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1 CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 Data Mining 

Data mining is the process of identifying meaningful patterns, trends, and 

relationships in large datasets using various statistical and computational techniques. It 

aims to extract valuable information from data and transform it into rules that can be used 

to draw conclusions or make predictions to assist the user. Pattern mining involves 

discovering useful, interesting, and unexpected patterns in the database. Some of the basic 

data mining tasks include clustering, classification, outlier analysis, and pattern mining. 

The Apriori algorithm, proposed by Agrawal and Srikant in the 1990s, is designed to 

identify frequent item sets and extract association rules (R. Agrawal and R. Srikant, 1994). 

Frequent itemsets refer to groups of symbols that appear together often in a database of 

customer transactions. 

Data mining algorithms analyze data from various perspectives, uncover hidden 

patterns and correlations, and provide insights that can help organizations and individuals 

make informed decisions in the future. The data mining process involves several steps, 

including data cleaning, integration, selection, transformation, mining, evaluation, and 

representation. These steps are crucial to ensure that the data is accurate, complete, and 

relevant to the current business problem. 

Data mining has numerous applications in various industries, such as finance, 

healthcare, retail, and marketing. Retailers often use data mining techniques to analyze 

customer shopping data and identify patterns and trends in their purchasing behavior. By 

doing so, they can better understand customer preferences and develop marketing 

strategies based on customer habits to drive sales. For example, a retailer may use data 

mining to analyze customer transaction data and determine which products are often 

purchased together. If they find that customers who purchase personal computers are also 

likely to buy accompanying electronic devices such as computer keyboards, computer 

mice, and computer monitors, they may use this information to create targeted marketing 

campaigns that suggest or offer discounts on these products. For example, Table 1.1 

represents a simple retail store database that contains customer purchase records, including 

transaction ID (TID), purchase date, time, customer ID, and the products purchased by 

customers. Each customer's purchasing behavior can be viewed as a sequence of events 

occurring at different times. As an illustration, customer 1 purchased a laptop and mouse 
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on March 20, 2023, at transaction T1. On March 21, 2023, the same customer purchased a 

keyboard at transaction T4. 

Table 1.1. An original customers database with reference to shopping behavior. 

TID Date Time Customer ID Items 

T1 20.03.2023 09.00 1 Laptop, Mouse 

T2 20.03.2023 10.00 2 iPhone, Speaker 

T3 20.03.2023 11.00 3 Cab, USB 

T4 21.03.2023 16.00 1 Keyboard 

T5 21.03.2023 09.00 3 Mouse 

T6 22.03.2023 09.00 4 Samsung phone, Speaker, Printer 

T7 23.03.2023 09.00 5 Monitor 

Association rule mining is a data mining technique utilized to discover 

relationships and associations between items or sets of items in a database. It involves 

analyzing data to find patterns, associations, correlations, or co-occurrence between items. 

Association rules are created to describe the relationships that exist between different items 

in a data set. These rules consist of a premise (antecedent) and a consequence (conclusion) 

and are typically written in the form "if the premise, then the consequence." The strength 

of an association rule is evaluated based on two primary metrics: support and confidence. 

Support indicates the frequency of occurrence of antecedents and consequences in a data 

set, while confidence measures the likelihood that the consequences will occur with the 

premises. Association rule mining has many applications in various fields, including 

market basket analysis, bioinformatics, web mining, and recommendation systems. 

To illustrate, suppose a grocery store wants to analyze its sales data to determine 

which items are frequently purchased together. By employing association rule mining, the 

store can identify sets of items that were purchased together more often than expected by 

chance. For instance, the store may discover that customers who buy bread and milk are 

also likely to purchase eggs. In this case, the association rule would be: 

𝐼𝐹 {𝐿𝑎𝑝𝑡𝑜𝑝, 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑} 𝑇𝐻𝐸𝑁 {𝑀𝑜𝑢𝑠𝑒} 

Suppose this item set appears in 20% of all transactions in the store's data. Then 

the support of the rule is 20%. The confidence of the rule represents the percentage of 

transactions that contain {𝐿𝑎𝑝𝑡𝑜𝑝, 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑} and also contain {𝑀𝑜𝑢𝑠𝑒}. Assuming the 

confidence of this rule is 80%, this implies that of all transactions containing 

{𝐿𝑎𝑝𝑡𝑜𝑝, 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑}, 80% also contain {𝑀𝑜𝑢𝑠𝑒}. Based on this information, the store 
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can take measures to increase sales by placing these items close together or offering them 

at a discount when purchased together. 

1.1.2 Mining Sequence Patterns 

The sequential pattern mining problem, proposed by Agrawal and Srikant (Agrawal 

& Srikant, 1995), is an interesting problem of subsequence mining in a set of sequences. 

Sequential pattern mining is a data mining technique that aims to discover interesting 

patterns or sequences of events in sequential data. It involves identifying subsequences that 

frequently occur together in a sequence of events or transactions, seeking to uncover 

patterns that describe the relationships between events or items that occur in a specific 

order. 

Two common types of sequential data used in data mining are time series and 

sequences. A time series is an ordered list of numerical values, while a sequence is an 

ordered list of nominal (symbolic) values. For example, Figure 1.1 shows a time series 

representing quantities, while Figure 1.2 depicts a sequence of symbols (letters). Both time 

series and sequences are used in many fields. Time series are often used to represent data 

such as stock prices, temperature readings, and electricity consumption indexes, while 

sequences are used to represent data such as sentences in text (word strings), sequences of 

items purchased by customers in retail stores, and sequences of websites visited by users. 

Sequential pattern mining is commonly used in applications where time ordering is 

significant, such as analyzing customer purchasing behavior over time or identifying 

patterns in web clickstream data. It can also be applied in areas such as healthcare, where it 

can be used to detect trends and patterns in medical data over time. 

 

Figure 1.1. An example of time-series 
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Figure 1.2. An example of a sequence 

Sequential pattern mining involves finding all frequent subsequences in a database 

of sequences. A sequence S is considered a frequent sequence or a sequential pattern if and 

only if its support value (𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑆)) is greater than or equal to a user-defined minimum 

support value 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡. The task of sequential pattern mining involves enumerating all 

patterns (subsequences) whose support is greater than or equal to the minimum support 

threshold set by the user. As such, the number of frequent patterns always has a single, true 

value for the sequential pattern mining problem. 

However, discovering sequential patterns is a difficult problem. The naive 

approach is to compute the support of all possible subsequences in the sequence database 

and output only those that satisfy the user-specified minimum support constraint. However, 

this approach is inefficient due to the potentially large number of subsequences. A 

sequence containing 𝑛 items in a sequence database can have up to 2𝑛 − 1 distinct 

subsequences (Fournier-Viger et al., 2017). Therefore, using a naive approach to solve the 

sequential pattern mining problem is impractical for most practical sequence databases. 

Efficient algorithms must be designed to solve the sequential pattern mining problem while 

avoiding exploring the search space of all possible subsequences. This is necessary to 

speed up the algorithm and optimize storage space. 

Several algorithms have been proposed to solve the sequential pattern mining 

problem in a sequence database, including AprioriAll (Agrawal & Srikant, 1995), 

FreeSpan (Han et al., 2000), SPADE (Zaki, 2001), PrefixSpan (Pei et al., 2001), PRISM 

(Gouda et al., 2007, 2010), CM-SPADE (Fournier-Viger et al., 2014), MSRIC-R and 

MSRIC-P (Van & Le, 2021), MSPIC-DBV (Van et al., 2018a), CUP (Huynh et al., 2020), 

CM-WSPADE (Huynh et al., 2020), and SUI (Huynh et al., 2022). These algorithms take a 

sequence database and a minimum support threshold (selected by the user) as input and 

output a set of frequent sequential patterns. It's worth noting that there is always only one 

correct answer to the sequential pattern mining task for a given sequence database and 

threshold value. Therefore, all sequential pattern mining algorithms return the same set of 

sequential patterns if they are run with the same parameters on the same database. The 

difference between the various algorithms lies in their approach to detecting sequential 

〈{𝑎, 𝑏} {𝑎, 𝑏, 𝑐} {𝑎, 𝑑} {𝑐, 𝑑}〉 
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patterns, with each algorithm using different strategies and data structures to efficiently 

search for these patterns. 

1.1.3 Mining Inter-sequence Patterns 

Inter-sequence pattern mining is an extension of sequential pattern mining that 

involves discovering common patterns, associations, and dependencies between sequences 

in a sequential database. It identifies patterns that are common not only within the same 

transaction but also between transactions. The inter-sequential pattern mining problem was 

first proposed by Wang et al. in 2009 (C. S. Wang & Lee, 2009), and several algorithms 

have been developed since then, including DBV-ISP (Vo et al., 2012), ISP-IC, iISP-IC and 

piISP-IC (T. Le et al., 2018). 

One of the applications of inter-sequence pattern mining is in web usage mining, 

where it is used to analyze the behavior of website visitors. By analyzing web log data, 

inter-sequence pattern mining can identify common patterns in user behavior, such as the 

most frequently visited pages or the sequence of pages the user visits before making a 

purchase. This information can be used to optimize website design, improve user 

experience, and increase usage rates. In addition to web usage mining, inter-sequence 

pattern mining has applications in sales, where it can make predictions based on 

information about purchased items and different times of purchase. It can also be used in 

other fields such as healthcare and finance. 

Overall, inter-sequence pattern mining is a valuable tool for extracting useful 

information from sequential databases. Its importance is expected to increase as 

technology continues to advance and users demand more innovative solutions. 

1.2 Motivation 

Most of the previous studies on mining inter-sequence patterns have shown that 

these methods still possess disadvantages that result in high computational costs and 

memory usage during the mining process: 

Mining inter-sequence patterns 

− The EISP-Miner (C. S. Wang & Lee, 2009) algorithm is the first proposed 

algorithm for mining inter-sequence patterns. The algorithm is divided into two 

phases. In the first phase, the algorithm discovers frequent 1-patterns from the 

sequence database. Next, EISP-Miner utilizes the frequent patterns mined in the 

first phase to generate frequent 𝑘-patterns (where 𝑘 > 1). The algorithm 

employs a depth-first search extension method. The data structure used is 

PatternList, which uses a collection of integers to store position information of 
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frequent patterns. Consequently, the algorithm consumes a significant amount 

of storage resources during execution, as depicted in Figure 3.7. Furthermore, 

instead of retrieving information directly from the frequent patterns that created 

it, all information about pattern positions is stored, leading to the algorithm 

using more storage space than necessary (as detailed in Chapter 3). Because the 

algorithm employs integer types to store information, calculating the 

candidate's support or combining to expand the candidate also requires 

additional computing time. 

− The DBV-ISP (Vo et al., 2012) algorithm was an extension of the EISP-Miner 

algorithm. DBV-ISP also operates in two phases: first, it identifies the set of 

frequent 1-patterns, and then it identifies sets of frequent 𝑘-patterns (𝑘 > 1). 

DBV-ISP employs a data structure known as DBV-PatternList (as detailed in 

Section 4.2), which utilizes a bit-vector data type to store pattern positions. The 

use of the bit-vector data type helps reduce the algorithm's storage space 

compared to the integer data type. However, the DBV-PatternList data structure 

has not yet addressed the limitations of the PatternList data structure concerning 

data duplication and redundancy. Furthermore, DBV-PatternList stores more 

redundant data than necessary. For example, in a database with 100 transactions 

and a pattern that appears only in the 1st and 100th positions, DBV-PatternList 

will store the position for the pattern as a consecutive sequence of bit-vectors 

with a length of 100, where the 1st and 100th positions are set to the value 1, and 

the remaining positions are set to the value 0. Thus, memory is consumed to 

store a bit-vector with a value of 0, having a length of 98, which is unnecessary. 

Mining inter-sequence patterns with constraints 

− The ISP-IC (T. Le et al., 2018) algorithm was initially introduced for mining 

inter-sequence patterns with item constraints. ISP-IC represents an extension of 

both the EISP-Miner and DBV-ISP algorithms. To store frequent pattern 

positions, ISP-IC utilizes the DBV-PatternList data structure. An enhanced 

version of the ISP-IC algorithm, known as iISP-IC, was proposed to improve 

process performance. Additionally, an advanced iteration, piISP-IC, was 

introduced by implementing parallel execution techniques to expedite the 

algorithm. These algorithms all harness the advantageous features of the DBV-

PatternList data structure. Nevertheless, the challenge of addressing duplicate 

data remains unresolved. Furthermore, ISP-IC currently only handles item 

conditions, while other conditions, such as itemsets, have yet to be introduced. 
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The research methods mentioned above for mining inter-sequence patterns 

primarily focus on small databases and have not been tested on larger databases containing 

1,000,000 transactions or more. For instance, the EISP-Miner algorithm examines 

databases with a maximum of 100,000 transactions and 1,000 distinct items. The DBV-ISP 

algorithm is tested with databases containing 1,000 transactions and 1,000 distinct items. 

Lastly, the ISP-IC algorithm has only been tested with a maximum of 100,000 transactions 

and 1,000 distinct items. 

Furthermore, in recent years, new data structures have been proposed and applied 

to clickstream pattern mining and sequential pattern mining, leading to significantly 

improved efficiency. 

The advantages of the pseudo-IDList structure are as follows 

− Compact Information: The IDList pseudo-structure contains highly condensed 

information, encompassing only three values: 𝑃, 𝐷𝐼𝑃, and a pattern location 

matrix (detailed in Chapter 3). 

− Efficient Support Calculation: Support values for patterns can be rapidly 

computed based on the matrix's row count. 

− Optimized Storage: The matrix solely retains the occurrence positions of 

patterns relative to the frequent patterns that generate them. This selective 

storage minimizes data redundancy and reduces storage space utilization within 

the algorithm. 

− Broad Applicability: To date, numerous authors have applied the pseudo-IDList 

structure to various frequent pattern mining methods, resulting in notable 

efficiency enhancements. Notable examples include CUP (Huynh et al., 2020b), 

CM-WSPADE and Compact-SPAD (Huynh et al., 2020a), SUI (Huynh et al., 

2022), PF-CUP (Huynh et al., 2023).  

Based on the developments and challenges encountered in inter-sequence pattern 

mining, the main motivations of this thesis are as follows: 

− Addressing growing data volume challenges: As the volume of data collected 

and analyzed continues to grow rapidly, there is an increasing need for scalable 

and efficient inter-sequence pattern mining algorithms. This thesis presents and 

develops algorithms, techniques, and recommendations that can process large-

scale datasets while maintaining high performance in terms of both time and 

storage space. 
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− Introducing the inter-sequence pattern mining problem with itemset constraints: 

Inter-sequence pattern mining generates a significantly larger number of 

candidates compared to sequential pattern mining. Users often require specific 

knowledge, rather than a complete overview of the database, which necessitates 

mining under certain search conditions. Therefore, this thesis proposes the 

problem of inter-sequence pattern mining with itemset constraints. 

− Overcoming limitations of existing inter-sequence pattern mining algorithms: 

Existing inter-sequence pattern mining algorithms have limitations related to 

data duplication, storage space, and processing time. This thesis aims to address 

these limitations by proposing new and suitable data structures to eliminate data 

duplication during the mining process and introducing pruning methods to 

speed up the inter-sequence pattern mining algorithm. 

− Applying parallel processing models to inter-sequence pattern mining 

problems: Inter-sequence pattern mining models often require lengthy 

processing times. Parallel mining techniques have the potential to significantly 

speed up the data mining process. This thesis explores the application of 

parallel processing models to inter-sequence pattern mining problems to 

accelerate the algorithm while ensuring the accuracy of the results obtained. 

− Contributing to the theoretical basis for inter-sequence pattern mining: The 

thesis provides a comprehensive overview of data mining models, such as 

sequential pattern mining, clickstream pattern mining, and inter-sequence 

pattern mining. From this foundation, the thesis presents propositions, 

conclusions, and suggestions to help improve the efficiency of inter-sequence 

pattern mining algorithms. 

1.3 Research Problem 

The problem of inter-sequence pattern mining is an extension of sequential mining, 

with three extensions including itemset, sequence, and inter. When dealing with large 

sequential databases and a high user-specified maxspan value, a large number of candidate 

patterns are generated. Therefore, the inter-sequence pattern mining problem requires 

optimization of the candidate generation process as well as optimization of storage space. 

In the process of frequent inter-sequence pattern mining, algorithms such as EISP-

Miner (C. S. Wang & Lee, 2009) and DBV-ISP (Vo et al., 2012) generate a large number 

of patterns. This poses challenges in knowledge discovery and requires significant storage 

resources. To address these issues and restrict knowledge search based on user-defined 
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criteria, we introduce, for the first time in Chapter 4, the application of itemset constraints 

to the inter-sequence pattern mining problem. This innovation helps reduce the volume of 

frequent patterns generated, resulting in faster mining and the rapid delivery of essential 

knowledge to users. 

Furthermore, while the DBV-ISP (Vo et al., 2012) algorithm has introduced 

methods for optimizing storage space, it remains limited in its ability to address the 

problem of duplicate data. To overcome these shortcomings and further enhance storage 

optimization, we propose the novel application of the pseudo-IDList data structure to the 

inter-sequence pattern mining problem, which is detailed in Chapter 3. 

1.4 Aim of this Thesis 

The aim of this thesis is to address the limitations of inter-sequence pattern mining 

in terms of processing time and storage space. The thesis proposes a novel storage data 

structure for the inter-sequence pattern mining problem, aiming to minimize data 

duplication during the mining process. Additionally, it introduces an inter-sequence pattern 

mining model with itemset constraints to reduce the number of generated candidates, thus 

accelerating the search and processing of relevant information. Moreover, the thesis 

presents additional propositions to enhance the efficiency of the proposed methods and 

algorithms. 

1.5 Objectives of this Thesis 

The objectives of this thesis are as follows 

1. Proposing a solution to address the problem of mining inter-sequence patterns with 

itemset constraints, introducing the DBV-ISPMIC algorithm. 

2. Developing an optimal approach for solving the inter-sequence pattern mining 

problem with itemset constraints, presenting the pDBV-ISPMIC algorithm. 

3. Introducing a method for optimizing storage space in the context of the inter-sequence 

mining problem, utilizing the ISP-PI algorithm. 

4. Proposing a candidate pruning technique for the inter-sequence pattern mining 

problem, incorporating the ISP-IC (Inter-Sequence Pattern mining with Index 

Intersection Checking) method. 

5. The proposed algorithms and methods will be evaluated through experiments using 

real-world databases sourced from the data mining community's data warehouse. The 

experimental results will be compared based on the algorithm's running time and 

memory usage requirements. 
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1.6  Thesis Contributions 

Based on the aim of the thesis, the main contributions are presented in two sections 

and are briefly outlined as follows 

A. The First Contribution Addresses Objectives 1 and 2 of the Thesis 

Drawing from proposed inter-sequence mining problems such as EISP-Miner (C. S. 

Wang & Lee, 2009), DBV-ISP (Vo et al., 2012), and ISP-IC (T. Le et al., 2018), as well as 

sequential pattern mining problems with itemset constraints like MSPIC-DBV (Van et al., 

2018a), we introduce a problem of inter-sequence pattern mining with itemset constraints, 

named DBV-ISPMIC (Nguyen et al., 2023). The algorithm employs a data structure called 

DBV-PatternList to store candidates, along with a tree structure named ISP-Tree to store 

frequent patterns. Additionally, we propose a method for quickly checking the condition of 

generated candidate itemsets and apply parallel mining to accelerate the algorithm. 

The DBV-PatternList data structure optimizes candidate information storage. 

Instead of using a numeric data type to represent pattern information, DBV-PatternList 

utilizes a bit-vector data structure. Pattern information is indicated by turning bits on or 

off, allowing a numeric data type to store more candidate information, thus reducing the 

space needed for candidates. 

Checking itemset constraints for all generated samples is time-consuming for the 

algorithm. We suggest a method to rapidly verify that the generated candidate meets 

itemset constraints, using the condition information from the parent patterns that created it. 

This decreases the algorithm's running time. 

The inter-sequence pattern mining problem employs the ISP-Tree structure to store 

generated frequent patterns, processing the algorithm according to the depth-first traversal 

method. As the handling of branches on the tree is separate, we present a parallel 

processing technique for branches on the tree. This enables the algorithm to optimize 

runtime by processing multiple branches simultaneously. 

To evaluate the proposed algorithm, we used five datasets: C6T5S4I4N1kD1k, 

C6T5S4I4N1kD10k, Gazelle, BIKE, and BMSWebView1. C6T5S4I4N1kD1k and 

C6T5S4I4N1kD10k are two databases generated by the IBM synthetic data generator tool. 

Gazelle and BMSWebView1 are two clickstream databases, while BIKE is a database of 

Bike Share data from LA Metro. The tests were conducted to compare the latest cross-

chain pattern mining algorithm in terms of runtime and memory usage. The input setup 

parameters for running the algorithm on the databases are outlined in Table 1.2. The user-

defined maximum span value is denoted by 1 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 ≤ 5. 
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Table 1.2. Test database information for evaluation of the DBV-ISPMIC algorithm. 

Database name Minsupport (%) 

C6T5S4I4N1kD1k 0.5 

C6T5S4I4N1kD10k 5 

Gazelle 1 

BIKE 0.5 

BMSWebView1 0.5 

Experimental results demonstrated that the proposed algorithm outperforms 

previous ones. For example, with the C6T5S4I4N1kD1k database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5%,

𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the DBV-ISPMIC algorithm runs 51% faster and uses 12% less memory 

than the Post-EISPMiner algorithm. When the quick test method for itemset constraints is 

applied, the DBV-ISPMIC algorithm runs 62% faster and uses 14% less memory than the 

Post-EISPMiner algorithm. 

With the C6T5S4I4N1kD10k database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 5%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the 

DBV-ISPMIC algorithm runs 47% faster and uses 6% less memory than the Post-

EISPMiner algorithm. When the quick test for itemset constraints is applied, the DBV-

ISPMIC algorithm runs 58% faster and uses 10% less memory than the Post-EISPMiner 

algorithm. 

With the Gazelle database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the DBV-

ISPMIC algorithm runs 18% faster and uses 14% less memory than the Post-EISPMiner 

algorithm. When the quick test for itemset constraints is applied, the DBV-ISPMIC 

algorithm runs 31% faster and uses 15% less memory than the Post-EISPMiner algorithm. 

With the BIKE database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the DBV-

ISPMIC algorithm runs 17% faster and uses 7% less memory than the Post-EISPMiner 

algorithm. When the quick test for itemset constraints is applied, the DBV-ISPMIC 

algorithm runs 47% faster and uses 12% less memory than the Post-EISPMiner algorithm. 

With the BMSWebView1 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the 

DBV-ISPMIC algorithm runs 3% faster and uses 8% less memory than the Post-

EISPMiner algorithm. When the quick test for itemset constraints is applied, the DBV-

ISPMIC algorithm runs 7% faster and uses 14% less memory than the Post-EISPMiner 

algorithm. 

B. The Second Contribution Addresses Objectives 3 and 4 of the Thesis 

Building upon inter-sequence pattern mining algorithms like EISP-Miner and 

DBV-ISP, we propose a novel algorithm called ISP-PI (Inter-Sequence Pattern mining 
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based on Pseudo-Index). This algorithm aims to optimize data mining models in the 

context of inter-chain mining using a data structure known as pseudo-IDList. The ISP-PI 

addresses the shortcomings of previous algorithms concerning data duplication. Instead of 

requiring storage for all the information of a candidate, we can retrieve its information 

from the original pattern. This method compresses the position values of the generated 

candidates, allowing for the retrieval of values from the original patterns that produced the 

candidates and eliminating the need to save all positions. Furthermore, the algorithm 

incorporates a pruning method named ISP-IC (Inter-Sequence Pattern mining with Index 

intersection Checking) to effectively reduce the number of generated candidates. This 

optimization enhances processing time and storage space, which is crucial due to the 

growing volume of collected data. The ISP-PI algorithm efficiently compresses data to 

minimize storage space and employs candidate pruning to accelerate the algorithm's 

runtime in inter-sequence pattern mining. 

Experimental results indicate that the proposed ISP-PI algorithm surpasses the most 

advanced algorithms for mining inter-sequence patterns (MISPs) in terms of processing 

time and storage space utilization. Consequently, this contribution signifies a considerable 

advancement in the field of data mining, particularly for inter-chain pattern mining. 

The algorithm evaluation was conducted on six sample datasets, including 

C150S40T2, C200S12T5, FIFA, BMSWebView2, Kosarak, and MSNBC. Kosarak and 

MSNBC are two large databases, each containing nearly 1 million rows of data. 

C150S40T2 and C200S12T5 were generated using the standard generator in (Agrawal & 

Srikant, 1995), while FIFA, BMSWebView2, Kosarak, and MSNBC are actual databases. 

C150S40T2, C200S12T5, and FIFA are dense databases with average sequence lengths of 

76.64, 51.57, and 36.24, respectively. The input configuration parameters for executing 

the algorithm on the databases are presented in Table 1.3. The maximum span value, 

defined by the user, ranges from 1 to 5 inclusively. 

Table 1.3. The database information for evaluation of the ISP-PI algorithm. 

Database name Minsupport (%) 

C150S40T2 6 

C200S12T5 3 

BMSWebView2 0.02 

FIFA 9 

Kosarak 0.6 

MSNBC 0.2 
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Experimental results indicate that the proposed ISP-PI algorithm outperforms the 

two previous inter-chain data mining algorithms, Post-EISPMiner and Post-DBV-ISP. 

For the C150S40T2 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 6%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI 

algorithm is 66% faster than Post-EISPMiner and 11% faster than Post-DBV-ISP. ISP-PI 

uses 78% less memory than Post-EISPMiner and 76% less than Post-DBV-ISP. 

For the C200S12T5 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI 

algorithm is 60% faster than Post-EISPMiner and 29% faster than Post-DBV-ISP. ISP-PI 

uses 88% less memory than Post-EISPMiner and 87% less than Post-DBV-ISP. 

For the BMSWebView2 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.02%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the 

ISP-PI algorithm is 76% faster than Post-EISPMiner and 75% faster than Post-DBV-ISP. 

ISP-PI uses 92% less memory than Post-EISPMiner and 92% less than Post-DBV-ISP. 

For the FIFA database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 9%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI algorithm 

is 90% faster than Post-EISPMiner and 87% faster than Post-DBV-ISP. ISP-PI uses 81% 

less memory than Post-EISPMiner and 77% less than Post-DBV-ISP. 

For the Kosarak database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.6%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI 

algorithm is 81% faster than Post-EISPMiner and 58% faster than Post-DBV-ISP. ISP-PI 

uses 82% less memory than Post-EISPMiner and 81% less than Post-DBV-ISP. 

For the MSNBC database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.2%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI 

algorithm is 85% faster than Post-EISPMiner and 79% faster than Post-DBV-ISP. ISP-PI 

uses 56% less memory than Post-EISPMiner and 54% less than Post-DBV-ISP. 

1.7  Structure of the Thesis 

The remaining chapters of the thesis are organized as follows: 

Chapter 2: Literature Overview. This chapter provides definitions, examples, and 

methods related to sequential pattern mining, including algorithms such as AprioriAll, 

FreeSpan, SPADE, PrefixSpan, PRISM, and CM-SPADE. Additionally, definitions, 

examples, and methods related to sequential pattern mining on item and itemset constraints 

are presented, including algorithms such as MSRIC-R, MSRIC-P, MSPIC-DBV, 

MWAPC, and EMWAPC. The chapter also covers definitions, examples, and methods 

related to clickstream data mining, with algorithms like CUP, CM-WSPADE, Compact-

SPADE, and SUI. Lastly, it presents definitions, examples, and methods related to inter-

sequence pattern mining, featuring algorithms such as EISP-Miner, DBV-ISP, ISP-IC, 

iISP-IC, and piISP-IC. 

Chapter 3: Presentation of the inter-sequence data mining problem using the 

pseudo-IDList data structure. This chapter introduces the ISP-PI (Inter-Sequence Pattern 
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mining based on Pseudo-Index) algorithm and a pruning method named ISP-IC (Inter-

Sequence Pattern mining with Index Intersection Checking). 

Chapter 4: Presentation of the inter-sequence pattern mining problem with itemset 

constraints and the dynamic bit vector data structure. This chapter presents the DBV-

ISPMIC algorithm, an improved version called DBV-ISPMIC-IMPROVING, and a 

parallel mining algorithm named pDBV-ISPMIC. 

Chapter 5: Conclusion and limitations of the proposed algorithms. This section 

discusses research approaches or improved techniques for the proposed algorithms that 

could be explored in the future. Additionally, a list of our publications is provided at the 

end of the chapter. 
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2 CHAPTER 2: LITERATURE REVIEWS 

In this chapter we present an introduction to sequential pattern mining and inter-

sequential pattern mining problems, including fundamental concepts and the descriptions 

of commonly used methods. Additionally, we examine the strengths and weaknesses of 

existing mining algorithms for both problems. In order to address these issues, we put 

fourth efficient algorithms for inter-sequence pattern mining that take into account 

considerations such as memory usage and running time. The findings of our investigation 

will be presented in the forthcoming Chapters 3 and 4. 

2.1 Methods for Mining Sequence Patterns 

2.1.1 Basic Concepts 

Definition 2.1 (Customer transaction): Database D is a representation of customer 

transactions, wherein each transaction includes the following information: customer ID, 

transaction date, transaction time, and transaction details. Transaction details encompass a 

collection of items that were acquired during the transaction. No customer can have more 

than one transaction sharing the same combination of transaction date and time. 

An illustration of a customer transaction and a customer sequence is provided in 

Table 2.1 and Table 2.2, respectively. 

Table 2.1. An example of customer transaction. 

Customer Id Transaction Date Transaction Time Transaction Details 

1 12.12.1998 9:00 𝐶 

1 19.12.1998 10:00 𝐴, 𝐵 

2 13.12.1998 9:00 𝐶 

2 21.12.1998 14:00 𝐴, 𝐵, 𝐶 

2 24.12.1998 15:00 𝐴 

3 14.12.1998 10:00 𝐴 

3 24.12.1998 11:00 𝐷 

4 15.12.1998 15:00 𝐴 

4 25.12.1998 16:00 𝐷 
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Table 2.2. An example of customer sequence from Table 2.1. 

Customer Id Customer Sequence 

1 〈(𝐶)(𝐴𝐵)〉 

2 〈(𝐶)(𝐴𝐵𝐶)(𝐴)〉 

3 〈(𝐴)(𝐷)〉 

4 〈(𝐴)(𝐷)〉 

 

Definition 2.2 (Items, Itemsets, Sequences): Let 𝐼 =  {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛} be a set of 𝑛 

distinct products, also called items. A sequence 𝑠 =  〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚〉 is an ordered list of 

itemsets where 𝑡𝑖  ⊆ 𝐼(1 ≤  𝑖 ≤ 𝑚) is an itemset. The number of items contained in the 

itemset is called its size. The size of a sequence is the number of itemsets in a sequence, 

denoted as k-sequence (1 ≤ 𝑘 ≤ 𝑚). An itemset begins with symbol “ ” and ends with 

symbol “ ”,    an   emse  contains a single item then the brackets can be omitted. A 

sequence begins and ends with the symbols “⟨”, “⟩”,  espec  vely.  

For example, based on Table 2.2, let 𝐼 =  {𝐴, 𝐵, 𝐶, 𝐷}, two possible itemsets of size 

two (2-itemsets) are (𝐴𝐵), (𝐴𝐶). An example of 2-sequence is 〈𝐶(𝐴𝐵)〉 or 〈𝐴𝐷〉 and 3-

sequence is 〈𝐶(𝐴𝐵𝐶)𝐴〉. 

Definition 2.3 (Subsequences, Supersequences): Let 𝑆 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ and 

𝑆𝛽 = ⟨𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚⟩ be two sequences (𝑛 ≤ 𝑚). 𝑆 is called a subsequence of 𝑆𝛽 or 𝑆𝛽 

is called the supersequence of 𝑆, if there exists integers 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑗3 ≤ …  ≤ 𝑗𝑛 such 

that 𝑥1 ⊆ 𝑦𝑗1, 𝑥2 ⊆ 𝑦𝑗2, 𝑥3 ⊆ 𝑦𝑗3, … , 𝑥𝑛 ⊆ 𝑦𝑗𝑛, denoted as 𝑆 ⊑ 𝑆𝛽.  

For example, the sequence 〈𝐶(𝐴𝐵)〉 is a subsequence of 〈𝐶(𝐴𝐵𝐶)𝐴〉, since C ⊆

C and AB ⊆ ABC, and the order of itemset is preserved. However, the sequence 〈𝐶(𝐴𝐵)〉 is 

not a subsequence of 〈𝐶𝐴𝐵〉 and vice versa. 

Definition 2.4 (Support threshold): The support value of a sequence, denoted 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆, 𝐷), is calculated by the total number of occurrences of the sequence in 

the database 𝐷, given as 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑆, 𝐷) = |{𝑆𝑖 ∈ 𝐷|𝑆 ⊑ 𝑆𝑖}|. 

For instance, based on Table 2.1, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(⟨𝐴⟩, 𝐷) = 4, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(⟨(𝐴𝐵)⟩, 𝐷) = 2. 

2.1.2 Sequence Pattern Mining 

2.1.2.1 AprioriAll (Agrawal & Srikant, 1995) 

The AprioriAll algorithm (Agrawal & Srikant, 1995) solves the problem of mining 

sequential pattern over a large database of customer transactions. The pseudo-code is 

presented in Algorithm 2.1. The AprioriAll algorithm is described through the following 

main steps: 



17 

 

Step 1: Finding the set of frequent 1-itemsets. (Algorithm 2.1, line 1). 

Step 2: Traversing the frequent set 1-itemsets (𝑘 = 1) in step 1 (Algorithm 2.1, 

line 2), the algorithm generates (𝑘 + 1)-itemset candidates (Algorithm 2.1, line 4). The 

algorithm scans the database again to calculate the support value for each candidate. If its 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 value is greater than or equal to the minimum support threshold, the 

candidate is a frequent pattern and stores it in the 𝐿𝑘 list (Algorithm 2.1, line 5 to 7). 

Step 3: Repeating step 2 until no more new candidates are created, the algorithm 

stops here. 

Algorithm 2.1. AprioriAll Algorithm (Agrawal & Srikant, 1995) 

1. 𝐿1 = {large 1-sequence} 

2. for (k=2; 𝐿𝑘−1 0; k++) do 

3.  begin 

4.   𝐶𝑘 = New candidates generated from 𝐿𝑘−1 (see Algorithm 2.2). 

5   foreach customer-sequence 𝑐 in the database do 

6    Increment the count of all candidates in 𝐶𝑘 that are contained in 𝑐. 

7   𝐿𝑘 = Candidates in 𝐶𝑘 satisfy minimum support. 

8  end 

9 Answer = Maximal Sequences in 𝑈𝑘𝐿𝑘; 

 

Algorithm 2.2. Apriori-generate function (Agrawal & Srikant, 1995) 

1. insert into 𝐶𝑘 

2. select 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡1, …, 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−1,𝑞. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−1 

 from 𝐿𝑘−1𝑝,  𝐿𝑘−1𝑞 

 where 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡1 = 𝑞. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡1,…, 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−2 = 𝑞. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−2; 
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Large 

2-sequences 

 

Candidate 

3-sequences 

(after joining) 

Candidate 

3-sequences 

(after pruning) 

〈1 2〉 ⟨1 2 4⟩ ⟨1 2 4⟩ 

〈1 4〉 ⟨1 2 5⟩ ⟨1 2 5⟩ 

⟨1 5⟩ ⟨1 4 2⟩ ⟨1 4 5⟩ 

⟨2 4⟩ ⟨1 5 2⟩ ⟨2 4 5⟩ 

⟨2 5⟩ ⟨1 5 4⟩  

⟨4 5⟩ ⟨2 4 5⟩  

 ⟨2 5 4⟩  

Figure 2.1. Candidate Generation. 

The apriori-generate function is described in Algorithm 2.2. It generates the set of 

𝑘-sequences from the set of all large (𝑘 − 1)-sequences. If the new candidate is not in the 

𝐿𝑘−1 set, then this candidate will be discarded. With this improvement, the Apriori 

algorithm does not calculate the support for these candidates, which increases the 

processing speed of the algorithm. Consider the example in Figure 2.1, the first column is 

the set of all large 2-sequences, after running the Apriori-generate function we get the set 

of 3-sequences shown in the second column. After pruning out sequences whose 

subsequences are not in 𝐿2, the sequences shown in the third column. For instance, 〈1 4 2〉 

is removed because the subsequence 〈1 4 2〉 is not in 𝐿2. 

The disadvantage of ApirioriAll algorithm is that it has to rescan the database many 

times to calculate the support (in Algorithm 2.1, line from 5 to 7). 

〈(1 3)(2)(4)(5)〉 

〈(1)(2)(4)(3 5)〉 

〈(1)(2)(4)(5)〉 

〈(1)(2)(5)〉 

〈(3)(5)〉 

Figure 2.2: Customer Sequences. 
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𝐿2  𝐿2  𝐿3  𝐿4 

1-Sequences Support  2-Sequences Support  3-Sequencess Support  4-Sequences Support 

〈1〉 4  〈1 2〉 4  〈1 2 4〉 3  〈1 2 4 5〉 3 

〈2〉 4  〈1 4〉 3  〈1 2 5〉 4    

〈3〉 3  〈1 5〉 4  〈1 4 5〉 3    

〈4〉 3  〈2 4〉 3  〈2 4 5〉 3    

〈5〉 5  〈2 5〉 4       

   〈4 5〉 3       

Figure 2.3: Large Sequences. 

Consider a customer sequence dataset in Figure 2.2, the minimum support has been 

specified to be 60% (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3). The set of large 𝑘-sequences are presented in 

Figure 2.3. 

The Apriori algorithm has several disadvantages, primarily related to processing 

time and storage space. These limitations arise due to the following factors: 

− Generation of a large set of candidate sequences in a large sequence database. 

− Multiple scans of the database during mining. 

− Difficulty in mining long sequential patterns using the Apriori-based method. 

Consequently, the AprioriAll algorithm proves to be inefficient when dealing with 

large volumes of data sets. For instance, if we assume a frequent 1-pattern with a count of 

104 in the dataset, the Apriori algorithm needs to generate more than 107 candidates of 2-

patterns. These candidates are then tested and collected cumulatively. It becomes evident 

that the number of candidates generated using the Apriori-like algorithms can be 

exponential in the worst case. For example, if there is a frequent sequence of 100 elements, 

generating such a sequence would require generating 2100 candidates. This serves as an 

illustration of the application of the Apriori algorithm. 

Therefore, the candidate generation phase, which contributes to the time 

complexity of the Apriori algorithm, incurs significant costs and time consumption. 

Additionally, during the execution, the algorithm recalculates candidate support by 

rescanning the original database multiple times. This further impacts the algorithm's 

efficiency, particularly when the system memory is insufficient, and there is a large 

number of frequent transactions. Consequently, the Apriori algorithm becomes inefficient 

and slow when working with large databases. 
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2.1.2.2 FreeSpan (Han et al., 2000) 

The FreeSpan (for Frequent pattern-projected Sequential pattern mining) 

algorithm (Han et al., 2000) aims to integrate the mining of frequent sequences with that of 

frequent patterns and uses projected sequence databases to confine the search and growth 

of the subsequence fragments. 

Let 𝑆 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ be a sequence, the itemset 𝑥1 ∪ 𝑥2 ∪ 𝑥3 ∪ …∪ 𝑥𝑛is 

called S’s projected itemset. FreeSpan is based on the following property: If an itemset 𝑋 is 

infrequent, any sequence whose projected itemset is a superset of 𝑋 cannot be a sequential 

pattern.(Pei et al., 2001) 

By using projected sequence databases, FreeSpan greatly reduces the generation of 

candidate sub-sequences. FreeSpan finds the frequent 1-itemsets, termed an 𝑓_𝑙𝑖𝑠𝑡, by 

scanning the sequence database, and then sorts them into support descending order. Let 

𝑓_𝑙𝑖𝑠𝑡 =  ⟨𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚⟩ be a list of all frequence 1-itemsets. This set can be divided 

into m subjects: those having item y1, those having item y2 but no item in {𝑦3, … , 𝑦𝑚}, 

those having item 𝑦3 but no in {𝑦4, … , 𝑦𝑚}, and so on. In general, the 𝑗𝑡ℎ subset (1 ≤ 𝑗 ≤

𝑚) is the set of sequential patterns having item 𝑦𝑗 but no item in {𝑦𝑗+1, 𝑦𝑗+2, … , 𝑦𝑚}. The 

FreeSpan algorithms is presented as follows: 

Algorithm 2.3. The FreeSpan Algorithm (Han et al., 2000) 

1. Input: A sequence database D, the support threshold (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡) 

2. Output: The set of frequent patterns 

3. 
Scan D, find the set of frequent 1-sequence in 𝐷, and (infrequency descending order) 

sort them into 𝑓_𝑙𝑖𝑠𝑡 

4. Perform alternative-level projection mining which consists of the following steps: 

5.  Construct a frequent item matrix by scanning the database once. 

6.  
Generate length-2 sequential patterns and the annotations on item-repeating patterns 

and projected database. 

7.  Scan database to generate item-repeating patterns and projected databases 

8.  
Do matrix projection mining on projected database recursively, if there are still 

longer candite pattern to be mined. 

Based on the analysis above, we can identify the following strengths and 

weaknesses of the FreeSpan algorithm: 

Advantages of FreeSpan: 

− A significant strength of FreeSpan is its capability to search smaller projected 

databases in each subsequent projection. This is achieved through recursive 

projection of a large sequence database into smaller ones, guided by current and 

future mining of frequent item patterns. Consequently, each expected database 
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is constrained to a reduced candidate pool. Furthermore, FreeSpan only 

necessitates three scans of the original database, irrespective of the maximum 

sequence length. 

Disadvantages of FreeSpan:  

− The primary overhead of FreeSpan is the necessity to generate numerous 

nontrivial projected databases. In cases where a pattern occurs in every 

sequence within a database, its projected database does not significantly reduce 

in size, except for the removal of some infrequent items. Furthermore, because 

a length-𝑘 subsequence can expand at any position, the search for length-(𝑘+1) 

candidate sequences require the examination of all possible combinations, 

incurring considerable computational costs. 

2.1.2.3 SPADE (Zaki, 2001) 

The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm 

was introduced by Zaki (Zaki, 2001) for fast mining of sequential patterns in large 

databases. Previous approaches (Agrawal & Srikant, 1995; Han et al., 2000) had to scan 

the database many times or use a complex hash-tree structure to store frequent pattern 

information. The SPADE algorithm uses an equivalence classes approach to store frequent 

patterns. The maximum number of database scans of the SPADE algorithm is only 3 times, 

one for frequent 1-sequences, another for frequent 2-sequences, and lastly for generating 

all other frequent sequences. The SPADE algorithm is presented as following: 

Algorithm 2.4. The SPADE Algorithm (Zaki, 2001) 

1. SPADE (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝐷) 

2.  𝐹1 = {frequent items or 1-sequences}; 

3.  𝐹2 = {frequent 2-sequences}; 

4.   = {equivalence classes [X]1} 

5.  for all [X]   do Enumerate-Frequent-Seq([X]); //Algorithm 2.5 

 

Algorithm 2.5. Pseudo-code for breadth-first and depth-first search (Zaki, 2001) 

 Enumerate-Frequent-Seq(S) 

1.  for all atoms Ai  S do 

2.   Ti = ; 

3.   for all atoms 𝐴𝑗 ∈ 𝑆, with 𝑗 ≥ 𝑖 do 

4.    𝑅 =  𝐴 𝑖 ∨ 𝐴𝑗; 

5.    if (Prunce(R) == FALSE) then //Algorithm 2.6 
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6.     𝐿(𝑅) = 𝐿(𝐴𝑖) ∩ 𝐿(𝐴𝑗); 

7.     if (𝑅) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 then 

8.      𝑇𝑖 = 𝑇𝑖 ∪ {𝑅}; 𝐹|𝑅| = 𝐹|𝑅| ∪ {𝑅}; 

9.   end 

10.   if(Depth-First-Search) then Enumerate-Frequent-Seq(𝑇𝑖); 

11.  end 

12.  if (Breadth-First-Search) then 

13.   for all 𝑇𝑖 ≠ ∅ do Enumerate-Frequent-Seq(𝑇𝑖); 

 

Algorithm 2.6. Sequence pruning (Zaki, 2001) 

 Prune(𝛽) 

1.  for all (𝑘 − 1)-subsequences, 𝛼 ≺ 𝛽 do 

2.   if ([1] has been proceesed, and  ∉ 𝐹𝑘−1) then 

4.    return TRUE; 

5.  return FLASE; 

The SPADE algorithm introduces a new approach compared to previous 

algorithms, offering notable advantages and limitations: 

Advantages of SPADE: 

− Unlike previous approaches that involve multiple database scans and complex 

hash tree structures with suboptimal locations, SPADE decomposes the original 

problem into smaller subproblems using equivalence classes based on frequent 

patterns Each equivalence class can be solved independently and is likely to be 

processed efficiently in main memory. As a result, SPADE typically performs 

only three database scans: one for frequent 1-patterns, another for common 2-

patterns, and an additional scan to generate all other frequent patterns. 

− Additionally, the SPADE algorithm utilizes a Depth-first search method, which 

allows for the application of parallel computation techniques. 

Disadvantages of SPADE: 

− A limitation of the SPADE algorithm lies in the storage of pattern locations as 

integers, which requires a significant amount of storage space for large 

databases.  

− After a frequent pattern is generated, the algorithm stores all the information 

about the pattern's position. This leads to redundancy and data duplication, 

necessitating the use of more storage space than required. Recent studies have 
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demonstrated that it is possible to retrieve the location information of a frequent 

pattern from the frequent patterns that generate it (Huynh et al., 2020b, 2022). 

2.1.2.4 PrefixSpan (Pei et al., 2001) 

The PrefixSpan algorithm (Pei et al., 2001) was based on the concept of FreeSpan 

(Han et al., 2000), but instead of projection sequence database it investigates the prefix 

subsequences (Definition 2.5) and projects only their corresponding suffix subsequences 

(Definition 2.6) into projected databases. The advantage of algorithm is designed to only 

consider patterns that exist in the database. 

Definition 2.5 (Prefix)(Pei et al., 2001): Suppose all the items within an element 

are listed alphabetically. Given a sequence 𝛼 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ (where each xi 

corresponds to a frequent element in S), a sequence 𝛽 = ⟨𝑥′
1, 𝑥

′
2, 𝑥

′
3, … , 𝑥′

𝑚⟩(𝑚 ≤ 𝑛) is 

call a prefix of 𝛼 if and only if 1) 𝑥′𝑖 = 𝑥𝑖 for (𝑖 ≤ 𝑚 − 1); 2) 𝑥′𝑚 ⊆ 𝑥𝑚; and 3) all the 

frequent items in (𝑥𝑚 = 𝑥′𝑚) are alphabetically after those in 𝑥′𝑚.  

For instance, ⟨𝐴⟩, ⟨𝐴𝐴⟩, ⟨𝐴(𝐴𝐵)⟩, and ⟨𝐴(𝐴𝐵𝐶)⟩ are prefixes o squence 𝑆 =

 ⟨𝐴(𝐴𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩. 

Definition 2.6 (Suffix)(Pei et al., 2001): Given a sequence 𝛼 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ 

(where each 𝑥𝑖  corresponds to a frequent element in 𝑆). Let 𝛽 =

⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚−1𝑥
′
𝑚

⟩(𝑚 ≤ 𝑛) be the prefix of 𝛼. Sequence 𝛾 =

⟨𝑥′′𝑚, 𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑛⟩ is called the suffix of 𝛼 with regards to prefix 𝛽, denoted as 𝛾 =

𝛼/𝛽, where 𝑥′′𝑚 = (𝑥𝑚 − 𝑥′
𝑚). We also denote 𝛼 = 𝛾. 𝛽. Note, if 𝛽 is not a subsequence 

of 𝛼, the suffix of 𝛼 with regards to 𝛽 is empty.  

For example, for the sequence 𝑆 =  ⟨𝐴(𝐴𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩, ⟨(𝐴𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩ is 

the suffix with regards to the prefix ⟨𝐴⟩, ⟨(_𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩ is the suffi with regards to 

the prefix ⟨𝐴𝐴⟩, and ⟨(_𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩ is the suffix with regards to the prefix ⟨𝐴(𝐴𝐵)⟩. 

The PrefixSpan algorithm is presented as follows: 

Algorithm 2.7. The PrefixSpan Algorithm (Pei et al., 2001) 

 Input: A sequence database 𝑆, and the minimum support threshold 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡. 

 Output: The set of frequent patterns 

 Method: Call 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑝𝑎𝑛(⟨⟩, 0, 𝑆) 

  Subroutine 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑝𝑎𝑛(, 𝑙, 𝑆|) 

1.   
The parameters are 1)  is a sequential pattern; 2) 𝑙 is the length of ; and 3) 𝑆| 

is the -projected database if  ≠ ⟨⟩, otherwise, it is the sequence database 𝑆. 

   Method: 

2.    1.Scan 𝑆| once, find each frequent item, 𝑏, such that 

3.     (a) 𝑏 can be assembled to the last element of  to form a sequential pattern; 
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or 

4.     (b) ⟨𝑏⟩ can be appended to  to form a sequential pattern 

5.    
2.For each frequent item 𝑏, append it to  to form a sequential pattern ’, and 

output ’. 

6.    
3.For each ’, c ns  uc  ’-projected database 𝑆|′, and call 

𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑝𝑎𝑛(′, 𝑙 + 1, 𝑆|′) 

After analyzing the PrefixSpan algorithm, we can identify its strengths compared to 

previous algorithms, as well as the limitations that need to be addressed: 

Advantages of PrefixSpan: 

− The main advantage of the PrefixSpan algorithm is that it eliminates the need to 

create or test candidate sequences that do not exist in the expected database. 

The sample growth method employed by PrefixSpan ensures that only patterns 

occurring in the database are discovered. In other words, PrefixSpan extends 

shorter sequential patterns to generate longer ones, reducing the search space. 

This approach significantly reduces the cost of constructing the expected 

databases.  

− Two optimization techniques can further enhance the efficiency of PrefixSpan. 

Firstly, using a two-level projection can decrease the size and number of 

projected databases. Secondly, employing pseudo-projection can reduce 

overhead by storing the projected databases entirely in main memory. 

Moreover, PrefixSpan proves to be efficient as it leverages the complete set of 

patterns and runs even faster than the FreeSpan (Han et al., 2000) algorithm. 

Disadvantages of PrefixSpan: 

− One drawback of the PrefixSpan algorithm is the potential runtime cost 

associated with scanning the database multiple times and creating database 

projections.  

− Additionally, creating database projections can consume a considerable amount 

of memory if not implemented efficiently. In the worst case, it may require 

nearly duplicating the entire database for each database projection, leading to 

significant memory usage. 

2.1.2.5 PRISM (Gouda et al., 2007, 2010) 

Introduced by Gouda et al. in 2007, the PRISM (PRIme-Encoding Based Sequence 

Mining) algorithm is designed for mining frequent sequences (Gouda et al., 2007). The 

algorithm employs a vertical approach to enumeration and support counting, which relies 

on the innovative concept of prime block encoding, a method grounded in prime 
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factorization theory. Gouda et al. further elaborated and enhanced the PRISM algorithm in 

2010 (Gouda et al., 2010). When compared with earlier algorithms for sequential pattern 

mining, such as SPAM (Ayres et al., 2002), PrefixSpan (Pei et al., 2001), and SPADE 

(Zaki, 2001), the PRISM algorithm demonstrates its superiority in terms of both time 

efficiency and memory consumption. 

The assessment of the PRISM algorithm is exemplified through the ensuing 

advantages: 

− PRISM employs a vertical methodology for enumeration and support 

quantification, grounded in the innovative concept of prime block encoding. 

This concept is further anchored in the theory of prime factorization. 

− The PRISM algorithm represents an augmentation of the SPADE algorithm, 

facilitated by the use of a bit data structure. In contrast to preceding algorithms 

which stored candidate information as integers, PRISM enhances optimization 

by employing bit data structures. This reduction in memory requirements is a 

notable advantage of the algorithm. 

− In the realm of prime block encoding, the support of a candidate can be 

ascertained directly from its associated chain blocks. 

2.1.2.6 CM-SPADE (Fournier-Viger et al., 2014) 

The CM-SPADE algorithm proposed by Fournier-Viger et al. (Fournier-Viger et 

al., 2014) which is considered an improvement of the SPADE algorithm (Zaki, 2001). The 

SPADE algorithm has the disadvantage that the number of candidates generated is very 

large, even though they are infrequent pattterns. Therefore, the CM-SPADE algorithm has 

overcome the above disadvantage by using a new data structure named CMAP (Co-

occurence MAP) (in Definition 2.9) for storing co-occurrence information. In addition, by 

using the CMAP structure and prefix-based pruning strategy, the CM-SPADE algorithm 

improve the mining time of mining sequential patterns. A example about the CMAP 

structure are shown in Table 2.3. 

Definition 2.7 (i-extension): An item k is said to succeed by i-extension to an item j 

in a sequence < 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛 > iff 𝑗, 𝑘 ∈ 𝐼𝑥 for an integer x such that 1 ≤ 𝑥 ≤ 𝑛 and 

𝑘 ≻𝑙𝑒𝑥 𝑗. 

Definition 2.8 (s-extension): An item k is said to succeed by s-extension to an item 

j in a sequence < 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛 > iff 𝑗 ∈ 𝐼𝑣 and 𝑘 ∈ 𝐼𝑤 for some integers v and w such that 

1 ≤ 𝑣 < 𝑤 ≤ 𝑛. 
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Definition 2.9 (Co-occurrence MAP): A Co-occurrence MAP (CMAP) is a 

structure mapping each item 𝑘 ∈ 𝐼 to a set of items succeeding it. We define two CMAPs 

named CMAPi and CMAPs. CMAPi maps each item 𝑘 to the set cmi(k) of all items 𝑗 ∈ 𝐼 

succeeding k by i-extension (Definition 2.7) in no less than minsupport sequences of SDB. 

CMAPs maps each item k to the set cms(k) of all items 𝑗 ∈ 𝐼 succeedings k by s-extension 

(Definition 2.8) in no less than 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 sequences of sequence database. 

SID Sequences 

1 〈{𝑎, 𝑏}, {𝑐}, {𝑓, 𝑔}, {𝑔}, {𝑒}〉 

2 〈{𝑎, 𝑑}, {𝑐}, {𝑏}, {𝑎, 𝑏, 𝑒, 𝑓}〉 

3 〈{𝑎}, {𝑏}, {𝑓}, {𝑒}〉 

4 〈{𝑏}, {𝑓, 𝑔}〉 

Figure 2.4: A sequence database. (Fournier-Viger et al., 2014) 

Table 2.3: CMAPi and CMAPs for the database of Figure 2.4 and 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2. 

(Fournier-Viger et al., 2014) 

CMAPi  CMAPs 

item is succeeded by (i-extension)  item is succeeded by (s-extension) 

a {b}  a {b, c, e, f} 

b   b {e, f, g} 

c   c {e, f} 

e   e  

f {g}  f {e, g} 

g   g  

The advantages of the CM-SPADE algorithm, in comparison to previous 

algorithms, are highlighted as follows: 

− The CM-SPADE algorithm is an enhancement of the SPADE (Zaki, 2001) 

algorithm. It utilizes the vertical format efficiently to calculate the support of 

candidate patterns, thereby avoiding costly repeated database scans.  

− However, a primary limitation of vertical mining algorithms is their tendency to 

spend significant time evaluating candidates that either do not exist in the input 

database or occur infrequently. To address this issue, CM-SPADE introduces a 

novel data structure called CMAP, which stores co-occurrence information. By 

utilizing the CMAP structure, CM-SPADE can early prune candidates, 

improving efficiency and reducing unnecessary evaluations. 
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2.1.3 Sequence Pattern Mining with Constraints 

2.1.3.1 MSPIC-DBV (Van et al., 2018a) 

The MSPIC-DBV algorithm was proposed by Van et al. (Van et al., 2018a) for 

effective mining sequential patterns with itemset constraints (Definition 2.10). The 

MSPIC-DBV algorithm uses a dynamic bit vector data structure and a DBVS prefix-tree 

tree structure to reduce the time to calculate the support of generated patterns, and to 

optimize the running time and storage space of the algorithm. The problem of sequential 

pattern mining with item constraint is given as follows. 

Definition 2.10 (Problem statement of sequence pattern mining with itemset 

constraints): Given a sequence database D, a set of constraint itemsets 𝐶 =

 {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑛} and the minimum support (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡) is specified by the user. The 

problem of mining sequential patterns with an itemset constraint is to find all frequent 

subsequences in the database which contain any itemsets in set C (Definition 2.11). 

Definition 2.11: (Itemset constraint satisfying) A pattern 𝛽 = 〈𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑚〉 is 

considered to contain an itemset 𝑐 if ∃𝑖 ∈  [1,𝑚] such that 𝑐 ⊆  𝑏𝑖 . Given a constraint 

itemset 𝑐, if pattern 𝛽 contains the constraint itemset 𝑐, 𝛽 is called a c-satisfied pattern. 

2.1.3.2 MWAPC and EMWAPC (Van et al., 2018b) 

The MWAPC (Mining Web Access Patterns based on super-pattern Constraint) 

algorithm was proposed by Van et al. [10] to solve the problem of mining web access 

patterns with super-pattern constraint (Definition 2.12). To avoid checking all candidate 

patterns that satisfy the conditions, Van also proposed an algorithm named EMWAPC. 

Definition 2.12 (Problem statement of sequence pattern mining with super-pattern 

constraints): Given a web access sequence database 𝑊𝐷, a set of constraint patterns 𝑈 =

{𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} and the 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is specified by the user. The problem of mining 

web access patterns with super-pattern constraint is to find all frequent patterns in the 

database which contain any pattern in 𝑈 as subsequence (in Definition 2.13). 

Definition 2.13: (Constraint satisfied pattern) Given a constraint pattern 𝑢, pattern 

𝑝 is called a u-satisfied pattern if 𝑝 ⊇ 𝑢. 

2.1.3.3 MSRIC-R and MSRIC-P (Van & Le, 2021)  

In 2020, Van et al. proposed MSRIC-R and MSRIC-P algorithms, to solve the 

effective methods for integrating itemset constraints into the actual mining process, in 

which MSRIC-R pushed the constraints into the rule generating phase, and MSRIC-P 

pushes into the pattern mining phase. 
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The problem of sequential pattern mining or sequential rules mining with a set 

itemset constraint was proposed by Van et al. The following are the key benefits of the 

approach: 

− The proposed algorithms are pattern-growth algorithms that utilize prefixes and 

dynamic bit vectors. 

− The dynamic bit vector data structure optimizes the storage of frequent patterns. 

Candidate positions are represented by bits 1 and 0. A bit value of 1 indicates 

the positions where the candidate appears in the database, while a bit value of 0 

marks positions where the candidate does not. This structure stores the position 

of the first occurrence of a 0 bit, representing the candidate's first non-

occurrence. This removes the necessity to store all previous 0 bits, thereby 

saving memory space. 

− These algorithms prune the search space both at the start and during the mining 

process, reducing the number of candidates that need to be checked. The 

pruning method is based on the prefix condition. If a candidate does not meet 

the itemset constraint, there's no need to extend from this candidate. 

The limitation of the research direction applies exclusively to the domain of pattern 

mining. It is essential to diversify our research efforts to encompass other data mining 

challenges. The advantages mentioned above have motivated us to apply these principles 

to the task of mining inter-sequence patterns with itemset constraints, a topic that will be 

explored in greater depth in Chapter 4. 

2.1.4 Clickstream Pattern Mining 

2.1.4.1 CUP algorithm (Huynh et al., 2020) 

The CUP (Clickstream pattern mining Using Pseudo-IDList) algorithm was 

presented by Huynh et al. (Huynh et al., 2020). The algorithm uses a vertical data structure 

called pseudo-IDList, and a heuristic pruning method named DUB (Dynamic intersection 

Upper Bound) to help optimize the algorithm. The pseudo-IDList data structure is 

organized to store 3 information: 1) 𝑃: information of a pattern; 2) 𝐷𝐼𝑃 (data IDList 

pointer) a link to the IDList of the last item in 𝑃.  

For example, if the 𝑃 is 〈𝐴, 𝐵, 𝐶〉 then 𝐷𝐼𝑃 would point to the data IDList of 1-

pattern 〈𝐶〉; 3) 𝑀: a two-dimensional matrix contains the positions of IDList including 

three columns {𝐿𝑜𝑐𝑎𝑙 𝑖𝑑, 𝐷𝑎𝑡𝑎 𝑖𝑑, 𝑆𝑡𝑎𝑟𝑡 𝑖𝑛𝑑𝑒𝑥}. 

An example of a clickstream database is shown in Figure 2.5. The first column is 

the UCID (user clickstream id) used to identify the user, the second column describes the 
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user's click patterns. Based on the example database in Figure 2.5-Figure 2.8 shows the 

Data IDList and pseudo-IDLists of pattern 〈𝐴〉, 〈𝐵〉 and 〈𝐶〉. 

 

UCID User clickstream 

100 〈𝐴, 𝐵, 𝐶, 𝐴, 𝐴, 𝐵, 𝐶, 𝐷, 𝐵, 𝐶, 𝐵〉 

200 〈𝐵, 𝐵, 𝐸, 𝐹, 𝐹, 𝐶, 𝐹〉 

300 〈𝐵, 𝐵, 𝐴, 𝐷, 𝐴〉 

400 〈𝐵, 𝐴, 𝐸, 𝐹, 𝐶, 𝐵, 𝐶〉 

500 〈𝐷, 𝐷, 𝐴, 𝐴, 𝐵〉 

Figure 2.5: An example of a horizontal clickstream database. 

    Pattern〈𝐴〉 

Pattern〈𝐴〉  DIP〈𝐴〉 

Data ID UCID Position list  Local ID Data ID Position list 

1 100 1, 4, 5,  1 1 1 

2 300 3, 5  2 2 1 

3 400 2  3 3 1 

4 500 3, 4  4 4 1 

(a)  (b) 

Figure 2.6: Data IDLists (a) and pseudo-IDLists of pattern 〈𝐴〉. 

    Pattern〈𝐵〉 

Pattern〈𝐵〉  DIP〈𝐵〉 

Data ID UCID Position list  Local ID Data ID Position list 

1 100 2, 6, 9, 11  1 1 1 

2 200 1, 2  2 2 1 

3 300 1, 2  3 3 1 

4 400 1, 6  4 4 1 

5 500 5  5 5 1 

(a)  (b) 

Figure 2.7: Data IDLists (a) and pseudo-IDLists of pattern 〈𝐵〉. 

    Pattern〈𝐶〉 

Pattern〈𝐶〉  DIP〈𝐶〉 

Data ID UCID Position list  Local ID Data ID Position list 
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1 100 3, 7, 10  1 1 1 

2 200 6  2 2 1 

3 400 5, 7  3 3 1 

(a)  (b) 

Figure 2.8: Data IDLists (a) and pseudo-IDLists of pattern 〈𝐶〉. 

The CUP algorithm is described through 3 main steps as shown below: 

− Creating IDLists for the frequent 𝑘-patterns (k = 1). 

− Generating (𝑘 + 1)-patterns from 𝑘-patterns. 

− Calculating the pseudo-IDList for the (𝑘 + 1)-patterns candidates, using 

pseudo-IDList calculates the support. Candidates are discarded if its minimum 

support is less than the minimum support threshold. The process then loops 

back at the generating candidate step (step 2) until no candidates can be found. 

2.1.4.2 CM-WSPADE and Compact-SPADE (Huynh et al., 2020) 

The CM-WSPADE algorithm (Huynh et al., 2020) was proposed to solve the 

mining weighted clickstream patterns problem. And the improvement of the CM-

WSPADE algorithm is called Compact-SPADE to improve the running time and memory 

usage. The CM-WSPADE algorithm is an extension of the CM-SPADE algorithm 

(Fournier-Viger et al., 2014), which uses the following depth-first-search strategy for 

mining weighted clickstream patterns. The CM-WSPADE algorithm starts by looking for 

1-clickstream candidate patterns and calculates their weighted support. Any 1-clickstream 

candidate samples whose weighted support is lower than a certain weighted threshold is 

discarded. The remaining 1-clickstream patterns are frequent weighted patterns and are 

used to generate the 2-clickstream patterns, The algorithm discards any 2-click stream 

candidate samples which its weighted support is less then weight threshold. The process 

repeats until no new candidate sample is generated. 

2.1.4.3 SUI (Sequential pattern mining Using Indices) (Huynh et al., 2022) 

The pseudo-IDLists data structure (Huynh et al., 2020) has proposed to improve 

running time and memory usage for mining clickstream pattern, but it only uses for 

clickstreams data mining. Therefore, Huy et al. proposed an algorithm called SUI 

(Sequential pattern mining Using Indices) (Huynh et al., 2022), which have changes and 

improvements to be able to use the pseudo-IDLists data structure for sequence data 

mining. 

Because the clickstream pattern has only one item per itemset, when mining 

clickstream pattern only has the 𝑠-extension. But by definition of mining sequential pattern 
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must have both 𝑠-extension and 𝑖-extension. To solve the above problem, Huynh et al. 

used both data-IDList and pseudo-IDLis data structures for the SUI algorithm.  

The SUI mining process involves a series of steps to identify frequent patterns in a 

horizontal database. 

− The first step of the process entails scanning the entire database horizontally 

and gathering all the frequent 1-patterns along with their associated data-ID 

lists. 

− Subsequently, candidate patterns are generated in step two, which can have 𝑖-

extensions, 𝑠-extensions, or both. This is done by combining two 𝑘-patterns 

that have the same (𝑘 − 1)-prefix, where frequent 1-patterns share an empty 

prefix. 

− In the third step, pseudo-IDLists and data-IDLists are generated for the 

candidates produced in the previous steps, and their support is checked against 

the minimum support requirement. Candidates whose support is found to be 

less than the 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 are discarded. The candidate support can be obtained 

from their ID-Lists instead of scanning the entire database, which is performed 

in step one. However, producing pseudo-IDLists and data-IDLists is known to 

consume a significant portion of the algorithm's runtime. The process then 

returns to step two and repeats until no further candidates can be found. 

Through the examination of clickstream pattern mining algorithms proposed by 

Huy et al., the advantages can be observed as follows: 

− The algorithms utilize the pseudo-IDLists data structure, an extension of the 

IDList data structure. Pseudo-IDLists inherits the exceptional attributes of 

IDList, thereby assisting in the avoidance of duplicate data storage. Pseudo-

IDLists does not necessitate the storage of complete candidate position 

information in the database. Instead, it can be accessed through the frequent 

patterns that generated it. This feature significantly reduces storage space 

requirements. 

− The pseudo-IDLists data structure stores a matrix of candidate positions, 

enabling expedient calculation of candidate support by examining the number 

of rows in the position matrix. 

Building upon the exploration of the pseudo-IDLists data structure's characteristics, 

we have successfully applied this data structure to address the problem of inter-sequence 
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pattern mining. This application has resulted in improvements and optimizations to the 

approach for inter-sequence pattern mining, detailed in Chapter 3. 

2.2 Inter-sequence Pattern Mining Algorithms 

2.2.1 Basic Concepts and Definitions 

Definition 2.14 (Sequence database): A sequence database is a collection of 

sequences (Definition 2.2), denoted as 𝐷 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}, where each 𝑠𝑖(1 ≤ 𝑖 ≤ 𝑛) is 

a tuple of values 〈𝐷𝑎𝑡, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒〉: (1) Dat, which represents contextual information 

related to the time of the transaction; and (2) Sequence, which is an ordered list of itemset 

as described above. 

For example, a sequential database could contain multiple sequences of customer 

purchases over time, with each sequence representing the items purchased in a particular 

transaction and the associated time of that transaction (in Table 2.4a). 

Table 2.4. Customer transactions (a) and customer sequences (b). 

Transaction time Customer Itemsets  DAT Sequences 

01.02.2023 12: 00 11 𝐵𝐶  1 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉 

01.02.2023 13: 00 22 𝐴  2 〈(𝐴𝐶)(𝐵𝐶)𝐴〉 

01.02.2023 14: 00 33 𝐴𝐶  3 〈𝐴𝐷〉 

01.02.2023 15: 00 44 𝐶  4 〈𝐴𝐶〉 

03.02.2023 10: 00 33 𝐴𝐶  (b) 

03.02.2023 16: 00 11 𝐵𝐶    

03.02.2023 17: 00 44 𝐴   

04.02.2023 08: 00 66 𝐴    

04.02.2023 12: 00 44 𝐷    

05.02.2023 14: 00 55 𝐴    

05.02.2023 19: 00 33 𝐶    

(a)    

For example, the sequential database as shown in Table 2.4b and 𝐷𝐴𝑇 = 1, the 

provided sequence data 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉 can be examined to identify the order in which 

items were purchased. This sequence comprises four distinct itemset that are delimited by 

parentheses, with each itemset containing one or more items. It should be noted that if an 

itemset contains only one item, parentheses are not required. For example, item 𝐴 in the 

sequence represents an itemset with a single item and does not require parentheses. The 

first itemset, (𝐵𝐶), corresponds to the purchase of item 𝐵 followed by item 𝐶. The second 
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itemset, 𝐴, represents the acquisition of item 𝐴. The third itemset, (𝐴𝐶), indicates the 

purchase of item 𝐴 followed by item 𝐶. Finally, the fourth and last item is 𝐶, signifying the 

purchase of item 𝐶 for the three times. 

Definition 2.15 (Span value): Assuming the sequences 𝑠1 and 𝑠2 have domain 

attributes 𝑑1 and 𝑑2, respectively, denoted as (𝐷𝐴𝑇). The span from 𝑠1 to 𝑠2 is calculated 

as [𝑑2-𝑑1], if 𝑑1 is taken as the reference point. The sequence 𝑠2 is an extended sequence 

and denoted as 𝑠2 [𝑑2-𝑑1]. 

For example, considering the sequence database given in Table 2.4b, the 1st 

transaction is used as the reference point then the extended sequence of the 2nd transaction 

is 〈(𝐴𝐶)(𝐵𝐶)𝐴〉[1]. 

Definition 2.16 (Extended sequence, item and itemset): An extended sequence 

𝑠[𝑑] = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛〉[𝑑] consists of itemset 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑛, where [𝑑] denotes the span 

of 𝑠. The itemset 𝑡𝑖 associated with [𝑑] is defined as an extended itemset (𝑒-itemset) 

denoted by 〈𝑡𝑖〉[𝑑]. If 𝑡𝑖 = (𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚), where 𝑢𝑘 is an item for 1 ≤ 𝑘 ≤ 𝑚, we 

define 𝑢𝑘 associated with [𝑑] as an extended item (𝑒-item), denoted by (𝑢𝑘)[𝑑]. 

For instance, the extended sequence 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉[1] contains four 𝑒-itemset, 

〈(𝐵𝐶)〉[1], 〈𝐴〉[1], 〈(𝐴𝐶)〉[1] and 〈𝐶〉[1] which can be decomposed into three 𝑒-items, 

(𝐴)[1], (𝐵)[1] and (𝐶)[1]. 

Definition 2.17 (Megasequences) : In a sequential database consisting of 𝑘 

sequences 〈𝑑1,  𝑠1〉, 〈𝑑2,  𝑠2〉, … , 〈𝑑𝑘,  𝑠𝑘〉, a megasequence with 𝑘 > 0 is represented by the 

union of its subsequences, denoted as 𝛹 =  𝑠1[0]  ∪  𝑠2[𝑑2 –  𝑑1]  ∪ … ∪ 𝑠𝑘[𝑑𝑘 – 𝑑1]. The 

reference point for 𝛹 is 𝑑1, indicating that 𝛹 starts from this domain attribute. 

The 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 refers to a threshold set by the user which specifies the maximum span. To 

satisfy the condition of 𝑚𝑎𝑥𝑠𝑝𝑎𝑛, the |𝑑𝑘 – 𝑑1| in the sequential database must be less 

than or equal to 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 (𝑑𝑘 – 𝑑1  ≤  𝑚𝑎𝑥𝑠𝑝𝑎𝑛).  

An example of the megasequence list is shown in Table 2.5b, generated from the 

database presented in Table 2.4b, with 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1 and 𝐷𝐴𝑇 = 1 serving as the 

reference point. 

Table 2.5. Converting a sequential database of Table 2.4 (a) to megasequences (b). 

DAT Sequences  DAT Megasequences 

1 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉  1 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉[0]〈(𝐴𝐶)(𝐵𝐶)𝐴〉[1] 

2 〈(𝐴𝐶)(𝐵𝐶)𝐴〉  2 〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴𝐷〉[1] 
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3 〈𝐴𝐷〉  3 〈𝐴𝐷〉[0]〈𝐴𝐶〉[1] 

4 〈𝐴𝐶〉  4 〈𝐴𝐶〉[0] 

(a)  (b) 

Definition 2.18 (E-item comparing) (T. Le et al., 2018): Consider two e-items 𝛼 =

(𝑥)[𝑑1] and 𝛽 = (𝑦)[𝑑2]. The two e-items are equal, 𝛼 = 𝛽, if and only if they have the 

same span and the same content, (𝑑1 = 𝑑2) ∧ (𝑥 = 𝑦). The e-item 𝛼 is less than 𝛽, 𝛼 <

𝛽, if either the span of 𝛼 is less than the span of 𝛽, 𝑑1 < 𝑑2, or if the indices are equal, but 

the content of 𝛼 is less than the content of 𝛽, (𝑑1 = 𝑑2) ∧ (𝑥 < 𝑦). 

For instance, (𝐵)[0] = (𝐵)[0], (𝐵)[2] < (𝐵)[3] and (𝐵)[2] < (𝐶)[2]. 

Definition 2.19 (Subset e-item) (T. Le et al., 2018): The function 𝑠𝑢𝑏𝑘,𝑙(𝛼) is 

defined as the set of 𝑒-items of pattern 𝛼 from position 𝑘 to 𝑙, where the number of e-items 

is equal to (𝑙 − 𝑘 + 1). 

For instance, 𝑠𝑢𝑏1,6(〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴𝐷〉[2]) = 〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴〉[2] and 

𝑠𝑢𝑏6,6(〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴𝐷〉[2]) = 〈𝐴〉[2]. 

Definition 2.20 (Inter-sequence 1-patterns joining) (T. Le et al., 2018): Given two 

frequent inter-sequence 1-patterns 𝑥 = 〈𝑘〉[0] and 𝑦 = 〈𝑚〉[0], three types of join 

extension can be performed on them. Firstly, an 𝑖-extension can be performed where 

𝑥 ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {〈(𝑘𝑚)〉[0]}. Secondly, a 𝑠-extension can be performed where 

𝑥 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {〈𝑘𝑚〉[0]}. Lastly, a 𝑡-extension can be performed where 

𝑥 ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {〈𝑘〉[0]〈𝑚〉[𝑑]|1 ≤ 𝑑 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛}. It should be noted that 𝑥 and 𝑦 

are joinable in any instance. 

For instance, given 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 =  2: 

− 〈𝐴〉[0] ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐵〉[0] = 〈(𝐴𝐵)〉[0] 

− 〈𝐴〉[0] ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐵〉[0] = 〈𝐴𝐵〉[0] 

− 〈𝐴〉[0] ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐵〉[0] = {〈𝐴〉[0]〈𝐵〉[1], 〈𝐴〉[0]〈𝐵〉[2]} 

Definition 2.21 (Inter-sequence k-patterns joining) (T. Le et al., 2018): Given two 

frequent inter-sequence 𝑘-patterns 𝑥 and 𝑦, where 𝑘 > 1, their subpatterns of length 𝑘, 

denoted as 𝑠𝑢𝑏𝑘,𝑘(𝑥) = (𝑚)[𝑑1] and 𝑠𝑢𝑏𝑘,𝑘(𝑦) = (𝑛)[𝑑2], respectively. If 𝑠𝑢𝑏1,𝑘−1(𝑥) =

𝑠𝑢𝑏1,𝑘−1(𝑦) and 𝑑1  ≤  𝑑2, then 𝑥 is joinable to 𝑦, resulting in three types of join 

extension:  

− Itemset extension:𝑥 ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {𝑥+𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑛)[𝑑2]|(𝑑1 = 𝑑2) ∧ (𝑚 < 𝑛)}. 

− Sequence extension:𝑥 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {𝑥+𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑛)[𝑑2]|𝑑1 = 𝑑2}. 
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− Inter extension:𝑥 ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {𝑥+𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑛)[𝑑2]|𝑑1 < 𝑑2}. 

For instance: 

− 〈𝐴𝐵〉[0] ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐴𝐷〉[0] = 〈𝐴(𝐵𝐷)〉[0] 

− 〈𝐴𝐵〉[0] ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐴𝐷〉[0] = 〈𝐴𝐵𝐷〉[0] 

− 〈𝐴𝐵〉[0] ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐴〉[0]〈𝐷〉[2] = 〈𝐴𝐵〉[0]〈𝐷〉[2] 

Definition 2.22 (Problem statement of inter-sequence pattern mining): Given a 

sequential database 𝐷 and a minimum support value, the task of inter-sequence pattern 

mining is to discover all frequent inter-sequence patterns. 

Definition 2.23 (Problem statement of inter-sequence pattern mining with itemset 

constraints): Given a sequence database 𝐷, the minimum support (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡), and a set 

of constraint itemsets 𝐼𝐶 = {𝑐1, 𝑐2, 𝑐3, … ,  𝑐𝑘}. The task of inter-sequence pattern mining 

with an itemset constraint is to discover all frequent sequences 𝛼 =

𝛼1[𝑤1], 𝛼2[𝑤2], . . . ,  𝛼𝑚[𝑤𝑚] such that ∃𝛼𝑖[𝑤𝑖] ∈ 𝛼, ∃𝑏𝑗 ∈ 𝐼𝐶: 𝑏𝑗 ⊆ 𝛼𝑖.  

2.2.2 Algorithms for Mining Inter-sequence Patterns 

2.2.2.1 EISP-Miner (C. S. Wang & Lee, 2009) 

The EISP-Miner algorithm (C. S. Wang & Lee, 2009) proposed by Wang et al. 

mines inter-sequence pattern such that a pattern can be used to describe associations across 

many different sequences by the maxspan value (specified by the user). The algorithm uses 

a PatternList data structure to store information about a frequent pattern. The EISP-Miner 

algorithm goes through the following main steps: 

− First, iterate through the original database and then use a PatternList to store 

frequent 1-pattern patterns. 

− The second step stores all frequent 1-pattern patterns into a tree structure named 

ISP-Tree. 

− Then, EISP-Miner algorithm uses depth-first search to find all frequent 

patterns. By using PatternList data structure and ISP-Tree tree structure, the 

EISP-Miner algorithm only needs to scan the original database once. This is the 

optimal point of EISP-Miner algorithm compared to previous algorithms such 

as Apriori. 

The EISP-Miner algorithm is presented as following: 

Algorithm 2.8. The EISP-Miner algorithm (C. S. Wang & Lee, 2009) 

 
Input: A sequence database 𝐷, minimum support (minsupport), and maximum span 

maxspan 

 Output: A complete of frequent inter-sequence patterns 𝐹𝑃 
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1. 
Scan D to generate a set of all frequent 1-patternlists, T|NULL, as the extended group 

of the root node of an ISP-tree T; 

2. For each frequent 1-patternlist list in T|NULL do 

3.  Call ISP-Join1(list, T|NULL, FP) to get T|list; 

4.  Call ISP-JoinK(T|list, FP); 

5. End for 

6. Ouput FP; 

 

Algorithm 2.9. The ISP-Join1 function (C. S. Wang & Lee, 2009) 

 Function: ISP-Join1(list, T|NULL, FP) 

1. for each frequent 1-pattern  in T|NULL, where =<u>[0] and =<v>[0] do 

2.  for x = 0 to maxspan do 

3.   if (x=0) and (u<v) then list = list i list; 

4.   if (support(list  ≥ minsupport then add list to T|list and  to FP; 

5.   if (x=0) then list = list s list; 

6.   if support(list  ≥ minsupport then add list to T|list and  to FP; 

7.   If (x>0) then list = list t list; 

8.   if support(list  ≥ minsupport then add list to T|list and  to FP; 

9.  end for 

10. end for 

 

Algorithm 2.10. The ISP-JoinK function (C. S. Wang & Lee, 2009) 

 Function: ISP-JoinK(T|list, FP) 

1. for each frequent k-pa  e n βlist in T|list where subk,k β =<u>[ ] do 

2.  for each frequent k-pattern list in T|list where subk,k()=<v>[j] do 

3.   if (i=j) and (u<v) then list = βlist i list; 

4.   if support(list  ≥ minsupport then add list    T| βlist and  tp FP; 

5.   if (i=j) then list = βlist s list; 

6.   if support(list  ≥ minsupport then add list    T| βlist and  tp FP; 

7.   If (i<j) then list = βlist t list; 

8.   if support(list  ≥ minsupport then add list    T| βlist and  tp FP; 

9.  end for 

10.  Call ISP-JoinK T|βlist, FP); 

11. end for 
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The EISP-Miner algorithm offers several advantages in terms of efficiency and 

storage utilization: 

− By performing only one scan of the database, EISP-Miner is able to calculate 

candidate support and candidate extension simultaneously. This eliminates the 

need for costly matching of candidate subsets, resulting in significant time and 

storage space savings. The algorithm leverages the PatternList data structure, 

which stores only the location information of candidates. This approach avoids 

the necessity of rescanning the original database during candidate expansion. 

− However, it is important to note that the PatternList data structure has some 

limitations. It utilizes integers to store candidate location information, which 

can lead to increased memory requirements, particularly when working with 

large databases. Additionally, calculating the support level of candidates may 

be more time-consuming compared to other methods. 

2.2.2.2 DBV-ISP (Vo et al., 2012) 

Mining inter-sequence patterns was proposed by Wang et al. via the EISP-Miner 

algorithm (C. S. Wang & Lee, 2009), but this algorithm must use a set of integers to store 

the position of a pattern in the database. This leads to a lot of memory usage during the 

running of the algorithm. To overcome the above inefficient, Vo et al. used an alternative 

structure called DBV-PatternList and proposed an algorithm named DBV-ISP (Vo et al., 

2012). The algorithm uses a DBV-PatternList data structure to store information about a 

frequent pattern. Because DBV-ISP algorithm is based on the EISP-Miner algorithm, it 

also has the following main steps: First, iterate through the original database and then use a 

DBV-PatternList to store frequent 1-pattern patterns. The second step stores all frequent 1-

pattern pattern into a tree structure named DBV-tree. Then, the DBV-ISP algorithm uses 

depth-first search to find all frequent patterns. By using DBV-PatternList data structure 

and IDBV-tree structure, the DBV-ISP algorithm only needs to scan the original database 

once and is more optimized than the previous algorithm EISSP-Miner. 

The evaluation of the DBV-ISP algorithm provides insights into its running time 

and storage space. The algorithm demonstrates several strengths, outlined below: 

− The DBV-ISP algorithm represents an improved and extended version of the 

EISP-Miner algorithm (C. S. Wang & Lee, 2009). It introduces the utilization 

of a bit data structure for storing candidate location information, leading to 

reduced storage space, and processing time compared to the EISP-Miner 

algorithm. By employing bit intersection operations for candidate support 
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calculation, the DBV-ISP algorithm achieves faster execution in comparison to 

working with integers. 

− Furthermore, the algorithm leverages a dynamic bit vector data structure to 

optimize the storage space for candidate locations. Specifically, for candidate 

patterns that occur infrequently in the database, only the first occurrence and 

subsequent occurrence positions need to be stored. This approach effectively 

reduces the storage of zero bits in candidate location information, resulting in 

more efficient memory utilization. These strengths make the DBV-ISP 

algorithm an efficient and effective solution for inter-sequence mining tasks. 

− However, the dynamic bit vector data structure has limitations when it comes to 

storing information. Newly created candidate location information must be 

stored, resulting in overlapping positions with previous frequent patterns. This 

duplication of data poses a challenge and requires additional storage memory. 

To address this issue, in Chapter 3, we propose the implementation of a data 

structure called pseudo-IDList as a solution. 

2.2.2.3 ISP-IC, iISP-IC, piISP-IC (T. Le et al., 2018) 

Mining inter-sequence pattern was proposed by Wang et al. (C. S. Wang & Lee, 

2009), and later improved by Vo et al. (Vo et al., 2012). But the algorithm generates a lot 

of frequent patterns during mining process. To improve this problem, Le et al. proposed an 

algorithm called ISP-IC (Inter-Sequence Pattern with Item Constraint mining) (T. Le et 

al., 2018), which uses item constraints in the process of inter-sequence mining. Based on 

Lemma 2.1, Le et al. presented an improved algorithm of the ISP-IC algorithm, named 

iISP-IC. The iISP-IC algorithm reduces the number of conditional checks on item 

constraints for newly generated patterns, helping to optimize the running time of the 

algorithm. Finally, Le et al. presented a parallel version of iISP-IC named piISP-IC to 

improve the performance. 

Lemma 2.1: Let 𝛼 satisfy constraint 𝜒 then ∀𝛽, following sequences 𝛾𝐼 = 𝛼 ∪𝐼 𝛽, 

𝛾𝑆 = 𝛼 ∪𝑆 𝛽, and 𝛾𝑇 = 𝛼 ∪𝑇 𝛽 also satisfy constraint 𝜒. 

The advantages and disadvantages of the ISP-IC algorithm are evaluated as 

follows: 

− The ISP-IC algorithm extends the functionality of the DBV-ISP algorithm by 

addressing the challenge of mining inter-sequence patterns with item condition 

constraints. It inherits the dynamic bit vector data structure from DBV-ISP, 

leading to optimized processing time and storage space utilization. The use of 



39 

 

the bit structure enables efficient calculation of candidate support through bit 

assignment operations. 

− However, the algorithm does not consider other constraints, such as itemset 

conditions. In Chapter 4, the problem of mining inter-sequence patterns with 

itemset condition constraints is introduced separately. 

− Additionally, the dynamic bit vector structure does not yet resolve data 

redundancy. The information regarding the location of newly generated 

candidates still overlaps with previous frequent patterns. 

2.3  Summary 

In this chapter, we introduced the fundamental concepts, definitions, and examples 

for frequent pattern mining problems, including mining sequence patterns, sequence 

pattern mining with constraints, and clickstream pattern mining. We then presented the 

basic concepts, definitions, and examples for the inter-sequence pattern mining problem. 

Based on this background information, we made improvements to the inter-sequence 

pattern mining problem, which are presented in Chapter 3. Furthermore, we proposed 

problems for itemset-constrained inter-sequence pattern mining, which are presented in 

Chapter 4. 
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3 CHAPTER 3: MINING INTER-SEQUENCE PATTERNS 

BASED ON PSEUDO-IDLIST AND EARLY PRUNING 

TECHNIQUES 

In this chapter, we introduce the problem of mining inter-sequence patterns and 

subsequently address the limitation of the currently employed data structure in the 

presence of duplicated data during the mining process. To overcome this limitation, we 

propose the utilization of a data structure known as pseudo-IDList. Furthermore, we 

present an algorithm named ISP-PI (Inter-Sequence Pattern mining based on Pseudo-

Index) specifically designed for the inter-sequence pattern mining problem. The algorithm 

incorporates the ISP-IC (Inter-Sequence Pattern mining with Index Intersection Checking) 

method to optimize the mining time. To assess the effectiveness of the proposed algorithm 

in comparison to previous algorithms employed in the field of inter-sequence mining, we 

employ six test databases to evaluate the algorithm's performance in terms of running time 

and storage space utilization. 

3.1 Introduction 

In 2009, Wang and Lee (C. S. Wang & Lee, 2009) introduced a novel approach for 

inter-sequence pattern mining based on a vertical database format. The authors suggested 

utilizing the ISP-Tree structure to generate potential candidates that meet the minimum 

support threshold. This approach allows for mining patterns across transactions in the 

sequence database, while still being able to exploit traditional sequences like GSP (Srikant 

& Agrawal, 1996), SPAM(Ayres et al., 2002), SPADE (Zaki, 2001), CM-SPADE 

(Fournier-Viger et al., 2014), and PRISM (Gouda et al., 2007, 2010). The method stores 

sequence identifiers to calculate the support of patterns, as shown in Figure 3.2. However, 

this approach requires a significant amount of memory to store sequence identifiers and 

time to compute the intersection of sequence identifiers. To overcome these limitations, Vo 

et al. (Vo et al., 2012) introduced an efficient data structure called the DBV-PatternList, 

which replaces the PatternList structure used by the EISP-Miner approach. The DBV-

PatternList data structure is illustrated in Figure 3.3 and Figure 3.6. This approach 

significantly reduces the storage space and time required for MISP, as well as for mining 

closed inter-sequence patterns (B. Le et al., 2015). More recently, Nguyen et al. (2023) 

(Nguyen et al., 2023) proposed an algorithm which uses a DBV-PatternList based structure 

for MISP with itemset constraints, named DBV-ISPMIC. The proposed algorithm utilizes 

the DBV-PatternList to expediently compute the support of patterns. Moreover, they 

developed an improved algorithm based on a property to reduce checking candidates. 
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Additionally, a parallel method called pDBV-ISPMIC was also developed. Empirical 

evaluations showed that DBV-ISPMIC outperformed previous algorithms, and pDBV-

ISPMIC outperformed DBV-ISPMIC in terms of runtime. 

For instance, using the customer database given in Table 2.4, with 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =

50% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 =  1. The complete set of frequent inter-sequence patterns with their 

supports are shown in Table 3.1 (based on Definition 2.22). 

Table 3.1. Frequent inter-sequence patterns mined from the database shown in Table 2.4. 

Level 1  Level 2  Level 3  Level 4 

〈𝐴〉[0]: 4  〈𝐶𝐶〉[0]: 2  〈𝐶𝐴〉[0]〈𝐴〉[1]:2  〈(𝐵𝐶)𝐴〉[0]〈𝐴〉[1]:2 

〈𝐵〉[0]: 2  〈(𝐵𝐶)〉[0]: 2  〈𝐶𝐶〉[0]〈𝐴〉[1]:2  〈(𝐴𝐶)𝐶〉[0]〈𝐴〉[1]:2 

〈𝐶〉[0]: 3  〈(𝐴𝐶)〉[0]: 2  〈𝐵𝐴〉[0]〈𝐴〉[1]:2   

  〈𝐴𝐶〉[0]: 3  〈(𝐵𝐶)〉[0]〈𝐴〉[1]:2   

  〈𝐶𝐴〉[0]: 2  〈(𝐵𝐶)𝐴〉[0]:2   

  〈𝐶〉[0]〈𝐴〉[1]: 2  〈𝐴𝐴〉[0]〈𝐴〉[1]:2   

  〈𝐴〉[0]〈𝐶〉[1]: 2  〈𝐴𝐶〉[0]〈𝐴〉[1]:2   

  〈𝐵𝐴〉[0]: 2  〈(𝐴𝐶)〉[0]〈𝐴〉[1]:2   

  〈𝐵〉[0]〈𝐴〉[1]: 2  〈(𝐴𝐶)𝐶〉[0]:2   

  〈𝐴𝐴〉[0]: 2     

  〈𝐴〉[0]〈𝐴〉[1]: 3     

       

Previous research on mining inter-sequence patterns is still limited due to the 

duplication of data and the large number of candidates generated, which requires 

significant processing time and storage space. The contributions of this chapter are 

presented as follows: 

1. Demonstrating the limitations of the PatternList and dynamic bit vector data structures 

in terms of data duplication in previous inter-sequence pattern mining algorithms. 

2. Introducing the pseudo-IDList data structure for pattern extension by sequence and 

itemset and extending its use for the inter-sequence mining problem with inter-

extension. The effectiveness of this data structure for avoiding data duplication in 

mining inter-sequence patterns is proven, and the ISP-PI algorithm is proposed for this 

problem. 

3. Proposing and applying the ISP-IC pruning method to the ISP-PI algorithm to reduce 

the number of generated patterns, given the large number of candidates generated in 
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the inter-sequence mining problem. The pruning method helps reduce the time 

required for support calculations by reducing the number of candidates. 

4. Evaluating the performance of the ISP-PI algorithm using the pseudo-IDList data 

structure and the applied pruning method. Six test databases were used for evaluation, 

including large databases with nearly a million rows of data. 

〈𝐴〉  〈𝐵〉  〈𝐶〉  〈𝐷〉 

DAT Position List  DAT Position List  DAT Position List  DAT Position List 

1 2, 3  1 1  1 1, 3, 4  3 2 

2 1, 3  2 2  2 1, 2    

3 1     4 2    

4 1          

Figure 3.1. The value of 𝐷𝐴𝑇 and the position of each item in a transaction are extracted 

from Table 2.4. 

〈𝐴〉  Pattern: 〈𝐴〉[0] 

DAT Position List  𝑡-value 𝑝-value 

1 2, 3  1 2, 3 

2 1, 3  2 1, 3 

3 1  3 1 

4 1  4 1 

Figure 3.2. A PatternList data structure for pattern 〈A〉 from Table 2.4. 

Figure 3.2 presents a PatternList data structure for pattern 〈𝐴〉 from Table 2.4, 

which involves creating two columns. The first column represents the 𝑡-value and 

corresponds to the 𝐷𝐴𝑇 column in Table 2.4. The second column represents the 𝑝-value 

and corresponds to the Position List column illustrated in Figure 3.1. 
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〈𝐴〉  Pattern: 〈𝐴〉[0] 

DAT Position List 
 Start 1 

 Bit-vector 𝑝-value 

1 2, 3  

15 

2, 3 

2 1, 3  1, 3 

3 1  1 

4 1  1 

Figure 3.3. DBV-PatternList data structure for pattern 〈A〉 is constructed from Table 2.4. 

Figure 3.3 presents the DBV-PatternList data structure for pattern 〈𝐴〉 is 

constructed from Table 2.4. As the pattern appears in the first transaction with a 𝐷𝐴𝑇 value 

of 1, the Start value is initialized to 1. The pattern 〈𝐴〉 appears in transactions with 𝐷𝐴𝑇 

values of 1, 2, 3, and 4, and its bit value is either 1 (if it appears) or 0 (if it does not 

appear). Consequently, the list of bits for pattern 〈𝐴〉 is (1111) (in binary), and the 

corresponding Bit-vector value is 15 (in decimal) for the first column of 〈𝐴〉 pattern. The 

second column, 𝑝-value, corresponds to the PositionList column. 

Pattern: 〈𝐴〉  Pattern: 〈𝐴〉[0] 

𝑡-value 𝑝-value 
 PP 〈𝐴〉 

 𝑡-value Start index 

1 2, 3  1 1 

2 1, 3  2 1 

3 1  3 1 

4 1  4 1 

Figure 3.4. A pseudo-IDList data structure is constructed for the 〈A〉 pattern based on 

its PatternList data structure. 

Figure 3.4 shows a pseudo-IDList data structure constructed for the 〈𝐴〉 pattern 

based on its PatternList data structure. The 𝑃𝑃 value, which is the last item in the pattern, 

is set to 〈𝐴〉. The 𝑡-value column of the pseudo-IDList data structure corresponds with the 

𝑡-value column of the PatternList data structure, and the start index value is initialized to 1. 

This is because the 〈𝐴〉 pattern has the same 𝑝-value column value as that of the 𝑃𝑃 

pattern. 

〈𝐴〉[0]  〈𝐵〉[0]  〈𝐶〉[0] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  𝑡-value 𝑝-value 

1 2, 3  1 1  1 1, 3, 4 
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2 1, 3  2 2  2 1, 2 

3 1     4 2 

4 1       

Figure 3.5. The list of PatternList of frequent inter-sequence 1-patterns generated from 

Table 2.4. 

〈𝐴〉[0]  〈𝐵〉[0]  〈𝐶〉[0] 

Start 1  Start 1  Start 1 

Bit-vector 𝑝-value  Bit-vector 𝑝-value  Bit-vector 𝑝-value 

15 

2  
12 

1  

13 

1, 3, 4 

1, 3  2  1, 2 

1     2 

1       

Figure 3.6. The list of dynamic bit vector of frequent inter-sequence 1-patterns generated 

from Table 2.4. 

〈𝐴〉[0]  〈𝐶〉[0]  〈𝐴𝐶〉[0] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  𝑡-value 𝑝-value 

1 2, 3  1 1, 3, 4  1 3, 4 

2 1, 3  2 1, 2  2 2 

3 1  4 2  4 2 

4 1       

(a) 

〈𝐴〉[0]  〈𝐶〉[0]  〈𝐴〉[0]〈𝐶〉[1] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  𝑡-value 𝑝-value 

1 2, 3  1 1, 3, 4  2 1, 2 

2 1, 3  2 1, 2  4 2 

3 1  4 2    

4 1       

(b) 

Figure 3.7. s-extension (a) and t-extension (b) of the 〈A〉[0] and 〈C〉[0] patterns. 

Figure 3.7 shows the 𝑠-extension (a) and 𝑡-extension (b) of the 〈𝐴〉[0] and 〈𝐶〉[0] 

patterns resulted in the 〈𝐴𝐶〉[0] and 〈𝐴〉[0]〈𝐶〉[1] patterns, respectively. When comparing 
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the 𝑝-value column of these patterns with that of the 〈𝐶〉[0] pattern, it was found that 

duplicate values can occupy a considerable amount of memory storage. 

〈𝐴〉[0]  〈𝐶〉[0]  〈𝐴𝐶〉[0] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  PP 〈𝐶〉 

1 2, 3  1 1, 3, 4  𝑡-value Start Index 

2 1, 3  2 1, 2  1 2 

3 1  4 2  2 2 

4 1     4 1 

Figure 3.8. A pseudo-IDList structure is constructed for the pattern 〈AC〉[0]. 

A pseudo-IDList structure constructed for the pattern 〈𝐴𝐶〉[0] by using two 

frequent inter-sequence 1-patterns, namely the PatternList 〈𝐴〉[0] and 〈𝐶〉[0], within an 𝑠-

extension is shown in Figure 3.8. The 𝑃𝑃 variable is set to 〈𝐶〉, which is the last item in the 

form 〈𝐴𝐶〉[0]. The first line of the pattern 〈𝐴〉[0] is linked to the first line of the pattern 

〈𝐶〉[0] since they both have a 𝑡-value of 1. Following Definition 2.20, we obtain the set of 

𝑝-values, which is {3, 4} because the condition is 𝑝-value(〈𝐴〉[0]) < 𝑝-value(〈𝐶〉[0]). 

Using the 𝑃𝑃 variable and 𝑡-value of 1, we identify a set of 𝑝-values {3, 4} that occur at the 

second position, resulting in a StartIndex value of 2. Similarly, for the 𝑡-values that 

correspond to 〈𝐴〉[0] and 〈𝐶〉[0], we find the {𝑡-value, StartIndex} pairs {2, 2} and {4, 1}. 

〈𝐴〉[0]  〈𝐶〉[0]  〈𝐴〉[0]〈𝐶〉[1] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  PP 〈𝐶〉 

1 2, 3  1 1, 3, 4  𝑡-value Start Index 

2 1, 3  2 1, 2  2 1 

3 1  4 2  4 1 

4 1       

Figure 3.9. A pseudo-IDList structure is constructed for the pattern 〈A〉[0]〈C〉[1]. 

Figure 3.9 shows the pseudo-IDList structure constructed for the pattern 

〈𝐴〉[0]〈𝐶〉[1] using two frequent inter-sequence 1-patterns, namely the PatternList 〈𝐴〉[0] 

and 〈𝐶〉[0], within a 𝑡-extension and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1. The variable 𝑃𝑃 was set to 〈𝐶〉, which 

is the final item in the 〈𝐴〉[0]〈𝐶〉[1] pattern. The first row of the pattern 〈𝐴〉[0] was linked 

to the second line of the pattern 〈𝐶〉[0], since 𝑡-value(〈𝐶〉[0]) - 𝑡-value(〈𝐴〉[0]) = 

𝑚𝑎𝑥𝑠𝑝𝑎𝑛. Following Definition 2.20, we obtained the set of 𝑝-values, which was {1,2}. 

Using the 𝑃𝑃 variable and a 𝑡-value of 2, we identified a set of 𝑝-values {1, 2} that 
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occurred at the first position, resulting in a StartIndex value of 1. Similarly, for the 𝑡-values 

corresponding to 〈𝐴〉[0] and 〈𝐶〉[0], we found the {𝑡-value, StartIndex} pairs {4, 1}. 

〈(𝐵𝐶)〉[0]  〈𝐵𝐴〉[0]  〈(𝐵𝐶)𝐴〉[0] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  PP 〈𝐴〉 

1 1  1 2,3  𝑡-value Start Index 

2 2  2 3  1 1 

      2 1 

        

Figure 3.10. A pseudo-IDList structure is constructed for the pattern 〈(𝐵𝐶)𝐴〉[0] by using 

two frequent inter-sequence 𝑘-patterns (𝑘 > 1), namely the PatternList 〈(𝐵𝐶)〉[0] and 

〈𝐵𝐴〉[0], within a 𝑠-extension. 

〈(𝐴𝐶)〉[0]  〈𝐴〉[0]〈𝐴〉[1]  〈(𝐴𝐶)〉[0]〈𝐴〉[1] 

𝑡-value 𝑝-value  𝑡-value 𝑝-value  PP 〈𝐴〉 

1 3  2 1,3  𝑡-value Start Index 

2 1  3 1  2 1 

   4 1  3 1 

        

Figure 3.11. A pseudo-IDList structure is constructed for the pattern 〈(𝐴𝐶)〉[0]〈𝐴〉[1] 

using two frequent inter-sequence k-patterns (𝑘 > 1), namely the PatternList 〈(𝐴𝐶)〉[0] 

and 〈𝐴〉[0]〈𝐴〉[1], within an 𝑡-extension and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1. 

〈𝐴𝐶〉[0]  〈𝐶〉[0]  〈𝐴𝐶〉[0] 

PP 〈𝐶〉  
DAT 

Position 

List 

 
DAT 

Position 

List 𝑡-value 𝑝-value   

1 2  1 1, 3, 4  1 3,4 

2 2  2 1, 2  2 2 

4 1  4 2  4 2 

Figure 3.12. The process of data retrieval of a pseudo-IDList for pattern 〈AC〉[0]. 

Figure 3.12 shows the process of data retrieval of a pseudo-IDList for pattern 

〈𝐴𝐶〉[0]. The first row in the pseudo-IDList of 〈𝐴𝐶〉[0] indicates the first row in the 

PatternList of the 〈𝐶〉[0] pattern because the 𝑡-value and the 𝐷𝐴𝑇 are both 1. The 𝑝-value 

is 2, which means that it will retrieve data starting from the second position to the end of 

the PositionList of 〈𝐶〉[0] pattern, and the result is {3,4}. Similarly, for the second and 
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third rows of the pseudo-IDList 〈𝐴𝐶〉[0] pattern, the resulting PositionList for the second 

row is {2} and for the third row is {3} in PatternList 〈𝐴𝐶〉[0]. 

3.2 Data Structure 

3.2.1 PatternList 

Definition 3.1 (C. S. Wang & Lee, 2009): Given a pattern 𝑎, we define a patternlist 

𝑎 𝑙𝑖𝑠𝑡 =  𝑎{𝑡1. 𝑝11𝑝12. . . 𝑝1𝑚1, 𝑡1. 𝑝21𝑝22. . . 𝑝2𝑚2, 𝑡𝑛. 𝑝𝑛1𝑝𝑛2. . . 𝑝𝑛𝑚𝑛}, where 

{𝑡1. 𝑝11 𝑝12 . . . 𝑝1𝑚1, 𝑡2. 𝑝21 𝑝22 . . . 𝑝2𝑚2,  𝑡𝑛. 𝑝𝑛1 𝑝𝑛2 . . . 𝑝𝑛𝑚𝑛} is called the list; 𝑡𝑖 is the dat 

(t-value); and 𝑝𝑖𝑗 is the position (p-value) that 𝛼‘s las  e-item appears at in the database 

1 ≤ 𝑖 ≤ 𝑛 and1 ≤ 𝑗 ≤ 𝑚𝑖. We also define 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎𝑙𝑖𝑠𝑡) as the number of 𝑡-𝑣𝑎𝑙𝑢𝑒𝑠 

contained in 𝑎𝑙𝑖𝑠𝑡. If 𝛼 is a k-pattern and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑎𝑙𝑖𝑠𝑡) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝, we say that 𝑎𝑙𝑖𝑠𝑡 is a 

frequent k-patternlist. 

Based on Definition 3.1, Figure 3.1 depicts the original information construction of 

patterns from Table 2.4. Each pattern has 𝐷𝐴𝑇 (column 𝐷𝐴𝑇) and position (column 

PositionList) information pertaining to the corresponding pattern as it appears in the 

sequence database. 

Taking the 〈𝐴〉 pattern as an example, it comprises four 𝐷𝐴𝑇s (1, 2, 3, 4) and four 

sets of positions ({2, 3}, {1, 3}, {1}, {1}), where position set {2, 3} is linked with 𝐷𝐴𝑇 1, 

position set {1, 3} is linked with 𝐷𝐴𝑇 2, position set {1} is linked with 𝐷𝐴𝑇 3, and position 

set {1} is linked with 𝐷𝐴𝑇 4. The numbers in the 〈𝐴〉 pattern indicate that the pattern 

appears at 1st, 2nd, 3rd, 4th in the sequence database. Specifically, it appears in the 2nd and 

3rd itemset of the sequence of 𝐷𝐴𝑇 1, in the 1st and 3rd itemset of the sequence of 𝐷𝐴𝑇 2, in 

the 1st itemset of the sequence of 𝐷𝐴𝑇 3, and in the 1st itemset of the sequence of 𝐷𝐴𝑇 4. 

Figure 3.2 demonstrates the construction of the 〈𝐴〉 PatternList based on the 〈𝐴〉 

pattern. A PatternList (C. S. Wang & Lee, 2009) is defined as a collection of three 

elements: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡. 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 refers to the pattern itself, 

while 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 is a collection of 2-tuples {𝑡-value, 𝑝-value}. The 𝑡-value is the 

𝐷𝐴𝑇 value, and the 𝑝-value keeps the set of positions of the pattern the transaction 

sequence. Finally, 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 refers to the support of the pattern, that is simply 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 size. 

According to the above definition, the set of frequent inter-sequence PatternList 

shown in Figure 3.5 can be expressed as follows: 〈𝐴〉[0]{1.23, 2.13, 3.1, 4.1}, 

〈𝐵〉[0]{1.1, 2.2}, and 〈𝐶〉[0]{1.134,2.12, 4.2}. The support values for each of these 

frequent inter-sequence 1-PatternLists are 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴〉[0]) = 4, 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐵〉[0]) = 2, 

and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐶〉[0]) = 3, respectively. 
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3.2.2 Pseudo-IDList 

In the problem of IPM, data duplication can occur when new candidates are 

generated through extension types such as 𝑠-extension and 𝑡-extension, as shown in Figure 

3.7. This duplication arises when the position value of items in a transaction must be 

maintained, leading to increased memory usage during algorithm execution. To address 

this issue, we have utilized and expanded the pseudo-IDList data structure proposed by 

Huynh et al. (Huynh et al., 2022). Figure 3.4 depicts how to construct a pseudo-IDList for 

a PatternList. The pseudo-IDList contains the following information: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, which is 

the pattern; 𝑃𝑃, a PatternList pointer that points to the PatternList of frequent inter-

sequence 1-pattern, which is the last item in 𝑃𝑎𝑡𝑡𝑒𝑟𝑛; 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑥𝑡𝑟𝑖𝑥, a collection of 

2-tuples {𝑡-value, 𝑝-value} that are indices, with the 𝑡-value corresponding to a 𝑡-value in 

the PatternList and the 𝑝-value indicating the starting position of pattern 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 in 

PatternList 𝑃𝑃 that matches each transaction line (𝑡-value); and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡, the 𝑃𝑎𝑡𝑡𝑒𝑟𝑛’s 

support, which we can compute by the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑥𝑡𝑟𝑖𝑥 size. 

3.3 Algorithms 

3.3.1 Candidate Generation 

The EISP-Miner algorithm (C. S. Wang & Lee, 2009) generates candidates from 

two frequent inter-sequence patterns based on two cases: frequent inter-sequence 1-

patterns (as defined in Figure 3.4) and frequent inter-sequence k-patterns (𝑘 > 1) (as 

defined in Figure 3.5). In this paper, we use the candidate generation method of the 

SPADE algorithm (Zaki, 2001) that incorporates the 𝑡-extension. Given the two frequent 

inter-sequence patterns 𝛼 and 𝛽, the generated candidates are as follows: 

− If both patterns 𝛼 and 𝛽 have only one megasequence, the algorithm expands them by 

two cases of sequence and itemset. The resulting candidates are as follows:  

+ If both patterns have 𝑠-extensions, three candidates are generated that are a mix of 

sequence and itemset extensions. However, if both patterns are the same pattern 

(𝛼 =  𝛽), then only one sequence extension candidate is produced.  

+ If both patterns have 𝑖-extensions, only one itemset extension candidate is 

generated. 

+ If 𝛼 has an 𝑖-extension and 𝛽 has an 𝑠-extension, only one sequence extension 

candidate is generated. 

− If the two frequent inter-sequence patterns 𝛼 and 𝛽 are expanded according to a 𝑡-

extension, there are two cases when the condition is extended to 1-patterns (as defined 

in Figure 3.4) or expands to 𝑘-patterns (𝑘 > 1) (as defined in Figure 3.5): 
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+ If both frequent inter-sequence patterns satisfy the expansion condition for 1-

patterns, the set of candidates is output as {〈𝛼〉[0]〈𝛽〉[𝑥]|0 < 𝑥 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛}. 

+ In contrast, only one candidate is generated according to the 𝑘-patterns condition 

(𝑘 > 1). 

As an example, consider two frequent inter-sequence patterns: 𝛼 = 〈𝐴〉[0] and 𝛽 = 

〈𝐵〉[0]. The candidate generation rules for sequence, itemset, and inter-extensions generate 

the following set of candidates: {〈𝐴𝐵〉[0], 〈𝐵𝐴〉[0], 〈(𝐴𝐵)〉[0], 〈𝐴〉[0]〈𝐵〉[1]}.  

Another example: let 𝛼 = 〈𝐶〉[0]〈𝐴〉[1] and 𝛽 = 〈𝐶𝐴〉[0] be two frequent inter-

sequence patterns. In this case, there is only one candidate generated for inter-extensions, 

which is 〈𝐶𝐴〉[0]〈𝐴〉[1]. 

3.3.2 ISP-IC Method 

Let 𝑆1  = 〈𝑋, 𝐿𝑎𝑠𝑡𝑆1〉{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} and 𝑆2  = 〈𝑋, 𝐿𝑎𝑠𝑡𝑆2〉{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚} be 

two frequent inter-sequence patterns, where 𝑋 is a prefix of 𝑆1 and 𝑆2, and 𝐿𝑎𝑠𝑡𝑆1, 𝐿𝑎𝑠𝑡𝑆2 

are the last items of 𝑆1 and 𝑆2, respectively and 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑛), 𝑡𝑗  (1 ≤ 𝑗 ≤ 𝑚) is the 

position of 𝑆1, 𝑆2 on the sequential database, respectively. 

Lemma 3.1: Then 𝑆1 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2  = {〈𝑋𝑋𝑛𝑋𝑚〉, 〈𝑋𝑋𝑚𝑋𝑛〉}, if 〈𝑋𝑋𝑛𝑋𝑚〉 is not 

frequent, then 〈𝑋𝑋𝑚𝑋𝑛〉 is also not frequent, or vice versa. 

Proof: Based on Definition 2.20 and Definition 2.21, the number of transactions 

containing 〈𝑋𝑋𝑛𝑋𝑚〉 is 𝑡𝑆1 = |{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} ∪ {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚}|, and the number of 

transactions containing 〈𝑋𝑋𝑚𝑋𝑛〉 is also 𝑡𝑆2 = |{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} ∪ {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚}|. 

Therefore, 𝑡𝑆1 = 𝑡𝑆2. 

If 〈𝑋𝑋𝑛𝑋𝑚〉 is not frequent, then 𝑡𝑆1 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡. Hence, 𝑡𝑆2 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 

which implies that 〈𝑋𝑋𝑚𝑋𝑛〉 is not frequent. Conversely, if 〈𝑋𝑋𝑚𝑋𝑛〉 is not frequent, then 

𝑡𝑆2 < 𝑚𝑖𝑛𝑠𝑢𝑝, which implies that 𝑡𝑆1 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 〈𝑋𝑋𝑛𝑋𝑚〉 is also not frequent. 

Thus, the lemma is proven. 

For example, let 𝑆1 = 〈𝐴𝐵𝐶〉{1, 3, 5, 7, 8} and 𝑆2 = 〈𝐴𝐵𝐷〉{1, 5, 6, 9} be two 

frequent inter-sequence patterns with 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴𝐵𝐶〉)  =  5, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴𝐵𝐷〉)  =  4, and 

𝑚𝑖𝑛𝑠𝑢𝑝 =  3. Pattern 〈𝐴𝐵𝐶〉 appears at positions 1st, 3rd, 5th, 7th, and 8th in the sequential 

database, while pattern 〈𝐴𝐵𝐷〉 appears at positions 1st, 5th, 6th, and 9th. By applying the 𝑠-

extension, we have 𝑆1 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2 = {〈𝐴𝐵𝐶𝐷〉, 〈𝐴𝐵𝐷𝐶〉}. The positions where pattern 

〈𝐴𝐵𝐶𝐷〉 appears are {1, 3, 5, 7, 8} ∪ {1, 5, 6, 9} = {1, 5}. Since pattern 〈𝐴𝐵𝐶𝐷〉 appears 

only twice in the sequential database and 𝑚𝑖𝑛𝑠𝑢𝑝 =  3, it is not frequent. Therefore, 

pattern 〈𝐴𝐵𝐷𝐶〉 is also not frequent, and there is no need to calculate its support. 
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Lemma 3.2: The candidates generated from 𝑆1 and 𝑆2 by sequence and itemset 

extension are: 

− 𝑆1 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2  = {〈𝑋𝑋𝑛𝑋𝑚〉, 〈𝑋𝑋𝑚𝑋𝑛〉} 

− 𝑆1 ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2  = {〈𝑋(𝑋𝑛𝑋𝑚)〉|𝑋𝑛 < 𝑋𝑚} 

Proof: Based on Definition 2.20 and Definition 2.21, the position of each pattern in 

the set of generated candidates can be calculated by 𝑡𝑆 = |{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} ∪

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚}|. We have 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑛𝑋𝑚〉) ≤ 𝑡𝑆, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑚𝑋𝑛〉) ≤ 𝑡𝑆, 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋(𝑋𝑛𝑋𝑚)〉) ≤ 𝑡𝑆, if 𝑡𝑆 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 then 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑛𝑋𝑚〉) <

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑚𝑋𝑛〉) < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋(𝑋𝑛𝑋𝑚)〉) <

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 or all of the generated candidates are not frequent. 

Instead of generating all possible candidates and calculating the support of each 

one, Lemma 3.2 suggests a more efficient approach that eliminates candidates whose 

occurrence is less than the support value. This can be achieved by generating candidates 

through two expansions, namely sequence and itemset expansions. 

For example, given two frequent inter-sequence patterns 𝑆1 = 〈𝐴𝐵𝐶〉{1, 3, 5, 7, 8} 

and 𝑆2 = 〈𝐴𝐵𝐷〉{1, 5, 6} with 𝑚𝑖𝑛𝑠𝑢𝑝 = 3. In the sequential database, pattern 〈𝐴𝐵𝐶〉 

occurs at the 1st, 3rd, 5th, 7th, and 8th positions while pattern 〈𝐴𝐵𝐷〉 occurs at the 1st, 5th, and 

6th positions. The position of the patterns is shown in Figure 3.13, where a bit value of 1 

indicates that the pattern is present, and a bit value of 0 represents a pattern that does not 

occur. To calculate the number of occurrences of a candidate in the database, we can count 

the number of 1s using the bit AND operation. If the calculated value is less than the 

support value, based on Lemma 3.2, we can discard candidates without generating them, 

which can save time and resources. This process is possible by applying two expansions in 

sequence and itemset. 

Bit-index 1 2 3 4 5 6 7 8 

〈𝐴𝐵𝐶〉 1 0 1 0 1 0 1 0 

〈𝐴𝐵𝐷〉 1 0 0 0 1 1 0 0 

〈𝐴𝐵𝐶𝐷〉, 
〈𝐴𝐵𝐷𝐶〉, 
〈𝐴𝐵(𝐶𝐷)〉 

1 0 0 0 1 0 0 0 

Figure 3.13. Example of using a bit string to calculate the number of occurrences of a 

candidate inter-sequence pattern in a sequential database, based on Lemma 3.2. 

3.3.3 ISP-PI Algorithm 

In this section, we present an extended version of the EISP-Miner (C. S. Wang & 

Lee, 2009) algorithm that utilizes the pseudo-IDList data structure (Section 3.3.2) to store 
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frequent inter-sequence patterns generated from sequence and inter-extensions and the 

PatternList data structure (Section 3.3.1) to store frequent inter-sequence patterns 

generated from the itemset extension. The algorithm comprises the following steps: 

Step 1: Scan the database to find all frequent inter-sequence 1-patterns and use the 

PatternList data structure to store information about each pattern in the set. Figure 3.2 

illustrates how to create the PatternList's information from a frequent inter-sequence 

pattern. 

Step 2: Utilizing the methodology described in Section 3.3.1, combine one of the 

frequent inter-sequence patterns discovered in Step 1 (i.e., 〈𝐴〉 pattern) with the remaining 

frequent inter-sequence patterns in the set to generate candidates based on the sequence, 

itemset, and inter-extension. Applying Lemma 3.1 to quickly eliminate the candidates 

generated. Store the information of candidates created under these conditions as follows: 

− If the candidate is generated in an extended itemset type, its information is stored in 

the PatternList. 

− If the candidate is generated in an extended sequence or inter, its information is stored 

in the pseudo-IDList. Algorithm 3.1 demonstrates how to create a pseudo-IDList from 

two frequent inter-sequence patterns with sequence extension, while Algorithm 3.2 

illustrates how to create a pseudo-IDList from two frequent inter-sequence patterns 

with inter-extension. 

− Figure 3.8 and Figure 3.10 show how to generate a pseudo-IDList from two frequent 

inter-sequence patterns based on the extended sequence condition, while Figure 3.9 

and Figure 3.11 illustrate how to generate a pseudo-IDList from two frequent inter-

sequence patterns based on the extended inter condition. From a pseudo-IDList, we 

aim to retrieve the information about the PatternList described in Figure 3.12. 

Step 3: If the candidate generated in Step 2 is frequent (for instance, its support ≥

𝑚𝑖𝑛𝑠𝑢𝑝), store the candidate. Use the depth-first traversal algorithm to further generate 

candidates. Traverse to the end of the branch (for instance, 〈𝐴〉 pattern) when there are no 

more candidates, then repeat Step 2. The algorithm stops when there are no more new 

candidates being generated. 

Algorithm 3.1. Generating a pseudo-IDList from two frequent inter-sequence PatternList 

for s-extension. 

 Input: PatternList of 𝛼 pattern and 𝛽 pattern 

 Output: Pseudo-IDList of 𝛾 pattern 

1. let 𝑀𝛼 be 𝛼’s  a  e nL s  

2. let 𝑀𝛽 be 𝛽’s  a  e nL s  
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3. 𝑟𝛼 {𝑡-value, 𝑝-value}  first row in 𝑀𝛼 

4. 𝑟𝛽 {𝑡-value, 𝑝-value}  first row in 𝑀𝛽 

5. while 𝑟𝛼.𝑡-value ≤ 𝑀𝛼.row and 𝑟𝛽.𝑡-value ≤ 𝑀𝛽.row do 

6.  if 𝑟𝛼.𝑡-value < 𝑟𝛽.𝑡-value then 

7.   𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼 

8.  else if 𝑟𝛼.𝑡-value > 𝑟𝛽.𝑡-value then 

9.   𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽 

10.  else if 𝑟𝛼.𝑡-value = 𝑟𝛽.𝑡-value then 

11.   𝑝𝛼  the first element in 𝑟𝛼.𝑝-value 

12.   𝑟𝛾.𝑡-value  𝑟𝛼.𝑡-value 

13.   for each 𝑝𝛽 in 𝑟𝛽.𝑝-value do 

14.    if 𝑝𝛽 > 𝑝𝛼 then 

15.     𝑀𝛾 {𝑡-value, 𝑝-value}  {𝑟𝛾.𝑡-value, 𝑝𝛽}//add a new row to 𝑀𝛾 

16.     break; 

17.  𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼 

18.  𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽 

19. 𝛾’s PP  𝛽’s PP// PP of 𝛾 is a 𝛽 pattern 

20. return 𝑀𝛾 

 

Algorithm 3.2. Generating a pseudo-IDList from two frequent inter-sequence PatternList 

for 𝑡-extension. 

 Input: PatternList of 𝛼 pattern, 𝛽 pattern and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 

 Output: Pseudo-IDList of 𝛾 pattern 

1. let 𝑀𝛼 be 𝛼’s  a  e nL s  

2. let 𝑀𝛽 be 𝛽’s  a  e nL s  

3. 𝑟𝛼 {𝑡-value, 𝑝-value}  first row in 𝑀𝛼 

4. 𝑟𝛽 {𝑡-value, 𝑝-value}  first row in 𝑀𝛽 

5. while 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 ≤ 𝑀𝛽.row do 

6.  if 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 < 𝑟𝛽.𝑡-value then 

7.   𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼 

8.  else if 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 > 𝑟𝛽.𝑡-value then 

9.   𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽 

10.  else if 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 𝑟𝛽.𝑡-value then 
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11.   𝑟𝛾.𝑡-value  𝑟𝛼.𝑡-value  

12.   𝑟𝛾.𝑝-value  first position of 𝑟𝛽.𝑡-value 

15.   𝑀𝛾 {𝑡-value, 𝑝-value}  {𝑟𝛾.𝑡-value, 𝑟𝛾.𝑝-value}//add a new row to 𝑀𝛾 

17.  𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼 

18.  𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽 

19. 𝛾’s PP  𝛽’s PP// PP of 𝛾 is a 𝛽 pattern 

20. return 𝑀𝛾 

The ISP-PI algorithm is applied to the sequential database in Table 2.4 with input 

values of 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 =  1, 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  2. The frequent inter-sequence patterns 

generated is shown in Figure 3.14 during the mining process. 

Step 1: The support of each pattern in the database is calculated. The patterns 〈𝐴〉, 

〈𝐵〉, 〈𝐶〉, and 〈𝐷〉 have support values of 4, 2, 3, and 1, respectively. Since 𝑚𝑖𝑛𝑠𝑢𝑝 is 

equal to 2, a pattern is considered frequent if it has a support value greater than or equal to 

2. The set of frequent inter-sequence patterns found are {〈𝐴〉, 〈𝐵〉, 〈𝐶〉}, while pattern 〈𝐷〉 is 

discarded due to its support value being less than 2. A PatternList structure is generated for 

the set of frequent inter-sequence patterns, as illustrated in Figure 3.5. 

Step 2: Frequent inter-sequence pattern 〈𝐴〉 is combined with the set of frequent 

inter-sequence patterns {〈𝐴〉, 〈𝐵〉, 〈𝐶〉} to generate 2-pattern candidates. The set of 

candidates includes 

{
〈𝐴𝐴〉[0], 〈𝐴𝐵〉[0], 〈𝐴𝐶〉[0], 〈(𝐴𝐵)〉[0], 〈(𝐴𝐶)〉[0],

〈𝐴〉[0]〈𝐴〉[1], 〈𝐴〉[0]〈𝐵〉[1], 〈𝐴〉[0]〈𝐶〉[1]
} 

Candidates 〈(𝐴𝐵)〉[0] and 〈(𝐴𝐶)〉[0] are 𝑖-extension candidates, so a PatternList structure 

is generated for both candidates. The support values for these candidates are calculated as 

0 and 2, respectively. Candidate 〈(𝐴𝐵)〉[0] is removed due to having a support value less 

than the 𝑚𝑖𝑛𝑠𝑢𝑝 value of 2, i.e., 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈(𝐴𝐵)〉[0]) = 0 < 2. 

− Candidates 〈𝐴𝐴〉[0], 〈𝐴𝐵〉[0], 〈𝐴𝐶〉[0], 〈𝐴〉[0]〈𝐴〉[1], 〈𝐴〉[0]〈𝐵〉[1], and 〈𝐴〉[0]〈𝐶〉[1] 

are 𝑠-extension and 𝑡-extension candidates, so a pseudo-IDList structure is generated 

for each of them. The support values for these candidates are calculated as 2, 1, 3, 3, 1, 

and 2, respectively. Candidates 〈𝐴𝐵〉[0] and 〈𝐴〉[0]〈𝐵〉[1] are removed due to having 

a support value less than the 𝑚𝑖𝑛𝑠𝑢𝑝 value of 2, i.e., 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴𝐵〉[0]) = 1 < 2 and 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴〉[0]〈𝐵〉[1]) = 1 < 2. 

− Since candidate 〈𝐴𝐵〉[0] is discarded, candidate 〈𝐵𝐴〉[0] is also discarded after 

applying Lemma 3.1. 
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Step 3: The set of frequent inter-sequence 2-patterns obtained from pattern 〈𝐴〉 are 

{〈(𝐴𝐶)〉[0], 〈𝐴𝐶〉[0], 〈𝐴〉[0]〈𝐴〉[1], 〈𝐴𝐴〉[0], 〈𝐴〉[0]〈𝐶〉[1]}, as shown at level 2 of pattern 

〈𝐴〉 in Figure 3.12. The algorithm continues to expand sub-patterns of pattern 〈𝐴〉, and 

when no more candidates are generated, the algorithm expands patterns 〈𝐵〉 and 〈𝐶〉. The 

algorithm stops when all sub-patterns of the 〈𝐶〉 pattern are generated. 

 

Figure 3.14. A set of frequent inter-sequence patterns implements from the the 

example database Table 2.4. 

3.3.4 Computational Complexity Analysis 

Calculating the complexity of the ISP-PI algorithm can be a complex task. Let 𝑚 

represent the number of transactions and 𝑛 represent the number of distinct items. The ISP-

PI algorithm is executed through two primary steps: firstly, reading data from the original 

database and constructing an ISP-tree of single-element common patterns; secondly, 

conducting mining on the tree based on a depth-first traversal approach. 

The database scan and ISP tree construction are performed in linear time, as each 

transaction is processed individually, and each item is added to the tree. In the worst-case 

scenario, where each transaction contains all 𝑛 items, the ISP-tree will consist of 𝑛 

frequent 1-patterns at level 1. 

Next, we analyze the complexity of Algorithm 3.1 and Algorithm 3.2 in the 

subsequent mining process. Let 𝑋 and 𝑌 represent two patterns, with 𝑋 having 𝑘 elements 

and 𝑌 having 𝑧 elements. The worst-case running time for Algorithm 3.1 occurs when 𝑋 ⊆

𝑌, as it requires simultaneous examination of both samples 𝑋 and 𝑌. Therefore, the time 

complexity to find the new pattern is 𝑂(𝑘 + 𝑧). Similarly, for Algorithm 3.2, if 𝑘 +

𝑚𝑎𝑥𝑠𝑝𝑎𝑛 ≤ 𝑧, the algorithm needs to traverse all lines of the two samples 𝑋 and 𝑌, 

resulting in a time complexity of 𝑂(𝑘 + 𝑧 − 𝑚𝑎𝑥𝑠𝑝𝑎𝑛). 
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3.4 Experimental Results 

In this section, we evaluate the runtime and memory usage performance of the ISP-

PI algorithm. All experiments were performed on a PC equipped with an Intel® Core ™ i7 

10th generation processor (10510U) running at a speed of 1.8 - 2.0 GHz, and 20 GB of 

RAM. The operating system used was Windows 11 64-bit. The algorithms were 

implemented in the Java programming language using JDK 19. 

3.4.1 Experimental Databases 

To evaluate the proposed algorithm, we conducted experiments to compare its 

performance with two already established algorithms, namely Post-EISPMiner (C. S. 

Wang & Lee, 2009) and Post-DBV-ISP (Vo et al., 2012). We tested our algorithm on a 

total of six databases, namely C150S40T2, C200S12T5, BMSWebView2, FIFA, Kosarak, 

and MSNBC. Four of these databases are real-life databases, with MSNBC, Kosarak 

considered as big databases, and FIFA, BMSWebView2 as medium-sized ones. These 

databases are publicly available via link https://www.philippe-fournier-

viger.com/spmf/index.php?link=datasets.php. Additionally, we used two synthetic test 

databases, C150S40T2 and C200S12T5, generated using the standard generator in 

(Agrawal & Srikant, 1995), which can be accessed at the following link: 

https://www.mediafire.com/folder/pn3myfebx4t0e/PseudoIDList. 

The characteristics of each of the six test databases are presented in Table 3.2, 

while Table 3.3 provides the values of maxspan and minsupport. 

Table 3.2. Test database information 

Database name Database size Distinct items Average sequence length 

C150S40T2 150,000 954 76.64 

C200S12T5 183,950 1,922 51.57 

FIFA 20,450 2,990 36.24 

BMSWebView2 77,512 3,340 4.62 

Kosarak 990,002 41,270 8.1 

MSNBC 989,818 17 4.75 

Table 3.3. The number of frequent inter-sequence patterns of the six test databases with 

maxspan is given from 0 to 5. 

Database 
 Number of frequent inter-sequence patterns 

0 1 2 3 4 5 

C150S40T2 6 790 3,053 5,315 7,573 9,828 12,109 

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.mediafire.com/folder/pn3myfebx4t0e/PseudoIDList
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C200S12T5 3 624 628 633 638 645 650 

BMSWebView2 0.02 1,316,614 1,323,073 1,329,145 1,337,433 1,344,028 1,351,129 

FIFA 9 68,465 79,962 93,061 105,133 117,405 130,283 

Kosarak 0.6 1,135 2,221 3,311 4,402 5,491 6,587 

MSNBC 0.2 4,244 6,392 8,511 10,653 12,770 14,887 

Table 3.4. Comparison table of the percentage of candidates generated when ISP-IC 

pruning is applied and when it is not applied for six databases listed in Table 3.2. 

 C150S40T2 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  6%) 

C200S12T5 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  3%) 

FIFA 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  9%) 

m
a

xs
p

a
n
 

using ISP-IC 

without 

using ISP-

IC 

Candidate 

reduction 

(%) 

using ISP-

IC 

without 

using ISP-

IC 

Candidate 

reduction 

(%) 

using 

ISP-IC 

without 

using ISP-

IC 

Candidate 

reduction 

(%) 

1 195,938 227,812 14.0 389,376 390,096 0.18 394,373 929,721 57.58 

2 391,302 448,249 12.7 778,752 779,472 0.09 416,476 1,151,995 63.85 

3 586,666 668,707 12.3 1,168,128 1,168,848 0.06 437,554 1,361,019 67.85 

4 782,030 888,993 12.0 1,557,504 1,558,224 0.05 458,833 1,574,049 70.85 

5 977,394 1,109,586 11.9 1,946,880 1,947,600 0.04 480,717 1,790,539 73.15 

 

 BMSWebView2 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  0.02%) 

Kosarak 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  0.6%) 

MSNBC 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  0.2%) 

m
a

xs
p

a
n
 

using ISP-IC 
without using 

ISP-IC 

Candidate 

reduction 

(%) 

using 

ISP-IC 

without 

using ISP-

IC 

Candidate 

reduction 

(%) 

using 

ISP-IC 

without 

using 

ISP-IC 

Candidate 

reduction 

(%) 

1 8,050,516 12,610,808 36.16 15,270 32,173 52.54 10,238 24,314 57.89 

2 14786,831 19,903,854 25.71 29,526 60,088 50.86 12,430 38,623 67.82 

3 21,525,247 27,304,621 21.17 43,784 87,852 50.16 14,644 53,027 72.38 

4 28,261,937 34,644,592 18.42 58,038 115,830 49.89 16,835 67,299 74.98 

5 34,999,009 42,024,651 16.72 72,300 143,821 49.73 19,024 81,614 76.69 

3.4.2 ISP-IC Evaluation 

The experimental results of applying the early candidate pruning model are 

presented in Table 3.4. The results show that the ISP-IC model is effective in all six test 

databases used. Specifically, the ISP-IC model consistently prunes a significant number of 

candidates, thereby optimizing the algorithm processing speed and storage space. 

For example, in the case of the large Kosarak and MSNBC databases, more than 

50% of candidates were pruned. The best-case scenario for the Kosarak database 

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  0.6%) resulted in 52.54% of the candidates being discarded when 



57 

 

𝑚𝑎𝑥𝑠𝑝𝑎𝑛 =  1, while for the MSNBC database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =  0.2%), 76.69% of 

candidates were discarded when 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 =  5. However, the results also indicate that 

the number of candidates to be eliminated depends on the database and the randomness of 

items in the transactions belonging to the sequential database. In the case of the 

C200S12T5 database, only 0.18% of the candidates were removed in the best case. 

3.4.3 Runtime 

 The results presented in Figure 3.15 compare the running time of the proposed 

algorithm, ISP-PI, with that of two state-of-the-art algorithms, EISP-Miner and DBV-ISP, 

for MISP. Across various database evaluation scenarios, the ISP-PI algorithm 

demonstrated consistently faster performance compared to the other two algorithms. As the 

maxspan value increases in IPM, the number of candidate patterns generated also 

increases, as the algorithm must consider the relationship between transactions across the 

sequential database. Table 3.3 indicates that using a maxspan value of five results in a 

greater number of frequent inter-sequence patterns compared to smaller values. When 

comparing the performance of the three algorithms using two large databases, the ISP-PI 

algorithm runs significantly faster than the EISP-Miner and DBV-ISP algorithms, with 

improvements of 81.21% and 57.53% for the Kosarak test database, and 85.00% and 

79.07% for the MSNBC test database, respectively. The superior performance of the ISP-

PI algorithm can be attributed to its data structure and candidate pruning method. The 

proposed pseudo-IDList approach eliminates the need to replicate duplicate data multiple 

times during the mining process. As all IPM algorithms employ the depth-first-search 

traversal method, the proposed data structure ensures that the algorithm does not 

accumulate a large amount of data during each backtracking operation. Instead, it only 

needs to quickly retrieve data when necessary. In addition, the pruning method helps to 

reduce the number of candidates generated, because every time a candidate is generated, 

we have to calculate its support, which reduces the running time of the algorithm. 



58 

 

 

 

Figure 3.15. Runtime on C150S40T2 database. 

 

 

Figure 3.16. Runtime on C200S12T5 database. 
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Figure 3.17. Runtime on BMSWebView2 database. 

 

 

Figure 3.18. Runtime on FIFA database. 
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Figure 3.19. Runtime on Kosarak database. 

 

 

Figure 3.20. Runtime on MSNBC database. 
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3.4.4 Memory Usage 

Figure 3.15 demonstrates that the ISP-PI algorithm uses memory more efficiently 

than its predecessors, EISP-Miner and DBV-ISP, across the databases used for evaluation. 

Figure 3.7 illustrates that the EISP-Miner and DBV-ISP inter-sequence mining algorithms 

generate and store all the information about a candidate, leading to increased memory 

usage. In contrast, the ISP-PI algorithm mitigates this issue by utilizing the pseudo-IDList 

data structure, which requires less memory. For instance, in the Kosarak database the ISP-

PI algorithm uses 82.40% and 81.37% less memory than EISP-Miner and DBV-ISP, 

respectively. Similarly, in the MSNBC database the ISP-PI algorithm uses 56.29% and 

53.65% less memory than EISP-Miner and DBV-ISP, respectively. However, the ISP-PI 

algorithm only applies the pseudo-IDList structure to the sequence and inter-extensions, 

while it still needs to store all candidate information for the itemset extension method. 

 

Figure 3.21. Memory usage on C150S4T2 database. 
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Figure 3.22. Memory usage on C200S12T5 database. 

 

Figure 3.23. Memory usage on BMSWebView2 database. 
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Figure 3.24. Memory usage on FIFA database. 

 

Figure 3.25. Memory usage on Kosarak database. 
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Figure 3.26. Memory usage on MSNBC database. 

3.5 Summary 

In this chapter, we discuss the limitations of algorithms for inter-sequence pattern 

mining, particularly the issue of excessive memory usage caused by data duplication. To 

address this problem, we propose the ISP-PI (Inter-Sequence Pattern mining based on 

Pseudo-Index) algorithm, which employs the pseudo-IDList data structure. This data 

structure enables the ISP-PI algorithm to access the frequent pattern information from its 

1-pattern frequent pattern, significantly reducing memory consumption during the 

algorithm's execution. Furthermore, we optimize the ISP-PI algorithm and introduce two 

lemmas that facilitate swift support condition checks for candidates, thereby improving the 

algorithm's runtime. 

Our proposed algorithm uses depth-first traversal, and thus future work will 

investigate parallel processing or distributed processing to further enhance its speed. 

Additionally, since heuristic pruning only considers items in the same itemset or 

transaction, a follow-up approach is necessary to pre-check items across transactions to 

reduce the number of candidates generated. 
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4 CHAPTER 4: METHODS FOR MINING INTER-

SEQUENCE PATTERNS WITH CONSTRAINTS 

In this chapter, we address the problem of mining inter-sequence patterns with 

itemset constraints. We propose an algorithm called DBV-ISPMIC to tackle this problem. 

Furthermore, we enhance the efficiency of the DBV-ISPMIC algorithm by introducing an 

improved version named DBV-ISPMIC-IMPROVING, which incorporates efficient 

pruning methods. Additionally, we present a parallel algorithm called pDBV-ISPMIC-

IMPROVING that leverages parallel computing techniques. To assess the performance of 

the proposed algorithms compared to previous approaches such as EISP-Miner (C. S. 

Wang & Lee, 2009) and DBV-ISP (Vo et al., 2012), we evaluate their running time and 

space storage on five test databases. The experimental results demonstrate the efficiency of 

the proposed algorithms. 

4.1 Introduction 

In 2018, Van et al. proposed the MSPIC-DBV algorithm to mine sequential 

patterns with itemset constraints (Van et al., 2018a). To efficiently discover sequential 

patterns, MSPIC-DBV adopts the dynamic bit vector and the prefix tree structure. A 

method for early pruning the candidates to help reduce processing time is also introduced. 

The authors then continued to improve their work in mining sequential rules with itemset 

constraints through two new algorithms, namely the MSRIC-R and MSRIC-P, which were 

introduced in 2021 (Van & Le, 2021). The constraints are combined into the rule 

generating phase for the MSRIC-R algorithm, while the latter algorithm combined it into 

the pattern mining phase. The authors suggested a technique to integrate the mining 

process with itemset constraints, to help the algorithm only create constraint-satisfying 

patterns and thus increase the speed. These methods solved the problem of itemset 

constraints but can only be applied on mining sequential patterns or sequential rules, so the 

generated subsequences do not satisfy the inter-sequence mining requirements. Therefore, 

these algorithms cannot be applied to the problem examined in the current study. 

An algorithm named ISP-IC was developed by Le et al. (T. Le et al., 2018) for 

constraints-based inter-sequence pattern mining, as well as its improvements, iISP-IC and 

piISP-IC. The authors also applied a parallel processing method to speed up the runtime. 

As stated in the introduction, ISP-IC, iISP-IC, and piISP-IC focus on the condition of items 

in the sequence, and we cannot apply this approach to the itemset problem.  

In this chapter, our goal is to solve the task of inter-sequence pattern mining with 

itemset constraints. This mining task, unlike that of using itemset constraints for mining 
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sequence patterns, requires more complex processing because many candidates are 

generated during the mining process. Our major contributions are as follows. 

1. Based on the EISP-Miner algorithm (C. S. Wang & Lee, 2009) and a using dynamic 

bit vector data structure (Vo et al., 2012), we state the problem of inter-sequence 

pattern mining in combination with itemset constraints. 

2. We then suggest a proposition to help reduce candidate checking during sequence 

expansion according to the EISP-Miner algorithm, thus reducing the search space for 

inter-sequence pattern mining with itemset constraints. 

3. Next, an algorithm named DBV-ISPMIC is developed to discover constraints-based 

inter-sequence patterns. A parellel version of DBV-ISPMIC algorithm, named pDBV-

ISPMIC algorithm, was presented. 

4. Finally, we conduct experiments with various databases to evaluate the proposed 

method. 

For instance, based on Definition 2.23 and let 𝐼𝐶 = {(𝐶), (𝐸)}, the sequence 

〈𝐶(𝐴𝐵)〉[0]〈𝐶(𝐴𝐵𝐶)𝐴〉[1] satisfies the constraint whereas the sequence 〈𝐴𝐷〉[0]〈𝐴〉[1] 

does not. 

4.2 DBV-PatternList Structure 

The DBV-PatternList data structure as proposed by Vo et al. in 2012 (Vo et al., 

2012). This structure uses dynamic bit vectors to store the t-values and p-values of an e-

item in the database. It is used to minimize the space and time needed to extend the e-item 

according to inter-sequence patterns. The DBV-PatternList structure is presented as 

follows: 

− The index of the first non-zero value in the bit vector. 

− Bit vector: the array of values after trimming zeroes at the start and end index. 

Figure 4.1 presents the use of PatternList and DBV-PatternList structures. 
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(a) PatternList structure 

 

(b) DBV-PatternList structure 

Figure 4.1. Structures of (a) PatternList and (b) DBV-PatternList. 

As in Figure 4.1a, if we store information for an e-item using the PatternList data 

structure we need to use 26 bytes (12 bytes for t-values and 14 bytes for p-values). But if 

we use the DBV-PatternList (Figure 4.1b) data structure we only use 20 bytes (2 bytes for 

the start position of e-items, 4 bytes for the t-values and 14 bytes for the p-values). 

Because we have converted the t-values to bit vectors (Definition 2.5), storage space is 

reduced. 

4.3 Algorithms 

4.3.1 DBV-ISPMIC Algorithm 

Our proposed method relies on the DBV-PatternList structure and the DBV-

PatternList joining methods. The model of the DBV-ISPMIC algorithm is shown in 

Algorithm 4.1. 

In this algorithm, there are five functions – ISP-Join1, ISP-Joink, ISP-Join1-

Extension, ISP-Joink-Extension and Check – as shown in Algorithm 4.2-Algorithm 4.6, 

respectively. The algorithm computes on a given sequential database with minsupport, 

maxspan and a set of itemset constraints defined by the user. The result is a set of frequent 

sequential patterns that satisfy the conditions of minsupport and itemset constraints. The 

DBV-ISPMIC algorithm has three main steps, as presented below. 

Step 1: The sequential database is scanned once to find all frequent 1-patterns in 

which there is not less than the user-specified minimum support threshold minsupport 

(Algorithm 4.1, line 1). Then, we will create a tree 𝑇, with the root being 𝑁𝑈𝐿𝐿 and leaves 

including the found DBV-PatternList. The algorithm goes over all frequent 1-DBV-

PatternList results to start expanding the nodes according to the itemset, sequence and inter 

extension (Algorithm 4.1, line 2). 
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Step 2: The algorithm calls the ISP-Join1 function (Algorithm 4.2) for extending 

an 𝛼𝑙𝑖𝑠𝑡 node with the remaining children of the 𝑇|𝑁𝑈𝐿𝐿 tree (Definition 2.20). In this 

function, we will have a new DBV-PatternList in three ways that was extended from the 

itemset, sequence and inter (based on maxspan value) extension. We check the DBV-

PatternList result with the minsupport condition and itemset constraints. The Check 

function in Algorithm 4.6 is used to check if a new DBV-PatternList satisfies the 

constraint. If satisfied, we will add this DBV-PatternList as a child node of 𝑇|𝑙𝑖𝑠𝑡  

(Algorithm 4.4, lines 1-9). 

Step 3: The algorithm calls the ISP-Joink function (Algorithm 4.3) for extending 

the child node of the list node with the remaining children according to the k-pattern 

(Definition 2.21). In this function, we have been given a new DBV-PatternList in three 

ways that extend according to itemset, sequence and inter and then we will check whether 

the DBV-PatternList result satisfies the minsupport condition. The Check function is used 

to check if a new DBV-PatternList satisfies the constraint. If it is satisfied, we will add this 

DBV-PatternList as a child node of 𝑇|𝑙𝑖𝑠𝑡 (Algorithm 4.5, lines 1-9). 

Algorithm 4.1. The DBV-ISPMIC algorithm 

 
Input: A sequence database D, minimum support (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡), and maximum span 
(𝑚𝑎𝑥𝑠𝑝𝑎𝑛), 𝐼𝐶 = {𝑐1,  𝑐2 . . . , 𝑐𝑛} 

 
Output: A complete set of frequent inter-sequence patterns 𝐹𝑃 satisfying minsupport 

and itemset constraints. 

1.  
Scan D to generate a set of all frequent 1- DBV-PatternList, 𝑇|𝑁𝑈𝐿𝐿, as the 

extended group of the root node of an ISP-tree 𝑇; 

2  for each frequent 1-DBV-PatternList 𝑙𝑖𝑠𝑡 in 𝑇|𝑁𝑈𝐿𝐿 do 

3.   Call 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1(𝑇|𝑁𝑈𝐿𝐿, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡) to get 𝑇|𝑙𝑖𝑠𝑡; 

4.   Call 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘(𝑇|𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶); 

5.  end for 

6. Output 𝐹𝑃; 
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Algorithm 4.2. The ISP-Join1 function. 

 Function 1: 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1(𝑇, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡) 

1. 
for each frequent 1-DBV-PatternList 

𝑙𝑖𝑠𝑡
 in 𝑇|𝑁𝑈𝐿𝐿, where  = 〈𝑢〉[0] and  =

〈𝑣〉[0], do 

2.  for 𝑥 =  0 to 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 do 

3.   𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1 − 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑇|𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡 , 𝑙𝑖𝑠𝑡
, 𝑢, 𝑣, 𝑥); 

4.  end for 

5. end for 

 

Algorithm 4.3. The ISP-Joink function. 

 Function 2: 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘(𝑇, 𝐹𝑃, 𝐼𝐶) 

1. for each frequent k-DBV-PatternList 𝛽𝑙𝑖𝑠𝑡 in 𝑇|𝑙𝑖𝑠𝑡, where 𝑠𝑢𝑏𝑘,𝑘(𝛽) = 〈𝑢〉[𝑖] do 

2.  for each frequent k-DBV-PatternList 𝛾𝑙𝑖𝑠𝑡 in 𝑇|𝑙𝑖𝑠𝑡, where 𝑠𝑢𝑏𝑘,𝑘(𝛾) = 〈𝑣〉[𝑗] do 

3.   𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘 − 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑇|𝛽𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶, 𝛽𝑙𝑖𝑠𝑡, 𝑙𝑖𝑠𝑡
, 𝑢, 𝑣, 𝑖, 𝑗); 

4.  end for 

5.  Call 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘(𝑇|𝛽𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶); 

6. end for 

7. Delete 𝑇|𝑙𝑖𝑠𝑡 from 𝑇; 

 

Algorithm 4.4. The ISP-Join1-Extension function. 

 Function 3: 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1 − 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑇, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡, 𝑙𝑖𝑠𝑡
, 𝑢, 𝑣, 𝑥) 

1.  if (𝑥 = 0) and (𝑢 < 𝑣) then 

2.   𝑙𝑖𝑠𝑡 = 𝑙𝑖𝑠𝑡 ∪𝑖 
𝑙𝑖𝑠𝑡

; 

3. 
 

 
if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖𝑠𝑡) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶ℎ𝑒𝑐𝑘(𝑙𝑖𝑠𝑡, 𝐼𝐶) then 

 add 𝑙𝑖𝑠𝑡 to 𝑇|𝑙𝑖𝑠𝑡 and  to 𝐹𝑃; 

4.  if (𝑥 = 0) then 

5.   
𝑙𝑖𝑠𝑡

= 𝑙𝑖𝑠𝑡 ∪𝑠 
𝑙𝑖𝑠𝑡

; 

6. 
 

 
if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(

𝑙𝑖𝑠𝑡
) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶ℎ𝑒𝑐𝑘(

𝑙𝑖𝑠𝑡
, 𝐼𝐶) then  

 add 
𝑙𝑖𝑠𝑡

 to 𝑇|𝑙𝑖𝑠𝑡 and  to 𝐹𝑃; 

7.  if (𝑥 > 0) then 

8.   𝑙𝑖𝑠𝑡 = 𝑙𝑖𝑠𝑡 ∪𝑡 
𝑙𝑖𝑠𝑡

; 

9. 
 

 
if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖𝑠𝑡) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶ℎ𝑒𝑐𝑘(𝑙𝑖𝑠𝑡, 𝐼𝐶) then  

 add 𝑙𝑖𝑠𝑡 to 𝑇|𝑙𝑖𝑠𝑡 and  to 𝐹𝑃; 
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Algorithm 4.5. The ISP-Joink-Extension function. 

 Function 4: ISP-Joink-Extension(T, FP, IC, βlist, list, u, v, i, j) 

1.  if (i=j) and (u<v) then 

2.   list = βlist Ui list; 

3.   
if support(list  ≥ minsupport and Check(list, IC) then  

 add list to T|βlist and  to FP; 

4.  if (i=j) then 

5.   list = βlist Us list; 

6.   
if support(list  ≥ minsupport and Check(list, IC) then  

 add list to T|βlist and  to FP; 

7.  if (i<j) then 

8.   list = βlist Ut list; 

9.   
if support(list  ≥ minsupport and Check(list, IC) then  

 add list to T|βlist and  to FP; 

 

Algorithm 4.6. The function Check. 

 Function 5: 𝐶ℎ𝑒𝑐𝑘(, 𝐼𝐶) 

1.  for each 𝑎 ∈ 𝛼 do 

2.   for each 𝑏 ∈ 𝐼𝐶 do 

3.    if 𝑏 ⊆ 𝑎′ then // 𝑎′ is 𝑎 after removing span 

4.     return true; 

5.   end for 

6.  end for 

7.  return false; 

4.3.2 Computational Complexity Analysis 

Exploring the precise complexity of the DBV-ISPMIC algorithm (Algorithm 4.1) is 

a highly challenging task. The algorithm consists of two primary steps: reading data from 

the original database and performing the mining process. Let 𝑛 denote the number of 

distinct items in the database. 

The initial database scan is conducted in a linear manner, where each line of the 

database is scanned. In the worst-case scenario, every row of the database contains all 𝑛 

items. Consequently, the number of frequent 1-patterns is also equal to 𝑛. 

Subsequently, the mining time of the algorithm is calculated by 

∑ 𝑡𝑖𝑚𝑒(𝑏𝑟𝑎𝑛𝑐ℎ_𝑜𝑓_𝑡𝑟𝑒𝑒(𝑖))𝑛
1 . Two subfunctions, ISP-Join1-Extension (Algorithm 4.4) 

and ISP-Joink-Extension (Algorithm 4.5), are utilized for the prototyping process. Thus, 
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the mining time is determined based on these two functions. Let 𝑋 represent the number of 

frequent patterns from the ISP-Join1-Extension function. If a frequent pattern is discovered 

for each 𝑥𝑖 ∈ 𝑋|1 ≤ 𝑖 ≤ |𝑋|, the number of iterations for the ISP-Joink-Extension function 

is calculated accordingly ∑ 𝑡𝑖𝑚𝑒(ISP − Jo nk − Ex en  on)𝑋
1 . This scenario represents the 

worst-case execution of the algorithm ∑ 𝑡𝑖𝑚𝑒(ISP − Jo n1 − Ex en  on)∑ 𝑡𝑖𝑚𝑒(ISP −𝑋
1

𝑛
1

Jo nk − Ex en  on). 

Regarding the Check function (Algorithm 4.6), its worst performance occurs when 

𝛼 ⊆ 𝐼𝐶. 

4.3.3 Improved DBV-ISPMIC Algorithm 

We can see that if a pattern satisfies itemset constraints, then the new pattern that is 

extended from this node with the itemset, sequence, and inter extension will also satisfy 

 he   emse  c ns  a n s. Th s helps     educe  he alg    hm’s    -PatternList node 

expansion time. We propose a proposition to verify this, as follows. 

Proposition 4.1 (Checking itemset constraints) Given an inter-sequence  and a set 

of itemset constraints IC, if  satisfies IC, then the sequence 𝛽, generated from , also 

satisfies constraint IC.  

Proof. Let  = 〈1[𝑤1]2[𝑤2] . . . 𝑚[𝑤𝑚]〉, 𝛽 = 〈𝛽1[𝑤1]𝛽2[𝑤2] . . . 𝛽𝑢[𝑤𝑢]〉 be an 

inter-sequence, whereas each 𝑖, 𝛽𝑖 corresponds to an itemset. Because  satisfies IC, 

based on the problem statement, this condition holds: ∃𝑖[𝑤𝑖] ∈ , ∃𝑏𝑗 ∈ 𝐼𝐶: 𝑏𝑗 ⊆ 𝑖.  

Based on Definition 2.21, there are three cases to consider: 

Itemset-join: In 𝛽 always exists 𝛽𝑖[𝑤𝑖] such that 𝑖 ⊆ 𝛽𝑖   𝑏𝑗 ⊆ 𝑖 ⊆ 𝛽𝑖 or 𝑏𝑗 ⊆

𝛽𝑖. It means 𝛽 satisfies IC. 

Sequence-join: Because itemset of 𝑖 does not change. It means 𝛽𝑖 = 𝑖 and 

therefore, we have 𝑏𝑗 ⊆ 𝛽𝑖  or 𝛽 satisfies IC. 

Inter-join: Based on the inter-join, all itemsets from  always exist in 𝛽, therefore, 

in 𝛽 always exists 𝛽𝑘[𝑤𝑘] such that 𝑖 ⊆ 𝛽𝑘   𝑏𝑗 ⊆ 𝑖 ⊆ 𝛽𝑘 or 𝑏𝑗 ⊆ 𝛽𝑘. It means 𝛽 

satisfies IC. 
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Algorithm 4.7. The function ISP-Join1-improving. 

 Function 6: ISP-Join1-Improving(T, FP, IC, list) 

1.  
For each frequent 1-DBV-PatternList list in T|NULL, where =⟨u⟩[0] and  =⟨v⟩[0], 

do 

2.   For x = 0 to maxspan do 

3.    If Check(list, IC) then 

4.     If (x=0) and (u<v) then 

5.      list = list Ui list; 

6.      If support(list  ≥ minsupport then add list to T|list and  to FP; 

7.     If (x=0) then 

8.      list = list Us list; 

9.      If support(list  ≥ minsupport then add list to T|list and  to FP; 

10.     If (x>0) then 

11.      list = list Ut list; 

12.      If support(list  ≥ minsupport then add list to T|list and  to FP; 

13.    Else 

14.     ISP-Join1-Extension(T|list, FP, IC, list, list, u, v, x); 

15.   End for 

16.  End for 
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Algorithm 4.8. The function ISP-Joink-improving. 

 Function 7: ISP-Joink-Improving(T, FP, IC) 

1.  For each frequent k-DBV-PatternList βlist in T|list, where subk,k(β)=⟨u⟩[i], do 

2.   If Check(βlist, IC) then 

3.    For each frequent k-DBV-PatternList γlist in T|list, where subk,k(γ)=⟨v⟩[j], do 

4.     If (i=j) and (u<v) then 

5.      list = βlist Ui list; 

6.      If support(list  ≥ minsupport then add list to T|βlist and  to FP; 

7.     If (i=j) then 

8.      list = βlist Us list; 

9.      If support(list  ≥ minsupport then add list to T|βlist and  to FP; 

10.     If (i<j) then 

11.      list = βlist Ut list; 

12.      If support(list  ≥ minsupport then add list to T|βlist and  to FP; 

13.    End for 

14.   Else 

15.    For each frequent k-DBV-PatternList γlist in T|list, where subk,k(γ)=⟨v⟩[j], do 

16.     ISP-Joink-Extension(T|βlist, FP, IC, βlist, list, u, v, i, j); 

17.    End for 

18.   Call ISP-Joink-Improving(T|βlist, FP, IC); 

19.  End for 

20.  Delete T|list from T; 

In the ISP-Join1-improving function, we first check the 𝑙𝑖𝑠𝑡 pattern with the 

itemset constraints. If it is true, all frequent DBV-PatternList which are extended from 

𝑙𝑖𝑠𝑡 also satisfy the itemset constraints (Algorithm 4.7, lines 3-12). This is the same with 

the ISP-Joink-improving function (Algorithm 4.8, lines 2-13). 

Consider the example shown in Table 2.1, where 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1 

and itemset constraints 𝐼𝐶 = {(𝐴𝐵), 𝐶𝐴, 𝐴𝐷}. The frequent patterns generated in the 

mining phase are presented in Figure 4.2.  

Step 1. The sequential database is scanned once by the algorithm to enumerate all 

frequent 1-patterns, which is {〈𝐴〉, 〈𝐵〉, 〈𝐶〉, 〈𝐷〉} with the support {4, 2, 2, 2}, respectively 

(Figure 4.2, level 0). In this database scan, the 1-DBV-PatternLists are also generated. 

Step 2. The algorithm generates candidates 

{〈𝐴〉[0]〈𝐴〉[1], 〈(𝐴𝐵)〉[0], 〈𝐴𝐷〉[0], 〈𝐴〉[0]〈𝐷〉[1]} that shares the 1-prefix 〈𝐴〉 by joining 

〈𝐴〉 with 〈𝐴〉, 〈𝐵〉, 〈𝐶〉 and 〈𝐷〉 based on itemset, sequence and inter extension (Algorithm 
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4.7). Other generated candidates ⟨B⟩[0]⟨A⟩[1], ⟨CA⟩[0], ⟨C⟩[0]⟨A⟩[1] and ⟨CB⟩[0] that 

share 1-prefix ⟨B⟩, ⟨C⟩ are also created at the same time during the combination (Figure 

4.2, level 1). 

Step 3. The algorithm traverses the children of each (𝑘 − 1)-pattern by depth first 

search to generate k-patterns. If a (𝑘 − 1)-pattern satisfies the constraints IC then all its 

super patterns should not be checked. For instance, ⟨(AB)⟩[0] satisfies the itemset 

constraints, so we do not need to check the itemset constraints for ⟨(AB)⟩[0]⟨A⟩[1]. Due to 

this checking case, we reduce the checking time of the algorithm. Otherwise, ⟨A⟩[0]⟨A⟩[1] 

do not satisfy the itemset constraints, so we check itemset constraints for its child nodes. 

The algorithm backtracks to step 3 and complete the full candidates of ⟨B⟩, ⟨C⟩ then ⟨D⟩. 

As no more candidates can be found in branch ⟨D⟩, the algorithm terminates. We have FP 

= {⟨AA⟩[0]⟨AD⟩[1]: support = 2, ⟨(AB)⟩[0]: support = 2, ⟨(AB)⟩[0]⟨A⟩[1]: support = 2, 

⟨AD⟩[0]: support = 2, ⟨CA⟩[0]: support = 2, ⟨CA⟩[0]⟨A⟩[1]: support = 2, ⟨C(AB)⟩[0]: 

support = 2, ⟨C(AB)⟩[0]⟨A⟩[1]: support = 2}. 

 

Figure 4.2. The extended tree of patterns corresponding to the example database. 

4.3.4 Parallel DBV-ISPMIC Algorithm 

As shown in Algorithm 4.1, the DBV-ISPMIC algorithm is a sequential algorithm. 

The complexity time of the DBV-ISPMIC algorithm is calculated by tnode_1 + tnode_2 + 

tnode_3 +…+ tnode_n, whereas the set {node_1, node_2, node_3, …, node_n} contains child 

nodes of an ISP-tree T, tnodei is the extension time of a node extension of the ISP-tree T in 

1-pattern and k-pattern (in ISP-Join1 and ISP-Joink functions, respectively). This is 

because the ISP-Joink extension function independently expands the sub-nodes of the ISP-

tree T. If each sub-branch of the ISP-tree T is expanded for each task, the running time of 
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the algorithm improves. Therefore, the overall runtime of the algorithm can be determined 

as Max{node_1, node_2, node_3, …, node_n}. 

An example for the above proposal is given in Figure 4.3. Based on the database in 

Table 2 with minsupport = 2, the frequent patterns that were generated at the first level by 

1-pattern extension included ⟨A⟩, ⟨B⟩, ⟨C⟩ and ⟨D⟩. For each frequent pattern, the k-pattern 

extension is processed at each individual task. As stated, the time of the algorithm is 

calculated in Max{tTask1, tTask2, tTask3}, since one task runs in parallel with the others. The 

allocation of the number of tasks that can be executed simultaneously is determined by the 

c mpu e  p  cess  ’s c  es. Th s can als  be e  ended    d s   bu ed sys ems, whe e each 

task is processed on a separate system and then final the result is gathered and combined. 

The pDBV-ISPMIC algorithm is based on the DBV-ISPMIC with the algorithm 

parallelized. Figure 4.4 shows with a flowchart the main steps of the sequential DBV-

ISPMIC algorithm and its parallel (pDBV-ISPMIC) counterpart. The pDBV-ISPMIC 

algorithm has two main steps: 

Step 1: Loading the database and finding the frequent 1-pattern sets that satisfy the 

minsupport and the itemset constraints. 

Step 2: Allocating execution tasks, with each task handling one k-pattern. The 

algorithm search space exploration is DFS-based (depth-first search), which is recursive. 

When no more candidates can be generated, the algorithm terminates. 

 

Figure 4.3. Example of using parallel processing for ISP-tree extension. 
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Figure 4.4. The figure shows the difference between sequential and parallel flow 

chart. (a) The main steps of a sequential algorithm and (b) the main steps of a parallel 

processing algorithm. 

4.4 Experimental Evaluation 

In evaluating the performance of the DBV-ISPMIC algorithm and its improvement 

in runtime, all the experiments were carried out on a PC with an Intel® Core ™ i7 10th gen 

processor (10510U) @ 1.8 - 4.9 GHz, and 20 GB RAM. The operating system used is 

Windows 10 64-bit. The algorithms were implemented in Visual Studio 2017 C#. 

We ran tests on five databases, namely C6T5S4I4N1kD1k, C6T5S4I4N1kD10k, 

Gazelle, BIKE and BMSWebView1. The synthetic databases used for comparison were 

generated using the IBM synthetic data generator. These databases are available at 
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https://www.mediafire.com/folder/id3p3z6b9g8kj. Their characteristics are shown in Table 

4.1. 

Table 4.1. Test database characteristics 

Database Sequence Item Type of data 

C6T5S4I4N1kD1k 1000 1000 Synthetic databases 

C6T5S4I4N1kD10k 10000 1000 Synthetic databases 

Gazelle 59602 497 Clickstream data 

BIKE 21078 67 Bike Share data from LA Metro 

BMSWebView1 59601 497 Clickstream data 

4.4.1 Runtime 

For the C6T5S4I4N1kD1k database, we evaluated the algorithms with 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1,2,3,4,5}, the C6T5S4I4N1kD10k database with 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1, 2, 3, 4, 5}, the Gazelle database with 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1,2,3,4,5}, the BIKE database with 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =

0.5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1, 2, 3, 4, 5}, and the BMSWebView1 database with 

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1, 2, 3, 4, 5}. We use an EISP-Miner algorithm to 

evaluate all the proposed algorithms (C. S. Wang & Lee, 2009), and add a check constraint 

to it, with this approach called the Post-EISPMiner algorithm.  

Based on the experimental results in Figure 4.5-Figure 4.9, we can see that the 

DBV-ISPMIC-IMPROVING algorithm runs faster than the other two algorithms, Post-

EISPMiner and DBV-ISPMIC. In Figure 4.5, we compare the runtime of Post-EISPMiner, 

DBV-ISPMIC and DBV-ISPMIC-IMPROVING for the Gazelle dataset. When the value of 

maxspan is increasing, the running time of all three algorithms increases relatively evenly. 

Figure 4.6-Figure 4.9 show the results for the C6T5S4I4N1kD1k, 

C6T5S4I4N1kD10k, BIKE and BMSWebView1 datasets. It is clear that the runtimes for 

DBV-ISPMIC-IMPROVING and DBV-ISPMIC are much better than that of Post-

EISPMiner. 

https://www.mediafire.com/folder/id3p3z6b9g8kj
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Figure 4.5. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset. 

 

 

Figure 4.6. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset. 
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Figure 4.7. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD10k dataset. 

 

 

Figure 4.8. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BIKE dataset. 
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Figure 4.9. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BMSWebView1 dataset. 

4.4.2 Parallel Method for Efficient Mining of Inter-sequence Patterns with 

Itemset Constraints 

Because DBV-ISPMIC-IMPROVING is the best algorithm for mining inter-

sequence patterns with itemset constraints, we develop a parallel version of it, pDBV-

ISPMIC-IMPROVING, by using the C#.NET software library to improve the performance. 

The performance of pDBV-ISPMIC-IMPROVING algorithm is evaluated by comparing it 

with that of the DBV-ISPMIC-IMPROVING algorithm. The results are shown in Figure 

4.10-Figure 4.13, and it can be seen that when maxspan increases, the runtime of pDBV-

ISPMIC-IMPROVING is much less than the runtime of DBV-ISPMIC-IMPROVING 

algorithm. 
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Figure 4.10. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC 

and pDBV-ISPMIC-IMPROVING for the C6T5S4I4N1kD1k dataset. 

 

Figure 4.11. Execution time in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC 

and pDBV-ISPMIC-IMPROVING for the C6T5S4I4N1kD10k dataset. 
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Figure 4.12. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC 

and pDBV-ISPMIC-IMPROVING for the BIKE dataset. 

 

Figure 4.13. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-

ISPMIC and pDBV-ISPMIC-IMPROVING for the BMSWebView1 dataset. 
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4.4.3 Memory Usage 

Figure 4.14-Figure 4.18 show the peak memory consumption of the three 

algorithms, Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-IMPROVING. The results 

show that the memory needed by DBV-ISPMIC and DBV-ISPMIC-IMPROVING is less 

than that needed by the Post-EISPMiner algorithm for almost all database parameter 

values. Because the two proposed algorithms reduce the time needed to check the child 

nodes generated, they have less memory usage compared to the Post-EISPMiner algorithm. 

 

 

Figure 4.14. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset. 
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Figure 4.15. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset. 

 

 

Figure 4.16. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD10k dataset. 
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Figure 4.17. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BIKE dataset. 

 

 

Figure 4.18. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BMSWebView1 dataset. 
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4.4.4 Impact of Maxspan 

For mining inter-sequence patterns, when we increase the maxspan value, the 

number of candidates generated will also increase. Therefore, if we use proposition 1 to 

reduce the itemset constraints checking, the processing time will be better. For instance, 

we use two databases, Gazelle and C6T5S4I4N1kD1k, to evaluate this. The Gazelle 

database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3%) and C6T5S4I4N1kD1k database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.8%) 

were tested with the maxspan value increasing from 2 to 12. The results show that the 

proposed algorithms (DBV-ISPMIC and DBV-ISPMIC-IMPROVING) always work well 

(Figure 4.19-Figure 4.20). 

 

 

Figure 4.19. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset, with maxspan from 2 to 12. 
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Figure 4.20. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset, with maxspan from 2 to 12. 

4.5 Summary 

In this chapter, we introduced an algorithm, named DBV-ISPMIC, to solve the 

problem of mining inter-sequence patterns with itemset constraints. This algorithm is 

based on the EISP-Miner algorithm to mine inter-sequence patterns, and uses a dynamic 

bit vector structure to store data, which helps to increase the processing speed and reduce 

the storage space when compared to EISP-Miner. Based on the DBV-ISPMIC algorithm, 

we also propose its improvement to help reduce processing time.  

In the future, we will apply distributed computing to the improved algorithm to 

help optimize the running time. We will also study how to put the constraints into mining 

frequent closed inter-sequences. Finally, algorithms for mining high utility sequences have 

been proposed in recent years (Lin et al., 2020b; Gan et al., 2020, 2021a, 2021b; Truong et 

al., 2021; Wu et al., 2021; Chun-wei Lin et al., 2021), and we will study how to mine high 

utility inter-sequences and high utility inter-sequences with constraints. 
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5 CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

The thesis addresses the challenge of mining inter-sequence patterns in extensive 

sequential databases, a topic that has gained attention in recent data mining research. The 

vast search space and enormous data volume have posed difficulties for serial algorithms 

to extract frequent patterns. Addressing these challenges is crucial for the inter-sequence 

pattern mining problem. 

The thesis contributions can be summarized as follows: 

Firstly, we propose the DBV-ISPMIC algorithm to tackle the inter-sequence pattern 

mining problem with itemset constraints. This algorithm employs the DBV-PatternList 

data structure and the ISP-Tree tree structure. The DBV-PatternList uses the bit-vector data 

type to store item or pattern information. The stored information for each candidate 

includes its index in a transaction and the index of transactions containing the candidate in 

the sequential database. If the primitive bit-vector data type were used, the candidate's 

information would have many bits with a value of 0, indicating the item's absence in the 

transaction. To address this, the DBV-PatternList data type identifies the first transaction 

index containing the pattern and stores it, allowing the DBV-PatternList data structure to 

eliminate the 0 bits. This process not only aids data compression but also reduces memory 

usage for storing candidate information.  

Moreover, the DBV-PatternList data structure enables quick candidate support 

calculation. The candidate support value is determined by counting the bits with a value of 

1, which is easily computed using the bit-vector function due to the data structure's bit-

vector nature. As the inter-sequence pattern mining problem generates a large number of 

candidates, we propose a clause to expedite the itemset condition check for candidates, 

reducing the algorithm's time consumption. 

Secondly, we introduce an optimal processing method for the ISP-Tree. In the 

DBV-ISPMIC algorithm, each tree branch is processed independently. As a result, the 

DBV-ISPMIC algorithm's processing time is the cumulative processing time across all 

branches. This insight led us to develop the pDBV-ISPMIC algorithm, an extension of the 

DBV-ISPMIC algorithm. The pDBV-ISPMIC algorithm leverages parallel processing to 

simultaneously process ISP-Tree branches, enabling concurrent processing and thus 

optimizing and accelerating the pDBV-ISPMIC algorithm's runtime. 

Thirdly, we propose an algorithm called ISP-PI (Inter-Sequence Pattern mining 

based on Pseudo-Index), which applies the pseudo-IDList data structure to inter-sequence 
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pattern mining. Prior inter-sequence pattern mining algorithms were limited by the need to 

store all candidate information generated from sequence, itemset, and inter extensions. The 

ISP-PI algorithm identifies and addresses these limitations. By using the pseudo-IDList 

data structure, the candidate's information can be retrieved through its 1-pattern. 

Consequently, instead of storing all pattern information, the pseudo-IDList data structure 

only needs to store the indexes representing the candidate's position relative to the 1-

pattern. This approach enables the pseudo-IDList data structure to store less data while still 

ensuring complete access to the candidate's information, resulting in lower memory usage 

for the ISP-PI algorithm compared to previous intersequence pattern mining algorithms. 

Next, we enhance the ISP-PI algorithm by introducing a candidate pruning method 

called ISP-IC (Inter-Sequence Pattern mining with Index intersection Checking). The ISP-

PI algorithm employs a candidate generation method based on the SPADE algorithm. 

Thus, the pruning method operates as follows: when candidates are generated through the 

sequence expansion method, if any candidate fails to meet the support condition, the 

remaining candidates will also be unsatisfactory. If a candidate does not fulfill the above 

lemma, the ISP-PI algorithm will discard the candidate without calculating its support, 

optimizing the algorithm's runtime. 

To further refine the ISP-IC algorithm, we propose a lemma that eliminates 

candidates not meeting the support condition based on information from the frequent 

patterns that generate them. Since the pseudo-IDList data structure utilizes bit-vectors to 

store location information of transactions containing common patterns, we employ the bit-

intersection method to pre-check the two frequent patterns. If the result is unsatisfactory, 

the ISP-IC algorithm will not generate candidates from the two frequent patterns. 

Lastly, we verify the correctness and effectiveness of the proposed algorithms 

using test sets of databases. The evaluation compares the algorithm's runtime and memory 

usage. 

5.2 Limitations 

Although the proposed algorithms demonstrate improved results in terms of mining 

time and memory usage compared to existing methods for intersequence pattern mining, 

this thesis still reveals several limitations: 

1. Limited scalability: The proposed algorithms have not been tested on extremely large 

datasets, only being evaluated on datasets ranging from tens of thousands to one 

million data points. This limitation prevents the assessment of algorithm performance 

on large-scale real-world databases. 
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2. Limited applicability to sequential databases: A significant limitation of the proposed 

algorithms is that they were designed and tested specifically for sequential databases. 

This constraint could potentially hinder the algorithm's ability to handle other types of 

databases, such as graph-based, time-series, or multimedia databases. 

3. Limited maxspan evaluation: The algorithms have only been tested within a specific 

maxspan range (0 < 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 < 13), leaving their performance for larger maxspan 

values unexplored. A larger maxspan value may generate more candidates but could 

also yield more useful knowledge from the databases. 

4. Lack of testing on advanced computing platforms: The proposed algorithms have only 

been executed on personal computers and not on more advanced systems, such as 

supercomputers, parallel computing systems, or cloud computing platforms. Testing 

on these platforms would provide a more accurate evaluation of the proposed 

algorithms' improvements. 

5. Limited scope of constraints: The thesis focuses on intersequence pattern mining with 

itemset constraints but does not explore other constraints. Investigating and applying 

other types of constraints could help optimize the extraction of knowledge from the 

data. 

6.  Updated databases: The scope of the thesis solely encompasses statistical databases 

with fixed sizes and a static number of transactions. However, in reality, databases are 

regularly updated over time, which poses a significant challenge for the effective 

application of the proposed algorithms in practical scenarios. 

5.3 Future Works 

Future research will concentrate on addressing the identified limitations and 

developing new approaches for the inter-sequence pattern mining problem as well as the 

sequential pattern mining problem. Some potential directions for future research include: 

1. Scalability: Perform tests on larger datasets to assess the performance of the proposed 

algorithms on large-scale, real-world databases, while also adjusting the maxspan 

value. 

2. Applicability: Investigate inter-sequence pattern mining and sequential pattern mining 

for various types of databases, such as graph-based, time-series, multimedia databases, 

and data growth over time. Recent studies on this topic include:(Jaber Al, 2021; 

Motallebi Shabestari & Ahmadi, 2021; Hu et al., 2021; Yang et al., 2021; Wu et al., 

2023b, 2023a) 

3. Computing platforms: Evaluate the proposed algorithms on more advanced systems, 

like supercomputers, parallel computing systems, or cloud platforms. Recent results in 
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this area include: (Huang et al., 2020; Yin et al., 2020a; Chung & Yoo, 2020; Yoo et 

al., 2020; Z. Liu et al., 2020; Farag et al., 2022; Jayasri & Aruna, 2022) 

4. Distributed processing and parallel processing: Implement distributed or parallel 

processing techniques for the proposed algorithms and apply them to the problems of 

inter-sequence pattern mining and sequential pattern mining. Recent studies using 

such methods include: (Yin et al., 2020b; Lekshmy & Rahiman, 2020; Qasem et al., 

2021; X. Zhang et al., 2021; C. Zhang et al., 2022) 

5. Constraints: Explore the addition of various constraints to the proposed algorithms. 

Other types of constraints have been examined in studies such as: (De Smedt et al., 

2020; Zhou et al., 2021; Truong et al., 2021; Xia et al., 2022; Neykov, 2023) 

6. Expansion of research: Beyond the issues of inter-sequence pattern mining and 

sequential pattern mining, consider other data mining challenges like weighted inter-

sequence mining or candidate generation for inter-sequence mining problems. The 

most recent research on these topics is illustrated by the following results: (Chen et al., 

2020; Leon-Alcaide et al., 2020; Lin et al., 2020a; M. Liu et al., 2022; Jazayeri & 

Yang, 2022; Li et al., 2023) 

7. Inter-Sequence pattern mining on updated databases: Enhancing and applying 

algorithms to databases that undergo updates over time. The algorithms should be 

capable of accommodating new data additions without necessitating a complete rerun 

of the entire dataset. (Ren & Zhou, 2006; Price et al., 2022; X. Wang et al., 2022; 

Huynh et al., 2023; Siddiqui et al., 2023) have conducted prior research on this 

subject. 

By pursuing these future research directions, the proposed algorithms can be 

enhanced and expanded to better tackle the challenges of alternating pattern mining and 

offer valuable insights across diverse application areas. 
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