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Abstract
This doctoral thesis explores the applicability of deep learning for various electricity
price forecasting tasks, from the standpoint of decision-makers. It provides evidence
that – when carefully calibrated – deep neural network models consistently demon-
strate superior performance in point, probabilistic and ensemble forecasting compared
to state-of-the-art benchmarks. Finally, the thesis also highlights the importance of fol-
lowing the best practices, as robust comparisons and replicability are key to research
excellence.

Streszczenie
Niniejsza rozprawa doktorska bada możliwości wynikające ze stosowania uczenia głę-
bokiego do prognozowania cen energii elektrycznej z punktu widzenia decydentów.
Dostarcza dowodów na to, że – przy starannej kalibracji – modele głębokich sieci
neuronowych konsekwentnie wykazują wyższą dokładność w prognozowaniu punk-
towym, probabilistycznym i trajektorii w porównaniu z wymagającymi benchmarkami.
Rozprawa podkreśla również znaczenie przestrzegania najlepszych praktyk, ponieważ
wiarygodne porównania i powtarzalność są kluczem do doskonałości badań naukowych.
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Chapter 1

Introduction

1.1 Background

Electricity price forecasting (EPF)1 is a branch of predictive analytics on the interface
of computer and information sciences, electrical engineering, finance, and – above all
– management science. It centers on predicting electricity prices in wholesale markets,
with timeframes ranging from minutes- and hours-ahead for real-time/intraday auctions
and continuous trading, through day-ahead auctions, to medium- and long-term hori-
zons, spanning weeks, months, or even years, entailing exchange-traded and over-the-
counter futures and forward contracts (Jędrzejewski et al., 2022).

As Hong et al. (2020) emphasize, the energy industry relies on forecasters to predict
load, generation, and prices. These forecasts are then being employed for planning and
operations by all business entities involved in the generation, distribution and transmis-
sion of electrical energy. While long-term predictions have been used for more than a
century, modern energy forecasting literature focuses on intraday (ID) and day-ahead
(DA) markets (Petropoulos et al., 2024). So does this thesis.

The emergence of EFP as a dynamic and interdisciplinary research field traces back
to the early 1990s, coinciding with the deregulation of traditionally monopolistic and
government-controlled power systems (Mayer and Trück, 2018). Until a decade ago,
the models primarily included relatively parsimonious (linear) regression models and
(artificial) neural networks, like those illustrated in Fig. 1.1. Such models were built
on expert knowledge and predicted the price Pd,h on day d and hour h using such ex-
planatory variables (inputs, predictors) as past electricity prices, day-ahead predictions
Xd,h of exogenous variable(s), e.g., load forecasts, and calendar effects, e.g., dummies
to represent weekly seasonality and holidays (Dudek, 2016; Keles et al., 2016; Weron,

1In this thesis, ‘EPF’ will denote both electricity price forecasting and electricity price forecast, while
the plural form, forecasts, will be succinctly represented as ‘EPFs’.
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Figure 1.1: Illustration of a neural network equivalent to a parsimonious EPF linear
regression (left panel) with arrows corresponding to the β coefficients in Eqn. (1.1), and
a feedforward neural network with the same inputs and one hidden layer (right panel).
White squares represent individual explanatory variables (inputs, predictors), while the
purple circle is the output (predicted) variable. Based on Figure 1 in Jędrzejewski et al.
(2022).

2014). If no hidden layers are present, such a model can be written in an equation form:

Pd,h = β1Pd−1,h +β2Pd−2,h +β3Pd−7,h︸ ︷︷ ︸
autoregressive effects

+ β4Xd,h︸ ︷︷ ︸
exog. variable

+∑
7
j=1 βh, j+4D j

︸ ︷︷ ︸
weekday dummies

+εd,h. (1.1)

In Figure 1.1, arrows indicate the flow of information, with each arrow having a cor-
responding coefficient (weight) assigned to it. The output is calculated as a weighted
sum of all the inputs. It should also be noted that in such models the price Pd,h was pre-
dicted independently for each hour h, sometimes using past prices from different hours
as explanatory variables. Interestingly, the joint prediction of all 24 hourly prices, e.g.,
using vector autoregressive models, generally underperforms (Ziel and Weron, 2018),
in contrast to the natural gas and crude oil markets (Rubaszek et al., 2020).

As more efficient algorithms, more computing power and more data became avail-
able, the models became more complex, eventually leading to the widespread use of ma-
chine learning (ML) techniques (Maciejowska et al., 2023).2 Two main streams of EPF
approaches have emerged (Lago et al., 2021): (linear) regression models estimated using

2As Januschowski et al. (2020) argue, statistical learning and machine learning are synonyms. These
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shrinkage and selection operators and (nonlinear) deep learning techniques. A typical
representative of the first group is the LASSO-Estimated AutoRegressive (LEAR) model
proposed in Lago et al. (2021), i.e., Paper 2, as one of two challenging benchmarks for
contemporary EPF. The LEAR model is a parameter-rich autoregressive structure with
ca. 250 explanatory variables:

Pd,h =
24

∑
i=1

(
βh,iPd−1,i +βh,i+24Pd−2,i +βh,i+48Pd−3,i +βh,i+72Pd−7,i

)

+
24

∑
i=1

(
βh,i+96X1

d,i +βh,i+120X1
d−1,i +βh,i+144X1

d−7,i
)

+
24

∑
i=1

(
βh,i+168X2

d,i +βh,i+192X2
d−1,i +βh,i+216X2

d−7,i
)

+
7

∑
k=1

βh,240+kDk + εd,h,

(1.2)

where X1
d,h and X2

d,h correspond to the first (e.g., load forecast) and second (e.g., wind
generation forecast) exogenous forecast series available for the dataset, estimated us-
ing the least absolute shrinkage and selection operator (LASSO) of Tibshirani (1996).
Although other regularization algorithms (e.g., ridge regression, elastic nets) have been
considered for EPF, the LASSO has become the golden standard (Janke and Steinke,
2019; Marcjasz, 2020; Narajewski and Ziel, 2020; Özen and Yıldırım, 2021; Uniejew-
ski et al., 2016; Ziel, 2016; Ziel and Weron, 2018).

Advances in computational resources, including massive usage of graphics process-
ing units (GPUs) and more efficient optimization algorithms, have made it possible to
train complex structures and paved the way for the second stream of EPF approaches
(Jędrzejewski et al., 2022; Maciejowska et al., 2023). While this group is very diverse,
its most prominent representative is a deep neural network (DNN) with two or more
hidden layers, hundreds of nodes and thousands of links. A sample two hidden layer
model – dubbed DNN – was proposed in Lago et al. (2021), i.e., Paper 2, as the sec-
ond challenging benchmark for contemporary EPF. It uses the same inputs as the LEAR
model in Eqn. (1.2), but admits a much more complex dependence structure between the
inputs and the output(s). As a result, it outperforms the LEAR benchmark significantly.

Deep neural networks have consistently demonstrated superior forecasting results
and generalization abilities, see Lago et al. (2018a) for a comprehensive comparison
of point EPF performance. However, their widespread use has been hindered by bad
practices, which lead to meaningless results that cannot be compared or compromise
research reproducibility, problems with interpreting the estimated weights and network

terms originated in different environments, but there are no fundamental differences in the methods as-
signed to either class.
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connections, as well as unproven performance in probabilistic (yielding the whole pre-
dictive distribution) and trajectory (also called ensemble) EPF.

1.2 Aim and objectives

It is exactly the aim of this thesis to address the above mentioned issues and develop
robust, reliable and – when possible – interpretable DNN-based approaches for short-
term point, probabilistic and ensemble forecasting of electricity prices. Approaches that
significantly outperform regression-based predictions not only in terms of statistical
error measures, but also in terms of economic benefits for business entities involved in
intraday (ID) and day-ahead (DA) trading. To address this aim, four objectives are set:

• Objective 1: Identify the most common problems encountered in EPF machine
learning research, present a set of best practices and publish open access codes for
well-performing benchmark models.

• Objective 2: Develop an interpretable DNN model for point EPF that outperforms
state-of-the-art benchmarks.

• Objective 3: Construct distributional DNNs that directly yield predictive distribu-
tions and are superior to state-of-the-art probabilistic models in terms of both statis-
tical and economic measures.

• Objective 4: Develop a decision support method that uses distributional DNNs to
generate trajectories of ID prices, then use it to construct profitable trading strategies.

The first objective focuses on improving the framework for point forecasting and
lays the foundations for probabilistic and ensemble forecasting. The two papers that
pursue this objective use automatic hyper-parameter optimisation schemes – Paper 1
proposes a robust grid-search based procedure, while Paper 2 uses Bayesian optimiza-
tion. Both schemes have forecast averaging at their core, as it is no longer just a useful
addition to the modelling pipeline, but can be seen as more of a necessity for deep
learning models (Karabiber and Xydis, 2019). In addition, Paper 2 provides a compre-
hensive literature review, identifies the most common issues and – most importantly –
proposes an open-access benchmark comprising of two state-of-the-art models (LEAR,
DNN) together with their predictions for 5 distinct datasets.

The second objective addresses one of the major drawbacks of neural network mod-
eling, i.e., lack of interpretability. Typically, neural networks are so-called black-boxes
– they do not “explain” the result, but only provide the expected outcome based on the
input data. They are often shown to perform well, but – as Rudin (2019) argues – they
are not safe to use in high-stakes decisions. Building on the NBEATS architecture of
Oreshkin et al. (2020, 2021), Paper 3 proposes a novel deep learning approach that
admits (partial) interpretability and outputs the components of the electricity price –
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trend, seasonality and exogenous factors. Such a property becomes especially impor-
tant when considering the need for transparent and understandable models expressed in
public discussions about machine learning (Carvalho et al., 2019).

The third objective concentrates on generating predictive distributions directly from
DNNs, without the need for bootstrapping or quantile regression averaging that pro-
cess point forecasts to produce probabilistic predictions (Nowotarski and Weron, 2018).
Although distributional neural networks are not a new concept (Williams, 1996), they
have seen very limited application in energy forecasting and only in combination with
complex architectures such as convolutional neural networks and gated recurrent units
(CNN, GRU; Afrasiabi et al., 2020) or recurrent neural networks (RNN; Mashlakov
et al., 2021). The distributional deep neural network (DDNN) proposed in Paper 4 is
a multi-layer perceptron in which the information propagates only forward, i.e., it is far
less complex than the CNNs, GRUs and RNNs, easier to interpret and less computa-
tionally demanding.

The fourth objective focuses on predicting price trajectories in continuous trading
intraday markets and generating optimal buy/sell signals for managers of short-term en-
ergy portfolios. The time and price at which the trader enters the market plays a crucial
role in generating profits. Trajectory (or ensemble) forecasting provides multiple in-
stances of the future price trajectory, all modelled to reflect time dependence. Paper 5
builds on the recent concept of Serafin et al. (2022) that uses a Gaussian copula to model
temporal dependencies (Pinson et al., 2009). The proposed DDNN-based approach sig-
nificantly improves upon the results of state-of-the-art ensemble methods with regards
to almost every considered metric.

1.3 Contribution to the discipline of Management and
Quality Sciences

Griffin (2021) defines forecasting as the process of developing assumptions or premises
about the future. It can be used by managers in planning or decision-making. The
decision-making is a data-driven procedure that involves selecting one option from a set
of possibilities and consists of several steps: recognizing and defining the problem, iden-
tifying alternative possibilities, choosing the best option, and implementing it (Heizer
et al., 2008). Even though forecasting is not mentioned directly in the six steps outlined
by Heizer et al., the whole process requires the decision-maker to rely on forecasts and
make an effort to improve their accuracy, which aligns with the assertion of Petropoulos
et al. (2022) that forecasting has always been at the forefront of decision making and
planning.

In fact, the field of forecasting can be placed in the realm of predictive analytics,
which, together with descriptive and prescriptive analytics, forms so-called business
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analytics (Lepenioti et al., 2020). This integration of diverse analytical approaches em-
powers organizations to gain insights from data, make informed decisions, and proac-
tively plan for the future. The field of business analytics focuses on aiding the decision-
making processes by providing insights and understanding of business performance
based on data. In other words, it aims to prescribe a recommended action (through the
use of optimization) for the predicted future events (Davenport and Harris, 2007; Delen
and Ram, 2018) in order to achieve an optimal outcome according to some (financial)
metric.

This thesis develops state-of-the-art deep neural network based approaches for point
(Paper 1 – Paper 3), probabilistic (Paper 4) and ensemble (Paper 5) electricity price
forecasting tailored to the day-ahead and intraday markets. This is of practical impor-
tance. As Kraus et al. (2020) argue in a recent review article advocating the use of
deep learning in operations research, customised architectures add value compared to
the standard out-of-the-box approaches.

As the empirical studies in Paper 4 and Paper 5 show, the obtained forecasts can be
used in decision-making processes where their accuracy is directly linked to operational
profits. This is in line with recent trends in management science (Bertsimas and Kallus,
2020). Qi et al. (2020), who review the use of machine learning, note that it is being
used extensively in prediction (e.g., of customer behavior), but also in the development
of learning frameworks that integrate prediction and optimisation. By establishing a
direct link between improvements in forecasting accuracy and the financial performance
of the company using the forecasts, we see the forecasting models as decision support
tools that help the company achieve its primary objective – generating profits.

1.4 Thesis structure

The remainder of the thesis is structured as follows. In Chapter 2, I introduce the day-
ahead and intraday markets for electricity. Then, in Chapter 3 I review the basics of
forecasting with neural networks, including the training process, network architecture,
calibration windows, overfitting and hyperparameter optimization. In Chapter 4 I dis-
cuss the main results of the five papers that constitute the thesis (referred to as Paper
1 – Paper 5; the full texts can be found in the Appendix). Next, in Chapter 5 I briefly
describe the articles I have published during my undergraduate and graduate studies
that are not part of the thesis. Finally, in Chapter 6 I summarize the key findings and
conclude.
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Chapter 2

The day-ahead and intraday markets
for electricity

Since the deregulation of the electricity markets in the 1990s, a significant fraction of en-
ergy is traded at organized power exchanges utilizing day-ahead (DA) auctions (Mayer
and Trück, 2018). Every morning participants place their supply and demand bids for
each of the load periods (typically 24 hours) of the next day (Maciejowska et al., 2023).
Around noon on the day preceding the delivery the market clearing prices are deter-
mined at the intersection of the supply and demand curves for each period, see Fig.
2.1.

The electricity prices are very volatile. The current technical limits for most Euro-
pean markets (e.g., markets operated by EPEX, including Germany and France, as well
as the Iberian markets operated by OMIE) allow for the price to range from −500 to
4000 EUR. Interestingly, negative prices are sometimes observed (De Vos, 2015; Zhou
et al., 2016). They reflect the technical limitations of ramping the generation down
or up in coal-fired power plants. It may be less expensive for the plant operators to
pay wholesale buyers to consume the electricity generated than to stop and restart the
production a few hours later (Schneider, 2011). Negative prices are most commonly
observed whenever there is a decrease in demand (e.g., weekends and holidays) or there
is an abundance of electricity from renewable energy sources (RES); e.g., strong winds
and high solar radiation. On the other hand, the price spikes occur when there is an atyp-
ically high demand, or the generation from renewable sources is scarce. Then, the most
costly generation units are used to match demand. Additionally, the consumption pat-
terns are seasonal (Dudek, 2023). The type of dependency is conditional on factors that
vary from one market to another, i.e., the prevalence of air conditioned buildings, the
climate, electric vehicle adoption, etc. For example, in the US-based Pennsylvania-New
Jersey-Maryland (PJM) market the extreme prices can be observed at different loads de-
pending on the season, see Fig. 2.2 – additionally, the magnitude of price spikes differs
significantly between the winter and summer seasons.
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Figure 2.1: Aggregated demand and supply curves on 1 December 2022 for hour 18
in the Iberian electricity market; for better visibility plotted only for the 22000-34000
MWh range. The hourly spot price is at the intersection of the curves. Data source:
OMIE.

Figure 2.2: A scatter plot of hourly electricity price versus day-ahead system load fore-
cast in the COMED zone (Northern Illinois, US) of the PJM market for years 2013 and
2014. Color marks the season (brown → summer, teal → winter, and lighter shades for
the transitional seasons). Data source: PJM.
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Figure 2.3: The generation profile and hourly day-ahead electricity prices (red line) in
week 7 of 2023 in the German market. Source: Energy-Charts.

However, the DA auction is not sufficient for a smooth operation of a power system
(Kraft et al., 2023). With the growing installed capacity of RES, the uncertainty of the
actual output for the day-ahead delivery is very high, especially in periods of transi-
tion from low to high (or high to low) wind (Maciejowska, 2020). Based on the data
publicly available on the ENTSO-E Transparency Platform at the time of writing the
thesis, the installed capacity (the highest possible generation, under ideal conditions)
of German wind power plants exceeds 60 GW, while the typical consumption (load) in
peak hours is in the 60-80 GW range. On top of the wind power plants, photovoltaics
provide almost another 60 GW of installed capacity – so RES can cover over 100% of
the demand if the weather allows for that. However, there are also days with almost no
electricity generated by RES, and the forecasts of the production for the next day are
often highly uncertain (Gianfreda et al., 2020; Maciejowska et al., 2023). For example,
Figure 2.3 depicts the generation mix throughout week 7 of year 2023 in Germany with
the hourly DA prices. Note the very low renewable generation in the beginning of the
week, followed by a high wind power production on Friday and its effect on the price.

This creates a need for market participants to adjust their day-ahead bids when-
ever new, more accurate weather information is available. Intraday (ID; or real-time)
markets enable to trade electricity much closer to the delivery, even just minutes before
(Narajewski and Ziel, 2020; Uniejewski et al., 2019a). For instance, in the EPEX market
for Germany the DA auction results are available at ca. 12:45 on the day preceding the
delivery (i.e., day d−1), then at 15:00 the ID auction ends, and at 16:00 the so-called ID
continuous trading starts and runs until a few minutes before delivery on day d. As the
trading is no longer auction-based, each bid must be matched with the other side of the
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Figure 2.4: Illustration of the volume weighed average price trajectory (VWA; red cir-
cles) on the German intraday market, constructed from individual transaction prices
(blue dots) for the hourly product with delivery starting at 10:00 on 9 June 2019. Source:
Serafin et al. (2022).

trade – and there no longer is one price for the electricity delivered over a given period.
A trajectory of prices can be observed for each hourly, half-hourly or quarter-hourly
(depending on the product traded) load period (see Figure 2.4 for an illustration). The
trajectory reflects the changing expectation of the price – based on the changes in the
demand, weather conditions and unplanned power plant outages. In a scenario where a
generator, a utility or an energy trader needs to balance out the day-ahead bids in the ID
market, profit maximization (or cost minimization) turns into a problem of finding the
optimal time to enter or exit the market.

The ID market, however, is not the closest to delivery – there is also a balancing
market, which is a technical “safety net” that operates nearly on-line (Kraft et al., 2020;
Weron, 2014). It exists to ensure that the demand is met by the supply at all times. The
trading in the balancing market is very limited (and the fees are prohibitive), as it prior-
itizes energy system stability over economic incentives. Moreover, on the demand side
there is also a mechanism of demand response, which can take the form of a contract
that pays the energy consumer (e.g., a factory) for the reduction of the consumption on
demand and for the readiness to do so. However, as these systems are targeting tech-
nical issues, they are of lesser interest to the decision makers from the perspective of
scheduling and planning operations. Hence, the thesis focuses on the day-ahead and
intraday markets only.
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Chapter 3

A primer on neural networks

This section presents an overview of the challenges faced when using neural networks
(NN) for forecasting electricity prices. It briefly covers the topics of training (or pa-
rameter estimation), network architecture, typical models for the day-ahead electricity
markets, rolling calibration windows, overfitting and hyperparameter optimization.

3.1 Training

Let us assume that we have S samples of V independent variables (matrix XS×V ) and the
corresponding dependent variables (matrix YS×1). Then, a linear model can be formu-
lated as:

y = β0 +
V

∑
i=1

βixi + ε, (3.1)

where xi corresponds to the i-th independent variable, β0 is the intercept, βi is the co-
efficient for the i-th variable and ε is the error term. Typically, the β ’s are derived by
ordinary least squares (OLS). However, without changing the formulation of the model,
one could also construct a neural network to estimate or train them; the latter term is
typically used when referring to the process of updating the weights in a neural net-
work. This is illustrated in Fig. 3.1, where each of the arrows between the input and the
output layer corresponds to a coefficient. In such a case, the β ’s would be iteratively
updated based on the numerically computed gradients of the errors (Haykin, 1994); to
mimic OLS, the mean squared error would be a good choice, but NN models are flexible
with regards to the loss functions. An optimization algorithm, such as ADAM (Kingma
and Ba, 2014) is used to govern the coefficient updates. Due to an iterative approach
and randomized initial coefficients, the result may be different from that of the OLS
estimation. It may even differ from one estimation of the network’s parameters to the
next.
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Figure 3.1: An illustration of a neural network equivalent to linear regression.

Since the training process is iterative, it can be divided into epochs that consist of
steps. In each iteration, the network updates its weights once, based on the gradients
computed for a subset (also called batch) of data. One full pass of the data sample is
called an epoch. For example, if we set the training process to be 10 epochs long, we
have S = 360 samples and use batches of 32 data points, we would update the weights
⌈360/32⌉ = 12 times per epoch and 120 times in total. However, determining the op-
timal number of epochs is a problem in itself. Typically an early stopping criterion is
used to avoid overfitting (Goodfellow et al., 2016), see also Section 3.5.

3.2 Network architecture

The linear example depicted in Fig. 3.1 shows a network in which the computation
takes place only in one neuron: the output one. Mathematically, given a set of inputs
xi, a trained network with weights wi, i.e., coefficients equivalent to βi in Eqn. (3.1),
computes the following:

y =
V

∑
i=1

wixi, (3.2)

with the intercept – or bias in NN nomenclature – omitted here for the sake of simplicity.
Note, that the neuron in general computes a function of the sum of weighted inputs – in
this example an identity. This is also true for more complex structures – a neural network
with more layers (or with “wider” ones, i.e., consisting of more neurons) operates with
the same principal operations, what changes is the number of model parameters and the
dependencies between neuron outputs.

For example, we can add another layer to the network, between the inputs and the
outputs; such layers are called hidden, as they perform computations that are not directly
visible to the user. Let us assume that the hidden layer has 3 (hidden) neurons and that
the activation function, i.e., the function applied to the sum of weighted inputs in a

15



x1

x2

x3

xV

. . .

y

Input
layer

Hidden
layer

Output
layer

Figure 3.2: An illustration of a neural network with a single hidden layer.
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Figure 3.3: An illustration of a deep neural network (DNN) with two hidden layers
– one with sigmoid and the second with ReLU activation functions; note the different
icons inside the neurons.

neuron, is the rectified linear unit: ReLU(x) = max(0,x), see Fig. 3.2. Then the output
from a trained network will have a following structure:

y =
3

∑
j=1

u j ReLU

(
V

∑
i=1

wi, jxi

)
, (3.3)

where wi, j is the weight on a connection between the i-th input and the j-th hidden
neuron and u j is the weight on a connection between the j-th hidden neuron and the
output. By adding another hidden layer, we obtain a (relatively simple) deep neutral
network (DNN), where the non-linearities are stacked on top of non-linearities. An
example of such a network is presented in Fig. 3.3.

Despite the more complex architecture, from a forecaster’s perspective, the DNN in
Fig. 3.3 is as simple to use as the (shallow) NN with one hidden layer in Fig. 3.2, and
even as the NN regression in Fig. 3.1. The only differences would be in the network
definition and the computational complexity. The models would behave differently and
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Figure 3.4: An illustration of a deep neural network (DNN) with two hidden layers and
24 outputs.

possibly require different hyperparameters, but the training would follow the same rules
for all variants.

3.3 Models for day-ahead electricity markets

The majority of day-ahead electricity market designs involve hourly auctions that are
resolved simultaneously for all 24 hours of the next day (Mayer and Trück, 2018). This
opens up multiple modeling possibilities (Ziel and Weron, 2018):

• treating each hour of the day as a separate time series and estimating them inde-
pendently, hence not taking into account the joint distribution of the innovations for
different hours → this approach is often called multivariate;

• treating all hours of the day as one time series and building a model with one output
that is applied to all 24 hours of the day → univariate approach;

• creating a single model with 24 outputs, hence explicitly or implicitly modeling the
joint distribution of the innovations for different hours → multi-output or fully mul-
tivariate approach.

The choice of the best modeling framework is not trivial. For instance, Cuaresma et al.
(2004) and Ziel and Weron (2018) argue that the multivariate approach outperforms its
univariate counterpart and vector autoregressive (VAR) multi-output models. However,
they do not consider multi-output NN-based models. The latter have three advantages
(Nargale and Patil, 2016; Lago et al., 2018a; Bento et al., 2018):

• the joint distribution of the innovations for different hours is (implicitly) modeled;
• training one larger model is faster than training 24 smaller ones;
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• the modeled dependencies (coefficients) in one part of the network generalize, i.e.,
try to fit in the best possible way all outputs, and in the another part try to fit data in
a way that makes each hourly output unique.

To better understand the third point, the reader is referred to Fig. 3.4. Each weight
affects all 24 outputs, and the only factor that differentiates the outputs is the last layer
of connections. This means, that the first two layers of connections are, as part of the
training process, trying to fit the weights in a way that is best for the general behavior
of the model (minimize the average error across all hourly outputs) and the last layer of
connections tries to specialize the output neurons for the respective hours.

3.4 Rolling calibration windows

As the conditions in electricity markets change rapidly, it is important to recalibrate
models with updated data; for day-ahead predictions this is typically done once per
day. At the same time, the oldest data in the training sample get less and less relevant.
Therefore, ‘rolling’ the window is preferred over ‘expanding’ it. Formally, the rolling
calibration window scheme consists of the following steps (note that prices for day d
were determined on d −1):

• estimate the model using S samples of data for days {d −S,d −S+1, ...,d −1},
• use the estimated model to forecast prices for day d.

The computational complexity is significant, i.e., for a one year long test period we have
to train 365 daily or 8760 hourly models. However, compared to a model trained only
once and reused for every future date, the rolling calibration window scheme should
allow the model to reflect the current market situation much better. Moreover, from the
perspective of the computational time, even the more complex approaches proposed in
the literature take at most minutes to recalibrate on a typical desktop, leaving enough
time for the decision maker to act.

3.5 Overfitting and methods that prevent it

When fitting a high-order polynomial to a small number of points, the variability of the
fitted curve is too high for any reasonable interpolation or extrapolation. The same holds
for more complex models. This phenomenon is called overfitting and is particularly
dangerous for non-linear models, like neural networks. When a NN fits the training
data too well, it no longer is able to generalize to the unseen data, see Fig. 3.5. The
mean absolute error (MAE) for the training data (used to adjust the model parameters)
decreases over time. However, after an initial decrease, the MAE increases over time
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Figure 3.5: The trajectories of the loss metric (mean absolute error, MAE) on sample
training and validation power market data.

for the validation (unseen) data. One can clearly identify the point at which the model
starts to overfit and loses the ability to generalize (ca. 500 epochs).

In forecasting models, overfitting is addressed by either selecting (as a hyperparam-
eter; see Section 3.6) the length of the training period or by using an early stopping
criterion (Yao et al., 2007). Early stopping is the preferred choice as it is more flexible.
The optimal length is chosen automatically at each step and can adapt to the chang-
ing data patterns. However, early stopping has a downside – it requires setting aside
validation data that are not used for the training process.

3.6 Hyperparameter optimization

Hyperparameters are parameters that are not optimized during network training – they
have to be set beforehand. The optimal choice of hyperparameters is crucial in achieving
a good predictive performance. However, the problem of choosing the right combination
gets more complex, the more complex the model is. Starting from the neural network
architecture and activation functions, through the choice of the optimization algorithm
and its tunables (e.g., for the ADAM algorithm we can set the learning rate and the
rates of decay respectively to the first and the second moment estimates), regularization,
normalization, dropout, batch size, to the selection of relevant inputs. Typically, some of
the hyperparameters are fixed (e.g., only models with two hidden layers are considered),
and for the rest of them, an optimization study is performed.

Hyperparameter optimization can be performed in several ways. For instance, hy-
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perparameters can be tuned manually (Catalão et al., 2007). In practice, however, such
an approach would be very difficult to use as hyperparameters may need to be reesti-
maed periodically. Alternatively, an automated optimization can be performed (Pravin
et al., 2022):

• using a grid search, i.e., a discrete set of possible values is determined for every
hyperparameter, and some – or all – combinations are tested on the validation set
(Amjady and Keynia, 2009; Panapakidis and Dagoumas, 2016; Marcjasz, 2020);

• using a Bayesian method – such as the tree-structured Parzen estimator – the possible
values are determined for each hyperparameter (discrete or continuous) and the al-
gorithm tries new combinations of hyperparameters based on the performance of the
combinations tested so far and uncertainty of the estimated performance (Bergstra
et al., 2011; Lago et al., 2018b);

• using a genetic algorithm, e.g., particle swarm optimization, ant colony optimization
or bat optimization, that describes a – typically inspired by nature – way to select new
hyperparameter sets based on the results of previous runs, allowing for both discrete
and continuous values (Shafie-khah et al., 2011; Yousaf et al., 2021; Lima de Campos
et al., 2020).

For large hyperparameter spaces Bayesian methods seem to be the best choice – a grid
search becomes computationally infeasible, while the heuristics used in the genetic al-
gorithms might be slower to converge to reasonable values. The process of preparing a
hyperparameter calibration study is, however, mostly effortless thanks to the abundance
of libraries that implement these methods, for example, the open-source Optuna and
Hyperopt packages for Python (Akiba et al., 2019; Bergstra et al., 2013).

Given the scope of the hyperparameter optimization task and its relevance for the
accuracy of the forecasting models, some form of optimization is a necessity. This
induces three issues:

• computational complexity,
• requirement for more data (optimization should be performed ex-ante) and
• the need for a reasonable design of the optimization study.

While there are no clear rules, a common choice for the hyperparameter optimization
is to set aside a portion (e.g., 20%) of the data from the initial calibration window to
validate the models. The validation set can be chosen randomly, however, it is important
to use exactly the same data in each iteration to allow for the comparison of results
(see Paper 2). Note, that the validation set for hyperparameter optimization does not
coincide with the validation set in the rolling calibration study.
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Chapter 4

Summary of results

4.1 Best practices for using machine learning in EPF

Recently there has been a growing interest in using deep learning to forecast electricity
prices (Maciejowska et al., 2023). However, the lack of standardized testing and report-
ing practices has hindered accurate comparisons and – effectively – a wider adoption of
models (Aggarwal et al., 2009). Moreover, some of the studies published are inconclu-
sive, come to contrary conclusions or do not validate the claims correctly (see Paper 2).
Even if the method is described in-depth in the paper, the replication is often impossible,
as typically some implementation details are left out. Taking into consideration also the
computational time it takes to replicate such a set of results, the researchers typically
only compare their newly proposed methods to the simplest approaches. This calls for
an open-source, unified benchmark, that was proposed in other fields, such as computer
vision (Dollar et al., 2012) or cloud computing (Gan et al., 2019).

Lastly, the hyperparameter optimization – which is a key component of the neural
network training – is done differently by the authors of different papers and there is no
clearly defined standard approach. Many articles propose new (e.g., genetic) algorithms,
but often the validation of their performance is insufficient. Therefore, there is a need
for well-performing, automatic methods that can be easily applied in different scenarios.

4.1.1 A robust hyper-parameter optimization scheme for neural net-
work models (Paper 1)

The hyper-parameter optimization is not only time consuming, but also requires a long
history of the data (that cannot be later reused as the out-of-sample test data). On the
other hand, the electricity price time series are prone to structural breaks, hence using a
year or two of the data preceding the out-of-sample test period might result in the hyper-
parameters to be optimized using a completely different data (in terms of magnitude of
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price spikes, relation between the electricity load and price, average price level over the
weekends etc.) than are observed later, in the out-of-sample test period.

Paper 1 successfully attempts to find optimal hyper-parameter sets using the data
from past observations regarding one electricity market and applying them to a different
dataset. It resulted in a lower error score than when hyper-parameters optimized on the
tested electricity market were used, most probably thanks to the fact that the dataset used
for the hyper-parameter optimization contains a well-balanced sample of price spikes,
low prices and seasonal effects, while structural breaks were observed in both of the test
datasets.

The second key outcome of the study is a robust hyper-parameter selection and ag-
gregation scheme. The final proposed model averaged 15 individual neural networks –
for each of 1, 2 and 3-year long calibration windows, 5 best hyper-parameter sets were
chosen. The hyperparameters were optimized using the data from a different electricity
market. The model outperformed similar combinations of 15 ensembled NNs that used
data from the same market for hyper-parameter optimization and the out-of-sample test-
ing on both of the tested markets (Nord Pool and PJM). The conclusion holds also for
when the data is preprocessed using a variance-stabilizing transformation prior to the
modeling; a fast and well-performing asinh transformation was used (Schneider, 2011;
Uniejewski et al., 2018).

The study also concluded that in every test case, the NN models outperformed a
LASSO benchmark that used the same input information, while taking similar time to
train the models (the worst-case scenario for NN models was 2 minutes per one day of
forecast for the final ensemble, whereas LASSO took 30-40s).

Publication details

• Published as: G. Marcjasz (2021), Forecasting Electricity Prices Using Deep Neural
Networks: A Robust Hyper-Parameter Selection Scheme, Energies, 13(18), 4605.

• JCR classification: Energy & Fuels. Scopus classification: Mathematics: Control
and Optimization; Engineering; Energy. IF = 3.2. MEiN: 140 pts, assigned to the
Management and Quality Studies (NZJ) discipline.

4.1.2 Literature review, a set of best practices and an open-access
benchmark (Paper 2)

Paper 2 serves as a comprehensive review of point EPF methods, with a main focus on
machine learning and hybrid methods. The study outlines key aspects of a well-designed
and replicable research in EPF, discusses a set of best practices new studies should
follow, and proposes two well-described EPF models (LEAR, DNN). Both models are
available publicly on GitHub platform as Python code and a collection of result files
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ready for an evaluation.
The literature review is a holistic view on papers published after the review of Weron

(2014) and considers recent advances in the field of statistical, deep learning and hybrid
models. The last group is defined as models that contain multiple “modules”: algorithms
for data decomposition, feature selection, data clustering, multiple combined models
and a heuristic to determine the hyper-parameter values. The review concludes that the
possibility of choosing of a well-performing model from published literature is hindered
due to lack of common test sets between different studies, often insufficient model and
data descriptions and short test periods.

The aforementioned obstacles in comparing EPF models encouraged us to formulate
a set of best practices – guidelines for replicable EPF studies that can be compared with
different methods on a well-described testing ground comprising five distinct datasets.
Some of the best practices we propose new EPF studies should follow are:

• using a sufficiently long test period – we recommend at least one year of data to be
used as the out-of-sample test period,

• comparing against other well-established literature methods so the proposed method
can be easily evaluated,

• making the researched models open access to eliminate the possibility of misinter-
pretation of the description and bugs in the implementation,

• considering (and communicating) the computational time that the new method takes.

The methods used in Paper 2 are evaluated on a two year long out-of-sample period
on five datasets. The codes are available on a public GitHub repository, which from the
time the paper has been published attracted the researchers and encouraged them to send
detailed questions regarding the implementation elements. At the time of writing this
thesis, the repository was forked over 50 times and received over 130 stars on GitHub.

Publication details

• Published as: J. Lago, G. Marcjasz, B. De Schutter, R. Weron (2021) Forecasting
day-ahead electricity prices: A review of state-of-the-art algorithms, best practices
and an open-access benchmark, Applied Energy, 293, 116983

• JCR classification: Energy & Fuels; Engineering. Scopus classification: Engineer-
ing; Environmental Science: Management, Monitoring, Policy and Law; Energy.
IF = 11.2, MEiN: 200 pts, assigned to the Economics & Finance discipline.

• My contribution amounted to ca. 30% and concerned designing the study, developing
the methods, concluding analyses and drafting the paper.
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4.2 NBEATSx – interpretable neural networks for EPF
(Paper 3)

The neural network models – especially the deep ones – do not offer the same insights
as for example, a linear counterpart. Due to a sheer number of the weights adjusted
and heavily non-linear transformations applied to the data, checking the sensitivity of
the neural network prediction on the changing or explaining which of the inputs made
the prediction higher/lower is a cumbersome and in many cases, impossible task. The
interpretability that is lacking in NN-based methods is, on the other hand, often an
important factor when incorporating a model as a tool to aid the decision-making in
daily operation. The lack of easily understandable outcomes is slowing down the model
adoption in real-world applications (Rudin, 2019). For example, due to highly non-
linear structure of the DNN model from Paper 2 an expert can, at best, make an educated
guess about what drives the prices and what is the sensitivity to various scenarios. On the
other hand, having an interpretable model, decision-maker can investigate the outputs
and understand the model better without the need to trust the outcome of a black box
solution – which is especially important in a situation where the possibility to audit the
decisions is a strict requirement (Carvalho et al., 2019).

Paper 3 proposes a novel extension to neural basis expansion analysis (NBEATS;
a sequence-to-sequence model based on a system of deep neural networks) that allows
for the inclusion of exogenous factors in the model. The wider acknowledgment of se-
quence modeling in the literature was initially sparked by the success of the ES-RNN
hybrid method (comprising of Holt-Winters exponential smoothing and multiple LSTM
stacks) in the M4 competition (Makridakis et al., 2018). The paper introducing the
NBEATS method (Oreshkin et al., 2020) followed soon, proposing a purely machine
learning method that outperformed the ES-RNN model on the M4 dataset by 3%. Our
extension to the method addresses a crucial (from the EPF standpoint) shortcoming of
the model – lack of exogenous input series support and uses the benchmarks introduced
in Paper 2 to compare against state-of-the-art literature methods. The resulting fore-
casts outperform the DNN model in most cases. Additionally one of the NBEATSx
variants provides forecast that can be decomposed into trend, seasonal and exogenous
effects. At the same time, the model augmented with exogenous series outperform its
NBEATS (with no exogenous factors) counterparts significantly. The method was men-
tioned in a recent Forbes article as a technology of the future.

The method described in the paper, in general, decomposes the signal in a cascade
of nonlinear projections onto different basis functions, organized in stacks of blocks,
as depicted in Figure 4.1, the outputs of the stacks is summed to generate the model’s
output. The choice of basis function allows us to make the model output interpretable
– in the paper we chose a configuration with a polynomial trend, harmonic functions
as the seasonal effects and the exogenous base. An alternative, generic model (that re-
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Figure 4.1: The NBEATSx structure showing additively aggregated stacks, which cor-
respond to different bases (that in turn correspond to different components of the price:
trend, seasonal component and exogenous variable impact). Source: Olivares et al.
(2023).

sembles a DNN network more) was also evaluated – the performance of the generic and
interpretable was similar, with a significant difference on only one of the five considered
datasets.

Publication details

• Published as: K. Olivares, C. Challu, G. Marcjasz, R. Weron, A. Dubrawski (2022),
Neural basis expansion analysis with exogenous variables: Forecasting electricity
prices with NBEATSx, International Journal of Forecasting, 39(2), 884-900.
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agement and Accounting. IF = 7.9, MEiN: 140 pts, assigned to the Management and
Quality Studies (NZJ) discipline.
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part in method develompment, validating the results and drafting the paper.
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4.3 Distributional neural networks for EPF (Paper 4)

De Gooijer and Hyndman (2006) state that the prediction intervals and probabilistic
forecasts became much more common in practical applications thanks to the practi-
tioners realizing the limitations of point forecasts. However, as Weron (2014) pointed
out almost a decade later, the probabilistic methods did not gain much attention in the
EPF literature, and despite the steady increase in the number of articles in this field,
the research focused on probabilistic EPF is still scarce. Therefore, there is a need for
well-performing probabilistic forecasting methods.

When compared to point forecasts, probabilistic ones carry additional information
– the uncertainty of the prediction. The latter can be used to manage the risk more
efficiently. For instance, the point forecast (i.e., the expected value) of the day-ahead
price of electricity can be slightly higher for hour A than for hour B, but at the same
time a probabilistic forecast can reveal that for hour B there is a much higher probability
of having a higher price than for hour A. Moreover, probabilistic forecasts can indicate
that there is a certain probability of an extreme event, or that the model is very uncertain
of the forecast. These additional insights – when used correctly – can be valuable assets
to a decision maker.

Typically, probabilistic forecasts are derived from point predictions, using historical
simulation, bootstrapping or quantile regression averaging (QRA; see Nowotarski and
Weron, 2018). However, there are also approaches that directly model

• the parameters of a parametric distribution, see Fig. 4.2 for an illustration of a dis-
tributional deep neural network (DDNN),

• the percentiles (as in the GEFCom2014 competition, see Hong et al., 2016) or a set
of adequately selected quantiles approximating the predictive distribution (like in
quantile neural networks, QNN; see Moon et al., 2021).

More formally, in the probabilistic forecasting task we are looking for an assessment
of a probability that the observation will have a given value. Very commonly used are
interval forecasts – they describe prediction intervals (PIs) with confidence level 1−α

(e.g., α = 10% resulting in a 90% PI) in which a true value will lie with 1−α probability
(for a two-sided interval, which is commonly applied to EPF, the interval is defined to be
between quantiles α

2 and 1− α

2 , e.g., between 5th and 95th percentile for a 90% PI). In-
creasing the number of the forecasted quantiles, we can arrive at a set of all percentiles,
which is a good approximation of the whole distribution – such output was required
for submitting the results in a Global Energy Forecasting Competition 2014. Alterna-
tively, some methods allow for an output in form of an exact distribution (e.g., normal
random variable with given mean and variance). The variety of probabilistic forecasts
makes comparing different approaches more complex. Additionally, the error measures
are also less straightforward than in the point forecasting. Commonly used, and at the
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Figure 4.2: An illustration of a distributional deep neural network (DDNN) with
24 N(µd,h,σd,h)-distributed outputs, corresponding to 24 hourly day-ahead prices
Pd,1, ...,Pd,24. The gray boxes in the input layer represent 24-dimensional vectors of
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dummies D. Based on Fig. 7 in Jędrzejewski et al. (2022)

same time very versatile is Pinball Loss, which is a measure of accuracy of a quantile
forecast. Having a fine-grained distribution approximation (e.g., all percentiles), we can
compact the accuracy score of the model into a single value by averaging the scores for
all quantiles.

Paper 4 describes a novel forecasting framework that – based on neural networks
– predicts a distribution of the price forecast for all 24 hourly subperiods. The main
advantage of the method is its simplicity: the amount of changes compared to the point
forecasting model that uses neural networks is minimal. The Distributional Deep Neu-
ral Network (DDNN) model proposed in the paper is an automated approach that out-
performs the literature alternatives that use quantile regression averaging (QRA) as an
intermediate step between the point and the probabilistic forecasts.

Overall, there are two differences between the DNN and DDNN models. Firstly, the
DDNN model has an additional layer (called parameter layer), that is located between
the last hidden layer and the output layer. It is a densly-connected layer, that outputs
parameter values (e.g., locations and scales of normal distributions for each of 24 hours).
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To allow for a more flexible model, the DDNN model uses a separate sub-layers in the
parameter layer for each of chosen distribution’s parameters, as illustrated in Fig. 4.2 for
the normal distribution (2 parameters per output). The output layer is then responsible
for transforming the parameters into distributions. The second difference is the loss
function used during training. Distributional neural networks maximize the likelihood,
as opposed to minimizing the MAE or RMSE in their point counterparts.

The model is tested for two output distributions: normal and Johnson SU, both of
which outperform the two benchmark models that use QRA – and LEAR or DNN point
forecasts, respectively. One of the crucial elements of the DDNN model is forecast
averaging. Two probabilistic forecast aggregation schemes (“horizontal” – averaging
quantiles and “vertical” – averaging probabilities) are tested and the horizontal one is
not only statistically significantly better than the vertical counterpart in the Diebold and
Mariano (1995) test (performed on the Pinball loss series), but also produces probabilis-
tic forecasts that pass the Kupiec coverage test (Kupiec, 1995) for more hours of the day
(the test is performed separately for each hour).

Aside from the statistical evaluation of the forecasts, a real-world application sim-
ulation is performed. Assuming the perspective of a battery owner, we try to schedule
a daily cycle of charge and discharge that will result in the highest profit (both overall
and per-transaction, to allow for the assesment of the cost of using the battery itself).
The exercise results in two main findings: the probabilistic foreacsts are useful and al-
low for a better scheduling and the proposed DDNN methods outperform other tested
forecasting models.

Publication details

• Published as: G. Marcjasz, M. Narajewski, R. Weron, F. Ziel (2023), Distributional
neural networks for electricity price forecasting, Energy Economics, 125, 106843.

• JCR classification: Economics. Scopus classification: Economics, Econometrics and
Finance; Energy. IF = 12.8. MEiN: 200 pts, assigned to the Management and Quality
Studies (NZJ) discipline.

• My contribution amounted to ca. 30% and concerned designing the study, developing
and testing the models, analyzing the results and drafting the paper.

4.4 Intraday trading strategies based on trajectory fore-
casts (Paper 5)

Probabilistic forecasts have another drawback besides complexity – the temporal depen-
dency between consecutive periods is (usually) not reflected in the outputs. This means,
that for two subsequent future horizons, we obtain two densities (or approximations)
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without any information on the correlation between the two values. In other words, the
prediction for the second horizon is not conditional on the realization of the first one.

Trajectory (or ensemble) forecasts attempt to mitigate this problem. They provide a
way of generating multiple independent realizations for all future horizons that consider
the temporal dependency in the output. Having such an ensemble of trajectories, one is
able to, for example, compute the probability of a certain threshold to be exceeded for
a number of consecutive periods. This can be helpful in planning an operation schedule
for a power plant that has long ramp-up and ramp-down times.

The forecasts of trajectories of future values are not uncommon – a most notable
example are the weather forecasting models, in which there is a strong dependency of
the predicted value on the predicted values for preceding time steps (Pinson et al., 2009).
When it comes to the energy markets, the importance of correctly forecasting the inter-
period dependency structure is much less pronounced in the literature – despite a clear
advantage of such an approach in certain scenarios.

Using the auction-based day-ahead market as an example, the possible benefit can
be seen for the battery-backed RES (or reservoir-based hydro power plant), where the
operator can better assess the risks and opportunities. For example, having multiple
scenarios one can determine the probability of the occurrence of a long enough period
of cheaper electricity to charge the batteries (or pump water to the reservoir) mid-day
for it to be sold in the evening period of high prices. Even with probabilistic forecast
for each hour of the day, such an assessment is impossible, as the dependency structure
between prices in the consecutive prices is not contained there.

Trajectory forecasts can be even more beneficial for operators that participate in the
continuous ID market. Since every product is traded for at least a couple of hours, there
is not one price, but rather a trajectory, which is very volatile (Narajewski and Ziel,
2020; Uniejewski et al., 2019a). The moment at which the operator decides to purchase
or sell the electricity dictates the economic result.

Paper 5 builds on the framework introduced in Serafin et al. (2022) and introduces a
novel modeling approach – a DDNN-based (see Paper 4) method to forecast price paths
on German continuous intraday electricity market. The paper contributes the DDNN
ensemble that uses JSU-distributed networks and applies the Gaussian Copula on such
probabilistic forecasts to reconstruct the temporal dependency between the consecutive
subperiods – the models from the original paper were outperformed in terms of both
the strategy profits and the accuracy of probabilistic forecasts used. The DDNN-based
method achieved profit higher than the second-best model by ca. 2000 EUR – for com-
parison, Serafin et al. list the advantage of the temporal dependency modeling using
Gaussian Copula on LASSO-QRA probabilistic models over using a historical errors
on the point LASSO forecasts to equal roughly 500 EUR. This also proves the existence
of an economic incentive behind more complex, but at the same time more accurate
probabilistic forecasting models.
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The paper also discusses the effect of ensemble size on the profit – we find that
the returns diminish significantly with the ensemble size approaching 5 – which is still
computationally feasible in time frame assumed in the trading strategy. To the best
of our knowledge, this paper is the first to apply the distributional neural networks to
forecasting intraday electricity prices. Based on the limited testing, the method was
significantly better than combination of DNN with QRA and Gaussian Copula.

Lastly, and most importantly, Paper 5 extends the benchmark of Serafin et al. (2022)
by providing a more realistic variant, closely resembling the decision that a renewable
energy producer might face in the bidding process. The transaction side depends on
the day-ahead forecast error (the strategy assumes that the energy producer sells all of
the generation forecasted day-ahead on the spot market, and uses the intraday market
to balance the surplus or the deficit based on the more precise forecasts available closer
to the delivery. The DDNN-based method outperforms other tested approaches on all 4
test datasets.

Publication details

• Submitted to Energy Economics (under review) as: G. Marcjasz, T. Serafin, R.
Weron, Trading on short-term path forecasts of intraday electricity markets with
distributional neural networks

• My contribution amounted to ca. 40% and concerned designing the study, preparing
and testing the DDNN model, analyzing the results and drafting the paper.
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Chapter 5

Auxiliary results

Aside from the papers that constitute the thesis, I have co-authored 10 other papers in the
EPF field. They do not directly contribute to the thesis objectives or their contribution is
limited, therefore they are not an integral part of the thesis. For the sake of completeness,
in this section, I briefly describe the main findings from these studies:

• G. Marcjasz, T. Serafin, R. Weron (2018), Selection of calibration windows for day-
ahead electricity price forecasting, Energies, 11, 2364

• K. Hubicka, G. Marcjasz, R. Weron (2019), A note on averaging day-ahead elec-
tricity price forecasts across calibration windows, IEEE Transactions on Sustainable
Energy, 10(1), 321-323

• B. Uniejewski, G. Marcjasz, R. Weron (2019), On the importance of the long-term
seasonal component in day-ahead electricity price forecasting Part II — Probabilis-
tic forecasting, Energy Economoics, 79, 171-182

• G. Marcjasz, B. Uniejewski, R. Weron (2019), On the importance of the long-term
seasonal component in day-ahead electricity price forecasting with NARX neural
networks, International Journal of Forecasting, 35(4), 1520-1532

• B. Uniejewski, G. Marcjasz, R. Weron (2019), Understanding intraday electricity
markets: Variable selection and very short-term price forecasting using LASSO, In-
ternational Journal of Forecasting, 35(4), 1533-1547

• G. Marcjasz, B. Uniejewski, R. Weron (2020) Beating the naïve — Combining LASSO
with naïve intraday electricity price forecasts, Energies, 13(7), 1667

• G. Marcjasz, B. Uniejewski, R. Weron (2020) Probabilistic electricity price forecast-
ing with NARX networks: Combine point or probabilistic forecasts?, International
Journal of Forecasting, 36(2), 466-479

• A. Jędrzejewski, G. Marcjasz, R. Weron (2021) Importance of the long-term sea-
sonal component in day-ahead electricity price forecasting revisited: Parameter-rich
models estimated via the LASSO, Energies, 14(11), 3249
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• A. Jędrzejewski, J. Lago, G. Marcjasz, R. Weron (2022) Electricity price forecasting:
The dawn of machine learning, IEEE Power and Energy Magazine, 20, (3), 24-31

• T. Serafin, G. Marcjasz, R. Weron (2022), Trading on short-term path forecasts of
intraday electricity prices, Energy Economics, 112, 106125

In Hubicka et al. (2019) we introduce a novel concept in EPF: producing a forecast
as an average of multiple runs of the same model that use different calibration win-
dow lengths. In a short empirical study, we show that simple schemes that average a
(small) number of forecasts produced using a set of diverse calibration window lengths
(especially a combination of very short and very long windows) are very effective and
perform significantly better than the best single calibration window length chosen ex-
post. The improvement was observed for both linear (estimated using ordinary least
squares) and neural net (NN) models, and was equal to ca. 7% and 4%, respectively.

In Marcjasz et al. (2018), an article that eventually got published earlier than Hu-
bicka et al. (2019), we extend the latter by considering an improved, weighted aver-
aging scheme that performed on par on better than its equally-weighted counterpart.
The paper also serves as a comprehensive comparison of different (with regards to the
calibration windows used) averaging schemes across three datasets, testing not only the
forecast averaging schemes, but also the effect of the inclusion of exogenous factors and
application of variance stabilizing transformations. The proposed weighted averaging
scheme is also fully automatic (it does not require any manual tuning) and the weights
are computed based on only the last day, which enables the model to quickly adapt to
the current market situation.

Uniejewski et al. (2019b) is one of three articles (that partially share the title) on the
importance of long-term seasonal component (LTSC) modeling for EPF. All three arti-
cles extend the paper of Nowotarski and Weron (2016), which proposed a framework
that decomposes the time series into a seasonal and a stochastic component, and models
them separately. We consider probabilistic forecasting models and add an additional
step to the seasonal component modeling framework – we also decompose the exoge-
nous series. This results in a significant improvement in forecast accuracy. Moreover,
forecast aggregation schemes that improve the Pinball score further were proposed (for
the probabilistic forecasts).

The second LTSC-focused article is Marcjasz et al. (2019) in which we look at neural
network models in the same setting. We conclude that the NN models outperform the
linear counterparts and provide an additional possibility of averaging across multiple
independent runs, which is also shown to improve the forecasts significantly. The LTSC
framework applied to the NN models yields even greater improvements than in the case
of linear models.

In the third article, Marcjasz et al. (2020b), we perform a comprehensive study that
concerns forecast averaging. We answer the question of whether to average multiple
point forecasts and use the latter to construct a probabilistic forecast, or to make a
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probabilistic forecast from each of the point ones and then combine the probabilistic
forecasts. We conclude that combining probabilistic forecasts yields more accurate pre-
dictive distributions.

In Jędrzejewski et al. (2021), we revisit the LTSC modeling framework, applying it
to much larger (in terms of the number of inputs) models. We show that significant ac-
curacy gains can be achieved for such more complex linear models, and additionally we
discuss the order of applying seasonal decomposition and variance stabilizing transfor-
mations, and introduce forecast averaging schemes that outperform single forecasting
models.

In Uniejewski et al. (2019a) we develop models for the German intraday electricity
market. The dataset we use contains transactions from the continuous trading for hourly
products, however, our analysis is limited to forecasting only the ID3 price index – a
volume-weighted average price of the transactions in a 3-hour window preceding the
delivery. The model is based on a LASSO-estimated parameter-rich structure, which
allows us to identify the factors that drive the prices in the intraday market. We find that
the most important predictor for the ID3 index is – alongside the day-ahead price for the
forecasted hour – the last available ID3 index (in the setting of the paper, the ID3 price
of a product with delivery 4 hours earlier than the forecasted one).

In Marcjasz et al. (2020a) we extend Uniejewski et al. (2019a). By using more
granular transaction data and additional exogenous inputs, we are able to propose an
averaging scheme that is able to outperform the naïve forecast of the ID3 price index,
which Narajewski and Ziel (2020) report as the best-performing model. The naïve fore-
cast of the ID3 index is in this case a volume-weighted transaction price of the last 15
minutes of continuous trading directly preceding the moment of forecast generation.
Similarly to the previous paper, a LASSO-estimated parameter-rich model was used.

In Serafin et al. (2022) we introduce a novel economic benchmark based on a trading
strategy in the German intraday market. We use trajectory forecasts to derive prediction
bands which are then used as a time-dependent price level that – when exceeded – is a
signal to enter the market. Together with the selection of different methods generating
prediction bands, the benchmark allows to assess the economic differences between
point, probabilistic and trajectory forecasts, and is also used in Paper 5. We show that
trajectory forecasts are the most profitable of all considered approaches, hence providing
evidence that more complex modeling techniques can lead to higher profits. Lastly,
Jędrzejewski et al. (2022) is a review that discusses the developments in EPF in the last
25 years. The paper focuses on feature selection/model shrinkage and increasing model
complexity.
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Chapter 6

Conclusions

The aim of this thesis was to make a significant contribution to the field of electric-
ity price forecasting (EPF) by developing robust, reliable and – when possible – inter-
pretable DNN-based approaches for short-term point, probabilistic and ensemble fore-
casting of electricity prices. To address this aim, four objectives have been set and
achieved:

• Identify the most common problems encountered in EPF machine learning re-
search, present a set of best practices and publish open access codes for well-
performing benchmark models:

Based on a comprehensive literature review, Paper 2 points to the most prominent
shortcomings of the published machine learning studies, and proposes a set of best
practices. The key contribution, however, lies in the open-access benchmark that
consists of two state-of-the-art models (LEAR and DNN) and their results on five
datasets. Moreover, the paper highlights the importance of hyperparameter optimiza-
tion and forecast averaging. Both Paper 1 and Paper 2 propose selection schemes
that use multiple hyperparameter sets obtained independently and average the fore-
casts for improved stability and accuracy of the outcome.

• Develop an interpretable DNN model for point EPF that outperforms state-of-
the-art benchmarks:

Paper 3 proposes a novel extension to the NBEATS framework of Oreshkin et al.
(2020), that significantly improves prediction accuracy in EPF tasks. By introducing
a stack that performs the projection onto exogenous variables, the NBEATSx model
allows for (partial) interpretability and performance that surpasses that of the DNN
benchmark of Paper 2.
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• Construct distributional DNNs that directly yield predictive distributions and
are superior to state-of-the-art probabilistic models in terms of both statistical
and economic measures:

Paper 4 introduces a new probabilistic forecasting method for EPF – the distribu-
tional deep neural network (DDNN) – that directly outputs parameters of a para-
metric distribution (Gaussian or JSU). It is tested in a real-world decision problem
involving day-ahead trading and battery storage, and yields higher per transaction
profits than state-of-the-art probabilistic benchmarks.

• Develop a decision support method that uses distributional DNNs to generate
trajectories of ID prices, then use it to construct profitable trading strategies:

Paper 5 proposes a new method to obtain trajectory forecasts based on DDNN prob-
abilistic predictions and temporal dependence captured by a Gaussian copula. It ex-
tends the strategy of Serafin et al. (2022) by considering a more realistic evaluation
approach with trading decisions depending on the errors of wind generation fore-
casts. The results indicate that utilizing DDNN predictions significanlty outperforms
LEAR-based ones, both in terms of statistical error measured and trading profits.

In summary, this thesis explores the applicability of deep learning for various elec-
tricity price forecasting tasks, from the standpoint of decision-makers. Across all four
objectives, deep neural network (DNN) models – when carefully calibrated – con-
sistently demonstrated superior performance in point (Paper 1 – Paper 3), proba-
bilistic (Paper 4) and ensemble (Paper 5) forecasting compared to state-of-the-art-
benchmarks. Furthermore, the introduced methods exhibit flexibility, suggesting poten-
tial applicability to other domains within the realm of energy modeling, including but
not limited to renewable generation forecasting. Finally, the thesis also highlights the
importance of following the best practices outlined in Paper 2, as robust comparisons
and replicability are key to research excellence.
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Abstract: Deep neural networks are rapidly gaining popularity. However, their application requires
setting multiple hyper-parameters, and the performance relies strongly on this choice. We address
this issue and propose a robust ex-ante hyper-parameter selection procedure for the day-ahead
electricity price forecasting that, when used jointly with a tested forecast averaging scheme, yields
high performance throughout three-year long out-of-sample test periods in two distinct markets.
Being based on a grid search with models evaluated on long samples, the methodology mitigates
the noise induced by local optimization. Forecast averaging across calibration window lengths and
hyper-parameter sets allows the proposed methodology to outperform a parameter-rich least absolute
shrinkage and selection operator (LASSO)-estimated model and a deep neural network (DNN) with
non-optimized hyper-parameters in terms of the mean absolute forecast error.

Keywords: electricity price forecasting; artificial neural network; deep learning; machine learning;
hyper-parameter optimization

1. Introduction

The majority of electricity trading in Europe takes place during the day-ahead auctions, which are
held once a day (typically before or around noon) and determine the prices for the physical delivery of
electricity during each load period of the next day. This results in a vector-like time series and uniquely
defines the time when price forecasts for all 24 h of the next day have to be available [1].

The “batch” determination of prices for the whole day at once and intraday load patterns introduce
very strong daily and weekly seasonalities. This is typically addressed by using a multivariate modeling
framework. The price distribution is heavy-tailed, with both positive and negative spikes. The sole
presence of spikes suggests that the predictive model should operate on data transformed in a way
that stabilizes (or reduces) the variance.

Overall, electricity price forecasting (EPF) is a very demanding task, as even the best-performing
solutions for one market might not be well suited for data of different origin. The recent comeback
of the artificial intelligence methods, especially artificial neural networks (ANN), as an effect of
advancements in both the software and the hardware available, enabled researchers to efficiently
utilize them for forecasting. A rising trend can be observed in the EPF literature, with multiple papers
reporting good performance of such models [2,3]. The simplest use case is to calibrate a parsimonious
model (e.g., ARX1) using the neural network topology. The research interest is, however, not limited
to such sumple approaches and deep learning models (with deep neural networks (DNNs) as an
example) also note increased popularity.

The question whether it is feasible to use different (but describing the same phenomenon) data to
find the best hyper-parameter sets is one of the main purposes of the study. Additionally, the paper

Energies 2020, 13, 4605; doi:10.3390/en13184605 www.mdpi.com/journal/energies



Energies 2020, 13, 4605 2 of 18

aims to provide insights about the influence of several factors on the final results, including the
origin of the data, variance stabilizing transformations (VST) and calibration window lengths used for
training models.

The rest of the paper is structured as follows. Section 2 provides a brief EPF literature overview,
Section 3 describes several auxiliary techniques, then Section 4 presents the datasets used in the study.
Section 5 introduces the benchmarks and models used. The results in terms of Mean Absolute Errors
(MAE) are presented in Section 6. Finally, Section 7 wraps up the results and concludes the study.

2. Overview of Machine Learning Techniques in EPF Literature

In the recent years, multiple papers using machine learning techniques to forecast the electricity prices
were published [3–8]. However, not all of the above test the proposed methods against statistical-based
algorithms using long out-of-sample test periods, and only two papers consider multiple datasets [3,5].
Some authors use the neural networks as building blocks for more sophisticated structures [9–12]. Such a
complex approaches are usually evaluated on short test periods (most probably due to the computational
time constraints) or their performance is only compared to very simple methods.

Among the recently published papers, one research direction emerges most prominently,
namely proposing multi-step frameworks that typically consist of a method for data decomposition,
feature selection procedure and optimization algorithm that governs the hyper-parameter selection
process [8,13,14]. However, the methods proposed in such studies are seldom compared with the results
of the state-of-the-art literature methods, and hence their predictive performance is hard to assess. Part of
the EPF literature focuses more on the economic benefits that can be attained with better forecasts [15] or
on the price formation process and the impact of the respective fundamental variables on the price [16,17].

Regarding the model estimation itself, the papers that utilize machine learning techniques use
mainly artificial neural networks and extreme learning machines (ELM). ELMs are typically used in
multi-step frameworks, where decomposition and optimization techniques are used to preprocess the
data and select the model hyper-parameters [13,14]. Most of these studies concentrate more on the
preprocessing steps than the modeling. On the other hand, the studies that use the ANNs to estimate
the model often focus on the design aspect of neural networks (such as activation functions and network
topologies) or the methods that facilitaite the process of hyper-parameter selection [4,5,18,19]. However,
the possible hyper-parameter space is very broad, and studies cover only its small part, by allowing
only some of the potential variables to change, while keeping others fixed. Moreover, the results are
strongly dependent on the whole process: From the dataset used, through the preprocessing steps to
the input features. Overall, the machine learning methods used in the literature tend to significantly
outperform considered benchmarks.

3. Preliminaries

3.1. Available Data Overview

The data used in the study comes from three markets. The Global Energy Forecasting Competition
2014 (GEFCom2014) [20] time series spans an almost three year long period and is used solely for
hyper-parameter precalibration. The Nord Pool and PJM series consist of six years of data each,
with the first three years used for the hyper-parameter precalibration and the remainder used as
an out-of-sample test period for the main phase of the study. This results in three three year long
datasets for the hyper-parameter precalibration procedure and two three year long datasets for
out-of-sample testing.

The timeline of data used in the study is presented in Figure 1, where the dashed vertical lines
mark the ends of the longest initial calibration windows: Gray for the precalibration phase and black
for the main testing. Horizontal grid lines indicate the price levels: The solid one, i.e., the lowest,
corresponds to 0 and all lines (dashed, solid) are separated by 100 units (USD/MWh for PJM and
GEFCom2014, and EUR/MWh for Nord Pool). The three series exhibit very distinct characteristics.



Energies 2020, 13, 4605 3 of 18

The PJM data noted a long period of pronounced price spikes in the beginning of 2014 (reaching over
500–800 USD/MWh) and nearly no prominent spikes in the test years (2016–2018). The Nord Pool,
on the other hand, shows an increased variability over time, along with price spikes to both high and
low prices (albeit not reaching the negative values). The reason for such a changing behavior lies, most
probably, in the changes in the generation mix and usage patterns. The six year-long history shows
that the markets are not stagnant, and the modeling should be performed on the recent data. The third,
shorter series (GEFCom2014) is only used to infer the hyper-parameters on, and does not demonstrate
a change in the characteristics similar to the other two series.

For each of the data series, an exogenous series of the day-ahead load forecasts is also available.
To simplify the notation, the letter p is used to refer to the prices, letter z to refer to the exogenous data
and letter x—to present a transformation that is applied identically to both prices and load forecasts,
i.e., x = {p, z}. The notation also makes use of capital letters, subscripts and superscripts to indicate
the step of the data preprocessing.
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Figure 1. Timeline of the datasets considered in the study. The periods used for hyper-parameter
calibration are drawn in gray, whereas the out-of-sample test periods are in blue.

3.2. Hyper-Parameter Choice

The procedure of training a neural network (i.e., the process of fitting the weights to the
connections present in the structure) and the topology of the network itself is defined by a collection
of hyper-parameters. Firstly, the user can choose from different network-related options, such as
the structure (neurons, layers, connections between them, activation functions). Secondly, the choice
expands to various parameters that describe the training (e.g., the optimization algorithm, the loss
function, training time, sampling, etc.). Note, that there are options that depend on the optimization
algorithm, such as the learning rate. However, their impact on the forecasting performance is not
covered in this study.
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Naturally, the parameters come with predefined default values, which are typically an effect of
limited empirical tests by the authors, or are theoretically derived based on the characteristics of the
underlying processes. The defaults, albeit being “reasonable”, might turn out to be sub-optimal for
a specific task. To address this issue, one can resort to some form of hyper-parameter optimization.
This can be addressed in multiple ways, each of them having its own strengths and weaknesses.
One of the methods—the one used in this study—requires the user to perform an additional numerical
experiment to test values from a predefined hyper-parameter grid, using different data than the
main out-of-sample test period. The advantage of such an approach are small requirements for
information about the impact of each parameter on the forecasting performance, a mere specification
of possible values suffices. Moreover, after performing the additional experiment, the method does not
impose additional computational burden; the approach presented here implicitly assumes that the best
parameter sets remain unchanged over time. On the other hand, the hyper-parameter precalibration
procedure is very resource-consuming and any unnecessary value of a parameter inserted into the
grid results in significantly increased computational burden. The method is, however, well suited for
explanatory analysis, as it can help to understand the impact of each parameter on the final outcome
and thus to create better forecasting models in the future. Additionally, a grid search mitigates one
major shortcoming of step-by-step optimization techniques: It lessens the impact of the noise on the
model chosen. Step-by-step optimization procedures applied on such volatile data are prone to end
up in a suboptimal point of the parameter space due to the randomness of the error evolution over
consecutive trial runs.

3.3. Calibration Window Length

The length of the calibration window used for fitting models—both statistical and neural network
based—is a very important, but overlooked issue. In a recent series of papers [21–23], researchers aim
to find combinations of calibration windows that yield the best forecasts and a scheme to aggregate
the information contained within. A thorough examination of the impact of the calibration window
length on the forecasting accuracy is out of scope of this study. However, motivated by the results,
we will use three calibration window lengths: 364, 728 and 1092 days. Note, that the shortest window
length we use (364 days) is much longer than the 28- or 56-day windows used in the previous studies.
This is a consequence of using richer, multi-parameter input structures.

3.4. Forecast Averaging

Forecast averaging across different calibration window lengths is only one of the possibilities,
but can be applied to all of the models used in the study. Another option can be introduced by
generating multiple forecasts using different parameters, such as the λ parameter in least absolute
shrinkage and selection operator (LASSO) or the hyper-parameter sets for neural networks. The former,
however, was not used in this study. Based on a limited numerical experiment, the forecasting
performance depends on the λ parameter in a close-to-convex way, which would require either taking
poor forecasts into the ensemble, or taking forecasts very similar to each other. For neural network
models, especially with a full parameter grid search, one should be able to simply take the top N
performing parameter sets and create an ensemble out of them. The top entries obtained this way
would present a variety of different parameter combinations, and additionally limiting the negative
impact of local optimization and random initialization on the forecast robustness. This leads to the next
ensembling possibility, namely averaging consecutive runs of an identically parametrized model [3].
This technique, however, is not utilized in this study, as (i) it requires n times more computational
effort for n runs and (ii) further averaging the forecasts averaged over different parameter sets would
result in diminishing returns. Naturally, the potential of averaging forecasts does not end here. It is
possible to combine forecasts obtained using different models, different estimation techniques, etc.
However, the two methods used in this study, namely averaging forecasts of one model, obtained
using different calibration window lengths and considering top-performing hyper-parameter sets, are
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straight-forward to implement. Moreover, the former has already been shown to be effective in EPF,
whereas the latter is a natural choice for the hyper-parameter grid search performed in this study.

3.5. Variance Stabilizing Transformations

Electricity price time series are characterized by pronounced spikes. Having such spiky data,
using one of the so-called variance stabilizing sransformations (VSTs) is a well-known technique to
obtain more accurate predictions [24–26].

In this study the data series were normalized prior to applying the VST, and the normalization
process was as follows. First, we compute the median value aX of the series X (i.e., aP for the prices and
aZ for the load forecast) in whole calibration window, then we derive the median absolute deviation
(MAD) around the median and adjust it by a factor for asymptotically normal consistency to the
standard deviation, i.e., bX = MAD(X)/Φ−1(0.75), where Φ−1(0.75) ' 0.6745 is the 75th percentile of
the standard normal distribution. The normalized price has the form

Pnorm
d,h =

1
bP

(Pd,h − aP),

and the normalized load forecast Znorm
d,h is obtained analogously. Having the normalized series, one

can apply the chosen transformation: xd,h = f (Xnorm
d,h ), where Xnorm

d,h = Pnorm
d,h or Znorm

d,h .
The VST used in the study is the arc hyperbolic sine (asinh), which is straightforward to implement,

symmetric around zero and its inverse—the hyperbolic sine—is also computationally efficient, thus
making it feasible for use in electricity price forecasting [26–28]. The asinh transformation is defined
as follows:

xd,h = asinh(Xnorm
d,h ) = log

(
Xnorm

d,h +

√(
Xnorm

d,h

)2
+ 1

)
.

After computing the forecasts p̂d,h for the transformed prices, an inverse transformation is applied to
obtain the price predictions in terms of normalized prices: P̂norm

d,h = sinh (p̂d,h). Next, to compute the final
predictions P̂d,h in correct units, one has to invert the normalization procedure: P̂d,h = bP · P̂norm

d,h + aP.
Note, that only the price series is forecasted in the process. The variance stabilizing transformation,
however, is applied independently for both series, i.e., the medians and MADs are computed separately
for the prices and loads.

3.6. Early Stopping Condition for Neural Networks

The neural network training process is typically interrupted before the algorithm converges.
This is done to avoid over-fitting the network’s weights to the presented data and to ensure that the
network can accurately infer based on the unseen data [29]. However, the use of early stopping leads
to two issues. Firstly, the data has to be split into training and validation samples, leaving less data to
train the model on. Secondly, the procedure induces additional hyper-parameters to be determined:
A ratio of training to validation data, the method of splitting the series (block, random or a mixture
of the two) and the so-called “patience”, i.e., a parameter that fixes the number of iterations without
validation score improvement after which the training is stopped.

Instead, the study uses a fixed number of iterations (called epochs), and the value is chosen
empirically as the best-performing in the precalibration phase. Not only such an approach simplifies
the study setup, but also serves as a medium to find an optimal training length. Additionally, the model
is trained using all of the available data.

3.7. Software

LASSO models were estimated using the scikit-learn [30] library for Python. The neural network
models were trained using Python programming language and Keras library (version 2.2.4) [31] with either
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Theano or TensorFlow backend (both yielded results with negligible differences in the limited comparison
performed). All neural networks were invoked with default floating point precision (float32).

4. Datasets

4.1. Modeling Settings

The study can be divided into two parts: Precalibration phase that involves a hyper-parameter
grid search, and testing phase in which the tested hyper-parameter sets are used. However, there are
several design decisions that were not a part of the hyper-parameter grid:

1. VST used for both phases,
2. calibration window length within the precalibration phase,
3. transferring the hyper-parameter optimization results from one dataset to another.

To assess the need for VSTs when using neural networks, we have performed two repetitions of each
experiment, one with the VST (asinh, see Section 3.5) applied, and one without. However, we did not
allow to mix the approaches between the phases, meaning that for each precalibration dataset, we have
obtained two separate sets of top models. In the testing part of the study, for VST-transformed data we
have used only the parameter sets appointed using the VST, and similarly for the non-transformed data.

Lastly, we have included a dataset that does not contain an out-of-sample test set. This was done
to check whether it is important to precalibrate on the data from the same market. To evaluate the
potential differences between the hyper-parameter “origin”, for both of the test datasets, we had three
best hyper-parameter sets: The one chosen for the GEFCom2014 data precalibration period, the one
chosen for NP data, and the one chosen for PJM data.

Both phases used a rolling calibration window scheme (i.e., a calibration window of fixed length,
directly preceding the forecasted day). For example, when forecasting the first day of the out-of-sample
test period (i.e., 29 December 2015) with a 1092 day long calibration window, the model is trained on
data from 1 January 2013 to 28 December 2015. After that, the calibration window is rolled by one day
(2 January 2013–29 December 2015) to model the next day, 30 December 2015, etc.

4.2. Precalibration and Out-Of-Sample Testing Data

The precalibration procedure, i.e., the process of empirically finding the best hyper-parameter set
for given test conditions (data origin, VST, see Sections 3.2, 3.3 and 3.5) was performed on three data
series. Two of them originate from electricity markets operating in the United States: The data used in
GEFCom2014 competition [20] and the Pennsylvania-New Jersey-Maryland (PJM) Interconnection
data, the third one is from the Scandinavian electricity exchange (Nord Pool, NP). Each of the data
series used for precalibration comprises roughly three years (1092 day long subset for NP and PJM,
1082 days for GEFCom) of hourly data: Marginal prices as well as day-ahead load forecasts. It is worth
noting, that these datasets present a distinct overview of liquid and well-established electricity markets.
The diversity of generation sources and usage patterns is important for this study, as in the chapters to
follow the patterns and dependencies discovered for one dataset will be to some extent used for other
markets via the precalibrated hyper-parameters.

The second phase of the procedure uses the best precalibrated parameter sets to make predictions
for either a completely different dataset (e.g., GEFCom→ NP) or from the same market, but a different
period (e.g., PJM 2013–2015→ PJM 2016–2018). The methodology implicitly assumes that the price
response to the input variables (i.e., previous prices and exogenous series) does not vary throughout
the years nor between the markets. This limitation is partially weakened by the rolling calibration
window scheme used in the study.

The testing is performed on two datasets. In both cases the out-of-sample test period consists of
1092 days directly after the end of the data frame used for precalibration. Thus, the hyper-parameter
optimization is done ex-ante from the forecasting point of view. Moreover, the performance of models
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based on different datasets is evaluated as well. On the other hand, models do not mix the VST used in
the precalibration and the main evaluation periods (meaning that hyper-parameter sets obtained using
asinh transformation will only be used in the asinh-transformed test setting). For each of the four test
(dataset, VST) settings: (PJM, ID), (PJM, asinh), (NP, ID), (NP, asinh), three possible hyper-parameter
collections can be derived: From PJM, NP and GEFCom data.

The longest initial calibration window (1092 days from 01.01.2013 until 28.12.2015) coincides with
the data used for hyper-parameter precalibration. The data from 29.12.2015 onwards (next 1092 days,
up until 24.12.2018) is used to evaluate the forecasts. Exogenous series for both datasets are visually
very similar across the whole range, whereas the behavior of price series varies slightly with time.
For the PJM data, the volatility of price series decreases in the test period. On the other hand, an adverse
effect can be observed for the Nord Pool market.

5. Methodology

5.1. Benchmark Models

The predictive performance of the proposed approach is compared to a selection of different
benchmarks: From the parsimonious ARX model, through parameter-rich LASSO structure to the DNN
identical to the one used in the proposed approach, but using the default parameter set. This ensures a
comprehensive assessment of not only the potential gains from using the neural networks themselves,
but also the gains imposed by the precalibration approach. The latter is especially important given the
computational cost of the precalibration procedure.

5.1.1. The Arx Expert Model

The first benchmark is a parsimonious autoregressive structure with exogenous variables
(ARX), widely used in EPF. The model was originally proposed by [32] and later adopted by many
researchers [28,33,34]. It is referred to as an expert model [35,36] due to the fact that it uses regressors
that are derived either by empirical testing or knowledge of experts. The model uses a multivariate
setting, which means that for each day, 24 separate models are trained, one corresponding to each hour
of the day. It is important to note that such a setting limits the information contained in the model,
as no information about hours different than the forecasted is included (apart from the minimum
price). Within the model, the price for hour h of day d is modeled via the following formula:

pd,h = βh,1 pd−1,h + βh,2 pd−2.h + βh,3 pd−7,h︸ ︷︷ ︸
autoregressive effects

+ βh,4 pd−1,min︸ ︷︷ ︸
non-linear effect

+ βh,5 zd,h︸ ︷︷ ︸
exogenous variable

+

+ ∑i∈{1,2,3} βh,i+5 Di︸ ︷︷ ︸
weekday dummies

+εd,h, (1)

where pd−1,min = min
{

pd−1,1, pd−1,2, . . . , pd−1,24
}

is the minimum of the previous day’s 24 hourly
prices. It serves as both the link with all yesterday’s prices and a correction factor for the base price
level. The variable zd,h is the load forecast for hour h (see Section 4). Lastly, the three weekday dummies
D1, D2, D3 correspond to Saturday, Sunday and Monday, respectively. They allow to better model the
intraweek seasonality by describing the different price levels for Saturdays, Sundays and Mondays,
when the dependence of prices on the prices from the day before is different than for the rest of
the weekdays.

Given the ARX structure (1), the linear responses of price to the regressors are then estimated
using ordinary least squares (OLS) on a fixed-length sample of past observations (i.e., the calibration
window). The optimal length of the calibration window is strongly dependent on several factors,
including the model used, the dataset, the forecasted period and the data transformation. To mitigate
the inability of choosing the optimal calibration window ex-ante this study resorts to using three
calibration window lengths, corresponding to roughly a year, two years and three years. This approach
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allows for an improved performance and stability of the forecasts, while also limiting the computational
burden, particularly the computations required to find the best performing calibration window lengths.

5.1.2. Lasso-Derived Parameter-Rich Model

The second benchmark can be seen as a natural enrichment of the ARX structure, as it does not add
any regressor of different origin. It rather presents the information regarding all 24 h of the day among
the regressors, instead of only selecting data corresponding to the forecasted hour. In theory, it should
improve the predictions by adding very similar neighboring hours, as well as including better peak and
off-peak base levels. Because of a greatly increased number of regressors (100 instead of 8), a different
model estimation method is used, namely the least absolute shrinkage and selection operator (LASSO,
originally proposed by [37]), as it limits the number of explanatory variables included in the model
by selecting only the most relevant ones. Moreover, the process of regularization is automatic and
requires the user to choose only the regularization parameter λ, which can be empirically fitted for the
specific data through Cross Validation [38]. Such an approach was used in this study, with 100 values
of the parameter tested via 10-fold CV trials. LASSO-estimated parameter-rich models are widely used
in EPF literature [28,35,36,39].

The baseline model estimated via the LASSO is simply an augmented version of Equation (1).
It models the price for hour h of day d via the formula:

pd,h = ∑24
i=1 βh,i pd−1,i + ∑24

i=1 βh,24+i pd−2.i + ∑24
i=1 βh,48+i pd−7,i︸ ︷︷ ︸

autoregressive effects

+

+ βh,73 pd−1,min︸ ︷︷ ︸
non-linear effect

+ ∑24
i=1 βh,73+i zd,i︸ ︷︷ ︸

exogenous variables

+∑i∈{1,2,3} βh,97+i Di︸ ︷︷ ︸
weekday dummies

+εd,h, (2)

where pd−1,min = min
{

pd−1,1, pd−1,2, . . . , pd−1,24
}

indicates the lowest price of yesterday, similarly as
in Equation (1). Note, that in this case, the minimum is always included in the model twice (as opposed
to the ARX model, where double inclusion takes place only once per 24 trained models). However,
it does not create linearly dependent columns (the lowest price is observed in different hours of
the day), and has an independent parameter estimated. By analogy, the Di variables correspond to
weekday dummies for Saturday, Sunday and Monday, whereas zd,i is the forecasted load for i-th hour
of day d.

It is important to note, that albeit having exactly the same structure and inputs, the model is
fitted separately for each hour of the day (i.e., we use a multivariate framework, see Section 5.1.1),
and by extension, the regularization and selection take place for each hour independently. This allows
to define the model in an universal way, which can be seen as the largest available parameter space,
yet still allows to properly derive 24 potentially different models—each specifically tailored for a
single hour.

5.1.3. The Default Dnn Benchmark

The last benchmark was constructed with a two-way comparison in mind. Firstly, it is used to
compare the non-linear structure with the linear data description of the LASSO. The second comparison,
however, is even more interesting, as it allows to measure the gains from using the computationally
expensive two-step approach.

The benchmark assumes the use of all default hyper-parameter values (see Section 3.2).
Unfortunately, there are two exceptions, without which the model would produce completely unusable
forecasts. First of them is the epochs parameter that governs the maximum number of full iterations
of the algorithm over the training set. The default value of a single epoch is not suitable in our case,
therefore to provide a benchmark that is able to achieve reasonable results, the epochs value was set
to 500. The value was chosen as the most popular entry among the best-performing models in the
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precalibration phase, which also means that most of the precalibrated DNN models are trained for
500 epochs. There was no early stopping condition, meaning that each calibration of a neural network
consisted of exactly 500 iterations over the full training dataset.

All neural network models use exactly the same information as in Equation (2), however, in an
multi-output (vectorized, similarly to vector autoreggresion) framework with all 24 h of the day modeled
at once. This is done due to the significant computational burden of model estimation. Modeling the
whole 24-hour vector at once, but resorting to only one model trained per day of forecast, requires
only about 5% of the CPU time when compared to the framework with 24 independent models, each
predicting a single hour of the day (i.e., a typical framework used by ARX and LASSO benchmarks).
Moreover, the nonlinear, dense structure of a network should in theory allow to minimize the potentially
negative impact of such a setting, which has been shown to occur for some datasets [28]. Therefore,
the DNN model can be visualized as shown in Figure 2.

24

24

24

24

→
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→
p d−2

→
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pmin
d−1

→
z d

D1

D2

D3

→
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layer
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layer

Output
layer

Input
layer

Figure 2. Visualization of the Deep Neural Network (DNN) structure, used in both the DNN benchmark
and the main DNN models (hidden layer sizes are not reflected here; the net used in the study comprised
100 neurons in each hidden layer). The arrows over symbols correspond to 24 separate input/output
neurons, with a dense connection structure.

As mentioned, the benchmark uses default hyper-parameter values in the Keras library.
More precisely, the network structure of choice was a densely connected network with 100 input
neurons, two hidden layers with 100 neurons each and 24 output neurons, the training length was
fixed at 500 epochs of ADAM stochastic gradient descent-based optimizer with MAE loss function and a
batch_size of 32. The validation_split parameter was set to 0 (i.e., there was only training set) and
activation functions were set to sigmoid and linear, respectively for both hidden layers and for the
output layer. See Section 5.3 for descriptions of the hyper-parameters.

The second exception from the default values was the activation function. When not specified
explicitly, Keras always uses the linear activation (more specifically, the identity function). This results
in a fully linear model, and does not perform well for EPF. To address that, all of the implemented
activation functions were tested in this setting. The sigmoid activation scored well (despite being
slightly outperformed by very similar hard-sigmoid in some cases), and was chosen as the ex-post
best performer for the DNN default benchmark.
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5.2. Fine-Tuned Neural Network Model

This DNN model uses exactly the same network structure and inputs as the DNN benchmark
(see Section 5.1.3), but differs in terms of the hyper-parameters (see Sections 3.2 and 5.3). The main idea
behind the two-step fine-tuning proposed in this study is to automatically evaluate hyper-parameter
sets and use the best 5 of them to compute the final forecasts (the number 5 was chosen via an additional
numerical experiment, using more yields diminishing returns, while increasing the computational
time). The resulting forecasts are later averaged (creating an ensemble) across both the hyper-parameter
sets and calibration window lengths. The aggregation process is described in Section 5.4. As the
ensemble smoothens the random noise of the respective forecasts and generally performs better than
the input forecasts, it is treated as the final output model of the approach.

5.3. Training Parameters Grid Search

The first stage of the approach involves forecasting the validation dataset using a wide range
of hyper-parameter sets. To avoid making any assumptions, the parameter space is formed as a full
grid of 1008 possible combinations of four parameters. There are two categorical options, namely the
optimization algorithm and the activation function of all hidden neurons (which was identical for both
hidden layers of deep networks). Secondly, two numerical (integer) parameters were included.

The first one—the batch size—governs the number of training samples presented at once to
the optimizer. This translates to the number of samples after which the weights in the network are
updated. The second numerical parameter controls the maximum epoch count. An epoch during
training corresponds to one full iteration over all training samples. The maximum value of this
parameter was chosen to be very high for this problem, while still maintaining the computational
time on a rational level. Further increasing of this value would most likely result in overfitting.
In conjunction with the batch size, it controls the frequency and the total count of weight updates in
the network. It is important to note, that only fixed epoch counts are used in the study, i.e., the training
in every case consisted of the specified iterations over the dataset and no early stopping condition was
implemented. This is a possible point of future improvement, however, this approach—at a cost of
a larger hyper-parameter space—provides an empirically validated combination of parameters, see
Section 3.6 for discussion.

The specific values tested during the precalibration procedure were as follows:

• Seven optimization algorithms based on the stochastic gradient descent: Adam, Adamax, Adagrad,
Adadelta, Nadam, SGD, RMSprop.

• Four activations: eLU, ReLU, tanh, sigmoid, same activation function was used for every hidden
neurons, and the output layer was always linear.

• Four values of max epochs: 50, 100, 200, 500.
• Eight values of the batch size: 16, 32, 64, 96, 128, 192, 256, 384, 768.

As a result, for each of the (Data, VST) tuples, the list of hyper-parameters with corresponding
errors is obtained. The errors are computed based on the forecast using a rolling calibration window of
model and a specific parameter set. Note, that the considered hyper-parameter space is not exhaustive
and did not cover e.g., the network depth or width, which were fixed.

5.4. Parameter Choice and Forecast Aggregation

After performing the parameter space grid search described in Section 5.3, the parameter sets
are ranked according to the mean absolute error. Then, for each of the (Data, VST) tuples, the five
sets yielding the lowest MAE are selected. The final forecasts use an ensemble of forecasts obtained
using all five derived parameter sets, see Section 3.4. Note, that this kind of averaging (i.e., averaging
outcomes of forecasts with different hyper-parameters) is applicable only to neural networks in the
two-step approach.
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However—as discussed in Section 3.3—there is a potential for improvements in forecast accuracy
by using multiple models with an identical structure, but obtained using different calibration window
lengths. As argued by [21], there are some window length combinations that yield robust gains,
but the testing was not conducted for parameter-rich neural networks. Nevertheless, to optimize the
outcomes and benefit from the technique to a limited extent, all models and benchmarks are evaluated
using three lengths of calibration windows. The results are presented for each of them separately
and as an ensemble of forecasts. The lengths: 52, 104 and 156 weeks, which corresponds to roughly
1, 2 and 3 years were chosen ad-hoc. This also applies to the forecasts obtained using the two-step
approach; for each of the top five parameter sets, three forecasts are computed and additionally an
ensemble over calibration windows is derived. Moreover, the ensemble across different parameter
sets is created for each calibration window length as well as an ensemble consisting of 15 individual
forecast runs.

6. Results

The section presents the obtained results and discusses the differences between the methods.
The structure is as follows. Firstly, the results of the hyper-parameter space search are described
with the analysis of the most often picked values. Secondly, the predictive accuracy of benchmark
models is summarized. Next, the results of the fine-tuned DNNs are presented, and the importance
of the precalibration dataset is investigated. Lastly, the computational feasibility is studied, with the
assessment of the computational complexity of both the fine-tuned DNNs and the benchmark models.

6.1. Preliminary Hyper-Parameter Space Search

This section contains a brief discussion on the diversity of the top parameter sets across different
precalibration conditions, as well as the most common occurrences of some of the parameter values.
However, it is important to note that while there are some patterns, they might be solely caused by the
random nature of the network training methods and might not be applicable to other (even similar)
forecasting tasks. The precalibration procedure itself does not rely on those patterns and is in principle
invariant to aforementioned randomness.

The first—and potentially the most important—observation regards the activation function used
in the hidden layers. Among the precalibration parameter set results sigmoid was present most often
(23 of 30 times), with 5 tanh and 2 exponential linear unit (eLU) entries. Interestingly, rectified linear
unit (ReLU) activation did not appear even once among the top results, in spite of its popularity in the
literature [5,6].

The second observation concerns the network training iterations over the dataset. Most commonly
picked parameter sets were trained for 500 epochs. Only seven out of 30 best-performing parameter
sets contained shorter (200 epochs) training.

As far as the optimizer is concerned, there was no unanimity. The ADAM, ADAMAX and ADAGRAD
optimizers were chosen most commonly, however, every optimizer aside from stochastic gradient
descent (SGD) occurred at least once in all 30 top picks.

6.2. Benchmark Models

Each of the benchmark models was computed for three calibration window lengths of 364, 728
and 1092 days and tested on all 1092 days of the out-of-sample test window. Additionally, an ensemble
of these three forecasts was derived (by taking an arithmetic mean of the forecasts for each hour).
The results in terms of MAE are presented in Table 1. It is important to note how well the default DNN
benchmark preforms in all of the cases, being on par with or outperforming the second-best LASSO.

6.3. Fine-Tuned and Aggregated Forecasts

Each of the benchmark models was computed for three calibration window lengths of 364, 728
and 1092 days and tested on all 1092 days of the out-of-sample test window. Additionally, an ensemble
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of these three forecasts was derived (by taking an arithmetic mean of the forecasts for each hour).
The results in terms of MAE are presented in Table 1. It is important to note how well the default DNN
benchmark preforms in all of the cases, being on par with or outperforming the second-best LASSO.

Table 1. Mean absolute errors for the benchmarks. The lowest score for each of the VSTs and datasets
is marked in bold.

ID-Transformed Data

Benchmark
PJM Nord Pool

364 728 1092 ensemble 364 728 1092 ensemble

ARX1 3.476 3.581 4.128 3.614 2.690 2.608 2.563 2.587
LASSO 3.239 3.280 3.632 3.178 2.125 2.044 2.020 2.001

DNN default 3.183 3.241 3.970 3.103 2.018 2.060 2.043 1.903

Asinh-Transformed Data

Benchmark
PJM Nord Pool

364 728 1092 ensemble 364 728 1092 ensemble

ARX1 3.303 3.305 3.350 3.290 2.536 2.574 2.537 2.519
LASSO 3.076 3.047 3.054 3.000 2.048 2.039 2.009 1.984

DNN default 3.158 3.156 3.230 2.989 2.033 2.115 2.087 1.945

This section presents the results obtained using deep neural networks with hyper-parameters chosen
via the precalibration procedure. The non-transformed data (i.e., with ID VST) and asinh-transformed data
are treated separately. It is important to note, that due to the small differences between the hyper-parameter
sets obtained using different datasets, presented here are the average error metrics of three ensembles,
each based on different precalibration dataset.

Aggregate relative metrics comparing the fine-tuned ensembles with both DNN default and
LASSO ensembles are presented in Table 2.

Table 2. Relative improvements in MAE when using the fine-tuned DNN ensemble instead of the
benchmark models.

Fine-Tuned DNN vs. Dataset ID Asinh

LASSO benchmark
Nord Pool 7.25% 5.28%

PJM 7.44% 2.90%

default DNN benchmark
Nord Pool 2.23% 1.37%

PJM 5.05% 1.77%

6.3.1. Models Calibrated to Raw Data

When considering models calibrated to raw data, for PJM dataset some of the individual
(non-aggregated) networks were able to outperform the best benchmark (the DNN default benchmark,
which is an ensemble itself) that scored 3.103, whereas final ensemble of tuned DNNs—2.929.
The situation changes slightly for Nord Pool data, where ensembling is needed to outperform the
best benchmark (also DNN default, with score of 1.903)—no single model does so. However, the final
forecast of the fine-tuned DNN model—namely the ensemble across both the top parameter sets and
different calibration window lengths—scores significantly lower (1.853). The difference is even larger
when we consider the second best benchmark: The ensemble of 3 LASSO forecasts. Such a benchmark
yielded MAEs of 3.178 and 2.001, respectively for PJM and Nord Pool, which makes the obtained DNN
results even more significant and shows the shortcomings of using linear models on data as volatile as
observed in electricity markets.
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One can also conclude that averaging across different calibration window lengths yields very
robust estimates, especially for PJM data. It is important to note that for PJM data, individual models
trained using the 3 year long calibration window are underperforming when compared to shorter
windows. This is mainly due to the period of extremely high volatility at the beginning of 2014. Using
the 3 year long calibration window includes this information in the model for over a third of the
out-of-sample test period. The impact of these outliers can be seen clearly for all three benchmarks.
On the other hand, the forecasts chosen via the precalibration procedure are not such strongly penalized,
which shows the potential of this methodology.

6.3.2. Models Calibrated to Asinh-Transformed Data

The overall outcome is very similar for the asinh-transformed data; after applying the VST,
the fine-tuned DNN forecasts are also able to outperform the best benchmark. What is interesting to
note, is that the 3 year long calibration window is no longer underperforming for the PJM dataset.
Even more so, it performs on par or better than the shorter ones. The same observation can be made
for the benchmarks (besides the default DNN benchmark, but that is most likely due to randomness),
including the DNN default. The final ensemble scores were equal 2.909, 2.989 and 3.000, respectively
for fine-tuned DNNs, DNN default and LASSO ensembles.

The Nord Pool data exhibit a situation where none of the single forecasts are able to outperform
the best benchmark. The ensembles across calibration window lengths or hyper-parameter sets are
mostly able to match the best benchmark score with little improvement. In this case, however, the gain
from using all 15 forecasts instead of 3 (ensemble across calibration window lengths) or 5 (across top
parameter sets) is very substantial, and the final forecast scores MAE of 1.875, which significantly
outperforms both the DNN default (1.945) and LASSO ensembles (1.984).

Overall, the improvement imposed by the VST was negligible for ensemble forecasts: For Nord
Pool data there was even a (slight) performance degradation, for both DNN default benchmark and
the optimized networks. When the effects of applying the VST on linear structures (ARX, LASSO) are
considered, this implies that the non-linear representation of a neural network is able to effectively
model the strongly non-linear relations found in the data without resorting to any external techniques.
This makes the neural networks a very universal modeling tool, as it removes the need of choosing the
right VST for the data (the asinh function used in this study is only one of many possible functions,
see [26] for a comparison performed using linear models).

6.4. Importance of the Precalibration Dataset for the Fine-Tuned Forecast

As can be seen in Figures 3 and 4, the fine-tuned neural network ensembles outperform significantly
all of the benchmarks. Interestingly, the performance differences between different datasets of origin of
the hyper-parameters are not strongly pronounced, with GEFCom data (dotted bars) being slightly better
than the two other datasets. This result may seem counter-intuitive (it should be better to use the same
origin of data for both the hyper-parameter selection and the testing), however the GEFCom data window
for used for the precalibration serves well as an “exemplary” EPF dataset, with uniformly distributed
spikes and without visible structural changes throughout.

These examples show that the hyper-parameters sets can successfully be found using data of
different origin (but describing the same phenomenon), and that the GEFCom dataset is slightly better
than the remaining two datasets that we have considered. However, regardless of the choice, the results
show that an ex-ante hyper-parameter selection resulting in accurate forecasts is possible.
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Figure 3. Visualization of the MAE errors for PJM data across the benchmark (darker shade) and fine-tuned
(lighter shade) ensembles, separately for identity (ID) (left part) and asinh-transformed data (right part).
Each bar represents the ensemble of all forecasts made using a given model (represented by a filling
pattern). The @DATA notation refers to the precalibration dataset used for hyper-parameter selection.
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Figure 4. Visualization of the MAE errors for Nord Pool data across the benchmark (darker shade) and
fine-tuned (lighter shade) ensembles, separately for ID (left part) and asinh-transformed data (right part).
Each bar represents the ensemble of all forecasts made using a given model (represented by a filling
pattern). The @DATA notation refers to the precalibration dataset used for hyper-parameter selection.

6.5. Computational Feasibility of Proposed Solutions

To assess the computational feasibility of the neural network methods, timed runs were performed
on a machine equipped with an Intel Core i5-3570 CPU. Additionally, benchmark generation times are
included for reference (ARX1 and LASSO). All listed times refer to the generation of price forecasts for
one day (extracted from a longer sample to reduce the initialization overhead). The times listed for
DNN models reflect the worst-case scenario over all of the hyper-parameter sets. Generation times for
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final forecasts (i.e., an ensemble over three or 15 runs) are reported, and hyper-parameter optimization
step is not considered here—it is assumed that an initial computational effort can be computed over a
long period of time or on a multi-node computer cluster, and there is no need to rerun the optimization
in the day-to-day operation. The results overview is presented in Table 3.

Table 3. Approximate times needed to generate one day of the forecasts using different methods. Note the
differences in the units. The time listed for the DNN is a worst-case scenario, see the description in the text.

ARX LASSO Fine-Tuned DNN

time ca. 15 ms 30–40 s below 120 s

The parsimonious structure of ARX model and an exact solution obtained via matrix operations
allow for generation of an ensemble forecast for the next day in approximately 15 milliseconds,
with negligible dependence on the VST. Both the LASSO benchmark and DNN model are orders of
magnitude slower to obtain, due to the iterative estimation. LASSO, despite being a simple linear
model, utilizes cross validation, which greatly increases the times needed to compute forecasts; it takes
41.2 and 32.8 s respectively for the ID-transformed and asinh-transformed data, with the difference
coming most probably from the faster convergence.

Assessing the times for the DNN model is not straightforwards, hence, a worst-case scenario
is presented. Specifically, we assume that for every calibration window length we take the longest
time across all hyper-parameter sets as the time needed to generate a single forecast, which is then
multiplied by 5 (ensemble across hyper-parameter sets). This results in the longest runtimes, 116 and
121 s respectively for ID and asinh transformations. The time does not vary much between them due
to the fixed number of iterations over the dataset.

To sum up, the DNN model, even in the worst-case scenario is computationally feasible,
i.e., the result can be obtained in near real-time on a contemporary hardware. The LASSO model can be
accelerated significantly by either limiting the cross validation space for the regularization parameter
or by using a fixed parameter (or a parameter based on information criteria) instead.

7. Conclusions

Obtaining the accurate day-ahead electricity price forecasts is crucial for any entity that heavily
bases the profitability on the electricity prices, e.g., a power generating company. The accurate forecasts
can greatly benefit the decision-making process in such a utility and can lead to better (in terms of the
financial outcome) decisions being made. In the long run, availability of more accurate forecasts for the
market participants can lead to lowering the price volatility, which in turn could result in e.g., lower
risk of the long-term investments that are strongly dependent on the electricity prices. Another use
of the more accurate price forecasts lies in the growing field of demand response and its role in the
transformation of the electricity markets [40,41].

The deep neural network used in the study allows, along with the hyper-parameter optimization
and ensembling scheme, for a significant outperformance of statistical-based approaches. This kind of
modeling provides the user with a set of very well-performing and feature-rich tools, which—as shown
by the default DNN benchmark—works relatively well with little tuning. However, the tuning itself
is no longer an option, but rather a necessity, as using pure defaults would yield a 1-epoch trained
network with the linear activation function in the hidden layers. The largest performance penalty
would obviously come from training limited to 1 epoch, however, the activation function itself also
plays a major role in achieving a well-rounded model.

The two-step approach—as proposed here—proves to be a very robust technique, with excellent
performance across almost all of the test scenarios and can be applied in practice. It does, however,
come at a price. The generation of the precalibration forecasts alone is a serious computational difficulty.
On the other hand, the approach uses many independent forecasts (in this case, 1008 for each dataset,
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VST pair), which makes it feasible to run in parallel on high-performance computer clusters or using
cloud computing. With that in mind, the precalibration procedure does not need to be reapplied
(often). This study assumed that the precalibration procedure would not be repeated for the whole
three year long test period. Moreover, if the precalibration was to be updated periodically (e.g., every
three months) it would be much faster because only incremental updates of the forecasts are needed,
which would not be straightforward to implement using step-by-step hyper-parameter optimization.

The main takeaway from this study is that the hyper-parameters can be automatically tailored to
fit a specific task, and the selection can be performed ex-ante. Such forecasts consistently outperform
even the DNN benchmark used in the study. Looking at the results from a different perspective, all of
the neural network-based models were much better-performing than the LASSO model estimated
using the same information. The performance gain is best visible on the non-transformed PJM data,
which exhibits a change in the volatility of the price series. Non-linear layers enable the model to
effectively cope with the data that proves difficult to forecast using linear models.

The research, however, does not conclude the idea of using a neural network precalibrated using
a hyper-parameter grid search fully. While a well-performing application is presented, there are still
interesting aspects left for future research, such as the network topology (deep or shallow, dense or
sparse?) or the periodic hyper-parameter recalibration.
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A B S T R A C T

While the field of electricity price forecasting has benefited from plenty of contributions in the last two decades,
it arguably lacks a rigorous approach to evaluating new predictive algorithms. The latter are often compared
using unique, not publicly available datasets and across too short and limited to one market test samples.
The proposed new methods are rarely benchmarked against well established and well performing simpler
models, the accuracy metrics are sometimes inadequate and testing the significance of differences in predictive
performance is seldom conducted. Consequently, it is not clear which methods perform well nor what are the
best practices when forecasting electricity prices. In this paper, we tackle these issues by comparing state-
of-the-art statistical and deep learning methods across multiple years and markets, and by putting forward a
set of best practices. In addition, we make available the considered datasets, forecasts of the state-of-the-art
models, and a specifically designed python toolbox, so that new algorithms can be rigorously evaluated in
future studies.

1. Introduction

The increasing penetration of renewable energy sources in today’s
power systems makes electricity generation more volatile and the re-
sulting electricity prices harder to predict than ever before [1–4]. On
the other hand, advances in electricity price forecasting (EPF) constantly
provide new tools with the ultimate objective of narrowing the gap
between predictions and actual prices. The progress in this field, how-
ever, is not steady and easy to follow. In particular, as concluded by
all major review publications, comparisons between EPF methods are
very difficult since studies use different datasets, different software
implementations, and different error measures; the lack of statistical
rigor complicates these analyses even further [5–8]. In particular:

• There are several studies comparing machine learning (ML) and
statistical methods but the conclusions of these studies are contra-
dictory. Typically, studies considering advanced statistical tech-
niques only compare them with simple ML methods [9–11] and
show that statistical methods are obviously better. Conversely,
studies proposing new ML methods only compare them with
simple statistical methods [12–16] and show that ML models are
more accurate.

• In many of the existing studies [17–23] the testing periods are too
short to yield conclusive results. In some cases, the test datasets
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are limited to one-week periods [22,24–30]; this ignores the
problem of special days, e.g. holidays, and is not representative
for the performance of the proposed algorithms across a whole
year. As argued in [5], to have meaningful conclusions, the test
dataset should span at least a year.

• Some of the existing papers do not provide enough details to
reproduce the research. The three most common issues are:
(i) not specifying the exact split between the training and test
dataset [31–37], (ii) not indicating the inputs used for the predic-
tion model [35,36,38–40], and (iii) not specifying the dataset em-
ployed [21,33,41,42]. This obviously prevents other researchers
from validating the research results.

These three problems have aggravated over the last years with
the increase in popularity of deep learning (DL). While new published
papers on DL for EPF appear almost every month, and most claim to
develop models that obtain state-of-the-art accuracy, the comparisons
performed in those papers are very limited. Particularly, the new DL
methods are usually compared with simpler ML methods [28,30,43–
47]. This is obviously problematic as such comparisons are not fair.
Moreover, as the proposed methods are not compared with other DL
algorithms, new DL methods are continuously being proposed but it is
unclear how the different models perform relative to each other.
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Similar problems arise in the context of hybrid methods. In recent
years, very complex hybrid methods have been proposed. Typically,
these hybrid models are based on combining a decomposition tech-
nique, a feature selection method, an ML regression model, and some-
times a meta-heuristic algorithm for optimization purposes. As with
DL algorithms, these studies usually avoid comparisons with well-
established methods [21,25,34,42,48–50] or resort to comparisons us-
ing outdated methodologies [22,24,26,37,41,51,52]. In addition, while
a specific genetic algorithm or decomposition technique is considered,
most of the studies do not analyze the effect of selecting a variant of
these techniques [21,24,50–52]. Thus, the relative importance of each
of the different components of the hybrid methods it is not even clear.

1.1. Motivation and contributions

The above mentioned problems call for three actions. Firstly, im-
plementing in a popular programming environment (e.g. python) and
making available a set of simple but powerful open-source forecasting
methods, which can potentially obtain state-of-the-art performance, and
that researchers can easily use to evaluate any new forecasting model.

Secondly, collecting and making freely available to the EPF commu-
nity a set of representative benchmark datasets that researchers can use
to evaluate and compare their methods using long testing periods. Al-
though, some datasets are available for download without restrictions,
e.g. as supplements to published articles [53] or sample transaction
data [54], they are typically limited in scope (one market, a 2–3 year
timespan or price series only). Hence, conclusions from such datasets
are limited, results can hardly be extrapolated to other markets, and
the relevance of the studies using such data are not entirely clear.

Thirdly, putting forward a set of best practices so that the conclusions
of EPF studies become more meaningful and fair comparisons can be
made.

In this paper, we try to tackle the above via three distinct contribu-
tions:

1. We analyze the existing literature and select what could ar-
guably be considered as state-of-the-art among statistical and
machine learning methods: the Lasso Estimated AutoRegressive
(LEAR) model1 [55] and the Deep Neural Network (DNN) [57], a
relatively simple and automated DL method that optimizes hy-
perparameters and features using Bayesian optimization. Then,
we make our models available to other researchers as part
of an open-source python library (https://github.com/jeslago/
epftoolbox) specially designed to provide a common research
framework for EPF research [58]. Besides the models, we also
provide extensive documentation [59] for the library.

2. We propose a set of five open-access benchmark datasets span-
ning six years each, that represent a range of well-established
day-ahead, auction type power markets from around the globe.
The datasets contain day-ahead electricity prices at an hourly
resolution and two relevant exogenous variables each. They can
be accessed from the mentioned python library [58]. Together
with the datasets, the library also includes the forecasts of
the open-access methods across the five benchmark datasets so
that researchers can quickly make further comparisons without
having to re-train or re-estimate the models.

3. We provide a set of best practice guidelines to conduct research
in EPF so that new studies are more sound, reproducible, and
the obtained conclusions are stronger. In addition, we include
some of the guidelines, e.g. adequate evaluation metrics or sta-
tistical tests, in the mentioned python library [58] to provide
a common research framework for EPF research.

1 Originally introduced in [55] under the name LassoX and based on the
fARX model, a parameter-rich autoregressive specification with exogenous
variables. The name refers to the least absolute shrinkage and selection operator
(LASSO) [56] used to jointly select features and estimate their parameters.

Fig. 1. Illustration of the day-ahead auction market, where wholesale sellers and buyers
submit their bids before gate closure on day 𝑑 −1 for the delivery of electricity during
day 𝑑; the 24 hourly prices for day 𝑑 are set simultaneously, typically around midday.

1.2. Paper structure

The remainder of the paper is organized a follows. Section 2 per-
forms a literature review of the current state of EPF. Sections 3 and 4
respectively present the open-access benchmark datasets and the open-
source benchmark models. Section 5 describes the set of guidelines and
best practices when performing research in EPF. Section 6 discusses
the forecasting results for all five datasets. Finally, Section 7 provides
a summary and a checklist of the requirements for meaningful EPF
research.

2. Literature review

The field of EPF aims at predicting the spot and forward prices in
wholesale markets, either in a point or probabilistic setting. However,
given the diversity of trading regulations available across the globe,
EPF always has to be tailored to the specific market. For instance,
the workhorse of European short-term power trading is the day-ahead
market with its once-per-day uniform-price auction, see Fig. 1. On the
other hand, the Australian National Electricity Market operates as a
real-time power pool, where a dispatch price is determined every five
minutes and six dispatch prices are averaged every half hour as pool
prices [60], while electricity forward markets share many aspects with
those of other energy commodities (oil, gas, coal), and quite often are
only financially settled [61].

As the field of EPF is very diverse, a complete literature review
is out of the scope of this paper. Instead, this section is intended to
provide an overview of the three families of methods, i.e. statistical,
ML, and hybrid methods, proposed for point forecasting in day-ahead
markets since 2014, i.e. since the last comprehensive literature review
of Weron [5]. The more recent reviews either focused on short-term [6]
and medium-/long-term [7] probabilistic EPF, were not that compre-
hensive in scope [62,63], or concerned electricity derivatives [61].
Furthermore, our survey puts a special emphasis on DL and hybrid
methods as this is the area of EPF characterized by the most rapid
development and, at the same time, troubled by non-rigorous empirical
studies which motivated us to write this paper in the first place.

2.1. Statistical methods

Most models in this class rely on linear regression and represent the
dependent (or output) variable, i.e. the price 𝑝𝑑,ℎ for day 𝑑 and hour
ℎ, by a linear combination of independent (or predictor, explanatory)
variables, also called regressors, inputs, or features:

𝑝𝑑,ℎ = 𝜽ℎ𝐗𝑑,ℎ + 𝜀𝑑,ℎ, (1)

where 𝜽ℎ = [𝜃ℎ,0, 𝜃ℎ,1,… , 𝜃ℎ,𝑛] is a row vector of coefficients specific
to hour ℎ, 𝐗𝑑,ℎ = [1, 𝑋1

𝑑,ℎ,… , 𝑋𝑛
𝑑,ℎ]

⊤ is a column vector of inputs and
𝜀𝑑,ℎ is an error term; the intercept 𝜃ℎ,0 can be set to zero if the data is
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demeaned beforehand. Note that here we are using a notation common
in day-ahead forecasting, which emphasizes the vector structure of
these price series, see Fig. 1. Alternatively we could use single indexing:
𝑝𝑡 with 𝑡 = 24𝑑 + ℎ. Although the multivariate modeling framework
has been shown to be marginally more accurate than the univariate
counterpart, both approaches have their pros and cons [64,65].

In the last few years, there have been several key contributions in
the field of statistical methods for EPF. Arguably, the most relevant of
them has been the appearance of linear regression models with a large
number of input features that utilize regularization techniques [56,66].
Classically, the regression model in (1) is estimated using ordinary least
squares (OLS) by minimizing the residual sum of squares (RSS), i.e.
squared differences between the predicted and actual values. However,
if the number of regressors is large, using the least absolute shrinkage and
selection operator (LASSO) [56] or its generalization the elastic net [66]
as implicit feature selection methods have been shown to improve the
forecasting results [55,57,64,67–69], also in intraday [70,71] and prob-
abilistic [72,73] EPF. In particular, by jointly minimizing the RSS and
a penalty factor of the model parameters (see Section 4.2 for details),
these two implicit regularization techniques set some of the parameters
to zero and thus effectively eliminate redundant regressors. As shown in
the cited studies, these parameter-rich2 regularized regression models
exhibit superior performance. It is important to note that such an
approach, called here Lasso Estimated AutoRegressive (LEAR), is in fact
hybrid since LASSO (and electric nets) are considered ML techniques
by some authors. However, we classify it as statistical because the
underlying model is autoregressive (AR).

Aside from proposing parameter-rich models and advanced estima-
tors, researchers have also improved the field by considering a variety
of additional preprocessing techniques. Most notably, models using so-
called variance stabilizing transformations [9,64,74,75] and long-term
seasonal components [76–79] have been proposed and shown to result
in statistically significant improvements. However, the applicability of
these two techniques varies greatly: due to very common occurrence
of price spikes, variance stabilizing transformations have become a
standard and replaced the commonly used logarithmic transformation
(no longer applicable due to zeros and negative values3) to normalize
electricity prices. By contrast, the applicability of long-term seasonal
components has been more limited and it is unknown whether their
beneficial effect is limited to relatively parsimonious regression models
or also holds for parameter-rich models.

A third innovation in the field is an ensemble (i.e. a method that
combines individual forecasting models) that combines multiple fore-
casts of the same model calibrated on different windows. In this con-
text, two different studies [80,81] showed that the best results are
obtained with a combination of a few short (spanning 1–4 months)
and a few long calibration windows (of approximately two years). Said
ensembles were able to significantly outperform predictions obtained
for the best ex-post selected calibration window [80–82]. But again, it
has not been shown to date whether this effect is limited to relatively
parsimonious regression models or also holds for LEAR models.

Interestingly, as [83] argue in an econometric context, in the pres-
ence of structural breaks it may be advisable to combine forecasts
obtained for calibration windows of different lengths. Longer win-
dows allow for a better fit, while shorter faster adapt to changes.
Hence, if a structural break appears, like the COVID-19 pandemic,
using models calibrated to shorter windows may better capture changes
in the price dynamics. A different, but a potentially also appealing
approach has been recently suggested in [84,85]. The authors assume
that fundamental and price time series exhibit recurrent regimes with
similar dynamics and employ cluster analysis – 𝑘-means [84] or 𝑘-
nearest neighbors [85] – to identify such periods in the past. Then

2 We define a parameter-rich linear model as a model with multiple
regressors (dozens, hundreds).

3 The logarithm of 0 or of a negative value is undefined.

they calibrate models only on data segments which resemble current
conditions. As such, they are able to eliminate subperiods that include
structural breaks from the calibration sample.

Finally, note that in contrast to financial econometrics, where het-
eroskedasticity is a basic building block of many state-of-the-art ap-
proaches [86], models with generalized autoregressive conditional het-
eroskedastic (GARCH) residuals have been tried for EPF without much
success, for a review and discussion see [5]. For instance, [57] compare
27 different models, among them an ARIMA–GARCH model, and find
that it performs comparable to a much simpler AR model and ca. 1.5
times worse than the DNN model defined in Section 4.3. As [87] argue,
GARCH effects diminish when fundamental and behavioral drivers of
the electricity price volatility are taken into account and allowing for
the time-varying responses of prices to fundamentals can yield more
precise volatility estimates than an explicit GARCH specification.

2.2. Deep learning

In the last five years, a total of 28 deep learning papers in the
context of EPF have been published.4 Moreover, this number has been
steadily increasing: while in 2017 there was only one paper, in 2018
there were 11, and in 2019 there were 16. Despite this trend, most of
the published studies are very limited: the comparisons are too sim-
plistic, e.g. avoid state-of-the-art statistical methods, and their results
cannot be generalized.

The first published DL paper [12] proposes a deep learning network
using stacked denoising autoencoders. The paper, despite being the
first, provides a better evaluation than most studies: the new method
is compared not only against machine learning techniques but also
against two statistical methods. Yet, the evaluation is limited as it only
considers three months of test data and simple benchmark models.
In the second published DL article [57], a DNN for modeling market
integration is proposed. While the method is evaluated over a year
of data, the proposed model is not compared against other machine
learning or statistical methods.

In the third published paper [57], four DL models (a DNNs, two re-
current neural networks (RNNs), and a convolutional network (CNN)) are
proposed. This study is, to the best of our knowledge, the most complete
study up to date. In particular, the proposed DL models are compared
using a whole year of data against a benchmark of 23 different models,
including 7 machine learning models, 15 statistical methods, and a
commercial software. Moreover, among the statistical methods, the
comparison includes the fARX-Lasso and fARX-EN, i.e. the state-of-the-
art statistical methods. While the study shows the superiority of the DL
algorithms, very strong conclusions are not possible as the study only
considers a single market.

The studies that followed in 2018 focused on one of three topics: (1)
evaluating the performance of different deep recurrent networks [13,
23,37,88]; (2) proposing new hybrid methods based on CNNs and
LSTMs [14,44,89,90]; or (3) employing regular DNN models [23].
Independently of the focus, they were all more limited than the first
and the third studies [12,57] as they failed to compare the new DL

4 This data is primarily based on a Scopus search in the title, ab-
stract, and keywords: TITLE-ABS-KEY((((‘‘forecasting electric-
ity’’) OR (‘‘predicting electricity’’)) AND ((‘‘electric-
ity spot’’) OR (‘‘electricity day-ahead’’) OR (‘‘electric-
ity price’’))) OR (((‘‘price forecasting’’) OR (‘‘price
prediction’’) OR (‘‘forecasting price’’) OR (‘‘predict-
ing price’’) OR (‘‘forecasting spikes’’) OR (‘‘forecast-
ing VAR’’)) AND ((‘‘electricity spot price’’) OR (‘‘elec-
tricity price’’) OR (‘‘electricity market’’) OR (‘‘day-
ahead market’’) OR (‘‘power market’’))) AND (‘‘deep’’) AND
(‘‘learning’’)). We have also run a second, more general query replac-
ing (‘‘deep’’) AND (‘‘learning’’) by (‘‘neural’’) AND (‘‘network’’), however, only
a few additional papers have been identified.
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models with state-of-the-art statistical methods and/or to employ long
enough datasets to derive strong conclusions.

In detail, [13] studies the use of RNNs for forecasting electricity
prices but the comparison is done in a single market and against
simple statistical methods: a seasonal auto regressive integrated moving
average (ARIMA) model, a Markov regime-switching model, and a self
exciting threshold model. Moreover, while the comparison includes
other DL methods, it avoids comparison with simpler ML techniques.
Ref. [44] proposes a hybrid DL method composed of a CNN and a
long short-term memory (LSTM) neural network (a type of recurrent
network) for forecasting balancing prices. However, the new model is
only compared against simple ML benchmarks and the evaluation is
done using different periods comprising three months for training and
1 month for testing. Similarly, [14] proposes another hybrid model
combining a CNN and an LSTM, but the model is only compared
against two simple statistical methods: an auto regressive moving average
(ARMA) and a GARCH model.

In [23] a regular DNN model is proposed but the model is only
evaluated on a test dataset comprising a single day and compared
against a simple multilayer perceptron (MLP). In [29], the use of an
LSTM model for EPF is evaluated, but the method is only compared
with three neural networks and a simple statistical method, and the
evaluation is done using only 4 weeks of data. Likewise, [88] proposes
a model based on an LSTM but a comparison against other methods
is not performed and the test dataset only comprises 2 weeks of data.
In [37], another LSTM model is proposed but, as in other studies, the
test dataset comprises a few months of data and the method is only
compared against a simple decision tree and a support vector regressor;
moreover, the exact split between the training and test dataset is not
specified and it is unclear what is exactly the performance of the model.
An exception to these studies is [91] which proposes a series of DL
models and compares them for a year of data against several advanced
statistical methods such as LASSO and a simpler ML method. The main
drawbacks of the study are that it is based on a single market and that
it only considers a simple ML method as a benchmark. In addition,
the study focuses on intraday electricity prices, while most of the
literature (including the current paper) considers forecasting day-ahead
electricity prices.

In 2019, the main focus of the papers was the same as in 2018:
(1) evaluating the performance of different deep recurrent networks
(mostly LSTMs) [16,30,45,47,92–94], (2) proposing new hybrid deep
learning methods usually based on LSTMs and CNNs [17,28,36,92,95–
97], or (3) employing regular DNN models [15,46,98]. Similarly, as
with most studies in 2018, the new studies were more limited than [12,
57] as no comparisons with state-of-the-art statistical methods were
made and long test datasets were seldom used. In this context, even
though some studies [16,98] tried to compare the proposed methods
with existing DL models [57], they either failed to re-estimate the
benchmark models for the new case study [16] or they overfitted the
DL benchmark models [98].

In detail, [30] proposes different LSTM models but the new models
are only compared against 5 other ML techniques and using a test
period of 4 weeks. In [28], a CNN model is proposed but the new
model is just compared against three simple ML methods and using
a test dataset that comprises a week. In [45], a model based on an
LSTM is proposed but it is only compared against three simple ML
methods and for a period of 12 weeks. In [46], the performance of
a DNN is compared to that of an SVR model and, as the comparison
only includes these two models, it is obviously very limited. In [15],
a DNN is used as part of a two-step forecasting method; as in many
other studies, the comparison is performed for one month of data and
limited to two simple ML models (a SVR and an MLP) and a standard
linear model. In [47], two DL models are proposed but the models are
only compared to very simple ML methods (extreme learning machines
and standard MLPs) and using a test dataset spanning eight months.
In [16], a bidirectional LSTM to forecast prices in the French market is

proposed; however, the study only considers historical prices as input
features and the proposed method is only compared against DL models
and a simple autoregressive model. In addition, the benchmark DL
models are copied from [57] (a completely different case study that
considers exogenous inputs and a different market) without re-tuning
the hyperparameters to the new case study.

In [98], a neural network that uses data from order books is pro-
posed and compared against DL methods from the literature, e.g. the
ones proposed in [57]. While the new model outperforms existing DL
methods, the DL methods from the literature are trained to overfit the
training dataset.5 Therefore, the comparison is not meaningful (the DL
benchmark models will necessarily perform poorly in the test dataset)
and it cannot be assessed how the new model performs. In [95], a
hybrid DL forecasting method is proposed based on stacked denoising
autoencoders for pre-training, regular autoencodes for feature selec-
tion, and a rough DNN as a forecasting method. As in other studies,
the method is only compared against simple ML models. Moreover,
the importance of each of the four modules of the hybrid method
is not studied and the authors do not re-calibrate the models with
new data: the models are trained once and evaluated over a whole
year. Similarly, [96] proposes a CNN hybrid model that uses mutual
information, random forests, gray correlation analysis, and recursive
feature elimination for feature selection. Unlike most models, the al-
gorithm is trained to classify prices instead of predicting their scalar
values; however, details of how this process is done are not provided. In
addition, the method is only compared against simple ML methods and
evaluated for less than a year of data (the study uses one year for testing
and training but the split is not specified). Likewise, [36] proposes a
hybrid model based on CNNs and RNNs in the context of microgrids;
as in other studies, the method is evaluated in a small dataset, it is
not compared against state-of-the-art statistical methods, and the exact
split between training and test datasets is not specified.

2.3. Hybrid methods

Within the field of EPF, the research area that has received the most
attention in the last 5 years has been hybrid forecasting methods. In this
time frame, more than 100 articles proposing new hybrid methods have
been published,6 i.e. approximately 5 times more than articles based on
DL. Hybrid models are very complex forecasting frameworks that are
composed of several algorithms. Usually, they comprise at least two of
the following five modules:

• An algorithm for decomposing data.
• An algorithm for feature selection.
• An algorithm to cluster data.
• One or more forecasting models whose predictions are combined.
• Some type of heuristic optimization algorithm to either estimate

the models or their hyperparameters.

5 In the training dataset, the proposed model and some naive ML bench-
mark models yield a root mean square error (RMSE) of ca. 6. For the test
dataset, for the same models, the RMSE is between 9 and 12. By contrast, the
training error of the benchmark DL model is 2, and the test error is 20. Having
a training error that is 1/3 of the error of other models but a test error that is
10 times larger than the training error is a clear sign for overfitting (especially
when for the rest of the models the test error is just 1.5 larger than the training
error).

6 This data is based on two searches in Scopus looking for keywords in the
title, abstract, and keywords. The first search is based on the following query
TITLE-ABS-KEY(((forecast*) OR (predict*)) AND (electric-
ity) AND (price*) AND (hybrid)). The second search is very similar
but replacing the keyword hybrid by neural AND network. Note that,
while this search is not as complete as the one for DL, it provides enough
material for building an overview of the state of the field.
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In terms of decomposition methods, the most widely used tech-
nique is the wavelet transform [17,19,22,24,34,41,49,51,52,99]. Al-
ternative methods include empirical mode decomposition (EMD) [32,
100], the Hilbert–Huang transform which uses EMD to decompose
a signal and then applies Hilbert spectral analysis [101], variational
mode decomposition [27,48], and singular spectrum analysis [102,
103].

For feature selection, the most commonly utilized algorithms are
correlation analysis [32,41,42,104,105] and the mutual information
technique [18,42,52,106–108]. Other algorithms include classification
and regression trees with recursive feature elimination [50] or Relief-
F [50].

For clustering data, the algorithms are usually based on one of the
following four: k-means [26,109], self-organizing maps [19,26,110],
enhanced game theoretic clustering [26], or fuzzy clustering [52,111]

The selection of forecasting models is much more diverse. The most
widely used method is the standard MLP [19,20,32,41,42,51,102,103,
105,107,108], followed by the adaptive network-based fuzzy inference
system (ANFIS) [19,100,106], radial basis function network [20,24,
111], and autoregressive models like ARMA or ARIMA [20,22,24,100].
Other models include LSTM [17], linear regression [50], extreme learn-
ing machine [22,50], CNN [50], Bayesian neural network [26,110],
exponential GARCH [100], echo state neural network [27], Elman
neural networks [18], and support vector regressors [20]. It is im-
portant to note that in many of the approaches, the hybrid method
does not consider a single forecasting model but combines several of
them [19,20,24,50,100,108].

Just as for the forecasting model, the diversity of the heuris-
tic optimization algorithms is also large. While the most often uti-
lized algorithm is particle swarm optimization [22,48,51,106,107,111],
many other approaches are also used: differential evolution [27],
genetic algorithm [106], backtracking search [106], deterministic an-
nealing [111], bat algorithm [41], vaporization precipitation-based
water cycle algorithm [104], cuckoo search [103,105], or honey bee
mating optimization [24].

In spite of the large number of published works, the research
in hybrid methods suffers from the same problems as discussed ear-
lier. First, most of the studies either avoid comparison with well-
established methods [18–21,25,27,34,42,48–50,100,104,106,111] or
resort to comparisons using outdated methodologies [22,24,26,41,51,
52,102,103]. Hence, the accuracy of the new proposed methods cannot
be accurately established.

Second, the considered studies usually employ very small datasets
consisting either of a few days [17–22] or a few weeks [18,19,22,24–
27,41,42,49,51,102–104,106,111]. Thus, drawing conclusions is nearly
impossible and it is unclear whether the accuracy results are just the
outcome of selecting a convenient test period.

Besides these two problems, for many hybrid methods the effect
of selecting variants of the different hybrid components is not ana-
lyzed [20,21,24,25,27,41,42,50–52,102,103]. Thus, it is not clear how
relevant or useful the individual components are.

2.4. State-of-the-art models

Because of the described problems when comparing EPF models, it
is very hard to establish what are the state-of-the-art methods. Nev-
ertheless, considering the studies performed in the last years, it can be
argued that the LEAR is a very accurate (if not the most accurate) linear
model. Moreover, it can also be argued that the accuracy of this model
can be further improved by transforming the prices using variance
stabilizing transformations, combining forecasts obtained for different
calibration windows, and/or using long-term seasonal decomposition.

For the case of ML models, the selection is harder as the exist-
ing comparisons are of worse quality. Considering the most complete
benchmark study in terms of forecasting models [57], it seems that a
simple DNN with two layers is one of the best ML models. In particular,

while more complex models, e.g. LSTMs, could potentially be more
accurate, there is at the moment no sound evidence to validate this
claim.

In the case of hybrid models, establishing what is the best model
is an impossible task. Firstly, while many hybrid methods have been
proposed, they have not been compared with each other nor with the
LEAR or DNN models. Secondly, as most studies do not evaluate the
individual influence of each hybrid component, it is also impossible
to establish the best algorithms for each hybrid component, e.g. it is
unclear what are the best clustering, feature selection method, or data
decomposition methods.

With that in mind, we will consider the LEAR and the DNN for the
proposed open-access benchmark. In particular, not only are these two
methods highly accurate, but they are also relatively simple. As such,
we think that they are the best benchmarks to compare new complex
EPF forecasting methods with.

3. Open-access benchmark dataset

The first contribution of the paper is to provide a large open-access
benchmark dataset on which new methods can be tested, together with
the day-ahead forecasts of the proposed open-access methods. In this
section, we introduce this dataset, which can be accessed7 using the
python library built for this study.

3.1. General characteristics

For a benchmark dataset in EPF to be fair it should satisfy three
conditions:

1. comprise several electricity markets so that the capabilities of
new models can be tested under different conditions,

2. be long enough so that algorithms can be analyzed using out-of-
sample datasets that span 1–2 years, and

3. be recent enough to include the effects of integrating renewable
energy sources on wholesale prices.

Based on these conditions, we propose five datasets representing five
different day-ahead electricity markets, each of them comprising 6
years of data. The prices of each market have very distinct dynamics,
i.e. they all have differences in terms of the frequency and existence
of negative prices, zeros, and price spikes. In addition, as electricity
prices depend on exogenous variables, each dataset comprises two
additional time series: day-ahead forecasts of two influential exogenous
factors that differ for each market. The length of each dataset equals
2184 days, which translates to six 364-day "years" or 312 weeks.8 All
available time series are reported using the local time, and the daylight
savings are treated by either arithmetically averaging two values for
the extra hour or interpolating the neighboring values for the missing
observation.

3.2. Nord Pool

The first dataset represents the Nord Pool (NP), i.e. the European
power market of the Nordic countries, and spans from 01.01.2013
to 24.12.2018. The dataset contains hourly observations of day-ahead
prices, the day-ahead load forecast, and the day-ahead wind generation
forecast. The dataset was constructed using data freely available on the

7 Note that we do not own the data in the dataset. However, it can
be freely accessed from different websites, e.g. the ENTSO-E transparency
platform [112]. In this context, the proposed python library [58,59] provides
an interface to easily access the data.

8 Electricity prices exhibit weekly seasonality. Thus, by approximating a
year by 52 weeks because we ensure that the metrics are not impacted by a
certain day, e.g. Monday, being harder to predict than the others.
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webpage of the Nordic power exchange Nord Pool [54]. Fig. 2(b) (top)
displays the electricity price time series of the dataset; as can be seen,
the prices are always positives, zero prices are rare, and prices spikes
seldom occur.

3.3. PJM

The second dataset is obtained from the Pennsylvania–New Jersey–
Maryland (PJM) market in the United States. It covers the same time
period as Nord Pool, i.e. from 01.01.2013 to 24.12.2018. The three time
series are: the zonal prices in the Commonwealth Edison (COMED) (a
zone located in the state of Illinois) and two day-ahead load forecast
series, one describing the system load and the second one the COMED
zonal load. The data is freely available on the PJM’s website [113].
Fig. 2(b) (bottom) depicts the electricity price time series of the dataset;
as with the NP market, the prices are always positive and zero prices
are rare; however, unlike the NP market, spikes appear frequently.

3.4. EPEX-BE

The third dataset represents the EPEX-BE market, the day-ahead
electricity market in Belgium, which is operated by EPEX SPOT. The
dataset spans from 09.01.2011 to 31.12.2016. The two exogenous
data series represent the day-ahead load forecast and the day-ahead
generation forecast in France. While this selection might be surprising,
it has been shown [57] that these two are the best predictors of Belgian
prices. The price data is freely available in the ENTSO-E transparency
platform [112] and the ELIA website [114], and the load and genera-
tion day-ahead forecasts are freely available in [115]. It is important to
note that this dataset is particularly interesting because it is harder to
predict. Fig. 3 (top) shows the electricity price time series of the dataset;
unlike the prices in the PJM and NP markets, negative prices and zero
prices appear more frequently, and price spikes are very common.

3.5. EPEX-FR

The fourth dataset represents the EPEX-FR market, the day-ahead
electricity market in France, which is also operated by EPEX SPOT.
The dataset spans the same period as the EPEX-BE dataset, i.e. from
09.01.2011 to 31.12.2016. Besides the electricity prices, the dataset
comprises the day-ahead load forecast and the day-ahead generation
forecast. As before, the price data is freely obtained from the ENTSO-E
transparency platform [112], and the load and generation day-ahead
forecasts are freely available on the webpage of RTE [115], i.e. the
transmission system operator (TSO) in France. Fig. 3 (middle) displays
the electricity price time series of the dataset; as in the EPEX-BE market,
negative prices, zero prices, and spikes are very common.

3.6. EPEX-DE

The last dataset describes the EPEX-DE market, the German electric-
ity market, which is also operated by EPEX SPOT. The dataset spans
from 09.01.2012 to 31.12.2017. Besides the prices, the dataset com-
prises the day-ahead zonal load forecast in the TSO Amprion zone and
the aggregated day-ahead wind and solar generation forecasts in the
zones of the 3 largest9 TSOs (Amprion, TenneT, and 50Hertz). The price
data is freely obtained from the ENTSO-E transparency platform [112],
the zonal load day-ahead forecasts is freely available in the website
of Amprion [116], and the wind and solar forecasts in the websites
of Amprion [116], 50Hertz [117], and TenneT [118]. Fig. 3 (bottom)
displays the electricity price time series of the dataset; as can be seen,
while negative and zero prices occur more often than in the other four
markets, price spikes are more rare.

9 There are 4 TSOs in Germany.

Table 1
Start and end dates of the testing (out-of-sample) datasets for each electricity market.

Market Test period

Nord pool 27.12.2016–24.12.2018
PJM 27.12.2016–24.12.2018
EPEX-FR 04.01.2015–31.12.2016
EPEX-BE 04.01.2015–31.12.2016
EPEX-DE 04.01.2016–31.12.2017

3.7. Training and testing periods

For each dataset, the testing period is defined as the last 104 weeks,
i.e. the last two years, of the dataset. The exact dates of the testing
datasets are defined in Table 1. It is important to note that, as we
will argue in Section 5, selecting two years as the testing period is
paramount to ensure good research practices in EPF.

Unlike the testing dataset, the training dataset cannot be defined as
it will vary between different models. In general, the training dataset
will comprise any data that is known prior to the target day. However,
the exact data will change depending on two concepts, i.e. calibration
window and recalibration:

• While there are four years of data available for estimating the
model, it might be desirable to employ only recent data, e.g. to
avoid estimating effects that no longer play a role. The amount of
past data employed for estimation defines the calibration window.

• The model can be estimated once and then evaluated for the full
test dataset, or it can be continuously recalibrated on a daily basis
to incorporate the input of recent data.

For example, let us consider predicting the NP prices on 15.02.2017.
A model using a calibration window of 52 weeks and no recalibra-
tion would employ a training dataset comprising the data between
29.12.2016 and 26.12.2016, i.e. one year prior to the start of the test
period. By contrast, a model using a calibration window of 104 weeks
and daily recalibration would employ the data between 18.02.2015 and
14.02.2017.

4. Open-access benchmark models

The second contribution of the paper is to provide a set of state-
of-the-art forecasting methods as an open-source python toolbox. As
explained in Section 2.4, the LEAR [55] and the DNN [57] models
are not only highly accurate but also relatively simple. Therefore, we
implement these two methods and provide their code freely available
as part of the proposed toolbox [58,59]. It is important to note that
the use of the proposed open-access methods is fully documented
and automated so researchers can test and use them without expert
knowledge.

For the sake of simplicity, the description provided here is limited
to the bare minimum. For further details on the two models we refer
to the original papers [55,57].

4.1. Input features

Before describing each model, let us define the input features that
are considered. Independently of the model, the available input features
to forecast the 24 day-ahead prices of day 𝑑, i.e. 𝐩𝑑 = [𝑝𝑑,1,… , 𝑝𝑑,24]⊤,
are the same:

• Historical day-ahead prices of the previous three days and one
week ago, i.e. 𝐩𝑑−1, 𝐩𝑑−2, 𝐩𝑑−3, 𝐩𝑑−7.

• The day-ahead forecasts of the two variables of interest (see
Section 3 for details) for day 𝑑 available on day 𝑑 − 1, i.e. 𝐱1𝑑 =
[𝑥1𝑑,1,… , 𝑥1𝑑,24]

⊤ and 𝐱2𝑑 = [𝑥2𝑑,1,… , 𝑥2𝑑,24]
⊤; note that the variables

of interest are different for each market.
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Fig. 2. Electricity price time series for two of the five datasets, i.e. Nord Pool and PJM, considered in the open-access benchmark dataset. Note that each dataset also includes
two exogenous time series that are not plotted here.

• Historical day-ahead forecasts of the variables of interest the
previous day and one week ago, i.e. 𝐱1𝑑−1, 𝐱

1
𝑑−7, 𝐱

2
𝑑−1, 𝐱

2
𝑑−7.

• A dummy variable 𝐳𝑑 that represents the day of the week. In the
case of the linear model, following the standard practice in the
literature [55,69,81], this is a binary vector 𝐳 = [𝑧𝑑,1,… , 𝑧𝑑,7]⊤
that encodes every day of the week by setting all elements to
zero except the element that identifies the day of the week, e.g.
[1, 0, 0, 0, 0, 0, 0] represents Monday and [0, 1, 0, 0, 0, 0, 0] Tuesday.
In the case of the neural network, for the sake of simplicity,
the day of the week is modeled with a multi-value input 𝑧𝑑 ∈
{1,… , 7}.

Overall, we consider a total of 247 available input features for
each LEAR model and 241 input features for each DNN model. It
is important to note that, while the available input features are the
same, the LEAR and DNN models utilize a different feature selection
procedure. Namely, each of the LEAR models finds the optimal set
of features using LASSO as an embedded feature selection, i.e. each
model uses L1-regularization to select among the 247 features. On the
other hand, in the DNN model, as in the original study [57], the input
features are optimized together with the hyperparameters using the tree
Parzen estimator [119] (see Section 4.3 for details). Finally, it should
be emphasized that for both types of models the feature selection is
fully automated and does not require expert intervention.

4.2. The LEAR model

The Lasso Estimated AutoRegressive (LEAR) model is a parameter-rich
ARX structure estimated using L1-regularization, i.e. the LASSO [56].
It was originally introduced in [55] under the name LassoX. The LEAR
is based on the so-called full ARX or fARX model, a parameter-rich
autoregressive specification with exogenous variables, which in turn
is inspired by the general autoregressive model defined by Equation
(2) in [68], with some important differences. While fARX includes
fundamentals and a much richer seasonal structure, it does not look
too far into the past and concentrates only on the last week of data.
Note, that very similar models to the LEAR were used in [64] under
the name 24lasso𝐷𝑜𝑊 ,𝑛𝑙 and in [69] under the name 24Lasso1.

To enhance the model, as empirically tested and recommended
in [9,64,69], the data is preprocessed with the area (or inverse) hyper-
bolic sine variance stabilizing transformation:

asinh(𝑥) = log
(
𝑥 +

√
𝑥2 + 1

)
, (2)

where 𝑥 is the price standardized by subtracting the in-sample median
and dividing by the median absolute deviation adjusted by a factor
for asymptotically normal consistency to the standard deviation, for
details see [9]. Long-term seasonal decomposition is not considered
for the sake of simplicity; particularly, while it has been shown to
further improve the performance of the LEAR, we leave it out for future
research.

As in [81], to further enhance the model, we recalibrate it daily
over different calibration window lengths: 8 weeks, 12 weeks, 3 years,
and 4 years. We consider short windows (8–12 weeks) in combination
with long windows (3–4 years) because it has been empirically shown
to lead to better results [81]. In this context, we consider a minimum
of 8 weeks as lower windows might not have enough information to
correctly estimate parameter-rich models [81].

The LEAR model to predict price 𝑝𝑑,ℎ on day 𝑑 and hour ℎ is defined
by:

𝑝𝑑,ℎ =𝑓 (𝐩𝑑−1,𝐩𝑑−2,𝐩𝑑−3,𝐩𝑑−7, 𝐱𝑖𝑑 , 𝐱
𝑖
𝑑−1, 𝐱

𝑖
𝑑−7,𝜽ℎ) + 𝜀𝑑,ℎ

=
24∑
𝑖=1

𝜃ℎ,𝑖 ⋅ 𝑝𝑑−1,𝑖 +
24∑
𝑖=1

𝜃ℎ,24+𝑖 ⋅ 𝑝𝑑−2,𝑖

+
24∑
𝑖=1

𝜃ℎ,48+𝑖 ⋅ 𝑝𝑑−3,𝑖 +
24∑
𝑖=1

𝜃ℎ,72+𝑖 ⋅ 𝑝𝑑−7,𝑖

+
24∑
𝑖=1

𝜃ℎ,96+𝑖 ⋅ 𝑥
1
𝑑,𝑖 +

24∑
𝑖=1

𝜃ℎ,120+𝑖 ⋅ 𝑥
2
𝑑,𝑖

+
24∑
𝑖=1

𝜃ℎ,144+𝑖 ⋅ 𝑥
1
𝑑−1,𝑖 +

24∑
𝑖=1

𝜃ℎ,168+𝑖 ⋅ 𝑥
2
𝑑−1,𝑖

+
24∑
𝑖=1

𝜃ℎ,192+𝑖 ⋅ 𝑥
1
𝑑−7,𝑖 +

24∑
𝑖=1

𝜃ℎ,216+𝑖 ⋅ 𝑥
2
𝑑−7,𝑖

+
7∑
𝑖=1

𝜃ℎ,240+𝑖 ⋅ 𝑧𝑑,𝑖 + 𝜀𝑑,ℎ (3)
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Fig. 3. Electricity price time series for three of the five datasets, i.e. EPEX-BE, EPEX-FR, and EPEX-DE, considered in the open-access benchmark dataset. Note that each dataset
also includes two exogenous time series that are not plotted here. The EPEX-BE and EPEX-FR time series are similar because the EPEX-FR and EPEX-BE are highly coupled
markets [57]. To keep the plots readable, the upper limit of the 𝑦-axis is below the maximum price; this only affects one spike in EPEX-FR and another one in EPEX-BE.

where 𝜽ℎ = [𝜃ℎ,1,… , 𝜃ℎ,247]⊤ are the 247 parameters of the LEAR
model for hour ℎ. Many of these parameters become zero when (3) is
estimated using LASSO:

�̂�ℎ = argmin
𝜽ℎ

RSS + 𝜆 ‖‖𝜽ℎ‖‖1 = argmin
𝜽ℎ

RSS + 𝜆
247∑
𝑖=1

||𝜃ℎ,𝑖|| , (4)

where RSS =
∑𝑁𝑑

𝑑=8(𝑝𝑑,ℎ − �̂�𝑑,ℎ)2 is the sum of squared residuals, �̂�𝑑,ℎ
the price forecast, 𝑁𝑑 is the number of days in the training dataset,
and 𝜆 ≥ 0 is the tuning (or regularization) hyperparameter of LASSO.
Due to the computational speed of estimating with LASSO, during
every daily recalibration, the hyperparameter 𝜆 that regulates the L1
penalty is optimized. This can be done using an ex-ante cross-validation
procedure [120]. In this study, to further reduce the computational
cost, we propose an efficient hybrid approach to perform the optimal
selection of 𝜆. See Section 4.2.2 for details.

4.2.1. Regularization hyperparameter
The hyperparameter 𝜆 of LASSO can be optimized in multiple ways,

each with different advantages and disadvantages. A first approach is
to optimize 𝜆 once and then keep it fixed for the whole test period.
Although it requires very low computation costs, the limitation of
this approach is that it assumes that the hyperparameter 𝜆 does not
change over time. This assumption might hinder the performance of the
estimator as the regularization parameter does not change even when
the market might do.

A second approach is to recalibrate the hyperparameter on a peri-
odic basis using a validation dataset. Although this method yields good
results, tuning the recalibration frequency and calibration window is
complicated, the computational cost is large, and the results may vary
between datasets [69].

A third option is to recalibrate the hyperparameter periodically, but
using cross-validation (CV): splitting the data into disjoint partitions,
using each possible partition once as a test dataset with the remaining
data as the training dataset, and selecting the hyperparameter that
performs the best across all partitions [120]. Although this approach
is highly accurate, its computation costs are very large.

A fourth option is to periodically update the hyperparameter but
using information criteria, e.g. the Akaike information criterion (AIC) or
the Bayesian information criterion [64,68,121]. As before, this involves
training multiple LASSO models to compute the information criteria
for each possible hyperparameter value, which in turn leads to a high
computational cost.

Lastly, one can use the least angle regression (LARS) LASSO [122] for
estimating the model instead of the coordinate descent implementation.
This estimation procedure has the advantage of computing the whole
LASSO solution path, which in turn allows to compute the information
criteria or perform CV much faster.

4.2.2. Selecting the regularization hyperparameter
To select 𝜆 we propose a hybrid approach. On a daily basis, we

estimate the hyperparameter using the LARS method with the in-sample
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Fig. 4. Visualization of a sample DNN model.

AIC. Then, using the optimal 𝜆 obtained from the LARS method, we
recalibrate the LEAR using the traditional coordinate descent imple-
mentation.

The reason for proposing this hybrid approach is that it provides
a good trade-off between computational complexity and accuracy. In
particular, it leverages the computational efficiency of LARS for ex-
ante 𝜆 selection with the predictive performance on short calibration
windows of the coordinate descent LASSO.

It is important to note that we have studied multiple approaches to
select 𝜆: (i) daily recalibration, CV, with coordinate descent; (ii) daily
recalibration, CV, with LARS; (iii) daily recalibration with LARS and
AIC. However, the computational cost of the first method was too high
(in the same order of magnitude as the cost of the DNN model), and
the accuracy of the other two was not good. By contrast, the proposed
approach had a performance on par with coordinate descent LASSO
using CV, but with a computational cost that was an order of magnitude
lower.

4.3. The DNN model

The second model is the DNN [57], one of the simplest DL mod-
els whose input features and hyperparameters can be optimized and
tailored for each case study without the need for expert knowledge.
The DNN is a straightforward extension of the traditional multilayer
perceptron (MLP) with two hidden layers.

4.3.1. Structure
The DNN is a deep feedforward neural network that contains 4

layers, employs the multivariate framework (single model with 24
outputs), is estimated using Adam [123], and its hyperparameters and
input features are optimized using the tree Parzen estimator [119], i.e.
a Bayesian optimization algorithm. Its structure is visualized in Fig. 4.

4.3.2. Training dataset
For estimating the hyperparameters, the training dataset is fixed

and comprises the four years prior to the testing period. For evaluating
the testing dataset, the DNN is recalibrated on a daily basis using a
calibration window of four years.

In all cases, the training dataset is split into a training and a valida-
tion dataset, with the latter being used for two purposes: performing
early stopping [124] to avoid overfitting and optimizing hyperpa-
rameters/features. While the validation dataset always comprises 42
weeks, the split between the training and validation datasets depends
on whether the validation dataset is used for hyperparameter/feature
selection or for the recalibration step:

• For estimating the hyperparameters, as the validation dataset is
used to guide the optimization process, the validation dataset
is selected as the last 42 weeks of the training dataset. This
is done to keep the training and validation datasets completely
independent and to avoid overfitting.10

• For the testing phase, as the validation dataset is only used for
early stopping, it is defined by randomly selecting 42 weeks out of
the total 208 weeks employed for training. This is done to ensure
that the dataset used for optimizing the DNN parameters includes
up-to-date data.11

As example, let us consider the training and evaluation of a DNN in
the Nord Pool market. Before evaluating the DNN, the hyperparameter
and features of the DNN are optimized. For that, the employed dataset
comprises the data between 01.01.2013 and 26.12.2016, of which
the training dataset represents the first 166 weeks, i.e. 01.01.2013 to
07.03.2016, and the validation dataset the last 42, i.e. 08.03.2016 to
26.12.2016. During the evaluation of the model, i.e. after the hyper-
parameter and feature selection, the training and validation datasets
comprise the last four years of data but are randomly shuffled. For
example, to evaluate the DNN during 15.02.2017, the training and
validation datasets would represent the data between 20.02.2013 and
14.02.2017, of which 166 randomly selected weeks would define the
training dataset and the remaining 42 the validation dataset.

4.3.3. Hyperparameter and feature selection
As in the original DNN paper [57], the hyperparameters and input

features are optimized together using the tree-structured Parzen esti-
mator [119], a Bayesian optimization algorithm based on sequential
model-based optimization. To do so, the features are modeled as hyper-
parameters, with each hyperparameter representing a binary variable
that selects whether or not a specific feature is included in the model (as
explained in [57]). In more detail, to select which of the 241 available
input features are relevant, the method employs 11 decision variables,
i.e. 11 hyperparameters:

• Four binary hyperparameters (1–4) that indicate whether or not
to include the historical day ahead prices 𝐩𝑑−1, 𝐩𝑑−2, 𝐩𝑑−3, 𝐩𝑑−7.
The selection is done per day,12 e.g. the algorithm either selects
all 24 hourly prices 𝐩𝑑−𝑗 of 𝑗 days ago or does not select any price
from day 𝑑 − 𝑗, hence the four hyperparameters.

• Two binary hyperparameters (5–6) that indicate whether or not
to include each of the day-ahead forecasts 𝐱1𝑑 and 𝐱2𝑑 . As with the
past prices, this is done for the whole day, i.e. a hyperparameter
either selects all the elements in 𝐱𝑗𝑑 or none.

• Four binary hyperparameters (7–10) that indicate whether or not
to include the historical day-ahead forecasts 𝐱1𝑑−1, 𝐱

2
𝑑−1, 𝐱

1
𝑑−7, and

𝐱2𝑑−7. This selection is also done per day.
• One binary hyperparameter (11) that indicates whether or not to

include the variable 𝑧𝑑 representing the day of the week.

In short, 10 binary hyperparameters indicating whether or not to
include 24 inputs each and another binary hyperparameter indicating
whether or not to include a dummy variable.

10 Similar as it is done when splitting the dataset between the training and
the test dataset.

11 For hyperparameter optimization, as the validation dataset represents the
most recent weeks of data, the neural network is trained with data that is
almost one year old. While this is not a big problem when deciding on the
DNN structure, it should be avoided during testing to ensure that the DNN
captures new market effects.

12 This is done for the sake of simplicity to speed up the optimization
procedure of the feature selection. In particular, an alternative could be to
use a binary hyperparameter for each individual historical prices; however, in
most markets, that would mean using 24 as many hyperparameters as there
are 24 different prices per day.
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Besides selecting the features, the algorithm also optimizes eight
additional hyperparameters: (1) the number of neurons per layer, (2)
the activation function, (3) the dropout rate, (4) the learning rate,
(5) whether or not to use batch normalization, (6) the type of data
preprocessing technique, (7) the initialization of the DNN weights, and
(8) the coefficient for L1 regularization that is applied to each layer’s
kernel.

Unlike the weights of the DNN that are recalibrated on a daily basis,
the hyperparameter and features are optimized only once using the four
years of data prior to the testing period. It is important to note that the
algorithm runs for a number 𝑇 of iterations, where at every iteration the
algorithm infers a potential optimal subset of hyperparameters/features
and evaluates this subset in the validation dataset. For the proposed
open-access benchmark models, 𝑇 is selected as 1500 iterations to
obtain a trade-off between accuracy and computational requirements.13

4.4. Ensembles

For the open-access benchmark, in order to have benchmark predic-
tions when evaluating ensemble techniques, we also propose ensembles
of LEAR and DNNs as open-access benchmarks of ensembles methods.
For the LEAR, the ensemble is built as the arithmetic average of
forecasts across four calibration window lengths: 8 weeks, 12 weeks,
3 years, and 4 years. For the DNN, the ensemble is built as the arith-
metic average of four different DNNs that are estimated by running the
hyperparameter/feature selection procedure four times. In particular,
the hyperparameter optimization is asymptotically deterministic, i.e.
the global optimum is found for an infinite number of iterations.
However, for a finite number of iterations and using a different initial
random seed, the algorithm is non-deterministic and every run provides
a different set of hyperparameters and features. Although each of
these hyperparameter/feature subsets represent a local minimum, it is
impossible to establish which of the subsets is better as their relative
performance on the validation dataset is nearly identical. This effect
can be explained by the fact that the DNN is a very flexible model and
thus different network architectures are able to obtain equally good
results.

4.5. Software implementation

The proposed open-access models are developed in python: the
LEAR is implemented using the scikit-learn library [125] and
the DNN model using the Keras library [126]. The reason for select-
ing python is that it is one of the most widely used programming
languages, especially in the context of ML and statistical inference.

5. Guidelines and best practices in EPF

As motivated in the introduction, the field of EPF suffers from
several problems that prevent having reproducible research and estab-
lishing strong conclusions on what methods work best. In this section,
we outline some of these issues and provide some guidelines on how
to address them.

13 It can be empirically observed that the performance of the models barely
improves after 1000 iterations. Moreover, performing 1500 iterations takes
approximately just one day on a regular quadcore laptop like the i7-6920HQ,
a computation cost very acceptable when the algorithm has to run only once.

5.1. Length of the test period

A common practice in EPF is to evaluate new methods on very
short test periods. The typical approach is to evaluate the method on
4 weeks of data [18,19,22,24–26,29,30,41,42,49,51,97,102–107,110],
with each week representing one of the four seasons in the year. This
is problematic for three reasons:

• Selecting four weeks can lead to cherry-picking the weeks where a
given method excels, e.g. a method that performs bad with spikes
could be evaluated in a week with fewer spikes, leading in turn
to biased estimations of the forecasting accuracy. While this is an
ethical issue that most researchers would avoid, establishing four
week testing periods as the standard does facilitate malpractice
and should be avoided.

• Assuming that the four weeks are randomly selected and no bias
is introduced in the selection, it is still not possible to guarantee
that these four weeks are representative of the price behavior over
a whole year. Particularly, even within a given season, the price
dynamics can change dramatically, e.g. during winter there are
weeks with a lot of sun and wind but there are also weeks without
them. Therefore, picking only a week per season rarely represents
the average performance of a forecaster in a given dataset.

• There are situations in the electrical grid that do not occur very
often but that can have a very large effect on electricity prices,
e.g. when several power plants are under maintenance at the
same time. Forecasting methods need to be evaluated under those
conditions to ensure that they are also accurate under extreme
events. By selecting four weeks most of these effects are neglected.

To avoid this problem, we recommend using a minimum of one year
as a testing period. This ensures that forecasting methods are evaluated
considering the complete set of effects that take place during the year.
To guarantee that all researchers have access to this type of data, the
open-access benchmark dataset that we propose contains data from
several markets and employs a testing period of two years. In addition,
the open-access benchmark can be directly accessed using the proposed
epftoolbox library [58,59].

5.2. Benchmark models

A second issue with many EPF publications is that new methods
are not compared with well-established methods [14,16,18–21,23,25,
27,34,36,42,46,48–50,88,100,104,106,111] or resort to comparisons
using either outdated methodologies or simplified methods [13,15,22,
24,26,28–30,37,41,44,45,47,51,52,95,96,102,103].

This poses a problem since it becomes very hard to establish which
algorithms work best and which ones do not. To address this is-
sue, we recommend using well-established state-of-the-art open-source
methods and a common benchmark dataset. With that in mind, we
have provided and made freely available an open-access benchmark
dataset comprising 5 markets (as described in Section 3), and we have
implemented, thoroughly tested, and made freely available two state-
of-the-art forecasting methods (as described in Section 4) and their
day-ahead predictions for all 5 datasets over a period of two years (as
described in Section 6). Additionally, we have implemented all these
resources in an easy-to-use toolbox [58] and adequately documentated
it [59].

5.3. Open-access

A third issue in the field of EPF is that datasets are usually not made
publicly available and the code of the proposed methods is not shared.
This poses four obvious problems:
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• Research cannot be reproduced as data is not available. This goes
against one of the main principles of science as all research should
be reproducible.

• The progress of EPF research is hindered since it is hard to estab-
lish which methodologies work well. Consequently, researchers
spend unnecessary time re-evaluating methodologies that have
been evaluated already.

• Comparing new methods with published ones becomes very chal-
lenging because researchers have to re-implement methods from
the literature. As a result, comparisons with state-of-the-art meth-
ods are often avoided, and new methods are usually compared
with simple and easy-to-implement methods.

• When new methods are proposed, they cannot be compared with
published methods under the same circumstances. This leads to
comparisons under different conditions and opens up the door to
wrong implementations of the original methods, which in turn
leads to results that are not correct.

As these problems are critical, we directly try to address them by
providing an open-access benchmark/toolbox comprising five datasets,
two state-of-the-art methods, and a set of day-ahead forecasts of the
latter two methods. In addition, we encourage researchers in EPF to
share the developed codes and to either share their datasets or use an
open-access benchmark dataset.

5.4. Evaluation metrics for point forecasts

In the field of EPF, the most widely used metrics to measure the
accuracy of point forecasts are the mean absolute error (MAE), the
root mean square error (RMSE), and the mean absolute percentage error
(MAPE):

MAE = 1
24𝑁d

𝑁d∑
𝑑=1

24∑
ℎ=1

|𝑝𝑑,ℎ − �̂�𝑑,ℎ|, (5)

RMSE =

√√√√ 1
24𝑁d

𝑁d∑
𝑑=1

24∑
ℎ=1

(𝑝𝑑,ℎ − �̂�𝑑,ℎ)2, (6)

MAPE = 1
24𝑁d

𝑁d∑
𝑑=1

24∑
ℎ=1

|𝑝𝑑,ℎ − �̂�𝑑,ℎ|
|𝑝𝑑,ℎ| , (7)

where 𝑝𝑑,ℎ and �̂�𝑑,ℎ respectively represent the real and forecasted price
on day 𝑑 and hour ℎ, and 𝑁d is the number of days in the out-of-sample
test period, i.e. in the test dataset.

Since absolute errors are hard to compare between different
datasets, the MAE and RMSE are not always very informative. More-
over, since electricity costs and profits are often linearly dependent on
the electricity prices, metrics based on quadratic errors, e.g. RMSE, are
hard to interpret and do not accurately represent the underlying prob-
lem of most forecasting users. In particular, in most electricity trade
applications, the underlying risk, profits, and costs depend linearly on
the price and on the forecasting errors. Hence, linear metrics represent
better than quadratic metrics the underlying risks of forecasting errors.

Similarly, since MAPE values become very large with prices close
to zero (regardless of the actual absolute errors), the MAPE is usually
dominated by the periods of low prices and is also not very informative.
While the symmetric mean absolute percentage error (sMAPE) defined14

as:

sMAPE = 1
24𝑁d

𝑁d∑
𝑑=1

24∑
ℎ=1

2
|𝑝𝑑,ℎ − �̂�𝑑,ℎ|
|𝑝𝑑,ℎ| + |�̂�𝑑,ℎ| (8)

solves some of these issues, it has (as any metric based on percent-
age errors) a statistical distribution with undefined mean and infinite
variance [128].

14 Note, that there are multiple versions of sMAPE, here we consider the
most sensible one according to [127].

5.4.1. Scaled errors
In this context, several studies advocate for the use of scaled er-

rors [5,128,129], where a scaled error is simply the MAE scaled by
the in-sample MAE of a naive forecast. A scaled error has the nice
interpretation of being lower/larger than one if it is better/worse than
the average naive forecast evaluated in-sample.

A metric based on this concept is the mean absolute scaled error
(MASE), and in the context of one-step ahead forecasting is defined
as [128]:

MASE = 1
𝑁

𝑁∑
𝑘=1

|𝑝𝑘 − �̂�𝑘|
1

𝑛−1
∑𝑛

𝑖=2 |𝑝in𝑖 − 𝑝in𝑖−1|
, (9)

where 𝑝in𝑖 is the 𝑖th price in the in-sample, i.e. training, dataset (note
that in EPF 𝑖 = 24𝑑+ℎ), 𝑝in𝑖−1 is the one-step ahead naive forecast of 𝑝in𝑖 ,
i.e. �̂�in𝑖 , 𝑁 is the number of out-of-sample (test) datapoints, and 𝑛 the
number of in-sample (training) datapoints. For seasonal time series, the
MASE may be defined using the MAE of a seasonal naive model in the
denominator [5,129].

5.4.2. Relative measures
While scaled errors do indeed solve the issues of more traditional

metrics, they have other associated problems that make them unsuit-
able in the context of EPF:

1. As MASE depends on the in-sample dataset, forecasting meth-
ods with different calibration windows will naturally have to
consider different in-sample datasets. As a result, the MASE
of each model will be based on a different scaling factor and
comparisons between models cannot be drawn.

2. The same argument applies to models with and without rolling
windows. The latter will use a different in-sample dataset at ev-
ery time point while the former will keep the in-sample dataset
constant.

3. In ensembles of models with different calibration windows, the
MASE cannot be defined as the calibration window of the en-
semble is undefined.

4. Drawing comparisons across different time series is problematic
as electricity prices are not stationary. For example, an in-sample
dataset with spikes and an out-of-sample dataset without spikes
will lead to a smaller MASE than if we consider the same market
but with the in-sample/out-sample datasets reversed.

To solve these issues, we argue that a better metric is the relative
MAE (rMAE) [128,130]. Similar to MASE, it normalizes the error by
the MAE of a naive forecast. However, instead of considering the in-
sample dataset, the naive forecast is built based on the out-of-sample
dataset. For day-ahead electricity prices of hourly frequency, rMAE is
defined as:

rMAE =

1
24𝑁d

𝑁d∑
𝑑=1

24∑
ℎ=1

|𝑝𝑑,ℎ − �̂�𝑑,ℎ|

1
24𝑁d

𝑁d∑
𝑑=1

24∑
ℎ=1

|𝑝𝑑,ℎ − �̂�naive𝑑,ℎ |
, (10)

where the 1
24𝑁𝑑

factor cancels out in the numerator and the denomina-
tor. There are three natural choices for the naive forecasts:

• �̂�naive,1𝑑,ℎ = 𝑝𝑑−1,ℎ,
• �̂�naive,2𝑑,ℎ = 𝑝𝑑−7,ℎ,

• �̂�naive,3𝑑,ℎ =

{
𝑝𝑑−1,ℎ, if 𝑑 is Tue, Wed, Thu, or Fri,
𝑝𝑑−7,ℎ, if 𝑑 is Sat, Sun, or Mon.

In the context of EPF, rMAE using �̂�naive,2𝑑,ℎ = 𝑝𝑑−7,ℎ is arguably the
best choice for two reasons: (i) it is easier to compute than the one
based on �̂�naive,3𝑑,ℎ and, unlike the rMAE based on �̂�naive,1𝑑,ℎ , it captures
weekly effects; (ii) given a set of forecasting models, the relative
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ranking of the accuracy of the models is independent from the naive
benchmark used (see the last paragraph of this subsection for an
explanation). Hence, in the remainder of the article we will use rMAE
to explicitly refer to the rMAE based on �̂�naive,2𝑑,ℎ . It is important to note
that, similar to rMAE, one could also define the relative RMSE (rRMSE)
by dividing the RMSE of each forecast by the RMSE of a naive forecast.

Since the dependence on the in-sample dataset is removed, using
a rolling window is no longer a problem as the out-of-sample dataset
stays the same. Similarly, models with different calibration windows
can be compared and the rMAE of ensembles is properly defined. More-
over, as the metric is normalized by the MAE of a naive forecast for the
same sample, the problem with drawing conclusions in non-stationary
time series is mitigated.

Due to its better properties, rMAE should always be used to evaluate
new methods in EPF. In particular, while it can be used in conjunction
with other metrics, it is important to include and employ rMAE to
obtain more fair evaluations and comparisons.

With that in mind, the accuracy of the open-access models in the
open-access benchmark dataset is computed considering rMAE, sMAPE,
MAPE, MAE, and RMSE. Then, an analysis of the different metrics
is provided (see Section 6.4.2). Finally, the forecasts themselves are
provided as csv files so that the accuracy results can be updated in case
more adequate metrics are developed in the future.

As a final remark, let us note that, given a set of forecasting models,
the relative ranking of the accuracy of the models is independent from
the naive benchmark used for the rMAE or MASE. Changing it simply
changes the denominator but preserves the numerator, and since the
change in the denominator is the same across all methods, the relative
ranking is preserved. Furthermore, as the numerator is the MAE, it
follows that the ranking based on the rMAE or MASE will be the same
as that based on the MAE.

5.5. Statistical testing

While using adequate metrics to compare the accuracy of the fore-
casts is important, it is also necessary to analyze whether any difference
in accuracy is statistically significant. This is paramount to conclude
whether the difference in accuracy does really exist and is not simply
due to random differences between the forecasts. Despite its impor-
tance, the use of statistical testing has been downplayed in the EPF
literature [5]. In particular, most publications only compare the ac-
curacy in terms of an error metric and do not analyze the statistical
significance of the accuracy differences. This trend needs to be cor-
rected in order to compare forecasting approaches with statistical rigor.
Particularly, new studies need to ensure that:

• Any new method is compared against well-established methods
using a statistical test.

• The forecasts of the proposed methods are provided as open-
access datasets. This ensures that, when new models are proposed,
the difference in accuracy with the published methods can be
analyzed in terms of statistical testing.

To facilitate statistical testing, we include in the proposed open-
source epftoolbox library [58,59] the two most widely used statis-
tical tests in EPF, i.e. the Diebold–Mariano and the Giacomini–White
tests.

5.5.1. The Diebold–Mariano test
The Diebold–Mariano (DM) test [131] is probably the most com-

monly used tool to evaluate the significance of differences in forecast-
ing accuracy. It is an asymptotic z-test of the hypothesis that the mean
of the loss differential series:

𝛥A,B
𝑑,ℎ = 𝐿(𝜀A𝑑,ℎ) − 𝐿(𝜀B𝑑,ℎ) (11)

is zero, where 𝜀Z𝑑,ℎ = 𝑝𝑑,ℎ − �̂�𝑑,ℎ is the prediction error of model Z for
day 𝑑 and hour ℎ, and 𝐿(⋅) is the loss function. For point forecasts,

we usually take 𝐿(𝜀Z𝑑,ℎ) = |𝜀Z𝑑,ℎ|
𝑝 with 𝑝 = 1 or 2, which corresponds

to the absolute and squared losses, respectively; for probabilistic fore-
casts, 𝐿(⋅) may be any strictly proper scoring rule, in particular the
pinball loss, the continuous ranked probability score (CRPS), or the energy
score [6,63,65]. Given the loss differential series, we compute the
statistic:

DM =
√
𝑁

�̂�
�̂�
, (12)

where �̂� and �̂� are the sample mean and standard deviation of 𝛥A,B
𝑑,ℎ ,

respectively, and 𝑁 is the length of the out-of-sample test period. Under
the assumption of covariance stationarity of 𝛥A,B

𝑑,ℎ , the DM statistic is
asymptotically standard normal, and one- or two-sided asymptotic tail
probabilities can be easily computed.

It is important to note three things. Firstly, the DM test is model-
free, i.e. it compares forecasts (of models), not models themselves.
Secondly, although in the standard formulation [131] the DM test com-
pares forecasts via the null hypothesis of the expected loss differential
being zero, it is more informative to compute the 𝑝-values of two
one-sided tests:

1. with the null hypothesis 𝐻0 ∶ 𝐸(𝛥A,B
𝑑,ℎ ) ≤ 0,

2. with the alternative hypothesis null 𝐻1 ∶ 𝐸(𝛥A,B
𝑑,ℎ ) ≥ 0.

The lower the 𝑝-value,15 i.e. the closer it is to zero, the more the
observed data is inconsistent with the null hypothesis. If the 𝑝-value
is less than the commonly accepted level of 5%, the null hypothesis is
typically rejected. In the DM test, this means that the forecasts of model
B are significantly more accurate than those of model A.

Thirdly, the DM test requires (only) that the loss differential be
covariance stationary.16 This may not be satisfied by forecasts in day-
ahead markets, since the predictions for all 24 h of the next day are
computed at the same time, using the same information set. Hence,
following [63], we recommend two variants of the DM test in the
context of day-ahead EPF:

• a univariate variant with 24 independent tests performed,17 one
for each hour of the day, and comparisons based on the number
of hours for which the predictions of one model are significantly
better than those of another, i.e. the number of hours for which
the null hypothesis is rejected,

• a multivariate variant with the test performed jointly for all hours
using the ‘daily’ or multivariate loss differential series:

𝛥A,B
𝑑 = ‖𝜀A𝑑 ‖𝑝 − ‖𝜀B𝑑 ‖𝑝, (13)

where 𝜀Z𝑑 is the 24-dimensional vector of prediction errors of
model Z for day 𝑑, ‖𝜀Z𝑑‖𝑝 = (

∑24
ℎ=1 |𝜀Z𝑑,ℎ|

𝑝)1∕𝑝 is the 𝑝th norm of
that vector with 𝑝 = 1 or 2.

The univariate version of the test has the advantage of providing a
deeper analysis as it indicates which forecast is significantly better for
which hour of the day [6,55,57,65,133,134]. The multivariate version,
introduced in [64], enables a better representation of the results as it
summarizes the comparison in a single 𝑝-value, which can be conve-
niently visualized using heat maps arranged as chessboards [9,10,69,
80], see Fig. 5.

15 Recall, that the 𝑝-value is the probability of obtaining results (in our case
— loss differentials) at least as large as the ones actually observed, assuming
that the null hypothesis is correct.

16 Actually covariance stationarity is sufficient but may not be strictly
necessary [132].

17 We assume that a day-ahead market has 24 prices. For markets with prices
every half hour, the univariate variant comprises 48 independent tests.
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5.5.2. The Giacomini–White test
In some of the more recent EPF studies [81,135,136], the DM test

has been replaced by the Giacomini–White (GW) test [137] for condi-
tional predictive ability. The latter is preferred because it can be regarded
as a generalization of the DM test for unconditional predictive ability :
while both tests can be used for nested and non-nested models,18 only
the GW test accounts for parameter estimation uncertainty through
‘conditioning’ [63].

Like the DM test, also the GW test has two variants in day-ahead EPF
— the univariate and the multivariate. Without loss of generality, let us
focus on the latter. It starts by building a multivariate loss differential
series, see (13), for a pair of forecasts (of models A and B). Next, the
test considers the following regression:

𝛥A,B
𝑑 = 𝝓′𝑋𝑑−1 + 𝜖𝑑 , (14)

where 𝑋𝑑−1 contains elements from the information set on day 𝑑 − 1,
i.e. a constant and lags of 𝛥A,B

𝑑 . Note that 𝜖𝑑 ≠ 𝜀Z𝑑 , i.e. 𝜖𝑑 is not the
24-dimensional vector of prediction errors for day 𝑑 and model 𝑍 but
simply an error term in the regression. Also note that using this notation
the DM test can be written as [138]:

𝛥A,B
𝑑 = 𝜇 + 𝜖𝑑 , (15)

i.e. with 𝑋𝑑−1 containing just a constant. Finally, like for the DM test,
to check the significance of differences in forecasting accuracy, the 𝑝-
values of two one-sided tests can be computed. The interpretation and
possible visualization (see Fig. 5) are analogous to that of the DM test.

5.6. Recalibration

An issue with many EPF studies is that forecasting models are not
recalibrated. Instead, they are often estimated once using the training
dataset and directly evaluated over the whole test dataset. This is prob-
lematic as it does not represent real-life conditions where forecasting
models are retrained (often on a daily basis) to account for the latest
market information.

To have models that are evaluated in realistic conditions, they need
to be retrained considering the new incoming flow of market informa-
tion. As an example, for the day-ahead market, a forecasting model
should be retrained on a daily basis as new information is available.
Considering a testing period of a year, this means that a realistic
evaluation requires estimating the forecasting model 365 times.

5.7. Ex-ante hyperparameter optimization

A common issue in the current EPF literature is that the hyper-
parameter selection is often either done ex-post [49,51,139–142] or
its details are not sufficiently explained [13,21,37,48,89,92,102–104,
107,110]. As an example, when models based on neural networks are
proposed, the details on how the number of neurons are selected are
usually not provided. In other cases, while the approach is provided, it
is often based on analyzing different configurations of neurons using
the test dataset and selecting the one that works best, i.e. ex-post
hyperparameter selection.

Not providing enough details on how hyperparameters are selected
is an obvious problem as it prevents reproducing research. Similarly,
performing hyperparameter optimization ex-post leads to overfitting
the test dataset, i.e. the model is partially optimized using the same
dataset used for evaluating the model, and it grants the model an unfair
and non-existent advantage over other models.

To prevent this, the selection of hyperparameters should be ex-
plicitly explained and always performed ex-ante using a validation

18 This holds as long as the calibration window does not grow with the
sample size [138]. This is satisfied for rolling windows, but not for extended
calibration windows.

dataset. With that motivation, for the open-access methods proposed,
not only do we explain how the hyperparameters are obtained, but we
also provide within the toolbox [58,59] a module for hyperparameter
selection and the files containing the results of the hyperparameter
optimization of the current study.

5.8. Computation time

An even more common problem is the fact that new models are very
rarely compared in terms of their computational requirements [19,20,
22,24,32,37,41,42,51,100,102,103,105–108,111]. Although a model
might be marginally better than another, it might not be worthwhile
to deploy it in a practical application if its computational requirements
are much larger. Particularly, higher computational requirements might
pose two problems:

1. As mentioned before, forecasting models should ideally be re-
calibrated on a daily basis. Hence, a forecasting method is only
suitable if its computational time allows this recalibration to take
place. In this context, the maximum available time for estimating
a model will depend on each electricity market but, as a rule of
thumb, it can be argued that any model that requires more than
30 min or 1 h will unlikely be suitable for forecasting prices in
the spot markets.

2. Besides recalibration, the second issue with computation time
is its cost. If the computational capabilities are too large, the
benefits of using a marginally better forecast might be lower
than the cost of running the forecasting model on a much more
expensive computer.

Hence, when new forecasting models are proposed, we argue that
it is very important to provide their computation times. Moreover, we
also argue that for a model to be better than the existing methods, it
does not necessarily have to be the most accurate one. Instead:

1. If its computational time is large, i.e. in the order of minutes, the
model should indeed be more accurate than all state-of-the-art
models, e.g. DNNs.

2. If its computational time is small, i.e. in the order of seconds, the
model should be more accurate than the state-of-the-art models
with low computational requirements, e.g. LEAR.

In this article, we provide an analysis of the computational require-
ments of the proposed open-access models so other researchers can
easily make such comparisons.

5.9. Reproducibility

Another related issue is that some studies lack enough details to
replicate the research. Missing details vary from study to study but the
four most common are:

1. the dataset used for testing and evaluation is not defined [31–
37];

2. the dataset used for training is not defined [21,33,35,41,42];
3. the inputs of the model are unclear [35,36,38–40];
4. the selection of hyperparameters is unclear [13,21,37,48,89,92,

102–104,107,110].

To correct this, future EPF papers should provide enough details to
allow replication and reviewers should verify that all necessary details
of the employed datasets are always provided.
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5.10. Data contamination

Another recurrent issue in the EPF literature is data contamination,
which appears when a part of the training dataset is used for testing.
Particularly, when working with time series data the test dataset should
always comprise the last part of the dataset to avoid data contamina-
tion. If this is not done, the models can overfit the testing dataset and
their accuracy can be overestimated.

Despite the importance of correctly separating the training/
validation dataset from the testing dataset, some studies in EPF:

1. Do not specify the split between the training, validation, and test
datasets [21,31–37,41,42]. If the datasets are not specified, it is
not possible to know whether data contamination occurs.

2. Randomly sample the test dataset from the full dataset [143–
146], e.g. in a dataset comprising a year of data randomly
selecting 4 weeks for testing and the remaining data for training.

3. Have a partial or total overlap between the training/validation
dataset and the testing dataset [51,139,140,147], e.g. by per-
forming hyperparameter optimization ex-post.

To correct this issue, it is important that any future research in EPF
ensures that: (1) the split between the datasets is correctly described;
(2) the test dataset does never overlap with the training or validation
datasets; (3) the test dataset is always selected as the last segment of
the full dataset.

5.11. Software toolboxes

A less pressing yet relevant issue is the use of state-of-the-art soft-
ware toolboxes. When comparing new methods with methods from
the literature, the latter should be modeled using adequate toolboxes.
Particularly, it is important to use toolboxes that are continuously
updated as implementing methods using outdated libraries leads to
unfair evaluations.

For example, in the context of neural networks, there are several
open-source state-of-the-art toolboxes [126] that are continuously up-
dated and that grant access to the latest development in the field of DL.
Yet, in the context of EPF, new methods are often compared with neural
networks that are modeled using the MATLAB toolbox [32,38,41,42,49,
102,103,105,144], a toolbox that for many years was outdated and did
not include many of the neural network developments that are critical
in EPF, e.g. state-of-the-art activation functions or stochastic gradient
descent algorithms [57]. As a result, many of the existing comparisons
in EPF are based on evaluations where the accuracy of neural networks
might be underestimated.

Besides using state-of-the-art software toolboxes, e.g. the python
library keras for deep learning, it is also important to employ (when-
ever possible) free-to-access libraries so that research can be replicated
by anyone.

5.12. Combining forecasts

As a final guideline, it is important to indicate the importance
of ensembles in the context of EPF. In general, although exceptions
exist [148], combining different models leads to a higher accuracy [81,
134] and it is thus a good idea to build forecasts based on multiple
models. However, as even the arithmetic average improves the accu-
racy of individual models, new ensemble techniques should be studied
in comparison with other ensemble techniques, i.e. as done in [134],
and not simply w.r.t. the individual models.

To maximize the forecasting accuracy, it is important to employ
diverse forecasts [148], e.g. forecasts generated using different data or
different models. For EPF, the former can be achieved by considering
models trained using different calibration window lengths [80,135]
and the latter using different modeling techniques or different sets of

hyperparameters. To further maximize the performance, the number
of models used in the ensemble should be limited [148], e.g. 4–10,
especially in the case of heavy-tailed data for which large ensembles
tend to contain outliers more often, resulting in less accurate forecasts.

With that in mind, as part of the open-access benchmark and tool-
box [58,59], we also propose a series of simple ensemble techniques.
Particularly, as explained in Section 4, we provide an ensemble of four
LEAR models that are estimated over different calibration windows
and combined using a simple arithmetic average and another ensemble
using four DNNs that are estimated for different hyperparameters and
combined using the arithmetic average.

6. Evaluation of state-of-the-art methods

In this section, we present the results of the open-source benchmark
methods for all five datasets. For the sake of clarity, we divide the
section into two parts respectively comprising the results for the error
metrics and the results for statistical testing.

6.1. Accuracy metrics

We first start by presenting the results of the open-access benchmark
models in terms of accuracy metrics.

6.1.1. Individual models
Table 2 compares the performance of the two individual models

and their 4 variations in terms of rMAE, MAE, MAPE, SMAPE, and
RMSE. The LEAR model is displayed for 4 different calibration windows
representing 56, 84, 1092, and 1456 days, i.e. 8 weeks, 12 weeks,
3 years, and 4 years. The four DNNs are obtained by performing the
hyperparameter/feature optimization process four times and using the
best hyperparameter/feature selection of every run (see Sections 4.4
and 4.3.3 for further details).19 Several observations can be made:

• The MAPE seems an unreliable metric as it completely disagrees
with the other three linear metrics and the quadratic metric.
In particular, while the rMAE, MAE, and sMAPE agree on what
the best model is in all the cases, the MAPE almost never does
so. This unreliability can be further seen in the German market:
while the MAPE and sMAPE metrics usually have similar orders
of magnitude, in the case of the German market the MAPE is
approximately 10 times larger. This effect is due to prices in
Germany being negative and very close to 0, leading in turn to
very large absolute percentage errors that bias the MAPE.

• The DNN models seem to be more accurate than the LEAR models.
Particularly, in terms of linear metrics, the best model across the
five marketplaces is a DNN. Moreover, the majority of the DNN
models perform better than the four LEAR models.

• Although the RMSE displays slightly different results, this is ex-
pected as the metric is based on quadratic errors and not linear
ones. Nonetheless, it still shows the superiority of the DNN model:
even though the DNN is estimated by minimizing absolute errors
(unlike LEAR), the DNN is better in 3 of the 5 datasets. Moreover,
even though the DNN seems to be worse in two markets, the
RMSE metric does not correctly represent the underlying problem
(see Sections 5.4 and 6.4.1) and it can be argued that it is not the
best metric to assess the performance of EPF models.

19 Note that, for the sake of simplicity, the features and hyperparameter
selection for each model are not provided. However, they can be obtained
from the website [58] accompanying this study.
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Table 2
Comparison between the two individual state-of-the-art open-source methods in terms of rMAE, MAE, MAPE, sMAPE, and
RMSE. Each of the two methods is listed for four different configurations. The gray cells represent the best model for a given
metric.

DNN1 DNN2 DNN3 DNN4 LEAR56 LEAR84 LEAR1092 LEAR1456

NP

rMAE 0.435 0.512 0.414 0.455 0.475 0.472 0.482 0.481
MAE 1.797 2.118 1.712 1.883 1.964 1.952 1.993 1.990
MAPE [%] 5.738 6.527 5.584 5.814 6.336 6.357 6.099 6.144
sMAPE [%] 5.167 5.982 4.970 5.367 5.656 5.619 5.641 5.658
RMSE 3.474 3.859 3.360 3.489 3.671 3.664 3.605 3.604

PJM

rMAE 0.511 0.499 0.491 0.486 0.550 0.548 0.490 0.489
MAE 3.234 3.157 3.105 3.075 3.477 3.467 3.098 3.095
MAPE [%] 30.622 29.345 27.554 27.975 32.520 32.341 30.279 30.239
sMAPE [%] 12.518 12.212 12.271 12.004 13.677 13.576 12.331 12.538
RMSE 6.231 6.773 5.200 5.498 5.718 5.709 5.264 5.142

EPEX
rMAE 0.620 0.621 0.620 0.597 0.682 0.669 0.649 0.653

BE
MAE 6.299 6.308 6.297 6.068 6.924 6.798 6.594 6.634
MAPE [%] 24.650 27.710 27.578 25.466 32.878 32.343 26.256 22.645
sMAPE [%] 14.543 14.723 14.980 14.106 16.197 15.954 16.867 17.293
RMSE 16.360 16.666 16.115 15.950 16.371 16.291 16.458 16.420

EPEX
rMAE 0.575 0.573 0.554 0.591 0.638 0.624 0.580 0.597

FR
MAE 4.218 4.198 4.063 4.334 4.681 4.575 4.250 4.378
MAPE [%] 14.284 13.757 15.160 15.513 19.031 18.087 14.955 14.896
sMAPE [%] 12.124 11.698 11.488 12.176 13.427 13.281 13.250 14.054
RMSE 11.772 12.345 11.880 12.354 11.732 10.759 11.337 11.462

EPEX
rMAE 0.407 0.422 0.406 0.394 0.506 0.499 0.450 0.451

DE
MAE 3.716 3.850 3.706 3.592 4.619 4.555 4.108 4.118
MAPE [%] 77.145 137.449 100.214 90.578 129.763 133.580 128.295 124.191
sMAPE [%] 14.970 15.356 15.508 14.680 17.600 17.491 16.984 17.054
RMSE 6.796 7.304 6.271 6.080 8.122 7.923 6.996 6.987

Table 3
Comparison between the ensembles of the state-of-the-art open-source methods in terms of
rMAE, MAE, MAPE, sMAPE, and RMSE. The comparison also includes, for each market, the
best individual performing DNN and LEAR model in terms of rMAE and MAE, i.e. the two most
reliable metrics. The gray cells represent the best model for a given metric.

DNN Ensemble LEAR Ensemble Besta DNN Best LEAR

NP

rMAE 0.407 0.420 0.414 0.472
MAE 1.683 1.738 1.717 1.952
MAPE [%] 5.384 5.533 5.584 6.357
sMAPE [%] 4.880 5.009 4.970 5.619
RMSE 3.319 3.362 3.360 3.664

PJM

rMAE 0.452 0.476 0.486 0.489
MAE 2.862 3.013 3.075 3.095
MAPE [%] 27.478 30.134 27.975 30.239
sMAPE [%] 11.331 11.980 12.004 12.538
RMSE 5.040 5.127 5.498 5.142

EPEX
rMAE 0.578 0.604 0.597 0.649

BE
MAE 5.870 6.140 6.068 6.594
MAPE [%] 24.892 20.720 25.466 26.256
sMAPE [%] 13.446 14.546 14.106 16.867
RMSE 15.966 15.974 15.950 16.458

EPEX
rMAE 0.527 0.543 0.554 0.580

FR
MAE 3.866 3.980 4.063 4.250
MAPE [%] 13.601 14.680 15.160 14.955
sMAPE [%] 10.812 11.566 11.488 13.250
RMSE 11.867 10.676 11.880 11.337

EPEX
rMAE 0.374 0.433 0.394 0.450

DE
MAE 3.413 3.955 3.592 4.108
MAPE [%] 94.434 122.412 90.578 128.295
sMAPE [%] 14.078 15.747 14.680 16.984
RMSE 5.927 7.079 6.080 6.996

aBest in terms of rMAE/MAE.

6.1.2. Ensembles
The results for the ensemble methods are listed in Table 3, which

compares the performance of the two ensemble models and the best
DNN and LEAR models in terms of the rMAE metric, i.e. arguably the
most reliable metric. From the table, several observations can be made:

• As already argued in Section 5.12, combining models usually
improves the accuracy. Particularly, the ensemble of DNNs is
better than the best individual DNN model for all five markets and
for all reliable metrics. Similarly, the ensemble of LEAR models
is better than the best individual LEAR model for all markets and
reliable metrics. The exception to this observation are the MAPE

and RMSE metrics but, as already noted, MAPE is an unreliable
metric and RMSE does not correctly represent the underlying
problem of EPF.

• As before, in terms of rMAE, the ensemble of DNNs is the most
accurate model across all markets, which again seems to suggest
that the DNN models are more accurate than the LEAR models.

6.2. Statistical testing

In this section, we present the results of the open-access benchmark
models in terms of the statistical tests. For the sake of simplicity, we
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Fig. 5. Results of the GW test with the multivariate loss differential series (16) for the eight individual models and the two ensembles. A heat map is used to indicate the range
of the obtained 𝑝-values for each of the five markets. The closer the p-values are to zero (dark green), the more significant the difference is between the forecasts of a model on
the 𝑋-axis (better) and the forecasts of a model on the 𝑌 -axis (worse). Black color indicates p-values above the color map limit, i.e. p-values larger or equal than 0.10.

present together the results for individual methods and ensembles. The
results are based on the multivariate GW test using the 𝐿1 norm in (13),
i.e. with the following loss differential series:

𝛥A,B
𝑑 =

24∑
ℎ=1

|𝜀A𝑑,ℎ| −
24∑
ℎ=1

|𝜀B𝑑,ℎ|. (16)

While squared losses could also be used, we do not consider them here
because absolute errors better represent the underlying problem in EPF,
see Section 6.4.1 for a discussion.

In Fig. 5 we display the results for the five markets. More precisely,
we use heat maps arranged as chessboards to indicate the range of the
obtained 𝑝-values. The closer they are to zero (dark green) the more
significant is the difference between the forecasts of a model on the
X-axis (better) and the forecasts of a model on the 𝑌 -axis (worse). For
instance, for the EPEX-DE market the first row is green indicating that
the forecasts of LEAR56 are significantly outperformed by those of all
other models. We can observe that:

• For all markets the last column is green indicating that the fore-
casts of the ensemble of DNNs are statistically significantly better
than the predictions of all the other models for all 5 datasets.
The only exception is the LEAR ensemble and the NP market,
a scenario in which the difference in forecasting accuracy is not
statistically significant.

• The forecasts of LEARens are statistically significantly better than
those of all individual LEAR models. Together with the previous
observation, i.e. the superiority of the DNN ensemble, it shows
that the predictions of ensemble models usually improve upon the
forecasting accuracy of individual methods.

• In two datasets (EPEX-BE and EPEX-DE), the forecasts of all the
individual DNN methods are statistically significantly better than
those of the individual LEAR models. In the EPEX-FR dataset,
the forecasts of all the individual DNN methods are statistically
significantly better than 3 out of the 4 individual LEAR models.
For PJM, there are 2 DNN models whose forecasts are statistically
significantly better than those of all LEAR models.

• Aside from the poor-performing DNN2 model for the NP dataset,
the forecasts of the individual LEAR models are never signifi-
cantly better than those of the individual DNN models. Overall,
it seems that forecasts based on DNNs are more likely to obtain
significantly better results; this is particularly true for the DNN
ensemble.

6.3. Computation time

As described in Section 5.8, besides comparing the predictive ac-
curacy, it is also necessary to analyze the computation time of the
forecasting methods. Table 4 lists a comparison of the computation time
required for estimating the models considered, i.e. the time required to
recalibrate each model on a daily basis. As the computation time is non-
deterministic, its value is given as a range. These data were obtained
using a regular laptop quadcore CPU, i.e. the i7-6920HQ.

As can be observed, although the LEAR model performs slightly
worse than the DNN model, its computation time is 30 to 100 times
lower; particularly, when considering the maximum computation time
of both methods, the LEAR model is 50 times faster.

6.4. Discussion and remarks

In this section, we provide some final remarks behind the motiva-
tion of the metrics employed, we briefly analyze the influence of the
different metrics considered, and provide a discussion on comparing
new models.

6.4.1. Absolute vs. squared errors
Throughout the text, we have mostly considered accuracy metrics

based on absolute/linear errors, i.e. metrics that evaluate the accuracy
of predicting the median of the distribution. Since the LEAR model is
estimated by minimizing squared errors, thus leading to forecasts of the
mean [129], one could argue that a metric/test based on squared errors
should be preferred. While the argument has some merits, we focused
on absolute metrics for three reasons:
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Table 4
Computation time that each benchmark model requires to perform a daily recalibration.

Time

LEAR 1–10 s
LEAR ensemble 20–25 s
DNN 2–5 min
DNN ensemble 8–20 min

1. The metric used to evaluate the accuracy should be the one
that better represents the underlying problem. In the case of
EPF, since the cost of purchasing electricity is linear, linear
metrics are arguably the best to quantify the risk associated with
forecasting errors.

2. While we provided the RMSE results, they are qualitatively
the same as for MAE/rMAE. Hence, as absolute errors better
represent the underlying problem of EPF and the results are
similar, the RMSE results are not analyzed here in detail due to
space limitations.

3. While the LEAR model is indeed estimated using squared errors,
this is partly done because the techniques to efficiently estimate
the LASSO, e.g. coordinate descent, are based on square errors.
This gives the LEAR model a computational advantage over
the DNN. An alternative would be to use regularized quantile
regression [149] leading, however, to an increased computa-
tional burden with little benefits on the accuracy in terms of
MAE/rMAE.

6.4.2. Metrics
The obtained results validate the general guidelines proposed in

Section 5.4 regarding accuracy metrics: research in EPF should avoid
MAPE and only use metrics like sMAPE or RMSE in conjunction with
any version of rMAE. Particularly, the results validate the following
four claims:

1. MAE is as reliable as rMAE. However, as the errors are not
relative, comparison between datasets is not possible and rMAE
is preferred.

2. sMAPE is more reliable than MAPE and it agrees with MAE/rMAE.
Yet, it has the problem of an undefined mean and an infinite
variance. Thus, it is less reliable than rMAE.

3. MAPE is not a reliable metric as it gives more importance
to datapoints close to zero. As such, using MAPE can lead to
misleading results and wrong conclusions.

4. RMSE is more reliable than MAPE but it does not represent
correctly the underlying risks of EPF. Hence, it should not be
used alone to evaluate forecasting models.

6.4.3. Performance of open-access models
Based on the extensive comparison of Sections 6.1–6.3, it can be

concluded that the models based on DL are more likely to outperform
those based on statistical methods. This is especially true in the context
of DL ensemble models as the ensemble of DNNs obtains results that are
statistically significantly better than any other model.

However, while DNNs outperformed the LEAR models, the latter are
still the state-of-the-art in terms of low complexity and computational
cost. In particular, their performance is very close to that of DNNs, but
with the advantage of having computational costs that are up to 100
times lower. As such, they are the best available option when decision
making has to be done within seconds.

In short, new models for EPF should either be compared against
LEAR models or DNNs depending on the decision time that is available.
For a method to be considered more accurate than state-of-the-art
methods, it should either be more accurate than the DNN model, or
more accurate than LEAR but with similar or lower computational
requirements.

7. Checklist to ensure adequate EPF research

As a final contribution, and with the goal of facilitating the work
of reviewers of future EPF publications, we provide a short checklist to
evaluate whether any new research in EPF satisfies the requirements to
be reproducible and lead to meaningful conclusions:

1. The test dataset comprises at least a year of data.
2. Any new model is tested against state-of-the-art open-access

models, e.g. the ones provided here.
3. The computational cost of new methods is evaluated and com-

pared against the computational cost of existing methods.
4. The employed datasets are open-access.
5. The study is based on multiple markets.
6. rMAE is employed as one of the accuracy metrics to evaluate

forecasting accuracy.
7. Statistical testing is used to assess whether differences in perfor-

mance are significant.
8. Forecasting models are recalibrated on a daily basis and not

simply estimated once and evaluated in the full out-of-sample
dataset.

9. Hyperparameters are estimated using a validation dataset that is
different from the test dataset.

10. The split and dates of the dataset are explicitly stated.
11. All the inputs of the model are explicitly defined.
12. The test dataset is selected as the last section of the full dataset

and does not contain any overlapping data with the training or
validation datasets.

13. State-of-the-art and free toolboxes are used for modeling the
benchmark models.

While this is just a very short summary of the guidelines described in
Section 5, we think it is very useful to have them summarized together
for quick evaluations of new research.

8. Conclusion

In this paper, we have derived a set of best practices for performing
research in electricity price forecasting (EPF). Particularly, as the field
of EPF lacks a rigorous approach to compare and to evaluate new
forecasting models, we have analyzed different factors affecting the
quality of the research, e.g. dataset size or accuracy metrics, and
we have proposed solutions to ensure that new research is adequate,
reproducible, and useful.

In addition, as comparisons in EPF are often done using unique
datasets that no other researchers have access to, we have proposed an
extensive open-access benchmark dataset comprising 6 years of recent
data in 5 different markets. The aim of the benchmark dataset is to
provide a common framework for future research so that new methods
can be validated under the same conditions and meaningful compar-
isons can be obtained. To facilitate future research, we have developed
an open-source python library named epftoolbox [58,59] that
provides easy access to these datasets.

Similarly, as new methods in EPF are often not compared with
well-established methods, we have proposed several state-of-the-art
open-source models based on statistical methods and deep learning.
The methods are tuned automatically and require no expert knowledge
in order to be used. These methods are provided as open-source within
the proposed epftoolbox library [58,59] so that other researchers
can employ them as benchmarks in their own studies. Although the
proposed methods are currently developed in python, we would like
to extend the support to other languages; in that spirit, we encourage
other researchers to help us do so.

Finally, to have a complete open-access benchmark, we have evalu-
ated the two proposed open-access methods in the open-access dataset
and we have provided the results in terms of accuracy metrics and
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statistical testing. Using these results, we have shown that deep neural
networks are more likely to outperform LEAR methods but that the
latter are the best model for applications with short decision time-
frames. Moreover, we have also shown that ensemble methods often
obtain significantly better results than their individual counterparts.
Based on the same results, we have also showed the importance of
the guidelines as to what constitutes good practices for the rigorous
use of models, metrics, and statistical tests in EPF research. The most
notable guidelines were that MAPE is an unreliable metric that should
be avoided, that statistical testing is mandatory to obtain meaningful
conclusions, and that the length of the test dataset should be at least
one year.
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a b s t r a c t

We extend neural basis expansion analysis (NBEATS) to incorporate exogenous factors.
The resulting method, called NBEATSx, improves on a well-performing deep learning
model, extending its capabilities by including exogenous variables and allowing it
to integrate multiple sources of useful information. To showcase the utility of the
NBEATSx model, we conduct a comprehensive study of its application to electricity
price forecasting tasks across a broad range of years and markets. We observe state-of-
the-art performance, significantly improving the forecast accuracy by nearly 20% over
the original NBEATS model, and by up to 5% over other well-established statistical and
machine learning methods specialized for these tasks. Additionally, the proposed neural
network has an interpretable configuration that can structurally decompose time series,
visualizing the relative impact of trend and seasonal components and revealing the
modeled processes’ interactions with exogenous factors. To assist related work, we made
the code available in a dedicated repository.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the last decade, significant progress has been made
in the application of deep learning to forecasting tasks,
with models such as the exponential smoothing recur-
rent neural network (ESRNN; Smyl 2019) and neural
basis expansion analysis (NBEATS; Oreshkin, Carpov, Cha-
pados, and Bengio 2020) outperforming classical statisti-
cal approaches in the recent M4 competition (Makridakis,
Spiliotis, & Assimakopoulos, 2020). Despite this success
we still identify two possible improvements, namely the
integration of time-dependent exogenous variables as
their inputs and the interpretability of the neural network
outputs.

Neural networks have proven powerful and flexible,
yet there are several situations where our understanding

∗ Corresponding author.
E-mail address: kdgutier@cs.cmu.edu (Kin G. Olivares).

of the model’s predictions can be as crucial as their accu-
racy, which constitutes a barrier for their wider adoption.
The interpretability of the algorithm’s outputs is critical
because it encourages trust in its predictions, improves
our knowledge of the modeled processes, and provides
insights that can improve the method itself.

Additionally, the absence of time-dependent covariates
makes these powerful models unsuitable for many ap-
plications. For instance, electricity price forecasting (EPF)
is a task where covariate features are fundamental to
obtain accurate predictions. For this reason, we chose this
challenging application as a test ground for our proposed
forecasting methods.

In this work, we address the two mentioned lim-
itations by first extending NBEATS, allowing it to in-
corporate temporal and static exogenous variables, and
second, by further exploring the interpretable configu-
ration of NBEATS and showing its use as a time-series
signal decomposition tool. We refer to the new method as
NBEATSx. The main contributions of this paper include:

https://doi.org/10.1016/j.ijforecast.2022.03.001
0169-2070/© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of Forecasters. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(i) Incorporation of Exogenous Variables: We pro-
pose improvements to the NBEATS model to incor-
porate time-dependent as well as static exogenous
variables. For this purpose, we designed a special
substructure built with convolutions, to clean and
encode useful information from these covariates,
while respecting time dependencies present in the
data. These enhancements greatly improve the ac-
curacy of the NBEATS method, and extend its inter-
pretability capabilities, which are so rare in neural
forecasting.

(ii) Interpretable Time Series Signal Decomposition:
Our method combines the power of nonlinear trans-
formations provided by neural networks with the
flexibility to model multiple seasonalities and si-
multaneously account for interaction events such as
holidays and other covariates, all while remaining
interpretable. The extended NBEATSx architecture
can decompose its predictions into the classic set of
level, trend, and seasonality, and identify the effects
of exogenous covariates.

(iii) Time Series Forecasting Comparison: We show-
case the use of the NBEATSx model on five EPF
tasks, achieving state-of-the-art performance on
all of the considered datasets. We obtain accu-
racy improvements of almost 20% in comparison to
the original NBEATS and ESRNN architectures, and
of up to 5% over other well-established machine
learning, EPF-tailored methods (Lago, Marcjasz, De
Schutter, & Weron, 2021a).

The remainder of the paper is structured as follows.
Section 2 reviews relevant literature on the developments
and applications of deep learning to sequence model-
ing and current approaches to EPF. Section 3 introduces
mathematical notation and describes the NBEATSx model.
Section 4 explores our model’s application to time se-
ries decomposition and forecasting over a broad range of
electricity markets and time periods. Finally, Section 5
discusses possible directions for future research, wraps up
the results, and concludes the paper.

2. Literature review

2.1. Deep learning and sequence modeling

The deep learning methodology (DL) has demonstrated
significant utility in solving sequence modeling problems,
with applications to natural language processing, audio
signal processing, and computer vision. This subsection
summarizes the critical DL developments in sequence
modeling that are building blocks of the NBEATS and
ESRNN architectures.

For a long time, sequence modeling with neural net-
works and recurrent neural networks (RNNs; Elman 1990)
was treated as synonymous. The hidden internal acti-
vations of the RNNs propagated through time provided
these models with the ability to encode the observed
past of the sequence. This explains their great popular-
ity in building different variants of sequence-to-sequence
models (Seq2Seq) applied to natural language process-
ing (Graves, 2013) and machine translation (Sutskever,

Vinyals, & Le, 2014). Most progress on RNNs was made
possible by architectural innovations and novel training
techniques that made their optimization easier, and in-
volved popular designs such as long short-term memory
(LSTM; Gers, Cummins, and Schmidhuber 2000) and gated
recurrent units (GRUs; Chung, Gülçehre, Cho, and Bengio
2014).

The adoption of convolutions and skip-connections
within the recurrent structures were important precur-
sors for new advancements in sequence modeling, as
using deeper representations endowed longer effective
memory for the models. Examples of such precursors
could be found in WaveNet for audio generation and
machine translation (van den Oord et al., 2016), as well
as the dilated RNN (DRNN; Chang et al. 2017) and the
temporal convolutional network (TCN; Bai, Kolter, and
Koltun 2018).

Nowadays, Seq2Seq models and their derivatives can
learn complex nonlinear temporal dependencies
efficiently; their use in the time series analysis domain
has been a great success. Seq2Seq models have recently
showed better forecasting performance than classical
statistical methods, while greatly simplifying the forecast-
ing systems into single-box models, such as the multi-
quantile convolutional neural network (MQCNN; Wen,
Torkkola, Narayanaswamy, and Madeka 2017), the expo-
nential smoothing recurrent neural network (ESRNN; Smyl
2019), and neural basis expansion analysis (NBEATS; Ore-
shkin et al. 2020). For quite a while, academia resisted
broadly adopting these new methods (Makridakis, Spili-
otis, & Assimakopoulos, 2018), although their evident
success in challenges such as the M4 competition has mo-
tivated their wider adoption by the forecasting research
community (Benidis et al., 2020).

2.2. Electricity price forecasting

The electricity price forecasting (EPF) task aims at pre-
dicting the spot (balancing, intraday, day-ahead) and for-
ward prices in wholesale markets. Since the workhorse of
short-term power trading is the day-ahead market with
its once-per-day uniform-price auction (Mayer & Trück,
2018), the vast majority of research has focused on pre-
dicting electricity prices for the 24 h of the next day,
either in a point (Lago et al., 2021a; Weron, 2014) or a
probabilistic setting (Nowotarski & Weron, 2018). There
also are studies on EPF for very short-term (Narajewski &
Ziel, 2020) as well as mid- and long-term horizons (Ziel &
Steinert, 2018). The recent expansion of renewable energy
generation and large-scale battery storage has induced
complex dynamics to the already volatile electricity spot
prices, turning the field into a prolific subject on which to
test novel forecasting ideas and trading strategies (Chit-
saz, Zamani-Dehkordi, Zareipour, & Parikh, 2018; Gian-
freda, Ravazzolo, & Rossini, 2020; Uniejewski & Weron,
2021).

Out of the numerous approaches to EPF developed over
the last two decades, two classes of models are of particu-
lar importance when predicting day-ahead prices: statisti-
cal (also called econometric or technical analysis), in most
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cases based on linear regression, and computational intel-
ligence (also referred to as artificial intelligence, nonlin-
ear learning, or machine learning), with neural networks
being the fundamental building block). Among the lat-
ter, many of the recently proposed methods utilize deep
learning (Lago, De Ridder, and De Schutter 2018, Marcjasz
2020, Wang, Zhang, and Chen 2017), or are hybrid solu-
tions that typically comprise data decomposition, feature
selection, clustering, forecast averaging, and/or heuristic
optimization to estimate the model (hyper-) parameters
(Li & Becker, 2021; Nazar, Fard, Heidari, Shafie-khah, &
ao P.S. Catalão, 2018).

Unfortunately, as argued by Lago et al. (2021a), the
majority of the neural network EPF-related research is
limited to single-market test periods and suffers from a
lack of well-performing and established benchmark meth-
ods and incomplete descriptions of the pipeline and train-
ing methodology, resulting in poor reproducibility of the
results. To address these shortcomings, our models are
compared across two-year out-of-sample periods from
five power markets and using two highly competitive
benchmarks recommended in previous studies: the lasso-
estimated autoregressive (LEAR) model and a (relatively)
parsimonious deep neural network (DNN).

3. NBEATSx model

As a general overview, the NBEATSx framework de-
composes the objective signal by performing separate
local nonlinear projections of the target data onto basis
functions across its different blocks. Fig. 1 depicts the
general architecture of the model. Each block consists of a
fully connected neural network (FCNN; Rosenblatt 1961),
which learns expansion coefficients for the backcast and
forecast elements. The backcast model is used to clean
the inputs of subsequent blocks, while the forecasts are
summed to compose the final prediction. The blocks are
grouped in stacks. Each of the potentially multiple stacks
specializes in a different variant of basis functions.

To continue the description of NBEATSx, we introduce
the following notation: the objective signal is represented
by the vector y; the inputs for the model are the backcast
window vector yback of length L and the forecast window
vector yfor of length H , where L denotes the length of
the lags available as classic autoregressive features and
H is the forecast horizon treated as the objective. While
the original NBEATS only admits as regressor the backcast
period of the target variable yback, NBEATSx incorporates
covariates in its analysis, denoted with the matrix X. Fig. 1
shows an example where the target variable is the hourly
electricity price, the backcast vector has a length L of
96 h, and the forecast horizon H is 72 h. In the exam-
ple, the covariate matrix X is composed of wind power
production and electricity load. For the EPF comparative
analysis of Section 4.3.6, the horizon considered is H =

24, which corresponds to day-ahead predictions, while
backcast inputs L = 168 correspond to a week of lagged
values.

For its predictions, the NBEATS model only receives
a local vector of inputs corresponding to the backcast
period, making the computations exceptionally fast. The

model can still represent longer time dependencies through
its local inputs from the exogenous variables; for example,
it can learn long seasonal effects from calendar variables.

Overall, as shown in Fig. 1, NBEATSx is composed of
S stacks of B blocks each. The input yback of the first
block consists of L lags of the target time series y and
the exogenous matrix X, while the inputs of each of the
subsequent blocks include residual connections with the
backcast output of the previous block. We will describe
in detail in the next subsections the blocks, stacks, and
model predictions.

3.1. Blocks

For a given sth stack and bth block within it, the
NBEATSx model performs two transformations, depicted
in the blue rectangle of Fig. 1. The first transformation,
defined in Eq. (1), takes the input data (ybacks,b−1,Xs,b−1) and
applies a fully connected neural network (FCNN; Rosen-
blatt 1961) to learn hidden units hs,b ∈ RNh that are
linearly adapted into the forecast θ

for
s,b ∈ RNs and backcast

θback
s,b ∈ RNs expansion coefficients, where Ns denotes the

dimension of the stack basis.
hs,b = FCNNs,b

(
ybacks,b−1,Xb−1

)
θback
s,b = LINEARback (

hs,b
)

θ
for
s,b = LINEARfor (

hs,b
) (1)

The second transformation, defined in Eq. (2), consists of a
basis expansion operation between the learnt coefficients
and the block’s basis vectors Vback

s,b ∈ RL×Ns and Vfor
s,b ∈

RH×Ns . This transformation results in the backcast ŷbacks,b

and forecast ŷfors,b components.

ŷbacks,b = Vback
s,b θback

s,b and ŷfors,b = Vfor
s,b θ

for
s,b (2)

3.2. Stacks and residual connections

The blocks are organized into stacks using the doubly
residual stacking principle, which is described in Eq. (3)
and depicted in the brown rectangle of Fig. 1. The residual
backcast ybacks,b+1 allows the model to subtract the com-
ponent associated to the basis of the s, b-th stack and
block Vback

s,b from yback, which can be also thought of as a
sequential decomposition of the modeled signal. In turn,
this methodology helps with the optimization procedure,
as it prepares the inputs of the subsequent layer, making
the downstream forecast easier. The stack forecast yfors
aggregates the partial forecasts from each block.

ybacks,b+1 = ybacks,b − ŷbacks,b and ŷfors =

B∑
b=1

ŷfors,b (3)

3.3. Model predictions

The final predictions ŷfor of the model, shown in the
yellow rectangle of Fig. 1, are obtained by the summation
of all the stack predictions.

ŷfor =

S∑
s=1

ŷfors (4)

The additive generation of the forecast implies a very
intuitive decomposition of the prediction components
when the bases within the blocks are interpretable.
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Fig. 1. The building blocks of NBEATSx are structured as a system of multilayer fully connected networks with ReLU-based nonlinearities. Blocks
overlap using the doubly residual stacking principle for the backcast ŷbacks,b and forecast ŷfors,b outputs of the bth block within the sth stack. The final
predictions ŷfor are composed by aggregating the outputs of the stacks.

3.4. NBEATSx configurations

The original neural basis expansion analysis method
proposed two configurations based on the assumptions
encoded in the learning algorithm by selecting the basis
vectors Vback

s,b and Vfor
s,b used in the blocks from Eq. (2). A

mindful selection of restrictions to the basis allows the
model to output an interpretable decomposition of the
forecasts, while allowing the basis to be freely determined
can produce more flexible forecasts by effectively remov-
ing any constraints on the form of the basis functions.

In this subsection, we present both interpretable and
generic configurations, explaining in particular how we
propose to include the covariates in each case. We limit
ourselves to the analysis of the forecast basis, as the
backcast basis analysis is almost identical, only differ-
ing by its extension over time. We show an example in
Appendix A.1.

3.4.1. Interpretable configuration
The choice of basis vectors relies on time series decom-

position techniques that are often used to understand the
structure of a given time series and patterns of its vari-
ation. Work in this area ranges from classical smoothing
methods and their extensions such as X-11-ARIMA, X-12-
ARIMA, and X-13-ARIMA-SEATS, to modern approaches
such as TBATS (Livera, Hyndman, & Snyder, 2011). To
encourage interpretability, the blocks within each stack
may use harmonic functions, polynomial trends, and ex-
ogenous variables directly to perform their projections.

The partial forecasts of the interpretable configuration are
described through Eqs. (5)–(7).

ŷtrends,b =

Npol∑
i=0

ti θ trend
s,b,i ≡ T θtrend

s,b (5)

ŷseass,b =

⌊H/2−1⌋∑
i=0

cos
(
2π i

t
Nhr

)
θ seas
s,b,i

+ sin
(
2π i

t
Nhr

)
θ seas
s,b,i+⌊H/2⌋ ≡ S θseas

s,b

(6)

ŷexogs,b =

Nx∑
i=0

Xi θ
exog
s,b,i ≡ X θ

exog
s,b (7)

where the time vector t⊺ = [0, 1, 2, . . . ,H − 2,H −

1]/H is defined discretely. When the basis Vfor
s,b is T =

[1, t, . . . , tNpol ] ∈ RH×(Npol+1), where Npol is the maxi-
mum polynomial degree, the coefficients are those of a
polynomial model for the trend. When the bases Vfor

s,b
are harmonic S = [1, cos(2π t

Nhr
), . . . , cos(2π⌊H/2 −

1⌋ t
Nhr

), . . . , sin(2π t
Nhr

), . . . ,
sin(2π⌊H/2 − 1⌋ t

Nhr
)] ∈ RH×(H−1), the coefficient vector

θ
for
s,b can be interpreted as Fourier transform coefficients,

the hyper-parameter Nhr controls the harmonic oscilla-
tions. The exogenous basis expansion can be thought as a
time-varying local regression when the basis is the matrix
X = [X1, . . . ,XNx ] ∈ RH×Nx , where Nx is the number of
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Table 1
Datasets used in our empirical study. For the five day-ahead electricity markets considered, we report the test period dates and two influential
covariate variables.
Market Exogenous variable 1 Exogenous variable 2 Test period

NP day-ahead load day-ahead wind generation 27-12-2016 to 24-12-2018
PJM two-day-ahead system load two-day-ahead COMED load 27-12-2016 to 24-12-2018
EPEX-FR day-ahead load day-ahead total France generation 04-01-2015 to 31-12-2016
EPEX-BE day-ahead load day-ahead total France generation 04-01-2015 to 31-12-2016
EPEX-DE day-ahead zonal load day-ahead wind and solar generation 04-01-2016 to 31-12-2017

exogenous variables. The resulting models can flexibly re-
flect common structural assumptions, in particular using
the interpretable bases, as well as their combinations.

In this paper, we propose including one more type
of stack to specifically represent the exogenous variable
basis, as described in Eq. (7) and depicted in Fig. 1. In
the original NBEATS framework (Oreshkin et al., 2020),
the interpretable configuration usually consists of a trend
stack followed by a seasonality stack, each containing
three blocks. Our NBEATSx extension of this configura-
tion consists of three stacks, one for each type of factor
(trend, seasonal, and exogenous). We refer to this inter-
pretable and its enhanced interpretable configuration as
the NBEATS-I and NBEATSx-I models, respectively.

3.4.2. Generic configuration
For the generic configuration, the basis of the nonlin-

ear projection in Eq. (2) corresponds to canonical vectors,
that is Vfor

s,b = IH×H , an identity matrix of dimension-
ality equal to the forecast horizon H that matches the
coefficient’s cardinality |θ

for
s,b| = H .

ŷgens,b = Vfor
s,b θ

for
s,b = θ

for
s,b (8)

This basis enables NBEATSx to effectively behave like
a classic fully connected neural network (FCNN). The out-
put layer of the FCNN inside each block has H neurons
that correspond to the forecast horizon, each producing
the forecast for one particular time point of the forecast
period. This can be understood as the basis vectors be-
ing learned during optimization, allowing the waveform
of the basis of each stack to be freely determined in a
data-driven fashion. Compared to the interpretable coun-
terpart described in Section 3.4.1, the constraints on the
form of the basis functions are removed. This affords the
generic variant more flexibility and power at representing
complex data, but it can also lead to less interpretable
outcomes and potentially escalated risk of overfitting.

For the NBEATSx model with the generic configuration,
we propose a new type of exogenous block that learns
a context vector Cs,b from the time-dependent covariates
with an encoder convolutional sub-structure:

ŷexogs,b =

Nc∑
i=1

Cs,b,iθ
for
s,b,i ≡ Cs,bθ

for
s,b with Cs,b = TCN(X)

(9)

In the previous equation, a temporal convolutional net-
work (TCN; Bai et al. 2018) is employed as an encoder,
but any neural network with a sequential structure will
be compatible with the backcast and forecast branches of
the model, and could be used as an encoder. For example,

WaveNet (van den Oord et al., 2016) can be an effective
alternative to RNNs, as it is also able to capture long-
term dependencies and the interactions of covariates by
stacking multiple layers, while dilations help it keep the
models computationally tractable. In addition, convolu-
tions have a very convenient interpretation as a weighted
moving average of signal filters. The final linear projection
and the additive composition of the predictions can be
interpreted as a decoder.

The original NBEATS configuration includes only one
generic stack with dozens of blocks, while our proposed
model includes both the generic and exogenous stacks,
with the order determined via data-driven hyperparame-
ter tuning. We refer to this configuration as the NBEATSx-
G model.

3.4.3. Exogenous variables
We distinguish the exogenous variables by whether

they reflect static or time-dependent aspects of the
modeled data. The static exogenous variables carry time-
invariant information. When the model is built with com-
mon parameters to forecast multiple time series, these
variables allow information to be shared within groups of
time series with similar static variable levels. Examples of
static variables include designators such as identifiers of
regions and groups of products, among others.

As for the time-dependent exogenous covariates, we
discern two subtypes. First, we consider seasonal covari-
ates from the natural frequencies in the data. These vari-
ables are useful for NBEATSx to identify seasonal pat-
terns and special events inside and outside the window
lookback periods. Examples of these are the trends and
harmonic functions from Eq. (5) and Eq. (6). Second, we
identify domain-specific temporal covariates unique to
each problem. The EPF setting typically includes day-
ahead forecasts of electricity load and production levels
from renewable energy sources.

4. Empirical evaluation

4.1. Electricity price forecasting datasets

To evaluate our method’s forecasting capabilities, we
consider short-term electricity price forecasting tasks,
where the objective is to predict day-ahead prices. Five
major power markets1 are used in the empirical eval-
uation, all comprising hourly observations of the prices
and two influential temporal exogenous variables that

1 For the sake of reproducibility we only consider datasets that are
openly accessible in the EPFtoolbox library https://github.com/jeslago/
epftoolbox (Lago et al., 2021a).
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Fig. 2. The top panel shows the day-ahead electricity price time series for the Nord Pool (NP) market. The second and third panels show the
day-ahead forecast for the system load and wind generation. The training data are composed of the first four years of each dataset. The validation
set is the year that follows the training data (between the first and second dotted lines). For the held-out test set, the last two years of each dataset
are used (marked by the second dotted line). During the evaluation, we recalibrate the model, updating the training set to incorporate all available
data before each daily prediction. The recalibration uses an early stopping set of 42 weeks randomly chosen from the updated training set (a sample
selection is marked with blue rectangles in the top panel).

extend for 2184 days (312 weeks, six years). From the six
years of available data for each market, we hold two years
out to test the forecasting performance of the algorithms.
The length and diversity of the test sets allow us to
obtain accurate and highly comprehensive measurements
of the robustness and the generalization capabilities of the
models.

Table 1 summarizes the key characteristics of each
market. The Nord Pool electricity market (NP), corre-
sponding to the exchange among Nordic countries, con-
tains the hourly prices and day-ahead forecasts of load
and wind generation. The second dataset is the
Pennsylvania–New Jersey—Maryland market in the United
States (PJM), which contains hourly zonal prices in the
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Commonwealth Edison (COMED) and two-day-ahead fore-
casts of load at the system and COMED zonal levels.
The remaining three markets are obtained from the in-
tegrated European Power Exchange (EPEX). The Belgian
(EPEX-BE) and French (EPEX-FR) markets share the day-
ahead forecast generation in France as covariates, since
it is known to be one of the best predictors for Belgian
prices (Lago, De Ridder, Vrancx, & De Schutter, 2018).
Finally, the German market (EPEX-DE) contains the hourly
prices, day-ahead load forecasts, and the country-level
wind and solar generation day-ahead forecast.

Fig. 2 displays the NP electricity price time series
and its corresponding covariate variables to illustrate the
datasets. The NP market is the least volatile among the
considered markets, since most of its power comes from
hydroelectric generation, renewable source volatility is
negligible, and zero spikes are rare. The PJM market is
transitioning from coal generation to natural gas and
some renewable sources. Zero spikes are rare, but the
system exhibits higher volatility than NP. In the EPEX-
BE and EPEX-FR markets, negative prices and spikes are
more frequent, and as time passes, these markets begin
to show increasing signs of integration. Finally, the EPEX-
DE market shows few price spikes, but the most frequent
negative and zero price events, due in great part to the
impact of renewable sources.

The exogenous covariates are normalized, following
best practices drawn from the EPF literature (Uniejewski,
Weron, & Ziel, 2018). Preprocessing the inputs of neu-
ral networks is essential to accelerate and stabilize the
optimization (LeCun, Bottou, Orr, & Müller, 1998).

4.2. Interpretable time series signal decomposition

In this subsection, we demonstrate the versatility of
the proposed method and show how a careful selection
of the inductive bias, constituted by the assumptions used
to learn the modeled signal, endows NBEATSx with an
outstanding ability to model complex dynamics while
enabling human understanding of its outputs, turning it
into a unique and exciting tool for time series analysis.
Our method combines the power of nonlinear transfor-
mations provided by neural networks with the flexibility
to model multiple seasons that can be fractional, while
simultaneously accounting for interaction events such as
holidays and other covariates. As described above, the
interpretable configuration of the NBEATSx architecture
computes time-varying coefficients for slowly changing
polynomial functions to model the trend, harmonic func-
tions to model the cyclical behavior of the signal, and ex-
ogenous covariates. Here, we show how this configuration
can decompose a time series into the classic set of level,
trend, and seasonality components, while identifying the
covariate effects.

In this time series signal decomposition example, we
show how the NBEATSx-I model benefits over NBEATS-I
by explicitly accounting for information carried by exoge-
nous covariates. Fig. 3 shows the NP electricity market’s
hourly price (EUR/MWh) for December 18, 2017, which
was a day with high prices due to high load. Other days
showed a less pronounced difference between the results

obtained with the original NBEATS-I and the NBEATSx-I.
We selected a day with a higher-than-normal load for ex-
position purposes, to demonstrate qualitative differences
in the forecasts. We can see a substantial difference in the
forecast residual magnitudes in the bottom row of Fig. 3.
The original model shows a strong negative bias. On the
other hand, NBEATSx-I is able to capture the evidently
substantial explanatory value of the exogenous features,
resulting in a much more accurate forecast.

4.3. Comparative analysis

4.3.1. Evaluation metrics
To ensure the comparability of our results with the

existing literature, we opted to follow the widely accepted
practice of evaluating the accuracy of point forecasts with
the following metrics: mean absolute error (MAE), relative
mean absolute error (rMAE),2 symmetric mean absolute
percentage error (sMAPE), and root mean squared error
(RMSE), defined as:

MAE =
1

24Nd

Nd∑
d=1

24∑
h=1

|yd,h − ŷd,h|

rMAE =

∑Nd
d=1

∑24
h=1 |yd,h − ŷd,h|∑Nd

d=1
∑24

h=1 |yd,h − ŷnaived,h |

sMAPE =
200
24Nd

Nd∑
d=1

24∑
h=1

|yd,h − ŷd,h|
|yd,h| + |ŷd,h|

RMSE =

√ 1
24Nd

Nd∑
d=1

24∑
h=1

(
yd,h − ŷd,h

)2
where yd,h and ŷd,h are the actual value and the forecast
of the time series at day d and hour h for our experiments
given the two years of each test set Nd = 728.

While regression-based models are estimated by min-
imizing squared errors, to train neural networks we min-
imize absolute errors (see Section 4.3.3 below). Hence,
both the MAE and RMSE are highly relevant in our con-
text. Since they are not easily comparable across datasets
– and given the popularity of such errors in forecast-
ing practice (Makridakis et al., 2020)– we have addition-
ally computed a percentage and a relative measure. The
sMAPE is used as an alternative to MAPE, which in the
presence of values close to zero may degenerate (Hynd-
man & Koehler, 2006). The rMAE is calculated instead of
a scaled measure used in the M4 competition for reasons
explained in Sec. 5.4.2. of Lago et al. (2021a).

4.3.2. Statistical tests
To assess which forecasting model provides better pre-

dictions, we rely on the Giacomini–White test (GW; Gi-
acomini and White 2006) of the multi-step conditional

2 The naïve forecast method in EPF corresponds to a similar day
rule, where the forecast for a Monday, Saturday, and Sunday equals
the value of the series observed on the same weekday of the previous
week, while the forecast for Tuesday, Wednesday, Thursday, and Friday
is the value observed on the previous day.
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Fig. 3. Time series signal decomposition for NP electricity price day-ahead forecasts using interpretable variants of NBEATS and NBEATSx. The graphs
in the top row show the original signal and the level; the latter is defined as the last available observation before the forecast. The second row
shows the polynomial trend components, the third and fourth rows display the complex seasonality modeled by nonlinear Fourier projections and
the exogenous effects of the electricity load on the price, respectively. The graphs in the bottom row show the unexplained variation of the signal.
The use of electricity load and production forecasts turns out to be fundamental for accurate price forecasting.

predictive ability, which can be interpreted as a gener-
alization of the Diebold–Mariano test (DM; Diebold and
Mariano 1995), widely used in the forecasting literature.
Compared with the DM or other unconditional tests, the
GW test is valid under general assumptions, such as the
heterogeneity rather than the stationarity of data. The
GW test examines the null hypothesis of equal accuracy
specified in Eq. (10), measured by the L1 norm of the
daily errors of a pair of models A and B, conditioned
on the information available at that moment3 in time

3 In practice, the available information Fd−1 is replaced with a
constant and lags of the error difference ∆

A,B
d , and the test is performed

using a linear regression with a Wald-like test. When the conditional

Fd−1.

H0 : E
[
∥yd − ŷAd∥1 − ∥yd − ŷBd∥1 | Fd−1

]
≡ E

[
∆

A,B
d | Fd−1

]
= 0 (10)

4.3.3. Training methodology
The cornerstone of the training methodology for

NBEATSx and the benchmark models included in this
work is the definition and use of the training, validation,
early stopping, and test datasets depicted in Fig. 2. The
training set for each of the five markets comprises the

information considered is only the constant variable, one recovers the
original DB test.
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first three years of data, and the test set includes the
last two years of data. The validation set is defined as
the year between the training and test set coverages.
The early stopping set, used for regularization, is either
randomly sampled or corresponds to 42 weeks following
the time span of the training set. These sets are used in
the hyperparameter optimization phase and recalibration
phase that we describe below.

During the hyperparameter optimization phase, model
performance measured on the validation set is used to
guide the exploration of the hyperparameter space de-
fined in Table 2. During the recalibration phase, the opti-
mally selected model, as defined by its hyperparameters,
is re-trained for each day to include newly available in-
formation before the test inference. In this phase, an
early stopping set provides a regularization signal for the
retraining optimization.

To train the neural network, we minimize the mean
absolute error (MAE) using stochastic gradient descent
with adaptive moments (ADAM; Kingma and Ba 2014).
Fig. A.2 in the Appendix compares the training and valida-
tion trajectories for NBEATS and NBEATSx, as diagnostics
to assess the differences of the methods. The early stop-
ping strategy halts the training procedure if a specified
number of consecutive iterations occur without improve-
ments in the loss measured on the early stopping set (Yao,
Rosasco, & Andrea, 2007).

The NBEATSx model is implemented and trained in
PyTorch (https://pytorch.org/) and can be run with both
CPU and GPU resources. The code is available publicly in
a dedicated repository to promote the reproducibility of
the presented results and to support related research.

4.3.4. Hyperparameter optimization
We follow the practice of Lago, De Ridder, and De

Schutter (2018) to select the hyperparameters that define
the model, input features, and optimization settings. Dur-
ing this phase, the validation dataset is used to guide the
search for well-performing configurations. To compare
the benchmarks and NBEATSx, we rely on the same au-
tomated selection process: a Bayesian optimization tech-
nique that efficiently explores the hyperparameter space
using tree-structured Parzen estimators (HYPEROPT;
Bergstra, Bardenet, Bengio, and Kégl 2011). The archi-
tecture, optimization, and regularization hyperparame-
ters are summarized in Table 2. To have comparable
results, during the hyperparameter optimization stage we
used the same number of configurations as in Lago, De
Ridder, and De Schutter (2018). Note, that some of the
methods do not require any hyperparameter optimiza-
tion – e.g., the AR1 benchmark – and some might only
have one hyper-parameter to be determined, such as the
regularization parameter in the LEARx method, which
is typically computed using the information criteria or
cross-validation.

4.3.5. Ensembling
In many recent forecasting competitions, and particu-

larly in the M4 competition, most of the top-performing
models were ensembles (Atiya, 2020). It has been shown
that in practice, combining a diverse group of models can

be a powerful form of regularization to reduce the vari-
ance of predictions (Breiman, 1996; Hubicka, Marcjasz, &
Weron, 2018; Nowotarski, Raviv, Trück, & Weron, 2014).

The techniques used by the forecasting community to
induce diversity in the models are plentiful. The original
NBEATS model obtained its diversity from three sources,
training with different loss functions, varying the size of
the input windows, and bagging models with different
random initializations (Oreshkin et al., 2020). They used
the median as the aggregation function for 180 different
models. Interestingly, the original model did not rely on
regularization, such as L2 or dropout, as (Oreshkin et al.,
2020) found it to be good for the individual models but
detrimental to the ensemble.

In our case, we ensemble the NBEATSx model using
two sources of diversity. The first comes from a data
augmentation technique controlled by the sampling fre-
quency of the windows used during training, as defined
in the data parameters from Table 2. The second source
of diversity comes from whether we randomly select the
early stopping set or instead use the last 42 weeks pre-
ceding the test set. Combining the data augmentation and
early stopping options, we obtain four models that we
ensemble using the arithmetic mean as the aggregation
function. This technique is also used by the DNN bench-
mark (Lago, De Ridder, & De Schutter, 2018; Lago et al.,
2021a).

4.3.6. Forecasting results
We conducted an empirical study involving two types

of autoregressive models (AR1 and ARx1; Weron 2014),
the lasso-estimated autoregressive model (LEARx;
Uniejewski, Nowotarski, and Weron 2016), a parsimo-
nious deep neural network (DNN; Lago, De Ridder, and
De Schutter 2018, Lago et al. 2021a), the original neu-
ral basis expansion analysis without exogenous covari-
ates (NBEATS; Oreshkin et al. 2020), and the exponential
smoothing recurrent neural network (ESRNN; Smyl 2019).
This experiment examined the effects of including the co-
variate inputs and comparing NBEATSx with state-of-the-
art methods for the electricity price day-ahead forecasting
task.

Table 3 summarizes the performance of the ensembled
models, where the NBEATSx ensemble shows prevail-
ing performance. It improves 18.77% on average for all
metrics and markets when compared with the original
NBEATS, and 20.6% when compared to ESRNN without
time-dependent covariates. For the ensembled models,
the NBEATSx RMSE improved on average 4.68%, MAE
improved 2.53%, rMAE improved 1.97%, and sMAPE im-
proved 1.25%. When comparing the NBEATSx ensem-
ble against the DNN ensemble on individual markets,
NBEATSx improved by 5.38% on the Nord Pool market,
by 2.48% on the French market, and 2.81% on the Ger-
man market. There was a non-significant difference in
NBEATSx performance on the PJM and BE markets of
0.24% and 1.1%, respectively.

Fig. 4 provides a graphical representation of the sta-
tistical significance from the Giacomini–White test (GW)
for the six ensembled models across the five markets for
the MAE evaluation metric. A similar significance analysis
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Table 2
Hyperparameters of NBEATSx networks. They are common to all presented datasets. We list the typical values we considered in our experiments.
The configuration that performed best on the validation set was selected automatically.
Hyperparameter Considered values

Architecture parameters

Input size, size of autorregresive feature window. L ∈ 168
Output size is the forecast horizon for day-ahead forecasting. H ∈ {24}
List for architecture’s type/number of stacks. {[identity, TCN], [TCN, Identity]

[Identity, WaveNet], [Wavenet, Identity], }
Type of activation used across the network. {SoftPlus,SeLU,PreLU,Sigmoid,ReLU, TanH, LReLU}
Blocks separated by residual links per stack (shared across stacks). {[1,1,1], [1, 1]}.
FCNN layers within each block. {2}
FCNN hidden neurons on each layer of a block. Nh ∈ {50, . . . , 500}
Exogenous Temp. convolution filter size (Equation 9) {2, . . . , 10}
Only interpretable, degree of trend polynomials. Npol ∈ {2, 3, 4}
Only interpretable, number of Fourier basis (seasonality smoothness). Nhr ∈ 1, 2
Whether NBEATSx coefficients take input X (Equation (1)). {True, False}

Optimization and regularization parameters

Initialization strategy for network weights. {orthogonal, he_norm, glorot_norm}
Initial learning rate for regression problem. Range(5e−4,1e−2)
The number of samples for each gradient step. {256, 512}
The decay constant allows a large initial lr to escape local minima. {0.5}
Number of times the learning rate is halved during train. {3}
Maximum number of gradient descent iterations. {30000}
Iterations without validation loss improvement before stop. {10}
Frequency of validation loss measurements. {100}
Whether batch normalization is applied after each activation. {True, False}
The probability for dropout of neurons for all in the projection layers. Range(0,1)
The probability for dropout of neurons for the exogenous encoder. Range(0,1)
Constant to control the Lasso penalty used on the coefficients. Range(0, 0.1)
Constant that controls the influence of L2 regularization of weights. Range(1e−5,1e−0)
The objective loss function with which NBEATSx trained. {MAE}
Random weeks from full dataset used to validate. {42}
Number of iterations of hyperparameter search. {1500}
Random seed that controls initialization of weights. DiscreteRange(1,1000)

Data parameters

Rolling window sample frequency, for data augmentation. {1, 24}
Number of time windows included in the full dataset. 4 years
Number of validation weeks used for early stopping strategy. {40, 52}
Normalization strategy of model inputs. {none, median, invariant, std }

was conducted for the single models. The models in-
cluded in the significance tests are the same as in Table 3:
LEAR, DNN, ESRNN, NBEATS, and our proposed methods,
NBEATSx-G and NBEATSx-I. The p-value of each compari-
son shows whether the performance improvement of the
model’s predictions corresponding to the column index
of a cell in the grids shown in Fig. 4 over the model’s
predictions corresponding to the row of this cell of the
grid is statistically significant. The NBEATSx-G model out-
performed the DNN model in NP and DE, while NBEATSx-I
outperformed it in NP, FR, and DE. Moreover, no bench-
mark model significantly outperformed NBEATSx-I and
NBEATSx-G in any market.

In Appendix, we observe similar results for the single
best models chosen from the four possible configurations
of the ensemble components described in Section 4.3.5.

Table A.2 summarizes the accuracy of the predictions
measured with the MAE, and Fig. A.3 displays the signifi-
cance of the GW test. Ensembling improves the accuracy
of NBEATSx by 3% on average across all markets, when
compared to the single best models.

Finally, regarding the computational time complexity
NBEATSx maintains good perfor- mance. As shown in
Table A.1 in the Appendix, the time necessary to compute

day-ahead predictions is in the order of miliseconds and
comparable to that of the LEAR and DNN benchmarks.
Additionally, the average time needed to perform a re-
calibration only takes circa 50 percent more than the
relatively parsimonious DNN.

5. Conclusions

We presented NBEATSx: a new method for univari-
ate time series forecasting with exogenous variables. It
extends the well-performing neural basis expansion anal-
ysis. The resulting neural-based method has several valu-
able properties that make it suitable for a wide range
of forecasting tasks. The network is fast to optimize, as
it is mainly composed of fully connected layers. It can
produce interpretable results, and achieves state-of-the-
art performance on forecasting tasks where consideration
of exogenous variables is fundamental.

We demonstrated the utility of the proposed method
using a set of benchmark datasets from the electricity
price forecasting domain, but it can be straightforwardly
applied to forecasting problems in other domains. A qual-
itative evaluation showed that the interpretable config-
uration of NBEATSx can provide valuable insights to the

893



Kin G. Olivares, C. Challu, G. Marcjasz et al. International Journal of Forecasting 39 (2023) 884–900

Table 3
Forecast accuracy measures for day-ahead electricity price predictions of ensembled models. The ESRNN and NBEATS models do not
include time-dependent covariates. The reported metrics are the mean absolute error (MAE), relative mean absolute error (rMAE),
symmetric mean absolute percentage error (sMAPE), and root mean squared error (RMSE). The smallest errors in each row are
highlighted in bold.

AR1 ESRNN NBEATS ARx1 LEARx* DNN NBEATSx-G NBEATSx-I

NP

MAE 2.26 2.09 2.08 2.01 1.74 1.68 1.58 1.62
rMAE 0.71 0.66 0.66 0.63 0.55 0.53 0.50 0.51
sMAPE 6.47 6.04 5.96 5.84 5.01 4.88 4.63 4.70
RMSE 4.08 3.89 3.94 3.71 3.36 3.32 3.16 3.27

PJM

MAE 3.83 3.59 3.49 3.53 3.01 2.86 2.91 2.90
rMAE 0.79 0.74 0.72 0.73 0.62 0.59 0.60 0.60
sMAPE 14.5 14.12 13.57 13.64 11.98 11.33 11.54 11.61
RMSE 6.24 5.83 5.64 5.74 5.13 5.04 5.02 4.84

EPEX-BE

MAE 7.2 6.96 6.84 7.19 6.14 5.87 5.95 6.11
rMAE 0.88 0.85 0.83 0.88 0.75 0.72 0.73 0.75
sMAPE 16.26 15.84 15.80 16.11 14.55 13.45 13.86 14.02
RMSE 18.62 16.84 17.13 18.07 15.97 15.97 15.76 15.80

EPEX-FR

MAE 4.65 4.65 4.74 4.56 3.98 3.87 3.81 3.79
rMAE 0.78 0.78 0.80 0.76 0.67 0.65 0.64 0.64
sMAPE 13.03 13.22 13.30 12.7 11.57 10.81 10.59 10.69
RMSE 13.89 11.83 12.01 12.94 10.68 11.87 11.50 11.25

EPEX-DE

MAE 5.74 5.60 5.31 4.36 3.61 3.41 3.31 3.29
rMAE 0.71 0.70 0.66 0.54 0.45 0.42 0.41 0.41
sMAPE 21.37 20.97 19.61 17.73 14.74 14.08 13.99 13.99
RMSE 9.63 9.09 8.99 7.38 6.51 5.93 5.72 5.65

*The LEARx results for EPEX-DE differ from (Lago et al., 2021a)—the values presented there are revised (Lago, Marcjasz, De Schutter,
& Weron, 2021b).

Fig. 4. Results of the Giacomini–White test for the day-ahead predictions with the mean absolute error (MAE) applied to pairs of the ensembled
models on the five electricity markets datasets. Each grid represents one market. Each colored cell in a grid is plotted black, unless the predictions
of the model corresponding to its column of the grid outperform the predictions of the model corresponding to its row of the grid. The color scale
reflects the significance of the difference in MAE, with solid green representing the lowest p-values.

analyst, as it explains the variation of the time series
by separating it into trend, seasonality, and exogenous
components, in a fashion analogous to classic time se-
ries decomposition. Regarding the quantitative forecast-
ing performance, we observed no significant differences

between ESRNN and NBEATS without exogenous vari-
ables. At the same time, NBEATSx improved over NBEATS
by nearly 20%, and by up to 5% over LEAR and DNN
models specialized for electricity price forecasting tasks.
Finally, we found no significant trade-offs between the
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accuracy and interpretability of NBEATSx-G and NBEATSx-
I predictions.

The neural basis expansion analysis is a very flexible
method capable of producing accurate and interpretable
forecasts, yet there is still room for improvement. For in-
stance, augmentation of the harmonic functions towards
wavelets or replacement of the convolutional encoder
that would generate the covariate basis with smoothing
alternatives such as splines. Additionally, one can extend
the current non-interpretable method by regularizing its
outputs with smoothness constraints.
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Appendix

A.1. Forecast and backcast bases

As discussed in Section 3.4, the interpretable configu-
ration of the NBEATSx method performs basis projections
into polynomial functions for the trends, harmonic func-
tions for the seasonalities and exogenous variables. As
shown in Fig. A.1, both the forecast and the backcast
components of the model rely on similar basis functions,
and the only difference depends upon the span of their
time indexes. For this work in the EPF application of
NBEATS, the backcast horizon corresponds to 168 hours
while the forecast horizon corresponds to 24.

A.2. Training and validation curves

To study the effects of exogenous variables on the
NBEATS model, we performed model training procedure
diagnostics. Fig. A.2 shows the training and validation
mean absolute error (MAE) for the NBEATS and NBEATSx
models as training progresses. The curves correspond to
the hyperparameter optimization phase described in Sec-
tion 4.3.4. The models trained with and without exoge-
nous variables display a considerable difference in their
training and validation errors, as observed by the two sep-
arate clusters of trajectories. The exogenous variables—in
this case, the electricity load and production forecasts—
significantly improve the neural basis expansion analysis.

A.3. Computational time

We measured the computational time of the top four
best algorithms with two metrics: the recalibration of
the ensemble models selected from the hyperparameter
optimization, and the computation of the predictions. For
these experiments, we used a GeForce RTX 2080 GPU for
the neural network models and an Intel(R) Xeon(R) Silver
4210 CPU @ 2.20 GHz for LEAR.

The training time of the recalibration phase of NBEATSx
remains efficient, as it still trains in 75 and 81 s, increasing
by 30 s on the relatively simple DNN. The computational
time of the prediction remains within milliseconds. Fi-
nally the hyperparameter optimization scales linearly with
respect to the time of the recalibration phase and the eval-
uation steps of the optimization. In the case of NBEATSx-
G, the approximate time of a hyperparameter search of
1000 steps is two days.4

A.4. Best single models

Table A.2 shows that the best NBEATSx models yield
improvements of 14.8% on average across all the
evaluation metrics when compared to its NBEATS coun-
terpart without exogenous covariates, and improvements
of 23.9% when compared to ESRNN without time-
dependent covariates. A perhaps more remarkable result
is the statistically significant improvement of forecast
accuracy over the LEAR and DNN benchmarks, ranging
from 0.75% to 7.2% across all metrics and markets, with
the exception of BE. Compared to the DNN, the RMSE
improved on average 4.9%, the MAE improved 3.2%, the
rMAE improved 3.0%, and the sMAPE improved 1.7%.
When comparing the best NBEATSx models against the
best DNN on individual markets, NBEATSx improved by
3.18% on the Nord Pool market (NP), 2.03%–2.65% on
the French (FR) market, and 5.24% on the German (DE)
power markets. The positive difference in performance
for the Belgian (BE) market of 0.53% was not statistically
significant.

Fig. A.3 provides a graphical representation of the GW
test for the six best models across the five markets for the
MAE evaluation metric. The models included in the sig-
nificance tests are the same as in Tables A.2: LEAR, DNN,
ESRNN, NBEATS, and our proposed methods, NBEATSx-G
and NBEATSx-I. The p-value of each individual comparison
shows whether the improvement in performance (mea-
sured by the MAE or RMSE) of the x-axis model over the y-
axis model is statistically significant. Both the NBEATSx-G
and NBEATSx-I models outperformed the LEAR and DNN
models in all markets, with the exception of Belgium.
Moreover, no benchmark model outperformed NBEATSx-I
or NBEATSx-G on any market.

4 For comparability, we used 1000 steps (Lago et al., 2021a), but
restricting this to 300 steps yielded similar results.
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Fig. A.1. Examples of polynomial and harmonic bases included in the interpretable configuration of the neural basis expansion analysis. The slowly
varying bases allow NBEATS to model trends and seasonalities.

Table A.1
Computational time performance in seconds for the top four most accurate models for the day-ahead electricity price
forecasting task in the NP market, averaged for the four elements of the ensembles. (The time performance for the
rest of the markets was almost identical.).

LEARx DNN NBEATSx-G NBEATSx-I

Recalibration 18.57 50.65 75.02 81.61
Prediction 0.0032 0.0041 0.0048 0.0054

A.5. Comments on hyperparameter optimization

In this Section, we summarize observations and key
empirical findings from the extensive hyperparameter op-
timization on the space defined by Table 2 for the four
models composing each dataset ensemble. These obser-
vations and regularities of the optimally selected hyper-
parameters are important to create a more efficient and
informed hyperparameter space and possibly guide future
experiments with the NBEATSx architecture.

Interpretable configuration observations:

1. Among quadratic, cubic and fourth degree poly-
nomials, Npol ∈ {2, 3, 4}, the most common basis

selected for the day-ahead EPF task was quadratic,
Npol = 2. As shown in Fig. 3, the combination of
quadratic trend and harmonics already describes
the electricity price average daily profiles success-
fully. Linear trends were omitted from exploration
as they showed to be fairly restrictive. In experi-
ments on longer forecast horizons (H > 24), be-
yond the scope of this paper, we observed that
more trend flexibility tended to be beneficial.

2. We did not observe preferences in the harmonic
basis spectrum controlled by Nhr ∈ {1, 2}, the
hyperparameter that controls the number of os-
cillations of the basis in the forecast horizon. We
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Fig. A.2. Training and validation Mean Absolute Error (MAE) curves on the NP market. We show the curves for NBEATSx-G with exogenous variables
and NBEATS without exogenous variables as a function of the optimization iterations. We define the four curves by a different random seed used
for initialization.

believe this is due to the flexibility of the harmonic
basis S ∈ RH×(H−1) that already covers a broad
spectrum of frequencies. Our intuition dictates that
Nhr = 1 is a good setting unless there is an appar-
ent mismatch between the time- series frequency
and the number of recorded observations that one
could have in a Nyquist-frequency under-sampling
or over-sampling phenomenon (Koopmans, 1995).
This, however, is beyond the scope of this paper.

Hyperparameter optimization regularities:

1. Regarding the optimal activation functions, we found
that the most selected ones were SeLU, PreLU, and
Sigmoid, while activations like ReLU, TanH, and
LReLU were consistently outperformed. Sigmoid
activations tend to make the optimization of the
network difficult when the networks grow in depth.

2. Surprisingly, the stochastic gradient batch size con-
sistently preferred 256 and 512 over 128 windows.
Our selection of the ADAM optimizer over classic
SGD could explain these observations. The machine

learning community believes that more extended
SGD optimization with mini batches tends to have
better generalization properties (Keskar, Mudigere,
Nocedal, Smelyanskiy, & Tang, 2017). Additional
research on the area would be interesting.

3. The batch normalization technique was often detri-
mental in combination with the doubly-residual
stack strategy of the NBEATSx method. The resid-
ual signals tend to be close to zero, making the
normalization numerically unstable.

4. The robust median normalization of the exogenous
variables was consistently preferred over alterna-
tives like standard deviation normalization.

5. Regarding the hidden units of the FCNN layers,
the optimal parameters did not favor an informa-
tion bottleneck behavior (Tishby, Pereira, & Bialek,
1999). Almost half of the optimal models had a
small number of hidden units followed by a larger
number of hidden units.
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Table A.2
Forecast accuracy measures for day-ahead electricity prices for the best single model out of the four models described in the Section 4.3.5. ESRNN
and NBEATS are the original implementations and do not include time-dependent covariates. The reported metrics are the mean absolute error
(MAE), relative mean absolute error (rMAE), symmetric mean absolute percentage error (sMAPE), and root mean squared error (RMSE). The smallest
errors in each row are highlighted in bold.

AR1 ESRNN NBEATS ARx1 LEARx* DNN NBEATSx-G NBEATSx-I

NP

MAE 2.28 2.11 2.11 2.11 1.95 1.71 1.65 1.68
rMAE 0.72 0.67 0.67 0.67 0.62 0.54 0.52 0.53
sMAPE 6.51 6.09 6.06 6.1 5.62 4.97 4.83 4.89
RMSE 4.08 3.92 3.98 3.84 3.60 3.36 3.27 3.33

PJM

MAE 3.88 3.63 3.48 3.68 3.09 3.07 3.02 3.01
rMAE 0.8 0.75 0.72 0.76 0.64 0.63 0.62 0.62
sMAPE 14.66 14.26 13.56 14.09 12.54 12.00 11.97 11.91
RMSE 6.26 5.87 5.59 5.94 5.14 5.20 5.06 5.00

EPEX-BE

MAE 7.04 7.01 6.83 7.05 6.59 6.07 6.14 6.17
rMAE 0.86 0.86 0.83 0.86 0.80 0.74 0.75 0.75
sMAPE 16.29 15.95 16.03 16.21 15.95 14.11 14.68 14.52
RMSE 17.25 16.76 16.99 17.07 16.29 15.95 15.46 15.43

EPEX-FR

MAE 4.74 4.68 4.79 4.85 4.25 4.06 3.98 3.97
rMAE 0.80 0.78 0.80 0.86 0.71 0.68 0.67 0.67
sMAPE 13.49 13.25 13.62 16.21 13.25 11.49 11.07 11.29
RMSE 13.68 11.89 12.09 17.07 10.75 11.77 11.61 11.08

EPEX-DE

MAE 5.73 5.64 5.37 4.58 3.93 3.59 3.46 3.37
rMAE 0.71 0.70 0.67 0.57 0.49 0.45 0.43 0.42
sMAPE 21.22 21.09 19.71 18.52 16.80 14.68 14.78 14.34
RMSE 9.39 9.17 9.03 7.69 6.53 6.08 5.84 5.64

*The LEARx results for EPEX-DE differ from (Lago et al., 2021a)—the values presented there are revised (Lago et al., 2021b).

Fig. A.3. Results of the Giacomini–White test for the day-ahead predictions with the mean absolute error (MAE) applied to pairs of the single models
on the five electricity markets datasets. Each grid represents one market. Each colored cell in a grid is plotted black, unless the predictions of the
model corresponding to its column of the grid outperform the predictions of the model corresponding to its row of the grid. The color scale reflects
the significance of the difference in MAE, with solid green representing the lowest p-values.
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A B S T R A C T

We present a novel approach to probabilistic electricity price forecasting which utilizes distributional neural
networks. The model structure is based on a deep neural network containing a so-called probability layer, i.e.,
the outputs of the network are parameters of the normal or Johnson’s SU distribution. To validate our approach,
we conduct a comprehensive forecasting study complemented by a realistic trading simulation with day-ahead
electricity prices in the German market. The proposed distributional deep neural network outperforms state-
of-the-art benchmarks by over 7% in terms of the continuous ranked probability score and by 8% in terms
of the per-transaction profits. The obtained results not only emphasize the importance of higher moments
when modeling volatile electricity prices, but also – given that probabilistic forecasting is the essence of risk
management – provide important implications for managing portfolios in the power sector.

1. Introduction

Trading in competitive markets requires precise probabilistic fore-
casts. Therefore, the attention of researchers and practitioners is slowly
but gradually shifting from point to probabilistic forecasting (Petropou-
los et al., 2022). It is not different in electricity markets. The point
electricity price forecasting (EPF) literature is very broad, and the topic is
well-researched (Weron, 2014; Lago et al., 2021). However, proper risk
optimization, which is mandatory in the highly volatile and uncertain
electricity markets, can only be performed using probabilistic forecasts,
which provide a much more detailed view of the phenomenon under
study. This has not gone unnoticed by researchers, however, the liter-
ature on probabilistic energy forecasting is much scarcer than on point
forecasting (Hong et al., 2020; Nowotarski and Weron, 2018; Ziel and
Steinert, 2018).

For the last three decades, the primary object of interest in electric-
ity price forecasting has been the day-ahead market (Jȩdrzejewski et al.,
2022), which is the main electricity spot trading place. However, the
intraday (Uniejewski et al., 2019; Narajewski and Ziel, 2020a,b; Oksuz
and Ugurlu, 2019; Janke and Steinke, 2019; Maciejowska et al., 2021;
Maciejowska, 2022) and balancing markets (Kraft et al., 2020; Browell
and Gilbert, 2022; Janczura and Wójcik, 2022) have been studied as
well.

∗ Corresponding author.
E-mail address: grzegorz.marcjasz@pwr.edu.pl (G. Marcjasz).

The two most widely used model classes in point EPF are regres-
sions, more recently estimated via the least absolute shrinkage and selec-
tion operator or LASSO (Ziel, 2016; Ziel and Weron, 2018; Uniejewski
et al., 2019; Narajewski and Ziel, 2020a), and neural networks (Dudek,
2016; Oksuz and Ugurlu, 2019; Zhou et al., 2019; Luo and Weng, 2019;
Zahid et al., 2019; Lago et al., 2018; Keles et al., 2016). The latter are
often components of complex, hybrid structures (Jahangir et al., 2019;
Zhang et al., 2020; Oreshkin et al., 2021; Olivares et al., 2023).

The probabilistic EPF literature utilizes mainly quantile regres-
sion on point forecasts (Marcjasz et al., 2020; Maciejowska, 2020;
Nowotarski and Weron, 2015; Maciejowska and Nowotarski, 2016),
bootstrapping of point forecasts’ residuals (Wan et al., 2013; Ziel and
Steinert, 2018; Narajewski and Ziel, 2022; Nowotarski and Weron,
2018), and recurrent neural networks (RNN; Mashlakov et al., 2021;
Brusaferri et al., 2020).

1.1. Our contribution

In this paper, we propose a novel probabilistic EPF approach based
on distributional neural networks. More specifically, we consider a
‘vanilla’ deep neural network (DNN), i.e., a multi-layer perceptron in
which the information propagates only forward. We utilize the Tensor-
Flow (Abadi et al., 2015) and Keras (Chollet et al., 2015) frameworks,

https://doi.org/10.1016/j.eneco.2023.106843
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and let the output layer be parameters of the normal or Johnson’s SU
distribution (Johnson, 1949). Note, that the only difference between
a distributional and a standard network that provides point forecasts
is in the output layer (Salinas et al., 2020; Barnes and Barnes, 2021;
Barnes et al., 2021). Thus, if we have already built a neural network
model for point forecasting, it is very easy to convert it to a distri-
butional one. Even though distributional neural networks are not a
new concept (Nix and Weigend, 1994; Williams, 1996), they have not
attracted much attention. To the best of our knowledge, the only exist-
ing distributional neural networks in the energy forecasting literature
use mixtures of normal distributions obtained using complex structures
comprising convolutional neural networks (CNN) and gated recurrent
units (GRU) (Afrasiabi et al., 2020) or RNNs (Mashlakov et al., 2021;
Brusaferri et al., 2020). The distributional deep neural network (DDNN)
proposed in this paper is far less complex than the CNNs, GRUs and
RNNs, easier to interpret and computationally less demanding.

We evaluate model performance using a rolling window forecasting
and trading study with day-ahead electricity prices in Germany. The
DDNN is benchmarked against naive bootstrapping and two well-
performing point EPF approaches (Lago et al., 2021): a
LASSO-estimated autoregression (LEAR) and a DNN, both combined
with quantile regression averaging (QRA) of Nowotarski and Weron
(2015) for converting point predictions into probabilistic ones. Al-
though a considerable amount of the EPF literature concerns forecast
combinations (Hubicka et al., 2018; Serafin et al., 2019; Karabiber
and Xydis, 2019), due to the complexity of aggregating predictive
distributions (Berrisch and Ziel, 2022), here we utilize only two simple
averaging schemes with equal weights. They allow to stabilize the
neural network predictions.

The major contributions of our study are as follows:

1. We are the first to utilize the DDNN architecture and one of
the first to consider distributional neural networks in electricity
price forecasting.

2. Our approach is fully automated and can be used for datasets
with similar characteristics, e.g., from other power markets. The
code is open-source and available on GitHub https://github.
com/gmarcjasz/distributionalnn. If needed, point forecasts can
be easily derived from the predictive distributions.

3. The proposed DDNN outperforms state-of-the-art benchmarks
(including LEAR and DNN models combined with QRA) by over
7% in terms of the continuous ranked probability score (CRPS) and
by 8% in terms of the per-transaction profits.

4. We are the first in EPF and one of the first in probabilistic
forecasting to use Johnson’s SU distribution. Our results provide
evidence for the importance of considering higher moments in
EPF.

5. Given that probabilistic forecasting is the essence of risk manage-
ment, our study provides power market participants with a new,
significantly more accurate tool – as measured by the Diebold
and Mariano (1995) test – for assessing risks related to trading
power portfolios.

The remainder of this manuscript is structured as follows. Section 2
introduces the reader to the concept of distributional neural networks.
Section 3 provides an overview of the market and data used in the
application study. The models, including the DDNN and the hyper-
parameter tuning, are described in Section 4. The application study
together with the results are presented in Section 5. The paper is
concluded with a discussion of the main findings in Section 6.

2. The distributional deep neural network (DDNN) model

We assume that the reader is familiar with and understands the
concept of the (feed-forward) deep neural networks (DNN). In this sec-
tion, we briefly recall the definition and the mathematics behind it to
underline the difference between the DNN with point and probabilistic
output layers.

2.1. Architecture

Let 𝑿 ∈ R𝐷×𝑁 be the input matrix with 𝑁 denoting the number of
features and 𝐷 the number of observations. Further, let 𝑯 𝑖 ∈ R𝐷×ℎ𝑖 be
the output matrix of 𝑖th hidden layer, 𝑾 𝑖 ∈ Rℎ𝑖−1×ℎ𝑖 and 𝒃𝑖 ∈ R𝐷×ℎ1

be the corresponding hidden-layer weights and bias where ℎ𝑖 ∈ N is
the number of neurons in 𝑖th hidden layer with ℎ0 = 𝑁 and thus
𝑯0 = 𝑿. Additionally, denote 𝑎𝑖(⋅) the 𝑖th activation function. Then,
for 𝑖 ∈ {1,… , 𝐼} we have

𝑯 𝑖 = 𝑎𝑖
(
𝑯 𝑖−1𝑾 𝑖 + 𝒃𝑖

)
. (1)

Now, we got to the point where the DNN with point and probabilis-
tic output layers differ. That is to say, in the standard DNN we calculate
the output 𝑶 ∈ R𝐷×𝑆 , where 𝑆 is the number of modeled features.
Formally,

𝑶 = 𝑯𝑰𝑾 𝐼+1 + 𝒃𝐼+1 (2)

are the values returned by the network. Such DNN is optimized given
the true observation matrix 𝒀 ∈ R𝐷×𝑆 with respect to point losses,
e.g. the mean squared error (MSE) or mean absolute error (MAE).
In the case of the DDNN, the parameter layer 𝜣 ∈ R𝐷×𝑆⋅𝑃 consists
of 𝑃 distribution parameters for each of the 𝑆 modeled features. It
is however computed in the same manner as in Eq. (2). The final
output is made by creating a 𝐷×𝑆-dimensional matrix of the assumed
distributions 𝑭 (𝜣; 𝑥). The network is then optimized given the true
observation matrix 𝒀 ∈ R𝐷×𝑆 with respect to probabilistic losses,
e.g. by maximizing the likelihood for a parametric distribution or by
minimizing the continuous ranked probability score (CRPS).

Fig. 1 provides an example with 𝐼 = 2 hidden layers and this setting
we use in the remainder of the manuscript. The number of neurons in
the hidden layers is arbitrary, but the same for both DNNs in order to
underline the difference between the point and probabilistic networks.
We see clearly that the input and hidden layers are identical for both
DNNs and only the output part differs.

As a final remark of the subsection, we discuss the multivariate
output which consists of multiple features and the possible probabilistic
distributions. Namely, we allow in the definition for 𝑆 output features,
and in our setting they are all 𝑆 = 24 hours of the electricity prices
of the following day. This can be done as all the day-ahead electricity
prices are published at once, and therefore they can share the input
regressor set. In other applications this is rather not the case, however
such a multivariate setting may still be preserved if one considers 𝑆
similar time series to be forecasted that may benefit from common
regressors.

The probabilistic output layer may consist of nearly any imple-
mented probabilistic distribution. Based on application, these can be,
e.g., binomial or Poisson if we deal with a discrete problem, gamma or
beta if we deal with a continuous problem, but supported only on the
positive line, or normal, 𝑡 or Johnson’s SU if supported on the whole
real line. As the electricity prices may be both positive and negative,
we use in our study the two-parametric normal and four-parametric
Johnson’s SU distributions.

2.2. Regularization

The danger of overfitting the model can be tackled in the DDNN sim-
ilarly as in the standard one. One could use regularization, a dropout
layer or early stopping. We use all of these in our forecasting study,
however we approach the regularization of the parameter layer differ-
ently.

The DNN design allows for 𝐿𝑝 regularization of every hidden layer
𝑯 𝑖, its weights 𝑾 𝑖, and bias 𝒃𝑖. Applying it to the DNN we get the
following loss with regularization

reg(𝒀 ,𝑶) = (𝒀 ,𝑶) +
𝐼∑
𝑖=0

𝜆1,𝑖‖𝑯 𝑖‖𝑝

+
𝐼∑
𝑖=0

𝜆2,𝑖‖𝑾 𝑖+1‖𝑝 +
𝐼∑
𝑖=0

𝜆3,𝑖‖𝒃𝑖+1‖𝑝
(3)



Energy Economics 125 (2023) 106843

3

G. Marcjasz et al.

Fig. 1. Comparison of the DNN and DDNN. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where ‖ ⋅ ‖𝑝 represents the 𝐿𝑝 norm. One can flexibly choose between
the types of regularization, use both or none, and choose to regularize
only some part of the network, e.g., only 𝑯1 layer and 𝑾 2 weights.
The 𝜆𝑗,𝑖 parameters are subject to hyperparameter tuning. The regu-
larization of the DDNN may be done in the same way as described in
Eq. (3), however, we could also regularize each of the distributional
parameters separately as follows

reg (𝒀 ,𝑭 (𝜣; 𝑥)) = (𝒀 ,𝑭 (𝜣; 𝑥)) +
𝐼−1∑
𝑖=0

𝜆1,𝑖‖𝑯 𝑖‖𝑘

+
𝐼−1∑
𝑖=0

𝜆2,𝑖‖𝑾 𝑖+1‖𝑘 +
𝐼−1∑
𝑖=0

𝜆3,𝑖‖𝒃𝑖+1‖𝑘

+
𝑃∑
𝑝=1

(
𝜆1,𝐼,𝑝‖𝑯𝐼‖𝑘 + 𝜆2,𝐼,𝑝‖𝑾 𝐼+1‖𝑘 + 𝜆3,𝐼,𝑝‖𝒃𝐼+1‖𝑘

)
.

(4)

The difference between Eqs. (3) and (4) is the regularization of the last
layer. Namely, in Eq. (3) we regularize the whole output layer using the
same 𝜆𝑗,𝐼 values, whereas in Eq. (4) each parameter 𝑝 ∈ {1,… , 𝑃 } is
regularized using its own 𝜆𝑗,𝐼,𝑝 values. The color arrows in Fig. 1(b) de-
note separate kernel 𝑾 𝐼+1 regularization for each of the distributions’
parameters. The reason to use such a differentiation is the possibility
to use different amount of inputs’ information for each distribution
parameter, what was already observed in the literature (Narajewski and
Ziel, 2020b).

3. The data

The goal in the empirical case study is forecasting day-ahead elec-
tricity prices in Germany. This section familiarizes the reader with
the utilized data, especially the input features and the forecasting
objective. The electricity markets in Europe consist of derivative, spot
and balancing parts (Viehmann, 2017). The most important is the spot
market, particularly the day-ahead auction. It takes place once a day at
noon where all 𝑆 products of the following day are traded in a uniform
price auction (Weron and Ziel, 2019); typically S = 24. As all hours of
the following day are traded at once, all of them are based on the same
set of information. Therefore, in our study we model all the prices using
exactly the same input features, what supports the multivariate output
of the DDNN presented in Section 2.

The considered data is publicly available and has been downloaded
from the ENTSOE (2022) Transparency platform. It spans six years of
hourly observations from 01.01.2015 to 31.12.2020. The study uses a
rolling window scheme, which mimics the daily business practice and
is a standard procedure in the EPF literature (Weron, 2014; Weron
and Ziel, 2019). The initial in-sample period spans from 01.01.2015 to
26.12.2018, i.e., 𝐷 = 4⋅364 = 1456 days (or 24⋅1456 = 34,944 h). For the
purpose of hyperparameter tuning, we split it additionally to training
and validation sets. The out-of-sample period starts on 27.12.2018,
and ends on 31.12.2020, however the first 182 observations are used
to obtain the QRA forecasts and thus are excluded from the analysis.
Therefore, the final out-of-sample test set for probabilistic predictions
uses 554 days of data. The models are retrained every day using the
most recent 𝐷 observations and the hyperparameters obtained in the
tuning that is run on initial in-sample dataset.
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Fig. 2. Time series plots of the considered data.

Table 1
Descriptive statistics of the data used for the initial calibration window and the out-of-sample test period.

Series Mean Std Min Q25 Median Q75 Max

In-sample data (01.01.2015–26.12.2018)

Price (EUR/MWh) 34.8 16.4 −130.1 25.6 33.2 43.2 163.5
Load forecast (MWh) 55 117.4 9 543.1 28 823.6 47 233.0 55 046.0 63 403.6 75 912.2
RES forecast (MWh) 14 766.4 9 429.7 574.2 7 003.9 13 004.9 21 074.4 53 703.2
EUA (EUR/tCO2) 8.7 4.8 3.9 5.3 7.2 8.6 25.2
API2 Coal (EUR/t) 63.7 14.6 37.9 51.1 67.1 76.6 88.6
TTF Gas (EUR/MWh) 18.3 3.8 10.6 15.3 18.2 20.7 29.2
Brent Oil (EUR/bbl.) 49.6 9.4 25.6 43.2 48.7 55.1 75.2

Out-of-sample data (27.12.2018–31.12.2020)

Price (EUR/MWh) 34.2 17.0 −90.0 26.3 35.2 44.0 200.0
Load forecast (MWh) 54 326.5 9 378.2 32 425.3 46 641.9 54 213.3 62 132.4 73 743.6
RES forecast (MWh) 19 363.2 11 310.6 793.9 10 218.1 17 763.3 27 161.2 62 490.1
EUA (EUR/tCO2) 24.8 3.0 15.2 23.3 25.0 26.5 33.3
API2 Coal (EUR/t) 50.6 8.2 37.2 44.4 49.0 54.7 76.1
TTF Gas (EUR/MWh) 12.2 4.4 3.7 9.1 12.3 15.2 23.3
Brent Oil (EUR/bbl.) 47.6 11.8 17.8 37.0 53.1 57.2 66.8

Fig. 2 shows plots of the considered features together with the
dates and study stages mentioned above. Table 1 reports the descriptive
statistics of the data in the initial calibration window (upper part) and
the out-of-sample test period (lower part). The data contains the day-
ahead (DA) electricity prices, DA load forecasts, DA renewable energy
sources (RES) forecasts, EU emission allowance prices and fuel: coal,
oil and natural gas prices. The RES forecast is a sum of wind offshore,
wind onshore and solar generation day-ahead forecasts. The DA prices
and load forecasts exhibit strong daily, weekly and annual seasonality.
Thus, we model each hour of the day separately within a single neural
network and also utilize the weekday dummies. We do not construct
any regressor explaining the annual behavior as it is well described by
the load data. On the other hand, the RES forecasts exhibit only daily
and annual seasonality and the EUA and fuel prices are random-walk

type processes. Because these conclusions may not be readily apparent
from Fig. 2, consult Ziel and Weron (2018), Sgarlato and Ziel (2022)
and Billé et al. (2022) for more insights.

Fig. 3 presents histograms of prices for selected hours. Additionally,
we fit there normal and Johnson’s SU distributions and plot their densi-
ties. Both distributions belong to the location-scale family. The normal
distribution  (𝜇, 𝜎2) is a well-known two-parametric distribution with
𝜇 being the location and 𝜎 the scale parameters. The Johnson’s SU
distribution  (𝜇, 𝜎, 𝜈, 𝜏) was first investigated by Johnson (1949) as
a transformation of the normal distribution. It is a four-parametric
distribution with 𝜇 being the location, 𝜎 the scale, 𝜈 the skewness
and 𝜏 the tail-weight parameters. So far, it has not found application
with distributional neural networks. However, it is often used in the
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Fig. 3. Histograms of prices for selected hours with fitted densities of normal and Johnson’s SU distributions. The plots are based on the in-sample (training and validation) data.

Table 2
CRPS scores and 𝑝-values of the Kolmogorov–Smirnov test for the normal and Johnson’s
SU (JSU) distributions fitted to electricity prices in the initial calibration window
(01.01.2015–26.12.2018; see the upper part of Table 1) for four selected hours.

Hour 0 Hour 6 Hour 12 Hour 18

Normal JSU Normal JSU Normal JSU Normal JSU

CRPS 3.258 3.216 4.029 3.983 4.322 4.277 4.499 4.441
KS-test 𝑝-value 0.000 0.391 0.000 0.254 0.000 0.152 0.000 0.624

context of energy commodities (Patra, 2021; Gianfreda and Bunn, 2018;
Abramova and Bunn, 2020).

Based on Fig. 3 we suspect that the Johnson’s SU distribution is
more suitable for modeling the electricity prices than the normal.
We observe heavy tails and skewness what cannot be explained by
the latter. Moreover, as reported in Table 2, the Johnson’s SU yields
lower CRPS values than the normal distribution and the 𝑝-values of
the Kolmogorov–Smirnov test for the equality of distributions (Massey,
1951) clearly indicate that the Johnson’s SU better fits electricity prices.
Thus, in the forecasting study we use both distributions to emphasize
the gain that comes from using the more flexible distribution.

4. Models and estimation

4.1. Input features

Let us recall that we forecast the 𝑆 = 24 day-ahead prices on day
𝑇 , i.e. 𝒀 𝑇 =

(
𝑌𝑇 ,1, 𝑌𝑇 ,2,… , 𝑌𝑇 ,𝑆

)′. The following 221 (227 for LEAR
model) input features are available for all considered models:

• Past day-ahead prices of the previous three days and one week
ago, i.e. 𝒀 𝑇−1, 𝒀 𝑇−2, 𝒀 𝑇−3, and 𝒀 𝑇−7.

• Day-ahead forecasts of the total load for day 𝑇 , i.e. 𝑿𝐿
𝑇 =

(𝑋𝐿
𝑇 ,1, 𝑋

𝐿
𝑇 ,2,… , 𝑋𝐿

𝑇 ,𝑆 )
′, as well as the past values of the previous

day and one week ago, i.e. 𝑿𝐿
𝑇−1, and 𝑿𝐿

𝑇−7.
• Day-ahead forecasts of renewable energy sources (RES) for day 𝑇 ,

i.e. 𝑿𝑅𝐸𝑆
𝑇 = (𝑋𝑅𝐸𝑆

𝑇 ,1 , 𝑋𝑅𝐸𝑆
𝑇 ,2 ,… , 𝑋𝑅𝐸𝑆

𝑇 ,𝑆 )′, as well as the past values
of the previous day, i.e. 𝑿𝑅𝐸𝑆

𝑇−1 .
• EU emission allowance most recent closing price, i.e. 𝑋𝐸𝑈𝐴

𝑇−2 .
• Fuels most recent closing prices, i.e. 𝑋𝐶𝑜𝑎𝑙

𝑇−2 , 𝑋𝐺𝑎𝑠
𝑇−2, and 𝑋𝑂𝑖𝑙

𝑇−2.
• Weekday dummies, i.e. 𝑫𝒐𝑾 𝑑 (𝑇 ) for 𝑑 = 1, 2,… , 7 for the LEAR

model or 𝐷𝑜𝑊 (𝑇 ) = 1,… , 7 for neural network approaches.

Both neural networks and LEAR model select the relevant input features
automatically. For neural network models, the feature selection is
performed in the hyperparameter optimization step for groups of input
variables. There is a total of 14 groups considered: 9 correspond to

𝑆 = 24 inputs each (marked in bold above), whereas the remaining
5 — to single variables (𝑋𝐸𝑈𝐴

𝑇−2 , 𝑋𝐶𝑜𝑎𝑙
𝑇−2 , 𝑋𝐺𝑎𝑠

𝑇−2, 𝑋
𝑂𝑖𝑙
𝑇−2, and 𝐷𝑜𝑊 (𝑇 )). The

LEAR model selects the variables through the 𝐿1 regularization applied
to each of the 227 input variables separately.

The forecasting exercise is performed on day 𝑇 − 1 before the day-
ahead auction. That is to say, we possess only the information available
at around 11:30 CET on day 𝑇−1. The considered input does not violate
this assumption, and therefore we use e.g. 𝑇 − 2 lag for the EUA and
fuels prices.

4.2. Probabilistic neural networks

4.2.1. The DDNN model and its hyperparameters
The probabilistic neural network model uses the DDNN described in

Section 2. The model consists of 2 hidden layers, 𝑆 output distributions,
and various number of input features. The output distributions are
assumed to be either normal or Johnson’s SU and each of them defines
a separate model. We regularize the model through input feature
selection, dropout layer and 𝐿1 regularization of the hidden layers and
weights. All these are subject to hyperparameter tuning. Additionally,
we tune the activation functions, the number of neurons, and the
learning rate. The detailed list of hyperparameters and the process is
described in Section 4.2.2.

The model is built and estimated using the TensorFlow (Abadi et al.,
2015) and Keras (Chollet et al., 2015) frameworks. The hyperparameter
optimization is performed with the help of Optuna (Akiba et al., 2019)
package, 4 times for result stability reasons, each time consisting of
2048 iterations. We report the results for each of the 4 optimized
hyperparameter sets, as well as for 3 different ensembles of the four
distributions, as described in Section 5. The model consists naturally
also of components that are not tuned in the hyperparameter optimiza-
tion. That is to say, the model uses additionally an input normalization,
negative loglikehood as the loss function, Adam optimizing algorithm,
and early stopping callback with patience of 50 epochs. The batch size
is fixed to 32, and the maximum number of epochs to 1500. For the
rolling prediction, the dataframe was shuffled and 20% was left out for
validation.

Probabilistic neural networks are denoted in the later parts of the
paper using DDNN-{distribution}-{run} scheme, where {distribu-
tion} is either Normal (or N) or JSU and {run} is either a number from
1 to 4 (corresponding to the individual hyperparameter sets), or an
indicator of the ensemble of the four: pEns for the vertical average or
qEns for the horizontal averaging. See Section 4.2.2 for the description
of different schemes. Note, that when the choice of the distribution is
obvious, as in Fig. 5, the {distribution} term may be missing in the
model acronym.
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4.2.2. Hyperparameter tuning
The neural network models (both point and distributional) under-

went the hyperparameter optimization considering below hyperparam-
eters and their potential values:

• Indicator for inclusion of input features described in Section 4.1
(14 hyperparameters).

• Dropout layer — whether to use the dropout layer after the
input layer, and if yes at what rate. The rate parameter is drawn
from (0, 1) interval (up to 2 hyperparameters — the rate is not
optimized if dropout layer is not present in the model).

• Number of neurons in the hidden layers. The values are chosen
from integers from [16, 1024] interval (1 hyperparameter per
layer).

• Activation functions used in each of the hidden layers. The pos-
sible functions are: elu, relu, sigmoid, softmax, softplus, and tanh
(1 hyperparameter per layer).

• 𝐿1 regularization for hidden layers — whether to use the 𝐿1
regularization on the hidden layers and their weights and if yes at
what rate. The rate is drawn from (10−5, 10) interval on a log-scale
(up to 2 hyperparameters per layer — inclusion of 𝐿1 for the layer
and the rate).

• 𝐿1 regularization for distribution layer – separate for each of the
𝑃 distribution parameters, where 𝑃 = 2 for normal and 𝑃 = 4 for
Johnson’s SU distributions – whether to use the 𝐿1 regularization
and if yes at what rate (a total of 2𝑃 hyperparameters; rates
identical to the hidden layer regularization).

• Learning rate for the Adam algorithm chosen from the (10−5, 10−1)
interval on a log-scale (1 hyperparameter).

The process consists of 2048 iterations of the optimization algorithm
which are performed in a hybrid batch-rolling approach. Having the
first four years (1456 days) at disposal, we split them into training data
(the first 1092 days) and validation data (the last 364 days). Note, that
the first day of the out-of-sample test window is the day after the end of
the hyperparameter validation data, as illustrated on Fig. 2 (i.e., there
is no data contamination). The hybrid approach is needed to balance
two opposing factors. On one hand, a batch estimation (using a single
estimation on NN weights) would be less computationally demanding
(we would only have 1 neural network trained for every considered
hyperparameter set), however the results of such an experiment are
very volatile. The best hyperparameter set chosen using the accuracy
metric of only a single run would not – in general – guarantee a
good predictive performance. On the other hand, a rolling setting
identical to the one used later (i.e., with a daily recalibration) would be
infeasible to compute (as it would take roughly 364 times longer than
for batch approach — we would have 364 neural networks trained for
every hyperparameter set). The hybrid approach we have chosen uses
13 recalibrations of neural network models with batches of 28 days
estimated using each of the nets. Training data is rolled by 28 days
after each step.

As mentioned earlier, to counteract the local behavior of the hyper-
parameter optimizer, we repeat the process four times for each of the
neural networks. We observe that the predictive performance across the
separate hyperparameter sets is not consistent, however the simple ag-
gregation schemes described below provide results consistently better
than any of the inputs.

The first of the aggregation schemes is a mixture distribution,
which corresponds to averaging the distributions vertically. However,
having two distributions with disjoint pdfs (e.g., two copies of the same
distributions significantly shifted), the resulting mixture will be very
wide, and might have a ‘‘gap’’ in the middle. A more robust alternative
is considered, which utilizes horizontal (quantile) averaging — i.e., a
quantile of an ensemble is computed as an arithmetic mean of the
same quantiles from all distributions considered. Such an aggregation
in an edge case described earlier would result in an unimodal ensemble
distribution, which is much sharper than the vertically averaged one.

4.3. Benchmarks

4.3.1. The naive model
The first and the simplest benchmark model that we consider is the

well-known and widely utilized (Weron, 2014; Ziel and Weron, 2018)
naive model. It requires no parameter tuning. Its formula is as follows

E
(
𝒀 𝑇

)
=

{
𝒀 𝑇−7, 𝐃𝐨𝐖𝑑 (𝑇 ) = 1 for 𝑑 = 1, 6, 7,
𝒀 𝑇−1, otherwise.

(5)

In other words, the naive model uses the prices of yesterday to forecast
the prices on Tuesday, Wednesday, Thursday and Friday, and the last
week’s prices on Monday, Saturday and Sunday. The price distributions
are obtained using the bootstrap method which was first proposed
by Efron (1979). We receive the distributions by adding the in-sample
bootstrapped errors to the forecasted expected price

𝒀
𝑚
𝑇 = Ê

(
𝒀 𝑇

)
+ �̂�𝑚𝑇 for 𝑚 = 1,… ,𝑀 (6)

where �̂�𝑚𝑇 are drawn with replacement in-sample residuals for day 𝑇 ,
i.e., we sample from the set of �̂�𝑑 = 𝒀 𝑑 − 𝒀 𝑑 for 𝑑 = 1,… , 𝐷.

4.3.2. The LEAR model combined with QRA
The first of the models that use the structure presented in Sec-

tion 4.1 is LEAR point forecasting model that uses Quantile Regression
Averaging (QRA) to generate probabilistic forecasts. The LEAR model
utilizes the LASSO regularization (Tibshirani, 1996). Such an approach
eliminates the need for an additional input selection, as the algorithm
itself indirectly chooses the most relevant inputs. The regularization
parameter (the sole hyperparameter of the LEAR model) is obtained
using 7-fold cross validation and a grid of 100 values automatically
chosen by a least angle regression (LARS) based estimator. The LEAR
approach encompasses a forecast averaging scheme proposed by Lago
et al. (2021) – four independent forecasts are generated for each hour
(based on 56, 84, 1092 and 1456 day rolling calibration windows) and
the final output is their simple average. Such an approach allows for a
balance of the ability to adapt to rapidly-changing market conditions
(thanks to the shorter calibration windows) with robustness coming
from the use of long windows. It was shown to provide forecasts that
– on average – are on par or better than all of the comprising forecasts
considered separately (Lago et al., 2021).

There are two ways of using a set of four separate forecasts or
an ensemble: one that uses the whole information directly (i.e., the
separate forecasts), which we will denote QRA (Quantile Regression
Averaging) and QRM (Quantile Regression committee Machine) that
uses the ensemble of the point predictions (Marcjasz et al., 2020).

Aside from the input data, the QRA and QRM approaches are iden-
tical — both use quantile regression with 182 day rolling calibration
window to produce the forecast for each of the 99 percentiles, which
approximate the predictive distribution relatively well.

The LEAR models’ results are denoted by LEAR-{CAL} for the
point forecast estimated using {CAL} calibration days (e.g., LEAR-1456
for the longest calibration window), LEAR-Ens for an hour-by-hour
average of all 4 point forecasts and LEAR-QRA and -QRM for the
probabilistic forecasts.

4.3.3. The DNN model combined with QRA
The second set of benchmarks utilizes a point neural network model.

It differs from the probabilistic counterpart only in the output construc-
tion in the network and hyperparameters corresponding to the missing
distribution layer (see Sections Section 2, 4.2 and Fig. 1). The rest of the
model setting remains unchanged: DNN model has the same inputs, the
same hyperparameter selection and uses the same calibration window
lengths and training and validation splits. The loss function for the
network is MAE, whereas DDNN uses log-likelihood.
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Similarly to the DDNN, for the (point) DNN we also derive four
independently-trained hyperparameter sets. This allows us to (i) mea-
sure the robustness of the predictions and (ii) apply two quantile-
regression based methods (QRA and QRM), similarly as for the LEAR
point predictions, also using a 182 day rolling calibration window.

The results are marked with DNN-n for the point forecasts (where
𝑛 = 1, … , 4 or Ens) and DNN-QRA and DNN-QRM, respectively for
percentile forecasts obtained using quantile regression on the four
separate point forecasts and their ensemble.

5. Empirical results

The EPF literature is clear that forecast averaging is often the key to
achieving accurate forecasts (Lago et al., 2021; Marcjasz et al., 2020;
Hubicka et al., 2018; Bordignon et al., 2013; Weron, 2014; Uniejewski
and Maciejowska, 2022). Here, we also aggregate multiple forecast
runs to improve the result accuracy and robustness. However, con-
sidering probabilistic instead of point forecasts significantly increases
the complexity of the aggregation schemes that can be applied. As the
detailed discussion is out of scope of this paper, we opted to include
only the simple aggregations, based on the equally-weighted averaging
or distribution mixing.

On the probabilistic forecasts side, we have four hyperparameter
sets chosen in four separate hyperparameter optimization runs for
both the normal and JSU DDNNs. We report the errors of each of
them separately, as well as the result of two aggregation schemes: an
equally-weighted mixture of the four resulting distributions (vertical
aggregation) or a mean of values for a given quantile (horizontal
aggregation).

5.1. Statistical evaluation

5.1.1. Point forecasts
While the paper focuses on probabilistic forecasting, we are also

interested in the accuracy of the point forecasts. The latter can be
easily derived from the predictive distributions. Following the best EPF
practices (Weron and Ziel, 2019; Lago et al., 2021), we report two
point-oriented metrics: the mean absolute error (MAE) and the root
mean squared error (RMSE).

5.1.2. Probabilistic forecasts
When it comes to the probabilistic forecasts, we use the continuous

ranked probability score (CRPS), or rather its approximation — the
average (or aggregate) pinball score across 99 percentiles (Gneiting,
2011; Hong et al., 2016; Nowotarski and Weron, 2018):

CRPS𝑑,ℎ = 1
99

99∑
𝑞=1

PS(𝑌 𝑞
𝑑,ℎ, 𝑌𝑑,ℎ, 𝑞) (7)

with the pinball score for quantile 𝑞 given by:

PS(𝑌 𝑞
𝑑,ℎ, 𝑌𝑑,ℎ, 𝑞) =

=
⎧⎪⎨⎪⎩

(1 − 𝑞)
(
𝑌 𝑞
𝑑,ℎ − 𝑌𝑑,ℎ

)
for 𝑌𝑑,ℎ < 𝑌 𝑞

𝑑,ℎ,

𝑞
(
𝑌𝑑,ℎ − 𝑌 𝑞

𝑑,ℎ

)
for 𝑌𝑑,ℎ ≥ 𝑌 𝑞

𝑑,ℎ,

(8)

where 𝑌 𝑞
𝑑,ℎ is the forecast of the 𝑞th quantile of 𝑌𝑑,ℎ.

5.1.3. Testing for statistical significance
For each hour of the day, we perform the Kupiec (1995) test for

unconditional coverage for the 50% and 90% prediction intervals (PIs).
For the CRPS, we aggregate the losses across all predicted hours,
whereas for the Kupiec test, we provide the number of hours which
passed the test.

Moreover, we use the Diebold and Mariano (1995) test (DM) to
assess differences in predictive accuracy with the CRPS as the loss

function. Following Lago et al. (2021) and Ziel and Weron (2018), we
consider the multivariate loss differential series:

𝛥𝑑
𝐴,𝐵 = ‖𝐿𝑑

𝐴‖1 − ‖𝐿𝑑
𝐵‖1, (9)

which defines the difference in the 𝐿1 norm of loss vectors for models
𝐴 and 𝐵. Here 𝐿𝑑

𝑍 = {𝐿𝑑,1
𝑍 ,… , 𝐿𝑑,24

𝑍 } denotes the 24-dimensional vector
of prediction errors of model Z for day 𝑑, and ‖𝐿𝑑

𝑍‖1 =
∑24

ℎ=1 |𝐿𝑑,ℎ
𝑍 |. For

each pair of models, we compute the 𝑝-values of two one-sided DM tests
— one with the null hypothesis 0 ∶ E(𝛥𝑑

𝐴,𝐵) ≤ 0, which corresponds to
the outperformance of model 𝐵 forecasts (→ worse) by those of model
𝐴 (→ better), and the second with the reverse null 1 ∶ E(𝛥𝑑

𝐴,𝐵) > 0, or
equivalently E(𝛥𝑑

𝐵,𝐴) < 0. As in the standard DM test, we assume that
the loss differential series is covariance stationary.

5.2. Economic evaluation

Statistical error measures may not necessarily reflect the economic
value of reducing prediction errors (Hong et al., 2020; Maciejowska
et al., 2023). Hence, following Uniejewski (2023), we complement
them here by a case study, which compares profits from a realistic trad-
ing strategy that utilizes battery storage and day-ahead electricity price
forecasts. Such a strategy can be deployed by, e.g., a company that man-
ages a virtual power plant with an energy storage system (Shabanzadeh
et al., 2017).

5.2.1. Quantile-based trading strategy
Without loss of generality, let us assume that the total usable

capacity of the battery is 𝐵 = 2 MWh, and that the efficiency of both
charging and discharging processes is 90% (for a total efficiency of
81%). The strategy proposed by Uniejewski (2023) aims to find the
most profitable hours of the day to submit a buy order for 1

0.9 MWh at
hour ℎ1 (which would result in charging the battery by 1 MWh) and
a sell bid for 0.9 MWh at hour ℎ2 > ℎ1 (the amount of energy from
discharging 1 MWh). Both are limit orders with the limits determined
by probabilistic forecasts.

More precisely, as shown in Fig. 4, the selection of ℎ1 and ℎ2 is
based on maximizing the difference in median price forecasts for the
next day, i.e., 𝛥𝑌 0.5

𝑑 = 𝑌 0.5
𝑑,ℎ2 − 𝑌 0.5

𝑑,ℎ1, while the limits are determined

by the risk appetite 𝛼 of the trader. Namely, the trader places two
orders — a buy order with price limit 𝑌 1−𝑞

𝑑,ℎ1 and a sell order with
price limit 𝑌 𝑞

𝑑,ℎ2, where 𝑞 = 1−𝛼
2 . Note, that unlike (Uniejewski, 2023),

we assume that the orders are placed only if 0.9𝑌 𝑞
𝑑,ℎ2 − 1

0.9𝑌
1−𝑞
𝑑,ℎ1 > 0,

i.e., if we expect the transaction to be profitable. The risk appetite
𝛼, i.e., the prediction interval (PI) width, is set once for the whole
evaluation period. However, for comparison purposes we consider 𝛼 ∈
{90%, 80%, 70%, 60%, 50%}.

In such a setting it is possible that not all orders are executed.
Hence, if at midnight the battery is fully charged (𝐵 = 2 MWh), a
market order to sell 0.9 MWh is placed before hour ℎ1, so that the
‘‘starting’’ battery charge state is 1 MWh. Likewise, if at midnight the
battery is discharged (𝐵 = 0 MWh), a market order to buy 1

0.9 MWh is
placed before hour ℎ2. Such a behavior allows us to always submit two
limit orders – buy and sell – regardless of the number of executed orders
on the previous day. The profit maximizing selection of particular hours
to submit these market orders is made using a linear optimization
solver.

5.2.2. Benchmark strategies
Apart from the quantile-based strategy described in Section 5.2.1,

we also consider two benchmark strategies. The first, dubbed ‘unlimited
bids’ and denoted by unlmedian, assumes that the trader submits market
orders for hours ℎ1 and ℎ2. In other words, only the moments of market
entry are determined, not the price limits. In such a case the profit is
always equal to 0.9𝑌𝑑,ℎ2 − 1

0.9𝑌𝑑,ℎ1, and can be negative. The second
benchmark, dubbed ‘fixed hours’, assumes that market buy orders are
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Fig. 4. Illustration of the quantile-based trading strategy for the 90% PIs of the DDNN-
JSU-pEns model on 03.03.2020. The blue line represents the median forecast 𝑌 0.5

𝑑,ℎ for
ℎ = 1, 2,… , 24, whereas the gray area corresponds to the 90% PI. The selected hours
ℎ1 and ℎ2 are marked by blue squares, while the corresponding price limits 𝑌 0.95

𝑑,ℎ1 and
𝑌 0.05
𝑑,ℎ2 by black dots.

Fig. 5. CRPS values for the DDNN models and the benchmarks. Gray markers corre-
spond to the single hyperparameter set results, whereas color ones to the combination
schemes utilizing these four runs. Dashed lines mark the QRA method, while solid ones
QRM. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

always submitted for hour 3 and market sell orders for hour 19. These
two hours were selected ex-post as the ones with the lowest and the
highest prices in the whole out-of-sample period, respectively.

5.2.3. Economic evaluation metrics
We report two trading strategy metrics: the total profit across the

whole out-of-sample test period of 554 days and the per-transaction
profit. Note, that we ignore transaction costs and the impact of the
charging cycle on battery life. That said, the per-transaction profit is the
more important metric as it can easily be adjusted for actual transaction
costs and battery wear.

Table 3
Comparison of point (MAE, RMSE) and probabilistic (CRPS, Kupiec test) forecasting
accuracy for the considered models. The best result in each column is emphasized in
bold.

MAE RMSE CRPS Kupiec 50% Kupiec 90%

LEAR-Ens 4.372 6.375 – – –
DNN-Ens 3.610 5.850 – – –
naive 9.336 14.358 3.585 21 23
LEAR-QRA 4.161 6.676 1.575 10 8
LEAR-QRM 4.285 6.788 1.662 6 3
DNN-QRA 3.668 5.845 1.399 6 10
DNN-QRM 3.670 5.821 1.412 9 8
DDNN-N-pEns 3.663 5.962 1.351 2 6
DDNN-N-qEns 3.670 5.962 1.348 13 20
DDNN-JSU-pEns 3.542 6.146 1.304 1 4
DDNN-JSU-qEns 3.564 6.174 1.299 14 13

5.3. Results

5.3.1. MAE, RMSE and CRPS
In terms of the CRPS, as can be seen in Table 3 and Fig. 5, the

LEAR-based methods are much worse than the neural network-based
approaches. The differences can be also observed in Fig. 6, where QRA-
based approaches have very narrow prediction intervals. Note, that the
widest depicted interval is the 98% one. However, the performance of
the NN models is not robust — run-to-run, the CRPS values differ by
as much as 10%. As discussed in Section 5.4, this is not known ex-ante,
therefore an aggregation scheme is needed. After ensembling, regard-
less of the aggregation scheme applied (vertical, horizontal with mean,
horizontal with median), we see similar performance. The normally-
distributed networks yield CRPS ≈ 1.35, whereas JSU ones yield CRPS
≈ 1.30, i.e., ca. 3%–4% better than the normal. DNN-QR-type methods
can be placed between the DDNN ensembles and the individual runs.
Finally, as can be seen in Table 3, the best performing DDNN yields
over 7% lower CRPS than the best non-DDNN model (1.299 vs. 1.399).

As shown in Table 3, the neural network-based models are better
than LEAR-based ones also for the point forecasts. Interestingly, the
ensemble of DNN forecasts has the third lowest error — both in terms
of MAE and RMSE. The best model according to MAE is DDNN-JSU-
pEns, followed by its -qEns counterpart — the two models with the best
CRPS values. However, these models are worse w.r.t. the RMSE than all
other NN-based models. On the other hand, we see the lowest RMSE for
DNN-QR based methods, closely followed by the DNN-Ens model. The
DDNNs are ca. 2% (normal) and 7% (JSU) worse. There are only minor
differences between the vertical and horizontal aggregation schemes.

5.3.2. The Kupiec test
Additionally, we performed the Kupiec test for unconditional cov-

erage with 5% significance level for 50% and 90% prediction intervals.
From what can be seen in Table 3, QRA seems to perform better
than QRM — for both the LEAR and point DNN models. However,
the QR-based approaches pass the Kupiec test for at most 10 h of
the day. The probabilistic DDNNs, on the other hand, show mixed
performance. The p-Ens forecasts are worse than most other methods,
while q-Ens are better than QR-based predictions. As the p-Ens models
sport the CRPS similar to the q-Ens ones, the latter are a much better
choice, especially when chosen with a more robust median quantile
instead of mean. Note, however, that the worst overall method (Naive
benchmark) provides the best coverage for both 50 and 90% PIs.

5.3.3. The Diebold-Mariano test
The results of the DM test for the CRPS are visualized in Fig. 7. Each

rectangle above the ‘‘chessboard’’ diagonal corresponds to a one-sided
test of the null 0 with model 𝐴 being on the X-axis and model 𝐵 on the
Y-axis, see Section 5.1.3, while each rectangle below the diagonal to a
one-sided test of the reverse null 1. For instance, the first row is dark
green indicating that the forecasts of the naive model are significantly
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Fig. 6. Top panels: Visualization of 98%, 90% and 50% prediction intervals for five models and a week in September 2020. Quantile (horizontal) averaging with mean is depicted
for the two DDNN models. The actual (real) prices are plotted in black. Bottom panel: Load and RES generation day-ahead forecasts for the same period.

outperformed by those of all other models. Conversely, the first column
is black meaning that the naive forecasts do not outperform those of
any other model.

We can observe in Fig. 7 that DDNN-JSU-qEns is the best model
overall, with forecasts significantly better than from any other model

(the last column has only green or yellow cells). Moreover, horizontal
averaging (qEns) yields significantly better predictions than the vertical
one (pEns) for both the normal and JSU distributions, while QRA mod-
els (both LEAR and DNN ones) produce significantly better forecasts
than their QRM counterparts.
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Fig. 7. Results of the Diebold-Mariano test for the CRPS loss. For each pair of models we perform two one-sided tests and use a heat map to indicate the range of the 𝑝-values.
The closer they are to zero (→ dark green) the more significant is the difference between the forecasts of a model on the X-axis (better) and the forecasts of a model on the
Y-axis (worse). Black color indicates 𝑝-values of 10% or more. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 4
Total trading profits in EUR for the strategies defined in Section 5.2. Values in the top
row correspond to the PI width used. The best result in each column is emphasized in
bold.

90% 80% 70% 60% 50% unlmedian

Fixed hours 8048
LEAR-QRA 10 184 11 525 11 873 11 954 11 895 11 519
LEAR-QRM 10 230 11 329 11 680 11 584 11 493 12003
DNN-QRA 9 995 11 182 11 449 11 505 11 301 11 533
DNN-QRM 10 106 11 235 11 320 11 310 11 303 11 699
DDNN-N-pEns 5 874 9 766 11 514 11 900 12 145 10 646
DDNN-N-qEns 6 587 10 187 11 488 11 999 12 110 10 723
DDNN-JSU-pEns 9 163 11 147 12 074 12 308 12 154 11 492
DDNN-JSU-qEns 10 249 11 823 12247 12408 12360 11 750

5.3.4. Trading strategy
Lastly, the results for the trading strategies are presented in Tables 4

and 5. With respect to the total profit reported in Table 4, we can
observe that DDNN-JSU-type models are among the best for all PI
widths and the unlimited bids benchmark. Most notably, they are by
far outperforming their normal distribution counterparts.

Since the trading results assume no transaction and operational
costs, a much more important metric is the per-transaction profit
reported in Table 5. Here, we can observe that DDNN-JSU-type models
outperform alternative approaches, while still achieving a high total
profit (as presented in Table 4). In particular, the best performing
model yields 8% higher per-transaction profit than the best non-DDNN
model (14.92 vs. 13.77 EUR/MWh; see the 90% PI column in Table 5).
Moreover, probabilistic forecasts achieve higher per-transaction profits
than the unlimited benchmark, regardless of the PI width, and the fixed
hours benchmark is outperformed by every other forecasting method.
Finally, note that quantile-based trading strategies built on probabilistic
forecasts can achieve profits that are very close to the theoretical
maximum — the ‘‘oracle’’ strategy, which always buys at the lowest
price of the day and sells at the highest, yields a total profit of 13,587
EUR.

5.4. The need for multiple hyperparameter sets

Even though the hyperparameter optimization uses a repeated neu-
ral network training procedure to mimic the rolling calibration window
setting used later for the evaluation, the optimal sets obtained using

Table 5
Per-transaction profits in EUR/MWh for the strategies defined in Section 5.2. Values
in the top row correspond to the PI width used. The best result in each column is
emphasized in bold.

90% 80% 70% 60% 50% unlmedian

Naive 7.26
LEAR-QRA 13.47 12.68 12.28 12.16 12.38 10.40
LEAR-QRM 13.13 12.57 12.31 12.21 12.53 10.83
DNN-QRA 13.77 12.26 11.54 11.39 11.37 10.41
DNN-QRM 13.69 11.88 11.57 11.36 11.46 10.56
DDNN-N-pEns 13.99 12.33 11.92 11.78 11.65 9.61
DDNN-N-qEns 13.33 11.93 11.82 11.74 11.64 9.68
DDNN-JSU-pEns 14.92 12.96 12.15 11.90 11.66 10.37
DDNN-JSU-qEns 14.04 12.45 12.05 12.02 11.79 10.60

independent hyperparameter trials differ significantly. Moreover, all
the optimal sets have a similar, i.e. within 2% difference, in-sample error
metric — what is not reflected in the out-of-sample error obtained using
this set. Here, the differences are much more prominent, up to 10%. The
locality of the hyperparameter optimization is clearly visible in the op-
timal sets chosen in independent trials, despite most of the trials being
stalled after around 1000 iterations. Fig. 8 shows choice frequency of
the considered input features (i.e., the number of hyperparameter sets
that uses a particular input variable), described in Section 4.1. All 3
considered neural network models are quite consistent when selecting
the inputs. The most important ones are the prices of the previous
day and two days ago, the current DA forecasts of load and RES, the
previous day’s DA forecasts of RES and the recent gas price. The least
important are the further lags of prices and load forecast.

Besides the differences in the inputs chosen, hidden layer sizes are
the most prominent, especially for the probabilistic networks. They
found optima in both the larger and smaller networks, as shown in
Table 6. For example, one of the probabilistic neural networks that
used the JSU distribution uses 565 and 962 neurons in the hidden
layers (amounting to over 540,000 weights just between the two hidden
layers), whereas other had 940 and 58 (over 54,000 weights) or 123
and 668 (over 82,000 weights). Moreover, even the activation functions
chosen were not unanimous, but softplus seems to be the best for
the first hidden layer. We also observe that the dropout is almost never
chosen, similarly to the regularization of the network weights.

To conclude, we observe that there is a need for repeating the
hyperparameter optimization process. Despite the robust optimization
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Fig. 8. The frequency with which (out of 4 hyperparameter optimization trials) an input group was chosen for inclusion in DNN models. The groups are described in detail in
Section 4.1.

Table 6
Activation functions and number of neurons selected in each of the hyperparameter tunings.

Run DNN DDNN-N DDNN-JSU

1 2 3 4 1 2 3 4 1 2 3 4

Layer 1 Activation softplus softplus softplus softplus softplus softplus softplus softplus softplus elu softplus softplus
Neurons 906 912 979 965 948 266 542 110 565 940 243 123

Layer 2 Activation softplus softplus relu elu elu relu softplus relu relu elu elu elu
Neurons 901 619 767 448 554 883 641 823 962 58 895 668

setting, the end results are vastly different — both in terms of the
parameters chosen, and the out-of-sample error metrics. A form of the
forecast combination is crucial for the outperformance of QR-based
methods.

6. Conclusions

The paper proposes an application of distributional neural networks
to probabilistic day-ahead electricity price forecasting and a simple,
yet well-performing aggregation scheme for the distributional neural
networks that stabilizes the predictions. Since probabilistic forecasting
is the essence of risk management – Value-at-Risk (VaR) is nothing else
but a quantile forecast – our study provides important implications for
managing portfolios in the power sector.

Comparing the results with the literature approaches, we observe a
strong performance of the neural networks — both the probabilistic
forecasts from the proposed methods and from quantile regression
applied to their point counterparts are significantly more accurate
than the statistical-based combination of LEAR and quantile regression.
The added complexity of the neural network having to model the
distribution of the data, rather than just their expected values, proves
effective, especially when the limitations incurred by the distribution
choice are not too severe. However, while the DDNN approach does
not add too much complexity on top of the point DNN counterpart,
the performance of the model depends strongly on the distribution. As
the optimal choice is likely related to the data that is modeled, one
of the possible future research directions will be a study that tests a
broader selection of distributions across multiple datasets, with various
electricity usage patterns and generation mixes.

Interestingly, the benefit of using distributional neural networks is
visible also when mean absolute errors of the median (50th percentile)
forecasts are considered. The DDNN-JSU-Ens approach is the only one
that outperforms the ensemble of point NNs in this regard.
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Trading on short-term path forecasts of intraday electricity prices.
Part II – Distributional Deep Neural Networks

Grzegorz Marcjasza,1, Tomasz Serafina, Rafał Werona

aDepartment of Operations Research and Business Intelligence, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

Abstract

We propose a novel electricity price forecasting model tailored to intraday markets with continuous trading. It is based on distri-
butional deep neural networks with Johnson SU distributed outputs. To demonstrate its usefulness, we introduce a realistic trading
strategy for the economic evaluation of ensemble forecasts. Our approach takes into account forecast errors in wind generation
for four German TSOs and uses the intraday market to resolve imbalances remaining after day-ahead bidding. We argue that the
economic evaluation is crucial and provide evidence that the better performing methods in terms of statistical error metrics do not
necessarily lead to higher trading profits.

Keywords: Intraday electricity market, Probabilistic forecast, Path forecast, Prediction bands, Trading strategy, Neural networks

1. Introduction

The European power trading landscape is undergoing signif-
icant changes as the generation from renewable energy sources
(RES), such as wind and solar, continues to grow, accompanied
by ongoing market integration and active demand-side manage-
ment Grossi and Nan (2019); Maciejowska (2020). They make
it more difficult to balance the supply and demand sides in the
power system, mainly due to high uncertainty regarding the
RES generation during the day-ahead (DA) auction. Therefore,
we observe the shift towards shorter time horizons in electric-
ity trading. The day-ahead market, which traditionally played a
crucial role in electricity trading in Europe, is now slowly los-
ing the market share to the intraday (ID) trading. Between years
2021 and 2022, the volume traded on European intraday mar-
kets (operated by EPEX) increased by 9%, while the day-ahead
– decreased by 5% (EPEX, 2023).

This gradual change of focus is not yet visible in the elec-
tricity price forecasting (EPF) literature. The search of Scopus-
indexed1 articles reveals that only around 3% of EPF articles
consider the topic of intraday electricity price forecasting.

Among the existing literature, researchers focus on few dis-
tinct topics. Kiesel and Paraschiv (2017) investigate the bid-
ding behavior of German intraday electricity market partici-
pants and link the RES generation forecast errors to the elec-
tricity price changes. Narajewski and Ziel (2020a) and Marc-
jasz et al. (2020) focus on forecasting the ID3 index – the most

∗Corresponding author
Email address: grzegorz.marcjasz@pwr.edu.pl (Grzegorz Marcjasz)

1the EPF articles were queried using TITLE-ABS-KEY(‘‘electricity

price*’’ AND (‘‘forecast*’’ OR ‘‘predict*’’ )) query, while
the intraday EPF ones — TITLE-ABS-KEY(‘‘electricity price*’’

AND (‘‘forecast*’’ OR ‘‘predict*’’ ) AND (‘‘intraday’’ OR

‘‘intra-day’’))

commonly used proxy for the German intraday price (see Sec-
tion 2). Janke and Steinke (2019) conduct a forecasting study
with the focus on the quantiles of the price distribution for the
last three hours of trading before the delivery. Linear regres-
sion models and an ensemble of neural networks are compared
to several naive benchmarks. Narajewski and Ziel (2020b) and
Serafin et al. (2022) propose ensemble forecasting methods for
the continuous intraday markets, which in case of the latter
paper, are used as a basis for a trading strategy which serves
as a tool for the economic evaluation of electricity price fore-
casts. This particular direction is recently gaining attention of
researchers and as Hong et al. (2020) and Maciejowska et al.
(2023) argue, it is an important aspect of the model evaluation
that at the same time is commonly overlooked in the literature.

In this paper, we address the aforementioned existing liter-
ature gap and extend the trading strategy proposed by Serafin
et al. (2022) with a more realistic (from a perspective of a wind
power plant owner) set of assumptions. More precisely, we con-
sider wind generation forecast errors and use the intraday mar-
ket to cover the imbalance left after the day-ahead bidding. Ad-
ditionally we argue that the economic assessment of the forecast
is the key factor in choosing the optimal approach from the per-
spective of the decision maker. Moreover, we propose a novel
ensemble prediction model based on the well-performing ma-
chine learning approach of Marcjasz et al. (2023) and show that
– albeit the results of the statistical evaluation are not unani-
mous – it is the best among tested methods in all trading simu-
lations we performed.

The rest of this paper is structured as follows. In Section 2
we describe datasets used in this study. In Section 3 we pro-
vide the description of forecasting models while in Section 4
we introduce the “building blocks” that the models use – from
point forecasting methods, through probabilistic and path tra-
jectories to prediction band generation algorithm. In Section 5
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we introduce trading strategies that are used for the economic
evaluation of forecasts. Section 6 demonstrates the results of
statistical and economic evaluation and provides a discussion
on the applicability of both approaches. Lastly, Section 7 con-
cludes the findings of this paper.

2. Data

2.1. Market description

Unlike the auction-based markets, the German intraday con-
tinuous trading does not have a single price for the product (i.e.,
for the delivery of a set amount of electricity over a given pe-
riod). Instead, the price depends on the moment of entering the
market – and as a result, we are presented with the price tra-
jectory. The trajectory starts at 16:00 on the day preceding the
delivery and ends 5 minutes before the delivery begins. The ex-
change lists three price indices: IDfull, ID1 and ID3, that are
computed as a volume-weighted average price of transactions
in the whole trading period, last hour before the delivery and
last 3 hours before the delivery, respectively. While the indices
are informative – they provide an approximation of the price
via a single value – they do not present the whole information,
especially regarding the trading opportunities.

We use the same dataset as Serafin et al. (2022) to facili-
tate the comparison. The dataset comprises the transaction
data (price, volume and timestamp) for the hourly contracts on
the German intraday electricity market covering period from
15.06.2017 to 29.09.2019. The first 364 days serve as an initial
calibration window for the point forecasts, followed by three
91-day calibration periods: for the probabilistic forecast esti-
mation based on the point ones (for the LASSO-based method),
for the path forecasts and finally for the simultaneous cover-
age probability (see Section 5.3). This leaves a 200-day out-
of-sample test period for the path forecasts. The data split is
visualized in Figure 3 in Serafin et al. (2022).

The data contains the raw info for each of the executed trans-
actions (timestamp, volume and price). To make the data bet-
ter suited for modeing, we use an aggregated view of the mar-
ket data. From the raw transaction data, we extract volume-
weighted average prices (VWAPs) of the 15-minute timeframes
that constitute the ID3 index, for a total of 12 subperiods. How-
ever, the first subperiod only considers 10 minutes of the data
(in the modeling framework, we use information that is avail-
able 3 hours before the delivery, we allow 5 minutes for gather-
ing the data and running the models) and the last two subperiods
are ignored (as the last 30 minutes of trading is limited – only
trades within the control zones are allowed). We therefore use
10 subperiods for evaluation of the strategy.

Having the VWAPs for the 10 subperiods t1, . . . , t10, we can
use them as an approximation of the price trajectory – and as
Serafin et al. (2022) state – it also is more realistic for selling
larger volumes than the prices of single transactions.

2.2. Exogenous data

Aside from the market data, we also have exogenous se-
ries that are used in the model. Firstly, we have German wind

Figure 1: Map of Germany with the approximate geographic division to four
zones covered by the service of respective TSOs.

power generation data – hourly values describing the forecasted
(day-ahead forecast) the generation and the series of actual (ob-
served) values. We assume that the actual data is available with
only a small delay (such data is publicly available, e.g. on the
ENTSO-E platform ). Secondly, we have similar data regarding
the forecasted and actual load for Germany. For the depiction
of the exogenous data (the day-ahead forecasts) we refer the
reader to Figure 4 in Serafin et al. (2022).

2.3. Wind data for realistic strategy
The wind data described in the previous paragraph corre-

spond to the nation-wide values. However, to better approx-
imate what is the imbalance after the day-ahead bid and the
update of the wind generation forecasts, we need to take the
location of a power plant (as the wind gusts are not uniform
over the whole country). We use the wind generation forecasts
from the four German transmission system operators (TSOs):
Amprion, 50Hertz, TenneT and Transnet-BW. For each zone,
we have a set of two forecasts of the zonal wind generation,
the day-ahead one (which is a basis for computing the volume
sold on the day-ahead market) and the one closer to delivery
(assumed to be equal to the generation), the difference of which
needs to be purchased or sold on the intraday market (see Sec-
tion 5.2.2).

3. Models

This section describes the three models we use for the gener-
ation of prediction bands – each comprises of various “building
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Figure 2: Hourly zonal imbalance plots for four German delivery zones.

blocks” (see Figure 3), however all of them use the same ap-
proach to obtain the prediction bands from the path forecasts
– the Direct method described in Section 4.5. The respective
steps are introduced in Section 4.

3.1. The DDNNC approach

The novel approach we introduce combines distributional
neural networks and Gaussian copula-modeled temporal depen-
dencies. As described in Section 4.1, the neural network out-
puts the probability density function directly – there is no in-
termediate point forecast created in the process. The steps for
creating the path forecasts from the probabilistic one, choosing
the starting point for the paths and prediction band computa-
tion are identical to the LQC method of Serafin et al. (2022).
More specifically, first trajectory forecasts are computed, with
temporal dependencies between the sub-periods modeled using
a Gaussian copula. Next, vectors of innovations are affixed to
randomly drawn values from the probabilistic forecast for t1

Figure 3: Flowchart presenting the “building blocks” of the forecasting ap-
proaches introduced in Section 3, based on the computational techniques de-
scribed in Section 4.

sub-period and eventually, the Direct approach is used for com-
puting the prediction bands.

3.2. The LQC approach

The so-called LQC approach proposed in Serafin et al.
(2022) comprises three main parts: LASSO point forecasting
model, quantile regression (to obtain probabilistic forecasts)
and – like the DDNNC approach – copula-modeled structure
of temporal dependencies. The QR is used to compute 99 per-
centile forecasts based on the point predictions. The 99 per-
centiles are linearly interpolated to obtain more granular quan-
tiles, there is also extrapolation to the minimum and maximum
prices for the extreme values.

3.3. LASSO bootstrap approach

Lastly, we use the better of the two point forecast-based
methods described in Serafin et al. (2022): LASSO bootstrap.
The approach uses LASSO point predictions as the base for ob-
taining price paths - it additionally samples vectors of historical
point forecast errors to “correct” for the observed temporal de-
pendency. This particular method proved to be an extremely
well performing benchmark despite its simplicity.
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4. Methodology

4.1. DDNN

Distributional deep neural networks are feed-forward net-
works that – compared to their point counterparts – differ only
slightly in the structure (see Fig. 4) and are trained to mini-
mize the log-likelihood instead of error metrics such as mean
absolute error (Marcjasz et al., 2023). The network used in this
study is a deep structure with outputs that create (via a four-part
parameter layer corresponding to the four distribution parame-
ters) an output in form of a Johnson SU distribution (Johnson,
1949). The model for predicting the distributions of VWAP for
a given j-th subperiod ( j = 1, ..., 12) for delivery at day d, hour
h consists of the following 102 inputs:

1. 21 past ID3 index values (newest avaiable at the time of
forecasting)

2. 25 day-ahead prices, ranging from day d−1, hour h to day
d, hour h

3. the day-ahead forecast of 25 hourly values of wind gener-
ation and day-ahead load forecast (day d−1, hour h to day
d, hour h)

4. the actual wind power production and observed load for
the last observed hour (4 hours preceding the delivery) and
hour h of day d − 1

5. last VWA price of the 15-minute interval (period spanning
from 3h15m to 3h before the delivery)

6. a multi-valued indicator variable corresponding to the
modeled subperiod j

Note, that we do not use dummies corresponding to the
weekday or hour of the day in the model in a fashion similar
to the day-ahead models, as this information is strongly corre-
lated with the day-ahead prices and load forecasts. The model,
however uses a dummy to mark the training samples coming
from j-th subperiod. The original formulation of the model
proposed by Serafin et al. (2022) did not have this information,

as 12 separate models were trained, one for each future hori-
zon (see Section 4.2). Based on a limited numerical study, for
this particular deep neural network model it is beneficial to use
only one model that has a vastly larger set of training samples.
Moreover, unlike for the LASSO model (that follows the orig-
inal formulation of Serafin et al. (2022)), the input data is not
preprocessed in any way (aside from the batch normalization
applied in the neural network). The non-linear model structure
is expected to fit well to the non-linear patterns in the data (Hill
et al., 1994; Jȩdrzejewski et al., 2022).

The calibration window used in the neural network training
was 364 days (24 · 12 · 364 samples), 20% of which were ran-
domly left out as an unseen data for the validation. Whenever
the forecast error on the validation set did not improve in the last
50 iterations over the whole dataset, the training is assumed to
be finished (and the weights from iteration that yields the low-
est validation error are restored). The process is called early
stopping and is a common practice in the literature (Lago et al.,
2018; Yao et al., 2007).

Due to the randomness of the neural network training pro-
cess, the results of consecutive runs (training processes – the
trained network is deterministic) vary – for a more robust per-
formance, it is a standard practice to train multiple neural net-
works (in this case, using the same data) and treat their com-
bined ouptut as the final outcome of the model (here, horizontal
(qAve) averaging was used, following Marcjasz et al. (2023)).
The results reported in this paper correspond to the ensemble
of 5 identical (w.r.t. the structure and input data) neural net-
works trained separetely, using the same hyper-parameter set
(see paragraph below). Also, Fig. 7 presents the impact and
variance of the profit from the trading strategy depending on
the size of the ensemble.

The aforementioned hyper-parameter set was chosen in an
additional optimization study, in which only the initial calibra-
tion data (the first 364 days of the dataset) was used to avoid
an ex-post optimization. The last 13 weeks (91 days) of that
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were allocated as a hyper-parameter validation dataset. The
process of hyper-parameter optimization, in simple terms, was
an iterative training of neural networks using different hyper-
parameter values and evaluating them on the hyper-parameter
evaluation dataset. In more detail, for each hyper-parameter
set, there were 7 neural networks trained – each was evaluated
on only 13 of the 91 validation days. This was done to make
the hyper-parameter optimization more robust, as it limits the
impact of the randomness on the optimization process. The
hyper-parameter sets were chosen using Tree-structured Parzen
Estimator implemented in the optuna package for Python – so
the consecutive trials were based on the history of values the
tested so far. Finally, the network was trained five times inde-
pendently (using a random starting points for the weights in the
model) with the chosen hyper-parameter set – the predictons
made using these five trained networks constitute an ensemble.
During the hyper-parameter calibration, the following hyper-
parameters were determined:

• activation function for both hidden layers, (independently)
chosen from sigmoid, relu, elu, tanh, softplus and softmax

• the number of neurons in both hidden layers (indepen-
dently) – an integer from 16 to 1024

• the initial learning rate for the ADAM algorithm (float
ranging from 10−7 to 10−1)

• dropout application (yes/no) and, if yes, the dropout rate –
float from 0.0 to 1.0

4.2. Generating LASSO point forecasts
The LASSO-estimated point forecasts were generated using

the same model as in Serafin et al. (2022), with the baseline
model for the VWA of hour h on day d is (for the j-th subperiod
before the delivery) given by:

Xd,h,t j = β0 +

24∑

i=4

βi−3ID3d,h−i +

24∑

i=0

β22+iDAd,h−i

︸                                       ︷︷                                       ︸
past ID3 and past/forward-looking DA prices

+

24∑

i=0

β47+iŴd,h−i + β72Wd,h−4 + β73Wd,h−24

︸                                               ︷︷                                               ︸
wind generation forecasts and past values

+

24∑

i=0

β74+iL̂d,h−i + β99Ld,h−4 + β100Ld,h−24

︸                                              ︷︷                                              ︸
load forecasts and past values

+ β101Xd,h,t0︸     ︷︷     ︸
last VWA price

+ εd,h,t j , (1)

where ID3d,h denotes the value of the ID3 price index for day
d and hour h, DAd,h is the day-ahead price for day d and hour
h, Ŵd,h and Wd,h are, respectively, the day-ahead predicted and
actual wind generation for day d and hour h, L̂d,h and Ld,h are
the day-ahead predicted and actual system-wide load for day
d and hour h, respectively, and Xd,h,t0 is the last known VWA

price, i.e., the VWA price of transactions between 3 hours and
15 minutes and 3 hours before the delivery. The last regressor is
widely used in the literature on forecasting the ID3 index prices
(Marcjasz et al., 2020; Narajewski and Ziel, 2020a). Note, that
for the sake of simplicity the notation ID3d,h−i refers to the ID3
index value i hours before the day d and hour h even though the
h − i might be negative.

Note, that the inputs are identical to the ones used in the
DDNN methdod (Section 4.1), with the omission of the vari-
able indicating the modeled subperiod j. Instead, 12 separate
models are constructed, one for each day d, hour h and sub-
period j – although the inputs are exactly the same for each j,
the modeled dependencies can be different, as LASSO method
automatically limits the impact of less relevant input values, ef-
fectively creating 12 (possibly) different models (constructed as
subsets of the baseline model) for each day and hour. As in the
original paper, the calibration window had length of 364 days.

However, unlike in the DDNN model, the input data series
undergo a variance stabilizing transformation, following Ser-
afin et al. (2022) description. Each input series is independently
normalized by subtracting the in-sample median and dividing
by the in-sample median absolute deviation adjusted by the 75-
th percentile of the standard normal distribution. Finally, the
area hyperbolic sine is applied as the so-called variance stabi-
lizing transformation (Uniejewski et al., 2018). This allows the
data to be better suited for the linear model (and normalize the
variances of all input series, which is beneficial for the LASSO
method).

The model is estimated using the LASSO operator (Tibshi-
rani, 1996), that implicitly (via the regularization of the model’s
coefficients) selects only the relevant inputs (note, that this re-
sults in a set of 24 hourly models that possibly use a different
information set). The regularization parameter is in this study
chosen automatically from a set of 50 values (that are automat-
ically computed) through a cross validation procedure with 3
folds. The method is implemented in scikit-learn library for
Python (Pedregosa et al., 2011).

4.3. Computing quantile forecasts using LASSO point esti-
mates

Having the point LASSO forecasts as described in the previ-
ous Section, we use quantile regression with 91-day calibration
window to generate an approximation of the probabilistic fore-
cast. For each of the percentiles, we estimate its based on the
previous forecast values and the actual values. Since we do it
separately for each of the 10 sub-periods, we might observe a
so-called quantile crossing (i.e., non-monotonic approximation
of the percentiles), we prevent it by sorting the percentile es-
timates, as suggested by Maciejowska and Nowotarski (2016),
Serafin et al. (2019) and Serafin et al. (2022).

4.4. Generating path forecasts

The study uses two different schemes of obtaining the path
forecast (which are later used to construct the prediction bands
in Section 4.5; note however, that in general the path forecast
is not required for the prediction band to be generated (see e.g.,
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AQL method in Serafin et al. (2022)). One of the approaches
is based on the point forecasts (Section 4.4.1) and one uses the
probabilistic forecast (Section 4.4.2). Both methods introduce
time-dependency in the generated scenarios based on the his-
torical forecasts and realized actual price paths.

4.4.1. Historical point forecast errors
The first method utilizes the point forecasts from the

LASSO model as the base for generated scenarios. The time-
dependency between prices in consecutive time points is intro-
duced by adding a vector of past errors of the LASSO point
model to the forecast for day d in the following way:

X̃d,h,t j = X̂d,h,t j + εd∗,h,t j ,

where X̂d,h,t j is the point forecast obtained using LASSO,
εd∗,h,t j = X̂d∗,h,t j −Xd∗,h,t j and d∗ is a randomly selected day from
the past 182 days.

4.4.2. Gaussian Copula
The second approach generates price scenarios based on the

forecasted quantiles (from the probabilistic model – LASSO
with QRA or DDNN) while the time-dependency is modeled
with the Gaussian copula, similarly to Serafin et al. (2022).
Using 91-day rolling calibration window, we estimate Σ – the
temporal correlation matrix of transformed quantile coverage
errors of probabilistic forecasts. Later, we simulate the tra-
jectories by selecting quantiles in consecutive periods that are
inter-correlated based on the estimated Σ. For the more detailed
description see Pinson et al. (2009), Gneiting et al. (2007) and
Janke and Steinke (2020).

4.5. Determining prediction bands from path forecasts
Following Serafin et al. (2022), we construct the prediction

bands from the pool of simulated trajectories in order to later
use them for the trading strategies (see Section 5). Prediction
bands, unlike a set of prediction intervals, take into consider-
ation the temporal dependency of the price forecast evolution
in consecutive time points. Each prediction band (upper or
lower) is characterized by the simultaneous coverage probabil-
ity (SCP), which is the probability that the whole price trajec-
tory lies below (for upper) or above (for lower) the band. Note
that in the strategies we use for the economic evaluation of path
forecasts, we make a decision of either selling or purchasing the
electricity and therefore, at the time of the decision, only upper
(for selling) or lower (for buying) prediction band is taken into
consideration.

More formally, the SCP for the upper prediction band BU
d,h,t j

can be written as:

P
(
Xd,h,t j ≤ BU

d,h,t j
,∀ j

)
= SCP,

while for the lower BL
d,h,t j

:

P
(
BL

d,h,t j
≤ Xd,h,t j ,∀ j

)
= SCP.

The algorithm we employ for the construction of the pre-
diction bands is similar to the one proposed by Staszewska

(2007). Since the simultaneous coverage property requires the
price paths to respect the prediction band in each time point,
the procedure comes down to rejecting the forecasted trajec-
tories containing extreme points (maximum values for upper
and minimum values for lower prediction band) from the whole
simulated sample until SCP % of trajectories remain. Then, the
prediction band is created by selecting the maximum (or min-
imum) values of the remaining paths at each consecutive time
point. For the reference see both panels of Figure 5 – light-gray
dotted lines represent rejected trajectories, dark-gray solid lines
the remaining trajectories, while the solid red line depicts the
derived prediction band.

4.6. Evaluation of path forecasts

The path forecasts in this paper are evaluated twofold: first
based on the statistical measures and later in context of the
economic measures. The statistical evaluation is the standard
literature approach for the ranking the accuracy of forecast-
ing methodologies (Hyndman and Koehler, 2006; Maciejowska
and Nowotarski, 2016; Makridakis et al., 2018). However, the
statistical evaluation might not always be straightforward. Lago
et al. (2021) note that the relative accuracy of different models
might change when we consider various error metrics and sug-
gest to report multiple well-defined error measures, suitable for
the type of data (e.g., in case of electricity prices that can have
close to 0 or even negative values, percentage errors lead to in-
correct conclusions). Therefore, in this paper we use three well-
known scoring metrics suitable for the evaluation of path fore-
casts: Energy Score, Variogram Score and Dawid-Sebastiani
Score (Scheuerer and Hamill, 2015). As Scheuerer and Hamill
points out, each of these have its shortcomings in sensitivity to
certain types of the forecast biases (see Sections 4.6.1–4.6.3).

Moreover, in practice a manager has to make one decision
– and multiple sources (error measures) might point to dif-
ferent suggested actions (Kolassa, 2020). Moreover, the op-
timal choice should be determined by the expectations of the
decision-maker (for example maximization of the profits or re-
duction of the risk). However, the statistical evaluation does not
provide the necessary information since there is no clear rela-
tion between the error measures and the expected outcome of
the decision (such as profit or VaR maximization), making it
unclear if the accuracy of better methods (with regards to the
statistical error metrics) corresponds in practice to improved fi-
nancial results.

Hence, there is a need for a more universal evaluation, ide-
ally one that addresses the aforementioned issues, for example
a market simulation that uses the forecasts as an automatic deci-
sion support system (Janczura and Wójcik, 2022; Kath and Ziel,
2018; Maciejowska et al., 2019; Serafin et al., 2022; Uniejew-
ski, 2023). In this paper, we propose a market simulation ap-
proach based on a simple trading strategy to determine whether
the best forecast in terms of the statistical measures would be
also a top performer in the context of economic evaluation from
the perspective of the power producer.
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4.6.1. Energy Score
The energy score is defined by Gneiting and Raftery (2007):

ESd,h =
1
M

M∑

i=1

∥∥∥X̃i
d,h − Xd,h

∥∥∥
2

− 1
M(M − 1)

M−1∑

i=1

M∑

l=i+1

∥∥∥X̃i
d,h − X̃l

d,h

∥∥∥
2
, (2)

where X̃i
d,h =

(
X̃i

d,h,t1
, . . . , X̃i

d,h,t10

)
is the i-th path forecast for

day d and hour h, Xd,h is the corresponding actual VWA price
path and M is the number of generated paths, see Section 4.4
for details. The energy score is a strictly proper scoring rule
and a useful tool for evaluating forecasts, including ensemble
forecasts, as it generalizes the continuous ranked probability
score (CRPS; Hersbach (2000)). However, it has been observed
that the energy score may lack sensitivity to misspecifications
in the correlations between different components (Pinson and
Girard, 2012; Pinson and Tastu, 2013).

4.6.2. Dawid-Sebastiani score
The Dawid-Sebastiani score – a multivariate scoring rule

based on the mean vector and covariance matrix of the predic-
tive distribution (Dawid and Sebastiani (1999)) – is defined by:

DSSd,h = ln
(
det
(
Sd,h
))
+KT S−1

d,hK (3)

where Kd,h =
(
Kd,h,t1 , . . . ,Kd,h,t10

)
is a vector of 10 differ-

ences, each taking the form of:

Kd,h,t j = Xd,h,t j −
1
M

M∑

i=1

X̃i
d,h,t j

and Sd,h is the covariance matrix estimated from the simulated
scenarios. This scoring rule corresponds to the logarithmic
score for multivariate Gaussian predictive distributions and re-
mains a proper scoring rule for a broader class of probability
distributions. However, Scheuerer and Hamill (2015) argue that
the score calculation is very sensitive to the small sample size,
hence it is not always a good choice for ensemble forecast eval-
uation (see e.g., Table 2 in Feldmann et al. (2015)). Note, that
in case of the forecasting exercise considered in this paper, the
ensemble size is large enough for the score to be applicable.

4.6.3. Variogram score
Lastly, we use the variogram score which has been proposed

as an alternative proper scoring rule by Scheuerer and Hamill
(2015). The variogram score of order p (VS-p) is defined by:

VSd,h =

10∑

i=1

10∑

j=1

wi, j


∣∣∣Xd,h,ti − Xd,h,t j

∣∣∣p − 1
M

M∑

l=1

∣∣∣∣X̃l
d,h,ti − X̃l

d,h,t j

∣∣∣∣
p


2

,

(4)

where wi, j =
1

100 . This scoring rule has been shown to be
more discriminative in context of misspecifications in the cor-
relations structure of ensemble forecasts than two metrics de-
scribed earlier. However, the types of biases and misspecifi-
cations are unknown in the forecasting task, and different val-
ues of the p parameter yield a scoring rule that is sensitive to

different types of errors (for details see Scheuerer and Hamill
(2015)). Therefore, the optimal value is not known in advance
– we use two recommended values (p ∈ {0.5, 1}) here, and
come to a completely different conclusions between the two.
Not knowing the source of the errors, we are unable to discern
a better model using the variogram score.

5. Trading strategies

In order to evaluate the path forecasts in terms of the eco-
nomic results, we use and extend the prediction band-based
trading strategy proposed by Serafin et al. (2022). The orig-
inal approach assumes the position of energy producer that
owns intermittent renewable energy sources or manages mul-
tiple such sources own by different entities (similarly to Li and
Park (2018) or Kath et al. (2020)). It simulates a surplus of
1MWh of electricity sold in the intraday market each hour of the
day. Our first extension is assuming that the decision maker, in-
stead of excess generation, faces a deficit of 1MWh of electric-
ity which has to be covered on the short-term market for each
hour. This strategy provides a different view on the challenges
posed by the renewable generation sources – and the combina-
tion of both sides, which is the second extension we propose,
allow for a realistic evaluation of the daily operations of RES
producer.

The third trading strategy mimics the actual uncertainty of
the wind power generation (forecasted day before the delivery)
and better relates to the challenges of the day-to-day operations
faced by a RES producing company. We use the data from 4
German TSOs (see 1) that contain two wind generation fore-
casts: day ahead ŴDA

d,h and intraday Ŵ ID
d,h (see Section 2.3). We

assume that the energy producer have an installed capacity of
roughly ω = 1% (for the Transnet-BW zone) or ω = 0.1% (for
the remaining three zones) of the total wind power capacity in
the respective zone. Based on the forecasts, the decision-maker
submits offers to sell ωŴDA

d,h MWh of electricity on the day-
ahead market and then has to balance his/her position on the
intraday market based on the updated value of the generation
forecast ωŴ ID

d,h.
For each hour we compute:

∆d,h = ωŴ ID
d,h − ωŴDA

d,h . (5)
∣∣∣∆d,h

∣∣∣ represents the volume that needs to be sold (∆d,h > 0)
or purchased (∆d,h < 0) during the intraday market continuous
trading.

In all cases, we assume that the impact of our trades on the
prices on the intraday market is negligible and ignore the trans-
action costs. The problem can be then summarized as finding
the optimal time to enter the market for each individual hourly
delivery period.

5.1. Naive strategies
Following Serafin et al. (2022), use three naive strategies that

are not based on any generated forecasts. In the first strategy,
Naivefirst, the market participant always enters the market dur-
ing the first period t0. The second strategy, Naivelast, involves
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taking the required position in the trading period closest to the
delivery, t10. The last (Naiveavg) strategy assumes that the total
traded volume is split into 10 evenly-sized transactions through-
out all periods t1 . . . , t10.

5.2. Prediction band-based strategies

Having the prediction band generated based on the path fore-
casts, we use it as a time-varying price level of the recom-
mended limit order (placed every 15 minutes). More precisely,
the points from the prediction band (upper or lower depend-
ing on the trade direction) correspond to the prices of the limit
orders (buy or sell) placed on the market in the consecutive 15-
minute subperiods until one of the orders is filled. If none of
the limit orders gets filled, we assume that the electricity is sold
at the last VWA price, as in the Naivelast strategy.

5.2.1. Fixed-volume sell/buy strategies
Serafin et al. (2022) introduces a novel strategy that uses pre-

diction bands generated from forecasted price paths to support
the decision-making of the company managing the renewable
energy sources. It was assumed that the producer had to sell the
excess of the electricity generation over the day-ahead bid, with
a fixed volume order of 1MWh placed on the market each hour
of each day. However, the stochastic RES generation might
force the decision-maker to purchase the electricity instead. In
this study, we address that and provide the results of not only
always selling the electricity on the intraday market, but also
always buying the same amount (since the optimal points of
entry are different for both sides of the trade, the problems are
similar, but with a different solution; see Fig. 5).

5.2.2. Realistic market simulation
This study, aside from considering separate perspectives of

both the buyer and the seller, proposes a new, realistic market
simulation, in which we assume the position of the decision-
maker in a wind power plant. Each day, the manager offers
100% of the forecasted electricity generation for each hour
of the next day (based on the day-ahead generation forecast).
However closer to the delivery, a new, more precise forecast is
available – and there will be a surplus or a shortage of elec-
tricity generated versus the day-ahead offer. Like in the fixed-
volume strategies (see Section 5.2.1), the decision-maker needs
to therefore balance it on the intraday market and the prob-
lem becomes an optimization of the time to enter the market.
The main advantage of such an approach is getting rid of the
unrealistic assumption that the balancing volume and direction
are constant across all hours – here, we implicitly consider the
correlation between the change of the wind generation forecast
(day-ahead versus closer to the delivery) and the volume and
direction of the balancing transaction. See Section 5 and Eqn.
(5) for more details.

5.2.3. Ex-ante selection of the simultaneous coverage proba-
bility

As described in 4.5, we can derive a prediction band (upper
or lower – depending on the trading direction) from a collection

of path forecasts. However, we need to first specify SCP (simul-
taneous coverage probability), and its optimal value will vary –
both in time and depending on whether we buy or sell. Fol-
lowing the methodology of Serafin et al. (2022), we leave out a
91-day long rolling calibration window to fit the optimal (most
profitable) SCP. The selection is done independently for both
the upper and the lower bands, based on the subset of hours for
which the respective band type was used for trading (upper for
selling and lower for buying). In order to confirm the validity of
our approach, we compared the results of the automatic choice
of SCP with the ex-post selected values for one of the German
zones in Figure 6 – as can be seen, the automatic approach (red
surface) yields profit very close to the optimal ex-post choices.
Therefore, the results section of this paper will concentrate on
the auto-SCP methods only.

5.3. Crystal-ball strategies

It is worth noting, that in the context of the proposed strate-
gies there is a maximum and a minimum possible profit that
can be extracted from trading activities. Therefore, we, fol-
lowing Serafin et al. (2022), introduce two additional reference
strategies: Refmax and Refmin, which always enter the market
in the subperiods guaranteeing the best and the worst execution
prices, respectively. These strategies can be treated as a baseline
for the economic evaluation of other methods and additionally
they provide a reference point. Given that the realistic mar-
ket simulation will have different volumes traded for different
zones, we can’t compare the raw profits between them. Hence,
we define the fraction of realized trading potential (FRTP) – a
metric allowing for the explicit and qualitative comparison of
the results, computed as follows.

FRTPmethod = 100% · Profitmethod − Refmin

Refmax − Refmin
, (6)

where Profitmethod corresponds to the sum of hourly profits of
the trading strategy using the model’s forecasts on the 200-day
test period.

6. Results

As demonstrated in the literature (Kolassa (2020)), the selec-
tion of the “best” model (based on statistical evaluation) heavily
relies on the choice of evaluation measure. Consequently, in the
subsequent section, we will present the outcomes of both statis-
tical and economic evaluation of the generated path forecasts.
This approach aims to provide a comprehensive assessment of
the forecasted data, taking into account not only statistical ac-
curacy but also its relation to the economic performance.

6.1. Statistical measures

We evaluate the quality of forecasted price paths using three
statistical measures especially suitable for this purpose: Energy
Score (Gneiting and Raftery (2007), see Section 4.6.1), vari-
ogram score (Scheuerer and Hamill (2015), see Section 4.6.3)
and Dawid-Sebastiani score ( Dawid and Sebastiani (1999),
see Section 4.6.2)). Results, calculated on the last 200 days
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Figure 5: Exemplary trading situations based on lower (left panel) and upper (right panel) prediction bands with SCP 40%, derived from the same set of simulated
trajectories. Green and red triangles mark the moments and prices of filled buy and sell orders, respectively.

Figure 6: Mesh plot of profits from the realistic trading strategy (Section 5.2.2)
for the TenneT zone, based on the trajectories from the DDNNC model. Parallel
plane represents the profit from the automated selection of SCP.

Figure 7: Profits from the fixed-volume selling strategy for different DDNN
ensemble sizes. Boxplots were created based on all possible combination of a
given number of forecasts from the pool of 5. For reference, solid lines corre-
spond to LQC and LASSO bootstrap profits.
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Figure 8: Profits from the fixed-volume selling strategy. On the left y-axis there
is a nominal profit, whereas on the right – FRTP (see Section 5.3).

of the out-of-sample period, are presented in Table 1 and di-
vided into peak (hours 8 to 19) and off-peak (remaining twelve
hours of the day) periods. It is evident that various evalua-
tion measures identify distinct top-performing models. Inter-
estingly, in over half of the test cases the simplest considered
approach (LASSO-bootstrap) exhibits the best performance –
for both peak and off-peak test periods. The DDNNC approach
outperforms its LASSO-QR-based counterpart with regards to
almost every considered measure. The good performance of
LASSO-bootstrap most probably stems from a completely dif-
ferent construction than two other models – it uses actual his-
torical price evolution directly instead of estimating the depen-
dency structure. Overall, it is difficult to ultimately pick the best
model based on the presented results, the only clear conclusion
is that DDNNC outperforms LQC. These results confirm that
statistical evaluation of forecasts might not provide universal
conclusions. In the next section, we present the results of the
economic evaluation of path forecasts using trading strategies
from Section 5.

6.2. Trading profits
Firstly, we will discuss the profits of the fixed-volume strat-

egy (to provide a comparison to the original results published
by Serafin et al. (2022)). In Figure 8 we can see the profits of a
fixed-volume strategy that exclusively involves selling electric-
ity on the market. Note, that this Figure is comparable with Fig.
10 of Serafin et al. (2022) – the Naive and LASSO-based meth-
ods are identical. The newly-proposed DDNNC model outper-
forms all remaining approaches, with the profit of the auto-SCP

strategy higher than LQC by ca. 2000 EUR. This amount trans-
lates to approximately 5 percentage point improvement over the
LQC model in context of the maximum profit achievable from
forecasting for this particular strategy. For the sake of clarity,
we omit the corresponding plot for the strategy that involves
buying electricity – in this particular case, the DDNNC also per-
forms better than other approaches with the profit higher than
LQC by ca. 1500 EUR. Interestingly, the LASSO bootstrap
performs better than LQC in this case (by almost 1000 EUR).
Note, that although the averaging of multiple DDNN proba-
bilistic forecasts is crucial in achieving such results, Figure 7
shows that even in the worst-case scenario (i.e., using only a
single realization with the lowest out-of-sample profit) in the
fixed-volume sell strategy, DDNN performs comparably to the
LQC approach.

Secondly, we will discuss the results of the novel realistic
strategy. In Table 2, we present the minimum and maximum
possible profits (Refmin and Refmax, respectively; see Section
5.3) alongside the FRTP defined in Eqn. (6), which described
the percentage of the maximum possible gain achieved by the
respective model. Note, that all Naive strategies, in general
achieve FRTP of ca. 50% – further emphasizing the viability
of the benchmarking approach (the Naive methods can be com-
pared to a coin toss). Here, the DDNNC outperforms other
methods in every case, and LASSO-based approaches trade
places for the second result. Moreover, the outperformance is
significant – DDNNC is better than the second best approach
by 1.6 to 4.4 percentage points, with FRTP ranging from 65.4%
to 67.3%.

7. Conclusions

In this paper we addressed an existing literature gap regard-
ing evaluation of the electricity price path forecasts for the Ger-
man intraday market. Firstly, we have used multiple scoring
rules for the statistical evaluation of simulated price trajecto-
ries. Secondly, we proposed an extension of the simple trad-
ing strategy of Serafin et al. (2022), as a more realistic way
for the economic assessment of ensemble forecasts. We make
an important argument, that statistical and economical evalu-
ation might lead to contrary conclusions regarding the best-
performing-model selection. Moreover, we argue that from the
practical perspective of the decision maker, the latter approach
provides a clear outlook on the performance of the proposed
models.

Additionally, we propose a novel path forecasting methodol-
ogy that uses deep distributional neural networks of Marcjasz
et al. (2023) as a replacement for the point and probabilistic
forecasting steps in the LQC approach. This machine learning
approach performs the best among the considered methods, sig-
nificantly improving upon the results of the LQC method with
regards to almost every metric.

Our results show that for the German intraday market, three
statistical evaluation metrics: energy score, Dawid-Sebastiani
score and Variogram Score were unable to discern the best
model unanimously – depending on the metric, LASSO boot-
strap approach traded the first place with DDNNC. On the other
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Table 1: The results of the statistical evaluation of trajectory forecasts. The best results in each category (metric and daytime) are marked with bold.

ES DSS VS-0.5 VS-1
peak off-peak peak off-peak peak off-peak peak off-peak

DDNNC 8.46 6.67 32.93 30.55 0.53 0.43 25.47 15.35
LQC 9.33 7.02 33.47 29.81 0.58 0.45 37.05 16.42

LASSO-bootstrap 6.21 5.17 42.20 29.71 0.50 0.42 37.72 28.04

Table 2: Profits of automated strategies for different zones. The bold results are the best in each row. The results from each model represents the FRTP (see Section
5.3)

.

Refmin [EUR] Refmax [EUR] DDNNC [%] LQC [%] LASSOb [%] Naivefirst [%] Naivelast [%] Naiveavg [%]
TenneT -2110 10685 66.9 62.3 63.8 49.9 49.7 50.2
50Hz -7824 4906 67.3 63.3 61.6 48.1 51.4 49.8

Transnet -9834 1952 65.4 62.2 63.8 49.3 50.1 49.6
Amprion -3593 200 65.6 61.2 60.5 53.6 45.4 50.7

hand, a market simulation (in both the simpler and the more
realistic form) always favored DDNNC in our testing – this
results holds both for the whole Germany and also the four
zones that we used for the evaluation. This implicates that the
DDNNC model outperforms the other approaches in the context
of easily quantifiable (and universal) economic measures.

Moreover, we further justify the attractiveness of the eco-
nomic evaluation framework of Serafin et al. (2022) and its ap-
plicability to more realistic trading simulations. It provides a
well-defined measure of the potential economic impact of fore-
cast quality improvement (as we do know the minimum and
maximum possible profits) and all naive methods are compara-
ble to a coin toss – they achieve ca. 50% of the FRTP.
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Janczura, J., Wójcik, E., 2022. Dynamic short-term risk management strategies
for the choice of electricity market based on probabilistic forecasts of profit
and risk measures. the german and the polish market case study. Energy
Economics 110, 106015.

Janke, T., Steinke, F., 2019. Forecasting the price distribution of continuous
intraday electricity trading. Energies 12, 4262.

Janke, T., Steinke, F., 2020. Probabilistic multivariate electricity price fore-
casting using implicit generative ensemble post-processing, in: Proceedings
of the International Conference on Probabilistic Methods Applied to Power
Systems – PMAPS 2020, p. 9183687.

Jȩdrzejewski, A., Lago, J., Marcjasz, G., Weron, R., 2022. Electricity price
forecasting: The dawn of machine learning. IEEE Power and Energy Mag-
azine 20, 24–31.

Johnson, N.L., 1949. Systems of frequency curves generated by methods of
translation. Biometrika 36, 149–176.

Kath, C., Nitka, W., Serafin, T., Weron, T., Zaleski, P., Weron, R., 2020. Bal-
ancing generation from renewable energy sources: Profitability of an energy
trader. Energies 13, 205.

Kath, C., Ziel, F., 2018. The value of forecasts: Quantifying the economic gains
of accurate quarter-hourly electricity price forecasts. Energy Economics 76,
411–423.

Kiesel, R., Paraschiv, F., 2017. Econometric analysis of 15-minute intraday
electricity prices. Energy Economics 64, 77–90.

Kolassa, S., 2020. Why the “best” point forecast depends on the error or accu-
racy measure. International Journal of Forecasting 36, 208–211.

Lago, J., De Ridder, F., De Schutter, B., 2018. Forecasting spot electricity
prices: Deep learning approaches and empirical comparison of traditional
algorithms. Applied Energy 221, 386–405.

Lago, J., Marcjasz, G., De Schutter, B., Weron, R., 2021. Forecasting day-
ahead electricity prices: A review of state-of-the-art algorithms, best prac-
tices and an open-access benchmark. Applied Energy 293, 116983.

Li, S., Park, C.S., 2018. Wind power bidding strategy in the short-term elec-

11



tricity market. Energy Economics 75, 336–344.
Maciejowska, K., 2020. Assessing the impact of renewable energy sources on

the electricity price level and variability – a quantile regression approach.
Energy Economics 85, 104532.

Maciejowska, K., Nitka, W., Weron, T., 2019. Day-ahead vs. intraday – fore-
casting the price spread to maximize economic benefits. Energies 12, 631.

Maciejowska, K., Nowotarski, J., 2016. A hybrid model for GEFCom2014
probabilistic electricity price forecasting. International Journal of Forecast-
ing 32, 1051–1056.

Maciejowska, K., Uniejewski, B., Weron, R., 2023. Fore-
casting electricity prices. URL: https://oxfordre.com/

economics/view/10.1093/acrefore/9780190625979.001.

0001/acrefore-9780190625979-e-667, doi:10.1093/acrefore/
9780190625979.013.667.

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2018. The m4 competi-
tion: Results, findings, conclusion and way forward. International Journal
of Forecasting 34, 802–808.

Marcjasz, G., Narajewski, M., Weron, R., Ziel, F., 2023. Distributional
neural networks for electricity price forecasting. Energy Economics ,
106843URL: https://www.sciencedirect.com/science/article/

pii/S0140988323003419, doi:https://doi.org/10.1016/j.eneco.
2023.106843.

Marcjasz, G., Uniejewski, B., Weron, R., 2020. Beating the naı̈ve – combining
LASSO with naı̈ve intraday electricity price forecasts. Energies 13, 1667.

Narajewski, M., Ziel, F., 2020a. Econometric modelling and forecasting of
intraday electricity prices. Journal of Commodity Markets 19, 100107.

Narajewski, M., Ziel, F., 2020b. Ensemble forecasting for intraday electricity
prices: Simulating trajectories. Applied Energy 279, 115801.

Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830.

Pinson, P., Girard, R., 2012. Evaluating the quality of scenarios of short-term
wind power generation. Applied Energy 96, 12–20.

Pinson, P., Madsen, H., Nielsen, H.A., Papaefthymiou, G., Klöckl, B., 2009.
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