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1 Introduction

1.1 History of portfolio management research

The interest in selecting and holding investment assets, which we nowadays refer to
as building and managing investment portfolio is an old and well know problem in
the field of many disciplines including financial mathematics, financial engineering
and econometrics. The foundation of the theory of selecting assets for an invest-
ment portfolio was laid by an American economist and Nobel Prize winner – Harry
Markowitz. In his article from 1952 he postulated that an investor acting rationally
should always try to maximise their expected returns and minimise the risk of the
entire portfolio, taking into account possible correlations between the assets [1]. The
approach presented in the article turned out to be extremely well-received and the
strategies described there have been collectively named a Modern Portfolio Theory or
MTP in short. The concept introduced by Markowitz was then widely developed and
built up. In 1963 William Sharpe devised a very computationally efficient method of
analysing available assets and creating a portfolio having desired properties [2] and
in 1972 Robert C. Merton published a paper in which he shows how to analytically
obtain the “efficient frontier” – a graphical illustration of a set of all portfolios optimal
in Markowitz sense [3]. Notable extensions of Markowitz’s model were made by
Gerald A. Pogue who enhanced the model by taking into consideration transaction
costs and short selling [4]. In 1992 Fisher Black and Robert Litterman built their own
model based on the one of Markowitz, which did not require to associate assets with
specific expected returns (which were difficult to estimate) [5] and in 1991 B.M. Rom
and K. Ferguson extended that model even further by addressing the limitations of
the original model regarding the distribution of returns and the usage of variance of
returns as a measure of investment’s risk [6]. What they accomplished is often called
a Post Modern Portfolio Theory. More recent research is also still being conducted
within the Markowitz framework. In 2013 Woodside-Oriakhi et.al. presented an
extensive model of portfolio optimisation and solved the stated problem by mixed-
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1.1. History of portfolio management research 1. INTRODUCTION

integer quadratic programming [7]. In 2014 Mittal and Mehlawat proposed a model
including transaction costs and also solved an associated optimisation problem but
by means of real-coded genetic algorithms [8].

There were also numerous publications on the topic of portfolio management where
the fast developing theory of fuzzy sets was applied. One of the pioneering works in
that field was the one of Hideo Tanaka et.al. from 1998 in which authors presented
the first extension of Markovitz’s idea to use the fuzzy set theory and exchanging the
notion of probability for, what is called, fuzzy probability [9]. Research in the area
was later continued by i.a. Christer Carlsson et.al. who were successful in finding
an optimal portfolio in Markowitz sense assuming that returns are fuzzy variables
(instead of classical random variables) [10]. Also, Yong Fang et.al. introduced the
idea changing portfolio composition during portfolio’s lifetime within the fuzzy set
theory framework [11].

One of the methodologies which is becoming increasingly popular in recent years
for studying portfolio management is machine learning. The abundance of financial
data and the ease of access to most of it unleashes the great potential of machine
learning methods in the field. One of the most promising methods originating from
machine learning are deep learning and reinforcement learning. The deep learning
methods utilise deep (multi-level) neural networks to effectively create the Markowitz
frontier and have hence been cumulatively called the Deep Portfolio Theory [12, 13].
Reinforcement learning, on the other hand, creates an environment in which the
program can take certain actions, analyse its results quantitatively in respect to
what is called a reward function and adapt the actions taken in order to maximise
the reward. The actions can be, for example, allocating cash in several financial
assets (hence forming an investment portfolio) and the reward function could be the
return form this portfolio after some time. This way of making the algorithms learn
how to make investments decisions seems to be effective in many different contexts
[14]. However, within both deep learning and reinforcement learning, the number of
different approaches and research directions is really immense, hence — there are
already books [15] and voluminous series of articles [16, 17] covering the variety of
research used there.

Independently of the Markowitz framework, which mostly focuses on optimal
selection of assets to the portfolio, the idea of altering an investment portfolio after
it’s created has also been studied. One of the first researchers who did that was
Paul A. Samuelson. In his article from 1969 he was considering the problem of what
changes should be done to a life-time portfolio at the number of discrete moments of
time [18]. Similar problems were then studied by Robert C. Merton in his two famous
articles, from 1969 and 1971, in which he discusses the topic of building a life-time
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1. INTRODUCTION 1.1. History of portfolio management research

portfolio of stocks for the sake of calculating optimal consumption (the amount of
money that can be withdrawn from the portfolio with no major detriment for this
portfolio’s performance) [19, 20]. Another worth-noticing piece of work in this stream
was i.a. the paper of Morton and Pliska in which they introduced transaction costs
to the Merton portfolio problem and eliminated the need of making transactions in
continuous time, giving instead a sequence of discrete moments of time at which
transactions are allowed to be made by an investor [21]. There was also a paper
by Colin Atkinson et.al. in which the portfolio problem in question was translated
into the language of differential equations and a numerical procedure to solve them
was proposed [22]. On the other hand, Jakša Cvitanić and Ioannis Karatzas were
studying a slightly different portfolio optimisation problem using martingale theory
and advanced tools of stochastic calculus [23].

An entirely different approach to the topic of portfolio optimisation has been
also proposed in regard to a famous paper of J.L. Kelly Jr [24]. The paper itself is
not however related to portfolio management directly — actually all statements are
formulated in the language of information theory and examples given are referencing
gambling. The author argues that the best strategy for a gambler is to maximise the
logarithm of wealth (which in this context simply meant the logarithm of the amount
of money possessed by the gambler). Kelly proved that a strategy devised that way
will outperform any other strategy in a long enough amount of time almost surely.
This idea was called a “Kelly criterion”. It was quickly implemented in the field of
portfolio management and found a lot of attention but also a lot of controversy. One
of the biggest criticisers of this approach were Paul Samuelson and Robert C. Merton,
who were of the opinion that the research related to portfolio management should
continue to be conducted in the language of utility functions (developed by them)
calling the application of Kelly criterion a “fallacy” [25]. Despite this criticism, the
idea of building and maintaining a Growth Optimal Portfolio (which evolved from
the “Kelly criterion”) is still being extensively studied. The first chapter of the book
by Morten Mosegaard Christensen from 2012 constitutes a very broad overview of
the history, mathematical and practical aspects and various discussions on the topic
of the Growth Optimal Portfolio [26]. A study of a portfolio using Kelly strategy has
also been presented in an article of Paolo Laureti et.al. [27].

The last set of methods in the field of investment portfolio management which
we will name in this brief overview are Monte Carlo simulations. They were used
by Riccardo Cesari and David Cremonini who provided a wide comparison between
various portfolio management techniques in their article from 2003 [28]. Their main
assumption was the normality and independence of returns. They were first testing
those qualities in their data and later they were simulating synthetic data-sets
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according to the results the tests they obtained. A slightly more theoretically-oriented
article written by Ofer Alper et.al. appeared in 2017 [29] aiming to compare selected
portfolio management strategies in presence of correlation between the assets and
with inclusion of transaction fees. A significant part of the work in this dissertation
can be seen as an extension of this particular article.

1.2 Overview of the content of this work and its
goals

As it was indicated in section 1.1, the research in the field of investment portfolio
management has a long and diverse history. Over the years, thousands of scientists
published their works on this subject matter and they were using a variety of tools
and methods originating from a lot of different fields of science — not only pure
mathematics, but also statistics, physics and social sciences. This variety of research
methodologies led to the situation in which it is difficult to acquire knowledge about
investment portfolio management, as different approaches use different language for
the description of the concepts of interest. Sometimes the same ideas are named
or denoted completely differently by different authors. Some works, especially the
ones focusing mostly on the practical and application aspects of how to manage the
investment portfolio, lack mathematical precision and unambiguity, which makes it
significantly more difficult to e.g. reproduce the results which they present. This
dissertation can be seen as an attempt to address all of those problems. One of the
main goals of this thesis is to present a rigorous, mathematically-rooted framework
in which portfolio management subject area can be learnt, developed and researched.
Moreover, we strongly believe that such framework is very much needed. As an
analogy — we know it was possible to analyse various random experiments before
the notion of probability space was introduced by Andrey Kolmogorov in 1933. But
only after it happened, the theory of probability found its proper place in the world
of mathematics as a branch of measure theory and only then it become one of the
most prominent areas of mathematics as a whole. We hope this work can contribute
to finding a proper place for the research over various aspects of investment portfolio
management. The entire Chapter 2 has been devoted to present a proposal of a
rigorous mathematical framework which can be used for mathematical analysis within
portfolio management area. In this part of the dissertation we formally define the
notion of a market, a portfolio and measures to assess its performance, including the
most basic one — the portfolio wealth. We agree what exactly we will be calling a
portfolio management strategy and introduce a number of them within a discrete-time
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regime. The scope of this chapter has been cover in Ref. [30].
We do believe that a good mathematical foundation for a research topic is necessary

for the results of this research to be meaningful. However, in come cases, designing
mathematical concepts and ideas is not the goal in itself. More often then not, those
concepts and ideas are created to model some real-life phenomena and studying
them allows to draw incisive conclusions about the reality. This is another field
which we think this work contributes to. Using the foundations set out in Chapter
2, in Chapter 3 we designed, performed and analysed the outcomes of a group of
numerical experiments which allowed us to deepen our understanding of the behaviour
of the portfolio management strategies, which we selected to study. We compared
several strategies which utilise a scheme called portfolio rebalancing and examined
the impact of a couple of factors on their performance. We also put to the test some
strategies, the definitions of which we formalised ourselves, which use well-known
trading indicators to make the buy-or-sell decision. All the numerical experiments
were based on the Monte Carlo methodology and as such, the same experiment was
always repeated usually at least several hundred times to draw reliable conclusions

— this has been explained in section 3.1. The well-established model of Heston [31]
has been chosen by us for simulating the trajectories meant to represent the prices of
financial assets. The detailed specification of the model and its parameters have been
described in section 3.3. In subsequent section, 3.4, the addition of discontinuities to
the Heston model has been described. Since all our strategies have been defined to
be discrete in time, section 3.5 describes the details of Heston model discretisation
and simulation (as those topics are very much related to one another) both with and
without jumps. The experiments themselves have been presented in section 3.6. Most
of them have also been published in Ref. [32], although we added some new ones for
completing this work in particular.

In many disciplines, computer simulation results provide a valuable insight into
the character of the objects or phenomena studied, but the final step is to relate the
outcomes obtained by simulations to real-life observations. Portfolio management is
very much an example of where this should also be done. While in multiple fields of
science the parameters of the model used for simulation are known up-front, since
they represent some characteristics of the objects that are being studied, which can be
directly measured, it is not the case for analysing investment strategies and moreover —
it is usually not the case for most models used in mathematical finance. Those models
often feature parameters or additional variables referred to as “drift” or “volatility”
which most people in the realm of financial analysis are familiar with, but it is far
from obvious how to get the exact values of those quantities for a given financial
model. Usually, the only aspect of a financial instrument to which researchers and
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practitioners have easy access is its price, changing over time. Everything else needs
to be somehow extracted out of the price process. Addressing this problem has
been another goal of this work. We managed to successfully assemble an effective
estimation technique for the Heston model (without and with jumps), utilising both
existing and new methods, devised by us. The tools which we used are based on
the idea of Bayesian inference [33] and Monte Carlo Markov Chains [34]. It has
been presented in Chapter 4. Not only did we provide an extensive, precise and
easy-to-follow recipe for the estimation process (section 4.2), but we also showed the
results of an exemplary estimation for a simulated asset, thoroughly analysed it and
described all aspects of using the procedure which require additional caution (section
4.3). Results presented in this chapter have been published in Ref. [35]

Chapters 3 and 4 respectively provide results of simulation-based research and
the estimation procedure, which allows obtaining the actual values of parameters the
simulation experiments were based on. The final step, therefore, was to demonstrate
the applicability of those synthetic results to the real data. This has been done in
Chapter 5. By estimating the parameters of our model for three different financial
assets we were able to place them on a spectrum of the applicability of portfolio
management strategies which we studied and it indeed turned out that the choice
of strategies advised by our research was optimal in terms of profits. We have
demonstrated that in Ref. [36] as well.

Chapter 5 ties together all the research areas covered in this work — theoretical
considerations, numerical experiments, the estimation scheme and a real-data experi-
ment. It is followed by a short summary and outlook for further research in Chapter
6.
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2 Formal framework for
studying portfolio management

2.1 Fundamental concepts of portfolio dynamics
As a first step, we are going to formally define the notions used throughout the rest
of the work. Some of those terms appeared in diverse forms in literature already
but we provide our own definitions to systematise their usage, as mentioned in the
Introduction. We start by defining the notion of a market.

Definition 1. A market {Mi}i∈I is an indexed family with an index set I =
{1, 2, . . . , N}, N ∈ N \ {0} consisting of N stochastic processes Si ∈ I, all defined on
the same probability space (Ω,F , P ), the same time domain [0,+∞] and having the
same state space — R+. Each stochastic processes Si in M is called an asset.

While the elements of the market might theoretically represent various types of
assets, throughout this thesis we will mostly use this term to represents shares of
stocks. Hence, the terms: “asset” and “stock” will be used interchangeably.

We can now proceed with the definition of a portfolio on a market.

Definition 2. A portfolio P built on a market M is an ordered pair (S,Q). S
is called an asset component and it is a partially stochastic, (N + 1)-dimensional
vector-valued function with coordinate functions of indices 1 to N being elements of
M,

S : [0,+∞] → RN+1
+ . (2.1)

The coordinate function of the index 0 inside S is always equal 1.

S0(t) ≡ 1 for all t ∈ [0,+∞]. (2.2)

In other words, for a time moment t ∈ [0,+∞], S(t) is defined as

S(t) =
(
S0(t), S1(t), S2(t), . . . SN(t)

)
=
(
1, S1(t), S2(t), . . . SN(t)

)
. (2.3)
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2.1. Fundamental concepts of portfolio dynamics 2. FORMAL FRAMEWORK

Likewise Q, which is called a quantity component, is also a stochastic, (N + 1)-
dimensional vector-valued function with coordinate functions qi being stochastic
processes defined on the same probability space and time domain as all of the Si
processes, for i ∈ {1, 2, . . . , N}, but having the entire real line as the state space

Q :[0,+∞] → RN+1, (2.4)
t 7→ (q0(t), q1(t), q2(t), . . . qN(t)) = Q(t). (2.5)

The S0 asset represents the cash, which an investor may also wish to store in their
portfolio, alongside the risky assets, being a part of the market M. Cash does not
change its value in time at all1, hence it is modelled by a constant function, always
equal to 1, since unlike stocks — this fact is reflected in Eq. (2.2). .

The elements of the quantity component at any given moment of time represent
the amount of a given asset in a portfolio, e.g. number of shares if the type of
assets we are considering is common stock. For the zero-th asset, it simply represents
the amount of cash in the portfolio, i.e. q0. It is highlighted in the definition of
the quantity component that the coordinate functions have the entire real line as a
state space, which means they can also take negative values. This would represent
short-selling, i.e. selling an asset not physically owned by the owner of the portfolio2.

We will usually only observe and work with portfolios for a predefined amount
of time (e.g. one year, three years, ten years). We will call it portfolio duration, or
maturity T and express it in years.

The notion of the portfolio allows us to define what we consider an investment
strategy.

Definition 3. An investment strategy is a way of deciding upon a value of the
portfolio’s quantity components qi at any given moment of time t ∈ [0, T ] based on
previous values of this and other quantity components and the values of the assets.
In other words, it is a function (possibly auto-recursive or delayed), which allows to
establish the current value of the i-th quantity component of a given portfolio, i.e.

qi(t) = f(t, qj(u), Sj(u)), (2.6)

where i, j ∈ I and u ∈ [0, t).
1This statement is debatable due to existence of various economic circumstances, e.g. periods of

high inflation or a possibility of placing cash into a risk-free interest bearing deposit. We consider
neither of those in this work and treat the constant value of portfolio cash as an assumption. This
assumption could however be easily lifted by introducing another (possibly stochastic) model for
cash.

2None of the management strategies studied by us allow for shot selling, but — similarly to the
case of the variable value of cash — the framework is ready to support such models.
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The definition mentions a very natural assumption related any portfolio manage-
ment strategy which needs to be met in order for the strategy to be applicable in
practice. At any point of time t the investor only knows prices of each of the N assets
up to this moment and not further, i.e. for every i ∈ {1, . . . , N} values of Si(u) and
qi(u) are known only for u < t. Violation of this assumption for any strategy would
effectively mean a possibility to “predict the future”, which is not possible in real-life.

An example of a very simple investment strategy is a passive strategy.

Definition 4. A passive strategy is a strategy for which values of the functions of the
quantity component are constant in time, i.e. for each i ∈ I we have qi(t) = qi(0) =
const for any t ∈ [0, T ].

A portfolio which is run by a passive strategy is often called a passive portfolio —
it is very common that a portfolio is referred to using a name of a strategy according to
which it is run. The passive portfolio is also sometimes referred to as a buy-and-forget
portfolio or a buy-and-hold portfolio. It is admittedly very straightforward but it is
very useful, as it can often be treated as a benchmark, i.e. a baseline to compare
against other portfolios in which the owner actually makes some changes intended
to make improvements in portfolio performance. To evaluate how an investment
portfolio is performing, a number of measures can be introduced. The most basic one
is its value changing over time. We call it the portfolio wealth.

Definition 5. Wealth of portfolio P at any moment of time t ∈ [0, T ] is a scalar
product of the vector of the values of assets S and the vector of quantities of these
assets Q.

WP(t) = ⟨S(t),Q(t)⟩ =
N∑
i=0

Si(t)qi(t), (2.7)

In most cases, it is obvious from the context the wealth of which portfolio is being
described, so we will drop the P subscript from wealth’s denotement and write W (t)
instead of WP(t) whenever possible.

2.2 Balanced portfolio, time discretisation and self-
financing

The notion of portfolio wealth, presented in Definition 5 can be used to define a
more complex method of portfolio management, than the passive one. It is based
on undertaking specific actions when market prices change. It is called a balanced
portfolio. To define it, we first need to introduce the concept of fractions of wealth [29].

13
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Definition 6. An i-th fraction of wealth fi (also called a wealth fraction or simply –
a fraction), at any moment of time t, is a component of the portfolio wealth W (t)
associated with an i-th portfolio asset, i.e.

fi(t) = Si(t) · qi(t)
W (t) for all i ∈ {0, 1, 2 . . . N}. (2.8)

If we take into consideration the Definition 5 of portfolio wealth, is clear that∑N
i=0 fi(t) = 1 — hence the name: wealth fractions. Knowing what they are, we can

define a balanced portfolio strategy [29].

Definition 7. A balanced strategy is a strategy, according to which quantity com-
ponents of assets qi(t) are selected in such a way that all fractions of wealth fi are
constant in time, i.e. for all i ∈ {0, 1, 2 . . . N} we have fi(t) = fi(0) = const for any t.

Such a portfolio construct essentially guarantees that if the price of a particular
asset increases, its amount in the portfolio is made smaller (hence — assets are sold
when their prices are getting higher) and if the price drops — its amount is increased
(thus — we buy new assets when their prices are diminishing). However, the above
definition of the balanced portfolio is implicit — it does not provide any guidance
on how to manipulate the quantities of the assets to keep portfolio in a balanced
state. It is not even obvious if it is always possible to keep it in that state and
if it is — what is the formula and can it be given in an explicit way? This is a
problem for a lot of investment strategies when we try to describe them in a time-
continuous context. This is, however, not actually necessary as in practice we hardly
ever deal with continuous pricing of assets and even if we were — it is impossible
to perform transactions in a continuous manner on a real market. Therefore, for
the sake of practical application — it is sufficient to create an iterative procedure
which captures the idea of building a balanced portfolio. To this end two things are
necessary. One is the discretised time axis for the process. We can introduce it as
a sequence of (n + 1) discrete moments of time, equally distributed every ∆t, i.e.
t0 = 0, t1 = ∆t, t2 = 2∆t, t3 = 3∆t, . . . , tn = n∆t = T , where ∆t is a small time
increment, ∆t = T

n
. Once we have that, we also need a notion of what is called

temporary wealth of the portfolio, i.e. the value of our portfolio which arises from the
amount of assets and cash we had in the previous step.

Definition 8. Temporary wealth of portfolio P at any moment of time t = k∆t, k ∈
{1, 2, . . . , n} is its value at that time if no changes to the amounts of assets in portfolio
were made:

W temp(k∆t) =
N∑
i=0

qtempi (k∆t) · Si(k∆t), (2.9)
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2. FORMAL FRAMEWORK 2.2. Balanced portfolio & time discretisation

where qtempi (t) = qi
(
(k − 1)∆t

)
.

Having both of those things defined, we propose a discretised version of the
portfolio balancing strategy [29]

Definition 9. A discrete balanced strategy is a strategy for which the quantity
update scheme has the following form:

qi(k∆t) = fi
W temp(k∆t)
Si(k∆t) , (2.10)

q0(k∆t) = 0, (2.11)

qi(0) = fi · W (0)
Si(0) , (2.12)

for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where W (0) is a fixed, initial portfolio wealth and fi is an i-th wealth fraction. A set
of operations performed in a singe time step, t = k∆t for some k ∈ {1, 2, . . . , n} is
called portfolio rebalancing.

In the above definition, we can think of the initial wealth W (0) as of an initial
amount of money which will be invested in the portfolio. The temporary wealth
of portfolio W temp comes in useful here, as it allows to keep track of the wealth of
portfolio in a given time step, before its rebalancing is performed, since before it is
done the quantity of each asset is equal to the actual quantity of this asset from the
previous step. It is also worth noting, that this portfolio strategy does not use any
cash. Its amount is being kept 0, according to equation (2.11).

One of the characteristics of a good portfolio management strategy is being
self-financing.

Definition 10. A strategy is called self-financing if it requires no additional cash
inflow to be executed for any t ∈ (0, T ] and in which profits get immediately reinvested
at any given moment t ∈ [0, T ). In terms of quantities and asset prices that means
that for any k ∈ {1, 2, . . . , n}, the following equality is preserved

N∑
i=0

qi
(
(k − 1)∆t

)
Si(k∆t) =

N∑
i=0

qi(k∆t)Si(k∆t) (2.13)

or, alternatively,
W temp(k∆t) = W (k∆t) (2.14)
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It can be demonstrated that the above definition of a self-financing strategy is
satisfied by the discretised balanced portfolio.

Proposition 1. The strategy of a discretised balanced portfolio, as described by
Definition 9, is self-financing.

Proof. Let us get a closer look at the wealth of portfolio at an arbitrary point of time
k∆t. Its value can be obtained by using formulas (2.7) and (2.10). We have

W (k∆t) =
N∑
i=0

Si(k∆t)qi(k∆t) =
N∑
i=0

Si(k∆t)fi
W temp(k∆t)
Si(k∆t)

=
N∑
i=0

fiW
temp(k∆t) = W temp(k∆t)

N∑
i=0

fi.

From the Definition 6 of wealth fractions we know that ∑n
i=0 fi = 1. Henceforth,

we have

W (k∆t) = W temp(k∆t)

.
Thus, performing a rebalance operation does not require any additional money

and all changes in portfolio wealth are results of fluctuating assets prices – there is
neither any kind of withdrawal nor insertion of money from or into the portfolio.

We should also prove that the discretised version of the balancing strategy is
indeed a balancing strategy, according to its original definition.

Proposition 2. The discrete balancing strategy (from Definition 9), meets the
general definition of the balancing strategy (Definition 7) in all the grid points
t = k∆t, k ∈ {0, 1, 2, . . . , N}.

Proof. According to the Definition 6, at t = 0, the value of the i-th wealth fraction is

fi(0) = Si(0) · qi(0)
W (0) .

Considering the definition of qi(0) given by Eq. (2.12), we have

fi(0) = Si(0) · qi(0)
W (0) = Si(0)

W (0) · fi · W (0)
Si(0) = fi.
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At any other moment of time t = k∆t, we have

fi(k∆t) = Si(k∆t) · qi(k∆t)
W (k∆t) = Si(k∆t)

W (k∆t) · fi
W temp(k∆t)
Si(k∆t) .

We proved in Proposition 1, that for a discretised balancing strategy W (k∆t) =
W temp(k∆t), hence

fi(k∆t) = Si(k∆t)
W (k∆t) · fi

W (k∆t)
Si(k∆t) = fi.

We hence proved that the wealth fractions remain constant all the time, which
means the discretised balancing strategy is indeed the balancing strategy for any
t = k∆t, k ∈ {0, 1, 2, . . . , N}.

From now on, we will only be talking about discrete management strategies, hence
the “discrete balanced strategy” will simply be called “balanced strategy”.

2.3 Transactions costs and frugal balancing strate-
gies

Most markets charge investors for making transactions, which is why keeping portfolio
balanced becomes expensive if we take transaction costs into consideration. In most
cases, the value of the fee is determined as a percentage of the value of assets being
exchanged. This amount is normally deducted from the cash account related to
the brokerage account. However, it is possible to introduce a (simplified) way of
including transaction costs into portfolio strategy without the necessity of introducing
the notion of portfolio cash. This has been presented for the balanced strategy in
Ref. [29]. The idea is that the fee directly lowers the amounts of assets that would be
necessary to reconstruct the portfolio and make it balanced again.

Definition 11. A balancing strategy with the inclusion of transaction fees is a
strategy for which the quantity update scheme has the following form

qi(k∆t) = fi
W temp(k∆t) − A(k∆t)

Si(k∆t) , (2.15)

q0(k∆t) = 0, (2.16)

qi(0) = fi · W (0)
Si(0) , (2.17)
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for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where W (0) is a fixed, initial portfolio wealth, fi is an i-th wealth fraction. A(t) is
the total value of fees, calculated as

A(k∆t) =
N∑
i=1

α|Si(k∆t) · (qtempi (k∆t) − q′
i(k∆t))|, (2.18)

where α is a constant level of fees and q′
i is the desired quantity of each kind of asset,

defined to be
q′
i(k∆t) = fi

W temp(k∆t)
Si(k∆t) . (2.19)

A set of operations performed in a singe time step, t = k∆t for some k ∈ {1, 2, . . . , n}
is called portfolio rebalancing.

Note that if we take transaction costs into consideration, as described by formula
(2.15), keeping portfolio in a balanced state becomes costly so that profits resulting
from using this strategy might be overtaken by the expenses related to the fees. This
is why two more frugal strategies have been devised. First one is based on the idea
of rarefying the moments of rebalancing the portfolio, by some constant factor m,
i.e. performing the rebalance m times less often. This strategy is called periodically
balanced [29]. In such case the procedure of updating the quantities of assets takes
place once every m time intervals of length ∆t and between these moments portfolio
acts like a passive one.

Definition 12. A periodically balanced strategy with the inclusion of transaction
fees is a strategy for which the quantity update scheme has the following form

qi(k∆t) =
{
fi
W temp(k∆t)−A(k∆t)

Si(k∆t) if k mod m = 0
qtempi (k∆t) otherwise

(2.20)

q0(k∆t) = 0, (2.21)

qi(0) = fi · W (0)
Si(0) ; (2.22)

for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where m ∈ N \ {0} is the rebalance period, W (0) is a fixed, initial portfolio wealth,
fi is an i-th wealth fraction. A(t) is the total value of fees, calculated as

A(k∆t) =
N∑
i=1

α|Si(k∆t) · (qtempi (k∆t) − q′
i(k∆t))|, (2.23)
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where α is a constant level of fees and q′
i is the desired quantity of each kind of asset,

defined to be
q′
i(k∆t) = fi

W temp(k∆t)
Si(k∆t) . (2.24)

A set of operations performed in a singe time step, t = k∆t for k such that k
mod m = 0 is called portfolio rebalancing.

Another method of reducing transaction costs while not leaving the idea of
rebalancing the portfolio completely is to build a partially balanced portfolio. In
this strategy, however, the goal is not to limit the number of transactions, but their
value. Therefore, instead of making the portfolio 100% balanced in every iteration,
each time transactions are made that bring the portfolio closer to the state of being
fully balanced, but they do not make it entirely balanced. The parameter which will
encode what part of portfolio is being rebalanced will be denoted by D. In each time
step and for each asset, instead of buying or selling the amount of assets which would
completely balance the portfolio, only D of it is actually exchanged. Consequently,
the portfolio is never fully balanced, but the transaction costs are smaller by a factor
of D.

Definition 13. A partially balanced strategy with the inclusion of transaction fees
is a strategy for which the quantity update scheme has the following form

qi(k∆t) = W temp
i (k∆t) +D · (fi ·W temp(k∆t) −W temp

i (k∆t) − fi · A(k∆t))
Si(k∆t) ,

(2.25)
q0(k∆t) = 0, (2.26)

qi(0) = fi · W (0)
Si(0) , (2.27)

for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where D,D ∈ [0, 1] is the partial rebalancing coefficient, W (0) is a fixed, initial port-
folio wealth, fi is an i-th wealth fraction, W temp

i is an i-th temporary wealth fraction

W temp
i = Si(k∆t) · qi((k − 1)∆t). (2.28)

A(t) is the total value of fees

A(k∆t) =
N∑
i=1

α|Si(k∆t) · (qtempi (k∆t) − q′
i(k∆t))|, (2.29)
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where α is a constant level of fees and q′
i is the desired quantity of each kind of asset,

q′
i(k∆t) = fi

W temp(k∆t)
Si(k∆t) . (2.30)

A set of operations performed in a singe time step, t = k∆t for some k ∈ {1, 2, . . . , n}
is called partial portfolio rebalancing.

An interesting fact about the partially balanced strategy is that for specific values
of parameter D, it can turn into other strategies, which have already been discussed.

Fact 1. The partially balanced portfolio management strategy reduces to the passive
strategy for D = 0.

Proof. To prove that, one needs to demonstrate that the actual quantities of assets
never change i.e. qi(k∆t) = qi((k − 1)∆t). For an arbitrary choice of k > 0, we have

qi(k∆t) = W temp
i (k∆t) +D · (fi ·W temp(k∆t) −W temp

i (k∆t) − fi · A(k∆t))
Si(k∆t)

= W temp
i (k∆t) + 0 · (fi ·W temp(k∆t) −W temp

i (k∆t) − fi · A(k∆t))
Si(k∆t)

= W temp
i (k∆t)
Si(k∆t) = Si(k∆t) · qi((k − 1)∆t)

Si(k∆t) = qi((k − 1)∆t).

Fact 2. The partially balanced portfolio management strategy reduces to the regular
balanced strategy for D = 1.

Proof. To prove that, it suffices to demonstrate that Eq. (2.25) reduces to Eq. (2.15)
for D = 1, as the rest of the updating scheme is the same. We have

qi(k∆t) = W temp
i (k∆t) +D · (fi ·W temp(k∆t) −W temp

i (k∆t) − fi · A(k∆t))
Si(k∆t)

= W temp
i (k∆t) + 1 · (fi ·W temp(k∆t) −W temp

i (k∆t) − fi · A(k∆t))
Si(k∆t)

= W temp
i (k∆t) + fi ·W temp(k∆t) −W temp

i (k∆t) − fi · A(k∆t)
Si(k∆t)

= fi ·W temp(k∆t) − fi · A(k∆t)
Si(k∆t) = fi

W temp(k∆t) − A(k∆t)
Si(k∆t) .

20



2. FORMAL FRAMEWORK 2.4. Strategies based on trading indicators

Hence, for a partially balanced portfolio one could think of D as of a “slider”
between passive and fully balanced portfolio which can be considered two extremes.

The approaches of rebalancing the portfolio periodically and partially can also
be merged together to jointly form a composite periodically and partially balanced
strategy [29].

Definition 14. A periodically and partially balanced strategy with the inclusion of
transaction fees is a strategy for which the quantity update scheme has the following
form

qi(k∆t) =



1
Si(k∆t)

(
W temp
i (k∆t) +D×(

fi ·W temp(k∆t) −W temp
i (k∆t) − fi · A(k∆t)

))
if k mod m = 0

qtempi (k∆t) otherwise
(2.31)

q0(k∆t) = 0, (2.32)

qi(0) = fi · W (0)
Si(0) ; (2.33)

for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where m,m ∈ N \ {0} is the rebalance period, D ∈ [0, 1] is the partial rebalancing
coefficient, W (0) is a fixed, initial portfolio wealth, fi is an i-th wealth fraction, W temp

i

is an i-th temporary wealth fraction. A(t) is the total value of fees

A(k∆t) =
N∑
i=1

α|Si(k∆t) · (qtempi (k∆t) − q′
i(k∆t))|, (2.34)

where α is a constant level of fees and q′
i is the desired quantity of each kind of asset

q′
i(k∆t) = fi

W temp(k∆t)
Si(k∆t) . (2.35)

A set of operations performed in a singe time step, t = k∆t for k such that k
mod m = 0 is called partial portfolio rebalancing.

In the periodically and partially balanced strategy we have two parameters —
m and D — which we can use to optimise portfolio performance in given market
conditions.
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2.4 Strategies based on trading indicators
Keeping the wealth fractions constant is one of the ways of altering an investment
portfolio in order to increase its performance. Throughout the years, investors
have been attempting to find various mathematical tools which would allow them
to find the correct moment to buy or sell a stock. This resulted in creation of a
wide set of indicators and markers designed for that particular purpose. A branch
of trading activities which studies usefulness of those markers is called technical
analysis [37]. In this section we will have a closer look at two of the most well-known
trading indicators and we will build investment strategies utilising them in order to
systematically examine their usefulness in particular market conditions.

2.4.1 MACD trading indicator
One of the most widespread indicators, well known among all investors using technical
analysis is MACD — Moving Average Convergence Divergence [38].

MACD was invented by Gerard Appel in 1979. It is based on a couple of time
series which are derived from the asset price process by means of a transformation
very commonly used in technical analysis — EMA — the Exponential Moving Average.
As the name itself suggests it is a kind of a moving average, but with exponentially
decreasing weights of factors more distant in time from the current one.

Definition 15. Exponential Moving Average is a transformation of a discrete stochas-
tic process {X(k∆t)}nk=0 described with the following recursive formula

EMAX,p(k∆t) =


X(k∆t), for t = 0
αX(k∆t) + (1 − α) EMAX,p

(
(k − 1)∆t

)
, for t > 0

(2.36)

where α = 2
p+1 and p ∈ N \ {0} is a parameter of the transformation, called the lag, .

As one can see, EMA itself can be interpreted as a time series. Besides the time
itself, two additional inputs are required for the EMA value to be computed. As
mentioned earlier, one of them is the base process X. As far as the applications in
portfolio management are concerned, this process is almost always the stock price
of one of the portfolio assets Si, for some i ∈ {1, 2, . . . , N}. Hence, to simplify the
notation, instead of writing EMASi,p, we will just put EMAi,p. The second parameter
of EMA, p, is largely responsible for the weight of the past values taken to the average.
The bigger p, the bigger is the weight of older values of the underlying process in the
final result, which has an effect in a smoother EMA curve.
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MACD indicator makes its predictions based on the difference between two time
series. The first is the MACD line, i.e. a line obtained by subtracting two EMAs of
different lags.
Definition 16. The difference between two EMA time series with different lags p
and q, with p, q ∈ N \ {0}, p < q, is called the MACD line.

MACDi,p,q(k∆t) = EMAi,p(t) − EMAi,q(k∆t) (2.37)

EMA related to the lag parameter p is called the fast line whereas the one related to
the parameter q is called the slow line.

Buy and sell signals are generated in places where the MACD line crosses what is
called the signal line — another EMA, with a new lag parameter s < p — see the
example plots in Figs. 2.1a and 2.1b. Therefore, we can introduce what we will call
the indicator line. Whenever this line changes from positive to negative (or the other
way around) will be interpreted by the strategy as a buy or sell signal.
Definition 17. The MACD indicator line is the difference between an EMA with lag
s (called the signal line) and the MACD line with fast line lag p and slow line lag q :

Indi,p,q,s(k∆t) = EMAi,s(k∆t) − MACDi,p,q(k∆t), (2.38)

where s ∈ N \ {0}, s < p.
Whenever the indicator line changes its value from negative to positive — MACD

gives a “buy” signal. Contrarily, when this line drops from positive values to the
negative ones — we obtain a “sell” signal. Hence we, can introduce the buying and
selling indicators:
Definition 18. The MACD buy indicator is a time series of 1-s and 0-s defined in
the following way :

1
+
i,p,q,s(k∆t) =

1, if t > 0 ∧ Indi,p,q,s
(

(k − 1)∆t
)
< 0 ∧ Indi,p,q,s(k∆t) > 0

0, otherwise.
(2.39)

Similarly, the MACD sell indicator is the following time series

1
−
i,p,q,s(k∆t) =

1, if t > 0 ∧ Indi,p,q,s
(

(k − 1)∆t
)
> 0 ∧ Indi,p,q,s(k∆t) < 0

0, otherwise.
(2.40)
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(a) (b)

(c) (d)

Figure 2.1: Illustration of buy and sell signals for MACD and RSI strategies: (a) and
(b) — buy signals are generated when the MACD line crosses the signal line from
the bottom, sell signals are generated when the MACD line crosses the signal line
from the top; (c) and (d) — buy signals are generated when the RSI line leaves the
oversold (below 30) area, sell signals are generated when it leaves the overbought
(above 70) area.
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Until that moment, we were only using mathematical notation to write down
ideas and concepts known previously, related to the MACD indicator. However, the
MACD only tells when to buy or sell a particular asset, but not how much and, as
we know already, for that we need what is called a strategy. Hence, we propose our
own way of formalising the usage of MACD in form of a proper investment strategy,
as defined by the Definition 3 for that purpose.

Definition 19. An MACD-based strategy (or “MACD strategy”, in short) is a
strategy for which the quantity update scheme has the following form

qi(k∆t) = q′
i(k∆t) + c(k∆t)

Si(k∆t)

(
N∑
i=1

1
+
i,p,q,s(k∆t)

)−1

1
+
i,p,q,s(k∆t), (2.41)

q0(k∆t) = q′
0(k∆t) − c(k∆t), (2.42)

qi(0) ⩾ 0, (2.43)

for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where qi(0) are initial amounts of assets (for i > 1) and cash (for i = 0), c(k∆t) is an
amount of cash used to buy new assets, defined as

c(k∆t) = ϕq′
0(k∆t). (2.44)

q′
i(k∆t) is the temporary quantity of i − th assets after (potentially) selling some

of them but before buying new ones at time t = k∆t and q′
0(k∆t) is the temporary

amount of cash at that moment:

q′
i(k∆t) = qi

(
(k − 1)∆t

)
(1 − ψ1−

i,p,q,s(k∆t)), (2.45)

q′
0(k∆t) = q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,p,q,s(k∆t). (2.46)

ϕ, ψ ∈ [0, 1] are called a buy and a sell factor respectively.

Let us explain more descriptively how the strategy works. The factors ψ and ϕ
decide upon the actual amount of assets bought and sold when the signal from MACD
comes. They can be picked arbitrarily by any investor, as they are meant to represent
their trust in selling and buying through signals generated by the MACD indicator.
The sell factor ψ controls the assets’ disposal process. Whenever MACD generates a
sell signal for a given stock, a ψ part of the amount of this asset is sold (see Eq. (2.45))
and the money from selling is converted into portfolio cash (see Eq. (2.46)). Similarly,
the buy factor ϕ drives the purchase procedure. This time however, it is used to
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decide, what part of available cash (including new portion obtained from selling some
stocks) will be used to buy new stocks. The fraction of portfolio cash c(k∆t) is then
used to buy assets indicated by a buy signal (see Eqs. (2.44), (2.42) and (2.41)).

It can be proven that the strategy described in Definition 19 is self-financing.

Theorem 1. The strategy of an MACD portfolio, as described by Definition 19, is
self-financing.

Proof. Let us now look into the movements which happen at an arbitrary point of
time t = k∆t. On one hand, we know that the wealth of it is expressed by formula
(2.7). This we can write as

W (k∆t) = q0(k∆t) +
N∑
i=1

Si(k∆t)qi(k∆t). (2.47)

On the other hand however, we know that before we do any buy or sell transaction
at time t, the value of our portfolio arises from the amount of assets we had in the
previous step, so the temporary wealth, as defined in Definition 8 can be written as

W temp(k∆t) = q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
. (2.48)

Using equations (2.41) and (2.42) we have
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W (k∆t) =q0(k∆t) +
N∑
i=1

Si(k∆t)qi(k∆t) =

=q′
0(k∆t) − c(k∆t)+
N∑
i=1

Si(k∆t)

q′
i(k∆t) + c(k∆t)

Si(k∆t)

 N∑
j=1

1
+
j,p,q,s(k∆t)

−1

1
+
i,p,q,s(k∆t)

 =

=q′
0(k∆t) − c(k∆t) +

N∑
i=1

Si(k∆t)q′
i(k∆t)+

N∑
i=1

Si(k∆t) c(k∆t)
Si(k∆t)

 N∑
j=1

1
+
j,p,q,s(k∆t)

−1

1
+
i,p,q,s(k∆t) =

=q′
0(k∆t) − c(k∆t) +

N∑
i=1

Si(k∆t)q′
i(k∆t)+

N∑
i=1

c(k∆t)1+
i,p,q,s(k∆t)

 N∑
j=1

1
+
j,p,q,s(k∆t)

−1

=

=q′
0(k∆t) − c(k∆t) +

N∑
i=1

Si(k∆t)q′
i(k∆t)+

c(k∆t)
 N∑
j=1

1
+
j,p,q,s(k∆t)

−1
N∑
i=1

1
+
i,p,q,s(k∆t) =

=q′
0(k∆t) − c(k∆t) +

N∑
i=1

Si(k∆t)q′
i(k∆t) + c(k∆t) =

=q′
0(k∆t) +

N∑
i=1

Si(k∆t)q′
i(k∆t).

Now, using equations (2.45) and (2.46) we obtain
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W (k∆t) =q′
0(k∆t) +

N∑
i=1

Si(k∆t)q′
i(k∆t) =

=q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,p,q,s(k∆t)+

+
N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)

(1 − ψ1−
i,p,q,s(k∆t)) =

=q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,p,q,s(k∆t)+

+
N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)

−
N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,p,q,s(k∆t) =

=q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)

= W temp(k∆t).

Thus, since W (k∆t) = W temp(k∆t), the strategy is indeed self-financing.

It can also be proven that the quantities of assets and the amount of cash in the
MACD portfolio will never be negative.

Theorem 2. The value of qi(k∆t) in the MACD strategy stays non-negative for all
k ∈ {0, 1, . . . , n} and for all i ∈ {0, 1, . . . , N}.

Proof. We will prove that if an amount a given asset (including cash) brought from
the previous time step is non-negative, it will remain such in the next step. That,
together with an assumption that the initial amount of each asset at time t = 0 is
non-negative (given as an inequality (2.43) in Definition 19) proves it will always be
that way.

Therefore, let us assume the quantities in the previous step were all non-negative
qi

(
(k − 1)∆t

)
⩾ 0 for all i ∈ {0, 1, . . . , N}. We will start by proving non-negativity

for cash. At time t, the ultimate amount of cash is given by equation (2.42),

q0(k∆t) = q′
0(k∆t) − c(k∆t).

Plugging equation (2.44) into the above one we get

q0(k∆t) = q′
0(k∆t) − ϕq′

0(k∆t) = q′
0(k∆t)(1 − ϕ).
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Using equation (2.46) yields

q0(k∆t) =
(
q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,p,q,s(k∆t)
)

(1 − ϕ) =

=
(
q0

(
(k − 1)∆t

)
+ ψ

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
1

−
i,p,q,s(k∆t)

)
(1 − ϕ).

Now, q0

(
(k−1)∆t

)
⩾ 0 and qi

(
(k−1)∆t

)
> 0 (by assumption), as well as ψ ∈ [0, 1],

Si(k∆t) > 0, and 1
−
i,p,q,s(k∆t) ⩾ 0 (by their respective definitions). Therefore, the

entire expression q0

(
(k − 1)∆t

)
+ ψ

∑N
i=1 Si(k∆t)qi

(
(k − 1)∆t

)
1

−
i,p,q,s(k∆t) must be

non-negative. Also, since ϕ ∈ [0, 1], the expression (1 − ϕ) ⩾ 0. Hence, multiplication
of those two expressions must also be non-negative and thus

q0(k∆t) ⩾ 0.

for any t ∈ [0, T ].
The ultimate quantity of each of the risky assets is given by (2.41).

qi(k∆t) = q′
i(k∆t) + c(k∆t)

Si(k∆t)

(
N∑
i=1

1
+
i,p,q,s(k∆t)

)−1

1
+
i,p,q,s(k∆t).

Now, q′
i(k∆t) itself is defined by (2.45)

q′
i(k∆t) = qi

(
(k − 1)∆t

)
(1 − ψ1−

i,p,q,s(k∆t)).

In the above expression, we see that qi
(

(k − 1)∆t
)
⩾ 0 (by assumption) as well as

ψ ∈ [0, 1] and 1
−
i,p,q,s(k∆t) ⩾ 0 (by their respective definitions). Hence, we see that

q′
i(k∆t) ⩾ 0.

Looking at the other term and plugging equations (2.44) and (2.46) into it we
have
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c(k∆t)
Si(k∆t)

(
N∑
i=1

1
+
i,p,q,s(k∆t)

)−1

1
+
i,p,q,s(k∆t) =

=ϕq
′
0(k∆t)

Si(k∆t)

(
N∑
i=1

1
+
i,p,q,s(k∆t)

)−1

1
+
i,p,q,s(k∆t) =

=ϕ
q0

(
(k − 1)∆t

)
+∑N

i=1 Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,p,q,s(k∆t)

Si(k∆t) ×
(

N∑
i=1

1
+
i,p,q,s(k∆t)

)−1

1
+
i,p,q,s(k∆t).

The obtained expression consists of four factors. In the first one we have ϕ ∈ [0, 1],
so it is non-negative. In the second factor, we have a fraction in which the numerator
is non-negative (as q0

(
(k− 1)∆t

)
is non-negative by assumption and all terms in the

sum ∑N
i=1 Si(k∆t)qi

(
(k − 1)∆t

)
ψ1−

i,p,q,s(k∆t) are non-negative — either by definition
or by assumption) and the denominator is positive (Si(k∆t) > 0, by definition for any
i and k). The third part is the inverse of the sum of indicators

(∑N
i=1 1

+
i,p,q,s(k∆t)

)−1
,

all having non-negative values of either 0 or 1, sum of which will also be non-negative
and the inverse of it too. The fourth term is one of the indicators which were
summed in term three, which is also non-negative, as 1+

i,p,q,s(k∆t) ∈ {0, 1}. Hence,
the expression is a multiplication of four non-negative terms, therefore — it must be
non-negative itself.

Thus, qi(k∆t), as a sum of two non-negative terms, must be non-negative too.

2.4.2 RSI trading indicator
Besides MACD, another, commonly used trading indicator is called RSI — the
Relative Strength Index. It was proposed by J. Welles Wilder Jr. in 1978 [39]. Its
values can only be in the interval [0, 100] and the marker can be used to identify when
an instrument is oversold (index’ value below certain level, usually 30 — a signal for
buying) or when it is overbought (index’ value above certain level, usually 70 — a
signal for selling). In order to calculate the value of RSI, the difference sequence will
be used
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Definition 20. The difference (or increments) process of a process {X(k∆t)}nk=0 is
defined to be

DX(k∆t) =


0, for t = 0,
Xi(k∆t) −Xi

(
(k − 1)∆t

)
, for t > 0.

(2.49)

Similarly to what we have done for EMA, we simplify the notation by stating
that DSi

(k∆t) = Di(k∆t), since also in this case the only process we will apply this
transformation to will be the process of prices.

To calculate the RSI index, positive and negative increments need to be sorted
out from each other

Definition 21. The positive differences (or increments) process is a process defined
as

D+
i (k∆t) =

Di(k∆t), where Di(k∆t) > 0
0, where Di(k∆t) ⩽ 0.

(2.50)

Similarly, the negative differences (or increments) process is:

D−
i (k∆t) =

0, where Di(k∆t) ⩾ 0
Di(k∆t), where Di(k∆t) < 0.

(2.51)

The RSI index relies on the notion of asset’s relative strength. This quantity
can be defined in various different ways, we will follow the original one, given by
Wilder [39].

Definition 22. Relative strength of the i-th asset of a portfolio P is defined to be

RSi(k∆t) =
EMAD+

i ,s
(k∆t)

EMAD−
i ,s

(k∆t) . (2.52)

where s is EMA’s lag parameter, which, in the context of RSi, is often called the
period.

RSI is an index obtained by normalising relative strength, so that it’s value is
always between 0 and 100

Definition 23. The RSI Index is a process defined as

RSIi(k∆t) = 100 − 100
1 +RSi(k∆t) . (2.53)
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In order to construct the actual strategy out of the values of RSI, we can construct
dedicated indicators, similar to the ones that have been proposed for the MACD in
Eqs. (2.39) and (2.40). This time however arbitrary levels of overselling and overbuying
need to be fixed additionally. Let us denote them by d+ and d− respectively. As
mentioned above, practitioners usually stick to d+ = 30 and d− = 70 [40]. Having
that fixed, we can define the indicators for RSI strategy

Definition 24. The RSI buy indicator is a time series of 1-s and 0-s defined in the
following way:

1
+
i,d+(k∆t) =

1, if RSIi
(

(k − 1)∆t
)
< d+ ∧ RSIi(k∆t) > d+,

0, otherwise,
(2.54)

Similarly, the RSI sell indicator is the following time series

1
−
i,d−(k∆t) =

1, if RSIi
(

(k − 1)∆t
)
> d− ∧ RSIi(k∆t) < d−,

0, otherwise.
(2.55)

With those indicators, we can construct the exact same strategy as in case of
MACD (reacting for signals, as described by Eqs. (2.41)–(2.46)) simply by replacing
MACD-related buy and sell indicators by the newly defined RSI-based ones.

Definition 25. An RSI-based strategy (or simply an “RSI strategy”) is a strategy
for which the quantity update scheme has the following form

qi(k∆t) = q′
i(k∆t) + c(k∆t)

Si(k∆t)

(
N∑
i=1

1
+
i,d+(k∆t)

)−1

1
+
i,d+(k∆t), (2.56)

q0(k∆t) = q′
0(k∆t) − c(k∆t), (2.57)

qi(0) ⩾ 0, (2.58)

for consecutive k ∈ {1, 2, . . . , n}, and within each k — for consecutive i ∈ {1, 2, . . . , N},
where qi(0) are initial amount of assets (for i > 1) and cash (for i = 0), c(k∆t) is an
amount of cash used to buy new assets, defined as

c(k∆t) = ϕq′
0(k∆t), (2.59)

q′
i(k∆t) is the temporary quantity of i − th assets after (potentially) selling some

of them but before buying new ones at time t = k∆t and q′
0(k∆t) is the temporary
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amount of cash at that moment:

q′
i(k∆t) = qi

(
(k − 1)∆t

)
(1 − ψ1−

i,d−(k∆t)), (2.60)

q′
0(k∆t) = q0

(
(k − 1)∆t

)
+

N∑
i=1

Si(k∆t)qi
(

(k − 1)∆t
)
ψ1−

i,d−(k∆t). (2.61)

ϕ, ψ ∈ [0, 1] are called buy and sell factors respectively.

One can observe how RSI indicator generates buy and sell signals by looking at
the example in Figs. 2.1c and 2.1d.

2.5 Portfolio performance measures
The most basic measure of portfolio performance is its wealth, defined already in
Definition 5. It simply represents the value of the portfolio, measured in units of cash.
Although it is the most intuitive indicator of how the value of the portfolio changes,
it has been noticed in numerous works that portfolio wealth is not a reliable measure
of performance [41]. It suffers from few weaknesses. First of all, it is not invariant to
the initial values of the assets the portfolio is composed of, whereas a good portfolio
performance measure should be. Second — it does not properly reflect the relative
character of investment’s value in general. This relativity is associated with a fact
that the measure of portfolio’s performance should be dependent on its current value.
For example – if the value of some portfolio grows by $1, it is considered to be a
much bigger change if it was a $10 portfolio than if it would be a $1 000 000 one,
although the absolute gain is the same in both cases. Finally, the third issue is that
a good portfolio performance measure should take into consideration the passage of
time. The more time we give to our investment strategy, the better results it should
present. All these three factors are addressed in a function that we call a portfolio
growth, or logarithmic growth [29].

Definition 26. Growth of portfolio P (or “the GoP”, in short), denoted by gP(k∆t),
is a measure of portfolio performance given by

gP(t) = 1
t

log
(
WP(t)
WP(0)

)
(2.62)

This measure does not exhibit any of the weaknesses mentioned above. Since
wealth of portfolio gets divided by its initial value — the measure is ultimately not
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dependent on it. Imposing the logarithm on the scaled portfolio value “flattens” the
measure in its right end. Hence, more significant movements of portfolio wealth are
needed to change the value of the measure by the same amount for big portfolios
than for the smaller ones. Time dependence of an investment has also been captured.
As the time passes and the value of t in the denominator gets bigger, the logarithm
of the normalised portfolio wealth must increase with the similar rate in order not to
lower the value of the whole measure.

The growth of wealth is a measure focusing on portfolio evolution in time. But,
although the time is a natural variable along which we track changes in general, it is
not the only one possible. Let us imagine an indexed set of M investment portfolios
{P}Mi=1, which are similar to one another except for one characteristic feature which
is different for each of those portfolios — let’s call it τ . If this characteristic feature is
quantitative (possible to be expressed by a number) and if there is sufficiently many
different values of it for different portfolios (ideally — each one of all M portfolios
has a different value of τ) — it may provide another “dimension” along which we
can observe the changes of values of portfolios involved and it could give us insights
different to the ones obtained through time-oriented observations. Having a suitable
set of investment portfolios {P}Mi=1, we can design a measure like that. We will call it
a characteristic measure, as it shows the dynamics of a set of portfolios along some
characteristic property τ .

Definition 27. A characteristic measure φ(t, τ) of a set of M portfolios {P}Mi=1,
each characterised by a unique value of the portfolio’s characteristic property τ , i.e.
Pi = P(τi), for some value of τi ∈ {1, 2, . . . ,M}, is given by

φP(t, τ) = gP(τ)(t). (2.63)

As we can see, the characteristic measure is exactly equivalent to growth of wealth,
except it highlights the possibility of comparing several different portfolios (varying
in the value of τ) at the same moment of time t. Since we prefer our measures to be
one-dimensional (for easier plotting and analysis), we will often only be interested
in the changes of the characteristic measure along with the second parameter τ and
just one, fixed point of time t. It would make sense for this point of time to be the
maturity of the portfolio t = T , as the end of an investment is a natural moment for
making comparisons. Hence, we state that φP(τ) = φP(T, τ) = gP(τ)(T ).

Since there is a lot of features and qualities by which investment portfolios can
differ from one another, it can also be the case that one will want to compare two
sets of portfolios — {P}Mi=1 and {R}Mi=1. In such case, we can formalise a measure of
differences between two sets of portfolios — a benchmark measure.
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Definition 28. A benchmark measure of a portfolio set {P}Mi=1 against another
portfolio set {R}Mi=1, denoted by δ(t, τ), is given by

δP,R(t, τ) = φP(t, τ) − φR(t, τ). (2.64)

Similarly to the characteristic measure, dropping the time dimension in the
notation simply means that involved measures are evaluated at t = T , i.e. δP,R(τ) =
δP,R(T, τ) = φP(τ) − φR(τ).

Also, similarly to portfolio wealth, if it is clear from the context which portfolios
are measured, the subscripts denoting them can be dropped for clarity as well, giving
us g(t) for the growth of wealth, φ(t, τ) or φ(τ) for the characteristic measure and
δ(t, τ) or δ(τ) for the benchmark measure.
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3 Empirical results under
Heston market model

3.1 Importance of synthetic data and Monte-Carlo-
style experiments

A big part of modern research related to methods of portfolio management focuses on
testing obtained results based on real market data. Although it may seem justified
and legitimate, studying financial markets only that way has some drawbacks as well.
First of all, research which focuses on one particular market, stock, or even basket
of stocks cannot be treated as fully universal. This is because any conclusions of
such research are only fully applicable to this one particular class of assets which
have been used to prove authors’ claims. For that reason, in our work, we chose
to focus on a different research methodology. Namely, we conducted a number of
experiments in which we used synthetic data, i.e. asset price trajectories are neither
prices of any real-life stocks nor any other financial instruments. Instead, they were
simulated using a dedicated mathematical model. Thanks to that we were able to
draw more general conclusions which can be applied to any market and any sets of
assets to which our base model can be applied. Using the Monte Carlo framework
[42] enabled us to generate arbitrary number of trajectories and average the results
on. We eradicated the bias related to picking some particular assets from existing
markets. Therefore, we consider our results to be more generic since they represent
an average scenario of what may happen at any possible market in the world.
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3.2 Basic terms assumptions for numerical experi-
ments

The most important assumption that we make within all our numerical experiments
is that the prices of assets do not depend on decisions a single investor makes. That
means the character of trajectories Si for any i ∈ {1, . . . , N} is fully random and
modelled by a dedicated stochastic process, described in details in the next section.
Therefore, the only way an investor can influence performance of their portfolio is by
altering quantities qi of the assets held. The other assumption, related to the first
one, is that an investor is not able to alter the price of an asset itself by performing
any market transaction. Admittedly, this is not always true in case of real markets,
especially if we consider transactions performed by big market players like banks,
mutual funds or hedge funds. However, for a single, individual investor, this does not
need to be treated as a limitation as most of market participants operate within a
range of financial means way too small to be able to significantly influence a typical
stock market.

3.3 Heston model
Like we mentioned in section 3.2, we assume that a single investor can only watch the
prices of assets randomly changing on the market, not being able to influence them.
As a model describing the behaviour of the assets, we chose the Heston model [31].
Definition 29. Heston model is a mathematical model used for modelling the
dynamics of prices of financial assets in time. It comprises of three stochastic
differential equations

dS(t) = µS(t)dt+
√
v(t)S(t)dBS(t), (3.1)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)S(t)dBv(t), (3.2)

dBS(t)dBv(t) = ρdt, (3.3)
and two initial conditions

S(0) = S0 > 0, (3.4)
v(0) = v0 > 0, (3.5)

where S is the price of the asset, v is the volatility process, BS and Bv are Wiener
processes and µ, κ, θ, σ, ρ are the parameters of the model, such that µ ∈ R, κ >
0, θ > 0, σ > 0, ρ ∈ [−1, 1].
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This model is often used as a description of the movement of an underlying assets
while pricing derivative instruments, particularly options[43]. Heston model as well as
some of its variants, are heavily studied not only in mathematics, but also in physics

— and are often referred to as diffusive diffusivity models [44]. One can find examples
of its applications in multiple branches of physics, including econophysics, where it
often serves as a basic model e.g. for pricing [45] and forecasting [46] as well as in
sociophysics, in combination with agent-based models [47].

As one can see, within Heston model, the price of a financial asset S(t) is considered
to be a stochastic process which solves a system of stochastic differential equations,
given by Eqs. (3.1)–(3.3) and initial conditions (3.4)–(3.5). The price process is built
upon the value of µ which is constant and the value of v(t) which is a stochastic process
in and of itself (hence — the diffusive diffusivity term, often used by econophisicists).
µ is called a drift and it represents a general tendency of an asset to grow (if µ > 0)
or fall (if µ < 0). On the other hand, v(t) represents the volatility of the asset and is
actually modelled by a process known as CIR, originally introduced by Cox, Ingersoll
and Ross to model the movement of interest rates [48]. One of the defining features
of the CIR model is the so called mean-reversion. The value of the process generally
oscillates around a long-term average θ, randomly converging to and diverging from
it with the rate of κ. A random factor of severity of those oscillations is reflected
in the value of σ, which hence can be called “a volatility of a volatility”. Thus, the
Heston model, featuring volatility of an asset changing in time, appears to reflect
the behaviour of the real-life markets well. In reality, we indeed observe periods of
time when prices of assets do not move significantly (practitioners often refer to such
behaviour as a consolidation), but another times prices of those very same assets
fluctuate strongly, achieving e.g. daily return rates, which can be orders of magnitude
greater than during the peaceful times [49]. Other, simpler models, like Geometric
Brownian Motion, which is also frequently used for the purpose of describing prices of
financial assets changing in time [43], are often not able to simulate such behaviour.

The actual randomness of the prices of assets and their volatility is achieved by
including Wiener processes (also known as Brownian motion processes) [50], denoted
by BS(t) and Bv(t) respectively. The model also allows for the possibility that those
two are correlated with instantaneous correlation ρ. The need for this feature in the
model can also explained from the practical point of view as here seems to be an
actual correlation between prices of assets and their volatility. It is usually observed to
be negative — i.e. an increased volatility of a market usually occurs when prices drop,
especially as a consequence of some kind of a market event, often related to some
critical political or economical news. On the other hand, when the prices casually
grow, lower market volatility can be observed [51].
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Similarly as in case of classical (deterministic) differential equations, initial condi-
tions for both S(t) and v(t) are required to complete the set-up of the model. For
the Heston model, s0 represents the initial price of an asset at time t = 0, and v0 is
the value of the market volatility at that point of time. Since, as mentioned earlier,
the volatility process oscillates around the value of parameter θ, for all our numerical
experiments we assumed v0 = θ.

3.4 Merton-style jumps
Although the trajectories coming from the Heston model are continuous, the model
itself can easily be extended to include discontinuities. The most common type of
jumps which can be incorporated into the model is called Merton log-normal jump
[52]. To add it, one needs to augment the equation (3.1) with an additional term.

Definition 30. Heston model with Merton-style jumps is a mathematical model
used for modelling the dynamics of prices of financial assets in time. It comprises of
three stochastic differential equations

dS(t) = µS(t)dt+
√
v(t)S(t)dBS(t) + (eZ(t) − 1)S(t)dq(t) (3.6)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)S(t)dBv(t), (3.7)

dBS(t)dBv(t) = ρdt, (3.8)

and two initial conditions

S(0) = S0 > 0, (3.9)
v(0) = v0 > 0, (3.10)

where S is the price of the asset, v is the volatility process, BS and Bv are Wiener
processes and µ ∈ , κ, θ, σ, ρ are the parameters of the model, such that µ ∈ R, κ ∈
R+, θ ∈ R+, σ ∈ R+, ρ ∈ [−1, 1], Z(t) is a series of i.i.d. normally distributed random
variables with mean µJ and standard deviation σJ , whereas q(t) is a Poisson counting
process with constant intensity λ.

Comparing to the Definition 29 of the original Heston model, the only change
in the updated definition is one added term in Eq. (3.6). It is responsible for the
discontinuities in the price process S(t), called Merton-style jumps. They turn the
Heston model into what is sometimes called a Bates model [53]. Although there
is multitude of ways jumps can be incorporated into a continuous model, the one
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described by Merton is used particularly often and it has an easy real-life interpretation.
Namely, eZ(t) is the actual (absolute) rate of the difference between the price before
the jump at time t and right after it, i.e. S(t−) · eZ(t) = S(t+). So if for example, for
a given t, eZ(t) ≈ 0.85, that means the stock experienced ∼ 15% drop in value at that
moment.

3.5 Model discretisation and simulation

As mentioned in section 2.2, in real-life we almost always work with the data in form
of discrete series of values. Thus, in order to make the model applicable in practice,
especially for the sake of computer simulations, one needs to discretise it, that is —
to rewrite the continuous (theoretical) equations in such a way that the values of
the process are given in specific, equidistant points of time. The time discretisation
should be consistent with the one we performed to define our portfolio management
strategies. Thus, we split the time domain [0, T ] into n short intervals, each of length
∆t. Thus n ·∆t = T . To properly transform the SDEs of the model into this new time
domain, a discretisation scheme is necessary. We used Euler-Maruyama discretisation
for that purpose [54]. The stock price equation (3.1) of the regular Heston model can
be discretised as

S(k∆t) − S
(

(k − 1)∆t
)

= µS
(

(k − 1)∆t
)

∆t+

S
(

(k − 1)∆t
)√

v
(

(k − 1)∆t
)
εS(k∆t)

√
∆t, (3.11)

where k ∈ {1, · · · , n} and εS is a series of n i.i.d. standard normal random variables.
To highlight the ratio between two consecutive values of the stock price, Eq. (3.11)

is often re-written as

S(k∆t)

S
(

(k − 1)∆t
) = µ∆t+ 1 +

√
v
(

(k − 1)∆t
)
εS(k∆t)

√
∆t. (3.12)

The same discretisation scheme can be applied to the Eq. (3.2), to obtain:
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v(k∆t) − v
(

(k − 1)∆t
)

= κ

θ − v
(

(k − 1)∆t
)∆t+

σ

√
v
(

(k − 1)∆t
)
εv(k∆t)

√
∆t. (3.13)

If ρ = 0, then εv in the above formula is also a series of n i.i.d. standard normal
random variables. However, if ρ ̸= 0, then — to ensure the proper dependency
between S and v — we take

εv(k∆t) = ρεS(k∆t) +
√

1 − ρ2εadd(k∆t) (3.14)
where εadd is an additional series of n i.i.d. standard normal random variables, which
are “mixed” with the ones from εS and hence — become dependent on them.

The equations of the discretised model can be directly used to simulate trajectories
from the Heston model. To do that, one simply needs to fix s0 = S(0) and v0 = v(0),
generate two (possibly correlated) normally distributed series of random variables εS
and εv and proceed with the generation of first v(k∆t) (as indicated by Eq. (3.13))
and finally — of S(k∆t) (as indicated by Eq. (3.11)) for k ∈ {1, 2, . . . n}.

If needed, Merton style jumps can be added after simulating the regular Hes-
ton model. To this end, one should generate a random variable from the Poisson
distribution with intensity λT

ν ∼ Poiss(λT ). (3.15)
Then, a series of ν random normal variables Z1, Z2, . . . , Zν should be generated,

having mean µJJ and standard variation σJJ . To incorporate them as jumps, one
should also find positions for them, hence, another ν random variables will be needed

— this time from the uniform distribution on the interval [0, T ].

ui ∼ U(0, T ), for i ∈ {1, 2, . . . , ν} (3.16)
However, these jump positions will not, with probability 1, land on our discrete

grid. Hence, they need to be “snapped” to the nearest grid point, so that the jumps
occur at the dicretised points of time k∆t, k ∈ {1, 2, . . . n} too. This can be done, for
example by calculating a series of ki, which will indicate the ordinals of grid points
where the jumps occur.

K(ui) = ki =
[
n · ui

T

]
, for i ∈ {1, 2, . . . , ν} (3.17)
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where [·] is a function of rounding the number to the nearest integer (a “floor” function
⌊·⌋ or a “ceiling” function ⌈·⌉ can also be used). Having calculated the actual jump
positions on the grid, they should be placed on it

Z(k∆t) =
Zi if there is i ∈ {1, 2, . . . , ν} such that k = ki,

1 otherwise.
(3.18)

This is in order to make the “enumeration” of jumps and prices consistent. Hence,
although values of Z(k∆t) for where k ̸= ki are set to 1, they could actually be
anything as they will not be used anyway.

To incorporate the jumps into the trajectory, one puts

SJ(k∆t) = S(k∆t) ·
∏

{i:ki⩽k}
exp

(
Z(ki∆t)

)
(3.19)

for k ∈ {1, 2, . . . n} and i ∈ {1, 2, . . . , ν}.
One of the assumptions of the discretised Merton-style jumps model is that there

should be not more than one jump in one time step. In case this assumption is
violated (i.e. for {ui, uj}, i ̸= j there is K(ui) = K(uj)), it is best to simply repeat
the generation of all ui-s, as this procedure is not very computationally expensive.

3.6 Numerical experiments and their results

This section is devoted to present the actual numerical experiments which have been
conducted for the purpose of this work. Experiments have been split into groups
and for each group a premise for the experiments in the group has been outlined.
Each experiment has also been precisely described, including the actual reason of
conducting it and what it meant to have provided (Aim), a step-by-step procedural
description of how it was executed, for easier reproduction (Procedure), a conclusion
or a list of conclusions that can be drawn from the experiment (Observations), a list
of the values of parameters used to synthesise the data required for the experiment
(Simulation parameters) and identifications of figures, on which the experiment
results were visualised (Figure references). This style of describing numerical
experiments has been designed by us to make it as easy as possible to follow the
procedure and if necessary, to reproduce the results. Outcomes of all of the presented
experiments have been published in our research articles [30, 32, 36].
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3.6.1 Comparison of balancing strategies
The first experiment was performed to compare various strategies related to portfolio
rebalancing with each other and with the passive strategy. It also allowed us to
compare our results against the ones presented in the work of Alper et al. [29], in
which authors proved that the growth of wealth of the passive portfolio decays over
time if the assets are modelled by the Geometric Brownian Motion. We were able to
reproduce those results for the Heston model (in simulations), although we also note
that the decay of the growth of wealth is a rather theoretical result, as it is very slow
and the passive portfolio actually falls beneath the balanced ones only after ∼ 20 − 30
years (see Ref. [30] for further details).
Experiment 1.

Aim: Comparing balancing portfolios to the passive one, examining the impact of
the length of investment.
Procedure:

1. Define the list of the values of portfolio maturities T to be examined.

2. Create a synthetic market by simulating asset price trajectories.

3. Run five different portfolio management strategies on the market:

• fully balanced strategy with no fees involved,
• fully balanced strategy with fees involved,
• periodically balanced strategy with fees involved,
• partially balanced strategy with fees involved,
• passive strategy.

4. Repeat steps 2-3 independently and collect the results after each Monte Carlo
trial.

5. Average the results across all Monte Carlo trials for each t.

6. Repeat steps 2-5 for subsequent values of portfolio maturity.
Observations:

• Among the strategies utilising rebalancing, the fully-balanced portfolio performs
best in the absence of the exchange fees and worst when they are involved.
Partially- and periodically-rebalanced strategies both find themselves between
those two extremes, regardless of the time of the investment.

44



3. EMPIRICAL RESULTS 3.6. Numerical experiments and their results

• For short-term investments (T = 1, i.e. one-year portfolio, presented in Fig. 3.1),
the passive portfolio acts almost identically as the fully-balanced portfolio in
the absence of fees.

• For extremely long-term investments (T = 100, i.e. 100-years portfolio, pre-
sented in Fig. 3.3), the growth of wealth of of the passive portfolio decreases
visibly. After ∼ 30 years from the portfolio set-up, the buy-and-hold strategy
performs worse than all rebalance-related portfolios.

Simulation parameters: T ∈ {1, 10, 100}, ∆t = 0.1, N = 8, s0 = 1, µ = 0.2, κ =
1.5, θ = 0.5, σ = 0.1, ρ = −0.66, α ∈ {0, 0.03}, m = 5, D = 0.2, Monte Carlo trials:
1000.
Figure references: 3.1 — 3.3.

Figure 3.1: Growth of various types of 1-year portfolios, with and without the
exchange fees.
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Figure 3.2: Growth of various types of 10-year portfolios, with and without the
exchange fees.

Figure 3.3: Growth of various types of 100-year portfolios, with and without the
exchange fees.
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3.6.2 Optimal rebalance period and optimal rebalance coeffi-
cient

As demonstrated by Experiment 1, partially and periodically balanced portfolios
seem to perform best in presence of transaction fees, especially for longer investment
times. We decided to study what parameters of these portfolios maximise the growth
of wealth of portfolio at the point where simulation terminates (i.e. at portfolio’s
maturity time T ). It was natural to use the characteristic measure for that, as defined
in Definition 27. For the partially balanced portfolio, the characteristic feature was
the partial rebalance coefficient, i.e. τ = D, for the periodically balanced one — the
rebalance period, τ = m. In both cases the level of transactions fees α turned out to
have crucial meaning when determining the optimal parameters.
Experiment 2.

Aim: Finding optimal parameters for partially balanced and periodically balanced
portfolios in presence of transaction fees.
Procedure:

1. Define the list of values of the strategy parameter (partial rebalance coefficient D
for partially balanced portfolios, period of rebalance m for periodically balanced
ones) to be examined.

2. Create a synthetic market by simulating asset price trajectories.

3. For a given strategy parameter, run three different portfolios on the market for
three different levels of fees.

4. Repeat steps 2-3 independently and collect φ(D) (for partially balanced portfo-
lios) or φ(m) for periodically balanced portfolios) for each fee level after each
Monte Carlo trial.

5. Average obtained values of φ(D) or φ(m) across all Monte Carlo trials for each
fee level.
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6. Repeat steps 3-5 for subsequent values of strategy parameters and collect the
averaged value φ(D) or φ(m) for each value of D or m.

7. Repeat steps 2-6 for the other strategy parameter.
Observations:

• For periodically balanced portfolios (Fig. 3.4), the bigger the fees the larger is
the value of m for which φ(m) attains maximum. This means that for bigger
level of the fees, rebalancancing should be performed less frequently.

• For partially balanced portfolios (Fig. 3.5), the bigger the fees the smaller is
the value of D for which φ(D) attains maximum. This means that for bigger
level of the fees, the level of portfolio rebalancing should be smaller.

• The variability of φ(D) is much smaller across all levels of D than the variability
of φ(m) across m, which results in much smoother curves for φ(D) than for
φ(m).

Simulation parameters: T = 10, ∆t = 0.03, N = 2, s0 = 1, µ = 0.125, κ =
1.5, θ = 0.5, σ = 0.1, ρ = −0.66, α ∈ {0.01, 0.03, 0.05}, m ∈ {1, 2, . . . , 60} or m = 1,
D ∈ {0, 0.01, 0.02, . . . , 1} or D = 1, Monte Carlo trials: 1000.
Figure references: 3.4, 3.5.

Figure 3.4: Final growth of portfolio (for t = T ) in dependence of the period of
rebalance.
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Figure 3.5: Final growth of portfolio (for t = T ) in dependence of the partial rebalance
coefficient

In Experiment 2 we were analysing periodically balanced and partially balanced
strategies separately, but both of those approaches can be merged into one strategy,
according to Definition 14. Such strategy is then dependent on two equally important
parameters — period of rebalance m and partial rebalance coefficient D. Hence, to
best visualise it, a measure similar the characteristic measure would be useful, but
generalised to be multi-dimensional. For this purpose specifically we introduce a
multi-dimensional characteristic measure.

Definition 31. A multi-dimensional characteristic measure φ(t, τ ) of a set of M
portfolios {P}Mi=1, each characterised by a unique L-dimensional vector of values of
the portfolio’s characteristic properties τ = (τ1, τ2, . . . , τL), i.e. Pi = P(τi), for a
particular vector of values τi ∈ {1, 2, . . . ,M}, is given by

φ(t, τ ) = gP(τ )(t). (3.20)

By definition φ(τ ) = φ(T, τ ).

Using τ = (m,D) as a vector of characteristic properties for periodically and
partially balanced portfolio, we get φ(m,D) as a multi-dimensional characteristic
measure for this strategy and we can use it for visualising the performance of this
strategy in two dimensions.
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Experiment 3.

Aim: Analysis performance of the periodically and partially balanced portfolio.
Procedure:

1. Define the list of values of the period of rebalance m and partial rebalance
coefficient D to be examined.

2. Create a synthetic market by simulating asset price trajectories.

3. For a given combination of the values of m and D, run the periodically and
partially balanced portfolio on a simulated market.

4. Repeat steps 2-3 independently and collect φ(m,D) after each Monte Carlo
trial.

5. Average obtained values of φ(m,D) across all Monte Carlo trials.

6. Repeat steps 2-5 for subsequent combination of (m,D) and collect the averaged
value φ(m,D).

Observations:

• The bigger the rebalance period, the bigger the optimal partial rebalance
coefficient for which the optimal portfolio growth is attained. This means that
if one rebalances a portfolio less frequently, he should rebalance in bigger part.

• For a fixed period of rebalance, there is usually a whole spectrum of partial
rebalance coefficients for which portfolios present similar performance.

• For all periods of rebalance, portfolios with partial rebalance coefficients close
to 0 perform worse than the ones close to 1. This effect is getting stronger for
bigger periods of rebalance.

• The passive portfolio, when the partial rebalance coefficient is 0, performs the
worst across the board.

• Variability across periods of rebalance is bigger than across partial rebalance
coefficients, which can be seen as horizontal “stripes” on the heat map.

Simulation parameters: T = 10, ∆t = 0.02, N = 2, s0 = 1, µ = 0.125, κ = 1.5, θ =
0.5, σ = 0.1, ρ = −0.66, α = 1,m ∈ {1, 2, . . . , 50}, D ∈ {0, 0.02, 0.04, . . . , 1}, Monte
Carlo trials: 1000.
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Figure references: 3.6.

Figure 3.6: Final growth (for t = T ) of partially and periodically balanced portfolios
in dependence of the period of rebalance and the partial rebalance coefficient.

3.6.3 Impact of cash on portfolio performance
An important question investors often ask themselves is whether they should leave
some money aside in form of cash for future investments and — if so — how much
should they leave. Not investing all possessed money into stocks at the very first
moment has some immediate advantages. It reduces the risk, as the more money
remains inside a portfolio, the more stable it becomes. This is because cash, unlike
stocks, does not change its value in time in our model. Moreover, leaving some cash
aside allows an investor to react when an opportunity on the market appears, without
the need to make any changes in the existing portfolio stock arrangement. On the
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other hand however, holding cash in a portfolio diminishes the amount of money
earned from an actual investment, which seems to be especially dissatisfying in case
of a very successful initial choice of the risky assets.

Experiment 4 illustrates the impact of storing cash in an investment portfolio.
The intuition here would be that a portfolio with left-away money will perform
worse compared to an analogous portfolio with all money resources invested in stocks.
Rather interestingly however, it turns out it might not always be the case. We found
out that stocks’ drift is the decisive parameter here.

Experiment 4.

Aim: Analysing the impact of cash in a passive investment portfolio in two special
cases.
Procedure:

1. Define two separate values of µ to be examined.

2. For a given value of µ create a synthetic market by simulating asset price
trajectories.

3. Run two different portfolio management strategies on the market, one with cash
and one without cash.

4. Repeat steps 2-3 independently and collect the results in form of the growth of
wealth for both portfolios after each Monte Carlo trial.

5. Average the results across all Monte Carlo trials for both portfolios for each t.

6. Repeat steps 2-5 for the other value of µ.

Observations:

• Portfolio without cash demonstrated better performance for small value of µ
(Fig. 3.8), but it performed worse if µ was bigger (Fig. 3.7).

Simulation parameters: T = 2,∆t = 2−8, N = 8, s0 = 100, µ ∈ {0.001, 0.1},
κ = 1.22, θ = 0.06, σ = 0.56, ρ = −0.66, α = 0, q0(0) ∈ {0, 200}, Monte Carlo trials:
1000.
Figure references: 3.7, 3.8.
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Figure 3.7: Portfolio growth in time for a passive portfolio and a portfolio with a
cash contribution (approx. 28.5%) for µ = 0.1.

Figure 3.8: Portfolio growth in time for a passive portfolio and a portfolio with a
cash contribution (approx. 28.5%) for µ = 0.001.
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Results of Experiment 4 are special cases of a more general analysis, presented
in Experiment 5. It uses the benchmark measure, with the characteristic property
being the drift parameter µ. The measure is set to calculate the difference between a
passive portfolio with some amount of cash in it and a classical passive portfolio, in
which all money is invested in the risky assets (also called an all-in portfolio).

Experiment 5.

Aim: General analysis of the impact of cash in a passive investment portfolio using
benchmark measure.
Procedure:

1. Define the list of values of the drift parameter µ and five non-zero portfolio
cash levels to be examined.

2. For a given drift parameter µ create a synthetic market by simulating asset
price trajectories.

3. For a simulated market, run six different portfolios — one cashless and five
containing various amounts of cash, as defined in step 1.

4. Repeat steps 2-3 independently and collect δ(µ) for each combination of cash-
and cashless portfolio after each Monte Carlo trial.

5. Average obtained values of δ(µ) across all Monte Carlo trials for each portfolio
pair.

6. Repeat steps 2-5 for subsequent values of µ and collect the averaged value δ(µ)
for each portfolio pair.

Observations:

• Portfolios consisting mostly of cash perform worse if assets have a strong
tendency to grow (big values of µ), but they give the best results in case of
lower growth potential (small values of µ).

Simulation parameters: T = 2,∆t = 2−8, N = 5, s0 = 100, µ ∈ {0.001, 0.002, . . . , 0.05},
κ = 1.22, θ = 0.06, σ = 0.56, ρ = −0.66, α = 0, q0(0) ∈ {0, 100, 250, 500, 750, 1000},
Monte Carlo trials: 1000.
Figure references: 3.9.
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Figure 3.9: Impact of the amount of cash stored in the portfolio for various values of
the drift parameter µ.

3.6.4 Performance of MACD- and RSI-driven portfolios
In the previous section we have demonstrated how parameter µ of the Heston model is
related to the impact of cash on portfolio performance. It turns out that the drift is a
critical parameter not only when it comes to the cash inclusion, but it also has a huge
impact on the effectiveness of strategies based on using technical analysis indicators
like MACD or RSI. In Experiment 6, the behaviour of passive and MACD-driven
portfolios has been compared for different values of the drift µ.
Experiment 6.

Aim: Analysis the MACD-driven portfolio in two special cases.
Procedure:

1. Define two separate values of µ to be examined.

2. For a given value of µ, create a synthetic market by simulating asset price
trajectories.

3. Run two portfolios on a simulated market — one MACD-driven and one passive.

4. Repeat steps 2-3 independently and collect the results in form of the growth of
wealth for both portfolios after each Monte Carlo trial.
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5. Average the results across all Monte Carlo trials for both portfolios, for each t.

6. Repeat steps 2-5 for the other value of µ.

Observations:

• For a small value of µ (Fig. 3.10), both strategies perform similarly throughout
the lifetime of the portfolio and at the end they give very similar results.

• For a bigger value of µ (Fig. 3.11), it becomes clear that the portfolio managed
by an MACD strategy outperforms a simple buy-and-hold strategy.

Simulation parameters: T = 2,∆t = 2−8, N = 10, s0 = 100, µ ∈ {0.005, 0.1}
κ = 1.2, θ = 0.05, σ = 0.5, ρ = −0.66, α = 0, q0(0) = 200, p = 12, q = 26, s = 9, ψ =
0.5, ϕ = 0.5, Monte Carlo trials: 1000.
Figure references: 3.10, 3.11.

Figure 3.10: Portfolio growth in time for a passive portfolio and a MACD portfolio
for µ = 0.005.
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Figure 3.11: Portfolio growth in time for a passive portfolio and a MACD portfolio
for µ = 0.1.

One could expect that it would be the case for strategies utilising various indicators,
that the bigger the drift, the better the results. It turns out, that the behaviour can
be different depending on the indicator. Experiment 7 allows to see the results for
RSI.
Experiment 7.

Aim: Analysis the RSI-driven portfolio in two special cases.
Procedure:

1. Define two separate values of µ to be examined.

2. For a given value of µ create a synthetic market by simulating asset price
trajectories.

3. Run two portfolios on a simulated market — one RSI-driven and one passive.

4. Repeat steps 2-3 independently and collect the results in form of the growth of
wealth for both portfolios after each Monte Carlo trial.

5. Average the results across all Monte Carlo trials for both portfolios, for each t.

6. Repeat steps 2-5 for the other value of µ.
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Observations:

• For the smaller value of µ (Fig. 3.12), both strategies perform similarly through-
out the lifetime of the portfolio, however, at the end, the passive portfolio
achieves better results.

• For the bigger value of µ (Fig. 3.13) — portfolio managed by the RSI strategy
performs drastically worse than the buy-and-hold strategy.

Simulation parameters: T = 2,∆t = 2−8, N = 10, s0 = 100, µ ∈ {0.1, 0.5},
κ = 1.2, θ = 0.05, σ = 0.5, ρ = −0.66, α = 0, q0(0) = 200, s = 14, d− = 30, d+ =
70, ψ = 0.5, ϕ = 0.5, Monte Carlo trials: 1000.
Figure references: 3.12, 3.13.

Figure 3.12: Portfolio growth in time for a passive portfolio and a RSI portfolio for
µ = 0.1.
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Figure 3.13: Portfolio growth in time for a passive portfolio and a RSI portfolio for
µ = 0.5.

Similarly to the cash inclusion experiment, also here we have performed an
experiment with a benchmark measure, using differences between actively-managed
portfolios and the passive one in dependence of the drift parameter µ. Also, for the
previous experiment we used MACD and RSI strategies in their basic form, but one
should keep in mind that their definitions (Definition 19 and 25, respectively) allow
for customising the way they work. One of the possible customisations is changing
the values of buy and sell factors (ϕ and ψ, respectively). The default values of
those indicators are both 0.5. Changing them may result in changes of portfolio
performance. This effect has been studied in Experiment 8.
Experiment 8.

Aim: General analysis of trading-indicator-driven strategies using benchmark measure.

Procedure:

1. Define the list of values of the drift parameter µ and two sets of values for the
buy and sell factors (ϕ and ψ respectively) to be examined.

2. For a given value of µ create a synthetic market by simulating asset price
trajectories.
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3. For a simulated market, run three different portfolios — passive, MACD-driven
and RSI-driven for a given selection of ϕ and ψ.

4. Repeat steps 2-3 independently and collect δ(µ) for each combination of an
indicator-driven and passive portfolio after each Monte Carlo trial.

5. Average obtained values of δ(µ) across all Monte Carlo trials for both portfolio
pairs.

6. Repeat steps 2-5 for subsequent values of µ and collect the averaged value δ(µ)
for each portfolio pair.

7. Repeat steps 2-6 for the other set of values for ϕ and ψ.

Observations:

• For the default values of ϕ = 0.5 and ψ = 0.5 (Fig. 3.14), MACD performs
best for portfolios where assets are characterised by a big value of the drift µ,
whereas RSI turns out to be useful in the interval of values of µ between 0 and
0.1. However, even then it does not really outperform a passive portfolio.

• For the altered values of ϕ = 0.8 and ψ = 0.1 (Fig. 3.15), the MACD strategy
performed better for bigger values of µ and worse for lower values of µ, compared
to standard values of buy and sell indicators for this type of strategy. The RSI
strategy exacerbated slightly for smaller values of µ and improved considerably
for bigger µ, compared to standard values of ϕ and ψ for this type of strategy.

• MACD and RSI present similar results for the altered values of ϕ and ψ (lines
on the plot in Fig. 3.15 are very close to one another).

Simulation parameters: T = 2,∆t = 2−8, N = 5, s0 = 100, µ ∈ {−0.2,−0.198, . . . , 0.2},
κ = 1.2, θ = 0.05, σ = 0.5, ρ = −0.66, α = 0, q0(0) = 200, p = 12, q = 26, sMACD =
9, sRSI = 14, d− = 30, d+ = 70, ψ ∈ {0.1, 0.5}, ϕ ∈ {0.5, 0.8}, Monte Carlo trials:
1000.
Figure references: 3.14, 3.15.
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Figure 3.14: Difference between MACD and RSI portfolios and a passive portfolio for
various values of the drift parameter µ and buy and sell factors equal to ϕ = 0.5 and
ψ = 0.5, respectively.

Figure 3.15: Difference between MACD and RSI portfolios and a passive portfolio for
various values of the drift parameter µ and buy and sell factors equal to ϕ = 0.8 and
ψ = 0.1, respectively.
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Experiments 6–8 demonstrate clearly, that performance of MACD- and RSI-based
management strategies depends a lot on the growth potential of the assets making up
the portfolio, reflected in the value of the drift parameter µ. Indeed, the drift is the
main factor to be considered when the original Heston model is used for simulating
the assets. If however jumps are included in the prices, two more parameters will
affect the growth potential of the assets involved, i.e. the intensity of jumps λ, and
the mean size of the jumps µJ . Their impact on portfolio performance is the subject
of Experiment 9.
Experiment 9.

Aim: Analysis of trading-indicator-driven strategies in presence of price jumps, using
benchmark measure.
Procedure:

1. Define the list of values of the drift parameter µ, three values of the jump
intensity parameter λ and three values of the average jump size µJ to be
examined.

2. For a given value of µ, λ and µJ , create a synthetic market by simulating asset
price trajectories.

3. For a simulated market, run three different portfolios — passive, MACD-driven
and RSI-driven.

4. Repeat steps 2-3 independently and collect φ(µ) for each of the three portfolios
after each Monte Carlo trial.

5. Average obtained values of φ(µ) for each of the three portfolios across all Monte
Carlo trials.

6. Repeat steps 2-5 for subsequent value of λ or µJ .

Observations:

• For a fixed µ and µJ , the bigger the value of λ, the worse is the performance of
indicator-based strategies compared to the passive one (Fig. 3.16).

• Similar effect observed for fixed µ and λ and increasing µJ (Fig. 3.17).

• The three parameters together — µ, λ and µJ collectively decide upon the
“growth potential” of the asset and hence — have direct impact on performance
of all studied portfolio management strategies.
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Simulation parameters: T = 10, ∆t = 0.02, N = 2, s0 = 1, µ ∈ {−0.2,−0.198, . . . , 0.5},
κ = 1.2, θ = 0.05, σ = 0.5, ρ = −0.66, λ ∈ {0, 1, 2} or λ = 1, µJ = −0.25 or
µJ ∈ −0.2,−0.6,−1, σJ = 0.1 α = 0, q0(0) = 200, p = 12, q = 26, sMACD = 9, sRSI =
14, d− = 30, d+ = 70, ψ = 0.1, ϕ = 0.8, Monte Carlo trials: 1000.
Figure references: 3.16, 3.17.

(a) λ = 0 (b) λ = 1

(c) λ = 2

Figure 3.16: Growth of portfolio for different investment strategies and different
values of λ.
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(a) µJ = −0.2 (b) µJ = −0.6

(c) µJ = −1

Figure 3.17: Growth of portfolio for different investment strategies and different
values of µJ .

By now, we have demonstrated through several experiments that the choice of
the optimal portfolio management strategy depends on the character of assets which
we want to invest in. Thus, we decided to create a map of applicability of active and
passive portfolio management strategies. In order for the map to have a normalised
values, we introduce another measure for comparing portfolios to one another, called
ASPI — Active Strategy Performance Indicator. It can be thought of as a variation
of the benchmark measure. For a pair of two portfolios consisting of the assets of
a similar character, one actively managed and one passive, ASPI simply indicates
whether the difference between their terminal growth of wealth is positive.

Definition 32. For a set of M actively-managed portfolios {P}Mi=1, each charac-
terised by a unique L-dimensional vector of values of the portfolio’s characteristic
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properties τ = (τ1, τ2, . . . , τL), i.e. Pi = P(τi), for a particular vector of values
τi ∈ {1, 2, . . . ,M}, and another set of M passive portfolios {R}Mi=1 with the same
characteristic properties, the ASPI measure is an indicator given by

ASPIP,R(τ ) =
{

1 if δP,R(τ ) > 0
0 otherwise (3.21)

Of course, trajectories of the asset prices are random so it is possible, that one
pair of portfolios will result in ASPI equal to 1, and another one, generated for the
same vector of characteristic properties τ , will give us the ASPI measure of 0. Hence,
to get a full picture, as always, averaging is needed. Experiment 10 provides more
details about how to do it, taking τ = (µ, λ). We used MACD strategy as a model
of an actively managed portfolio, since, as Fig. 3.15 suggests, both active strategies
perform similarly in some configurations.
Experiment 10.

Aim: General analysis of the trading indicator-driven strategies in presence of price
jumps using ASPI measure.
Procedure:

1. Define the list of values of the drift parameter µ and the jump intensity parameter
λ.

2. For a given combination of the values of µ and λ, create a synthetic market by
simulating asset price trajectories.

3. For a simulated market, run two portfolios — MACD-driven (as actively-
managed) and passive.

4. Repeat steps 2-3 independently and collect ASPI(µ, λ) after each Monte Carlo
trial.

5. Average obtained values of ASPI(µ, λ) across all Monte Carlo trials.

6. Repeat steps 2-5 for all combinations of (µ, λ).

Observations:

• Darker colours on the heat map (Fig. 3.18), associated with higher frequency of
jumps and smaller drift, are an indication that it is better to apply a passive
strategy. On the other hand, bright hues represent the regions where active
strategies should be preferable. Hence, the map can be used to select proper
strategy for assets of certain (µ, λ) specification.
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• A significant portion of the map is occupied by colours from the red-to-purple
spectrum, which indicate assets where the results where not equivocal. Hence —
the division between when each of the strategies should be used is not clear-cut
and for some assets active and passive strategies perform (on average) similarly.

Simulation parameters: T = 10, ∆t = 0.02, N = 2, s0 = 1, µ ∈ {0.0, 0.02, . . . , 0.5},
κ = 1.2, θ = 0.05, σ = 0.5, ρ = −0.66, λ ∈ {0, 1, 2, . . . , 10}, µJ = 0.05, α = 0, q0(0) =
200, p = 12, q = 26, sMACD = 9, ψ = 0.1, ϕ = 0.8, Monte Carlo trials: 1000.
Figure references: 3.18.

Having the map allows for selecting the optimal strategy, but the problem which
persists is identifying the values of parameters µ, λ and µJ for an asset1 which an
investor wants to invest in. We address this problem in Chapter 4.

1It only makes sense to use the map if the identified value of the mean jump size parameter is
similar to the one which we used in simulation. If it differs significantly, another map should be
crafted, with the proper value of this parameter.
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Figure 3.18: A heat map presenting the average value of the ASPI measure. Darker
colours (values closer to 0) are an indication that it is better to use a passive strategy,
brighter colours (values closer to 1) — that the active strategy is preferable.
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4 Estimation scheme
for the Heston model

4.1 Estimation techniques

The problem of parameter estimation of mathematical models applied in the fields of
economy and finance is of critical importance. In order to use most of the models, like
the ones for pricing financial instruments or finding an optimal investment portfolio,
one needs to provide values of the model parameters which are often not easily
available.

Over the last decades, mathematical models describing the behaviour of observed
market quantities (e.g. prices of assets, interest rates etc.) became more and more
complicated. Those complications were introduced in order to better reflect the
dynamics of those quantities. The problem is that more complicated models typically
use more parameters, which need to be estimated and moreover, standard estimation
techniques, like Maximum Likelihood Estimators (MLE) or Generalised Method of
Moments (GMM), fail very often for them [34]. Fortunately, modern research in the
field of financial mathematics and econometrics revealed an approach which seems to
be especially effective where others are not. It is the Bayesian approach [33]. Among
methods based on Bayesian inference, the ones using Monte Carlo Markov Chains
(MCMC) are the most prominent for complex financial models [34]. In this group of
methods one assumes some distribution for the value of each of the parameters of a
model (called the prior distribution) and uses it, along with the data, to produce what
is called the posterior distribution — samples from which we can treat as possible
values of our parameters (Ref. [34] provides a great overview of MCMC methods used
for financial mathematics).

The MCMC concept can be applied in multiple ways and by utilising various
algorithms, including Gibbs sampling or the Metropolis-Hastings algorithm [55]. Both
are generally very useful for effective estimation of “scalar” parameters, i.e. those
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parameters which only have one, constant number as their value. However, some
models assume that the directly observable dynamic quantities (e.g. prices) are
dependent on other dynamically changing properties of the model. The latter are
often called latent variables or state variables. In case of the Heston model for
example, the volatility process is a state variable. Estimation of state variables is
inherently more complicated than of the regular parameters, as each value which
was observed directly was partly determined by value of the state variable at that
particular point of time. A very elegant solution to this complication is a methodology
called particle filtering. It is based on the idea of creating a collection of values (called
particles) which are meant to represent the distribution of the latent variable at a
given point of time. Each particle then has a probability assigned to it, which serves
as a measure of how likely it is that a given value of the state variable generated the
outcome observed at a given moment of time. For an overview of particle filtering
methods, we recommend Refs. [56] and [57].

Methods outlined above have been studied quite thoroughly for the past years.
However, the research articles and literature focuses on the theoretical aspect of the
estimation process and is often lacking precision and concreteness. In this part of the
dissertation we address this nuisance by presenting a complete set-up for parameter
estimation of the Heston model, using only the prices of the basic instrument one
wants to study using the model (an index, a stock, a commodity1 etc.). We provide
the estimation process for both the pure Heston model and its extended version, with
the inclusion of Merton-style jumps (discontinuities), which is known as the Bates
model. In the following section, 4.2, we describe in detail how to obtain the posterior
distributions to get the values of the parameters of the Heston model. We also
provide a detailed description of the particle filtering scheme needed to reconstruct
the volatility process. The whole procedure is summarised in an easy-to-follow pseudo-
code algorithm. An exemplary estimation as well as the analysis of the factors that
impact the quality of the estimation in general is presented in section 4.3.

The entirety of content of this chapter has been adapted from our research article
about the estimation process of the Heston model [35].

1We point out explicitly that the estimation scheme only uses the data about the basic instrument,
as we consider this a significant value added to the presented method. This is because the Heston
model is often used in the context of derivative instruments and prices of those derivatives, often
difficult to obtain, are a necessary input to the estimation procedure. This is not the case however
for the scheme that we compiled.
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4.2 Estimation framework
Estimation of the Heston model consists of two major parts. First one is estimating
scalar parameters, i.e. µ, κ, θ, σ and ρ, for the basic version of the model and
additionally λ, µJ and σJ after inclusion of jumps. The second part is estimating
the state variable — volatility v(t). For all the estimation procedures we used
the Bayesian inference methodology, in particular Monte Carlo Markov Chains (for
parameter estimation within the base model) and particle filtering (for estimation of
the volatility as well as jump-related parameters).

4.2.1 Regular Heston model
In order to estimate the Heston model with no jumps, we will mainly be using the
principles of Bayesian inference, and in particular — Bayesian regression [58].

Estimation of µ

We will start by finding a way to estimate the drift parameter µ. First, Eq. (3.12) will
be transformed to a regression form. To this end, we will introduce several additional
variables. The first, η, is defined as

η = µ∆t+ 1. (4.1)

Let R(t) be a series of ratios between consecutive prices of assets,

R(k∆t) = S(k∆t)

S
(

(k − 1)∆t)
) , (4.2)

for k ∈ {1, 2, . . . , n}. Taking the above definitions into consideration, Eq. (3.12) can
be rewritten as:

R(k∆t) = η +
√
v
(

(k − 1)∆t
)
εS(k∆t)

√
∆t. (4.3)

Now, let us divide both sides of this equation by
√
v
(

(k − 1)∆t
)√

∆t, as ∆t is

known and, at this stage, we consider v(t) to be known too. Let us now introduce
another two new variables: yS(t),
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yS(k∆t) = 1√
v
(

(k − 1)∆t
)√

∆t
R(k∆t) (4.4)

and xS(t) as

xS(k∆t) = 1√
v
(

(k − 1)∆t
)√

∆t
. (4.5)

Inserting them into Eq. (4.3) gives

yS(k∆t) = ηxS(k∆t) + εS(k∆t). (4.6)

The last expression has the form of a linear regression with yS(t) explained by
xS(t). We want to treat it with the Bayesian regression framework. To this end we
first collect all discretised values of yS(t) and xS(t) into n-element column vectors —
yS and xS respectively,

yS = 1√
∆t

 R(∆t)√
v(0)

R(2∆t)√
v(∆t)

. . . R(n∆t)√
v

(
(n−1)∆t

)′

, (4.7)

xS = 1√
∆t

[ 1√
v(0)

1√
v(∆t)

. . . 1√
v

(
(n−1)∆t

)]′

, (4.8)

where the prime symbol is used for the transpose.
Assuming a prior distribution for η to be normal with mean µη0 and standard

deviation ση0 , it follows from the Bayesian regression general results [58] that the
posterior distribution for η will also be normal with precision (inverse of variance) τ η,
which can be calculated as

τ η =
(
xS
)′

· xS + τ η0 . (4.9)

Here, τ η0 is precision of the prior distribution, i.e. τ η0 = 1
(ση

0)2 . Mean µη of the posterior
distribution is of the following form

µη = 1
τ η

(
τ η0 µ

η
0 +

(
xS
)′

· xS η̂
)
, (4.10)

where η̂ is a classical, ordinary-lest-squares (OLS) estimator of η, i.e.

η̂ =
((

xS
)′

· xS
)−1 (

xS
)′

yS. (4.11)
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Having a realisation of η, we can quickly turn it into a realisation of the µ
parameter itself by a simple transform, inverse to Eq. (4.1)
Corollary 1. In the i-th iteration of the MCMC estimation procedure, the estimate
of parameter µ is obtained via

µi = ηi − 1
∆t , (4.12)

where ηi is a sample from the posterior distribution, generated as

ηi ∼ N
(
µη,

1√
τ η

)
. (4.13)

Estimation of κ, θ and σ

In order to estimate parameters related to the volatility process, i.e. κ, θ and σ, we
will do a similar exercise but this time using the volatility process. Let us first rewrite
Eq. (3.13) as

v(k∆t) = κθ∆t+ (1 − κ∆t)v
(

(k − 1)∆t
)

+ σ

√
v
(

(k − 1)∆t
)
εv(k∆t)

√
∆t. (4.14)

Now let us introduce two new parameters,
β1 = κθ∆t (4.15)

and
β2 = 1 − κ∆t. (4.16)

From Eqs. (4.14)–(4.16) we get

v(k∆t) = β1 + β2v
(

(k − 1)∆t
)

+ σ

√
v
(

(k − 1)∆t
)
εv(k∆t)

√
∆t. (4.17)

In a fashion similar to the equation for the stock price, we can rewrite this last
expression as

v(k∆t)
√

∆t
√
v
(

(k − 1)∆t
) = β1

√
∆t
√
v
(

(k − 1)∆t
)+

β2v
(

(k − 1)∆t
)

√
∆t
√
v
(

(k − 1)∆t
) + σεv(k∆t). (4.18)
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Introducing vectors

β =
[
β1
β2

]
, (4.19)

yv = 1√
∆t

 v(2∆t)√
v(∆t)

v(3∆t)√
v(2∆t)

. . . v(n∆t)√
v

(
(n−1)∆t

)′

, (4.20)

xv1 = 1√
∆t

[ 1√
v(∆t)

1√
v(2∆t)

. . . 1√
v

(
(n−1)∆t

)]′

, (4.21)

xv2 = 1√
∆t

 v(∆t)√
v(∆t)

v(2∆t)√
v(2∆t)

. . .
v

(
(n−1)∆t

)
√
v

(
(n−1)∆t

)


′

=

1√
∆t

[√
v(∆t)

√
v(2∆t) . . .

√
v
(
(n− 1)∆t

)]′
, (4.22)

allows us to rewrite the original volatility equation in form of a linear regression

yv = Xvβ + σεv, (4.23)

where
Xv =

[
xv1 xv2

]
(4.24)

and
εv =

[
εv(∆t) εv(2∆t) . . . εv

(
(n− 1)∆t

)]
(4.25)

Using the formulas for Bayesian regression and assuming multivariate (2-dimensional)
normal prior for β with mean vector µβ

0 and precision matrix Λβ
0 , we get the conjugate

posterior distribution being also multivariate normal with precision matrix given by

Λβ = (Xv)′ · Xv + Λβ
0 (4.26)

and mean vector given by

µβ =
(
Λβ
)−1 (

Λβ
0 µβ

0 + (Xv)′ · Xvβ̂
)

(4.27)

where, again, β̂ is a standard OLS estimator of β,

β̂ =
(
(Xv)′ · Xv

)−1
(Xv)′ yv. (4.28)

Obtaining realisations of the actual parameters is very easy — one simply needs
to inverse the equations defining β1 and β2 (Eqs. (4.15) and (4.16), respectively).
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Corollary 2. In the i-th iteration of the MCMC estimation procedure, the estimate
of the parameter κ is obtained via

κi = 1 − βi[2]
∆t , (4.29)

and the estimate of the parameter θ — via

θi = βi[1]
κi∆t

, (4.30)

where βi[1] and βi[2] are respectively the first and the second component of the βi

vector, which is a sample from the multi-variate posterior distribution

βi ∼ N (µβ, (σi)2(Λβ)−1). (4.31)

It is worth noting that the realisation of σ appears in the equation (4.31), but we
have not showed how to calculate it yet. This can be done, however, using prior and
posterior parameters for β, which we are also using for κ and θ. The most common
approach for estimating σ is assuming the inverse-gamma prior distribution for σ2. If
the parameters of the prior distribution are aσ0 and bσ0 , then the conjugate posterior
distribution is also inverse gamma, with new parameters aσ and bσ, where

aσ = aσ0 + n

2 (4.32)

and

bσ = bσ0 + 1
2

(
(yv)′ · yv +

(
µβ

0

)′
Λβ

0 µβ
0 −

(
µβ
)′

Λβµβ
)
. (4.33)

Corollary 3. In the i-th iteration of the MCMC estimation procedure, the estimate
of parameter σ2 is obtained via

(σi)2 ∼ IG (aσ, bσ) (4.34)

Estimation of ρ

For the estimation of ρ we follow the approach presented in Ref. [59]. We first define
the residuals for the stock price equation

eρ1(k∆t) = R(k∆t) − µi∆t− 1
√

∆t
√
v
(

(k − 1)∆t
) (4.35)
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and for the volatility equation,

eρ2(k∆t) =
v(k∆t) − v

(
(k − 1)∆t

)
− κi

θi − v
(

(k − 1)∆t
)∆t

√
∆t
√
v
(

(k − 1)∆t
) . (4.36)

By calculating those residuals we try to retrieve the error terms from the Eqs. (3.1)
and (3.2) — εS(t) and σεv(t) respectively, as we know they are tied with each other
by a relationship given by equation (3.14). Taking this fact into consideration, we
end up with the following equation

eρ2(k∆t) = σρeρ1(k∆t) + σ
√

1 − ρ2εadd(k∆t). (4.37)
We now introduce two new variables, traditionally called ψ = σρ and ω = σ2(1 − ρ2).
It is not difficult to deduce that the relationship between ρ and a newly-introduced
variables is

ρ = ψ√
ψ2 + ω

(4.38)

Then, Eq. (4.37) becomes

eρ2(k∆t) = ψeρ1(k∆t) +
√
ωεadd(k∆t), (4.39)

which is again, a linear regression of eρ2(t) on eρ1. Thus, we can use the exact same
estimation scheme as in the previous case2. We first collect the values of eρ1 and eρ2 in
two n-element vectors:

eρ1 =
[
eρ1(∆t) eρ1(2∆t) . . . eρ1 (n∆t)

]′
, (4.40)

eρ2 =
[
eρ2(∆t) eρ2(2∆t) . . . eρ2 (n∆t)

]′
. (4.41)

Then we appose both vectors, forming into an n-by-2 matrix:

eρ =
[
eρ1 eρ2

]
(4.42)

2Although the way of obtaining the coefficients through Bayesian regression is exactly the same,
the notation differs slightly compared to the ones presented above, as we wanted to stay consistent
with our main reference related to the estimation of ρ — Ref. [59]
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Next, we define a 2-by-2 matrix Aρ as

Aρ = (eρ)′ · eρ (4.43)

If we assume a normal prior for ψ with mean µψ0 and precision τψ0 , the posterior
distribution for ψ is going to also be normal with mean µψ given by

µψ = Aρ
12 + µψ0 τ

ψ
0

Aρ
11 + τψ0

(4.44)

and precision τψ equal to

τψ = Aρ
11 + τψ0 , (4.45)

where Aρ
11, Aρ

12 and Aρ
22 are the elements of the matrix Aρ on positions (1, 1), (1, 2)

and (2, 2) respectively.
Also, if we assume an inverse-gamma prior for ω, with parameters aω0 and bω0 , the

posterior distribution for ω is also going to be inverse-gamma with parameters aω
and bω, calculated as

aω = aω0 + n

2 (4.46)

and

bω = bω0 + 1
2

(
Aρ

22 − (Aρ
12)2

Aρ
11

)
. (4.47)

Corollary 4. In the i-th iteration of the MCMC estimation procedure, the estimate
of parameter ρ is obtained via

ρi = ψi√
ψ2
i + ωi

(4.48)

where ωi is a sample from the inverse-gamma posterior distribution, generated as:

ωi ∼ IG (aω, bω) , (4.49)

whereas ψi is a sample from the normal posterior distribution, generated as

ψi ∼ N
(
µψ,

√
ωi√
τψ

)
. (4.50)

77



4.2. Estimation framework 4. ESTIMATION SCHEME

Estimation of v(t) – particle filtering

For all estimation procedures shown in the previous sections, we assumed v(t) to be
known. However, in practice, the volatility is not a directly observable quantity, it
is “hidden” in the process of prices, which we have access to. Hence — we need a
way to extract volatility from the price process and particle filtering methodology
is extremely useful for that purpose. We will therefore outline the particle filtering
logic, namely the SIR algorithm, which we will utilise to get the volatility estimator
designed for Heston model specifically. More in-depth review of particle filtering
can be found in Refs. [56] and [57]. Here we follow a procedure similar to the one
presented in Ref [60].

We start by fixing the number of particles G. In each moment of time t = k∆t,
we will produce G particles, which are going to represent various possible values of
the volatility at that point of time. By averaging out all of those particles we will
get an estimate of the true volatility v(t). The process of creating the particles is as
follows: at the time t = 0, we create G initial particles, all with the initial value of
the volatility, which we assume to be the long term average θ. Denoting each of the
particles by Vj, for j ∈ {1, 2, . . . G}, we have

Vj(0) = θi. (4.51)

For any subsequent moment of time except the last one, i.e t = k∆t, k /∈ {0, n},
we define three sequences of size G. εj will be a series of independent, standard
normal random variables

εj(k∆t) ∼ N (0, 1) . (4.52)

The series zj contains residuals from the stock price process, where the past values of
volatility are replaced by the values of the particles from the previous time step

zj(k∆t) = R(k∆t) − µi∆t− 1
√

∆t
√
Vj

(
(k − 1)∆t

) . (4.53)

And finally the series wj, which incorporates the possible dependency between the
stock process and the volatility particles

wj(k∆t) = zj(k∆t)ρi + εj(k∆t)
√

1 − (ρi)2. (4.54)

Having all that, the candidates for the new particles Ṽj are created as follows
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Ṽj(k∆t) = Vj

(
(k − 1)∆t

)
+ κi

θi − Vj

(
(k − 1)∆t

)∆t+

σi
√

∆t
√
Vj

(
(k − 1)∆t

)
wj. (4.55)

Those candidates are also often called raw particles, to differentiate them from refined
particles, which will be used for the actual volatility estimation. In order for the raw
particle to become a refined one, it must meet certain conditions. First of all, since
it is meant to represent the volatility, which is a positive quantity, each candidate
for a particle must be positive too. Once it is ascertained that all the generated raw
particles are positive, they are assigned a value of a measure based on how probable
it is that such value of the volatility would generate the return that has actually been
observed. This measure — W̃j — is defined to be a value of a normal distribution
PDF function designed specifically for this purpose3

W̃j(k∆t) = 1√
2πṼj(k∆t)∆t

exp

−1
2

(
R
(
(k + 1)∆t

)
− µi∆t− 1

)2

Ṽj(k∆t)∆t

. (4.56)

To be able to treat the values of the proposed measure along with the values of
particles as a proper probability distribution on its own, we normalise them, so that
their sum is equal to 1,

W̆j(k∆t) = W̃j(k∆t)
 G∑
j=1

W̃j(k∆t)
−1

. (4.57)

Now, we combine the particles and their respective probabilities, forming two-
element vectors Uj

Uj(k∆t) =
(
Ṽj(k∆t), W̆j(k∆t)

)
. (4.58)

In order to get the refined particles we should now sample from the probability
distribution described by the event-probability pairs outlined in Eq. (4.58). One of

3Equation (4.56) is the reason we cannot run this procedure for k = n, as we would not be able
to obtain R

(
(n + 1)∆t

)
, since the last available value is R(n∆t).
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the easiest method to do it is through inverse transform sampling. To use this method
— the values of particles need to be sorted in an ascending order. Mathematically
speaking, we create another sequence and call it Ṽ sort

j , ensuring that the following
conditions are all met:

1. the particle with the smallest value will be the first in the new sequence, i.e.

Ṽ sort
1 (k∆t) = min

j∈{1,2,...,G}
{Ṽj(k∆t)}, (4.59)

2. the particle with the biggest value will be the last in the new sequence, i.e.

Ṽ sort
G (k∆t) = max

j∈{1,2,...,G}
{Ṽj(k∆t)}, (4.60)

3. for any j ∈ {2, 3, . . . G− 1} we will have

Ṽ sort
j−1 (k∆t) < Ṽ sort

j (k∆t) < Ṽ sort
j+1 (k∆t). (4.61)

We also want to keep track of the probabilities of our sorted particles, so we order
the probabilities in the very same way (apply the same permutation as we applied to
Ṽ sort
j ). We can mathematically define this new order as another probability sequence
W̆ sort
j ,

W̆ sort
j (k∆t) = W̆m(k∆t) for m such that Ṽ sort

j (k∆t) ∈ Um(k∆t) (4.62)

Sequences Ṽj(k∆t) and W̆j(k∆t) can now be used to define the CDF function of
the distribution described by Eq. (4.58):

FU(v) =



0 if v ⩽ Ṽ sort
1 ,

j∑
m=1

W̆ sort
m (k∆t) if v ∈ (Ṽ sort

j , Ṽ sort
j+1 ]

for j ∈ {1, 2, 3, . . . , G− 1},
1 if v > Ṽ sort

G .

. (4.63)

This function indeed can be used for the inverse transform sampling. However,
since the distribution is discrete, all the refined particles will have the same values as
the raw ones — just the proportions will be changed (the exact same raw particle
can be drawn several times, if it has probability bigger than others). To address
this problem, we propose a different distribution to sample from. Similarly to the
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original one the marginal particles (i.e. extreme in terms of value), Ṽ sort
1 and Ṽ sort

G ,
will be the edges of the support of our new distribution. The CDF function of this
distribution is given by the formula below (time labels have been dropped for the
sake of legibility, as all variables are evaluated at t = k∆t):

F c
U(v) =



0 if v ⩽ Ṽ sort
1

v−Ṽ sort
1

Ṽ sort
2 −Ṽ sort

1

(
W̆ sort

1 + 1
2W̆

sort
2

)
if v ∈ (Ṽ sort

1 , Ṽ sort
2 ] j−1∑

m=1
W̆ sort
m + 1

2W̆
sort
j

+

v − Ṽ sort
j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
if v ∈ (Ṽ sort

j , Ṽ sort
j+1 ]

for j ∈ {2, 3, . . . G− 2}(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)
+

v − Ṽ sort
G−1

Ṽ sort
G − Ṽ sort

G−1

(1
2W̆

sort
G−1 + W̆ sort

G

)
if v ∈ (Ṽ sort

G−1, Ṽ
sort
G ]

1 if v > Ṽ sort
G

. (4.64)

The advantage of the CDF function outlined in the Eq. (4.64), compared to the
one in Eq. (4.63) is that the former one is continuous.

Proposition 3. The CDF function, presented in Eq. (4.64) is continuous.

Proof. The function is piece-wise linear and hence — continuous in the inside of every
interval formed by the neighbouring sorted particles, i.e. for every v ∈ (Ṽ sort

j , Ṽ sort
j+1 )

for j ∈ {1, 2, 3, . . . , G − 1}, as well as for v < Ṽ sort
1 (where it’s 0) and v > Ṽ sort

G

(where it’s 1). Thus, the only places when continuity needs to be verified are the
exact values of particles, where the one line segment ends and another begins, i.e.
v ∈ {Ṽ sort

G : j ∈ {1, 2, 3, . . . , G}}. Therefore

• for v = Ṽ sort
1

F c
U(v−) = 0,

F c
U(v+) = Ṽ sort

1 − Ṽ sort
1

Ṽ sort
2 − Ṽ sort

1

(
W̆ sort

1 + 1
2W̆

sort
2

)
= 0
Ṽ sort

2 − Ṽ sort
1

(
W̆ sort

1 + 1
2W̆

sort
2

)
= 0,

hence F c
U(v−) = F c

U(v+) = F c
U(v);
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• for v = Ṽ sort
2

F c
U(v−) = Ṽ

sort
2 − Ṽ sort

1

Ṽ sort
2 − Ṽ sort

1

(
W̆ sort

1 + 1
2W̆

sort
2

)
=
(
W̆ sort

1 + 1
2W̆

sort
2

)
,

F c
U(v+) =

( 1∑
m=1

W̆ sort
m + 1

2W̆
sort
j

)
+ Ṽ sort

2 − Ṽ sort
2

Ṽ sort
3 − Ṽ sort

2

(1
2W̆

sort
2 + 1

2W̆
sort
3

)
=(

W̆ sort
1 + 1

2W̆
sort
2

)
,

hence F c
U(v−) = F c

U(v+) = F c
U(v);

• for v = Ṽ sort
j , j ∈ {2, 3, . . . , G− 2}

F c
U(v−) =

 j−1∑
m=1

W̆ sort
m + 1

2W̆
sort
j

+
Ṽ sort
j − Ṽ sort

j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
=

 j−1∑
m=1

W̆ sort
m + 1

2W̆
sort
j

 ,
F c

U(v+) =
 j−1∑
m=1

W̆ sort
m + 1

2W̆
sort
j

+
Ṽ sort
j − Ṽ sort

j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
=

 j−1∑
m=1

W̆ sort
m + 1

2W̆
sort
j

 ,
hence F c

U(v−) = F c
U(v+) = F c

U(v);

• for v = Ṽ sort
G−1

F c
U(v−) =

(
G−1−1∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)
+ Ṽ sort

G−1 − Ṽ sort
G−1

Ṽ sort
G−1+1 − Ṽ sort

G−1

(1
2W̆

sort
G−1 + 1

2W̆
sort
G−1+1

)
=

(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)
+ 0
Ṽ sort
G − Ṽ sort

G−1

(1
2W̆

sort
G−1 + 1

2W̆
sort
G

)
=

(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)

F c
U(v+) =

(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)
+ Ṽ sort

G−1 − Ṽ sort
G−1

Ṽ sort
G − Ṽ sort

G−1

(1
2W̆

sort
G−1 + W̆ sort

G

)
=

(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)

82



4. ESTIMATION SCHEME 4.2. Estimation framework

hence F c
U(v−) = F c

U(v+) = F c
U(v);

• for v = Ṽ sort
G

F c
U(v−) =

(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)
+ Ṽ sort

G − Ṽ sort
G−1

Ṽ sort
G − Ṽ sort

G−1

(1
2W̆

sort
G−1 + W̆ sort

G

)
=

(
G−2∑
m=1

W̆ sort
m + 1

2W̆
sort
G−1

)
+
(1

2W̆
sort
G−1 + W̆ sort

G

)
=

(
G−2∑
m=1

W̆ sort
m + W̆ sort

G−1 + W̆ sort
G

)
=

G∑
m=1

W̆ sort
m = 1,

F c
U(v−) = 1,

hence F c
U(v−) = F c

U(v+) = F c
U(v);

As demonstrated above, the left-side and right-side limits have the same values in
all the points in which the function could potentially not be continuous. Thus, we
conclude it is continuous.

A visual comparison between the CDF functions of the discrete and continuous
distributions can be seen in Fig. 4.1. On the plot, one can observe how the ends of
the linear parts get connected to each other.

Continuous CDF function and hence — continuous distribution of the refined
particles — is surely an improvement, as the possibility that any two of the refined
particles, sampled from this distribution, will have the same value is equal to 0.
However, it is critical that the improved distribution is “close” to the original one.
The following theorem demonstrates that the impact of the change we introduced
diminishes with the increasing number of particles.
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Figure 4.1: Visualisation of the process of resampling particles according to their
probabilities. Values of raw particles are the places, where the empirical cumulative
ditribution function (ECDF in short) jumps and each jump size represents probability
of a respective raw particle. The Connected CDF is a continuous modification of
the ECDF, build according to the formula (4.64). In order to resample, a uniform
random variable u is generated and then its inverse through the Connected CDF
function becomes a new, resampled particle — Vj.

Theorem 3. The difference between the distribution characterised by Eq. (4.63) and
Eq. (4.64) approaches zero as the number of particles increases to infinity, i.e.

lim
G→∞

F c
U(v) − FU(v) = 0, (4.65)

for any value of v > 0.

Proof. Looking at the way of sourcing raw particles (Eq. (4.55)) we see that, condi-
tionally on the value of Vj

(
(k − 1)∆t

)
, κi, θi, σi and R(k∆t), the distribution of Ṽj

is normal and considering a raw particle will only be accepted if it is positive —-
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we conclude that the support of the distribution of Ṽ sort
j is the entire positive ray

of the real line. Hence — for sufficiently large G we can assume, with no loss of
generality, that for any choice of v > 0, it will fall into an interval (Ṽ sort

j , Ṽ sort
j+1 ) for

j ∈ {2, 3, . . . , G − 1} (i.e. not into the first one (Ṽ sort
1 , Ṽ sort

2 ) and not into the last
one (Ṽ sort

G−1, Ṽ
sort
G )). Knowing that, we have

F c
U(v) − FU(v) =

 j−1∑
m=1

W̆ sort
m + 1

2W̆
sort
j

+

v − Ṽ sort
j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
−

j∑
m=1

W̆ sort
m =

v − Ṽ sort
j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
− 1

2W̆
sort
j .

Now, let us look at the factor v−Ṽ sort
j

Ṽ sort
j+1 −Ṽ sort

j

. It is linear in v and for v ∈ (Ṽ sort
j , Ṽ sort

j+1 ),

its value is bounded by 0 (when v = Ṽ sort
j ) and 1 (when v = Ṽ sort

j+1 ). Thus, F c
U(v) −

FU(v), is bounded between

F c
U(Ṽ sort

j ) − FU(Ṽ sort
j ) =

Ṽ sort
j − Ṽ sort

j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
− 1

2W̆
sort
j =

0
Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
− 1

2W̆
sort
j =

−1
2W̆

sort
j

and

F c
U(Ṽ sort

j+1 ) − FU(Ṽ sort
j+1 ) =

Ṽ sort
j+1 − Ṽ sort

j

Ṽ sort
j+1 − Ṽ sort

j

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
− 1

2W̆
sort
j =

(1
2W̆

sort
j + 1

2W̆
sort
j+1

)
− 1

2W̆
sort
j =

1
2W̆

sort
j+1 .

According to Eq. (4.57), W̆j is a ratio of a value of the function given by Eq. (4.56)
evaluated at a particular Ṽj and the sum of the values of this function evaluated
at all the Ṽj-s. Therefore, it becomes clear that that as long as the function given
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in Eq. (4.56) is bounded, increasing number of particles lead to diminishing the
value of the ratio denoted by W̆j. We thus conclude that for any j ∈ {1, 2, . . . , G},
limG→∞ W̆j = 0 and limG→∞ W̆ sort

j = 0 (as this sequence has the same values, just
ordered differently).

Therefore, since we have

F c
U(Ṽ sort

j ) − FU(Ṽ sort
j ) ⩽ F c

U(v) − FU(v) ⩽ F c
U(Ṽ sort

j+1 ) − FU(Ṽ sort
j+1 )

and

lim
G→∞

F c
U(Ṽ sort

j ) − FU(Ṽ sort
j ) = 0,

lim
G→∞

F c
U(Ṽ sort

j+1 ) − FU(Ṽ sort
j+1 ) = 0,

by the squeeze theorem, it must hold that

lim
G→∞

F c
U(v) − FU(v) = 0

The refined particles can be generated by drawing from the distribution given by
F c

U. As mentioned earlier, this can be achieved easily using the inverse transform
method.

Vj(k∆t) ∼ F c
U. (4.66)

After following the described procedure for each k ∈ {1, 2, . . . , n− 1}, we can specify
the actual estimate of the volatility process as the mean of ”refined” particles.

v(k∆t) = 1
G

G∑
j=1

Vj(k∆t). (4.67)

For k = n, we can simply assume v(n∆t) = v
(

(n− 1)∆t
)

, which should not have any
tangible negative impact on any procedures using the v(t) estimate for sufficiently
dense time discretisation grid.
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4.2.2 Heston model with jumps
The above estimation framework can be used with minor changes to also estimate
Heston model with jumps. The model’s SDE is defined in Eq. (3.6). Below we
present the changes to the procedure allowing for the estimation of jumps. This novel
approach to jumps was presented for the first time in Ref. [35].

After incorporation of jumps, changes are needed particularly in the particle
filtering part of the estimation procedure. The particles need to be created not only
for various possible values of volatility Vj(t), but also for a possibility of a jump in
that particular moment of time — Jj(t) — and size of that jump — Zj(t). So one
can now think of a particle as of a triple (Vj, Jj, Zj). Generating raw values for Jj
and Zj is easy — for each j ∈ {0, 1, . . . , G}, Jj is simply a random variable from a
Bernoulli distribution with parameter λth,

J̃j(k∆t) ∼ B(λth). (4.68)
Parameter λth ∈ [0, 1) can be thought of as a “threshold” value i.e. a proportion of
the number of particles which encode the occurrence of a jump to all the particles. If
the number of jumps is expected to be significant, it is good to increase the value of
λth, hence increasing the number of particles suggesting the jump in each step.

Raw particles for Zj are simply independent normal random variables with mean
µJ0 and standard deviation σJ0 , which depict our prior beliefs about the size and
variance of the jumps

Z̃j(k∆t) ∼ N (µJ0 , σJ0 ). (4.69)
Assigning probabilities to the particles is different as well, since the normal PDF

function which we use is different when there is a jump. Hence, equation (4.56) needs
to be updated to
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W̃j(k∆t) =



1√
2πṼj

(
(k − 1)∆t

)
∆t

×

exp

−1
2

(
R(k∆t) − µi∆t− 1

)2

Ṽj
(
(k − 1)∆t

)
∆t

 if J̃j = 0

1

exp
(
Z̃j(k∆t)

)√
2πṼj

(
(k − 1)∆t

)
∆t

×

exp

−1
2

(
R(k∆t) − exp

(
Z̃j(k∆t)

)
(µi∆t+ 1)

)2

exp
(
2Z̃j(k∆t)

)
Ṽj
(
(k − 1)∆t

)
∆t

 if J̃j = 1

(4.70)

We then normalise W̃j so that it sums to 1, thus obtaining W̆j, and resample
Ṽj according to this normalised probability, exactly as in the case with no jumps.
However, this measure needs to also be used to resample Z̃j, as now raw particles do
not only consist of a single value , Ṽj , but the 3-element vector (Ṽj, Z̃j, J̃j). Resampling
is exactly analogous — we need to sort the values of Z̃j and reorder W̆j in the exact
same way, put the elements of those two reordered series into two-element vectors
U′
j, build the connected CDF function F c

U′ and sample refined particles from it

Zj(k∆t) ∼ F c
U′ . (4.71)

Finally, for the estimate of λ, for each k ∈ {1, 2, . . . n} one needs to sum the
cumulative value of all particles declaring a jump. That way we will get a probability
that a jump took place at the time t = k∆t,

λ(k∆t) =
G∑
j=1

Jj(k∆t)W̆j(k∆t). (4.72)

To get the actual estimate of λ one needs to average λ(t) across all time points
obtained for different values of k,

λi = 1
T

n∑
k=1

λ(k∆t). (4.73)

Similarly, to obtain the estimate of µJ and σJ , for each k one needs to first
calculate the average size of a jump from the refined particles
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Z(k∆t) = 1
G

G∑
j=1

Zj(k∆t) (4.74)

and then calculate the mean and standard deviation of the results, weighed by the
probability of a jump at time moment t indicated by λ(t). For the weighted mean of
the jumps we get

µJi =
(

n∑
k=1

Z(k∆t)λ(k∆t)
)(

n∑
k=1

λ(k∆t)
)−1

(4.75)

and for the standard deviation:

σJi =

√√√√( n∑
k=1

λ(k∆t)
(
Z(k∆t) − µJi

)2
)(

n− 1
n

n∑
k=1

λ(k∆t)
)−1

. (4.76)

The presence of jumps also influences the estimation of other parameters — some
of the procedures presented in the previous subsection are not fully correct, as jumps
added to the stock price will additionally increase or — more likely — decrease the
returns. To improve that, a correction of the definitions of R(t) is needed in order to
neutralise the impact of jumps on the parameters. In other words, Eq. (4.2) should
be replaced with

r(k∆t) = SJ(k∆t)

SJ
(

(k − 1)∆t)
)
1 − λ(k∆t)

(
1 − exp

(
− Z(k∆t)

)) (4.77)

Proposition 4. Assume that jumps appearing in the price trajectory are Merton-
style (as described in sections 3.4 and 3.5), there is ν of them. Moreover, assume the
estimate λ(k∆t) provides fully accurate information about an occurrence of a jump
at time t = k∆t and the estimate Z(k∆t) — about the size of a jump at that point
of time (if there was one). Then returns defined by equation (4.77) are equivalent to
the ones defined by (4.2), i.e

r(k∆t) = R(k∆t)
for k ∈ {1, 2, . . . , n}.

Proof. From Eq. (3.19) we know how jumps appear in the price trajectory

SJ(k∆t) = S(k∆t) ·
∏

{i:ki⩽k}
exp

(
Z(ki∆t)

)
.
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Therefore, the ratio between two neighbouring values of SJ is

SJ(k∆t)
SJ
(
(k − 1)∆t)

) =



S(k∆t)

S

(
(k−1)∆t)

) · exp
(
Z(k∆t)

)
if there is i ∈ {1, 2, . . . , ν}

such that k = ki,
S(k∆t)

S

(
(k−1)∆t)

) otherwise.

(4.78)
The condition in the upper variant of the function in Eq. (4.78) simply means that
here was a jump at t = k∆t. If there is a jump, the accurate λ(k∆t) should be equal
to 1. In such case, plugging Eq. (4.78) into Eq. (4.77), we get

r(k∆t) = S(k∆t)

S
(

(k − 1)∆t)
) · exp

(
Z(k∆t)

)
·

1 − 1 ·
(

1 − exp
(

− Z(k∆t)
)) =

S(k∆t)

S
(

(k − 1)∆t)
) · exp

(
Z(k∆t)

)
·
(

1 − 1 + exp
(

− Z(k∆t)
))

=

S(k∆t)

S
(

(k − 1)∆t)
) · exp

(
Z(k∆t)

)
· exp

(
− Z(k∆t)

)
=

S(k∆t)

S
(

(k − 1)∆t)
) = R(k∆t)

If, however, there was no jump at t = k∆t, we have

r(k∆t) = S(k∆t)

S
(

(k − 1)∆t)
)
1 − 0 ·

(
1 − exp

(
− Z(k∆t)

)) =

S(k∆t)

S
(

(k − 1)∆t)
) = R(k∆t)

Therefore, we have proved that in both cases (for k where there was a jump and
where there was not) it holds that

r(k∆t) = R(k∆t).
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For trajectories for which we expect presence of jumps, using r(t) instead of R(t)
makes the jumps disappear (see Fig. 4.2) and the estimation of the parameters of
the model can be carried out as shown before.

Figure 4.2: Comparison of returns for a process with jumps calculated based on
formula (4.2) (blue line) and (4.77) (orange line). It can be clearly seen that the
jumps have been ”neutralised” in the latter case.

4.2.3 Estimation procedure
The Bayesian estimation framework presented above relies of several parameters for
the prior distributions that cannot be calculated within the procedure itself. They
are often referred to as metaparameters. For example, for the estimation of the µ
parameter, values of two metaparameters are required — µη0 and τ η0 (see Eqs. (4.9)
and (4.10)). They should reflect our preexisting beliefs regarding the parameter,
which we are trying to estimate — µ in this case. Let us say that for a given trajectory
of the Heston model process, we assume the value of µ to be around 0.5. What values
should we than choose for the metaparameters? First of all, we need to note that
µη0 and τ η0 are not the parameters of the prior distribution for µ directly. They are
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parameters of another random variable, which we introduced to utilise the Bayesian
framework — namely η. The connection between µ and η is known and given by the
equation (4.1). Hence, if we assume µ to be around certain value, then, using this
relationship, we can deduce the value of η. And since the prior distribution of η is
normal, with mean µη0 and variance ση0 = 1

τη
0

, we can propose the value of the mean of
this distribution to be whatever η is for the supposed value of µ. Selecting a value for
ση0 (and thus — τ η0 ) is even more equivocal — it should reflect the level of confidence
that we have for picking a mean parameter. That is, if we feel that value we chose for
µη0 would bring us close to the true µ, we should put a smaller value for ση0 . However,
if we are not so sure about it, bigger value of ση0 should be used. Similar analysis can
be repeated for picking the values of other metaparameters. We need to be aware
that prior which is used will always in some way influence the final estimate of a
given parameter. More detailed analysis on this topic is given in section 4.3.2.

Another problem which emerges when applying Bayesian inference (especially for
more complex models) is that estimating one parameter often requires knowing a
value of some of the others and vice-versa. Hence — there is not an obvious way
of how to start the whole procedure. One way to address this problem is to come
up with the initial guesses for the values of all the parameters (as described in the
paragraph above) and use them in the first round of samplings. A well designed
MCMC estimation algorithm should bring us closer to the true values of parameters
with each new round of samplings. In Algorithms 1 and 2 our procedure for the
Heston model without and with jumps is shown, respectively.
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Algorithm 1 Estimation of the Heston model
Require:

number of samples: n
time step ∆t
maturity T
prices S(k∆t) for k ∈ {0, 1, . . . , n}, so that n∆t = T
number of particles G
initial value of µ: µ0
initial value of κ: κ0
initial value of θ: θ0
initial value of σ: σ0
initial value of ρ: ρ0
prior distribution parameters for η: µη0 and τ η0
prior distribution parameters for β: µβ

0 and Λβ
0

prior distribution parameters for σ2: aσ0 and bσ0
prior distribution parameters for ψ: µψ0 and τψ0
prior distribution parameters for ω: aω0 and bω0

Ensure:
estimate of parameter µ: µ̂
estimate of parameter κ: κ̂
estimate of parameter θ: θ̂
estimate of parameter σ: σ̂
estimate of parameter ρ: ρ̂
estimate of the volatility process: v(t)

for k = 1 → n do
set R(k∆t) as shown in eq.(4.2)

end for
for i = 0 → ns do

for k = 1 → n− 1 do ▷ particle filtering procedure
for j = 1 → G do

obtain Vj(k∆t) as shown in eq. (4.51) – (4.66)
end for
obtain v(k∆t) as shown in eq. (4.67)

end for
obtain µi as shown in eq. (4.3) – (4.12)
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obtain κi, θi and σi as shown in eq. (4.15) – (4.33)
obtain ρi as shown in eq. (4.35) – (4.50)

end for
set µ̂ = 1

ns

∑ns
i=1 µi

set κ̂ = 1
ns

∑ns
i=1 κi

set θ̂ = 1
ns

∑ns
i=1 θi

set σ̂ = 1
ns

∑ns
i=1 σi

set ρ̂ = 1
ns

∑ns
i=1 ρi
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Algorithm 2 Estimation of the Heston model with jumps
Require:

number of samples: n
time step ∆t
maturity T
prices S(k∆t) for k ∈ {0, 1, . . . , n}, so that n∆t = T
number of particles G initial value of µ: µ0
initial value of κ: κ0
initial value of θ: θ0
initial value of σ: σ0
initial value of ρ: ρ0
prior distribution parameters for η: µη0 and τ η0
prior distribution parameters for β: µβ

0 and Λβ
0

prior distribution parameters for σ2: aσ0 and bσ0
prior distribution parameters for ψ: µψ0 and τψ0
prior distribution parameters for ω: aω0 and bω0
ratio of particle indicating jumps: λth
prior distribution parameters for Z: µJ0 and σJ0

Ensure:
estimate of parameter µ: µ̂
estimate of parameter κ: κ̂
estimate of parameter θ: θ̂
estimate of parameter σ: σ̂
estimate of parameter ρ: ρ̂
estimate of the volatility process: v(t)

for k = 1 → n do
set R(k∆t) as shown in eq.(4.2)

end for
for i = 0 → ns do

for k = 1 → n do ▷ particle filtering procedure
for j = 1 → G do

generate J̃j(k∆t) as shown in eq. (4.68)
generate Z̃j(k∆t) as shown in eq. (4.69)
obtain Vj

(
(k − 1)∆t

)
as shown in eq. (4.52) – (4.66) and (4.70)

end for
obtain v(k∆t) as shown in eq. (4.67)
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obtain Z(k∆t) and λ(k∆t) as shown in eq. (4.71) – (4.72) and (4.74)
end for
for k = 1 → n do

update R(k∆t) as shown in eq.(4.77)
end for
obtain µi as shown in eq. (4.3) – (4.12)
obtain κi, θi and σi as shown in eq. (4.15) – (4.33)
obtain ρi as shown in eq. (4.35) – (4.50)
obtain λi as shown in eq. (4.73)
obtain µJi as shown in eq. (4.75)
obtain σJi as shown in eq. (4.76)

end for
set µ̂ = 1

ns

∑ns
i=1 µi

set κ̂ = 1
ns

∑ns
i=1 κi

set θ̂ = 1
ns

∑ns
i=1 θi

set σ̂ = 1
ns

∑ns
i=1 σi

set ρ̂ = 1
ns

∑ns
i=1 ρi

set λ̂ = 1
ns

∑ns
i=1 λi

set µ̂J = 1
ns

∑ns
i=1 µ

J
i

set σ̂J = 1
ns

∑ns
i=1 σ

J
i
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4.3 Analysis of the estimation results

4.3.1 Exemplary estimation
We present here an exemplary estimation of the Heston model with jumps, to show
the outcomes of the entire procedure. We assumed relatively non-informative prior
distributions, with expected values shifted from the true parameters to make the
task more challenging for the algorithm and to better reflect the real-life situation in
which the used priors are most of the time not matching true parameters exactly, but
should be rather close to them. Table 4.1 lists all the values of priors which we used.
Table 4.2 summarises the results obtained and Fig. 4.3 elaborates on those results by
showing empirical distributions of samples for all parameters of the model.

Analysing estimate samples for each of the parameters (presented in Fig. 4.3)
one can observe that for most of them (Figs. 4.3a–4.3e and 4.3h) the true value of
the parameter is within the support of the distribution of all samples. However, in
case of two parameters — λ and µJ (Figs. 4.3f and 4.3g respectively) — the scope
of samples generated by the estimation procedure seems not even to include the
parameter’s true value. This is due to the fact that those parameters are related to
intensity and size of jumps and for the simulation parameters which we picked jumps
do not happen frequently (same as in case of real-life price falls). Hence, despite
the procedure correctly identifies the moments of jumps and estimates their sizes,
those estimates are relatively far from the true values simply because there was very
little source material for the estimation in the first place. To be precise — the stock
price simulated for our exemplary estimation experienced four jumps, and times of
those jumps have been easily identified by our procedure with almost 100% certainty.
Thus, since the length of time of the price observation (in years) was T = 3, the most
probable value of the jump intensity λ was around 4

3 (compare to the actual result in
Table 4.2), although, obviously, other values of λ (slightly smaller or bigger) could
have also lead to four jumps and this is exactly what happened in our case, as our
true intensity was λ = 1 (again, see Table 4.2). Similarly, in case of µJ , the reason for
the estimated average jump to be bigger (in terms of magnitude) than the actual one
was that the four jumps which were simulated all happened to be more severe than
the true value of µJ would suggest (by pure chance) and this pushed the procedure
towards overestimating the (absolute) size of the jump.
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(a) parameter µ (b) parameter κ

(c) parameter θ (d) parameter σ

Figure 4.3: Empirical PDFs made of exemplary Heston parameter estimates.
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(e) parameter ρ (f) parameter λ

(g) parameter µJ (h) parameter σJ

Figure 4.3: (continued from the previous page) Empirical PDFs made of exemplary
Heston parameter estimates.
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Prior parameter Value
µη0 1.00125
ση0 0.001

Λ0

[
10 0
0 5

]

µ0

[
35 · 10−6

0.988

]
aσ0 149
bσ0 0.025
µψ0 −0.45
σψ0 0.3
aω0 1.03
bω0 0.05
λth 0.15
µJ0 −0.96
σJ0 0.3

Table 4.1: Priors for the exemplary estimation procedure

Parameter True value Estimated value Relative Error [%]
µ 0.1 0.09829 1.77
κ 1 1.2190 21.90
θ 0.05 0.0493 1.92
σ 0.01 0.0108 8.55
ρ -0.5 0.4379 12.40
λ 1 1.3349 33.49
µJ -0.8 -0.9651 20.64
σJ 0.2 0.2298 14.88

Table 4.2: Results of the exemplary estimation procedure.
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4.3.2 Important findings

Although estimation through the joint forces of Bayesian inference, Monte Carlo
Markov Chains and particle filtering is generally considered very effective [34], there
are several areas the user needs to be aware of while using this estimation scheme.
One of the issues worth considering is the impact of the prior parameters. Bayesian
estimator of any kind needs to be fed with parameters of the prior distribution
which should reflect our preexisting beliefs of what the value of the actual estimated
parameter could be. The amount of information conveyed by a prior can be different,
depending on several factors. One of them are the values of the parameters of the
prior distribution itself. Consider µη0 and ση0 , mentioned already in the previous
section. They are the prior parameters for η — the predecessor for the µ estimates.
The bigger ση0 we take, the more volatile the estimates of η — and hence µ — are
going to be. This is a pretty intuitive fact, being a direct consequence of the Bayesian
approach itself. A more subtle influence of priors is hidden in the alternation between
the MCMC sampling and particle filtering procedures.

As mentioned in the previous section MCMC and particle filtering depend on
one another. As can be seen in the Algorithms 1 and 2, we have taken the approach
that the particle filtering procedure should be done first and singular parameters
which it needs in the first iteration should be the expected values of the prior
distributions which we assume. Having volatility estimated that way, we can estimate
the parameters, then based on them re-estimate the volatility process and so on.
Although we can keep alternating that way as many times as we want, till the planned
end of the estimation procedure, one might be tempted to perform the particle filtering
procedure fewer times, as it is much more computationally expensive than the MCMC
draws. The premise for that would be that after several trials, the volatility estimate
becomes ”good enough” and from that point onward, one can only generate more
MCMC samples. A critical observation that we have made is that the quality of the
initial volatility estimates depends very highly on the prior parameters which were
used to initiate it. With little number of particle filtering procedures followed by
multiple MCMC draws, the entire scheme does not have enough time to properly
calibrate and results tend to stick to the priors which have been used. That means —
for a prior leading exactly to the true value of the parameter — the estimator returns
almost error-less results, however, if one uses a prior leading to value of the true
parameter, e.g. 20% bigger than it really is — the estimate will probably be off by
roughly 20%, which does not make the estimator very useful. A counter-proposal can
then be made, to perform particle filtering as long as possible. This however, is not
an ideal solution either. Firstly, as we said, it is very computationally expensive, and
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secondly — a very long chain of samples increases the probability that the estimation
procedure would at some point return an outlier, i.e. an estimate really far away from
the true value of the parameter, which is especially likely if we use meta-parameters
responsible for such parameter’s variance (like e.g. ση0 for η) bigger. Appearance of
such outliers is especially unfavourable in case of the MCMC methods, since its nature
is that each sample is directly dependent on the previous one, so the whole procedure
is likely to stay in the given region of the parameter space for a some number of
subsequent simulations, thus impacting the final estimate of the parameter (which
is the mean of all observed samples). Therefore, a clear trade-off appears. If one
believes strongly that the prior is rather correct and only needs some minor correction
to adjust it to the particular data-set — a modest number of particle filtering can
be applied4, followed by an arbitrary number of MCMC draws. If however we do
not know much about our data-set and do not want to convey too much information
through the prior — even at the cost of a bit worse final results — they should run
particle filtering bigger number of times. The visual interpretation of this rule has
been presented in Figs.4.4 and 4.5.

(a) (b)

Figure 4.4: Empirical distributions of the estimate samples for parameter θ in case
when the mean of the prior distribution matches exactly the true parameter and
when it is twice bigger. Distributions in figure 4.4a was based on 10 sampling cycles,
and the one in figure 4.4b — 500 cycles. One can observe that in the first case the
distribution with spot-on prior gives very good results, much better then the shifted
one. In the second figure, both distributions are comparable.

4For applications in finance, this task is sometimes easier than for some other fields of science, as
numerous works have been published already, presenting the results of the estimates of well-known
stocks or market indices within various models — see e.g. Ref [61]
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Figure 4.5: Sequences of estimate samples for a procedure in which particle filtering
was done only for the first 5% samplings and another one, in which particle filtering
was done for all the samplings. In both cases the mean of the prior distribution was
shifted by 100% compared to its true value. It can be observed that the samples of
the first procedure get stuck around the value close to the one dictated by the prior,
whereas samples of the other procedure converge to the true value of the parameter,
which leads to the better final result, less dependent on the prior parameters.

Another factor which should be taken into consideration is that the quality of
results depends highly on the very parameters we try to estimate. The σ parameter
seems to play a critical role for the Heston model in particular. This can be observed
in Fig. 4.6. To produce it, an identical estimation procedure has been performed for
two sample paths (which we can think of as of two different stocks). They have been
simulated with the very same parameters, besides σ. Path no. 1 has been simulated
with σ = 0.01 and path no. 2 with σ = 0.1, i.a. ten times bigger. The histograms
present the distribution of the estimated values of the κ parameter, true κ was κ = 1
and the red vertical line illustrates this true value. It is clearly visible, that for the
value of σ = 0.01 the samples were much more concentrated around the true value,
while for a bigger value σ = 0.1 — they are more dispersed and the variance of the
distribution is significantly bigger. This incommodity cannot be easily resolved, as
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the true values of parameters of the trajectories are idiosyncratic — they cannot be
influenced by the estimation procedure itself. However, we wanted to highlight the
fact that the bigger the value of σ, the less trustworthy the results of the estimation
of the other parameters might be.

Figure 4.6: Empirical distributions of the estimate samples for the κ parameter of
two different trajectories of the Heston model - one with σ = 0.01 and the other for
σ = 0.1. The distribution of the estimate samples of the trajectory with smaller value
of σ is narrower and more concentrated, hence — is likely to give less variable final
estimates.
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5 Real-life data application

5.1 Using synthetic results for
investment decisions

In Chapter 3 we have presented a number of numerical experiments unravelling various
characteristics of portfolio management strategies and dependencies between them.
All results were obtained using trajectories simulated from the Heston model and have
been synthesised in Monte-Carlo experiments. Results of certain experiments were
often differing from one another depending on the simulation parameters which were
used. Critically, in section 3.6.4 we demonstrated that depending on the character
of the asset, encoded in the simulation parameteres of the price trajectory, some
portfolio management strategies perform better than others. That could theoretically
be an indication of the fact that it is possible for an investor to analyse assets they
plan to invest in and then, based on the obtained results, choose an optimal portfolio
management strategy. What we mean here by “analysing” the asset is actually
performing the estimation process of the price trajectory (as explained in Chapter
4) and checking what set of parameters of the Heston model best reflects the actual
dynamics of this particular investment. Then, the obtained estimation results can be
used to identify the corresponding numerical findings, which in turn could be helpful in
making the actual investment strategy selection. In this chapter we demonstrate that
the decision-making process described above can indeed be performed and investments
made that way lead to significant increase of profits compared to investing against
the premises resulting from our analysis. The entire content of this chapter is also an
adaptation of one of our research articles — namely our most recent paper [36].
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5.2 Real-data experiment
We decided to estimate the parameter values of the Heston model with jumps for
three well-known market indices — American S&P500, German DAX and Polish
WIG20. We took into consideration the daily closing values of each of the indices,
over the time period between the beginning of 2018 and the middle of 2022. The
values of all three of the indices have been presented in Fig. 5.1.

Figure 5.1: A visualisation of the dynamics of three stock market indices — S&P500,
DAX and WIG20, over the time span of approximately 4.5 years. The values have
been scaled down, so that the initial value of each index is 1, for easier comparison.

Before we analyse the estimation results, let us quickly recall that experiments in
Chapter 3 revealed there are three major parameters responsible for performance of
assets under all portfolio management strategies — the drift µ, the jump intensity λ
and the average jump size µJ . When it comes to the general growth potential, it can
be noticed quite easily, just by looking at Fig. 5.1, that the American index features
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the strongest drive upwards, while WIG20 values increase the most slowly among
all three indices. However, the intensity and average size of jumps cannot really be
assessed as easily just by looking at the graph.

In Table 5.1, the results of the parameter estimation for all three of the indices are
presented. While the drift parameter µ turns out to indeed have the greatest value
for S&P500, this index also has the biggest intensity of jumps λ. Since the average
size of a jump is similar for all three indices, the question of what strategy should be
used boils down to what are the values of µ and λ. Hence, we can use the heat-map
in Fig. 3.18 as a reference for choosing proper portfolio management strategies for
investing in our indices. Based on the values estimated for S&P500, this index can be
positioned close to the bright area of the heat map, indicating that active strategies
would be more suitable for it. On the other hand, the WIG20 index would be located
in the darker area of the map which suggests the choice of the passive strategy. The
exact numerical values of the ASPI measure (see Definition 32) were presented in
Table 5.2. One can see that indeed, the ASPI score for WIG20 is below 0.5 (and
hence — closer to zero), while fo S&P500 it is above 0.5 (and thus — closer to one).
It should be noted however that the differences in the average ASPI value for the
analysed indices are relatively small. Bigger differences are expected to occur between
instruments with high tendency to grow combined with very infrequent jumps in
prices and the ones with little growth potential and frequent jumps. However, finding
such instruments in the real financial markets is rather unlikely, as the big growth
potential of an instrument is often related to more significant price jumps. But, as
we can see from the results of the experiments presented below, even those small
differences in the value of ASPI allow us to aptly choose a proper investment strategy
for a given asset.
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Parameter S&P500 DAX WIG20
µ 0.44 0.30 0.19
κ 1.17 0.93 0.95
θ 0.06 0.06 0.06
σ 0.006 0.005 0.006
ρ −0.41 −0.48 −0.40
λ 8.45 6.45 4.81
µJ −0.05 −0.05 −0.05
σJ 0.001 0.001 0.001

Table 5.1: Estimation results for selected three stock market indices, under the
assumption they follow the Heston model with Merton-style jumps (see Chapter 4
for the details of the estimation procedure).

In our experiment, we applied all three strategies to all three of our indices. The
results are presented in Table 5.3 and they seem to confirm our findings. The MACD
and RSI strategies indeed perform better than the passive portfolio when the asset
has bigger growth potential, like in the case of S&P500. It is also true that for assets
performing worse — like WIG20 — passive strategies allow if not to earn money,
then to lose less than the active ones.
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Parameter S&P500 DAX WIG20
ASPI score 0.68 0.43 0.36

Table 5.2: ASPI score for selected three stock market indices, based on the estimation
of parameters µ and λ, as presented in Table 5.1.

Strategy S&P500 DAX WIG20
passive 9.48% 0.63% −5.8%

MACD-driven 36.32% 0.79% −12.51%
RSI-driven 32.66% 3.00% −27.30%

Table 5.3: Returns on investment obtained by executing portfolio management
strategies based on investing in one of three selected stock market indices. For the
index with the weakest growth potential (WIG20) the passive strategy was the best,
allowing to minimise the incurred loss. Investment in the index with the biggest
growth potential (S&P500) earned more when active strategies (MACD- and RSI-
driven) were utilised.
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6 Conclusions

6.1 Summary of the work

This dissertation is a comprehensive analysis of investment portfolio management
strategies in discrete time context. It contains numerous results obtained by math-
ematical simulations under the Heston market model, which have been supported
by real-data evidence. We made a lot of effort so our results are both mathemati-
cally precise and unambiguous, but also expressed and in a straightforward way and
possible to be reproduced.

We believe that the work contained in this dissertation can be utilised by a
relatively wide audience. The theoretical framework, outlined in Chapter 2, provides
a mathematically rigorous way of working with portfolio management strategies.
It can be thought of as a foundation — a system of related concepts providing a
common-ground for studying portfolio management strategies. This common-ground
presents a natural environment for scientists and — in general — people who are
interested in modelling portfolio management strategies to describe how they create
them and study their properties. Ourselves, not only did we prove some features
of portfolio management strategies, which were already known, but we also created
ones of our own and successfully demonstrated some of their properties (like e.g.
self-financing) too.

Chapter 3 can also provide significant value, especially for those who try to execute
portfolio management strategies in practice, on the market. Thanks to the fact that
we used simulated assets of various character, we were able to get the results that are
general and can be treated as an “average” behaviour for a wide range of real-life
assets. Those results can be used to better understand the evolution of financial
portfolios in general, in various market conditions and circumstances under which
they were examined (e.g. presence of trading fees), the assets’ intrinsic properties
encoded in the parameters of the model which we selected for simulating the data
(e.g. growth potential — the ‘drift’) or the parameters of the investment strategy
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(e.g. amount of portfolio cash).
In order to use the general results from Chapter 3, one needs to know the character

of assets he is working with. Chapter 4 makes it possible by introducing the estimation
procedure of the Heston model to real assets. Estimating the model using the real
data allows for localising our actual investment reality in an appropriate region of the
outcomes that the general, simulated solutions had given us. Using the estimation
procedure one is able to know what kind of assets they are really working with and
hence — to be better prepared for what kind of performance they can expect from
them in certain investment scenarios.

Chapter 5, demonstrates that it is possible (within known limitations) to apply the
knowledge obtained by means of simulations to the real data and get similar outcomes.
It is an empirical evidence of the practical applicability of tools and methods provided
in the earlier parts of the work and hence, constitutes a natural way to sum up all
the considerations in this dissertation.

6.2 Future research

Results presented in this work open a plethora of ways in which the research in the
area of managing investment portfolio can be continued. In the first part of Chapter
2 we formulated a foundation for a mathematical framework that we think is general
enough to encapsulate formal description of a wide variety of different portfolio
management strategies. In the experiments presented in Chapter 3 we mainly focused
on management strategies related to portfolio rebalancing and the ones using trading
indicators from technical analysis like MACD or RSI, but there is an abundance of
other factors and markers which can be included in the buy-sell decisions investors
make. New portfolio management strategies could e.g. be dependent on the current
situation of the company, in stocks of which one wants to invest. Those conditions can
be quantitatively captured by indicators which are studied via a branch competitive to
technical analysis, called fundamental analysis [62]. Examples of such indicators are
price-to-book ratio (also called P/B ratio) [62] or price-to-earnings ratio (also called
P/E ratio) [63] which measure the ratio of the stock price to the company’s market
capitalisation and earnings per share, respectively. New management strategies could
also make use of the newest algorithmic and computational methods, which are
based on genetic algorithms, machine learning or big data analysis, as most of those
methods perform especially well when they have access to large volumes of data
[64, 65], which is, in most cases, very easily available in the field of finance [66]. It
is also known now that despite most economical models assume members of any
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market act rationally, humans do not always do that. Hence — an additional aspect
of behavioural finance can be taken into account. It could be incorporated into any
other model of a well-defined portfolio management strategy e.g. as an additional
disturbance in the transactions performed by the investors, dependent, for instance,
on the current general market trends (in a “behaviourised” strategy one would sell
less assets after a sell signal compared to the base strategy if the market seemed to
be in an upward tendency because selling at that point is counter-intuitive from a
human point of view). Another aspect of researching portfolio management strategies,
besides just how they work is how their performance should be measured. We mostly
used measures based on the logarithmic growth of portfolio wealth but other measures
can be introduced, according to which the results of comparing strategies could be
totally different. Besides the sheer performance, measures of other aspects of portfolio
dynamics should probably be considered too, one of the most important of such
aspects being the risk. An investment strategy might be very profitable in a long
term but might also lead to frequent and volatile changes in portfolio value which
can be seen as a significant disadvantage for some risk-averse investors.

Another area of this work which provides a multitude of possible directions for
the future research is estimation of the models used in financial mathematics. In
Chapter 4 we presented a full estimation framework for Heston model, along with the
analysis of the estimation process and pointing out possible difficulties and aspects
in which the MCMC sampling algorithm performs better and worse. It is however
of the utmost importance to continue the research of the applications of Bayesian
methods in finance, as they seem to give solutions to the problems which were not
possible to be solved otherwise, especially in the field of financial models’ parameter
estimation. While it is critical to develop new estimation methods and introduce
further optimisations, making all of the procedures simpler and faster, it is also
critical to study the existing methods, their accuracy and applicability.

Finally, the content of Chapter 5 also leaves some unanswered questions. It would
be interesting to study if there are any indicators of the applicability of certain
investment strategies other than the parameters of the Heston model. Possibly
those new indicators could be simpler to obtain than trough the stochastic model
estimation process, which, as we already mentioned, is often a challenge both from
the perspective of mathematical complexity and computational performance. The
reason behind studying investment portfolios is getting better understanding of the
way financial markets behave and using their dynamics to our advantage. Making
investment decisions is a notoriously challenging topic, so it is crucial to develop
proper tools and conduct useful analyses in order to make this process easier but at
the same time still backed by legitimate scientific research.
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