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DYSCYPLINA: Inżynieria Środowiska, Górnictwo i Energetyka

ROZPRAWA DOKTORSKA

METODY ANALIZY DANYCH Z SYSTEMÓW
O ARCHITEKTURZE INTERNETU RZECZY

I PRZETWARZANIA W CHMURZE NA POTRZEBY
MONITOROWANIA PROCESÓW TECHNOLOGICZNYCH

POZYSKIWANIA RUDY MIEDZI
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dr inż. Jacek Wodecki

Wydział Geoinżynierii, Górnictwa i Geologii

Słowa kluczowe: Górnicze procesy technologiczne, Prototypowanie układów pomiarowych, Analiza danych,

Przetwarzanie sygnałów, Monitorowanie stanu, Internet Rzeczy, Chmura obliczeniowa

Wrocław 2025





FIELD OF SCIENCE: Engineering and Technology

DISCIPLINE OF SCIENCE: Environmental Engineering, Mining and Energy

DOCTORAL DISSERTATION

IOT AND CLOUD COMPUTING DATA ANALYSIS METHODS FOR
MONITORING TECHNOLOGICAL PROCESSES OF COPPER ORE

EXTRACTION

Bartłomiej Ziętek, MSc
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Streszczenie

Rozwój technologii informatycznych i ich wpływ na wiele obszarów przemysłu staje się

obecnie podstawową metodą ich dalszego rozwoju. Część z nich, takie jak Internet Rzeczy

(IoT) i korzyści z wykorzystywania zasobów chmury obliczeniowej (Cloud Computing) może

w ogromnym stopniu wzbogacić również nowoczesną działalność przemysłu wydobywczego.

Technologie te pomagają dziś firmom i organizacjom podejmować decyzje na podstawie danych.

Ta zmiana jest również widoczna w przemyśle górniczym, gdzie główny nacisk jest kładziony na

zwiększenie możliwości monitoringu procesów technologicznych i odpowiednie wnioskowanie na

podstawie otrzymanych danych pomiarowych.

Aby sprostać wymaganiom stawianym przez branżę górniczą, w niniejszej pracy przedstawiono

opracowane metody analizy danych z systemów o architekturze internetu rzeczy i przetwarzania

chmurowego na potrzeby monitorowania procesów technologicznych pozyskiwania rud miedzi.

W pracy zawarto zagadnienia związane z m.in. prototypowaniem układów pomiarowych na

potrzeby wykorzystania w środowisku górniczym oraz przetwarzaniu i analizie zebranych

sygnałów w celu monitorowania stanu środowiska, maszyn i parametrów pracy wybranych

fragmentów procesów technologicznych.

Zaproponowanie nowych metod pomiarowych, dostosowanie technologii robotycznych dla

wymagań górnictwa podziemnego oraz analiza danych długoterminowych procesów związanych

z wydobyciem rud miedzi m.in. z zastosowaniem przetwarzania chmurowego umożliwi nie

tylko głębsze poznanie procesów, ale i również przyczyni się do zwiększenia bezpieczeństwa

pracowników dołowych. Efekty przygotowywanej pracy doktorskiej pozwalają na opracowanie

nowoczesnych metod akwizycji i przetwarzania danych z maszyn górniczych i środowiska

w kopalni podziemnej wraz z uwzględnieniem ryzyk związanych z wdrażaniem nowych

technologii informatycznych. Odpowiednia ich analiza umożliwia dalszy rozwój wiedzy

w zakresie procesów technologicznych (np wiercenie, kotwienie, monitorowanie zagrożeń

naturalnych) w kopalniach rud miedzi.

Słowa kluczowe: Górnicze procesy technologiczne, Prototypowanie układów pomiarowych,

Analiza danych, Przetwarzanie sygnałów, Monitorowanie stanu, Internet Rzeczy, Chmura

obliczeniowa
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Abstract

The development of information technologies and its impact on a broad ranges of industry

becomes a basis method for further growth nowadays. Some of them, such as Internet of Things

and benefits coming from using Cloud Computing can enormously enrich also modern mining

activities. These technologies help companies and organizations to make a data-driven decisions.

This change is also evident in the mining industry, where the focus is on increasing process

monitoring capabilities and making appropriate inferences based on the obtained measurement

data.

In order to comply with the requirements of the mining industry, this work presents methods for

analysing data from systems with an Internet of Things architecture and Cloud Computing for the

purpose of monitoring technological processes of copper ore extraction. The thesis includes issues

related to, among other things, the prototyping of measurement systems for use in the mining

environment, as well as the processing and analysis of the collected signals to monitor the state

of the environment, machinery and operating parameters of selected fragments of technological

processes.

The proposal of new measurement methods, the adaptation of robotic technologies for the

requirements of underground mining and the analysis of long-term data of processes related to

the mining and copper ores extraction, among others, using Cloud Computing will not only

enable a deeper understanding of the processes, but will also contribute to increasing the safety

of underground workers. The results of the doctoral thesis allow for the development of modern

methods for the acquisition and data processing from mining machinery and the underground

mine environment including the risk analysis related to the implementation of new technologies.

Appropriate analysis of these make it able to allow the development of specialized knowledge

of some technological processes (e.g. drilling, bolting, monitoring of environmental hazards) in

copper ore mines.

Keywords: Mining technological processes, Measurement systems prototyping, Data analysis,

Signal processing, Condition monitoring, Internet of Things, Cloud Computing

vii





List of Publications
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Process monitoring in heavy duty drilling rigs—data acquisition system and cycle

identification algorithms. Energies, 13(24):6748, 2020
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1 Introduction

Monitoring of technological processes is the key part of ensuring continuity of mining operations.

Current significant developments in measurement technologies, signal acquisition capabilities and

process exploration provide the basis for many new initiatives involving an in-depth understanding

of copper ore mining processes. The key challenges of today’s raw materials industry involve

identyfying, optimising process efficiency and improving the safety of underground workers.

Nevertheless, the technological processes of ore extraction are complex, as the work of many

different machines, systems and miners in many separate tasks, must be combined in order to

extract the ore as profitably as possible.

In Fig. 1 it is presented how many technological operations are incorporated into the copper ore

extraction process. The room-and-pillar mining system is used at copper mines in Poland, thus the

preparation of the work front starts through the drilling of the blast holes. By inserting explosive

charges into the holes and detonating explosives, the ore is ready for transportation by loaders and

trucks. Subsequently, as the process continues, the mining front progresses, the bolting rigs arrive

to secure the roof by installing rock bolts. The steps mentioned above are repeated at multiple

locations in the mine to produce a continuous stream of new ore. Further transport of the excavated

material takes place using conveyor belt systems from a screen, where the largest rock fragments

are crushed into smaller pieces. With the usage of hoisting skips, vertical transport is performed to

transfer the ore to the surface. The final part is to use the belt conveyors once again and transport

the excavated material to the ore enrichment plant, where further processes take place to transform

copper ore into the copper ore concentrates.

From the operational perspective, the monitoring of drilling cycles is a key procedure for

obtaining valuable information on the efficiency of mining processes and the correctness of work

execution in underground mines using blasting technologies. Therefore, there is a need for a data

acquisition system that can be used on a variety of machines. In addition, the system is going

to allow the automation of data analysis procedures. This will enable useful information to be

collected and used by other decision support systems to optimise machine operation and determine

the quality parameters of the drilling process.

All leading manufacturers of mobile drilling machines have made significant advances in

monitoring systems over the past three decades to improve process control and quality [2].

Nevertheless, on-board monitoring systems used for this purpose are only installed on a limited

number of machines. In Fig. 2 the population of machines with implemented monitoring system
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Figure 1: Technological operations in the copper ore extraction process [1]

is presented. The yellow bars correspond to the overall balance of machines with system applied

whereas green and blue bars represent new and withdrawn machines per year. Such systems are

mainly based on measurements of oil flow in hydraulic systems with complex design to estimate

the pressure. Moreover, the construction can vary significantly from machine to machine. The

analysis of data from such systems is characterized by a high level of complexity and subject to

frequent failures. As with any indirect measurement method, additional measurement uncertainties

arise, related to, among other things, variable temperature in the excavation area.

The next area of interest is to use data from the process of drilling holes for rock bolts. In

the mining sector, measuring devices that are mechanically or hydraulically coupled to the mining

machine are mainly used for the precise measurement of the feed of the drilling tool [4]. This

implies limitations, mainly in terms of the value of the sampling frequency by the aforementioned

equipment. The use of other measuring devices, including those based on laser techniques, allows

for more efficient recording and accurate analysis of the variability of kinematic parameters.

In this work, methods for analysing data from systems with Internet of Things (IoT) and Cloud

Computing (CC) architecture for monitoring technological processes of copper ore extraction are

described. The issues related to the presented topic are based on, among others, prototyping of
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Figure 2: Population of machines with SYNAPSA monitoring in the mining divisions of KGHM [3]

measurement systems for the use in the mining environment and the analysis and processing of

the collected signals to monitor the state of the environment, machinery and operating parameters

of selected fragments of technological processes. The dissertation focuses on the development of

data acquisition systems on selected machines and their analysis in the context of identifying duty

cycles.

The next stage is to develop a concept for integrating the measurement systems placed on

the platform of the wheeled inspection robot to study environmental conditions. An important

part of this stage is the implementation of a Light Detection and Ranging (LiDAR) control

system to build a precise map of the excavations and unification with the robot’s operating system.

Further applications are conveyor belt damage detection or roof state assessments of underground

excavations.

The final stage of work within the framework of the dissertation consists in enabling routine

procedures, carried out in the mine, related to the monitoring of environmental parameters

(hazardous gas measurements) as well as the implementation of mechatronic systems for 3D

modeling of underground mine workings. By proposing the use of IoT technology and further

data processing in a distributed architecture (acquisition and preprocessing on edge devices) a set

of prerequisites has been gathered to enable further analysis in a cloud environment [5, 6].
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Proposing new measurement methods, adapting robotic technologies for the requirements of

underground mining and analysing long-term data of copper ore mining processes, among others,

using Cloud Computing will not only enable a deeper understanding of the processes, but will also

contribute to increasing the safety of underground workers.

The results of this work will allow the development of modern methods for the acquisition

and processing of data from mining machinery and the environment in the underground mine.

Appropriate analysis of this data will provide the development of specialized knowledge of, among

other things, technological processes (e.g. drilling, bolting, monitoring of natural hazards) in

copper ore mines. Moreover, monitoring of the extensive underground infrastructure can be more

achievable thanks to laser scanning data in order to create digital twin of mine. Owing that, the

miner localication (rescue operations) and gas hazard monitoring can be possible thanks to creation

of spatial map of the mine.
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2 Problem formulation

As a result of enormous development of information technology, measurement systems, large-scale

data processing capabilities, and widespread access to large computing capacities, it becomes clear

to find parts of mining activity that can be digitally transformed to take advantage of new available

possibilities in this area. Nevertheless, the mining activities, as many of engineering procedures,

have significant level of difficulty. This creates problems for the adoption of such solutions, which

are very important for the further development of the mining industry and the increase of labour

productivity.

In order to rise this challenge, based on previous research, literature studies and close

cooperation with industry, several technological processes have been identified. Selected mining

processes include drilling for blasting and securing corridor excavations using bolting bolt rods.

Moreover, some of routine procedures such as monitoring of environmental parameters in mine

workings or transportation system inspection with robot platform are selected. The representation

of technical processes above is initially defined as the potential of an approach using IoT

technology.

Following the diagram from the Fig. 3, there is a need for the objective knowledge creation

about the technological processes in mines. To achieve this, the new measurements methods applied

to selected mining machines and devices, backed by the original data-processing techniques are

proposed.

Due to the size of the mine, the variety of mining technologies and machines used, the number

of underground workers, the quality of the big data generated and the nature of its variability, there

is a necessity to create one common scheme to deploy many new measurement sources into existing

processes.

9



Figure 3: Data flow for mining technological procesess
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2.1 The aim of the dissertation

Taking into account the state of the art knowledge, domain expertise within mining industry and

author experience, the following research hypothesis are presented:

• Through the usage of advanced measurement systems and data transmission (based on the

Internet of Things) and advanced data processing and analysis (based on Cloud Computing

technology) it is possible to develop a system of decision support to optimise the operation

of the mining machines work and improve the safety of miners.

• In order to predefine the potential of an approach using IoT technology in mining industry,

several technological processes and routine procedures carried out in the underground mine

have been identified.

• Taking into the consideration the fact of the underground mine size, mining technology used,

number of utilized machines, number of underground miners, the quality of the data and the

nature of its variability it is viable to use the novel, scale-effective analytical procedures.

• The hybrid cloud data architecture can help to overcome the limitations of mining

environment, considering the need of reliable data workflows, and efficient utilization of

aggregated big data scopes.

To confirm the above, the adoption of cloud system architecture is proposed. With usage

of the latest analytical technologies within one common architecture it is possible to manage

key parts of the software delivery for a distributed data processing system both at the edge and

in a centralised manner using Cloud Resources (CR). That approach highlights the requirements

from the specific analytical procedures proposed in this work based on the deep understanding of

the process, analysis of data properties and appropriate selection of analytical techniques.

Usage of IoT technology for measurement systems development are a key part for obtaining all

of data sources above. Based on the original methods for data processing it is possible to convert

these new data sources into knowledge. It creates the fundamental layers for modern Big Data

processing architecture in a repetitive, prone-to-error and cost efficient manner thanks to Cloud

Computing technologies advantages.
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3 State of the art

In this section, the state of the art is presented in areas related to the data acquisition from mining

machines and mining processes interpretation. Many research articles on the process of digital

transformation in the mining industry have been enumerated. The main emphasis is on the use of

IoT devices for mining use cases. Moreover, the integration of measurement devices with cloud

services has been shown. Their impact on data-driven management systems in mining to perform

end-to-end analytics based on machine learning algorithms reasoning is also discussed. Finally,

important research topics and cybersecurity trends in industrial systems show how they impacted

mining activities enhanced by digital transformation.

3.1 Monitoring of mining machines and processes

The start of the copper ore mining processes is initialised by the work of the drilling machines.

Hence, the development of research work in the context of drilling equipment operation is desirable

from both a mining industry and research perspective. Measurement While Drilling (MWD)

method provides many information about the actual parameters of the drilled rock mass and the

process. Owing that, numerous studies has been examined to determine drilling performance and

monitor the state of the machine based on many sensor units. The general overview of MWD in

many mining use cases is presented in [7]. Based on pressure data from drill machine subsystems

it is possible to determine rock samples strenghts [8]. The void detection method based on feed

and rotation pressure of bolting rig is examined in laboratory conditions [9], but describes the

possible application of pattern recognitions algorithms, which can be used for real mining condition

applications [10]. Another approaches of unifying the drilling parameters with terrestrial digital

photogrammetry images to describe the rock mass are also known in the literature [11]. In [4],

another approach with usage of cord encoder is presented in order to detect discontinuities during

drilling with bolting rig machine.

Drilling cycles identification for mining machines is one of the most important tasks from

the point of view of the organization of work and management of these machines. The software

architecture for condition monitoring for mining machinery [12] is an important step in developing

solutions that enable the correct data acquisition to fulfill that expectations. Effectiveness of the

drilling process for drilling rigs based on drill parameters such as: drill preccusion, rotation,

and tool feed system pressures from monitoring system helps to assess, identify and segment

machine work [13]. Based on long-term data analysis of the drilling process it is possible to
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detect the work cycles for wheeled drilling machines [14]. Nevertheless, real data analysis is

problematic, and it is needed to develop increasingly innovative methods to enhance noisy data

into more informative [15]. There is a number of parameters that affect the variability of drilling

processes. The previously mentioned influence of local variations in rock lithology is not the

only factor. It is also worth paying attention to machine wear, particularly on drilling tools.

Especially for drilling rigs, the impact of tool wear on the efficiency of the drilling process is

considerable. The assessments covering the drill bit deterioration based on machine learning

algorithms are presented in [16, 17]. A new analytical approaches to determine the blasting

process parameters to obtain a favourable blast outcomes are revealed in [18]. In meanwhile, it

is important to properly manage the mining machines work in order to mitigate the impact of

downtimes [19]. Working at the mining face is difficult and demanding for the machines and

their operators, hence adequate supervision of the work is required. For drilling rig machine case,

some important from management perspective effectiveness metrics (such as availability, utilization

rate) can be determined based on the long-term data analysis [20]. Data integration from different

sources of drilling and blasting processes and usage of geospatial queries can be found in [21].

Operational data consolidated in a mine’s data warehouse enables tracking the performance of

drilling operations even at the single blast hole granularity level.

Another significant research problem is the mining process automation. Nowadays, the

increasing integration of different types of sensors together with dedicated algorithms enables

the automation of more and more mining processes. In [22], the autonomous system for Load

Haul Dump Machines (LHD) loading work is presented. With usage of several laser scanners,

encoders, and pressure sensors it is automated the loading routine handled by Robot Operating

System (ROS). However, to enable the automated work it is necessary to resolve the problem of

localization determination in underground mines. Due to existence of GNSS-denied conditions,

another methods of localization techniques are needed [23]. Based on inertial measurements [24],

stereo camera [25] or laser scanners data analysis [26] taken from underground conditions, it is

possible to overcome that problem. Nevertheless, mining activities are complex and before any

enhancements in machine autonomous work will be considered, the proper risk management due

to safety and operational issues should be concerned [27, 28].

The use of machine-mounted sensors and data transfer is undoubtedly an effective method of

acquiring data during the operation of machinery and equipment in mining. Nevertheless, some

machines are powered by underground electrical networks, making it possible to use electrical

current measurements to identify the operation of equipment. In [29], it is presented the electrical
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load identification method using non-invasive measurements based on Sweep Frequency Analysis

Response (SFRA). An alternative method for power consumption usage for household appliances

based on current signal measurements and waveforms classification is discussed in [30]. Fault

detection and localization of electromechanical devices such as three-phase inverters based on

current measurement is also possible [31]. The detailed analysis of computional demand for

application of low-cost IoT modules to identify various devices connected to the network grid

is revealed in [32]. Based on alternate current measurements and further transformation to

characterize parameters such as resistive, inductive, and capactive loads, the device classification

is possible using machine learning approaches. Finally, the IoT systems with cloud analytics

integration services performing the time and frequency analysis over current consumption are able

to identify the devices work [33].

A separate aspect of measurement in underground mining is related to air hazard evaluation.

Gas concentration measurements are the key part of ensuring the safety of underground miners.

The main emphasis is put on assessing the concentration of hydrogen sulfide (H2S) and carbon

monoxide (CO) as well NOx gases. The origin of these gases is determined both by natural

sources (H2S) and by mining activities caused by wheeled machines work or blasting procedures

(CO,NOx), to name a few [34–36]. Hence, it is important to analyse the long-term trends and gas

concentration variability to understand the underground mine air environment better. In [37], it is

determined the amount of time after the blasting procedure when CO concentration level is below

the maximum values. Another significant analysis is put on correlation research aiming to bond

together the ventilation schedule with H2S concentration patterns in mine excavation [38]. The

examples presented above indicate how important gas measurement data acquisition in the mining

industry is nowadays to perform mining activities based on a detailed analysis of the environment.

The next important type of infrastructure in the process of ensuring the continuity of mining

activities are the belt conveyors systems. Their continuous inspection is the key part from

the maintenance point of view. The efficiency of the haulage process can be maximized

thanks to the scheduled maintenance in order to repair or replace worn out machine elements.

Components deterioration is usually determined via visual inspections. Nevertheless, the demand

for automation of this process is growing. In the literature there are widely known approaches

using vibration [39–43], and acoustic [44–46] signals. There are many additional measurements

systems enabling the analysis of the belt condition with usage of magnetic sensors [47, 48]. In

parallel, the possibilities of image acquisition from cameras and data processing algorithms are

also under constant development. With usage of machine learning-based image processing, there
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are attempts to perform fault diagnosis of rotating elements [49]. An automated data acquisition

becomes increasingly popular in the mining industry as well. Examples of use cases for inspection

robot utilization in the mining diagnostics mission are described in [50]. In [51, 52] data is acquired

by inspection robots to detect the thermal defects of idlers. To enhance the proper scheduling of

the maintenance operations, the historical data can be utilised to enable predictive modelling of

conveyor belt deterioration. Based on the different operating conditions and specific variables

describing the belt parameters it is feasible to predict the characteristics associated with the wear

of a conveyor belt with usage of neural networks [53].

3.2 Digital transformation

Using a digital technologies in order to improve the overall organization business model is the key

part of digital transformation [54]. In the mining industry, replacement of analog devices with

digital ones, utilization of adapted methods and systems to generate and use digitised data, are

the most impactful actions to transform mining practices. In [55] the text-mining technique is

revealed to identify the key digital technologies and their adoption levels for the mining industry.

The outcomes of the analysis above reveal methods related to general process automation and the

usage of robotics and IoT in order to obtain real-time data (and big data) from mining activities.

The results demonstrate machine learning and artificial intelligence usage along with 3D printing

as the leading technologies. Nevertheless, every technology adaptation relies on many factors.

For smaller mining organizations, it can be faster and uncomplicated to fulfill the tailored needs.

However, digital transformation in case of larger companies can be more complex and, the economy

of scale will determine the adaptation of new solutions.

Enabling smart monitoring with usage of the above technologies focuses primarily on the

development of current technical solutions used in the industry. Widely used systems like

Supervisory Control and Data Acquisition (SCADA) or Distributed Control System (DCS) are

often upgraded with new features corresponding to the techniques above. Nevertheless, benefits as

well as disadvantages need to be analysed for every use case [56].

In words above, the impact of digital transformation is depicted mainly on technical solutions.

However, as a part of the next phase of industrial revolution, impacts on the society, organization,

and competences development as well as change for work environment might affect the mining

organizations altogether [57]. Especially for mining industry, thanks to the enhancements

coming from the advantages of digital transformation adaptation, numerous problems related to
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occupational health and safety problems can be solved and make the mine environment work more

sustainable. Due to that, it will take significant effort to reform mining production into data-driven

decision management approach in the future to enable the long-term competitiveness [58]. This will

require an integration of many areas of the organization. To achieve this, it will be necessary, among

other things, to use services that enable data management in a cloud environment. Accelerating the

adoption of new technologies would require prototyping the small scope of the system, with usage

of digital twins to create a digital object fully covering the features and characteristics of the real

objects [59]. Due to the nature of the mining environment, extensive underground areas, processing

and inference with machine learning algorithms will have to be done to some extent on edge. To

achieve this, a well-prepared automation framework is necessary to automate many orchestration

tasks for the distributed computing system [60].

3.3 Internet of Things in mining

Internet of Things (IoT) is a term, describing the ability of the physical devices enhanced by digital

sensors, communication interfaces, computational elements and actuators, which have an ability to

communicate with each other to achieve specific goals [61]. There are many existing technologies

considering the communication protocols, middleware, and service components to address specific

goals of application areas in i.e. environment research, transportation and logistics, healthcare,

personal and social [62].

Many use cases with IoT successful implementations in underground mines can be found in

the literature. Starting from the comprehensive review of IoT systems in mining industry, there are

presented the most popular applications emerging at the usage for mining operations prediction,

increase of mining safety, and surveillance systems [63]. With usage of IoT devices and dedicated

data processing algorithms tied with expert knowledge about the mining operations, it is viable

to optimize the work of self-propelled machines. In [64], based on inertial sensors measurements

a method is revealed in order to detect dynamic overloads, which significantly impact machine

deterioration. In [65], an approach with usage of MQTT protocol to predict the machine state

incorporated to the IoT device with vibration sensors is presented. Not only machine state can

be entrenched by IoT set of devices. It is also possible to determine the structural stability of

mine. Condition monitoring of the mine’s corridors roof utilizing a Fiber Bragg Grating sensors is

presented in [66]. That IoT management platform for structural monitoring is hosted on web server

for data integration, visualization, and damage detection analysis.
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Another important area of IoT systems usage in mining are safety systems. Sensors types, and

communication technologies used in safety monitoring systems for underground mines are revealed

in [67]. In [68], the usage of Bluetooth Low Energy (BLE) technology for real-time localization

of the mine workers is published. A case study of early-warning system for underground coal

mine is described in [69]. The platform consists of devices installed in many locations with several

sensors for environment parameter measurement with microcontroller connected via BLE protocol,

and smartphone nodes. For visualization, alerting, and event identification based on K-means

clustering algorithm, a webserver hosts the processing software. As a development of the system

above, the authors expand system features in [70]. Air quality monitoring system is enhanced by

machine learning pipelines based on cloud services in order to forecast the air quality in the mining

environment. Another example of IoT devices usage for ensuring the occupational safety and health

of miners in underground conditions can be found in [71]. Based on data retrieved from wearable

terminals (electronical bracelet and a miner lamp), a real-time monitoring system is created. It

enables the miner’s health state based on vital signs collection. Afterwards, the use of the neural

network helps estimate the fatigue level and generate early warnings by the system administrator.

Digital transformation cannot be successfully adopted by industry without the development

in some key areas. In [72], it is presented a redundant data transmission from source devices

within Condition Monitoring Systems (CMS). The next phase is measurement data validation with

usage of many statistical metrics describing the desired dataset to limit i.e. data inconcistency [73].

Implementation of error-prone real signal parameters calculation is not a trival problem and should

be handled likewise [74].

3.4 Introduction to Big Data and Cloud Computing

Big Data term refers to the definition of a dataset of significant size which is characterized by

5V’s: volume, velocity, variety, veracity and value [75]. The volume deals with the physical

quantity of the disk storage needed to save the given dataset. The velocity concerns how data flows

should be quickly stored or processed. The variety relates to multitude of data formats, veracity

covers dataset completeness aspects, and value is about the possible financial impact determined

by the decisions taken using the dataset. The mentioned aspects reveals the situation where the

computational capacity of a single computer is not enough to perform data processing and analysis

efficiently.
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Instead of providing the organization’s data centers to process the Big Data, it is often necessary

to use appropriate resources via the Cloud Computing model [76]. The first occurence of Cloud

Computing term came in the 1960s as supplying the computing capabilities to the general public

as an utility [77]. From the business model perspective, cloud services models refers to three

types: private (on-premises), hybrid, and public cloud [78]. The shift from full responsibility for

all aspects of the data center to a shared responsibility model with the cloud services providers

creates a wide range of possible solutions [79]. Another division of Cloud Computing resources

based on the services delivery type are :

• on-premises resources

• IaaS (Infrastructure as a Service)

• PaaS (Infrastructure as a Service)

• SaaS (Infrastructure as a Service).

Depending on diverse layers of managed resources, covering the hardware or platform layer

(runtime) for the applications, the different layer of Cloud Resources architecture can be provided

for the final user. That variety of Cloud Resources delivery impacts on the shape how data are

processed enhanced by Cloud Computing services. From the Data Warehouse approach, widely

used in on-premises facilities [80], to Data Lake concepts with variety of data types handled [81].

Cloud Computing applications are well-known in the mining industry. In [82], a system built

with Cloud Computing services is used to monitor the tailings dam in the mines. A novel approach

utilizing the virtual reality technology to improve inspection tasks with a cyber-physical system

is revealed in [83]. Conceptualization of the future architectures for mining industry is a key

part of the paving the way for real use cases. The use of a digital twin approach for mining

processes is one of the most suitable examples for cloud services. Hence, the integration of

services in the sustainable mining industry can be found in [84]. There are also attempts at

experimental application of these for mining machinery [85]. Several mining applications utilize

cloud services for visualization and dashboarding purposes to increase safety resilience in the

mining industry [86]. Finally, architectures with edge computing patterns are described in [87, 88].

Another use case for cloud services utilization is the integration with miners’ equipment such as

wearable helmet and additional sensors. In that procedure, wearables represent the data source and

based on cloud platform, it is possible to detect human emotions [89].
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3.5 Data-driven management systems in mining

The growing development of the computerization of enterprises also includes activities in mining

organizations. Computer-aided systems are already widely used to enhance the analysis of mining

processes, such as: ventilation of mining excavations [90], orebody modeling [91] or mobile

underground machines maintenance [92] to name a few. Nevertheless, creating a system with

measuring devices in a mining environment and supervising their work requires an appropriate

approach. Setting up an IT system to manage distributed metering equipment, computing modules,

and the infrastructure associated with maintaining continuous delivery and deployment operation

services, software integration, and data is undoubtedly a major challenge. The volume of data

generated by IoT devices is increasing in relation to these technologies and is quite widespread.

Services utilization in private or public cloud model can support that process of the management

platform creation. Owing that, it is needed to apply best practices in software development

workflows in order to deliver software in reliable, repetetive and robust way [93]. As an

example provided in [94] for the delivery and processing capabilities of IoT software, several

of them are revealed. There are automated Continuous Integration and Continuous Deployment

(CICD) pipelines, managed by Infrastructure as Code (IaC) methodology, code linting and static

code checks features. Another important parts are containerization of the software application

and monitoring abilities of the system. With that common approach, a system maintenance is

significantly simpler and with good quality what is essential for IoT systems being mature and

scalable.

Considering the utilization of the complex algorithms for reasoning based on the measured data

at the edge is necessary, especially for the extended area of mining, hence some enhancements

covering the needs of software management for machine learning experiments are enforced. It is

where the concept of Machine Learning Operations (MLOps) emerges. Following the literature

research and the results of specialist interviews, MLOps is defined as a paradigm of a set of

concepts, best practices and development culture aiming to the end-to-end management of machine

learning products from conceptualization, through implementation and scalable deployment with

monitoring in mind [95]. It extends the principles of the standards from the software development

and operations activities in the area of machine learning. There are related to the machine learning

workflow orchestration and its ability to reproduce the same results in a given ML experiment.

Moreover, worth to mention is the principle of continuous training and evaluation of the models.

Based on the use case, it can be performed with ad-hoc, periodic or event-driven (i.e. when a given

statistical thresholds of the model metrics is reached) manner. The system observability should be
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extended for ML experiment tracking, as well as the model inference monitoring. In the literature,

several approaches with usage of open source libraries aiming to provide technical components of

MLOps can be found [96–100].

3.6 Cybersecurity in industrial systems

Although there is no single definition of risk [101], the most often term used is taken from PN-ISO

31000 standard [102]. A risk is defined as the effect of uncertainty on objectives. Following [103],

the risk assessment is the overall process of risk identification, analysis and evaluation. Hence,

cybersecurity, as a part of the organization risk assessment analysis, covers the IT/OT landscape.

A literature review of the threat analysis for software systems is presented in [104]. Based on

26 threat analysis approaches covered, the outcome revealed are the lack of quality assurance of

outcomes (in the given risk assessment methods), and absence of definition of done when analysis

procedures can be stopped. It means that for every architecture used, the separate risk assessment

methods should be matched to fulfill all the scenario needs.

The analysis of IT systems should be embedded in the realities of the environment in which

it performs its tasks. Following the report [105], the risks related to cyber and digital area of

mining activities fell out from top 10 risks for this industry. That change comes from the fact, that

the mining organizations intensify their efforts to manage that area and treat it as a business as

usual. In 4 years, a significant change in the cybersecurity transformation of mining digitalization

has appeared [106]. Nevertheless, the cyber risks has not been disappeared and constantly should

be taken into account. The literature has many examples of exploited vulnerabilities dedicated

to compomise the existing hardware, software and network layers, commonly used in mining

industries [107]. Cybersecurity risk assessment for systems widely used in automation and control

systems are analysed in [108]. The constant increase of devices connected to the internet create

a need for development of cybersecurity, especially for IoT devices. In [109], a broad survey

of techniques enhanced by machine leraning for cybersecurity is presented. Intrusion Detection

Systems (IDS) for IoT devices network are revealed in [110]. The several neural networks models

are compared to obtain the highest detection scores. The machine learning dataset consists of the

many attack records aiming to perform the malicious actions divided into 4 main categories: probe

(scan for devices information), DoS (denial of service), U2R (user to root - privileges escalation),

and R2L (remote to local - remote access to the compromised device).
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The next area of the effort to cover cybersecurity in industrial systems is the integration with

cloud services. The cybersecurity posture is heavily embedded within the cloud services utilization.

In the scope of the shared responsibility model, the researchers occasionally perform a broaden

checks of automated security assessment on selected services supplied by cloud providers. Thanks

to that, some open-source tools has been provided for developers to increase the security posture

based on configuration evaluation [111]. Another approach to seek out security flaws is to

automatically generate attack graphs to perform virtual penetration testing [112]. Especially for

architectures with usage of IoT and Cloud Resources it is important to apply cybersecurity and data

protection good practise by design [113]. Based on technologies used, some additional techniques

can be used to estimate the risk related to IoT firmware version vulnerability analysis [114] or

exploit detection in container environments [115].
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4 Objects and processes

This section describes all objects and processes that were taken into the author’s scope of

interest during his research. Object and processes have been selected based on discussion with

mining engineers and the importance for mining operations. The examined objects are directly

connected with the mining processes in the underground mine. The chosen machines (drilling rigs,

bolting rigs), technological processes (ore transportation, rock drilling/bolting), and underground

environments (with presence of hazardous gases) are key research areas in mining industry.

Each of the subsections include a brief description of the object or the process with experiment

details. These research objects introduce the need for the usage of measuring devices for the

underground mining, organized as Internet of Things system. Furthermore, to facilitate the usage

of above-mentioned IoT devices in those use cases, the cybersecurity resilience approach is also

described.

4.1 Drilling rigs

Drilling rig is the common machine used for the preparation of the blasting process in mining

facilities. It is the first machine in the technological cycle in mining industry with deposits

exploitation based on blasting technology. Hence, the drilling rig performance is crucial in the

overall process efficiency in a given mining area.

The drilling rig at the mining face is presented in Fig. 4. As it can be seen, the low profile

of the machine is adapted to the corridor shapes existing in room-and-pillar operations. This

self-propelled drilling machine comprises key components like operator’s cabin, electric cabinet,

electric cable reels (for drilling unit), diesel engine (or eletric motor for battery driven drilling rigs),

hydraulic system, boom(s), leveling jacks, arm and drill. Alongside drill carriages, some machines

also include a miner’s platform. Nowadays, this type of the machine is fully adaptable to the

specific mining conditions, offering a range of sizes from large models for extensive excavations

and tunnel construction to small, compact versions suitable for confined spaces.

This underground drilling vehicle, on arrival at the mining face, connects to the mine’s electrical

network, since hydraulic pump of drilling rig is powered by electric power. Using an external power

supply, machine sets up hydraulic systems, and starts working with rotary-percussive rock drill to

create the planned blasting pattern. Depending on the dimensions or underground tunnel type,

a single machine possesses one or two booms where the drill feed mechanism is located. The

created hole are 3 to 8 meters long (thanks to the extension options of the drill rod) and it is used
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Figure 4: Drilling rig at a mining face [116]

for the placement of explosive charge for the blasting procedure for excavating hard rocks. Table 1

shows several parameters of drilling machine.

Nowadays, underground mining machines are equipped with electronic drilling assistance

systems [117]. The main characteristic is the recording and visualization of specific parameters

of the machine work as well as correct functioning of individual components. In the presented

model, Face Master 1.7, the following systems are implemented:

• Basic Monitoring System (BMS) - checks and saves every 30 seconds the operating

parameters of the internal combustion engine, drive train, hydraulic oil and supply voltage

• Drilling Monitoring System (DMS) - informs the machine operator about actual events

and errors with drilling subsystems. They are divided into several statuses, such as active,

non-active, confirmed, and unconfirmed by operator.
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Parameter name Description

Product model FACE MASTER 1.7

Length 14.4 m

Width 2.4 m

Height 2.2 m

Weight 18500 kg

No. of booms 1

Max coverage [WxH] 9.5x6.3 m

Min. width of heading for tramming 90 ◦ 4.5 m

Rockdrill Rotary-percussive

Power source tramming /working Diesel/Electric

Application Hard rock/Non-flameproof

Table 1: Underground drill rigs specification [116]

These systems help to obtain most of information related to process and accelerate the root-cause

analysis during repairing faults or maintenance work. This approach is widely used in the industry

for machine park maintenance [118, 119]. Nevertheless, this work focuses on another physical

quantity: the current consumption of the drilling machine that is intended to be used for monitoring

the operating state. Owing that in next sections, the experiment plan (Section 5.1.1), measurement

method (Section 5.2.1), and device description (Section 5.3.1) is presented. Thanks to the proposed

data processing methods (Section 6.1), the obtained results (Section 7.1) are explained in more

detail.

4.2 Bolting rigs

Bolting rigs (also known as mining bolters - see Fig. 5) play a major role in underground

excavations made with room-and-pillar technology. Regarding mechanical parameters of the rock

mass and shape of the corridor, several types of rock bolts such as resin, (cement) grouted or

expansion bolts, and different technological process of mounting them are used [120]. Depending

on the height of the mining bolter, the machine operator can be located in a cabin (for automatic

masts) or in a secured cage to mount wire mesh that comes in rolls. In Fig. 6 mining bolter
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parameters are presented. These machines have a compact design, because they appear in the

mining activities immediately after taking the bulk material by LHD machines, and prepare

corridors to be used by other machines and mining workers later. For this reason, some of the

machine’s design parameters, such as height, turning radius and boom swing angles, are tightly

defined, but allow for the performance of excavation safety tasks.

Figure 5: Bolting rig machine [121]

There are many bolting techniques used in the mining industry, for securing the roof and rib

for excavations. To make a proper decision regarding the technique to be used, several factors are

considered such as geomechanical properites of the rock mass, existence of any local geological

disturbances, the function of a given fragment of excavation, and finally the roof class and corridor

dimensions. The roof class refers to the local rock stability index [123], what describes the

interdependencies of rock strength, degree of fracturing, and stress distribution in the rock mass.

Roof bolting is used in high excavations. For excavations with a width of up to 10 meters, the

minimum length of the roof bolts is 1.6 meters, whereas for excavations exceeding 10 meters, the

minimum length is 2.6 meters. Fig. 7 presents a typical cross-section of the ceiling secured with

bolting housing widely used in room-and-pillar system for underground mines. Another important

aspect of ensuring the bolting work is done properly is the evaluation of bolting effectiveness. There

are several types of measurements performed [124] to estimate it at the time of installation such as:

• measurements of changes in bolt load up to the moment of entry into the workings

• measurements of the restraint (pull-out) of the bolt rocks
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Figure 6: Bolting rig machine parameters [122]

• tests of stratification of roof rock in the bolted zone (indirect measurements)

Nowadays, there are many other methods to access the rock bolt condition [125] covering the usage

of ultrasonic [126–128], fiber optic [129], piezoelectric [130], and electromagnetic [131].

From an operational perspective, maintenance of the underground machinery fleet is crucial to

obtain the valid number of holes created after each shift. Thus, the need for an automated procedure

for the prepared holes to secure the ceiling with bolts is essential. Similarly to underground drill

rigs, there are two systems for diagnostics and monitoring purposes for mining bolters, namely

Basic Monitoring System (described in 4.1) and bolt counting system [117]. It consists of eight

pressure sensors connected to input/output pressure modules, Human Machine Interface (HMI)

and for communication uses a controller area network (CAN) protocol. The counting algorithm

check the correct order of specific parts of the bolting process, and its duration. Only the cycles,
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Figure 7: Cross-section of the ceiling secured with bolting housing [132]

which fullfill all bolting instructions, are counted as a correct bolt performed. These cycles are

saved and assigned to machine’s operator for every shift. In addition to this, the torque tightening

of the rock bolt measurement is also saved. There are also applied additional security measures

to prevent bypassing the algorithm. Nevertheless, the existing estimations, utilizing data from the

machine’s on-board monitoring unit (mainly pressure data from drill subsystems) are not accurate.

This methodology is highly uncertain for the case of expansion rock bolts mountage in the rock

mass. It is characterized by the presence of self-similar subcycles corresponding to the usage of

several drill rod extensions and deepening of the hole to the desired depth. To cover this gap, in this

thesis, a novel approach for counting the bolting cycles using laser-based measurement system data

is presented. The novel approach aims to provide information about the number of installed bolts

(number of drilling and bolting cycles) without knowledge related to pressure data. It is described

in more detail in Section 5.3.2.

This information is critical for tunnel safety and forms a basis for calculating remuneration

for work. Historically, such information has been provided directly by the machine operator (as

a declaration). Then, the on-board monitoring system was introduced several years ago. It was

based on the flow measurement in the hydraulic system installed in the bolting rig. However, the
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system has appeared to be expensive and, due to harsh underground conditions, not reliable enough.

This was the motivation for this research to develop an alternative solution, that is, an independent

laser-based measuring device and data processing methodology.

The further description of the issue is provided in the following sections: experiment plan

(Section 5.1.2), measurement methodology (Section 5.2.2) and device description (Section 5.3.2).

It illustrates the general overview of the proposed approach. Following to the data processing

methods (Section 6.2), it is possible to get insight into how bolting process behaves (Section 7.2).

4.3 Electric current measurement at a mining section

The power distribution system for underground mines is a complex structure. Today, most

technological works in underground copper ore mines require a stable electric power supply to

perform the work. The electrical departments execute technological work related to ensuring

the supply of electricity for necessary location in the mining divisions [133]. All mining plants

possess many electricity substations with additional facilities to enable it. The building of the

110/6kV transformer and distribution station has many 110/6kV transformers with electric network

protection facilities to transform the network parameters related to voltage change. With the usage

of cable channels, the electric grid is placed closer to the underground mining sections to the

next 6/0.5kV electricity substation [134–136]. At that point, the medium voltage level (6kV) is

transformed into a low voltage level for the direct usage of machines and appliances. In the polish

mining industry, it is a three-phase network with isolated transformer neutral point [137]. The

phase-to-phase voltage is 500 V. Electricity with the parameters above is distributed across the

mining excavation area.

Following the description above, an important research area is the analysis of the possibility of

decomposing the current signal in the electrical cabinet of the mining power supply unit. Signal

decomposition refers to the process of division of a complicated signal into independent parts called

modes [138]. In this case, from the measured total power consumption, it is viable to obtain parts

of the signal related to electric power consumption divided into a specific group of receivers. To

do that, current measurements can be taken at the output of the transformer to access the current

consumption of all the devices working in the mining area. The scheme of underground transformer

station is presented in Fig. 8. The three main groups of electrical receivers can be distinguished:

• wheeled mining machines (temporarily connected to a given mining area)

• air conditioning devices
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• mine drainage devices.

Figure 8: Underground transformer station electric scheme with possible receivers

Most self-propelled mining machines, mainly drilling and bolting rigs, used for work at the

mining face are connected to the mine’s power supply during drilling. Within a mining area,

according to the extraction plan, a fleet of bolting and drilling rigs are used. Their number and

work duration can vary. A second group of electric power receivers is the air conditioning and

ventilation devices. The last group of devices are mine drainage devices such as hydraulic pumps,

which ensure proper water management in a mining division. The last two groups are permamently

connected to the electric grid (continuous line in Fig. 8) on the contrary to wheeled mining

machines (dashed line). Nevertheless, above-mentioned groups of receivers are not the only ones

connected to a mining network of power supply. There are also other machines and devices using

electric power. They deal with other activities of ore extraction (e.g., construction of technical

infrastructure, horizontal transportation) in the given mining division. To facilitate data acquisition

in subsequent steps, mining areas were selected where only drilling and bolting rigs and other

necessary receivers were operating. The purpose of this approach is to gain a new source of data

regarding reporting purposes for cost management as well as new source of data related to mining

machine cycles detection.

The continuation of this topic is presented as follows: experiment plan (Section 5.1.3),

measurement method (Section 5.2.3), and detailed device description (Section 5.3.3) are provided.

Thanks to data processing methods proposed (Section 6.3), the final results obtained from electric

current measurement at a mining section (Section 7.3) are revealed.
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4.4 Gas hazards

Ensuring safe working conditions is a key aspect during mining operations. There are many

factors that should be taken into account to assess the risk for underground mining operations.

Among them, an important one is an air quality assessment [139]. The main emphasis is on

maintaining safe air parameters in the mining departments where people work. The air pollution in

underground mines can come from two major sources: natural and human-made [140]. Altogether

with underground deposits of copper ore resources, there are gas hazards present, that originate

from the natural emisson from the rock mass. There are methane (CH4) and hydrogen sulphide

(H2S). However, the methane presence is occasional and in a small quantities, what implies that

underground copper ore mines are classified as non-methane [141]. Nevertheless, mining works

are subject to preventive measures dictated by appropriate regulations.

Second group of hazardous gases are technological gases, generated by mining activities.

They are mainly formed by self-propeled wheeled mining machines, as well as mining blasting

operations. These gases are mainly nitrogen (NO) and carbon (CO) oxides. The main means

of reducing the concentrations of hazardous gases in underground mining is proper ventilation.

Another solution for improving air quality in mining excavations is e.g. an upgrade of diesel engine

with eletronically controlled injection system or additional equipment with a Diesel particulate filter

(DPF). Some of the improvements enable the digital control of machine subsystems (hydraulic,

gearbox). Another approach can be the usage of specific physical / chemical processes, such as

the photocatalysis process [142]. Today, even the usage of electric machines is possible for the

maintenance of the underground machine park [143].

Undoubtedly, the highest priority for mining work is to ensure the safety of underground

workers. Especially for deep underground mines, it is complicated to inlet enough fresh air in

corridors. Because of this, there is a need for portable personal devices for miners to inform them

in real time that a gas hazard is on the way. Existing, widely-used approaches for preserving

workers from a polluted air are measurements in a schedule manner. Taking only these results into

consideration, there is only the possibility to use model predictions from offline data. Following

that way, it cannot be enough to properly manage and prevent the gas hazard accidents in real-time.

In this regard, an approach with portable hazardous gas sensor with smartphone visualization layer

is presented to cover that gap.

In this thesis, the main consideration is taken for hydrogen sulfide and carbon monoxide. It

comes from the fact that the exposure the mining workers on them implies many health effects

depending on concentration values. In case of H2S for concentrations up to 5 Parts Per Million
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(PPM) human bodies react with headaches, nausea or eye irritation. For the scope of 5-50 PPM,

conjunctivitis may happen, up to 100 PPM olfactory disorder is possible. At values of about

200-750 PPM respiratory disorders in the form of pulmonary edema and apnea emerge. 1000

PPM concentration induce immediate respiratory paralysis and death [144–146].

The next analysed gas is carbon monoxide (CO). It is one of the most hazardous gases in

underground mines, because is a highly toxic, colorless, odorless, and tasteless gas. Exposure

at a concentration of 35 PPM, can be visible even after 6-8h as a headache. The next level of

100-200 PPM concentration induces symptoms after 2 hours, and 400 PPM after 1 hour. The fatal

dose of 1600 PPM with approximate exposure of 2 hour as well as 12,800 PPM with 3 minutes

of exposure implies the death [147, 148]. Owing that in next sections, the methodology (Section

5.3.4), experiment plan (Section 5.1.4) and finally the obtained results (Section 7.4) for CO and

H2S measurements are presented.

4.5 Robotic inspection for transportation systems maintenance

Scheme of belt conveyor describing the main components is presented in Fig. 10. This type of

an extensive underground infrastructure needs to be inspected on a periodic basis. Some working

parameters of the standard belt conveyor used in copper ore transportation are given in Table 2. The

length of the belt conveyors vary, following to the installation place and technological limitations,

but a single conveyor length is within the range of 0.5-2km [149].

The fragment of the transportation system chosen for robotic inspection is placed between the

two drive units: head and tail pulleys. This structure has multiple idlers that support the moving

belt with material along the way. These rotating elements include a shaft, two bearings, and

specific coating material. Taking into account the large-scale infrastructure, it requires an extensive

monitoring for diagnostics. The standard approach with human inspection is impossible for such

an extensive infrastructure (see Fig. 9).

In consequence, as part of the dissertation work, the automated robotic inspection approach is

considered as an equivalent to manual supervision. For that reason, the robot should be equipped

with measuring devices to further diagnose the idlers.

In Fig. 11, an example of underground transportation system for copper ore mine is presented.

With blue lines, there are visualized the belt conveyors, which transport the ore material from

dropping point (red dots) to mining carts unloading station (cyan dots). On the way, there are
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Table 2: Belt conveyor parameters [150]

Conveyor belt width 1000 mm

Conveyor belt length 1500 m

Conveyor belt velocity 2-2.5 m
s

Efficiency 1100 Mg
h

Belt conveyor slope ±5◦

Power of the drive station 2-3 x 110kW

Figure 9: Belt conveyor human inspection [151]

many weights (green) and discharge points (small triangles with black edges), before ore material

is moved by railroad (orange lines).

Transportation system of copper ore in underground mining stands for a crucial part of the

technological processes. Any bottlenecks generated by out of the order the mechanical or the

electrical part of the system above make significant and costly delays [152]. Following that,

keeping the belts conveyors in a prosperous state is essential from the mining company perspective.

Unfortunately, due to limitations from a such intrastructure of significant size, the occasional

unplanned breakdowns happen. For that reason, several trials are investigated to use an inspection

robots for these repetitive tasks. Instead of insufficiently frequent (or ad-hoc) inspections of belt

conveyors performed by underground workers, this process can be automated in a constant manner.

From the maintenance point of view there are three major inspection tasks suitable for

inspection robots [149]:
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Figure 10: Belt conveyor scheme with idlers [50]

• condition monitoring for idlers

• condition monitoring for conveyor belt

• condition monitoring for drive unit

The first two inspection tasks are considerably more difficult to carry out due to the extensive

inspection area and the number of components to be monitored [154]. In addition, the number of

electric drives is significantly smaller compared to the number of idlers. This makes it possible

to prepare stationary measuring systems for the motors to assess their condition, which is not

a trivial task for the first two inspection tasks. For that reason, limitations in the ability to assess

the condition of the infrastucture can be overcome by using inspection robots. There are many

types of robot widely adapted in numerous industries used for inspection or monitoring task such

as: Unmanned Aerial Vehicle (UAV), Unmanned Ground Vehicles (UGV), wall-climbing robots,

cable-crawling robots, marine robots, and legged robots [155]. The most suitable construction for

harsh environment from underground mining conditions are wheeled UGV [151, 156] and legged

robots [149, 157]. In Fig. 12 and 13 there are presented the inspection robot types broadly used in

underground mining asset monitoring. Using measurement devices such as cameras (RGB, depth,
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Figure 11: The underground transportation system [153]

infrared) or vibro-acoustic sensors, it is possible to automate the inspection of belt conveyors. These

sensors replace the senses of the underground worker, who carries out the inspection.

Figure 12: Wheeled robot for belt conveyor
inspection [52] Figure 13: Legged robot for underground

asset inspection [149]

In addition to the sensors mentioned above, it is also important to use sensors that enable the

robot to traverse the mining environment. Simultaneous localization and mapping (SLAM) is used
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for this task [158]. LiDARs, depth cameras and IMUs are used for this purpose widely in condition

monitoring in underground mines [159, 160].

In order to increase the quality of the resulting map and enable the robot path be more complex,

many improvements are made in terms of more accurate measuring devices or data processing

techniques. In this dissertation, the implementation of a mechatronic system in the form of

a 3D housing (for equipment protection in harsh mining environment) is presented altogether

with the servo drive that enables the rotation of the LiDAR mounted within it. The necessity

of the precise map creation of an unstructured environment, such as mining excavations, results in

new measurement methods using a LiDAR sensor. In addition to this, precise data that describe

the interior of excavations can be valuable for infrastructure diagnostics. For example, laser

outputs from rotating LiDAR can be used to scan the surface and edges of conveyor belt as well

as determination of idler-belt contact. The creation of the servo communication software was

integrated into the ROS system.

The rest of the inspection robot work is presented as follows: experiment plan (Section 5.1.5),

sensor integration methods (Section 5.2.5), and inspection robot description (Section 5.3.5) can be

found. Finally, the data integration of the rotary LiDAR and results are described in more details in

Sections 5.3.5 and 7.5.

4.6 Cybersecurity risk assessment of IT infrastructure

All the above-mentioned sections describe the objects and processes where their measurement units

have the ability to be connected within the Local Area Network (LAN). If the system architecture

will allow these devices to be connected to Wide Area Network (WAN) and then to the global

Internet directly, it would affect enormously the state of the cybersecurity of the assets. With that

in mind, it is reasonable to manage the risk where the current state of the digital affairs and future

technological developments may lead to. The advanced automation and robotization of processes

in mines represents the next phase of the digital revolution for mining companies. IoT devices in

key mining areas, described in this section, will exemplify the fundamentals for data sources to

manage, plan, and control machines and devices remotely.

As a natural consequence of the increasing use of digital solutions for control engineering,

process automation, and measurement devices, the cyber threats arise notably. These processes

upgrades bring a lot of benefits to the organization, among other things, ensuring better working

conditions for the staff. Instead of manual measurements, the digital layer of sensors can be

36



visualized using, for example, the SCADA system, widely used approach to manage state of the

processes (see Fig. 14). The digital transformation is accelerating and taking place in many

industries as well as in the mining industry. The integration of technological processes with

complex measurement systems, communicating on a common network, opens up new possibilities

for using the collected data and making the best decisions based on real-time data. Although not

all elements of the IT infrastructure, often including critical ones, are connected to the Internet, but

this may change in the future. Many activities are performed remotely nowadays, thus the proper

risk assessment should be taken into account. Ultimately, technological developments will allow

partial or full autonomy of work in mining, especially underground, where working conditions are

extremely difficult. Today, with closed systems, fully managed by the organization’s IT department,

cyber threats can also take place. There is the possibility that bad actors will break or bypass

security and can take control of the IT infrastructure and, by extension, the physical infrastructure

that manages technological processes. For this reason, this dissertation attempts to perform a threat

risk analysis focused on the specifics of a mining company.

Figure 14: Control room of technological process with SCADA system at ZWR District [161]

According to the risk terminology from Cybersecurity and Infrastructure Security Agency

(CISA), the following are distinguished [162]:
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• Threat: A circumstance or event that has or indicates the potential to exploit vulnerabilities

and to adversely impact organizational operations, assets, individuals, other organizations, or

society

• Vulnerabilities: A characteristic or specific weakness that renders an organization or asset

open to exploitation by a given threat

• Likehood: Refers to the probability that a risk scenario could occur

• Risk: The potential for an unwanted or adverse outcome resulting from an incident, event,

or occurrence, as determined by the likelihood that a particular threat will exploit a particular

vulnerability, with the associated consequences

The initial steps to establish cyber risk assessment are identification and creation of backlog of

all IT components. Based on that, it is possible to generate cyber threads using open vulnerabilities

catalogs to list all possible scenarios where assets are susceptible to. Many organizations, mainly

government, produce and manage cyber threat reports [163–165]. The next phase is documentation

of selected threats and cyber breach common indications. They can come from external as well

as internal origins, in regards to misconfiguration, internal bad actors, etc. By combining all of

the above, a cyber incident response plan can be created to mitigate possible systems breaches.

Knowledge of mostly all possible exploits allows one to identify the consequences that potentially

can impact on an investigated system. At this stage, the proper risk analysis is performed

considering all threats, possible vulnerabilities, and likehood. Finally, for all studied risks, the

prioritization for specifc risk responses is viable now. The prepared procedures in that way help to

respond for any cyber incident taken into consideration.

Nevertheless, the early adoption of new digital technologies is often problematic for many

companies. It is necessary to carry out any digital enhancements with strong technical skills

to architecture digital assets along with industry know-how. Especially for the demanding work

environment in the mining sector where every mistake could cost a lot.

In Information and Communications Technology (ICT), most projects are managed with agile

methodologies, where the most impactful risk factors are quality of the delivered solution and

overrun of the project’s time & budget [167]. As this dissertation states, an example of digital

transformation in mining industry and its next level of automation needs to comply with risk

assessment. It can be mitigated by cyber-atacks risk analysis based on fuzzy theory.
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Figure 15: Switchboard with devices for controlling electrical network parameters as an example
of binding the digital and physical assets [166]

For this particular reason, mining operations processes can be handled to estimate the risk taking

into account the level of mining automation levels. The risk assessment consists of differentation

of cyber-attack targets based on mining procedures computerization. The next factor relies on the

identification of cyber-attack techniques. Based on in-depth understanding of the mining sector,

the consequences can be defined. Finally, the risk ratio assessment can be estimated and proceeded

with expert knowledge.

Building modern solutions enabling data-driven decision making can be difficult not only in the

design stage but also in the operation phase. To ensure a stable environment for any robust digital

assets, it is needed to consider several factors to keep the operation viable. Ensuring cybersecurity
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in that case is not an ad hoc action. It is a well-suited set of rules that allows companies to retain

their digital assets safe [168]. Especially for cloud-managed infrastructure, where several aspects

are needed for it. Owing that, the following part of software delivery should be applied to have an

ability to have cyber-resilient in mind :

• CICD automation

• Unit tests of software logic

• Static code checks

• Container images scanning

• Repository artifacts scanning

• Private / Hybrid / Cloud infrastructure configuration compliance

All aspects enumerated above states for the parts of digital intrastructure which should be

taken into account for ensuring cybersecurity. In Section 8, these perspectives are described in

more detail to present the impact these have on the overall system architecture. Nevertheless,

the present approach above, represents only a limited scope of IT/OT landscape of mining

companies infrastructure. Fortunately, the industry awareness is getting rising, thanks to numerous

dissemination activities during industrial congresses as well as the plan for national cybersecurity

centre of excellence especially for mining industry [169, 170].

The continuation of topic is described as follows: Section 6.6 describes the details of usage the

fuzzy logic to assess the risk and Section 7.6 shows the risk analysis of cyber threat for a mining

company.
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5 Experimental works and measurement methods

In this section, the measurements methods for the chosen objects and processes presented in this

dissertation are described in more detail. A comprehensive technical description is provided for

each device, including the hardware specifications and the dedicated software developed to perform

the data acquisition tasks. In addition to that, some enhancements for manageable scaling out

the hardware and software solutions for distributed architectures with usage of cloud services are

proposed. Finally, the measurement methodology is presented, taking into account environmental,

technological and equipment limitations.

5.1 Measurement experiment plans

In this chapter, for each objects or processes, a detailed description related to experiment plans is

presented. Many different aspects of mining processes can be taken into account; however, the

research was limited to specific use cases for underground copper ore mines. As described in

the following, the experiments were carried out in cooperation with the mining company as part

of research projects at the university. The description of the experimental research carried out is

limited to 5 cases, for which solutions were developed or co-created to measure various physical

quantities characterizing the selected mining processes described in more detail in Section 4.1 -

4.5.

5.1.1 Current consumption assessment for drilling rig machine

The drilling of blast holes is one of the first technological operations in the copper ore mining

process. Performing mining operations in a room-and-pillar mining system enables many drilling

rigs working at the same time. In Fig. 16 it is presented above-mentioned mining system with

dozen of mining faces (black icons). They proceed according to the direction of mining. Each

machine drills the blast holes at the mining face in accordance with a blasting pattern.

An example of the pattern is presented in Fig. 17. Each circle corresponds to a drilled hole and

its color indicates the mass of the explosive (blue and orange, 3.5 and 2.5 kg, respectively). The

red numbers indicate the delay of every hole detonation [ms]. As one can see from the top view

(bottom part of the drawing), these holes are not parallel to each other. This arrangement makes it

possible to optimize the number and length of holes drilled for each rock mass burst. However, the

distribution of boreholes depends on the parameters of the rock mass in a given location.

41



Figure 16: Mining front with room-and-pillar technology for copper ore mines [171]

The drilling rig experiment relies on current measurement in the machine’s power cord to

estimate the work regime. The test rig was placed at the mining machines manufacturer test

site. A test holes was performed on the rock surface, as can be seen in Figure 18. Underground

drilling rigs have an electrical cabinet mounted closely to the rear part of the machine. Within this

unit, a three-phase electrical power from the underground electricity network is connected to the

machinery. To measure instantaneous current consumption, on one power cord, the Fluke current

clamp (i400s) is mounted as can be seen in the Fig. 28. The signal has the shape of a sinusoidally

alternating voltage signal modulated in amplitude by a current value in the range of -400 + 400 mV.

The data acquisition card cDAQ-9171 USB converts the signal using a built-in analog-to-digital

converter (ADC) module with a frequency of 2000 Hz. The collected signal provides information

on the drilling process that corresponds to the creation of dozens of drill holes in the rock that has

physical parameters similar to the underground copper rock deposits. The experiment was carried

out during tests at a mining machinery manufacturer.
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Figure 17: Drilling face blasting pattern: cross-section (upper), topside view (lower) [172]

Figure 18: Test site of drilling rig machine experiment [173]
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5.1.2 Bolting progression monitoring experiment

There are many techniques for installing ceiling support bolts in the room-and-pillar system.

To simplify the measurement unit construction and further data analysis from the process, the

mounting of expansion rock bolts is only considered during the experiment. This is the most

popular technology used to secure the ceiling of the corridor for underground copper mines in

Poland. Measurement device, described in more detail in Section 6.2, includes a laser rangefinder.

It estimates the drilling progress on the basis of an indirect method. The distance between the

ceiling and the mountage point on the mining bolter’s boom is measured. Taking into account

the harsh underground environment, particularly the high dustiness, several mounting places were

tested to eliminate as much as possible the impact of the dust on the laser beam. The final placement

of the measurement device on the bolting rig is presented in Fig. 19. Dataset analysed in this

Table 3: Bolting rig machine working parameters

Metrics Name Value

Corridor height 2-2.5 m

Bolt rod length 1 m

Laser mouting point 0.3 m

dissertation consists of 11 days of the measurement with at least one working shift quantified. In

the first place, the quality of the measured laser data was taken into consideration. Other factors

such as access to the validation data (from another sources), trouble-free bolting progress (lack of

bit jamming in the rock), and finally preserved the shape of the cycles without additional drilling

were used for final dataset collection. In Table 3, the selected process-related parameters are

presented. These values are related to the dimensions of the machine, the type of bolting process

and the location of the measurement device from the head of the drilling tool of the machine. The

measurement frequency is 8Hz, because the laser rangefinder can work with such repeatability at

most.
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Figure 19: Laser rangefinder mounted on mining bolter boom [174]

5.1.3 Experiment of electric current measurement at the mining section

As a continuation of the experiment from Section 5.1.1, the new approach is proposed to measure an

instantaneous electric current consumption. As compared with the previous manner, when current

measurement takes place in one of the drilling machine’s power cord supply phase using a current

clamp, the measurement device remains the same. Measurements are performed at an electrical

switchboard output power cord, in which electric power is distributed across the mining section

for many devices and machines. That approach is selected in order to limit possible measurement
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disruption, which can occur at the mining face. Current measurement unit, described in 5.3.3,

logged data during a month in an uninterrupted manner in total with a 2000 Hz frequency.

In the first phase of experiment preparation, electric devices switching tests are performed.

A table 5 describes all types of machines and devices with corresponding current consumption.

The purpose of that is to have valid datasets corresponding to each device working under mining

division. Moreover, the second part of the experiment handles cases where overlapping of receiver

groups is considered in order to unambiguously identify them during standard working shifts.

Measurement in a mining section covers the sum of current consumption of all devices and

machines connected to the electric grid at a given time. During that period, they can simultaneously

work with several different machines. However, it is possible to interpret unambiguously only

some moments when, for example: only one mining machine is working. This is evident from the

shape of the envelope of the current signal. There are four regimes of operation connected to the

underground mine electrical network:

• constant working regime - after startup, some of the devices characterize with a nearly

constant current consumption in time. The current level can be estimated based on the power

rating (Fig. 20). This regime can be interpreted as the work of hydraulic or ventilation

devices within the given mining area.

• drilling rig regime - in the current envelope it can be possible to see the cyclic changes

corresponding to drilling holes at the mining face. There are 4 distinguishable phases of

drilling rig work: idle gear, manoeuvring, drilling, and run-up peaks. (Fig. 21).

• bolting rig regime - after run-up peaks (occured after machine plug-in to electric grid), there

are idle gear, bolting, and characteristic rock bolt tightening peaks levels. (Fig. 22).

• others - combination of work of many different machines and devices working in parallel

The last phase of the experiment manages the measurement in different mining areas to cover

all possible scenarios of underground machines works. In Fig. 23 it is presented a view from the

drilling machine operator’s cabin during the experiment.

Using current consumption measurements in a given mining area, it can be interpreted

as a record of operating events. Handling the above-mentioned knowledge of the group of devices

and duration of individual current levels described in this section draws a broader perspective on

how electric devices work overall in mining section. Based on the methodology described above

and the information obtained from the electric devices switching test, it is possible to identify
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Figure 20: Stable working regime pattern

several parameters of the electric devices and machines that work within the given mining area.

Some of these are:

• an average work time of the specific device/machine in a selected mining localization

• an estimate of the energy consumption rate of a particular machine or group of machines

• start and end of the wheeled mining machines work

• wheeled mining machines cycles idenfitication (when just the one machine works in the given

area).
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Figure 21: Drilling rig regime pattern

Figure 22: Bolting rig regime pattern
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Figure 23: View from the cabin of a drilling rig operator during drilling blast holes

5.1.4 Plan for hazardous gases measurement

The hazardous gases present in an underground copper ore mines are H2S and CO as the main

concern. The purpose of the experiment is to validate in real working condition the hardware

& software of the personal gas measurement unit for the mine workers. Prior work for system

check was verified in the lab and in the mine. Indirect sensor software-based validation used in

this case is a more convenient way to calibrate the linear sensor output with certified portable

sensors managed by the mine ventilation crew. The second part of experiment is the measurement

session undertaken in an underground mine in several places, where natural or man-made sources

of hazardous gases existed. In the map shown in Fig. 24 the masurement points (green cirles

with number of 1 and 2 respectively) and air flow directions (red arrows) are presented. The

measurement device described in 5.3.4, has the direct connection with smartphone. Thanks to the

usage of custom application it is possible to present on-line measurement results with frequency

refresh of 1Hz. Within the application, several alarms were designed to inform mining workers in

a clear way about the possibility of gas hazard based on the thresholding of gas concentration.
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Figure 24: The map of the measurement experiment in an underground mine with sensors location
and fresh and used air stream flow [175]

5.1.5 3D scan optimization experiment using inspection robot

The inspection robot, developed by the research group from our faculty, was equipped with many

sensors for environmental parameters analysis as well as for surface 3D reconstruction. During

the experiments, the necessity of precise map creation was revealed. Such mapping solution can

be used for navigation as well as diagnostics purposes [176, 177]. The precision improvement

was achieved by the development of lidar movement mechanism. In this study, the main emphasis

is taken on robot’s equipment devices such as lidar enabling robot neighborhood mapping. The

mobile robot during belt conveyor inspection is presented in Fig. 25 (open-pit case) and Fig. 26

(underground mine case). The detailed description of the robot setup with the above appliances is

described in Section 5.2.5. Moreover, in this dissertation, only the way how devices are assembled

and configured in the robot operating system is applicable. Techniques related to point-cloud

analysis and additional data processing are outside the scope of this thesis.

Experiments can be divided into two major parts. Measurements were taken in two different

environments. The first was a measurement on a belt conveyor located in the production hall,

on which bulk materials was transported. The second part took place in an underground mine

during the transport of copper ore. Each experiment involves driving a robot along a belt conveyor

with set of sensors presented in Fig. 27. The device used is 16-line Velodyne VLP-16 lidar.

Nevertheless, there are other sensors mounted on the robot mast, namely: Depth camera Intel
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Figure 25: An automated idlers acoustic inspection with robot (Source: AMICOS project)

Figure 26: Robot during inspection in a mine (Source: AMICOS Project)

Realsense D455, ELP RGB camera, FLIR IR camera, and CCLD Microphone Preamplifier Bröel

and Kjær 4189-A-021 with type 2671 preamplifier. During this work, the only lidar output is

considered.
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Parameter name Description

Robot type Skid steering,

wheeled mobile platform

Control mode Teleoperation / autonomy

Weight 65 kg

Maximum payload 75 kg

Height 400 mm

Length 867 mm

Width 655 mm

Mast height (upper part) 1400 mm

Mast width (upper part) 150 mm

Mast length (bottom part) 360 mm

Mast width (bottom part) 400 mm

Table 4: Wheeled robot platform parameters

Figure 27: The view on robotic inspection sensors suite

When the measurement equipment is in motion, data is collected and recorded using ROS

protocols enabling data exchange. The data frames are sent from lidar with 10 Hz frequency and
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stored in raw data format as .rosbag files. All files possess a timestamp for synchronization with

other processes of robot operating system, i.e. for navigation purposes. This feature helps to

process data offline.

5.2 Measurement methods

In this chapter, author presents the measurement methods used to gather data necessary to enhance

the processes-related knowledge of the mining machine operations and improve the safety of

miners. In next paragraphs, the key factors that helped to obtain the durable data sources are

explained as best as possible, describing the various mining processes dealing with the complexity

of mining activities. Taking into account that the presented measurement methods or sensors used

are well-known in other industries, the crucial part of the work is to propose the adjustments making

these data sources reliable and one of the pioneer usages in mining science.

5.2.1 Drilling rig electric current consumption measurements

It is assumed that based on direct electric energy consumption featured by current measurement, it

is feasible to identify the mining machines work cycles. Many sensors used for measuring current in

the automation industry rely on in-circuit measurement techniques. This form of interference with

the machine system needs to be integrated at the machine design stage. To satisfy the limitation

above, the usage of non-invasive method of the mining machine’s workload assessment with the

current measurement for instantaneous energy consumption is presented. Current clamps offer

a more convenient solution, as they allow current measurement without altering the machine’s

electrical circuits. The key factor of usage of current transformers is a galvanic separation from

the controlled circuit. Among from the well-known current transformers types, the current clamps

with Rogowski coils is more suitable for mining usage than the optical or hallotron transformers

due to their structure and range of operating parameters.

Underground drill rigs, to support the main drilling operations, use an external eletric power

supply from underground mine infrastructure. A diesel engine only powers the driving systems

and a small hydraulic pump mounted there because of incomparably greater power consumption

from drilling subsystems.

Therefore, in these devices, the hydraulic system for drilling was powered by an external

three-phase AC voltage of 500 V or 1000 V at a frequency of 50 Hz. An external electrical source

was linked to the machine’s electrical cabinet. The power supply was symmetrical, and as a result,

53



Figure 28: Current clamp mountage point on the drilling rig [173]

a current clamp can be installed on any conductor of the supply line. The assembly of measurement

system is rather simple where the center of the measured conductor is installed in the current clamp

jaw. Moreover, it is important to mount the clamp perpendicularly to the power wire for correct

results. The current clamp mountage point assembled on the drilling rig is presented in Fig. 28.

It is crucial to note that the energy consumption levels for the machine’s other subsystems,

excluding the drilling system, remained relatively stable during the drilling process. This stability

in energy consumption, observed during measurement session, allowed to derive insights into the

changes in the drilling process directly from the current measurements.

5.2.2 Bolting progress measurement

There are plenty of machine equipment settings and different techniques for excavation roof support

with usage of bolting rigs. The most prevalent procedures utilize the steel joints and expansion rock

bolts. The correct process execution to strengthen the corridor ceiling relies mostly on the bolt type

used. It is mainly the results of rock mass physical properties and finally the internal procedures to

follow.
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Figure 29: Scheme of the bolting process [174]

The process of preparing ceiling protection using expansion rock bolts is selected for

examination due to its repeatability. The above process is illustrated in Fig. 29. Firstly, it involves

creating bolt holes by placing the rod into the drill socket and drilling the hole along the rod’s

entire length (step 1). Following this, the tool is brought back to the starting position, where an

additional rod is attached, and the hole is drilled deeper to the required depth (step 2). The final

step involves returning to the initial position once more to insert the rock bolt and blowing out the

hole in parallel. This step is marked by a quick change in distance over time and the application of

tightening torque. At this moment, a rock plate is added to properly fix the end of the rod on the

ceiling (step 3). These holes form a grid with distances in the range of 1-1.5 m between each other,

but could vary depending on the local geological parameter of the orebody [178].

The performance of a drill hole to secure the roof of the corridor with rock bolts consists of

2 drilling subprocesses (the geometry of the tunnel makes it impossible to drill an appropriate

hole without such a division into 2 phases) and the bolt installation process. There are also many

auxiliary movements of the bolt during the installation of a single bolt.

During several measurement sessions, where the subject measurement unit was mounted on the

machine during its standard work regime, a few mountage options for laser system were tested to

resolve the problem of the most appropriate laser placement. Some of them, like mounting closely

to the ceiling roof, or on movable parts of drilling rig turret were tested. It helped to estimate the
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overall quality of the data obtained from laser rangefinder and achieve as smallest as possible the

impact of dustiness from the drilled ceiling or from the ground, or rock crumbs crossing the laser

measuring path and finally the vibrations what could damage the device.

5.2.3 Electric current measurement at the mining section

Based on the methodology proposed in Section 5.2.1 it is likely to assess the work of specific mining

machines using noninvasive current measurement. To extend that approach in this paragraph, the

identification of machine’s work is presented taking measurements on transformer station output.

It is a place in electric power supply network, where the medium voltage of 6 kV is transformed to

low voltage level 500 V and parametrized for a direct use for mining machines and applicanes (e.g.

ventilation, lighting etc.). That network is distributed accros the excavation mining area. There are

three main groups of devices connected to the underground transformer station output network: air

conditioning devices, mine drainage devices, and wheeled mining machines connected temporarily

to a given mining area. The work of these first two groups tends to be cyclical, mainly on the basis

of extraction work and daily cycles related to the ventilation and drainage needs of the mining area

in question. The last group, mining machines, operate acyclically, mainly based on the mining

plan for a given mining division, and only then are connected to the electrical network in the area

specified.

Device name Nominal current [A] Start-up current [A] Additional information

Undefined <1 - Lighting / other receivers

1-speed fan 15 110 Single motor switching

2-speed fan 35 110 Dual motor switching

Hydraulic pump 5-6 56 Hydraulic pump work

Drilling rig 55 >200 50A - idle gear,

60-100A - standard drilling

Bolting rig 30-45 (based on the type) >150 30/45A - bolting,

>80A - auxiliary movements

(Tightening the rock bolt)

Table 5: Result of a electric devices switching test within eletric network after transformer station
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In order to explicitly identify the characteristic parameters for individual groups of receivers,

a electric devices switching test was carried out. The greatest emphasis was placed on finding out

the current consumption values at start-up and during each cycle of operation of the individual

devices and machines. The result of a switching test is presented in Table 5.

5.2.4 Hazardous gases measurement

The conventional method for validating sensors in industrial applications requires specialized

calibration equipment. These instruments come with necessary certifications and attestations

that verify their functionality and operational dependability. This is the standard procedure for

calibrating any industrial device in a certified lab. However, this process is time-consuming and

costly. For the portable environmental measurement unit considered in this thesis, a different

approach is suggested. Based on readings from devices commonly used by the mine ventilation

team, calibration is performed. Following software calibration, described in more details in Section

6.4, the data from certified portable sensors and prototypes align. This method, similar to the entire

proposed solution, is cost-effective, quick, and maintains similar accuracy. Moreover, with the

advancements in technology and the Internet of Things, this unique software and measurement

system can be effortlessly adapted to evaluate the conditions of various other gases such as NOx,

SOx, CH4 in the same manner.

It is worth to mention of the several pitfalls of the proposed method used, which are not handled

there. For example, the impact of gas sensor cross-sensitivity is unknown after calibration method

proposed. The linear output interpolation from calibration sensor has a form of convolution on two

cross-sensitivity functions, which gases sensors reactiveness used in measurement unit is unknown

what implies the same for output function. It is suggested to work in this area in more details to

remove the signal noise and uncertainty in the exact gas concentration estimation, but it would

demand an additional overhead for consequentive calibration. Nevertheless, the received sensor

output is acceptable bearing in mind a significal cost reduction for usage at scale.

5.2.5 Measurement for transportation system inspection using mobile robot

During mobile robot inspections, several sensors and data sources are used to complete the entire

investigation of the transportation system. As described in Section 5.3.5, to obtain the 3D point

clouds from a single scan, a Velodyne VLP-16 lidar is used. This configuration has options to

generate cloud points retrieved from rotating or statically mounted lidar. In addition to the lidar
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data to be gathered, there are other data needed for the correct configuration and interpretation of

the dataset for inspection of transportation systems. One of them is an IMU sensor data (ROS

output topic) to correctly calculate the displacements of the robot in space. Another data source

comes from the custom driver from the servo that controls the lidar movement and returns the actual

angular position. In Table 6 the selected range of data collected by the robot is presented.

As mentioned before, ROS uses publisher - subscriber messaging pattern, where every device,

sensor, actuator etc. stands for a ROS node and transmits data into the operating system as

a publisher. In this mode, a topic and message type are provided to be used by other ROS nodes

working in a subscriber mode. It could be another sensor (using data from different device),

a process (triggered by a separate script), or a custom software for calculation or data visualization

purposes. In this case, topics listed in Table 6 along with their formats are handled by rosbag tool

(ROS command line utility) to save all data in .bag file format for future use. All data frames are

wrapped with the actual timestamp. As a result, data can be filtered using the same rosbag utility.

For better storage performance, it is proposed to use LZ4/BZ2 compression formats. During the

tests, the size reduction was approximately 50-60%.

With usage of data above, during data acquisition from transportation systems inspection,

a tablet interface was used to control it in real-time. Fig. 30 presents the data visualized on a tablet,

which greatly impacts the quality of inspection. To realize it, the topics generated by the sensors are

also subscribed to Rviz software to generate visualizations and send the data to be presented on the

tablet [180]. In the center of the figure there is displayed the stereo camera output with horizontal

stripes from lidar data. All around this view, there are other camera outputs presented, but camera

data are beyond the scope of this thesis.
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Table 6: Rosbag file structure description
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Figure 30: Online visualization panel view from belt conveyor inspection (Source: AMICOS
project)

5.3 Measurement devices

Measurement system developed for mining environment or processes consists of hardware and

software. The selected hardware components used in the systems are off-the-shelf chips available

on the market. Their selection is dictated by the following key aspects such as:

• Motherboards with Linux-based operating system / open-source compilers applied

• Open-source libraries (written in c/c++/python programming languages) used for

communication with the on-board hardware

• Chips with ready-to-use GPIO for connection to the measurement system

• Sensors have sufficient capabilities to achieve experiments objectives

• DC power supply (5/12/24 V DC applicable)

• Cost effectiveness

This approach is proposed with bearing in mind that easy solution adoption is mostly applicable

when there is a reduced supply chain that effects the cost the most [181]. For majority of

cases, the dedicated hardware components, will behave better and in a predictable way rather

than off-the-shelf chips, but the cost of final solution would be significantly higher. Moreover,
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the adoption time would typically increase. Finally, the adoption strategy of such extended IoT

solutions should be managed by mining company respectively concerning all prons and cons, and

risk management in particular.

5.3.1 Device for drilling rig electric current consumption measurements

The main goal of the measurement device is to determine the variability of the current consumption

level for the drilling process with a wheeled drilling rig. Two data acquisition approaches were

used during the measurements. First concept stands for utilization of laboratory class equipment

for data acquisition. For this purpose, a National Instruments cDAQ-9171 acquisition card has been

selected. The cDAQ-9171 chassis with DAQ measurement card has four programmable channels

for connection analog or digital sensors. In this case, one of the channel is used as input host for

Fluke i400s current clamp sensor with configured 2000 Hz frequency measurement as it can be

seen in Fig. 31. With usage of manufacturer software Signal Express™ it is possible to run the

measurements and store data on the laptop connected to the equipment. The view of the test rig is

presented in Figure 32.

Figure 31: Standard current measurement setup

The second approach is to create a stand-alone measurement device that allows the connection

of additional sensors needed to register relevant data. The proposed device block diagram is

presented in Fig. 33. Microcontroller used is Arduino M0 Pro motherboard with ATSAMD21G18

chip. Current clamps voltage analog signal in the scope of -400 + 400 mV is transformed using

Analog-To-Digital (ADC) converter. The output of the conventer is connected via I2C protocol and

saves the status information on the pin as soon as the new value appears. In addition, Real-Time

Counter (RTC) connected via I2C protocol is also applied. Using USB cable, a power source of 5

V DC is plugged using a portable powerbank. Finally, software application is written in C language
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Figure 32: Standard current measurement setup during drilling rig work

for sensors & measurement management. It enables to store data and saves it in .txt format on an

SD card. The obtained measurement frequency was about 150 Hz, what states for inssufficient

value, in particular for analysis in frequency domain. Owing that, the device design is upgraded,

mainly focusing on replacement of microcontroller with more efficient single-board computer. The

detailed description is provided in Section 5.3.3.

Figure 33: Microcontroller-based current measurement device
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5.3.2 Device for laser-based measurements for bolting operations

This section presents the laser-based system for drilling and bolting operations monitoring module.

This device, mounted on the bolting rig allows acquiring data during normal operation of the

machine. It collects distance data taken between the mounting place on the working arm (mining

bolter boom) and the ceiling of the mining tunnel. The main measuring component is a Laser

Distance Module (LDM) M703A model produced by JRT Meter Technology. Laser sensor and its

parameter is described in more details in Table 7. High measurement accuracy with a relatively high

data collection frequency and a favourable price is a key factor of this sensor. It should be noted

that sensors with higher measurement frequencies are available on the market, but their accuracy is

at a much lower level or the cost of the sensors is significantly higher.

Table 7: Laser distance sensor parameters

Accuracy ± 1 mm

Measuring range 0.03 - 40 m

Laser class Class II

Laser type 635 nm, < 1 mW

Supply voltage 2.0 - 3.3 V

Frequency 8 Hz

Working temperature 0 - 40 °C

System components are listed in Table 8. The laser is placed in dust-proof housing altogether

with IMU sensor to provide additional information related to vibration during the drilling in

the ceiling. The IMU sensor is integrated in the measurement module and its communication

with the microcomputer takes place via the I2C bus. In addition to this, with usage of the

Serial Communication Port (UART), the data frame is sent from laser to the microcomputer. In

parallel, handling the outputs from real-time counter (RTC) enrich each distance measurement with

information about timestamp and acceleration and angular velocity accordingly. Communication

between all sensors and microcomputer is presented in Fig. 34. An user interface on the device

states for two LED (green/red) displaying the actual status of measurements and buttons for turning

on/off device. All components of the system were placed inside the housing with the power module

and assembled on the mounting plate. The plate was attached to the mining bolter head using

vibration isolators, as can be seen in Fig. 19. Preservation of laser sensor against the mechanical
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Table 8: Components of bolting roof measurement system

Microcomputer Raspberry Pi 3B+

IMU MPU 6050

Real-time clock (RTC) DFRobot DS3231M

Laser Distance Module M703A (JRT Meter Technology)

User Interface Switch (ON/OFF), LED (green & red)

Power Supply Powerbank (output: 5V 2A)

damage by rock crumbs is satisfied by usage of additional glass cover. It is made of non-interfering

material with the laser beam and mounted on the housing surface.

As a main microcomputer, the Raspberry Pi 3B + is used with a Raspian Pi OS 5.10.92-v7+

version. Created software written in Python 3.8.5 version uses also libraries provided by

producers of ready-to-use RTC and IMU modules [182, 183]. Managing threads by integrating the

aforementioned sensor output and user feedback provided by LED indicators relies on the Python

subprocess library. It handles the hardware interface through GPIO (General Purpose Input/Output)

pins using bash scripts for optimized code performance. Each sensor output iteration is performed

based on eventual consistency, triggered only when laser data is required. When the memory buffer

is nearing capacity, the data is written to a text file and stored in the system memory. This method

allows for achieving the highest possible data frequency, with a maximum rate equivalent to the

laser rangefinder output on the serial port at 8 Hz.

The data displayed were collected during the process of mounting expansion rock bolts with

a bolting rig. All captured data were logged throughout the operation. Information obtained from

the measurement unit, which runs on a Linux-based operating system, was sourced from multiple

sensors linked to the Raspberry PI 4 board via RPIO pins. The collected measurements were stored

in .csv files, which were subsequently transferred to external media using a designated USB port

on the case (with a circular rubber cover, see Fig. 19).

Every file name with data saved contains information on the start of the measurement in the

format YYYY-MM-DD hh-MM-SS am/pm generated from a real-time clock. The measurement is

performed at a constant frequency of 8 Hz and has the following columns:

• distance [m] - laser sensor distance measured
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Figure 34: Block diagram of the measuring module

• accuracy [0-2500]- measurement quality of the received distance (built into standard laser

sensor payload, provided by the device manufacturer).

• accx, accy, accz [G, m/s2]- 3 axes of the accelerometer

• gyrox, gyroy, gyroz [rad/s] - 3 axes of gyroscope

5.3.3 Device for measurement of energy consumption by electrical receivers

In this section, a new developed current measurement device is described. The specification below

is designed to measure the current level on the electrical switchboard outlets for corresponding

underground mining area. The placement of the measurement unit inside electrical cabinet is

depicted in Fig. 35. It is an improved form of the device described in section 5.3.1. For that

reason, several enhancements are proposed to allow identifying energy streams associated with

the operation of specific machines and equipment: e.g. self-propelled drilling rigs, self-propelled

bolting rigs, fans, pumps, and air conditioning equipment under real conditions.

The block diagram of the updated current measurement module is presented in Fig. 36.

Instead of using microcontroller as computing power for measurement devices, Raspberry Pi 3B+

microcomputer with a Raspian Pi OS 5.10.92-v7+ version is used. A selected device possesses

Broadcom BCM2711 64-bit processor chipset with four Quad-Core ARM Cortex-A72 cores and

2 GB LPDDR4 memory. System components are described in more detail in Table 9.

65



Figure 35: Mountage place in electrical cabinet in the mining area

Table 9: Current measurement system components

Microcomputer Raspberry Pi 3B+

RTC DFRobot DS3231M

Analog-to-digital converter ADS1x15

Current clamp Fluke i400 AC Current Clamp

User Interface Switch (ON/OFF), LED (green & red)

Power Supply Battery (output: 5V 3A, 20000 mAh)

SD Card Kingston 256 GB Endurance

The device interface is presented in Fig. 37. The Fluke i400s current clamps are mounted on

a given outlet in the electrical switchboard of the of the selected operating mining area. The sensor

wire is connected by BNC connector on the housing of the appliance (Fig. 37 reference number:

5). Analog signal from BNC connector is wired with input of Analog to Digital Converter (ADC).

Following that, using I2C communication protocol data is sent to microcomputer input, where

recording on the internal flash memory is placed. Data recording also uses information about the
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Figure 36: Block diagram of the measuring module

actual date and time, provided by the RTC module communicated using I2C protocol. At this stage

of processing the data are combined, a time vector is added, as indicated by the real-time clock

from the measurement device. The data thus prepared is then ready for further analyses and reports

required in further stages of the work. The correct work of the device signalizes the green LED

diode (2). The copying of data to an external USB memory device takes place automatically after

inserting the storage medium in the connector on the housing (4). Copying process is visualized

using the red diode (3). The device is also equipped with a push button for start-up (1) and an

external power connector (6) for 12V DC power (if applicable).

Data acquisition software is written in Python 3.8.5 version with RTC producers library to

handle clock output. LED interface and data sending protocol is coded in Bash to handle

the hardware interrupts and correctly manage the microcomputer workflow. Every file with

measurement data stored has 1 milion rows taken from 16-bit analog-to-digital converter in a raw

format to enable the quickest data acquisition. This analog signal, which is the current clamp output

for values corresponding to a range of +/- 1.024 V, can be converted to values of the instantaneous

current consumption. Data are not processed on the measurement device in order to minimise

a computional workload. It helps increasing the signal sampling rate and the file size optimization

(saving int instead of float values). In each of the measurement files the first line contains the time

stamp used in subsequent steps to create the time vector. The following lines contain individual

values in the range ± 65535 (216−1) corresponding to the values of the analogue signal ± 1.024V.
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The source is a sinusoidally alternating signal with a frequency of 50 Hz. The signal is sampled

with a frequency of approximately 2000 Hz. The measuring range of the instrument is 5-400 A and

resolution of 0.03125 A with measurement accuracy of 2% + 0.04 A [184].

Figure 37: Current measurement device interface with a memory connected to data transfer

5.3.4 Device for hazardous gases measurement

The device prepared for measuring hazardous gases in underground mining is described in this

section. The concentrations of hydrogen sulfide (H2S) and carbon monoxide gases (CO) are

considered. The main idea is to support works of ventilation crew during the periodic inspections

by handling several measurements in an automated way and visualize them using smartphone. The

architecture of this accessory can be divided into three main layers:

• Sensor layer

– CO Gas Sensor

– H2S Gas Sensor

– Temperature sensor

– Pressure sensor
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– Humidity sensor

• Microcontroller layer

– Data acquisition

– Data storage

– Data transmission to receiver

• Analyzer layer

– Visualization mode

– Data management / persistent storage

– User interface

The presented gas measurement device consists of several components. The main parts are

gas concentration sensors, namely MQ-9 sensor for CO concentration and ZE03-H2S & MQ-136

for H2S accumulation [185, 186]. Sensor changes its conductivity thanks to usage of tin dioxide

(SnO2) as responsive material. Changes in resistance are tranformed to the voltage output of the

sensor and based on that the concentration of gases mentioned above is determined. In addition,

DHT-22 temperature & humidity sensor is used for estimation of the value of temperature in range

−40◦C to 80◦C and humidity from 0% to 100% ± 1% (see table 10). Sensors are connected

directly to Arduino M0 Pro with 32-bit ARM Cortex M0 processor with clocking of 48 MHz and

32kB SRAM memory. Sensors described above are connected to analog pins. Other devices,

such as HC06 Bluetooth module [187], SD card reader use UART & SPI protocols. System is

powered with stable 5 V DC from RAXFLY 10,000 mAh powerbank. Environmental conditions

are measured at a frequency of 1 Hz. Then, PPM values are computed, and the data frame is

transmitted to the smartphone via Bluetooth. To protect against data corruption in the extremely

harsh and variable mine environment, the entire file with measurements is sent to the smartphone

every 5 minutes for redundancy.

Smartphone with the dedicated application states for a medium to visualize data online for the

mining crew. The screenshoot of the crafted application for Android operating system is presented

in Fig. 39a. The UI displays gas concentrations and archive data on smartphone storage using

Bluetooth connection [188]. In addition to this, some smartphone built-in sensors are also used to

enhance the dataset. IMU sensor with information about acceleration, velocity is managed with

10 Hz of measurement frequency. An application has some functionality created for handling gas
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Table 10: Gas measurement system components [175]

Component Role

Arduino M0 Pro Board

MQ9-Sensor CO concentration

MQ136-Sensor H2S concentration

ZE03-H2S H2S concentration

DHT 22 Temperature

Humidity

HC06 Bluetooth controller

Polulu SD Card Reader SD data acquisition

concentration thresholds. In the case of the emergency state and hazardous gases increases above

the permissible values, the app makes a phone vibrating and the background start blinking red.

Fast prototyping of measurement units is not only related to the usage of custom electronic

devices with the dedicated software. It includes technologies for rapid manufacturing, i.e. printing

custom case for on-board computer. To achieve that, 3D printing technology is used to prepare

a casing to protect all measurement system components from harsh mining environmnent as well

as enable the environmental sensors to operate correctly. For that case, a 70 × 75 × 67 mm

3D-printed container with holes for sensors and diodes is created as can be seen in Fig. 38.

Polyactic acid (PLA) as a core material is used, because it has mechanical properties suitable for

use in the mine area. Nevertheless, it is worth mentioning that PLA is a biodegradable plastic with

an exemplary physical parameters for thermoplastic forming process [189, 190]. In accordance

with the Regulation of the Ministtry of Energy of 23 November 2016 (Chapter VI), the degree of

protection of the device must not be less than IP 54 [191].

Software for Arduino board is written in C language using the integrated development

environment (IDE) for embedded project, namely platformio.org to increase capabilities and

manage the software project in more efficient way [192]. This IDE, as an add-on for Visual Studio

Code, enables rapid application development with a variety of boards and microcontroller models.

Moreover, it helps with smart features to maintain libraries and perform code completions to gain

the overall software project maintenance. Second part of the created software is an application for
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Figure 38: Bottom and top side of 3D printed case for the gas measurement unit [175]

data visualization and logging. Owing the fact that more than 70% of mobile phones use Android

operating system, this system is chosen for the dedicated application [193]. This approach allows

for unlimited opportunities to manage information to other applications, such as cloud provider

storages (see Fig. 39a, 39b). To achieve this, the MIT App Inventor, a block-based coding platform

for mobile app development, was utilized. It allows for the rapid creation of mobile applications.

Within the MIT App Inventor, blocks of code for Bluetooth connectivity and data acquisition from

IMU sensors were added. When a new data frame from a microcontroller is sent, data visualization

occurs immediately. In the background, the app records the current values from sensors and

smartphone’s sensors: acceleration and velocity every 100 milliseconds. Other key features of

the application include measurement data management, basic visualization in a text field, and data

plotting.
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(a) Android application for data visualization. (b) General scheme of the system.

Figure 39: Example of using the smartphone application for underground gas measuring
system [175]
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5.3.5 Prototype of rotating lidar mechanism for an inspection robot

In this section, the mechanism of rotating lidar for the usage on the wheeled robot for mining

machinery inspection is presented. The most emphasis is set to connect the hardware, namely

the lidar and integrate it into Robot Operating System (ROS) [194]. In this work, two main robot

application cases for the mining industry are considered: mapping system generation for the robot’s

locomotion purposes and mining transportation systems autonomous inspection. Owing that, the

precise map of the surroundings is necessary and for that purpose the prototyped lidar mechanism

is revealed.

First approach includes an adjustable mapping system with the usage of additional, controlled

rotation of the lidar device around its longitudinal axis (see Θ2 axis in Fig. 40). In standard working

operations a lidar uses beam rotation around Θ1 axis. Thanks to that additional movement, fully

controlled by operator (using frontend on tablet or parametrizing the script with specific value),

it is possible to increase the effective field of view (FoV) closely up to the point of full-spherical

FoV. The work uses a 16-line Velodyne VLP-16 lidar and its rotational movement is executed by

Robotis Dynamixel AX-12A servo drive. Assembly method is presented in Fig. 41a. Lidar is

attached on 3D-printed stand, which is press-fit mounted on a drive pin. On the rear side of the

grip joined with 5 screws, the servo drive is placed and this part of the case is mounted on rail with

4 screws to aluminium profile on the inspection robot’s mast. The achieved movement resolution

is 0.29◦ [195]. Owing the fact of mounting method limitation, the rotation scope is limited from

−90◦ to +90◦, where 0◦ stands for the horizontal position. The voltage supply is separated from

robot power system to 19V (for PC) and 12V (for Lidar and other sensors) levels. It is achieved

thanks to the usage of DC/DC step-down converter and power supply coming from 24 V DC power

mounted inside the inspection robot chamber.

The lidar data reading system structure is shown in Fig. 41b. Lidar data is sent via Ethernet

cable using the user datagram protocol (UDP). This approach helps to receive the highest data

transmission possible. In parallel process, the current inclination angle from the actuator is

transmitted via USB port with usage of half-duplex UART converter. Procedures described above

are orchestrated by ROS and uses the control software written in Python programming language

with some extents to bash snippets of code and XML notations for process management within

the operating system. Moreover, the software allows to setup configuration parameters from the

set value sensor position to aregular spinning around the Θ1 axis. The current angular position

feedback is utilized to dynamically create the rigid body transformation between the lidar and

the robot’s base reference frame. It enables mapping within the robot frame and offers an initial
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Figure 40: Lidar rotation axes diagram [196]

approximation for transformations between successive lidar positions in a global reference frame,

as calculated by the SLAM algorithm.

(a) Lidar with 3D printed grip mounted on the robot (b) Lidar data reading system structure

Figure 41: Lidar usage on inspection robot [196]
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6 Data processing methods

In this section, the data processing steps for the selected use cases are presented. Data

transformation involves raw data handling, the initial analysis of the dataset as well as the required

steps to achieve the results described in Section 7.

6.1 Electric current consumption data processing for drilling machine

Data for drilling rig machine is measured on one machine’s power supply conductor. Current

measuring clamps sends the voltage signal to measuring device to the ADC converter. Next to this,

the device converts the measured voltage data to digital voltage representation and saves in .csv

files with timestamp headers. Electric current consumption data processing flowchart is presented

in Fig. 42. The source signal is modulated sine signal. The carrier sine wave is defined as in the

following equation:

y(t) = A sin(ωt+ ϕ), (1)

where A is a signal amplitude, ω = 2πfc is the angular frequency, and fc is a sine signal frequency

expressed in Hertz. Following that, the amplitude-modulated signal x(t) using a carrier y(t) and

modulating signal m(t) is represented as:

x(t) = (A+m(t)) · sin(ωt+ ϕ). (2)

Finally, the carrier frequency is fc = 50Hz, and amplitude value A can be transformed to

current consumption via root mean square (RMS) signal value calculation.

Owing that, the demodulation of the measured discrete signal X is obtained thanks to upper

envelope calculation using Hilbert transform [197].

Env(X) = abs(H(X)). (3)

The next phase of the data processing flow is thresholding the signal based on its density

distribution estimation. With usage of Gaussian Kernel Density Estimator (KDE), the empirical

probability density function for a random variable can be assessed :

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
, (4)
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Figure 42: Current measurement and data processing flowchart

where K(·) is kernel smoothing function, n is vector length, and h stands for the bandwidth [198].

h bandwith is calculated following the Silverman’s rule of thumb for Gaussian-like signal

distribution [199]:

h = (
4σ̂5

3n
)
1
5 ≈ 1.06σ̂n−1/5, (5)

where σ̂ is samples standard deviation, and n number of samples.

It has been observed that during execution of the consistent task, the overall value of current

consumption signal for a given machine remains at relatively constant level. Hence, signal

segmentation is performed with usage of thresholds between different levels of the signal. These

thresholds are calculated as local minima of the signal distribution function. Considering the

drilling rig machine, the pattern of operation can be divided into three regimes: idle, pre-drilling

and drilling state.

For the given signal (Equation 2) and two thresholds T1 and T2 (with T1 < T2), the

threshold-based classification of current consumption into 3 classess can be defined as:
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C =


c0 if xi < T1

c1 if T1 ≤ xi < T2

c2 if xi ≥ T2

. (6)

With the classess determined, a new vector C = {c1, . . . , cN} for every sample of the signal

holds class indicator. After this step, the segmentation is performed by localizing of moments in

time, where the value of class indicator changes. In particular, moments where dC
dx

̸= 0 indicate the

changes of work regime.

6.2 Procedure of data analysis of laser-based roof bolting

In this chapter, the end-to-end approach to transform raw laser data from indirect distance

measasurement method to detect and interpret the bolting cycles is presented. The data processing

workflow consists of 9 steps, where step 0 is only needed once during new machine onboarding.

The data processing workflow is presented in Fig. 43.

Step 0: Load pressure data from the machine
Within this preliminary step, pressure data P = {p1, ..., pp} of length of p from the on-board

monitoring system are loaded together with timestamps every 1 second. At this step, the loaded

machine data are upsampled to be consistent with fL=8 Hz sampled laser data. Upsampled points

are populated with usage of linear interpolation. This step is only needed to compare the machine’s

operating parameters with the new laser readings. For the next iterations it can be omitted.

Step 1: Load raw laser data
Data stored on the designed measurement device is loaded in the form of .csv files. The laser signal

L of the length of l with corresponding timestamps is described in Equation 7 . The detailed files

and data description can be found in Section 5.3.2. The subsequent stage in preparing raw data

involves data cleaning and transformation to address the characteristics of real data. In Fig. 44, the

raw data taken from laser measurement unit is presented.
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Figure 43: Laser distance measurement data processing [174]
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Figure 44: Fragment of raw laser data [174]

L(t) =



(L(t1), t1)

(L(t2), t2)

(L(t3), t3)

...

(L(tl), tl)


. (7)

Step 2: Preprocess laser data
The first step of data processing is to handle incorrect data (i.e. NaN or outliers). When the

laser measurement route is disturbed by the presence of the dust, or the bolting rig turret is not

pointed at the ceiling, it is needed to remove these points. Moreover, during the measasurement, the

laser is headed towards the corridor’ ceiling. Owing that, the outliers are found when the distance

indicate the value higher than ymax = 4m. To interpret data fusion with the machine’s on-boarding

monitoring system correctly, it is necessary to handle outliers in machine data either. For that

reason, an additional step is performed to alter data outside the valid scope (following technical

description of the machine) and replace it with maximum value. Thanks to that, data connected

to temporal overloads of machine are handled, what improve the overall cycles interpretation

significantly. The final phase of this data processing step is the upsampling of machine data. The

data acquisition occurs at different frequencies — 8 Hz for laser data and 1 Hz for machine data
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— linear interpolation is used to synchronize timestamps and values. Newly added data points

are calculated on the basis of linear interpolation of the values of intermediate points, enabling the

merged data to be uniformly sampled at 8 Hz. All steps described above are displayed in the form

of pseudo-code snippet in Algorithm 1.
Algorithm 1: Preprocess laser data

for n in 1:N do
/* for each data file... */

for k in 1:K+1 do
/* for each sample greater than thresholds... */

if Lk > max(Lk) then
/* Assign value to max value */

Lk = max(Lk)

/* Change reference point as ceiling level */

Lk = −1 ∗max(Lk)

/* Insert linear interpolation */

Lk = Lk−1 +
(tk−tk−1)∗(Lk−1−Lk)

tk−tk−1
, for Lk = None

Step 3: Calculate moving average
To mitigate the influence of outliers, a moving average is calculated on the laser data to eliminate

individual laser points affected by i.e. dust or other local process disturbances. The value of W1

(length of moving average window) is aligned with the shortest data interval in regard to the shortest

drilling subprocess to be identified, ensuring it is practical from a process perspective.

SMA(l) =
1

W1

l∑
i=l−W1+1

L(i), (8)

where L(t) = [L(t1), ...L(tl)] is a vector of preprocessed laser data and i is the iterator over the

samples within the window.

Step 4: Setting of the distance threshold
Following the bolting process parametrization, the range of interest is defined as TR =

range(D,E). That range corresponds to distance between the laser mountage point and the mine

roof. Variable D references to the minimum, and variable E to the maximum penetration of the
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bolt drill bit. These fixed values result from the machine’s dimensions as well as mountage point in

relation to tool front (see Table 3). Furthermore, the individual bolting rod can extend to a length

of R meters, thereby providing this range.

L2(t) =

SMA(t), if D ≤ SMA(t) < E & |D − E| < r

∅, otherwise
, (9)

where L2 is a vector of laser signal with thresholding applied, SMA(t) is laser signal with

moving average applied, D - lower distance threshold, E - upper distance threshold, r - bolting rod

length, and ∅ is defined as an empty set.

Step 5: Distances’ peak detection
In this step, the position of the start of the segment (PL) and peak value of the segment (PU ) are

determined. Peak value PU is found as a maximum value of the segment. Therefore, the maximum

drilling duration is limited by ∆t = ti+W2 − ti seconds, what corresponds to the longest one hole

drilling duration detected. In a similar way, the lower peaks PL are calculated as the smallest

distance from A lower threshold every W3 points (see Fig. 45). It is defined as follows:

[PU(c), CE(c)] = max(L2(ti), L2(ti+1), · · · , L2(ti+W2)), (10)

[PL(c), CB(c)] = min(L2(ti), L2(ti+1), · · · , L2(ti+W3)), (11)

where c is index of the cycle, PU is vector of upper peaks identified, PL is vector of lower

peaks identified, L2(t) is vector of laser data with thresholding applied (Step 4), W2 is a length of

peak detection window (number of samples for upper peaks), and W3 for lower peaks. Following

formulas 10 and 11, where min() and max() returns a timestamps of corresponding values of PL

and PU , the values of CE and CB are obtained automatically.
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Figure 45: Parametrization of peak detection

Step 6: Drilling cycles detection
Subsequently, after collecting the results from Step 5 it is possible to obtain all points for each

cycle C(c) based on values extraction between D (lower threshold) and E (upper threshold) using

Formula 12:

C(c) = {t ∈ (CB(c),CE(c))}, (12)

where c is index of cycles identified.

Step 7: Drilling progress slope assessment
Each cycle C interpretation becomes straightforward thanks to linear interpolation using

least-squares regression of Formula 13.

ŷ(t) = β(c) + α(c)t, (13)

where t is defined in C(c), y is a part of L2 segmented for a given C(c), ŷ is the linear function

estimated for y, β(c) is a intercept point, and α(c) is an estimated drilling progress slope.

As an additional parameters describing each cycle determined, the Pearson correlation

coefficient (Formula 14) and the duration of cycles (Formula 15) are calculated [200].
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PCC(c) =

∑n(c)
k=1(y(k)− y)(ŷ(k)− ŷ)√∑n(c)

k=1(y(k)− y)2
∑n(c)

k=1(ŷ(k)− ŷ)2
, (14)

nL(c) = fL ∗ (CE(c)− CB(c)), (15)

where ŷ is the estimator of y, (̄·) indicates the mean value, c is index of the cycle, fL is frequency

of laser signal, and nL(c) is the length of the cth cycle.

The final assessment is built upon the following parameter calculation for each cycle

determined: α, β, PCC, nL.

Step 8: Clustering of regression results
At this stage, for clustering purposes, the slope parameters from Step 7 are used. The next part

of data preparation is usage of min-max method to normalize coefficients [201]. Additionally,

a Principal Component Analysis (PCA) is calculated within data processing pipeline for 4 input

parameters: α, β, r, nL [202]. Finally, K-means clustering, an unsupervised clustering algorithm,

has been selected. The number of clusters is configured k = 2 to appropriately differentiate

between the subcycles of bolting operations, specifically the drilling of the first or second bolt

rod and the tightening of the rock bolt. The obtained clustering labels are treated as a subcycles

detection labels.

As a result of the above data processing steps and with the usage of the unsupervised learning

technique, it is applicable to enable the automated clustering dataflow for drilling regimes of

bolting rigs working under real mine conditions.

6.3 Data processing method for electric current measurement at the mining
section

In this section, data processing methods for electric current measurement at the mining section

are revealed. As compared with Section 6.1, sensor, measurement unit, and initial data processing

steps remain unchanged. Owing that, the raw data transformation is covered by Formulas 1, 2, and

3. The next data processing steps covering raw current signal handling aiming to perform analysis

in frequency domain is represented in the form of flowchart in Fig. 46.
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Figure 46: Current measurement and data processing flowchart

Before starting analysis in frequency domain it is necessary to apply digital filter in order to

limit the impact of the signal carrier frequency fc in further analysis. For that purpose, Chebyshev

Type II filter is selected. The transfer function H(z) for the filter given is [203]:

H(z) =
b0 + b1z

−1 + b2z
−2 + · · ·+ bdz

−(g−1)

a0 + a1z−1 + a2z−2 + · · ·+ adz−(g−1)
, (16)

where: z is a complex number, a = [a0, a1, a2, . . . , ar] and b = [b0, b1, b2, . . . , br] are row vectors

of coefficients, d = e+ 1 is number of samples, and g is filter order.

Data analysis in frequency domain starts with Short-Time Fourier transform (STFT)

calculation [204]. For dicrete signal X it is defined as:

STFT (tP , f) =
nw∑
i=1

X[τ + i]w[i]e
2jπfi

N , (17)
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where w is the Hamming window, nw is length of the window, i is the iterator index, L is number of

signal points, j is an imaginary unit, tP = [1, . . . , TP ] is vector of time points, and fc = [1, . . . , F ]

is the frequency bin.

Hence, the output of spectrogram matrix has the following form:

Spec = |STFT |. (18)

In order to keep only the columns corresponding to frequencies flim, the limited spectrogram is

defined as:

Spec(tP , flim), flim ∈ (fbc, fmax), (19)

where Spec is the original spectrogram matrix, fbc is the band cutoff frequency, and fmax is

maximum frequency from Nyquist criterion.

Data prepared with the manner above are directly used as dataset for machine learning

experiments. Based on the final model (group of models) used, there are needed additional data

transformations to cover specific model’s implementations needs. They may lead to i.e. converting

datatypes to specific ones, updating the column names etc. Nevertheless, these transformations do

not change the dataset itself and thus are not covered in this section. Hence, transformation pipeline

for classification dataset (see Fig. 75) is treated separately.

6.4 The data processing methodology for hazardous gases measurement

For this particular dataset, the data processing methodology is divided into two major parts. Firstly,

the most emphasis is to set up a software calibration of gas sensors. Secondly, there are presented

several steps to handle IMU data. Following results obtained in Section 7.4, these steps can be

processed at a smartphone application runtime to separate more demanding calculation from IoT

device.

Gas sensors return voltage signals, which vary during the changeable gas concentration given.

According to sensor documentation, its output is linear, but, as with every gas sensor, additional

calibration is required with the use of certified gases under controlled conditions. In this case,

a software-based calibration is made. As a ground truth, the output of calibrated gas sensors used

by the ventilation mine crew is utilized.

The estimated output of gas concentration GC for a given raw digital output O based on

calibrated gas sensor reference V is calculated using the following Formula:
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GC(i) = Vmin +

(
O(i)−Omin

Omax −Omin

)
(Vmax − Vmin) , (20)

where:

• O is the given raw digital output from the sensor,

• Omin is the minimum raw digital output value,

• Omax is the maximum raw digital output value,

• V is the reference from calibrated sensor,

• Vmin is the minimum reference value,

• Vmax is the maximum reference value,

• GC is the estimated sensor output.

For every gas sensors, namely CO and H2S, reference values are obtained from the dataset

during the experiment. Data transformed in this manner is later visualized on smartphone

application. The advantage and limitations of the proposed calibration procedure are described

in more detail in Section 5.2.4.

Second part of data transformation is a distance calculation covered by miners during the shift.

Data source is an Inertial Measurement Unit (IMU) sensor from smartphone. To calculate the

estimated step length, the empirical relationship with vertical acceleration is used [205, 206]:

s = U · 4
√

amaxvi
− aminvi

, (21)

where s is an estimated step length, aminvi
and amaxvi

are vertical acceleration values during i− th

step, and constant U from calibration of the given user. Information about every step is taken from

Android operating system TY PE_STEP_DETECTOR variable. Following that it is possible

to calculate the distance covered using smartphone IMU sensors.

As a matter of fact, this section describes the overall data processing steps of received data.

There is no data analysis performed. In fact, the main aim of receiving new data has been done.

Subsequent to the example described in this section, the next steps can be performed to enable

data storage on Cloud Resources. The implementation can be established within the scope of the

smartphone application for visualization. Data synchronization with a remote data repository can
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take place, for example, after each work shift when the phone has access to the network and further

data transmission is possible.

6.5 Methods of processing of data from the integrated sensors of the
inspection robot for mining transportation systems

In this section, data processing methods related to the integration of sensors with a Robot Operating

System (ROS) are presented. This hardware integration and low-level system programming was

necessary to make data acquisition from rotating lidar possible. As an outcome, the result obtained

by research team based on the proposed integrations are described in Section 7.5. Fig. 47 provides

a general overview of the steps corresponding to the unification of the data with common ROS

utilities.

In the ROS ecosystem, every sensor is connected to the host as a ROS node. Usually, sensors

are set as publisher and transmit data to the operating system. In this case, LiDAR and

servo are connected to the main computer via USB/UART and publish data frames. Firstly, the

direct sensor communication and format of date frames is configured within the driver for lidar

movement. It handles several hardware tasks such as starting the communication, maintaining it,

configuring sensor operating parameters, etc. These scripts are mostly written in Python / c (c++)

languages to enable low-level communication with the given hardware. The next step is to start up

the sensors with ROS. It is handled by roslaunch ROS system utility. roslaunch program

creates a configuration list with arguments and paths with driver codes to run multiple ROS nodes

at the same time [207]. The next step is configuring the rosbag tool to record messages between

nodes. It generates one binary large object in .bag format of significant size per robot experiment

run. At this stage, especially under real working conditions, sensors can occasionally become

unresponsive, which causes in breaking the files. Thus, it is necessary to reconstruct the .bag

files with rosbag fix tool. Having said that, it is worth adding this step to the automated

data processing workflow, also. Finally, for further usage of the specified sensor output, the data

extraction step can be performed to receive data in the different file formats [176].
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Listing 1: .launch file example

< l a u n c h >

< a r g name=" rpm " d e f a u l t =" 600 .0 " / >

< a r g name=" l a s e r s c a n _ r e s o l u t i o n " d e f a u l t =" 0 .001 " / >

<node pkg=" r o t a t i n g _ v e l o " t y p e =" d y n a m i x e l _ t f . py "

name=" d y n a m i x e l _ t f " / >

<node pkg=" r o t a t i n g _ v e l o " t y p e =" dynamic_ve lo . py "

name=" dynamic_ve lo " o u t p u t =" s c r e e n " / >

< / l a u n c h >

Figure 47: Sensor integration with ROS workflow

After the steps defined above, the actual data processing is performed on the LiDAR data. Based

on that approach, data is available together with timestamp and synchronized with other sensor’s

output. Because of this, the selected methods of actuated LiDAR system utilization to perform 3D

reconstruction can be used to perform more advanced data processing [208].
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6.6 Cybersecurity risk assessment methodology for a mining company

Together with the enormous growth of computer science and its usage in applications in a wide

variety of industries, awareness of cybersecurity arises likewise. Today, the scope of securing the

digital infrastructure is often at the same stage as the physical infrastructure of the company. These

changes also apply to the mining industry. The information system would never be fully resilient

to cyber threats. However, the most cuminative approach is to mitigate risk and ensure the security

of the core components with appropriate techniques [209]. To accomplish this, an approach to

assess the risk should be noted. For that reason, in this thesis, a novel cybersecurity risk assessment

methodology based on fuzzy theory is presented.

In this section the qualitative analysis of cyber threats and possible outcomes is outlined based

on several levels of mining processes automation. To manage risk, the risk analysis procedure is

proposed for a mining company. Using Kaplan and Garrick’s approach [210] for risk assessment

with fuzzy theory use and expert knowledge related to mining industry, the several cyber threats

can be exemplified. Following the above, cyberattack risk analysis can be represented as follows:

R = {S(i), PS(i),MC(i)}, i = 1, 2, . . . ,Ω, (22)

where:

R — risk,

S — a scenario (undesirable event) description,

PS — the probability of a scenario,

MC — the measure of consequences caused by a scenario,

Ω — the number of possible scenarios.

The risk analysis procedure suggested for a mining company is presented in Fig. 48. It

consists of 3 main phases of handling the qualitative analysis of problem definition. At this

point, the definition of mine automation levels with possible cyberattack scenarios and affected

objects and processes is created. The next phase, the quantitative analysis, represents the core of

the risk analysis procedure. Based on the expert’s opinion collection, it is possible to determine

the probability of a given scenario occurrence and hypothetical outcomes covering the mining

company activities. The next stage of the procedure is fuzzification of risk parameters to use them

for the proposed rule-based fuzzy interference system. Finally, risk score obtained related to a
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given scenario is defuzzified (using the Mamdami fuzzy model [211]). The last phase, the output

phase rationalization, interprets the results received and supports the management of risk decisions.

Figure 48: Cybersecurity risk analysis procedure for usage in a mining company [212]

The key part of the proposed methodology utilizes the development of mine automation levels

and places greater emphasis on the digitalization of production processes. Owing that and following

the literature review [213–215], the Table 11 presents a characteristics of the mine automation levels

with three levels highlighted. The main features describing the realization of mining processes
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are: mechanization and mining automation levels, the ability of machinery and automation control

systems to communicate, and the role of the miner. Based on a mining development scenario

created above, seven techniques are presented that can be used to affect the network and mining

company computer systems. The attack techniques and their short description are presented in

Table 12.

Following Formula 22, it is necessary to prepare a measure of probability of a scenario

occurrence (Table 13) and a description of the consequences (Table 14). For scenarios probabilities

and consequences, fuzzy values are presented using fuzzy set theory. It is used to perform expert

evaluation on direct triangular fuzzy numbers (FN) [216]. The final risk level is specified with the

usage of trapezoidal fuzzy numbers.

A triangular FN is defined as Az = (a, b, c) with a membership function of µ1(ϕ) in the formula

23.

µ1(ϕ) =



0 → ϕ < a

ϕ−a
b−a

→ a ≤ ϕ ≤ b

c−ϕ
c−b

→ b ≤ ϕ ≤ c

1 → ϕ > a

. (23)

A trapezoidal FN is defined as Az = (a, b, c, d) with membership function of µ2(ϕ) in Formula

24.

µ2(ϕ) =



0 → ϕ < a

ϕ−a
b−a

→ a ≤ ϕ ≤ b

1 → b ≤ ϕ ≤ c

d−ϕ
d−c

→ c ≤ ϕ ≤ d

0 → ϕ > d

. (24)

Finally, in Table 15 a proposed risk rating category is presented with the corresponding risk to

the impact of a cyber threat on the operation of a mining company versus the likelihood of an event

occurring. Fuzzy values are quantified using trapezoidal FN of Formula 24.

Consequently, the usage of above-mentioned methodology is achievable to assess the risk based

on the transformation of the knowledge from experts. Without a doubt, technology and all that it

brings the front lines of a cyber attack would evolve and every mining company could have different
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Table 11: Mine levels of automation proposed [212]

Level Name Description

L1 Modern mine 1. Limited machines and people localization possibilities.

2. Miner as an in-situ mobile machinery operator and supervisor.

3. The lack of underground communication infrastructure,

process-oriented data tracking in batches (i.e. every shift).

Selected characteristics: mining processes mechanization,

computer-aided planning and maintenance, semi-automated procedures,

cyclical risk and resources analysis, constant output analysis.

L2 Real-time mine 1. Real-time machines and people localization possibilities.

2. Miner as decision-maker supervisor.

3. An underground communication infrastructure allowing to

real-time tracking.

Selected characteristics: mining processes automatization,

process-oriented with non-human maintenance production,

real-time risk and resources analysis.

L3 Intelligent mine 1. Fully controlling system and with a partial supervison of production

based on analysing the outputs of its past actions.

2. Human role is analysing data, software and intrastructure maintenance,

most of the work can be performed automatically.

3. Communication between software management layer of the

separate mining processes is possible and it results in an

adaptative work based on a changeable input parameters.

Selected characteristics: fully automated mining processes,

only autonomous and ex situ process control,

an advanced risk and resources analysis.

requirements for risk assessment. Despite the above obstacles, a risk analysis method using fuzzy

logic theory can be a good starting point.
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Table 12: Chosen cyber attack scenarios analysed [212]

No. Scenario Attack technique Description

S1 Phishing and social Employing tailor-made emails or efficient

engineering attacks social-engineering tactics to obtain

confidential data

S2 Watering hole attacks A targeted attack on a particular group, such as

(phishing) employees of a specific department, resulting in

the attacker interception of credentials to websites

used by the team regularly uses in their work.

S3 Malvertising Inserting harmful or malware-infected ads

into reputable online networks and websites

S4 Vulnerability exploitation Usage of the software bugs to perform control

overtake by crafted program, undetectable

by user or operating system

S5 System misconfiguration Finding vulnerabilities in software that

exploitation has not been patched yet and using those

to breach the operating system

S6 3rd party vendors Access to the internal, corporate network via

(backdoor) backdoors - functions or programmable implemented

features within devices connected to the company LAN

S7 Man-in-the-Middle Interception of communication between two nodes

(network spoofing) (usually: user and an application),

by usage of prepared data

reminiscent of normal communication
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Table 13: Scenario occurrence probability [212]

Rating Category Description Fuzzy Value

PS1 - RARE Could happen but probably never will [0, 1, 2]

PS2 - UNLIKELY Not likely to occur in normal circumstances [1.5, 2.5, 4]

PS3 - POSSIBLE Potential occurrence at some time in the future [3.5, 4.5, 6]

PS4 - VERY LIKELY Expected occurrence at some time in the future [5.5, 6.5, 8)

PS5 - CERTAIN Expected to happen regularly under normal circumstances [7.5, 8.5, 10]

Table 14: Scenario consequences [212]

Rating Category Description Fuzzy Value

MC1 - NEGLIGIBLE Minor injury, insignificant property or equipment damage [0, 0.5, 1]

MC2 - MINOR Non-reportable injury, minor loss of process, or slight property damage [1, 2.5, 4]

MC3 - MODERATE Reportable injury, moderate loss of process, limited property damage [3, 4.5, 6]

MC4 - HIGH Major injury, a single fatality, critical process loss, critical property damage [3, 4.5, 6]

MC5 - CATASTROPHIC Multiple fatalities, catastrophic business loss [3, 4.5, 6]
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Table 15: Fuzzified risk level [212]
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7 Results

This section presents the results obtained from experiments carried out on selected facilities and

processes for underground mining. Data comes from real mining processes. Following the data

processing methodologies from Section 6, there are presented results from the chosen mining

processes.

7.1 Results for drilling rig electric current consumption analysis

Following the proposed measurement method (Section 5.2.1) with usage of measurement device

(Section 5.3.1) in this paragraph the results obtained from the experiment (described in Section

5.1.1) are presented. A raw electric current signal taken from a drilling machine during drilling the

holes is presented in Fig. 49. Raw data is the amplitude-modulated sine signal with actual current

level amplitude with a carrier frequency of 50 Hz. On the graph, one can see a characteristic

peak when the machine starts up, with an instantaneous current draw of around 120 A. Then, we

see a section with a pulse value of about 40 A, which corresponds to the machine running at idle

gear. These ripples come from the cyclic activation of the hydraulic systems that maintain constant

hydraulic pressure in the i.e. drill mechanism on the drill rig. In the following sections of the

diagram, it is possible to see the characteristic patterns matching to the blast holes being drilled

and grouped together. The fragment of the drilling cycle corresponding to the actual drilling of the

borehole is approximately 85A. Between these fragments, a so-called pre-drilling regime is evident

with levels in the 60-70A range. It is related to the instantaneous current consumption associated

with performing the auxiliary movements of the machine in order to drill the next hole correctly.

These movements include moving the tip of the working organ by a given distance (according to

e.g. blasting pattern). Moreover, this regime also includes the initial stage of hole drilling, when

the drill has not penetrated the rock, and spot drilling is performed. In addition to this, at 11:30 on

the graph, tool jamming in the rock was simulated, which is a common problem during drilling.

The output of signal demodulation is shown in more details in Fig. 50. Current consumption is

calculated from the raw signal directly taken from Fluke’s current clamp voltage output based on

Root Mean Square (RMS) convertion. Blue trace corresponds to a raw sine-shaped signal, and red

values are calculated using the Hilbert transform (see Section 6.1). To visually validate results, the

data has been ploted together. It is presented in Fig. 51 where processed signal is compared with

data from the machine on-board system.
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Figure 49: Electric current signal of drilling machine [173]

Figure 50: Electric current signal demodulation [173]

Next steps is to divide the current signal to the regimes corresponding to work regimes of

underground drill rig. There are indentified three phases of the machine states during the work,

namely: idle, pre-drilling, and drilling. For automated thresholding detection, the Kernel Density

Estimator (KDE) is used. In Fig. 52 on y-axis can be seen the determined distribution frequency

of the demodulated current signal. There are visible three modes, correlated to three machine’s

regimes. With two red dots, there are marked the resolved thresholds to divide these regimes. The

values are of 59 A and 75 A respectively.
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Figure 51: Electric current signal comparison with drilling rig on-board monitoring unit data [173]

Following the results above, the next step of drilling machine work assessment with usage

of current measurement can be performed. An automatic regimes identification based on the

calculated thresholds is completed, and its results can be seen in Fig. 53. Finally, the number

of identified boreholes is estimated, in this case, 28.

The additional analysis regarding the drilling quality has been achieved. The first 14 holes

(before 11:15 time on the chart’s x-axis) are made with the phase of initial spot drilling performed.

It is visualized as a thin blue stripes before green parts of the bottom subplot. In comparison to this,

the next 5 holes are prepared without this step (it was omitted in the process on purpose). The next

4 cycles (after 11:20) are performed with very short (nearly noticeable) pre-drilling phase, what

induces the longer actual drilling (green stripes). The rest of the holes completed by the machine

operator are random: some of them are completed with pre-drilling phase, some not. Moreover,

some duration of the holes preparation is longer or shorter than usual (managed by changeable feed

power used) to cover the most possibilities of deviation feasible in underground conditions.

Finally, summarizing the obtained results, it can be viable to divide drilling rig regimes

with some statistical metrics such as mean and standard deviation following the usage of KDE

thresholds. In Table 16 specific metrics values are presented. These stipulated values can be reused

for drilling rig work assessment during a current measurement at a mining section. This aspect is

described in more details in Section 7.3.

The results of these analyses are described in detail in the article [173] as a part of the work

supported by EIT Raw Materials GmbH under the Framework Partnership Agreement no. 19036

(SAFEME4MINE. Preventive maintenance system on safety devices of mining machinery).
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Figure 52: Results of Kernel Density Estimation of electic current signal [173]

Figure 53: Current signal divided into segments following to KDE values [173]

Table 16: Statistics of the identified drilling regimes [173]

Regime Mean Standard deviation

Idle 43.4 6.91

Pre-drilling 67.8 5.15

Drilling 86.5 6.26
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7.2 Results of analysis the laser-based roof bolting

This section describes and examines results obtained through the data processing methodology

(see Section 6.2) for laser-based measurement data. There are multiple combinations of laser

measurement unit mounting points tested, varying bolting rig system settings, different machine

subtypes, and types of bolting processes. The most consistent and repetitive data are gathered for

configurations where the laser is mounted near the bolting turret at the drill bit and the laser beam

is directed towards the ceiling. This segment of the dataset, which includes 7 complete bolting

cycles, is submitted further in this section.

Firstly, as an initial step (Step 0 - Fig. 43), it is needed to load pressure data from machine’s

measurement on-board system. It is just a preliminary step needed to verify the data correctness

obtained from laser measurements as well as a reference setting for further analysis. This step is not

necessary with the deployment of the laser device for the same type of bolting machine. For future

usage with the same roof bolting operation scheme and type of the machine used, it can be omitted.

The next step is loading and preprocessing distance measurement from laser unit. As a reference

point (0 value), the ceiling level is set, and laser data is inverted to make the drilling progress more

interpretable (the distance grows from negative values to values close to 0). Laser mountage point

is placed 0.3m from the drill face, thus the highest values obtained are close to −0.3m following

the transformation above. The next stage is to filter out irrelevant data larger than |ymax| < 4

meters, which corresponds to the moments, when the laser beam is not pointed out on the ceiling

roof, or another measurement disorders happened. Knowledge about the bolting process helps to

establish correct scope of the measurement related to drilling hole preparation. Thus, r = 1 m is

a drill rod length, and following the process limitation above, the cycles scope is D = −1.3m and

E = −0.3m.

An additional step is made by covering the data unification with machine measurement unit

as well as an additional source - the video footage from the given process. The result of the data

integration from 3 sources is presented in Figures 54 and 55. There are two traces visualized: laser

distance, with changeable color following the laser measurement quality values (see horizontal

legend) and orange trace of tightening torque. The measurement quality describes how the light

beam if reflected back to the laser rangefinder optics. As a background color, every cycle is

distinguished with the number of cycles being recorded from the video footage (text description

located at the bottom).

The full bolting cycle consists of three substantial parts: two 30-seconds part of drilling the

hole for one drill rod length each, and the last phase corresponding to 10-second fragment of final
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Figure 54: Cycles identification from video recording - part 1 [174]

Figure 55: Cycles identification from video recording - part 2 [174]

hole deepening and tightening the rock bolt. Some swift movement between -2 and -1.7 meters

to the ceiling is associated with the preparatory actions of the mining bolter’s drilling turret. The

largest variation in measurement quality (higher values and warmer colors) is observed during drill

withdrawal and when the turret maneuvers near the corridor surface, probably due to increased dust

in the laser beam’s path.

In these figures, some values appear in unexpected locations because of environmental

interference with the laser beam. Furthermore, the yellow trace represents the torque applied

to tighten the rock bolt. Some of the peaks reaching close to the maximum 300 Nm are not

significantly different from the usual torque range used for drilling and countersinking holes for

bolt protection. It appears that identifying the specific step of rock bolt tightening in the process is

not straightforward utilizing only machine-sourced data.
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Figure 56: Bolting process distance measurement with limits applied [174]

In accordance to data validation presented above, there is a strong reason that the displacement

of the bolter turret can be useful for drilling cycles identification. The measured variation in

distance from the ceiling coincides with the variation in the parameter related to the tightening

of the bolts. Knowing that, it may be possible to replace the usage of standard parameters such as

pressure from drilling subsystems or torque data to detect bolting rig drilling cycles.

To achieve this goal, there are the next steps of the proposed data processing algorithm

performed. In Fig. 56 laser data is truncated to the measurement scope related to bolt rod

dimensions: TR = (D,E), D = −1.3 m,E = −0.3 m. The time-based displacement of the

bolting rig represents a sawtooth-shaped pattern. Each segment marks the process of drilling

a hole corresponding to the length of the first or second rod. Although the velocity distribution

(represented by the differential of the drilling progress visualized in the red trace) is examined,

automatic cycle detection remains unfeasible. This difficulty arises from the variations in each trial,

which depend on the rock mass characteristics and the operator’s way of working. This stage could

be utilized for other techniques, such as identifying rock mass discontinuities, which is beyond the

scope of this work.

The next step of the proposed solution is to calculate the laser data moving average with

W1 = 32 samples (while the signal is being collected with fL =8 Hz frequency). This value

was determined through experimentation, bearing in mind that rock bolt tightening phase requires

a maximum of 10 seconds. This method allows for the observation of characteristic inflection

points in the drilling speed, as shown in Fig. 57. Subsequently, the PU detection is performed

based on the preprocessed dataset using data transformed in the manner above. For that step, the

W2 = 70 is also experimentally determined as a maximum window size for detection of the drilling
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Figure 57: Data smoothing with rolling mean of 32 points [174]

cycle-ending peaks. These peaks are marked with green dots in Fig. 58. For detecting the starting

point of the drill cycle (PL), a different approach has been proposed: namely completion of two

conditions: the drilling progress must be greater than D = −1.3 m and the smallest distance from

lower threshold D every W3 is taken.

As a black dots, the beginning of the every cycle is presented in Fig. 58. Following the proposed

steps, the drilling cycles are identified between the points corresponding to the lower and upper

peaks for each subcycle and presents as an orange part of the traces. These established principles

make possible to automatically detect cycles, previously validated by video footage.

Using one common x-axis representation of all detected drilling subcycles are presented in

Fig. 59. It is viable to determine a clear differentaion: there are two visible subgroup related to

drilling first or second hole for the rock bolt, and the final tightening the rock bolt. The length

and maximum depth observed in drilling cycles can fluctuate, and this irregularity is another

challenging aspect that can influence the detection process. The aforementioned calculations, from

a monitoring standpoint, are a crucial parameters taken from the analysis. Supplementary metrics

are considered for further examination, such as the α slope and β intercept parameter of linear

interpolation for each identified cycle, PCC as Pearson correlation coefficient, and the duration of

the drilling (represented as nL parameter). Given these values, there is a necessity for the automatic

identification of these cycles and the counts for each segment of the bolting process. To accomplish

this, an experiment with unsupervised machine learning utilizing clustering algorithms is necessary.

The proposed machine learning experiment uses the data describing every detected drilling

subcycles, following the Step 8 of the proposed algorithm. Prior to clustering, a Principal

Component Analysis (PCA) step was introduced to the data processing pipeline to reduce the
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Figure 58: Drilling cycles with the start and end points detected [174]

Figure 59: Summary of the extracted drilling cycles [174]

105



Figure 60: Results of clusterisation with the KMeans algorithm [174]

Figure 61: Distortion score elbow plot [174]

data dimensionality and enable visual validation, utilizing four parameters: α, β, PCC, nL as an

input data. The principal components are used in the clustering process to distinguish between

sub-processes (drilling versus bolting). K-means clustering algorithm is selected to make an

automatic cluster labeling in an unsupervised manner. To perform it, the sklearn Python library

is used [217], where as a final number of clusters for drilling cycles labeling k = 2 is applied. The

obtained labeling outputs is presented in Fig. 60. The model above correctly covers all cycles,

where the first two phases are the drilling of the hole and the next is the tightening of the rock

bolt (except for cycle 13 starting at 10:40:55, where the drilling of only one hole was correctly

measured). To follow this, the elbow plot and silhouette score are used to validate the model

correctness.

106



Figure 62: Silhouette score for the clustering experiment [174]

First of all, the elbow plot (see Fig. 61) is generated to assess the correct number of

clusters being separated. It implies that k = 4 with score of 0.816 stands for the best dataset

ditribution [218]. However, the Silhouette score for k = 2 presented in Fig. 62 shows that each

cluster has this metric above the average. It indicates that a heterogeneous distribution of clusters

is achieved. For k = 3, one of the class is significantly overrepresented and for k = 4 exists a class

with Silhouette score below the average value.

The aforementioned results indicate that the approach presented here can be used for a starting

point for the automatic procedure for bolting rig machine cycles detection. Instead of using

complex pressure data from mining bolters, the new source of data from laser measurements

delivers the satisfactory results with robust algoritm presented here. For scalling up this solution,

a machine’s on-board computer can serve predictions in real-time about the bolting cycles being

processed based on laser data. Furthermore, the cycle count and duration can be effectively assessed

using data from the laser distance measurements. This is feasible by querying the data at the

transition to or from the one cluster, which indicates the start or end of the critical bolting process,

namely hole drilling. These time points facilitate the calculation of the drilling scope from the data,

resulting in a precise identification of the number of cycles.

The results of these analyses are described in detail in the article [174].
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7.3 Results of electric current measurement at a mining section analysis

In this section, the results from electric current measurement at a mining section are presented. The

analysis consists of three main parts. The first part corresponds to preliminary results from electric

devices switching test, where several devices and machines types are selected in order to make

them working and measure the simultaneous current level taken by these appliances. The next

step, frequency domain analysis, describes the methods of signal frequency analysis performed.

In that part, the results consist of the raw signal filtering with high-pass filter and the spectrogram

parametrization description. The last part defines the classification experiment analysis. Within that

part, the training dataset is presented in order to transform the raw measured signal into a valuable

description of the objects. The detailed characterization of the automated machine learning pipeline

and the outcome classifier model used is also added. Finally, the classification results for 8 class

objects is revealed and divided into three parts corresponding to ventilation devices, drilling and

bolting rig machines.

7.3.1 Preliminary results of electric devices switching test

Figures 63 - 68 refer to sequential test output for every device type. The measured signal is

a sinusoidally alternating current signal having values from +/- corresponding to instantaneous

use of electric power. The current consumption is calculated on the basis of the signal envelope and

is always positive value.

In Fig. 63 a fragment of electric devices switching test with the work of hydraulic pump

is presented. During first 15 seconds, it is registered a value below 1 A which corresponds to

energy consumption from other devices (such as lighting etc.) what is out of the analysis scope.

In 15 second of measurement, it is visible a start-up peak up to 56 A. The next seconds current

consumption is stabilized around 5,5 - 6 A which correlates with a nominal current usage.

The next device, the 1-speed fan, is presented in Fig. 64. Similarly to a hydraulic pump, there

is a visible start-up peak (140A) and a stable current consumption (15A). For Fig. 65 there are

visible two peaks reffering to turning on first (10 second of measurement) and second (185 second

of measurement) gear of 2-speed fan. The first speed consumes around 22A, where the second

speed uses 35A, respectively. The measurement output of sequential switching with two device

overlapping, namely launching 1 & 2-speed fans is presented in Fig. 66. At the beginning of

the measurement, the first gear of 2-speed fan is turned on and after approximately 100 seconds

of measurement, the second speed is started. The fact of occurrence of two start-up peaks is
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Figure 63: Switching test - hydraulic pump

Figure 64: Switching test - 1 speed fan

characteristic and appears quite often in the recorded data. This form of getting a parametrization

of such signal artifacts can be valuable from maintenance point of view, but it is not considered in

this thesis. A moment after the 300th second, one can see that the 1-speed fan switching on. The

second part of the diagram is the gradual switching off of the receivers, in the opposite order.

The next plots (Fig. 67,68) refer to the current consumption from the wheeled mining machines.

Their current consumption is limited to drilling or bolting operations. The operations of a specific
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Figure 65: Switching test - 2 speed fan

Figure 66: Switching test - 1 and 2 speed fans

machine, interpreted based on visual observation next to these machines are put with a color and

text description in figures.

In summary, representation of preliminary results obtained during electric devices switching

test give an insight into how specific group of devices and machines behave under standard

working conditions in the mine. Based on the separated measurements for every device, the dataset

can be created to gather additional information in time and frequency domain. Following that,
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Figure 67: Switching test - drilling rig

Figure 68: Switching test - bolting rig

a detailed frequency analysis and interpretation of the results is presented in next chapters. Then

a classification experiment is prepared in order to assess the ability of such data source to interpret

machine’s work during continuous measurements.
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7.3.2 Frequency domain analysis

In this section, the results of the spectrogram analysis are presented in order to use the frequency

domain information to describe the operation of energomechanical devices. Following the

outcomes received from Section 7.3.1, the device groups and their working regimes are revealed. In

order to detect the temporal, rapid changes in signal’s frequency domain, the significant emphasis is

taken to choose the valid spectrogram parameters. Consequently, presented in this section (unless

otherwise specified) the following were selected experimentally spectrogram parameters:

• NFFT=256

• overlap O=100

• window length nW=128

• window type = Hamming window

Figure 69: Ventilation devices regimes work - an instantaneous electricity consumption (top),
spectrogram in the time-frequency domain (bottom)

The first group of devices being analysed in the time-frequency domain are ventilation devices.

In Fig. 69 five signals that are 10-seconds long are presented as follows:

• Noise - direct current measurements with no devices turned on

• 1-speed fan - ventilation device with turned on one engine

• 2-speed fan 2nd gear - ventilation device with turned on two engines simultaneously

• 2-speed fan 1st gear - ventilation device with turned on one engine only
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• 1-speed fan - ventilation device with engine start up regime

The current level consumption is visualized in top part of the figure, and the spectrogram output

is given in bottom part. As it can be seen, one can observe the changes in the spectrogram values

for the various bands of frequencies and their nature of change for each type of the devices.

Figure 70: Drilling rig regimes work - an instantaneous electricity consumption (top), spectrogram
in the time-frequency domain (bottom)

The next figure (Fig. 70) represents spectrogram results for drilling rig machine performing

3 blast holes. In this case the changes in the spectrogram energy for frequency bands above 800 Hz

itensify following the changes in drilling rig work regimes. These fragments are divided into the

primary drilling and the execution of e.g.: auxiliary movements of the machine.

Figure 71: Bolting rig regimes work - an instantaneous electricity consumption (top), spectrogram
in the time-frequency domain (bottom)

The last type of the machine being analysed is the bolting rig . The time and frequency analysis

of performing the five rock bolts is presented in Fig. 71. The frequency bands with higher energy

are similar to the drilling rig machine. The type of bolting rig considered here, performs the
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expansion rock bolts, what can be distinguishable by the characteristic signal peaks corresponding

to rock bolt tightening. This is also affected in frequency domain, what can be seen in the bottom

of the figure presented above.

Due to the fact, that the carrier frequency of the signal is fc=50 Hz, all spectrogram results

presented in this section are preprocessed by the high-pass Chebyshev filter with cutoff frequency

of fbc = 100 Hz. As a digital filter, the Chebyshev type II filter is created. The chosen filter

order is selected experimentally as g=11 to fulfill specific needs of optimal loss in the passband and

minimum attenuation in the stopband for the given signal. All steps covering the changes of the

raw signal are described in section 6.3.

The next two figures, namely Figures 72 and 73, exemplify the spectrogram results for signals

from drilling rig machine performing of 3 holes. Fig. 72 shows spectrogram of the raw signal, there

the highest energy (warmer colors) represent the carrier frequency of 50 Hz and other characteristic

frequencies of 830 and 920 Hz. Howerer, the isolation of any characteristic frequency is difficult

due to the most energetic band from signal carrier. The output from the signal filtered by high-pass

filter with fbc = 100 Hz of cutoff frequency is presented in Fig. 73. The new frequencies emerges

and there are changeable due to drilling operations. Based on that, it is viable to identify the

individual fragments of the drilling process based on the characteristic signal spectrum in the

frequency domain. Nevertheless, this step is not a trival processing phase. As may be noticed,

the frequencies below 400 Hz represent a cyclical nature of changes that is inconsistent with the

changes associated with drilling sub-cycles. This part of the band can be affected by, for example,

the work of hydraulic machine’s subsystems and their electric engines.

Following the observation above it can be concluded that the matrix from spectrogram

calculation can be reduced. The new matrix should possess the most characteristic frequency

bands in order to differentiate the machine work regime types. Owing that, the dataset created

for further reasoning can be limited. It is worth to mention the limitation of the method presented

here. The spectrogram analysis is considerably complex, and its usage for performing the real-time

analysis of the measured current signal is seriously limited. In addition to this, under conditions

of the standard operation of machinery and equipment in the mining department, the subgroup of

devices can work simultaneously. It affects that the frequency analysis of the signal coming from

the scenario above make the frequency domain data analysis almost impossible to correctly identify

and analyse the work of individual pieces of equipment. Such a case can be indicated on the basis

of an analysis of the signal envelope in the time domain. These situations are represented by the

sum of the work of certain sub-groups of mining equipment and machinery.
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Figure 72: Spectrogram example of the nonfiltered signal of 3 drill holes obtained from drilling rig
machine

Figure 73: Spectrogram example of the filtered signal of 3 drill holes obtained from drilling rig
machine (high-pass filter with 100 Hz cutoff)
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7.3.3 Classification experiment results

Thanks to data revealed from electric devices switching test and initial exploratory data analysis

in time and frequency domain, the next step is to use the dataset prepared to classify the types of

devices and machines being turned on. To automate this step, the PyCaret, the low-code machine

learning library is used [219].

Figure 74: Example of dataset for classification with the limited frequency of flim = 700 Hz

Parameter name Description

Experiment type classification

Target column "class" column

Preprocess data True, 4 steps

Features excluded "time" column

Original dataset shape (6218, 37)

Transformed train set shape (4352, 36)

Transformed test set shape (1866, 36)

Fold Generator StratifiedKFold

Fold Number 10

Table 17: Classification experiment initial parameters

In Table 17, the set of parameters is presented in order to describe the classification experiment.

Following the data processing steps from 6.3, the example of the training dataset is presented in

Fig. 74. Each line contains the calculated spectrogram result for the electric current signal samples

every ∆t=1 second. The first column, class is added manually based on electric devices switching

test measurements in order to describe the corresponding device or machine being turned on. The

next column, time describes the timestamp of maximum absolute current value obtained within

every ∆t second. The remaining columns are added from spectrogram frequency bands from the
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Figure 75: Transformation pipeline for classification dataset

scope of f ∈ (flim, fmax), where flim for the results displayed in this section is experimentally

chosen flim=700 Hz.

In addition to this, several further data processing steps are considered within the machine

learning experiment pipeline, namely: encoding the target column labels, usage of simple imputers

for numerical and categorical columns, columns rename to escapes special characters and finally

convert data back to the original representation. The pipeline steps are visualized in Fig. 75.

To start with machine learning workflow, the dataset is split into train and test subset with

a ratio of 0.7. To evenly distribute every class in train and test dataset, the Stratified K-Fold

cross-validator is used [220]. The next phase is to distribute the prepared data above to train the

classification estimators and receive score grid with several metrics. An example of the training and

cross validation step is presented in Fig. 76 with several models and metrics calculated (accuracy,

Area under ROC Curve (AUC), recall, precision, F1 Score, Kappa, Mathew Correlation Coefficient

(MCC), and training time (TT)), sorted by the accuracy metric [221]. With the proposed approach,

the training step can be automated and run on a schedule, or based on the significant changes

detection with dataset metrics (e.g. data drift detected) and the like.

For model inference and results generation, the Random Forest Classifier (RFC) is selected

based on the best accuracy score. For this classifier, the Fig. 77 shows the feature importance
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Figure 76: Classification estimators comparison with several metrics (sorted by accuracy)

Figure 77: Feature importance plot for the selected classification model
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values used for classification purposes. The created model based on the input data can classify the

device or machine type work. The given classifier labels are:

• hydraulic_pump - detection of hydraulic pump work

• 1-speed fan - ventilation device with one gear single engine detected

• 2-speed fan 1st gear - ventilation device with two engines working at 1st gear detected

• 2-speed fan 2nd gear - ventilation device with two engines working at 2nd gear detected

• two 1-speed fans with 2-speed-fan - two 1-speed fan working simultaneously with 2-speed

fan detected

• drilling - drilling rig machine drilling subcycle part detected

• movement - drilling rig machine manoeuvring subcycle part detected

• bolting - bolting rig machine work detected

The next figures 78, 79, 80 present the results of the classification based on current measurement

data. Every figure has three subplots, where at the top of each figure it is the data representation

in time domain presented. The middle subplot displays the predicted labels obtained from the

classification model. The bottom subplot shows the predicted labels with rolling window applied

to remove incorrect classification results, which from time to time occurs during the real data

inference.

Starting from Fig. 78, a part of sequential fan activation is presented. The peaks at the top part

of the plot correspond with moments when a new device is turned up. As it is presented in Section

7.3.1, values of electric current consumed by ventilation equipment are usually constant. The sum

of the current taken by devices varies, and the current consumption changes from 31 A to 65 A. The

classification model correctly detect the work of the 3 ventilation classes: 2-speed fan 2nd gear,

1-speed fan with 2-speed fan, and two 1-speed fans with 2-speed-fan. For some data fragments

corresponding to moments of switching on a new device in the measuring area (near the peaks

moments), we see different classification results. They are individual deviations and to remove

them on predicted label, the rolling window calculation with WL = 10 is applied.

The next part of the experiment results is the drilling rig work assessment. In Fig. 79 the

selected 30 minutes scope when drilling rig worked in the mining site is presented. In the top

plot part, the characteristic shape of current signal in time domain is visible. The obtained labels
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Figure 78: Predicted classess for ventilation devices detection using frequency bands higher than
700 Hz

are from the following classess: movement, drilling, and bolting. Whereas the first two classess

are expected, the bolting class arises in some moments likewise. It comes from the fact, that

the movement class, reffering to manoeuvring phase of drilling rig machine work, is significantly

similar to the work of bolting rig. Hence, the certain amount of bolting class remains unchanged

even with rolling window with WL = 10 is applied in the bottom subplot. Nevertheless, the

division into core drilling and manoeuvring movements coincides with the course of the current

signal. Following that, the drilling rig cycles detection is possible and automated cycles count can

be applied as well.

The last class being taken into consideration is the bolting rig machine work. In Fig. 80 results

during the bolting rig machine work are presented. In the beginning of the chart one can see the

nominal current level of 50 A, and when botling rig is turned on, the signal jumps to values around

85A. Some peaks are visible reaching values up to 115A, what is connected with the tightening

the rock bolt moments. As it can be seen, the real data does not demonstrate so clearly the bolting

subcycles, so machine idle gear, bolting and rock bolt tightening regime patterns are treated as

one label called bolting. Classification model returned here two labels bolting, and drilling. At this
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Figure 79: Predicted classess for drilling rig work phases detection using frequency bands higher
than 700 Hz

point, drilling label is not expected here, but occur from time to time and it cannot be fully removed

with rolling window applied.

The presented results mostly correctly distinguish the operation of machinery and equipment

based on current measurement at a mining section. Nevertheless, it possess several limitations.

While the operation of ventilation equipment is classified accurately in most cases, the operation

of mining machinery causes problems. Certain parts of drilling cycles are classified as bolting and

vice versa. This is a limitation due to the fact that training the machine learning model only relies on

the basis of the electric devices switching test measurements. The results shown are derived from

a signal which measures the sum of the electric currents consumed by all receivers at a mining

section. To mitigate this, a larger sample of the training data corresponding to the variability of

the operation of even the same type of device is needed. It will allow a better model to be created

and will cancel out the false changes seen in drilling and bolting rig results. Moreover, it is worth

to note that, the shape of the bolting signal is slightly different as compared with bolting rig work

presented in Fig. 68. This may depend on the operation of another machine subtype or the work of

the operator.
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Figure 80: Predicted classess for bolting rig work phases detection using frequency bands higher
than 700 Hz

In conclusion, the results presented in this section enable to identify the operation of the devices

and machines based on current level measurement taken at a mining section electric cabinet. It is

viable based on time and frequency domain analysis of the captured raw current signal, with the

several data processing steps applied, and with the usage of classification model.

7.4 Results of hazardous gases data analysis

In this chapter, the results of the environmental parameters evaluation in underground mine (see

Section 5.1.4) are presented. The created measurement device from Section 5.3.4 analyses CO and

H2S gas concentrations as well as temperature and humidity during the underground experiment.

Device is connected to the smartphone in a constant manner to save and visualize data in real-time.

In addition to this, the gas detectors from ventilation stuff (Drager PAC6500 and PAC8500),

properly calibrated following the procedure (described in Section 6.4), determined a reference

point for the prototype device. Together with mine ventilation crew, measurements were conducted

in places where higher concentrations of gases mentioned above appeared. These types of gas

accumulation can appear from a number of sources, such as the operation of the mining machinery,
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local ventilation possibilities of the workings, the distance to the shaft or the time after blasting

procedure.

Following the Fig. 81, several notable environmental parameter changes are expained. In

this figure, CO & H2S gas concentration measurements (in Parts Per Million (PPM) unit) are

presented in first two top subplots. The third subplot represents the temperature changes (in ◦C),

and the bottom one the humidity. The overall measurement session duration was 60 minutes.

During the experiment, the typical temperature (35 - 39◦C) and humidity (55-85%) was held for an

underground copper ore mine. The highest CO concentration measured do not exceed the limits

for mining excavations, which is 26 ppm [191]. Point A in Fig. 81 represents this situation, caused

by wheeled mining machines activities the in nearby excavations. The next CO rise are probably

affected by these machines passing closely to the measuring route (point F). The next point of the

highest hydrogen sulfide concentration is marked at point D, where experiment was held closely

to the excavations in the given mining department where local gas emissions from the rock mass

usually take place. In most other locations, the H2S values were close to zero values.

Another important fragments of the measurements, reflecting the ventilation system works, are

point E and B, respectively. There are places in underground net of corridors, where fresh air inlet

area existed. It impacts on the decreasing of the local temperature and humidity. The slight changes

in humidity are presented at C point, where the travel throught several air dams is observed.
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Figure 81: Measurement of the mine environmental parameters [175]

By utilizing data from the IMU sensors embedded in the mobile phone, where application for

visualization purposes is run, a distance calculation was carried out with satisfactory accuracy.
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Signals are recorded every 100 ms. When a rapid increase in the primary acceleration vector is

detected, the smartphone application registers this as a new step. Acceleration and velocity data

are collected on three axes. Consequently, when significant changes are observed, a step-by-step

calculation function is activated [222]. As illustrated in Fig. 82, during the test, the distance

measured is approximately 700 m. Thanks to this approach, an estimate of the total distance

covered by the mine crew could be achievable after their shift.

To summarize, the presented portable measurement unit for hazardous gas detection can be used

as a miner’s own equipment to assess the environmental parameters. With usage of smartphone to

visualize data and alert workers about the possible threats, the additional data can be gathered from

smartphone sensors to estimate the value of the distance made on a duty basis.
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Figure 82: Calculation of distance covered based on IMU smartphone sensors [175]

The results of these analyses are described in detail in the article [175] as a part of the work

supported by EIT RawMaterials GmbH under Framework Partnership Agreement No. 19018

(AMICOS. Autonomous Monitoring and Control System for Mining Plants).
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7.5 Results of analysis of lidar data from inspection robot for mining
transportation systems

In this section, the results of analysis of lidar data is described. A lidar sensor is mounted on the

wheeled mobile robot (described in Table 4) as an example of inspection robot setup for mining

transportation systems. The sensor above is directly connected to the on-board computer with ROS

software. For the experiment area, the 40 m long corridor at the Wroclaw University is selected.

The corridor contained several obstructions in front, above and on the sides of the robot, including

recesses, doors and the wall above the lintel, creating occlusions for the lidar. Such conditions

were chosen to reproduce the problems with measurement coverage of narrow linear objects. That

assumption can identify the similar problems with inspection robot route assessment for mining

transportation systems. Data acquisition is started during a straight path route, where the robot

passes through the central part of the corridor. There are three scenarios determined for different

lidar sensor configurations:

• Fixed horizontal position of the lidar sensor (horizontal lidar),

• Rotating sensor with the range of < −45◦,+45◦ > (tilting lidar),

• Rotating sensor with the full range of movement < −90◦,+90◦ > (rotating lidar).

Table 18: Density statistics for type of lidar movement [196]

Point Cloud Mean Surface Density (MSD) Standard deviation

Horizontal lidar 8978 5249

Tilting lidar 7581 3967

Rotating lidar 10,230 5146

In Table 18, a general statistics calculated from the whole experiment subdivided into a specific

lidar movement type is presented. For each point cloud, a Mean Surface Density (MSD) and

standard deviation of number of points per m2 are calculated. The visualizations of point cloud

obtained are presented in Figures 83, 84, and 85 with the same color scale. Moreover, in order to

present the distribution of route coverage density for different lidar movements, a KDE is used to

generate histograms presented in Fig. 86. Starting from horizonal lidar results, the distribution

has three modes of 1000, 10000, and 15000 cloud points/m2, where the mean is nearly 9000
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Figure 83: Point cloud density - horizontal lidar [196]

points/m2. It affects that there are some oversampled areas (especially the corridor walls at the

height of the lidar montage point on the robot mast), whereas some areas possess significantly

lower data coverage (particularly visible at the beginning of the measurement). This situation is not

highlighted in the movable mountage options. For tilting lidar, MSD is lower than for horizontal

lidar, but the ditribution is more uniform, what corresponds to the lowest standard deviation in this

experiment what is visible with the green trace in Fig. 86. Finally, the highest obtained surface

density is received for rotating lidar with similar standard deviation to non-movement case.

The next phase of the experiment is to estimate the MSD for different types of objects. In

Fig. 87 there are presented 6 chosen objects ((a), (b), (c), (d), (e), and (f)) existing in the corridor to

examine their reconstruction quality using lidar mountage options above. First subgroup ((a), (c),

(e), (f)) represents the objects with vertical surface detected, while second subgroup ((b), (d)) covers

object with more complex geometry. Table 19 shows the number of cloud point obtained for every

object described above. For flat object, the movable measurement types give an increase of cloud

points as compared with horizontal lidar. Notably, the occlusions significantly affect measurements

from the horizontal lidar for objects (a) and (f), causing some parts of these objects to be uncovered.

It has also been noticed that the largest proportion increase in value is observed for objects with

complex geometry, meaning that an additional axis of lidar movement has the ability to inspect

objects with extensive shapes.

Enhancing the system’s complexity by adding an additional actuator to rotate spinning lidar

increases the data density and completeness for corridor-like scenario. Despite the fact that the
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Figure 84: Point cloud density - tilting lidar [196]

Figure 85: Point cloud density - rotating lidar [196]
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Figure 86: Surface density distributions for types of the sensor movement
[196]

Figure 87: Objects selected for point cloud quality evaluation [196]
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Table 19: Number of points for benchmark objects [196]

Measurement type (a) (b) (c) (d) (e) (f)

Horizontal lidar 38,113 836 64,347 1432 6013 23,576

Tilting lidar 55,151 2286 70,834 4415 25,727 20,222

Rotating lidar 86,618 5874 90,425 6289 44,671 38,065

sensor operating within its full rotational range generally has the highest MSD, a tilting sensor

delivers results that are nearly as good as offered above and a considerable advancement over the

static, horizontal positioning of the lidar. Especially outcomes from elements with characteristic

surfaces, causing many occlusions (what is common for underground mining objects) would also

support choosing one of the moving lidar mounts.

To conclude, the various elements of 3D-data quality from three typical hardware solutions

employing a 3D lidar scanner for the SLAM issue are explored. A multimetric comparison is

performed to examine parameters like local surface density and variation, and points per selected

object. This examination allowed to gain insights into the performance of SLAM in tunnel-like

scenarios, particularly regarding essential facets of inspection and mapping robotic operations in

restricted, underground implementations. In underground mine inspection missions, substantial

3D data is gathered using SLAM for navigation as well as 3D analysis. Having complete

representations of various objects in the point cloud is essential for machine learning algorithms

to classify accurately and differentiate between objects of interest, which can then be analysed

using specialized algorithms tailored to specific use cases to be applied during robotic inspection

missions.

The results of these analyses are described in detail in the article [196] as a part of the work

supported by EIT RawMaterials GmbH under Framework Partnership Agreement No. 19018

(AMICOS. Autonomous Monitoring and Control System for Mining Plants).
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7.6 Risk analysis of cyber threats for a mining company

The proposed risk assessment method, described in Section 6.6, is used to present results obtained

from the research of risk analysis of cyber threats for a mining company. Furthermore, with

usage of techniques like brainstorming sessions, incident documentation, and inspection reports

from mines, it is possible to assess the types of consequences and scenario frequencies that

can be identified and estimated. Following the research about cybersecurity threats in industry

organizations [223], SAFEME4MINE project, and a given literature ([101, 210, 224–234]), there

are seven possible scenarios of cyber threats revealed. For each attack technique listed, the

probability of occurrence is assessed in accordance to cybersecurity reports (Table 20). In the

next Table 21, consequences of techniques compared with target of attack, and the level of mining

asset automation are presented. On the basis of preparation work given above, the implementation

of fuzzy rule-based risk assessment can be formulated using fuzzy logic toolbox from MATLAB

software version R2020a.

Table 20: Likelihood of scenario occurrence [212]

Attack Technique Occurrence Probability According

to Cybersecurity Reports [%]

S1 72

S2 27

S3 27

S4 33

S5 9

S6 10

S7 5
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Table 21: Consequences of scenario occurrence according to the targets of attack [212]

Attack Technique Target of Attack Consequences

I—Modern Mine

S1

S2

S3

Databases (technical data,

economic reports, personal data).

Financial loss related to data recovery (e.g., ransom), system

updates (in order to reinforce uncovered weaknesses),

and compensations for the employees whose data has been

exposed to the attack;

Loss of intellectual property, latent technology;

Reputational damage.

S4

S5

S6

Mobile machinery (SCADA

systems, on-board hardware

related to the control of the

machine);

Control devices related to other

machines and facilities in the mine

(e.g., dewatering system,

ventilation system).

Unplanned, manual inspections to be done;

Increased wear and more frequent damages caused by the lack of

information regarding malfunctioning;

Obstructed performance analysis and optimization due to the lack

of information from SCADA systems;

Inability to adjust the energy supply to the actual demand;

Limited access to workplaces due to ineffective water drainage;

The limited ability of natural hazards’ evaluation.

S7
Communication and information

networks.

Unauthorized access to network devices and loss of their

configuration control;

Interception of the data transmitted in an internal network (even if

encrypted).

II—Real-Time Mine

S1

S2

S3

Databases (technical data,

economic reports, personal data).
The same as on the previous level – a more extensive scale.

S4

S5

S6

Mobile machinery (SCADA

systems, on-board hardware

related to the control of the

machine);

Control devices related to other

machines and facilities in the mine

(e.g., dewatering system,

ventilation system);

Autonomous machines.

As on the previous level, additionally:

Machinery damage resulting from the continuation of work even if

exceeding the permissible working parameters;

Impossibility of local autonomous work due to malfunctioning of

the machine control system - decrease in productivity and/or

forecasting of the mining and wear process;

Reduction in the safety level resulting from the impossibility of

locating workers and machines on the branches and in the

mining faces; Need to switch to ‘traditional’ ventilation—increased

costs.

S7
Communication and information

networks.
The same as on the previous level—a more extensive scale.

III—Intelligent Mine

S1

S2

S3

Databases (technical data,

economic reports, personal data)
The same as on the previous level—a more extensive scale.

S4

S5

S6

Autonomous machinery;

Control devices related to other

machines and facilities in the mine

(e.g., dewatering system,

ventilation system).

As on the previous level, additionally:

Damage resulting from the loss of control over the operation of

machines;

Damage to machines as a result of working in inappropriate

environmental conditions or being in the area of natural hazards;

Stopping the production of entire departments or even the entire

mine as a result of failure/damage to the main part of the vertical

transport infrastructure

S7
Communication and information

networks.
The same as on the previous level—a more extensive scale
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In the initial phase of building the suggested fuzzy model, the input parameters must undergo

fuzzification. Subsequently, the linguistic scores provided by the experts are transformed into

equivalent fuzzy set numbers. In the Mamdani fuzzy model, the two input variables are probability

and consequences, while the output variable is the risk level. The triangular and trapezoidal fuzzy

numbers (FNs) employed in the current case study to depict the linguistic scales for both input and

output parameters are illustrated in Fig. 88 (based on tables: 13, 14, 15). The final step of a fuzzy

risk assessment model is the determination of IF-THEN rules . Following the results of expert

insights from underground safety analysis, Table 22 presents 25 rules of risk assessment, and one

additional rule when no risk is defined. For example, rules 1 and 26 are defined as follows:

Rule 1: IF probability is P1 and consequences are C1 THEN risk level is LOW.

Rule 26: If probability is impossible and there are no consequences, THEN the risk level is NO

RISK.

In accordance with this, the experiment is fully covered with all possible risk assessment rules

and the fuzzy inference model can be created. Using the rule base above (Fig. 89 [b]), the Mamdami

algorithm is used to defuzzify the obtained set of results (Fig. 89 [a]).

Table 22: Risk decision matrix [212]

Consequences C1 C2 C3 C4 C5

Probability

P5 MEDIUM HIGH MEDIUM HIGH MEDIUM HIGH HIGH HIGH

P4 MEDIUM MEDIUM MEDIUM HIGH MEDIUM HIGH HIGH

P3 MINOR MINOR MEDIUM MEDIUM HIGH MEDIUM HIGH

P2 LOW MINOR MINOR MEDIUM MEDIUM HIGH

P1 LOW LOW MINOR MEDIUM MEDIUM

Table 23 represents the risk score received from the proposed model in case that all rules posses

the same weights. It is an approach in which all risks are equally important and should be sought

to be minimized within presumed constraints, e.g.: organizational, time, or budget constraints.

However, the weights can be structured in different order i.e. when it is assumed that ’catastrophic’

consequences are more important than ’certain’ probabilities in the risk assessment process.

In conclusion, the proposed method presents an approach in which the cyber-attack risk level

can be assessed for mine use case. Based on the linguistic form of the presentation of expert
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Figure 88: Membership function of (a) probability, (b) consequences, and (c) risk level [212]

knowledge of the probability of scenario occurrence and possible consequences, it is possible to

evaluate the risk level with the use of fuzzy logic algorithms. The full model output is presented

in Fig. 90. The surface plot symbolize the risk level based on probability of different cyber-attack

scenario likehood, and consequences of a given scenario. The consequence can be interpreted as an

incapability to continue operations, monetary loss, breakdown, or harm to reputation. The lowest,

dark blue levels covers the situation then the final outcome of scenarios are quite likely to happen,
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Figure 89: Mamdami model scheme (a) and rule base sample (b) [212]

but have insignificant damage potential. From a risk management perspective, confining the risk to

this specific area is the most secure option. It is important to highlight that the top corner, colored

yellow, theoretically signifies the most extreme and definite risk (rated 10/10 on the probability

scale), which could result in catastrophic consequences for the mine. However, this represents only

its highest theoretical level.

In addition to this, the quantitative estimation of the risk parameters can extend the proposed

expert outcomes here with usage of real data from other risk analysis cases or other reports

concerning the mensurable metrics of cyber-attack undertaken. Given that, expert opinions may
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Table 23: Risk scores for scenarios vs. mine automation level (weight=1) [212]

Scenario Risk Score (Modern Mine) Risk Score (Real-Time Mine) Risk Score (Intelligent Mine)

S1 55 75 75

S2 35 55 55

S3 35 55 61.7

S4 61.7 75 75

S5 55 55 55

S6 55 55 55

S7 55 55 55

be embedded in the characteristics of other mining organizations and their experiences may differ,

fuzzy logic makes it possible to change the weights of risk analysis rules effortlessly.

The following cyber-attacks risk analysis method can be used to assess the cybersecurity risk,

i.e. for digital transformation projects. This information can structure cybersecurity awareness

and constitute the priorities for mining management and safety officers to manage project risks.

Moreover, it can indicate most hazardous areas and consequently set up the risk mitigation methods.

Finally, the results highlight the current state of cybersecurity in the mine and serve as a valuable

reference for mine authorities in planning automation-related activities. In addition, the proposed

risk assessment approach can be applied to any kind of mine, including surface and underground

mining.

The results of these analyses are described in detail in the article [212] as a part of the work

supported by EIT Raw Materials GmbH under the Framework Partnership Agreement no. 19036

(SAFEME4MINE. Preventive maintenance system on safety devices of mining machinery).

135



Figure 90: Surface plot of fuzzy inference system (weights = 1) [212]
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8 The concept of cloud system architecture adoption for mining

industry

In this section, the concept of data processing architecture for tailored mining industry needs is

presented. The most emphasis is taken to present the crucial system functions and set them in

the concept of usage the Cloud Resources and services. These functionalities are presented in

a high-level manner. Their exact configuration and communication with other services within the

system should be subjected to additional analysis.

The proposed architecture can be regarded as a preliminary list of requirements for the creation

of system solutions, mainly considering code management for distributed IoT devices, machine

learning experiments at the edge and management of security aspects of the delivered software.

Depending on the degree of integration with Cloud Resources, some of the functionalities presented

in this section are available as ready-to-use services prepared by the cloud providers. It would

happen that some of them can be not accessible in terms of on-premises limitation. Following the

cloud model adoption selected by the mining company, the shared responsibility model entrusts the

management of different aspects by splitting the management of the physical, hardware, network,

software, application and data layers between the cloud provider and the end customer.

This analysis is based on exemplary mining objects and processes, which are described in

detail in the previous sections in order to prepare the information technology department for the

efficient software distribution for many mining systems. However, there may also be devices

measuring other technological processes in mining, the acquisition of which will require different

preconditions. In this architecture concept, the greatest emphasis is taken on technological

processes that are similar to the processes studied in this thesis. A number of these have been

selected that differ in terms of, among other things, process variability, amount and formats of data

collected. As a rule, the various measuring devices will be subject to the same principals in the

context of their management, taking into account, above all, the effect of scale and the end result

of data processing in order to enable organizations to make a data-driven decisions.

The high-level scheme of the concept is presented in Fig. 91. The proposed architecture consists

of the two major parts called Edge Computing Resources (ECR) and (Private / Hybrid / Public)

Cloud Resources (CR). The ECR are mainly IoT devices with the common ability to measure

physical quantities or monitoring of mining processes as well as the capacity for data preparation

and transmission to Data Artifacts Repository (DAR).
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For the architecture simplicity, the functionality of taking the measurements from mining

technological processes and initial data preparation are treated as the one physical device from

the maintenance point of view. As intended, such a resource may be physically separated devices

with a fragmented functionalities corresponding to data acquisition and edge preprocessing having

the ability to communicate with each other. Still, such a unit corresponds to the use for one piece

of equipment, device, machinery, mining process and so on.

The second part of the architecture contains several units corresponding to storage, analytics

and aggregated data sharing resources (for visualization and reporting purposes) placed within the

scope of the selected Cloud Resources area. The selected components may vary, depending on the

cloud service delivery model chosen (private/hybrid/public). Nevertheless, taking into account the

assumed data flow from mining devices (comma separated data from environmental measurement

devices, BLOB files containing highly compressed data from measurements of highly variable

processes, and .rosbag formats from inspection robot missions) the DAR should follow with a data

lake concept [235, 236]. It would serve as an output data repository for IoT devices as well as an

initial storage point for any analytical module usage. This storage place would stand for the raw

data repository and claim as a single source of truth for any further analysis [237]. The next group of

the Cloud Resources is the analytical module. Considering the need for efficient big data processing

capabilities, the analytical module should consist of the distributed data processing engine to be

able to transform and manage significant size of the data at once. At this step, the valid limitation

should be raised that it is needed to couple the storage service location with computation power

needed for data processing due to the physical limitations of big data transfer efficiency [238]. This

means that the choice of the physical storage location of the cloud provider services should be the

same as where the data centre operates.

Finally, the agregated data can be utilized to serve as an input for visualizations and reports for

stakeholders in order to make a data-driven decisions. The level of data aggregation should follow

with the business needs. At this stage it is worth to mention about the need for data management

system integration that allows granular data access for different groups of employees.

In the Figure 91, some of the automated workflows (marked in circles from 1 to 7) should be

applied to enable the effortless work and proper IoT devices operations at scale. There are the

workflows dedicated to:

1. Software distribution for IoT devices

2. Software distribution for Edge Computing Resources
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Figure 91: General scheme of edge processing with selected Cloud Resources
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3. Edge machine learning workflow

4. Data transmission (streamed or in batch)

5. Scalable data processing

6. Infrastructure management (on-premises and Cloud Resources)

7. Cybersecurity analysis

The next part of this chapter refers to the detailed description of these workflows needed to be

fulfilled in terms of the IoT management for mining industry needs. It is worth to mention that

the mining area is extensive and that, especially for an underground mine, there are significant

technological constraints due to environmental conditions (restrictions on large-scale transmission

of data via wireless and wired protocols). Nevertheless, in the high-level architecture presented

here, it is assumed that there are no technical limitations for this reason. In order to face the real

project condition it is worth to study the well established cloud adoption pathways [239] to address

the risks and reshape the business requirements.

Software distribution for IoT devices workflow

The above-mentioned workflows 1 and 2 refer to the software distribution for Edge Computing

Resources. The first workflow focuses on the software distribution for IoT devices spread across

mining facilities. A range of possibilities that the measuring equipment can be used are presented in

Section 4. In high-profile description of the measurement devices, some of the separated modules

can be distinguished. The IoT module functional scheme is presented in Fig. 92. Each IoT module

matches for an entity which is coupled with the part of the mining system being the subject of

measurement. It can be separated into two parts: IoT module and edge processing module. The

first module refers to the software written in order to fulfill all functional requirements from the

measurement and usability point of view. It covers the sensor interfaces responsible for taking

measurements. In most cases it can be handled as a microcomputer / controller with ability to

handle GPIO signals from sensors and save / transmit data as well as inform the users about the

state with visual / sound interface.

The second module is edge processing module. The main aim is to preprocess the raw data and

form them to be prepared for further transmission aiming the Data Artifacts Repository (DAR).

Following the examples of devices presented in this thesis, one example of use would be the
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Figure 92: IoT module functional scheme

high-frequency aggregation of current signal to the binary format. This kind of edge processing

can be fulfilled by the seperated device communicating with IoT module with efficient hardware

components to process the data. It can be handled in a scheduled manner (covered by task

scheduler) and process the incomming data in batch or in real time. The transformed data can

be saved using the local database entity and be further used by the embbeded analytical module

within the edge processing module and serve as part of any machine learning experiment tasks. As

an example of such an inference using machine learning at the edge can aim to mining machine

cycle classification. Finally, the data collected and conclusions reached can be sent to the central

artifact repository (DAR).

As a baseline for source code distribution, a Source Version Control (SVC) tool can be used.

With usage of set of tags for versioning the changes in hardware sensor and logger configuration,

they can be properly distrubuted across the whole IoT devices landscape. Such a solution may be

a facilitation in the context of a future extension of the measurement techniques implemented in

the devices, where based on the tags the specific part of the software would be properly addressed

to appropriate device groups.

The basic functional workflow for code management is presented in Fig. 93. Let assume a new

feature request has arisen to add a new sensor to the measuring device. In step 1 prior to code

merging to the main code repository a newly added code is checked via the unit-tests. After a code

review completion, the updated code is deployed to the development environment (2). At this

stage, a software-based digital-twin of IoT device is spinning up in order to check the integration

tests with existing code. After that, the next step is an artifact generation step (3), where all code
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Figure 93: Software code management scheme

artifact and configuration files for embbeded devices are created. These set of the files are loaded

into a physical device in order to perform the compability tests with hardware (4). If all succeeded,

the final package is prepared and ready to distribute it across the devices working in production

conditions (5).

Software distribution for Edge Computing Resources workflow

This workflow follows the same steps as the workflow above. In this case, the focus is not directly

on the artifacts associated with the result files necessary to program the hardware and run routines

responsible for conducting data acquisition. Thus, it is assumed that each of the Edge Computing

Resources (ECR) has enough resources to not only manage the data acquisition from the sensors

connected to the system under study, but also to preprocess the data and send it on to the central

DAR.

This is based on the management of the code above, but also has to take into account the

preprocessing of the data and the sending of aggregated parts of it. For this reason, the control of

the software by means of tests will not check the correctness of the interaction with the sensors,

but should check the correctness of the calculations and data processing performed. For such

a goal, it makes sense to use containerization in testing and in the final production version to create

lightweight applications running on ECR.

In this way, the edge processing modules can be decoupled from the host operating system

layer and communicate with each other as separate applications. This approach allows the software

developed in this way to be easily transferred between hosts both physically mounted as part of

a mining systems, but also deployed on Cloud Resources. An example of such system would be
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the use of containers within data acquisition for an inspection robot platform where individual

containers would be responsible for independent components within the ROS operating system.

Another benefit is that it makes it easier to deploy smartphone applications using containers and

enable the test coverage of software development for data visualisation applications stored on

smartphones. This approach also makes it significantly easier to manage different versions of

smartphone operating systems and can be fully automated thanks to implementation within the

workflow.

Edge machine learning workflow

In this workflow, some of the data processing methods utilize the machine learning algorithms.

In the proposed architecture, they are used both within edge processing and also possible in the

analytics module within Cloud Resources. It is responsible for converting some scope of data that

may generate outcomes, reasoning what is further used to address the business needs. Nevertheless,

many factors and biases can affect this process, in order to cover some of them it is needed to

create a general workflow to facilitate it in one common way. The basic example of the proposed

machine learning operation scheme is presented in Fig. 94. The first step of this workflow is

a dataset preparation to shape the data with all needed features being under the review to receive

the known outcomes. This step should be prepared based on in-depth exploratory data analysis

for each use case. The next phase is the machine learning model(s) training with usage of the

prepared dataset. At stage 2, many statistical metrics would describe the overall effectiveness of

machine learning models. This step should handle a different set of metrics for different machine

learning experiments (regression problems, classification, clustering etc.). If the results obtained

are not satisfactory, the training step is reapeated until the all thresholds will be met (2’). The next

step is the model encoding (3). It covers the works of serializing the generated machine learning

models and pack them correctly. In existing data science landscape many platform generates the

different types of the final model files. In order to make model interoperable, it is needed to set up

the one common model file type used and covert into it. Following the proposed model preparation

in above manner, the next phase is to register the model (4). It means that the model will be stored

in a central model repository with additional metadata layer describing the model. Directly from

that place the chosen model can be deployed to inference at the edge or Cloud Resources (5). The

additional step will cover the model monitoring and its changes affecting the overall effectiveness

(6). At this stage, the dataset drift (adding or removing the feature in the dataset, changes in values
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Figure 94: Machine learning operations scheme

distribution) would disturb the model. Hence, the system should come back to the training loop to

update the stale model and perform the workflow again (7).

Data transmission workflow

In order to enable the data transfer of different sizes and formats to the DAR, the different ways of

communication will be used. Due to the conditions of the mining company, other communication

protocols will be selected taking into account the necessary spatial coverage. All communication

protocols for Personal Area Network (PAN), LAN and WAN, in both wired and wireless form,

can be used at different locations in the mining area backbone network. The workflow for data

transmission should take into account the specific network’s bandwidth limitations and to facilitate

the need for frequency of information on new business events on the basis of acquired data. In

order to do that, data can be transmitted from some ECR in a streaming manner, and some in batch

triggered by a specific schedule or in ad-hoc manner. In addition to this, the workflow applied

should also consider other aspects of data policies such as data retention, consistency, records

lifecycle management during data transmission outside the mining area. At this stage, several

mechanisms to ensure the system continuity should be used too. It would cover the aspects of

possible infrastructure problems in the event of a network failure. Moreover, data transmission

workflow can be enhanced by services improving the cybersecurity posture of the organization. To

protect the internal institution network against an unauthorized access of data and services, some

solutions such as Intrusion Detection System (IDS) and Intrusion Prevention System (IPS) can be

taken into account [240].

144



Scalable data processing workflow

Working with big analytical data requires more computation resources than can be covered by

a single machine. For that reason the set of virtual machines, or containers (based on level of the

final service virtualization used) can be bonded together to evenly distribute the smaller parts of

the data and sync the processed outputs. There are many possible options for scalable processing

architecture known in the industry to store the data, such as Data Warehouse (for structured data),

and Data Lake (for unstructured data and mixed data workloads) [241]. Considering the form of

the data obtained from data sources described in Section 4 for the mining industry, the Data Lake

concept can be a first choice for building the analytics engine.

Another major design question is to determine the data-processing workload type. For the above

demand it can be distinguishable between two forms of data processing: lambda and medallion

architecture. The lambda architecture joins methods of processing data in stream and batch manner.

With usage of MapReduce pardigm [242], some precomputed views are calculated on batch layer

over the whole dataset being processed, and some views are calculated in an incremental manner

over the small data partition on the speed layer [243]. The usage of this data processing architecture

within the mining area can be exemplified by the sound measurement taken by inspection robot

platform. Sound data can be streamed directly in order to detect the sounds related to failures e.g.:

drives in real-time and in meanwhile used for long-term deterioration detection.

The second example is the medallion architecture. The data workflow is divided into 3 layers :

bronze, silver, and gold. The bronze layer refers to the raw data obtainted directly from the source.

Performing data processing in that manner can be covered by Extract, Transform, Load (ETL) /

Extract, Load, Transform (ELT) pipelines, which data are loaded from bronze to silver layer with

all needed data transformation steps. The final stage, the gold table, contains the highest aggregated

data in a form to be served directly for any visualization and reporting solutions. In this settings,

the Data Lake repository can exemplify the bronze layer, where the transformed data go to silver

tables, and with the additional aggregation steps, are populated to gold tables. As an example of

mining data processing, the current consumption calculation of the drilling rig machine fleet can

be managed in this way. In the bronze-layer table, the raw data corresponding to high-frequency

sinus-shape signals can be stored. In next steps, the cumulative electricity consumption data every

second will be recorded on silver tables. Finally, the aggregation of total drilling cycles performed

can be saved on gold tables. Benefits coming from using the Cloud Resources for data processing

focus mainly on the modular approach of such solution. It helps to accelerate the successful

increasing computing capacity on demand that create an effect of scale.
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Cloud Resources infrastructure management workflow

Cloud Resources management is essential to keep track of the quality of service parameters required

by business needs. For the private Cloud Resources, the organization should manage all level

of the hardware and software including the physical server instances, network layers and finally

the application, its configuration, information and data layer. In this workflow, the emphasis is

taken on the resources management hosted by cloud services providers. Following the level of the

cloud model adoption by the mining organization, the different levels of the hardware virtualization

parameters should be handled. From the IaaS perspective, the physical hardware management is

taken by cloud provider, but the customer still keeps track of hardware-level resource such as

processor type, RAM memory, storage size or network bandwidth. From PaaS perspective, the

specific service-level agreement describing the hosted platform should be noted. Finally, for SaaS

resources, instead of virtualization or platform-oriented parameters determination, the software

parameters related to availability, reliability and redundancy of operation are described.

In most cases, Cloud Resources can be appriovisioned using the visual approach (click-and-run)

using the webpage portals as well as usage of deployment scripts utilizing the custom binaries

provided by Cloud Resources providers. From the management point of view, the code-centric

approach, similar to IoT devices and ECR software distribution workflow is suggested. This

Infrastructure as Code (IaC) approach is a more mature way of the cloud infrastructure

management. It gives a consistent way of deploying resources, which can be easily reproduced

to provision and deprovision set of resources at ease, giving the transparency of changes direcly

from the SVC backbone. There are many open-sourced libraries fulfilling that expectations. In

principle, they stand for as a wrapper of properly prepared API calls based on the valid description

of the given resource parameters expressed in code form.

Cybersecurity analysis workflow

Cybersecurity analysis is an important element of information system architectures. In particular,

the integration with Cloud Resources from public providers and the existence of multiple points of

contact with the organization’s internal network and its integration with Cloud Resources require

constant monitoring and a proactive response in the event of threats. Today, cybersecurity analysis

should be implemented not as an ad-hoc approach. The given architecture should be secured by

design at the time of its creation. In next words, some of the deployment examples are presented.

Starting from the software distribution workflow. As a part of cyber resilency, some automated
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scans performing the static code analysis to monitor the existence of the known vulnerabilities

and exposures can be performed. The other part of code scanning process can also cover any

ambiguities, poor quality or prone-to-error implementations. Another workflow can additionally

cover the implementation of secrets scanning [244]. For the balance, automatically informing

the system administrators of software updates can help to mitigate risk coming from unpatched

software. Switching from the code base, the container image scanning is feasible in order to use

the only properly patched ones.

Cloud Resources configuration management using the Infrastructure as Code approach can

check the correctness of network isolation, where i.e. the access to virtual networks, where cloud

services are placed, is trully limited. It can be handled via a set of good practices in resource

parameterization to identify any misconfigurations. Area under the cyber risk investigation should

not be limited to the specific Cloud Resources configuration only, but these resources themselves.

It is needed to check the effectiveness of any flaws which can exist within the Cloud Resources,

which may also contain errors in design [111]. Another major factor, which can affect on the overall

cyber resilience posture is the protection of system users and limiting their permissions. Usage of

Role-Based Access Control (RBAC) mechanism for specific priviliges for custom group of users

and implement it within IaC approach is highly relevant. Based on that, the system permissions

should be limited to the minimum and be extended only on call. Including additional factors during

users authentication is broadly used to get an access to the critical services [245].

8.1 Towards cloud adoption for mining industry

Adoption of Cloud Computing technologies can become an enormous contribution to the

development of digital transformation of mining industries. In this work, the greatest impact rely

on deployment of IoT devices with sensors to measure the state of the mining infrastructure as

well as mining processes. Determination of key mining processes to adopt the Cloud Resources

would allow for real-time monitoring of machinery, equipment, and environmental conditions. In

Section 4 some of objects and processes are exemplified, which can be a good starting point of

Cloud Resources adoption for distributed IoT devices. Nevertheless, any activities in this field

should be preceded by an in-depth analysis, first of all, of the organization’s requirements and its

internal procedures related to ICT systems. Description of data policies for every use case and

determination of its retention, consistency, and lifecycle is undoubtedly necessary. In addition

to this, the law analysis should be also covered. As an significant development is taking place
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in those fields today, more rapidly changing rules need to be taken into account. Starting with

Cloud Computing Cybersecurity Standards update [246], it contains a list of many technical and

management safeguards. Although this is a provision that allows government entities to use cloud

solutions, the list above can be adapted for other organizations. Moreover, the european law is also

developing in the field of the use of artificial intelligence. Following the latest Artificial Intelligence

Act [247], it presents some use cases regarding prohibited practices.

Another important pillar towards Cloud Computing adoption is the choice of cloud

implementation models. The key part of the decision to make is the cost analysis. Depending

on public vs. hybrid vs. private vs. multicloud models, there will be different cost proportions

related to CAPEX (capital expenditures) and OPEX (operational expenditures). These costs should

primarily come from the specific cloud adoption strategy for a given part of organization digital

assets. Many global cloud providers serve an advanced cost calculators to estimate the general

costs for specific system requirements. For example, increasing the computation power capabilities

in private or hybrid model would impact on the higher CAPEX type of costs. In contrary to that,

selecting the adoption of public cloud model would divide most of the costs into OPEX costs.

In summary, the description of this high-level architecture is created as a set of good practices

that, according to the author, should guide the development of an IT solution that allows the

integration of IoT devices working in a mining environment with Cloud Resources. As with

any implementation, it should be preceded by a risk analysis, e.g.: based on the steps outlined in

Section 6.6. Like any technology, cloud services also carry certain risks. In order to minimise their

negative impact on an organization’s operations, these must be taken into account when architecting

a solution to make it resilient to the most likely threats. In addition to this, stakeholders should take

into account during the project planning phase the possible outage of cloud deployed resources.

The proper implementation of cloud service redundancy options can ensure acceptable business

continuity with acceptable expenses.

Finally, the use of Cloud Resources in the digitisation of mining is undoubtedly a key step in

the development of a digital organization. Underground mining is one of the many industries that

digital transformation is waiting for and will certainly not bypass. Details are case-specific, but the

general trend has already been established, considering the most important aspects to maximize the

benefits of using the cloud technologies.

148



9 Conclusions and future work

The research conducted by the author is focused on the application of data acquisition and

analysis methods from the IoT devices applied to several technological processes from copper

ore extraction. The data used in this thesis are obtained mostly from proprietary measuring devices

developed for selected mining processes. For every case, the detailed technical description of

the designed measurement units, as well as data processing methods, are revealed. Developed

algorithms for data processing covers all steps from raw data wrangling to outcomes expression

about the phenomea being under investigation. In addition to this, a description of the underground

experiments and the results obtained using the proposed data processing methods are also

presented. Finally, the concept of cloud system architecture adoption for mining industry is

proposed as a set of requirements and best practices in order to implement a similar measuring

systems at scale in the mine.

The research results obtained confirm the possibility of using the IoT-based measurement

systems to assess mining processes. The dedicated measurement solutions for chosen mining

processes enable getting insights into operation of e.g. the mining machines works to optimize

their work. In addition to this, some examples presented in this work, can support the improvement

of miners’ work safety.

Going into detail, a special step is to perform experiments, prepare dedicated measurement

systems and analyse process data for several technological processes and routine procedures carried

out in the underground mine. For every case, the extensive description of data processing and

interpretation of results obtained is presented. As an outcome, altogether with considering the

fact of underground mine size, mining technologies used and variety of mining processes, there is

presented the scale-effective approach for analytical procedures using Cloud Computing. Finally,

the concept of cloud architecture for mining industry is revealed. Following the rule of scalling

out the similar processes as presented in this thesis, several common workflows for enabling the

scalable software delivery and cloud adoption for specific services needed is specified. It would

help to establish reliable data workflows and efficient utilization of aggregated big data scopes in

mining organization journey of digital transformation.

In details, the following achievements of this work are:

• Development of the measurement device and data processing algorithms to determine the

drilling phase corresponding to drilling rig machine work. Instead of usage the pressure

data, a non-invasive method of measuring instantaneous electric current using current clamps
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is presented. The analysis of changes in the operating regime can be performed on the basis

of a variable describing the machine’s electrical current consumption. Comparing this with

the method currently in use, which is based on the analysis of pressure variations in the

hydraulic subsystems of a drilling rig, makes the novel method easier to interpret, and the

methods proposed determines it well in regards to the actual variability of the process.

• The use of laser rangefinder data makes it possible to analyse the bolting process. By means

of indirect measurement of the distance to the ceiling (indirect method for measuring the

depth of a ceiling hole being drilled), it is possible to identify bolting cycles. With usage of

non-supervised machine learning algorithms, it can be possible to automatically distinguish

the bolting subcycles with usage of the rock bolts. On this basis, automated detection of the

performed bolting cycles is feasible.

• Thanks to the current measurements at a mining section, the detection of working machines
and devices based on analysis in time and frequency domains is achievable. Using the dataset

from the electric devices switching test, a learning dataset for the classification algorithm is

prepared and the operating moments of individual machines and equipment are successfully

extracted with usage of Random Forest Classifier (RFC).

• Integration of gas sensor with smartphone application helps underground mining workers

to assess the environmental conditions in real time. With usage of software calibration of

low-price gas sensors, they can stand for a good approximation of temporary changes in the

environment and warn the users about the possible gas hazards.

• The implementation of a rotating lidar mechanism with the operating system of the

inspection robot increases the density of imaging received and the quality of the spatial

imaging obtained. Owing to that, it is possible to generate a detailed mining excavation

map to inspect its state and infrastructure (conveyors, conveyor belts, corridor shape, etc.).

• A cyber risk analysis dedicated to the mining industry is carried out, taking into account the

level of integration with digital systems. A risk analysis method is proposed using indicators

derived from expert knowledge and fuzzy logic. It allows the systematization of possible

cyber threats within the development of a digital mine.

• Gathering all the requirements as well as constraints for the development of the IoT

technology and the implementation of such systems for the mining industry, it is proposed
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a concept of cloud system architecture adoption for mining industry. It covers several

common workflows following the needs from the types of the designed devices presented

in this thesis. Due to local infrastructure limitations, it is possible to implement a common

framework to deploy a system where data coming from the presented IoT devices can be

centrally managed.

Future work should be mainly focused on technology readiness level increase. Most

of presented approaches worked at a proof of concept level. Adding new functionalities,

implementation of an automated workflows and data flow management will be the main core of

future activities. This thesis opens up new possibilities in the area of the study of technological

processes of mining machinery and equipment and their adoption with Cloud Resources such as:

• development of new data processing methods for assessment of the abnormal behaviour of

the machine operator or drilling equipment,

• optimisation of measurement data acquisition methods using laser sensors accompanying

bolting processes to identify bolting cycles,

• extension the application functionality for environmental measurement kit and automation of

software calibration for sensors,

• development of autonomous missions related to robotic inspection of mining equipment,

• systematisation of the software management process for large-scale deployment of IoT

solutions in mines,

• increasing cyber risk research in the context of Cloud Resources adaptation and business

continuity of a digitised mining company.

In the author’s opinion, in regards to the current trend of industry digitalization it is viable

to set up the one common architecture covering the specific needs from mining industry. As

many different processes in the multi-faceted technological operations and miscellaneous types

of data being aggregated are in place, thus the modular approach for maintaining the digital assets

is essential. Covering the forthcoming digitisation needs of mining, it requires the use of Cloud

Resources to be appropriately positioned in the IT systems architecture landscape. This will help

to perform the tasks of processing large datasets and unify the management aspects of infrastructure

and data processing workflows. By utilizing cloud services in different models, the end customer
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- the mine - can shift the focus from managing the entire solution - to just their individual aspects

from infrastructure, to platform, to data. This will enable a focus on the business objective and

create new opportunities that were not possible with on-premises solutions.
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[36] Anna Pajdak, Katarzyna Godyń, Mateusz Kudasik, and Tomasz Murzyn. The use of selected

research methods to describe the pore space of dolomite from copper ore mine, Poland.

Environmental Earth Sciences, 76:1–16, 2017.

[37] Justyna Hebda-Sobkowicz, Sebastian Gola, Radosław Zimroz, and Agnieszka Wyłomańska.
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Legnica-Głogów Copper District. Technical report, KGHM Polska Miedź S.A, M.
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[174] Bartłomiej Ziętek, Paweł Śliwiński, Jarosław Szrek, and Radosław Zimroz. Laser-based

measurement system for drilling and bolting operations monitoring in deep underground

copper ore mine. Measurement, 253:117425, 2025. ISSN 0263-2241. doi: https://doi.org/

10.1016/j.measurement.2025.117425.

182

https://szkolaeksploatacji.pl/wp-content/knowledge/flipbook/_materialy_sep_koncowe/2024/index.html
https://szkolaeksploatacji.pl/wp-content/knowledge/flipbook/_materialy_sep_koncowe/2024/index.html
https://szkolaeksploatacji.pl/wp-content/knowledge/flipbook/_materialy_sep_koncowe/2024/index.html
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