‘% Politechnika Wroctawska

FIELD OF SCIENCE: Natural Sciences

DISCIPLINE OF SCIENCE: Mathematics

DOCTORAL DISSERTATION

Aspects of discrete harmonic analysis

Woijciech Sfomian

Supervisor:
Dr hab. Mariusz Mirek

Assistant supervisor:
Dr Dariusz Kosz

Keywords: Radon operators, oscillation seminorm, Hardy—Littlewood circle method, Fourier
multipliers

WROCtLAW 2023



‘% Politechnika Wroctawska

DZIEDZINA: Dziedzina Nauk Scistych i Przyrodniczych

DYSCYPLINA: Matematyka

ROZPRAWA DOKTORSKA

Aspekty Dyskretnej analizy harmonicznej

Mgr Wojciech Stomian

Promotor:
Dr hab. Mariusz Mirek

Promotor pomocniczy:
Dr Dariusz Kosz

Stowa kluczowe: operatory Radona, pétnorma oscylacyjna, metoda tukdw Hardy’ego—Littlewooda,
mnozniki fourierowskie

WROCtAW 2023



Moim rodzicom, ktorzy zawsze mnie wspierali.



Acknowledgments.

First and foremost, I would like to express my deepest gratitude to my supervisor Profes-
sor Mariusz Mirek. His knowledge and guidance was an indispensable guide during writing
this dissertation.

I would also like to express my gratitude to my assistant supervisor Dr. Dariusz Kosz. I
cannot count the number of hours he devoted to improve the exposition of the dissertation.

I would also like to sincerely thank Professor Krzysztof Stempak for his constant support
and thanks to whom the writing of this dissertation was possible.

Finally, a special thanks to my fiancée Paulina, without whom I would not have the
strength to go on and fulfill my dreams.



Contents

Streszczenie (Summary in Polish) 4
1 Introduction 8
1.1 Discrete analogues in harmonic analysis . . . . . . .. ... ... ... 0. 8
1.2 The problem of the pointwise convergence and the circle method of Hardy and Littlewood 13
1.2.1  Waring problem and the circle method of Hardy and Littlewood . . . .. .. ... 16

1.3 Main results of the thesis . . . . . . . . .. . 20
1.4 Notation . . . . . . . o e 23

2 Preliminaries 26
2.1 Seminorms and the pointwise convergence . . . . . . . . . . ... 26
2.2 Calder6n transference principle . . . . . . .. Lo 36
2.3 Lifting procedure and canonical mappings . . . . . . . . . .. ... .o 39
2.4 Radon type operators . . . . . . ... 41
2.5 Sampling principles of Magyar—Stein—Wainger and Ionescu—Wainger . . . . . . .. .. .. 44

3 Uniform oscillation estimates for Radon operators 47
3.1 Brief history of the problem . . . . . . .. .. . 47
3.2 Oscillation inequality for averages of Radon type — proof of Theorem 3.4 . . . . . . .. .. 50
3.2.1 Discrete Radon averages . . . . . . . . . . ... 50

3.2.2 Continuous Radon averages . . . . . . . . .. ..o 62

3.3 Oscillation inequality for singular integrals of Radon type — proof of Theorem 3.7 . . . . . 68
3.3.1 Discrete singular Radon operators . . . . . . .. ... ... 0L 68

3.3.2 Continuous singular Radon operators . . . . . . . .. ... ... ... ... ... .. 76

4 Bootstrap approach to Radon operators 80
4.1 The idea of bootstrap in harmonic analysis . . . . . . . .. .. ... ... ... ... ... 80
4.2 Jump inequalities for continuous Radon averages . . . . . . . . ... .. ... ... ... 90
4.3 Seminorm estimates for Radon type operators on Z¢ — proof of Theorem 1.51 . . . . .. . 98
4.3.1 Estimates for the dyadic scales . . . . . . . . .. .. . . 99

4.3.2 Estimates for short variations . . . . . . . . .. ... L 113
Bibliography 120



Streszczenie (Summary in Polish)

Calki singularne i funkcje maksymalne naleza do najwazniejszych obiektéw w analizie harmoniczne;j.
Klasycznym przyktadem calki singularnej jest transformata Hilberta zadana jako

Hf(z) = lim 1/|| Mdy, x € R. (0.1)
y|>e

e—0t T Yy

Badanie tego typu operatoréw wiaze sie z wieloma trudnosciami, poniewaz pojawiajace sie w ich definicjach
»jadra catkowe” zwykle sa niecatkowalne. Analizowanie catek singularnych wymaga uzycia wyrafinowanych
narzedzi, ktére biorg pod uwage ich specyficzng nature. Zbior takich narzedzi zostal opracowany przez
Calderéna i Zygmunda w ich przetomowej pracy [3|, w ktorej badane byly operatory (zwane teraz opera-
torami Calderéna—Zygmunda) postaci

Hezf(x) = p.v. /Rk fle —y)K(y)dy, =€ R*,

gdzie K: R¥\ {0} — R jest niecatkowalna funkcja spetiajaca warunki Calderéna-Zygmunda (zobacz
nastepny rozdziat). Dla danego operatora Hcyz mozna okresli¢ jego dyskretny analogon jako

Hegf(z):= > fle—n)K(n), zeZk

neZk\{0}

W swojej pracy Caderén i Zygmund zauwazyli, ze ograniczonosé na LP(R*) operatoréw Hcz implikuje
ograniczono$é na ¢P(Z*) ich dyskretnych odpowiednikow.

Najbardziej znanym przyktadem funkcji maksymalnej jest funkcja maksymalna Hardy’ego—Littlewooda,
ktora jest zdana jako

1
M x) = su / z—y)|dy, zeRF, 0.2
HLf( ) t>g ‘B(O,t)‘ B0 |f( y)| Yy ( )

gdzie B(0,t) jest standardowa kula euklidesowa o promieniu ¢ i o srodku w punkcie 0. Analizowanie funkcji
maksymalnych réwniez nie jest tatwe, co spowodowane jest wystepowaniem w ich definicji normy supre-
mum, ktérej w znacznym stopniu ogranicza mozliwosci stosowania zwyklych narzedzi. Dzieki przelomowe;j
pracy Hardy’ego i Littlewooda [22] (k = 1) oraz Wienera [03] (k > 1) wiadomo, ze operator My, jest
ograniczony na przestrzeni LP(R¥). Podobnie jak w przypadku operatoréow Calderéna-Zygmunda, mozna
okresli¢ dyskretna wersje funkcji maksymalnej Hardy’ego—Littlewooda jako

1
Mipf(@) i=swp S |fe—m), wezh
>0 }B(O’t) nz ‘ meB(0,t)NZF

gdzie ‘B(O,t) N Zk{ oznacza liczbe punktow kratowych m € ZF zawartych w B(0,t). Rowniez w tym
przypadku ograniczono$é na LP(R¥) ciggtej wersji funkcji maksymalnej implikuje ograniczonosé Myr, na
P (ZF).
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Operatory Calderéna—Zygmunda oraz funkcja maksymalna Hardy’ego-Littelwooda sa obiektami do-
brze zbadanymi, dlatego wspodlczesnie rozpatruje sie ich réoznego rodzaju uogélnienia. W pracy doktorskiej
skupimy sie na tak zwanych operatorach typu Radona.

Niech d, k > 1 beda ustalonymi liczbami naturalnymi. Niech

P=(P1,...,Py): RF 5 R?

bedzie przeksztalceniem wielomianowym, takim ze kazda wspolrzedna P;: R*¥ — R? jest wielomianem
k zmiennych o wspotczynnikach catkowitych, spelniajacym warunek P;(0) = 0. Dla dowolnej funkcji
f € C*(RY) okreslamy cigglq singularng transformate Radona jako

Hf@) = pov. [ flo=POIKG, o R (0.3)
Rk

gdzie K jest jadrem typu CalderénaZygmunda. Latwo wida¢, ze HF jest uogdlnieniem operatora Hcy.
Analogicznie, dla f: Z? — C o zwartym nosniku, definiujemy dyskretng singularng transformate Radona
jako

H” f(x) := Z flz—Pm))K(m), zecZi (0.4)

mezZF\{0}

Operatory postaci (0.3) oraz (0.4) byly rozpatrywane po raz pierwszy przez Steina i wspolpracownikow
[15, 25, 59, 58] w kontekscie parabolicznych réownan rozniczkowych. Wiadomo, ze operator (0.3) jest
ograniczony na LP(RY) i ze jego ograniczono$¢ jest konsekwencja ograniczonosci standardowych opera-
torow Calderéna—Zygmunda Hcyz. Sytuacja ulega caltkowitej zmianie, gdy rozwazymy operator (0.4).
Okazuje sig, ze ograniczonosci na P(Z%) operatora H” nie mozna wywnioskowaé ani z ograniczonosci
jego ciagtego odpowiednika H”, ani z oszacowari dla standardowych dyskretnych operatoréw Calderéna—
Zygmunda Hcyz. Ponadto klasyczne metody badania calek singularnych okazuja sie niewystarczajace
w tym przypadku.

W podobny sposéb mozna uogoélnié¢ funkcje maksymalng Hardy’ego—Littewooda. W tym celu dla
dowolnej funkcji f € C°(R?) okreslamy ciggle $rednie Radona jako

P X :; X — X d. .
MES@) = g oo 17~ PO, 2 < (05)

Mozna zauwazyé, ze stowarzyszona funkcja maksymalna zadana jako MP f(z) 1= sup,.o M7 f(z) jest
uogolnieniem funkcji maksymalnej Hardy’ego—Littlewooda. Tak jak w przypadku singularnej transformaty
HP, ogranicznosé¢ M? na LP(R?) wynika z ograniczonosci operatora Myr,. Dla f: Z¢ — C o zwartym
noéniku definiujemy dyskretng srednig Radona jako
MPf@) = o S o= POm)l, @ e (0.6)
|B(0.%) | meB(0,t)NZk
Podobnie jak w przypadku ciagtym, stowarzyszona funkcja maksymalna M” f(x) := sup,.o M f(z) jest
uogdblnieniem dyskretnej funkcji maksymalnej Hardy’ego—Littlewooda. Tutaj réwniez pojawia sie problem
7 pokazaniem ograniczonosci na P(Z%) operatora M. Nie wynika ona ani z ograniczonosci operatora
MP | ani z oszacowan dla dyskretnej funkcji Hardy’ego-Littlewooda.
Bourgain w przetomowej serii prac |1, 5, 6] o zbieznosci $rednich ergodycznych opracowal zestaw
narzedzi, ktory pozwala analizowaé dyskretne operatory zwiazane z trajektoriami wielomianowymi.
W szczegolnosci przedstawil on pierwszy dowdd ograniczonosci na ¢P(Z) jednowymiarowej funkcji maksy-
malnej M7 . Mianowicie pokazal on, ze dla d = k = 1, kazdego wielomianu P i kazdego p € (1, 00) istnieje
stata C), p taka, ze
|MP fllerzy < Copl fllr@y, | € F(2). (0.7)
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Podejscie zaproponowane przez Bourgaina bylo rozwijane przez wielu innych autorow [58, 60, 37, 39, 43].
Tutaj nalezy wspomnieé¢ o pracy lonescu i Waingera |26], ktorzy w znaczacy sposob udoskonalili podejscie
Bourgaina i pokazali, ze dyskretna singularna transformata Radona jest ograniczona, tj. istnieje stata
Cp,k,d,P > 0 taka, ze

IH” Fllewzay < Cokapll fllen(zay, f € E(ZY).

Bourgain w swojej serii prac [, 5, 6] oprocz udowodnienia oszacowania (0.7) wprowadzil réwniez caly
zestaw narzedzi niezbednych do badania zbieznosci punktowej prawie wszedzie. Jednym z takich narzedzi
jest polorma oscylacyjna. Niech I = (I; : j € N) C R4 bedzie dowolnym $cisle rosnacym ciggiem
o wartosciach dodatnich. Dla funkeji f: (0,00) — C oraz N € N okreslamy pdlnorme oscylacyjng jako

N 1/2

O n(f() it >0):= (D sup |f(t) = F(L)P) " (0.8)

X I;<t<I;
=1"= j+1
J >0

Potnorma O% ~ Jest bardziej wymagajacym, z punktu widzenia poézniejszej analizy, obiektem od normy
supremum, poniewaz dla f: X x (0,00) — C mamy

2 .
[sup 17Dl oy < sup [17C D oy + sup sup. [OFn(F(58) 8> 0)|[ 1y s

gdzie ostatnie supremum po I jest brane po wszystkich rosnacych ciagach o wartosciach dodatnich. Za-
tem w przypadku operatorow o jednostajnie ograniczonej normie LP oszacowania oscylacyjne implikuja
oszacowania maksymalne.

Celem niniejszej rozprawy jest badanie oszacowan typu LP dla réznego rodzaju péinorm, w tym oscy-
lacyjnej O% ~» dla Srednich Radona (0.5), (0.6) oraz dla przycietych calek singularnych postaci

HPf@)i=pv. [ flo=POIK@W, o cRY (09)
B(0,t)
HF f(z): = > flz—Pm))K(m), zeZl (0.10)
meB(0,t)NZk\{0}
W tym celu korzystamy z metod opracowanych przez Bourgaina |1, 5, (] , Tonescu—Waingera [20] oraz przez
Mirka, Steina, Trojana i Zorin-Kranicha [10, 13], ktore zostaly uzyte w kontekscie oszacowan wariacyjnych

i skokowych.

Pierwszy rozdzial pracy stanowi wstep. Przedstawiamy w nim zarys historyczny oraz formutujemy
gtowne wyniki pracy.

W rozdziale drugim przedstawiamy podstawowe narzedzia i wtasnosci, z ktérych bedziemy korzystali
w pozostalej czesci pracy. Prezentujemy w nim réwniez dowdd zasady transfererecji Calderéna, dzieki
ktorej nasze wyniki maja zastosowanie w teorii ergodycznej.

Rozdzial trzeci jest poswiecony udowodnieniu jednostajnej nieréwnosci oscylacyjnej postaci

sup sup [|0F v (Vef < £ > )], ) Spabes 1F oy f € LX),
NeNICR,

gdzie N; jest jednym z operatorow M, H (dla X = R?) lub MP, HF (dla X = Z9).

W czwartym rozdziale zajmujemy sie tzw. bootstrapowym podejsciem do badania oszacowari ¢ dla
réznego rodzaju péinorm, w tym poinormy oscylacyjnej O% ~» dla dyskretnych operatorow typu Radona.
Metoda bootstrapowa dowodzenia zadanej nier6wnosci poléga na oszacowaniu lewej strony nieréwnodci,
nazywanej umownie L, poprzez wyrazenie postaci CL? dla 6 € [0,1), przy czym C > 0 jest niezalezne od

L. Prowadzi to do nastepujacej zaleznosci
L<crL’
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Drzielac obie strony przez L otrzymujemy L'~? < C, a poniewaz 6 € [0,1), to otrzymujemy
1
L<(Ct-0

co daje nietrywialne oszacowanie wielkosci L. Okreslenie ,bootstrap” dla tej procedury odnosi sie do
operowania tylko wielkoscia L, ktéra jest podana na poczatku. W 2018 roku Mirek, Stein i Zorin-Kranich
[12] rozwineli podejscie bootstrapowe w celu otrzymania oszacowan typu LP dla polnormy wariacyjnej
i skokowej dla ciagtych operatoréw typu Radona. W pracy [D3]| udalo sie rozwinaé¢ analogiczne podejscie
w przypadku dyskretnych operatoréw. Dzieki temu udato nam sie¢ podaé nowy, krotszy dowod gléwnych
wynikow uzyskanych w pracach [0, 10, 43, D1].

Wszystkie nowe wyniki przedstawione w rozdziatach trzecim i czwartym mozna znalezé w artykutach:

[D1] Mirek, M., Stomian, W., Szarek, T.Z. Some remarks on oscillation inequalities. Ergodic Theory and
Dynamical Systems, 1-30 (2022), doi:10.1017 /etds.2022.77,

[D2] Stomian, W. Oscillation Estimates for Truncated Singular Radon Operators. J. Fourier Anal. Appl.
29, 4 (2023),

[D3] Stomian, W. Bootstrap methods in bounding discrete Radon operators. J. Funct. Anal. 283, 9
(2022).

Opisane w doktoracie wyniki oraz metody w znacznej czeSci opieraja sie na wyzej wymienionych pra-
cach. W wiekszosci przypadkéw tredé rozprawy zostata poszerzona o dodatkowe szczegoty, ktore nie byty
przedstawione w artykutach.



Chapter 1

Introduction

1.1 Discrete analogues in harmonic analysis

Classical examples

The discrete analogues are present in harmonic analysis since the very beginning. The one of the most
famous operators in the ”"continuous” harmonic analysis is the Hilbert transform defined by

TR N A k)
Hf(x) = 61_1)%1+ - /|y|>E " dy, zeR. (1.1)

The operator H arose in Hilbert’s 1904 work on a problem Riemann posed concerning analytic functions
[23]. At this time it was unknown whether the operator H is bounded on LP(R). A positive answer to
this question was given by M. Riesz [52| in 1928 who showed that for p > 1 there is a positive constant
Cp such that

IHfllLe@w) < Coll fllewy, [ € LP(R). (1.2)

In the same paper Riesz made an observation that this result implies the boundedness on (P(Z), with
p > 1, of the discrete Hilbert transform given by

Hf(2) ::% 3 f("”n_”) rel. (1.3)
neZ\{0}

Riesz approach relied heavily on some properties of analytic functions and it was not possible to use
it in higher dimensions. In 1952 Calder6n and Zygmund in their groundbreaking paper [3] developed a
real-variable method which allowed them to study singular integrals in higher dimensions and resulted in
introducing Calderén—Zygmund operators of the form

Heaf(a)=p. [ fa—pK@dy. R

where K : R*\ {0} — R is a Calderon-Zygmund kernel which satisfies the following conditions!:

(1) The size condition. For every x € R¥\ {0}, we have

K (2)] < |27, (1.4)
(2) The cancellation condition. For every 0 < r < R < 0o, we have

/ K(y)dy = 0. (1.5)
Qr\Qr

IThe conditions given here are not the weakest possible, see [20] for more details.

8
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(3) The Holder continuity condition. For some o € (0,1] and every z,y € RF\ {0} with 2Jy| < |z],
we have

K (z —y) — K(z)| < |y|"[a] 77 (1.6)

Calderon and Zygmund proved that if Hoyz is a operator associated with the kernel K which satisfies the
above conditions then for p > 1 there is a positive constant C), ;, for which the inequality

| Hezf e ey < Cp, (1.7)

holds for any f € LP(RF). It was noted by Calderén and Zygmund (see Proposition 1.15) that, as in
the case of the Hilbert transform, the estimate (1.7) implies the boundedness on (P(Z¥) of the discrete
Calderon—Zygmund operators given by

Heg f(x Z f(x—n)K(n), zeZF

nezZk\{0}

Another objects of great importance in harmonic analysis are maximal functions. The best known example
is the Hardy—Littlewood mazximal function which is given

t
Myf(z) = sup @ widy. zer

t>0 27
The operator M was introduced in 1930 by Hardy and Littlewood [22]. They proved that for any p > 1
there is a positive constant C), such that

M < Cpll £l Lo ry- (1.8)

Here the story is somewhat the opposite of the Hilbert transform one because in their work Hardy and
Littlewood first considered the discrete Hardy—Littlewood mazximal function given by

1

M(z) =sup——— - Z. 1.

(2) U N7 > |fz—m)|, wze (1.9)
mée(—t,t)NZ

They showed that for any p € (1, 00) there is a constant C}, > 0 such that

IM fllerzy < Cpllfllevzy, | € °(Z),

and then they argued that the above inequality implies (1.8).

In 1930 Wiener [63] generalized the Hardy—Littlewood result to the higher dimensional setting. Namely,
let B(0,t) be the Euclidean ball centered at 0 with radius ¢ > 0. The higher dimensional Hardy-Littlewood
maximal function is defined as

1
Mmﬂm:wp/ fl@—y)ldy, @€k~ (1.10)
>0 |B(0,8)] /B0,

Wiener showed that for any p € (1,00) and any k € N there is a constant C},;, > 0 such that

MLl o@ey < Conll fllpogey, f € LP(RF).

As in the case of the Calderén—Zygmund operators, the above inequality implies the boundedness on
¢P(ZF) of the discrete higher dimensional Hardy-Littlewood maximal function defined as

1

M =sup—— —m)|, zeZF.

urf () 1B, N 2 > |flea=m)|, =
meB(0,t)NZk
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Operators of Radon type

There are many ways to generalize the theory of Calderén-Zygmund and Hardy-Littlewood operators.
One type of such generalization concerns Radon type operators. Let d,k € N be fixed natural numbers.
Let

P=(Pi,...,P;): RF - R? (1.11)

be a polynomial mapping, where each P;: R* — R? is a polynomial of k variables with integer coefficients
such that P;(0) = 0. For any f € C>®(R?) we define the continuous singular Radon transform as

HP F(z) = p.v./ Fz— Py)K(y)dy, =R (1.12)
RFE

where K: R¥\ {0} — C is a Calderén-Zygmund kernel. It can be easily seen that the above definition
generalizes Hcyz. The operators H” originate in some problems related to curvatures and parabolic
differential equations, see [15, 25, 59, 58|. It is well known that the operator HP is bounded on LP (Rd)
with p € (1,00). Roughly speaking, this is due to the LP-boundedness of classical Calderon—Zygmund
operators. We illustrate this with a particular example. Let d = k = 1, P(y) = y> and let K(y) =y~ L.
Then

HP f(z) = lim 1/ Mdy, z €R. (1.13)
|

By making a substitution y3 = ¢ we get

flz—y°) 1 fl@—1)
2 dy == ——~dt.
/y|>s Y Y73 /|t>53 P

Consequently, we get that HP f = %7—[ f, where H is the standard Hilbert transform (1.1). Therefore,
we see that the boundedness of H” follows from (1.2). Obviously, in general case a much more work is
required but the core of the proof is the boundedness of the Calderén—Zygmund operators.

In analogy to the usual Calderén—Zygmund operators we may consider the discrete counterpart of
(1.12). Let f: Z% — C be a finitely supported function. The discrete singular Radon transform of f is
defined as

HP f(z):= > flz=P(m)K(m), zecZ, (1.14)
mezk\ {0}

where K: R¥\ {0} — C is a Calderon-Zygmund kernel. Despite the obvious similarity to the discrete
Calderon-Zygmund operators Hcy the operators HF are much more difficult objects to study. For ex-
ample, the question of boundedness of H” on P(Z9) with p € (1,00) was a very challenging problem.
First of all, we cannot repeat the argument from the continuous setting and use the boundedness of the
discrete Calderon—Zygmund operators Hcoyz. This is due the fact that in the discrete setting we do not
have the substitution principle. Secondly, we cannot deduce the P-boundedness of H” by using the LP-
boundedness of H” — for more details see the discussion after the proof of Proposition 1.15. This is a
completely different situation than in the case of standard Calderéon—Zygmund operators.

The first partial answer about £P-boundedness of the operator H” was given by Stein and Wainger in
[58] where they managed to prove that H” is bounded on ¢P(Z%) for p in a certain neighborhood of 2.
The full range of p € (1, 00) was obtained by Ionescu and Wainger [26] in 2005, see also [37] for a different
approach.

In a similar fashion we may generalize the Hardy—Littlewood maximal function. Let P be a polynomial
mapping (1.11). For any f € C2(R?) we define the mazimal function of Radon averages as

1
MP f(z) :=sup ——— z—P(y))dy, zeR™L
f(z) D B0 B(O’t)f( (y))dy
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It can be easily seen that the above definition is a natural extension of the Hardy—Littlewood maximal
function. It is known that for any p € (1, 00| there is a constant Cp.d k,degp > 0 such that

IMP oy < Cpakaeep | flliomey,  f € LP(RY).

Again, although it is a non-trivial complicated task, the above inequality can be deduced from the bound-
edness of the Hardy—-Littlewood maximal function Myy,. As in the case of the discrete singular Radon
transform we define the discrete analogue of M?. For any bounded function f: Z% — C the discrete
maximal function of Radon averages is given by

1
Mpf(w) = iggm Z f(z —P(m)), z ezl
’ meB(0,t)NZk

As before, we cannot deduce the £P-boundedness by using the discrete Hardy—Littlewood maximal function
M, neither the continuous counterpart M7 .

The first proof of the fP-boundedness of M7 (in the case when d = k = 1) was given by Bourgain at
the end of 80’s in his groundbreaking series of works [/, 5, ] about pointwise convergence of the ergodic
averages along polynomial orbits — see more details in Section 1.2. In his work, Bourgain has introduced
tools that capture the arithmetic nature of the operator M*. Bourgain’s work has greatly influenced the
field of discrete analogues and his ideas are still used today.

Transference of bounds between discrete and continuous setting

In previous section we stated that the boundedness of the discrete Calderén—Zygmund operators can be
deduced from the estimates for their continuous counterparts. However, we noted that this is impossible
for the general Radon operators. Below we try to illustrate this phenomenon. At first we show how to
transfer bounds between the standard Calderéon—Zygmund operators.

Proposition 1.15. Then for p € (1,00) there is a constant Cpj, » > 0 such that
1 Hczllerzry—erzry < CpiolHezll oo @ry— Lo @e)- (1.16)
Proof. Let p € (1,00) and let p’ be its dual. Let Q := [~1/2,1/2)*. For any f € (?(Z*) and g € ¢*'(ZF)
we define its extension to R* by
F(z):= Z f(n)lg(z—n) and G(z):= Z g(n)lg(z —n), zcRF
nezk nezk
Clearly, we have F(n) = f(n) and G(n) = g(n) for n € ZF. Moreover, we have |l o mey = 1 fllew(zry-

The same holds for functions G and g. Let us observe that one has

Hen(F)(2)G(x)dz = Y g(m) Hez (F)(z)dz
meZk Qtm

=Y gm Y ) /Q Gy

mezk n#EmM

+ Z g(m) ’ch(f(m)]lQ-‘rm)(x)dx (1.17)

mezk Q+m

Rk

= 3" (Hezf)(m)gm) + > K(m—mn)f(n)g(m)

meZk n,mezk
m#n

+ ) g(m) Hez(f(m)lqem)(x)dz,
mezZk Q+m
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where

K(m—n)::/ K(zx —y) — K(m —n)dydx
m+Q Jn+Q
:/ / Kim—-n+z—y)— K(m—n)dydz.
QJ/Q
By (1.17) we see that it is enough to estimate

S Rm—n)f(mgm)+ 3 gtm) [ Hon(f(m)lgem) (@)dz,

n,mezk mezZk Q+m
m#n
Observe that the double application of Holder’s inequality yields

’Zg(m

meZk

Her (F(m)Lgm) (x)dx)
Q+m

< lgllger 2y ( Z ‘/ Hez(f )]lQer)(x)d:p‘P) 1/p

mezZa

1/p
< llgllep (zx) ( Z / (Hez(f(m)lgrm) :E)‘Pd:n>

mezZk

< llglleer 22y 1 f v 2y [ Mozl Lo - Lo
By the condition (1.6) we have
[K(m—n+az—y) = K(m—n)| <|e—yl”lm—n|*°
which implies that B
|K(n—m)| < |m—n|7*°.
Therefore, again by Holder’s inequality, we get

| Y Ron-npfmgm)| < (5 Rm-wllep) (X Rm-n)llgm )"

n,mezr n,mezk n,mez*
m#£n m;én m#n

Skyo Hf”ep(zk)Hg”zp’(zk)

since Y pezm fo} |k| 7%= < co. This gives (1.16).

A similar result can be stated for the Hardy-Littlewood maximal function (although the proof is
different). However, for the sake of clarity, we focus only on the singular integrals, noting that similar

reasoning can be done for the maximal functions associated with averages.

Proposition 1.15 shows that in the case of standard Calder6n—Zygmund operators the discrete and
continuous cases are equivalent?. However, things get complicated when one studies Radon type operators
associated with polynomials with degree greater than one. In order to illustrate this issue we use the

following example. Let us consider the following Radon type operators

Heontf(2) —pv/fx— K(y)dy, zeZ.

2Tt can be shown that the reverse inequality (1.16) also holds.
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and
Hdisf(m) = Z f(m - TL2)K<TL), m € Z.

neZ\{0}

It is clear that Hcont is continuous counterpart of Hgjs and vice versa. Let us see whether we can repeat
the proof of Proposition 1.15 for Heont and Hgis. Clearly, we can write the decomposition (1.17). The
problem arises when one needs to estimate the kernel

K(m —n?) ::/Q/QK(:C—Fm—(n+y)2)—K(m—n2)dydx.

By using condition (1.6) we write that

—2yn —y°|”
Kxz+m—-(n H — K(m —n? <\x
K@= (-4 9)?) = K m )] < E 200
Unfortunately, the right hand side of the above inequality is unsummable in n € Z hence the proof does
not work. The main reason why this happens is because for any polynomial P : Z — Z with degree greater

than 1 we have
P(n+t)—Pn)=0mn*sPY, nez, telo1]. (1.18)

This problem does not occur in the case when P(n) = an since then P(n+t) —P(n) = at which is bounded
in n € Z. Similar issues occur when one tries other transference methods — the main obstacle is the fact
that P : Z — Z may have unbounded gaps (1.18). Therefore, in the case of Radon type operators, we
cannot simply transfer the bounds from the continuous to the discrete setting. Consequently, one needs to
develop completely new methods to deal with discrete operators associated with arbitrary polynomials. An
appropriate set of tools which are capable of dealing with discrete problems was introduced by Bourgain
in late 80’s in his groundbreaking work about pointwise convergence of ergodic averages along squares —
see the next section.

1.2 The problem of the pointwise convergence and the circle method of
Hardy and Littlewood

Let (X, B, i) be a o-finite measure space. Let T;: LP(X) — LP(X) be linear operators indexed by ¢t € R4
or t € N. In many contexts, a natural question that one may ask about the whole family of operators is
what happens with 73 f when t — oo (if t € Ry or ¢t € N) or when ¢ — 0 (only if ¢ € Ry). In other words,
we are asking if the limit

lim 7Ty f or limT;f

t—o0 t—0

exists and in what sense (norm convergence, pointwise, etc.). In the thesis we are particularly interested
in the pointwise convergence. Namely, we want to know whether the limit

lim T3 f(x) or lim7;f(x), xz € X,
t—0

t—o0

exists p-almost everywhere. The classical approach for verifying of pointwise convergence (sometimes
called Banach’s principle) consists of two steps:

(a) Establishing LP-boundedness for the maximal function given by
T.f (=) := sup [Ty f(2)],

where, depending on the set of indices, the supremum is taken over ¢t € Ry or t € N;
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(b) Finding a dense class of functions in LP(X, ) for which we know that the pointwise convergence
holds.

For the proof that these two conditions are indeed sufficient see |20, Theorem 2.1.14]. The classical
application of the described procedure is the proof of Lebesgue’s differentiation theorem.

Theorem 1.19 (Lebesgue’s differentiation theorem). Let p > 1. For any function f € LP(R?) we

have?
1

}LI% m [ fly)dy = f(x) (1.20)

for almost all x € RY.

Indeed, let
1 d
th(li) o ‘B(‘Ta t)| /B(r,t) f(y)dy, re R

Then, T, f(x) = sup,q |1t f(z)| is the Hardy-Littlewood maximal function and we know that it is LP-
bounded, that is

T fll Lo (ray Spad | F Loy, | € LP(RY),

which shows that the step (a) is satisfied. On the other hand, it is easy to verify that (1.20) holds for
functions f € C°(R%). Since the set C2°(R?) is dense in every LP(RY) this establishes (b).
Another example of the Banach principle is the proof of Birkhoff’s ergodic theorem.

Theorem 1.21 (Birkhoff’s ergodic theorem). Let (X, B, 1) be a o-finite measure space. Let T: X —
X be an invertible measure preserving transformation which means that

p(T7A) = p(A) for each A € B.

Let p € (1,00). Then for any f € LP(X, u) the averages

N

ME*S (@) = o S ()

n=—

converge, as N — oo, for p-almost every x € X.

In the case of Birkhoff’s averages M]]\gfirk, the Calderdén transference principle (see Section 2.2) allows
one to deduce the estimate

| sup [Mn flllLe(x,m) Sp 111 r(xp)
NeN

for p € (1, oo] from the estimate for the discrete Hardy-Littlewood maximal function (1.9). This establishes
the first step (a). For the second step, one can use the idea of F. Riesz decomposition |51] to analyze the
space Ir @ Jp C L?(X, ), where

Ip:={feLl*X,u): foT = f} and Jp:={hoT —h:heL*X,u)NL>®(X,u)}.
We see that M]]\B,irkf = ffor f €y and, for g=hoT — h € Jr, we have

1
2N +1

MR g () (TNt 2) — h(TNz))

3 Actually, the theorem is true when f € Li . (R?) since the Hardy-Littlewood maximal function is of weak type (1,1).
However, in the presentation we focus only on L” spaces with p > 1 hence the formulation for p > 1.
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by telescoping. Consequently, we see that Myg — 0 as N — oco. This establishes p-almost everywhere
pointwise convergence of M}é,irk on I @ Jr, which turns out to be dense in L?(X, u). Since L?(X, p) is
dense in LP(X, pu) for every p € (1,00), this establishes (b).

We have just seen that the so-called Banach principle is proving to be a very effective tool when showing
the pointwise convergence. However, not every problem can be handled easily by using this approach. The
most known example is the pointwise convergence of the ergodic averages along monomials given by

N

nb
SN T Y f(@™z), beN.
n=—N

I

In the case of the operator Tf(f it is not easy to find an appropriate dense class for which the pointwise
convergence is a priori known. The approach taken in the case of Birkhoff’s averages is insufficient here
since it is difficult to establish if the family Iy @ Jr is a dense class of functions in L?(X, u) for which the
averages along the squares converge pointwise. The problem is caused by the fact that (n + 1)® — n® is
unbounded and we loose the telescoping nature of the averaging operators on Jr.

At the end of the 1980’s, Bourgain established the pointwise convergence of the averages T]’{f in a series
of groundbreaking articles |1, 5, 6]. By using the Hardy—Littlewood circle method from analytic number

theory, he showed LP-bounds for the maximal function
sup [T} f ()],
NeN

which is the step (a). He then bypassed the problem of finding the requisite dense class of functions by
using the oscillation seminorm (1.22).

Seminorm approach to the pointwise convergence

Let us recall the definition of the oscillation seminorm. Let I C R, . For any increasing sequence I = (I; :
j € N) CIand any N € NU {oo}, the oscillation seminorm of a function f: I — C is defined by

N 1/2
Oin(f(t)itel) =3 sw [f(H)—FL)P) " (1.22)

X I, <t<I;
=1"= j+1
J tel

Although not apparent at the first glance the above object is very much related to pointwise convergence.
This was first noted by Bourgain and was used to show that for any f € LP(x, ), p € (1,00), the averages
T}(, [ converge p-almost everywhere. He did it by proving that for a lacunary sequence I = (I; : j € N)
and for any J € N one has

103 5Tk N € M) e St TN 2 (1.23)

for some ¢ < 1/2. From the above inequality one may deduce that TJI{, f converge pointwise for f € L?(X, i)
— see Proposition 2.3.

In order to establish (1.23) Bourgain used variety of tools: Calderon principle (see Section 2.2), The
Hardy-Littlewood circle method (see the next section), the r-variation seminorms V" and jump quasi-
seminorm (for more details see Section 2.1).

Let 7 € [1,00). Let us recall that the r-variation seminorm V" of a function f: I — C is defined by

N

/

Vi@ teD = s sup (S0 17t) — )P) (1.24)
NeNtlS'};’.SE%N+1 j=1
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Bourgain observed that the V" seminorm can be used to obtain (1.23). This is because we have
O y(f(t):tel) < N2y (f(t) : t e )

for r > 2 — see Section 2.1. In order to prove the r-variational inequality for the averages TZI{,, Bourgain
used the jump quasi-seminorm. In order to define it we need the notion of the A-jump counting function.
For any A > 0 and I C R, the A\-jump counting function of f: 1 — C is defined by

NA(f(t) : t € 1) :=sup{J € N| 3t0<t]i'é§tJ : Og;igjlf(tj) = f(ti—1)[ = A}

The jump quasi-seminorm of a function f: X x I — C is the following quantity

sup || ANA(f (-, 1) :tE]I)l/QHLp(X). (1.25)
A>0

It is not hard to obtain that one has

up [ANA(S(8) 4 € Y2 1y ) < IVAF(D) 2 € Do, (1.26)
The remarkable feature of the A-jumps, observed by Bourgain [(], is that, in some sense, the inequality

(1.26) can be reversed. Namely, a priori uniform A-jump estimates

sup ||ANA(f(-,t) 1t € I)'/2 (1.27)
A>0

HLP(X)

for some p € [1,00) imply weak r-variational estimates
VIS () ot € Do x) < Cppr

for the same value of p and for all » € (2,00]. Those observations made by Bourgain were the starting
point of comprehensive investigations in ergodic theory and harmonic analysis, which resulted in many
papers. In particular, they have attracted the attention of researchers to the notion of the oscillation
seminorm Oy y, r-variation seminorms V" and jump quasi-seminorm.

For more details and properties of the quantities (1.22), (1.24) and (1.25) we refer to Section 2.1 where
we present detailed proofs of some selected facts and properties.

1.2.1 Waring problem and the circle method of Hardy and Littlewood

The exposition of this section is based on [17] and [35].
Let Ny denote the set of nonnegative natural numbers Ny = {0,1,2,...,}. In 1770 Waring made the
statement that for each k € N there exist d € N such that every natural number N can be expressed as

N=nb+nk+. .. 4+nk forn; eNo. (1.28)

The first proof which concerns every k € N was given by Hilbert [24] in 1909. In the 1920’ Hardy and
Littlewood [21]| began the study of questions related to Waring’s problem from a quantitative perspective.
Namely, for any N € N let r(N) denote the number of d-tuples (ny,ns,...,nq) € N¢ which solve the
equation (1.28). The circle method was pioneered by Hardy and Littlewood in order to prove that for
k22,d22k—|—1wehave

d
r (1 + %) Nd/k‘fl + O(Nd/kflfts) (129)
L (%)
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for some 6 > 0. Here T" is the Gamma function, &(N) is the singular series given by

Z Z G(a/q)%e(—Na/q) (1.30)
(a7q) 1

with e(z) = exp(27iz), and G(a/q) is the Gaussian sum

G(a/q) :== 1z:e(grk).

= g

Let us show how to derive the asymptotic formula (1.29) with the aid of the circle method. Let k > 2 be
a fixed integer and denote

SN:{(nl,ng,...,nd)eNd: n]f—i-ng—i-"-—i-nlfl:N}.

Observe, that for Xy := [ N'/*] one can write

Tk(N): Z ]lgN(nl,ng,...,nd)

(n17n2, md)ENd

Z Z / (E(nk +nk + -+ nk))e—2mEN g

ni=1 ng=1
1
—/0 (£xx(€))"e(=EN)dE, (1.31)
where the function fx, is given by
XN
Fxn () =) e(én®). (1.32)
n=0

Therefore, our task is to find the asymptotics for the integral (1.31). The main idea is to approximate
fx, by its integral counterpart
XN
/ e(éxP)dx
0

However, we cannot do it in a standard way, since the derivative of the phase function is equal to ka*~1¢
and may be large. In consequence, we are not able to control the quantity

Xy Xn
e nk — e .’L'k X
> eler’) /0 (e2*)d

in a satisfactory way. This obstacle was bypassed by Hardy and Littlewood. We follow their approach and
decompose the unit interval [0,1] into two disjoint sets, called the major arcs My, and the minor arcs
my,, and evaluate the integral over both sets separately. The major arcs consist of such real numbers
¢ € [0,1] which can be "well approximated” by rational numbers a/q with (a,q) = 1. For £ € Mx, we are
able to show that

N1/k
Fen©=Glafa) [ el(€~a/pat)s

where a/q is a rational number which is a good approximation of £&. On the other hand, on the minor
arcs, which are the complement of the major arcs, the integral (1.31) is negligible.
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Following this idea, for fixed N € N and a € (0,1/4) we define the family of the major arcs

q
Mxy = U U SIRXN(a/q),
1<g<Xg  a=1
(a,9)=1

where
My, (a/g) = {€ € [0.1]: ¢ — afgl < X3} with q< X3

We see that if a/q varies over the rational fractions with small denominators (1 < ¢ < X% and (a,q) = 1)
then M, (a/q) are disjoint. The minor arcs is the set

mx, = [0,1] \ Mx, .

In view of this partition we obtain that

(V) :/sm
= My(N) + mg(N).

d d
(Fxn (©)) e(—fN)df—F/mXN (fxn () e(=EN)dE (1.33)

Now our task is to estimate My (N) and my(N) separately.
We start with showing that the contribution from the minor arcs is negligible that is

‘mk(N)} _ (9(]\[(1/]{7—1—(5)7
for some 9 > 0. In order to do so we make use of Weyl’s inequality.

Lemma 1.34 (|17, Lemma 3.1|). Suppose that § € [0,1] has a rational approzimation a/q satisfying

1
(a,q) =1, q€N, ‘5—%’ 3?. (1.35)
Then for every € > 0 there is a constant Ce > 0 such that
1 1 q 2k—1
| fxn (6] < C-Xy'te (q + X7N + )(Nk> . (1.36)

The above inequality was established, in a less explicit form, in Weyl’s groundbreaking work on the
uniform distribution of sequences.
Let us observe that if ¢ € N from the condition (1.35) satisfies X§ < ¢ < Xﬁ,—a then

[ fxn (O S XN, (1.37)

for some ¢ > 0. Now, if £ € my, then by Dirichlet’s principle (Lemma 3.35) one can always find
1<¢g< X]lifa and 0 < a < ¢ such that (a,q) =1 and

Hence the condition (1.35) is satisfied. Next, if we would have ¢ < X% then { € My, but it would
contradict to that £ € mx, . Thus ¢ > X§. Therefore, we see that for any £ € mx, the inequality (1.37)
holds. Now, let us write

[mi(N)| = ‘/m

1
(xn (@) el-eMe < s[5, OFF [Cpe @ a0

XN emx
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By Hua’s lemma [17, Lemma 3.2] we know that for any € > 0 one has

1
k k_
[ P ae < x5+
0
Combining the above estimate with (1.37) and applying in (1.38) yields
[mi(N)| < X](Vl_él)(d_Qk)Xf\f—’”E — X]‘f,_k_V < Nk /K

with v := §(d — 2F) — e > 0 for some small enough ¢ > 0. This shows the estimate for the minor arcs part.
Now we briefly sketch how to handle the major arcs part My(N). Let & € My, (a/q) with ¢ < X§.
By splitting the set {0,..., Xy} into congruence classes modulo ¢ we may write

Fen© =Y e(Zm) 3 e(e - Hlgn+nh). (1.39)

q

Our aim is to replace the last sum by some integral. To do this we need to estimate the size of the error.
The following approximation is a simple consequence of the mean value theorem. Let f be a differentiable
function. Then for any b > a we have

b
JECIEED T

a<n<b

< (b= a) max|f'(y)| + max |f(y)|-

In our case f(z) = e((£ — an + r)¥) and since we are on the major arcs we have |{ — a/q| < X]’i,_o‘.

This implies that the approximation error between the sum and the integral is O(N?) for some § > 0.
Therefore, for any £ € Mx, (a/q) we have

N1/k
fxx(€) = Gla/a) /0 e((€ — afg)e*)dz + O(NP).

If we use this estimate in M (V) to replace fx, we get

q
>
a=1
(a,9)=

X
My(N) ="

«@
N
g=1

N1/k d
a d e —a :nk x| e(— d_l_‘;.
Glafa)! | Wq)( [ ele-at )d) (CEN)dE + O(x L)
1

By the change of variables the integral is equal to

< /0 v e(gxk)dx>de(—gzv)d§.

By slightly worsening the approximation error we may increase the range of integration in the above
integral to (—oo,00) and the range of summation to g € [1, 00) which gives

e(~a/aN) |

k—
[fl<xy

0 q 0o Nl/k d
My(N) =2 3 G(a/q)de(—a/qN)/ (/0 e(fka)da:> e(—EN)dE+ O(X 17,
=1 a=1 —0o0
7 (a,9)=1
for some ¢’ > 0. It can be shown [17, Theorem 4.1| that one has

/oo (/ONl/k e(ka)dx> de(_gN)df = F(l_l‘(_;l)llf)de/k1'

— 00
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This finishes the brief sketch of the Hardy—Littlewood circle method.
The Hardy-Littlewood circle method was used by Bourgain [1, 5, 6] to study the Fourier multipliers
related to the averages

N
1 b

- 7
2N+1n_§_Nf($ n’), €,

which are given by
N

Z e(¢n®), ¢eT.

n—=——

1
2N +1

It is easy to see the similarity to (1.32) which suggests that the approach described above is a suitable
tool to study such multipliers.

1.3 Main results of the thesis

The thesis is based on the results from the following papers:

[D1] Mirek, M., Stomian, W., Szarek, T.Z. Some remarks on oscillation inequalities. Ergodic Theory and
Dynamical Systems, 1-30 (2022). doi:10.1017/etds.2022.77

[D2] Stomian, W. Oscillation Estimates for Truncated Singular Radon Operators. J. Fourier Anal. Appl.
29, 4 (2023).

[D3] Stomian, W. Bootstrap methods in bounding discrete Radon operators. J. Funct. Anal. 283, 9
(2022).

Here we give a brief summary of each paper. In order to do so we introduce some notation. Let d, k € N
be fixed natural numbers. Let

P=(Pi,...,Py): ZF - 7¢ (1.40)
be a polynomial mapping, where each P;: 7ZF — 7 is a polynomial of k variables with integer coefficients
such that P;(0) = 0. Let © be a non-empty bounded open convex subset of RF. Moreover, we assume
that B(0,cq) € Q C B(0,1) C R¥ for some cq € (0,1), where B(z,t) denotes an open Euclidean ball in
R*. For a given set ) we define its dilates by setting

Q={zeRF:t7lx e}, t>o0.

A typical choice of € is a ball of radius ¢ for some norm on R*.
Now, for finitely supported functions f: Z¢ — C and t > 0, we define the discrete Radon average by
setting

1
P ._ _ d
MEf(@) = gagm 2 [le-PW). weZ’ (1.41)
yeQNZk
where |Q; N ZF| denotes the number of lattice points from Z* which are contained in ;. In a similar
fashion, we define the discrete truncated Radon singular operator by setting

HP f(x):= Y,  [fl@a—PW)K(y), =z (1.42)
yeUuNZF\{0}

where K : R¥\ {0} — C is a Calderén-Zygmund kernel which satisfies conditions (1.4), (1.5) and (1.6). In
an analogous way, we define the continuous Radon operators. For a given smooth compactly supported
function f: R¢ — C the continuous Radon average of f is defined as

1

MT f(z) = 1 o

f(z—P(y)dy, =eR? (1.43)
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and the continuous singular Radon operator of f is defined by setting
Hif(@) =pv. | fl@—Pu)EEdy, =eR, (1.44)
t
where K : R¥\ {0} — C is a Calderén-Zygmund kernel which satisfies conditions (1.4), (1.5) and (1.6).

The uniform oscillation inequalities for the Radon averages — the main result of [D1]

The article was written in cooperation of the author with M. Mirek and T.Z. Szarek. Main results of this
paper are the uniform oscillation inequalities for the Radon averages. We state this result below. See
(1.57) for the definition of the set &xn(R4).

Theorem 1.45 (|[D1,Theorem 1.4]). Let d,k > 1 and let P be a polynomial mapping (1.40). For any
p € (1,00) there is a constant Cp gk degp > 0 such that

Sup ~ sup HO%N(MtPf te R+)ng(zd) =< Cp,d,k,degPHfHep(Zd): fered, (1.46)
NeNTeGy(Ry)
sup sup |03 N (MP 1t € RO gy < Cpahaespllfln@ay. £ € LPRY.  (147)
NeENTeGy(Ry)

In particular, the implied constants in the inequalities above are independent of the coefficients of the
polynomial mapping P.

The proof of the above theorem is entirely up to the author and was his main contribution to the
paper |D1]. It is worth noting that in [D1] this result is formulated for the ergodic averages. However by
the Calderon transference principle, see Section 2.2, the above formulation is equivalent to [D1, Theorem
1.4]. Also, the formulation of [D1, Theorem 1.4] concerns only discrete averages, the inequality for the
continuous averages (1.47) is proved along the way and is not explicitly formulated in [D1, Theorem 1.4].
Here we decided to state it as a separate result since it is more in line with the rest of the presentation.

The proof of the inequality (1.46) uses the methods developed by Mirek, Stein, Trojan and Zorin-
Kranich [10, 43]. The main tools are the Hardy—Littlewood circle method applied with the Tonescu—Wainger
multiplier theory (Theorem 2.71) and the Rademacher—-Menshov inequality (2.36). In the proof of (1.47)
we use the ideas of Jones, Seeger and Wright [32] to approximate the operator M} by Christ’s dyadic
martingales which are related to the group of dilations induced by the polynomial P — see Section 3.2.2.
The detailed proof of Theorem 1.45 and the history of the problem are presented at the beginning of
Chapter 3.

The uniform oscillation inequalities for the Radon singular integrals — the content of [D2]

The aim of the article [D2] was to establish a counterpart of Theorem 1.45 in the context of the singular
integrals of Radon type H/ and HI. The following theorem summarizes the main results of [D2].

Theorem 1.48 (|D2, Theorem 1.14]). Let d,k > 1 and let P be a polynomial mapping (1.40). For any
p € (1,00) there is a constant Cp g degp > 0 such that

sup  sup [|[OF N(HT f 1t € Ry)||ppgay < Cpapaespllfllen(zay, | € (27, (1.49)
NeNTe6y(Ry)
sup  sup  ||OF y(HT f it € RY)|| ygay < Cpabaegpllfllogey,  f € LP(RY). (1.50)
NeNTIeGy(Ry)

In particular, the implied constants in the inequalities above are independent of the coefficients of the
polynomial mapping P.
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Again, the proof of the inequality (1.49) uses the methods developed by Mirek, Stein, Trojan and Zorin-
Kranich [10, 43]. In order to handle the oscillatory nature of the singular integral H we use the fact
that the oscillation seminorm O% n is translation invariant and we express this operator as an appropriate
telescoping sum. This step, roughly speaking, reduces matters to study the difference operator

HP., - HP, neN

The Calderén-Zygmund conditions (1.4)—(1.6) which are satisfied by the kernel associated with H} ensure
that this operator have nice behavior. In particular, one obtains good decay estimates for the related
Fourier multipliers. This fact combined with a careful analysis of the approximation errors allows us to
handle the problem in the discrete setting.

In the proof of the inequality (1.50) we use the ideas of Jones, Seeger and Wright [32] which originates
in the groundbreaking work of Duoandikoetxea and Rubio de Francia [18] about square function estimates
for singular integral operators. As in the discrete setting we express H] as a telescoping sum

715 Zizi:j%, n €N,

k>n

where each T}, is, roughly speaking, equal to ’H,zrl - %kp Then we may employ a decomposition of the
type

HEF = onr (Y ThF) = pus (DD Tef) + D00 = 0n) * Tk,

keZ k<n j>n

where dg is the Dirac measure at 0 and ¢, is an appropriate smooth function. As it turns out, each term
of the above decomposition has behavior good enough to obtain the desired estimates. The detailed proof
of Theorem 1.48 is given in Section 3.3.

Bootstrapping approach to seminorm estimates for discrete Radon averages — the content
of [D3]

The aim of this paper was to give a new proof of known results about discrete Radon averages by using
the so-called bootstrap approach — see Chapter 4 for more details. This paper is motivated by the work
of Mirek, Stein and Zorin-Kranich [12] in which they proved, among others, that the bootstrap approach
can be used to prove jump inequalities for continuous Radon operators. In [D1] we develop a new method
of handling the seminorm inequalities, by using bootstrap approach. The main result of this paper is the
proof of the following.

Theorem 1.51 ([D3,Theorem 1.6]). Let d,k > 1 and let P be a polynomial mapping (1.40). Then for
any p € (1,00) there is a constant Cp, 4 > 0 such that for any f € P(Z%) we have

ili%H)\NA(MZDf ite R+)1/2ng(zd) < Cp,d,kaHép(Zd)a (152)
sup  sup (|0 (M7 f :t € RY)|| ey < Cotllfllen . (1.53)
NEN €6y (Ry)

See (1.57) for the definition of the set Sy (Ry). Moreover, for any r € (2,00) there is a constant Cp q i r >
0 such that
V(M f 2t € ROl gy < Coanalfllonzay,  f € (2. (1.54)

In addition, the constants mentioned above can be chosen to depend only on the degree of P and not on
the coefficients of the polynomials P;.
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Again, we want to emphasize that the novelty lies in the proof of the Theorem 1.51 and not in the
theorem itself. The jump inequality (1.52) was proven by Mirek, Stein and Zorin-Kranich [13, Theorem
1.9] in 2020. The oscillation inequality (1.53) was first proven in [D1]. Therefore we give the a new proof
of Theorem 1.45 in the case of the discrete Radon averages M. The first proof of the r-variation estimate
(1.54) in the full range r > 2 was given by Mirek, Stein and Trojan [10] (see also [65] for previous results).
It is worth noting that the inequality (1.52) implies the r-variation estimates (1.54) for r € (2,00). Only
the oscillation inequality (1.53) is not implied by the former ones.

The novelty of the presented approach lies in the fact that it is more "standalone” than the previous
methods. Namely, if one wants to prove (1.52) and (1.53) by using the approach presented in [13] and [D1]
(see Chapter 3 where the proof of (1.53) is based on the exposition from [D1]) one needs to show that for
the continuous Radon averages M} the estimate

|(S 1z, - B

keN

oy < Collf g, (1.55)

holds for every increasing sequence 0 < t; < to < --- with C, > 0 independent of the choice of that
sequence. The inequality (1.55) can be proven by using the results from [12] and the detailed proof is
quite long and relies heavily on the Littlewood—Paley theory. On the other hand, if one decides to prove the
inequality (1.54) by following the approach presented in [10], then one needs to establish a vector-valued
estimate of the form

1/2
H(Zsup yMZ’fn\Q) / (1.56)
nez t>0
A whole separate paper [39] is devoted to proving the vector-valued inequality (1.56).

In the proof presented in Chapter 4 we do not use neither (1.55) nor (1.56) which makes the proof
more elementary and self-contained, since it does not refer to vector-valued inequalities which are difficult
to prove.

In order to prove Theorem 1.51 we exploit some methods introduced in [10] in the context of r-
variations. The key ingredient is the discrete Littlewood—Paley theory which was formulated by Mirek

[37]. We connect those tools with a variant of the bootstrapping lemma (Lemma 4.43) of Duoandikoetxea
and Rubio de Francia [15].

v <O (S10)

ne’l

£p Zd

1.4 Notation

Throughout the thesis we consistently use the notation introduced here.

Basic notation

We denote N := {1,2,...}, Ng := {0,1,2,...} and R, := (0,00). For d € N the sets Z¢, R¢ C? and
T = [~1/2,1/2)¢ have the usual meaning. For every N € N we define

Ny :={1,...,N}.
For any « € R the floor function is defined by
|z] :=max{n € Z:n < z}.
For u € N we define set

oul . {2“": n € N}.
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We write A < B to indicate that A < C'B with a constant C' > 0. The constant C may change from
line to line. We write <s if the implicit constant depends on 0. Sometimes we will omit the subscript
when a possible dependence on the related parameter is clearly allowed. For two functions f: X — C and
g: X — [0,00), we write f = O(g) if there is a constant C' > 0 such that |f(z)| < Cg(z) for all x € X.

Let I C R. For N € NU {oo} we denote by &x(I) the family of all strictly increasing sequences of
length N + 1 contained in I. In other words

6]\7(]1) = {(Il,IQ,. . -,IN—H) S ]IN+1 T h<lhh<-- < IN+1} (1.57)

with the appropriate modification when N = co.

Throughout the thesis the symbol € will always denote a non-empty convex body (not necessarily
symmetric) in R*, which simply means that € is a bounded convex open subset of R¥. We will additionally
assume that B(0,cq) € Q C B(0,1) C R¥ for some cq € (0,1), where B(x,t) denotes the open Euclidean
ball in R¥ centered at 2 € R* with radius ¢t > 0. For t > 0, we define the dilate of Q by

Q :={zeRF:t7 1z c Q).

Later on, the symbol ; will always refer to the dilate of the convex body 2 which satisfies the above
conditions.

Euclidean and function spaces

The standard inner product, the corresponding Euclidean norm, and the maximum norm on R? are denoted
respectively, for any x = (z1,...,24), £ = (&1,...,&4) € RY, by

d
. = d = = . d = .
c6=dagn  adlelmllmvEE ol el
For any multi-index v = (y1,...,7) € N¥, by abuse of notation we will write |y| := 1 +- - - +~&. This
will never cause confusions since the multi-indices will be always denoted by Greek letters.
Throughout the paper the d-dimensional torus T¢ is a priori endowed with the periodic norm

d
/
el = (lesl?)”  for  £= (... &) €T (1.58)
k=1

where ||&]| = dist(&x, Z) for all &, € T and k € {1,...,d}. Identifying T¢ with [—1/2,1/2)? we see that
the norm || - || coincides with the Euclidean norm | - | restricted to [—1/2,1/2)%.

In this paper all function spaces will be defined over C. The triple (X, B(X), 1) denotes a measure space
X with a o-algebra B(X) and a o-finite measure p. The space of all p-measurable functions f: X — C
will be denoted by L°(X). The space of all functions in L°(X) whose modulus is integrable with p-th
power is denoted by LP(X) for p € (0,00), whereas L°°(X) denotes the space of all essentially bounded
functions in LY(X). These notions can be extended to functions taking values in a normed vector space
(B,]| - IB), for instance

LP(X;B) == {F € L°%(X; B) : | Fllzo(x;8) = I Fll 8l po(x) < o0},

where L°(X; B) denotes the space of measurable functions from X to B (up to almost everywhere equiv-
alence).
For any p € [1, 0] we define the weak-LP space of measurable functions on X by setting

LPR(X) =] X = C: | fllzpee x) < 00},
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where for any p € [1, 00) we have

£l ) 3= sup Au({e € X x| f (@) > ADYPand [|f ey = F )
>

In our case we will mainly have X = R% or X = T? equipped with the Lebesgue measure, and X = Z¢
endowed with counting measure. If X is endowed with a counting measure we will abbreviate LP(X) to

P(X) and LP(X; B) to P(X; B) and LP*>°(X) to (P>°(X).
If T: By — By is a continuous linear map between two normed vector spaces Bi and Bs, we use
IT|| B,— B, to denote its operator norm.

Fourier transform and convolutions

We will use the convention that e(z) = > for every z € C, where i2 = —1. Let Fpa denote the Fourier
transform on R? defined for any f € L'(R%) and for any & € ]Rd as

Fasl(©)= | flalelo

Sometimes we will write f(¢£) instead of Fga. For f € L'(R%) and 2 € R? the inverse Fourier transform
on R? is given by

Faaf(@)i= | f€)e(=¢-a)de.

If f € £Y(Z%) we define the discrete Fourier transform (Fourier series) JFq, for any £ € T¢, by setting

Fraf(€) =Y fz)e(x

x€Z4

For f € L'(T?) the inverse discrete Fourier transform (Fourier coefficients) is given by
Foif(z) = y f(e(=¢-z)de, = ezl
The continuous convolution of two functions f: R¢ — C and f: R? — C is given by
(f*g)( / flx — ), T€ R,

It is known that if f,g € L*(R?) then the Fourier transform convolution intertwines with the convolution
and one has

Fra(f*g) = Fra(f)Fra(g)-
Similarly, we define the discrete convolution of two functions (sequences) f, g € £*(Z%) by setting
(fxg)(@) = flz—ygly), yeZ'
y€Z4

We do not use different symbols for the convolutions since the meaning of the symbol * will be always
clear from the context. As in the case of the continuous convolution and the Fourier transform on R%, the
discrete convolution intertwines with the Fourier transform on Z¢. Namely, for f, g € ¢*(Z%) one has

Fra(f * g) = Fpa(f)Fzalg)-



Chapter 2

Preliminaries

In this chapter we present and discuss some general results concerning seminorms of the oscillation type
like the oscillation seminorm Oy y, r-variations V" and the jump seminorm Jg. We pay special attention
to some basic properties of those seminorms which are widely used in the following chapters. We also
formulate and prove the Calderén transference principle [7] which allows us to deduce seminorm inequalities
formulated in the language of ergodic theory from seminorm inequalities formulated in the language of
discrete harmonic analysis. It turns out that this procedure leads to the discrete operators of Radon type
given by (1.41) and (1.42). Radon operators associated with an arbitrary polynomial mapping may by
problematic the work with. However, it turns out that by using so-called lifting procedure the study can
be narrowed to the special class of polynomials, called canonical polynomials. We use this opportunity
to discuss some properties of Radon operators related to canonical polynomials. We will be particularly
interested in their Fourier multipliers and estimates for them. At the end of the chapter we state two
sampling principles: one due to Magyar, Stein and Wainger, and the second one due to Ionescu and
Wainger. Those two sampling principles are irreplaceable tools in proving Theorems 1.45, 1.48 and 1.51.

The organization of this chapter is as follows. In Section 2.1 we gather basic information about
seminorms of oscillation type. We also introduce some notation which allows us to write the results in the
sequel in a more concise way. Finally, we state the Calderén transference principle for dynamical systems.
In Section 2.3 we state and prove the lifting lemma which In Section 2.4 we collect some basic information
about Fourier multipliers related to Radon operators. Finally, in the last section we formulate, without
proofs, the Magyar—Stein—Wainger sampling principle and Ionescu—Wainger sampling principle which are
widely used in the following chapters.

2.1 Seminorms and the pointwise convergence

We begin with recalling the notion of a seminorm on a vector space. Let X be a vector space over C. A
real-valued function p: X — R is called a seminorm if the following two conditions are satisfied:

1. For any z,y € X the function p satisfies the triangle inequality, that is

p(z+y) < p(x) + p(y).
2. The function p is absolutely homogeneous, that is for any a € C and any z € X we have
plaz) = lalp(x).

Those conditions imply that p(0) = 0 and p(z) > 0 for any « € X. The key difference between the norm
and the seminorm is that the latter does not have the property of the point-separating. An important

26
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example of a seminorm which is not a norm is the following. For any f € ¢*°(N) we define

p(f) :==sup|f(n) = f(1)].

neN

Then p is a seminorm on ¢°°(N) which does not separate the sequences differing by a constant.
Another example is the oscillation seminorm which is the most fundamental of the seminorms we
consider in the sequel.

Definition 2.1. Let I C R. For an increasing sequence I = (I; : j € N) C T and N € NU {oo}, the
truncated oscillation seminorm of a function f: I — C is defined by

N 1/2

O n(f)itel:= (Y sw |f() - FI)P) " (22)

One can easily check that for any N € N and any increasing sequence I C I the function O% N s a
seminorm. It the late 80’s Bourgain || observed that the oscillation seminorm O y can be effectively
used to study the problem of convergence of a given sequence. Let f € £>°(N). Then it is easy to see that
one has

OF N(f(t) 1t € N) < 2| flleoy N2,

for any N € N and any sequence I C N. On the other hand, if we assume that for some ¢ € [0,1/2) we
have that

OF N (f(#) 1t € N) S || fllese () N°
for all N € N and I C N. Since ¢ < 1/2, this suggests that

sup |f(t) — f(I;)] =0 as j— oo,
IjSt<Ij+1
teN
which we can indeed prove, referring to the fact that the assumed estimate should hold for all I C N.
Thus, f satisfies the Cauchy condition and as a consequence it is a convergent sequence.

Proposition 2.3. Let (X,B(X), 1) be a o-finite measure space and let (az(x) : t € R) C C be a family of
measurable functions on X. Suppose that there are p € [1,00) and constants ¢ € [0,1/2) and C, > 0 such
that
sup  [OF n(ar i t € Ry)|o(x) < NGy
Ie6n(Ry)
Then the limit
lim a;(x) (2.4)

t—o0

exists for p-almost every x € X.

Proof. Suppose for a contradiction that the limit in (2.4) does not exists. Since p is a o-finite measure
then there exists Xo C X with u(Xp) < oo and small § > 0 such that

p({z € Xo: lim sup |as(z) — ar(z)| > 20}) > 26.

n—oo n<s,t
For n € N we denote

Ap ={x € Xo: sup|as(z) — ar(z)] > 25}.

n<s,t
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Note that A,11 C A, for every n € N, and by the continuity of measure one has

ILm p({z € Xo: sup |as(z) — ax(z)| > 26}) > 26.

n<s,t
Observe that for any n € N we have the following inclusion

{z € Xo: suplas(z) —ay(x)| > 20} C {z € Xo: suplay(z) — an(z)| >}
n<s,t n<t

and hence there is a ng € N such that for any n > ng we have

p({z € Xo: ilgﬂat(x) — ay(z)| > 0}) > 0.

Next, for m,n € N we define

B} ={r e X: sup |a(z)—ay(z)| > d}.
n<t<m
We observe that B}, C By . for every m,n € N and once again using continuity of measure we get for
every n > ng that
lim p(B},) = p({z € X: sup|a(z) — ap(z)| > 6}) > 6. (2.5)
n<t

m—o0
Consequently, there is m; > ng such that

p({z e X: sup |ay(x) — any(x)] > 6}) > 0.

no<t<mi

Using (2.5) recursively (in the next step we use n = mj) one can construct a strictly increasing sequence
(I; : j € N) C Ry with I} = ng such that for every j € N we have

p({z e X: I-<Stl§?- lag(z) — ag, (z)] > 0}) > 6. (2.6)

Then by (2.6) we obtain for every N € N and ¢ = min{p, 2} that

N+ = zw /2 sup Jau() — ar,(2)Pdp(a)

I; <t<IJ+1

< N1-a/2 0? teR)|P
N i o € B

Thus

Ne** < N'92 sup [|OF wlar it € Ry)|[, ) < N'TVENPCE.
Ic6n(Ry)

Since ¢ € [0,1/2), by letting N — oo we get that 6 = 0 which gives us a contradiction. This completes
the proof of Proposition 2.3. O

Let us note that the above proof works also for the oscillation seminorm taken over all sequences
I = (I; : j € N) such that N;j;1 > 2N;. It was this form of the oscillation seminorm that was first used
by Bourgain [1]. Moreover, it can be easily seen that we are not restricted to the condition ¢ € Ry. The
proof works also when t € N or t € 2N,

Another remarkable feature of the oscillation seminorm is the fact that it dominates the maximal
function.
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Proposition 2.7. Let (X,B(X),u) be a o-finite measure space and let (ax(x) : t € R) C LP(X) be a
family of measurable functions on X. Let I C R and |I| > 2, then for every p € [1,00) and any N € N
such that |I| > N + 1 we have

| sup Jag|||lpr(x) < SupHatHLP x)+ sup ||OF y(ar:t€T) HLP(X)- (2.8)
tel\supl Ie6n(I)

Proof. Let a = infI and b = supl. Since |I| > 2 we see that a < b. Next, one can choose a non-increasing

sequence (a,: n € N) C I and an increasing sequence (b, : n € N) C I such that a < a,, < b, < b for every

n € N and satisfying

lim a, =a and lim b, = b.
n—oo n—oo

Moreover, if a € I, then we assume that a, = a for all n. By the monotone convergence theorem we get

sup || = lim || sup Jagll| o x
Hte]l\supll HLP X) noo t€fan,bn)NI 0
< —
< lim laa, || e (x) + lim H [ambn)m]at aa, | Lp(X)
< sup [laa, [lz7(x) + lim la; — aa, |
N R
Now, let n € N be fixed natural number. Let I € &1(I) be defined as
Ii=a, and Iy =0b,.
Then we can write
I e o= tanllliog = 1002000t € Dll oy < sup 107 (a1 s £ €Dy
tE€|an,bn)NI 1€6

which ends the proof of (2.8) in the case when N = 1. For N > 1 it follows by the fact that for any
M,N € N with M < N we have

IESGUP( |07 ar(ar : t €T) M pox) < s Su}f( 107 (ar s t € Dl x)

provided that |I| < N + 1. This completes the proof. O

A closely related concept to the oscillation seminorm is the r-variation seminorm. Let us recall its
definition.

Definition 2.9. Let I C R. For any r € [1, 00] the r-variational seminorm V" of a function f: I — C is
defined by

N
1/2
Vi@ el =sup  swp (3 If(t) — FE)F)
NeNt1<-<tny1 i—1
t;€l J
In the case of r = oo we consider an appropriate modification related to the £°° norm.
Clearly, for any r € [1, 00| the r-variation is a seminorm. Moreover, we have the following pointwise
estimate for the maximal function

Su%) lfO] < V"(f@t):t€l)+|f(to)|, forany toel. (2.10)
te

The variation seminorm is closely related to the oscillation seminorm. This can be seen by from the
following observation. Let I C R. Let Iy C I be finite. Then for any r > 2 by Hdélder’s inequality, we have

O2 N (f(t) st €T) < N2 Vr(f(1) st € 1),
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Taking an ascending net of sets Iy C I such that lim,_,o, I; = 1 we get that
O N(f(t) st €D) < NYEVryr(f(e) : t € 1), (2.11)

The inequality (2.11) was first observed by Bourgain [!]. This inequality implies that if for the family of
measurable functions (a;(z) : ¢ € I) we are able to show the following r-variation inequality

HV"(at:teI[)‘

< .
oy SO (2.12)

for some r € [2,00) and p € [1,00]. Then we have the following oscillation inequality

sup ||O%N(at ct €D wx) < N1/271/7~Cp
]EGN(H)

which by Proposition 2.3 implies the pointwise convergence of the family (a;):cr. Consequently, the problem
of establishing the pointwise convergence can reduced to proving the r-variational estimates.

The r-variation seminorm was known before Bourgain’s work. The seminorm V" is a well known object
from the martingale theory and according to Qian [50] its origin can be traced back to Wiener [62]. The
r-variations for a family of bounded martingales (f,: X — C : n € N) were studied in mid 70’s by Lépingle
[34] who showed that for all r € (2, 00) and p € (1, 00) there is a constant Cp, > 0 such that the following
inequality holds

V7 (fn s n € N)||Lex) < CprsuprnHLP (2.13)

It is worth noting that the range r € (2,00) in Lépingle inequality is sharp, that is we cannot take r = 2.
A counterexample can be found in the work of Qian [50]. A similar thing happens for many families of
operators in harmonic analysis. For instance, Jones and Wang [27]| studied the r-variational estimates
for the Fejér and Poisson kernels and they proved that the seminorm V? is an unbounded operator on
LP(T). For this reason, we usually do not expect the estimates for V2 to be finite. As we have already
mentioned, for the problem of the pointwise convergence, it is not very relevant since it is enough to show
the r-variation estimates for some r € [2,00). However, if we leave aside the problem of the pointwise
convergence and look at the inequality (2.11) with r = 2 we get

Ofn(ag:t€l) <V3(ap:t 1) (2.14)

for any N € N and any sequence I € Sy(I). Hence an LP-estimate for the 2-variation V2 would imply
the following uniform oscillation inequality

8 IGSGUNP 107 war st € H)HLP(X) < Gyp. (2.15)

Although, in most cases we cannot expect the LP-boundedness of the 2-variations V? it turns out that we
may expect the uniform oscillation inequality. In the case of bounded martingales (f,: X — C:n € N) it
was shown by Jones, Kaufman, Rosenblatt and Wierdl [28] (see also [D1]) that for every p € (1,00) there
is a constant C), > 0 such that

2
sup  sup HOI,N(fn ‘ne N)HLP(X) <GCp SUPanHLP(X)- (2.16)
NEN I€6 x(N) neN
This result motivated the investigation of the uniform oscillation inequalities for various operators, see
[28, 29, 30, 31] and the references given there. In particular, Campbell, Jones, Reinhold and Wierdl [9]
investigated oscillation inequalities for the truncated Hilbert transform H; given by

Hof (x) = p.v% / fle—y)

dy, ze€eR, t>0. (2.17)
ly|<t Yy
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They proved that for any p € (1, 00) there is a constant C}, > 0 such that

sup  sup  [|OF y(Hef +t €RY)| oy < Coll fllomy, £ € L(R). (2.18)
NeN TGy (Ry)

Those results suggest that the oscillation seminorm can be some kind of endpoint at » = 2 for r-variations
V". However, what is the exact relation between those seminorms, except the inequality (2.11), is currently
an open problem — see |[D1]| and [11] for more details.

As we have seen, in order to handle the non-uniform oscillation inequalities one can use the r-variation
seminorms which are easier to study due to their closer relationship to the ¢"-norms. Bourgain in his
groundbreaking series of works [1, 5, (] observed that the r-variation seminorm is related to another
object "of the seminorm type” called the jump quasi-seminorm. In order to define it we need the notion of
the jump counting function. Let A > 0 and I C R be given. The A-jump counting function of a function
f: 1T — C is defined by

Nx(f(t) st €I) :=sup{J € N|3yy<...ct, : min |f(¢t;) — f(tj—1)| > A} (2.19)
t;€l 0<j<J

The function Ny counts the maximal number of jumps, the size of each of them being at least .

Definition 2.20. Let I C R and let (a;(z) : ¢ € I) C C be a family of measurable functions on X. The
Jgump quasi-seminorm of the family (a;(x) : t € I) is defined by

Jirxy(a it €T) = >18H)\(N,\(at(a;):tel[)) (2.21)

1/2
/ HLP(X)'
It is easy to see that J%p (X) is absolutely homogeneous. Unfortunately, it does not satisfy the triangle

inequality. However, it was proven by Mirek, Stein and Zorin-Kranich [11, Corollary 2.2] that there is a
constant C' > 0 such for any N € NU {oco} and any sequence of families (a}(x) : t € I),,eny we have

N N
pr(x)(zla? te ]I> < CZIpr(X)(a? Lt el).

In particular, this justifies the name quasi-seminorm'. Since C' does not depend on N, we say that this
constant is absolute with respect to taking sums of more than two elements.

Although this is not apparent at first glance the jump quasi-seminorm is closely related to the 2-
variation seminorm V2. Namely, one has

J%p(X)(at 1t e ]I) < ”V2(Clt 1t e ]I)HLp(X) (222)

The remarkable feature of the jump quasi-seminorm, observed by Bourgain [(], is that, in some sense, the
inequality (2.22) can be reversed. Namely, for any r € (2,00] and any p € [1,00) we have the following
inequality

||V7’(at 1t e H)”Lp,oo(X) gpﬂ« iup ”)\N)\(Clt it e H)1/2”LP’OO(X) (2.23)
>0

where the implicit constant depends only on 7 and p. It can be shown that we can not replace the weak

LP>° gpaces by LP. The proof of the inequality (2.23) involves the notion of the interpolation spaces and

can be found in [11, Lemma 2.12]. Now if (T})eg is a family of linear operators acting on L'(X) + L>®(X)

then by the inequality (2.23) a priori jump estimates

Tiox)(Tef 2t € 1) Sp [l Fll Lo (2.24)

!The name quasinorm itself refers to the function p : X — R which is homogeneous and satisfies p(z+1vy) < K (p(z)+p(y))
for some K > 0. The latter condition is weaker than p( S an) <K SN p(x,) uniformly in N € N.
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in some range p € (pp, p1) with pg < p1, imply the weak r-variational estimates

VATt € Dllwreexy Spor 1flLr(x)s (2.25)

for the same range p € (po,p1) and for all r € (2,00]. By Marcinkiewicz’s interpolation theorem the
estimate (2.25) implies that in the same range of p’s and for all r € (2, 00] one has

VI(Tef t € Dllzex)y Spo 1 lle(x)-

This argument shows that the jump estimates (2.24) can be interpreted as an endpoint for the r-variations
when r — 2 from above. As in the case of the oscillation seminorm many family of operators satisfy
jump inequalities even though the 2-variations may be unbounded. For example, the martingale case
(fn: X = C : n € N) was studied by Pisier and Xu [19] on L?(X) and by Bourgain [6, Inequality (3.5)] on
LP(X) with p € (1,00). More precisely, for every p € (1,00) there exists a constant C},, > 0 such that

Ty 1 € N) < Gyl o) (2.26)

Those results motivated the study of the jump inequalities in harmonic theory. At this point is it is worth
mentioning the work of Jones, Seeger and Wright [32] in which they established the jump inequalities for
a wide range of operators in harmonic analysis including continuous operators of Radon type.

Now, let us state some properties of the mentioned seminorms. Most of them can be expressed in an
unified way and in order to do so we introduce some common notation. Let I C R. For a given family of
measurable functions (a; : ¢t € I) C LP(X) (in the thesis we use only X = Z% or X = R%) we write

S%(Clt it e H)
to represent one of the following quantities:

sup sup HO%N(at(x) A= ]I)HLP(X), Jip(x)(at ctel)or |V (a(x): t e ]I)HLP(X)
NeN e (I)

where 7 € (2, 00] is fixed. In the sequel we will keep this notation in order to say that some properties and
facts holds for all kind of introduced seminorms or quasi-seminorms.
It is clear that one has
ng(at it e ]I) < ”Vz(at(l') it e ]I)HLp(X) (227)

and if J € R is countable then

: (2.28)

Sk (ap:t€d) < ||[Via(z) 1t € 1) o) < QH(Z |at‘2)1/2‘ Lr(X)
tel

Obviously, 8% is monotonous with respect tol. Namely, if I; C Iy, then
Sg((ﬂt 1t e ]11) < Sg((ﬂt 1t e ]12)
The next important propriety is subadditivity.

Fact 2.29. Let p € [1,00) and I CR. Let N € NU {oo}. For any sequence of families (a}(x) : t € [)pen
we have

N N
Sk(Dar:ten) s> Sharten
n=1 n=1

where the implied constant is independent of N € NU {oo}, the set I and the families (ap(z) : t € I)pen.
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Proof. In the case of the oscillation seminorm and r-variations the result follows by the fact that these
object are seminorms and in these cases one may take the implied constant to be equal to 1. The jump
quasi-seminorm sz( X) is a bit more problematic. However, by |11, Corollary 2.2] we know that it admits
an equivalent subadditive seminorm which yields the desired result. O

The next proposition describes the splitting property S%.

Proposition 2.30. Let p € [1,00) and let us consider S%. Then for —oco <u < w < v < oo we have
S (ag: t € [u,v]) S S5 (o € [u,w +1]) + SE(ar : ¢ € [w,v]), (2.31)
where the implied constant depends only the choice of S%.

Proof. In the case of the oscillation seminorm we fix N € N and I € Sy ([u,v]). We see that it is enough
to consider sequences such that I, < w < Iy for some k =0,1,..., N. Then one has

sup oy —az| <2 sup |ag—ap|+ sup |ar — ay
[k§t<[k+1 I <t<w+1 w§t<1k+1

and then we use the well-known inequality (a + b)? < 2(a? + b?). In a similar way one can handle the
r-variation seminorm. In the case of the jump quasi-seminorm one uses the inequality

Na(ag 0t € [u,v]) < Nyjo(ag it € [u,w +1]) + Nyjo(ag 0 t € [w,v]).
Replacing A by A/2 only produces a numerical constant in the studied inequality. O
The following result describes the cut-off feature of S%..

Proposition 2.32. Let p € (1,00) and let us consider Sg(. Then for —oo < w < u < 00 one has
ng(at]l(w,oo)(t) ite [O,U]) 5 Sg((at ite [wvu]) + HawHLP(X)7
where the implied constant depends only the choice of S%.

Proof. In the case of the oscillation seminorm we fix N € N and I € Sy ([0, u]). We see that it is enough
to consider sequences such that I, < w < Ix4q for some £ = 0,1,...,N. Then the desired inequality
follows from the fact that

Sup ’ut]l(w,oo)(t) - afk]l(w,oo)(lk” < sup ’at - aw‘ + ’uw"
I <t<Ipi1 w<t<lp 41

The case of the r-variation can be handled in a similar way. For the jump quasi-seminorm we observe that
for any A > 0 one has

)\N,\(Cltﬂ(wpo)(t) 1t e [O,u]) < )\N/\/Q(Clt 1t e [w,u]) + 2\aw|.
As before, replacing A by A/2 only produces a numerical constant in the studied inequality. O

The next result is a well-known decomposition into the dyadic scales and short variations from [32]
(see also [10]).

Proposition 2.33 ([32, Lemma 1.3]). Let (a; : t € R) be a family of measurable functions on X. Let
I c R. Then for any T > 0 we have

(ot el) S Shlapr in e Z)+||( Y Viarit e 27,2000 H)Q)l/z)

nez

Lr(X)
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Proof. In the proof we focus only on the case of the oscillation seminorm. The case of r-variations is
similar and the case of jump quasi-seminorm was handled in [32, Lemma 1.3]. We will exploit some ideas
presented during the proof of [32, Lemma 1.3]. Fix N € N and let I} < Iy < --- < Iy be any sequence
contained in I. We consider two disjoint sets:

Js = {j: [Ij, Ij+1) € [27,20+D7) for some n € Z},
Ji = {j: I; 2" < I;1 for some n € Z}.
The sets Jg and Ji, correspond to the so-called short and long jumps, respectively. Now, for the short
jumps it is easy to see that
1/2

1/2 T T
(Z sup  |ag — a,jy2) < (ZV2(at Lte [, 20D )ﬂ]l)2> . (2.34)
jess listslin nel

Next we handle the long jumps. Let j € J;. We denote by k; € Z the largest number, and by m; € Z the
smallest number, such that
2k; <Ii<Ijj < 2™ .
Now, for t € [I;,I;4+1) N1 we have the following simple bound
lag —az,| <2 sup lag — ar.
te[277,27)NI

Moreover, one has

m;—1 1/2
sup lay — anJr\ < sup |agar — a2k]r| + ( Z sup lag — agnr \2)
t€[2k§,2m;)lﬁlﬂ ne[kj,mj) nij 156[271‘F72(n+1)7—)m]I
m;—1 1/2
< sup  ager —aer| 4+ ( Z Viag :t€n”,(n+1)7) ﬂ]I)2> .
27
ne[kj,mj) n:k]-
Therefore, we can estimate
> )"
sup |a; —ar,|
je I;<t<Iji1
m;—1
2\ /2 — 2, 2T om41)T) ~ 2 2
§2(Z sup |a2nf—a2k;.y) +2<ZZV(at.tE[2 2 ml))
jey, ne€lkim;) jEJL, n=k;

2 1/2 > 2 T 17 2 1/2
32(2 sup |a2n7_a2k;y) +4<ZV(at:te[2",2("+))ﬂ]l)) ,
jEJL ne[k] 7mj) n=0

where the last inequality follows from the fact that in the second term, for each n € Z, we can count
V2(a;: t € [277,20HD7) N 1) at most twice. Combining the above estimate with (2.34), taking norms and
the appropriate suprema yield the desired result. O

The next result is crucial in our investigations and says that the 2-variations can be bounded by the
sum of square functions of differences at dyadic points.

Lemma 2.35 (Rademacher-Menshov inequality). Let b and s be fized positive integers. Then for any
complez-valued sequence (a; : b < j < 2°) we have

1/2

V2a;:b<j<2°) < V2 2% (Xlaws, —aul?) (2.36)
i= J
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where [ué,ué-_i_l) are dyadic intervals of the form [j2°, (5 + 1)2%) for some 0 < i < s, 0 < j < 257 — 1,
contained in [b,2°] (in particular, the number of intervals occurring in the inner sum is finite).
Proof. The proof comes from [15]. At the beginning we observe that any interval [m,n) for m,n € N such
that 0 < m < n < 2° is a finite disjoint union of dyadic subintervals, i.e. intervals belonging to some Z;
for 0 <i < s, where

= {[j2,(j+1)2"): 0<j <25" — 1}

and intervals of each length appears at most twice.

| t |
! | |
<} } ! °
‘ : !
| : i t 1 |
[ [ [ [ I [ [
5 6 8 16 20 22 23

Figure 2.1: The dyadic decomposition of the interval [5,23) into dyadic intervals from Z;.

For the proof of this fact, let us set mg = m. If we have chosen m; then we select m;;1 in such a way
that [my, my;1) is the longest dyadic interval starting at m; and contained inside [m;, n). If the lengths of
the selected dyadic intervals increase then we continue by repeating this procedure. Otherwise, there is [
such that myy1 —my > myyo —myyq.

We show that this implies that mjye — my11 > mys3 — myys. Suppose for a contradiction that
Mo —myp1 < myyr3 — myro. In that case we have following inclusions

(M1, Mig2) C (Mg, 2mype — mypr) S [mygr, mygs) S [mygr, n).

Therefore, if we show that 2(myyo — mysq) divides myyq then [myiq,2my1o — myyq) is a dyadic interval
contained in [m;y1,n) which starts at m;y; and ends at 2my 9 — myy; > myye which contradicts with
the choice of mjy9.The task is easy if my+1 — my > myyo — my41 since then we have myy; = k2¢ and
myyo — myy1 = 27 for some i,j,k € N with ¢ > j. When one has myyq — m; = my 9 — my41 then, by
maximality of [my, myy1), we have that 2(my1o — mys1) cannot divide my, thus divides my;.

Now we can prove the inequality (2.36). Let N € N be fixed and let b < ¢; < ... < ty41 < 2° be any

increasing sequence. By the first part of the proof, for each j € {1, .-, N} we write
Lj
[tj tj1) = U[“;7ug+1)
=0

for some L; > 1 where each interval [u{ ,ug +1) € [b,2°) is dyadic. Then

Lj S
lat; ., — at;| < lz(; \aule - au{\ = Z Z |(:Lu{+1 — Ayl

=0, [u?,uﬁrl)el}

Hence, by Minkowski’s inequality

N N\ 1/2 N o8 2\ 1/2
(Yl —a?) "< (X(X X lag-ayl))
Jj=1 Jj=1 =0y, [u] ui, | )ET;
s, N 2\ 1/2
S0 X eg—ay )
=0 9T L et
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Since for a given i € {0,1,...,2%} and j € {1,1,..., N} the inner sums contain at most two elements we
can use the inequality (a + b)? < 2(a? + b?) to get that

N N\ 1/2 s, N o\ 1/2
(Z|atj+1_atj| ) S\/iz<z Z ‘aul'_aug'ﬂ‘ )

7j=1 =0 j=1y. [u{’u{Jrl)eZi
which is bounded by the right-hand side of (2.36). Taking appropriate suprema completes the proof. [

The inequality (2.36) originates in the paper of Lewko and Lewko [35] where it was used to obtain a
variational version of the Rademacher—-Menshov theorem. A few years later the inequality (2.36) was
independently discovered by Mirek and Trojan [15] in the context of the maximal estimates for the ergodic
averages. We note that by the inequality (2.27) we get that S% is bounded by the 2-variations hence the
Rademacher-Menshov inequality holds for S%. More precisely, we have the following observation.

Remark 2.37. By inequality (2.27) we deduce that the Rademacher—Menshov inequality holds for S%.,
namely for any sequence (fj(x) : b < j < 2°) of functions from LP(X) one has

Shin:b<0<2) < VIS (S, ~ )]
=1 7

J

(2.38)

LP(X)

where [u§,u§+1) are dyadic intervals of the form [j2¢, (5 + 1)2%) for some 0 < i < 5, 0 < j < 257 — 1,
contained in [b, 2°].

2.2 Calderén transference principle

Bourgain in his groundbreaking series of papers |1, 5, (] was interested in the pointwise convergence of
the ergodic averages along the squares given by

1

N
Tnf(a) = 5 O fI70) weX, fel’(X),
n=—N

2N

where T: X — X is a measure preserving transformation. If we consider X = Z and T(z) = z — 1 we
obtain a special case of such averages, namely

1

N
Myf(2) = gy D flw=n?), z€Z, [el(2),
n=—N

2N

which is an example of discrete Radon averages. Consequently, we see that Radon type operators are
special cases of more general ergodic averages. It turns out that, in the case of the convergence problems,
this is the only relevant case of the ergodic averages.

Let (X, B, 1) be a o-finite measure space with a family of invertible, commuting and measure preserving
transformations 717, 715, ..., Ty which means that

(T A) = p(A) for each A € B and each i =1,...,d.

For a given polynomial mapping P of the form (1.40) and a non-empty convex body Q we define

MR f(x) = Y AT YKl (), @ e X, (2.39)
ythr‘le



CHAPTER 2. PRELIMINARIES 37

where K; : (0,00) x R¥ — C is a fixed function. For example, when

1

- 1 RF 2.40
‘thZk’ Qt(y)a y e ’ ( )

Ki(y)

then Mtp “'® hecame the “standard” ergodic averages. In the case when

Ki(y) = K(y)lon (), v € R, (2.41)

with K: R¥\ {0} — C being a Calderén-Zygmund kernel we get that Mtp % are the Cotlar type er-
godic average. Again, we are particularly interested in the integer shift setting. Let us consider the
dynamical system of Z¢ equipped with counting measure and the shift operators S;: 74 — 7% given by

Sj(x1,...,xq) == (x1,...,25 — 1,...,24). Then the average Mtp’erg can be written as
P shif
MEM ()= Y f(n—Py)Kily), neZ. (2.42)
yEQtﬂZk

It can be easily seen that the discrete Radon type operators (1.41) and (1.42) are special cases of
Mz?,shift.

In 1968, Calderén [7] made an important observation that some results in ergodic theory can be easily
deduced from known results in harmonic analysis. Namely, the boundedness of the maximal function of
Birkhoff’s averages given by

N
1
sup — "), e ’(X), xz¢€lX,
oy L e o

can be deduced from the boundedness of the Hardy—Littlewood maximal function

1 N
sup —
Nen N

n—

[f(z—=n)|, fel(Z), xzecl
0

It turns out that Calderén’s observation can be extended to the setting of seminorms and averages Mf o8

Theorem 2.43. Let (X,B,u) be a o-finite measure space with a family of invertible, commuting and
measure preserving transformations Ty, 15, ..., Ty. Let MIZD’erg and Mtp’Shlft be defined as in (2.39) and
(2.42). If for some p € [1,00) there is a constant Cp, > 0 such that

SLMIM 1> 0) < Coll flvzay, | € P(ZY). (2.44)

Then we have
Sé’((Mf’ergf 11> 0) <Cpllfllex), [ € LP(X).

Proof. Let p € [1,00) be fixed. For a family of functions (a; : t € I) C LP(X) indexed by the set I C R we
write
O%N(at :t el
Rlag:te€l)i={ Vi(a:tel) (2.45)
M(Ny(az : t € T))Y/?

to represent one of the quantities on the right hand side of (2.45). Clearly, R depends on some parameters
but we will not be using their exact form so, for the sake of simplicity, we omit them. It is easy to see
that after taking the appropriate suprema, we get that

sup ||R(a; : t €1 =88 (a;:t€l).

Mo x)
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In the case of the r-variation norm V" we do not need to take any supremum.
Now, let NV € N be a fixed large natural number and let

N := max |P .
yGQNmZk! (y)]

Clearly N < oo since 2y is bounded and P is a polynomial mapping.
Now let J > N be a natural number. For f € LP(X) and 2 € X we define a sequence on Z¢ by setting

T, ™ ... " if 0 < <J
o(n) = {7 a ‘@) H0<nl<J, (2.46)
0, otherwise.
Observe that for t € (0, N] and for m € Z¢ such that 0 < |m| < J — N we have
shi P P —m o
MEM o) = Y7 p(m = P)K(y) = Y FE IO T ) Ka(y)

yEQtﬂZk yeﬂtﬁZk
o Perg —m1 —myg
=M; " f(ry™ T )

since 11, ..., Ty are commuting. Therefore, we have
R(M] ™ o(m) : t € (0, N]) = R(M] 8 f(Ty7™ - T, ™)  t € (0, N]).
Hence, from the seminorm estimate for the shift (2.44) we get

p
> ‘R(Mf’ergf(Tfml STy M)t e (O,N])‘ <Cr > |faym T M), we X
0<|m|<J-N 0<|n|<J

Now, if we average the above inequality in X and use the fact that each T} is measure preserving we obtain

that
S RMPEf e O N) Dy SCE Y 1F 10

0<|m|<J—N 0<|n|<J

This implies that

er 2J +1 d/p
[R(MP8f <t € (0, Nl 1o ox <(m> Coll fllzrx)

for any J > N. Letting J — oo gives us
IR 5 -t € (0. NN oy < Coll fllzox
Now we may take the appropriate suprema to get that
Sk (MPEf ¢ € (0,N]) < Cyll flluncx)
Due to the monotonicity of Sg(, taking N — oo yields the desired result. ]

The above result shows that the discrete operators of Radon type defined in Sections 1.1 and 1.3 are
closely related to the ergodic averages Z\@73 “'8 associated with the kernels (2.40) and (2.41). In those cases,
by the Cader6n transference principle, the seminorm estimates

SY(MP8f 1t > 0) < Oyl fllrix),  f € LP(X),

follows by Theorem 1.45 and Theorem 1.48.
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2.3 Lifting procedure and canonical mappings

Let d, k be fixed natural numbers. As we know, the polynomial mapping P from Z* to Z% is defined as a
transformation of the form

P = (Py,...,Py): ZF - 74 (2.47)

where each P;: 7F — 7 is a polynomial of k variables with integer coefficients such that P;(0) = 0. For
example the mapping
7?3 (z,y,2) = (%Y + 2yz, 222 + 5y?) € Z°

is a polynomial mapping between Z? and Z2.
Let P be a polynomial mapping (2.47). We define its degree by setting

deg P := max{degP;: 1 < j < d}.
Let us consider the set of multi-indices
I'i={yeNg\{0}: 0<|y| < degP} (2.48)

equipped with the lexicographic order. It is easy to see that for each j € {1,...,d} there is a sequence
(¢j 17 €T) CZ such that

Pj(x) = Z c}’x”,

vel
where
Yo Y2 TVk
27 i=xtxy z,F.

Further, we denote by Z! the space of tuples of integer numbers labeled by multi-indices v = (71, ...,7%),
so that Z' = ZI'l. In a similar fashion, we denote R = RITI. Finally, we define the canonical polynomial
mapping

ZF sz =(x1,...,x5) = (@) =@ :yel) ezl (2.49)

It is easy to see that the coefficients (c;y vy el je{l,... ,d}) determine a linear transformation
L: R" — R such that L((y)") = P(y) for y € Z*. Indeed, let L be given by

L(z) == (Li(x),..., Lq(z)), z€R", (2.50)
where for each j € {1,...,d} we set
Lj(x):= Zc}xﬂy. (2.51)
yel

Clearly, for any y € Z* we have Lj((y)r) =P;(y).
It turns out that the study of the seminorm inequalities related to the operators of the form

> fn—=P)Ki(y)

yGQtﬁZk

can be reduced to the setting of the canonical polynomials. For any set I' ¢ N¥\ {0} we define

MO ()= > fla— () Kily), weZt

where K;: (0,00) x R¥ — C is some fixed function. Let Mt73 Shft b the average defined in (2.42) associated
with the kernel K;. Then the following result holds.
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Lemma 2.52 (|39, Lemma 2.2|). Let d,k € N be fized. Let P be a fixed polynomial mapping (2.47) and
let T be defined as in (2.48). Suppose that for some p € [1,00) there is a constant C, > 0 such that

SP(MPMf > 0) < Gyl fllow @y, fer@h). (2.53)

Then "
Spa (M f 1> 0) < Coll flw(zay,  f € (2%

with the same constant as in (2.53).

Proof. Let p € [1,00) and f € (P(Z%) be fixed. Recall the notion of R(a; : t € ) defined in (2.45). Let
R >0and N > 0 be fixed. For any z € Z? we define the function F,: Z' — C by setting

zeZl,

Fo2) flx+ L(2)) if |z] < R+ NkdeeP,
x Z) =
0 otherwise,

where L: RI' — R? is the linear transformation (2.50) associated with the mapping P. Let t < N. For
any y € ZF with |yl <t and any u € Z' with |u|s < R we have

’u— (?J)F‘ < R—I—max|tk|7|‘ < R+ NkdesP,
vel

Consequently, for each x € Z% and any v € Z! with |u|, < R we have
M@ L) = 0 fa+ Liu— ()") Kily) = My Fa(w),
yEQtﬂZk

provided that ¢ < N. Therefore, we may write
R(MP™ (2 + L(u)) : t € (0, N]) = R(M ™ F, () : ¢ € (0, N]).

Now, since the /P-norm is translation invariant, we have

2R+ RO & 2 RO @+ Lw) -t e 0. N

z€Zd yezl
lu|co <R

2R+1\FI o > RO (u) st e (0.N])[".

z€Zd ezl
|u|co<R

MP,Shift . N p —
HR( Pehift ¢ 4 ¢ (0, N]) )

By the inequality (2.53) one has

2R—|— ‘Fl Z Z FShlftF( ) tG(O,N])‘ 2R—|—1 or 1 1\ Z Z ’F

z€Z4 yezl z€Zd ezl
lu|c <R

Let us observe that by the definition of the function F, and by the fact that the fP-norm is translation
invariant one has

DDACIEDS > |f (@ + L(w))[P = (2R +2N* 48P + ) 717, v

r€Z4 ueZl zeZd uezl
‘U|oo§R+Nk deg P

As a consequence we obtain

P o 2R+ oNkdegP 4 1)L
p(Z) P (2R + 1)

IN

HR(MZD’Shiftf .t € (0, N]) 1 £ller zr)
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which, by taking R — oo, implies

[RMP™ e N < Cll fllencasy.

¢r(ZT)

Now we may take the appropriate suprema to get that
P shift
5§d(Mt T te (OaN]) < Cp||f”LP(X)~

Due to the monotonicity of S?

7a» taking N — oo yields the desired result. O

The procedure presented in the proof of the above lemma is called lifting or method of descent. As one
may expect a similar result holds in the continuous setting. For any C>°(R%) we define

My f () = | f=PO)Ey)dy, r € R,

where K;: (0,00) x R¥ — C is some fixed function and the integral may be understood in the principal
value sense. For any set I' C N¥\ {0} and any C2°(R") we define

M{’Shiftf(l‘) — ) f(l‘ B (y)F)Kt(y)dy7 S ZF.

Then the following holds.

Lemma 2.54 ([56, Section 2.4, p. 483|). Let d,k € N be fized. Let P be a fized polynomial mapping (2.47)
and let T' be defined as in (2.48). Suppose that for some p € [1,00) there is a constant Cp, > 0 such that

She (MM f 14> 0) < Cyllfllo@ry, £ € LP(RY).
Then _
Spa (MM f 11> 0) < Coll flprmay.  f € LP(RY)

with the same constant as in (2.53).

2.4 Radon type operators

As we seen in Section 2.2 the discrete Radon averages M} and H arise naturally upon applying Calderén’s
transference principle to the ergodic averages (2.39). Nonetheless, the above observation is not the only
reason to consider Radon averages. Namely, the operators Mtp can be seen as discrete counterparts
of the continuous Radon operators defined in (1.43) and (1.44). In turn, those operators are natural
generalisations of the Hardy—Littlewood operators

1

= x —y)dy
ol Jo, /7Y

and the Calderén—Zygmund singular integrals
p-v. [ flz —y)K(y)dy,
Q
where K : RF\ {0} — C is a Calderén-Zygmund kernel which satisfy conditions (1.4), (1.5) and (1.6). The

idea of considering such operators related to the polynomial trajectories originates in the work of Stein
and collaborators, related to curvatures and parabolic differential equations, see [15, 25, 59, 58|. Since
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then those operators became widely known in harmonic analysis. Of particular interest were the seminorm
estimates for those operators — for more details see Chapters 3 and 4.

We will now proceed to present some basic properties of Radon type operators which will we be used
later. By the results of Section 2.3 we may consider the Radon operators related to the canonical mappings
(2.49) only. Let Q C R¥ be a convex body and let €; with ¢ > 0 denote its dilation. For finitely supported
functions f: Z' — C we denote

M, f(z) = ,mzk‘ Y fla-@h, zeZt (2.55)
yEQNZF
and
Htf(x> = Z f($ - P<y))K(y)7 T ZF? (2'56)
yeuNZF\{0}

where K : R¥\ {0} — C is the Calderéon-Zygmund kernel which satisfy conditions (1.4), (1.5) and (1.6).
From now on, M; and H; will always refer to the operators defined above. In a similar fashion, we denote
the continuous Radon operators. For smooth compactly supported function f: Rl — C we denote

1

ol /. flz—@hHdy, zeRY, (2.57)

M. f(z) =

and
Huf (@) =pv. | fla- (y)K(y)dy, zeR', (2.58)

where again K is a Calderén-Zygmund kernel which satisfy conditions (1.4), (1.5) and (1.6).
It is easy to see that M; and H; are multiplier operators related to the Fourier transform on Z', that
is, for any = € Z' we have

M f(x) = Fpr (muFpr ) (@) and Hyf(z) = Fpr (meFor f)(2)

where ]
my(§) = 19, N ZF| Z e(- (y)r)’ geTh, (2.59)
yEQNZF
and
(@)= Y. el (K, ¢eT". (2.60)
y€QNZF\{0}

Similarly, the operators M; and #; are multiplier operators for the Fourier transform on R', namely

My f () = Foit (@ Fgr f)(x) and Hef (2) = Foit (U Fpr f) (@)
where .
(&) == [ e(¢ - (H)")dy, £eR, (2.61)
| Jao,
and
(€)= pv. / e(t- () K(y)dy, € R (2.62)
Q

Let A be the diagonal |I'| x |I'| matrix satisfying

(Av)y = [y|vs. (2.63)

For t > 0 we set
t4 = exp(Alogt),
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which means that t4z = (t'""m,y 1y € F) for every 2 € RY. In the sequel we frequently exploit the following
decay estimates for the multiplier ®;,

1©1(6) — 1] S [t4€]oc and  [@4(€)] S [tA¢] (2.64)

where A is the matrix of the form (2.63). The first inequality is a straightforward consequence of the mean
value theorem. The second estimate is a consequence of the refined van der Corput’s oscillatory integral
lemma with a rough amplitude function proven by Zorin-Kranich |64, Lemma A.1].

Proposition 2.65 (Van der Corput Lemma). Let d,k € N be given and let P(z) = 31 <4 <q Aa2® be a

polynomial in k variables of degree at most d with real coefficients. Let R > 0 and let 1p: R¥ — C be an
integrable function supported in B(0, R/2). Then

Sd.k sup (@) — Yz - v)|dz,
vERE:[v|<RA-1/d JRF

/ e P@ e (z)da
Rk

where A := 371 < ja1<d Rlel|\|.
Thanks to the above proposition we may write

_ Q+v)\Q
@@l Sral? sw [ @) - taG-ojae = sp 2L
vERF:[v|<tA—1/IT1 JRE VERE:[u|<tA~1/IT] €2

where A ~p, \tAg |o- In order to estimate the last quantity we make use of the following lemma which al-
lows us to control the measure of neighborhoods of the boundaries of convex sets — see also Proposition 3.15
in Section 3.2.

Lemma 2.66 ([12, Lemma A.1]). Let G C RF be a bounded and convex set and let 0 < s < diam(G).
Then
{z e R¥: dist(z, 0G) < s} <k sdiam(G)*~1,

The implicit constant depends only on the dimension k, but not on the convex set G.

If we apply the above lemma to our setting we see that
|(Q +0) \ Q| < Jo]t* !

and consequently

< \U|tk_1

1D:()] Sir)k sup q
veRksjo|<ta-1/I0 2]

SivLkQ jtAg| /T

which ends the proof of the second estimate in (2.64).
We have analogous estimates for the multiplier ¥;. For a fixed ¢ € (0,1) and any real number ¢ > 0
we have

W) = V(&) S 1%l and  [04(€) — Wa(§)] S |4, (2.67)

where ¢ > 0 is from the continuity condition (1.6). The first estimate follows from the cancellation
condition (1.5) and the second one is a consequence of Proposition 2.65 and condition (1.6) — see |
Section 3.3] for more details.

I
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2.5 Sampling principles of Magyar—Stein—Wainger and Ionescu—Wainger

In order to handle the discrete Radon type operators we follow Bourgain [6] approach and we use the
Hardy-Littlewood circle method (Section 1.2.1) to localize multipliers m; and n; around appropriate ra-
tional frequencies, and replace them by their continuous counterparts. Then we want to utilize some known
results obtained in the continuous setting but in order to do so we need some sampling (or transference)
principles which will show us how to do it.

The sampling principles (or transference) are invaluable tools in harmonic analysis thanks to which
some results obtained in one setting can also be used in another one (usually results from R? are used in
Z% or vice versa). There are many transference results in harmonic analysis and in our case a particularly
important will be a sampling principle of Magyar, Stein and Wainger [36]. In 2002 Magyar, the authors
have proved an (P-estimates for the maximal discrete spherical averages on Z?. Recall that the discrete
spherical average for f € ¢P(Z%) is defined as

1

Axf(n) ::W Z f(n—m), n ez,

[m|=X\
where N () denotes the number of m € Z such that |m| = A.

Theorem 2.68 ([30, Theorem 1|). Let d > 5. Then the inequality

H ililg ‘AAf’Hzp(Zd) < Cd”f”ep(zd)y fered, (2.69)

holds for p > %.

It is impossible to deduce the above inequality directly from its continuous counterpart. In order to
prove (2.69) Magyar, Stein and Wainger have to use entirely different methods than in the continuous
case. The key tool that allowed them to handle the above problem was the modified version of the Hardy—
Littlewood circle method. Moreover, the authors have developed the following transference principle [30,
Corollary 2.1] that allowed them, nevertheless, to use the results from the continuous setting.

Proposition 2.70. Let d € N be fized. There exists an absolute constant Cq > 0 such that the following
holds. Let p € [1,00] and ¢ € N, and let By, By be finite-dimensional Banach spaces. Let m: R —
L(B1, Bs) be a bounded operator-valued function supported on q¢~'[—1/2,1/2]¢ and denote the associated
Fourier multiplier operator over R% by Tga[m]. Let mper be the periodic multiplier

ml, (&)= > mE-n/g), £eT

nezd

and denote by Tya[mier| the associated Fourier multiplier operator over Z%. Then

| Ta [mger]HEP(Zd;Bl)—wP(Zd;Bg) < Cy|Tia [m]HLP(Rd;Bl)eLP(]R’i;BQ)'

The proof can be found in [36, Corollary 2.1, p. 196]. Roughly speaking, the above proposition
allows us to control the periodic multiplier mpe; on 7% by its single peak m on R%. It is important that
Proposition 2.70 covers the case of the finite-dimensional Banach spaces which allows us to work with the
supremum norm. We also refer to |11] for a generalization of Proposition 2.70 to real interpolation spaces,
which in particular covers the case of jump inequalities.

The second important sampling result is the Ionescu—Wainger theorem which is a sort of generalization
of the Magyar—Stein—Wainger sampling principle which covers the case of multipliers localized around
fractions with different denominators.
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The origin of the Ionescu—Wainger theory takes place in 2004 with their groundbreaking paper [26] in
which they proved that the discrete singular Radon transform

HP f(z):= Y fla—Pw)E(y),

yeZF\{0}

is bounded on #? with p > 1. It was a challenging problem to establish the boundedness of H” on ¢P(Z%)
with p € (1,00). The first partial answer was given by Stein and Wainger in [58| where they managed to
prove that H” is bounded on ¢P(Z%) for p in a certain neighborhood of 2. The full range of p € (1, 00)
was obtained by Ionescu and Wainger [26] by constructing a special set of fractions which allowed them to
exhibit some orthogonality properties on /P. Below we present the vector-valued version of their sampling
theorem whose proof can be found in [43, Theorem 2.1].

Theorem 2.71. For every o > 0, there exists a family (P<n)nen of subsets of N such that:
(i) NN € P<n © Nyjay(neney-
(i1) If N1 < Na, then P<y, C P<n,.
(iit) If g € P<n, then all factors of q also lie in P<y.
(iv) lem(Py) < 3V.

Furthermore, for every p € (1,00), there exists 0 < Cp,4 < 0o such that, for every N € N, the
following holds:

Let0 < ey < e N and let Q := [~1/2,1/2)% be a unit cube. Let m: R% — L(Hy, H1) be a measurable
function supported on enQ taking values in L(Hy, Hy), the space of bounded linear operators between
separable Hilbert spaces Hy and Hy. Let 0 < A, < oo denote the smallest constant such that

H‘F]}gdl (m’FRdf)HLP(Rd;Hl) =< AprHLp(Rd;Ho)

for every function f € L*(R%; Hy) N LP(R%; Hy). Then, the multiplier

An(€):= ) m(E-b),

bEESN

where Y.<y is defined by
_Ja d AT P =
ESN-—{QEQ NT":qe€ P<n andng(a,Q)—l}a

satisfies
|5 (A Fra ) sy < Congaa108 M)Al Fllov iy (2.72)

for every f € (P(Z%; Hy).

At first, it is easy to see that in Theorem 2.71 the multiplier Ay is localized around fractions with dif-
ferent denominators and by property (i) we know that among these denominators are numbers {1,..., N}
which clearly generalizes Proposition 2.70 where we have only one denominator q. Unfortunately, the set
of fractions Y.<y does not consist solely of fractions with denominators from the set {1,..., N}. There
are some bigger denominators but fortunately they are bounded by e¥”. It is not easy to describe in a
few words why one cannot just take the fractions with denominators from the set {1,..., N}. We refer to
[26, 37, 61] for more details. The second thing is the limitation the underlying setting. In the Magyar—
Stein—Wainger sampling principle we are able to consider Banach spaces but in the Ionescu—Wainger
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theorem we are limited to the Hilbert spaces only. Fortunately, it is enough in our case since this covers
the case of the square functions.

In the first version of Theorem 2.71 in the inequality (2.72) there was a factor (log N)” with some
D > 0 related to p. In mid 2010’s Mirek [37] managed to improve the loss in the Ionescu—Wainger theorem
to log N and he has used it to provide an analogue of the Littlewood—Paley theory adapted to major arcs.
In late 2010’s Mirek, Stein and Zorin-Kranich in their work [13] about the jump inequalities for the Radon
operators have developed the vector-valued version with the log N loss. In 2020 Tao [61] has used the last
progression on the so-called sunflower conjecture to remove the factor log N2.

2In this thesis we present the Ionescu-Wainger with the log N loss because the results presented here were obtained before
the work of Tao and have used the version due to Mirek, Stein and Zorin-Kranich.



Chapter 3

Uniform oscillation estimates for Radon
operators

The results of this chapters are based on [D1] and [D2]. Our goal is to prove the uniform oscillation
inequalities for the Radon operators (Theorems 1.45 and 1.48). The chapter is organized as follows. In
Section 3.1 we present a brief history of the problem and place our results among other known theorems.
In Section 3.2 we present the proof of the uniform oscillation inequality for the Radon averages M; and M,
— see Section 2.4 for definitions. In Section 3.3 we present the proof of the uniform oscillation inequality
for the singular integrals of Radon type H; and H;.

3.1 Brief history of the problem

At the beginning of the 1980’s, Bellow [3] and independently Furstenberg [19] posed the problem about
pointwise convergence of the ergodic averages along monomials given by

N

1 b
TRf(@) = 557 22 fI" o),
n=—N

where T' is some measure preserving transformation. At the end of the 1980’s, Bourgain established the
pointwise convergence of the averages T]Z(, in a series of groundbreaking articles |1, 5, 6]. By using the
Hardy-Littlewood circle method Bourgain [6] proved that, for any A > 1 and any sequence of integers
I =(I;:j e N)with I;;1 > 2I; for all j € N, we have

|OF (T f i €Nl 1oy < CLa)Iflz2(x . N €N, (3.1)

for all f € L*(X,p) with limy e N’1/2CL)\(N) = 0. By Proposition 2.3 this non-uniform inequality
(3.1) suffices to establish the pointwise convergence of the averaging operators 7% f for all f € L2(X, ).
In order to prove (3.1) one may follow Bourgain’s approach and use the Calderon transference principle
(Theorem 2.43) in order to reduce the matter to the case of the shift-related averages given by

N

1

— Y flw-n"), z€Z, fel(Z), xe€Z NEeN
n=—N

My f(@) = 55

Then (3.1) is just a consequence of the oscillation inequality for MJI(,, namely

|0F N f i1 €Nl oy < CrAMIfllz) N €N (3.2)

47
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Shortly after the groundbreaking work of Bourgain, Lacey [55, Theorem 4.23, p. 95| improved (3.2) by
showing that, for every A\ > 1, there is a constant C'y > 0 such that

sup  sup HO%N(anf ‘n € N)HKQ(Z) < OA(N)[[flle2(zy N eN. (3.3)
JEN ISy (Lr)

where L; := {7 : n € N}. This result motivated the question about uniform estimates independent of
A > 1in (3.3). In the case of the averages M}, corresponding to the standard Birkhoff’s averages, this
question was explicitly formulated in [55, Problem 4.12, p. 80]. In 1998, Jones, Kaufman, Rosenblatt, and
Wierdl [28] established the uniform oscillation inequality on ¢?(Z) for Birkhoff’s averages M3,. Namely,
there is a constant C}, > 0 such that

sup  sup HOIN (Myf: N €N) ng(z) S Gl fllewzy. [ € P(Z),
NeN [e6n (Z)

which gives an affirmative answer to [55, Problem 4.12, p. 80]. In 2003, Jones, Rosenblatt, and Wierdl
[31] proved uniform oscillation inequalities on #7(Z%) with p € (1,2] for the Birkhoff averages over cubes
given by
Z flx=n), zezl ferz).
n€[—N,N]¢

However in the case of polynomial averages, even one-dimensional, the problem of uniformity was open
until the recent work [D1]. At this moment, it is worth mentioning that non-uniform variants of the
oscillation inequality for the Radon averages are known. Let MJ be the Radon average given by (1.41).
By using the r-variational estimates for r > 2 established by Mirek, Stein and Trojan [10], the inequality
(2.11) implies that for any p € (1,00) and any r € (2,00) we have

r 11
Sup HOI J Mpf t>0) HZP(Zd P9 " ||f||zp(zd)a N eN.
Ie6N(Z) r

Unfortunately, we are note able to take » = 2 in the above estimate which forces us to take a different
approach to obtain uniform oscillation estimates.

In the case of the continuous averages M7 given by (1.43) it was only known that there is a non-
uniform variant of the oscillation inequality,

r 11
sup HO” (MPf:t>0) HL,,(W) <G N " flp@ey,  NEN,
]EGN

which follows by (2.11) and the r-variational estimates obtained by Jones, Seeger and Wright [32].
In this place we can put the main result of [D1] which we formulate as a separate theorem.

Theorem 3.4. Let d,k > 1 and let P be a polynomial mapping (1.40). For any p € (1,00) there is a
constant Cp g k. degp > 0 such that

sup  sup  [|OF y(Mef 1t € Ri)||pgry < Cpandegpllfllw@sy, | € F(ZY), (3.5)
NeNTe6y(Ry)

sup  sup  [|OF y(Mef : t € R pr) < Cpadegp | oy, € LP(RY). (3.6)
NeNIe6y (Ry)

In particular, the implied constants in the inequalities above are independent of the coefficients of the
polynomial mapping P.

The above theorem answers in the affirmative to the question about uniform oscillation inequalities
for the both Radon averages related to any polynomial mapping (1.40) and any convex body f2.
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In 2000, Campbell, Jones, Reinhold and Wierdl 9] investigated oscillation inequalities for the truncated
Hilbert transform H; given by

1 _
Hif(x) = p.v./ Mdy, reR, t>0.
T Jiy|<t Yy

They proved that for any p € (1,00) there is a constant C), > 0 such that

sup sup [|OF(Hef 21> 0)]| iy < Colflomy: £ € L(R).
NeNTe6y (Ry)

Three years later, the same authors [10] managed to extend the above result to the case of multidimensional
singular integrals of the Calderéon—Zygmund type defined by

T f(z) :=pv. | fle—y)K(y)dy, =ecR?
lyl<t

They proved [10, Theorem A, p. 2116] that for every p € (1,00), there is a constant C, 4 > 0 such that

sup  sup  [|OF N (T f 11> 0) ygay < Cpall flliogeay,  f € LP(RY).
NeNTeGy(Ry)

Again, in the general case of the continuous Radon type singular integrals ”Hf given by (1.44) it is known
that

sup (|03 ,(HFF 1> 0) ey < CosNE 7 fllpney, N EN.
Ie6N(Z) r—2

The above estimate follows by the r-variational estimates obtained by Jones, Seeger and Wright [32].
In the case of the discrete Radon type singular integrals H/ it is only known that

2 P T 1_1
H f:t <C,——=N2"r N eN
IeSGLjVP(Z)HOI’J( ffit> O)Hzp(zd) = Cpr iV £ ller () <
which follows by the r-variational estimates obtained by Mirek, Stein and Zorin-Kranich [12]. It appears

that until the work |[D2| there were no known uniform oscillation inequalities for the discrete singular
integrals H}, even in the case d = k = 1 and P(y) = y. The next theorem which comes from [D2]
completely solves the problem of the uniform oscillation inequalities for the singular operators of Radon
type in continuous and discrete settings.

Theorem 3.7. Let d,k > 1 and let P be a polynomial mapping (1.40). For any p € (1,00) there is a
constant Cp gk degp > 0 such that

sup sup (|02 (T € Ry) gy < Cpanaespll iz, | € (22, (3.8)
NEN €6y (Ry)
sup  sup HO%N(HZ)f te R+)HLP(Rd) < Cpdndegpll flLrmay, [ € LP(R?). (3.9)
NEN I€6 v (R+)

In particular, the implied constants in the inequalities above are independent of the coefficients of the
polynomial mapping P.

In the next sections we focus on proving Theorems 3.4 and 3.7.
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3.2 Oscillation inequality for averages of Radon type — proof of Theo-
rem 3.4

In this section we give the proof of the uniform oscillation inequality for the Radon averages. The results
in this section are based on results from [D1]. At first we focus on the discrete averages

1
M f(x) = 0 NZF| Z fl@—=@"), zez"
yGthZk

Next we establish the uniform oscillation inequality for the continuous averages

Mtf<:c>=,§t| [ -y, aer

By invoking the lifting procedure for the Radon averages described in Section 2.3 it is enough to prove
Theorem 3.4 only for the canonical mappings.

3.2.1 Discrete Radon averages

Assume that p € (1,00) and let f € /P(Z") be a function with a compact support. Our aim is to prove
that there is a constant C, ;, | such that

sup  sup  [|OF N (Mef £ > 0)|lpw(zry < Cppyrill fllewzry- (3.10)
NENIEGN(R+)

By using the monotone convergence theorem and standard density arguments to prove (3.10) it is enough
to establish

sup sup [|O7 y(Mef it € Dlgwizry < Cppoyrill fllevzry (3.11)
NeNIe6 N (D)

for every finite subset I C Ry with a constant C), ;| > 0 that is independent of the set I. Let us choose
po > 1, close to 1 such that p € (po,pj). Then we take 7 € (0,1) such that

1
T<3 min{py — 1,1}. (3.12)
By Proposition 2.33 we split (3.11) into long oscillations and short variations,

sup sup HO%N(Mtf ite ]I)ng(zr) <sup sup HO%N(MTnf 'n € NQ)HEP(Zp)
NeNTIecy(I) NeN Ie& N (Ng)

+ H ( i V2 (Mtf 't e [2"T, 2(n+1)f) A 11)2) (3.13)
n=0

1/2

e (Z1)
since M;f = f for t € (0,1). Now, we separately estimate the each term on right hand side of (3.13).

Estimates for short variations

Estimates for short variations for the discrete Radon averages were obtained by Mirek, Stein and Zorin-
Kranich in [13] by using the techniques developed in the work of Zorin-Karnich [65]. For the sake of
completeness we present that argument. The key observation is that short variations can be controlled by
the #P norm of the 1-variations V. In our case it will be sufficient to prove that

T

[VE(Mf -t € [2n, 20007 NDllpzry S 77 I fle@r), neN. (3.14)
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Let ty <3 <--- <t be a sequence of elements of [2", 2("+1)T) N 1. Since the number of elements in
277,20+ 1)7) N T is finite, it is easy to see that

J(n)
[VI(Mef ot € 27,2040 N ey < H > My f =My f|

Jj=1

oz

for any n € Ny. Hence, by the monotonicity of the sets €; and by the fact that |Q N Z*| ~ 2¥" we have
[VIMLf t e 27,200 0) O] ey S 275 [(Qgenrnyr \ Qour) O ZE|[1 £ llgnar)-

In order to estimate the number of lattice points in the set Qyminr \ Q.7 we make use of the following
discrete counterpart of Lemma 2.66.

Proposition 3.15 (cf. [13, Proposition 4.16]). Let G C R* be a bounded and convex set and let 1 < s <
diam(G). Then
#{z € 7F : dist(x,0G) < s} <p sdiam(G)*FL, (3.16)

The implicit constant depends only on the dimension k, but not on the convex set G.
Consequently, for large n € N we have
27FZE 0 (Qgniny \ Qonr )| Sk 0™

and we see that (3.14) holds. Hence, one can estimate

s T T 1/2
VE(Myf : t € 277, 2007) (1)) 17
H(nzzo (Mif e 20 an?) (3.17)
e 1/2
< VIS it e 27,2007 )
> "(7;) ( tf € [ ’ ) ) o (ZT)
> 1/q
1 . n” o(n+1)7 q . .
< H(%V (Mef -t €2 ,2 )N ) oz with ¢ = min{p, 2}
T T )7 q Ha
< (ZHV (Myf :te2" 20t )N H)HEP(ZF)> by Minkowski’s inequality
n=0
< N —q1-m)\ /"
S (2 27) N ey by (3.14)
n=0
S fllewzrys
since ¢(1 — 7) > 1 by (3.12). This proves the estimate for the short variations in (3.13).
Estimates for long oscillations
The aim of this subsection is to give a proof of the estimate for the long oscillations,
sup  sup  ||OF y(Myur f 1m0 € No)[l g zry < Copfrillf lev(ar)- (3.18)
NeN IEGN(N())
First of all, let us note that it is enough to consider the operator
—~ 1
D f@)= g ¥ fe-@)"), ez, (319)
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in the place of My,~. This follows since by Davenport’s result [17] (see also Proposition 3.41) we know
that
Qur NZF| = |Qgur | + O(27 B,

Consequently, one has the following estimate
H(MQ"T - M2"T)ngp(ZF) 5 Q_TLTHfHZP(ZF)-

Hence, by (2.28) we can control the error term by

— © — 1/2
sup sup [ OF n((Maur = Mo ) 1€ No)| oy S | (D2 [(Mgur = ) )
n=0

S fllewczry-
NEN Ie6 y(No) )

ep(zZt

Therefore we may prove

sup sup O}y (M £ 1€ No)| iy S I vy (3.20)
NeNTe&n(No)

instead of (3.18). It can be easily noted that

My f(2) = Fp! (fger Fyr f) (@), @ € ZF,

where

~ 1
Mon™ (f) = ‘QQHT‘ Z 6(5 : (y)r)a § € T,

yES22n7— NZk

Now we use the Hardy-Littewood circle method to establish (3.20). Let x € (0,1/10) be a fixed
number. The proof of the inequality (3.20) will require a several appropriately chosen parameters. Let us

choose a > 0 such that
N < 1 1> (1 1 >‘1
o — == _——— ,
po 2) \po min{p,p'}

where pg is the parameter set at the beginning of the proof. Let u € N be a large natural number which
will be specified later. We set
) 1 4§
0 = min , (3.21)

10u’ 8a

where § > 0 is from the estimate for the Gauss sum (3.40). Now, let us consider S = max(2“N N
[1,n7]). We recall the family of rational fractions ¥_g related to parameter ¢ from the Ionescu-Wainger
(Theorem 2.71). For simplicity we will write B

ESTLTU = ZSSV
Next, for dyadic integers S € 2“N we define “annulus” sets of fractions by

Y<g, if §=2%
Yg = -
ESS\ZSS/2“1 if §>2%

We note that by property (ii) from Theorem 2.71 the above definition makes sense. It is easy to see that

Sare = |J s (3.22)
SSTLT”7
Se2ul
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Now, we are able to define the Ionescu-Wainger projection multipliers. Let n: Rl — [0, 1] be a smooth
function such that

_ )L =l <1/(32]1),
(@) = {0, 2 > 1/(16]T)).

For any n € N we define

enr nran(@ = > n@7W X —a/g), €T, (3.23)
a/qGESTLTU

where A is the matrix introduced in (2.63). We also define annulus projections by setting

s pramyn (€)= > (27 AWXD(E—a/q), ¢eT". (3.24)
a/q€Xs

Note that by Theorem 2.71 we have that

|7 M rama Foe ), ) S Yo Flinar (3.25)

oz

and

1P (g mrasen e D), S 108 livgary (3.26)

‘EP(ZF)

7/10

since 2" (M=X) < ¢—n < e=5° for sufficiently large n € N.

Projections defined in (3.23) allows us to partition the multiplier m,.~ and estimate (3.20) by

< sup sup HOIN er‘l (anT H<n7— ,nT(A—xI) .Fer) n e NO)HKP(ZF) (327)
NEN Ie6 n (No)

+ sup sup HOIN ]:ZF (anT(]. — ]._.[<n7' nT(A—xI) )le“f) n e NO)HZP(ZF)' (328)
NeNI1e6& N (No)

The first and second terms in the above inequality corresponds to major and minor arcs, respectively.

Minor arcs estimates — Weyl’s inequality

As in the Waring problem we handle minor arcs estimate (3.28) by using some version of Weyl’s inequality.
First, we note that the oscillation seminorm is controlled by the 2-variations V2 and moreover

|V (Fi (ignr (1 = T nra—xn) Fzr f) 0 € No) ||, ZF)

< ZH man - HSTLT,HT(A—X[))‘FZFJC)HZP(ZF)

As a consequence it is enough to show

1P (gnr (1= Tz i (a—xen) ) Fzr Dllenzry < (0 + 172 fllowar (3.29)

for any n € N. Let us note that for any p € (1,00) by the inequality (3.25) we obtain
|1 (Mg (1 = Mapr e (a—xey))Fzr F)llevzry S log(n+ DI fllev(zry (3.30)

since operators ]\Aft have uniformly bounded #P-norm. It turns out that for p = 2 we have a much better
estimate. Let us recall a result from [39], based on Weyl’s inequality, that allows us to bound exponential
sums over convex sets.
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Theorem 3.31 (|39, Theorem 3.1]). For every d,k € N and @ > 0 there are Sz = Ba(d, k) and C > 0
such that for every 5 > Bg, every N > 1, every polynomial

P(z)= Y  &a", with P(0)=0, &E€R,
YeENE,
0<|v|<d

and every convez set @ C B(0,N) the following holds. Suppose that for some multi-index vy € ng such
that 0 < |y| < d, there are integers 0 < a < q with ged(a,q) = 1, and

a 1
yo — P < 2 (3.32)
where q satisfies
(log N)? < ¢ < Nol(log N) 7. (3.33)
Then
] 3 e(p(y))) < ON*(log N)~7. (3.34)

yeQNZk
The implied constant C may depend on d, k, &, but is independent of a,q, N, the set Q and the coefficients
of P.

Clearly, both the set {2,,~ and the polynomial ¢ - ()! satisfy the assumptions of Theorem 3.31. Thus,
if we show that there are &5, a, ¢ for which the conditions (3.32) and (3.33) hold, then

[Mgnm (€)1 Sk (n+1)™" S (n+1)777,

since |Qqnr | 20 2" *. Consequently, by Parseval’s theorem we have

1P (Mgnr (1 = e nr(a—xn))Fzr Hlle@ry S (0 + 1) fleary.

Now, if we take p = pg in (3.30) and interpolate with the above inequality, then we obtain
1 F (Mgn (1 = Tepr e (a—y)))Fzr Fllevgary S (n+ 1)~/ Jog(n + DI f llev(zry-

For appropriately large @ > 0 we get (3.29). It remains to show that conditions (3.32) and (3.33) hold
whenever 1 — Il ,,ra—yn)(§) # 0.

In order to do so we use the so-called Dirichlet’s principle which proof can be found in |18, Theorem
4.1].

Lemma 3.35 (Dirichlet’s principle). Let £ and Q be real numbers, Q > 1. There exists integers a and q
such that
1<¢<Q, ged(a,q) =1

and )
a
E——1 < —.
‘ ql  qQ
For each &, by Dirichlet’s principle we have

Oy 1 1
_ - - @ <
g'y G - q72”7|7|n—57 - q?y
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with ¢, < 27" =AT We claim that if 1 — Hepr nra—yn)(§) # 0, then gy, > nPT holds for some g € T
Suppose for a contradiction that for any v € I' we have 1 < ¢, < nP7. Then for ¢ = lem(gy: vy €T') <
nPTI' we have

al 1
RO B
&= 7| S o
where a’, = ayq,?lq’. We see that ged(q’, (a’))yer) = 1. Hence, taking @’ = (a’,: v € T') and u so large

that nf7I'1 < n™ we get that a’/¢' € ¥<pru. On the other hand, if 1 — Oy nra—yn)(§) # 0 then for any
a/q € X<pru, (thus in particular for a’/q’) there exists v € I' for which

1
(32|r|)2nf(hl—x)‘

a
&——| >
T q

This leads to the inequality
(327" > 2m'X,

which is false for large n. Therefore, we see that there is vy € I" such that the conditions (3.32) and (3.33)
are satisfied and consequently (3.29) follows. This shows that if u > S|I'|, where § is from Theorem 3.31,
then we have

sup  sup HO%,N(]'—_rl(mznT (1 - HgnT,nT(A—XI))-FZFf) ‘ne NO)ng(Zr) 5 HfHep(zF)
NeN IEGN(N())

which ends the proof of estimates for minor arcs.

Major arcs and kernel approximation

Now we can focus on major arcs. Our aim is to show that the inequality

2 L T T T . <
Jsvlé% IGSE?NO)HOI,N(}—ZF (Mgn M <pr pr(a—xnFzr f) in € NO)H@(ZF) S N fllewzry (3.36)

holds. For simplicity, we denote
Tricff(x) = ]:71"1 (m2"7H§nT,nT(A—XI)]:ZFf) (.T), T e ZF7

and we note that the operator 7.; have the Fourier symbol given by

> g (O ATD(E —a/g), £eT". (3.37)

a/quSn‘ru

Now, our aim is to show that (3.37) is, up to an acceptable error term, equal to

ma (&)= Y Ga/q)Pyr (€ — a/q)n(2" AT (E ~a/q)) (3.38)
a/qEX <

where ®; is continuous version of multiplier mqnr given by (2.61) and G(a/q) is the Gauss sum defined by

1

Gla/q) = = > el(a/a)- (1)) (3.39)
9 reNk
We note that by the multidimensional version of Weyl’s inequality [60, Proposition 3] we have
Gla/g)| Sk q™° (3.40)

for some § > 0.
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Proposition 3.41 (|13, Proposition 4.18]). Let Q C B(0,N) C R¥ be a conver set and let K: Q — C
be a continuous function. Then for every ¢ € N, a € {a € Ng: (q,(ay: v € T)) = 1} and for every
€ =ua/q+ 6 c R we have

|3 el )W)~ Glafa) | e0- () )KL

yeQNZk

NN’“H’CHL )+ N¥IK o) D (@5 INPTHS + NP sup [K(2) - K(y)],
~el z,yeQ: |z—y|<qg

for any sequence (e,: v €T') C[0,1]. The implicit constant is independent of a,q, N,8 and the kernel K.

Proof. We split the sum into congruence classes modulo ¢ as follows:

> el WKL) =0 el(r) - afa)- (6" Y e (ay+ 1) )K(ay +7)).
yeQNZF reNk yeZkQ
qy+re

In order to approximate the expression in the parentheses on the right hand side by an integral, we write

i 3 (0 v+ )y )~ [ elo- @]
yezZk
qy+reQ

= )qk > e (qy+m)")K(gy + r)lalgy +7) = > / o e (t)r)/C(t)ﬂﬂ(t)dt‘

yEeZk yeZk
<y / Jel6 ay+r)" Kl + ol + 1) = €00 Gy + 0" )Klay + Ololay + 0
yeZF [0,

Notice that
10-(ay+m)" =0 (qu+0"] S (al6,IN"1)™

yel
and
Klgy+7) = Klgy+t)| S sup  |K(z) = K(y)],
z,y€lz—y|<q
and

> algy+7) — Talgy + 1) < [(¢ Q=) A (Q - 1) S (N/gF
yEZk

where the last inequality is a consequence of Proposition 3.15. Hence, we obtain the estimate

Y el tay+ )y + )~ [ el DK

yezZ* Q
qy+reQd

S @FIK ) o) (N/@)* 1 + N¥||K| o () Z (g6, |INPITH= £ N sup [K(x) - K(y)].
yel’ x,yeﬂ:\x—y\gq

O

Averaging in r, we obtain the claim.
We use Proposition 3.41 with Qg € B(0,2"), K 1= Qg ’_1]].Q2n7. and e, = 1. Note that [|KC|| () S

27""F and SUPg yeQ: o—y|<q IK(2) — K(y)| = 0. Therefore, on the support of Il<,,r ,r(a—y1),

|gn (€) — Gla, @) Pour (€ —a/q)| S 27" + D aléy — ay /g2 (M7D < 277/ (3.42)
yel’
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for x € (0,1/10), since ¢ < e and for any v € I we have |¢, —a,/q| $ 27" (W=X). By the disjointness
of the supports of (2" (A=XI) (¢ — a/q)) we have

> g (OnETATD(E — a/q)) = ma(§) + O27). (3.43)
a/qEX <pu

For simplicity we denote
Tor f(x) := ]-"Z}l (m, Fyr f)(x).
Let p > 1. Then we have the simple estimate
7/10
H(Tv)ch - %T)ngp(Zr) § ‘ESnT“‘HfHéP(ZF) § e(\F|+1)n ||f||£P(ZF) (3-44)
since by property (i) from Theorem 2.71 the number of fractions in ¥ <, is bounded by eIT+Dn™1 and

by [36, Proposition 2.1] each term in (3.37) and (3.38) defines a bounded multiplier on ¢P. Next, for p = 2
by using (3.43) and by Parseval’s equality we obtain the following estimate

I(T% = Tar) fllpagzry S 271 f lle2gar)- (3.45)
Now, if we take p = po in (3.44) and interpolate it with (3.45) we get
H(Tricf - ﬁﬁ)f”gp(zl“) S Q_nT/4”f"€P(ZF)- (3-46)

Therefore we can replace in (3.36) the multiplier Mg, Il<,,-, <—n7(A—xI) Dy its continuous counterpart m,,
since the error term can be handled by the estimate

2 X . = X 2\ 1/2
Z?/léll)\lleéllezl()No)HOLN((TnT Tor)f :n € No)lgzr) S H(;::O‘(T" Tor)f| )

@ S 1 llerzrys

where the last inequality follows from (3.46). Consequently, to show (3.36) it is enough to prove that

sup  sup ||OF n(Fpi (mpFyrf):in € NO)H@p(zF) S fllewczry- (3.47)
NEN Ie6 y (No)

Now, we split our projection multiplier Il<,r ,~(a—yr) into the sum of annulus projections (3.24). By
(3.22) we see that

Hgn",nT(A—XI)(f): Z HS,nT(A—XI)(é)'

S<nTH,
Se2ulN
Hence, one has the following decomposition
ma(§) = ), mi(e), (3.48)
S<nT,
Se2ulN
where mY is defined as
m(&) = Y Gla/q)@yur (& —a/qn(2" X (¢ —a/g)). (3.49)

a/q€Xs

By using the decomposition (3.48) combined with triangle’s inequality from Fact 2.29 and with the cut-off
Proposition 2.32 we obtain

sup  sup HO%N(}'Z}I(mn]:er) :n €Ny

)
NeN Ie6 x(No) Hf”(ZF)

_ n - w _ /(ru)
SSENfv‘é%,eéi?mg)‘\O?,N<fzr1<msfzr>:n > Y |y + 175 (" P )l
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where DF = {n € N:n” > S1/%}. Hence it suffices to show that

sup  sup |’O%,N(fir1(mgfsz)inTZSI/u)ng(Zr)SS_4Q|’f’|ep(ZF), (3.50)
NeN ey (D7)

1/(Tw)
| Fit (m " Fyr f) lewzry S 57N f levcary (3.51)
since both S~%¢ and S92 are summable in S € 2uN,

Gaussian multiplier and scale distinction

In order to apply the lonescu—Wainger theory we need to manage the Gaussian part G(a/q) in the multiplier
(3.49). Let 7 := n(z/2). Then we have n7j =  and since n” > S1/* we also have

n(2" A Dg)ij( (A — (2 (),
Next, we introduce new multipliers

D> Bgur (€ —a/gn(2 (€~ a/g)),

a/q€Xs

ps© =Y Gla/q)i(25" XD (e —a/q)).

a/qEES

Obviously, we have m% = vgugs and we see that estimates (3.50) and (3.51) will follow if we show that for
every p € (1,00) we have

[ F 2 (s Fzr )| o ey S ST Fllew s (3.52)
1/(Tu)
[ Foe W5 Far )l ey S 108 llewzr) (3.53)
sup  sup )HO%N(fZ_rl(US-FZFf)5” > SV | ey S 5P New ar) - (3.54)

NeN Ie6 y (DS

It is easy to see that estimate (3.53) is a consequence of Theorem 2.71. Now we focus on proving (3.52).

We may assume that S is so large that the functions n(QS e (A=x) (-—a/ q)) have disjoint supports for

a/q € ¥g. By Plancherel’s theorem and by the estimate (3.40) we conclude

1P (s Far Pllezzry S 5_5“fHe2(ZF)- (3.55)

Moreover, we will show that for any p € (1, 00) the following holds

1P (s Far f)llevzry S 10g(S) N fllew zry- (3.56)

If we interpolate (3.55) with the above bound for p = pg we obtain (3.52). We handle (3.56) by introducing

1
certain approximation multipliers. Let J = |25" |. We set

fins(€) =my€) S 78 U —a/g)),

a/q€Ls

hys€) =Y Gla/g)®s(€ —a/g)i(25"" XD (€ —a/q)).

a/qeXs

By Theorem 2.71 we have
1F 2 (g, sFze F)llevzry S 108 ()| fllen zr): (3.57)
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since P-norm of M is uniformly bounded by 1. By Proposition 3.41 and by exploiting the same ideas
presented during the proof of (3.46) one can prove that

1
| Fot (g, s — g, $) Far f) ng(zr‘) <2735 1 fller(zry (3.58)

holds for p € (1,00). For £y —ay/q| < 2-5"(M=X) the first estimate in (2.64) provides us with the bound

lg 1

11— @56 —a/a)l ST —a/a)lo S 2725

and by Plancherel’s theorem we get

|52 (ks = ) Far )|y S 2755 I flagar. (3.59)
Since |Xg| < eT1HD5¢ for every p € (1, 00) we have
| (s = 1, $) Fr )| o @y S IS £l oz, (3.60)
Interpolating (3.59) with (3.60) leads to
|t (s = s, $)Fze )] 2y S 108(9)[fller(zr)-

The above estimate, (3.57) and (3.58) together ensure that (3.56) holds.
Now we may focus on proving the estimate (3.54). Let kg = [S?¢]. By Proposition 2.30 we may split
the left hand side of (3.54) at point 25 and write

LHS(3.54) S sup  sup  [|OF N (Fp (v Fyr f) :m7 € [SY/4, 255 H))]|

P (Z8)
NeNTeGy (D (

s)

+ sup  sup HO%N(]:Z}l (vgFyrf) :n" > QHS)HZP(ZF),
NeNTIe6y (DT )

where DLg:={n € N:n" € [S1/u 2fsH1} and DL g := {n € N :n” > 2%s}. The first term of the right
hand side of the above inequality corresponds to small scales and the second one to large scales. We will
deal with small scales by using the Rademacher—-Menschov inequality (2.38) and Theorem 2.71. In the
case of large scales we make use of the sampling principle of Magyar, Stein and Wainger (Proposition 2.70)
to transfer estimates from the continuous case.

Estimates for small scales

We will rather closely follow arguments from [13]| to prove the following estimate
sup  sup | OF n(Fp (v Fze f) i n €[SV 255y ) S K5 10g(S)I1f lewar)- (3.61)
NeN Ie6 y (DS)

The above estimate together with the bound for large scales (3.67) gives us (3.54). In order to prove (3.61)
we define auxiliary multipliers

AZE) = D (Dymrnr (€ = afq) — Bour (€ — a/q))n (2" A€ — a/q)),
a/q€xs

ABE) = D By (€ — afa) (nTV AN (€ — afg)) — n(27 D¢ ~ a/g)) ).

a/qEEs
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By applying the inequality (2.38) to the left hand side of (3.61) we see that

1/2
LHS(3.61) (Z | F (gt — v Far f) \2) :
i= | nell e (Z0)
where Ii = [52%, (j + 1)2°) N [S1/,2%sH1] (since the inner sum telescopes). Summation with respect to

j runs over j € N such that I’ # (). Now, by the fact that U"H —v¢ = A% + A% and by the triangle
inequality to obtain (3.61) it sufﬁces to prove that for every i S ks we have

H(Z\ > 7t 087 D) e, S 0 (3.62)
nGI’

H(Z\ > 708 F )] ) o, S 108 ey (3.63)
ne[Z

Clearly, the estimate (3.63) will follow if we show that for every subset I C [S1/% 2%t N\ N we have

D IF (ASFzr Hllevzry S 1og(S)1f v zr)- (3.64)

nel

By Theorem 2.71 for every p € (1,00) we get an ¢P-estimate for the n-th term with log S gain. Since
multiplier A% is non-zero when 2" 4(€ — a/q)|o = 2""X by the van der Corput estimate (2.64) we obtain
(2-estimates for n-th term with 27" X/I'l loss. By complex interpolation

| F i (AGFzr H)llevzry S log(5)2_nTX/(am)||f”zp(ZF)

which implies (3.64).
Now we can handle the estimate (3.62). By Theorem 2.71, the estimate (3.62) is a consequence of its
continuous counterpart

nT(A— 2 1/2
H Z} Z PominT — c1)2n7)77(2 (A=) )}-er)‘ ) S HfHLP(RF)-
ne[l Lr(RT)
The above estimate follows from the square function bound
o\ 1/2
[OSPIE=ICHREE IRy S Wfllogary (3.69
Lr(RL)

J nGIZ

since for every p € (1,00) the error term is controlled by
o
n=0

Indeed, we have a uniform LP-bound for the n-th term. Moreover, since the function 1 — 7(2" (A=xD).) is
non-zero when |2¥"4¢|,, > 287X by the van der Corput estimate (2.64) we obtain an L2-estimate for the
n-th term with 2= X/I'l gain. Thus, the desired bound for the error term follows by complex interpolation.

The square function estimate (3.65) can be deduced from the following inequality for the operator

M, f(x) = Fgr (®1Fpr ) (@),

H(Z ‘(Mtkﬂ - Mtk)f}2>1/2)

keN

Lo (&) < Cpll fll Lo wrys (3.66)
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which holds for every increasing sequence 0 < t; <9 < --- and where constant C}, > 0 is independent of
the chosen sequence. The inequality (3.66) may be seen of as some weak form of r-variational inequality
with 7 = 2, and one can prove it by using results from [12]. Indeed, the square function estimate (3.66)

follows from the Khintchine-type bound

|2 enManss = Mo)f| S 1 o)
nez
which holds uniformly for every sequence (&,,)nez bounded by 1 due to [12, Theorem 2.28|, and from the

short 2-variation inequality

2 . 2 1/2 <
(v Mas et epont112) 7 S s,
neZ
which is a direct consequence of |12, Theorem 2.39|.

Estimates for large scales

The last thing to show is the estimate for large scales,

sup  sup  ||OF y(Fr (s Fgr f) s T > 275)]|  n) S 1og(S)] fllewary- (3.67)
NEN 16y (DT g)

In order to prove (3.67) we appeal to the continuous oscillation inequality

sup  sup |07 y(Mf it € R+)HLP(Rr) Sl e ey (3.68)
NeNTe6n(Ry)

which will be proven in the next section. As we know, the multiplier v¢ is localized around fractions from
the set ¥g. Let Qs := lem(q : a/q € ¥g). By property (iv) from Theorem 2.71 one has Qg < 3. If we
have n™ > 25 then we may write

va(€) =s(§) Y gur (= b/Qs)
bezZl
where
Ms(¢):= Y 72" W€ —a/q)) and Byur (€) := Dpur (27 U Xg), e,

a/q€Xs

Therefore the inequality (3.67) will follow if we show that the inequalities

sup sup 0hx (P! (X B = 0/@s)For f) 507 2 2%)
NeNIeGN(DT bezl

‘gp(zl‘) ’S Hf“@’(%")» (3.69)

[ F 2 (s Fgr )| g ey S 108 ()1 fllew (3.70)

hold for any p € (1,00). The inequality (3.70) is a straightforward consequence of Theorem 2.71. In order
to prove (3.69) we use Proposition 2.70. We note that a suitable limiting argument is needed, as to apply
Proposition 2.70 one needs a finite dimensional Banach spaces. At first, let M € R be a fixed large positive
number and let us denote Mg := M — [2”5/ ™]. We consider the following Banach spaces:

1:=(C,]-]) and By := (CM5/ ~, 07 y( - :n € [[275/7], M)))

where We have quotiented out the space of constant sequences. The function :1327; is supported on
[— 4@3, 4@ ] for large S € 2N because, on the support of 75, we have &y < 27 2 < (4Qg)7! for



CHAPTER 3. UNIFORM OSCILLATION ESTIMATES FOR RADON OPERATORS 62

all v € I and large S. We may apply Proposition 2.70 with the Banach spaces B; and B to see that the
estimate
107 5 (F, (‘I’zanRFf) M™>n" > 2HS)HLP(RF) Sl e ey
implies
|02 (F2 (2 B (- = 0/Qs)Farf) e M7 207 22| S | fll .
beZl

v(ZT)

However, since the constant C|r| in Proposition 2.70 is independent of the choices of Banach spaces, we
see that B
sup  sup HO%’N <]:ngl (Pgnr Fr f) :n” > 2°9)
NeNIe6 v (DT )

pry S Iy (3.71)

implies

sup  sup Hom( (3 e (= b/Qs)For ) 7 > 27%)
NEN Ie6 v (DL ) hezt

oy S I lgar.

The estimate (3.71) follows from the oscillation inequality for continuous Radon averages (3.68) since
the error term is estimated by

ZH f (@g0r (1= 02" 4D ) For )| o ary S 1511 er)- (3.72)

Again, we have a uniform LP-bound for the n-th term and since the function 1 — (2" (A=X1).) is non-zero
when [2""4¢|,, > 277X, by the van der Corput estimate (2.64) we obtain an L2-estimate for the n-th term
with 27""X/I'l gain and complex interpolation yield the result. This ends the proof of the estimate for the
large scales (3.67) and consequently the proof of the oscillation inequality for discrete Radon averages.

3.2.2 Continuous Radon averages

In this section we prove the inequality (3.6). Assume that p € (1,00) and let f € C°(R"). Our aim is to
prove that there is a constant C), ;| such that

sup  sup  [|OF n(Mef > 0)|lpowry < Cpyryll fI| Lo gery- (3.73)
NeNTe6N(Ry)

Let D > 1 be a fixed real number which will be specified later — this is the number D from Lemma 3.78
which is stated below. By Proposition 2.33 (to be more precise, by its D-dyadic counterpart) we split
(3.73) into long oscillations and short variations,

sup  sup HO?N( tf 11> 0)||Lpgry Ssup  sup HOIN Mpnf: nGZHLpRF

NeNTIe6y(Ry) NeNIe6y(Z) -
1/2 :
(X vEmuf e e (om0 ’LP(RF).
nez

The estimates for the short variations

H (Z VEMf it e [D"7Dn+1))2)1/2‘

nel

< Cp |1 f | e )

Lr(RT)

were obtained by Jones, Seeger and Wright [32] by using the Littlewood—Paley theory. The proof is rather

long and we do not present it here. We refer to [32, Theorem 1.1, Theorem 1.2] and [10, Section 9.2| for
more details. In this section we focus on showing the estimate for the long oscillations
sup  sup HOIN MD”f n e Z HLP(RF) § Cp,k,\ﬂ”f”LP(]RF)? f € CSO(RF) (375)

NeN I€G y (Z)
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The proof of the above estimate is based on the approach of Jones, Seeger and Wright [32] taken in the
context of r-variational and jump inequalities. Namely the estimate for long oscillations is obtained by
approximation with a suitable dyadic martingale and here the key ingredient is the oscillation inequality
for Christ’s dyadic martingales which follows from the result of Jones, Kaufman, Rosenblatt and Wierdl
[28, Theorem 6.4, p. 930] (see also |D1, Proposition 2.8]).

Dyadic martingales on the homogeneous spaces

In order to prove the inequality (3.75) we need to introduce the notion of dyadic martingales on the
homogeneous spaces. In this the context we will follow the notation introduced in [32]. Let A be a d x d
matrix whose eigenvalues have positive real parts. For any ¢t > 0 we consider the dilation given by

t4 1= exp(Alogt). (3.76)

We say that a quasi-norm p: R% — [0, 00) is homogeneous with respect to the group of dilations (4 : ¢ > 0)
if p(tAz) = tp(x) for any € R and t > 0. Recall, that for a given group of dilations (t4 : ¢ > 0) by
[59, Proposition 1.7, Definition 1.8] there exists a quasi-norm p which is homogeneous with respect to that
group. Let us state some properties of quasi-norms which will be useful later on.

Proposition 3.77 (|59, Proposition 1.9|). Let p be a quasi-norm which is homogeneous with respect to
the group of dilations (t* :t > 0). Then:

(a) there are constants a, 3,9,0 > 0 such that
2| < p(2) S |2)? when p(z) > 1 and |2’ < p(x) < |o|” when p(x) < 1;

A

(b) let us coordinatize R by p and w where p = p(x) and w = p~?z. Then the volume element in R? is

given by
dz = p" W ~1dwdp,

where dw is C°°-measure on the ellipsoid (Bw,w) = 1 and B is some real positive definite symmetric
matriz related to A (there is an explicit formula for B which is not given here since we will not use

it).

We note that R? equipped with a homogeneous quasi-norm p and Lebesgue measure is a space of
homogeneous type with the quasi-metric induced by p. As it was shown by Christ |14] for any given space
of homogeneous type there exists a system of dyadic cubes. We state this result in the context of R¢
below.

Lemma 3.78 (|14, Theorem 11]). There exist a collection of open sets {Q% : k € Z,a € I} and constants
D>1,06,n>0 and C1,Cs < oo such that

(i) }Rd \ Uaer, Q]Oﬂ =0 forallk € Z;

(ii) if | < k then either Qlﬁ C QF or Q% NQEkE =0;

(1ii) for each (I,3) and | < k, there exists a unique o such that Qlﬂ C Qk;

(iv) each QF contains some ball B(zE,8DF) and diam(QF) < C,D*;

(v) for each (o, k) and t > 0 we have |{z € QF : dist(x, R?\ QF) < tDF}| < Cot"|QE|.
The set Iy, denotes some (possibly finite) index set, depending on k.

Remark 3.79. Some comments are needed:
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(a) the functions diam(A) and dist(x, A) are calculated by using a quasi-metric induced by p;
(b) each cube Q¥ contains a ball and is contained in some ball, each with radius ~ D*;
(c) since the quasi-metric is translation invariant, for each (a, k) we have |Q¥| ~ DAk,

The martingale sequence associated with the system of dyadic cubes {Q¥} is of the form Ej, f = E[f|F]
where Fj, is the o-algebra generated by the sets QF. To be more precise, for a locally integrable function
f we set

Bef(e) = Blf|7l(@) = / f(y) dy, (3.80)

where QF is the unique dyadic cube from k-th generation containing # € R%. The martingale difference
operator is denoted by Dy f := Exf —Eg_1f. By the work of Jones, Kaufman, Rosenblatt and Wierdl [28]
we know that for any martingale sequence the uniform oscillation inequality holds. Namely, we have the
following result.

Theorem 3.81 (|28, Theorem 6.4, p. 930]). For every p € (1,00) there exists a constant C, > 0 such that

sup  sup HOIN (Enf:ne€Z) HLP ray < Cpllfll Lo (ra)-
NeN Ie6 y(2)

The next two results which follows from [32] concern the approximation by martingales associated with
Christ’s dyadic cubes. We have the following.

Proposition 3.82 ([32, Lemma 3.2]). Let ¢ be a Schwartz function such that [ ¢ =1 and let ¢ppr(z) =
D Wkg(D=kAz) where D > 1 is from Lemma 3.78. Then

¢ prsm * Do f — B Do )| 2y S D™ £l 12 may (3.83)

for some € > 0.

Lemma 3.84 (cf. [32, Theorem 1.1]). Let ¢ be a Schwartz function such that [ ¢ =1 and let ¢pr(z) =
D*tr(A)kqﬁ(D*kAx) where D > 1 is from Lemma 3.78. Then the operator

z) = (Y |opr = fa) — Exf(@)[?)"/”

k€EZ
is bounded on LP(R?) for p € (1,00). Moreover, for p =1 the operator S is of weak type (1,1).

Proof. The proof is a repetition of arguments presented during the proof of [32, Theorem 1.1] but since
we stated this result as a separate lemma we give the proof. At first we will show that S is bounded on
L?(R?) which is a consequence of Proposition 3.82. Indeed, let f € L' N L?. Then one may write the
following decomposition

f = Z ]D)mfa

meZ

where the series is convergent in L2-norm. The proof follows the same steeps as in [20, Theorem 5.4.6].
Hence we may estimate

/
18 z2eey < (30 (X léps +Df —Ek(Dmf)llemd))z)l 2

k€Z meZ

(3 (X DD )?)

k€Z meZ

1/2
S (Y IDmf 2 aga) " S 12y,

meZ

N
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where in the second inequality we have used Lemma 3.82. Now we want to prove that S is of weak type
(1,1), that is

1
{z e RY: Sf(x) > N} < <11z ey, uniformly in A > 0. (3.85)

Then by interpolation with the known bound for p = 2 we get that S is bounded on LP with p € (1,2),
and by duality we obtain that S is bounded for all p € (1,00). We may assume that f > 0. In order
to show (3.85) we apply the Calderon—Zygmund decomposition of f at height A by using Christ’s dyadic
cubes from Lemma 3.78. As a consequence there is a disjoint collection of dyadic cubes {QZY ((J,a) € A}
such that the following conditions are fulfilled:

LY Gayen |QAL < F1£ 1o gray;

2. for any (j,) € A we have HfHLl(Qé) ~ \QAl;

3. fora.e. & U a)en QY one has f(z) < A

Given this decomposition of R¢, we now decompose f as the sum of two functions, ¢ and b, defined by

(&) = {|QJ fQJ y)dy, if z € QY for some (j,a) € A,
x .
f(@), if £ ¢ U ayen @

and )
fx) — \Q] fQJ y)dy, ifre @l

0, if v ¢ Q.

|11 Ry < 2| fllL1raey- Moreover, one has [p4bja(z)dz = 0 and

b(z) == Z bja(z), where bj,(z) ;:{

(j,a)EA

Now, it is easy to see that >>; \yep [1bja
Eixbja =0 for k > j.
We handle the “good” function g in the usual way — by exploiting the known L? bounds:

1
Hz: Sg(z) > A} < FHSQHL?(R"Z S 2 ||9||L2 (RD) S *||f”L1(Rd

where the last inequality follows because |g(z)| < A for a e. x € R%. Next, we will estimate the part with
the “bad” function b. Let Q] = 2AQ in other words )5, is an enlarged cube with the same same center
as Q] . We note that by the property 1 stated above it is enough to estimate

)\’{:rgé U @ Shia >/\}’ 3 Z/ yquk*b]a() Epbo(z)|dz

(j,a)EA (j,o)EAN kKEZ

-3 Z/ 1o o)l

(j,o)EN kEZ

where the last equality follows by the fact that Ezb;, is supported in Q& when k < j, whereas for k > j
the expression E;b; o equals zero. Now we will consider two separate cases: k < j and k > j. In the case
k < j for any N € N we have the following estimate

D—ktr(A)
Nopr *bja(x de,N/_ bjaly / _ — dzdy 3.86
/Rd\éja ‘ b ’ ( )’ Q% ‘ ! ( )’ {z:p(z—2%)>2C1 DI} [D kp(x - y)]N ( )

which is a consequence of the property (iv) from Lemma 3.78, the property (a) from Proposition 3.77 and
the fact that ¢ is a Schwartz function. Now, since one has the following inclusion

U{x plz —y) <C1DI} C{z: plx — 2)) < 2C,D7},

yeQh
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it is possible to estimate the inner integral in the right hand side of (3.86) by

Ttr(A)_l_NdT <y Dj(tT(A)—N),

g /
/{z:p(:c—y)ZCle} [p(.?? - y)]N r>C1 DI

provided that N is large enough. In the above inequality we have used an analogue of the spherical
coordinates from Proposition 3.77. Hence we estimate the left hand side of (3.86) by

16j,0ll 1 ey D~ Y=HN =) 1 o o ety DU, (3.87)

for some € > 0.
If £ > j, then we write

o0t #bja0(0) = [ [opr(e = 9) = 0o = 2)palalu)dy

We see that if y, 2 e Qﬂ; and = € RY \ @é, then by the mean value theorem

D—ktr(A)

|¢Dk (g; — y) — gZ)Dk (l‘ — Zzy)| S/N [D_kp(y - Zé)]l/& [1 + D*kp(l‘ _ y)]N

holds for any N € N, since ¢ is a Schwartz function. Consequently, one may estimate

D—ktr(A)
1L+ DFp(z —y)|V

/ bk *bja(@)|dz Sy AR/ / b)) dedy
R\, Qi Re [

SN Di(k*j)/éubj,aHLl(Rdy

where in the last inequality we again used the spherical coordinates. Combining the above estimate with
(3.87) yields

Mag |J Qh:Sb@) =M D Ibjallies S IF o

(J)eA () e
which shows that the operator S is of weak type (1,1). O
The next result is a counterpart of [32, Theorem 1.1] in the context of the oscillation seminorm. Let

o be a compactly supported finite Borel measure on R?. Let us consider dilates of o defined by
(o, f) = | F(t"2)do(a) (3.88)

where 4 is as in (3.76). We additionally assume that the Fourier multiplier satisfies the following size
condition

6] < 1€ (3.89)

for some a > 0.

Theorem 3.90. Assume that o is a compactly supported finite Borel measure on R satisfying (3.89) for
some a > 0. Let oy be as in (3.88). Then for p € (1,00) one has

sup  sup ”O%N(f *xopk k€ Z)”Lp(Rd) S ”fHLP(Rd)a fE€ Lp(Rd)7 (3.91)
NeNIeGN(Z)

where D > 1 is associated with the system of D-dyadic cubes {QF}.
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Proof. The proof is based on the repetition of arguments given during the proof of [32, Theorem 1.1] but
we include it for the sake of completeness. We can assume that [ do # 0 since by (2.28) we see that the
left hand side of (3.91) is controlled by the square function (> oz |f * o pr (z)|>)Y/2, and if 5(0) = 0 then
the known estimates from [18, Theorem A, Theorem B| can be used to control it on LP(R?). Without
loss of generality assume that [do = 1. Let ¢ € C°(RY) be such that [ ¢ = 1. Then one may write the
following decomposition

o=¢*x0+ (6o — ¢) x 0,

where §g is the Dirac measure at 0. Therefore one can write
frope(r) =Ly f(z) +Hif(z),

where
Lif(x):=fx(p*0o)pr(z) and Hyf(z):= f* (0 — @) *0) pi().

Hence, by the triangle inequality it is enough to prove

sup  sup ”O%N(Ekf 1k €Z)| e (Rd) ~ S e (R4) (3.92)
NEN I€G N (Z)

and
sup  sup ||OF y(Hif : k € Z)l|poway S £l 1o (a- (3.93)

NeNIe6N(Z)

At first we handle the estimate (3.93). By (2.28) it is enough to prove

H(Z \kaIQ) HLP(Rd) S e ray- (3.94)

kEZ

We note that (dp — ¢) * o is a compactly supported measure with the vanishing mean value which satisfies
condition (3.89). Hence by the known results from [18] we see that (3.94) holds. The estimates for the
low frequency part Ly f will follow from the martingale estimates. Let (Eg)rez be the dyadic martingale
sequence associated with the dyadic cubes related to the dilation 4. Then we may write

sup sup [O7 N(Lrf Kk €Z)| Lp@ay Ssup sup ||OI N(Drf + k € Z)| 1oy
NeN 1e6(2) NeNIes(z)

+sup sup [|OF x(Bif : k € Z)| 1o (ray,
NeNTI1e&(Z)

where
Dif(x) == f* (¢ *0)pr(x) — Exf(z).

Since by Theorem 3.81 we know that the oscillation inequality holds for the martingale Eg f, we only
need to handle the part with Dy f. Again, by the inequality (2.28) we are reduced to show that for any

€ (15 OO) one has
1/2
H(;Z\Dkfyz) (Y Fj P

which follows by Lemma 3.84 since ¢ * o is a Schwartz function such that [ ¢ x o = 1. O

Proof of the estimate for the long oscillations for M«

Our aim is to show that the inequality (3.75) follows from Theorem 3.90. At first, let o be a finite measure
on R defined by

r 1l
f( : ]Q|/ dy, zxeR, feL(R").
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Clearly, the measure o is compactly supported and the dilates of ¢ are given by

ftAr)do(z) = 2 [ F(w)")ay.

RT 1 g,

The operator My is a convolution operator satisfying
M. f(z) = [ oi().
Moreover, by the van der Corput estimate in (2.64) one has

5(6)] S Il

since 7 (&) = ®1(§) where ®; is given by (2.61). Thus, we see that the assumptions of Theorem 3.90 are
satisfied and consequently one has

2
sup sup [|Of y(Mpnf:neZ <cC f r
NeNIEGN(Z)H 1 ( M oy < Comgri I fllocar)

which proves (3.75).

3.3 Oscillation inequality for singular integrals of Radon type — proof
of Theorem 3.7

In this section we give the proof of the uniform oscillation inequality for the singular integrals of Radon
type. The results in this section are based on results from [D2]|. As in the case of averages, at first we
focus on the discrete operator

Hf(x)= Y flz—@"E(y), zeZ
Next we establish the uniform oscillation inequality for the continuous averages
Huf (@) =pv. | fla- ()" )K(y)dy, =R
t

In both operators the function K : R¥\ {0} — C is a Calderén-Zygmund kernel which satisfy conditions
(1.4), (1.5) and (1.6). By invoking the lifting procedure for the Radon averages described in Section 2.3 it
is enough to prove Theorem 3.7 only for the canonical mappings.

3.3.1 Discrete singular Radon operators

The proof will proceed in a similar way as in the case of the discrete averages (see Section 3.2.1) hence
some details will be omitted. Assume that p € (1,00) and let f € ¢P(Z') be a function with a compact
support. Our aim is to prove that there is a constant C), ;1| such that

sup  sup  [|OF n(Hef :t> 0)|lwizry < Cpyrill fllezry- (3.95)
NeN Ic6y (Ry)

By using the monotone convergence theorem and standard density arguments to prove (3.95) it is enough
to establish

sup sup [|OF y(Hef i t € Dllgwiary < Cppoyrill fllev(zry (3.96)
NEN 16 n (1)
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for every finite subset I C Ry with a constant C), ;v > 0 that is independent of the set I. Let us choose
po > 1, close to 1 such that p € (po, p)). Then we take 7 € (0, 1) which satisfies (3.12). By Proposition 2.33
we split (3.96) into long oscillations and short variations,

sup sup [|OF y(Hef it €Dlwizry Ssup  sup  ||OF y(Honr f 1m0 € NO)H[p(zF)
NeN 1€6 y(I) NeN 1€6 v (No)

+ H ( i VE(Hf :t e 27,2070 ]I)z) (3.97)
n=0

1/2

¢p(ZT)
since Hyf =0 fort € (0,1). Again, we may separately estimate the each term on right hand side of (3.97).

Estimate for short variations

Repeating the arguments from Section 3.2.1 we see that in order to estimate short variation it is sufficient
to prove that
IVI(Hef € 27,2 D)l gry S 77 fllpzry, m €N (3.98)

By the monotonicity of the sets €; and by condition (1.4) we have

VIHf -t e 27,200 n) S 2747 > [f(z— ()"l
ye(QQ(n+1)T \QQnT )mZk

which gives us

[VI(Hef =t € 27,20 N D) |y gry S 275 [(Qaenan \ Qo) N ZH[|1f o ar)-

By Proposition 3.15 this implies (3.98).

Estimates for long oscillations

The rest of this section is devoted to proving the following estimate for long oscillations

sup  sup HO%N(HQan 'n € NO)H@@(ZF) S llev(zry- (3.99)
NeN Ie6 y (No)

Let us observe that Hy.r f(z) = fz}l (ngnt Fyr f)(x) where ngnr is given by (2.60). We note that due to
the fact that oscillation seminorm is translation invariant the estimate (3.99) is equivalent to the following
estimate

sup  sup HO%N(Hgan —Hif:ne NO)ng(Zr) S I llewzry-

NeNTe6y(No)

For any = € Z' and any n € Ny we can express Hynr f(z) — Hy f(7) as a telescoping sum

(mayr = ng-17) Far ) ().
1

Z (HQij — Hy-v7 f)(l“) = f?(
i=1 i=

Here we use convenction that for n = 0 the sum equals 0. Hence, instead of proving (3.99) we may focus
on proving the following estimate

2 -1
sup sup ||O <.7-" (g Noi™ — Ny(j—1)7 ) F ):neN)
NeNTIe6n(No) n “ i=1 ( > 2y ) er ° ee(zh

: S 1 fllerzry- (3.100)
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As in the case of discrete averages the proof of (3.100) will require several appropriately chosen pa-
rameters. Let y € (0,1/10) and let a > 0 be such that

11 1 1 -1
ST YA .
po 2) \po min{p,p'}

Let u € N be a large natural number which will be specified later. We set

. 1 0
0:= mm{lOu’Sa}’ (3.101)

where ¢ > 0 is from the estimate for the Gauss sum (3.40). Let Il<,,r 74—y 1) be defined as in (3.23). We
can partition the multiplier ny;~ and estimate the left hand side of (3.100) by

02 —1 E S T ) | P : N 3.102

]S\flé%feéllerl()No) LN (’FZF <j:1 (rar = o My s XI)J:ZFf) ne 0) e (Zh) ( )
+sup  sup ||O? v(F 2 E Nojm — Noj—1)™ )(1 — eir srayn)Fzrf) :n €N H . (3.103
NeNTe6y(No) 1,N< zr (jzl( N 2007 ) <. (a-xn)Far ) O) e (Zh) ( )

We emphasize that the expressions in (3.102) and (3.103) correspond to major and minor arcs from the
Hardy—Littlewood circle method, respectively.

Minor arcs

Using the same reasoning as for the discrete averages in order to we see that (3.103) is controlled by the
following estimate

(7 z‘#(i (ngr = =) (1= Tl jraxn) Far ) < € Mo |

p (7T
~ er(zr)

< 2) HFZ_FI((”%"“)T = g0 ) (1 = T 1) (s 1) (a—x1) ) Fzr f)

vz
Consequently, it is enough to show that
HfZ? (g = ngnr ) (1 = M ni1yr (nat)r(A—a)) Fzr f) Hep(zr) S+ 172 llewzry- (3.104)
Let us note that for any p € (1,00) by the inequality (3.25) we obtain
H]'"Z_rl ((ng@m+n = 1907 ) (1 = M (ng1yr (ng1)r(a—xn) ) Fzr f) H S log(n + 1) fll vz (3.105)

e (Z1)

since by the size condition (1.4) we have the pointwise estimate
~1
“FZF ((n2(”+1)7 — Ngn7 ]:ZFf ‘ S Monr | f|(),

where M; is the discrete Radon average (2.55).

Again, in the case p = 2 we have a much better bound. We make use of the following result from
[13], based on Weyl’s inequality, that allows us to estimate exponential sums over convex sets with rough
kernels. This result generalizes Theorem 3.31.
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Theorem 3.106. |13, Theorem A.1| For every d,k € N there exists € > 0 such that for every polynomial

P(z)= Y &a), with P(0)=0, & €R,
veNE,
0<|v|<d

every N > 1, conver set Q C B(0, N), function ¢: QNZF — C, multi-index vy € T, and integers 0 < a < q
with ged(a, q) =1 and

a 1
§yv0 — P < 2 (3.107)
we have
| ePW)OW)| Sk N's%log(N + D6l + N*  sup  [o(2) = o(y)l,  (3.108)
yeQNZk |"’*a1:’7|5€]¥2"_5
where

% =min{q, Nl /q}.

The implied constant in (3.108) may depend on d,k but is independent of a,q, N, and the coefficients of
P.

We apply Theorem 3.106 with © = Qouin and with ¢ = Ko \a, ., hence N = 2(nt1)” By
the size condition (1.4) one obtains ||¢||fe(q) S 277"k Furthermore, if we assume that for some 3 > 0 we

have
n™ < g < 2holn T8 (3.109)

then by (3.108) and the continuity condition (1.6) we have the following estimate
‘ng(nﬂv — g | S p~TBerT 4 —Thoe < n-TBoetT
since Kk 2 n™8 due to (3.109). For B = (a1 +1)(e0)~! > 0 we get
[Ngminyr — Ngnr | S (0 +1)7

Thus, if we show that there are &, a, ¢ for which the conditions (3.107) and (3.109) hold with /3 specified
above, then by Parseval’s theorem

Hfz}l ((ngmsnyr = ngnr ) (1 = T< i1y (1) (a—x1)) Far f) S (n+ D)7 flle2zry-

02(ZF)

Next, we take p = pg in (3.105) and interpolate with the above inequality to obtain (3.104). It remains to
show that conditions (3.107) and (3.109) hold whenever 1 — Il< ;4 1)r (nt1)7(a—y1)(§) # 0.
Let 8 > 0 be fixed. For each &, by Dirichlet’s principle (Lemma 3.35) there exist a, and ¢, such that

1 < 1
- q,anT|’Y|n*T/B - q%

with ¢, < 20" Mp=78 We claim that if 1 — U< g1y, (n+1)7(a—xn) (§) # 0, then g,y > n™8 holds for
some 79 € I'. Suppose for a contradiction that for any v € I' we have 1 < ¢, < n™8. Then for
¢ =lem(gy: v €T) < n™I we have

al 1
'
el
&= 7| S owhl=E
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where a’, = avq;lq’. We see that ged(q’, (a7,) er) = 1. Hence, taking a’ = (a’,: v € T') and u so large that
n ™Il < § we get that o/ /¢’ € Y<(ngnyre. On the other hand, if 1 —Tl<(p,1)7 (ny1)7(a—y1)(§) # O then for
any a/q € X< (n41)7u, there exists 4 € I' for which

1

Ay
~ BTt 1 (0

é’y_?

As a consequence we obtain the inequality
32|F|3/2n57 > 2(n+1)'rx’
which is false for large n. Therefore, we see that there is 7 € I" such that the conditions (3.107) and (3.109)

are satisfied and consequently (3.104) follows. This shows that if u > B|T'|, where 8 = (a7™! 4+ 1)(c0)~!
and ¢ is from Theorem 3.106, then we have

sup  sup ||OF n(Fort (ngnr (1 = Hapr pr(amyery)) Fzr ) 1 1 € No)|| ey S I llewzry
(z")
NEN Ie6 y (No)

which ends the proof of estimates for minor arcs.

Major arcs and multiplier approximation

Now, our aim is to show that

n

0f n (F( = a6 Mg jr(axnFar ) N)H < .
Jiflé%feéil()m) TN\ Fpr ; (ngjm — noG—v7 )M <jr jra—ynFzrf) :n € No wiar) 2 | fllew(zry
(3.110)
For simplicity, let us denote
T;S—f(:l)) = fZ_FI((TlQ]T - nQ(j—l)T )HSJTM]T(A,XI).le"f) (x), a E ZF
The operator T}~ has the Fourier symbol given by
> (g =g ) (O (E —a/q)), weT (3.111)
a/qEZSj‘ru
We shall show that (3.111) is, up to an acceptable error term, equal to
ni(€) =Y Ga/q)(Yar — Wy 1) (€ — a/g)n(2 @D (- a/q)) (3.112)

a/qEESjru

where ¥, is a continuous version of the multiplier n; given by (2.62) and G(a/q) is the Gauss sum (3.39).
We note that singularity which occurs in W,;~ does not occur in n; because it gets cancelled by subtracting
Wog-1).

In order to approximate (3.111) by n; we make use of the previously stated Proposition 3.41. We apply
this result with Q := Qg7 \ Qy;-1yr and K := K. By the size condition (1.4) one has |||/ p~(q) S 277"k,
From the continuity condition (1.6) we get sup|,_, <, [K(z) — K(y)| < 27k (q2777)7. Therefore, on the
support of (27" (A=XI (. — 4 /q)) we have

‘(”zf - n2(j_1)f)(§) = G(a,q)(¥am — Vou-1m ) (€ — a/q)‘ Sa27 ZCI‘@ - GW/CI‘QjT(lﬂ_l) +(q2777)°
vyel
S 2—j70/2
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for x € (0,1/10), since ¢ < e/ and for any v € T' we have |, —a,/q| < 277" (W=%). By the disjointness
of the supports of n(2U+D (A=xI) (¢ — 4/¢)) we have

S (g = gm0 ) (O (E — a/g) = my(€) + O, (3.113)

a/qGZSjTU

For simplicity, let us denote

Tif(2) = Fyl(mFor f) (@), @€ 2.
Then for p € (1,00) we have a simple estimate

7/10
1T =T ey S (Sl lcary S 05 £, (3.114)

since by |30, Proposition 2.1 each term in (3.111) and (3.112) defines a bounded multiplier on ¢’. For
p = 2, by using (3.113) and by Parseval’s equality, we obtain a much stronger estimate

(75 = Tj)f”@(zr) S 27772 fllegary. (3.115)
Now, if we take p = pg in (3.114) and interpolate it with (3.115) we get
H(TJX n E)fHép (ZT) ~ S27 U/4||f||ep zr)- (3.116)

Therefore we can replace in (3.110) the multiplier (ngjr — ny-1= )ll<j= jr(a—yr) by its continuous coun-
terpart n; since the error term can be handled by the following estimate

sup  sup
NEeN €6y (No)

0?,N(Z(TJX —T;)f :n € No) iy HVQ(Z(TJ.X —T)f :n €N

]::1 j‘_l

[e'S)
S T = T fllewzry S M Fllenzr),
n=1

p(Z1)

where the last inequality follows from (3.116). Consequently, to show (3.110) it is enough to prove that

Jsvlé%leéi?m HOIN ZF ;n]}_zrf) ne NO)HzP(zF S I llevzry- (3.117)

Now, we split our projection multiplier Il<,- 74—y into the sum of annulus projections (3.24). By
(3.22) we see that

n;(§) = Y nl(9), (3.118)
S<5™,
SeuN
where nfg is defined as
nh(&) = > Gla/q) (Vo = Uyioir ) (€ = afq)n(27 D (€ - a/q)). (3.119)

a/q€Xs

By using the decomposition (3.118) combined with triangle’s inequality from Fact 2.29 and with the cut-off
Proposition 2.32 we obtain

sup  sup
NeNIe6y(No)

e (Z1)

O%,N (fz—rl(anfzrf) ne NO)
j=1

< Z sup  sup O%,N (./T"Z—Fl( Z ’I’LvaFZFf) :n” > Sl/u> .
Segun NeN [eGn (D) 1<j5<n mEn
Su<T

H Sl/(fu)]_—ZFf ng(zr)a
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where DS = {n € N:n”™ > S'/%}. Thus, as in the case of discrete averages, it is sufficient to show that

I E, > st S 5 12
P A OI,N( niFpf)in” > 8 )‘MZUNS 1fllerzry (3.120)
Sl/"<j
1/(ru) —
[Fe (S Far Nl wzry S 57N ewzr), (3.121)

since both S~ and SS9 are summable in S € 2UN,

Gaussian multiplier and scale distinction

In order to prove estimates (3.120) and (3.121) we repeat arguments used in the case of the discrete
averages in Section 3.2.1. Again, the Gaussian part G(a/q) in the multiplier (3.119) prevents us from
applying Theorem 2.71. Let 7 := n(z/2) and set

V() = Y (War — Wyonr) (€ — a/q)n (27D (€ - a/q)),

a/qeEXs

us(€) = > Gla/q)i(25"" A (¢ — a/q)).

a/qeESs

We see that estimates (3.120) and (3.121) will follow if we show that for every p € (1,00) one has

172 (s Far D)llgzry S STCUF lencar), (3.122)
/(Tu)
15 @8 Far )l oy S 108(S) 1 fllew ) (3.123)
sup _sup(1OF v (Fr vgFprf) in” = SU < 8% f : 3.124
NeN Ieey (b9) 1N< o ( 1;71 §Fzr f) )‘e (") [ fller (zry ( )

Sl/quT

The estimate (3.122) was proven in (3.52) and the estimate (3.123) is a consequence of Theorem 2.71. It
remains to prove (3.124). We follow the same approach as taken in the case of (3.54). We set kg := [52¢]
and by Proposition 2.30 we split the left hand side of (3.124) at point 25

LHS(3.124) <sup  sup HO%N@Tz_rl( 3 Ugfzrf):nre[sl/u’zﬁsﬂ])

NeNTIeGy(DLg) 155<n er(Zh)
Sl/quT
+sup  sup HO%N (.Fz}l( Z viFgrf):n” > 2"‘5> e
NeNTe6 y (DL g) 155<n er(Z1)

where DZg := {n € N: n" € [S1/v 2851} and DIg :={n € N:n" > 2%} Again, we separately
estimate the each term of the above inequality.

Estimates for small scales

Our aim is to show that
ap [0 (FR( S ) e g
NEN I€6 v (D7 ) 155%n )
Sl/ugj'r

S ks log(S) | fllwezry-  (3.125)

We apply the Rademacher—-Menshov inequality (2.38) to the left hand side of the above estimate and we
Ks

get that
LHS(3.125) Z (Z\Z L (WEFpr )] )1/2

1=0 J keIl

)

ep(Z1)
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where I]Z: = [52%, (j + 1)2) N [SY/(7) 2%sH+1] Here we are summing over j € N for which I]l: # (. One can
easily see that now it is sufficient to show that for every i < kg + 1 we have

(ZIT7

tokr )| S 10mS) o (3126)
Jo kel er(

Zr)

By Theorem 2.71, the estimate (3.126) is a consequence of its continuous counterpart

oA o\ 1/2
(1 Fat (g = i@ ) ) 7)) < 1 lzwcury
i kel Lp(RT)
The above estimate will follow from the square function bound
o 1/2
(S| 7t~ 2mznf) S Wfllery (3.127)

i kel Lr(RT)
since for every p € (1,00) the error term

ZH (Tgrr = Cyunyr) (1 =02 AXD)) For )| Lo ar,y

is controlled by a constant multiple of || f||®r). Indeed, we have uniform L? bounds for the k-th term.
Moreover, since the function 1 — 7(2*"(A4=xD.) is non-zero when |25"4¢|,, > 2¥"X, by the van der Corput
estimate (2.67) we obtain an L? estimate for the k-th term with 27%"x?/ITl loss. Thus, the desired bound
for the error term follows by complex interpolation.

As in the case of the continuous averages My, the square function bound (3.127) can be deduced from
the following inequality for the operator H;f(x),

o\ 1/2
H(Z ‘(Htk-!—l - Htk)f‘ ) ‘ Lp(RT) = p”fHLP(]RF (3.128)
keN
which holds for every increasing sequence 0 < t; <t < ---. The constant C}, > 0 is independent of the

chosen sequence. The proof of (3.128) follows the same lines as the proof of (3.66).

Estimates for large scales

The proof of the oscillation estimate for the discrete singular operators will be completed if we show that

< Log ()| fllev (zr)- (3.129)

sup  sup HO%N(JTZ_FI( Z ohForf)in” > QNS) ‘@(ZF) ~
1<j<n

NeNTIe6y (DL g) <
2’{5 <JT

We would like to exploit the almost telescoping nature of the multipliers appearing in (3.129). We do this
by introducing new approximating multipliers. Let

(&) = Y (Wyr — Uo7 )(€ — a/q)n(2¥ A (€ — a/q)).

a/qEEs

Since j7 > 275 the expression

(27" A (e —a/q)) —n(@¥ A (€ —a/q))
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is nonzero only when |£y — a4 /q| 2 237 (M=X) for some v € I'. Hence, by the van der Corput estimate in
(2.67) we get ‘ ‘ '
175 (@ = T Far D) lagary 27 ey,

whereas for any p # 2, by property (i) from Theorem 2.71, we have
_ i ~j r 7/10
5 (@ = T Far D ey S 1B ime 1 ry S €057 | oy
By interpolating the above inequalities we get

‘}fifl((”é - 5f§)fZFf) Hep(zr) S TjTEHszp(zF) (3.130)

with some ¢ > 0. This estimate allows us to replace vg by '17% in (3.128) since the error term can be

estimated by ' '
> MFz (s =9 Fae )l ary
JEN

which by (3.130) is bounded by a constant multiple of || f[|s»zr). We note that the telescoping gives us

ST owh= 3 (Wgrr — Waaes ) (€ — a/q)n(27 AN (€ — a/q)).

1<j<n a/qeXs
28s <57

Since the oscillation seminorm is translation invariant, the inequality (3.129) will follow if we show

sup ~ sup HOIN( (AS]:ZFf) n’ > 2% )ng(Zr) S log(S )HfHeP(ZF)- (3.131)
NeNIe6n (D)

where A% is defined as

= > Upr(E—a/gm@ U (E—a/q), ceT".

a/q€Xs

The inequality (3.131) is proven in the same way as the estimate (3.67), by appealing to Magyar—Stein—
Wainger sampling principle (Proposition 2.70) and the uniform oscillation inequality for the continuous
singular integral
sup  sup (|07 y(Hef < 0 € R gy S 1 ogery (3.132)
NeNTe6y(Ry)

which is proven in the next section.

3.3.2 Continuous singular Radon operators

In this section we prove the inequality (3.9). Assume that p € (1,00) and let f € C°(R"). Our aim is to
prove that there is a constant C), ;| such that

sup  sup  [|OF n(Hef i > 0)|porry < Cppoyry 1 f 1l 2o er)- (3.133)
NeN 16y (Ry)

Let D > 1 as in Lemma 3.78. By Proposition 2.33 we split (3.133) into long oscillations and short
variations,

sup  sup HOIN(Htf t>0)|rp@ry S sup  sup HOIN Hpnf :n €Z) HL,,(RF
NeNTe6n(Ry) NeNIe6y(Z

+ H (ZVQ('Htf te [D”,D”H)) ) (3.134)
neZ

1/2’

LP(RTY
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Again, we focus only on the estimate for the long oscillations

sup sup ||OF y(Hpnf :n€Z) HLp ) S Cprillflle@r), [ € CP(RD), (3.135)
NeN Ie6 x(2)

since the estimates for the short variations

H(ZVQ(Htf te [Dn,Dn+1))2>1/2‘

neZ

Lp(RT) < CRMUHJCHLP(RF)

were obtained by Jones, Seeger and Wright [32]| by using the Littlewood—Paley theory.
The proof of the inequality (3.135) is based on the Duoandikoetxea—Rubio de Francia decomposition
(3.136) and the oscillation inequality for compactly supported measures (3.91).

Oscillation inequality for the operator H;

Due to the differential nature of the oscillation seminorm it is enough to proof (3.135) for the “complement”
Radon transform given by

Hof(z) = G (y)"K(y)dy, zeR'.

The presented approach is known, see [15], and was used in the context of r-variations estimates [12] and
jump inequalities [32]. At the beginning, we see that we can express Hpr as a telescoping sum

7"Dkf ZMDJ * f

ji>k
where
o < fla) = fle — )" K ()dy.
Qpr11\2p
Now, let ¢ be a smooth compactly supported function such that ¢(0) = 1.

ppi(@) = DA p(DRAG) 5 e RT,

where A is the matrix of the form (2.63). We employ the following decomposition (cf. [18, Theorem E])
Hprf =@pr* HE = (05> ppi) e * F 4+ (D (60 — ) * ips) e * f, (3.136)
J<0 320
where

Hi) = | Sl ) Ky

is the full Radon transform. The oscillation inequality for the term @pr * H f follows by Theorem 3.90
and by the fact that H is bounded on LP. For the second term in (3.136) we use estimate (2.28) to get

LP(RT) S H(%KSO*;)MDJ')W * f|2)1/2’

sup sup HOIN< (@*ZuDj)Dk :keZ)‘
NeN €6y (Z o

LP(RT)’
We note that we have

oY ppi(x) =p.v. /Q plz—(y")K(y)dy, =eR',

j<0
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and we see that ¢ * Zj <o Mpi is a convolution with a compactly supported distribution. Hence by [20,
Theorem 2.3.20] the function =3, ¢ 1ps is a Schwartz function with mean value zero, by the cancellation
condition (1.5). As a consequence, for any A € N, one has the following estimate

1

The above estimate implies that for any p € (1,00) we have

| sup| (e + > ho)on S flmery, £ € LP(RD).

kez Lp(RT)

Moreover, since @ * > j<0 Mps 1s a Schwartz function with mean value zero, we have the following estimate
for the Fourier transform

(%> pps) pi(€)| S min {|D¥¢|oo, DRI}, € €RT
7<0
Hence by |18, Theorem B| it is easy to see that one has the following square function estimate

[l S mmn = 2)"]

keZ 7<0

Lo S 1z wrys

which proves the oscillation inequality for the second term.
It remains to estimate the third term occurring in (3.136). By using (2.28) and by the triangle inequality
we obtain

sup sup HOIN(f*(Z(éo—gp)*,u,Dj) keZ)’LFRF <ZH(Z\f* ((Go—0)*12p5) | )1/2’

LP(RT)
NeNJIeGN(Z §>0 7>0 kEeZ ®5)

Therefore it is enough to show that for some positive constant ¢, one has

H(Z‘f 60— *MDj)Dk‘z)lm‘

The uniform LP estimates of the above square function follows from the results from [15]. Indeed, by the
size condition (1.4) one has

|f % (B0 = @) % pps) pr| S Mpisr % |f % (60 — ) e,

where My is the Radon averaging operator given by (2.57). It is known that for any p € (1,00) one has

< D) |l pocar). (3.137)

~

Lr(RI)

| sup 1M, ) S 1 e (3.138)

This follows by [56, Chapter 9, Proposition 2|. The above estimate can also be derived from Theorem 3.4
and Proposition 2.7. The inequality (3.138) implies that the maximal function associated with ‘ I (((50 —
©) * ppi) Dk‘ is uniformly bounded (with respect to j) on LP(R') for any p € (1,00). Moreover, since
j <0, by the mean value theorem and the van der Corput from in (2.67) we have

(1= 6(€)iips (§)] S min {J¢[gLM, DI M} < min {|¢[0M, 1€/, ¢ e 1"

Therefore, by |18, Theorem B| we get the uniform LP estimate

H(Z‘f 60— *MDj)Dk‘z)l/z‘

kEZ

Lo S 1l e @r)- (3.139)
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In the case of p = 2, we get a rapidly decreasing estimate as j — oco. This is based on Plancherel’s
theorem. Again, by the mean value theorem one has

1= @(DMe)| S DM when  [DMe[ <1,
and since ¢ is a bounded function we get that
1= @(DHe)| S |DHEIZM when  [DMe[ > 1.
Moreover, by the estimates in (2.67) we obtain
[fips (DM46)| < min {| DI/, | DD Ag Lo/,

Taking into account the above inequalities one obtains the following bound for the Fourier transform of
the square function,

D11 = BDME)) iy (DHe)

keZ
< Z |DFAg|9/I0| ptti)Ag)—o/IT] min{|D(k+j)A§\gé‘F|, ’D(kJrj)Aﬂgoﬂ/lF\} <D
keZ

for some € > 0. Hence, we get the L?-estimate with rapidly decreasing factor

[(S2 1% (0~ ) %) )

keZ

< D—5j|nyL2(Rr). (3.140)

~

Lr(RD)
Interpolating (3.139) with (3.140) yields (3.137) and as a consequence we get

sup sup HO%N(ﬁDkf ke Z)H

Sl e ey
NeN I€6 y (2)

Lr(RD)

which ends the proof of Theorem 3.7 in the continuous case.



Chapter 4

Bootstrap approach to Radon operators

In this chapter we present the idea of bootstrap in harmonic analysis. At the beginning of this chapter
we formulate its core idea and later we present a set of examples situated in different settings. We are
particularly interested in the bootstrap proof of the jump inequality for continuous Radon averages M,
which was given by Mirek, Stein and Zorin-Kranich. Their approach is presented in Section 4.2. Finally,
in Section 4.3 we present the bootstrapping proof of Theorem 1.51 which was the main result of [D3].

4.1 The idea of bootstrap in harmonic analysis

According to Cambridge English dictionary! the verb bootstrap means "to improve your situation or become
more successful, without help from others or without advantages that others have”. This definition captures
the essence of the bootstrap approach in proving inequalities in harmonic analysis. Roughly speaking, the
bootstrap method of proving some inequality consists of estimating the left hand side of the inequality,
say L, by the expression of the form C - LY with 6 € [0,1) and C > 0 being independent of L. This leads
to the following relation

L<cr. (4.1)
Dividing both sides by LY we get L'~% < C and since # € [0, 1) this gives us

L<(CT3

which provide us with a non-trivial bound for L. The name bootstrap for this procedure refers to operating
only with the quantity L which is given at the beginning. In order to better illustrate this procedure we
give the bootstrap proof of Holder’s inequality.

Proposition 4.2. [Hélder’s inequality] Let (X,B(X),u) be a measure space and let p,q € [1,00] with
1/p+1/q=1. Then for all functions f € LP(X,u) and g € LY(X, u) we have

£l cx ) < N leex mllgllLax -

There are many proofs of Holder’s inequality — the standard proof uses Young’s inequality for products
which states that for a,b > 0 we have
a? b
ab < — + —
p q

whenever p,q € (1,00) with 1/p+1/q = 1. In our proof we do not use any non-trivial additional results.

https://dictionary.cambridge.org/dictionary/english/bootstrap
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Proof of Proposition 4.2. The case when p = 1 and ¢ = oo (and vice versa) is easy to establish so we
restrict ourselves to the case when p,q € (1,00). Let C' > 0 denote the smallest constant for which we
have

1f9llLrxm) < Cllfllecx gl Lacxw (4.3)

for all measure spaces (X, B(X), ). At first, we will show that C' < co. Without loss of generality we can

assume that || f[|zr(x,u) = 19/l La(x,u) = 1. We have

1l = / F(@)g(@)du(z) / (@) (lg()]9) du(x)
< /X max {| /() P, |g()|7} > dp(a / F@)Pdu(e / 9@ du(z

The above argument shows that (4.3) holds with the constant C' < 2. Now we use the tensor power trick?
to bootstrap the inequality (4.3) to obtain the relation of the form (4.1) for the constant C. Let us define
the tensor powers of f and g by setting, for any z,y € X,

F(z,y) = f(z)f(y) and G(z,y):=g(z)g(y)

The new functions act on the product measure space (X x X, B(X)® B(X), u® ). It is easy to note that

1| e (x x X poop) = HfH%p(x,u) (4.4)

for any p € (1,00) and any function f € LP(X, u). Now, let us write

Hng%l(X,u) = /X ¥ |F(z,y)G(z,y)|d(p @ p)(z,y) < CHFHLP(XxX,u@u)HGHL'I(XxX,u@)u),
X

where in the last inequality we used (4.3). By the equality (4.4) and by taking the square root of both
sides we get

1f9llr(x,m < CI/QHfHLp X llgllLax - (4.5)
Since C' is the smallest constant for which the inequality (4.3) holds the 1nequahty (4.5) implies that

c<clV?
Since we know that C' < oo the above relation implies that C' < 1 which ends the proof. ]

As we just saw we operate only with the constant C' and some clever tricks. We do not need any aux-
iliary results. As we will see in the sequel, usually we do not have that comfort and for more sophisticated
results we need additional tools. However, the number and complexity of required tools is considerably less
than in standard approaches. The main problem with using bootstrap proofs is the hardness of inventing
them because, as we just saw, it usually require an idea that differs from an approach that is imposed at
the first glance when we face the problem.

It is difficult to say where the idea of bootstrap first appeared and who first came up with it. It
seems that the first bootstrap proof, without calling it by this name, of the non-trivial result was given
by Bochner. In 1959 Bochner [2| gave a new proof of M. Riesz theorem about the LP-boundedness of the
conjugate Fourier series of f given by

o

—i Z sgn(n) f(n)e?™ne.

n=—0oo

2 An interesting article about tensor power trick (and other "tricks”) can be found on Terence Tao blog https://terrytao.
wordpress.com/2007/09/05/amplification-arbitrage-and-the-tensor-power-trick/.


https://terrytao.wordpress.com/2007/09/05/amplification-arbitrage-and-the-tensor-power-trick/
https://terrytao.wordpress.com/2007/09/05/amplification-arbitrage-and-the-tensor-power-trick/
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Bochner in a clever way uses the binomial theorem to establish the relation of the form (4.1). We present
Bochner’s proof of the M. Riesz theorem in the next section.

The next footprint of the bootstrap approach can be found in the work of Nagel, Stein and Wainger
[16], from 1978, where they studied the problem of differentiation in lacunary directions. Although the
name bootstrap does not appear there either the authors were aware their method can be called by that
name. Roughly speaking, their argument based on the following observation. Let (Mj)ken be a family
of linear operators with uniformly bounded L!-norm and assume that for some p € (1,2] we have the
following maximal estimate

[ 21615 M flllLexp) < Coll fll e x,p)- (4.6)

Then for 2 < (1 + %) we have the vector-valued estimate

| mas|, <6 wn

L (X,p)
et (X ,m)

(X 15P)"”|
keN

Now, if we know that (4.6) holds for p = 2, then we know that (4.7) holds for » > 4/3. Next, if the operator

M}, has "good-behavior”, we can use the vector-valued estimate (4.7) to prove the maximal estimate (4.6)

for p > 4/3. Consequently, from the inequality (4.6) for p = 2 we obtained the same inequality for p > 4/3.

We we can apply the same procedure, this time with p = 4/3, to get that (4.6) holds for p > 8/7. We

successively apply this procedure for

p>4/3,p>8/7,...,p>2/(2 —1) =1

which shows that (4.6) holds for all p € (1,2]. Although not apparent at the first glance, it can be shown
that the above-described procedure corresponds to the inequality

2—-p

Cy(N) < D,Cy(N) " (4.8)
where Cp,(N) is the constant from the truncated maximal estimate

| sup \Mifl|ox ) < CoN I fllrxpys N €N,

and D, > 0 is some absolute constant independent of N € N. The inequality (4.8) implies the bound
Cp(N) <p 1 and in consequence, by the monotone convergence theorem, the LP-bounds for the complete
maximal function.

Argument of Nagel, Stein and Wainger relied heavily on some geometrical considerations. Later,
Duoandikoetxea and Rubio de Francia [18] used the ideas of bootstrap from [16] (see Lemma 4.43 below)
to prove LP bounds for maximal Radon transform. At the same time, Christ formulated the bootstrap
argument from [10] in a fairly abstract way, which was used and published by Carbery |11, 12]. Finally,
Mirek, Stein and Zorin-Kranich [12] managed to use the bootstrap argument to establish jump inequalities
in a very abstract setting.

The boundedness of the conjugate Fourier series

The question about the LP-bounds for the conjugate Fourier series is related to the question of the con-
vergence of Fourier series in LP. By Plancherel’s theorem this result easily holds for p = 2. However the
case p # 2 is more problematic. It turns out that the question about the convergence in LP norm of the
Fourier series is equivalent to the boundedness on LP of the conjugate Fourier series. This observation
was used by M. Riesz |53] who proved the convergence of the Fourier series in /F norm by establishing the
boundedness of the conjugate function. More details about the conjugate Fourier series and its relations
to the convergence of Fourier series can be found in [20, Chapter 3.5]|.
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The first proof of the boundedness of the conjugate Fourier series was given by M. Riesz [53] in
1927. Riesz’s original proof was long and rather non-elementary. A few decades later the problem of the
boundedness of the conjugate function was studied by Bochner [2]. In 1959 Bochner gave a new proof of
M. Riesz’s theorem — much shorter and more elementary than the original proof. In this proof Bochner
uses binominal theorem and bootstrap ideas to prove the boundedness of the conjugate function on LP(T)
for p = 2k, k € N and then uses interpolation and duality. We present Bochner’s proof in this section. At
the beginning let us state the definition of the conjugate Fourier series.

Definition 4.9. For f € C*°(T) we define the conjugate function f by

Sf(x) = —i Z sgn(n) f(n)e(nz)

n=-—o00
where f(n) are the Fourier coefficients of the function f and sgn(n) is the sign function defined by

1, for x > 0,
sgn(x) :=<0, forxz=0,
—1, forx <O.

We note that for f € C®(T) the series defining Sf is absolutely convergent and therefore it is a
well-defined function.

Theorem 4.10 (M. Riesz Theorem). For any p € (1,00) there is a constant C, > 0 such that for every
f € C>®(T) we have B
IS £ 1| ozy < Coll Fllocmy.

As a consequence the operator S has a bounded extension on LP(T).

Below we give the proof of Riesz’s theorem due to Bochner |2] which can be also found in the book of
Grafakos [20, Theorem 3.5.6]. We slightly modified the presentation to be more in line with our theme
but the main ideas remain unchanged.

Proof of Theorem 4.10. Let us consider the truncated conjugate series given by

N

Snft):=—i > sgn(n)f(n)e(na)

n=—N

and let Cp(IN) > 0 denote the smallest constant for which the inequality

1SN fllLecry < Cp(N)If o) (4.11)

holds for p € (1,00). At first we show that the constant Cy,(N) is finite for each N € N. Let us note that
for each n € N we have the trivial estimate |f(n)| < || f||z1(r) and in consequence we have

ISNFlleery Sp NI Fllerery Sp NI llzecrys

where the last inequality follows by Hélder’s inequality. This shows that C,(N) <, N < co. However, we
will show that for any p € (1,00) there exists a constant C}, > 0 such that C,,(N) < C, for any N € N
and then by Fatou’s lemma we get

|SfllLeer) < lim inf |SNFlleery Sk 1 llLer)
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which ends the proof of (4.10). Since C,(NN) are non-decreasing in N, without loss of generality we can
assume that Cp(N) > 1 for large N € N, otherwise the proof is done.
Now our aim is to show that there is a constant C}, > 0 such that

ISNfllr(ry < Cpll flleeery,  f € C(T). (4.12)

We note that it is enough to proof (4.12) only for trigonometric polynomials since if f € C°°(T) there is
a sequence of trigonometric polynomials f, which is uniformly convergent to f and by Fatou’s lemma we
have

1SN (f) HLp < hmmf 1SN (fn) HLp <G hmlnf anHLP Cp”f”Lp(T)

Let f be a trigonometric polynomial on T given by

M

f)= Y ame(nt), tel0,1),

n=—M
for some M € N and some complex coefficients a,,. We note that one can write

M

7 =] f: @e(nt)} +il 3 %e(nﬂ

n=—M n=—M

where the expressions in the brackets are real-valued trigonometric polynomials. Therefore we may assume
that f is a real-valued and by subtracting the constant term we may assume that f(0) = 0. Since f is

real-valued polynomial we have f (—n) = f (n) and as a consequence we may write

min{M,N} min{M,N} min{M,N}

Snf(t)=—i Z f(n)e(nt) +i Z f(n)e(—nt) = 2Re[ —1 Z f(n)e(nt)}
n=1 n=1 n=1

Hence, we see that Sy f is also a real-valued polynomial without the constant term. Consequently, the
polynomial f + iSyf contains only positive frequencies sin(nt) and cos(nt), for n € N. Therefore, for
every k € N we have

/T (1) + iSw ()%t = 0

since there is no constant term and the polynomial f +iSy f contains only positive frequencies. By using
the binomial theorem and taking the real parts, we get

k
S (oh) [ rarmsso2mar—o

m=0

Next, since f and Sy f are real-valued we obtain

k
Hng”%]gk(T) < Z <22:;> Af(t)zm&vf(t)zk_det.
m=1

Now we may apply Hélder’s inequality with exponents 2k/(2k — 2m) and 2k/(2m) to integral under the
sum to get

k k
5115y < 3 (s ) IS A Ly S 3 Con =2
j=1

m=1



CHAPTER 4. BOOTSTRAP APPROACH TO RADON OPERATORS 85

where in the last inequality we used (4.11). Consequently, we write

!
[SnFllraeery Sk Y Con(N) 5| £l pan - (4.13)
=1

Now, since Cor(N) > 1 and Co,(N) is the smallest constant for which (4.11) holds, the inequality (4.13)
implies

Cor(N) Sp Co (V)5
which in turn implies that Cox(N) < 1 for any N € N. This shows that Sy is LP-bounded on the class of

real-valued polynomials with f(0) = 0. We can easily remove this assumption by noting that the conjugate
function of the constant function is equal to zero. Then we write

|Sn fllp2rry = ||Sn (f — f(o))Hsz(T) Sk If = FO) I z2rery S £ ) z2eeny

and in consequence Sy is LP-bounded on the class of real-valued polynomials. Since a general trigonometric
polynomial may be written as P+:(Q) where P and @) are real-valued trigonometric polynomials by linearity
we get that (4.12) holds for any trigonometric polynomial and p = 2k with & € N. By interpolation we
obtain that (4.12) holds for any p € [2,00). Finally, we observe that the adjoint operator of Sy f is —Sy f.
By duality, estimate (4.12) is also valid for p € (1,2). O

The boundedness of the Hardy—Littlewood maximal function via bootstrap approach

The next example of the bootstrapping proof in harmonic analysis in the boundedness of the Hardy—
Littlewood maximal function on L?(R?). In the proof we use the technique called the TT*-method to
obtain some form of the bootstrap inequality (4.1).

Before we start let us remind the definition of the Hardy-Littlewood maximal function. For any r > 0
and any locally integrable function f on R? we define the average operator A, f by setting

1 / d
A fly)dy, =z € R"
B(ZL‘,T) B(z,r) ( )

By using the TT* method we will give the bootstrap proof of the L?-estimate for the maximal function
corresponding to the operators A,.

A f(x) =

Theorem 4.14 (L’-estimate for the Hardy-Littlewood maximal function). Let f € L*(R?) be a positive
function. Then there is a constant Cy > 0 such that

| sup Ar fllp2way < Call fll 2 ray- (4.15)

If we use the Marcinkiewicz interpolation theorem to interpolate the estimate (4.15) with the trivial
L™>-estimate

[sup A f| poo ray < [ fll oo (ray
r>0
we get that for any p € [2, 00| there is a constant C, 4 > 0 such that

Isup Ar flloga) < Cpall fllrea,  f € LP(RY).

Obviously, the above result does not cover the case when p € (1,2) and the weak type estimate when
p = 1 unlike the standard approach which uses the Vitali-type covering lemma. However, despite a weaker
result the TT* is interesting on its own since it is a perfect tool to handle problems in the Hilbert space
setting.

As one can easily guess, the TT* method is based on the concept of the adjont operator T™, the
definition of which is given below.



CHAPTER 4. BOOTSTRAP APPROACH TO RADON OPERATORS 86

Definition 4.16. Let T: H — H be linear operator from a Hilbert space H to itself. We say that
T*: H — H is the adjoint operator of T if

(Tx,y) = (x, T"y), forall z,y,€ H.

The existence and uniqueness of the adjoint operator follows from the Riesz representation theorem for
Hilbert spaces.

The next lemma despite its simple formulation and easy proof is the core principle of the T'T* method.

Lemma 4.17. Let T: H — H be a bouned linear mapping from the Hilbert space H to itself and let
T*: H — H be its adjoint. Then we have the following norm equalities

* x11/2
T 3 = | T* rsme = ITT* (5025, (4.18)

Proof. We start by proving the first inequality which is a consequence of duality. Let || - ||z denote the
norm in the Hilbert space H. Then we have the following equalities

dualit
Tl = sup [|Txfp =" sup sup [(Tw,y)l sup  sup |(z,T*y)|
el <1 el <1 llylln<1 Izl <1 llylln<1

= sup sup [(T7y,z)| = sup [Tyl = [|T"[ln—n-
lellze<1 lylln<1 lylln<t

definition of T

This shows that the first equality in (4.18) holds. Now our aim is to show the second equality in (4.18).
At first we note that

ITT* o < | Tl T o = 1T 30—t

where the last equality follows by the first part of the proof. This shows the inequality in one direction.
On the other hand, for any x € H, we have

1T 23, = (2, TT*z) < |2l TT xll3e < 2N TT* 32

which implies
1T Bespe < NTT* 3

and completes the proof. O

The idea of the TT*-method relies on the self-cancellation properties of T' which may occur if we
consider the operator TT* instead of T or T* alone. The following simple example, based on matrices,
will help us catch the idea of TT™*-method.

Example 4.19. Let us consider the space C? endowed with the standard Euclidean norm given by

1, 9)ll2 = V]l + lyl?, 2,y € C.

Then the pair (C2,| - ||2) is a complex-valued Hilbert space. For x € C? we consider the linear operator
T: C? — C? defined by T'(x) := Ax where
1 —i
i

Let us calculate the operator norm of the transformation 7. By the definition

|T|c2—c2 == sup [|Ax]|2.
[Ix[l2<1
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We have Ax = (z — iy, x + iy) for x = (z,y) with x,y € C. Since = and y are complex numbers we can
write x = x1 + ixo and y = y; + yo for some real numbers x1, x2, Y1, y2. Consequently,

Ax = (21 +y2 +i(z2 — v1), 21 — y2 +i(z2 + 11)).

Now, if we calculate the Euclidean norm of the vector Ax we get

|Ax]lz = \/2(% + 23 + 92 +13) = VEx]l2

which shows that ||T||c2_,c2 = V2. The above calculation is simple but needs a bit of work and requires
introducing the new variables.

Now let us use the TT*-method to calculate the operator norm of T. We note that T*: C?> — C? is of
the form T%(x) = A*x where A* is the Hermitian conjugate of A given by

a2
i —i
As a result, the operator TT*: C2 — C? can be written as TT*(x) = AA*x where

AA* = [(2) g} . (4.20)

Since the matrix AA* is diagonal it is easy to see that ||Ax||2 = 2||z||e which shows that | TT*||c2_,c2 = 2.
By Lemma 4.17 we obtain that ||T||cz_,c2 = V2.

In the above example when we calculated the AA* matrix the self-cancellation has occurred which
resulted in simplification of the matrix AA* to the diagonal form. This allows us to immediately calculate
the norm of T7T™ and consequently the norm of 7. However, not every operator exhibits the obvious
self-cancellation — this applies especially to operators acting on the infinite-dimensional Hilbert spaces.
Fortunately, this approach works in the case of the Hardy—Littlewood maximal function.

Proof of Theorem 4.15. Let € L*(R%). By Hoélder’s inequality we can see that f is locally integrable.
Further, we note that the function (0,00) 3 r + A, f(x) is continuous for every x € RY. Consequently,
we may restrict the supremum in (4.15) to positive rational numbers. Further, by using the monotone
convergence theorem, we may restrict the supremum to a finite set R C Q. Hence, it is enough to show
that

| sup Arfll2@mey < Call fll 22 way
reR

where the constant Cy > 0 is independent of the set R C Q. Now, let Cy(R) denote the smallest constant
for which we have

| SlelgAerL?(Rd) < Ca(R)If Nl 22 (may- (4.21)
Clearly, the constant Cy(R) is finite for each set R since we have

| stelg Arfllr2mey < #RI Il 2 (e

which proves that Cy(R) < #R < oo. Observe that, by linearization of the supremum, the inequality
(4.21) is equivalent to the estimate

HAr(x)f(x)H[ﬁ(Rddx) < Cd(R)HfHLz(]Rd)?

for all measurable functions r: R — R.
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Now let us fix the function r and let us define the operator

1

|B(z,r(x))| Jra FWpr@y )y, «eR?

Then we may interpret Cy(R) as follows
Ca(R) = SI:P ||Tr||L2(Rd)—>L2(Rd)

where the supremum is taken over all measurable functions r : R — R, i.e. Cyq(R) is the largest L?-norm
of the operators T,.. It can be easily seen that the operator T;. is an integral operator with kernel

KT(xvy) = .’B,yERd.

B, r(@)] Eer@ )

Now we calculate its adjoint. Let f,g € L?(R%). We have

@t = [ ([ oK @)@ = [ ) [ Kooy

R4
and consequently the adjoint operator of T;. is given by
1
T = —1 dz, e RY.

Therefore, the operator T7T* is given by

1
T f // LB(a,r(2) (W) LB (2)) (y)dady, z € R
o e @ r@)[[Bz ()] B NWLBr()) ()

The integral in y can be easily computed since it is nonzero only when y € B(z,7(z)) N B(z,7(z)) # 0
and since for any r > 0 we have |B(xz,7)| ~q 7? we may write

[ U terap )10 00y S minr (o). (2}

The condition that B(z,r(z)) N B(z,7(z)) # ( can be translated into a condition that binds together z
and z,
jx — 2 < r(z) +7(2)

which means that € B(z,7(x) + r(2)).

B(z,7(2)) B(z,7(2))

B(z,r(x)) B(x,r(x))

. ‘Q

Figure 4.1: In the first picture we have |x — z| > r(x) + r(z) so the balls do not intersect. In the picture
on the right by red color we marked the part of the ball B(z,r(x) + r(z)) which contains x.
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Therefore we can estimate

TT*f(2)] Sa /Rd [F (@) LBz, r(2)4r(2)) () min{r(z), r(z)}"dz

.
[r(2)r(x)]
= /]Rd ]lB(z,r(:Jc)—i-'r(z))(x) max{l{i:;‘,)l‘(z)}ddx

1

1
< /Rd |f(x)|]lB(z,2r(m))($)Wd$ + /Rd |f(x)|]lB(z,2r(z))(x)T(Z)ddx
Sa T f1(2) + Tor | f1(2)
where in the penultimate estimate we used the fact that

1 1 1
( )’ T(Z)}d < ]13(2,27"(:1:)) (x)w + ]lB(z,Zr(z))(‘T)T(Z)d'

max{r(x

LB(r(a)+r(2)) (T)
Consequently, we obtain the following inequality
LT f(2)| Sa Tyl f1(2) + Torl f1(2), 2 € R
By using the scaling properties we see that
Ty f(2) = Trf(2/2), z€R?,

where 7(z) = r(2z) and f(z) = f(22) and similarly for T3.. This fact together with Lemma 4.17 implies
that

17511 L2 Ry L2 (Ray + 1 T2r (| 2Ry L2(REY S Ca(R).

This leads to the following estimate
sup 1T T || L2 (maty s L2 Ry Sa Ca(R). (4.22)
On the other hand, by Lemma 4.17, we get
517}13 HTTT:HLZ(Rd)—)L2(Rd) = Slrlp ”TrH%Q(Rd)_,m(Rd) = Cd(R)2~
The above inequality together with (4.22) give us
Ca(R) Sa Ca(R)'/?

and since the constant Cy(R) is finite this shows that Cy(R) <4 1 with the implicit constant independent

of the set R. t
The idea of the TT* argument can be traced back to Kolgomorov and Seliverstov [33]|. It was further
elaborated and popularized by Stein [57] and collaborators [17].

Remark 4.23. By exploiting the same ideas as in the proof of Lemma 4.17 one could prove that

* * 1/2
T 303 = [T lrsm = 1T T )32,

which can be used to consider the T*7T" variant of the T'T™*-method. Sometimes using T*T can do better
than TT*. However, in our case of maximal function this approach leads to

e /Rd /Rd IB z,7( ))|2 Basr(2) (Y LB(@r(2)) (2)dydz

where one does not see any obvious cancellation to exploit.
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4.2 Jump inequalities for continuous Radon averages

In 2020 Mirek, Stein and Zorin-Kranich [12] managed to use the bootstrap argument to establish jump
inequalities in a very abstract setting. In particular, , they have used this approach to establish the jump
inequality for the continuous Radon averages

Mif@) =1 [ fe -y, 2R (4.24)

The aim of this section is to present the bootstrapping proof of the jump inequality for M; which is due
to Mirek, Stein and Zorin-Kranich. To be more precise we prove the following result.

Theorem 4.25. (|42, Theorem 1.22| and [32, Theorem 1.5]) Let p € (1,00). Then for any f € LP(R")
we have

sz(RF)(Mtf > 0) 5p,k,|1“\ Hf”LP(RF)~ (426)

The first proof of Theorem 4.25 was given by Jones—Seeger—Wright [32, Theorem 1.5] and it was given
for the averages M; over Euclidean balls, €y = B(0,t). The general case of the convex bodies ; was
proven by Mirek, Stein and Zorin-Kranich |12, Theorem 1.22].

Let f € Ce°(RY) and let U := (J,,c;, 2"N be the set of non-negative rational numbers whose denomi-
nators in reduced form are powers of 2. By standard density arguments it suffices to show that

Tro@ry(Mef :t € U) S ey I flloery. (4.27)
By using Proposition 2.33 we may split (4.27) into long jumps and short variations,

Jgp(Rr)(Mtf :tel) < JzP(RF) (Man f :n € 7)

2 ) n on+l 2)1/2‘ (4.28)
(te 22 .
(v ez n?) T
nez
Now, we separately estimate the each term on right hand side of (4.28).
Estimates for the long jumps
Let f € C°(RY). Here we present the bootstrapping proof of the inequality
Tio@ry(Manf :n € Z) Spar) [1fllLer), (4.29)
which was given by Mirek, Stein and Zorin-Kranich [12, Theorem 2.14.]. The presentation has been

adjusted to the particular setting of the operator of (4.24) since the original version is written in a more
general context. Roughly speaking, the main idea of proving (4.29) is to approximate Man by a suitably
chosen family of smooth functions and then use the Littlewood—Paley theory to estimate the approximation
erTor.

The operator M; is related to the following group of dilations

o(z) = (tmx,y cyel), ze R, (4.30)

In order to construct a suitable approximation family we need to take into account the relation between
M, and the dilations (4.30). For any ¢ € Rl we define the quasi-norm associated with (4.30) by setting

q(§) = glgg(\ﬁvlm)-
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Then q: R — [0, 00) is a smooth function on RT' \ {0}. Let ©: R — [0, o] be given by

2|1

-1 —z
O(z) = Cr(€ ,

2T

where ¢jp| 1= Jre dx. Then O is a non-negative Schwartz function with integral one. We define the

family of Schwartz functions on R, related to ©, by setting
Far(©)(€) == Fr(©)(tq(€)), >0, €cR. (4.31)
Then by [32, Theorem 1.1] we know that for every 1 < p < oo we have
Tro@ry (O f:n € Z) Sp || fllr@ry,  f € LP(RY). (4.32)

Moreover, by the results from Section 2.1 this estimate implies the r-variational inequality, which in turn
implies that the maximal estimates,

up [0 f|| o S Ifllocer), (4.33)

hold for all p € (1,00). The inequality (4.33) has been known for a long time and can be deduced from
the Hardy—Littlewood maximal theorem [56, Proposition on p. 486]. We use the convolution family
(@2n * f)n€Z to approximate the operators Mon f. By Proposition 2.29 we have

Tro@ryManf in € Z) S Ty qry (O % f 10 € Z) + J7, ey (Man f — Ogn = f 10 € Z)

Sp 1 flle(mry + H(Z |Man f — Oan * f|2>1/2‘

nez LP(RF)’
where in the last inequality we used (4.32) and (2.28).
Now our aim is to establish the following bound
o\ 1/2
| (X 1Man g = 00w 42) | Sty 1 oo (4.34)

ne’

for any p € (1,00). Here we use the bootstrap argument. Let N € N and let Cp(NN) > 0 denote the
smallest constant C' > 0 for which

H< Z (Mo = O x f’2) 1/2HLP(RF) = C"’fHL”(RF)'

In|<N

Clearly, the constant Cp(IN) > 0 is finite since we have Cp(NN) < N. Without loss of generality we can
assume that Cp(N) > 1 and N € N is large. Now, our aim is to show that Cp(N) $pq | 1 with the
implicit constant being independent of N. In order to do so we apply the Littlewood—Paley theory. Let
$0: R — [0,00) be a smooth function such that 0 < ¢ < 1(1/9 9 and its dilates ¢;(§) := $0(27€) satisfy

Z‘b](x) = ]1(0,00) ([IJ), zeR. (435)
JEL
For each j € Z, by using functions ¢; and the quasi-norm (4.31), we define the Littlewood-Paley operators
S; by
Frr(S5.1)(€) = ¢;(a(&)) Far (/)(€), € €R. (4.36)
Then for any f € L?(R') one has
> Sif=f. (4.37)

JEZ
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where the above equality holds in the L?-norm. Indeed, by Plancherel’s theorem one has

M 2
j N

M
2
N,]l\}ln—lmo H jZ—N ij B f’ L2(RT)  N,M—oco i L2(RY) B

where the last inequality follows by (4.35) and the dominated convergence theorem with the dominant
2Fgrf € L?(RY). Moreover, by [54, Theorem I1.1.5] we obtain that for any p € (1,00) we have the
Littlewood—Paley inequality

2\ 1/2 - ol
|(Z18572) |y S Wiy, f € LPRE), (4.38)
JEZ
Now, we use the above Littlewood-Paley operators S; and for each p € (1,00), by (4.37), we estimate

H( S |M2nf—egn*f|2>1/z’LP(Rr) SZH( > ,M2n5n+jf—@2n*snﬂﬂz)l/zHLp(Rr), (4.39)

In|<N JEZ  |n|<N

Next our aim is to estimate the inner terms. At first we handle the case p = 2 since it will give us a nice
decay. Namely, we shall show that

Sk,T| 2~ £l L2 ®ry, (4.40)

H ( D ManSpsif — O » S”+jf|2>1/2‘ L2(RD)
neZ

for some ¢ > 0. Since by (4.31) the function G2 is related to the Schwartz function with integral one has
the following estimates for the Fourier transform of Oan,
| Fer (©20)(6)] S 1274€l0M, | Far (©20)(6) = 1] S 1270, € €RT (4.41)

Moreover, we know that M;f = fﬂgpl(q)ter f) where ®; is given by (2.61). Therefore, if we combine
estimates (4.41) with the estimates for the function ®; given in (2.64) we obtain

| @20 (&) — Fr(©20)(6)| < min {274 /T, j2n g ITT. (4.42)

Hence, by Plancherel’s theorem one gets

H ( D [MonSpijif — Ogn Sn+jf|2>1/2‘

nez

2 2
L2RY) /RF g;(q’?" — Fgr(O2n)) ¢jrn(q(-)) Frr f|7dE.
We note that on the support of ¢, ; (q({)) one has |2"4€| ~ 271l hence, by (4.42) we get

/RF D (@20 = Far (020))8 0 (a(€) Far f| € < 279 ]| o)

nez

which proves (4.40).

In order to handle the case p # 2 in (4.39) we make use of the "bootstrap lemma” that allows us to de-
duce a vector-valued inequality from a maximal one. This lemma originates in the work of Duoandikoetxea
and Rubio de Francia |18, Lemma on p. 544|. The version presented here is its improvement due to Mirek,
Stein and Zorin-Kranich [12].

Lemma 4.43. [12, Lemma 2.8| Suppose that (X,B,u) is a o-finite measure space and (Bp)ney is a
sequence of linear operators on L'(X) + L>®(X) indeved by a countable set J. The corresponding mazimal
operator is defined by

B, jf :=sup sup |Byg|,
nel |g|<|f]
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where the supremum is taken in the lattice sense. Let qo,q1 € [1,00] and 0 < ¢ < 1 with % = lq_—oﬁ and

; 1 _1=9 3 1- ¢J0/2
g0 < q1. Let gy € [qo,q1] be given by rriir —|— 2 + . Then
1 2 1 2
[ 1Baga) ], < CuplBallzso-sso) I Besl oo | (lonl) ]
nel nel

Proof. Let us consider the operator Bg := (Bngn)ney acting on sequences of functions g = (gn)ney in
LY(X) + L*(X). Then by Fubini’s theorem one has

HBQHqu(X;eqo(J)) = HHBngnHLqO(X)ngo(J) < (sglanHquﬁqu)HHgnHqu(X)Her(J)

n

= (sup|| Bn |l £oo— 90 ) |91l ao (x;90 (1)) -
nel
On the other hand, by definition of the maximal operator B, j, we may write

1Bl Lo (xe ) = lsuplBugalll or (x) < [1B-3(splgn | o x)
< HB*JHLfM—wnHsuplganqu(X) | B3l Lor— Lo [|g] Lot (x50 (1)) -
The claim for gy € [qo, ¢1] follows by the Riesz interpolation theorem [20, Exrecise 4.5.2.| for vector-valued
spaces L2 (X;£9(])) and L% (X;£°°(])). O
The next result is a counterpart of the above lemma related to the Littlewood—Paley operators.

Lemma 4.44. [12, Lemma 2.9] Suppose that (X, B, ) is a o-finite measure space with a sequence of
operators (S;)jez that satisfy the Littlewood—Paley inequality (4.38). Let 1 < qo < q1 <2 and L € N be a
positive integer and let Vi = {(n,m) € Z* : 0 <m < L — 1}. Let (Mym)mm)ev, be a sequence of linear
operators bounded on LI (X) such that

(S X tnsinst)

neZ m=0

< ajlfllzzxy,  f € LA(X) (4.45)

for some positive numbers (a;j)jez. Then for all f € L9(X) we have

(S X wtnsinn)

Lu(x
neZ m=0 (446)
—a1 1 ;:CM%O 2—qp q21:<10
N L2 2( sSup HMn7m||LqOQO~>LqO)||M*,VLHqulﬁ)qu a; 0 ”f”qu(X)‘

(n7m) evy,

Proof. When ¢q; = 2 then this case is identical to the hypothesis (4.45) and we are done, so suppose q; < 2.
Let ¥ and gy € [qo, q1] be as in Lemma 4.43, then by using that lemma we write

(X tnsins)

neZ m=0

L% (X

- 1/2 4.47
5( sup ”ManLqO—)LqO)HM*,VL"1[9/(11—)[/(11 (ZZ ‘Snﬂ'f‘Z) ‘ ( . )

(n,m)€Vy n€eZ m=0

L9 (X)

,S Ll/z( sup HMn m”quano) ||M*7VL H%‘HHL‘“ HfHLqﬁ’
(n,m)evy,
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where in the last inequality we used the Littlewood—Paley inequality (4.38). Since gy < ¢1 < 2, there is
a unique v € (0, 1] such that qil = é + 1_7” Substituting the definition of ¢y we obtain q% = Z—? + % It
follows that

90 2—qo 2—q
1-9==— V= V=
2’ 2 Y 2
92— 2 -
U= Q1’ y(1—0) = CI1CIQ’ ="
2—qo 2—qo 2 2—qo0
Interpolating (4.47) with the hypothesis (4.45) gives the claim (4.46) for ¢;. O

We make use of the above result to estimate the LP-norm in (4.39). Now, let us consider the case
p € (1,2] only. We have already showed that Cy(/N) < 1 which follows by (4.39) and (4.39), so we may
assume that p € (1,2). We apply Lemma 4.44 to the LP-norm term in (4.40) since by (4.40) we know that
the condition (4.45) is satisfied. We apply it with the operator M, of := Man f — Ogn * f, the parameters
L=1,q=1and ¢ = p. Consequently, one can write the following inequality

1/2 2-p 2=p
[( 3 IMarSiss = 0w Susst ) oy S 50 1Mol 25 1 102 gy
In|<N (RT) ne”Z
with ¢, > 0, where the operator M, y is defined as

M, Nnf = sup sup ’Mgnf — Oan *f|.
In|<N |g|<If]

It can be easily seen that one has HMnOH ot S 1. Moreover, we have the following pointwise estimate

1/2
Mz f| < sup Ok |f| 4+ sup Monlf| <2 sup Oanx|f|+ (D [Manlf] — €+ [1][)
In|<N [n|<N In|<N In|<N

which, by the definition of constant Cj,(/N) and the maximal inequality (4.33), implies
[Mon || oy o Sp 1+ Cp(N) S Gp(N)

since Cp(NN) > 1. Hence, we may write

2o s
Speir) Co(N) 2 271 £l Ly ry,

/
(5 et ~0m 50t 5

In|<N

for some ¢, > 0. By (4.39) the above estimate implies that

I it -7

In|<N

2-p
LP(RT) S’ CP(N) 2 ||f||LP(RF)' (448)

By the definition of the constant C,(N) the above inequality shows that

2-p
Cp(N) Spk,r) Cp(IN) 2
which implies C,(N) <5, rj 1 and this ends the proof of (4.34) in the case when p € (1,2].
In the case p € (2,00) we use duality. If p > 2 then its dual exponent p’ satisfies p’ < 2. Hence, we
may repeat the above arguments for p’ and obtain that
2\ /2 < 2520 —e I
( > [ManSpyjif — Oon % Sy ) ’ ) Cor () 227V £ L e (4.49)

In[<N

L7 (RT)
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for some ¢y > 0. Since MonSp1jf — Oan * S,y f are convolution operators, the inequality (4.49) holds
also for p. Namely, one has

2\'/? 22 el
(2 MonSuiif = O s Suiif2) || Sy G (N) 2279 £

In|<N

Lp(RT)

The above inequality, together with (4.39), implies

1/2 2_p/
H( Z [Monf — Oon f‘2> ‘LP(RF) S Gy £l e @)
[n|<N
which in turn implies
Cp(N) S Cy(N) "

By the first part we get that Cp(N) Sy k) 1 which shows that Cp(N) Sy gy 1 for p € (2,00). This
ends the proof of (4.34) for p € (2,00) and consequently the proof of the estimates for the long jumps.

Estimates for the short variations of the continuous Radon operators

Let f € C(RF). We need to show the LP-estimates for the short variations in (4.28). Namely, we will
show that

H (ZW (Mtf it e [2",2n+1] m[U)2>1/2‘ ol ||f||Lp(Rp). (4.50)

nel

Lp(RI)

Here we present the bootstrap proof of (4.50) which is due to Mirek, Stein and Zorin-Kranich |12, Theorem
2.39 — case (3)]. In the proof of (4.50) we use some tools introduced during the proof of the estimate for
the long jumps (4.29) — see the previous section for more details.

Let N € N and let Cp(N) > 0 denote the smallest constant C' > 0 for which

H( Z VE(Mf : t €27, 27 mU)z)l/zuLp(RF) < C| fll e wr)- (4.51)

In|<N

By the square function estimate (2.28) we know that for each N € N we have Cp(N) Snp 1. Now, our
aim is to show that Cp(N) <p 4 r) 1 with the implicit constant being independent of N. Without loss of
generality we can assume that C,(N) > 1 and N € N is large.

In order to show that the constant Cp (V) is finte we make use of the Rademacher-Menshov inequality
for the short variations. Namely, for any N € N and for any function g: U — C one has

( Z (V2(g(t) te [2n72n+1]ﬂ[[})2)

In|<N

1/2

o1 (4.52)

SY(Y Sl + 2+ 1) — g2+ 2 )

I>0  |n|<N m=0

The above inequality follows from the Rademacher—-Menshov inequality (2.36). Indeed, the inequality
(4.52) is a consequence of the estimate

2t—1
VAg(t) e 227 A 0) £ 37 (X a2 + 2 m + 1) — g2 + 2“*lm)\2)1/2. (4.53)
>0 m=0
At first we note that it is enough to prove
2t—1
VA0 e 0.2]00) S 30 (3 (£ m+ 1) - e m) ) (4.54)

>0 m=0
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for f(t) := g(2™ +t). Let M € N be a large natural number and let us consider the set
Uy = {u/QM: u€Nand 0 <u < 2"+M}.

Then one has VZ(g(t) : t € Up) = VZ(g(t/2M) : t € [0,2""M] N Z) and by the Rademacher-Menshov
inequality (2.36) we may write

ntM ontM-l_j

Vg itet) s 3 (D 1M m+ 1) - £ Mm)[)
=0 m=0

1/2

n+M 21—1

=3 (X It v ) - e m)

=0 m=0

By taking M — oo in the above estimate we obtain (4.54) which ends to proof of (4.52). By using (4.52)
we may estimate the left hand side of (4.51),

2l—1
/
LHS(4.51) S H( 33 Manpanigmin f — M2n+2n_sz\2)1 2\ - (4.55)
120 |n|<N m=0
2l—1 N
< Z Z H( Z Z |(M2"+2"—l(m+1) - M2"+2n—lm)sn+jf| ) ‘ Lo(&T)’ (4.56)

>0 jEZ  |n|<N m=0

where in the lest inequality we used the Littlewood-Paley operators S; defined in (4.36). Now our aim
is to estimate the inner terms with the LP-norm. At first we handle the case of p = 2. By Plancherel’s
theorem and the estimate (2.64) we get

[(Manyoni(mi1) = Manantm)Snsif|| f2mry S 27|15 fll 2 ery, (4.57)

for some ¢ > 0, since on the support of Fgr(Sj1n)(€) one has |274¢|o ~ 271l On the other hand, by
Minkowski’s integral inequality, for any p € [1,00) and any g € LP(R") one has

’Q2n+2n—l(m+1) \ QQn+2n—lm‘

H(M2"+2”*l(m+1) - M2n+2nflm)9“Lp(Rr) < ‘Q ‘ HgHLP(]RF)'
27427~ (m+1)
By Proposition 2.66 we have
|Q2"+2”—l(m+1) \Q2n+2n—lm‘ < 9-l
|Q2n+2n—l(m+1)| -
which implies that
| (Manyon-tmi1) — M2n+2"—lm)9HLp(Rr) < 27| gll Lo gy (4.58)

for any p € [1,00) and any g € LP(R"). In particular we may apply the above bound for p = 2 and with
g = Sn+;f to get

| Mooty — Mot Snsif | pagar) S 27 1Susif aary (459
Therefore, by Plancherel’s theorem, (4.57) and (4.59) we get

2l—1

H( Z Z |((Marpzn-igmr) = M2n+2n—lm)5n+jf‘2)1/2‘

[n| <N m=0

< oo/l £l o gry  (4.60)

~

L2(RT)
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for some ¢ > 0. We note that the above estimate is summable in [ > 0 and j € Z which, by the inequality
(4.55), shows that Co(N) < 1 with the implicit constant being independent of N € N. This ends the proof
of (4.50) for p = 2.

Now we consider the case of p € (1,2). In order to get the LP bounds in terms of C,(N) we use
Lemma 4.44 with L = 2!, the set Vy,; := {(n,m) € Z? : |n|] < N,0 < m < 2! — 1}, the operators
Mypm = Man_on-i(mi1) — Manjon-t, and the parameters go = 1, g1 = p. By (4.60) we know that the
condition (4.45) is satisfied hence we write

21 1
2\ 1/2
(5 5 10y Mo )
[n|<N m=0 (461)

S 2% Mol 1 [ 12755 250

~ Sup nmilpi_yr1 VNIl Lp—Lp LP(RT)

(n,m)EVN’l
where c; > 0 and the maximal function M.y, is given by
M,yy,f:= sup sup |(M2”+2”—l(m+1) - M2”+2”_lm)f}'
[n|<N - g|<|f]
0<m<2!-1

It can be easily seen that by (4.58) applied with p = 1 we have sup(, ,)cvy | Ml S 27 hence
(4.61) can be reduced to

2l

H( Z Z |((Mnon-t(me1) = M2n+2n71m)5n+jf‘2>l/2‘

n|<N m=0 Lr(RT) (4.62)

2-p 1 :
p=l
S HM*vVN,l||L1‘2’—>LP2 22 Cpl]l”f”LP(RF)'

Further, we handle the quantity HM*,VN,zn r—rp- At first, we note that one has the following pointwise
estimate

1/2
|(M2n+2n—l(m+1) - M2n+2n7lm)f| 5 SLEllZMQn’f| + ( Z V2 (Mt|f| 1t e [2"" 27‘L+1] N [U)Z) .

In|<N

In the previous section we have showed the jump inequality for the dyadic scales (4.29) which, by the
results from Section 2.1, implies that for any r € (2, 00) and for any p € (1, 00)

V(Mo f 0 € D] piary S I Fllmgary £ € LPRD).
In turn, this implies the maximal function estimate,

[ sup (M flll oy S 1oy, £ € PR,

If we combine together the above observations then we obtain that HM*7VN,l H <p Cp(N). Therefore, we
have

2l 1 9 1/2 2-p —ZCH —e il
[(X X 1Moty = Mmoot Suss ) | S GoN) Zo 2 20 7y,
In|<N m=0

for some constants ¢, ¢y > 0. By (4.55) this implies

< Z VQ(Mtf 't e [2",2n+1] mU)2)1/2’

In|<N

2—
S Cp(N)% HfHLP(RF)-

Lr(RD)
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By the definition of the constant Cp(IV), one has

2—p

Cp(N) Sper) Cp(N) 2

~Pp,

which proves Cp(N) S, 5, 1 and this ends the proof of (4.50) in the case when p € (1,2).
As in the case of long jumps, for p € (2,00) we make use of duality. We repeat the above arguments
for p’ and obtain that

2l

H( Z Z ‘(M2n+2"’l(m+1)_M2n+2nflm)5n+jf‘2>1/2’

n|<N m=0 Lv' (RT) (4.63)

< Cy(N) F 2719 27 ]| Ly o

for some constants ¢y, ¢, > 0. Since (Monon-t(11) — Maonyon-1,)Sn+; are the convolution operators,
we see that (4.63) holds also for p. Hence, by (4.55) we get

2

S Cp(N) > ||f||Lz>(RF)

H( Z V2(Mtf S te [2m,2n ﬂU)2>1/2‘

In|<N

Lr(RD)

which shows that ,
2—p

Cp(N) Sper) Cpr(N) 2.

2—p/

Since p’ < 2, by the first part of the proof, we have Cp(N) 2~ <y iy 1 which gives Cp(N) Sppepry 1.
This ends the proof of (4.50) in the case when p € (2, 00) and therefore the proof of Theorem 4.25.

4.3 Seminorm estimates for Radon type operators on Z? — proof of The-
orem 1.51

As we have seen in the previous section, an appropriate usage of the Littlewood—Paley theory allows us
to establish jumps inequalities (4.26) almost without using other tools while maintaining clarity of the
presentation. In this context, the problem of interest is whether a similar approach can be used in the
discrete setting. This question is particularly interesting since we know that most "continuous” methods
do not apply in the discrete setting and usually discrete problems require a totally different approach.
Surprisingly, the bootstrap approach with a few changes can be used in the context of the discrete Radon
averages. We managed to do this in [D2] where the seminorm inequalities for the discrete Radon averages
where established. The paper [D2| was motivated by the work of Mirek, Stein and Zorin-Kranich [12]
which was partially recalled in the previous section and by the work of Mirek [37] where the discrete
Littewood—Paley theory was established.

The exposition of this section is based on the paper |[D2]|. Some tools and methods used are very
similar (if not the same) as in Section 3.2 hence sometimes we make a reference to a relevant result. By
the lifting procedure (Lemma 2.54) it is sufficient to prove Theorem 1.51 for the averages M; given by
(2.55).

Theorem 4.64. Let p € (1,00). Then for every f € ¢P(Z") we have
Spr(Mif :t>0) Ssepir) 1 leezrys (4.65)

where the implicit constant may depend on the choice of the seminorm SP.
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The rest of this chapter is devoted to proving Theorem 4.64.
Assume that p € (1,00) and let f € #P(Z") be a compactly supported function. Let U := Unez 2"N.
Let us note that it is enough to establish the following inequality

Shr(Mif it €U) Sso | fller(zry» (4.66)

where the implied constant may depend on the seminorm S, and p € (1, c0) but is independent of f. Let us
choose pp € (1,2), close to 1 such that p € (po,pf). Note that M, f = f for ¢t € (0,1). By Proposition 2.33
we can split (4.66) into dyadic scales (long "jumps”) and short variations

° 1/2
SP(Mif it €U) <SP (Manf i m € No) + H(ZV2 (Mif st e 27,27 A U)?) pary (467)
n=0
We will estimate separately each part of the right hand side of (4.67).
4.3.1 Estimates for the dyadic scales
The aim of this subsection is to give a proof of the estimate for the dyadic scales,
Spr(Manf :n € No) Ssv | fllevzry, (4.68)

where the implicit constant may only depend on the seminorm &,, but is independent of f. For this
purpose we will exploit the following bootstrap argument. For NV € N let us consider the following cut-off
seminorms

By Cp(IN) we denote the smallest constant C' > 0 for which the following estimate holds

S (Manf :n € [0,N]NNo) < C|| fllpw(zry. f € P(Z).

Clearly, the constant Cy,(N) is finite for each N € N since by (2.28) one has

Shr(Manf :n € [0, N]NNo) S H( |M2nf|> H (ZF) N[ fller(zry

and hence Cp(N) S N < oo. However, we will show that there exist a constant C, > 0 such that
Cp(N) Ssr 1 with the implicit constant being independent of N € N. If such a constant exists, then
by taking limit as N — oo and by using the monotone convergence theorem one easily obtains (4.68).
Without loss of generality we can assume that R,(N) > 1 and N € N is large.

We make use of the Hardy-Littlewood circle method related to the Ionescu—Wainger fractions from
Theorem 2.71. We start by noting that the operator Msn is a Fourier multiplier operator with multiplier
man given by (2.59). Similar to the proof of Theorem 3.4 (Section 3.2) the proof of (4.68) require several
appropriately chosen parameters. Let a > 0 be such that

1 1 1 1 -1
a>100( - ) (- — ) . 4.69
(po 2) (Po mm{pvp’}> (4.69)

Fix x € (0,1/10) and let u € N be a large natural number which will be specified later. Let n: R — [0, 1]
be a smooth function such that

n(z) = {1’ ol < 1/A6IT, (4.70)

0, [z[=1/(8|T')).
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Let us set ¢ := (10u)~! and recall the family of rational fractions Y.<, related to the parameter ¢ described
in Theorem 2.71. For each n € N we define the following function

En(@) = Y W —a/g), (4.71)

a/quSnu

where I is the |T'| x |['| identity matrix and A is a matrix defined in (2.63). We note that the functions
(4.71) corresponds to the functions Il<, ,r(4—yr) With 7 = 1 defined in (3.23). We decided to use the
different symbol to make an appropriate distinction between them since we will be using them in a different
way. By Theorem 2.71 we have that

H'FZ_FI(E'n‘FZFf)ng(ZF) SU,p log(n + 1)HfH£P(ZF)7 (4'72)
which follows by the fact that for large n one has e, := 2—171=x) < e = e=(1")* We use projections
defined in (4.71) to partition the multiplier man,

Sp (.7: (TfLQn]:er) [ ] N No) S S;F (./’TZ_F1 (TTLQnEanFf) n e [ ] N No)

+ S (Fp (1= Zp)manFyr f) :m € [0, N] N Np).

Now, just as in Section 3.2 our aim is to estimate the each term separately.

Estimates for the minor arcs
Now, our aim is to prove that
Sgr (]:Z}l((l —Ep)manFyrf) :n €0, NN No) < Hf||gp(zr). (4.73)

The proof of (4.73) is a straightforward repetition of the arguments presented during the proof of (3.28).
Hence, we do not present the exact details here. We note that by (2.28) the seminorm SP is bounded
by the 2-variation seminorm. Moreover, since the r-variation seminorms are non-increasing in r we may
estimate V2 by the V! and consequently

LHS(4.73) < [|[V1(Fr (1 = En)manFyr f) s 1 € [0, N] N Nol| gy ey S ZH — En)man Fr f)|| o ry-

Therefore, it is enough to show
1Fo (1 = En)mon Far f) | ey S (0 D721 fllnary. (4.74)
For any p € (1,00) by the inequality (4.72) we have
[ F2 (1 = En)man Fur f) | o ) Sup log(n + DI 1l zr)- (4.75)

In the case of p = 2 we use Weyl’s inequality (Theorem 3.31) to obtain a rapidly decreasing bound. Thus,
if we show that there are &, a, ¢ for which the conditions (3.32) and (3.33) hold, then

nk

| Sk W(” +1)"* Sa(n+1)7°

|man (§)

with a > 0 from (4.69), since |Qan N Zk\ >q 2"F. Therefore, by Parseval’s theorem one may write
1751 = Z)man Far ) [ pgary S (04 D2 lergary

and by interpolating the above inequality with (4.75) for p = py we obtain (4.74). Let u > S|I'|, where
B is from Theorem 3.31. In order to verify conditions (3.32) and (3.33) one uses Dirichlet’s principle
(Lemma 3.35) and repeats exactly the same steps as in the proof (3.29) but with 7 = 1. We omit the
details.
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Major arcs and scale distinction

We can now turn our attention to the major arcs. Let 7(z) := n(z/2). We define new multipliers by
setting

5= Y UD€ a/g)iP (A (e afg)),

a/qEX su

where Ygu = Yc(s41)u u\ X<gu for s € N and Xou = ¥<1. It is easy to see that one has

n—1

Ea(€) = Y ENE).

s=0

Since By Proposition 2.29 we know that SP satisfies the "trinagle ineqlaity” we may write that

Sp (Jr (anuanFfj n e [ ﬂ No Z m277«s_: .Fzr‘f) [ ,N] N No)

Z mzn_. sFrf):in€[s,NIN No)

+ H ZF mQS‘:'szFf)ng(ZF)a

where the last inequality follows by Proposition 2.32. Now, for s € Ny we set i, := 20|T|[(s 4 1)%/1°] and
by Proposition 2.30 we see that the expression under the sum is bounded by

Sgl" (fz_pl(anEZ]:ZFf) n e [S, N] N No,n < 2KS+1) + Sgl" (.Fz_pl(m2n52fzf‘f) n e No,n > 2KS)
+ H‘FZ_FI(mQSE::fZFf)ng(zr)

The first term corresponds to small scales and the second one to large scales. For p € (1, 00) we will show
the following bounds:

H}"frl m2SE§]:ZFf)ng(ZF) S(s+ 1)_3Hf||£z>(zf)a (4.76)
S (Fit (man B3 Fyr f) i n € Noyn > 2%) < (s + 1) 73| fll o (ary- (4.77)

Moreover, in the case of p € (1,2], we prove that the inequality
SP (Ft (manE5Fyr f) tm € [s, NJNNo,n < 2771) < Co(N)P®) (s + 1) 73| fll o zry» (4.78)

holds with some §(p) € [0,1). If we show the above inequalities and combine them with the estimates for
the minor arcs (4.73), then for p € (1,2] we obtain

o0

Cp(N) S 1+ (s+ 1) (G (V) + 1) S Cp(N)PP),
s=0

since Cp(N) > 1 and B(p) € [0,1). This gives Cp(N) <p 1 and thus the proof is complete in the case of
€ (1,2]. When p € (2,00) a minor change is required for the estimate (4.78). Namely, in this case we
show that

SY o (Fit (monZ5 Fyr f) 1 m € [s, NJN N, n < 2%+1) < Cy (N)?'®) (s + D73 fllee 2oy (4.79)

where 1/p+1/p’ =1 and 3'(p) € (0,1). Since p’ € (1,2), by the first part one has that Cpy(N) <,y 1 and
consequently

ST+ (s+1)3Cy(N)FP +1) <51
s=0

which finishes the proof in the case of p € (2, 00).
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Multiplier approximation and estimate for (4.76)

At first we prove the estimate (4.76) which is relatively easy. We note that n7 = n and as a consequence

23 = ). (2N -a/g).

a/qESsu

we see that

By Theorem 2.71, for any p € (1,00), we obtain the estimate
H-FZ_FI(mZSE::fZFf)ng(ZF) 5 log(s + l)H.fHZP(ZF)' (4'80)

In the case of p = 2 we will approximate the multiplier mgs = by a suitably chosen integral and we show
that it is equal, up to reasonable error, to

my(&) = Y G(a/q)Ps (& — a/q)y* (2" (€ — a/q)) (4.81)

a/qeEX su

where ®; is the continuous counterpart of the multiplier m; given by (2.61) and G(a/q) is the Gauss sum
given by (3.39).

In order to approximate mos =% by ms we make use of Proposition 3.41. At first we use it with £ =1,
Q2s € B(0,2°) and £ = a/q =1 and as a result we get

Q00 N ZF| — |Qas || S 257D, (4.82)

In the next step we define an auxiliary multiplier

~ 1
Mon(€) =gy DL el (),

yEQQSOZk
By (4.82) we obtain
- |QQS| — |Qgs M Zk| 25(k_1) s
[mas (§) — mas (§)] < | 00 A ZF ‘lﬂzs NZF < S =27 (4.83)

Now, we again use Proposition 3.41 this time with Qs C B(0,2%), K = |Qa:|!1g,, and e, = 1. Hence,
on the support of =%,

|i2s (€) — G(a/q)Pas (€ — a/q)| S a27° + ) ql&, — ay /g2 < 279/2, (4.84)
vyel

since ¢ < e5'/" and for any v € I' we have &, — ay/q] < 275(M1=X). Consequently, by (4.83) and (4.84)
one has

|mas (€) — Gla/q)®as (€ — a/q)| S 27/,
which, by the disjointness of the supports of n(QS(A_XI) (& — a/q)), shows that

(m2E3)(€) = ma(€) + O(27°/?).
Observe that due to the estimate (3.40) we have maxgcpr [vs(§)] S (s+ 1)7% and by Plancherel’s theorem

H]:z_rl(m?Ez]:ZFf)Hz?(zr) = H]:z_rl((m2£§ - ms)]:ZFf) Hz?(zr) + H]:z_rl (mszFf)H@(ZF)

—s/2 —du — <485)
S+ s+ DT le@ry S (s + D7 fllear)

provided that u € N satisfies u > ad~!. Interpolation (4.80) for p = py with (4.85) shows that (4.76).
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Estimates for the large scales

Now we focus on proving the estimate for the large scales
(4.86)

Sp (]—" Y mgnZ8 Fyr f) :n € Ng,n > 2“*“) S (s+ 1)_3Hf||gp(zr).
The proof of the above inequality is similar in spirit to the proof of (3.67). However we need to establish
some additional approximations. By Proposition 3.41 (compare with (4.84)) we have

manZ5,(€) = mi(€) + 0(27"?),

where
= Y G(a, )P (& — a/q)n* (2" XD (€ = a/q))iP (22X (€ — a/q)).

a/qEX su

Now, by Theorem 2.71 one has
[ r (man =) Fyr f) ng(zr < log(s + V[ fllerzry S log(n + D) fllewzry

and by the estimate property (i) from Theorem 2.71 we get
m? Fyr )], o < e(‘r‘ﬂ)(s“)uwHngp(Zr < (T (n41) l/wufHZ,,(Zr

[
As a result, for every p € (1,00), we obtain
_ —_3 /
172 ((man 5, = m) Far F)llgngary S €T o or (4.87)
On the other hand, by Plancherel’s theorem
| F7 (manE5 — mZ2) Far )| 2 @) S 27 2| fll g2 zr)-
Interpolating the above estimate with (4.87) for p = pg yields
[ F 2 ((m2n 5, = m) Fpr )| ey S 27" 1 F llew
for some ¢, > 0 and since n > s we may write
H]:Z_rl man =y, — mg ) Fyr f) ng(zr S (s+ 1)_32_%”/2\””@(%)-
Therefore, since by (2.27) we know that SP is bounded by the ¢*-norm, we may write
o
Sgr (}—irl(m%Efz}_ZFf) :n € No,n >2%) < Z H‘FZ_FI((m2nEfL - m?)}—ZFf)Hep(ZF)
n=2~Ks
+ S (F (mlFye f) s n€ Noyn > 2%,
which shows that it sufficient to show
D72 llerczry (4.88)

Shr (]-'Z}l(mgfzrf) :n € No,n > 2%) < (s

instead of (4.86).
In order to show (4.88) we follow the approach introduced during the proof of (3.67). The multiplier
m? is localized around fractions from the set Ysu. Let Qsu :=lem(q : a/q € ¥su). By property (iv) from
If we have n > 2%s then we may write
(4.89)

)37 B~ b/Q)

beZV

Theorem 2.71 one has Qg < 3%".

myg(§) =
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where

(&) =Y 72" U X(¢ —a/g)), and gn(€) := on(n(2"AXDg), e T

a/qEX su
In view of (4.89) it is enough to show that for every p € (1,00) one has
Shr (.Fz}l( D on(€ = b/Quu)Fyr f) i € Noyn > 2%) < || fllow(ar) (4.90)
bezZ"

and
|5 Pt )] ey S (54 D73 fllviar). (4.91)

In the case of the oscillation and r-variational seminorm, by Proposition 2.70, the inequality (4.90)
follows from the continuous counterpart

SPr (Far (Pon Fgr f) :n € Noyn > 27) < 1 £l 2o mry-

Indeed, the function ®4n is supported on the cube Q[—1/2,1/2]", because for n > 2% one has 2*(171=x) >
4Qsu. In fact, the same type of the limiting-quotient argument which is presented during the proof (3.68),
should also be used, as to apply Proposition 2.70 one need a finite dimensional Banach spaces. We omit
the details. On the other hand, the estimate

Spr (fﬂgrl@anRpf) :n € No,n > 2%) S| fll o ry- (4.92)
follows by the seminorm estimates for the continuous Radon averages My,
Spr (Manf:n € Noyn > 2%) < || fll porr)- (4.93)

since the error term is estimated by

ZH (1)2" 1- <2n(A7XI)'))fRFf)HLp(]RF) S ”fHLP(]RF)' (4'94)

For the proof of (4.94) put 7 = 1 in (3.72). The inequality (4.93) in the case when SP is the oscillation
seminorm was proven in Theorem 3.4 and when SP is the r-variation seminorm this was proven by Mirek,
Stein and Trojan |10, Theorem A].

In the case of the jump quasi-seminorm in order to deduce the discrete inequality (4.90) from the
continuous one (4.92) we use [11, Theorem 1.3] which is counterpart of the Magyar—Stein—-Wainger sampling
principle in the context of the jump inequality. The jump inequality for M; was proven in Theorem 4.25.
This ends the proof of (4.90).

Now we show (4.91). At first, for p = 2, we see that by (3.40) one has

| F NI Fyr f) ng(zr S(s+ 1)_U6||f||zz)(ZF)- (4.95)
For p # 2 let us define a new multiplier

o s(€) ==my(€) Y (A€~ a/q)

a/qEX su
where J = |e (s+1)V/ J and my is the multiplier given by (2.59). By Theorem 2.71 we get

H]:Z_FI (MJ,szFf)ng(ZF) S log(s + 1)HfHZP(ZF)- (4'96)
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If & —ay/q| S 27 s(W1=X) for any v € T", then by Proposition 3.41
m(€) = Gla, )2 (€ — a/g) + O 2T (4.97)
which can be shown in the same way as (4.84) was. Observe that one may write
[T (€) = pur s ()] S /2D,
since by the mean value theorem
1=~ a/g)| SITHE—a/g)le S e PO
and hence, by Plancherel’s theorem,
12 (O = 110,) Far ) oy S €2 Flagary. (4.98)
Moreover, for any p € (1,00), by property (i) from Theorem 2.71 one has
12 (T = 1) Pz D ey S €TV F . (4.99)
Interpolating (4.98) with (4.99) leads to
|| 7ot (0 = MJ,s)]:fo)Hep(Zr) S log(s + D) fller(zry-
This, together with (4.96), gives

|t (T )| ey S o8 (s + DI laviar)- (4.100)

For u > ad~!, by interpolating the above inequality for p = pg with (4.95), we receive (4.91) which ends
the proof of (4.91) and consequently the estimates for the large scales.

Small scales and the discrete Littlewood—Paley theory: estimates for (4.78) and (4.79)

We begin with writing inequalities (4.78) and (4.79) in a more convenient form, namely
SP e (For (manZ5 Fyr f) i m € [s, NJN No,n < 2%1) < By(N) (s + 1) 7| fll o2y, (4.101)

where for p € (1,2] the constant B,(N) = C,(N)?®) and for p € (2,00) we have B,(N) = Cp(N)*'®)
with 8(p), 8'(p) € [0,1). Next, we apply the Rademacher—Menshov inequality (2.38) and estimate

f{erl 2*”~<+1 i-1 o\ 1/2
LHS(4.101) H( ) 3" Ft ((manaa S5y — mznzg)Fer)‘ )
GI'”

(4.102)

oz

where IJ’: = [12%, (5 + 1)2%) N [s, min{ N, 2°"1}) N N since the inner sum telescopes. Now, by triangle’s
inequality one has

Kks+1

s < S5 £ e it} 0
ne]l
Ks+1 2\ 1/2
+ Z H (Z‘ Z Ymgn1 (B5 4 — Eqsv,)fZFf)) ) @) (4.104)

ne[l
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Here and later on we will omit the limits of summation in j for the sake of clarity. Now we invoke
Khintchine’s inequality [20, Apendix C]| to (4.103) and (4.104) and as a consequence we see that the
estimate (4.101) will follow if we show that inequalities

|32 3 Fat estmanss —mo)ZiFar )|, o £ BN+ DU ey, (420
J nEIl

|32 3 At manns @hs = 20 Far ), 0 S 6+ D WS lniar) (4.106)
J ne[j

hold for every i < ks + 1 and any sequence (g;: j < 2%+t~ — 1) C {—1,1}. Finally, for estimates (4.105)
and (4.106) it is enough to show that for any interval I C [s,min{N,2%%1}) N N and for any sequence
(en:m€I) C{-1,1} one has

|32 72 entmans = man)ZiFar )|, ey S BoN) s+ 07 fllrcar), (4.107)
nel

|32 72 enmane Ehs = B Fr D) e, £ 6+ D W o) (4.108)
nel

At first we will prove estimate (4.108) since it is relatively easy. By triangle’s inequality it is enough to
establish

| For (magnsn (2544 — fz)]:ZTf)Hep(ZF) S0+ D fleen (4.109)
and then (4.108) will follow. For any p € (1, 00) by Theorem 2.71 we have
H H(mgn ( S — Z)]:ZFf)ng (ZF) ~ S log(s + D[ fllev(zry- (4.110)

Again, in the case of p = 2 we will approximate appropriate multiplier to get a more precise estimate. By
Proposition 3.41 (compare with (4.84), the only difference is the error term which is a consequence of the
inequality 2-™/2 < 2-("+5)/4 gince n > ) one has

Mani1(€) = G(a/q)Bynin (€ — afg) + O~ /1), (4.111)

where a/q is the rational approximation of ¢ such that for every v € T holds |&, — a,/q| < 271X,
Next, we note that the expression

PRIV (€ — a/g)) = 2274 (€ — a/g))

is nonzero only for ¢ such that [2"tDA=XD (¢ — q/¢)|o > 1 and [2"(AXD (€ — a/q)|oo < 1. Hence, by
the estimate (3.40) and by the van der Corput estimate in (2.64) we have that |G(a/q)Pon+1(§ —a/q)| <
(s +1)~#02=X/I'l " Consequently, one has

miges (Br = EE] S 5+ 1) 702 4304 < (5 4 1)~/
provided that u > ad~!. Therefore, by Plancherel’s theorem
|55 g (Bar = ) Dl oy S 54+ 172 flr.

Interpolating the above inequality with (4.110) for p = pg yields (4.109).
Now we focus our attention on the proof of the estimate (4.107). For this purpose we introduce new
multipliers of the form

=€) = 3 PV - /)P (E - afg), jEZ.

a/qezs“



CHAPTER 4. BOOTSTRAP APPROACH TO RADON OPERATORS 107

We have the following decomposition
En @)= Y (EVEO-E7TNO) + EE©) -2 ©) + 259,
—xn]<j<n
since the sum above telescopes. By using the new multipliers one may write
LHS(4.107) H ST OY Flealmane —man)(E5 — E57) For f)
nel —anJ <j<n

|| X F (enlmanss = man) (@7 = =y b)) + 237) For f)
nel

(2T

()
Consequently, to obtain (4.107) it is enough to show two inequalities:

[ 3 F(eatmams —man)(E5 — =574 Far )

nel —|[xn]<j<n

-5
e (zry ™ S Bp(N)(s + 1) [ fllew(zry  (4.112)

and

| X272 entmars —ma) (@ =2 W) £ 25 Fae )|, o S 6D ey (4113
nel

We start with showing that (4.113) holds. By triangle’s inequality it will follow from
[ F5 ((mames = man) (5" = =37 0) £ 2 For )|y 5+ D200+ )7 [ Fllary (4.114)
For any p € (1,00) by Theorem 2.71 one has
[ F5 ((magnss = man) (B3 = E7 ) + E5) For £) | g ey S log(s + DI oo ar)- (4.115)
Again, in the case of p = 2 we have much better estimate. Let us denote

Y1) = P (2D (€ —a/q) — P (2047 (€ — afq)).

Observe that d}f/q # 0 for ¢ such that |24~ (€ — a/q)|oo = 1 and |27AXD (€ — a/q)|oo < 1. By using
Proposition 3.41 one can show that
(manin = man) (€)U5/9(€) = G(a/q) (Pynis — B2n)(€ = a/q)un(§) + O /1), (4.116)

where a/q is some rational approximation of § such that ¢, — a,/q| < 2=171=%) for every v € I'. Hence,
by the van der Corput estimate from (2.64) and by the estimate (3.40) we obtain

(magns1 = man)(€) (B X" = Ep~ ) (€) < (s+ 1) 72T L 027 H9/) < (s 4 1) 7227, (4.117)
provided that v > «d~!. Analogously, we have

(mgmer —man) ()7 (2" (€ = a/q)) = Gla/q)(Paner — Ban)(§ — a/q)n* (2" D (€ = a/q))
+ 0(2—(n+s)/4)’

with a/q such that |§, —a,/q| S 2=+ for each v € I'. Observe that, by the first inequality in (2.64)
we get [Pgnt1 — Pon| < [274¢|o < 27 and by the estimate (3.40) one obtains

(manss — man) (©)Z5™(E) £ (s + 1) 727 + O(27F/4) < (5 4 1) 7027/, (4.118)
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provided that u > ad~!. As a result of (4.117) and (4.118) we may write
| For ((mgnss = man) (B = E37 ) + 25 Fpr )| o ey S (5 + 17027 £ 2 ey,

By interpolating the above with (4.115) for p = py we see that (4.114) holds.
Now we may return to (4.112). If we change the order of summation, we see that the left hand side of
(4.112) is bounded by

SIS F entmamn —ma)(E 5 Far f)

JEZ nel,
—xn]<j<n

£p (21

Hence, it is enough to prove that
| > Fletman —ma) @ -ZI N Fu ), 0
el,
anaX?—j/x,j—l} (4119)
S (5 +1)7°By(N)27 7P| £l o zr)

holds for some 8 = 3, > 0. Remark that one has
772 (2nA+jI§) o 772 (2nA+(j+1)I€) _ (772 (2nA+jI€) N 772 (2nA+(j+1)I€)) (n(znAjL(jfl)Ig) - 77(2"A+(j+2)15))

and therefore

(E57 —=57H) (©) = AL L(OAL2(9),

where
ARLE = Y [0 (20— afg)) = (22U (¢ — afg)) |72 A ¢ — afg)),
a/qEY su
AR2©) = Y [P~ a/q) - P (U (€ — afg)) 727D (E - a/g)).
a/qezsu
Now we will derive from the discrete Littlewood—Paley theory which originates in |37, Theorem 3.3]. Let

j,m € Z and let ®; (&) = ®(2"411¢), where ® is a Schwartz function such that ®(0) = 0. Observe that
one has . ‘
[@n,;(€)] S min{|2° 4+ e, 204+,

Moreover, for any p € (1,00) there is a constant Cp, > 0 such that

HSIGIE Far (1@nil Frr Ol pogry < Coll Fll o gery.

Hence, by [18, Theorem B] for any —oo < M; < My < co we have

I X imt@nmenl)”]

My <n<M>

S 1f o),

Lr(RT)

where the implied constant is independent of j, My and Ms. Therefore, by Theorem 2.71 the multiplier

Q€)= D Bjnlé — /92D (€~ a/g)) (4.120)
a/qEEsu
satisfy /
. 1/2
H( > \fz_rl(Qﬁx’r”fzrf)\Q) iy S 108 + DIl flloriar). (4.121)

M1<n<M>
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Moreover, if @ is a real valued function, then the dual version of the inequality (4.121) also holds, namely

H Z ‘firl(Q%HIZan)|”ep(Zr)Slog(5+1)H< Z |fn‘2>1/2

Mi<n<M> My <n<M>

4.122
. (4122

where (f,: M1 <n < M>) is a sequence of functions such that

IO me)”

My <n<M>

<
e (ZF)

It is easy to see that multipliers A%’,ls and AZL’FS can be written as (4.120). Hence, by applying the inequality
i, 1

(4.122) to the multiplier AY; 5 we get
LHS(4.119) = H 3 F (enA L (i1 — mon) AL 2 Fyr f) .
nel,
n>max{—j/x,j—1}
_ ; 2\ 1/2
< log(s + 1)”( 3 P (magsr = man) AL 2 Fyr £ ) .
€l,
anax?—j/x,j—l}

Consequently, the estimate (4.119) will follow if we prove that

. 9 o\ 1/2

H( Z [P (mans — mon ) AL S Fyr f)] ) e (2ZF)
nel, (4.123)

n>max{—j/x,j—1}
S (s+ 1)7lon(N)27mB||f”£P(ZF)7

for any p € (1,00).

Bootstrap estimates for the square function in (4.123)

We start with proving some estimates in the case of p = 2. For simplicity, we denote
Y0 (e) = [P (2" (€ — a/q)) — P (2D (€ — a/g))]i(224 XD (€ — a/g)).

Observe that ¢Z,/jq"s is nonzero only if |&, — a,/q| < 27+ < 2-7(N=X) for v € T since n > —j/x. By
Proposition 3.41 we have
man (§) = G(a,q)®an (£ — a/q) + O(27/?), (4.124)

where a/q satisfy &, — a,/q| < 271X for every v € T'. By estimates from (2.64) one has
|yni1 () — Pon (§)] S min{|24¢] o, [274¢] /1. (4.125)

To simplify notation we denote wy,(¢) := min{|2"4¢|, |2"A§|gol/‘”}. By using estimates (4.124), (4.125)

and (3.40) we conclude
|(magnir = man)(€)] S ¢ "w(§ — a/q) + O27"7).
In a similar spirit one obtains

[(manss — mon) @/ 4°(€) < g 027/ 4 O(27/2),
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since the function ¢Z,/?’S is nonzero only if 270U%2) < [274(¢ — 4/q)|o < 277. Finally, because one has
q > s* and n > s we can write

(5 + 1) wa (€ — a/q) + (s + 1) 70274

[(magn+1 —man)(§)] S (s
(s+ 1) w27 lil/d 4 (54 1)"w0o(2 /4y,

|
[(magn 1 — man) (€)% (&)

Hence, by using the above estimates we obtain

3 3 ((mgnen — man) (E)E T ()P

S
S

nel, a/qEX gu
n>max{—j/x,j—1}
Y > (s + 1) (wn(§ — a/q)+27 /)27 WA 27/ N2 (254XD (¢ — a/q))
a/qEX su nel,

n>max{—j/x,j—1}
< (54 1) 20718,

for some 8 > 0, since
Y (waE—a/g)+27H) ST and Y P (22U —a/g) S 1.
n>0 a/qEX su

Hence, by Plancherel’s theorem

H( Z }firl((m2n+1 — mQ")A%,ifér)P)l/z
nel,
"Zmax{fj/x,jfl}

< —dug—|jl5/2

Let us note that if du > 10 the above estimate together with the estimate for the large scales (4.77) proves
that Co(N) < oo for any N € N so we have proven estimate (4.68) in the case of p = 2. In order to handle
other values of p we make use of Lemma 4.43. Here we have to make some distinction between the jump
quasi-seminorm and other seminorms.

Case of the oscillation and the r-variational seminorm. At first let p € (1,2). We will apply Lemma 4.43
with the set J := {n €Ng:nel,n>max{—j/x, j— 1}} C [0, N), parameters go = 1, g1 = p, ¥ = 1/2,
operators B, = Mgynt+1 — Maon and functions g, = fz_rl(A%’?sFZr f). Now, since the norm of the operator
Myn is uniformly bounded we see that for every ¢ € (1, 00) one has

sup || By lea—ee S 1.
n<N

If Sgr is the oscillation seminorm,

Sp(Man f :m € [0, N] N Np) = sup sup |07 x (Man f :m € [0, N] NNy
)

)
KeNTe6 k([0,N]NNg H@p(zF)v

then by Proposition 2.7 it is easy to check that for every ¢ € (1,00) we have

[1Bglleasea S Co(N),

where

B, jf := sup sup {(M2n+1 — Mgn)g|.
n<N [g|<|f]

In the case of r-variational seminorm,

Sp(Manf 21 € [0, N]JNNo) = [[V"(Manf : n € [0, N] N No) [ r,
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by inequality (2.10) we see that for any r € (2,00) the estimate

| Benenlleasea S Cq(N)

also holds for ¢ € (1,00). Hence, in the case of the oscillation and r-variational seminorm by Lemma 4.43
we may write

H (Z [Far ((mgen = mgn)A%’ifzrf)ﬁ) -
neJ

091/2 (ZF)

(4.127)
gq1/2(ZF)

1/2“(2‘ A],szrf)‘Q)l/Q

neJ

< Cp(N) 2 1og (s + DIf llgorzzrys

where in the last inequality we have used (4.121). Since g/, < p < 2, there exists t € (0,1) such that

% = ‘11/2 + 1=t If we use definition of ¢ /2 from Lemma 4.43 we see that

t=2—p.

Hence, by interpolating (4.126) with (4.127) one has

H <Z | For ((magnir = man) AL 2 Fyr f) ‘2> -
neJ

p(Z1)
< (s + 170927 UI50-00, (N) =22 Jog (s + 1) | (zr).

Since u € N can be large, we get that (4.123) is satisfied with B,(N) = C,(N)?7P)/2, Hence, we see that
for p € (1,2) the inequality (4.78) holds with S(p) := 2%73 €[0,1).

Now let us assume that p € (2,00). Then one has p’ € (1,2) and therefore by applying Lemma 4.43
with g9 = 1, ¢ = p' and ¥ = 1/2 we obtain

(g ot L

nelJ

[11/2(ZF)

(4.128)
¢91/2 (zr)

1/2”(2‘ AJ’Z‘FZF]C)F)l/Q

nel
< Cp(N)Y2log(s + )1 fll /2 (zr)s

where q;/9 = 2p/(2p — 1). Now, since B, = Mynt1 — Man is a convolution operator we see that by
duality the inequality (4.128) holds for qi/Z = 2p. Since 2 < p < q'l/2 there exists 7 € [0,1) such that

1 1 1% and
p q1/2

_2-p
=1y
Hence, by interpolating (4.126) with (4.128) for qi/Q we may write

(5 175 (s — a2 7 )

nelJ

v/

. 2—
S 5+ 17027l 000 (N) 0 log(s + 1) v
2
Since u € N can be large, we get that (4.123) is satisfied with (N) (N)2(1*pp). Hence, we see that

for p € (2,00) the inequality (4.79) holds with §(p) := 2(21 L = 2 ¢ [0, 1).
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Case of the jump quasi-seminorm In the context of the jump quasi-seminorm we need to proceed in
a slightly different way since in this case we do not have a pointwise estimate of the form (2.10) or even
an (P-estimate like in Proposition 2.7. Fortunately, for » > 2 one has “weak P”-estimate (2.23) for the r-
variation which we will use at this moment. As mentioned before we have already proved that Cy(N) < 1.
Hence, we may assume that p € (1,2). Let us consider A € (0,1) such that

4—3p
A > max {0, 7} 4129

(p—2)? (4229)
We are going to apply Lemma 4.43 with parameterb 0 =1 q = p+ (1 —-XN)2, ¥ = 1/2, operators
By = Mant1 — Man and functions g, = F_r YALLFyre f). If X satisfy condition (4.129), then one has
q1/2 < p < q1 < 2. Furthermore, for any ¢ € (1 00)

~

SUp [ Bullensen S 1 and [ Bugllaen S VA (Mo s € 0, N] O No)ller—e
n<

where the last inequality follows by (2.10). By using the inequality (2.23) we get weak type estimates
HV?)(MQ"f tne [O7N] mI\IO HZQ oo (71" 5 HfHKQ(ZF)7
|[V3(Man f :m € [0, N]NNo)|| o 2y S Co(N)[[fllen(zr)-

Since p < q1 < 2, one may use Marcinkiewicz’s interpolation theorem to get

p(2—q1)
”B*,Jnéql S Sp Cp(N) aC=p)

Therefore,

H (Z [Far ((mgen = mgn)AZ{i}"er)ﬁ) -

nejJ

£q1/2(ZI‘)

< Cp(N 2q1<2 5 (4.130)

(> 17 AJ’2.7:ZFf)‘2)1/2

nejJ

gq1/2(ZF)

p(2—q1)
5 Cp(N) 2q1(2—p) log(S + 1)HfH€ql/2 (")

where the last inequality again follows by (4.121). Since q;/5 < p < 2, there exists ¢t € (0, 1) such that

1t 1t s
Ty + “5~. Hence, by the definition of g; /5 one has

P2-q) _2-a1
20(2—p) 2
Interpolating (4.126) with (4.130) leads to
_ , o\ 1/2
| (175 (manis = mam) 32 For 1))

nelJ

e (Z5)

< (s 4+ 1700026800720 (N) 5™ log (s + 1) | v zry-

Since u € N can be large, we get that (4.123) in the case of the jump quasi-seminorm is satisfied with
B,(N) = C,(N)?=9)/2, Hence, we see that for p € (1,2] the inequality (4.78) holds with B(p) = 2_% €
[0,1).

In the case of p € (2,00) we again use the duality to obtain

H <Z | For ((mgns1 — mon) AL Fyr f)|2) "
nejJ

e (Z5)

< (s+ 1)7u5(177)2*\j\§(177)cp, (N) 2(21:pp> log(s + 1)||f||£p(Z[‘),
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Since u € N can be large, we get that (4.123) in the case of the jump quasi-seminorm is satisfied with
2—p

B,(N) = Cy(N)20-» . As a consequence, for p € (2, 00) the inequality (4.79) holds with §’(p) := 2(21__’;) =
27 e 0,1).

4.3.2 Estimates for short variations

Assume that p € (1,00) and let f € #?(Z") be a compactly supported function. In this section we focus
on bounding the short variations, namely we want to establish the following estimate

H(i‘U(Mtf 1t e [2",2”+1] mU)2>1/2H£p(ZF) SSp ||f||€p(zp). (4.131)
n=0

For this purpose, for N € N, let us consider the following cut-off short variations

N ) . N\ 1/2
(X v2(nsitepn 2 nu)®)
n=0

Let Cp(N) denote the smallest constant C' > 0 for which the following estimate holds

(S vtns e 2i00f) ], 0 < Ut sev@
n=0

By the estimate (2.27) we know that C,(N) Su,p 1. Using again the bootstrap argument we will show
that Cp(IN) <p 1. The proof will proceed in a similar way as in the case of the dyadic scales hence we will
omit some details. Without loss of generality we can assume that C,(N) > 1 and N € N is large. Let

X € (0,1/10) and let u € N be a fixed large number. For each n € N we define the following function

En(@) = Y 0@ —a/q), (4.133)

a/qeEX<pu

where 7 is a bump function of the form (4.70), I is the |I'| x |I'| identity matrix, A is the matrix (2.63) and
Y<nu is the set of the Ionescu—Wainger rational fractions related to the parameter ¢ = (10u)~!. Recall
that we may write M, f = .7:2}1 (myFyr f) where my is the multiplier corresponding to M; given by (2.59).
Next, we use functions (4.133) to estimate the left hand side of (4.132) by

N
2 —1(= . n on+1 2\ 1/2
H <nZ=;)V (Far EumiFze f) st € 22,270 0) ) eo(ZF) (4.134)
3 2 —1 = n on+l 2\ 1/2
+ H(nz:%v (For (1 = Ep)myFpr f) - t € [27,27711N D) ) iy (4.135)

Similar to the case of the dyadic scales, the first expression corresponds to the major arcs and the second
one to the minor arcs in the Hardy—Littlewood circle method.
Minor arcs

Again, we start with the estimate for the minor arcs since it is relatively easy and follows the same rule
as in the case of the dyadic scales. By the triangle inequality it is enough to show

[V2(F2 (1= En)meFpr f) ct € 27,2 0 U) |l gry S (0 + D)7 Fllewary-
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We note that for each n € Ny only a finite set of numbers from [2",2"*1] N U give a contribution to the
above variational seminorm. Hence it is enough to prove that for some a(n) € N we have

V2 (Ft (1 = En)my jgam Far f) « £ € [2779M 2 lHe)] A Ng) ey S (n+ D72 fllep(zry-  (4.136)
In order to prove the above inequality we make use of the following.

Proposition 4.137 (|10, Inequality (2.8)]). Let 1 <7 < p and (f; : j € N) is a sequence of functions in
(7YY and v —u > 2. Then

V7 (55 € Tus oDl oy S max{ Up, (v — ) /" U7 V7 (4.138)

where

Uy = max [fjloer) and Vo= max |fy = fillon.

Since the variational norm is non-increasing in r we may replace 2-variation V2 in (4.136) by V" where
r = min{2, p} and use Proposition 4.137 to estimate the left hand side of (4.136) by

maX{Up, 2(n+a(n))/7‘U11)—1/7’V;/7"}

where
— —1 -=
Up B 2n+a(n)§1§§”+a(n)+l HFZF ((1 \—n)mt/za(n) ‘FZFf) Hep(zF)

and X
Hfz_rl((m(t+1)/2a<n) - mt/2a(n))(1 - En)f)”ep(ZF)-

V, = max
on+a(n) §t§2n+a(n)+1

In order to estimate V, we make use of Proposition 3.15. It follows that

’(Q(t+1)/2a<n) \ Qt/2a(n)) N Zk‘

< t_l < 2—(n+a(n))
\Q(t+1)/2a(n) N ZF| ~Q S )

since t ~ 27ta(")  Hence, by the above inequality and by using Theorem 2.71 for functions =, we get that
for every p € (1,00) one has

V,, < 270D log(n 4 1) n(ar. (4.139)
Let us note that for any p € (1, 00) by Theorem 2.71 we obtain
U, S log(n+ DIl fllocar) (4.140)

In the case of Us we have a much better estimate. Again we use Theorem 3.31 to bound exponential sums

over convex sets. Let
NNt/1 1\ /1 1 -t
r po  2) \po min{p,p'}

One can show, in the same way as in case of the dyadic jumps, that on the minor arcs the conditions
(3.32) and (3.33) are satisfied — we omit the proof. Hence by Theorem 3.31 we get
tk

}mt/za(m (f)’ Sk 2ka(”)|Qt/2a(n> Vi log(t/ga(n))—a <o (m+1)77

since [ jga(m) N ZF| ~q (t/29M)* and t ~ 2"*%(") Consequently, by Parseval’s theorem we have
Uy < (n+ D)7 fll2zr)-
Next, by interpolating the above inequality with (4.140) with p = py we obtain
_ _ 1
U, < (n+ 1) 1007 og(n + DIl fllerzry

and we see that, together with (4.139), implies

max{U,, 20t/ =ty < (n + 1) 721 f o (zr
which in turn implies (4.136).
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Major arcs

Now, our aim is to estimate (4.134). In this case we will follow the approach presented in the proof of the
estimate for the long jumps. The case of the short jumps is in some way easier since there is no need to
consider small and large scales. In order to estimate (4.134) we introduce new multipliers

=Y n@"*¢-alg), jEL

a/qezgnu

Then one may write (compare with Section 4.3.1)

E©) = D, (B -E©) + EXO - EN(©) + 2O

—|xn|<j<n

Next, we use the new multipliers and estimate (4.134) by

H (Téw (fz}l (mt( _W%;Kn =), - E£L+1).Fzrf) e [2n 2" N U)2>1/2 o (4.141)
+| (névz (it (me = man) (G — =00 + =) For ) st € 27,27 1 IU)2>1/2 oy (4142

At first we will show that (4.142)< (n + 1)_2HfHZp(Zr). We may replace 2-variation V2 by r-variation V"
where 7 = min{2,p}. Moreover, again we note that for each n € Ny only a finite set of numbers from
2,271 N U give a contribution to the above variational seminorm. Hence it is enough to prove that for
some a(n) € N we have

Hvr( o ((mygam) — man)(EX" = Eg ) Fyr f) € 27,2701 NO) er(2F) (4.143)
S+ D)7 fllwzny

and

Hv( (ot = man)EnFr f) ¢ ¢ € 27,2771 AN ) H S A2 ). (4144)

e (zl) ™
We handle (4.143) and (4.144) simultaneously. We use Proposition 4.137 to obtain that

LHS(4.143) < max{U,, 2(n+a(n))/rUzl)—1/rV11)/r}’
LHS(4.144) S max{W,, 20vra(m)/r1=1/rppl/ry

where
U, = max .7:_1( My j9a(n) — Mon ) (2 X" — g For )
P gntam gp<anrat 17 20 (12400 )& o er(zr)’
Vv, = max F ((m a(m) — My jga(m) ) (X" — 2-Dn) 7, r)
P 2nta(n) <g<Lonta(n)+1 zr (( (t+1)/24(m t/204 ))( " " ) z 2P (ZT)
and

W, = max

on+a(n) §t§2n+a(n)+1

]:Z_rl((mt/ga<n> — man )0 Fr f) .

-1

M, = For ((m(t+1)/2‘1(") = My jga(m) )Z nFar f)

max
on+a(n) §t§2n+a(n)+1 ¢p ZF)
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As before, by Theorem 2.71 we get that for any p € (1, 00)
U, S log(n + 1) fllwr) and W, < log(n + 1) fllwcar)- (4.145)
By using Proposition 3.15 and again Theorem 2.71 we obtain that for any p € (1, 00) one has
V, 270 log(n + 1) fllwzry and M, < 27D log(n + 1) f[lw(zr)-

In the case of p = 2 we will approximate the multiplier m;/4(,) by a suitably chosen integral. Remark,
since t/a(n) ~ 2™ one may write estimates in (2.64) as

|y /a(m) ()] S 1274€10 T and (@4 amy (€) = 1] S |24 oo- (4.146)
We start by using Proposition 3.41 with Qy/4(,) € B(0,2"), K = 1, ., and { = a/q = 1 to obtain
k—1
1920y O Z¥1 = Q]| S (¢/a(n) 7, (4.147)

Further, we define an auxiliary multiplier

M4 /a(n) () ! dooel&-w)h).

~ e
| t/a(n)|yEQt/a(n)ﬂZk

By (4.147) we have
[ma(§) — mn(§)] S 27" (4.148)
since t/a(n) >~ 2". Next, we use Proposition 3.41 with /.,y € B(0,2"), K = |Qt/a(n)|_l]19t/a(n) and

ey = 1. Note that [|K|lf~@) < (t/a(n))™" and sup, ,cq. le—y<q [K(z) — K(y)| = 0. Therefore, for
t/a(n) ~ 2" we have

|0t (€) — G, )y amy (€ — a/@)| S a(t/aln)) ™"+ aléy — ar/fal (t/a(n)) P17V <2772 (4.149)

yel

nl/10

for sufficiently small y, since ¢ < e and for any v € I" we have £, —ay/q| S 2~n(1"1=x) . Consequently,

by (4.148) and (4.149) we have
|74 ja(m) (€) = G0, Q)1 ja(ny (€ — a/a)| S 2772, (4.150)
Now we are able to estimate the quantities Uy and Wy, Let
D€)== (2" XD (€ —a/q)) — (2" (€ — a/q)).

Observe that this function is nonzero only for & such that |24~ (¢ — a/q)|o = 1 and |27A—XD (¢ —
a/q)|oo S 1. By using (4.150) we may show that

(1230t = man ) (E) 5/ 4(€) = G, 0) (B pam) — Pan) (€ — a/@)¥n(€) + O2777?), (4.151)

where a/q is some rational approximation of { with [&, — ay/q| S 271712 for every v € I'. We see that
?L/q # 0 when [274¢|7 < 27X, so by the first inequality in (4.146) one has

[ (200 = m2n) (@7 = 2507y (g)| 5 27/ - 0(277/2) g 27T,

Analogously, one can show

(M jgatmy — man) ()0 (2"H(E = a/q)) =G(a,q)(®, jgae) — oo ) (€ = afq)n(2"AHD (€ = a/q))
+0(27?)
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with a/q such that [§, —a/q| < 2=+ for v € T'. Next, by the second inequality in (4.146) we get
D jpa(m) — Pan| S 1274¢| 0. Since [2"4¢| < 27" we obtain

(M — man ) (E)Z(E) S 27"+ 0(27?) < 27/IT,
Consequently,
Uy 27 W flla@ry and Wo S 27 ).

By interpolating the above with suitable inequalities from (4.145) we get that (4.143) and (4.144) hold.
Now let us go back to (4.141). For p € (1,2] it is enough to show

- 2\1/2
H (Z v? (firl (mt( > =B - Eﬁ;“)fzrf) St e [2m, 2"t N U) )
n=0

—|xn|<j<n

tr(z") (4.152)

2
S Co(N) 2 | fllevczr)-

We see that this estimate implies that one has
2-p
Cp(N) Sp Cp(N) 2
This gives C,(N) <p 1 and thus the proof is complete in the case of p € (1,2]. For p € (2,00) we will
show that

2*1)’

LHS(4.152) S Cp (N) 7 | fll 1oz (4.153)

/

where 1/p+1/p’ = 1. This gives C,,(N) <p Cp (N)%Tp and by the first part we know that Cpy <, 1 which
ends the proof when p € (2,00).

Estimates for (4.152) and discrete Littlewood—Paley theory

Now, we take a look at the left hand side of (4.152) in the case of p € (1,00). Let 7(z) := n(x/2) and
define a new multiplier

A O = Y @€~ a/q)) =02 FUVIE —a/))]7(2° D (€~ a/q)),
a/qESsu
where Ygu 1= X (g11yu \ Vs for s € N and Xgu 1= Y. We see that

n—1
=€) — =) = )AL, (4.154)
s=0

Consequently, if we use (4.154) and change the order of summation we see that the estimate (4.152) will
follow if we prove that

H ( Z & (fz?rl (mtA%,szFf) pte 272N U)Q) - e (ZF)

0<n<N,
lZmax{—_j;L)Zj—l,s—l} (4.155)

S (s + )72 By(L)27 7 fllwzr),

for some 8 = 3, > 0 where for p € (1,2] the constant B,(N) is equal to C,(N)2~P)/2 and for p € (2, 00)
we have B,(N) = C,(N)27P)/2. Now, if we apply the Rademacher-Menshov inequality for the short
jumps (4.52) we see it is enough to establish

201
j /
H ( Z Z "/—-.Z_Fl ((mZ”—i—Q"_i(m-‘rl) - m2n+2n—im)AZ1,szFf) ‘2>1 2 p (7T
Searten” e (4.156)

anax{_j/ij—lvs_l}
S (s+ 1720+ 1) Bp(L)27 ) fllpnzry.
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Estimates for square function in (4.156)

For simplicity we denote By = Mon_yon—i(my1) — Man pon—ip,. At first we will prove (4.156) in the case
of p = 2. For simplicity we will denote

U/t (&) = (2" (€ = a/q)) = n (2" (¢ — a/q))]7(2 D (€ — a/q)).
Remark that the function @ZJ a/q

n ;s is nonzero only if &y —ay/q| < 9~ (hr1+3) < 2=n=X) for v € T, due to
the condition n > —j/x. Now we approximate discrete multipliers by their continuous counterparts by
using Proposition 3.41 and

(m2n+2nf’i(m+1) - m2n+2n7im)(§)¢z,/g,s(f) = G(“/Q)(‘I’2n+2nfi(m+1) - ‘I’2n+2nf’im)(5 —a/q) + O(2in/2)7

where a/q is the rational approximation of £ such that for every v € I" holds &, — a/q| < 2=,
Remark, that since 2-0+2) < [2n4(¢ — a/q)\oo. < 277 on the support of wz/j?s we can use estimates (4.146)
and (3.40) to prove that on the support of AJ, 5 we have

Magn pan—i(m1) — Man an—ig| S (s + 1) 70 (27 WV/ITT 4 97/, (4.157)
On the other hand, by Proposition 3.15 (compare with (4.58)) we have
Mo pon—i(ma1) — Manan—in| S 27"
Consequently, one has
Mg gn—i(ms 1) — Man yon—ig|> S 2752 (s 4+ 1)70u/2(27 /G 1 9=n/8), (4.158)
Let J := {(n,m) € Z% : n € [ng, N],m € [0,2" — 1]} where ng = max{—j/x, j — 1, s — 1}. By Parseval’s

theorem, the inequality (4.158) implies

(5 1Bt @dmanl) ™

(n,m)el

02z

S 2 s+ T (3T [ FR (A Far f) \2)1/2 (1159)

no<n<N
S 274 (s + 1) 73278 £ g2

02(ZF)

where the last inequality follows by (4.121). If u € N is large enough then this implies that Co(N) < 1
which ends the proof in the case of p = 2.

For p € (1,2) we will use the bootstrap Lemma 4.43. We will apply it with parameters q =1, q1 = p,
¥ = 1/2, to a countable set J, the operator By, ,, and the functions g, = =Fur (An sFyrf). Tt is easy to
check that for every ¢ € (1,00) we have

sup || Bumllpisn S27° and  [|Bugllrasre S Cy(N),
(n,m)el
where

B,jf:= sup sup ‘(M2n+2n—i(m+1) - M2n+2n—im)g‘.
(n,m)€T |g|<|f]|

Indeed, the first inequality follows from Proposition 3.15. For the second inequality we observe that for
any m=0,...,2° —1 and any n < N one has the following pointwise estimate

1/2
| Man yon—i(ma1).f — Monjon—ig f| < SUPM2n|f| + (ZV2 My|f|:t € [2",2"H N U) )
n=0
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By results from the previous section we know that for each g € (1, 00) the maximal function sup,,cz Mon|f|
is £9-bounded. Therefore, one has || By y||ra—re S Cq(N). Hence, by applying Lemma 4.43 and inequality
(4.121) we obtain

(X 1BamPg (8], Fur f)}Q)l/z

(n,m)el

< Cp(L) " 10g (s + )| fll /2 - (4.160)

091/2 (ZF)

Since gy /2 < p < 2, we can interpolate (4.159) with (4.160) to get that for ¢ € (0, 1) such that % =L 41t

o q1/2

one has

H( Z |Bn7mfiF1(A%,szFf)’2>1/2

(n,m)el

e (71
< 2—1‘/4(1—15)(5 + 1)—ud(l—t)/32—(1—t)ljlﬁcp(N)2%” log(s + 1)||f||1zz>(zf)-

Since u € N can be large we see that (4.156) holds in the case of p € (1,2).

When p € (2,00) the desired result follows by duality since B, ,,, is a convolution operator. Indeed,
T

since p’ < 2we get that there is 7 € (0,1) such that % =7+ 1T for which one has

1/2

H( Z ‘Bn’m}—Z}l(Azz,Serf)’2>1/2

(n,m)el

(21
< 2—i/4(1—t)(8 + 1)—ué(l—t)/32—(1—t)|j|50p,(N)Q_Tp 1og(s + 1)|| fll o zr)-

If u € N is large enough we see that the above bound is summable with s € N, i € N and j € Z which
shows that (4.153) holds. This ends the proof of the estimates for short variations and therefore the proof
of Theorem 4.64.
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