

FIELD OF SCIENCE: DEPARTMENT OF APPLIED INFORMATICS

DISCIPLINE OF SCIENCE: FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

DOCTORAL DISSERTATION

MINING SEQUENCE AND INTER-SEQUENCE PATTERNS

IN LARGE DATABASES

Anh Nguyen

Supervisor/Supervisors:

Prof. D.Sc. Ngoc Thanh Nguyen

Assistant supervisor:

Assoc. Prof. Ph.D. Bay Vo

Keywords: Data Mining, Inter-sequence Pattern Mining

WROCŁAW 2023

i

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to Professor Ngoc

Thanh Nguyen, Associate Professor Bay Vo for their invaluable guidance, unwavering

support, and enthusiastic mentorship throughout my journey as a PhD student in the field

of scientific research. Their expertise and advice have played a pivotal role in shaping my

academic development during my tenure at Wrocław University of Science and

Technology.

I would also like to extend my heartfelt appreciation to my esteemed colleagues in

the Department of Applied Informatics, Faculty of Information and Communication

Technology. Their insightful suggestions, informative discussions, and shared knowledge

on the research topic, especially through seminars, have greatly enriched my

understanding and perspective.

Furthermore, I would like to express my sincere gratitude to the Doctoral School of

Wrocław University of Science and Technology for their unwavering support and

encouragement during every phase of my doctoral studies. From the day of my admission

and throughout each academic term and year, their enthusiastic assistance has been

invaluable.

Finally, I would like to convey my deepest thanks to my family for their unwavering

support, encouragement, and facilitation throughout my pursuit of the PhD degree. Their

continuous belief in my abilities and provision of a conducive environment have been

instrumental in my academic journey.

 Wrocław, June 11, 2023

ii

INDEX

CHAPTER 1: INTRODUCTION.. 1

1.1 Background .. 1

1.1.1 Data Mining .. 1

1.1.2 Mining Sequence Patterns .. 3

1.1.3 Mining Inter-sequence Patterns .. 5

1.2 Motivation .. 5

1.3 Research Problem... 8

1.4 Aim of this Thesis .. 9

1.5 Objectives of this Thesis .. 9

1.6 Thesis Contributions .. 10

A. The First Contribution Addresses Objectives 1 and 2 of the Thesis 10

B. The Second Contribution Addresses Objectives 3 and 4 of the Thesis 11

1.7 Structure of the Thesis ... 13

CHAPTER 2: LITERATURE REVIEWS ... 15

2.1 Methods for Mining Sequence Patterns ... 15

2.1.1 Basic Concepts .. 15

2.1.2 Sequence Pattern Mining .. 16

2.1.2.1 AprioriAll (Agrawal & Srikant, 1995) .. 16

2.1.2.2 FreeSpan (Han et al., 2000) ... 20

2.1.2.3 SPADE (Zaki, 2001) ... 21

2.1.2.4 PrefixSpan (Pei et al., 2001) .. 23

2.1.2.5 PRISM (Gouda et al., 2007, 2010) .. 24

2.1.2.6 CM-SPADE (Fournier-Viger et al., 2014) .. 25

2.1.3 Sequence Pattern Mining with Constraints ... 27

2.1.3.1 MSPIC-DBV (Van et al., 2018a) .. 27

2.1.3.2 MWAPC and EMWAPC (Van et al., 2018b).. 27

2.1.3.3 MSRIC-R and MSRIC-P (Van & Le, 2021) ... 27

2.1.4 Clickstream Pattern Mining .. 28

2.1.4.1 CUP algorithm (Huynh et al., 2020) ... 28

2.1.4.2 CM-WSPADE and Compact-SPADE (Huynh et al., 2020).................. 30

2.1.4.3 SUI (Sequential pattern mining Using Indices) (Huynh et al., 2022) ... 30

2.2 Inter-sequence Pattern Mining Algorithms .. 32

2.2.1 Basic Concepts and Definitions .. 32

iii

2.2.2 Algorithms for Mining Inter-sequence Patterns ... 35

2.2.2.1 EISP-Miner (C. S. Wang & Lee, 2009)... 35

2.2.2.2 DBV-ISP (Vo et al., 2012) .. 37

2.2.2.3 ISP-IC, iISP-IC, piISP-IC (T. Le et al., 2018) 38

2.3 Summary .. 39

CHAPTER 3: MINING INTER-SEQUENCE PATTERNS BASED ON PSEUDO-

IDLIST AND EARLY PRUNING TECHNIQUES ... 40

3.1 Introduction .. 40

3.2 Data Structure... 47

3.2.1 PatternList ... 47

3.2.2 Pseudo-IDList ... 48

3.3 Algorithms ... 48

3.3.1 Candidate Generation ... 48

3.3.2 ISP-IC Method .. 49

3.3.3 ISP-PI Algorithm .. 50

3.3.4 Computational Complexity Analysis .. 54

3.4 Experimental Results ... 55

3.4.1 Experimental Databases .. 55

3.4.2 ISP-IC Evaluation ... 56

3.4.3 Runtime ... 57

3.4.4 Memory Usage .. 61

3.5 Summary .. 64

CHAPTER 4: PROPOSED METHODS FOR MINING INTER-SEQUENCE

PATTERNS WITH CONSTRAINTS ... 65

4.1 Introduction .. 65

4.2 DBV-PatternList Structure ... 66

4.3 Algorithms ... 67

4.3.1 DBV-ISPMIC Algorithm .. 67

4.3.2 Computational Complexity Analysis .. 70

4.3.3 Improved DBV-ISPMIC Algorithm ... 71

4.3.4 Parallel DBV-ISPMIC Algorithm .. 74

4.4 Experimental Evaluation .. 76

4.4.1 Runtime ... 77

4.4.2 Parallel Method for Efficient Mining of Inter-sequence Patterns with Itemset

Constraints .. 80

iv

4.4.3 Memory Usage .. 83

4.4.4 Impact of Maxspan ... 86

4.5 Summary .. 87

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ... 88

5.1 Conclusion ... 88

5.2 Limitations ... 89

5.3 Future Works .. 90

5.4 Publications .. 91

REFERENCES.. 93

v

LIST OF FIGURES

Figure 1.1. An example of time-series .. 3

Figure 1.2. An example of a sequence .. 4

Figure 2.1. Candidate Generation. .. 18

Figure 2.2: Customer Sequences. ... 18

Figure 2.3: Large Sequences... 19

Figure 2.4: A sequence database. (Fournier-Viger et al., 2014) ... 26

Figure 2.5: An example of a horizontal clickstream database. ... 29

Figure 2.6: Data IDLists (a) and pseudo-IDLists of pattern 𝐴. .. 29

Figure 2.7: Data IDLists (a) and pseudo-IDLists of pattern 𝐵. .. 29

Figure 2.8: Data IDLists (a) and pseudo-IDLists of pattern 𝐶. .. 30

Figure 3.1. The value of 𝐷𝐴𝑇 and the position of each item in a transaction are extracted

from Table 2.4.. 42

Figure 3.2. A PatternList data structure for pattern 〈A〉 from Table 2.4. 42

Figure 3.3. DBV-PatternList data structure for pattern 〈A〉 is constructed from Table 2.4.

 ... 43

Figure 3.4. A pseudo-IDList data structure is constructed for the 〈A〉 pattern based on its

PatternList data structure. .. 43

Figure 3.5. The list of PatternList of frequent inter-sequence 1-patterns generated from

Table 2.4. ... 44

Figure 3.6. The list of dynamic bit vector of frequent inter-sequence 1-patterns generated

from Table 2.4.. 44

Figure 3.7. s-extension (a) and t-extension (b) of the 〈A〉[0] and 〈C〉[0] patterns. 44

Figure 3.8. A pseudo-IDList structure is constructed for the pattern 〈AC〉[0]. 45

Figure 3.9. A pseudo-IDList structure is constructed for the pattern 〈A〉[0]〈C〉[1]. 45

Figure 3.10. A pseudo-IDList structure is constructed for the pattern 〈(𝐵𝐶)𝐴〉[0] by using

two frequent inter-sequence 𝑘-patterns 𝑘 > 1, namely the PatternList 〈(𝐵𝐶)𝐴〉[0] and

〈𝐵𝐴〉[0], within a 𝑠-extension. ... 46

Figure 3.11. A pseudo-IDList structure is constructed for the pattern 〈(𝐴𝐶)〉[0]〈𝐴〉[1]

using two frequent inter-sequence k-patterns (𝑘 > 1), namely the PatternList 〈(𝐴𝐶)〉[0]

and 〈𝐴〉[0]〈𝐴〉[1], within an 𝑡-extension and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1. .. 46

Figure 3.12. The process of data retrieval of a pseudo-IDList for pattern 〈AC〉[0]. 46

Figure 3.13. Example of using a bit string to calculate the number of occurrences of a

candidate inter-sequence pattern in a sequential database, based on Lemma 3.2. 50

vi

Figure 3.14. A set of frequent inter-sequence patterns implements from the the example

database Table 2.4.. 54

Figure 3.15. Runtime on C150S40T2 database. ... 58

Figure 3.16. Runtime on C200S12T5 database. ... 58

Figure 3.17. Runtime on BMSWebView2 database. .. 59

Figure 3.18. Runtime on FIFA database. .. 59

Figure 3.19. Runtime on Kosarak database. ... 60

Figure 3.20. Runtime on MSNBC database.. 60

Figure 3.21. Memory usage on C150S4T2 database. ... 61

Figure 3.22. Memory usage on C200S12T5 database. ... 62

Figure 3.23. Memory usage on BMSWebView2 database. .. 62

Figure 3.24. Memory usage on FIFA database. .. 63

Figure 3.25. Memory usage on Kosarak database. ... 63

Figure 3.26. Memory usage on MSNBC database. .. 64

Figure 4.1. Structures of (a) PatternList and (b) DBV-PatternList. 67

Figure 4.2. The extended tree of patterns corresponding to the example database. 74

Figure 4.3. Example of using parallel processing for ISP-tree extension. 75

Figure 4.4. The figure shows the difference between sequential and parallel flow chart. (a)

The main steps of a sequential algorithm and (b) the main steps of a parallel processing

algorithm. ... 76

Figure 4.5. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset. ... 78

Figure 4.6. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset. ... 78

Figure 4.7. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD10k dataset. ... 79

Figure 4.8. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BIKE dataset. .. 79

Figure 4.9. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BMSWebView1 dataset. .. 80

Figure 4.10. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the C6T5S4I4N1kD1k dataset. 81

Figure 4.11. Execution time in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the C6T5S4I4N1kD10k dataset. 81

vii

Figure 4.12. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the BIKE dataset.. 82

Figure 4.13. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the BMSWebView1 dataset. 82

Figure 4.14. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset. ... 83

Figure 4.15. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset. ... 84

Figure 4.16. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD10k dataset. ... 84

Figure 4.17. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BIKE dataset. .. 85

Figure 4.18. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BMSWebView1 dataset. .. 85

Figure 4.19. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset, with maxspan from 2 to 12. 86

Figure 4.20. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset, with maxspan from 2 to 12. 87

viii

LIST OF TABLES

Table 1.1. An original customers database with reference to shopping behavior. 2

Table 1.2. Test database information for evaluation of the DBV-ISPMIC algorithm. 11

Table 1.3. The database information for evaluation of the ISP-PI algorithm. 12

Table 2.1. An example of customer transaction. ... 15

Table 2.2. An example of customer sequence from Table 2.1. ... 16

Table 2.3: CMAPi and CMAPs for the database of Figure 2.4 and 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2.

(Fournier-Viger et al., 2014) .. 26

Table 2.4. Customer transactions (a) and customer sequences (b). 32

Table 2.5. Converting a sequential database of Table 2.4 (a) to megasequences (b). 33

Table 3.1. Frequent inter-sequence patterns mined from the database shown in Table 2.4.

 ... 41

Table 3.2. Test database information .. 55

Table 3.3. The number of frequent inter-sequence patterns of the six test databases with

maxspan is given from 0 to 5. .. 55

Table 3.4. Comparison table of the percentage of candidates generated when ISP-IC

pruning is applied and when it is not applied for six databases listed in Table 3.2. 56

Table 4.1. Test database characteristics .. 77

ix

LIST OF ALGORITHMS

Algorithm 2.1. AprioriAll Algorithm (Agrawal & Srikant, 1995) 17

Algorithm 2.2. Apriori-generate function (Agrawal & Srikant, 1995).............................. 17

Algorithm 2.3. The FreeSpan Algorithm (Han et al., 2000).. 20

Algorithm 2.4. The SPADE Algorithm. (Zaki, 2001) ... 21

Algorithm 2.5. Pseudo-code for breadth-first and depth-first search (Zaki, 2001) 21

Algorithm 2.6. Sequence pruning. (Zaki, 2001) .. 22

Algorithm 2.7. The PrefixSpan Algorithm (Pei et al., 2001) .. 23

Algorithm 2.8. The EISP-Miner algorithm (C. S. Wang & Lee, 2009) 35

Algorithm 2.9. The ISP-Join1 function (C. S. Wang & Lee, 2009) 36

Algorithm 2.10. The ISP-JoinK function (C. S. Wang & Lee, 2009) 36

Algorithm 3.1. Generating a pseudo-IDList from two frequent inter-sequence PatternList

for s-extension... 51

Algorithm 3.2. Generating a pseudo-IDList from two frequent inter-sequence PatternList

for 𝑡-extension. ... 52

Algorithm 4.1. The DBV-ISPMIC algorithm .. 68

Algorithm 4.2. The ISP-Join1 function. .. 69

Algorithm 4.3. The ISP-Joink function. .. 69

Algorithm 4.4. The ISP-Join1-Extension function. ... 69

Algorithm 4.5. The ISP-Joink-Extension function. ... 70

Algorithm 4.6. The function Check. .. 70

Algorithm 4.7. The function ISP-Join1-improving. .. 72

Algorithm 4.8. The function ISP-Joink-improving. .. 73

1

1 CHAPTER 1: INTRODUCTION

1.1 Background

1.1.1 Data Mining

Data mining is the process of identifying meaningful patterns, trends, and

relationships in large datasets using various statistical and computational techniques. It

aims to extract valuable information from data and transform it into rules that can be used

to draw conclusions or make predictions to assist the user. Pattern mining involves

discovering useful, interesting, and unexpected patterns in the database. Some of the basic

data mining tasks include clustering, classification, outlier analysis, and pattern mining.

The Apriori algorithm, proposed by Agrawal and Srikant in the 1990s, is designed to

identify frequent item sets and extract association rules (R. Agrawal and R. Srikant, 1994).

Frequent itemsets refer to groups of symbols that appear together often in a database of

customer transactions.

Data mining algorithms analyze data from various perspectives, uncover hidden

patterns and correlations, and provide insights that can help organizations and individuals

make informed decisions in the future. The data mining process involves several steps,

including data cleaning, integration, selection, transformation, mining, evaluation, and

representation. These steps are crucial to ensure that the data is accurate, complete, and

relevant to the current business problem.

Data mining has numerous applications in various industries, such as finance,

healthcare, retail, and marketing. Retailers often use data mining techniques to analyze

customer shopping data and identify patterns and trends in their purchasing behavior. By

doing so, they can better understand customer preferences and develop marketing

strategies based on customer habits to drive sales. For example, a retailer may use data

mining to analyze customer transaction data and determine which products are often

purchased together. If they find that customers who purchase personal computers are also

likely to buy accompanying electronic devices such as computer keyboards, computer

mice, and computer monitors, they may use this information to create targeted marketing

campaigns that suggest or offer discounts on these products. For example, Table 1.1

represents a simple retail store database that contains customer purchase records, including

transaction ID (TID), purchase date, time, customer ID, and the products purchased by

customers. Each customer's purchasing behavior can be viewed as a sequence of events

occurring at different times. As an illustration, customer 1 purchased a laptop and mouse

2

on March 20, 2023, at transaction T1. On March 21, 2023, the same customer purchased a

keyboard at transaction T4.

Table 1.1. An original customers database with reference to shopping behavior.

TID Date Time Customer ID Items

T1 20.03.2023 09.00 1 Laptop, Mouse

T2 20.03.2023 10.00 2 iPhone, Speaker

T3 20.03.2023 11.00 3 Cab, USB

T4 21.03.2023 16.00 1 Keyboard

T5 21.03.2023 09.00 3 Mouse

T6 22.03.2023 09.00 4 Samsung phone, Speaker, Printer

T7 23.03.2023 09.00 5 Monitor

Association rule mining is a data mining technique utilized to discover

relationships and associations between items or sets of items in a database. It involves

analyzing data to find patterns, associations, correlations, or co-occurrence between items.

Association rules are created to describe the relationships that exist between different items

in a data set. These rules consist of a premise (antecedent) and a consequence (conclusion)

and are typically written in the form "if the premise, then the consequence." The strength

of an association rule is evaluated based on two primary metrics: support and confidence.

Support indicates the frequency of occurrence of antecedents and consequences in a data

set, while confidence measures the likelihood that the consequences will occur with the

premises. Association rule mining has many applications in various fields, including

market basket analysis, bioinformatics, web mining, and recommendation systems.

To illustrate, suppose a grocery store wants to analyze its sales data to determine

which items are frequently purchased together. By employing association rule mining, the

store can identify sets of items that were purchased together more often than expected by

chance. For instance, the store may discover that customers who buy bread and milk are

also likely to purchase eggs. In this case, the association rule would be:

𝐼𝐹 {𝐿𝑎𝑝𝑡𝑜𝑝, 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑} 𝑇𝐻𝐸𝑁 {𝑀𝑜𝑢𝑠𝑒}

Suppose this item set appears in 20% of all transactions in the store's data. Then

the support of the rule is 20%. The confidence of the rule represents the percentage of

transactions that contain {𝐿𝑎𝑝𝑡𝑜𝑝, 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑} and also contain {𝑀𝑜𝑢𝑠𝑒}. Assuming the

confidence of this rule is 80%, this implies that of all transactions containing

{𝐿𝑎𝑝𝑡𝑜𝑝, 𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑}, 80% also contain {𝑀𝑜𝑢𝑠𝑒}. Based on this information, the store

3

can take measures to increase sales by placing these items close together or offering them

at a discount when purchased together.

1.1.2 Mining Sequence Patterns

The sequential pattern mining problem, proposed by Agrawal and Srikant (Agrawal

& Srikant, 1995), is an interesting problem of subsequence mining in a set of sequences.

Sequential pattern mining is a data mining technique that aims to discover interesting

patterns or sequences of events in sequential data. It involves identifying subsequences that

frequently occur together in a sequence of events or transactions, seeking to uncover

patterns that describe the relationships between events or items that occur in a specific

order.

Two common types of sequential data used in data mining are time series and

sequences. A time series is an ordered list of numerical values, while a sequence is an

ordered list of nominal (symbolic) values. For example, Figure 1.1 shows a time series

representing quantities, while Figure 1.2 depicts a sequence of symbols (letters). Both time

series and sequences are used in many fields. Time series are often used to represent data

such as stock prices, temperature readings, and electricity consumption indexes, while

sequences are used to represent data such as sentences in text (word strings), sequences of

items purchased by customers in retail stores, and sequences of websites visited by users.

Sequential pattern mining is commonly used in applications where time ordering is

significant, such as analyzing customer purchasing behavior over time or identifying

patterns in web clickstream data. It can also be applied in areas such as healthcare, where it

can be used to detect trends and patterns in medical data over time.

Figure 1.1. An example of time-series

0

 0

 00

 0

200

2 0

300

3 0

4

Figure 1.2. An example of a sequence

Sequential pattern mining involves finding all frequent subsequences in a database

of sequences. A sequence S is considered a frequent sequence or a sequential pattern if and

only if its support value (𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑆)) is greater than or equal to a user-defined minimum

support value 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡. The task of sequential pattern mining involves enumerating all

patterns (subsequences) whose support is greater than or equal to the minimum support

threshold set by the user. As such, the number of frequent patterns always has a single, true

value for the sequential pattern mining problem.

However, discovering sequential patterns is a difficult problem. The naive

approach is to compute the support of all possible subsequences in the sequence database

and output only those that satisfy the user-specified minimum support constraint. However,

this approach is inefficient due to the potentially large number of subsequences. A

sequence containing 𝑛 items in a sequence database can have up to 2𝑛 − 1 distinct

subsequences (Fournier-Viger et al., 2017). Therefore, using a naive approach to solve the

sequential pattern mining problem is impractical for most practical sequence databases.

Efficient algorithms must be designed to solve the sequential pattern mining problem while

avoiding exploring the search space of all possible subsequences. This is necessary to

speed up the algorithm and optimize storage space.

Several algorithms have been proposed to solve the sequential pattern mining

problem in a sequence database, including AprioriAll (Agrawal & Srikant, 1995),

FreeSpan (Han et al., 2000), SPADE (Zaki, 2001), PrefixSpan (Pei et al., 2001), PRISM

(Gouda et al., 2007, 2010), CM-SPADE (Fournier-Viger et al., 2014), MSRIC-R and

MSRIC-P (Van & Le, 2021), MSPIC-DBV (Van et al., 2018a), CUP (Huynh et al., 2020),

CM-WSPADE (Huynh et al., 2020), and SUI (Huynh et al., 2022). These algorithms take a

sequence database and a minimum support threshold (selected by the user) as input and

output a set of frequent sequential patterns. It's worth noting that there is always only one

correct answer to the sequential pattern mining task for a given sequence database and

threshold value. Therefore, all sequential pattern mining algorithms return the same set of

sequential patterns if they are run with the same parameters on the same database. The

difference between the various algorithms lies in their approach to detecting sequential

〈{𝑎, 𝑏} {𝑎, 𝑏, 𝑐} {𝑎, 𝑑} {𝑐, 𝑑}〉

5

patterns, with each algorithm using different strategies and data structures to efficiently

search for these patterns.

1.1.3 Mining Inter-sequence Patterns

Inter-sequence pattern mining is an extension of sequential pattern mining that

involves discovering common patterns, associations, and dependencies between sequences

in a sequential database. It identifies patterns that are common not only within the same

transaction but also between transactions. The inter-sequential pattern mining problem was

first proposed by Wang et al. in 2009 (C. S. Wang & Lee, 2009), and several algorithms

have been developed since then, including DBV-ISP (Vo et al., 2012), ISP-IC, iISP-IC and

piISP-IC (T. Le et al., 2018).

One of the applications of inter-sequence pattern mining is in web usage mining,

where it is used to analyze the behavior of website visitors. By analyzing web log data,

inter-sequence pattern mining can identify common patterns in user behavior, such as the

most frequently visited pages or the sequence of pages the user visits before making a

purchase. This information can be used to optimize website design, improve user

experience, and increase usage rates. In addition to web usage mining, inter-sequence

pattern mining has applications in sales, where it can make predictions based on

information about purchased items and different times of purchase. It can also be used in

other fields such as healthcare and finance.

Overall, inter-sequence pattern mining is a valuable tool for extracting useful

information from sequential databases. Its importance is expected to increase as

technology continues to advance and users demand more innovative solutions.

1.2 Motivation

Most of the previous studies on mining inter-sequence patterns have shown that

these methods still possess disadvantages that result in high computational costs and

memory usage during the mining process:

Mining inter-sequence patterns

− The EISP-Miner (C. S. Wang & Lee, 2009) algorithm is the first proposed

algorithm for mining inter-sequence patterns. The algorithm is divided into two

phases. In the first phase, the algorithm discovers frequent 1-patterns from the

sequence database. Next, EISP-Miner utilizes the frequent patterns mined in the

first phase to generate frequent 𝑘-patterns (where 𝑘 > 1). The algorithm

employs a depth-first search extension method. The data structure used is

PatternList, which uses a collection of integers to store position information of

6

frequent patterns. Consequently, the algorithm consumes a significant amount

of storage resources during execution, as depicted in Figure 3.7. Furthermore,

instead of retrieving information directly from the frequent patterns that created

it, all information about pattern positions is stored, leading to the algorithm

using more storage space than necessary (as detailed in Chapter 3). Because the

algorithm employs integer types to store information, calculating the

candidate's support or combining to expand the candidate also requires

additional computing time.

− The DBV-ISP (Vo et al., 2012) algorithm was an extension of the EISP-Miner

algorithm. DBV-ISP also operates in two phases: first, it identifies the set of

frequent 1-patterns, and then it identifies sets of frequent 𝑘-patterns (𝑘 > 1).

DBV-ISP employs a data structure known as DBV-PatternList (as detailed in

Section 4.2), which utilizes a bit-vector data type to store pattern positions. The

use of the bit-vector data type helps reduce the algorithm's storage space

compared to the integer data type. However, the DBV-PatternList data structure

has not yet addressed the limitations of the PatternList data structure concerning

data duplication and redundancy. Furthermore, DBV-PatternList stores more

redundant data than necessary. For example, in a database with 100 transactions

and a pattern that appears only in the 1st and 100th positions, DBV-PatternList

will store the position for the pattern as a consecutive sequence of bit-vectors

with a length of 100, where the 1st and 100th positions are set to the value 1, and

the remaining positions are set to the value 0. Thus, memory is consumed to

store a bit-vector with a value of 0, having a length of 98, which is unnecessary.

Mining inter-sequence patterns with constraints

− The ISP-IC (T. Le et al., 2018) algorithm was initially introduced for mining

inter-sequence patterns with item constraints. ISP-IC represents an extension of

both the EISP-Miner and DBV-ISP algorithms. To store frequent pattern

positions, ISP-IC utilizes the DBV-PatternList data structure. An enhanced

version of the ISP-IC algorithm, known as iISP-IC, was proposed to improve

process performance. Additionally, an advanced iteration, piISP-IC, was

introduced by implementing parallel execution techniques to expedite the

algorithm. These algorithms all harness the advantageous features of the DBV-

PatternList data structure. Nevertheless, the challenge of addressing duplicate

data remains unresolved. Furthermore, ISP-IC currently only handles item

conditions, while other conditions, such as itemsets, have yet to be introduced.

7

The research methods mentioned above for mining inter-sequence patterns

primarily focus on small databases and have not been tested on larger databases containing

1,000,000 transactions or more. For instance, the EISP-Miner algorithm examines

databases with a maximum of 100,000 transactions and 1,000 distinct items. The DBV-ISP

algorithm is tested with databases containing 1,000 transactions and 1,000 distinct items.

Lastly, the ISP-IC algorithm has only been tested with a maximum of 100,000 transactions

and 1,000 distinct items.

Furthermore, in recent years, new data structures have been proposed and applied

to clickstream pattern mining and sequential pattern mining, leading to significantly

improved efficiency.

The advantages of the pseudo-IDList structure are as follows

− Compact Information: The IDList pseudo-structure contains highly condensed

information, encompassing only three values: 𝑃, 𝐷𝐼𝑃, and a pattern location

matrix (detailed in Chapter 3).

− Efficient Support Calculation: Support values for patterns can be rapidly

computed based on the matrix's row count.

− Optimized Storage: The matrix solely retains the occurrence positions of

patterns relative to the frequent patterns that generate them. This selective

storage minimizes data redundancy and reduces storage space utilization within

the algorithm.

− Broad Applicability: To date, numerous authors have applied the pseudo-IDList

structure to various frequent pattern mining methods, resulting in notable

efficiency enhancements. Notable examples include CUP (Huynh et al., 2020b),

CM-WSPADE and Compact-SPAD (Huynh et al., 2020a), SUI (Huynh et al.,

2022), PF-CUP (Huynh et al., 2023).

Based on the developments and challenges encountered in inter-sequence pattern

mining, the main motivations of this thesis are as follows:

− Addressing growing data volume challenges: As the volume of data collected

and analyzed continues to grow rapidly, there is an increasing need for scalable

and efficient inter-sequence pattern mining algorithms. This thesis presents and

develops algorithms, techniques, and recommendations that can process large-

scale datasets while maintaining high performance in terms of both time and

storage space.

8

− Introducing the inter-sequence pattern mining problem with itemset constraints:

Inter-sequence pattern mining generates a significantly larger number of

candidates compared to sequential pattern mining. Users often require specific

knowledge, rather than a complete overview of the database, which necessitates

mining under certain search conditions. Therefore, this thesis proposes the

problem of inter-sequence pattern mining with itemset constraints.

− Overcoming limitations of existing inter-sequence pattern mining algorithms:

Existing inter-sequence pattern mining algorithms have limitations related to

data duplication, storage space, and processing time. This thesis aims to address

these limitations by proposing new and suitable data structures to eliminate data

duplication during the mining process and introducing pruning methods to

speed up the inter-sequence pattern mining algorithm.

− Applying parallel processing models to inter-sequence pattern mining

problems: Inter-sequence pattern mining models often require lengthy

processing times. Parallel mining techniques have the potential to significantly

speed up the data mining process. This thesis explores the application of

parallel processing models to inter-sequence pattern mining problems to

accelerate the algorithm while ensuring the accuracy of the results obtained.

− Contributing to the theoretical basis for inter-sequence pattern mining: The

thesis provides a comprehensive overview of data mining models, such as

sequential pattern mining, clickstream pattern mining, and inter-sequence

pattern mining. From this foundation, the thesis presents propositions,

conclusions, and suggestions to help improve the efficiency of inter-sequence

pattern mining algorithms.

1.3 Research Problem

The problem of inter-sequence pattern mining is an extension of sequential mining,

with three extensions including itemset, sequence, and inter. When dealing with large

sequential databases and a high user-specified maxspan value, a large number of candidate

patterns are generated. Therefore, the inter-sequence pattern mining problem requires

optimization of the candidate generation process as well as optimization of storage space.

In the process of frequent inter-sequence pattern mining, algorithms such as EISP-

Miner (C. S. Wang & Lee, 2009) and DBV-ISP (Vo et al., 2012) generate a large number

of patterns. This poses challenges in knowledge discovery and requires significant storage

resources. To address these issues and restrict knowledge search based on user-defined

9

criteria, we introduce, for the first time in Chapter 4, the application of itemset constraints

to the inter-sequence pattern mining problem. This innovation helps reduce the volume of

frequent patterns generated, resulting in faster mining and the rapid delivery of essential

knowledge to users.

Furthermore, while the DBV-ISP (Vo et al., 2012) algorithm has introduced

methods for optimizing storage space, it remains limited in its ability to address the

problem of duplicate data. To overcome these shortcomings and further enhance storage

optimization, we propose the novel application of the pseudo-IDList data structure to the

inter-sequence pattern mining problem, which is detailed in Chapter 3.

1.4 Aim of this Thesis

The aim of this thesis is to address the limitations of inter-sequence pattern mining

in terms of processing time and storage space. The thesis proposes a novel storage data

structure for the inter-sequence pattern mining problem, aiming to minimize data

duplication during the mining process. Additionally, it introduces an inter-sequence pattern

mining model with itemset constraints to reduce the number of generated candidates, thus

accelerating the search and processing of relevant information. Moreover, the thesis

presents additional propositions to enhance the efficiency of the proposed methods and

algorithms.

1.5 Objectives of this Thesis

The objectives of this thesis are as follows

1. Proposing a solution to address the problem of mining inter-sequence patterns with

itemset constraints, introducing the DBV-ISPMIC algorithm.

2. Developing an optimal approach for solving the inter-sequence pattern mining

problem with itemset constraints, presenting the pDBV-ISPMIC algorithm.

3. Introducing a method for optimizing storage space in the context of the inter-sequence

mining problem, utilizing the ISP-PI algorithm.

4. Proposing a candidate pruning technique for the inter-sequence pattern mining

problem, incorporating the ISP-IC (Inter-Sequence Pattern mining with Index

Intersection Checking) method.

5. The proposed algorithms and methods will be evaluated through experiments using

real-world databases sourced from the data mining community's data warehouse. The

experimental results will be compared based on the algorithm's running time and

memory usage requirements.

10

1.6 Thesis Contributions

Based on the aim of the thesis, the main contributions are presented in two sections

and are briefly outlined as follows

A. The First Contribution Addresses Objectives 1 and 2 of the Thesis

Drawing from proposed inter-sequence mining problems such as EISP-Miner (C. S.

Wang & Lee, 2009), DBV-ISP (Vo et al., 2012), and ISP-IC (T. Le et al., 2018), as well as

sequential pattern mining problems with itemset constraints like MSPIC-DBV (Van et al.,

2018a), we introduce a problem of inter-sequence pattern mining with itemset constraints,

named DBV-ISPMIC (Nguyen et al., 2023). The algorithm employs a data structure called

DBV-PatternList to store candidates, along with a tree structure named ISP-Tree to store

frequent patterns. Additionally, we propose a method for quickly checking the condition of

generated candidate itemsets and apply parallel mining to accelerate the algorithm.

The DBV-PatternList data structure optimizes candidate information storage.

Instead of using a numeric data type to represent pattern information, DBV-PatternList

utilizes a bit-vector data structure. Pattern information is indicated by turning bits on or

off, allowing a numeric data type to store more candidate information, thus reducing the

space needed for candidates.

Checking itemset constraints for all generated samples is time-consuming for the

algorithm. We suggest a method to rapidly verify that the generated candidate meets

itemset constraints, using the condition information from the parent patterns that created it.

This decreases the algorithm's running time.

The inter-sequence pattern mining problem employs the ISP-Tree structure to store

generated frequent patterns, processing the algorithm according to the depth-first traversal

method. As the handling of branches on the tree is separate, we present a parallel

processing technique for branches on the tree. This enables the algorithm to optimize

runtime by processing multiple branches simultaneously.

To evaluate the proposed algorithm, we used five datasets: C6T5S4I4N1kD1k,

C6T5S4I4N1kD10k, Gazelle, BIKE, and BMSWebView1. C6T5S4I4N1kD1k and

C6T5S4I4N1kD10k are two databases generated by the IBM synthetic data generator tool.

Gazelle and BMSWebView1 are two clickstream databases, while BIKE is a database of

Bike Share data from LA Metro. The tests were conducted to compare the latest cross-

chain pattern mining algorithm in terms of runtime and memory usage. The input setup

parameters for running the algorithm on the databases are outlined in Table 1.2. The user-

defined maximum span value is denoted by 1 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 ≤ 5.

11

Table 1.2. Test database information for evaluation of the DBV-ISPMIC algorithm.

Database name Minsupport (%)

C6T5S4I4N1kD1k 0.5

C6T5S4I4N1kD10k 5

Gazelle 1

BIKE 0.5

BMSWebView1 0.5

Experimental results demonstrated that the proposed algorithm outperforms

previous ones. For example, with the C6T5S4I4N1kD1k database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5%,

𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the DBV-ISPMIC algorithm runs 51% faster and uses 12% less memory

than the Post-EISPMiner algorithm. When the quick test method for itemset constraints is

applied, the DBV-ISPMIC algorithm runs 62% faster and uses 14% less memory than the

Post-EISPMiner algorithm.

With the C6T5S4I4N1kD10k database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 5%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the

DBV-ISPMIC algorithm runs 47% faster and uses 6% less memory than the Post-

EISPMiner algorithm. When the quick test for itemset constraints is applied, the DBV-

ISPMIC algorithm runs 58% faster and uses 10% less memory than the Post-EISPMiner

algorithm.

With the Gazelle database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the DBV-

ISPMIC algorithm runs 18% faster and uses 14% less memory than the Post-EISPMiner

algorithm. When the quick test for itemset constraints is applied, the DBV-ISPMIC

algorithm runs 31% faster and uses 15% less memory than the Post-EISPMiner algorithm.

With the BIKE database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the DBV-

ISPMIC algorithm runs 17% faster and uses 7% less memory than the Post-EISPMiner

algorithm. When the quick test for itemset constraints is applied, the DBV-ISPMIC

algorithm runs 47% faster and uses 12% less memory than the Post-EISPMiner algorithm.

With the BMSWebView1 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5%, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the

DBV-ISPMIC algorithm runs 3% faster and uses 8% less memory than the Post-

EISPMiner algorithm. When the quick test for itemset constraints is applied, the DBV-

ISPMIC algorithm runs 7% faster and uses 14% less memory than the Post-EISPMiner

algorithm.

B. The Second Contribution Addresses Objectives 3 and 4 of the Thesis

Building upon inter-sequence pattern mining algorithms like EISP-Miner and

DBV-ISP, we propose a novel algorithm called ISP-PI (Inter-Sequence Pattern mining

12

based on Pseudo-Index). This algorithm aims to optimize data mining models in the

context of inter-chain mining using a data structure known as pseudo-IDList. The ISP-PI

addresses the shortcomings of previous algorithms concerning data duplication. Instead of

requiring storage for all the information of a candidate, we can retrieve its information

from the original pattern. This method compresses the position values of the generated

candidates, allowing for the retrieval of values from the original patterns that produced the

candidates and eliminating the need to save all positions. Furthermore, the algorithm

incorporates a pruning method named ISP-IC (Inter-Sequence Pattern mining with Index

intersection Checking) to effectively reduce the number of generated candidates. This

optimization enhances processing time and storage space, which is crucial due to the

growing volume of collected data. The ISP-PI algorithm efficiently compresses data to

minimize storage space and employs candidate pruning to accelerate the algorithm's

runtime in inter-sequence pattern mining.

Experimental results indicate that the proposed ISP-PI algorithm surpasses the most

advanced algorithms for mining inter-sequence patterns (MISPs) in terms of processing

time and storage space utilization. Consequently, this contribution signifies a considerable

advancement in the field of data mining, particularly for inter-chain pattern mining.

The algorithm evaluation was conducted on six sample datasets, including

C150S40T2, C200S12T5, FIFA, BMSWebView2, Kosarak, and MSNBC. Kosarak and

MSNBC are two large databases, each containing nearly 1 million rows of data.

C150S40T2 and C200S12T5 were generated using the standard generator in (Agrawal &

Srikant, 1995), while FIFA, BMSWebView2, Kosarak, and MSNBC are actual databases.

C150S40T2, C200S12T5, and FIFA are dense databases with average sequence lengths of

76.64, 51.57, and 36.24, respectively. The input configuration parameters for executing

the algorithm on the databases are presented in Table 1.3. The maximum span value,

defined by the user, ranges from 1 to 5 inclusively.

Table 1.3. The database information for evaluation of the ISP-PI algorithm.

Database name Minsupport (%)

C150S40T2 6

C200S12T5 3

BMSWebView2 0.02

FIFA 9

Kosarak 0.6

MSNBC 0.2

13

Experimental results indicate that the proposed ISP-PI algorithm outperforms the

two previous inter-chain data mining algorithms, Post-EISPMiner and Post-DBV-ISP.

For the C150S40T2 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 6%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI

algorithm is 66% faster than Post-EISPMiner and 11% faster than Post-DBV-ISP. ISP-PI

uses 78% less memory than Post-EISPMiner and 76% less than Post-DBV-ISP.

For the C200S12T5 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI

algorithm is 60% faster than Post-EISPMiner and 29% faster than Post-DBV-ISP. ISP-PI

uses 88% less memory than Post-EISPMiner and 87% less than Post-DBV-ISP.

For the BMSWebView2 database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.02%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the

ISP-PI algorithm is 76% faster than Post-EISPMiner and 75% faster than Post-DBV-ISP.

ISP-PI uses 92% less memory than Post-EISPMiner and 92% less than Post-DBV-ISP.

For the FIFA database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 9%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI algorithm

is 90% faster than Post-EISPMiner and 87% faster than Post-DBV-ISP. ISP-PI uses 81%

less memory than Post-EISPMiner and 77% less than Post-DBV-ISP.

For the Kosarak database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.6%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI

algorithm is 81% faster than Post-EISPMiner and 58% faster than Post-DBV-ISP. ISP-PI

uses 82% less memory than Post-EISPMiner and 81% less than Post-DBV-ISP.

For the MSNBC database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.2%,𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5), the ISP-PI

algorithm is 85% faster than Post-EISPMiner and 79% faster than Post-DBV-ISP. ISP-PI

uses 56% less memory than Post-EISPMiner and 54% less than Post-DBV-ISP.

1.7 Structure of the Thesis

The remaining chapters of the thesis are organized as follows:

Chapter 2: Literature Overview. This chapter provides definitions, examples, and

methods related to sequential pattern mining, including algorithms such as AprioriAll,

FreeSpan, SPADE, PrefixSpan, PRISM, and CM-SPADE. Additionally, definitions,

examples, and methods related to sequential pattern mining on item and itemset constraints

are presented, including algorithms such as MSRIC-R, MSRIC-P, MSPIC-DBV,

MWAPC, and EMWAPC. The chapter also covers definitions, examples, and methods

related to clickstream data mining, with algorithms like CUP, CM-WSPADE, Compact-

SPADE, and SUI. Lastly, it presents definitions, examples, and methods related to inter-

sequence pattern mining, featuring algorithms such as EISP-Miner, DBV-ISP, ISP-IC,

iISP-IC, and piISP-IC.

Chapter 3: Presentation of the inter-sequence data mining problem using the

pseudo-IDList data structure. This chapter introduces the ISP-PI (Inter-Sequence Pattern

14

mining based on Pseudo-Index) algorithm and a pruning method named ISP-IC (Inter-

Sequence Pattern mining with Index Intersection Checking).

Chapter 4: Presentation of the inter-sequence pattern mining problem with itemset

constraints and the dynamic bit vector data structure. This chapter presents the DBV-

ISPMIC algorithm, an improved version called DBV-ISPMIC-IMPROVING, and a

parallel mining algorithm named pDBV-ISPMIC.

Chapter 5: Conclusion and limitations of the proposed algorithms. This section

discusses research approaches or improved techniques for the proposed algorithms that

could be explored in the future. Additionally, a list of our publications is provided at the

end of the chapter.

15

2 CHAPTER 2: LITERATURE REVIEWS

In this chapter we present an introduction to sequential pattern mining and inter-

sequential pattern mining problems, including fundamental concepts and the descriptions

of commonly used methods. Additionally, we examine the strengths and weaknesses of

existing mining algorithms for both problems. In order to address these issues, we put

fourth efficient algorithms for inter-sequence pattern mining that take into account

considerations such as memory usage and running time. The findings of our investigation

will be presented in the forthcoming Chapters 3 and 4.

2.1 Methods for Mining Sequence Patterns

2.1.1 Basic Concepts

Definition 2.1 (Customer transaction): Database D is a representation of customer

transactions, wherein each transaction includes the following information: customer ID,

transaction date, transaction time, and transaction details. Transaction details encompass a

collection of items that were acquired during the transaction. No customer can have more

than one transaction sharing the same combination of transaction date and time.

An illustration of a customer transaction and a customer sequence is provided in

Table 2.1 and Table 2.2, respectively.

Table 2.1. An example of customer transaction.

Customer Id Transaction Date Transaction Time Transaction Details

1 12.12.1998 9:00 𝐶

1 19.12.1998 10:00 𝐴, 𝐵

2 13.12.1998 9:00 𝐶

2 21.12.1998 14:00 𝐴, 𝐵, 𝐶

2 24.12.1998 15:00 𝐴

3 14.12.1998 10:00 𝐴

3 24.12.1998 11:00 𝐷

4 15.12.1998 15:00 𝐴

4 25.12.1998 16:00 𝐷

16

Table 2.2. An example of customer sequence from Table 2.1.

Customer Id Customer Sequence

1 〈(𝐶)(𝐴𝐵)〉

2 〈(𝐶)(𝐴𝐵𝐶)(𝐴)〉

3 〈(𝐴)(𝐷)〉

4 〈(𝐴)(𝐷)〉

Definition 2.2 (Items, Itemsets, Sequences): Let 𝐼 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛} be a set of 𝑛

distinct products, also called items. A sequence 𝑠 = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚〉 is an ordered list of

itemsets where 𝑡𝑖 ⊆ 𝐼(1 ≤ 𝑖 ≤ 𝑚) is an itemset. The number of items contained in the

itemset is called its size. The size of a sequence is the number of itemsets in a sequence,

denoted as k-sequence (1 ≤ 𝑘 ≤ 𝑚). An itemset begins with symbol “ ” and ends with

symbol “ ”, an emse contains a single item then the brackets can be omitted. A

sequence begins and ends with the symbols “⟨”, “⟩”, espec vely.

For example, based on Table 2.2, let 𝐼 = {𝐴, 𝐵, 𝐶, 𝐷}, two possible itemsets of size

two (2-itemsets) are (𝐴𝐵), (𝐴𝐶). An example of 2-sequence is 〈𝐶(𝐴𝐵)〉 or 〈𝐴𝐷〉 and 3-

sequence is 〈𝐶(𝐴𝐵𝐶)𝐴〉.

Definition 2.3 (Subsequences, Supersequences): Let 𝑆 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ and

𝑆𝛽 = ⟨𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚⟩ be two sequences (𝑛 ≤ 𝑚). 𝑆 is called a subsequence of 𝑆𝛽 or 𝑆𝛽

is called the supersequence of 𝑆, if there exists integers 1 ≤ 𝑗1 ≤ 𝑗2 ≤ 𝑗3 ≤ … ≤ 𝑗𝑛 such

that 𝑥1 ⊆ 𝑦𝑗1, 𝑥2 ⊆ 𝑦𝑗2, 𝑥3 ⊆ 𝑦𝑗3, … , 𝑥𝑛 ⊆ 𝑦𝑗𝑛, denoted as 𝑆 ⊑ 𝑆𝛽.

For example, the sequence 〈𝐶(𝐴𝐵)〉 is a subsequence of 〈𝐶(𝐴𝐵𝐶)𝐴〉, since C ⊆

C and AB ⊆ ABC, and the order of itemset is preserved. However, the sequence 〈𝐶(𝐴𝐵)〉 is

not a subsequence of 〈𝐶𝐴𝐵〉 and vice versa.

Definition 2.4 (Support threshold): The support value of a sequence, denoted

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆, 𝐷), is calculated by the total number of occurrences of the sequence in

the database 𝐷, given as 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑆, 𝐷) = |{𝑆𝑖 ∈ 𝐷|𝑆 ⊑ 𝑆𝑖}|.

For instance, based on Table 2.1, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(⟨𝐴⟩, 𝐷) = 4, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(⟨(𝐴𝐵)⟩, 𝐷) = 2.

2.1.2 Sequence Pattern Mining

2.1.2.1 AprioriAll (Agrawal & Srikant, 1995)

The AprioriAll algorithm (Agrawal & Srikant, 1995) solves the problem of mining

sequential pattern over a large database of customer transactions. The pseudo-code is

presented in Algorithm 2.1. The AprioriAll algorithm is described through the following

main steps:

17

Step 1: Finding the set of frequent 1-itemsets. (Algorithm 2.1, line 1).

Step 2: Traversing the frequent set 1-itemsets (𝑘 = 1) in step 1 (Algorithm 2.1,

line 2), the algorithm generates (𝑘 + 1)-itemset candidates (Algorithm 2.1, line 4). The

algorithm scans the database again to calculate the support value for each candidate. If its

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 value is greater than or equal to the minimum support threshold, the

candidate is a frequent pattern and stores it in the 𝐿𝑘 list (Algorithm 2.1, line 5 to 7).

Step 3: Repeating step 2 until no more new candidates are created, the algorithm

stops here.

Algorithm 2.1. AprioriAll Algorithm (Agrawal & Srikant, 1995)

1. 𝐿1 = {large 1-sequence}

2. for (k=2; 𝐿𝑘−1 0; k++) do

3. begin

4. 𝐶𝑘 = New candidates generated from 𝐿𝑘−1 (see Algorithm 2.2).

5 foreach customer-sequence 𝑐 in the database do

6 Increment the count of all candidates in 𝐶𝑘 that are contained in 𝑐.

7 𝐿𝑘 = Candidates in 𝐶𝑘 satisfy minimum support.

8 end

9 Answer = Maximal Sequences in 𝑈𝑘𝐿𝑘;

Algorithm 2.2. Apriori-generate function (Agrawal & Srikant, 1995)

1. insert into 𝐶𝑘

2. select 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡1, …, 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−1,𝑞. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−1

 from 𝐿𝑘−1𝑝, 𝐿𝑘−1𝑞

 where 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡1 = 𝑞. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡1,…, 𝑝. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−2 = 𝑞. 𝑙𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑘−2;

18

Large

2-sequences

Candidate

3-sequences

(after joining)

Candidate

3-sequences

(after pruning)

〈1 2〉 ⟨1 2 4⟩ ⟨1 2 4⟩

〈1 4〉 ⟨1 2 5⟩ ⟨1 2 5⟩

⟨1 5⟩ ⟨1 4 2⟩ ⟨1 4 5⟩

⟨2 4⟩ ⟨1 5 2⟩ ⟨2 4 5⟩

⟨2 5⟩ ⟨1 5 4⟩

⟨4 5⟩ ⟨2 4 5⟩

 ⟨2 5 4⟩

Figure 2.1. Candidate Generation.

The apriori-generate function is described in Algorithm 2.2. It generates the set of

𝑘-sequences from the set of all large (𝑘 − 1)-sequences. If the new candidate is not in the

𝐿𝑘−1 set, then this candidate will be discarded. With this improvement, the Apriori

algorithm does not calculate the support for these candidates, which increases the

processing speed of the algorithm. Consider the example in Figure 2.1, the first column is

the set of all large 2-sequences, after running the Apriori-generate function we get the set

of 3-sequences shown in the second column. After pruning out sequences whose

subsequences are not in 𝐿2, the sequences shown in the third column. For instance, 〈1 4 2〉

is removed because the subsequence 〈1 4 2〉 is not in 𝐿2.

The disadvantage of ApirioriAll algorithm is that it has to rescan the database many

times to calculate the support (in Algorithm 2.1, line from 5 to 7).

〈(1 3)(2)(4)(5)〉

〈(1)(2)(4)(3 5)〉

〈(1)(2)(4)(5)〉

〈(1)(2)(5)〉

〈(3)(5)〉

Figure 2.2: Customer Sequences.

19

𝐿2 𝐿2 𝐿3 𝐿4

1-Sequences Support 2-Sequences Support 3-Sequencess Support 4-Sequences Support

〈1〉 4 〈1 2〉 4 〈1 2 4〉 3 〈1 2 4 5〉 3

〈2〉 4 〈1 4〉 3 〈1 2 5〉 4

〈3〉 3 〈1 5〉 4 〈1 4 5〉 3

〈4〉 3 〈2 4〉 3 〈2 4 5〉 3

〈5〉 5 〈2 5〉 4

 〈4 5〉 3

Figure 2.3: Large Sequences.

Consider a customer sequence dataset in Figure 2.2, the minimum support has been

specified to be 60% (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3). The set of large 𝑘-sequences are presented in

Figure 2.3.

The Apriori algorithm has several disadvantages, primarily related to processing

time and storage space. These limitations arise due to the following factors:

− Generation of a large set of candidate sequences in a large sequence database.

− Multiple scans of the database during mining.

− Difficulty in mining long sequential patterns using the Apriori-based method.

Consequently, the AprioriAll algorithm proves to be inefficient when dealing with

large volumes of data sets. For instance, if we assume a frequent 1-pattern with a count of

104 in the dataset, the Apriori algorithm needs to generate more than 107 candidates of 2-

patterns. These candidates are then tested and collected cumulatively. It becomes evident

that the number of candidates generated using the Apriori-like algorithms can be

exponential in the worst case. For example, if there is a frequent sequence of 100 elements,

generating such a sequence would require generating 2100 candidates. This serves as an

illustration of the application of the Apriori algorithm.

Therefore, the candidate generation phase, which contributes to the time

complexity of the Apriori algorithm, incurs significant costs and time consumption.

Additionally, during the execution, the algorithm recalculates candidate support by

rescanning the original database multiple times. This further impacts the algorithm's

efficiency, particularly when the system memory is insufficient, and there is a large

number of frequent transactions. Consequently, the Apriori algorithm becomes inefficient

and slow when working with large databases.

20

2.1.2.2 FreeSpan (Han et al., 2000)

The FreeSpan (for Frequent pattern-projected Sequential pattern mining)

algorithm (Han et al., 2000) aims to integrate the mining of frequent sequences with that of

frequent patterns and uses projected sequence databases to confine the search and growth

of the subsequence fragments.

Let 𝑆 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ be a sequence, the itemset 𝑥1 ∪ 𝑥2 ∪ 𝑥3 ∪ …∪ 𝑥𝑛is

called S’s projected itemset. FreeSpan is based on the following property: If an itemset 𝑋 is

infrequent, any sequence whose projected itemset is a superset of 𝑋 cannot be a sequential

pattern.(Pei et al., 2001)

By using projected sequence databases, FreeSpan greatly reduces the generation of

candidate sub-sequences. FreeSpan finds the frequent 1-itemsets, termed an 𝑓_𝑙𝑖𝑠𝑡, by

scanning the sequence database, and then sorts them into support descending order. Let

𝑓_𝑙𝑖𝑠𝑡 = ⟨𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚⟩ be a list of all frequence 1-itemsets. This set can be divided

into m subjects: those having item y1, those having item y2 but no item in {𝑦3, … , 𝑦𝑚},

those having item 𝑦3 but no in {𝑦4, … , 𝑦𝑚}, and so on. In general, the 𝑗𝑡ℎ subset (1 ≤ 𝑗 ≤

𝑚) is the set of sequential patterns having item 𝑦𝑗 but no item in {𝑦𝑗+1, 𝑦𝑗+2, … , 𝑦𝑚}. The

FreeSpan algorithms is presented as follows:

Algorithm 2.3. The FreeSpan Algorithm (Han et al., 2000)

1. Input: A sequence database D, the support threshold (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡)

2. Output: The set of frequent patterns

3.
Scan D, find the set of frequent 1-sequence in 𝐷, and (infrequency descending order)

sort them into 𝑓_𝑙𝑖𝑠𝑡

4. Perform alternative-level projection mining which consists of the following steps:

5. Construct a frequent item matrix by scanning the database once.

6.
Generate length-2 sequential patterns and the annotations on item-repeating patterns

and projected database.

7. Scan database to generate item-repeating patterns and projected databases

8.
Do matrix projection mining on projected database recursively, if there are still

longer candite pattern to be mined.

Based on the analysis above, we can identify the following strengths and

weaknesses of the FreeSpan algorithm:

Advantages of FreeSpan:

− A significant strength of FreeSpan is its capability to search smaller projected

databases in each subsequent projection. This is achieved through recursive

projection of a large sequence database into smaller ones, guided by current and

future mining of frequent item patterns. Consequently, each expected database

21

is constrained to a reduced candidate pool. Furthermore, FreeSpan only

necessitates three scans of the original database, irrespective of the maximum

sequence length.

Disadvantages of FreeSpan:

− The primary overhead of FreeSpan is the necessity to generate numerous

nontrivial projected databases. In cases where a pattern occurs in every

sequence within a database, its projected database does not significantly reduce

in size, except for the removal of some infrequent items. Furthermore, because

a length-𝑘 subsequence can expand at any position, the search for length-(𝑘+1)

candidate sequences require the examination of all possible combinations,

incurring considerable computational costs.

2.1.2.3 SPADE (Zaki, 2001)

The SPADE (Sequential PAttern Discovery using Equivalence classes) algorithm

was introduced by Zaki (Zaki, 2001) for fast mining of sequential patterns in large

databases. Previous approaches (Agrawal & Srikant, 1995; Han et al., 2000) had to scan

the database many times or use a complex hash-tree structure to store frequent pattern

information. The SPADE algorithm uses an equivalence classes approach to store frequent

patterns. The maximum number of database scans of the SPADE algorithm is only 3 times,

one for frequent 1-sequences, another for frequent 2-sequences, and lastly for generating

all other frequent sequences. The SPADE algorithm is presented as following:

Algorithm 2.4. The SPADE Algorithm (Zaki, 2001)

1. SPADE (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝐷)

2. 𝐹1 = {frequent items or 1-sequences};

3. 𝐹2 = {frequent 2-sequences};

4.  = {equivalence classes [X]1}

5. for all [X]   do Enumerate-Frequent-Seq([X]); //Algorithm 2.5

Algorithm 2.5. Pseudo-code for breadth-first and depth-first search (Zaki, 2001)

 Enumerate-Frequent-Seq(S)

1. for all atoms Ai  S do

2. Ti = ;

3. for all atoms 𝐴𝑗 ∈ 𝑆, with 𝑗 ≥ 𝑖 do

4. 𝑅 = 𝐴 𝑖 ∨ 𝐴𝑗;

5. if (Prunce(R) == FALSE) then //Algorithm 2.6

22

6. 𝐿(𝑅) = 𝐿(𝐴𝑖) ∩ 𝐿(𝐴𝑗);

7. if (𝑅) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 then

8. 𝑇𝑖 = 𝑇𝑖 ∪ {𝑅}; 𝐹|𝑅| = 𝐹|𝑅| ∪ {𝑅};

9. end

10. if(Depth-First-Search) then Enumerate-Frequent-Seq(𝑇𝑖);

11. end

12. if (Breadth-First-Search) then

13. for all 𝑇𝑖 ≠ ∅ do Enumerate-Frequent-Seq(𝑇𝑖);

Algorithm 2.6. Sequence pruning (Zaki, 2001)

 Prune(𝛽)

1. for all (𝑘 − 1)-subsequences, 𝛼 ≺ 𝛽 do

2. if ([1] has been proceesed, and  ∉ 𝐹𝑘−1) then

4. return TRUE;

5. return FLASE;

The SPADE algorithm introduces a new approach compared to previous

algorithms, offering notable advantages and limitations:

Advantages of SPADE:

− Unlike previous approaches that involve multiple database scans and complex

hash tree structures with suboptimal locations, SPADE decomposes the original

problem into smaller subproblems using equivalence classes based on frequent

patterns Each equivalence class can be solved independently and is likely to be

processed efficiently in main memory. As a result, SPADE typically performs

only three database scans: one for frequent 1-patterns, another for common 2-

patterns, and an additional scan to generate all other frequent patterns.

− Additionally, the SPADE algorithm utilizes a Depth-first search method, which

allows for the application of parallel computation techniques.

Disadvantages of SPADE:

− A limitation of the SPADE algorithm lies in the storage of pattern locations as

integers, which requires a significant amount of storage space for large

databases.

− After a frequent pattern is generated, the algorithm stores all the information

about the pattern's position. This leads to redundancy and data duplication,

necessitating the use of more storage space than required. Recent studies have

23

demonstrated that it is possible to retrieve the location information of a frequent

pattern from the frequent patterns that generate it (Huynh et al., 2020b, 2022).

2.1.2.4 PrefixSpan (Pei et al., 2001)

The PrefixSpan algorithm (Pei et al., 2001) was based on the concept of FreeSpan

(Han et al., 2000), but instead of projection sequence database it investigates the prefix

subsequences (Definition 2.5) and projects only their corresponding suffix subsequences

(Definition 2.6) into projected databases. The advantage of algorithm is designed to only

consider patterns that exist in the database.

Definition 2.5 (Prefix)(Pei et al., 2001): Suppose all the items within an element

are listed alphabetically. Given a sequence 𝛼 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩ (where each xi

corresponds to a frequent element in S), a sequence 𝛽 = ⟨𝑥′
1, 𝑥

′
2, 𝑥

′
3, … , 𝑥′

𝑚⟩(𝑚 ≤ 𝑛) is

call a prefix of 𝛼 if and only if 1) 𝑥′𝑖 = 𝑥𝑖 for (𝑖 ≤ 𝑚 − 1); 2) 𝑥′𝑚 ⊆ 𝑥𝑚; and 3) all the

frequent items in (𝑥𝑚 = 𝑥′𝑚) are alphabetically after those in 𝑥′𝑚.

For instance, ⟨𝐴⟩, ⟨𝐴𝐴⟩, ⟨𝐴(𝐴𝐵)⟩, and ⟨𝐴(𝐴𝐵𝐶)⟩ are prefixes o squence 𝑆 =

 ⟨𝐴(𝐴𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩.

Definition 2.6 (Suffix)(Pei et al., 2001): Given a sequence 𝛼 = ⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛⟩

(where each 𝑥𝑖 corresponds to a frequent element in 𝑆). Let 𝛽 =

⟨𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚−1𝑥
′
𝑚

⟩(𝑚 ≤ 𝑛) be the prefix of 𝛼. Sequence 𝛾 =

⟨𝑥′′𝑚, 𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑛⟩ is called the suffix of 𝛼 with regards to prefix 𝛽, denoted as 𝛾 =

𝛼/𝛽, where 𝑥′′𝑚 = (𝑥𝑚 − 𝑥′
𝑚). We also denote 𝛼 = 𝛾. 𝛽. Note, if 𝛽 is not a subsequence

of 𝛼, the suffix of 𝛼 with regards to 𝛽 is empty.

For example, for the sequence 𝑆 = ⟨𝐴(𝐴𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩, ⟨(𝐴𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩ is

the suffix with regards to the prefix ⟨𝐴⟩, ⟨(_𝐵𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩ is the suffi with regards to

the prefix ⟨𝐴𝐴⟩, and ⟨(_𝐶)(𝐴𝐶)𝐷(𝐶𝐹)⟩ is the suffix with regards to the prefix ⟨𝐴(𝐴𝐵)⟩.

The PrefixSpan algorithm is presented as follows:

Algorithm 2.7. The PrefixSpan Algorithm (Pei et al., 2001)

 Input: A sequence database 𝑆, and the minimum support threshold 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡.

 Output: The set of frequent patterns

 Method: Call 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑝𝑎𝑛(⟨⟩, 0, 𝑆)

 Subroutine 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑝𝑎𝑛(, 𝑙, 𝑆|)

1.
The parameters are 1)  is a sequential pattern; 2) 𝑙 is the length of ; and 3) 𝑆|

is the -projected database if  ≠ ⟨⟩, otherwise, it is the sequence database 𝑆.

 Method:

2. 1.Scan 𝑆| once, find each frequent item, 𝑏, such that

3. (a) 𝑏 can be assembled to the last element of  to form a sequential pattern;

24

or

4. (b) ⟨𝑏⟩ can be appended to  to form a sequential pattern

5.
2.For each frequent item 𝑏, append it to  to form a sequential pattern ’, and

output ’.

6.
3.For each ’, c ns uc ’-projected database 𝑆|′, and call

𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑝𝑎𝑛(′, 𝑙 + 1, 𝑆|′)

After analyzing the PrefixSpan algorithm, we can identify its strengths compared to

previous algorithms, as well as the limitations that need to be addressed:

Advantages of PrefixSpan:

− The main advantage of the PrefixSpan algorithm is that it eliminates the need to

create or test candidate sequences that do not exist in the expected database.

The sample growth method employed by PrefixSpan ensures that only patterns

occurring in the database are discovered. In other words, PrefixSpan extends

shorter sequential patterns to generate longer ones, reducing the search space.

This approach significantly reduces the cost of constructing the expected

databases.

− Two optimization techniques can further enhance the efficiency of PrefixSpan.

Firstly, using a two-level projection can decrease the size and number of

projected databases. Secondly, employing pseudo-projection can reduce

overhead by storing the projected databases entirely in main memory.

Moreover, PrefixSpan proves to be efficient as it leverages the complete set of

patterns and runs even faster than the FreeSpan (Han et al., 2000) algorithm.

Disadvantages of PrefixSpan:

− One drawback of the PrefixSpan algorithm is the potential runtime cost

associated with scanning the database multiple times and creating database

projections.

− Additionally, creating database projections can consume a considerable amount

of memory if not implemented efficiently. In the worst case, it may require

nearly duplicating the entire database for each database projection, leading to

significant memory usage.

2.1.2.5 PRISM (Gouda et al., 2007, 2010)

Introduced by Gouda et al. in 2007, the PRISM (PRIme-Encoding Based Sequence

Mining) algorithm is designed for mining frequent sequences (Gouda et al., 2007). The

algorithm employs a vertical approach to enumeration and support counting, which relies

on the innovative concept of prime block encoding, a method grounded in prime

25

factorization theory. Gouda et al. further elaborated and enhanced the PRISM algorithm in

2010 (Gouda et al., 2010). When compared with earlier algorithms for sequential pattern

mining, such as SPAM (Ayres et al., 2002), PrefixSpan (Pei et al., 2001), and SPADE

(Zaki, 2001), the PRISM algorithm demonstrates its superiority in terms of both time

efficiency and memory consumption.

The assessment of the PRISM algorithm is exemplified through the ensuing

advantages:

− PRISM employs a vertical methodology for enumeration and support

quantification, grounded in the innovative concept of prime block encoding.

This concept is further anchored in the theory of prime factorization.

− The PRISM algorithm represents an augmentation of the SPADE algorithm,

facilitated by the use of a bit data structure. In contrast to preceding algorithms

which stored candidate information as integers, PRISM enhances optimization

by employing bit data structures. This reduction in memory requirements is a

notable advantage of the algorithm.

− In the realm of prime block encoding, the support of a candidate can be

ascertained directly from its associated chain blocks.

2.1.2.6 CM-SPADE (Fournier-Viger et al., 2014)

The CM-SPADE algorithm proposed by Fournier-Viger et al. (Fournier-Viger et

al., 2014) which is considered an improvement of the SPADE algorithm (Zaki, 2001). The

SPADE algorithm has the disadvantage that the number of candidates generated is very

large, even though they are infrequent pattterns. Therefore, the CM-SPADE algorithm has

overcome the above disadvantage by using a new data structure named CMAP (Co-

occurence MAP) (in Definition 2.9) for storing co-occurrence information. In addition, by

using the CMAP structure and prefix-based pruning strategy, the CM-SPADE algorithm

improve the mining time of mining sequential patterns. A example about the CMAP

structure are shown in Table 2.3.

Definition 2.7 (i-extension): An item k is said to succeed by i-extension to an item j

in a sequence < 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛 > iff 𝑗, 𝑘 ∈ 𝐼𝑥 for an integer x such that 1 ≤ 𝑥 ≤ 𝑛 and

𝑘 ≻𝑙𝑒𝑥 𝑗.

Definition 2.8 (s-extension): An item k is said to succeed by s-extension to an item

j in a sequence < 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑛 > iff 𝑗 ∈ 𝐼𝑣 and 𝑘 ∈ 𝐼𝑤 for some integers v and w such that

1 ≤ 𝑣 < 𝑤 ≤ 𝑛.

26

Definition 2.9 (Co-occurrence MAP): A Co-occurrence MAP (CMAP) is a

structure mapping each item 𝑘 ∈ 𝐼 to a set of items succeeding it. We define two CMAPs

named CMAPi and CMAPs. CMAPi maps each item 𝑘 to the set cmi(k) of all items 𝑗 ∈ 𝐼

succeeding k by i-extension (Definition 2.7) in no less than minsupport sequences of SDB.

CMAPs maps each item k to the set cms(k) of all items 𝑗 ∈ 𝐼 succeedings k by s-extension

(Definition 2.8) in no less than 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 sequences of sequence database.

SID Sequences

1 〈{𝑎, 𝑏}, {𝑐}, {𝑓, 𝑔}, {𝑔}, {𝑒}〉

2 〈{𝑎, 𝑑}, {𝑐}, {𝑏}, {𝑎, 𝑏, 𝑒, 𝑓}〉

3 〈{𝑎}, {𝑏}, {𝑓}, {𝑒}〉

4 〈{𝑏}, {𝑓, 𝑔}〉

Figure 2.4: A sequence database. (Fournier-Viger et al., 2014)

Table 2.3: CMAPi and CMAPs for the database of Figure 2.4 and 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2.

(Fournier-Viger et al., 2014)

CMAPi CMAPs

item is succeeded by (i-extension) item is succeeded by (s-extension)

a {b} a {b, c, e, f}

b  b {e, f, g}

c  c {e, f}

e  e 

f {g} f {e, g}

g  g 

The advantages of the CM-SPADE algorithm, in comparison to previous

algorithms, are highlighted as follows:

− The CM-SPADE algorithm is an enhancement of the SPADE (Zaki, 2001)

algorithm. It utilizes the vertical format efficiently to calculate the support of

candidate patterns, thereby avoiding costly repeated database scans.

− However, a primary limitation of vertical mining algorithms is their tendency to

spend significant time evaluating candidates that either do not exist in the input

database or occur infrequently. To address this issue, CM-SPADE introduces a

novel data structure called CMAP, which stores co-occurrence information. By

utilizing the CMAP structure, CM-SPADE can early prune candidates,

improving efficiency and reducing unnecessary evaluations.

27

2.1.3 Sequence Pattern Mining with Constraints

2.1.3.1 MSPIC-DBV (Van et al., 2018a)

The MSPIC-DBV algorithm was proposed by Van et al. (Van et al., 2018a) for

effective mining sequential patterns with itemset constraints (Definition 2.10). The

MSPIC-DBV algorithm uses a dynamic bit vector data structure and a DBVS prefix-tree

tree structure to reduce the time to calculate the support of generated patterns, and to

optimize the running time and storage space of the algorithm. The problem of sequential

pattern mining with item constraint is given as follows.

Definition 2.10 (Problem statement of sequence pattern mining with itemset

constraints): Given a sequence database D, a set of constraint itemsets 𝐶 =

 {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑛} and the minimum support (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡) is specified by the user. The

problem of mining sequential patterns with an itemset constraint is to find all frequent

subsequences in the database which contain any itemsets in set C (Definition 2.11).

Definition 2.11: (Itemset constraint satisfying) A pattern 𝛽 = 〈𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑚〉 is

considered to contain an itemset 𝑐 if ∃𝑖 ∈ [1,𝑚] such that 𝑐 ⊆ 𝑏𝑖 . Given a constraint

itemset 𝑐, if pattern 𝛽 contains the constraint itemset 𝑐, 𝛽 is called a c-satisfied pattern.

2.1.3.2 MWAPC and EMWAPC (Van et al., 2018b)

The MWAPC (Mining Web Access Patterns based on super-pattern Constraint)

algorithm was proposed by Van et al. [10] to solve the problem of mining web access

patterns with super-pattern constraint (Definition 2.12). To avoid checking all candidate

patterns that satisfy the conditions, Van also proposed an algorithm named EMWAPC.

Definition 2.12 (Problem statement of sequence pattern mining with super-pattern

constraints): Given a web access sequence database 𝑊𝐷, a set of constraint patterns 𝑈 =

{𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} and the 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 is specified by the user. The problem of mining

web access patterns with super-pattern constraint is to find all frequent patterns in the

database which contain any pattern in 𝑈 as subsequence (in Definition 2.13).

Definition 2.13: (Constraint satisfied pattern) Given a constraint pattern 𝑢, pattern

𝑝 is called a u-satisfied pattern if 𝑝 ⊇ 𝑢.

2.1.3.3 MSRIC-R and MSRIC-P (Van & Le, 2021)

In 2020, Van et al. proposed MSRIC-R and MSRIC-P algorithms, to solve the

effective methods for integrating itemset constraints into the actual mining process, in

which MSRIC-R pushed the constraints into the rule generating phase, and MSRIC-P

pushes into the pattern mining phase.

28

The problem of sequential pattern mining or sequential rules mining with a set

itemset constraint was proposed by Van et al. The following are the key benefits of the

approach:

− The proposed algorithms are pattern-growth algorithms that utilize prefixes and

dynamic bit vectors.

− The dynamic bit vector data structure optimizes the storage of frequent patterns.

Candidate positions are represented by bits 1 and 0. A bit value of 1 indicates

the positions where the candidate appears in the database, while a bit value of 0

marks positions where the candidate does not. This structure stores the position

of the first occurrence of a 0 bit, representing the candidate's first non-

occurrence. This removes the necessity to store all previous 0 bits, thereby

saving memory space.

− These algorithms prune the search space both at the start and during the mining

process, reducing the number of candidates that need to be checked. The

pruning method is based on the prefix condition. If a candidate does not meet

the itemset constraint, there's no need to extend from this candidate.

The limitation of the research direction applies exclusively to the domain of pattern

mining. It is essential to diversify our research efforts to encompass other data mining

challenges. The advantages mentioned above have motivated us to apply these principles

to the task of mining inter-sequence patterns with itemset constraints, a topic that will be

explored in greater depth in Chapter 4.

2.1.4 Clickstream Pattern Mining

2.1.4.1 CUP algorithm (Huynh et al., 2020)

The CUP (Clickstream pattern mining Using Pseudo-IDList) algorithm was

presented by Huynh et al. (Huynh et al., 2020). The algorithm uses a vertical data structure

called pseudo-IDList, and a heuristic pruning method named DUB (Dynamic intersection

Upper Bound) to help optimize the algorithm. The pseudo-IDList data structure is

organized to store 3 information: 1) 𝑃: information of a pattern; 2) 𝐷𝐼𝑃 (data IDList

pointer) a link to the IDList of the last item in 𝑃.

For example, if the 𝑃 is 〈𝐴, 𝐵, 𝐶〉 then 𝐷𝐼𝑃 would point to the data IDList of 1-

pattern 〈𝐶〉; 3) 𝑀: a two-dimensional matrix contains the positions of IDList including

three columns {𝐿𝑜𝑐𝑎𝑙 𝑖𝑑, 𝐷𝑎𝑡𝑎 𝑖𝑑, 𝑆𝑡𝑎𝑟𝑡 𝑖𝑛𝑑𝑒𝑥}.

An example of a clickstream database is shown in Figure 2.5. The first column is

the UCID (user clickstream id) used to identify the user, the second column describes the

29

user's click patterns. Based on the example database in Figure 2.5-Figure 2.8 shows the

Data IDList and pseudo-IDLists of pattern 〈𝐴〉, 〈𝐵〉 and 〈𝐶〉.

UCID User clickstream

100 〈𝐴, 𝐵, 𝐶, 𝐴, 𝐴, 𝐵, 𝐶, 𝐷, 𝐵, 𝐶, 𝐵〉

200 〈𝐵, 𝐵, 𝐸, 𝐹, 𝐹, 𝐶, 𝐹〉

300 〈𝐵, 𝐵, 𝐴, 𝐷, 𝐴〉

400 〈𝐵, 𝐴, 𝐸, 𝐹, 𝐶, 𝐵, 𝐶〉

500 〈𝐷, 𝐷, 𝐴, 𝐴, 𝐵〉

Figure 2.5: An example of a horizontal clickstream database.

 Pattern〈𝐴〉

Pattern〈𝐴〉 DIP〈𝐴〉

Data ID UCID Position list Local ID Data ID Position list

1 100 1, 4, 5, 1 1 1

2 300 3, 5 2 2 1

3 400 2 3 3 1

4 500 3, 4 4 4 1

(a) (b)

Figure 2.6: Data IDLists (a) and pseudo-IDLists of pattern 〈𝐴〉.

 Pattern〈𝐵〉

Pattern〈𝐵〉 DIP〈𝐵〉

Data ID UCID Position list Local ID Data ID Position list

1 100 2, 6, 9, 11 1 1 1

2 200 1, 2 2 2 1

3 300 1, 2 3 3 1

4 400 1, 6 4 4 1

5 500 5 5 5 1

(a) (b)

Figure 2.7: Data IDLists (a) and pseudo-IDLists of pattern 〈𝐵〉.

 Pattern〈𝐶〉

Pattern〈𝐶〉 DIP〈𝐶〉

Data ID UCID Position list Local ID Data ID Position list

30

1 100 3, 7, 10 1 1 1

2 200 6 2 2 1

3 400 5, 7 3 3 1

(a) (b)

Figure 2.8: Data IDLists (a) and pseudo-IDLists of pattern 〈𝐶〉.

The CUP algorithm is described through 3 main steps as shown below:

− Creating IDLists for the frequent 𝑘-patterns (k = 1).

− Generating (𝑘 + 1)-patterns from 𝑘-patterns.

− Calculating the pseudo-IDList for the (𝑘 + 1)-patterns candidates, using

pseudo-IDList calculates the support. Candidates are discarded if its minimum

support is less than the minimum support threshold. The process then loops

back at the generating candidate step (step 2) until no candidates can be found.

2.1.4.2 CM-WSPADE and Compact-SPADE (Huynh et al., 2020)

The CM-WSPADE algorithm (Huynh et al., 2020) was proposed to solve the

mining weighted clickstream patterns problem. And the improvement of the CM-

WSPADE algorithm is called Compact-SPADE to improve the running time and memory

usage. The CM-WSPADE algorithm is an extension of the CM-SPADE algorithm

(Fournier-Viger et al., 2014), which uses the following depth-first-search strategy for

mining weighted clickstream patterns. The CM-WSPADE algorithm starts by looking for

1-clickstream candidate patterns and calculates their weighted support. Any 1-clickstream

candidate samples whose weighted support is lower than a certain weighted threshold is

discarded. The remaining 1-clickstream patterns are frequent weighted patterns and are

used to generate the 2-clickstream patterns, The algorithm discards any 2-click stream

candidate samples which its weighted support is less then weight threshold. The process

repeats until no new candidate sample is generated.

2.1.4.3 SUI (Sequential pattern mining Using Indices) (Huynh et al., 2022)

The pseudo-IDLists data structure (Huynh et al., 2020) has proposed to improve

running time and memory usage for mining clickstream pattern, but it only uses for

clickstreams data mining. Therefore, Huy et al. proposed an algorithm called SUI

(Sequential pattern mining Using Indices) (Huynh et al., 2022), which have changes and

improvements to be able to use the pseudo-IDLists data structure for sequence data

mining.

Because the clickstream pattern has only one item per itemset, when mining

clickstream pattern only has the 𝑠-extension. But by definition of mining sequential pattern

31

must have both 𝑠-extension and 𝑖-extension. To solve the above problem, Huynh et al.

used both data-IDList and pseudo-IDLis data structures for the SUI algorithm.

The SUI mining process involves a series of steps to identify frequent patterns in a

horizontal database.

− The first step of the process entails scanning the entire database horizontally

and gathering all the frequent 1-patterns along with their associated data-ID

lists.

− Subsequently, candidate patterns are generated in step two, which can have 𝑖-

extensions, 𝑠-extensions, or both. This is done by combining two 𝑘-patterns

that have the same (𝑘 − 1)-prefix, where frequent 1-patterns share an empty

prefix.

− In the third step, pseudo-IDLists and data-IDLists are generated for the

candidates produced in the previous steps, and their support is checked against

the minimum support requirement. Candidates whose support is found to be

less than the 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 are discarded. The candidate support can be obtained

from their ID-Lists instead of scanning the entire database, which is performed

in step one. However, producing pseudo-IDLists and data-IDLists is known to

consume a significant portion of the algorithm's runtime. The process then

returns to step two and repeats until no further candidates can be found.

Through the examination of clickstream pattern mining algorithms proposed by

Huy et al., the advantages can be observed as follows:

− The algorithms utilize the pseudo-IDLists data structure, an extension of the

IDList data structure. Pseudo-IDLists inherits the exceptional attributes of

IDList, thereby assisting in the avoidance of duplicate data storage. Pseudo-

IDLists does not necessitate the storage of complete candidate position

information in the database. Instead, it can be accessed through the frequent

patterns that generated it. This feature significantly reduces storage space

requirements.

− The pseudo-IDLists data structure stores a matrix of candidate positions,

enabling expedient calculation of candidate support by examining the number

of rows in the position matrix.

Building upon the exploration of the pseudo-IDLists data structure's characteristics,

we have successfully applied this data structure to address the problem of inter-sequence

32

pattern mining. This application has resulted in improvements and optimizations to the

approach for inter-sequence pattern mining, detailed in Chapter 3.

2.2 Inter-sequence Pattern Mining Algorithms

2.2.1 Basic Concepts and Definitions

Definition 2.14 (Sequence database): A sequence database is a collection of

sequences (Definition 2.2), denoted as 𝐷 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛}, where each 𝑠𝑖(1 ≤ 𝑖 ≤ 𝑛) is

a tuple of values 〈𝐷𝑎𝑡, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒〉: (1) Dat, which represents contextual information

related to the time of the transaction; and (2) Sequence, which is an ordered list of itemset

as described above.

For example, a sequential database could contain multiple sequences of customer

purchases over time, with each sequence representing the items purchased in a particular

transaction and the associated time of that transaction (in Table 2.4a).

Table 2.4. Customer transactions (a) and customer sequences (b).

Transaction time Customer Itemsets DAT Sequences

01.02.2023 12: 00 11 𝐵𝐶 1 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉

01.02.2023 13: 00 22 𝐴 2 〈(𝐴𝐶)(𝐵𝐶)𝐴〉

01.02.2023 14: 00 33 𝐴𝐶 3 〈𝐴𝐷〉

01.02.2023 15: 00 44 𝐶 4 〈𝐴𝐶〉

03.02.2023 10: 00 33 𝐴𝐶 (b)

03.02.2023 16: 00 11 𝐵𝐶

03.02.2023 17: 00 44 𝐴

04.02.2023 08: 00 66 𝐴

04.02.2023 12: 00 44 𝐷

05.02.2023 14: 00 55 𝐴

05.02.2023 19: 00 33 𝐶

(a)

For example, the sequential database as shown in Table 2.4b and 𝐷𝐴𝑇 = 1, the

provided sequence data 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉 can be examined to identify the order in which

items were purchased. This sequence comprises four distinct itemset that are delimited by

parentheses, with each itemset containing one or more items. It should be noted that if an

itemset contains only one item, parentheses are not required. For example, item 𝐴 in the

sequence represents an itemset with a single item and does not require parentheses. The

first itemset, (𝐵𝐶), corresponds to the purchase of item 𝐵 followed by item 𝐶. The second

33

itemset, 𝐴, represents the acquisition of item 𝐴. The third itemset, (𝐴𝐶), indicates the

purchase of item 𝐴 followed by item 𝐶. Finally, the fourth and last item is 𝐶, signifying the

purchase of item 𝐶 for the three times.

Definition 2.15 (Span value): Assuming the sequences 𝑠1 and 𝑠2 have domain

attributes 𝑑1 and 𝑑2, respectively, denoted as (𝐷𝐴𝑇). The span from 𝑠1 to 𝑠2 is calculated

as [𝑑2-𝑑1], if 𝑑1 is taken as the reference point. The sequence 𝑠2 is an extended sequence

and denoted as 𝑠2 [𝑑2-𝑑1].

For example, considering the sequence database given in Table 2.4b, the 1st

transaction is used as the reference point then the extended sequence of the 2nd transaction

is 〈(𝐴𝐶)(𝐵𝐶)𝐴〉[1].

Definition 2.16 (Extended sequence, item and itemset): An extended sequence

𝑠[𝑑] = 〈𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛〉[𝑑] consists of itemset 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑛, where [𝑑] denotes the span

of 𝑠. The itemset 𝑡𝑖 associated with [𝑑] is defined as an extended itemset (𝑒-itemset)

denoted by 〈𝑡𝑖〉[𝑑]. If 𝑡𝑖 = (𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚), where 𝑢𝑘 is an item for 1 ≤ 𝑘 ≤ 𝑚, we

define 𝑢𝑘 associated with [𝑑] as an extended item (𝑒-item), denoted by (𝑢𝑘)[𝑑].

For instance, the extended sequence 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉[1] contains four 𝑒-itemset,

〈(𝐵𝐶)〉[1], 〈𝐴〉[1], 〈(𝐴𝐶)〉[1] and 〈𝐶〉[1] which can be decomposed into three 𝑒-items,

(𝐴)[1], (𝐵)[1] and (𝐶)[1].

Definition 2.17 (Megasequences) : In a sequential database consisting of 𝑘

sequences 〈𝑑1, 𝑠1〉, 〈𝑑2, 𝑠2〉, … , 〈𝑑𝑘, 𝑠𝑘〉, a megasequence with 𝑘 > 0 is represented by the

union of its subsequences, denoted as 𝛹 = 𝑠1[0] ∪ 𝑠2[𝑑2 – 𝑑1] ∪ … ∪ 𝑠𝑘[𝑑𝑘 – 𝑑1]. The

reference point for 𝛹 is 𝑑1, indicating that 𝛹 starts from this domain attribute.

The 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 refers to a threshold set by the user which specifies the maximum span. To

satisfy the condition of 𝑚𝑎𝑥𝑠𝑝𝑎𝑛, the |𝑑𝑘 – 𝑑1| in the sequential database must be less

than or equal to 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 (𝑑𝑘 – 𝑑1 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛).

An example of the megasequence list is shown in Table 2.5b, generated from the

database presented in Table 2.4b, with 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1 and 𝐷𝐴𝑇 = 1 serving as the

reference point.

Table 2.5. Converting a sequential database of Table 2.4 (a) to megasequences (b).

DAT Sequences DAT Megasequences

1 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉 1 〈(𝐵𝐶)𝐴(𝐴𝐶)𝐶〉[0]〈(𝐴𝐶)(𝐵𝐶)𝐴〉[1]

2 〈(𝐴𝐶)(𝐵𝐶)𝐴〉 2 〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴𝐷〉[1]

34

3 〈𝐴𝐷〉 3 〈𝐴𝐷〉[0]〈𝐴𝐶〉[1]

4 〈𝐴𝐶〉 4 〈𝐴𝐶〉[0]

(a) (b)

Definition 2.18 (E-item comparing) (T. Le et al., 2018): Consider two e-items 𝛼 =

(𝑥)[𝑑1] and 𝛽 = (𝑦)[𝑑2]. The two e-items are equal, 𝛼 = 𝛽, if and only if they have the

same span and the same content, (𝑑1 = 𝑑2) ∧ (𝑥 = 𝑦). The e-item 𝛼 is less than 𝛽, 𝛼 <

𝛽, if either the span of 𝛼 is less than the span of 𝛽, 𝑑1 < 𝑑2, or if the indices are equal, but

the content of 𝛼 is less than the content of 𝛽, (𝑑1 = 𝑑2) ∧ (𝑥 < 𝑦).

For instance, (𝐵)[0] = (𝐵)[0], (𝐵)[2] < (𝐵)[3] and (𝐵)[2] < (𝐶)[2].

Definition 2.19 (Subset e-item) (T. Le et al., 2018): The function 𝑠𝑢𝑏𝑘,𝑙(𝛼) is

defined as the set of 𝑒-items of pattern 𝛼 from position 𝑘 to 𝑙, where the number of e-items

is equal to (𝑙 − 𝑘 + 1).

For instance, 𝑠𝑢𝑏1,6(〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴𝐷〉[2]) = 〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴〉[2] and

𝑠𝑢𝑏6,6(〈(𝐴𝐶)(𝐵𝐶)𝐴〉[0]〈𝐴𝐷〉[2]) = 〈𝐴〉[2].

Definition 2.20 (Inter-sequence 1-patterns joining) (T. Le et al., 2018): Given two

frequent inter-sequence 1-patterns 𝑥 = 〈𝑘〉[0] and 𝑦 = 〈𝑚〉[0], three types of join

extension can be performed on them. Firstly, an 𝑖-extension can be performed where

𝑥 ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {〈(𝑘𝑚)〉[0]}. Secondly, a 𝑠-extension can be performed where

𝑥 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {〈𝑘𝑚〉[0]}. Lastly, a 𝑡-extension can be performed where

𝑥 ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {〈𝑘〉[0]〈𝑚〉[𝑑]|1 ≤ 𝑑 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛}. It should be noted that 𝑥 and 𝑦

are joinable in any instance.

For instance, given 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 2:

− 〈𝐴〉[0] ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐵〉[0] = 〈(𝐴𝐵)〉[0]

− 〈𝐴〉[0] ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐵〉[0] = 〈𝐴𝐵〉[0]

− 〈𝐴〉[0] ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐵〉[0] = {〈𝐴〉[0]〈𝐵〉[1], 〈𝐴〉[0]〈𝐵〉[2]}

Definition 2.21 (Inter-sequence k-patterns joining) (T. Le et al., 2018): Given two

frequent inter-sequence 𝑘-patterns 𝑥 and 𝑦, where 𝑘 > 1, their subpatterns of length 𝑘,

denoted as 𝑠𝑢𝑏𝑘,𝑘(𝑥) = (𝑚)[𝑑1] and 𝑠𝑢𝑏𝑘,𝑘(𝑦) = (𝑛)[𝑑2], respectively. If 𝑠𝑢𝑏1,𝑘−1(𝑥) =

𝑠𝑢𝑏1,𝑘−1(𝑦) and 𝑑1 ≤ 𝑑2, then 𝑥 is joinable to 𝑦, resulting in three types of join

extension:

− Itemset extension:𝑥 ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {𝑥+𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑛)[𝑑2]|(𝑑1 = 𝑑2) ∧ (𝑚 < 𝑛)}.

− Sequence extension:𝑥 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {𝑥+𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑛)[𝑑2]|𝑑1 = 𝑑2}.

35

− Inter extension:𝑥 ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑦 = {𝑥+𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑛)[𝑑2]|𝑑1 < 𝑑2}.

For instance:

− 〈𝐴𝐵〉[0] ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐴𝐷〉[0] = 〈𝐴(𝐵𝐷)〉[0]

− 〈𝐴𝐵〉[0] ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐴𝐷〉[0] = 〈𝐴𝐵𝐷〉[0]

− 〈𝐴𝐵〉[0] ∪𝑡−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 〈𝐴〉[0]〈𝐷〉[2] = 〈𝐴𝐵〉[0]〈𝐷〉[2]

Definition 2.22 (Problem statement of inter-sequence pattern mining): Given a

sequential database 𝐷 and a minimum support value, the task of inter-sequence pattern

mining is to discover all frequent inter-sequence patterns.

Definition 2.23 (Problem statement of inter-sequence pattern mining with itemset

constraints): Given a sequence database 𝐷, the minimum support (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡), and a set

of constraint itemsets 𝐼𝐶 = {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑘}. The task of inter-sequence pattern mining

with an itemset constraint is to discover all frequent sequences 𝛼 =

𝛼1[𝑤1], 𝛼2[𝑤2], . . . , 𝛼𝑚[𝑤𝑚] such that ∃𝛼𝑖[𝑤𝑖] ∈ 𝛼, ∃𝑏𝑗 ∈ 𝐼𝐶: 𝑏𝑗 ⊆ 𝛼𝑖.

2.2.2 Algorithms for Mining Inter-sequence Patterns

2.2.2.1 EISP-Miner (C. S. Wang & Lee, 2009)

The EISP-Miner algorithm (C. S. Wang & Lee, 2009) proposed by Wang et al.

mines inter-sequence pattern such that a pattern can be used to describe associations across

many different sequences by the maxspan value (specified by the user). The algorithm uses

a PatternList data structure to store information about a frequent pattern. The EISP-Miner

algorithm goes through the following main steps:

− First, iterate through the original database and then use a PatternList to store

frequent 1-pattern patterns.

− The second step stores all frequent 1-pattern patterns into a tree structure named

ISP-Tree.

− Then, EISP-Miner algorithm uses depth-first search to find all frequent

patterns. By using PatternList data structure and ISP-Tree tree structure, the

EISP-Miner algorithm only needs to scan the original database once. This is the

optimal point of EISP-Miner algorithm compared to previous algorithms such

as Apriori.

The EISP-Miner algorithm is presented as following:

Algorithm 2.8. The EISP-Miner algorithm (C. S. Wang & Lee, 2009)

Input: A sequence database 𝐷, minimum support (minsupport), and maximum span

maxspan

 Output: A complete of frequent inter-sequence patterns 𝐹𝑃

36

1.
Scan D to generate a set of all frequent 1-patternlists, T|NULL, as the extended group

of the root node of an ISP-tree T;

2. For each frequent 1-patternlist list in T|NULL do

3. Call ISP-Join1(list, T|NULL, FP) to get T|list;

4. Call ISP-JoinK(T|list, FP);

5. End for

6. Ouput FP;

Algorithm 2.9. The ISP-Join1 function (C. S. Wang & Lee, 2009)

 Function: ISP-Join1(list, T|NULL, FP)

1. for each frequent 1-pattern  in T|NULL, where =<u>[0] and =<v>[0] do

2. for x = 0 to maxspan do

3. if (x=0) and (u<v) then list = list i list;

4. if (support(list ≥ minsupport then add list to T|list and  to FP;

5. if (x=0) then list = list s list;

6. if support(list ≥ minsupport then add list to T|list and  to FP;

7. If (x>0) then list = list t list;

8. if support(list ≥ minsupport then add list to T|list and  to FP;

9. end for

10. end for

Algorithm 2.10. The ISP-JoinK function (C. S. Wang & Lee, 2009)

 Function: ISP-JoinK(T|list, FP)

1. for each frequent k-pa e n βlist in T|list where subk,k β =<u>[] do

2. for each frequent k-pattern list in T|list where subk,k()=<v>[j] do

3. if (i=j) and (u<v) then list = βlist i list;

4. if support(list ≥ minsupport then add list T| βlist and  tp FP;

5. if (i=j) then list = βlist s list;

6. if support(list ≥ minsupport then add list T| βlist and  tp FP;

7. If (i<j) then list = βlist t list;

8. if support(list ≥ minsupport then add list T| βlist and  tp FP;

9. end for

10. Call ISP-JoinK T|βlist, FP);

11. end for

37

The EISP-Miner algorithm offers several advantages in terms of efficiency and

storage utilization:

− By performing only one scan of the database, EISP-Miner is able to calculate

candidate support and candidate extension simultaneously. This eliminates the

need for costly matching of candidate subsets, resulting in significant time and

storage space savings. The algorithm leverages the PatternList data structure,

which stores only the location information of candidates. This approach avoids

the necessity of rescanning the original database during candidate expansion.

− However, it is important to note that the PatternList data structure has some

limitations. It utilizes integers to store candidate location information, which

can lead to increased memory requirements, particularly when working with

large databases. Additionally, calculating the support level of candidates may

be more time-consuming compared to other methods.

2.2.2.2 DBV-ISP (Vo et al., 2012)

Mining inter-sequence patterns was proposed by Wang et al. via the EISP-Miner

algorithm (C. S. Wang & Lee, 2009), but this algorithm must use a set of integers to store

the position of a pattern in the database. This leads to a lot of memory usage during the

running of the algorithm. To overcome the above inefficient, Vo et al. used an alternative

structure called DBV-PatternList and proposed an algorithm named DBV-ISP (Vo et al.,

2012). The algorithm uses a DBV-PatternList data structure to store information about a

frequent pattern. Because DBV-ISP algorithm is based on the EISP-Miner algorithm, it

also has the following main steps: First, iterate through the original database and then use a

DBV-PatternList to store frequent 1-pattern patterns. The second step stores all frequent 1-

pattern pattern into a tree structure named DBV-tree. Then, the DBV-ISP algorithm uses

depth-first search to find all frequent patterns. By using DBV-PatternList data structure

and IDBV-tree structure, the DBV-ISP algorithm only needs to scan the original database

once and is more optimized than the previous algorithm EISSP-Miner.

The evaluation of the DBV-ISP algorithm provides insights into its running time

and storage space. The algorithm demonstrates several strengths, outlined below:

− The DBV-ISP algorithm represents an improved and extended version of the

EISP-Miner algorithm (C. S. Wang & Lee, 2009). It introduces the utilization

of a bit data structure for storing candidate location information, leading to

reduced storage space, and processing time compared to the EISP-Miner

algorithm. By employing bit intersection operations for candidate support

38

calculation, the DBV-ISP algorithm achieves faster execution in comparison to

working with integers.

− Furthermore, the algorithm leverages a dynamic bit vector data structure to

optimize the storage space for candidate locations. Specifically, for candidate

patterns that occur infrequently in the database, only the first occurrence and

subsequent occurrence positions need to be stored. This approach effectively

reduces the storage of zero bits in candidate location information, resulting in

more efficient memory utilization. These strengths make the DBV-ISP

algorithm an efficient and effective solution for inter-sequence mining tasks.

− However, the dynamic bit vector data structure has limitations when it comes to

storing information. Newly created candidate location information must be

stored, resulting in overlapping positions with previous frequent patterns. This

duplication of data poses a challenge and requires additional storage memory.

To address this issue, in Chapter 3, we propose the implementation of a data

structure called pseudo-IDList as a solution.

2.2.2.3 ISP-IC, iISP-IC, piISP-IC (T. Le et al., 2018)

Mining inter-sequence pattern was proposed by Wang et al. (C. S. Wang & Lee,

2009), and later improved by Vo et al. (Vo et al., 2012). But the algorithm generates a lot

of frequent patterns during mining process. To improve this problem, Le et al. proposed an

algorithm called ISP-IC (Inter-Sequence Pattern with Item Constraint mining) (T. Le et

al., 2018), which uses item constraints in the process of inter-sequence mining. Based on

Lemma 2.1, Le et al. presented an improved algorithm of the ISP-IC algorithm, named

iISP-IC. The iISP-IC algorithm reduces the number of conditional checks on item

constraints for newly generated patterns, helping to optimize the running time of the

algorithm. Finally, Le et al. presented a parallel version of iISP-IC named piISP-IC to

improve the performance.

Lemma 2.1: Let 𝛼 satisfy constraint 𝜒 then ∀𝛽, following sequences 𝛾𝐼 = 𝛼 ∪𝐼 𝛽,

𝛾𝑆 = 𝛼 ∪𝑆 𝛽, and 𝛾𝑇 = 𝛼 ∪𝑇 𝛽 also satisfy constraint 𝜒.

The advantages and disadvantages of the ISP-IC algorithm are evaluated as

follows:

− The ISP-IC algorithm extends the functionality of the DBV-ISP algorithm by

addressing the challenge of mining inter-sequence patterns with item condition

constraints. It inherits the dynamic bit vector data structure from DBV-ISP,

leading to optimized processing time and storage space utilization. The use of

39

the bit structure enables efficient calculation of candidate support through bit

assignment operations.

− However, the algorithm does not consider other constraints, such as itemset

conditions. In Chapter 4, the problem of mining inter-sequence patterns with

itemset condition constraints is introduced separately.

− Additionally, the dynamic bit vector structure does not yet resolve data

redundancy. The information regarding the location of newly generated

candidates still overlaps with previous frequent patterns.

2.3 Summary

In this chapter, we introduced the fundamental concepts, definitions, and examples

for frequent pattern mining problems, including mining sequence patterns, sequence

pattern mining with constraints, and clickstream pattern mining. We then presented the

basic concepts, definitions, and examples for the inter-sequence pattern mining problem.

Based on this background information, we made improvements to the inter-sequence

pattern mining problem, which are presented in Chapter 3. Furthermore, we proposed

problems for itemset-constrained inter-sequence pattern mining, which are presented in

Chapter 4.

40

3 CHAPTER 3: MINING INTER-SEQUENCE PATTERNS

BASED ON PSEUDO-IDLIST AND EARLY PRUNING

TECHNIQUES

In this chapter, we introduce the problem of mining inter-sequence patterns and

subsequently address the limitation of the currently employed data structure in the

presence of duplicated data during the mining process. To overcome this limitation, we

propose the utilization of a data structure known as pseudo-IDList. Furthermore, we

present an algorithm named ISP-PI (Inter-Sequence Pattern mining based on Pseudo-

Index) specifically designed for the inter-sequence pattern mining problem. The algorithm

incorporates the ISP-IC (Inter-Sequence Pattern mining with Index Intersection Checking)

method to optimize the mining time. To assess the effectiveness of the proposed algorithm

in comparison to previous algorithms employed in the field of inter-sequence mining, we

employ six test databases to evaluate the algorithm's performance in terms of running time

and storage space utilization.

3.1 Introduction

In 2009, Wang and Lee (C. S. Wang & Lee, 2009) introduced a novel approach for

inter-sequence pattern mining based on a vertical database format. The authors suggested

utilizing the ISP-Tree structure to generate potential candidates that meet the minimum

support threshold. This approach allows for mining patterns across transactions in the

sequence database, while still being able to exploit traditional sequences like GSP (Srikant

& Agrawal, 1996), SPAM(Ayres et al., 2002), SPADE (Zaki, 2001), CM-SPADE

(Fournier-Viger et al., 2014), and PRISM (Gouda et al., 2007, 2010). The method stores

sequence identifiers to calculate the support of patterns, as shown in Figure 3.2. However,

this approach requires a significant amount of memory to store sequence identifiers and

time to compute the intersection of sequence identifiers. To overcome these limitations, Vo

et al. (Vo et al., 2012) introduced an efficient data structure called the DBV-PatternList,

which replaces the PatternList structure used by the EISP-Miner approach. The DBV-

PatternList data structure is illustrated in Figure 3.3 and Figure 3.6. This approach

significantly reduces the storage space and time required for MISP, as well as for mining

closed inter-sequence patterns (B. Le et al., 2015). More recently, Nguyen et al. (2023)

(Nguyen et al., 2023) proposed an algorithm which uses a DBV-PatternList based structure

for MISP with itemset constraints, named DBV-ISPMIC. The proposed algorithm utilizes

the DBV-PatternList to expediently compute the support of patterns. Moreover, they

developed an improved algorithm based on a property to reduce checking candidates.

41

Additionally, a parallel method called pDBV-ISPMIC was also developed. Empirical

evaluations showed that DBV-ISPMIC outperformed previous algorithms, and pDBV-

ISPMIC outperformed DBV-ISPMIC in terms of runtime.

For instance, using the customer database given in Table 2.4, with 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =

50% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1. The complete set of frequent inter-sequence patterns with their

supports are shown in Table 3.1 (based on Definition 2.22).

Table 3.1. Frequent inter-sequence patterns mined from the database shown in Table 2.4.

Level 1 Level 2 Level 3 Level 4

〈𝐴〉[0]: 4 〈𝐶𝐶〉[0]: 2 〈𝐶𝐴〉[0]〈𝐴〉[1]:2 〈(𝐵𝐶)𝐴〉[0]〈𝐴〉[1]:2

〈𝐵〉[0]: 2 〈(𝐵𝐶)〉[0]: 2 〈𝐶𝐶〉[0]〈𝐴〉[1]:2 〈(𝐴𝐶)𝐶〉[0]〈𝐴〉[1]:2

〈𝐶〉[0]: 3 〈(𝐴𝐶)〉[0]: 2 〈𝐵𝐴〉[0]〈𝐴〉[1]:2

 〈𝐴𝐶〉[0]: 3 〈(𝐵𝐶)〉[0]〈𝐴〉[1]:2

 〈𝐶𝐴〉[0]: 2 〈(𝐵𝐶)𝐴〉[0]:2

 〈𝐶〉[0]〈𝐴〉[1]: 2 〈𝐴𝐴〉[0]〈𝐴〉[1]:2

 〈𝐴〉[0]〈𝐶〉[1]: 2 〈𝐴𝐶〉[0]〈𝐴〉[1]:2

 〈𝐵𝐴〉[0]: 2 〈(𝐴𝐶)〉[0]〈𝐴〉[1]:2

 〈𝐵〉[0]〈𝐴〉[1]: 2 〈(𝐴𝐶)𝐶〉[0]:2

 〈𝐴𝐴〉[0]: 2

 〈𝐴〉[0]〈𝐴〉[1]: 3

Previous research on mining inter-sequence patterns is still limited due to the

duplication of data and the large number of candidates generated, which requires

significant processing time and storage space. The contributions of this chapter are

presented as follows:

1. Demonstrating the limitations of the PatternList and dynamic bit vector data structures

in terms of data duplication in previous inter-sequence pattern mining algorithms.

2. Introducing the pseudo-IDList data structure for pattern extension by sequence and

itemset and extending its use for the inter-sequence mining problem with inter-

extension. The effectiveness of this data structure for avoiding data duplication in

mining inter-sequence patterns is proven, and the ISP-PI algorithm is proposed for this

problem.

3. Proposing and applying the ISP-IC pruning method to the ISP-PI algorithm to reduce

the number of generated patterns, given the large number of candidates generated in

42

the inter-sequence mining problem. The pruning method helps reduce the time

required for support calculations by reducing the number of candidates.

4. Evaluating the performance of the ISP-PI algorithm using the pseudo-IDList data

structure and the applied pruning method. Six test databases were used for evaluation,

including large databases with nearly a million rows of data.

〈𝐴〉 〈𝐵〉 〈𝐶〉 〈𝐷〉

DAT Position List DAT Position List DAT Position List DAT Position List

1 2, 3 1 1 1 1, 3, 4 3 2

2 1, 3 2 2 2 1, 2

3 1 4 2

4 1

Figure 3.1. The value of 𝐷𝐴𝑇 and the position of each item in a transaction are extracted

from Table 2.4.

〈𝐴〉 Pattern: 〈𝐴〉[0]

DAT Position List 𝑡-value 𝑝-value

1 2, 3 1 2, 3

2 1, 3 2 1, 3

3 1 3 1

4 1 4 1

Figure 3.2. A PatternList data structure for pattern 〈A〉 from Table 2.4.

Figure 3.2 presents a PatternList data structure for pattern 〈𝐴〉 from Table 2.4,

which involves creating two columns. The first column represents the 𝑡-value and

corresponds to the 𝐷𝐴𝑇 column in Table 2.4. The second column represents the 𝑝-value

and corresponds to the Position List column illustrated in Figure 3.1.

43

〈𝐴〉 Pattern: 〈𝐴〉[0]

DAT Position List
 Start 1

 Bit-vector 𝑝-value

1 2, 3

15

2, 3

2 1, 3 1, 3

3 1 1

4 1 1

Figure 3.3. DBV-PatternList data structure for pattern 〈A〉 is constructed from Table 2.4.

Figure 3.3 presents the DBV-PatternList data structure for pattern 〈𝐴〉 is

constructed from Table 2.4. As the pattern appears in the first transaction with a 𝐷𝐴𝑇 value

of 1, the Start value is initialized to 1. The pattern 〈𝐴〉 appears in transactions with 𝐷𝐴𝑇

values of 1, 2, 3, and 4, and its bit value is either 1 (if it appears) or 0 (if it does not

appear). Consequently, the list of bits for pattern 〈𝐴〉 is (1111) (in binary), and the

corresponding Bit-vector value is 15 (in decimal) for the first column of 〈𝐴〉 pattern. The

second column, 𝑝-value, corresponds to the PositionList column.

Pattern: 〈𝐴〉 Pattern: 〈𝐴〉[0]

𝑡-value 𝑝-value
 PP 〈𝐴〉

 𝑡-value Start index

1 2, 3 1 1

2 1, 3 2 1

3 1 3 1

4 1 4 1

Figure 3.4. A pseudo-IDList data structure is constructed for the 〈A〉 pattern based on

its PatternList data structure.

Figure 3.4 shows a pseudo-IDList data structure constructed for the 〈𝐴〉 pattern

based on its PatternList data structure. The 𝑃𝑃 value, which is the last item in the pattern,

is set to 〈𝐴〉. The 𝑡-value column of the pseudo-IDList data structure corresponds with the

𝑡-value column of the PatternList data structure, and the start index value is initialized to 1.

This is because the 〈𝐴〉 pattern has the same 𝑝-value column value as that of the 𝑃𝑃

pattern.

〈𝐴〉[0] 〈𝐵〉[0] 〈𝐶〉[0]

𝑡-value 𝑝-value 𝑡-value 𝑝-value 𝑡-value 𝑝-value

1 2, 3 1 1 1 1, 3, 4

44

2 1, 3 2 2 2 1, 2

3 1 4 2

4 1

Figure 3.5. The list of PatternList of frequent inter-sequence 1-patterns generated from

Table 2.4.

〈𝐴〉[0] 〈𝐵〉[0] 〈𝐶〉[0]

Start 1 Start 1 Start 1

Bit-vector 𝑝-value Bit-vector 𝑝-value Bit-vector 𝑝-value

15

2
12

1

13

1, 3, 4

1, 3 2 1, 2

1 2

1

Figure 3.6. The list of dynamic bit vector of frequent inter-sequence 1-patterns generated

from Table 2.4.

〈𝐴〉[0] 〈𝐶〉[0] 〈𝐴𝐶〉[0]

𝑡-value 𝑝-value 𝑡-value 𝑝-value 𝑡-value 𝑝-value

1 2, 3 1 1, 3, 4 1 3, 4

2 1, 3 2 1, 2 2 2

3 1 4 2 4 2

4 1

(a)

〈𝐴〉[0] 〈𝐶〉[0] 〈𝐴〉[0]〈𝐶〉[1]

𝑡-value 𝑝-value 𝑡-value 𝑝-value 𝑡-value 𝑝-value

1 2, 3 1 1, 3, 4 2 1, 2

2 1, 3 2 1, 2 4 2

3 1 4 2

4 1

(b)

Figure 3.7. s-extension (a) and t-extension (b) of the 〈A〉[0] and 〈C〉[0] patterns.

Figure 3.7 shows the 𝑠-extension (a) and 𝑡-extension (b) of the 〈𝐴〉[0] and 〈𝐶〉[0]

patterns resulted in the 〈𝐴𝐶〉[0] and 〈𝐴〉[0]〈𝐶〉[1] patterns, respectively. When comparing

45

the 𝑝-value column of these patterns with that of the 〈𝐶〉[0] pattern, it was found that

duplicate values can occupy a considerable amount of memory storage.

〈𝐴〉[0] 〈𝐶〉[0] 〈𝐴𝐶〉[0]

𝑡-value 𝑝-value 𝑡-value 𝑝-value PP 〈𝐶〉

1 2, 3 1 1, 3, 4 𝑡-value Start Index

2 1, 3 2 1, 2 1 2

3 1 4 2 2 2

4 1 4 1

Figure 3.8. A pseudo-IDList structure is constructed for the pattern 〈AC〉[0].

A pseudo-IDList structure constructed for the pattern 〈𝐴𝐶〉[0] by using two

frequent inter-sequence 1-patterns, namely the PatternList 〈𝐴〉[0] and 〈𝐶〉[0], within an 𝑠-

extension is shown in Figure 3.8. The 𝑃𝑃 variable is set to 〈𝐶〉, which is the last item in the

form 〈𝐴𝐶〉[0]. The first line of the pattern 〈𝐴〉[0] is linked to the first line of the pattern

〈𝐶〉[0] since they both have a 𝑡-value of 1. Following Definition 2.20, we obtain the set of

𝑝-values, which is {3, 4} because the condition is 𝑝-value(〈𝐴〉[0]) < 𝑝-value(〈𝐶〉[0]).

Using the 𝑃𝑃 variable and 𝑡-value of 1, we identify a set of 𝑝-values {3, 4} that occur at the

second position, resulting in a StartIndex value of 2. Similarly, for the 𝑡-values that

correspond to 〈𝐴〉[0] and 〈𝐶〉[0], we find the {𝑡-value, StartIndex} pairs {2, 2} and {4, 1}.

〈𝐴〉[0] 〈𝐶〉[0] 〈𝐴〉[0]〈𝐶〉[1]

𝑡-value 𝑝-value 𝑡-value 𝑝-value PP 〈𝐶〉

1 2, 3 1 1, 3, 4 𝑡-value Start Index

2 1, 3 2 1, 2 2 1

3 1 4 2 4 1

4 1

Figure 3.9. A pseudo-IDList structure is constructed for the pattern 〈A〉[0]〈C〉[1].

Figure 3.9 shows the pseudo-IDList structure constructed for the pattern

〈𝐴〉[0]〈𝐶〉[1] using two frequent inter-sequence 1-patterns, namely the PatternList 〈𝐴〉[0]

and 〈𝐶〉[0], within a 𝑡-extension and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1. The variable 𝑃𝑃 was set to 〈𝐶〉, which

is the final item in the 〈𝐴〉[0]〈𝐶〉[1] pattern. The first row of the pattern 〈𝐴〉[0] was linked

to the second line of the pattern 〈𝐶〉[0], since 𝑡-value(〈𝐶〉[0]) - 𝑡-value(〈𝐴〉[0]) =

𝑚𝑎𝑥𝑠𝑝𝑎𝑛. Following Definition 2.20, we obtained the set of 𝑝-values, which was {1,2}.

Using the 𝑃𝑃 variable and a 𝑡-value of 2, we identified a set of 𝑝-values {1, 2} that

46

occurred at the first position, resulting in a StartIndex value of 1. Similarly, for the 𝑡-values

corresponding to 〈𝐴〉[0] and 〈𝐶〉[0], we found the {𝑡-value, StartIndex} pairs {4, 1}.

〈(𝐵𝐶)〉[0] 〈𝐵𝐴〉[0] 〈(𝐵𝐶)𝐴〉[0]

𝑡-value 𝑝-value 𝑡-value 𝑝-value PP 〈𝐴〉

1 1 1 2,3 𝑡-value Start Index

2 2 2 3 1 1

 2 1

Figure 3.10. A pseudo-IDList structure is constructed for the pattern 〈(𝐵𝐶)𝐴〉[0] by using

two frequent inter-sequence 𝑘-patterns (𝑘 > 1), namely the PatternList 〈(𝐵𝐶)〉[0] and

〈𝐵𝐴〉[0], within a 𝑠-extension.

〈(𝐴𝐶)〉[0] 〈𝐴〉[0]〈𝐴〉[1] 〈(𝐴𝐶)〉[0]〈𝐴〉[1]

𝑡-value 𝑝-value 𝑡-value 𝑝-value PP 〈𝐴〉

1 3 2 1,3 𝑡-value Start Index

2 1 3 1 2 1

 4 1 3 1

Figure 3.11. A pseudo-IDList structure is constructed for the pattern 〈(𝐴𝐶)〉[0]〈𝐴〉[1]

using two frequent inter-sequence k-patterns (𝑘 > 1), namely the PatternList 〈(𝐴𝐶)〉[0]

and 〈𝐴〉[0]〈𝐴〉[1], within an 𝑡-extension and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1.

〈𝐴𝐶〉[0] 〈𝐶〉[0] 〈𝐴𝐶〉[0]

PP 〈𝐶〉
DAT

Position

List

DAT

Position

List 𝑡-value 𝑝-value

1 2 1 1, 3, 4 1 3,4

2 2 2 1, 2 2 2

4 1 4 2 4 2

Figure 3.12. The process of data retrieval of a pseudo-IDList for pattern 〈AC〉[0].

Figure 3.12 shows the process of data retrieval of a pseudo-IDList for pattern

〈𝐴𝐶〉[0]. The first row in the pseudo-IDList of 〈𝐴𝐶〉[0] indicates the first row in the

PatternList of the 〈𝐶〉[0] pattern because the 𝑡-value and the 𝐷𝐴𝑇 are both 1. The 𝑝-value

is 2, which means that it will retrieve data starting from the second position to the end of

the PositionList of 〈𝐶〉[0] pattern, and the result is {3,4}. Similarly, for the second and

47

third rows of the pseudo-IDList 〈𝐴𝐶〉[0] pattern, the resulting PositionList for the second

row is {2} and for the third row is {3} in PatternList 〈𝐴𝐶〉[0].

3.2 Data Structure

3.2.1 PatternList

Definition 3.1 (C. S. Wang & Lee, 2009): Given a pattern 𝑎, we define a patternlist

𝑎 𝑙𝑖𝑠𝑡 = 𝑎{𝑡1. 𝑝11𝑝12. . . 𝑝1𝑚1, 𝑡1. 𝑝21𝑝22. . . 𝑝2𝑚2, 𝑡𝑛. 𝑝𝑛1𝑝𝑛2. . . 𝑝𝑛𝑚𝑛}, where

{𝑡1. 𝑝11 𝑝12 . . . 𝑝1𝑚1, 𝑡2. 𝑝21 𝑝22 . . . 𝑝2𝑚2, 𝑡𝑛. 𝑝𝑛1 𝑝𝑛2 . . . 𝑝𝑛𝑚𝑛} is called the list; 𝑡𝑖 is the dat

(t-value); and 𝑝𝑖𝑗 is the position (p-value) that 𝛼‘s las e-item appears at in the database

1 ≤ 𝑖 ≤ 𝑛 and1 ≤ 𝑗 ≤ 𝑚𝑖. We also define 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑎𝑙𝑖𝑠𝑡) as the number of 𝑡-𝑣𝑎𝑙𝑢𝑒𝑠

contained in 𝑎𝑙𝑖𝑠𝑡. If 𝛼 is a k-pattern and 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑎𝑙𝑖𝑠𝑡) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝, we say that 𝑎𝑙𝑖𝑠𝑡 is a

frequent k-patternlist.

Based on Definition 3.1, Figure 3.1 depicts the original information construction of

patterns from Table 2.4. Each pattern has 𝐷𝐴𝑇 (column 𝐷𝐴𝑇) and position (column

PositionList) information pertaining to the corresponding pattern as it appears in the

sequence database.

Taking the 〈𝐴〉 pattern as an example, it comprises four 𝐷𝐴𝑇s (1, 2, 3, 4) and four

sets of positions ({2, 3}, {1, 3}, {1}, {1}), where position set {2, 3} is linked with 𝐷𝐴𝑇 1,

position set {1, 3} is linked with 𝐷𝐴𝑇 2, position set {1} is linked with 𝐷𝐴𝑇 3, and position

set {1} is linked with 𝐷𝐴𝑇 4. The numbers in the 〈𝐴〉 pattern indicate that the pattern

appears at 1st, 2nd, 3rd, 4th in the sequence database. Specifically, it appears in the 2nd and

3rd itemset of the sequence of 𝐷𝐴𝑇 1, in the 1st and 3rd itemset of the sequence of 𝐷𝐴𝑇 2, in

the 1st itemset of the sequence of 𝐷𝐴𝑇 3, and in the 1st itemset of the sequence of 𝐷𝐴𝑇 4.

Figure 3.2 demonstrates the construction of the 〈𝐴〉 PatternList based on the 〈𝐴〉

pattern. A PatternList (C. S. Wang & Lee, 2009) is defined as a collection of three

elements: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡. 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 refers to the pattern itself,

while 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 is a collection of 2-tuples {𝑡-value, 𝑝-value}. The 𝑡-value is the

𝐷𝐴𝑇 value, and the 𝑝-value keeps the set of positions of the pattern the transaction

sequence. Finally, 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 refers to the support of the pattern, that is simply

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 size.

According to the above definition, the set of frequent inter-sequence PatternList

shown in Figure 3.5 can be expressed as follows: 〈𝐴〉[0]{1.23, 2.13, 3.1, 4.1},

〈𝐵〉[0]{1.1, 2.2}, and 〈𝐶〉[0]{1.134,2.12, 4.2}. The support values for each of these

frequent inter-sequence 1-PatternLists are 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴〉[0]) = 4, 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐵〉[0]) = 2,

and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐶〉[0]) = 3, respectively.

48

3.2.2 Pseudo-IDList

In the problem of IPM, data duplication can occur when new candidates are

generated through extension types such as 𝑠-extension and 𝑡-extension, as shown in Figure

3.7. This duplication arises when the position value of items in a transaction must be

maintained, leading to increased memory usage during algorithm execution. To address

this issue, we have utilized and expanded the pseudo-IDList data structure proposed by

Huynh et al. (Huynh et al., 2022). Figure 3.4 depicts how to construct a pseudo-IDList for

a PatternList. The pseudo-IDList contains the following information: 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, which is

the pattern; 𝑃𝑃, a PatternList pointer that points to the PatternList of frequent inter-

sequence 1-pattern, which is the last item in 𝑃𝑎𝑡𝑡𝑒𝑟𝑛; 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑥𝑡𝑟𝑖𝑥, a collection of

2-tuples {𝑡-value, 𝑝-value} that are indices, with the 𝑡-value corresponding to a 𝑡-value in

the PatternList and the 𝑝-value indicating the starting position of pattern 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 in

PatternList 𝑃𝑃 that matches each transaction line (𝑡-value); and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡, the 𝑃𝑎𝑡𝑡𝑒𝑟𝑛’s

support, which we can compute by the 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑀𝑎𝑥𝑡𝑟𝑖𝑥 size.

3.3 Algorithms

3.3.1 Candidate Generation

The EISP-Miner algorithm (C. S. Wang & Lee, 2009) generates candidates from

two frequent inter-sequence patterns based on two cases: frequent inter-sequence 1-

patterns (as defined in Figure 3.4) and frequent inter-sequence k-patterns (𝑘 > 1) (as

defined in Figure 3.5). In this paper, we use the candidate generation method of the

SPADE algorithm (Zaki, 2001) that incorporates the 𝑡-extension. Given the two frequent

inter-sequence patterns 𝛼 and 𝛽, the generated candidates are as follows:

− If both patterns 𝛼 and 𝛽 have only one megasequence, the algorithm expands them by

two cases of sequence and itemset. The resulting candidates are as follows:

+ If both patterns have 𝑠-extensions, three candidates are generated that are a mix of

sequence and itemset extensions. However, if both patterns are the same pattern

(𝛼 = 𝛽), then only one sequence extension candidate is produced.

+ If both patterns have 𝑖-extensions, only one itemset extension candidate is

generated.

+ If 𝛼 has an 𝑖-extension and 𝛽 has an 𝑠-extension, only one sequence extension

candidate is generated.

− If the two frequent inter-sequence patterns 𝛼 and 𝛽 are expanded according to a 𝑡-

extension, there are two cases when the condition is extended to 1-patterns (as defined

in Figure 3.4) or expands to 𝑘-patterns (𝑘 > 1) (as defined in Figure 3.5):

49

+ If both frequent inter-sequence patterns satisfy the expansion condition for 1-

patterns, the set of candidates is output as {〈𝛼〉[0]〈𝛽〉[𝑥]|0 < 𝑥 ≤ 𝑚𝑎𝑥𝑠𝑝𝑎𝑛}.

+ In contrast, only one candidate is generated according to the 𝑘-patterns condition

(𝑘 > 1).

As an example, consider two frequent inter-sequence patterns: 𝛼 = 〈𝐴〉[0] and 𝛽 =

〈𝐵〉[0]. The candidate generation rules for sequence, itemset, and inter-extensions generate

the following set of candidates: {〈𝐴𝐵〉[0], 〈𝐵𝐴〉[0], 〈(𝐴𝐵)〉[0], 〈𝐴〉[0]〈𝐵〉[1]}.

Another example: let 𝛼 = 〈𝐶〉[0]〈𝐴〉[1] and 𝛽 = 〈𝐶𝐴〉[0] be two frequent inter-

sequence patterns. In this case, there is only one candidate generated for inter-extensions,

which is 〈𝐶𝐴〉[0]〈𝐴〉[1].

3.3.2 ISP-IC Method

Let 𝑆1 = 〈𝑋, 𝐿𝑎𝑠𝑡𝑆1〉{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} and 𝑆2 = 〈𝑋, 𝐿𝑎𝑠𝑡𝑆2〉{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚} be

two frequent inter-sequence patterns, where 𝑋 is a prefix of 𝑆1 and 𝑆2, and 𝐿𝑎𝑠𝑡𝑆1, 𝐿𝑎𝑠𝑡𝑆2

are the last items of 𝑆1 and 𝑆2, respectively and 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑛), 𝑡𝑗 (1 ≤ 𝑗 ≤ 𝑚) is the

position of 𝑆1, 𝑆2 on the sequential database, respectively.

Lemma 3.1: Then 𝑆1 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2 = {〈𝑋𝑋𝑛𝑋𝑚〉, 〈𝑋𝑋𝑚𝑋𝑛〉}, if 〈𝑋𝑋𝑛𝑋𝑚〉 is not

frequent, then 〈𝑋𝑋𝑚𝑋𝑛〉 is also not frequent, or vice versa.

Proof: Based on Definition 2.20 and Definition 2.21, the number of transactions

containing 〈𝑋𝑋𝑛𝑋𝑚〉 is 𝑡𝑆1 = |{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} ∪ {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚}|, and the number of

transactions containing 〈𝑋𝑋𝑚𝑋𝑛〉 is also 𝑡𝑆2 = |{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} ∪ {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚}|.

Therefore, 𝑡𝑆1 = 𝑡𝑆2.

If 〈𝑋𝑋𝑛𝑋𝑚〉 is not frequent, then 𝑡𝑆1 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡. Hence, 𝑡𝑆2 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡,

which implies that 〈𝑋𝑋𝑚𝑋𝑛〉 is not frequent. Conversely, if 〈𝑋𝑋𝑚𝑋𝑛〉 is not frequent, then

𝑡𝑆2 < 𝑚𝑖𝑛𝑠𝑢𝑝, which implies that 𝑡𝑆1 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 〈𝑋𝑋𝑛𝑋𝑚〉 is also not frequent.

Thus, the lemma is proven.

For example, let 𝑆1 = 〈𝐴𝐵𝐶〉{1, 3, 5, 7, 8} and 𝑆2 = 〈𝐴𝐵𝐷〉{1, 5, 6, 9} be two

frequent inter-sequence patterns with 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴𝐵𝐶〉) = 5, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴𝐵𝐷〉) = 4, and

𝑚𝑖𝑛𝑠𝑢𝑝 = 3. Pattern 〈𝐴𝐵𝐶〉 appears at positions 1st, 3rd, 5th, 7th, and 8th in the sequential

database, while pattern 〈𝐴𝐵𝐷〉 appears at positions 1st, 5th, 6th, and 9th. By applying the 𝑠-

extension, we have 𝑆1 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2 = {〈𝐴𝐵𝐶𝐷〉, 〈𝐴𝐵𝐷𝐶〉}. The positions where pattern

〈𝐴𝐵𝐶𝐷〉 appears are {1, 3, 5, 7, 8} ∪ {1, 5, 6, 9} = {1, 5}. Since pattern 〈𝐴𝐵𝐶𝐷〉 appears

only twice in the sequential database and 𝑚𝑖𝑛𝑠𝑢𝑝 = 3, it is not frequent. Therefore,

pattern 〈𝐴𝐵𝐷𝐶〉 is also not frequent, and there is no need to calculate its support.

50

Lemma 3.2: The candidates generated from 𝑆1 and 𝑆2 by sequence and itemset

extension are:

− 𝑆1 ∪𝑠−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2 = {〈𝑋𝑋𝑛𝑋𝑚〉, 〈𝑋𝑋𝑚𝑋𝑛〉}

− 𝑆1 ∪𝑖−𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑆2 = {〈𝑋(𝑋𝑛𝑋𝑚)〉|𝑋𝑛 < 𝑋𝑚}

Proof: Based on Definition 2.20 and Definition 2.21, the position of each pattern in

the set of generated candidates can be calculated by 𝑡𝑆 = |{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} ∪

{𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑚}|. We have 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑛𝑋𝑚〉) ≤ 𝑡𝑆, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑚𝑋𝑛〉) ≤ 𝑡𝑆,

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋(𝑋𝑛𝑋𝑚)〉) ≤ 𝑡𝑆, if 𝑡𝑆 < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 then 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑛𝑋𝑚〉) <

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋𝑋𝑚𝑋𝑛〉) < 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝑋(𝑋𝑛𝑋𝑚)〉) <

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 or all of the generated candidates are not frequent.

Instead of generating all possible candidates and calculating the support of each

one, Lemma 3.2 suggests a more efficient approach that eliminates candidates whose

occurrence is less than the support value. This can be achieved by generating candidates

through two expansions, namely sequence and itemset expansions.

For example, given two frequent inter-sequence patterns 𝑆1 = 〈𝐴𝐵𝐶〉{1, 3, 5, 7, 8}

and 𝑆2 = 〈𝐴𝐵𝐷〉{1, 5, 6} with 𝑚𝑖𝑛𝑠𝑢𝑝 = 3. In the sequential database, pattern 〈𝐴𝐵𝐶〉

occurs at the 1st, 3rd, 5th, 7th, and 8th positions while pattern 〈𝐴𝐵𝐷〉 occurs at the 1st, 5th, and

6th positions. The position of the patterns is shown in Figure 3.13, where a bit value of 1

indicates that the pattern is present, and a bit value of 0 represents a pattern that does not

occur. To calculate the number of occurrences of a candidate in the database, we can count

the number of 1s using the bit AND operation. If the calculated value is less than the

support value, based on Lemma 3.2, we can discard candidates without generating them,

which can save time and resources. This process is possible by applying two expansions in

sequence and itemset.

Bit-index 1 2 3 4 5 6 7 8

〈𝐴𝐵𝐶〉 1 0 1 0 1 0 1 0

〈𝐴𝐵𝐷〉 1 0 0 0 1 1 0 0

〈𝐴𝐵𝐶𝐷〉,
〈𝐴𝐵𝐷𝐶〉,
〈𝐴𝐵(𝐶𝐷)〉

1 0 0 0 1 0 0 0

Figure 3.13. Example of using a bit string to calculate the number of occurrences of a

candidate inter-sequence pattern in a sequential database, based on Lemma 3.2.

3.3.3 ISP-PI Algorithm

In this section, we present an extended version of the EISP-Miner (C. S. Wang &

Lee, 2009) algorithm that utilizes the pseudo-IDList data structure (Section 3.3.2) to store

51

frequent inter-sequence patterns generated from sequence and inter-extensions and the

PatternList data structure (Section 3.3.1) to store frequent inter-sequence patterns

generated from the itemset extension. The algorithm comprises the following steps:

Step 1: Scan the database to find all frequent inter-sequence 1-patterns and use the

PatternList data structure to store information about each pattern in the set. Figure 3.2

illustrates how to create the PatternList's information from a frequent inter-sequence

pattern.

Step 2: Utilizing the methodology described in Section 3.3.1, combine one of the

frequent inter-sequence patterns discovered in Step 1 (i.e., 〈𝐴〉 pattern) with the remaining

frequent inter-sequence patterns in the set to generate candidates based on the sequence,

itemset, and inter-extension. Applying Lemma 3.1 to quickly eliminate the candidates

generated. Store the information of candidates created under these conditions as follows:

− If the candidate is generated in an extended itemset type, its information is stored in

the PatternList.

− If the candidate is generated in an extended sequence or inter, its information is stored

in the pseudo-IDList. Algorithm 3.1 demonstrates how to create a pseudo-IDList from

two frequent inter-sequence patterns with sequence extension, while Algorithm 3.2

illustrates how to create a pseudo-IDList from two frequent inter-sequence patterns

with inter-extension.

− Figure 3.8 and Figure 3.10 show how to generate a pseudo-IDList from two frequent

inter-sequence patterns based on the extended sequence condition, while Figure 3.9

and Figure 3.11 illustrate how to generate a pseudo-IDList from two frequent inter-

sequence patterns based on the extended inter condition. From a pseudo-IDList, we

aim to retrieve the information about the PatternList described in Figure 3.12.

Step 3: If the candidate generated in Step 2 is frequent (for instance, its support ≥

𝑚𝑖𝑛𝑠𝑢𝑝), store the candidate. Use the depth-first traversal algorithm to further generate

candidates. Traverse to the end of the branch (for instance, 〈𝐴〉 pattern) when there are no

more candidates, then repeat Step 2. The algorithm stops when there are no more new

candidates being generated.

Algorithm 3.1. Generating a pseudo-IDList from two frequent inter-sequence PatternList

for s-extension.

 Input: PatternList of 𝛼 pattern and 𝛽 pattern

 Output: Pseudo-IDList of 𝛾 pattern

1. let 𝑀𝛼 be 𝛼’s a e nL s

2. let 𝑀𝛽 be 𝛽’s a e nL s

52

3. 𝑟𝛼 {𝑡-value, 𝑝-value}  first row in 𝑀𝛼

4. 𝑟𝛽 {𝑡-value, 𝑝-value}  first row in 𝑀𝛽

5. while 𝑟𝛼.𝑡-value ≤ 𝑀𝛼.row and 𝑟𝛽.𝑡-value ≤ 𝑀𝛽.row do

6. if 𝑟𝛼.𝑡-value < 𝑟𝛽.𝑡-value then

7. 𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼

8. else if 𝑟𝛼.𝑡-value > 𝑟𝛽.𝑡-value then

9. 𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽

10. else if 𝑟𝛼.𝑡-value = 𝑟𝛽.𝑡-value then

11. 𝑝𝛼  the first element in 𝑟𝛼.𝑝-value

12. 𝑟𝛾.𝑡-value  𝑟𝛼.𝑡-value

13. for each 𝑝𝛽 in 𝑟𝛽.𝑝-value do

14. if 𝑝𝛽 > 𝑝𝛼 then

15. 𝑀𝛾 {𝑡-value, 𝑝-value}  {𝑟𝛾.𝑡-value, 𝑝𝛽}//add a new row to 𝑀𝛾

16. break;

17. 𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼

18. 𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽

19. 𝛾’s PP  𝛽’s PP// PP of 𝛾 is a 𝛽 pattern

20. return 𝑀𝛾

Algorithm 3.2. Generating a pseudo-IDList from two frequent inter-sequence PatternList

for 𝑡-extension.

 Input: PatternList of 𝛼 pattern, 𝛽 pattern and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛

 Output: Pseudo-IDList of 𝛾 pattern

1. let 𝑀𝛼 be 𝛼’s a e nL s

2. let 𝑀𝛽 be 𝛽’s a e nL s

3. 𝑟𝛼 {𝑡-value, 𝑝-value}  first row in 𝑀𝛼

4. 𝑟𝛽 {𝑡-value, 𝑝-value}  first row in 𝑀𝛽

5. while 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 ≤ 𝑀𝛽.row do

6. if 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 < 𝑟𝛽.𝑡-value then

7. 𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼

8. else if 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 > 𝑟𝛽.𝑡-value then

9. 𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽

10. else if 𝑟𝛼.𝑡-value + 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 𝑟𝛽.𝑡-value then

53

11. 𝑟𝛾.𝑡-value  𝑟𝛼.𝑡-value

12. 𝑟𝛾.𝑝-value  first position of 𝑟𝛽.𝑡-value

15. 𝑀𝛾 {𝑡-value, 𝑝-value}  {𝑟𝛾.𝑡-value, 𝑟𝛾.𝑝-value}//add a new row to 𝑀𝛾

17. 𝑟𝛼.𝑡-value  𝑟𝛼.𝑡-value + 1 // move 𝑟𝛼 to next row in 𝑀𝛼

18. 𝑟𝛽.𝑡-value  𝑟𝛽.𝑡-value + 1 //move 𝑟𝛽 to next row in 𝑀𝛽

19. 𝛾’s PP  𝛽’s PP// PP of 𝛾 is a 𝛽 pattern

20. return 𝑀𝛾

The ISP-PI algorithm is applied to the sequential database in Table 2.4 with input

values of 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1, 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2. The frequent inter-sequence patterns

generated is shown in Figure 3.14 during the mining process.

Step 1: The support of each pattern in the database is calculated. The patterns 〈𝐴〉,

〈𝐵〉, 〈𝐶〉, and 〈𝐷〉 have support values of 4, 2, 3, and 1, respectively. Since 𝑚𝑖𝑛𝑠𝑢𝑝 is

equal to 2, a pattern is considered frequent if it has a support value greater than or equal to

2. The set of frequent inter-sequence patterns found are {〈𝐴〉, 〈𝐵〉, 〈𝐶〉}, while pattern 〈𝐷〉 is

discarded due to its support value being less than 2. A PatternList structure is generated for

the set of frequent inter-sequence patterns, as illustrated in Figure 3.5.

Step 2: Frequent inter-sequence pattern 〈𝐴〉 is combined with the set of frequent

inter-sequence patterns {〈𝐴〉, 〈𝐵〉, 〈𝐶〉} to generate 2-pattern candidates. The set of

candidates includes

{
〈𝐴𝐴〉[0], 〈𝐴𝐵〉[0], 〈𝐴𝐶〉[0], 〈(𝐴𝐵)〉[0], 〈(𝐴𝐶)〉[0],

〈𝐴〉[0]〈𝐴〉[1], 〈𝐴〉[0]〈𝐵〉[1], 〈𝐴〉[0]〈𝐶〉[1]
}

Candidates 〈(𝐴𝐵)〉[0] and 〈(𝐴𝐶)〉[0] are 𝑖-extension candidates, so a PatternList structure

is generated for both candidates. The support values for these candidates are calculated as

0 and 2, respectively. Candidate 〈(𝐴𝐵)〉[0] is removed due to having a support value less

than the 𝑚𝑖𝑛𝑠𝑢𝑝 value of 2, i.e., 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈(𝐴𝐵)〉[0]) = 0 < 2.

− Candidates 〈𝐴𝐴〉[0], 〈𝐴𝐵〉[0], 〈𝐴𝐶〉[0], 〈𝐴〉[0]〈𝐴〉[1], 〈𝐴〉[0]〈𝐵〉[1], and 〈𝐴〉[0]〈𝐶〉[1]

are 𝑠-extension and 𝑡-extension candidates, so a pseudo-IDList structure is generated

for each of them. The support values for these candidates are calculated as 2, 1, 3, 3, 1,

and 2, respectively. Candidates 〈𝐴𝐵〉[0] and 〈𝐴〉[0]〈𝐵〉[1] are removed due to having

a support value less than the 𝑚𝑖𝑛𝑠𝑢𝑝 value of 2, i.e., 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴𝐵〉[0]) = 1 < 2 and

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(〈𝐴〉[0]〈𝐵〉[1]) = 1 < 2.

− Since candidate 〈𝐴𝐵〉[0] is discarded, candidate 〈𝐵𝐴〉[0] is also discarded after

applying Lemma 3.1.

54

Step 3: The set of frequent inter-sequence 2-patterns obtained from pattern 〈𝐴〉 are

{〈(𝐴𝐶)〉[0], 〈𝐴𝐶〉[0], 〈𝐴〉[0]〈𝐴〉[1], 〈𝐴𝐴〉[0], 〈𝐴〉[0]〈𝐶〉[1]}, as shown at level 2 of pattern

〈𝐴〉 in Figure 3.12. The algorithm continues to expand sub-patterns of pattern 〈𝐴〉, and

when no more candidates are generated, the algorithm expands patterns 〈𝐵〉 and 〈𝐶〉. The

algorithm stops when all sub-patterns of the 〈𝐶〉 pattern are generated.

Figure 3.14. A set of frequent inter-sequence patterns implements from the the

example database Table 2.4.

3.3.4 Computational Complexity Analysis

Calculating the complexity of the ISP-PI algorithm can be a complex task. Let 𝑚

represent the number of transactions and 𝑛 represent the number of distinct items. The ISP-

PI algorithm is executed through two primary steps: firstly, reading data from the original

database and constructing an ISP-tree of single-element common patterns; secondly,

conducting mining on the tree based on a depth-first traversal approach.

The database scan and ISP tree construction are performed in linear time, as each

transaction is processed individually, and each item is added to the tree. In the worst-case

scenario, where each transaction contains all 𝑛 items, the ISP-tree will consist of 𝑛

frequent 1-patterns at level 1.

Next, we analyze the complexity of Algorithm 3.1 and Algorithm 3.2 in the

subsequent mining process. Let 𝑋 and 𝑌 represent two patterns, with 𝑋 having 𝑘 elements

and 𝑌 having 𝑧 elements. The worst-case running time for Algorithm 3.1 occurs when 𝑋 ⊆

𝑌, as it requires simultaneous examination of both samples 𝑋 and 𝑌. Therefore, the time

complexity to find the new pattern is 𝑂(𝑘 + 𝑧). Similarly, for Algorithm 3.2, if 𝑘 +

𝑚𝑎𝑥𝑠𝑝𝑎𝑛 ≤ 𝑧, the algorithm needs to traverse all lines of the two samples 𝑋 and 𝑌,

resulting in a time complexity of 𝑂(𝑘 + 𝑧 − 𝑚𝑎𝑥𝑠𝑝𝑎𝑛).

 A [0] B [0] C [0]

 (AC) [0] AC [0] A [0] A [1] AA [0] A [0] C [1] (BC) [0] BA [0] B [0] A [1] CC [0] CA [0] C [0] A [1]

 (AC) [0] A [1] (AC)C [0] AC [0] A [1] AA [0] A [1] (BC) [0] A [1] (BC)A [0] BA [0] A [1] CC [0] A [1] CA [0] A [1]

 (BC)A [0] A [1] (AC)C [0] A [1]

 emse e ens n

s se uence e ens n

 n e e ens n

Level

55

3.4 Experimental Results

In this section, we evaluate the runtime and memory usage performance of the ISP-

PI algorithm. All experiments were performed on a PC equipped with an Intel® Core ™ i7

10th generation processor (10510U) running at a speed of 1.8 - 2.0 GHz, and 20 GB of

RAM. The operating system used was Windows 11 64-bit. The algorithms were

implemented in the Java programming language using JDK 19.

3.4.1 Experimental Databases

To evaluate the proposed algorithm, we conducted experiments to compare its

performance with two already established algorithms, namely Post-EISPMiner (C. S.

Wang & Lee, 2009) and Post-DBV-ISP (Vo et al., 2012). We tested our algorithm on a

total of six databases, namely C150S40T2, C200S12T5, BMSWebView2, FIFA, Kosarak,

and MSNBC. Four of these databases are real-life databases, with MSNBC, Kosarak

considered as big databases, and FIFA, BMSWebView2 as medium-sized ones. These

databases are publicly available via link https://www.philippe-fournier-

viger.com/spmf/index.php?link=datasets.php. Additionally, we used two synthetic test

databases, C150S40T2 and C200S12T5, generated using the standard generator in

(Agrawal & Srikant, 1995), which can be accessed at the following link:

https://www.mediafire.com/folder/pn3myfebx4t0e/PseudoIDList.

The characteristics of each of the six test databases are presented in Table 3.2,

while Table 3.3 provides the values of maxspan and minsupport.

Table 3.2. Test database information

Database name Database size Distinct items Average sequence length

C150S40T2 150,000 954 76.64

C200S12T5 183,950 1,922 51.57

FIFA 20,450 2,990 36.24

BMSWebView2 77,512 3,340 4.62

Kosarak 990,002 41,270 8.1

MSNBC 989,818 17 4.75

Table 3.3. The number of frequent inter-sequence patterns of the six test databases with

maxspan is given from 0 to 5.

Database
 Number of frequent inter-sequence patterns

0 1 2 3 4 5

C150S40T2 6 790 3,053 5,315 7,573 9,828 12,109

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.mediafire.com/folder/pn3myfebx4t0e/PseudoIDList

56

C200S12T5 3 624 628 633 638 645 650

BMSWebView2 0.02 1,316,614 1,323,073 1,329,145 1,337,433 1,344,028 1,351,129

FIFA 9 68,465 79,962 93,061 105,133 117,405 130,283

Kosarak 0.6 1,135 2,221 3,311 4,402 5,491 6,587

MSNBC 0.2 4,244 6,392 8,511 10,653 12,770 14,887

Table 3.4. Comparison table of the percentage of candidates generated when ISP-IC

pruning is applied and when it is not applied for six databases listed in Table 3.2.

 C150S40T2

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 6%)

C200S12T5

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3%)

FIFA

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 9%)

m
a

xs
p

a
n

using ISP-IC

without

using ISP-

IC

Candidate

reduction

(%)

using ISP-

IC

without

using ISP-

IC

Candidate

reduction

(%)

using

ISP-IC

without

using ISP-

IC

Candidate

reduction

(%)

1 195,938 227,812 14.0 389,376 390,096 0.18 394,373 929,721 57.58

2 391,302 448,249 12.7 778,752 779,472 0.09 416,476 1,151,995 63.85

3 586,666 668,707 12.3 1,168,128 1,168,848 0.06 437,554 1,361,019 67.85

4 782,030 888,993 12.0 1,557,504 1,558,224 0.05 458,833 1,574,049 70.85

5 977,394 1,109,586 11.9 1,946,880 1,947,600 0.04 480,717 1,790,539 73.15

 BMSWebView2

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.02%)

Kosarak

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.6%)

MSNBC

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.2%)

m
a

xs
p

a
n

using ISP-IC
without using

ISP-IC

Candidate

reduction

(%)

using

ISP-IC

without

using ISP-

IC

Candidate

reduction

(%)

using

ISP-IC

without

using

ISP-IC

Candidate

reduction

(%)

1 8,050,516 12,610,808 36.16 15,270 32,173 52.54 10,238 24,314 57.89

2 14786,831 19,903,854 25.71 29,526 60,088 50.86 12,430 38,623 67.82

3 21,525,247 27,304,621 21.17 43,784 87,852 50.16 14,644 53,027 72.38

4 28,261,937 34,644,592 18.42 58,038 115,830 49.89 16,835 67,299 74.98

5 34,999,009 42,024,651 16.72 72,300 143,821 49.73 19,024 81,614 76.69

3.4.2 ISP-IC Evaluation

The experimental results of applying the early candidate pruning model are

presented in Table 3.4. The results show that the ISP-IC model is effective in all six test

databases used. Specifically, the ISP-IC model consistently prunes a significant number of

candidates, thereby optimizing the algorithm processing speed and storage space.

For example, in the case of the large Kosarak and MSNBC databases, more than

50% of candidates were pruned. The best-case scenario for the Kosarak database

(𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.6%) resulted in 52.54% of the candidates being discarded when

57

𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1, while for the MSNBC database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.2%), 76.69% of

candidates were discarded when 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 5. However, the results also indicate that

the number of candidates to be eliminated depends on the database and the randomness of

items in the transactions belonging to the sequential database. In the case of the

C200S12T5 database, only 0.18% of the candidates were removed in the best case.

3.4.3 Runtime

 The results presented in Figure 3.15 compare the running time of the proposed

algorithm, ISP-PI, with that of two state-of-the-art algorithms, EISP-Miner and DBV-ISP,

for MISP. Across various database evaluation scenarios, the ISP-PI algorithm

demonstrated consistently faster performance compared to the other two algorithms. As the

maxspan value increases in IPM, the number of candidate patterns generated also

increases, as the algorithm must consider the relationship between transactions across the

sequential database. Table 3.3 indicates that using a maxspan value of five results in a

greater number of frequent inter-sequence patterns compared to smaller values. When

comparing the performance of the three algorithms using two large databases, the ISP-PI

algorithm runs significantly faster than the EISP-Miner and DBV-ISP algorithms, with

improvements of 81.21% and 57.53% for the Kosarak test database, and 85.00% and

79.07% for the MSNBC test database, respectively. The superior performance of the ISP-

PI algorithm can be attributed to its data structure and candidate pruning method. The

proposed pseudo-IDList approach eliminates the need to replicate duplicate data multiple

times during the mining process. As all IPM algorithms employ the depth-first-search

traversal method, the proposed data structure ensures that the algorithm does not

accumulate a large amount of data during each backtracking operation. Instead, it only

needs to quickly retrieve data when necessary. In addition, the pruning method helps to

reduce the number of candidates generated, because every time a candidate is generated,

we have to calculate its support, which reduces the running time of the algorithm.

58

Figure 3.15. Runtime on C150S40T2 database.

Figure 3.16. Runtime on C200S12T5 database.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

 0

 00

 000

 32 0

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

 0

 00

 000

 32 0

59

Figure 3.17. Runtime on BMSWebView2 database.

Figure 3.18. Runtime on FIFA database.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

 0

 00

 000

 32 0

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

 0

 00

 000

 32 0

60

Figure 3.19. Runtime on Kosarak database.

Figure 3.20. Runtime on MSNBC database.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

 0

 00

 000

 32 0

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

 0

 00

 32 0

61

3.4.4 Memory Usage

Figure 3.15 demonstrates that the ISP-PI algorithm uses memory more efficiently

than its predecessors, EISP-Miner and DBV-ISP, across the databases used for evaluation.

Figure 3.7 illustrates that the EISP-Miner and DBV-ISP inter-sequence mining algorithms

generate and store all the information about a candidate, leading to increased memory

usage. In contrast, the ISP-PI algorithm mitigates this issue by utilizing the pseudo-IDList

data structure, which requires less memory. For instance, in the Kosarak database the ISP-

PI algorithm uses 82.40% and 81.37% less memory than EISP-Miner and DBV-ISP,

respectively. Similarly, in the MSNBC database the ISP-PI algorithm uses 56.29% and

53.65% less memory than EISP-Miner and DBV-ISP, respectively. However, the ISP-PI

algorithm only applies the pseudo-IDList structure to the sequence and inter-extensions,

while it still needs to store all candidate information for the itemset extension method.

Figure 3.21. Memory usage on C150S4T2 database.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

0

2

 0

 2

 32 0

62

Figure 3.22. Memory usage on C200S12T5 database.

Figure 3.23. Memory usage on BMSWebView2 database.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

0

2

 0

 32 0

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

0

 2

20

 32 0

63

Figure 3.24. Memory usage on FIFA database.

Figure 3.25. Memory usage on Kosarak database.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

0

2

 32 0

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

0

 2

 32 0

64

Figure 3.26. Memory usage on MSNBC database.

3.5 Summary

In this chapter, we discuss the limitations of algorithms for inter-sequence pattern

mining, particularly the issue of excessive memory usage caused by data duplication. To

address this problem, we propose the ISP-PI (Inter-Sequence Pattern mining based on

Pseudo-Index) algorithm, which employs the pseudo-IDList data structure. This data

structure enables the ISP-PI algorithm to access the frequent pattern information from its

1-pattern frequent pattern, significantly reducing memory consumption during the

algorithm's execution. Furthermore, we optimize the ISP-PI algorithm and introduce two

lemmas that facilitate swift support condition checks for candidates, thereby improving the

algorithm's runtime.

Our proposed algorithm uses depth-first traversal, and thus future work will

investigate parallel processing or distributed processing to further enhance its speed.

Additionally, since heuristic pruning only considers items in the same itemset or

transaction, a follow-up approach is necessary to pre-check items across transactions to

reduce the number of candidates generated.

 0

 00

 000

 32 0

u
n

m
e
 s

 a span

 ne

0

2

 32 0

65

4 CHAPTER 4: METHODS FOR MINING INTER-

SEQUENCE PATTERNS WITH CONSTRAINTS

In this chapter, we address the problem of mining inter-sequence patterns with

itemset constraints. We propose an algorithm called DBV-ISPMIC to tackle this problem.

Furthermore, we enhance the efficiency of the DBV-ISPMIC algorithm by introducing an

improved version named DBV-ISPMIC-IMPROVING, which incorporates efficient

pruning methods. Additionally, we present a parallel algorithm called pDBV-ISPMIC-

IMPROVING that leverages parallel computing techniques. To assess the performance of

the proposed algorithms compared to previous approaches such as EISP-Miner (C. S.

Wang & Lee, 2009) and DBV-ISP (Vo et al., 2012), we evaluate their running time and

space storage on five test databases. The experimental results demonstrate the efficiency of

the proposed algorithms.

4.1 Introduction

In 2018, Van et al. proposed the MSPIC-DBV algorithm to mine sequential

patterns with itemset constraints (Van et al., 2018a). To efficiently discover sequential

patterns, MSPIC-DBV adopts the dynamic bit vector and the prefix tree structure. A

method for early pruning the candidates to help reduce processing time is also introduced.

The authors then continued to improve their work in mining sequential rules with itemset

constraints through two new algorithms, namely the MSRIC-R and MSRIC-P, which were

introduced in 2021 (Van & Le, 2021). The constraints are combined into the rule

generating phase for the MSRIC-R algorithm, while the latter algorithm combined it into

the pattern mining phase. The authors suggested a technique to integrate the mining

process with itemset constraints, to help the algorithm only create constraint-satisfying

patterns and thus increase the speed. These methods solved the problem of itemset

constraints but can only be applied on mining sequential patterns or sequential rules, so the

generated subsequences do not satisfy the inter-sequence mining requirements. Therefore,

these algorithms cannot be applied to the problem examined in the current study.

An algorithm named ISP-IC was developed by Le et al. (T. Le et al., 2018) for

constraints-based inter-sequence pattern mining, as well as its improvements, iISP-IC and

piISP-IC. The authors also applied a parallel processing method to speed up the runtime.

As stated in the introduction, ISP-IC, iISP-IC, and piISP-IC focus on the condition of items

in the sequence, and we cannot apply this approach to the itemset problem.

In this chapter, our goal is to solve the task of inter-sequence pattern mining with

itemset constraints. This mining task, unlike that of using itemset constraints for mining

66

sequence patterns, requires more complex processing because many candidates are

generated during the mining process. Our major contributions are as follows.

1. Based on the EISP-Miner algorithm (C. S. Wang & Lee, 2009) and a using dynamic

bit vector data structure (Vo et al., 2012), we state the problem of inter-sequence

pattern mining in combination with itemset constraints.

2. We then suggest a proposition to help reduce candidate checking during sequence

expansion according to the EISP-Miner algorithm, thus reducing the search space for

inter-sequence pattern mining with itemset constraints.

3. Next, an algorithm named DBV-ISPMIC is developed to discover constraints-based

inter-sequence patterns. A parellel version of DBV-ISPMIC algorithm, named pDBV-

ISPMIC algorithm, was presented.

4. Finally, we conduct experiments with various databases to evaluate the proposed

method.

For instance, based on Definition 2.23 and let 𝐼𝐶 = {(𝐶), (𝐸)}, the sequence

〈𝐶(𝐴𝐵)〉[0]〈𝐶(𝐴𝐵𝐶)𝐴〉[1] satisfies the constraint whereas the sequence 〈𝐴𝐷〉[0]〈𝐴〉[1]

does not.

4.2 DBV-PatternList Structure

The DBV-PatternList data structure as proposed by Vo et al. in 2012 (Vo et al.,

2012). This structure uses dynamic bit vectors to store the t-values and p-values of an e-

item in the database. It is used to minimize the space and time needed to extend the e-item

according to inter-sequence patterns. The DBV-PatternList structure is presented as

follows:

− The index of the first non-zero value in the bit vector.

− Bit vector: the array of values after trimming zeroes at the start and end index.

Figure 4.1 presents the use of PatternList and DBV-PatternList structures.

67

(a) PatternList structure

(b) DBV-PatternList structure

Figure 4.1. Structures of (a) PatternList and (b) DBV-PatternList.

As in Figure 4.1a, if we store information for an e-item using the PatternList data

structure we need to use 26 bytes (12 bytes for t-values and 14 bytes for p-values). But if

we use the DBV-PatternList (Figure 4.1b) data structure we only use 20 bytes (2 bytes for

the start position of e-items, 4 bytes for the t-values and 14 bytes for the p-values).

Because we have converted the t-values to bit vectors (Definition 2.5), storage space is

reduced.

4.3 Algorithms

4.3.1 DBV-ISPMIC Algorithm

Our proposed method relies on the DBV-PatternList structure and the DBV-

PatternList joining methods. The model of the DBV-ISPMIC algorithm is shown in

Algorithm 4.1.

In this algorithm, there are five functions – ISP-Join1, ISP-Joink, ISP-Join1-

Extension, ISP-Joink-Extension and Check – as shown in Algorithm 4.2-Algorithm 4.6,

respectively. The algorithm computes on a given sequential database with minsupport,

maxspan and a set of itemset constraints defined by the user. The result is a set of frequent

sequential patterns that satisfy the conditions of minsupport and itemset constraints. The

DBV-ISPMIC algorithm has three main steps, as presented below.

Step 1: The sequential database is scanned once to find all frequent 1-patterns in

which there is not less than the user-specified minimum support threshold minsupport

(Algorithm 4.1, line 1). Then, we will create a tree 𝑇, with the root being 𝑁𝑈𝐿𝐿 and leaves

including the found DBV-PatternList. The algorithm goes over all frequent 1-DBV-

PatternList results to start expanding the nodes according to the itemset, sequence and inter

extension (Algorithm 4.1, line 2).

68

Step 2: The algorithm calls the ISP-Join1 function (Algorithm 4.2) for extending

an 𝛼𝑙𝑖𝑠𝑡 node with the remaining children of the 𝑇|𝑁𝑈𝐿𝐿 tree (Definition 2.20). In this

function, we will have a new DBV-PatternList in three ways that was extended from the

itemset, sequence and inter (based on maxspan value) extension. We check the DBV-

PatternList result with the minsupport condition and itemset constraints. The Check

function in Algorithm 4.6 is used to check if a new DBV-PatternList satisfies the

constraint. If satisfied, we will add this DBV-PatternList as a child node of 𝑇|𝑙𝑖𝑠𝑡

(Algorithm 4.4, lines 1-9).

Step 3: The algorithm calls the ISP-Joink function (Algorithm 4.3) for extending

the child node of the list node with the remaining children according to the k-pattern

(Definition 2.21). In this function, we have been given a new DBV-PatternList in three

ways that extend according to itemset, sequence and inter and then we will check whether

the DBV-PatternList result satisfies the minsupport condition. The Check function is used

to check if a new DBV-PatternList satisfies the constraint. If it is satisfied, we will add this

DBV-PatternList as a child node of 𝑇|𝑙𝑖𝑠𝑡 (Algorithm 4.5, lines 1-9).

Algorithm 4.1. The DBV-ISPMIC algorithm

Input: A sequence database D, minimum support (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡), and maximum span
(𝑚𝑎𝑥𝑠𝑝𝑎𝑛), 𝐼𝐶 = {𝑐1, 𝑐2 . . . , 𝑐𝑛}

Output: A complete set of frequent inter-sequence patterns 𝐹𝑃 satisfying minsupport

and itemset constraints.

1.
Scan D to generate a set of all frequent 1- DBV-PatternList, 𝑇|𝑁𝑈𝐿𝐿, as the

extended group of the root node of an ISP-tree 𝑇;

2 for each frequent 1-DBV-PatternList 𝑙𝑖𝑠𝑡 in 𝑇|𝑁𝑈𝐿𝐿 do

3. Call 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1(𝑇|𝑁𝑈𝐿𝐿, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡) to get 𝑇|𝑙𝑖𝑠𝑡;

4. Call 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘(𝑇|𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶);

5. end for

6. Output 𝐹𝑃;

69

Algorithm 4.2. The ISP-Join1 function.

 Function 1: 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1(𝑇, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡)

1.
for each frequent 1-DBV-PatternList 

𝑙𝑖𝑠𝑡
 in 𝑇|𝑁𝑈𝐿𝐿, where  = 〈𝑢〉[0] and  =

〈𝑣〉[0], do

2. for 𝑥 = 0 to 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 do

3. 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1 − 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑇|𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡 , 𝑙𝑖𝑠𝑡
, 𝑢, 𝑣, 𝑥);

4. end for

5. end for

Algorithm 4.3. The ISP-Joink function.

 Function 2: 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘(𝑇, 𝐹𝑃, 𝐼𝐶)

1. for each frequent k-DBV-PatternList 𝛽𝑙𝑖𝑠𝑡 in 𝑇|𝑙𝑖𝑠𝑡, where 𝑠𝑢𝑏𝑘,𝑘(𝛽) = 〈𝑢〉[𝑖] do

2. for each frequent k-DBV-PatternList 𝛾𝑙𝑖𝑠𝑡 in 𝑇|𝑙𝑖𝑠𝑡, where 𝑠𝑢𝑏𝑘,𝑘(𝛾) = 〈𝑣〉[𝑗] do

3. 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘 − 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑇|𝛽𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶, 𝛽𝑙𝑖𝑠𝑡, 𝑙𝑖𝑠𝑡
, 𝑢, 𝑣, 𝑖, 𝑗);

4. end for

5. Call 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛𝑘(𝑇|𝛽𝑙𝑖𝑠𝑡, 𝐹𝑃, 𝐼𝐶);

6. end for

7. Delete 𝑇|𝑙𝑖𝑠𝑡 from 𝑇;

Algorithm 4.4. The ISP-Join1-Extension function.

 Function 3: 𝐼𝑆𝑃 − 𝐽𝑜𝑖𝑛1 − 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛(𝑇, 𝐹𝑃, 𝐼𝐶, 𝑙𝑖𝑠𝑡, 𝑙𝑖𝑠𝑡
, 𝑢, 𝑣, 𝑥)

1. if (𝑥 = 0) and (𝑢 < 𝑣) then

2. 𝑙𝑖𝑠𝑡 = 𝑙𝑖𝑠𝑡 ∪𝑖 
𝑙𝑖𝑠𝑡

;

3.

if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖𝑠𝑡) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶ℎ𝑒𝑐𝑘(𝑙𝑖𝑠𝑡, 𝐼𝐶) then

 add 𝑙𝑖𝑠𝑡 to 𝑇|𝑙𝑖𝑠𝑡 and  to 𝐹𝑃;

4. if (𝑥 = 0) then

5. 
𝑙𝑖𝑠𝑡

= 𝑙𝑖𝑠𝑡 ∪𝑠 
𝑙𝑖𝑠𝑡

;

6.

if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(

𝑙𝑖𝑠𝑡
) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶ℎ𝑒𝑐𝑘(

𝑙𝑖𝑠𝑡
, 𝐼𝐶) then

 add 
𝑙𝑖𝑠𝑡

 to 𝑇|𝑙𝑖𝑠𝑡 and  to 𝐹𝑃;

7. if (𝑥 > 0) then

8. 𝑙𝑖𝑠𝑡 = 𝑙𝑖𝑠𝑡 ∪𝑡 
𝑙𝑖𝑠𝑡

;

9.

if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖𝑠𝑡) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 and 𝐶ℎ𝑒𝑐𝑘(𝑙𝑖𝑠𝑡, 𝐼𝐶) then

 add 𝑙𝑖𝑠𝑡 to 𝑇|𝑙𝑖𝑠𝑡 and  to 𝐹𝑃;

70

Algorithm 4.5. The ISP-Joink-Extension function.

 Function 4: ISP-Joink-Extension(T, FP, IC, βlist, list, u, v, i, j)

1. if (i=j) and (u<v) then

2. list = βlist Ui list;

3.
if support(list ≥ minsupport and Check(list, IC) then

 add list to T|βlist and  to FP;

4. if (i=j) then

5. list = βlist Us list;

6.
if support(list ≥ minsupport and Check(list, IC) then

 add list to T|βlist and  to FP;

7. if (i<j) then

8. list = βlist Ut list;

9.
if support(list ≥ minsupport and Check(list, IC) then

 add list to T|βlist and  to FP;

Algorithm 4.6. The function Check.

 Function 5: 𝐶ℎ𝑒𝑐𝑘(, 𝐼𝐶)

1. for each 𝑎 ∈ 𝛼 do

2. for each 𝑏 ∈ 𝐼𝐶 do

3. if 𝑏 ⊆ 𝑎′ then // 𝑎′ is 𝑎 after removing span

4. return true;

5. end for

6. end for

7. return false;

4.3.2 Computational Complexity Analysis

Exploring the precise complexity of the DBV-ISPMIC algorithm (Algorithm 4.1) is

a highly challenging task. The algorithm consists of two primary steps: reading data from

the original database and performing the mining process. Let 𝑛 denote the number of

distinct items in the database.

The initial database scan is conducted in a linear manner, where each line of the

database is scanned. In the worst-case scenario, every row of the database contains all 𝑛

items. Consequently, the number of frequent 1-patterns is also equal to 𝑛.

Subsequently, the mining time of the algorithm is calculated by

∑ 𝑡𝑖𝑚𝑒(𝑏𝑟𝑎𝑛𝑐ℎ_𝑜𝑓_𝑡𝑟𝑒𝑒(𝑖))𝑛
1 . Two subfunctions, ISP-Join1-Extension (Algorithm 4.4)

and ISP-Joink-Extension (Algorithm 4.5), are utilized for the prototyping process. Thus,

71

the mining time is determined based on these two functions. Let 𝑋 represent the number of

frequent patterns from the ISP-Join1-Extension function. If a frequent pattern is discovered

for each 𝑥𝑖 ∈ 𝑋|1 ≤ 𝑖 ≤ |𝑋|, the number of iterations for the ISP-Joink-Extension function

is calculated accordingly ∑ 𝑡𝑖𝑚𝑒(ISP − Jo nk − Ex en on)𝑋
1 . This scenario represents the

worst-case execution of the algorithm ∑ 𝑡𝑖𝑚𝑒(ISP − Jo n1 − Ex en on)∑ 𝑡𝑖𝑚𝑒(ISP −𝑋
1

𝑛
1

Jo nk − Ex en on).

Regarding the Check function (Algorithm 4.6), its worst performance occurs when

𝛼 ⊆ 𝐼𝐶.

4.3.3 Improved DBV-ISPMIC Algorithm

We can see that if a pattern satisfies itemset constraints, then the new pattern that is

extended from this node with the itemset, sequence, and inter extension will also satisfy

 he emse c ns a n s. Th s helps educe he alg hm’s -PatternList node

expansion time. We propose a proposition to verify this, as follows.

Proposition 4.1 (Checking itemset constraints) Given an inter-sequence  and a set

of itemset constraints IC, if  satisfies IC, then the sequence 𝛽, generated from , also

satisfies constraint IC.

Proof. Let  = 〈1[𝑤1]2[𝑤2] . . . 𝑚[𝑤𝑚]〉, 𝛽 = 〈𝛽1[𝑤1]𝛽2[𝑤2] . . . 𝛽𝑢[𝑤𝑢]〉 be an

inter-sequence, whereas each 𝑖, 𝛽𝑖 corresponds to an itemset. Because  satisfies IC,

based on the problem statement, this condition holds: ∃𝑖[𝑤𝑖] ∈ , ∃𝑏𝑗 ∈ 𝐼𝐶: 𝑏𝑗 ⊆ 𝑖.

Based on Definition 2.21, there are three cases to consider:

Itemset-join: In 𝛽 always exists 𝛽𝑖[𝑤𝑖] such that 𝑖 ⊆ 𝛽𝑖  𝑏𝑗 ⊆ 𝑖 ⊆ 𝛽𝑖 or 𝑏𝑗 ⊆

𝛽𝑖. It means 𝛽 satisfies IC.

Sequence-join: Because itemset of 𝑖 does not change. It means 𝛽𝑖 = 𝑖 and

therefore, we have 𝑏𝑗 ⊆ 𝛽𝑖 or 𝛽 satisfies IC.

Inter-join: Based on the inter-join, all itemsets from  always exist in 𝛽, therefore,

in 𝛽 always exists 𝛽𝑘[𝑤𝑘] such that 𝑖 ⊆ 𝛽𝑘  𝑏𝑗 ⊆ 𝑖 ⊆ 𝛽𝑘 or 𝑏𝑗 ⊆ 𝛽𝑘. It means 𝛽

satisfies IC.

72

Algorithm 4.7. The function ISP-Join1-improving.

 Function 6: ISP-Join1-Improving(T, FP, IC, list)

1.
For each frequent 1-DBV-PatternList list in T|NULL, where =⟨u⟩[0] and  =⟨v⟩[0],

do

2. For x = 0 to maxspan do

3. If Check(list, IC) then

4. If (x=0) and (u<v) then

5. list = list Ui list;

6. If support(list ≥ minsupport then add list to T|list and  to FP;

7. If (x=0) then

8. list = list Us list;

9. If support(list ≥ minsupport then add list to T|list and  to FP;

10. If (x>0) then

11. list = list Ut list;

12. If support(list ≥ minsupport then add list to T|list and  to FP;

13. Else

14. ISP-Join1-Extension(T|list, FP, IC, list, list, u, v, x);

15. End for

16. End for

73

Algorithm 4.8. The function ISP-Joink-improving.

 Function 7: ISP-Joink-Improving(T, FP, IC)

1. For each frequent k-DBV-PatternList βlist in T|list, where subk,k(β)=⟨u⟩[i], do

2. If Check(βlist, IC) then

3. For each frequent k-DBV-PatternList γlist in T|list, where subk,k(γ)=⟨v⟩[j], do

4. If (i=j) and (u<v) then

5. list = βlist Ui list;

6. If support(list ≥ minsupport then add list to T|βlist and  to FP;

7. If (i=j) then

8. list = βlist Us list;

9. If support(list ≥ minsupport then add list to T|βlist and  to FP;

10. If (i<j) then

11. list = βlist Ut list;

12. If support(list ≥ minsupport then add list to T|βlist and  to FP;

13. End for

14. Else

15. For each frequent k-DBV-PatternList γlist in T|list, where subk,k(γ)=⟨v⟩[j], do

16. ISP-Joink-Extension(T|βlist, FP, IC, βlist, list, u, v, i, j);

17. End for

18. Call ISP-Joink-Improving(T|βlist, FP, IC);

19. End for

20. Delete T|list from T;

In the ISP-Join1-improving function, we first check the 𝑙𝑖𝑠𝑡 pattern with the

itemset constraints. If it is true, all frequent DBV-PatternList which are extended from

𝑙𝑖𝑠𝑡 also satisfy the itemset constraints (Algorithm 4.7, lines 3-12). This is the same with

the ISP-Joink-improving function (Algorithm 4.8, lines 2-13).

Consider the example shown in Table 2.1, where 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2, 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = 1

and itemset constraints 𝐼𝐶 = {(𝐴𝐵), 𝐶𝐴, 𝐴𝐷}. The frequent patterns generated in the

mining phase are presented in Figure 4.2.

Step 1. The sequential database is scanned once by the algorithm to enumerate all

frequent 1-patterns, which is {〈𝐴〉, 〈𝐵〉, 〈𝐶〉, 〈𝐷〉} with the support {4, 2, 2, 2}, respectively

(Figure 4.2, level 0). In this database scan, the 1-DBV-PatternLists are also generated.

Step 2. The algorithm generates candidates

{〈𝐴〉[0]〈𝐴〉[1], 〈(𝐴𝐵)〉[0], 〈𝐴𝐷〉[0], 〈𝐴〉[0]〈𝐷〉[1]} that shares the 1-prefix 〈𝐴〉 by joining

〈𝐴〉 with 〈𝐴〉, 〈𝐵〉, 〈𝐶〉 and 〈𝐷〉 based on itemset, sequence and inter extension (Algorithm

74

4.7). Other generated candidates ⟨B⟩[0]⟨A⟩[1], ⟨CA⟩[0], ⟨C⟩[0]⟨A⟩[1] and ⟨CB⟩[0] that

share 1-prefix ⟨B⟩, ⟨C⟩ are also created at the same time during the combination (Figure

4.2, level 1).

Step 3. The algorithm traverses the children of each (𝑘 − 1)-pattern by depth first

search to generate k-patterns. If a (𝑘 − 1)-pattern satisfies the constraints IC then all its

super patterns should not be checked. For instance, ⟨(AB)⟩[0] satisfies the itemset

constraints, so we do not need to check the itemset constraints for ⟨(AB)⟩[0]⟨A⟩[1]. Due to

this checking case, we reduce the checking time of the algorithm. Otherwise, ⟨A⟩[0]⟨A⟩[1]

do not satisfy the itemset constraints, so we check itemset constraints for its child nodes.

The algorithm backtracks to step 3 and complete the full candidates of ⟨B⟩, ⟨C⟩ then ⟨D⟩.

As no more candidates can be found in branch ⟨D⟩, the algorithm terminates. We have FP

= {⟨AA⟩[0]⟨AD⟩[1]: support = 2, ⟨(AB)⟩[0]: support = 2, ⟨(AB)⟩[0]⟨A⟩[1]: support = 2,

⟨AD⟩[0]: support = 2, ⟨CA⟩[0]: support = 2, ⟨CA⟩[0]⟨A⟩[1]: support = 2, ⟨C(AB)⟩[0]:

support = 2, ⟨C(AB)⟩[0]⟨A⟩[1]: support = 2}.

Figure 4.2. The extended tree of patterns corresponding to the example database.

4.3.4 Parallel DBV-ISPMIC Algorithm

As shown in Algorithm 4.1, the DBV-ISPMIC algorithm is a sequential algorithm.

The complexity time of the DBV-ISPMIC algorithm is calculated by tnode_1 + tnode_2 +

tnode_3 +…+ tnode_n, whereas the set {node_1, node_2, node_3, …, node_n} contains child

nodes of an ISP-tree T, tnodei is the extension time of a node extension of the ISP-tree T in

1-pattern and k-pattern (in ISP-Join1 and ISP-Joink functions, respectively). This is

because the ISP-Joink extension function independently expands the sub-nodes of the ISP-

tree T. If each sub-branch of the ISP-tree T is expanded for each task, the running time of

75

the algorithm improves. Therefore, the overall runtime of the algorithm can be determined

as Max{node_1, node_2, node_3, …, node_n}.

An example for the above proposal is given in Figure 4.3. Based on the database in

Table 2 with minsupport = 2, the frequent patterns that were generated at the first level by

1-pattern extension included ⟨A⟩, ⟨B⟩, ⟨C⟩ and ⟨D⟩. For each frequent pattern, the k-pattern

extension is processed at each individual task. As stated, the time of the algorithm is

calculated in Max{tTask1, tTask2, tTask3}, since one task runs in parallel with the others. The

allocation of the number of tasks that can be executed simultaneously is determined by the

c mpu e p cess ’s c es. Th s can als be e ended d s bu ed sys ems, whe e each

task is processed on a separate system and then final the result is gathered and combined.

The pDBV-ISPMIC algorithm is based on the DBV-ISPMIC with the algorithm

parallelized. Figure 4.4 shows with a flowchart the main steps of the sequential DBV-

ISPMIC algorithm and its parallel (pDBV-ISPMIC) counterpart. The pDBV-ISPMIC

algorithm has two main steps:

Step 1: Loading the database and finding the frequent 1-pattern sets that satisfy the

minsupport and the itemset constraints.

Step 2: Allocating execution tasks, with each task handling one k-pattern. The

algorithm search space exploration is DFS-based (depth-first search), which is recursive.

When no more candidates can be generated, the algorithm terminates.

Figure 4.3. Example of using parallel processing for ISP-tree extension.

<A>[0]<A>[1] <(AB)>[0] <AD>[0] <A>[0]<D>[1] [0]<A>[1] <CA>[0]<C>[0]<A>[1]<CB>[0]

<A>[0] [0] <C>[0]

<AA>[0]<AD>[1] <(AB)>[0]<A>[1] <CA>[0]<A>[1] <C(AB)>[0] <CB>[0]<A>[1]

<C(AB)>[0]<A>[1]

t i s t t s t s

s t t i t

t

<A>[0]

Task 3Task 2Task 1

i: itemset-extension

s: sequence-extension

t: inter-exetension

76

Figure 4.4. The figure shows the difference between sequential and parallel flow

chart. (a) The main steps of a sequential algorithm and (b) the main steps of a parallel

processing algorithm.

4.4 Experimental Evaluation

In evaluating the performance of the DBV-ISPMIC algorithm and its improvement

in runtime, all the experiments were carried out on a PC with an Intel® Core ™ i7 10th gen

processor (10510U) @ 1.8 - 4.9 GHz, and 20 GB RAM. The operating system used is

Windows 10 64-bit. The algorithms were implemented in Visual Studio 2017 C#.

We ran tests on five databases, namely C6T5S4I4N1kD1k, C6T5S4I4N1kD10k,

Gazelle, BIKE and BMSWebView1. The synthetic databases used for comparison were

generated using the IBM synthetic data generator. These databases are available at

 Read

transaction dataset

Find frequent 1-patternlist

Checking minsup condition

 Checking itemset

constraints condition

Save frequent sequences

Sequential processing phase

(DBV-ISPMIC algorithm)

Parallel processing phase

(pDBV-ISPMIC algorithm)

Find frequent k-patternlist

 Checking

minsup condition

 Checking itemset

constraints condition

Find frequent

k-patternlist

Save frequent

sequences

 Checking

minsup condition

 Checking itemset

constraints condition

Find frequent

k-patternlist

Save frequent

sequences

 Checking

minsup condition

 Checking itemset

constraints condition

Find frequent

k-patternlist

Save frequent

sequences

Task 1 Task 2 Task 3 Task n

(a) Sequential algorithm (b) Parallel algorithm

 Read

transaction dataset

Find frequent 1-patternlist

77

https://www.mediafire.com/folder/id3p3z6b9g8kj. Their characteristics are shown in Table

4.1.

Table 4.1. Test database characteristics

Database Sequence Item Type of data

C6T5S4I4N1kD1k 1000 1000 Synthetic databases

C6T5S4I4N1kD10k 10000 1000 Synthetic databases

Gazelle 59602 497 Clickstream data

BIKE 21078 67 Bike Share data from LA Metro

BMSWebView1 59601 497 Clickstream data

4.4.1 Runtime

For the C6T5S4I4N1kD1k database, we evaluated the algorithms with

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1,2,3,4,5}, the C6T5S4I4N1kD10k database with

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1, 2, 3, 4, 5}, the Gazelle database with

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 1% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1,2,3,4,5}, the BIKE database with 𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 =

0.5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1, 2, 3, 4, 5}, and the BMSWebView1 database with

𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.5% and 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 = {1, 2, 3, 4, 5}. We use an EISP-Miner algorithm to

evaluate all the proposed algorithms (C. S. Wang & Lee, 2009), and add a check constraint

to it, with this approach called the Post-EISPMiner algorithm.

Based on the experimental results in Figure 4.5-Figure 4.9, we can see that the

DBV-ISPMIC-IMPROVING algorithm runs faster than the other two algorithms, Post-

EISPMiner and DBV-ISPMIC. In Figure 4.5, we compare the runtime of Post-EISPMiner,

DBV-ISPMIC and DBV-ISPMIC-IMPROVING for the Gazelle dataset. When the value of

maxspan is increasing, the running time of all three algorithms increases relatively evenly.

Figure 4.6-Figure 4.9 show the results for the C6T5S4I4N1kD1k,

C6T5S4I4N1kD10k, BIKE and BMSWebView1 datasets. It is clear that the runtimes for

DBV-ISPMIC-IMPROVING and DBV-ISPMIC are much better than that of Post-

EISPMiner.

https://www.mediafire.com/folder/id3p3z6b9g8kj

78

Figure 4.5. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset.

Figure 4.6. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

20

40

60

80

100

120

140

54321

R
u

n
ti

m
e

(s
)

maxspan

Gazelle

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

50

100

150

200

250

54321

R
u

n
ti

m
e

(s
)

maxspan

C6T5S4I4N1kD1k

79

Figure 4.7. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD10k dataset.

Figure 4.8. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BIKE dataset.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

500

1,000

1,500

2,000

2,500

3,000

3,500

54321

R
u

n
ti

m
e

(s
)

maxspan

C6T5S4I4N1kD10k

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

500

1,000

1,500

2,000

2,500

54321

R
u

n
ti

m
e

(s
)

maxspan

BIKE

80

Figure 4.9. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BMSWebView1 dataset.

4.4.2 Parallel Method for Efficient Mining of Inter-sequence Patterns with

Itemset Constraints

Because DBV-ISPMIC-IMPROVING is the best algorithm for mining inter-

sequence patterns with itemset constraints, we develop a parallel version of it, pDBV-

ISPMIC-IMPROVING, by using the C#.NET software library to improve the performance.

The performance of pDBV-ISPMIC-IMPROVING algorithm is evaluated by comparing it

with that of the DBV-ISPMIC-IMPROVING algorithm. The results are shown in Figure

4.10-Figure 4.13, and it can be seen that when maxspan increases, the runtime of pDBV-

ISPMIC-IMPROVING is much less than the runtime of DBV-ISPMIC-IMPROVING

algorithm.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

100

200

300

400

500

600

700

54321

R
u

n
ti

m
e

(s
)

maxspan

BMSWebView1

81

Figure 4.10. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the C6T5S4I4N1kD1k dataset.

Figure 4.11. Execution time in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the C6T5S4I4N1kD10k dataset.

0

20

 0

 0

 0

 00

 20

 32

R

C

 C C RO

0

20

40

60

80

100

120

54321

R
u

n
ti

m
e

(s
)

maxspan

C6T5S4I4N1kD1k

0

20

 0

 0

 0

 00

 20

 32

R

C

 C C RO

0

200

400

600

800

1,000

1,200

1,400

54321

R
u

n
ti

m
e

(s
)

maxspan

C6T5S4I4N1kD10k

82

Figure 4.12. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-ISPMIC

and pDBV-ISPMIC-IMPROVING for the BIKE dataset.

Figure 4.13. Execution times in a parallel evaluation of pPost-EISPMiner, pDBV-

ISPMIC and pDBV-ISPMIC-IMPROVING for the BMSWebView1 dataset.

0

20

 0

 0

 0

 00

 20

 32

R

C

 C C RO

0

100

200

300

400

500

600

700

800

900

54321

R
u

n
ti

m
e

(s
)

maxspan

BIKE

0

20

 0

 0

 0

 00

 20

 32

R

C

 C C RO

0

50

100

150

200

250

300

350

400

54321

R
u

n
ti

m
e

(s
)

maxspan

BMSWebView1

83

4.4.3 Memory Usage

Figure 4.14-Figure 4.18 show the peak memory consumption of the three

algorithms, Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-IMPROVING. The results

show that the memory needed by DBV-ISPMIC and DBV-ISPMIC-IMPROVING is less

than that needed by the Post-EISPMiner algorithm for almost all database parameter

values. Because the two proposed algorithms reduce the time needed to check the child

nodes generated, they have less memory usage compared to the Post-EISPMiner algorithm.

Figure 4.14. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

10

20

30

40

50

60

70

80

90

100

54321

M
em

o
ry

 (
M

B
)

maxspan

Gazelle

84

Figure 4.15. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset.

Figure 4.16. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD10k dataset.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

100

200

300

400

500

54321

M
em

o
ry

 (
M

B
)

maxspan

C6T5S4I4N1kD1k

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

500

1,000

1,500

2,000

2,500

3,000

3,500

54321

M
em

o
ry

 (
M

B
)

maxspan

C6T5S4I4N1kD10k

85

Figure 4.17. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BIKE dataset.

Figure 4.18. Memory usage of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the BMSWebView1 dataset.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

200

400

600

800

1,000

1,200

54321

M
em

o
ry

 (
M

B
)

maxspan

BIKE

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

500

1,000

1,500

2,000

2,500

54321

M
em

o
ry

 (
M

B
)

maxspan

BMSWebView1

86

4.4.4 Impact of Maxspan

For mining inter-sequence patterns, when we increase the maxspan value, the

number of candidates generated will also increase. Therefore, if we use proposition 1 to

reduce the itemset constraints checking, the processing time will be better. For instance,

we use two databases, Gazelle and C6T5S4I4N1kD1k, to evaluate this. The Gazelle

database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 3%) and C6T5S4I4N1kD1k database (𝑚𝑖𝑛𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.8%)

were tested with the maxspan value increasing from 2 to 12. The results show that the

proposed algorithms (DBV-ISPMIC and DBV-ISPMIC-IMPROVING) always work well

(Figure 4.19-Figure 4.20).

Figure 4.19. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the Gazelle dataset, with maxspan from 2 to 12.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

20

40

60

80

100

120

140

12108642

R
u

n
ti

m
e

(s
)

maxspan

Gazelle

87

Figure 4.20. Execution times of Post-EISPMiner, DBV-ISPMIC and DBV-ISPMIC-

IMPROVING for the C6T5S4I4N1kD1k dataset, with maxspan from 2 to 12.

4.5 Summary

In this chapter, we introduced an algorithm, named DBV-ISPMIC, to solve the

problem of mining inter-sequence patterns with itemset constraints. This algorithm is

based on the EISP-Miner algorithm to mine inter-sequence patterns, and uses a dynamic

bit vector structure to store data, which helps to increase the processing speed and reduce

the storage space when compared to EISP-Miner. Based on the DBV-ISPMIC algorithm,

we also propose its improvement to help reduce processing time.

In the future, we will apply distributed computing to the improved algorithm to

help optimize the running time. We will also study how to put the constraints into mining

frequent closed inter-sequences. Finally, algorithms for mining high utility sequences have

been proposed in recent years (Lin et al., 2020b; Gan et al., 2020, 2021a, 2021b; Truong et

al., 2021; Wu et al., 2021; Chun-wei Lin et al., 2021), and we will study how to mine high

utility inter-sequences and high utility inter-sequences with constraints.

0

 0

20

30

 0

 0

 0

 0

 0

 0

 32

 C C RO

0

100

200

300

400

500

600

12108642

R
u

n
ti

m
e

(s
)

maxspan

C6T5S4I4N1kD1k

88

5 CHAPTER 5: CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

The thesis addresses the challenge of mining inter-sequence patterns in extensive

sequential databases, a topic that has gained attention in recent data mining research. The

vast search space and enormous data volume have posed difficulties for serial algorithms

to extract frequent patterns. Addressing these challenges is crucial for the inter-sequence

pattern mining problem.

The thesis contributions can be summarized as follows:

Firstly, we propose the DBV-ISPMIC algorithm to tackle the inter-sequence pattern

mining problem with itemset constraints. This algorithm employs the DBV-PatternList

data structure and the ISP-Tree tree structure. The DBV-PatternList uses the bit-vector data

type to store item or pattern information. The stored information for each candidate

includes its index in a transaction and the index of transactions containing the candidate in

the sequential database. If the primitive bit-vector data type were used, the candidate's

information would have many bits with a value of 0, indicating the item's absence in the

transaction. To address this, the DBV-PatternList data type identifies the first transaction

index containing the pattern and stores it, allowing the DBV-PatternList data structure to

eliminate the 0 bits. This process not only aids data compression but also reduces memory

usage for storing candidate information.

Moreover, the DBV-PatternList data structure enables quick candidate support

calculation. The candidate support value is determined by counting the bits with a value of

1, which is easily computed using the bit-vector function due to the data structure's bit-

vector nature. As the inter-sequence pattern mining problem generates a large number of

candidates, we propose a clause to expedite the itemset condition check for candidates,

reducing the algorithm's time consumption.

Secondly, we introduce an optimal processing method for the ISP-Tree. In the

DBV-ISPMIC algorithm, each tree branch is processed independently. As a result, the

DBV-ISPMIC algorithm's processing time is the cumulative processing time across all

branches. This insight led us to develop the pDBV-ISPMIC algorithm, an extension of the

DBV-ISPMIC algorithm. The pDBV-ISPMIC algorithm leverages parallel processing to

simultaneously process ISP-Tree branches, enabling concurrent processing and thus

optimizing and accelerating the pDBV-ISPMIC algorithm's runtime.

Thirdly, we propose an algorithm called ISP-PI (Inter-Sequence Pattern mining

based on Pseudo-Index), which applies the pseudo-IDList data structure to inter-sequence

89

pattern mining. Prior inter-sequence pattern mining algorithms were limited by the need to

store all candidate information generated from sequence, itemset, and inter extensions. The

ISP-PI algorithm identifies and addresses these limitations. By using the pseudo-IDList

data structure, the candidate's information can be retrieved through its 1-pattern.

Consequently, instead of storing all pattern information, the pseudo-IDList data structure

only needs to store the indexes representing the candidate's position relative to the 1-

pattern. This approach enables the pseudo-IDList data structure to store less data while still

ensuring complete access to the candidate's information, resulting in lower memory usage

for the ISP-PI algorithm compared to previous intersequence pattern mining algorithms.

Next, we enhance the ISP-PI algorithm by introducing a candidate pruning method

called ISP-IC (Inter-Sequence Pattern mining with Index intersection Checking). The ISP-

PI algorithm employs a candidate generation method based on the SPADE algorithm.

Thus, the pruning method operates as follows: when candidates are generated through the

sequence expansion method, if any candidate fails to meet the support condition, the

remaining candidates will also be unsatisfactory. If a candidate does not fulfill the above

lemma, the ISP-PI algorithm will discard the candidate without calculating its support,

optimizing the algorithm's runtime.

To further refine the ISP-IC algorithm, we propose a lemma that eliminates

candidates not meeting the support condition based on information from the frequent

patterns that generate them. Since the pseudo-IDList data structure utilizes bit-vectors to

store location information of transactions containing common patterns, we employ the bit-

intersection method to pre-check the two frequent patterns. If the result is unsatisfactory,

the ISP-IC algorithm will not generate candidates from the two frequent patterns.

Lastly, we verify the correctness and effectiveness of the proposed algorithms

using test sets of databases. The evaluation compares the algorithm's runtime and memory

usage.

5.2 Limitations

Although the proposed algorithms demonstrate improved results in terms of mining

time and memory usage compared to existing methods for intersequence pattern mining,

this thesis still reveals several limitations:

1. Limited scalability: The proposed algorithms have not been tested on extremely large

datasets, only being evaluated on datasets ranging from tens of thousands to one

million data points. This limitation prevents the assessment of algorithm performance

on large-scale real-world databases.

90

2. Limited applicability to sequential databases: A significant limitation of the proposed

algorithms is that they were designed and tested specifically for sequential databases.

This constraint could potentially hinder the algorithm's ability to handle other types of

databases, such as graph-based, time-series, or multimedia databases.

3. Limited maxspan evaluation: The algorithms have only been tested within a specific

maxspan range (0 < 𝑚𝑎𝑥𝑠𝑝𝑎𝑛 < 13), leaving their performance for larger maxspan

values unexplored. A larger maxspan value may generate more candidates but could

also yield more useful knowledge from the databases.

4. Lack of testing on advanced computing platforms: The proposed algorithms have only

been executed on personal computers and not on more advanced systems, such as

supercomputers, parallel computing systems, or cloud computing platforms. Testing

on these platforms would provide a more accurate evaluation of the proposed

algorithms' improvements.

5. Limited scope of constraints: The thesis focuses on intersequence pattern mining with

itemset constraints but does not explore other constraints. Investigating and applying

other types of constraints could help optimize the extraction of knowledge from the

data.

6. Updated databases: The scope of the thesis solely encompasses statistical databases

with fixed sizes and a static number of transactions. However, in reality, databases are

regularly updated over time, which poses a significant challenge for the effective

application of the proposed algorithms in practical scenarios.

5.3 Future Works

Future research will concentrate on addressing the identified limitations and

developing new approaches for the inter-sequence pattern mining problem as well as the

sequential pattern mining problem. Some potential directions for future research include:

1. Scalability: Perform tests on larger datasets to assess the performance of the proposed

algorithms on large-scale, real-world databases, while also adjusting the maxspan

value.

2. Applicability: Investigate inter-sequence pattern mining and sequential pattern mining

for various types of databases, such as graph-based, time-series, multimedia databases,

and data growth over time. Recent studies on this topic include:(Jaber Al, 2021;

Motallebi Shabestari & Ahmadi, 2021; Hu et al., 2021; Yang et al., 2021; Wu et al.,

2023b, 2023a)

3. Computing platforms: Evaluate the proposed algorithms on more advanced systems,

like supercomputers, parallel computing systems, or cloud platforms. Recent results in

91

this area include: (Huang et al., 2020; Yin et al., 2020a; Chung & Yoo, 2020; Yoo et

al., 2020; Z. Liu et al., 2020; Farag et al., 2022; Jayasri & Aruna, 2022)

4. Distributed processing and parallel processing: Implement distributed or parallel

processing techniques for the proposed algorithms and apply them to the problems of

inter-sequence pattern mining and sequential pattern mining. Recent studies using

such methods include: (Yin et al., 2020b; Lekshmy & Rahiman, 2020; Qasem et al.,

2021; X. Zhang et al., 2021; C. Zhang et al., 2022)

5. Constraints: Explore the addition of various constraints to the proposed algorithms.

Other types of constraints have been examined in studies such as: (De Smedt et al.,

2020; Zhou et al., 2021; Truong et al., 2021; Xia et al., 2022; Neykov, 2023)

6. Expansion of research: Beyond the issues of inter-sequence pattern mining and

sequential pattern mining, consider other data mining challenges like weighted inter-

sequence mining or candidate generation for inter-sequence mining problems. The

most recent research on these topics is illustrated by the following results: (Chen et al.,

2020; Leon-Alcaide et al., 2020; Lin et al., 2020a; M. Liu et al., 2022; Jazayeri &

Yang, 2022; Li et al., 2023)

7. Inter-Sequence pattern mining on updated databases: Enhancing and applying

algorithms to databases that undergo updates over time. The algorithms should be

capable of accommodating new data additions without necessitating a complete rerun

of the entire dataset. (Ren & Zhou, 2006; Price et al., 2022; X. Wang et al., 2022;

Huynh et al., 2023; Siddiqui et al., 2023) have conducted prior research on this

subject.

By pursuing these future research directions, the proposed algorithms can be

enhanced and expanded to better tackle the challenges of alternating pattern mining and

offer valuable insights across diverse application areas.

5.4 Publications

[R1]. Nguyen, A., Nguyen, N. T., Nguyen, L. T. T., & Vo, B. (2024). An efficient

pruning method for mining inter-sequence patterns based on pseudo-IDList. Expert

Systems with Applications, 238, 121738.

https://doi.org/10.1016/J.ESWA.2023.121738 (Impact Factor: 8.5, Category

Quartile: Q1)

[R2]. Nguyen, A., Nguyen, N. T., Nguyen, L. T. T., & Vo, B. (2023). Mining inter-

sequence patterns with Itemset constraints. Applied Intelligence, 53(17), 19827–

19842. https://doi.org/10.1007/S10489-023-04514-7 (Impact Factor: 5.3, Category

Quartile: Q2)

https://doi.org/10.1016/J.ESWA.2023.121738
https://doi.org/10.1007/S10489-023-04514-7

92

[R3]. Nguyen, T. T. D., Nguyen, L. T. T., Nguyen, A., Yun, U., & Vo, B. (2021). A

method for efficient clustering of spatial data in network space. Journal of

Intelligent & Fuzzy Systems, 40(6), 11653–11670. https://doi.org/10.3233/JIFS-

202806 (Impact Factor: 1.737, Category Quartile: Q4)

[R4]. Huynh, H. M., Nguyen, L. T. T., Vo, B., Nguyen, A., & Tseng, V. S. (2020).

Efficient methods for mining weighted clickstream patterns. Expert Systems with

Applications, 142, 112993. https://doi.org/10.1016/j.eswa.2019.112993 (Impact

Factor: 6.954, Category Quartile: Q1)

[R5]. Nguyen, L. T. T., Nguyen, T. D. D., Nguyen, A., Tran, P.-N., Trinh, C., Huynh, B.,

& Vo, B. (2020). Efficient Method for Mining High-Utility Itemsets Using High-

Average Utility Measure. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12496

LNAI, 305–315. https://doi.org/10.1007/978-3-030-63007-2_24 (Core ranking: C)

[R6]. Nguyen, L. T. T., Vo, B., Nguyen, T. N., & Nguyen, A. (2019). Mining class

association rules on imbalanced class datasets. Journal of Intelligent and Fuzzy

Systems, 37(6), 7131–7139. https://doi.org/10.3233/JIFS-179326 (Impact Factor:

1.851, Category Quartile: Q3)

[R7]. Le, T., Nguyen, A., Huynh, B., Vo, B., & Pedrycz, W. (2018). Mining constrained

inter-sequence patterns: a novel approach to cope with item constraints. Applied

Intelligence, 48(5), 1327–1343. https://doi.org/10.1007/s10489-017-1123-9 (Impact

Factor: 2.882, Category Quartile: Q2)

https://doi.org/10.3233/JIFS-202806
https://doi.org/10.3233/JIFS-202806
https://doi.org/10.1016/j.eswa.2019.112993
https://doi.org/10.1007/978-3-030-63007-2_24
https://doi.org/10.3233/JIFS-179326
https://doi.org/10.1007/s10489-017-1123-9

93

6 REFERENCES

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proceedings - International

Conference on Data Engineering, 3–14. https://doi.org/10.1109/ICDE.1995.380415

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential PAttern mining using a

bitmap representation. Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining -KDD ’02, 429.

https://doi.org/10.1145/775047.775109

Chen, S., Nie, L., Tao, X., Li, Z., & Zhao, L. (2020). Approximation of Probabilistic

Maximal Frequent Itemset Mining over Uncertain Sensed Data. IEEE Access, 8,

97529–97539. https://doi.org/10.1109/ACCESS.2020.2997409

Chung, K., & Yoo, H. (2020). Edge computing health model using P2P-based deep neural

networks. Peer-to-Peer Networking and Applications, 13(2), 694–703.

https://doi.org/10.1007/S12083-019-00738-Y

Chun-wei Lin, J., Yu, P. S., Chun-Wei Lin, J., Djenouri, Y., Srivastava, G., Li, Y., & Yu,

P. S. (2021). Scalable Mining of High-Utility Sequential Patterns With Three-Tier

MapReduce Model. ACM Transactions on Knowledge Discovery from Data (TKDD),

16(3), 1–26. https://doi.org/10.1145/3487046

De Smedt, J., Deeva, G., & De Weerdt, J. (2020). Mining Behavioral Sequence Constraints

for Classification. IEEE Transactions on Knowledge and Data Engineering, 32(6),

1130–1142. https://doi.org/10.1109/TKDE.2019.2897311

Farag, A., Abdelkader, H., & Salem, R. (2022). Parallel graph-based anomaly detection

technique for sequential data. Journal of King Saud University - Computer and

Information Sciences, 34(1), 1446–1454.

https://doi.org/10.1016/J.JKSUCI.2019.09.009

Fournier-Viger, P., Gomariz, A., Campos, M., & Thomas, R. (2014). Fast vertical mining

of sequential patterns using co-occurrence information. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 8443 LNAI(PART 1), 40–52. https://doi.org/10.1007/978-3-

319-06608-0_4

Fournier-Viger, P., Lin, J. C., Kiran, R. U., Koh, Y. S., & Thomas, R. (2017). A Survey of

Sequential Pattern Mining. Data Science and Pattern Recognition 1(1), 54-77

94

Gan, W., Lin, J. C. W., Zhang, J., Chao, H. C., Fujita, H., & Yu, P. S. (2020). ProUM:

Projection-based utility mining on sequence data. Information Sciences, 513, 222–

240. https://doi.org/10.1016/J.INS.2019.10.033

Gan, W., Lin, J. C. W., Zhang, J., Fournier-Viger, P., Chao, H. C., & Yu, P. S. (2021a).

Fast Utility Mining on Sequence Data. IEEE Transactions on Cybernetics, 51(2),

487–500. https://doi.org/10.1109/TCYB.2020.2970176

Gan, W., Lin, J. C. W., Zhang, J., Yin, H., Fournier-Viger, P., Chao, H. C., & Yu, P. S.

(2021b). Utility Mining Across Multi-Dimensional Sequences. ACM Transactions on

Knowledge Discovery from Data (TKDD), 15(5). https://doi.org/10.1145/3446938

Gouda, K., Hassaan, M., & Zaki, M. J. (2007). PRISM: A prime-encoding approach for

frequent sequence mining. Proceedings - IEEE International Conference on Data

Mining, ICDM, 487–492. https://doi.org/10.1109/ICDM.2007.33

Gouda, K., Hassaan, M., & Zaki, M. J. (2010). Prism: An effective approach for frequent

sequence mining via prime-block encoding. Journal of Computer and System

Sciences, 76(1), 88–102. https://doi.org/10.1016/J.JCSS.2009.05.008

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., & Hsu, M.-C. (2000). FreeSpan:

frequent pattern-projected sequential pattern mining. Proceedings of the Sixth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD

’00, 355–359. https://doi.org/10.1145/347090.347167

Hu, Y., Zhan, P., Xu, Y., Zhao, J., Li, Y., & Li, X. (2021). Temporal representation

learning for time series classification. Neural Computing and Applications, 33(8),

3169–3182. https://doi.org/10.1007/S00521-020-05179-W

Huang, Y., Cheng, Z., Zhou, Q., Xiang, Y., & Zhao, R. (2020). Data mining algorithm for

cloud network information based on artificial intelligence decision mechanism. IEEE

Access, 8, 53394–53407. https://doi.org/10.1109/ACCESS.2020.2981632

Huynh, H. M., Nguyen, L. T. T., Pham, N. N., Oplatková, Z. K., Yun, U., & Vo, B. (2022).

An efficient method for mining sequential patterns with indices. Knowledge-Based

Systems, 239. https://doi.org/10.1016/J.KNOSYS.2021.107946

Huynh, H. M., Nguyen, L. T. T., Vo, B., Nguyen, A., & Tseng, V. S. (2020a). Efficient

methods for mining weighted clickstream patterns. Expert Systems with Applications,

142, 112993. https://doi.org/10.1016/j.eswa.2019.112993

Huynh, H. M., Nguyen, L. T. T., Vo, B., Yun, U., Oplatková, Z. K., & Hong, T. P.

(2020b). Efficient algorithms for mining clickstream patterns using pseudo-IDLists.

95

Future Generation Computer Systems, 107, 18–30.

https://doi.org/10.1016/j.future.2020.01.034

Huynh, H. M., Vo, B., Oplatková, Z. K., & Pedrycz, W. (2023). An Approach for

Incremental Mining of Clickstream Patterns as a Service Application. IEEE

Transactions on Services Computing, 1–14.

https://doi.org/10.1109/TSC.2023.3294945

Jaber Al, A. N. (2021). Efficient Visualization Framework for Real-Time Monitoring

Network Traffic of High-Speed Networks. Proceedings - 2021 IEEE International

Conference on Big Data, Big Data 2021, 5839–5842.

https://doi.org/10.1109/BIGDATA52589.2021.9671915

Jayasri, N. P., & Aruna, R. (2022). Big data analytics in health care by data mining and

classification techniques. ICT Express, 8(2), 250–257.

https://doi.org/10.1016/J.ICTE.2021.07.001

Jazayeri, A., & Yang, C. C. (2022). Frequent Subgraph Mining Algorithms in Static and

Temporal Graph-Transaction Settings: A Survey. IEEE Transactions on Big Data,

8(6), 1443–1462. https://doi.org/10.1109/TBDATA.2021.3072001

Le, B., Tran, M. T., & Vo, B. (2015). Mining frequent closed inter-sequence patterns

efficiently using dynamic bit vectors. Applied Intelligence, 43(1), 74–84.

https://doi.org/10.1007/s10489-014-0630-1

Le, T., Nguyen, A., Huynh, B., Vo, B., & Pedrycz, W. (2018). Mining constrained inter-

sequence patterns: a novel approach to cope with item constraints. Applied

Intelligence, 48(5), 1327–1343. https://doi.org/10.1007/s10489-017-1123-9

Lekshmy, P. L., & Rahiman, M. A. (2020). A sanitization approach for privacy preserving

data mining on social distributed environment. Journal of Ambient Intelligence and

Humanized Computing, 11(7), 2761–2777. https://doi.org/10.1007/S12652-019-

01335-W

Leon-Alcaide, P., Rodriguez-Benitez, L., Castillo-Herrera, E., Moreno-Garcia, J., &

Jimenez-Linares, L. (2020). An evolutionary approach for efficient prototyping of

large time series datasets. Information Sciences, 511, 74–93.

https://doi.org/10.1016/J.INS.2019.09.044

Li, Y., Zhang, C., Li, J., Song, W., Qi, Z., Wu, Y., & Wu, X. (2023). MCoR-Miner:

Maximal Co-Occurrence Nonoverlapping Sequential Rule Mining. IEEE

96

Transactions on Knowledge and Data Engineering.

https://doi.org/10.1109/TKDE.2023.3241213

Lin, J. C. W., Li, T., Pirouz, M., Zhang, J., & Fournier-Viger, P. (2020a). High average-

utility sequential pattern mining based on uncertain databases. Knowledge and

Information Systems, 62(3), 1199–1228. https://doi.org/10.1007/S10115-019-01385-8

Lin, J. C. W., Li, Y., Fournier-Viger, P., Djenouri, Y., & Zhang, J. (2020b). Efficient

Chain Structure for High-Utility Sequential Pattern Mining. IEEE Access, 8, 40714–

40722. https://doi.org/10.1109/ACCESS.2020.2976662

Liu, M., Yang, Z., Guo, Y., Jiang, J., & Yang, K. (2022). MICAR: nonlinear association

rule mining based on maximal information coefficient. Knowledge and Information

Systems, 64(11), 3017–3042. https://doi.org/10.1007/S10115-022-01730-4

Liu, Z., Shi, X., He, L., Yu, D., Jin, H., Yu, C., Dai, H., & Feng, Z. (2020). A parameter-

level parallel optimization algorithm for large-scale spatio-temporal data mining.

Distributed and Parallel Databases, 38(3), 739–765. https://doi.org/10.1007/S10619-

020-07287-X

Motallebi Shabestari, M., & Ahmadi, A. (2021). Identifying the relationship between

human self-esteem and general health using data mining. 26th International Computer

Conference, Computer Society of Iran, CSICC 2021.

https://doi.org/10.1109/CSICC52343.2021.9420612

Neykov, M. (2023). On the Minimax Rate of the Gaussian Sequence Model Under

Bounded Convex Constraints. IEEE Transactions on Information Theory, 69(2),

1244–1260. https://doi.org/10.1109/TIT.2022.3213141

Nguyen, A., Nguyen, N. T., Nguyen, L. T. T., & Vo, B. (2023). Mining inter-sequence

patterns with Itemset constraints. Applied Intelligence, 1–16.

https://doi.org/10.1007/S10489-023-04514-7/METRICS

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2001).

PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth.

Proceedings - International Conference on Data Engineering, 215–224.

https://doi.org/10.1109/icde.2001.914830

Price, S., Tombeur, S. D. S., Hudson, A., Sathiyamoorthy, N. K., Smyth, P., Singh, A.,

Peccianti, M., Baroncelli, E., Essaghir, A., Ferlenghi, I., Phogat, S. K., & Singh, G.

(2022). TMQuery: A database of precomputed template modeling scores for

97

assessment of protein structural similarity. Bioinformatics, 38(7), 2062–2063.

https://doi.org/10.1093/BIOINFORMATICS/BTAC044

Qasem, M. H., Obeid, N., Hudaib, A., Almaiah, M. A., Al-Zahrani, A., & Al-Khasawneh,

A. (2021). Multi-Agent System Combined with Distributed Data Mining for Mutual

Collaboration Classification. IEEE Access, 9, 70531–70547.

https://doi.org/10.1109/ACCESS.2021.3074125

R. Agrawal and R. Srikant. (1994). Fast Algorithms for Mining Association Rules in Large

Databases. Proceedings of the 20th International Conference on Very Large Data

Bases, 487–499. https://dl.acm.org/doi/10.5555/645920.672836

Ren, J. D., & Zhou, X. L. (2006). An efficient algorithm for incremental mining of

sequential patterns. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3930 LNAI,

179–188. https://doi.org/10.1007/11739685_19/COVER

Siddiqui, S. A., Ahmad, A., & Fatima, N. (2023). IoT-based disease prediction using

machine learning. Computers and Electrical Engineering, 108.

https://doi.org/10.1016/J.COMPELECENG.2023.108675

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and

performance improvements. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1057

LNCS, 3–17. https://doi.org/10.1007/BFB0014140/COVER

Truong, T., Duong, H., Le, B., Fournier-Viger, P., Yun, U., & Fujita, H. (2021). Efficient

algorithms for mining frequent high utility sequences with constraints. Information

Sciences, 568, 239–264. https://doi.org/10.1016/J.INS.2021.01.060

Van, T., & Le, B. (2021). Mining sequential rules with itemset constraints. Applied

Intelligence, 1–13. https://doi.org/10.1007/s10489-020-02153-w

Van, T., Vo, B., & Le, B. (2018a). Mining sequential patterns with itemset constraints.

Knowledge and Information Systems, 57(2), 311–330. https://doi.org/10.1007/s10115-

018-1161-6

Van, T., Yoshitaka, A., & Le, B. (2018b). Mining web access patterns with super-pattern

constraint. Applied Intelligence, 48(11), 3902–3914. https://doi.org/10.1007/S10489-

018-1182-6/METRICS

Vo, B., Tran, M. T., Hong, T. P., Nguyen, H., & Le, B. (2012). A dynamic bit-vector

approach for efficiently mining inter-sequence patterns. Proceedings - 3rd

98

International Conference on Innovations in Bio-Inspired Computing and

Applications, IBICA 2012, 51–56. https://doi.org/10.1109/IBICA.2012.31

Wang, C. S., & Lee, A. J. T. (2009). Mining inter-sequence patterns. Expert Systems with

Applications, 36(4), 8649–8658. https://doi.org/10.1016/j.eswa.2008.10.008

Wang, X., Zhou, X., Yan, Q., Liao, S., Tang, W., Xu, P., Gao, Y., Li, Q., Dou, Z., Yang,

W., Huang, B., Li, J., & Zhang, Z. (2022). LLPSDB v2.0: An updated database of

proteins undergoing liquid-liquid phase separation in vitro. Bioinformatics, 38(7),

2010–2014. https://doi.org/10.1093/BIOINFORMATICS/BTAC026

Wu, Y., Geng, M., Li, Y., Guo, L., Li, Z., Fournier-Viger, P., Zhu, X., & Wu, X. (2021).

HANP-Miner: High average utility nonoverlapping sequential pattern mining.

Knowledge-Based Systems, 229, 107361.

https://doi.org/10.1016/J.KNOSYS.2021.107361

Wu, Y., Hu, Q., Li, Y., Guo, L., Zhu, X., & Wu, X. (2023a). OPP-Miner: Order-Preserving

Sequential Pattern Mining for Time Series. IEEE Transactions on Cybernetics, 53(5),

3288–3300. https://doi.org/10.1109/TCYB.2022.3169327

Wu, Y., Zhao, X., Li, Y., Guo, L., Zhu, X., Fournier-Viger, P., & Wu, X. (2023b). OPR-

Miner: Order-preserving rule mining for time series. IEEE Transactions on

Knowledge and Data Engineering, 1–15.

https://doi.org/10.1109/TKDE.2022.3224963

Xia, M., Yang, H., Huang, Y., Qu, Y., Guo, Y., Zhou, G., Zhang, F., & Wang, Y. (2022).

AwCPM-Net: A Collaborative Constraint GAN for 3D Coronary Artery

Reconstruction in Intravascular Ultrasound Sequences. IEEE Journal of Biomedical

and Health Informatics, 26(7), 3047–3058.

https://doi.org/10.1109/JBHI.2022.3147888

Yang, M., Qu, Q., Shen, Y., Zhao, Z., Chen, X., & Li, C. (2021). An Effective Hybrid

Learning Model for Real-Time Event Summarization. IEEE Transactions on Neural

Networks and Learning Systems, 32(10), 4419–4431.

https://doi.org/10.1109/TNNLS.2020.3017747

Yin, C., Pan, C., & Zhang, P. (2020a). Deep neural network combined with MapReduce

for abnormal data mining and detection in cloud storage. Journal of Ambient

Intelligence and Humanized Computing. https://doi.org/10.1007/S12652-020-01996-

Y

99

Yin, C., Pan, C., & Zhang, P. (2020b). Deep neural network combined with MapReduce

for abnormal data mining and detection in cloud storage. Journal of Ambient

Intelligence and Humanized Computing. https://doi.org/10.1007/S12652-020-01996-

Y

Yoo, J. S., Boulware, D., & Kimmey, D. (2020). Parallel co-location mining with

MapReduce and NoSQL systems. Knowledge and Information Systems, 62(4), 1433–

1463. https://doi.org/10.1007/S10115-019-01381-Y

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences.

Machine Learning, 42(1–2), 31–60. https://doi.org/10.1023/A:1007652502315

Zhang, C., Yang, Y., Zhou, W., & Zhang, S. (2022). Distributed Bayesian Matrix

Decomposition for Big Data Mining and Clustering. IEEE Transactions on

Knowledge and Data Engineering, 34(8), 3701–3713.

https://doi.org/10.1109/TKDE.2020.3029582

Zhang, X., Zhu, X., Bao, W., Yang, L. T., Wang, J., Yan, H., & Chen, H. (2021).

Distributed Learning on Mobile Devices: A New Approach to Data Mining in the

Internet of Things. IEEE Internet of Things Journal, 8(13), 10264–10279.

https://doi.org/10.1109/JIOT.2020.3030783

Zhou, P., Zhou, G., Wu, D., & Fei, M. (2021). Detecting multi-stage attacks using

sequence-to-sequence model. Computers and Security, 105.

https://doi.org/10.1016/J.COSE.2021.102203

