper bounds of some sums.

Lemma 21. Let p ∈
(
0, 1

2

)
. Then

n∑
a=2

(a+ 1)2pa < 9
p2

1− p
+
p2
(
3 + 2p− 3p2

)
(1− p)3

.

Proof. Denote the left hand side by υ. Then

υ =

n+1∑
a=3

a
∂pa

∂p
=

∂

∂p

(
p

n+1∑
a=3

apa−1

)

=
∂

∂p

(
p
∂

∂p

(
n+1∑
a=3

pa

))
=

∂

∂p

(
p3 1− pn−1

1− p

)
+ p

∂2

∂p2

(
p3 1− pn−1

1− p

)
.

Now let us calculate the first derivative:

∂

∂p

(
p3 1− pn−1

1− p

)
= 3p2 1− pn−1

1− p
+ p3 1− pn−1 − (n− 1)pn−2(1− p)

(1− p)2

= 3p2 1− pn−1

1− p
+ p3 1− pn−2((n− 1)− (n− 2)p)

(1− p)2
.

Then, the second one:

∂2

∂p2

(
p3 1− pn−1

1− p

)
=

∂

∂p

(
3p2 1− pn−1

1− p
+ p3 1− pn−2((n− 1)− (n− 2)p)

(1− p)2

)
= 6p

1− pn−1

1− p
+ 3p2 1− pn−2((n− 1)− (n− 2)p)

(1− p)2

+ 3p2 1− pn−2((n− 1)− (n− 2)p)

(1− p)2

+
p3

(1− p)4

(
−pn−3(n− 2)((n− 1)− (n− 2)p)(1− p)2

+2(1− p)
(
1− pn−2((n− 1)− (n− 2)p)

))
= . . .

195



196 APPENDIX C. LIMITATION OF SPECIFIC SUMS

. . . = 6p
1− pn−1

1− p
+ 6p2 1− pn−2((n− 1)− (n− 2)p)

(1− p)2

− p3

(1− p)2
pn−3(n− 2)((n− 1)− (n− 2)p)

+
p3

(1− p)3
2
(
1− pn−2((n− 1)− (n− 2)p)

)
.

Now, one can easily calculate υ, however, let us realize that (n− 2)p < n−2
2 <

n− 1, so

υ <
3p2

1− p
+

p3

(1− p)2
+ p

(
6p

1− p
+

6p2

(1− p)2
+

2p3

(1− p)3

)
=

9p2

1− p
+

7p3

(1− p)2
+

2p4

(1− p)3
=

9p2 − 11p3 + 4p4

(1− p)3
.

Lemma 22. Let p ∈
(
0, 1

2

)
. Then

n∑
a=2

(
pa−1 +

(a+ 1)2pa ln 2

12

)
<

p

(1− p)2
.

Proof. Denote the sum by ξ. Then From Lemma 21 we get

ξ =

(
p

1− pn−1

1− p
+ ln 2

9p2 − 11p3 + 4p4

12(1− p)3

)
<
p+ p2( 3 ln 2

4 − 2) + p3(1− 11 ln 2
12 ) + p4 ln 2

3

(1− p)3

=
p− p2 + p2

[
3 ln 2

4 − 1 + p(1− 11 ln 2
12 ) + p2 ln 2

3

]
(1− p)3

<
p− p2

(1− p)3
=

p

(1− p)2
,

because g(x) := 3 ln 2
4 −1+x(1− 11 ln 2

12 )+x2 ln 2
3 is ascending in interval (0, 0.5).1

and g(0.5) = 3 ln 2
8 − 1

2 < 0.

1Since 1− 11 ln 2
12

> 0 and ln 2
3
> 0.



Appendix D

Special cases of Power Law
of Update

This appendix is devoted to rectifications of results from Section 3.3 for linear
and sublinear cases.

D.1 Specific linear case

We begin this section with the solution of some recurrence relation for α = 1:

Lemma 23. Suppose that 0 < g 6 2, αn = min
(
1, gn

)
, E[K0] = 0 and

E[Kn+1] = 1 + (1− g
n+1 )E[Kn] for each n ∈ N0. Then

E[Kn] =
n+ 1

g + 1
+ (−1)n+1

(
g−1
n

)
g + 1

. (D.1)

Let us note that originally the above formula was obtained via technique from
next Section D.2. This experience let us find slightly shorter proof, which we
derived thanks to a method utilizing Z-transform.1 However, the most concise
proof can be done by an easy induction:

Proof. For our convenience, we denote xn := E[Kn]. Note that x0 = 0. More-
over, when we assume that Eq. (D.1) is fulfilled for some n ∈ N0, then by
definitions from Section 1.2.8 we get:

1 +

(
1− g

n+ 1

)
xn = 1 +

n+ 1

g + 1
− (−1)n

(
g−1
n

)
g + 1

− g

g + 1
− (−1)n+1

(
g−1
n

)
g + 1

g

n+ 1

=
n+ 2

g + 1
− (−1)n+1

(
g−1
n

)
g + 1

(
g

n+ 1
− n+ 1

n+ 1

)
=
n+ 2

g + 1
− (−1)n+1

(
g−1
n+1

)
g + 1

.

1For a definition and useful techniques see [67].

197



198 APPENDIX D. SPECIAL CASES OF POWER LAW OF UPDATE

Therefore E[Kn+1] satisfies Eq. (D.1) as well, what ends the proof.

Nevertheless, for a completeness, we also attach the modified version of Z-
transform method.2

Proof. Note that when g 6 2, then n > g− 1 implies n > 1, hence the foregoing
formula: xn+1 = 1 + (1− g

n+1 )xn is satisfied for all n ∈ N.
Realize that then we can rewrite the previous relation to

(n+ 1)xn+1 = (n+ 1) + nxn + (1− g)xn . (D.2)

Let us consider the function f(z) =
∞∑
n=0

xnz
n,3 which is modified Z-transform

of (xn)n. Notice that 1 6 E[Kn] = xn 6 n, hence the modified Z-transform is
convergent for |z| < 1.

From Eq. (D.2) with x0 = 0 we can get:

∞∑
n=0

(n+ 1)xn+1z
n =

∞∑
n=0

(n+ 1)zn +

∞∑
n=0

nxnz
n + (1− g)

∞∑
n=0

xnz
n .

Since (n+ 1)zn = ∂
∂z z

n+1 and nzn = z ∂
∂z z

n, we obtain:

∂

∂z
(f(z)− x0) =

∂

∂z

z

1− z
+ z

∂

∂z
f(z) + (1− g)f(z) .

Note that ∂
∂z

z
1−z = 1

(1−z)2 . We transmit all the expressions with ∂
∂z f(z) and

f(z) on the left side and all the others on the right hand size of the equation
and further we multiply both sides by (1− z)−g:

(1− z)1−g ∂

∂z
f(z)− 1− g

1− z
(1− z)1−gf(z) =

1

(1− z)g+2
.

Realize that ∂
∂z (1− z)1−g = − 1−g

1−z (1− z)1−g, therefore

∂

∂z
((1− z)1−gf(z) =

1

(1− z)g+2
.

We integrate both sides of the above to obtain

f(z) = (1− z)g−1

z∫
0

1

(1− t)g+2
dt = (1− z)g−1

(
(1− z)−g−1

g + 1
− 1

g + 1

)

=
(1− z)−2

(g + 1)
− (1− z)g−1 .

2Namely, we declare a series with terms zn instead of z−n.
3We assume that x0 = 0 in order to extend the applicability of Eq. (D.2) to n ∈ N0.



D.2. HEURISTIC RECURSIVE APPROACH WITH FORMAL SERIES 199

Note, that we have already showed that (1 − z)−2 =
∞∑
n=0

(n + 1)zn, so from

Fact 1.2.6 we finally attain

[zn]f(z) = xn =
n+ 1

1 + g
− (−1)n

(
g−1
n

)
g + 1

.

Theorem D.1.1. Suppose that 0 < g 6 2 or g ∈ N and αn = min
(

1, g
n+1

)
.

Then

E[Kn] =
1

1 + g

(
(n+ 1)− n−g Γ(g) sin(gπ)

π
+ O

(
n−1−g) ,)

as n→∞.

Proof. Suppose first that 0 < g 6 2. As we mentioned in the proof of Lemma 23,
the assumption 0 < g 6 2 entails αn = g

n+1 for each n ∈ N. Therefore we may
use Lemma 23 directly. The following follows from Fact 1.2.7(

g − 1

n

)
= (−1)n+1 Γ(g) sin(π(n− g + 1))

πng
+ O

(
n−g−1

)
,

as n→∞.
Realize that sin(π(n−g+1)) = sin(π(n+1)) cos(πg)−sin(πg) cos(π(n+1)) =

(−1)n+2 sin(πg), so we finally get

E[Kn] =
n+ 1

1 + g
− n−g Γ(g) sin(gπ)

(1 + g)π
+ O

(
n−1−g) ,

as n→∞.

If the parameter g is greater that 2, then for n 6 g − 1 we have αn = 1,
hence if n 6 bg − 1c then we have Kn = 1. Therefore the recursion E[Kn+1] =
1 + (1 − g

n+1 )E[Kn] starts working from n = bgc. Note that one can utilize
Z-transform (or any similar method) in order to obtain results analogous to
Lemma 23 and Theorem D.1.1, for g > 2. For g ∈ N\{1, 2}, the result is quite
intuitive: E[Kn] = 1 for n ∈ [g] and E[Kn] = n+1

g+1 otherwise (note that the
second part coincides with the formula (D.1) in this case as well). However
(D.1) is not correct for g ∈ [2,∞)\N and the appropriate Z-transform method
leads to quite challenging formulas with incomplete Beta function.4

D.2 Heuristic recursive approach with formal
series

4See [1] for definition and properties.



200 APPENDIX D. SPECIAL CASES OF POWER LAW OF UPDATE

D.2.1 Problem for a case α = 1
2

Let us denote xn := E[Kn] for convenience. Then x1 = 1 and let us assume

αn = min
(

1, g√
n

)
, hence according to Theorem 3.3.1, we get

xn+1 = 1 +

(
1− g√

n+ 1

)
xn (D.3)

for n > dg2e− 1. As we have seen in Section 3.3.5, xn ∼
√
n
g , as n→∞. In this

section we are going to find much better asymptotics.

Solution

At first, realize that there is no Laurent series (see Section 1.2.4 for definition),
which satisfies (D.3), as n→∞. Indeed, if there is one, then its application to
(D.3) results in an appearance of monomials of the form ckn

k+ 1
2 . However, then

we can obtain that all the coefficients of Laurent series are zeros, conversely to
x1 = 1.

Therefore let us postulate the foregoing form of a solution:

xn =

∞∑
k=0

akn
1
2−

k
2 . (D.4)

We evaluate (D.3) with (D.4). Let us start with simplifying both sides:

xn+1 =

∞∑
k=0

ak(n+ 1)
1
2−

k
2 =

∞∑
k=0

akn
1
2−

k
2

(
1 +

1

n

) 1
2−

k
2

Fact1.2.6
=

∞∑
k=0

akn
1
2−

k
2

∞∑
s=0

( 1
2 −

k
2

s

)
n−s

and

1 +

(
1− g√

n+ 1

)
xn = 1 +

∞∑
k=0

akn
1
2−

k
2 −

∞∑
k=0

gakn
− k2

(
1 +

1

n

)− 1
2

Fact1.2.6
= 1 +

∞∑
k=0

akn
1
2−

k
2 −

∞∑
k=0

gakn
− k2

∞∑
s=0

(
− 1

2

s

)
n−s .

A comparison of both formulas provides:

∞∑
k=0

∞∑
s=0

( 1
2 −

k
2

s

)
akn

1
2−

k
2−s = 1 +

∞∑
k=0

akn
1
2−

k
2 −

∞∑
k=0

∞∑
s=0

(
− 1

2

s

)
gakn

− k2−s

(D.5)

Let us consider the above formulas formally. Thence we are capable to swap the
series when needed. Note that, when we extract an element of the second series



D.2. HEURISTIC RECURSIVE APPROACH WITH FORMAL SERIES 201

corresponding to s = 0 on the left hand side of Eq. (D.5), we obtain exactly one
of the series from the right hand side of this formula, so we simply reduce them.
We divide Eq. (D.5) in a system of two equations – one with integer powers of
n – and the second with non-integer ones. This way we receive the foregoing
expressions:

∞∑
k=0

∞∑
s=1

( 1
2 − k
s

)
a2kn

1
2−k−s = −

∞∑
k=0

∞∑
s=0

(
− 1

2

s

)
ga2k+1n

−k− 1
2−s ,

∞∑
k=0

∞∑
s=1

(
−k
s

)
a2k+1n

−k−s = 1−
∞∑
k=0

∞∑
s=0

(
− 1

2

s

)
ga2kn

−k−s .

Now, we rearrange the both formulas to the following form:

∞∑
k=0

ga2k+1n
−k− 1

2 +

∞∑
k=0

(
1

2
− k
)
a2kn

−k− 1
2

= −
∞∑
k=0

∞∑
s=1

[(
− 1

2

s

)
ga2k+1n

−k− 1
2−s +

( 1
2 − k
s+ 1

)
a2kn

− 1
2−k−s

]
,

∞∑
k=0

ga2kn
−k= 1−

∞∑
k=0

∞∑
s=1

[(
−k
s

)
a2k+1n

−k−s +

(
− 1

2

s

)
ga2kn

−k−s
]
.

Now, for each r ∈ N0 we extract terms with n−r−
1
2 from the upper equation

and n−r from the latter one and obtain a system:

[
g 0

1
2 − r g

][
a2r

a2r+1

]
=


11{0} (r)−

r∑
s=1

[(
−r + s

s

)
a2r−2s+1 +

(
− 1

2

s

)
ga2r−2s

]
−

r∑
s=1

[(
− 1

2

s

)
ga2r−2s+1 +

( 1
2 − r + s

s+ 1

)
a2r−2s

]
 .

The most left matrix of the above equation is triangular, hence obviously in-
vertible. Note that on the right hand side of the above equation, the coefficients
ai appears only for i < 2r. Therefore, the above formula provide a recursive
step. When r = 0, we attain simply[

g 0
1
2 g

][
a0

a1

]
=

[
1
0

]
.

Thence a0 = 1
g and a1 = − 1

2ga0 = − 1
2g2 . Also this shows that the recurrence

is well-defined, what implies that (D.4) is appropriate. We can easily find the
first coefficients and, for instance, obtain the beneath asymptotics

xn = E[Kn] =

√
n

g
− 1

2g2
+

1

2g
√
n
− 1

8g2n
+ O

(
n−

3
2

)
.



202 APPENDIX D. SPECIAL CASES OF POWER LAW OF UPDATE

D.2.2 Problem for cases α = r
q

Let us extend the solution from Section D.2.1 to a case, when α ∈ (0, 1) ∩ Q.
Using the same notation as in Section D.2.1, we have x1 = 1 and

xn+1 = 1 +
(

1− g(n+ 1)−
r
q

)
xn , (D.6)

where n >
⌈
g
q
r

⌉
− 1, q ∈ N, r ∈ [q − 1] and GCD(r, q) = 1 is satisfied. 5 In

Section 3.3.5 we have showed that xn ∼ n
r
q and now we are going to find much

better asymptotics.

Solution

Analogously to the solution from Section D.2.1, we postulate the foregoing form
of a solution:

xn =

∞∑
k=0

akn
r
q−

k
q . (D.7)

We evaluate (D.6) with (D.7). Simplifications and erasing the same components
led to an equation similar to (D.5):

∞∑
k=0

∞∑
s=1

( r
q −

k
q

s

)
akn

r
q−

k
q−s = 1−

∞∑
k=0

∞∑
s=0

(
− rq
s

)
gakn

− kq−s . (D.8)

Let
([
nN−

p
q

]
(.)
)
p∈[0:q−1]

be the sequence of n-term extractors (see Section 1.2.1

for definition).6 We divide (D.8) into q equations – every corresponded to one of
above extractors – what results in receiving the foregoing system of q equations:

∞∑
k=0

∞∑
s=1

(
−k
s

)
aqk+rn

−k−s= 1−
∞∑
k=0

∞∑
s=0

(
− rq
s

)
gaqkn

−k−s ,

∞∑
k=0

∞∑
s=1

(
−k − p

q

s

)
aqk+r+pn

−k−s− pq=−
∞∑
k=0

∞∑
s=0

(
− rq
s

)
gaqk+pn

−k−s− pq ,

∞∑
k=0

∞∑
s=1

( r
q − k −

p′

q

s

)
aqk+p′n

r
q−k−

p′
q −s

=−
∞∑
k=0

∞∑
s=0

(
− rq
s

)
gaq(k+1)−r+p′n

−k−s− q−rq −
p′
q ,

where p ∈ [q − r − 1] and p′ ∈ [0 : r − 1].

5See Section 1.2.1.
6Roughly speaking, each of the mentioned extractors acts like

[
n
− p
q

mod 1
]
.



D.2. HEURISTIC RECURSIVE APPROACH WITH FORMAL SERIES 203

We rearrange all the equations to the following forms:

∞∑
k=0

gaqkn
−k= 1−

∞∑
k=0

∞∑
s=1

[(
− rq
s

)
gaqk +

(
−k
s

)
aqk+r

]
n−k−s ,

∞∑
k=0

gaqk+pn
−k− pq = −

∞∑
k=0

∞∑
s=1

[(
− rq
s

)
gaqk+p +

(
−k − p

q

s

)
aqk+r+p

]
n−k−s−

p
q ,

∞∑
k=0

[
gaq(k+1)−r+p′ +

r − p′ − qk
q

aqk+p′

]
n−k−

q−r
q −

p′
q

= −
∞∑
k=0

∞∑
s=1

[(
− rq
s

)
gaq(k+1)−r+p′ +

( r
q − k −

p′

q

s+ 1

)
aqk+p′

]
n−k−s−

q−r+p′
q ,

where p ∈ [q − r − 1] and p′ ∈ [0 : r − 1].

Short remark on matrix notation Let Oi denotes a square matrix of di-
mension i× i consisting of zeros and Oi×j be a matrix of dimension i× j full of
zeros. Moreover Ii is a diagonal matrix of dimension i× i, which has only ones
on diagonal. Let diag(v) be a diagonal matrix with coordinates of a vector v on
the diagonal. When a 6 b, then [vi]

b
i=a denotes a vertical vector (1× (b−a+1)-

matrix) with coordinates va, va+1, . . . , vb.
Let us define Br,q as the block matrix:[

Or×(q−r) Oq−r
diag

(
r
q − k,

r−1
q − k, . . . ,

1
q − k

)
O(q−r)×r

]
,

ā as the vertical vector (in block matrix notation): [aqk]

[aqk+p]
q−r−1
p=1[

aq(k+1)−r+p′
]r−1

p′=0


and Ar,q := gIq + Br,q. We extract terms corresponding to n−k, n−k−

p
q or

n−k−
p′
q from every of q equations and get:

Ar,qā =



11{0} (k)−
k∑
s=1

[(
−k + s

s

)
aqk−qs+r +

(
− rq
s

)
gaqk−qs

]
[
−

k∑
s=1

[(
−k + s− p

q

s

)
aqk−qs+p+r +

(
− rq
s

)
gaqk−qs+p

]]q−r−1

p=1[
−

k∑
s=1

[( r
q − k + s− p′

q

s+ 1

)
aqk−qs+p′ +

(
− rq
s

)
gaqk−qs−r+p′

]]r−1

p′=0


,



204 APPENDIX D. SPECIAL CASES OF POWER LAW OF UPDATE

where k ∈ N0. Ar,q is the triangular matrix, hence invertible, for all r, q, so the
recurrence is well-defined, what entails that (D.7) is an appropriate from of the
solution of (D.6) with coefficients defined by above system of equations. We can
easily find the first coefficients:

a0 ap for p ∈ [q − r − 1] aq−r aq−r+p′ for p′ ∈ [r − 1] aq

1
g 0 − r

qg2 − r−p
′

qg · ap′ − r
qg

That gives the beneath asymptotics

xn = E[Kn] =
1

g
n
r
q − r

qg2
n

2r
q −1 + O

(
nmax( 3r

q −2, rq−1)
)
.

For instance, when r = 1 and q = 5, one may obtain

E[Kn] =
1

g
n

1
5 − 1

5g2
n−

3
5 − 1

5g
n−

4
5 − 3

25g2
n−

7
5 + O

(
n−

8
5

)
and when r = 2 and q = 3, we can get:

E[Kn] =
1

g
n

2
3 − 2

3g2
n

1
3 +

1

9g3
− 1

3g
n−

1
3 +

1

9g2

(
1

3g2
− 2

)
n−

2
3 + O

(
n−1

)
.

Remark Note that the method presented in Section D.2.2 can be extended
to a case r = q = 1, what provides a recursive relation:

(g + 1− k)ak = 11{0} (k)−
k∑
s=1

[(
1− k + s

s

)
+

(
−1

s

)
g

]
ak−s

for k > g − 1 and E[Kn] of the form
∞∑
k=0

akn
1−k, where αn = min

(
1, gn

)
.



Appendix E

Technical Results for
Morris Counter

For the sake of completeness, we present here proofs of all gory lemmas that
are not directly connected to Theorem 4.5.1. For convenience, some of compu-
tations are supported by Wolfram Mathematica ver.11.3 ([60]). Whenever we

obtain a result in this manner, we indicate it by W
= sign. Usually results are

precise, however in some cases, final forms are attained numerically.
Let us commence with several definitions used throughout this appendix. An

increasing sequence
k∏
i=1

(
1− 2−i

)−1
that arised in Theorem 4.5.2 will be indi-

cated by rk and we denote its limit
∞∏
i=1

(
1− 2−i

)−1
= 3.46274 . . . by R. We

often struggle with expressions of a pattern 1− 1
y , so we denote this function as

a(y) to simplify formulas.

E.1 Proofs of δ-lemmas

E.1.1 The proof of Lemma 12

Proof. At first, we want to bound a lower tail of distribution of Mn, namely
Pr[Mn 6 dlg(n)e − 5]. Here we would like to find a sufficient upper limitation
for the above probability. Assume that l 6 dlg(n)e−5. Consider the probability
that Mn has value l:

pn,l
Thm 4.5.2

6
l−1∑
j=0

2−
j(j−1)

2

(
1− 2−(l−j)

)n
rjrl−1−j 6 R2

(
1− 2−l

)n l−1∑
j=0

√
2
−j+1

6 R2 2√
2− 1

exp
(
−n2−l

)
= R2(2

√
2 + 2) exp

(
−n2−l

)
.

205



206 APPENDIX E. TECHNICAL RESULTS FOR MORRIS COUNTER

Remark that the above restraint is useless when l > lg(n) − 2, so it cannot be
employed to obtain a reasonable bound for an symmetrical upper tail. However,
the aforementioned formula will help us to limit the left tail of the distribution
of Mn:

δ1 =

dlg(n)e−5∑
l=1

Pr[Mn = l] 6 R2(2
√

2 + 2)

dlg(n)e−5∑
l=1

exp
(
−n2−l

)
6 R2(2

√
2 + 2)

∞∑
k=4

exp
(
−2k

)
6 R2(2

√
2 + 2)

∞∑
k=1

e−16k

= R2(2
√

2 + 2)
e−16

1− e−16
= 0.000006515315 . . . .

E.1.2 The proof of Lemma 13

Proof. Actual goal is to limit the upper tail, that is Pr[Mn > dlg(n)e+ 5]. Con-
sider a process X = (Xk, k ∈ [0 : n]). Let X initially follow the incrementation
rule Pr[Xk = k + 1] = 1 for k ∈ [0 : dlg ne + 1]. Afterwards, let this Markov
chain imitate the transition rule of Morris Counter, that is

Pr[Xk+1 = m+ 1|Xk = m] =
1

2m
= 1− Pr[Xk+1 = m|Xk = m]

for k > dlg(n)e + 1. Naturally, for k 6 dlg(n)e + 1, we have Xk > Mk, so we
may couple realizations of these two processes in such a way that whenever X
is incremented, then so is M and if M does not change, then X does not rise as
well.1

To abbreviate the expressions let us denote m = n− dlg(n)e − 1 and

µc = Pr[Xk+1 = dlg(n)e+ c+ 1|Xk = dlg(n)e+ c] =
1

2dlg(n)e+c = 1− νc ,

for any c ∈ Z. Moreover, let us consider a three-dimensional discrete simplex
Simk

(3) (see Section 1.2.4 for definition):
The coupling encountered above, ensures us that

δ2 6 Pr[Xn > dlg(n)e+ 5] =
∑

l̄∈Simm−3
(3)

νl12 µ2ν
l2
3 µ3ν

l3
4 µ4 6

∑
l̄∈Simm−3

(3)

1

23dlg(n)e+9

=

m−3∑
k=0

(
k + 3

2

)
1

23dlg(n)e+9
6

1

210n3

m∑
k=3

k2 − k .

1Note that X has at most the same probability of a positive incrementation as M at any
point of time.



E.2. MAIN LEMMA 207

Realize that
m∑
k=3

k = (m−2)(m+3)
2 and

m∑
k=3

k2 = (m−2)(2m2+7m+15)
6 ,2 so

δ2 6
1

210n3

1

6
(m− 2)(2m2 + 4m+ 6) =

1

3 · 210n3
(m3 −m− 6)

6
m3

3 · 210n3
6

1

3 · 210
= 0.000325521 . . . .

Note that when m < 3 (that is, when n < 7), then the above sums are empty,
but on the other hand dlg(n)e+5 > n+1, so the inequality is trivially true.

E.2 Main lemma

Auxiliary lemmas

Next two lemmas are useful in a proof of main Lemma 26:

Lemma 24. Let c > 1
y > 0 and x ∈ N. Then

a(2cy)2x > a(cy)x−1

(
a(cy) +

x

4c2y2

)
and

a(cy)x > a(2cy)2x−2

(
a(2cy)2 − x

4c2y2

)
.

Proof.

a(2cy)2x − a(cy)x =

(
1− 1

cy
+

1

4c2y2
− 1 +

1

cy

) x−1∑
i=0

a(2cy)2ia(cy)x−i−1 .

Hence we obtained two inequalities: a(2cy)2x − a(cy)x >
x

4c2y2
a(cy)x−1

and a(2cy)2x − a(cy)x 6
x

4c2y2
a(2cy)2(x−1), which imply the thesis of this

lemma.

Lemma 25. Let s ∈ Z, x ∈ N and s 6 lg
(
x
4

)
. Then a(2−sx)2x+1 < exp

(
−2s+1

)
and

a
(
2−sx

)x−1
> exp (−2s)

(
1− 22s−1 − 2s

x
− 22s−7 + 24s−3

x2

)
.

Proof. Consider a function defined on (0,∞) × Z: f1(x; s) := a (2−sx)
2x+1

=
exp(−2s+1)

(
1−O

(
x−1

))
. Realize a simple fact, that z ln(z) > z − 1 for 0 <

z 6 1. Hence(
1− 2s

x

)−2x
∂f1(x; s)

∂x

W
=

2s(2x+ 1)

x2
+ 2

(
1− 2s

x

)
ln

(
1− 2s

x

)
>

2s−1

x2
> 0

2See e.g. Faulhaber formula (1.13).



208 APPENDIX E. TECHNICAL RESULTS FOR MORRIS COUNTER

and in a consequence a (2−sx)
2x+1

< exp
(
−2s+1

)
for any reasonable s. More-

over, let

D(x; s) := 1− 22s−1 − 2s

x
− 22s−7 + 24s−3

x2

and

f2(x; s) :=
a (2−sx)

x−1

D(x; s)

W
= exp(−2s)

(
1 + O

(
x−2

))
3

Then, in a similar way

D(x; s)2

(
1− 2s

x

)−x+1
∂f2(x; s)

∂x

W
=

D(x; s)

(
2s(x− 1)

x2
(
1− 2s

x

) + ln

(
1− 2s

x

))
−
(

22s−6 + 24s−2

x3
+

22s−1 − 2s

x2

)

<

(
22s−1 − 2s

x2
+

23s − 22s

x3
(
1− 2s

x

) − 23s

3x3

)
−
(

22s−6 + 24s−2

x3
+

22s−1 − 2s

x2

)
=

23s − 22s

x3
(
1− 2s

x

) − 23s

3x3
− 22s−6 + 24s−2

x3
.

Let d := 1− 2s

x and realize that d ∈ [ 3
4 , 1) and 2s−1+d

(
− 2s

3 − 2−6 − 22s−2
)
> 0.

Indeed, if we put z = 2s, then we attain a quadratic inequality in z variable,
with determinant ∆ = 1− 5d

3 + 55d2

576 , that is negative for d ∈ [3/4, 1).

Hence
∂f2(x; s)

∂x
< 0 and consequently

a
(
2−sx

)x−1
> exp (−2s)

(
1− 22s−1 − 2s

x
− 22s−7 + 24s−3

x2

)
for any reasonable s.

E.2.1 Formulation and proof of Lemma 26

Lemma 26. The following two monotonic properties are satisfied:

a) Sequence (p2k+1,k+4)∞k=2 is descending,

b) Sequence (p2k+1,k+5)∞k=3 is ascending.

Proof. Let x = 2k and t ∈ {0, 1}. In advance we define

κ(k, t) := (−1)k+4+t2−
(k+4+t)(k+3+t)

2 rk+4+t2
−2x−1

and

τ(k, t) := [[26 |(k + t)]](−1)k+t+32−
(k+t+3)(k+t+2)

2 2rk+t+3

((
3

4

)2x+1

−
(

1

2

)x+2
)
.

3D and f2 are also defined on (0,∞)× Z.



E.2. MAIN LEMMA 209

Realize that for t ∈ {0, 1} and k > 5, |τ(k, t) + κ(k, t)| < 2−50 < 10−15. Now,
consider the differences between the consecutive elements of sequences:

p2k+1+1,k+5+t − p2k+1,k+4+t
Thm 4.5.2

= κ(k, t)+

+

k+3+t∑
i=0

(−1)i2−
i(i−1)

2 rirk+t+4−i

[(
1− 2−5−t+i

x

)2x+1

−
(

1− 2−4−t+i

x

)x+2
]

=

b k+2+t
2 c∑
i=0

[
2−i(2i−1)r2irk+t+4−2i

[
a
(
25+t−2ix

)2x+1 − a
(
24+t−2ix

)x+2
]

− 2−(2i+1)ir2i+1rk+t+3−2i

[
a
(
24+t−2ix

)2x+1 − a
(
23+t−2ix

)x+2
]]

+ (τ + κ)(k, t)

=

b k+t+2
2 c∑
i=0

2−i(2i−1)r2i+1rk+t+4−2i

[
a(22i+1)

(
a
(
25+t−2ix

)2x+1 − a
(
24+t−2ix

)x+2
)

− 2−2ia
(
24+t−2ix

) (
a
(
24+t−2ix

)2x+1 − a
(
23+t−2ix

)x+2
)]

+ τ(k, t) + κ(k, t) .

Let us define ut := 25+t−2i and

Wt(i) := a
(
22i+1

)(
a (utx)

2x+1 − a
(ut

2
x
)x+2

)
− 2−2ia

(ut
2
x
)(

a
(ut

2
x
)2x+1

− a
(ut

4
x
)x+2

)
and consider an upper bound of the last term:

Wt(i) 6 a(22i+1)

(
a(utx)2x+1 − a(utx)2x+2

(
a(utx)2 − x+ 2

u2
tx

2

))
− 2−2i

(
a
(ut

4
x
)x(

a
(ut

4
x
)

+
x+ 1
u2
t

4 x
2

)
− a

(ut
2
x
)
a
(ut

4
x
)x+2

)
W
= a(22i+1)a(utx)2x+1 1

x

(
3ut + 1

u2
t

− ut + 1

u3
tx
− 1

u3
tx

2

)
− 2−2ia

(ut
4
x
)x 1

x

(
6ut + 4

u2
t

− 28

xu2
t

+
32

x2u3
t

)
.

Note that 2i 6 k + 2 + t, so 8
x 6 ut and in consequence 6ut − 28

x > 20
x > 0.

Moreover

ut(3ut + 1)− ut + 1

x
− 1

x2
> ut

(
24

x
+ 1

)
− ut + 1

x
− 1

x2
>

7

x
+

183

x2
> 0 .

Hence

Wt(i) < a
(
22i+1

)
exp

(
− 2

ut

)
1

x

(
3ut + 1

u2
t

− ut + 1

xu3
t

− 1

x2u3
t

)
− 2−2ia

(u
4
x
)

exp

(
− 4

ut

)
D(x; 2i− 3− t) 1

x

(
6ut + 4

u2
t

− 28

xu2
t

+
32

x2u3
t

)
W
= . . .



210 APPENDIX E. TECHNICAL RESULTS FOR MORRIS COUNTER

W
= a

(
22i+1

)
exp

(
− 2

ut

)
1

x

(
3ut + 1

u2
t

− ut + 1

xu3
t

− 1

x2u3
t

)
− 2−2i

x
exp

(
− 4

ut

)[
6ut + 4

u2
t

− 32 + 48ut + 28u2
t

u4
tx

−
128 + 64ut − 703

2 u2
t + 259

4 u3
t

u6
tx

2
+

512 + 128ut − 1150u2
t + 909

2 u3
t

u7
tx

3

− 4608− 1024ut + 530u2
t

u7
tx

4
+

4096 + 16u2
t

u8
tx

5

]
=: Ut(x;ut(i)) .

Analogically we would like to establish a lower bound of Wt(i):

Wt(i) >a
(
22i+1

)(
a(utx)a

(ut
2
x
)x−1

(
a
(ut

2
x
)

+
1

u2
tx

)
− a

(ut
2
x
)x+2

)
−2−2ia

(ut
2
x
)(

a
(ut

2
x
)2x+1

− a
(ut

2
x
)2x+2

(
a
(ut

2
x
)2

− x+ 2
u2
t

4 x
2

))
W
=a
(
22i+1

)
a
(ut

2
x
)x−1 1

x

(
3ut + 1

u2
t

− 10ut + 1

u3
tx

+
8

u3
tx

2

)
(E.1)

−2−2ia
(ut

2
x
)2x+2 1

x

(
6ut + 4

u2
t

− 4ut + 8

u3
tx

− 8

u3
tx

2

)
Now from 8

x 6 ut we attain

ut(3ut + 1)− 10ut + 1

x
= ut

(
7ut
4

+
7

8

)
+ (10ut + 1)

(
ut
8
− 1

x

)
> ut

(
7ut
4

+
7

8

)
> 0 (E.2)

and

ut(6ut + 4)− 4ut + 8

x
− 8

x2
>

48ut
x

+
32

x
− 4ut + 8

x
− 8

x2
>

24

x
+

344

x2
> 0 .

Hence

Wt(i) > a
(
22i+1

)
exp

(
− 2

ut

)
D(x; 2i− 4− t) 1

x

(
3ut + 1

u2
t

− 10ut + 1

u3
tx

+
8

u3
tx

2

)
− 2−2i exp

(
− 4

ut

)
a
(ut

2
x
) 1

x

(
6ut + 4

u2
t

− 4ut + 8

u3
tx

− 8

u3
tx

2

)
W
= . . .

W
=
a
(
22i+1

)
x

exp

(
− 2

ut

)[
3ut + 1

u2
t

− 2 + 5ut + 4u2
t

u4
tx

−
2 + 4ut − 575

32 u
2
t + 387

32 u
3
t

u6
tx

2

+
2 + 20ut − 511

32 u
2
t + 261

16 u
3
t

u7
tx

3
−

16 + 1
4u

2
t

u7
tx

4

]
− 2−2i exp

(
− 4

ut

)
1

x

(
6ut + 4

u2
t

− 16ut + 16

u3
tx

+
16

u4
tx

2
+

16

u4
tx

3

)
=: Lt(x;ut(i)) .



E.2. MAIN LEMMA 211

Now we show that Wt(i) > 0 for i > 1. Indeed, from inequalities (E.1) and
(E.2) we obtain

Wt(i) >
a
(
ut
2 x
)x

xu2
t

(
a
(
22i+1

) 14ut + 7

8
− 2−2i(6ut + 4)

)
(E.3)

If i > 2, then E.3 > 1
256 (31(14ut + 7)− 96ut − 64) > 0.

In the last case, when i = 1, then ut > 8, so

E.3 >
1

64
(7(14ut + 7)− 96ut − 64) =

2ut − 15

64
>

1

64
.

Thanks to the property Wt(i) > 0 for i > 1, we may subtly neutralize the
influence of rk+5−i in the considered sum:

b k+2
2 c∑
i=0

2−i(2i−1)r2i+1rk+5−iW0(i) < rk+5

b k+2
2 c∑
i=0

2−i(2i−1)r2i+1W0(i) .

Naturally we may consider U0(x;u0(i)) instead of W0(i) numerically for i 6 4:

4∑
i=0

2−i(2i−1)r2i+1U0(x;u0(i))
W
= −8.294491525704523 · 10−6 +

0.15588

x

+
0.00407163

x2
− 0.0298032

x3
+

0.0198815

x4
− 0.00785419

x5
,

so for x > 215 (k > 15),
4∑
i=0

2−i(2i−1)r2i+1W0(i) 6 −3.53741 · 10−6. Moreover

we may bound W0(i) by a(25−2ix)2x+1 for the rest of the sum:

b k+2
2 c∑
i=5

2−i(2i−1)r2i+1a(25−2ix)2x+1 6
R 2−45e−64

1− 2−21e−192

W
= 1.5784 . . . · 10−41 ,

so p2k+1+1,k+5 − p2k+1,k+4 < 0 for k > 15.
However, according to Theorem 4.5.2, we also present the numerical values of
the sequence (p2k+1,k+4)14

k=2 in Table E.1. We can now easily see that for any
k > 2 we attained p2k+1+1,k+5 − p2k+1,k+4 < 0 .

Moreover, realize that rk+5/rk+3 < 1.1 for any k > 3, so

1∑
i=0

2−i(2i−1)r2i+11.11−iL1(x;u1(i))
W
= 0.00128843 . . .+

0.00212699 . . .

x

−0.00326251 . . .

x2
+

0.000219133

x3
− 3.50924875 . . . · 10−7

x4

For any possible x > 8 (k > 3),
1∑
i=0

2−i(2i−1)r2i+11.11−iL1(x;ut(i)) > 0.0015.

We already know that W1(i) are positive for i > 1, so p2k+1+1,k+6−p2k+1,k+5 > 0
for all k > 3.



212 APPENDIX E. TECHNICAL RESULTS FOR MORRIS COUNTER

k p2k+1,k+4 k p2k+1,k+4 k p2k+1,k+4

2 0.0000305176 . . . 7 0.0000189841 . . . 12 0.0000185484 . . .
3 0.0000256707 . . . 8 0.0000187590 . . . 13 0.0000185413 . . .
4 0.0000221583 . . . 9 0.0000186466 . . . 14 0.0000185378 . . .
5 0.0000203424 . . . 10 0.0000185904 . . .
6 0.0000194356 . . . 11 0.0000185624 . . .

Table E.1: Numerical values of the sequence (p2k+1,k+4)14
k=2.

We may use Theorem 4.5.2 once again to see that
p26+1,10

p26+1,11
= 129.454 . . . > 27

and
p27+1,11

p27+1,12
= 125.065 . . . < 27. Together with Lemma 26 we may easily attain

Claim 1 and we instantly see that it cannot be extended naturally for k < 7.

E.3 Final lemmas

Lemma 27. Let 2 6 l 6 n and assume that pn,l−i = 22−iαipn,l−i+1 for i ∈
[0 : 2] and pn+1,l−j = 22−jα′jpn+1,l−j+1 for j ∈ [0 : 1].

If 0 6 α2 < α1 < α0, then 0 < α′1 < α′0.

Proof. Realize that pn+1,l−i+1 = pn,l−i+1(1− 2−l+i−1 + 2−l+2αi) for i ∈ [0 : 2],
so for j ∈ [0 : 1],

α′j =
pn+1,l−j

22−jpn+1,l−j+1
=

pn,l−j(1− 2−l+j + 2−l+2αj+1)

22−jpn,l−j+1(1− 2−l+j−1 + 2−l+2αj)

=
αj(1− 2−l+j + 2−l+2αj+1)

1− 2−l+j−1 + 2−l+2αj
.

Assume that α′1 > α′0. Then

L := α1(1−2−l+1+2−l+2α2)(1−2−l−1+2−l+2α0) > α0(1−2−l+2−l+2α1)2 =: R.

However, contrary to the assumption,

L = α1(1− 2−l+1 + 2−2l − 2−l−1 + 2−l+2(α0 + α2)− 2−2l+3α0

− 2−2l+1α2 + 2−2l+4α0α2)

< α0(1− 2−l+1 + 2−2l) + α1(2−l+2(2α0) + 2−2l+4α0α1)

< α0(1− 2−l+1 + 2−2l + α1(2−l+3 + 2−2l+3 + 2−2l+4α1)) = R .

Lemma 28. If for some n ∈ N,
pn,n = 2nηnpn,n+1 and pn+1,n+1 = 2n+1ηn+1pn+1,n+2, then ηn < ηn+1.



E.3. FINAL LEMMAS 213

Proof.

0 = pn+1,n+1 − 2n+1ηn+1pn+1,n+2 = pn,n+1(1− 2−n−1) + pn,n2−n

− ηn+1pn,n+1 = pn,n+1(1− 2−n−1 + ηn − ηn+1) ,

but 1− 2−n−1 > 0, so ηn < ηn+1.



214 APPENDIX E. TECHNICAL RESULTS FOR MORRIS COUNTER



List of Tables

1.1 Definitions of several Bachmann—Landau symbols, as x→ x0. . 20
1.2 Several crucial values of lg∗ function. . . . . . . . . . . . . . . . . 21
1.3 First non-zero values of the Bernoulli sequence (Bn)n . . . . . . 25

2.1 Parameters p nad K provided for ε ∈ {10−6, 10−9} and several se-
lected values of capacity N , established according to Theorem 2.8.1. 93

2.2 Possible scenarios of a single run of GULE algorithm and theirs
parametrized probabilities. . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Ratios of probabilities of adjacent atoms of distribution of M27+1

variable, compared with the exponential function of the base 2. . 161
4.2 A juxtaposition of data aggregation techniques. The standard

one is based on Laplace method and the rest are based on prob-
abilistic counters. Recall that δ = 0.00033 and ϕ = 0.77351 . . .
(O () terms are provided for n→∞). . . . . . . . . . . . . . . . . 170

A.1 Elements of a sequence (q5a+b(3))5a+b, where a ∈ [0 : 5] and b ∈ [5].175
A.2 Elements of a sequence (p5a+b(3)(10))5a+b, where a ∈ [0 : 1] and

b ∈ [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.3 Elements of a sequence (p5a+b(3)(20))5a+b, where a ∈ [0 : 3] and

b ∈ [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.4 Numerical comparison of the atoms of distributions on [8], for

n = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.5 Comparison of: probabilities of successful leader election, total

variation distances and Kullback—Leibler divergences.
D states for a distribution, SD is an event of a success of leader
election algorithm in urn model, according to the distribution D. 177

A.6 Comparison of success probabilities Pr[SD] in leader elections ac-
cording to optimal distributions and theirs second approxima-
tions for n ∈ {3, 4} and L ∈ [2 : 16]. . . . . . . . . . . . . . . . . . 178

A.7 Comparison of success probabilities Pr[SD] in leader elections ac-
cording to optimal distributions and theirs second approxima-
tions for n ∈ {5, 6} and L ∈ [2 : 13]. . . . . . . . . . . . . . . . . . 178

215



216 LIST OF TABLES

B.1 A comparison of the number of bits K with respect to different
capacities of a network, obtained according to Theorem 2.8.1 with
ε ∈ {10−3, 10−6}, together with appropriate ε̃ parameters. . . . . 194

E.1 Numerical values of the sequence (p2k+1,k+4)14
k=2. . . . . . . . . . 212



List of Figures

1.1 Plots of real values of two basic branches of W -Lambert function. 24

1.2 Graphical depiction of probabilistic counter. . . . . . . . . . . . . 30

2.1 A schematic situation of Leader Election in urn model. . . . . . . 49

2.2 An example of beeping model of communication for Leader Elec-
tion in urn model for 6 devices (colorful balls) in complete net-
work. Devices previously generated messages (msg): 163, 124,
155, 169, 50 and 176 respectively (in order from top to bottom). 54

2.3 Precision of the approximation Pr
[
Sn,Uni(L)

]
≈ 1− n

2L for n = 5
and L varying from 1 to 500. For each L we carried out 5000
experiments and calculated the frequency of success. . . . . . . . 74

2.4 Comparison of simulated probabilities of success of the Splitting–
Naming algorithms with high probability (blue dots) and with
very high probability (orange squares), depending on the num-
ber of devices n ∈ [200]. For each n we executed Monte Carlo
algorithms with 105 experiments and obtained the average prob-
abilities of success. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Plot of exact probabilities of success of Geometric Green Leader
Election for n = 200, ε = 0.001, K = 13 for p ∈ [0.0009, 0.0025]. . 94

2.6 Plot of 1 − Pr
[
S100,Geo(p,223−1)

]
(denoted by q50) together with

respective confidence intervals ([q1, q99]) at confidence level 0.98,
simulated by Monte Carlo simulations with 2 · 108 repetitions for
different p from [1.3 · 10−6, 1.8 · 10−6] with stride 0.025 · 10−6. . . 95

2.7 Graphical representation of standard method of drawing a real-
ization of a random variable with Geo

(
p, 2K − 1

)
distribution.

Arrows from the urns (depicted as squares) directed downwards
denote, that the appropriate value is chosen. . . . . . . . . . . . . 96

217



218 LIST OF FIGURES

2.8 Plot of probabilities of failure (denoted by q50) together with re-
spective confidence intervals ([q1, q99]) at confidence level 0.98,
simulated by Monte Carlo algorithms with 108 repetitions, ac-
cording to GULE algorithm with K = 23 bits of memory in total,
for n = 100 devices. A number of bits devoted to the first phase
K1 is given on abscissa. GeoGLE block is provided according to
Geo

(
p, 2K1

)
distribution, with p = 0.1 ·27−K1 . The second phase

of the algorithm utilize 23−K1 bits in ULE block. . . . . . . . . 99
2.9 Comparison of simulated probabilities of success of five Atlantic

City versions of Splitting and Naming algorithms restricted to 15
bits of memory. We conducted 105 experiments for each size of
the network n ∈ [500] and each of the algorithms. . . . . . . . . . 110

2.10 Comparison of simulated probabilities of success of two Atlantic
City versions of Splitting and Naming algorithms restricted to 15
bits of memory. We conducted 3 · 105 experiments for each size
of the network n ∈ [750] and each of the algorithms. . . . . . . . 111

3.1 Schematic representation of Devil’s Staircase. Arrows denote pos-
sible transitions between states together with theirs probabilities. 118

3.2 An example of U-shaped probability mass function associated
with cumulative distribution function: 0.75F0.1 +0.25F10 for n =
100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.3 Precision of an approximation of General Electric shares’ prizes
by 250 independent copies of reservoir sampler, according to
SR(1500) distribution. . . . . . . . . . . . . . . . . . . . . . . . . 133

3.4 Precision of an approximation of General Electric shares’ prizes
by 250 independent copies of reservoir sampler, according to
Uni (1500) distribution. . . . . . . . . . . . . . . . . . . . . . . . 134

3.5 Precision of bitcoin cap approximation by 100 independent snap-
shots with update sequence αn = 0.1√

n
. . . . . . . . . . . . . . . . 149

4.1 Exact values of ε(n) parameter for n 6 160 compared with plots
of sequences − ln

(
1− 16

n

)
and − ln

(
1− 8

n

)
. . . . . . . . . . . . . 163

4.2 Values of ε(n) parameters for Morris and MaxGeo Counters com-
pared with boundaries for ε(n) for MaxGeo Counter: the lower
one — ψ(n, δ) and the upper one — φ(n, δ) (n 6 160 and δ =
0.00033). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.3 Scenario for data aggregation using probabilistic counters. We
assume that the Adversary does not have any way to extract
information from within the rectangle. . . . . . . . . . . . . . . . 168

B.1 Comparison of probability of success of GeoGLE algorithm ac-
cording to Geo

(
0.012423 . . . , 29 − 1

)
distribution in urn model

and elements χn,0.012423...,29−1. . . . . . . . . . . . . . . . . . . . 192



List of Algorithms

1 Base Leader Election Algorithm Block . . . . . . . . . . . . . . . . 52
2 Beeping Model of Communication designated for Leader Election

in Urn Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 General base of Splitting and Naming draw . . . . . . . . . . . . . 82
4 General Splitting and Naming algorithm in Beeping Model of com-

munication in Urn Model . . . . . . . . . . . . . . . . . . . . . . . 83
5 Beeping Leader Election Algorithm . . . . . . . . . . . . . . . . . 90

6 Algorithm R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7 Basic reservoir sampling Algorithm . . . . . . . . . . . . . . . . . 117
8 Basic update procedure . . . . . . . . . . . . . . . . . . . . . . . . 121
9 Getting uniformly distributed sample . . . . . . . . . . . . . . . . 124
10 Reservoir sampling algorithm according to update sequence (αn)n 136

11 Morris Counter Mechanism . . . . . . . . . . . . . . . . . . . . . . 155
12 MaxGeo Counter Mechanism . . . . . . . . . . . . . . . . . . . . . 157

219



220 LIST OF ALGORITHMS



Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Dover, New York,
ninth dover printing, tenth gpo printing edition, 1964.

[2] Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority
in population protocols. In Proceedings of the 2018 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2221–2239, 2018.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. Journal of Computer and System
Sciences, 58(1):137 – 147, 1999.

[4] Tom M. Apostol. An elementary view of euler’s summation formula. The
American Mathematical Monthly, 106(5):409–418, 1999.

[5] László Babai. Monte-carlo algorithms in graph isomorphism testing, 1979.

[6] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Lucian Popa,
Serge Abiteboul, and Phokion G. Kolaitis, editors, Proceedings of the
Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 3-5, Madison, Wisconsin, USA, pages 1–16.
ACM, 2002.

[7] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a
moving window over streaming data. In David Eppstein, editor, Pro-
ceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 633–634.
ACM/SIAM, 2002.

[8] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. Fast esti-
mation of aggregates in unstructured networks. In ICAS, pages 88–93,
2009.

[9] Carlos Baquero, Paulo Sérgio Almeida, Raquel Menezes, and Paulo Jesus.
Extrema propagation: Fast distributed estimation of sums and network
sizes. IEEE Trans. Parallel Distrib. Syst., 23:668–675, 2012.

221



222 BIBLIOGRAPHY

[10] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. Efficient emulation of
single-hop radio network with collision detection on multi-hop radio net-
work with no collision detection. Distrib. Comput., 5(2):67–71, September
1991.

[11] Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal Time
and Space Leader Election in Population Protocols. In STOC 2020 - 52nd
Annual ACM Symposium on Theory of Computing, pages 1–29, Chicago,
United States, June 2020. ACM. Full verions, including all proofs.

[12] Jacob Bernoulli. Ars conjectandi. opus posthumum. https://library.
si.edu/digital-library/book/jacobibernoulli00bern, 1713.

[13] Dimitri P. Bertsekas, editor. Constrained Optimization and Lagrange Mul-
tiplier Methods. Academic Press, 1982.

[14] Patrick Billingsley. Probability and Measure. Wiley Series in Probability
and Statistics. Wiley, anniversary edition, 2012.

[15] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

[16] Béla Bollobás. Random graphs. In Modern Graph Theory, pages 215–252.
Springer, 1998.

[17] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sam-
pling from sliding windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

[18] Karl Bringmann and Tobias Friedrich. Exact and efficient generation of
geometric random variates and random graphs. In Proceedings of the
40th International Conference on Automata, Languages, and Program-
ming - Volume Part I, ICALP’13, pages 267–278, Berlin, Heidelberg, 2013.
Springer-Verlag.

[19] Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady
Yerukhimovich. Differentially-private multi-party sketching for large-scale
statistics. Proc. Priv. Enhancing Technol., 2020(3):153–174, 2020.

[20] Jacek Cichoń and Karol Gotfryd. Average counting via approximate his-
tograms. ACM Trans. Sen. Netw., 14(2), March 2018.

[21] Jacek Cichoń, Rafal Kapelko, and Dominik Markiewicz. On leader green
election. In Proceedings of the 27th International Conference on Proba-
bilistic, Combinatorial and Asymptotic Methods for the Analysis of Algo-
rithms, AofA’16, pages 30–40, Kraków, Poland, July 2016.

[22] Jacek Cichoń and Marek Klonowski. On flooding in the presence of ran-
dom faults. Fundam. Inform., 123(3):273–287, 2013.

https://library.si.edu/digital-library/book/jacobibernoulli00bern
https://library.si.edu/digital-library/book/jacobibernoulli00bern


BIBLIOGRAPHY 223

[23] Jacek Cichoń, Jakub Lemiesz, and Marcin Zawada. On message complex-
ity of extrema propagation techniques. In Proceedings of the 11th Interna-
tional Conference on Ad-Hoc, Mobile, and Wireless Networks, ADHOC-
NOW’12, page 1–13, Berlin, Heidelberg, 2012. Springer-Verlag.

[24] Jacek Cichon and Wojciech Macyna. Approximate counters for flash mem-
ory. In 2011 IEEE 17th International Conference on Embedded and Real-
Time Computing Systems and Applications, volume 1, pages 185–189.
IEEE, 2011.

[25] E. Cohen. All-distances sketches, revisited: Hip estimators for massive
graphs analysis. IEEE Transactions on Knowledge and Data Engineering,
27(9):2320–2334, 2015.

[26] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth. On the Lambert W function. Adv. Comput. Math., 5(4):329–359,
1996.

[27] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. Computer science. McGraw-Hill, 2009.

[28] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with
beeps. In Proceedings of the 24th International Conference on Distributed
Computing, DISC’10, pages 148–162, Berlin, Heidelberg, 2010. Springer-
Verlag.

[29] Davide Crippa and Klaus Simon. Q-distributions and markov processes.
Discrete Math., 170(1):81–98, June 1997.

[30] Miklós Csűrös. Approximate counting with a floating-point counter. In
International Computing and Combinatorics Conference, pages 358–367.
Springer, 2010.

[31] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Main-
taining stream statistics over sliding windows. SIAM J. Comput.,
31(6):1794–1813, 2002.

[32] Mayur Datar and Rajeev Motwani. The sliding-window computation
model and results. In Minos N. Garofalakis, Johannes Gehrke, and Ra-
jeev Rastogi, editors, Data Stream Management - Processing High-Speed
Data Streams, Data-Centric Systems and Applications, pages 149–165.
Springer, 2016.

[33] Damien Desfontaines, Andreas Lochbihler, and David Basin. Cardinality
estimators do not preserve privacy. Proceedings on Privacy Enhancing
Technologies, 2019(2):26–46, 2019.

[34] Dave Dice, Yossi Lev, and Mark Moir. Scalable statistics counters. In
Proceedings of the twenty-fifth annual ACM symposium on Parallelism in
algorithms and architectures, pages 43–52, 2013.



224 BIBLIOGRAPHY

[35] Cynthia Dwork. Differential privacy. In Automata, Languages and Pro-
gramming, 33rd International Colloquium, ICALP 2006, pages 1–12, 2006.

[36] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. Our data, ourselves: Privacy via distributed noise genera-
tion. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 486–503. Springer, 2006.

[37] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics.
In STOC, volume 9, pages 371–380, 2009.

[38] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In TCC, volume 3876,
pages 265–284. Springer, 2006.

[39] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Dif-
ferential privacy under continual observation. In Proceedings of the forty-
second ACM symposium on Theory of computing, pages 715–724. ACM,
2010.

[40] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science,
9(3-4):211–407, 2014.

[41] G. Einziger, B. Fellman, R. Friedman, and Y. Kassner. Ice buckets: Im-
proved counter estimation for network measurement. IEEE/ACM Trans-
actions on Networking, 26(03):1165–1178, may 2018.

[42] Bennett Eisenberg. On the expectation of the maximum of iid geometric
random variables. Statistics & Probability Letters, 78(2):135–143, 2008.

[43] James Allen Fill, Hosam M. Mahmoud, and Wojciech Szpankowski. On
the distribution for the duration of a randomized leader election algorithm.
Ann. Appl. Probab, 6:1260–1283, 1996.

[44] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Nu-
merical Mathematics, 25(1):113–134, 1985.

[45] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm.
In AofA: Analysis of Algorithms, pages 137–156. Discrete Mathematics
and Theoretical Computer Science, 2007.

[46] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms
for data base applications. Journal of computer and system sciences,
31(2):182–209, 1985.

[47] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, USA, 1 edition, 2009.



BIBLIOGRAPHY 225

[48] Alan Frieze and Michał Karonski. Introduction to Random Graphs. Cam-
bridge University Press, 2015.

[49] Michael Fuchs, Chung-Kuei Lee, and Helmut Prodinger. Approximate
Counting via the Poisson-Laplace-Mellin Method. In 23rd International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the
Analysis of Algorithms (AofA’12), pages 13–28. Discrete Mathematics and
Theoretical Computer Science, 2012.

[50] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm
for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst.,
5(1):66–77, January 1983.

[51] Mohsen Ghaffari and Bernhard Haeupler. Near optimal leader election
in multi-hop radio networks. In Proceedings of the Twenty-fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages 748–
766, Philadelphia, PA, USA, 2013. Society for Industrial and Applied
Mathematics.

[52] Leszek Gąsieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Al-
most logarithmic-time space optimal leader election in population pro-
tocols. In The 31st ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’19, page 93–102, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[53] R. William Gosper. Decision procedure for indefinite hypergeometric sum-
mation. Proceedings of the National Academy of Sciences of the United
States of America, 75(1):40–42, 1978.

[54] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
mathematics - a foundation for computer science (2. ed.). Addison-Wesley,
1994.

[55] André Gronemeier and Martin Sauerhoff. Applying approximate counting
for computing the frequency moments of long data streams. Theory of
Computing Systems, 44(3):332–348, 2009.

[56] Peter J. Haas. Data-stream sampling: Basic techniques and results. In
Data Stream Management, 2016.

[57] Magnús Halldórsson, Stephan Holzer, and Evangelia Markatou. Leader
election in sinr model with arbitrary power control. Theoretical Computer
Science, 811, 01 2019.

[58] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in prac-
tice: Algorithmic engineering of a state of the art cardinality estimation
algorithm. In Proceedings of the 16th International Conference on Ex-
tending Database Technology, pages 683–692, Genoa, Italy, 2013.



226 BIBLIOGRAPHY

[59] Changhui Hu, Jin Li, Zheli Liu, Xiaojie Guo, Yu Wei, Xuan Guang, Grig-
orios Loukides, and Changyu Dong. How to make private distributed
cardinality estimation practical, and get differential privacy for free. In
Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 965–982.
USENIX Association, 2021.

[60] Wolfram Research, Inc. Mathematica, Version 11.3.

[61] Ozlem Durmaz Incel. A survey on multi-channel communication in wire-
less sensor networks. Computer Networks, 55(13):3081–3099, 2011.

[62] P. Indyk and D. Woodruff. Tight lower bounds for the distinct elements
problem. In 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pages 283– 288, 11 2003.

[63] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings
and data stream computation. In 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 189–197. IEEE Computer Society, 2000.

[64] Philippe Jacquet, Dimitris Milioris, and Paul Mühlethaler. A novel energy
efficient broadcast leader election. In MASCOTS, pages 495–504. IEEE,
2013.

[65] Svante Janson and Wojciech Szpankowski. Analysis of an asymmetric
leader election algorithm. Electr. J. Comb., 4(1), 1997.

[66] Witold Jarczyk and Miklos Laczkovich. Convexity on abelian groups.
Journal of Convex Analysis, 16(1):33–48, 2009.

[67] E.I. Jury. Theory and Applications of the Z-Transform Method. New York,
1964.

[68] Peter Kirschenhofer and Helmut Prodinger. The number of winners in a
discrete geometrically distributed sample. The Annals of Applied Proba-
bility, 6(2):687–694, May 1996.

[69] M.S. Klamkin and D.J. Newman. Extensions of the weierstrass product
inequalities. Mathematics Magazine, 43(3):137–141, 01 1970.

[70] Donald E. Knuth. Mathematics and computer science: Coping with finite-
ness. Science, 194(4271):1235–1242, 1976.

[71] Donald E. Knuth. Johann Faulhaber and sums of powers. Mathematics
of Computation, 61(203):277–294, 1993.

[72] Gérard Le Lann. Distributed systems-towards a formal approach. In IFIP
congress, volume 7, pages 155–160. Toronto, 1977.



BIBLIOGRAPHY 227

[73] D. H. Lehmer. On the maxima and minima of bernoulli polynomials. The
American Mathematical Monthly, 47(8):533–538, 1940.

[74] Kim-Hung Li. Reservoir-sampling algorithms of time complexity
¡i¿o¡/i¿(¡i¿n¡/i¿(1 + log(¡i¿n¡/i¿/¡i¿n¡/i¿))). ACM Trans. Math. Softw.,
20(4):481–493, December 1994.

[75] Jens Lienig and Hans Bruemmer. Fundamentals of Electronic Systems
Design. Springer Publishing Company, Incorporated, 1st edition, 2017.

[76] G. Louchard and H. Prodinger. The asymmetric leader election algorithm:
Another approach. Annals of Combinatorics, 12:449–478, 2009.

[77] S.M. Masum, A.A. Ali, and M.T.-yI. Bhuiyan. Asynchronous leader elec-
tion in mobile ad hoc networks. In 20th International Conference on Ad-
vanced Information Networking and Applications - Volume 1 (AINA’06),
volume 2, pages 5 pp.–, 2006.

[78] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet
switching for local computer networks. Commun. ACM, 19(7):395–404,
July 1976.

[79] Y. Métivier, J.M. Robson, and A. Zemmari. Analysis of fully distributed
splitting and naming probabilistic procedures and applications. Theoret-
ical Computer Science, 584:115 – 130, 2015. Special Issue on Structural
Information and Communication Complexity.

[80] Robert Morris. Counting large numbers of events in small registers. Com-
munications of the ACM, 21(10):840–842, 1978.

[81] Koji Nakano and Stephan Olariu. Randomized o(log log n)-round leader
election protocols in packet radio networks. In Kyung-Yong Chwa and
Oscar H. Ibarra, editors, Algorithms and Computation, pages 210–219,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[82] Koji Nakano and Stephan Olariu. Randomized leader election protocols
in radio networks with no collision detection. In Gerhard Goos, Juris
Hartmanis, Jan van Leeuwen, D. T. Lee, and Shang-Hua Teng, editors,
Algorithms and Computation, pages 362–373, Berlin, Heidelberg, 2000.
Springer Berlin Heidelberg.

[83] Koji Nakano and Stephan Olariu. Uniform leader election protocols for
radio networks. Parallel and Distributed Systems, IEEE Transactions on,
13:516 – 526, 06 2002.

[84] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social net-
works. In Security and Privacy, 2009 30th IEEE Symposium on, pages
173–187. IEEE, 2009.



228 BIBLIOGRAPHY

[85] Arvind Narayanan and Vitaly Shmatikov. Myths and fallacies of person-
ally identifiable information. Communications of the ACM, 53(6):24–26,
2010.

[86] J. Neyman. Outline of a theory of statistical estimation based on the clas-
sical theory of probability. Philosophical Transactions of the Royal Society
of London. Series A, Mathematical and Physical Sciences, 236(767):333–
380, 1937.

[87] James Ritchie Norris. Markov Chains. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 1997.

[88] Christopher R. Palmer, Phillip B. Gibbons, and Christos Faloutsos. Anf:
A fast and scalable tool for data mining in massive graphs. In Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, page 81–90, New York, NY, USA,
2002. Association for Computing Machinery.

[89] Helmut Prodinger. How to select a loser. Discrete Mathematics, 120(1-
3):149–159, 1993.

[90] quandl. Bitcoin mining statistics. https://www.quandl.com/data/
BITCOINWATCH/MINING, 2017.

[91] Nicholas Riley and Craig Zilles. Probabilistic counter updates for predic-
tor hysteresis and bias. IEEE Computer Architecture Letters, 5(1):18–21,
2006.

[92] Sbiis Saibian. One to Infinity: A Guide to the Finite. From Google Sites,
2008-2021. Sbiis Saibian’s Large Number Site: https://sites.google.
com/site/largenumbers/home/appendix/a/numbers/265536.

[93] Nicola Santoro. Design and Analysis of Distributed Algorithms (Wiley
Series on Parallel and Distributed Computing). Wiley-Interscience, USA,
2006.

[94] Robert Sedgewick. Cardinality estimation, 2018.

[95] Adam D. Smith, Shuang Song, and Abhradeep Thakurta. The flajolet-
martin sketch itself preserves differential privacy: Private counting with
minimal space. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[96] Stevo Stević. Asymptotic behaviour of a sequence defined by iteration.
Mat. Vesnik, 48(03-04):99 – 105, 1996.

https://www.quandl.com/data/BITCOINWATCH/MINING
https://www.quandl.com/data/BITCOINWATCH/MINING
https://sites.google.com/site/largenumbers/home/appendix/a/numbers/265536
https://sites.google.com/site/largenumbers/home/appendix/a/numbers/265536


BIBLIOGRAPHY 229

[97] Yuichi Sudo and Toshimitsu Masuzawa. Leader election requires logarith-
mic time in population protocols. CoRR, abs/1906.11121, 2019.

[98] S. Joshua Swamidass and Pierre Baldi. Mathematical correction for fin-
gerprint similarity measures to improve chemical retrieval. J. Chem. Inf.
Model., 47(3):952–964, 2007.

[99] Wojciech Szpankowski and Vernon Rego. Yet another application of a bi-
nomial recurrence. Order statistics. Computing, 43(4):401–410, February
1990.

[100] Y. Tillé. Sampling Algorithms. Springer Series in Statistics. Springer,
2006.

[101] Daniel Ting. Streamed approximate counting of distinct elements: Beat-
ing optimal batch methods. In Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD
’14, page 442–451, New York, NY, USA, 2014. Association for Computing
Machinery.

[102] Daniel Ting. Approximate distinct counts for billions of datasets. In
Proceedings of the 2019 International Conference on Management of Data,
SIGMOD ’19, page 69–86, New York, NY, USA, 2019. Association for
Computing Machinery.

[103] László Tóth. Transcendental infinite products associated with the ±1
thue-morse sequence, 2020.

[104] Benjamin Van Durme and Ashwin Lall. Probabilistic counting with ran-
domized storage. In Twenty-First International Joint Conference on Ar-
tificial Intelligence, 2009.

[105] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transac-
tions on Mathematical Software, 11(1):37–57, March 1985.

[106] Herbert S. Wilf and Doron Zeilberger. An algorithmic proof theory for hy-
pergeometric (ordinary and “q”) multisum/integral identities. Inventiones
mathematicae, 108(1):575–633, Dec 1992.

[107] Dan E Willard. Log-logarithmic selection resolution protocols in a multiple
access channel. SIAM Journal on Computing, 15(2):468–477, 1986.

[108] Wolfram Research, Inc., http://functions.wolfram.com/06.03.06.
0005.01. Binomial coefficient, Expansions at k==infinity.

[109] X. Yun, G. Wu, G. Zhang, K. Li, and S. Wang. Fastraq: A fast approach
to range-aggregate queries in big data environments. IEEE Transactions
on Cloud Computing, 3(2):206–218, 2015.

[110] Doron Zeilberger. The method of creative telescoping. Journal of Symbolic
Computation, 11(3):195 – 204, 1991.

http://functions.wolfram.com/06.03.06.0005.01
http://functions.wolfram.com/06.03.06.0005.01

	Introduction
	An outline of the PhD thesis
	An outline of the Introduction
	An outline of Leader Election Algorithms part
	An outline of Reservoir Sampling Algorithms part
	An outline of Differential Privacy of Probabilistic Counters part
	Rest of the dissertation

	Notations and an overview of special functions
	Symbols
	Norm and scalar product
	Order relation
	Sums, products, derivatives and integrals
	Asymptotics: Bachmann—Landau and Vinogradov notations
	Exponents and logarithms
	Binary representations of numbers and messages
	Factorials, Euler's Gamma and Binomials
	Harmonic numbers
	Riemann's Zeta function
	PolyLogarithms
	W-Lambert multi-function
	Bernoulli numbers and polynomials
	Faulhaber's formula and Euler summation formula

	Probability Theory
	General definitions and notations
	Order statistics
	Stochastic processes with discrete time
	Probabilistic Counters
	Variants of probability distributions
	Uniform Distributions
	Bernoulli, Binomial and Normal distributions
	Exponential and Laplace distributions
	Beta distribution
	Geometric-Like Distributions
	Zipf Distribution
	Poisson Distribution
	Distance between discrete probability distributions

	Useful standalone theorems
	Banach fixed point theorem
	Weierstrass' Product Inequality
	Cauchy—Schwarz inequality
	Weierstrass Extreme Value Theorem
	Stević Theorem
	Bernoulli Inequality
	Fatou's Lemma
	Tonelli's Theorem

	Other
	A brief introduction to graph theory
	Networks


	Leader Election Algorithms
	Introduction and motivation
	A brief history of LEAs
	Urn model
	A description of a model
	A discussion about generality of urn model and its efficiency potential

	General block of Leader Election algorithm
	Beeping model, single-hop and multi-hop arrangements
	Probability of Choosing Unique Maximal Element

	Non-anonymous Leader Election Algorithm
	A description of a problem and definitions
	Optimization of the Probability of Success
	Approach via probabilities of non-last urns
	Duel case (n=2)
	Approximation of the optimal distribution
	A number of bits for NALEA according to the optimal distribution

	Uniform Leader Election (ULE)
	Basic properties
	Monotonicity of success probability
	Miscellaneous remarks and main result
	Role of the factor -lg(epsilon)

	Previous Developments of Leader Election
	How to select a loser?
	Leader Green Election
	Distributed splitting and naming procedures

	Geometric Green Leader Election
	Introduction
	GeoGLE Algorithm
	Discussion
	Implementation details
	Simplified solution

	A mixture of Geometric and Uniform LEA
	Motivation
	Possible scenarios and monotonicity
	Maximum of Geometric distributions
	Limitations on failures probabilities
	Derivation of parameters
	Main contribution
	Comparisons

	Summary, comparisons and future work

	Big Data
	Introduction to Reservoir sampling
	Sliding Window model
	Introduction
	Previous constructions
	High level description of our contribution
	Devil's Staircase
	A Fundamental Algorithm
	Properties of the Devil's Staircase
	Uniform Sample
	Examples of Non-uniform Sampling
	Extension with m-root strictly concave functions
	Other extensions
	A class of DS-admissible distributions
	Application
	Final remarks

	Power Law of Update
	Introduction
	Power Law of Update
	General Properties
	Fixed value
	Sublinear Case
	Linear Case
	Subquadratic Case
	Quadratic Case
	Superquadratic Case
	Applications


	Inherent Privacy of Probabilistic Counters
	Introduction
	Differential Privacy Preliminaries
	Probabilistic Counters
	Morris Counter

	MaxGeo Counter
	Probabilistic Counting with Stochastic Averaging
	HyperLogLog

	Probabilistic Counters Privacy Properties
	Morris Counter Privacy
	MaxGeo Counter Privacy
	Comparison of Morris and MaxGeo Counters' Privacy

	Private Survey via Probabilistic Counters
	Previous and Related Work
	Summary
	Our contribution
	Conclusions and Future Work


	Appendices
	Optimal Distributions for NALEA
	Optimal distributions for 3 devices
	Approximations of the optimal solutions
	Numerical results


	The proof of Theorem 2.8.1 and remarks
	Collision Probability in GeoGLE Algorithm
	Definitions and crucial properties

	Constraints of accurate GeoGLE algorithm
	Maximal number of devices — a case n=N
	Proof of Theorem 2.8.1 for n<N
	Is it worth to extend agents' memory by 1 bit?

	Limitation of specific sums
	Special cases of Power Law of Update
	Specific linear case
	Heuristic recursive approach with formal series
	Problem for a case with exponent 1/2
	Problem for cases with rational exponents


	Technical Results for Morris Counter
	Proofs of lemmas of second DP parameter
	The proof of Lemma 12
	The proof of Lemma 13

	Main lemma
	Formulation and proof of Lemma 26

	Final lemmas


