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Chapter 1

Introduction

1.1 Background1

Today, we are experiencing the effects of climate change and environmental pollution
more and more often. What might have once seemed insignificant, such as glaciers melt-
ing thousands of kilometers away, now begins to affect us directly. While the gigantic
fires that devastated countries like Australia, Canada, or Greece have spared Poland, we
experience another environmental disaster – air pollution. In Poland, low-quality heating
installations in single-family homes or multi-family housing are among the main causes
of its formation [72]. Generally speaking, the problem is the generation of energy from
non-renewable and often polluting sources. High emissions of pollutants directly threaten
our lives and, in the future that is coming, lead to dangerous climate change [19], of
which global warming is probably the most widely discussed. Not only does it affect
entire ecosystems and the comfort of life, but according to some studies it may also lead
to the aggravation and spread of many dangerous diseases [43].

That is why the development of renewable energy sources (renewables, RES) is so
important. In the European Union in 2023, about 45% of the electricity generation came
from RES [18]. Poland, although it saw a rapid expansion of renewables, still falls behind
with around 26% [51]. In Europe, wind is the main source of renewable energy [17].
Unfortunately, wind farms require huge investments and vast free space, far from resi-
dential buildings. An alternative devoid of these limitations, and rapidly gaining popu-
larity in Poland over the past few years, are photovoltaic panels (PVs), see Fig. 1.1 for
exact numbers. Those can be installed on the roof of a single-family home without ad-
versely affecting quality of life, while the cost of such a project is already achievable for
a middle-income family [15]. However, it is important not only to provide this opportu-
nity and encourage it through subsidy programs or public campaigns, but also to ensure
sustainability. Excessive support of RES diffusion can lead to a significant increase in the
variability of demand for conventional generation on a 24-hour basis and in extreme cases
can even cause loss of stability of the power system. Examples are countries/regions with
a large operation of the sun during a year, such as Australia [39] or California [38], but
also Poland’s neighbor – Germany [22]. Apart from that, there is another threat, more
closely related to the common people. The current transmission system grids in Poland
and other countries are not prepared for such a rapid expansion of PVs. If not restricted,
it can lead to grid overload and blackouts. In fact, this is an already emerging risk [54].

1This Section is largely based on Section Introduction from Paper 4.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1: Data on solar installations in Poland in years 2019–2023, according to ARE (Polish energy
market agency). More detailed data is being collected from 2021 onward, most likely due to the growing
interest in the prosumer market. Data freely available at www.are.waw.pl. Source: Paper 4.

The diffusion of photovoltaics is an example of the so-called diffusion of innovation,
understood here as a process of spreading the information of an innovation through a
population and adopting it [55]. This is an interesting and very important topic, studied
across many fields of science, economy, medicine, sociology, to name a few. Although
innovation may refer to a variety of issues, not only products and technologies, but ideas
or behaviors as well, there exist many universal features [55]. Visually, if we draw a
number of adopted people (or fraction of adopted population) as a function of time, the
S-shape of the curve would be noticeable. In addition, there is a critical mass (fraction)
of adopters for which innovation is bound to succeed. Lastly, the diffusion of innovation
process is multistage. First, we have knowledge of an innovation and an opinion on
it, then a decision, adoption, and finally a confirmation of the decision. Studying and
understanding this phenomenon is vitally important. It may and should support decision-
making by our legislators toward a desired outcome. An example of how legislators can
affect the diffusion of innovation is contained in the data in Fig. 1.1. Initially, until early
2022, the spread of PVs was supported by subsidy programs, and hence, rapid. Then, in
April 2022, new regulations came in, making PVs much less profitable, and the diffusion
significantly slowed down. Whether we consider them wise decisions or reckless actions
depends primarily on our political sympathies.

The diffusion of innovations has been modeled for years. It started in a very simpli-
fied manner. A classic example is the Bass diffusion model – a fully deterministic one,
consisting of a single differential equation [6]. However, for a problem as complex as
the diffusion of PV installations, aggregated models are just not enough [52]. They are
unable to describe the clustering of individuals, a phenomenon observed in real life [71].
The aforementioned Bass diffusion of innovation model can dramatically change its be-
havior, when rewritten to an agent-based model (ABM) and tested on a network struc-
ture [53]. In social sciences, an agent-based model is usually understood as a simulation
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of certain interactions between so-called agents (representing individuals, households,
companies, etc.) and taking place within a certain structure, symbolizing a network of
acquaintances, contacts, or cooperation [37]. Mathematically, we would call such a struc-
ture a graph, with the vertices being the agents, and the edges the connections between
them [46]. ABMs allow for a much more accurate representation of reality, including the
heterogeneity of individuals and the interactions between them [46]. As such, ABMs are
currently one of the most powerful tools in studying opinion dynamics and innovation
diffusion [32]. Although they have been used for years to model the diffusion of new
energy solutions [10, 27, 30, 66, 70], their applications in modeling the diffusion of PVs
remain few [11, 40, 49, 74].

Although much more advanced than simple deterministic models, ABMs are still
merely a hypothetical approximation of reality. With that in mind, one should adjust them
to a problem at hand as accurately as possible, instead of constructing a one-size-fits-all
model. The underlying structure plays an huge role here. For example, when modeling
a spread of gossip in a high school class, a simple network of class acquaintances would
be sufficient. However, to properly represent the flow of information and the exchange of
opinions in the modern world, a much more complex structure is needed. This is where
multi-layer networks come in. They are used in many fields of science [3], as they can
provide multilevel representations of real world dependencies [8]. For instance, an indi-
vidual (agent) may learn about recent sport results either from friends at work (one layer)
or through social media (another layer). Sociologists have long pointed out that social
interaction structures should not be reduced to single-layer networks [8]. However, multi-
layer structures have only been studied intensively in the last decade [29]. Recently, they
have been used in modeling the diffusion of innovation [35,73]. Nevertheless, this is still
a relatively fresh concept. One issue that arises with multi-layer networks is generaliza-
tion of models’ rules that where originally implemented on single-layer structures. For
instance, one may assume that social influence is only effective if it comes from all the
layers (the AND rule). However, it can also be assumed that the influence is effective
even if it comes from only one layer (the OR rule) [34]. In this research, we follow the
approach from [14] and study both variants.

1.2 Aim and objectives

The aim of my thesis is to develop mathematical models of binary opinion dynamics
that can be used to model the diffusion of PV panels (or other renewable energy sources)
in order to understand how various factors impact this complex process. The far-reaching
goal is realized through the 3 objectives:

• Objective 1: Evaluate the role of the new parameter in the generalized, the one-
dimensional Sznajd model.

• Objective 2: Evaluate the impact of the underlying network structure and the
method of selecting the group of influence on the time evolution and stationary
states in the q-voter model.

• Objective 3: Design a new model of eco-innovation diffusion. Analyze the model
on a multi-layer network structure.
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Objective 1 is to study generalization of an already well-established agent-based
model of opinion dynamics. This is essential for a better understanding of model me-
chanics and the impact of, so far hidden under different variants, parameters. The research
focuses on the Sznajd model (SM) [61], one of the most popular models of binary opinion
dynamics. Since its birth in 2000, it has seen numerous modifications and adaptations.
In [62], we provided a comprehensive review of the literature that arose around the model
over two decades, and furthermore, proposed a new generalization that combines three
different variants of the model, so far treated separately, into a single parameter. Paper 1
contains a more detailed analysis of the impact of the new parameter on the probability
and time of reaching a certain stationary state. In addition, the article proposes an even
further extension of the model onto diluted systems that allow agents to move.

Objective 2 is to extend these models toward the final goal, i.e. modeling the diffusion
of innovation, for which opinion dynamics is the key building block. This allows to
examine a more basic model first, before covering it with additional parts. Building on
untested foundations is a risky business and, scientifically speaking, of mediocre value.
Hence, the focus lies on the q-voter model [12], another extensively studied model of
binary opinions. Paper 2 touches on the phenomenon of social polarization, present in
the discussion on renewable energy sources and pro-environmental practices. It does so
by combining the q-voter model with a double-clique topology, a structure containing
negative links, and provides a valuable insight into the q-voter model and formation of
opinions. Paper 3 addresses one of the major issues that arose over the years and with the
growing number of articles on this model – the method of selecting a group of influence
(with or without repetitions). For years, the two variants of the model have been used
interchangeably, with little or no concern from researchers.

Objective 3 is to construct a new model of the diffusion of PVs (or other renewables)
and understand how various factors impact the process. For this part, previously stud-
ied agent-based models are utilized, coupled with multi-layer network structures. This
approach allows to consider various types of heterogeneity, e.g., geographical location.
Paper 4 presents such a model. Then, its analysis is provided, with respect to the method
of combining social influence from different layers (e.g., AND and OR rules mentioned
in Section 1.1).

1.3 Contribution to the discipline of Mathematics
My research is interdisciplinary. Not only does it contribute to mathematics, but also

to statistical physics, network science, and management science. Thus, it targets a wide
audience.

Recent findings suggest that social spreading, e.g., diffusion of innovation, requires
influence of a group (complex contagion) rather than of a single individual (simple conta-
gion) [36]. Studies on such models of innovation diffusion have already been conducted,
but mainly on the progressive ones, i.e. asymmetrical, in which individuals cannot un-
adopt. However, an innovation can be rejected [55]. Thus, the right approach would be a
non-progressive one, in which individuals can revert to the unadopted state. This has been
addressed by non-progressive models, but of simple contagion type [36]. There have been
also attempts to use non-progressive complex contagion, but – to our best knowledge –
limited to simple, non multi-layer graph structures [10]. Therefore, more realistic, non-
progressive complex contagion modeling of innovation diffusion remains a gap yet to be
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filled. And this is the novelty of my thesis. Precisely:

• The Sznajd model is a mathematical, non-progressive model of complex contagion
(a pair of individuals is required to spread the opinion). Generalizing it for better
understanding is a crucial step in filling this gap.

• The q-voter model is, in a sense, an extension of the Sznajd model. As such, it is
a non-progressive, complex contagion model (q individuals are required to spread
the opinion) as well. It has already been analyzed on multi-layer networks, but
only those consisting of twin layers, i.e. layers represented by the same structure
– two complete graphs, two square lattices, etc. Coupling it with a more complex
network, one consisting of two structurally different layers, is a novelty.

• Finally, my new model of innovation diffusion, developed on the basis of my earlier
research, fills the aforementioned gap, being both non-progressive and complex
contagion.

1.4 Thesis structure
The remainder of this thesis is structured as follows. In Chapter 2, I provide precise

descriptions of the Sznajd and q-voter models, and introduce the methods of analytical
approximation used in this thesis. Then, in Chapter 3, I discuss the key findings of the
4 papers that form the core part of this thesis (which I refer to as Papers 1 – 4). Later,
in Chapter 4, I provide a brief overview of articles I have published in the course of
my undergraduate and graduate studies that do not constitute the core part of the thesis.
Finally, in Chapter 5, I summarize the main findings.



Chapter 2

Models and methods

2.1 On agent-based modeling

As mentioned in Section 1.1, an agent-based model is most often understood as a sim-
ulation of certain interactions between agents, placed on a structure, symbolizing a net-
work of acquaintances, contacts or cooperation [37]. Such a structure can be stored in an
adjacency matrix, see Definition 2.1.

Definition 2.1. Let G = [Gi,j] denote the adjacency matrix for a network, being a con-
nected simple graph, i.e., an unweighted, undirected graph containing no graph loops or
multiple edges [20]. Then, for i, j = 1, 2, . . . , N :

• ∀i∀jGi,j = 1 ⇐⇒ edge between i and j exists,

• ∀i∀jGi,j = 0 ⇐⇒ edge between i and j does not exist,

• ∀i∀jGi,j = Gj,i,

• ∀iGi,i = 0.

Agents possess a set of characteristics, i.e. a vector of variables, with some being
constant, others changing upon interaction with other agents. My thesis focuses on the
binary (discrete) opinions models. There, each agent i = 1, 2, . . . , N is characterized
by a single binary variable (or a pair of binary variables in Paper 4), denoting its opin-
ion, Si, on a given matter, positive, Si = +1, or negative, Si = −1 (or adoption state –
adopted/unadopted in Paper 4, denoted with Ai). N denotes the size of the system (net-
work), i.e. the number of agents. To present the state of the system on the macroscopic
level, two measures are often used: concentration and magnetization.

Definition 2.2. Let N be number of agents and Si = ±1 opinion of agent i, for i =
1, 2, . . . , N . Then, the concentration (or fraction) of positive opinions is given by the
following formula:

c+ =
1

2N

N∑

i=1

(Si + 1). (2.1)

10
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By definition c+ ∈ [0, 1]. Naturally, one could use the concentration of negative opinions,
c−, as well. However, as c+ + c− = 1, a common approach is to use c = c+ and call it
concentration, for simplicity. Another macroscopic measure is magnetization, also known
as the average opinion [48].

Definition 2.3. Let N be number of agents and Si = ±1 opinion of agent i, for i =
1, 2, . . . , N . Then, the magnetization (or average opinion) is given by the following for-
mula:

m =
1

N

N∑

i=1

Si. (2.2)

These two quantities are often used interchangeably, as they are bound linearly by a simple
relationship.

Corollary 2.1. Let c denote the concentration of positive opinions and m – the magneti-
zation. Then:

m = 2c− 1. (2.3)

To provide statistically accurate results, often multiple Monte Carlo simulations are
required. Each simulation (trial/trajectory) is independent, starts from a given set of initial
conditions (initial state) and runs until a stationary state or a specified time horizon T is
achieved (final state). Time in this kind of models is usually measured in the so-called
Monte Carlo steps (MCS).

Definition 2.4. Monte Carlo step (MCS) is defined as a unit of time, consisting of N
elementary updates (with N being the number of agents), each corresponding to time
step ∆t, i.e. N∆t = 1 [9].

To see the general properties of a model, outcomes across the simulations can be
compressed, e.g., averaged, into a single value. For instance, into an empirical probability
of reaching a certain stationary state or average time to reach it.

2.2 The Sznajd model2

In the original formulation of the Sznajd model (SM), we consider a system consisting
of N agents, each of whom has at time t opinion Si(t) = +1 or Si(t) = −1 for i =
1, 2, . . . , N [61]. Agents are placed in a one-dimensional lattice with periodic boundary
conditions. A single simulation run is described in detail in Algorithm 1. In all Algorithms
in this thesis, U [0, 1] stands for a continuous uniform distribution, while U{X} – for
a discrete one, where each element from set X is chosen with equal probability. This
version of the SM is known as USDF (united we stand, divided we fall) [61]. For a
graphical representation, check Fig. 2.1. Note that in this Section S stands for the opinion
for consistency with the rest of the thesis. In [62], it was denoted by σ.

Time is measured in Monte Carlo steps (MCS), as per Definition 2.4. Note, that within
such a formulation every agent has a chance to change twice as many times in the SM as
usually in MCS. However, it was shown that this difference in updating can be easily

2This Section is largely based on Section The model from [62].
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Algorithm 1: Original Sznajd model
for t := 1 to T do

for k := 1 to N do
i := i ∼ U{1, . . . , N}
if Si = Si+1 then

Si−1 := Si

Si+2 := Si

else
Si−1 := −Si

Si+2 := −Si+1

end
end
if ∀i Si = Si+2 then

break
end

end

suppressed by picking randomly only one neighbor of a pair, i− 1 or i+ 2. As shown, it
would result only in the rescaling of time by 2 [58].

In [61] another rule was also proposed under the name if you do not know what to do,
just do nothing, which simply means: skip whole else part in Algorithm 1. This rule was
used in most of later papers, starting from the two-dimensional rule introduced in [59].
Many other people could try to act somehow even in a situation of uncertainty. Therefore,
another natural rule would be if you do not know what to do, just do whatever. In fact,
such a rule was introduced later within the original q-voter formulation [12], see section
2.3.

These two rules and the original one could be simply incorporated within one gener-
alized model. It would rely on a small reformulation of Algorithm 1, see Algorithm 2.
Thus, 3 different values of p correspond to 3 different variants: p = 1 (united we stand,

Algorithm 2: Generalized Sznajd model
for t := 1 to T do

for k := 1 to N do
i := i ∼ U{1, . . . , N}
if Si = Si+1 then

Si−1 := Si

Si+2 := Si

else if r ∼ U(0, 1) < p then
Si−1 := −Si

Si+2 := −Si+1

end
end
if ∀i Si = Si+2 then

break
end

end
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𝑡𝑡

𝑡𝑡 + Δ𝑡𝑡

𝑡𝑡 + 2Δ𝑡𝑡

𝑡𝑡 + 3Δ𝑡𝑡

Figure 2.1: Visualization of the model. Example of several consecutive updates in the system of N = 10
agents with periodic boundary conditions, so the leftmost agent is a neighbor of the rightmost one. Source:
Paper 1.

divided we fall), p = 0.5 (if you do not know what to do, just do whatever) and p = 0
(if you do not know what to do, just do nothing). It should be noted that for p = 1 two
types of absorbing states exist: consensus, i.e. all the agents express the same opinion
(positive, c = 1 or negative, c = 0) and disagreement, in which every agent has opinion
opposite to its closest neighbors (c = 0.5). For p≪ 1 consensus is always reached, unless
disagreement is the initial condition of the system. In other words, disagreement state is
a fixed point for any p, but stable only for p→ 1 (more detailed study in Section 3.1).

2.3 The q-voter model

As mentioned in Section 1.2, the q-voter model is one of the most extensively studied
models in the field of binary opinion dynamics. As with the SM, we consider a set of N
agents, each characterized by a single variable – an opinion, either positive (Si = +1)
or negative (Si = −1). However, in contrast to the SM, the dynamics is not limited to a
one-dimensional lattice with periodic boundaries, i.e. a ring, but can be coupled with any
graph structure without further adjustments. For the visualization of the model dynamics,
see Fig. 2.2.

In the original formulation of the q-voter model [12], all agents were susceptible to
social pressure at all times. However, over the years, a modification of the model be-
came common, the so-called q-voter model with independence [47, 48]. Unsurprisingly,
this extension included a possibility for an agent to act independently of its neighbors.
Additionally, it neglected the probability ϵ present in the original version [12]. See Al-
gorithm 3 for a detailed description of the q-voter model with independence. In there, G
is the adjacency matrix for the underlying structure, as in Definition 2.1. This version,
the q-voter model with independence, forms the basis for further modifications in Papers
2 – 4.

2.4 Analytical methods

In the field of agent-based modeling, Monte Carlo computer simulations are the main
research method. It is the only method that can incorporate all the heterogeneities and
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q-panel
q-panel

Figure 2.2: Illustration of two possible configurations. The center circle portrays the target agent, the
smaller ones portray its neighbors. Light blue color represents a positive opinion (S = +1), dark red
represents a negative one (S = −1). Beige color marks a chosen group of influence. Degree k = 6 and
size of the influence group q = 4 in both cases. The first (top) group of influence is not unanimous and
provides no change, while the second one (bottom) is unanimous and leads to change in target’s opinion.
Source: Paper 3.

Algorithm 3: q-voter model with independence
for t := 1 to T do

for k := 1 to N do
i := i ∼ U{1, . . . , N}
r := r ∼ U [0, 1]
if r < p then

r := r ∼ U [0, 1]
if r < 1

2
then

Si := −Si

else
for l := 1 to q do

jl := j ∼ U{j : Gi,j = 1}
end
Q := 1

q

∑q
l Sjl

if Q = −Si then
Si := −Si

end
end

end

local interactions between agents, usually occurring in this kind of models. However, it
possesses a number of flaws. First and foremost, it is computationally demanding. The
need to examine a vast space of input parameters and the need for numerous simulations
to obtain statistically accurate results leads to long run times. For this reason, analyti-
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cal methods such as mean-field (MFA) [48] or pair approximation (PA) [21] have been
proposed. These methods work well for random graphs with a low clustering coefficient
and perfectly for complete graphs. Unfortunately, real life networks are far from these
assumptions, often being characterized by a high clustering coefficient [5]. Due to this
fact, MFA and PA are merely what they are called – approximations. While, they cannot
simply replace Monte Carlo simulations, they do provide an insight into model dynamics
over a vast space of parameters.

The mean-field approximation for the q-voter model with independence was originally
presented in [48]. In this approach, we neglect the actual structure of the network and
assume complete homogeneity, i.e. every agent can interact with any other, as if the
network was a complete graph of size N → ∞. Here, I only recall the final differential
equation:

dc
dt

= (1− c)

(
1

2
p+ (1− p)cq

)
− c

(
1

2
p+ (1− p)(1− c)q

)
, (2.4)

in which c is concentration of opinions, as per Definition 2.2. This basic form is not used
directly in Papers 1 – 4. However, its extended versions, adjusted to the specifics of the
models, are derived in Papers 2 – 4 and shown in Chapter 3.

The pair approximation is a more advanced, though not always superior, method. It
supplements the MFA with a second equation for the time evolution of density ρ of active
links, i.e. edges connecting agent of opposite opinions [21].

Definition 2.5. Let N be number of agents, Si = ±1 opinion of agent i, for i = 1, 2, . . . ,
N , and G the adjacency matrix of the underlying network. Then, the density of active
links is given by the following formula:

ρ =

∑N
i=1

∑N
j=1 (1− SiSj)Gi,j

2
∑N

i=1

∑N
j=1Gi,j

. (2.5)

In real world networks lots of triads (triangles of agents) are observed, i.e. the clustering
coefficient is high [5]. In the PA the structure is replaced with the density of active links
(active pairs) ρ. Hence, this method is still flawed, as is the MFA, although it works
better for random graphs with a low clustering coefficient. For the q-voter model with
independence, PA was derived first in [28]. Below, the formulas from [26] are presented
(with minor notation changes for consistency):

dc
dt

=
∑

i=⊕,⊖

ci
∑

k

P (k)
k∑

l=0

(
k

l

)
(1− ci)

lck−l
i f(l, i, k)(−Si),

dρ
dt

=
∑

i=⊕,⊖

ci
∑

k

P (k)
k∑

l=0

(
k

l

)
(1− ci)

lck−l
i f(l, i, k)

2

⟨k⟩(k − 2l), (2.6)

where c⊕ = c, c⊖ = 1− c, S⊕ = 1, S⊖ = −1, ⟨k⟩ is the average network degree, P (k) is
the network degree distribution and the function f(l, i, k) is model-dependent probability
of changing current opinion i of an agent that is in disagreement with exactly l voters
among all its k neighbors. Model-specific PA is derived in Paper 3 and presented in
Section 3.3.



Chapter 3

Summary of results

3.1 On reaching consensus (Paper 1)
As described in Section 2.2, the article [62] introduced a generalization of the model

that combines all 3 variants under a single parameter. This parameter, p, could be named
the probability of disagreeing with your neighbor in case of uncertainty. In there, we only
studied the impact of p, initial concentration c(0) = c0 and initial spacial distribution of
opinions on probabilities of reaching a particular absorbing state. And we did it only by
Monte Carlo simulations for the size of the system N = 100. Obviously, the final state
depends on the initial one. However, not only does the initial concentration c0 matter, but
so does the initial spacial distribution of opinions. In [62], two types of them have been
examined:

• Random: at time t = 0 each agent i = 1, . . . , N has a positive opinion, Si(0) = 1,
with probability c0, and a negative one, Si(0) = −1, with complementary probabil-
ity 1− c0.

• Sorted: at time t = 0 each agent i = 1, . . . , ⌊Nc0⌋ has a positive opinion, Si(0) = 1,
and each agent i = ⌊Nc0⌋+ 1, . . . , N – a negative one, Si(0) = −1.

In Paper 1, we examined the generalized Sznajd model more thoroughly, for different
sizes N > 100, and found out that for any p≪ 1 the probability of positive consensus as
the final state, c = 1, can be approximated by:

• for random initial conditions:

P+ =
c20

c20 + (1− c0)2
, (3.1)

• for sorted initial conditions:
P+ = c0. (3.2)

This is consistent with previous research on the Sznajd model with p = 0 [33, 58]. Com-
parison between the above formula (only random initial conditions) and simulated results
is presented in Fig. 3.1 (top).

The second novelty was the time to reach consensus, τ (measured in MCS). Previ-
ously, it was measured only for p = 0 [58]. Obviously, τ = 0 for c0 = 0 or c0 = 1, since

16



3.1. ON REACHING CONSENSUS (PAPER 1) 17

Figure 3.1: Comparison with theoretical approximations, see Eq. (3.1), and scaling with the system size N .
Probability of reaching a positive consensus P+ (top panels) and rescaled mean time to reach consensus
(bottom panels) as functions of the initial concentration of positive opinion c0. Results are presented for
random initial conditions and two values of the probability of disagreeing: p = 0 (left panels) and p = 0.5
(right panels). The scaling exponent α was determined numerically. Source: Paper 1.

these initial states are already absorbing ones. We showed that τ has the maximum value
for c0 = 0.5, see Fig. 3.1 (bottom), and that times are shorter for the random initial condi-
tions than for the ordered ones (Fig. 3.2, bottom). Moreover, we performed a size scaling
and showed the impact of size N on the time to reach consensus (Fig. 3.1, bottom). This
time scales with the size, as Nα, where α ≥ 2 (exact value depends on p).

As shown in Fig. 3.2 (top), consensus (positive c = 1 or negative c = 0) as the final
state is always the case, unless p > p∗ ≈ 0.8. For p > p∗, the probability of disagreement
state grows and reaches its maximum for p = 1. The lower the initial concentration c0, the
higher the probability of consensus (negative in this case), as the system already begins
close to it. Additionally, time to reach consensus depends on p as well, but in a non-trivial
way, see Fig. 3.2 (bottom). The time needed to reach consensus decreases as p increases,
but only up to a certain point. Around p∗ ≈ 0.8 it reaches its minimum, and then starts to
increase. This is, of course, correlated with the probability of consensus. With the second
absorbing state (disagreement) emerging, the system takes longer to “decide” which path
to choose. Still, p∗ ≈ 0.8 being the minimum is a surprising outcome. This means that
consensus is achieved faster if we disagree with our neighbors more often.

Hence, the takeaway from Paper 1 should be: to reach consensus, disagree with your
neighbor. In a more articulate way, it is beneficial to exchange opinions more frequently,
even if we disagree. This is a valid conclusion for diffusion of innovation as well. Ad-
ditionally, we explored a variant of the SM model with empty spaces in the lattice and
possibility of movement for agents. For more details, I encourage the reader to look into
Paper 1.
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Figure 3.2: The impact of the initial concentration of positive opinion c0. Probability of reaching consensus
(top panels) and mean time to reach consensus (bottom panels) as a function of the probability of disagreeing
p. Results are presented for the system size N = 100, under two types of initial conditions: random (left
panels) and sorted (right panels). Source: Paper 1.

Publication details (Paper 1):

• Published as: Weron, T., & Sznajd-Weron, K. (2022). On reaching the consensus
by disagreeing. Journal of Computational Science, 61, 101667.

• IF2Y = 3.1. MNiSW: 100 pts.

• My contribution: conceptualization, implementation, simulation, visualization, re-
view and editing.
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3.2 Opinion formation in polarized society (Paper 2)
In Paper 2, we explore the phenomenon of social polarization. Polarization is wide

concept and object of research in social and political sciences, and even economics. How-
ever, its definition differs between various fields. We use the one given in [16], i.e. that
polarization is a state of a community divided into two opposing groups (cliques), char-
acterized by opposing opinions on a given issue. This phenomenon is also known in the
literature as bi-polarization, in order to distinguish it from the group polarization, the ten-
dency for a group to take increasingly extreme decisions [24, 60]. Social polarization is
alarmingly increasing in modern societies [4, 65]. Hence, the growing interest among
researchers, social scientists, economists, statistical physicists and mathematicians.

In Paper 2, we further explore the model from our previous works [32,57]. It is based
on the q-voter model and studied on the so-called double-clique network, which mimics
echo chambers observed, for example, in modern social media [50]. Here, we extend
this model by introducing the independence of agents, thereby putting it on par with the
q-voter model with independence, while retaining our unique network structure.

In the model, we consider a set of 2N agents divided into two cliques, each of size
N . Each clique is a complete graph with positive links within, and the two cliques are
connected by L×N2 negative cross-links. The parameter L is a fraction of existing cross-
links, out of N2 possible. Agents act as conformists when affected by members of their
own clique, and as anti-conformists when affected by those from the other clique. For
this, we can use a slightly different version of an adjacency matrix.

Definition 3.1. Let G = [Gi,j] denote the adjacency matrix for the double-clique network,
i.e. two complete graphs (cliques A and B) with positive links within, connected by
negative cross-links, and Xi be clique to which agent i belongs (Xi = A,B). Then, for
i, j = 1, 2, . . . , 2N :

• ∀i∀jGi,j = 1 ⇐⇒ edge between i and j exists and Xi = Xj ,

• ∀i∀jGi,j = −1 ⇐⇒ edge between i and j exists and Xi ̸= Xj ,

• ∀i∀jGi,j = 0 ⇐⇒ edge between i and j does not exist,

• ∀i∀jGi,j = Gj,i,

• ∀iGi,i = 0.

The precise description of single simulation run is presented in Algorithm 4 and the vi-
sualization of conformist/anti-conformist dynamics is shown in Fig. 3.3. Here, a slightly
different notation than in Paper 2 is used to keep consistency within this thesis.

In [32], we introduced the mean-field approach, in which L × N2 cross-links are
replaced by a single probability h.

Definition 3.2. Let L×N2 be number of cross-links between the two cliques. Then:

h =
LN2

LN2 + 2N(N−1)
2

N→∞→ L

L+ 1
(3.3)

is the probability of the target agent choosing a neighbor from the other clique and 1− h
is the probability of choosing a neighbor from its own clique.
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Algorithm 4: q-voter model with independence on double-clique network
for t := 1 to T do

for k := 1 to 2N do
i := i ∼ U{1, . . . , 2N}
r := r ∼ U [0, 1]
if r < p then

r := r ∼ U [0, 1]
if r < 1

2
then

Si := −Si

else
for l := 1 to q do

jl := j ∼ U{j : |Gi,j| = 1}
end
Q := 1

q

∑q
l SjlGi,j

if Q = −Si then
Si := −Si

end
end

end

This approach allows for mathematical treatment. First, by defining concentration and
magnetization separately for each clique (A and B), analogously to Definition 2.2.

Definition 3.3. Let 2N be number of agents, Si = ±1 opinion of agent i, for agents
i = 1, 2, . . . , N belonging to the clique A and agents i = N + 1, N + 2, . . . , 2N to the
clique B. Then, the concentrations of positive opinions for cliques A and B are given by:

cA =
1

2N

N∑

i=1

(Si + 1), cB =
1

2N

2N∑

i=N+1

(Si + 1). (3.4)

Corollary 3.1. Let cA, cB denote the concentrations of positive opinions and mA, mB –
the magnetizations for the cliques A and B, respectively. Then:

mA = 2cA − 1, mB = 2cB − 1. (3.5)

Analogously to [32], we derive the equations describing the system dynamics.

Theorem 3.1. Let cA, cB denote the concentrations of positive opinions in cliques A,
B, and the probabilities of choosing an agent with a positive opinion in cliques A, B,
respectively, and h – the probability of choosing a neighbor from the other clique (Defini-
tion 3.2). Under the assumptions that these events are independent, and that the network
is of size 2N →∞, the dynamics of the system is described by the pair of equations:

dcA
dt

= c̄A

(
1

2
p+ p̄

(
h̄cA + hc̄B

)q
)
− cA

(
1

2
p+ p̄

(
h̄c̄A + hcB

)q
)
,

dcB
dt

= c̄B

(
1

2
p+ p̄

(
h̄cB + hc̄A

)q
)
− cB

(
1

2
p+ p̄

(
h̄c̄B + hcA

)q
)
, (3.6)

where c̄A = 1− cA, c̄B = 1− cB, h̄ = 1− h and p̄ = 1− p.
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Figure 3.3: All possible choices of the influence group in the model with q = 4 that lead to an opinion flip
by a target from clique A that was initially in state S = −1. The influence group may contain members
from both cliques. Due to the presence of both positive and negative links, the concept of unanimity from
the original q-voter model has to be extended to signals, which are then received by the target of influence.
A signal is the state of a member times a sign of the link between it and the target. The target changes its
opinion only if all members of the influence group emit the same signal. Source: Paper 2.

Proof. See Section 2.6 in Paper 2.

We analyze both models: the one with fixed L × N2 cross-links by Monte Carlo
simulations, the one with the probability h – numerically, based on Eqs. (3.6). Compar-
ison between them is presented in Fig. 3.4. The system always starts in total consensus
(mA(0)mB(0) = 1) initially, i.e. all the agents have the same opinion. That was our
choice, to see how the presence of negative cross-links L and independence p can disrupt
it. The system retains consensus (mAmB ≈ 1) or transitions to one of two other final
states, depending on values of L and p: polarization or disorder. Polarization means that
both cliques are unanimous inside, but opposite to each other (mAmB ≈ −1). Disorder
is when there is no unanimity in any of the cliques (mA ≈ 0, mB ≈ 0). As shown in
Fig. 3.4, L > 0 is necessary for polarization to occur. In both models, there are critical
values L∗ for which the system transitions from consensus to polarization, although the
exact values depend on the model and independence p. The impact of p is twofold. For
low values, p ≲ 0.2, it aids polarization, by lowering L∗, as it disrupts the initial consen-
sus. Simultaneously, it prevents both total consensus (mAmB = 1) and total polarization
(mAmB = −1), since there always remains a fraction of independent agents. For large
values, p ≳ 0.2, independence disables any other state but total disorder (mAmB = 0).
Lastly, differences between the simulations and the MFA are only quantitative, i.e. the
exact values of L and p required to transition between the states differ, but the overall
picture remains. This shows, that the mean-field approximation works well in case of
double-clique network.

Paper 2 provides a valuable insight to opinion dynamics. It examines the behavior
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Figure 3.4: Comparison between simulations (left) and the MFA (right), given by Eqs. (3.6): final product of
magnetizations mAmB . The blue, red and purple colors correspond to consensus, polarization and disorder,
respectively. In both approaches, we can observe that the critical value L∗ decreases with an increase of p,
while L has only a marginal impact on p∗. Source: Paper 2.

of the q-voter model with independence on a non-trivial network structure, i.e. double-
clique topology. Opinions matter when it comes to adopting a new product [70] and we
incorporate the opinion part into the diffusion of innovation later, in Paper 4.

Publication details (Paper 2):

• Weron, T., & Szwabiński, J. (2022). Opinion evolution in divided community. En-
tropy, 24(2), 185.

• IF2Y = 2.1. MNiSW: 100 pts.

• My contribution: conceptualization, implementation, simulation, analysis, visual-
ization, review and editing.
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3.3 To repeat, or not to repeat (Paper 3)

At first, Paper 3 may seem as a side quest, not touching directly any social phe-
nomenon. However, it focuses on an aspect of the q-voter model that remained neglected
for years. Within the original formulation [12], see Section 2.3, a possibility of repetition
was present when constructing the group of influence. This approach was followed by
some researchers [41,44,67]. Others took the opposite path and forbade the possibility of
repetition [1, 2, 13, 23, 28, 47]. Some did not even specify it (with repetitions or without)
at all [25,45,63,64]. To date, to the best of our knowledge, only one article addressed this
issue [68]. In Paper 3, we further examine whether there are differences between these
two variants and how significant they are (see Fig. 3.5 for visualization of differences in
the dynamics). We refer to these as repetition and no repetition variants. The repetition
variant is presented in Algorithm 3. For the no repetition variant, one minor modification
is required, precisely: jl := j ∼ U{j : Gi,j = 1 ∧ j ̸= j1, . . . , jl−1}.
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Figure 3.5: Depiction of the model dynamics in the no repetition (left) and the repetition (right) variants.
The upper part corresponds to conformist behavior (probability 1 − p), while the bottom one corresponds
to independence (probability p). The big circle portrays the target agent, smaller ones portray its neighbors.
Light blue color represents a positive opinion (S = +1), dark red represents a negative one (S = −1),
and beige marks a randomly chosen group of influence, with darker beige for repetitive choice. Degree
k = 6 and size of the influence group q = 4 in all the above cases. Source: Paper 3.

For this task, we use not only Monte Carlo simulations, but MFA and PA as well.
Simulations are treated as the “real” result. Then, we adapt approximation methods and
check how they perform. All simulations are conducted on a random regular graph, i.e. a
connected graph in which each node (agent) has the same degree (number of neighbors)
k. We expected the differences between the no repetition and repetition variants to be
most pronounced when the size of the group of influence q is close to the degree k. Hence
the random regular graph, in which we can easily manipulate the degree k. However,
we performed simulations on other networks (square lattice, Watt-Strogatz graph [69]) as
well. The results, though not included in Paper 3, remain qualitatively the same.

For comparison between the variants in simulated results, see Fig. 3.6. There, we
show the final concentration c as a function of probability of independence p. Indeed,
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Figure 3.6: Comparison between the simulation results and the approximation methods in the no repeti-
tion (left) and repetition (right) variants, for a random regular graph of size N = 1000, with the degree
k = 10 and the sizes of the group of influence q = 4 (top), and 5 (bottom). The solid, light gray line
indicates the ordinary MFA, the dashed dark gray one indicates the network aware mean-field approxima-
tion (naMFA), the dashed green one indicates the heuristic mean-field approximation (hMFA), and the solid
orange one indicates the PA. Simulation results for the initial concentration c(0) = 0.5 (blue triangles) and
1 (red circles) are shown. In the repetition variant, the PA is obtained numerically. Source: Paper 3.

there is a visible difference between the variants. In the no repetition scenario, critical
value of p, p∗, required for the system to transition from consensus to disorder is signifi-
cantly lower than in the repetition one. The closer the size of group of influence q to the
degree k, the more articulated the difference. This result clearly shows that these variants
of the q-voter model cannot be used interchangeably. Lastly, two sets of initial conditions
(c(0) = 0.5 and c(0) = 1) are used there to check if that makes a difference – it does not.

The first approximation method that we use is the MFA. The classical MFA assumes
the possibility of repetition, see Eq. (2.4). To account for the no repetition variant, we
introduce a modified MFA, which we call the network aware mean-field approximation
(naMFA).

Theorem 3.2. Let c denote the concentration of positive opinions and the probability of
choosing an agent with a positive opinion. Under the assumptions that these events are
independent, and that the network is of size N → ∞, the dynamics of the system in the
repetition variant is described by:

dc
dt

= (1− p)α + pβ, (3.7)
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where

α = (1− c)cq − c(1− c)q, (3.8)

β =
1

2
(1− c)− 1

2
c.

Under the additional assumption that every agent chooses q neighbors without repetitions
only from randomly determined k neighbors at any given moment, α and β in the no
repetition variant are described by:

α = (1− c)

q−1∏

i=0

max

[
k × c− i

k − i
, 0

]
− c

q−1∏

i=0

max

[
k × (1− c)− i

k − i
, 0

]
, (3.9)

β =
1

2
(1− c)− 1

2
c.

Proof. See Section 2.2 in Paper 3.

In order to find the stationary states analytically, dc
dt = 0, we must satisfy the following

relationship:
p =

α

α− β
. (3.10)

And this is what is shown in Fig. 3.6 under the names MFA, α from Eq. (3.8), and
naMFA, α from Eq. (3.9). In the repetition variant naMFA is replaced by MFA, i.e. Eq.
(3.8). Unfortunately, these approximations are far from perfect, especially for q = 5 in
the no repetition variant.

The second method is the PA. Concentration c is complemented here by the fraction
of active links ρ (Definition 2.5), as in Eq. (2.6).

Theorem 3.3. Let c denote the concentration of positive opinions and the probability of
choosing an agent with a positive opinion, and ρ – the fraction of active links and the
probability of choosing a neighbor with an opposite opinion. Under the assumptions that
these events are independent, and that the network is of size N →∞, the dynamics of the
system is described by:

dc
dt

=
∑

i=⊕,⊖

ci

k∑

l=0

(
k

l

)
(1− ci)

lck−l
i F (l, k, q, p)(−Si),

dρ
dt

=
∑

i=⊕,⊖

ci

k∑

l=0

(
k

l

)
(1− ci)

lck−l
i F (l, k, q, p)2(k − 2l). (3.11)

where
F (l, k, q, p) =

p

2
+ (1− p)f(l, k, q), (3.12)

is the probability that an agent with k neighbors and l active links changes its opinion, in
which

f(l, k, q) =

{ (
k−q
l−q

)
/
(
k
l

)
, no repetition,(

l
k

)q
, repetition.

(3.13)

In the no repetition variant f(l, k, q) = 0 if k < q.

Proof. See Section 2.3 in Paper 3.
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Note a few changes in the notification (from Paper 3) for consistency within this the-
sis. In the no repetition variant, one can, under condition dc

dt = 0, derive the following
relationship:

p−1 = 1 +
2q−1

(
k−1
k−2

)q

q − 1
. (3.14)

Unfortunately, in the repetition one, terms in Eq. (3.11) do not reduce, and a closed-form
expression does not exist. Thus, one must rely on numerical solution. The PA is also
shown in Fig. 3.6. It visibly outperforms MFA and naMFA.

Once more, we resort back to MFA to derive equations that can be solved entirely ana-
lytically. In this approach, referred to as the heuristic mean-field approximation (hMFA),
we include the probability of constructing an unanimous group of influence, for a given
local configuration of opinions.

Theorem 3.4. Let c denote the concentration of positive opinions and the probability
of choosing an agent with a positive opinion. Under the assumptions that these events
are independent, that the network is of size N → ∞, and that every agent first chooses
k agents randomly, and then q neighbors out of these k, the dynamics of the system is
described by:

dc
dt

= (1− p)α + pβ, (3.15)

where

α = (1− c)
k∑

i=1

(
k

i

)
ci(1− c)k−i

(
i

k

)q

− c
k∑

i=1

(
k

i

)
(1− c)ick−ic

(
i

k

)q

, (3.16)

β =
1

2
(1− c)− 1

2
c,

in the repetition variant, and

α = (1− c)
k∑

i=q

(
k

i

)
ci(1− c)k−i

q−1∏

j=0

i− j

k − j
− c

k∑

i=q

(
k

i

)
(1− c)ick−i

q−1∏

j=0

i− j

k − j
, (3.17)

β =
1

2
(1− c)− 1

2
c,

in the no repetition one.

Proof. See Section 2.4 in Paper 3.

Then, we can use Eq. (3.15) to compute stationary states, analogously to Eq. (3.10).
Unfortunately, by itself, this approach still performs poorly when k is small in relative to
q. Hence, we include a heuristic correction h to Eq. (3.15):

p′ =
α

α− hβ
, (3.18)

where h (h > 1) is there to artificially magnify the impact of independence, which has
greater effect in the case of low k than the classical MFA accounts for. It occurs that
h should be a function of model parameters, h = h(q, k, p). In Paper 3 an example of
h(q, k, p) was proposed, however not derived, only guessed. For this reason, it bears no
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significant value and is not included here. For details, see Paper 3. This approach, the
hMFA, is presented in Fig. 3.6 as well. It performs slightly worse than the PA, but in
return is solvable completely analytically.

They key points of Paper 3 are the following. First, we show that the different variants
of the q-voter model with independence, the no repetition and repetition one, differ in
outcomes, especially when the average network degree k is low. Specifically, the critical
value p∗ for which the system transitions from consensus (c ≈ 1) to disorder (c ≈ 0.5)
is lower in the no repetition variant. Therefore, they are not simply interchangeable.
Second, we examine a number of approximation methods. The classical MFA and our
slightly modified naMFA do not perform well when k is low and close to q. The PA and
hMFA do much better, with the PA being the most accurate method. However, the PA
provides a closed-form solution only in the no repetition variant, while the hMFA does so
in both variants, and additionally yields much simpler formulas.

Publication details (Paper 3):

• Weron, T., Nyczka, P., & Szwabiński, J. (2024). Composition of the Influence
Group in the q-Voter Model and Its Impact on the Dynamics of Opinions. Entropy,
26(2), 132.

• IF2Y = 2.1. MNiSW: 100 pts.
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3.4 Diffusion of photovoltaic installations (Paper 4)
In Paper 4, we introduce a new model of eco-innovation diffusion (PVs diffusion

precisely). It utilizes q-voter-like dynamics, expanded however to a multi-layer struc-
ture. The aim is to model both opinion evolution and diffusion of the new product jointly.
Therefore, we introduce a second agent’s attribute, in addition to the opinion S – an adop-
tion state A. It is a binary variable, same as opinion in the q-voter model, i.e. Si = ±1,
Ai = ±1 for i = 1, 2, . . . , N . Positive value means that an agent possesses a PV in-
stallation, negative – it does not. An agent (representing a household in our model) can
be tempted to install PVs in two ways. Either it sees panels on rooftops of neighbors,
or discusses the matter with friends. Therefore, we utilize a two-layer network structure,
to model this twofold dynamics. The first layer represents location of agents in space,
similarly to [31, 56, 70]. For this reason, it is a square lattice (SL) with Moore’s neigh-
borhood [42], meaning that each agent possesses 8 neighbors surrounding it (except for
agents in the corners and along the edges, which have 3 and 5 neighbors, respectively),
and non-periodic boundaries. Through links of this layer, agent can only see PV panels,
or lack thereof, on the roofs of its neighbors (adoption state). It cannot exchange opinions.
For this, there is the second layer that depicts agents’ friendships, contacts, relationships,
etc. We desire a structure closely related to a SL, but with characteristics of real world
social networks. Hence, we use two-dimensional Watts-Strogatz graph (WS2D) [7,46,69]
to describe the second layer. In the special case (when randomness β = 0), WS2D re-
duces to a square lattice. In opposition to the first layer, here agents can only see others’
opinions, not adoption states. Social influence, described by the q-voter dynamics, com-
bined from the both layers (either AND or OR rule, similarly to [14]) impacts the target’s
opinion, not the adoption state. Finally, an agent with a positive opinion (but negative
adoption state) decides to adopt with a certain probability, a1. Analogously, a one with a
negative opinion and positive adoption state unadopts with probability a2 = ha1, where
h ∈ (0, 1). We consider only a1 > a2 (i.e. h < 1), so that adopting is always more
probable than unadopting. For visualization of the model and the two-layer network, see
Fig. 3.7, for simulation details – Algorithm 5. In Algorithm 5, G1 and G2 denote the
adjacency matrices for the first and the second layer, respectively.

We examine the model using both Monte Carlo simulations and the MFA. With the
latter, we are able to examine a much wider range of input parameters. One cannot achieve
it with simulations in a reasonable amount of time. First, we define concentrations of
opinions and adoptions states, in analogy to Definition 2.2.

Definition 3.4. Let N be number of agents, Ai±1 adoption state and Si = ±1 opinion of
agent i, for i = 1, 2, . . . , N . Then, the concentrations of positive adoption states cA and
opinions cS are given by:

cA =
1

2N

N∑

i=1

(Ai + 1) , cS =
1

2N

N∑

i=1

(Si + 1) . (3.19)

Then, we derive a set of equations describing the dynamical system.

Theorem 3.5. Let cA denote the concentration of positive adoption states and the prob-
ability of choosing an agent with a positive adoption state, and cS – the concentration of
positive opinions and the probability of choosing an agent with a positive opinion. Under
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Figure 3.7: Graphical representation of the model. The network consists of 2 layers: Square Lattice (SL, left
side), on which adoption states Ai are visible and two-dimensional Watts-Strogatz (WS2D, right side) with
opinions Si. Adoption states Ai are represented by outer circles (green – Ai = +1, red – Ai = −1), while
opinions – by inner circles. Grey areas correspond to adoption states or opinions unknown to the target
agent (marked with a dark blue circle). Groups of influence (of size q = 4, marked with light blue circles)
are constructed independently on each layer. In the given example, such a choice would be sufficient to
change target’s opinion (Starget → +1) in the OR variant, but not in the AND variant, as unanimity is only
achieved in one of the two groups of influence. Source: Paper 4.

the assumptions that these events are independent, and that each layer of the network is
of size N →∞, the dynamics of the system is described in the AND variant by:

dcA
dt

= cS (1− cA) a1 − (1− cS) cAha1, (3.20)

dcS
dt

= (1− cS)

(
1

2
p+ (1− p)cqSc

q
A

)

− cS

(
1

2
p+ (1− p)(1− cS)

q(1− cA)
q

)
, (3.21)

and in the OR variant by:

dcA
dt

= cS (1− cA) a1 − (1− cS) cAha1,

dcS
dt

= (1− cS)
{1

2
p+ (1− p) (cqS (1− cqA − (1− cA)

q)

+cqA (1− cqS − (1− cS)
q) + cqSc

q
A)
}

− cS

{1

2
p+ (1− p) ((1− cS)

q (1− cqA − (1− cA)
q)

+(1− cA)
q (1− cqS − (1− cS)

q) + (1− cS)
q(1− cA)

q)
}
. (3.22)

Proof. See Section 2.2 in Paper 4.

Due to the power of q in Eqs. (3.21)-(3.22), time trajectories of the system given by
Eqs. (3.20)-(3.22) cannot be determined analytically. Hence, one must resort to numerical
methods. However, stationary states can be found analytically and their existence can be
proven.
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Theorem 3.6. Let cA denote the concentration of positive adoption states and the prob-
ability of choosing an agent with a positive adoption state, and cS – the concentration of
positive opinions and the probability of choosing an agent with a positive opinion. Under
the assumptions that these events are independent, and that each layer of the network is
of size N →∞, for any q ∈ N, q ≥ 2, p ∈ [0, 1], h ∈ (0, 1) and a1 ∈ (0, 1], there always
exists at least one stationary state, and all stationary states must satisfy:

cA =
cS

cS + h− cSh
, (3.23)

p =
f2(cS)

f2(cS) + f3(cS)
, (3.24)

in the AND variant, and:

cA =
cS

cS + h− cSh
,

p =
f5(cS)

f5(cS) + f3(cS)
, (3.25)

in the OR variant. Here:

f2(cS) = cS(1− cS)
(
c2q−1
S − hq(1− cS)

2q−1
)
,

f3(cS) =

(
cS −

1

2

)
(cS + h− cSh)

q,

f5(cS) = cS(1− cS)
{(

cq−1
S − (1− cS)

q−1
)
(cS + h− cSh)

q

+ cq−1
S (1− cS)

q−1(1 + hq)(2cS − 1)

+ cq−1
S − c2q−1

S + hq(1− cS)
2q−1 − hq(1− cS)

q−1
}
.

Proof. See Section 2.2 in Paper 4.

For the comparison between the simulations and numerically obtained time trajecto-
ries from Eqs. (3.20)-(3.22), see Fig. 3.8. They remain consistent with each other for the
most part. For a narrow range of parameters they differ significantly, however. This is due
to the fact, that in the simulation the adoption is achieved more easily, i.e. for lower value
of independence p. Below this range, both versions (simulation and numerical) behave
the same (the system remains unadopted), above – the same as well (the system becomes
adopted).

Mean-field time trajectories, and hence times to reach a stationary state, are obtained
numerically from Eqs. (3.20)-(3.22). Analytically, we are only able to compute stationary
states, see Eqs. (3.23)-(3.25). We compare the two in Fig. 3.9 (left side). Numerically
computed stationary states perfectly match analytical ones. Segments not covered by the
numerical results are due to the fact that the analytical solution shows all the possible sta-
tionary states, while the numerical one only those achievable from given initial conditions
(cA(0) = 0, cS(0) = 0).

There exist three groups of stationary states: unadopted (cA(T ) ≈ 0, cS(T ) ≈ 0),
adopted (cA(T ) ≈ 1, cS(T ) ≈ 1) and disordered (cA(T ) ≈ 0.5, cS(T ) ≈ 0.5). The
system transitions from the first, through the second, to the third, as the probability of
independence p increases, although a transition between the latter two in the OR variant is
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Figure 3.8: 10 simulated time trajectories of cA and cS versus numerically obtained time trajectory from
Eqs. (3.20)-(3.22), for different values of p and a1. The AND (left 4) and the OR variant (right 4). First
layer – SL(N,1), second layer – WS2D(N,1,0.2), size N = 2500 and a2 = 0.5a1 in all cases. Source:
Paper 4.

very smooth. If the system starts from the unadopted, negative state (cA(0) = 0, cS(0) =
0), independence is essential for the adoption process to take off. Later on, however,
independence hinders innovation and ultimately prevents full adoption.

The time to reach a stationary state is presented in Fig. 3.9 (right side), with respect to
a1 (a2 = 0.5a1) and p. As shown in Eq. (3.20), the value of a1 ∈ (0, 1] itself has no impact
on a stationary state. It dramatically affects the time to reach a stationary state however,
but only in a range of low values. For high values of a1, the changes are unnoticeable. The
“ridges” for certain values of p that one can observe, correspond to transitions between
the groups of stationary states. There are two such ridges in the AND variant, but only
one in the OR variant, as transition between adopted and disordered states is very smooth
there. These increases in times are logical, as the system needs more time to “decide”
which path to take, and consistent with our knowledge on phase transitions (Paper 1).

Though not by a1 itself, the system is greatly impacted by the relation between a1
and a2, i.e. the h coefficient. For visualization, I encourage the reader to see Paper 4.
Basically, the greater the difference between people’s willingness to install solar panels
versus their willingness to get rid of them, the better for the innovation. This difference
not only amplifies independence in the initial phase of adoption, but dilutes it in the final
phase as well.

Publication details (Paper 4):

• Weron, T. (2024). Multi-layer diffusion model of photovoltaic installations. arXiv
preprint arXiv:2408.09904v2.
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Figure 3.9: Stationary states (left) and time to reach a stationary state (right) for the AND (top) and the
OR variant (bottom). Left side compares numerical results (from Eqs. (3.20)-(3.22); markers) vs analytical
(from Eqs. (3.23)-(3.25); continuous lines). Numerical results cover only a portion of analytical ones, as
they present stationary states from a single pair of initial conditions (cA(0) = 0, cS(0) = 0) only, while the
latter show all the possible stationary states. Right side shows time to reach a stationary state obtained with
numerical methods. Adoption probabilities a1 = 0.5 (left side only) and a2 = 0.5a1. Source: Paper 4.
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Algorithm 5: Simulation dynamics
for t := 1 to T do

for k := 1 to N do
i := i ∼ U{1, . . . , N}
r := r ∼ U [0, 1]
if r < p then

r := r ∼ U [0, 1]
if r < 1

2
then

Si := −Si

else
for l := 1 to q do

j1,l := j1 ∼ U{j1 : G1,i,j1 = 1}
j2,l := j2 ∼ U{j2 : G2,i,j2 = 1}

end
Q1 :=

1
q

∑q
l Aj1,l

Q2 :=
1
q

∑q
l Sj2,l

if Variant = AND then
if Q1 +Q2 = −2Si then

Si := −Si

else if Variant = OR then
if (Q1 = −Si and Q2 ̸= Si) or (Q1 ̸= Si and Q2 = −Si) then

Si := −Si

end
end
r := r ∼ U [0, 1]
if Si = 1 and Ai = −1 and r < a1 then

Ai = 1
else if Si = −1 and Ai = 1 and r < a2 then

Ai = −1
end

end
end
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Auxiliary results

During my scientific career, I have published 12 articles in peer-reviewed journals on
agent-based modeling and opinion dynamics or electricity market forecasting. Three of
them plus one available on arXiv form this thesis. The rest either covers different topics
or was published before my doctoral studies. I include and briefly summarize them here
to provide a full picture of my research.

1. Sznajd-Weron, K. Szwabiński, J., Weron, R., & Weron, T. (2014). Rewiring the
network. What helps an innovation to diffuse? Journal of Statistical Mechanics:
Theory and Experiment, 2014(3), P03007.

2. Siedlecki, P., Szwabiński, J., & Weron, T. (2016). The Interplay Between Confor-
mity and Anticonformity and its Polarizing Effect on Society. Journal of Artificial
Societies and Social Simulation, 19(4).

3. Krueger, T., Szwabiński, J., & Weron, T. (2017). Conformity, anticonformity and
polarization of opinions: insights from a mathematical model of opinion dynamics.
Entropy, 19(7), 371.

4. Weron, T., Kowalska-Pyzalska, A., & Weron, R. (2018). The role of educational
trainings in the diffusion of smart metering platforms: An agent-based modeling
approach. Physica A: Statistical Mechanics and its Applications, 505, 591-600.

5. Maciejowska, K., Nitka, W., & Weron, T. (2019). Day-ahead vs. Intraday – Fore-
casting the price spread to maximize economic benefits. Energies, 12(4), 631.

6. Kath, C., Nitka, W., Serafin, T., Weron, T., Zaleski, P., & Weron, R. (2020). Bal-
ancing generation from renewable energy sources: Profitability of an energy trader.
Energies, 13(1), 205.

7. Sznajd-Weron, K., Sznajd, J., & Weron, T. (2021). A review on the Sznajd model –
20 years after. Physica A: Statistical Mechanics and its Applications, 565, 125537.

8. Weron, T., Sznajd-Weron, K. (2021). How to Reach Consensus? Better Disagree
with Your Neighbor. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V.,
Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021.
Lecture Notes in Computer Science(), vol 12744. Springer, Cham.
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9. Maciejowska, K., Nitka, W., & Weron, T. (2021). Enhancing load, wind and solar
generation for day-ahead forecasting of electricity prices. Energy Economics, 99,
105273.

10. Weron, T., & Sznajd-Weron, K. (2022). On reaching the consensus by disagreeing.
Journal of Computational Science, 61, 101667→ Paper 1.

11. Weron, T., & Szwabiński, J. (2022). Opinion evolution in divided community. En-
tropy, 24(2), 185→ Paper 2.

12. Weron, T., Nyczka, P., & Szwabiński, J. (2024). Composition of the Influence
Group in the q-Voter Model and Its Impact on the Dynamics of Opinions. Entropy,
26(2), 132→ Paper 3.

13. Weron, T., & Szwabinski, J. (2024). multi-layer diffusion model of photovoltaic
installations. arXiv preprint arXiv:2408.09904v2→ Paper 4.

Sznajd-Weron et al. (2014) is my first scientific paper and, at the same time, first
on the diffusion of innovation. We examined the q-voter model with independence and
additional advertisement represented by a global external field. We performed simulations
on a whole range of Watts-Strogatz networks, and checked how the parameters of the
model or the network affect the diffusion of innovation. The key findings were that: the
innovation diffuses more likely in more regular graphs and it is harder for the innovation
the spread in more dense networks.

Siedlecki et al. (2016) is the first article in which we proposed the new model of social
polarization, that we later extended in Paper 2. Back then, it was just the q-voter model
without independence, studied solely with Monte Carlo simulations. However, it already
introduced the double-clique topology. We found out that there is a critical number of
negative cross-links L×N2 between the cliques, which polarizes an initially unanimous
system.

In Krueger et al. (2017), we derived the mean-field approximation for the very same
model and examined it analytically and numerically, in addition to the simulations. New
results confirmed our previous findings. Although they differed quantitatively, qualita-
tively they presented the same outcome as the simulations. Further analysis, for the q-
voter model with independence, was done in Paper 2.

In Weron et al. (2018), we proposed a new agent-based model of diffusion of smart
metering platforms (SMPs). The model was based on the q-voter model, but with a new
knowledge factor included. It depicted the knowledge necessary for an individual to use
a SMP. We compared the effectiveness of different training strategies that a company, for
instance, can use to spread the knowledge. It occurred that group trainings (all agents in
a given area) are never worse than random ones (scattered over the whole network), and
are superior for a certain range of input parameters.

Maciejowska et al. (2019) is my first article on electricity price forecasting. We
utilized autoregressive models with exogenous components (ARX) and probit models
to forecast the price spread between day-ahead market and continuous trading markets
(intraday, balancing markets). Firstly, we showed that the sign of the price spread can be
successfully predicted for economics benefits. Secondly, that the statistical measures of
forecast accuracy, such as the percentage of correct sign classifications, do not necessarily
coincide with economic benefits.
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Kath et al. (2020) was a research conducted from a point of view of a small trading
company, that acts as a broker between a wind farm and the energy market, i.e. buys the
forecasted volume of generated energy and then, sells the actual volume in the market.
We showed that publicly available forecasts of wind generation, published by the trans-
mission system operator (TSO), can be corrected with simple ARX models, significantly
improving trader’s strategies and profits.

Sznajd-Weron et al. (2021) provides a comprehensive review on the literature that
arose around the Sznajd model over 20 years since its publication in 2000 [61]. Apart
from that, the article introduces a generalization of the model that combines all 3 variants
under a single parameter (as described in Section 2.2).

Weron et al. (2021) was a short paper that expanded the research on the generalized
Sznajd model, introduced in the previous article. In the latter, we only studied the impact
of input parameters on exit probabilities (probabilities of reaching a particular absorbing
state). And we did only it by Monte Carlo simulations for the size of the system N = 100.
In this paper, we examined it more thoroughly for different sizes. Additionally, we studied
exit time, i.e. time to reach an absorbing state, as it was never measured in the generalized
Sznajd model.

In Maciejowska et al. (2021), we discovered that TSO forecasts of fundamental vari-
ables (load, wind and solar generation) are systematically biased, and once again con-
firmed that they can be significantly improved with ARX models. Then, we used these
enhanced fundamentals’ forecasts successfully to improve the accuracy of electricity price
forecasts. These support the decision process (which market to trade in) and bring in ad-
ditional revenue.
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Conclusions

The aim of my thesis was to develop mathematical models of binary opinion dynamics
that can be used to model the diffusion of PV panels (or other renewable energy sources)
to understand how various factors impact this complex process. This far-reaching goal
was realized through three objectives:

• Objective 1: Evaluate the role of the new parameter in the generalized, the one-
dimensional Sznajd model.

In [62], we introduced a new parameter that contains and describes three different variants
of the Sznajd model, so far analyzed separately. In Paper 1, we thoroughly examined
the generalized Sznajd model and the impact of the new parameter that describes three
different variants of the model on stationary states and time to reach them. Additionally,
we proposed even further generalization onto a diluted system that allows agents to move.
The findings provided valuable insights for Objective 3.

• Objective 2: Evaluate the impact of the underlying network structure and the
method of selecting the group of influence on the time evolution and stationary
states in the q-voter model.

In Paper 2, we studied the phenomenon of social polarization. Precisely, we examined
the q-voter model’s behavior on a double-clique topology, consisting of two complete
graphs connected by negative links. Paper 2 showed how the independence can disrupt
initial consensus, which is related to Objective 3. In Paper 3, we once more analyzed the
q-voter model with independence, this time with regard to the method of selecting a group
of influence (with or without repetitions). This research marked the differences between
these two variants.

• Objective 3: Design a new model of eco-innovation diffusion. Analyze the model
on a multi-layer network structure.

Finally, in Paper 4, we proposed a new model of diffusion of photovoltaic panels. We
based it on the q-voter model with independence and examined on the multi-layer net-
work. We provided a basis for further development, by studying the impact of input
parameters and method of combining social influence across the layers (AND and OR
rules).

In summary, my thesis expanded current knowledge on opinion dynamics and diffu-
sion innovation. It generalized and extended two well-established mathematical models

37
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of binary opinions: the Sznajd and the q-voter models. Finally, it presented a new model
of diffusion of innovation, which being a non-progressive and complex contagion one,
filled the gap in studies on diffusion of innovation.
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[63] K. SZNAJD-WERON, J. SZWABIŃSKI, AND R. WERON, Is the person-situation
debate important for agent-based modeling and vice-versa?, PLoS ONE, 9 (2014),
p. e112203.
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A B S T R A C T

This paper is an extended version of the article published at the International Conference on Computational
Science (ICCS-2021) Weron and Sznajd-Weron (2021). In Weron and Sznajd-Weron (2021) we studied a
generalization of the original one-dimensional Sznajd model, which was based on the addition of a new
parameter — the probability 𝑝 of disagreeing with the neighbor in case of uncertainty. Here, we introduce
a further generalization by diluting the system and allowing for the movement of agents. We investigate the
model via Monte Carlo simulations and show that the intriguing results, summarized as ’Better disagree with
your neighbor’, are valid also for the model with movement.

1. Introduction

Belief or opinion dynamics is a highly interdisciplinary subject, stud-
ied by social psychologists, sociologists, economists, philosophers, biol-
ogists, engineers, computer scientists, statistical physicists, and mathe-
maticians [1–7]. One of the main methods in this field is agent-based
modeling (ABM), which is known as a tool that builds a bridge between
micro and macro scale [8,9]. ABM is generally understood as a simula-
tion modeling technique, in which a system is modeled as a collection
of autonomous decision-making entities called agents [10]. Sometimes
a more general concept is used that does not reduce ABM solely to a
simulation model. Under such a concept ABM is a model, which consists
of many (usually mutually interacting) individuals, analogously to a
microscopic model in statistical physics [11] or the multi-agent system
(MAS) in engineering and technology [12].

Within the ABM of opinion dynamics, one of the most studied
issues is achieving consensus [1,2,4,6,13–16]. The approach to this,
i.e., research questions, etc., varies greatly from discipline to discipline.
For instance, in statistical physicists we are often interested in the phase
transitions between consensus (order) and disagreement (disorder),
which appear as a result of a competition between different factors
(conformity vs. nonconformity, inner interactions vs. environment,
etc.). [11,17–25].

The problem of competing interactions and the possibility of reach-
ing consensus under such a competition has also been studied exten-
sively in the context of signed networks [26–28], for a recent review
see [29]. Within this approach, agents occupy nodes of a network
with each link being associated with either a positive or a negative
sign that can be interpreted as trust/distrust, like/dislike, etc. In the

∗ Corresponding author.
E-mail addresses: tomasz.weron@pwr.edu.pl (T. Weron), katarzyna.weron@pwr.edu.pl (K. Sznajd-Weron).

physics of complex systems, this kind of approach is called quenched
(static). In contrast, within the so-called annealed approach the random
rules, which apply in the system (related to structure of the system,
interactions, etc.) change in time [30]. In this paper, we deal with the
annealed one, which is related to the situation-based approach and
seems to be particularly useful in modeling various social processes,
including the diffusion of green products and practices [31].

Another topic of interest is the convergence of the process [4,14–
16,32–38]. Again, depending on the discipline, various (more or less
formal) approaches are used to achieve different goals [6]. As expected,
mathematicians are mainly focused on the convergence of the process
from the theoretical point of view; for a review see [4,6,35]. On the
other hand, in systems science and control engineering, consensus is
considered the basis of distributed coordinated control of MASs [38]. As
such, it is significant for application to mobile robots, unmanned air ve-
hicles, autonomous underwater vehicles, satellites, aircraft, spacecraft,
automated highway systems, etc. [36]. Therefore, in this domain one
of the main goals is to develop information flow algorithms or protocols,
which specify the information exchange between an agent and its neighbors,
such that the group as a whole can reach an agreement regarding a certain
quantity of interest [37]. Yet another approach, which we use here, is
typical for statistical physicists — we are mainly interested in how
fast consensus is reached in a given microscopic model and what
factors influence the probability of consensus and the time to reach
it [14–16,32,33,33,34,39].

In this paper, we are interested in whether and how quickly con-
sensus is reached, and what factors accelerate achieving consensus in
the generalized one-dimensional Sznajd model (SM) [40]. SM itself is

https://doi.org/10.1016/j.jocs.2022.101667
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Fig. 1. Visualization of the model. Example of several consecutive updates for the model without movement in the system of 𝑁 = 10 agents with probability of disagreeing 𝑝 = 1.
There are periodic boundary conditions, so the leftmost agent is a neighbor of the rightmost one. At time 𝑡 concentration of positive opinions 𝑐(𝑡) = 0.6 and the system is divided
into two clusters of opposite opinions. After a single update, at time 𝑡+𝛥𝑡 concentration of positive agents decreases to 𝑐(𝑡+𝛥𝑡) = 0.5 and the system still consists of two opposing
groups. After another time step still 𝑐(𝑡 + 2𝛥𝑡) = 0.5, but a quarrelsome group (a disagreement state) arises between two opposing groups.

one of the most popular opinion dynamics models in the field of socio-
physics to date cited over 1000 times according to SCOPUS. Part of its
popularity is due to the fact that, being extremely simple, it has become
a good basis for further development and applications in marketing and
politics, for a recent review check [40]. As a result, several versions
of it have been proposed, differing mainly in the rules for agents’
uncertainty condition. The main rule, that conformity appears only in
the case of a unanimous influence group, was kept in all modifications
of SM. Moreover, it has also been applied to the basic 𝑞-voter model,
which can be regarded as a generalization of the SM [41]. However, in
the case of a nonunanimous group, several rules have been proposed,
including: disagreeing with the nearest neighborhood (original rule in
SM based on the wisdom ‘united we stand divided we fall’) and keeping
the old state (the most popular rule). To incorporate both rules within
a single model and explore additional different scenarios, a generalized
version of the model was proposed [40].

Such a generalized model leads to an intriguing result: generally, the
consensus is reached more rapidly if agents disagree more often with
their nearest neighbors in the case of uncertainty. Here, we introduce
a further generalization to examine whether this unexpected behavior
will occur in a diluted system in which agents can move. That is to
answer the question, are the results obtained previously just an artifact
of the very specific setup. One of the main advantages of the presented
approach is that the introduced generalization allows us to reduce the
model, in special cases, to already known variants, which supports its
verification.

The paper is organized as follows. In the next section we describe
the model, which was already studied in [42]. In the consecutive
Section 3 we recall the results for this model that was already pre-
sented [42], as well as some results that were missing previously.
Subsequently, in Section 4 we introduce a further generalization, which
was inspired by one of the reports of the previous paper. In Section 5 we
present the Monte Carlo results of the model, and finally, in Section 6
we wrap up.

2. The model without movement

We study a system of 𝑁 agents placed in cells of a one-dimensional
lattice with periodic boundary conditions. Each agent can be in one
of two states 𝑆𝑖(𝑡) = ±1, representing alternative opinions (yes/no,
agree/disagree, etc.) that change over time 𝑡 due to interactions be-
tween agents. In this version of the model, as in the original SM [40,
43], each cell is occupied by exactly one agent, and hence the agents
cannot move.

We use the random sequential update scheme, which mimics con-
tinuous time. An elementary update consists of the following substeps:

1. A pair of adjacent cells (𝑖, 𝑖 + 1), which we call the source of
influence, is chosen at random, to influence two neighboring
cells: one on the pair’s left side, i.e. 𝑖 − 1, and one on the right
side, i.e. 𝑖 + 2.

2. If the pair (𝑖, 𝑖 + 1) is unanimous, i.e. 𝑆𝑖(𝑡) = 𝑆𝑖+1(𝑡), then the
two neighbors take the same state as a pair: 𝑆𝑖−1(𝑡 + 𝛥𝑡) =
𝑆𝑖(𝑡), 𝑆𝑖+2(𝑡+𝛥𝑡) = 𝑆𝑖(𝑡), where 𝛥𝑡 is a period needed for a single
update.

3. Otherwise, if 𝑆𝑖(𝑡) = −𝑆𝑖+1(𝑡), cells (𝑖 − 1, 𝑖 + 2) take the states
opposite to their nearest neighbors with probability 𝑝: 𝑆𝑖−1(𝑡 +
𝛥𝑡) = −𝑆𝑖(𝑡), 𝑆𝑖+2(𝑡 + 𝛥𝑡) = −𝑆𝑖+1(𝑡). It means that in case of
uncertainty, agents disagree with their nearest neighbors with
the probability 𝑝: 𝑝 = 1 corresponds to the original ‘‘United we
stand, divided we fall’’ rule, whereas 𝑝 = 0 to the rule, which
has been mostly used in the literature within the SM [40].

As usual in this type of models, a time unit consists of 𝑁 elementary
updates, that is, 𝑁𝛥𝑡 = 1. An example of several consecutive updates
in the small system of 𝑁 = 10 agents is presented in Fig. 1. It shows
that in the system of two opposing, internally unanimous groups, a
quarrelsome group (a disagreement state) can emerge.

We realize that the assumptions of the one-dimensional structure
and the lack of movement describe only a limited number of real-life
scenarios, such as opinion formation during a round-table discussion.
In the previous paper, we wrote that allowing for agents’ movement
would also be an interesting idea but, unfortunately, would require an
additional parameter describing the density of occupied cells. In Sec-
tion 4 of this paper, we introduce such a parameter and generalize the
model. Furthermore, we show how this new parameter influences the
process of reaching a consensus. Another interesting research would be
to check how the structure of the social network impacts the formation
of consensus in such a model but that we leave for the future.

We study the model within Monte Carlo simulations with different
initial conditions, parameterized by the concentration 𝑐0 ≡ 𝑐(0) of
agents with positive opinion at time 𝑡 = 0:

𝑐(𝑡) =
𝑁+(𝑡)
𝑁

= 1
2𝑁

𝑁∑
𝑖=1

(
𝑆𝑖(𝑡) + 1

)
, (1)

where 𝑁+(𝑡) is the number of agents with opinion +1 at time 𝑡. To
precisely define the initial conditions, in addition to the concentration
of positive agents 𝑐0, we have to decide on their spatial distribution.
We consider two limiting cases, as in [40]:

• Random: choose randomly 𝑁+(0) out of 𝑁 cells for agents with
positive opinions. For large systems, it is almost identical to a
much simpler rule: for 𝑖 = 1 to 𝑁 , with probability 𝑐0 = 𝑁+(0)∕𝑁 ,
set 𝑆𝑖(0) = 1 and, with complementary probability 1 − 𝑐0, set
𝑆𝑖(0) = −1.
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• Sorted: for 𝑖 = 1 to 𝑁+(0) set 𝑆𝑖(0) = 1 and for 𝑖 = 𝑁+(0) to 𝑁 set
𝑆𝑖(0) = −1.

We average the results over 𝐿 = 103 independent samples, i.e. for
each set of parameters (𝑝, 𝑐0, 𝑁) we perform 𝐿 independent simulations
(see Algorithm 1 for a single simulation). We stop the simulation once
the absorbing state is reached or the simulation time 𝑡 exceeds the time
limit 𝑇 . The latter was introduced to avoid overly long simulations.
However, in practice we used 𝑇 = 104 which was large enough for the
system to always achieve an absorbing state.
Algorithm 1: Algorithm for the model without movement
for 𝑡 ← 1 to 𝑇 do

for 𝑘 ← 1 to 𝑁 do
𝑖 ← 𝑖 ∼  {1,… , 𝑁}
if 𝑆𝑖 = 𝑆𝑖+1 then

𝑆𝑖−1 ← 𝑆𝑖
𝑆𝑖+2 ← 𝑆𝑖

else if 𝑟 ∼  (0, 1) < 𝑝 then
𝑆𝑖−1 ← −𝑆𝑖
𝑆𝑖+2 ← −𝑆𝑖+𝑗

end
end
if ∀𝑖 𝑆𝑖 = 𝑆𝑖+2 then

break
end

end

After each of the 𝐿 simulations, we collect the data:

• The final (absorbing) configuration, which for this model is one
of the following [40]: (1) positive consensus (+ + + + +⋯), (2)
negative consensus (− − − − −⋯) or (3) a state of disagreement
(+ − + − +⋯). Note that each of these states is described by
the same simple rule: ∀𝑖 𝑆𝑖 = 𝑆𝑖+2, which allows for a simple
stop condition used in Algorithm 1. Collecting these data allows
us to calculate the probability of reaching each absorbing state:
𝑃+, 𝑃−, 𝑃+−, so-called exit probability [13,44]. For the sake of
clarity, we will also refer directly to a given final state using terms
consensus probability, positive consensus probability, etc.

• The time required to reach an absorbing state, so-called exit time,
which allows us to calculate the average exit time 𝜏 [44]. For
the sake of clarity, we will also use the terms consensus time,
positive consensus time, etc.

3. Results for the model without movement

The model described in the previous section evolves towards one
of the three absorbing states: (1) positive consensus, in which every
agent has a positive opinion, (2) negative consensus, in which every
agent has a negative opinion, and (3) a disagreement state in which
every agent disagrees with the nearest neighbors. Once an absorbing
state is reached, the system shall never leave it.

It was previously claimed that only for 𝑝 = 1 the consensus or
disagreement state can be reached, whereas for 𝑝 < 1 only consensus is
possible, so the probability of disagreement 𝑃+− = 0 [40,42]. However,
this claim has not been confirmed by any simulations so far. Therefore,
we decided to check what is the probability to reach the disagreement
state as a function of probability of disagreeing 𝑝, for different lattice
sizes 𝑁 .

Fig. 2 shows that in the smallest of the systems studied, 𝑁 = 100,
consensus is reached with probability 1 only for 𝑝 < 𝑝∗ ≈ 0.8. Above
this threshold 𝑝 = 𝑝∗, the probability of consensus begins to decrease. At
the same time, the complementary probability of disagreement begins
to increase with 𝑝, until 0.5 for 𝑝 = 1. For 𝑝 = 1 both states, consensus
and disagreement are equally likely for any system size 𝑁 . However,
as 𝑁 increases, the value 𝑝 = 𝑝∗ above which the state of disagreement
is likely to occur, grows and tends towards 1. Therefore, for very large

𝑁 it will only be observable for 𝑝∗ → ∞. Interestingly, the same final
states are obtained for both random and sorted initial conditions. The
only difference is the time needed to reach them, shortened for random
ones. This means that, in a system of two internally unanimous groups,
a state of disagreement can arise.

By showing in Fig. 2 both the probability of reaching consensus (top
panels) and the time required to reach this state (bottom panels), we
can observe an interesting fact, overlooked in the original short version
of this article [42]. As we see here, the consensus time decreases with
𝑝 only to 𝑝 = 𝑝∗, that is, to the point at which the disagreement state
starts to appear. This is due to the competition between the two forces
that drives the evolution of the system. The first occurs when the source
of influence is unanimous and results in the building of consensus, the
second when the agents in the source of influence are in opposite states
and with probability 𝑝 supporting the disagreement. For 𝑝 ≥ 𝑝∗ the
system is frustrated, in a sense that ‘‘it cannot decide’’ towards which
steady state to evolve and therefore, the exit time increases.

The above result, although overlooked previously, does not contra-
dict the claim of the previous work that the consensus time generally
decreases with 𝑝. This is indeed true because, as mentioned above, 𝑝∗
increases with 𝑁 , and for 𝑁 → ∞ the threshold 𝑝∗ → 1. Moreover, it
occurs that 𝑝 = 𝑝∗ depends not only on the size of the system, but also
on the initial concentration of positive opinions 𝑐0, as seen in Fig. 3. The
maximum value of 𝑝∗ occurs at 𝑐0 = 0.5 and the further away from this
half–half initial condition is, the higher value of 𝑝∗. Thus, disagreement
is achieved very rarely, only for a narrow range of parameters.

For this reason, in the further part of this paper, and in analogy
to the previous one [42], we focus solely on reaching the consensus,
namely, on the exit probability of the consensus and the exit time
needed to reach such a state. In [40] the exit probability was measured
within the Monte Carlo simulations for 𝑁 = 100. In [42] we checked it
more systematically for different sizes, 𝑁 ≥ 100, which is presented in
the top panels of Fig. 4.

It occurs that for any 𝑝 < 1 the exit probability of the positive
consensus can be approximated by the following formulas:

• for random initial conditions (see Fig. 4):

𝑃+ =
𝑐20

𝑐20 + (1 − 𝑐0)2
, (2)

• for sorted initial conditions: 𝑃+ = 𝑐0.

The same results have been obtained previously for the original SM
without disagreement rule, which corresponds to 𝑝 = 0 [45,46]. Note
that the above formulas and the corresponding top panels in Fig. 4
describe the probability of reaching the positive consensus 𝑃+, in
contrast to Fig. 2, which shows the probability of any consensus, that
is, 𝑃+ and 𝑃−. If the probability of any type of consensus would be
shown in Fig. 4 then we would see just a horizontal line at value 1,
because independently of 𝑐0 the consensus is reached with probability
1 for values of 𝑝 presented in this figure. However, the probability of a
given type of consensus, here positive, is far less clear, and in the case
of the original SM this issue caused an extended debate [46–48].

The second important characteristic is the exit time to reach con-
sensus, which was measured for the first time in [46], but only for the
original model, which corresponds to 𝑝 = 0 [46]. In the previous paper,
it was measured for the generalized model, that is, for an arbitrary
value of 𝑝 [42]. It is obvious that 𝜏 = 0 for 𝑐0 = 0 or 𝑐0 = 1 because
the initial state is already absorbing one. Furthermore, we expect that
𝜏 has the maximum value for 𝑐0 = 0.5 [39,46]. Indeed, as shown in the
bottom panels of Fig. 4, all these expectations are confirmed. Unlike
exit probability, the average exit time depends on the size of the system,
as shown in Fig. 4. For 𝑝 = 0 it scales with an exponent of 2, i.e., 𝜏 ∼ 𝐿2,
as already shown in [46]. For other values of 𝑝 the scaling exponent
𝛼 ≈ 2, but it is not exactly equal to 2.
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Fig. 2. The impact of the system size 𝑁 (model without movement). Probability of reaching consensus (top panels) and rescaled mean time to reach consensus (bottom panels)
as a function of the probability of disagreeing 𝑝. Results are presented for the initial concentration of positive opinion 𝑐0 = 0.5, under two types of initial conditions: random (left
panels) and sorted (right panels).

4. Model with movement

In the short version of this article, it was suggested that allow-
ing agents to move would bring the model closer to reality. In fact,
movement has been interpreted as a search for happiness [49] or
information [50]. Moreover, it is interesting from the theoretical point
of view, as it introduces more freedom for agents and, simultaneously,
more randomness to the system. Our expectation is that this may
substantially change the results obtained previously, in particular the
relationship between model parameters and types of stationary states,
or the times required to reach them.

Therefore, in this paper, we decided to further generalize the model.
In the generalized version, we randomly distribute 𝑁 × 𝑑 agents over
𝑁 cells of a one-dimensional lattice with periodic boundary conditions,
i.e. ring, where 𝑑 ∈ [0, 1] is an additional model parameter, denoting
the density of the occupied cells. As previously, each agent can be in
one of the two states 𝑆𝑖(𝑡) = ±1. For 𝑑 = 1 the model boils down to
the previous [42], while for 𝑑 < 1 some cells remain empty, which is
indicated by 𝑆𝑖(𝑡) = 0, allowing agents to move.

Each elementary update consists of the following sub-steps:

1. Agent 𝑖, i.e. an occupied cell, is chosen at random from all cells
for which 𝑆𝑖(𝑡) ≠ 0.

2. The direction 𝑗 (𝑗 ∈ {−1,+1}), i.e. left/right, with which an agent
interacts, is determined randomly.

3. If the neighboring cell in the chosen direction is empty, 𝑆𝑖+𝑗 (𝑡)
= 0, the agent moves into this direction, 𝑆𝑖+𝑗 (𝑡 + 𝛥𝑡) = 𝑆𝑖(𝑡),
leaving the previously occupied cell empty, 𝑆𝑖(𝑡 + 𝛥𝑡) = 0.

4. Otherwise, if the neighboring cell is occupied, 𝑆𝑖+𝑗 (𝑡) ≠ 0, and
the pair (𝑖, 𝑖 + 𝑗) is unanimous, 𝑆𝑖(𝑡) = 𝑆𝑖+𝑗 (𝑡), pair’s neighbors
(𝑖−𝑗, 𝑖+2𝑗) take its state, provided that they are not empty cells,
𝑆𝑖−𝑗 (𝑡 + 𝛥𝑡) = 𝑆𝑖(𝑡) × |𝑆𝑖−𝑗 (𝑡)|, 𝑆𝑖+2𝑗 (𝑡 + 𝛥𝑡) = 𝑆𝑖(𝑡) × |𝑆𝑖+2𝑗 (𝑡)|.

5. Lastly, if the pair is not unanimous, 𝑆𝑖(𝑡) ≠ 𝑆𝑖+𝑗 (𝑡), cells (𝑖 −
𝑗, 𝑖 + 2𝑗) take states opposite to their nearest neighbors with
probability 𝑝, provided that they are not empty, 𝑆𝑖−𝑗 (𝑡 + 𝛥𝑡) =
−𝑆𝑖(𝑡) × |𝑆𝑖−𝑗 (𝑡)|, 𝑆𝑖+2𝑗 (𝑡 + 𝛥𝑡) = −𝑆𝑖+𝑗 (𝑡) × |𝑆𝑖+2𝑗 (𝑡)|.

A single time step consists of 𝑁 × 𝑑 elementary events, and the con-
centration of agents with positive opinion at any time 𝑡 is given by:

𝑐(𝑡) =
𝑁+(𝑡)
𝑁 × 𝑑

= 1
2𝑁 × 𝑑

𝑁∑
𝑖=1

(
𝑆𝑖(𝑡) + |𝑆𝑖(𝑡)|

)
. (3)

As previously, we consider two types of initial condition:

• Random: choose randomly 𝑁+(0) × 𝑑 out of 𝑁 cells for agents
with positive opinions, and 𝑁−(0) × 𝑑 – for agents with negative
opinions. The rest remain empty.

• Sorted: choose randomly 𝑁+(0)×𝑑 out of 𝑁 cells for agents with
positive opinions, and 𝑁−(0)×𝑑 – for agents with negative, so that
∀𝑖, 𝑗 𝑆𝑖(0) = 1 ∧ 𝑆𝑗 (0) = −1 ⟹ 𝑖 < 𝑗. The rest remains empty.
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Fig. 3. The impact of the initial concentration of positive opinion 𝑐0 (model without movement). Probability of reaching consensus (top panels) and mean time to reach consensus
(bottom panels) as a function of the probability of disagreeing 𝑝. Results are presented for the system size 𝑁 = 100, under two types of initial conditions: random (left panels)
and sorted (right panels).

For the model without movement, we average the results over 𝐿 =
103 independent samples: after initialization, we perform Algorithm
2. Again, we stop the simulation once the opinion-absorbing state is
reached or the simulation time 𝑡 exceeds 𝑇 . One should notice that there
is a small difference between the procedure for the model without and
with movement, which is expressed by the usage of the term ‘‘opinion-
absorbing’’, instead of ‘‘absorbing’’. This change is due to the fact that
for 𝑑 < 1, the system never reaches the real absorbing state, as agents
can still move. However, one can imagine that the system reaches the
state in which the agents’ opinions would never change, agents would
only move, such a state we call here an opinion-absorbing one. Again,
we have only two types of such state:

1. Consensus, i.e. all agents have the same opinion but they still
can move.

2. Disagreement, defined in the following way: any agent moving
in any direction will always eventually meet an agent with the
opposite opinion. If such a disagreement would be reached, then
the agents’ opinions would never change, agents would only
move.

We can write a simple mathematical rule for such opinion-absorbing
states, which gives us the stop condition as presented in Algorithm 2.

Algorithm 2: Algorithm for the model with movement
for 𝑡 ← 1 to 𝑇 do

for 𝑘 ← 1 to 𝑁 × 𝑑 do
𝐴 ← {𝑖 ≤ 𝑁 ∶ 𝑆𝑖 ≠ 0}
𝑖 ← 𝑖 ∼  {𝐴}
𝑗 ← 𝑗 ∼  {−1, 1}
if 𝑆𝑖+𝑗 = 0 then

𝑆𝑖+𝑗 ← 𝑆𝑖
𝑆𝑖 ← 0

else if 𝑆𝑖 = 𝑆𝑖+𝑗 then
𝑆𝑖−𝑗 ← 𝑆𝑖 × |𝑆𝑖−𝑗 |
𝑆𝑖+2𝑗 ← 𝑆𝑖 × |𝑆𝑖+2𝑗 |

else if 𝑟 ∼  (0, 1) < 𝑝 then
𝑆𝑖−𝑗 ← −𝑆𝑖 × |𝑆𝑖−𝑗 |
𝑆𝑖+2𝑗 ← −𝑆𝑖+𝑗 × |𝑆𝑖+2𝑗 |

end
end
if ∀𝑖 ∀𝑚 ∈ N 𝑆𝑖 = 𝑆𝑖+2𝑚 ∨ 𝑆𝑖 = 0 then

break
end

end
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Fig. 4. Comparison with theoretical predictions and scaling with the system size 𝑁 (model without movement). Probability of reaching a positive consensus 𝑃+ (top panels) and
rescaled mean time to reach consensus (bottom panels) as a function of the initial concentration of positive opinion 𝑐0. Results are presented for random initial conditions and
two values of the probability of disagreeing: 𝑝 = 0 (left panels) and 𝑝 = 0.5 (right panels).

5. Results for the model with movement

In the short version of this paper, in which only the model that
corresponds to 𝑑 = 1 was studied, we reported that for larger values of 𝑝
the time to reach consensus is shorter. This is not very intuitive, because
it means that disagreement with the nearest neighbor accelerates the
consensus. The question is if this intriguing result survives in the model
with movement 𝑑 < 1.

The first novelty that we see for 𝑑 < 1, is that the system never
reaches the real absorbing state, because the agents can move, as
mentioned in the previous section. However, the consensus can still
be reached and it will remain for ever, as shown in the right panels
of Fig. 5. Surprisingly, disagreement can also be reached, as defined
in the previous section, which is visible in the left bottom panel
of Fig. 5. However, since Fig. 5 presents results only for a densely
occupied system (𝑑 = 0.8), one can ask the question if disagreement
can also appear in a more diluted system. To answer this question, we
performed simulations for many values of 𝑑 – the corresponding results
are presented in Fig. 6.

As seen in Fig. 6, the results for the model with movement are
almost identical to those of the model without movement. First of all, in
all the simulations conducted, the system reached one of the opinion-
absorbing states, consensus or disagreement. Therefore, we plot in
Fig. 6 only the consensus probability — the disagreement probability
is just the complementary one. Again, we observe the threshold value

𝑝∗ below which only consensus is reached, as presented in the upper
panels of Fig. 6. Furthermore, the time to reach consensus is still
decreasing with 𝑝 for 𝑝 < 𝑝∗. The threshold value 𝑝∗ decreases with
decreasing 𝑑, but still approaches 1 for the infinite system. We have
checked even very diluted systems (e.g., 𝑑 = 0.2) and in all cases the
behavior remained the same.

In more diluted systems, the evolution to consensus is longer. This
result is not surprising, as for small values of 𝑑 interactions with others
are rare. First, it is more difficult to form a pair, which is needed to
convince others. Second, it is harder to find someone to convince. In
summary, contrary to the first result, this one is very intuitive.

6. Discussion

It is often claimed that the key lesson from agent-based modeling
can be summarized with the quote by Epstein [9,51]: ‘‘We get macro-
surprises despite complete micro-level knowledge’’. In this paper, we
show one such surprise. We expected that for 𝑝 = 0 the time evolution
would be long because then the change of state is possible only if the
source pair is unanimous. However, we did not expect that even for
relatively large values of 𝑝, the exit time will decrease with increasing
𝑝.

We are aware that the noise in the system can speed up the evolu-
tion to the stationary state, but here we have an evolution towards the
consensus, and the noise is not really a noise, but the probability of a
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Fig. 5. Temporal–spatial evolution of the system (model with movement) for two values of 𝑝 and two types of initial conditions, for 𝑐0 = 0.5 and 𝑑 = 0.8. Each row correspond to
the configuration of opinions in a given time step: black corresponds to an empty site, red (dark) to an agent with a negative opinion and green (light) – with a positive one.

disagreement. It means that consensus is reached faster if we disagree
with neighbors more often in case of uncertainty. This intriguing result
survives even if we introduce the possibility of movement.

We do realize that the results obtained within the model with move-
ment are related to the chosen rule of the movement, which is purely
random. Alternatively, we could introduce the movement towards like-
minded agents. However, here we implemented the random movement
similarly to the one proposed in [50,52]. In this way, the motion
plays a role as a noise. This is particularly desirable from a theoretical
point of view because we are studying a one-dimensional system. The
results obtained previously, for the model without movement, may
have been an artifact of limited freedom of agents. Here, we checked
that extending this freedom does not change the results substantially.
Probably, changing the topology of the system would influence the
results. However, that is a task for the future, as generalization of SM
to other structures is not trivial [40].

There is one more issue related to the competition between agree-
ment and disagreement that needs to be pointed out here. In the
seminal work on consensus on signed networks, Altafini asked if it
is possible to achieve a form of agreement in presence of antagonistic
interactions [26]. A similar question was asked here in the context of
the generalized SM. However, there is a crucial difference between our
model and the models of opinion formation on signed networks: In
our model, positive and negative interactions are not associated with
links. The very same link may be in one time step positive and in
another — negative, since the type of interaction solely depends on

the dynamically changing state of the source of influence. Moreover,
the source of influence itself is also randomly chosen in each update,
which means that in one update agent 𝑖 can be influenced by pair
(𝑖 − 2, 𝑖 − 1) and in another by (𝑖 + 1, 𝑖 + 2). This kind of approach can
be related to the so-called annealed disorder, while the signed network
represents the quenched disorder, and it is well known that the type of
disorder can significantly change the behavior of the system [53–56].
Nevertheless, relating our results to the ones from the signed networks
is definitely interesting. For example, very recently, the threshold 𝑞-
voter model, which can be treated as a certain generalization of the SM,
was studied on signed networks [28]. It was shown that in such a model
the noise appearing in the case of uncertainty hinders the emergence
of the majority states. This finding is, in a sense, opposite to ours and,
using Epstein’s language, far less surprising.

We recognize that Epstein’s notion of macro-surprises can be criti-
cized by saying that the level of surprise depends on the perceptiveness
and experience of the researcher, the ability to find cause–effect rela-
tionships, etc. We cannot argue with that, as we cannot state whether
our intuition about what facilitates reaching consensus is the same as
the intuition of the reader of this work. However, we hope that our
paper will inspire at least some readers to explore the model further,
for example, on a more realistic social structure.

Another direction for the future research should consist of determin-
ing the universality of our findings. The statement in the Introduction
that generally the consensus is reached more rapidly if agents disagree more
often with their nearest neighbors in case of uncertainty, was confirmed in
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Fig. 6. The impact of the density of occupied cells 𝑑 (model with movement). Probability of reaching consensus (top panels) and mean time to reach consensus (bottom panels)
as a function of the probability of disagreeing 𝑝 for the system size 𝑁 = 100. Results are presented for the initial concentration of positive opinion 𝑐0 = 0.5 under two types of
initial conditions: random (left panels) and sorted (right panels).

this paper within a single model. To determine the universality of our
finding, one has to examine the entire spectrum of models, which is a
desirable task for the future.
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Abstract: Our agent-based model of opinion dynamics concerns the current vast divisions in modern
societies. It examines the process of social polarization, understood here as the partition of a com-
munity into two opposing groups with contradictory opinions. Our goal is to measure how mutual
animosities between parties may lead to their radicalization. We apply a double-clique topology
with both positive and negative ties to the model of binary opinions. Individuals are subject to social
pressure; they conform to the opinions of their own clique (positive links) and oppose those from the
other one (negative links). There is also a chance of acting independently, which alters the system’s
behavior in various ways, depending on its magnitude. The results, obtained with both Monte-Carlo
simulations and the mean-field approach, lead to two main conclusions: in such a system, there
exists a critical quantity of negative relations that are needed for polarization to occur, and (rather
surprisingly) independent actions actually support the process, unless their frequency is too high, in
which case the system falls into total disorder.

Keywords: opinion dynamics; social polarization; agent-based model; Monte-Carlo simulation

1. Introduction

Polarization is a frequently used concept in social and political science as well as
economics, but its definition may differ between domains. Within this paper, we will follow
the one given by DiMaggio et al. and assume that polarization refers to a situation in
which a group of people is divided into two opposing cliques with contrasting positions
on a given issue [1]. This type of polarization is sometimes called bi-polarization [2] to
distinguish it from the group polarization phenomenon, i.e., the tendency for a group to
make more extreme decisions than the initial inclination of its members [3,4].

Recent observers point to a growing polarization of modern societies [5]. This seems to
be a defining feature of many public domains and was identified in the World Economic Fo-
rum’s 2017 Global Risk Report as one of the top threats to the global order [6]. Consequently,
it is gaining increasing attention from researchers working at the intersection of many fields,
including social and political science, economics, mathematics and statistical physics.

High and increasing levels of polarization are attributed to a variety of sources, includ-
ing the isolating effects of social media or news outlets focusing more on outraged rants
than reasoned debates. Although significant progress has been observed in our under-
standing of polarization mechanisms in recent years, our knowledge remains sketchy and
there is still a lot of room for improvement. Each new insight into polarization is important,
because it is known to have a huge impact on societies. This leads to social tension and
conflicts, and may result in the segregation of societies [1].

Interestingly, not all debates have the potential to polarize societies. From the ob-
servations, it follows that, in order to drive people to extreme and opposing opinions,
the topic of a discussion has to be perceived as important and emotionally charged by all
participants. That is why polarizing topics comprise controversial issues such as abortion
rights, homosexuality, public funding for the arts, gun control, global warming, vaccination
and, last but not least, politics [7–12].
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Starting with Eli Pariser’s book [13], social media sites are increasingly blamed for
intensifying (political) polarization. The artificial intelligence algorithms used by sites
such as Facebook, Twitter or Google to profile the users create so-called “echo chambers”
(or “filter bubbles”), which separate people from the information that disagrees with their
viewpoints. The idea behind these algorithms was to let the people stay in their comfort
zones. An unexpected side effect of this approach is an unconscious confirmation bias,
because people are mainly confronted with information that reinforces their beliefs and
opinions. The bias may contribute to overconfidence in personal beliefs and can maintain
or strengthen them in the face of contrary evidence, which leads to polarization [5].

Several possible mechanisms leading to a stable bi-polar distribution of opinions
within a simulation have been already proposed. There is, for instance, a series of pa-
pers showing that opinion homophily may support opinion plurality, including polariza-
tion [14–17]. This type of homophily is understood as a relationship between a similarity
in peoples’ views and an increased likeliness of their interaction. This was usually imple-
mented as a bounded confidence, i.e., threshold mechanisms that switch off influence in
case the discrepancy in opinion is too big. Long-range ties (bridges between clusters) in a
social network may also foster polarization if homophily and assimilation at the microlevel
are combined with some negative influence, e.g., xenophobia [18,19]. From social balance
theories, it follows that a mixture of positive and negative ties is needed for polarization
to emerge and prevail [20–22]. In the argument-communication model, agents with a
similar attitude mutually reinforce that attitude by the exchange of supportive arguments,
which, in some circumstances, also leads to polarization [2]. Both the majority model [23]
and the Ising model [24] in a segmented network only support the initial polarization in
the presence of conforming relations if the density of connections between the segments
remains low. Finally inflexibility, understood here as an internal opinion that encodes
how many encounters with different-minded agents are needed for an agent to change its
external opinion, has been shown to polarize a population in the sense that two opposing
camps of increasingly inflexible supporters may emerge [25–27].

Recently, we proposed a simple polarization model based on the q-voter model with
both conformity and anticonformity [21,22]. We considered the model of a double-clique
social network, because it mimics the echo chambers that are observed on social media
platforms as well as the interactions between their members. We found that if the number of
inter-clique connections stays below a critical value, a consensus between two antagonistic
cliques is possible. Thus, in light of these results, the artificial intelligence algorithms
producing echo chambers on many platforms may have a positive impact in terms of
polarization, because they reduce exposure to different opinions. In this paper, we are
going to extend our model with independence to make the spectrum of possible responses
to social influence more realistic from the social science perspective [28–30].

The paper is organized as follows. In the next section, we provide a detailed descrip-
tion of the models and methods used to analyze them. Then, we present the results. Finally,
in Section 4, we discuss the results and draw some conclusions.

2. Models and Methods
2.1. Modelling Framework

The basic assumptions of our model have been already extensively discussed in
Refs. [21,22]. Therefore, we start this section with only a short overview of its major
premises:

• A binary opinion model with a single trait.
• q-voter model with conformity and anti-conformity as the general modeling framework.
• Double clique topology as the underlying social network.
• Conformity between agents within a clique and anti-conformity in the interactions

between the cliques.

All of the above assumptions can be justified by recent findings in the opinion dy-
namics community. For instance, the analysis of many social networks revealed that
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the polarization of opinions within those networks may be correlated with their segmen-
tation [31–33]. Hence, we assumed that the network is already modular and took the
double-clique topology [34] as its model. Choosing a binary model with a single trait is
rooted in the observation that, in many situations, people’s opinions may be interpreted
as simple “yes/no” (i.e., binary) answers [35]. Moreover, social networks are often charac-
terized by a semantic unicity, i.e., the opinions and interactions of network members are
restricted to a single topic [36].

The q-voter model is one of the extensively studied models of binary opinions.
Within the original formulation [37], the dynamics is given by the following update rule:

1. Pick a target agent at random.
2. Choose randomly q neighbors of the target (possibility of repetition).
3. If all the q neighbors are in the same state, the target changes its state accordingly.
4. Otherwise, the target changes its state with probability ε.

The unanimity rule embedded in the model is in line with a number of social experi-
ments [38–40]. Please note that, in our studies, we only consider ε = 0, following the setup
in the previous papers [21,22].

Conformity, understood as the act of matching opinions to the group norm, is the
only social force in the original q-voter model. However, it is relatively easy to extend
it, with other possible responses, to social influences such as independence and/or anti-
conformity [30,41–48]. The first one is simply unwillingness to yield to group pressure
and introduces noise to the system; the latter means a deliberate challenging of the group
position. In Refs. [21,22], we used anticonformity to mimic negative ties between agents
belonging to two opposite cliques, in agreement with the social balance theories [20]. It
should be noted that the double-clique topology, with conformity inside a clique and anti-
conformity between the cliques, resembles, to some extent, the controversial echo chambers
generated by social platforms [13].

2.2. Independence of Agents

In Refs. [21,22], we have shown, both theoretically and by means of Monte Carlo
simulations, that a system consisting of two connected antagonistic cliques undergoes
a phase transition as the number of cross-links between the cliques changes. Below the
critical point (i.e., loosely connected cliques), the intra-clique conformity takes over and
consensus in the entire system is possible as an asymptotic state. Above the critical point,
the system ends up in a polarized state, with the cliques having opposite opinions and a
local consensus between them. This was a surprising result, because it actually defies the
criticism of echo chambers that was started by Pariser [13]. Since the algorithms generating
the echo chambers reduce the exposure time to different-minded people, in light of our
findings, they should lower the polarization level between antagonistic groups, instead of
enhancing it.

However, one of the drawbacks of the model presented in Refs. [21,22] was the lack
of independence in the behavior of agents. This concept has been already considered
in a series of models [30,41,49–52]. It actually implies the failure of an attempted social
influence, because an independent individual makes decisions independently of the group
norm. From the perspective of social science, it falls (together with anticonformity) into
the category of non-conformal behaviors [28,29,53]. From a physical point of view, it plays
the role of social temperature that induces an order–disorder transition [41,54,55]. Thus, it
would be interesting to check how the introduction of independence into our model will
change the behavior of the entire system, and if our findings still hold in the extended
version of the model.

We will introduce the independence to the model in a situation-oriented manner [44,46].
In a given time step, a target of influence will behave independently with probability h
or will become a conformist with probability 1− h (Figure 1). Thus, an additional control
parameter h will be used to simulate the impact of the situational factors on the behavior of
agents. Within this approach, every agent may change his behavior from step to step, and
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sometimes act independently, and sometimes like a conformist (see Section 2.4 for detailed,
updated rules of the model).

h

Independence Conformity

1-h

1/2
 

1/2
 

mixed
opinions

Figure 1. Schematic representation of the opinion update of a single agent that was initially in
the up state. With probability h, the agent acts independently and changes opinion randomly.
With complementary probability 1− p, the agent is subject to social influence.

2.3. Quenched and Annealed Disorder Models

In Ref. [22], two versions of the model were considered. In the quenched disorder one,
two cliques of size N are connected with L× N2 cross-links. The parameter L is simply the
fraction of the existing cross-links; N2 is their maximum number. Once the links between
cliques are chosen randomly, they remain fixed—the resulting network does not change in
time during the evolution of the system.

Instead of working with the fixed-cross links, in the annealed version of the model, we
assume that every agent from one clique is connected with probability p with an agent from
the other clique, and with probability 1− p, with an agent from its own clique. Technically,
this approximation is nothing but an average of the quenched disorder model over different
cross-link configurations in the network.

Given the fraction of existing cross-links L, the probability p of choosing one cross-link
out of all possible connections between agents in the double-clique network is given by

p =
LN2

LN2 + 2 N(N−1)
2

' L
L + 1

. (1)

If the number of cross-links is smaller than their maximum number, the agents in
the quenched disorder model differ from each other, because some of them may have
no connections to the other clique, while some others have multiple ones. While it can
be handled with ease within a computer simulation, this feature usually constitutes a
challenge for mathematical modeling due to the necessity of performing a quenched
average over the disorder [56]. The annealed model is easier, in the sense that it allows for
mathematical treatment.

2.4. Updating Rules of the Models

To recap, we consider a set of 2N agents, each of whom may be in one of two possible
states, reflecting an opinion on some given issue: Si = −1 or Si = 1 for i = 1, 2, . . . , 2N. We
put the agents into a double-clique network, which consists of two complete graphs of N
nodes connected with L× N2 cross-links.

We assume that the social response of agents depends on their group identity. Thus,
an agent will strive for agreement within his/her own clique (conformity) and simultane-
ously challenge the opinions of individuals from the other clique (anticonformity). As in
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Ref. [22], we introduce the notion of signals to the q-voter model and slightly alter the
concept of unanimity of the influence group in order to account for the fact that an agent
may act as both a conformist and anticonformist at the same time. A signal is just the
state of the neighbor when coming from the target’s clique, or its inverted state otherwise.
The target of influence only changes its opinion if all members of the influence group emit
the same signal (Figure 2).

We will use Monte Carlo simulations with a random sequential updating scheme as
the main tool to analyze the models. Each Monte Carlo step in a simulation consists of
2× N elementary events, each of which may be divided into the following substeps with
∆t = 1

2N :

1. Pick a target agent at random (uniformly from 2N nodes).
2. Draw a random number form a uniform distribution, r ∼ U(0, 1).
3. If r < h (i.e., with probability h), the agent is independent:

(a) Change its state with probability 1/2. To this end, draw a random number f
from a uniform distribution, f ∼ U(0, 1):

i. if f < 1/2, change the state of the target, i.e., Si(t + ∆t) = −Si(t),
ii. otherwise, do nothing.

(b) Go to step 1.

4. If r > h (i.e., with probability 1− h), the agent is subject to social influence:

(a) Randomly choose a group of q distinct neighbors of the target node:

Quenched model simply look at the actual neighbors of the target (sampling
with replacement).

Annealed model first decide to which clique every member of the influence
group will belong (with probability 1− p to the target’s
clique, with p to the other one), then randomly choose the
member from the appropriate clique.

(b) Convert the states of the group members to signals. Assume that the signals
of the neighbors from target’s clique are equal to their states. Invert the states
when from the other clique.

(c) Calculate the total signal of the influence group by summing up the individual
signals of its members.

(d) If the total signal is equal to ±q (i.e., all group members emit the same signal),
the target changes its opinion accordingly (see Figure 2). Otherwise, nothing
happens.

5. Go to step 1.

2.5. Quantities of Interest

The macroscopic state of an opinion dynamics model is usually described by either
the concentration of agents in state +1 or the average opinion (i.e., magnetization in
physical systems). Noting that the total number of agents in our model is 2N, we obtain
the following formula for the concentration:

c(t) =
N↑(t)

2N
. (2)

Here, N↑(t) stands for the number of agents in state +1. Similarly, the average opinion
is given by

m(t) =
1

2N

2N

∑
i=1

Si =
N↑(t)− N↓(t)

2N
, (3)

where N↓(t) denotes the number of agents in state −1. Both quantities may be used
interchangeably, because

m(t) = 2c(t)− 1. (4)
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Knowing the concentration of the entire system may be not enough to describe it
uniquely in case of the double-clique topology. For instance, the value c(t) = 1/2 may
correspond to no ordering in the system (i.e., a perfect mixture of +1 and −1 states in both
cliques) or to polarization (all agents in state +1 in one clique and in state −1 in the other).
This is why it would be more insightful to calculate the above quantities for single cliques
rather than for the entire system,

cX(t) =
N↑X(t)

N
, X = A, B, (5)

mX(t) =
1
N

N

∑
i=1

SX,i =
N↑X(t)− N↓X(t)

2
.

The interpretation of their values is summarized in Table 1. Moreover, from the above
definition, it follows that cX may be interpreted as the probability of finding an agent in
state 1 within the clique X.

Figure 2. All possible choices of the influence group in the model with q = 4 that lead to an opinion
flip by a target from clique A that was initially in state S = −1. The influence group may contain
members from both cliques. Due to the presence of both positive and negative ties, the concept of
unanimity from the original q-voter model has to be extended to signals, which are then received
by the target of influence. A signal is the state of a member when coming from target’s clique, or its
inverted state otherwise. The target changes its opinion only if all members of the influence group
emit the same signal.

It is also interesting to look at the product mA(t)mB(t) of the clique magnetizations, as
it immediately indicates a consensus (the value of the product equal to 1) and polarization
(−1) for the entire system.

2.6. Transition Probabilities and Dynamical System

The random sequential updating scheme in our model means that, in each time step
∆t = 1/2N, only one agent can change its opinion. Three scenarios are possible: (1) the
total amount of agents in state +1 in a clique may increase by 1 within this step, (2) the
total amount may decrease by 1 or (3) it may remain unchanged.
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Table 1. Interpretation of different values of the concentration cX(t) and the average opinion mX(t)
within a single clique X (see Equation (5) for definitions).

Meaning cX(t) mX(t)

Positive consensus (all agents in clique X in
state +1) cX = 1 mX = 1

Partial positive consensus (majority of agents
in clique X in state +1) 1/2 < cX < 1 0 < mX < 1

No ordering in clique X cX = 1/2 mX = 0

Partial negative consensus (majority of agents
in clique X in state −1) 0 < cX < 1/2 −1 < mX < 0

Negative consensus (all agents in clique X in
state −1) cX = 0 mX = −1

Let us have a look at the first of the above scenarios. The number of agents in state +1
in one clique—say A—can increase by 1 only if:

1. a target from clique A is chosen (probability 1/2),
2. the target is in state −1 (probability 1− cA),
3. it flips due to independence (probability h/2) or follows an influence group emitting

signal +q.

Thus, the transition probability for such an event will be given by

Pr
{

N↑A(t + ∆t) = N↑A(t) + 1
}
=

1
2
(1− cA(t))

(
1
2

h + (1− h)[(1− p)cA(t) + p(1− cB(t))]
q
)

. (6)

One can easily check that the term of the form (u + v)q in the above equation is the
generating function for the probabilities of those compositions of q members of an influence
group that can cause an opinion-switch event (see Figure 2 for more details). Similarly,
the number of agents in state +1 in clique A decreases by 1 if:

1. A target from clique A is chosen (probability 1/2).
2. The target is in state +1 (probability cA).
3. It flips due to independence (probability h/2) or follows an influence group emitting

signal −q.

These conditions lead to the following transition probability:

Pr
{

N↑A(t + ∆t) = N↑A(t)− 1
}
=

1
2

cA(t)
(

1
2

h + (1− h)[(1− p)(1− cA(t)) + pcB(t)]
q
)

. (7)

It is also possible that the number of agents in state +1 remains unchanged in an
elementary time step. The probability of this event is 1 minus the above probabilities of
changes:

Pr
{

N↑A(t + ∆t) = N↑A(t)
}
=

1− Pr
{

N↑A(t + ∆t) = N↑A(t) + 1
}
− Pr

{
N↑A(t + ∆t) = N↑A(t)− 1

}
. (8)

Analogous considerations can be conducted for clique B.
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Given the states of the cliques at time t and the above transition probabilities, the ex-
pectations for the numbers of agents in state +1 at time t + ∆t may be written as

E
(

N↑A(t + ∆t)
)
= N↑A(t) +

1
2
(1− cA(t))

(
1
2

h + h̄[ p̄cA(t) + p(1− cB(t))]
q
)

− 1
2

cA(t)
(

1
2

h + h̄[ p̄(1− cA(t)) + pcB(t)]
q
)

,

E
(

N↑B(t + ∆t)
)
= N↑B(t) +

1
2
(1− cB(t))

(
1
2

h + h̄[ p̄cB(t) + p(1− cA(t))]
q
)

− 1
2

cB(t)
(

1
2

h + h̄[ p̄(1− cB(t)) + pcA(t)]
q
)

, (9)

where the abbreviations p̄ = 1 − p and h̄ = 1 − h have been introduced for the sake
of readibility.

Under the very likely assumption that the random variables cA,B =
N↑A,B

N localize in
the limit N → ∞, after the division of both sides of the equations by N, we obtain

cA(t + ∆t)− cA(t)
∆t

= (1− cA(t))
(

1
2

h + h̄[ p̄cA(t) + p(1− cB(t))]
q
)

−cA(t)
(

1
2

h + h̄[ p̄(1− cA(t)) + pcB(t)]
q
)

,

cB(t + ∆t)− cB(t)
∆t

= (1− cB(t))
(

1
2

h + h̄[ p̄cB(t) + p(1− cA(t))]
q
)

−cB(t)
(

1
2

h + h̄[ p̄(1− cB(t)) + pcA(t)]
q
)

. (10)

In the limit N → ∞, i.e., ∆t = 1
2N → 0, we arrive at the dynamical system representing

the annealed model:

dx
dt

= (1− x)
(

1
2

h + h̄[ p̄x + p(1− y)]q
)
− x
(

1
2

h + h̄[ p̄(1− x) + py]q
)

,

dy
dt

= (1− y)
(

1
2

h + h̄[ p̄y + p(1− x)]q
)
− y
(

1
2

h + h̄[ p̄(1− y) + px]q
)

, (11)

where x and y are the limiting values of concentrations cA and cB, respectively.

3. Results

We will assume that the number of agents in every clique in the quenched model is
N = 100. Although the size of the system may seem very small, it was already shown
in Refs. [21,22] that increasing the size does not qualitatively change the outcome of the
simulations, but it takes substantially longer to finish them.

In our analysis, we considered influence groups of sizes ranging from 2 to 6, with the
upper bound motivated by the conformity experiments by Asch [40]. Qualitatively, the re-
sults were independent of the actual value of q. Thus, we decided to present the results for
q = 4, a value often used in the analysis of the q-voter model and its extensions.

If not stated otherwise, the results of the simulations were averaged over 1000 inde-
pendent runs. In most cases, the asymtotic state was reached quickly, in less than 100 Monte
Carlo steps. We used our own codes written in C++, Python and Matlab.

As for the initial condition, we used the total positive consensus, i.e., all agents in the
state +1. As already pointed out in Ref. [21], this choice may be treated as a result of the
following scenario. Two cliques with a natural tendency to disagree with each other first
evolve independently. They get in touch by chance and establish some cross-links to the
other group after they both reach consensus on a given issue.



Entropy 2022, 24, 185 9 of 16

When comparing the two models, quenched and annealed, we present the results with
respect to the fraction of the existing cross-links, L, instead of p, using the relationship from
Equation (1).

3.1. Direction Fields and Stationary Points

The set of Equations (11) is too cumbersome to solve analytically. However, we still can
generate direction fields for the set to graphically trace out solution curves for various initial
values [57]. Results for different independence levels h and two different probabilities of
an inter-clique connection p are shown in Figure 3: the left column contains the plots for
p = 0.1; the right one corresponds to p = 0.2. The values of h are equal to 0.0, 0.1, 0.2 and
0.5 (from top to bottom). Note that the case h = 0 is nothing but our original model with
no independence, which was extensively studied in Ref. [22].

Figure 3. The annealed model: direction fields of the model described by Equation (11) with fixed
points marked with circles for different values of independence h and two values of parameter p, 0.1
(left column) and 0.2 (right column).

From the flows in the state plane, it follows that for p = 0.1 and h = 0, there are five
stationary points (already marked with dots in the plots). Two attractors, P1 = (0, 1) and
P2 = (1, 0), correspond to a polarized state of the system, i.e., all agents in one clique are
in state +1 and in the others are in state −1. There are two other symmetric attractors, C1
and C2, which are very close to the coordinates (0, 0) and (1, 1). Thus, the state of (almost)
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complete consensus is possible in the system as well. The remaining point R is a repeller,
because the system tends to evolve away from it.

To find the exact coordinates of the stationary points, we set x′ and y′ as equal to zero
in Equation (11) and solve the resulting set of equations with respect to x and y,

0 = (1− x)
(

1
2

h + h̄[ p̄x + p(1− y)]q
)
− x
(

1
2

h + h̄[ p̄(1− x) + py]q
)

,

0 = (1− y)
(

1
2

h + h̄[ p̄y + p(1− x)]q
)
− y
(

1
2

h + h̄[ p̄(1− y) + px]q
)

. (12)

For p = 0.1 and h = 0.0, we obtain:

P1 = (0, 1), P2 = (1, 0), (13)

C1 = (0.00015, 0.00015), C2 = (0.99985, 0.99985),

R = (0.5, 0.5).

Introducing a small level of independence (h = 0.1 and 0.2) into the model does
not change the classification of the stationary points for p = 0.1. However, they are now
shifted towards the center of the state plane, meaning that complete polarization and
(almost) complete consensus have changed to partial ones. Although these states are still
characterized by a majority of agents sharing the same opinion, due to the fluctuations
induced by independence there is now always a minority with the opposite opinion. At a
high independence level (h = 0.5), the point R = (0.5, 0.5) becomes an attractor and the
other stationary points disappear.

The situation for p = 0.2 is similar, but the effects induced by the independence h
are stronger. This is why we explicitly see a state with only three fixed points at h = 0.2
(the same state for p = 0.1 would require 0.2 < h < 0.3 and is not shown in Figure 3). We
can see that, in this case, the consensus attractors C1 and C2 have already disappeared.
The polarization ones are still there, but are closer to the center of the plane. The repeller
R = (0.5, 0.5) becomes hyperbolic. With further increases in h, the polarization attractors
will disappear as well and point R will become an attractor (see case h = 0.5).

Compared to the model without independence [21,22], we observe an additional dy-
namical phase transition in the system—for high enough independence levels, it enters the
disordered phase with the vanishing magnetization in every clique, as the asymptotic state.

3.2. Time Evolution of the System

The asymptotic dynamical system for the annealed model, given by Equation (11),
was solved numerically. Results for different values of h, as a function of time and L, are
shown in Figure 4 (right column). As was already concluded from the direction fields
(Figure 3), in the absence of independence (top right plot in Figure 4), a consensus is
observed in both cliques for a low number of cross-links. More connections between the
cliques drive the system towards a polarized state. The picture is different for a low level
of independence in the model (bottom right plot in Figure 4). We still observe a consensus
if the cliques are poorly connected. However, polarization sets in at a much lower number
of cross-links. Moreover, both the consensus and polarization are partial, because, due to
independence, there is always a group of agents that do not go along with the majority.
Increasing the independence level destroys the ordering in the system and the model ends
up in an asymptotic state with no polarization (see Figure 5, right column). This last result
is independent of the number of cross-links between the cliques.
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Figure 4. Comparison between the quenched (left column) and annealed (right column) models:
product of magnetizations mAmB as a function of time and L, for two different independence levels,
h = 0, 0.1.

Figure 5. Comparison between the quenched (left column) and annealed (right column) models:
product of magnetizations mAmB as a function of time and h, for two different fractions of cross-links,
L = 0.3, 0.6.
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Monte Carlo simulations of the quenched version of the model produce a similar
output (see Figures 4 and 5). However, the critical value of L for the dynamical consensus–
polarization phase transition is smaller for the quenched model, in agreement with our
previous findings for models without independence [21,22]. Moreover, in the quenched
model, the inclusion of independence has a much greater impact (see Figure 4, bottom part).

3.3. Impact of Independence on the System

All results up to this point suggest that there are three effects resulting from the
introduction of independence into the models: (1) final concentrations of agents sharing
the same opinion are diminished, (2) the critical values of L at the consensus–polarization
transition are smaller and (3) an additional dynamical phase transition from the polarized
state to a disordered one occurs in the system.

To elaborate on those findings, let us have a look at Figure 4. The case h = 0 (no
independence) corresponds to the original models from Refs. [21,22]. We see that, for values
smaller than a critical value, L∗, both cliques end up reaching a consensus. In other words,
in this regime, the intra-clique conformity wins with the inter-clique anti-conformity, and
both communities are able to maintain their initial consensus, at least partially. Larger
values of L are needed for the negative ties to take over and push the system into a
polarized state.

The impact of independence is two-fold. First, the final magnetizations have been
pushed away from the values ±1 even in the case L = 0, i.e., the total consensus changed
to a partial one. Since this corresponds to the weakening of the force exerted by con-
formity, one would expect that, in this case, fewer cross-links are needed between the
cliques to polarize the system. Indeed, the critical value of L decreases with an increasing
independence h.

It should be noted that, for each value of h, there is a difference in the critical values
L∗ between the quenched and annealed models. This is mainly a consequence of different
system sizes—while Equation (11), defining the annealed model, was derived for an infinite
system, we used only 200 agents in the simulations of the quenched one. It has been shown
in Ref. [22] that the discrepancy between the models decreases with the increase in the size
of the simulated system. We expect the models to converge for N → ∞, despite the subtle
changes in their dynamics.

To complete this picture, let us investigate how the product of magnetization changes
with both fraction of cross-links L and independence h (Figure 6). At L = 0 (no connection
between the cliques), independence continuously destroys the ordering in both commu-
nities. Finally, above a critical value h∗, the system enters the disordered phase with no
magnetization in the cliques. For L < L∗ and small values of h, the system maintains the
partial consensus, then we observe a transition to the polarized state. The magnetizations in
the now-antagonistic cliques are diminishing with further increases of h. Finally, the system
reaches the disordered phase. At L > L∗, the system is already polarized, even for h = 0.
Increasing h introduces disorder into the cliques. Again, there is no ordering above the
critical value of h.

As already discussed earlier in this section, there are some differences in absolute
values between the annealed and quenched models, but the picture for the annealed case is
qualitatively the same.

It is worth noting that the critical value of h for the polarization–disorder transition
depends little on L (with a more noticeable effect in the annealed model). At the same time,
the critical value of L for the consensus–polarization transition decreases with an increasing
h, unless the value h is too high and disorder becomes the only possible state (see Figure 6).
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Figure 6. Comparison between the quenched (left) and annealed (right) models: final product of
magnetizations mAmB (top) and its projection on the (h, L) plane (bottom). The blue, red and purple
colors correspond to consensus, polarization and disorder, respectively. In both models, we can
observe that the critical value L∗ decreases with an increase in h, while L has only a marginal impact
on h∗.

4. Discussion

The most important message from our previous study was that the consensus between
two antagonistic communities is only possible if they are loosely connected with each other
and the initial state of the system belongs to the basin of attraction of the symmetric fixed-
points of the model [21,22]. The more interactions there are between those communities, the
less probable it is that the entire system will share the same opinion. Instead, anticonformity
takes over and pushes the system towards polarization. Those results were unexpected
in the sense that they, for instance, support the idea of the often-criticized filter bubbles
in social media [5,13]. Since those bubbles separate users from information that disagrees
with their viewpoints, they may help to weaken the problem with polarization. However,
the models that we considered were very simple. For instance, they lacked some typical
answers to social influence [29].

In order to make the models more realistic, in this work, we added independence as a
response to social influence. From our results, it follows that this additional manifestation
of social interactions impacts the system dynamics in at least two ways. Small indepen-
dence levels help anticonformity to take over and polarize the society. More technically
speaking, they lower the critical ratio of cross-links between cliques, which are needed to
arrive at a polarized state. High independence levels destroy any ordering in the system.
Consequently, the opinions of agents are perfectly mixed across the cliques, and neither
consensus nor polarization are observed. Instead, a third phase–a disordered state–appears.

In sum, in the presented setting, low (but present) independence levels seem to
enhance the polarization of the system. Thus, they counteract the effects of the filter
bubbles, which, at least within our models, foster consensus across the cliques. At high
levels, all manifestations of the interplay between conformity and anticonformity are
suppressed by the noise induced due to independence.
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It is worth mentioning that qualitatively similar results (but with a less detailed
stability analysis) were obtained earlier within the majority model [23] and the Ising
model [24] on a double-clique topology, with conformity as the only response to social
influence. Although, in those models, the initial polarized state was found to become
unstable with the increasing number of connections between the cliques (the consensus one
in our case), the dynamics of those models turned out to be very similar to the behavior
presented in this paper. Unique to our model is a more realistic response of agents to social
influence. In fact, we took all types of responses into account, according to the diamond
model by Nail et al. [28,29,53]. Hence, one may expect that what has been observed is
more a general pattern of social behavior than an artifact of a particular choice of the
modeling framework.
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Abstract: Despite ample research devoted to the non-linear q-voter model and its extensions, little or
no attention has been paid to the relationship between the composition of the influence group and
the resulting dynamics of opinions. In this paper, we investigate two variants of the q-voter model
with independence. Following the original q-voter model, in the first one, among the q members
of the influence group, each given agent can be selected more than once. In the other variant, the
repetitions of agents are explicitly forbidden. The models are analyzed by means of Monte Carlo
simulations and via analytical approximations. The impact of repetitions on the dynamics of the
model for different parameter ranges is discussed.

Keywords: opinion dynamics; q-voter model; agent-based modeling

1. Introduction

According to the Oxford Languages online dictionary, opinion is “a view or judgment
formed about something, not necessarily based on fact or knowledge”. In modern societies,
due to the ongoing growth of communication technologies and social media platforms,
people are constantly exposed to a steady flow of opinions about new technologies, prod-
ucts, or ideas [1]. By processing this flow and interacting with others, individuals may
change their own opinions and beliefs [2]. Thus, opinions are an integral part of people’s
perception of reality. They shape social behavior and play a significant role in the evolution
of societies.

Currently, agent-based models (ABMs) are one of the most popular and efficient
tools in opinion dynamics and other social process studies. They can provide a detailed
representation of reality, preserving the heterogeneity of individuals and an irregular
structure of their mutual relations [3]. In social sciences, ABM is most often understood as
a simulation of the behaviors of these individuals, called agents, and interactions between
them. The aforementioned structure usually illustrates a network of friendships, contacts,
or cooperation, within which agents’ actions take place [4]. From a mathematical point
of view, that structure can be represented by a graph, with vertices being the agents and
edges—the connections between them [5].

In the case of complex problems such as the dynamics of opinions, simple deterministic
models are often found to be insufficient [6]. They are complemented by ABMs, as the latter
allow for bridging the gap between microscopic interactions of the agents and emergent
phenomena at the macroscopic scale. For many years, ABMs have found use in various
fields of social science. For example, in examining the diffusion of innovations, such as new
products and market solutions [7–12], or in modeling the results of democratic elections
and public debates [13–21].

Within the field of opinion dynamics, there exists a wide range of different ABMs [22].
However, if we narrow our focus to binary opinions, then the q-voter model will come
out as one of the most successful ones [23]. Social conformity is the main driving force
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in this model, and its dynamics are as follows. In each elementary event, we randomly
choose a single agent and q of its neighbors (hence the name q-voter model) within the
underlying graph structure. Then, if and only if all q neighbors, forming the so-called
group of influence, present the same opinion, the agent conforms to it and changes its
opinion accordingly.

Although the above requirement of full unanimity may seem too strict, it is strongly
supported by the results of Asch’s social experiment [24]. It clearly showed that conformity,
i.e., adjusting to group behavior, plays an important role in our decision making and that
its impact is severely reduced in the case of disagreement within a group. Consequently,
unanimity is not the part of the q-voter model that causes our concern. The element that
does is the composition of the group of influence. In the original formulation of the model
the authors wrote: “In order to simplify the numerical analysis, and allow for an arbitrary value
of q in regular lattices, we consider here the possibility of repetition, i.e., a given neighbor can
be selected more than once” [22]. In the article they only briefly discuss outcomes when
repetitions are prohibited, without much detail.

Since then, there has been a lot of research conducted on the q-voter model. Some
authors followed the original assumption and studied the model with the possibility
of repetitions [25–27]. Others took an opposite path and considered a variant without
them [28–33], sometimes justifying it sociologically [34]. There are many papers that do
not specify it at all [35–38]. To the best of our knowledge, there exists only one article that
considers differences between these two variants in detail [39]. It does however mostly
focus on the so-called threshold q-voter model, an extension that incorporates a threshold
mechanism [40]. Still, it provides a valuable insight on the differences between the two
aforementioned variants. We hope there is room for more.

Here, we consider two different compositions of the influence group, with or without
repetitions. We examine their impact in the q-voter model with independence [28]. We
do so by the means of both computer simulations and analytical approximation methods.
As for the latter, the first method is a simple Mean-Field Approximation (MFA) [22]. We
are aware that MFA is sufficient only for complete graphs or other dense networks. When
a network is sparse, it fails. Despite its limitations, we incorporate it into this work, as it
has never been used to describe a variant without repetitions, to the best of our knowledge.
Nevertheless, more sophisticated recipes are also needed. Thus, the second method is the
Pair Approximation (PA), which works reasonably well, even for sparse networks [29].
Unfortunately, a closed-form solution is possible to obtain only in the variant without
repetitions. The repetitive version must be solved numerically [39]. In this paper, we
propose yet another solution—a heuristic MFA. This method will provide closed-form
solutions for both variants of the q-voter model. Moreover, these formulas will be much
simpler than in the case of PA.

The rest of the paper is organized as follows. In Section 2, we provide details on the
model, its variants and methods used to analyze them. Later, in Section 3 we present and
discuss the results. Finally, the conclusions are drawn in Section 4.

2. Models and Methods
2.1. Simulation Model

Our starting point is the q-voter model with independence [28]. We consider a set
of N agents, each of which is characterized by a binary variable—an opinion, positive
or negative, on some given issue, Si = ±1 for i = 1, 2, . . . , N. We investigate the model
through Monte Carlo simulations with a random sequential updating scheme. Within a
single simulation, the time is measured in so-called Monte Carlo steps (MCS). One MCS
consists of N elementary events, each divided into the following substeps of length ∆t = 1

N :

1. Select a target agent i randomly (uniformly from N nodes).
2. Draw a random number r ∼ U(0, 1).
3. With probability p (that is if r < p), the agent acts independently, i.e., it changes its

opinion to the opposite one with probability f = 1
2 , Si(t + ∆t)

f←− −Si(t).
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4. With the complementary probability 1− p ( if r > p), a group of influence is constructed:

• (repetition variant) Randomly select q neighbors of agent i, j1, j2, . . . , jq, with pos-
sibility of repetition.

• (no repetition variant) Randomly select q neighbors of agent i, j1, j2, . . . , jq, with-
out the possibility of repetition.

5. If the group of influence is unanimous, Sj1(t) = Sj2(t) = · · · = Sjq(t), the agent i
conforms, i.e., Si(t + ∆t)← Sj1(t). Otherwise, nothing happens.

As already mentioned above, we consider two variants of the model: the repetition and
the no–repetition one (see Figure 1 for a schematic representation). We decided to examine
their behavior and the differences between them on random regular graphs. Other choices
for the underlying topology are, of course, possible, but this particular type of complex
networks allows us to control the number of neighbors of each agent and to ensure that
forming of the influence group will be always possible in the no–repetition variant. Thus,
those networks seem to be the best choice to implement the group dynamics, as they allow
the option to leave out the heterogeneity-induced effects and focus only on the ones related
to the differences in the dynamics. It should be noted that the same choice was made in a
similar context in Ref. [39].

q-panel
q-panel

q-panel
q-panel

p/2

no repetitions repetitions

co
nf
or
m
ity

in
de
pe
nd
en
ce

Figure 1. Depiction of the model dynamics in the no repetition (left) and the repetition (right) vari-
ants. The upper part corresponds to conformist behavior (probability 1− p), while the bottom one
corresponds to independence (probability p). The big circle portrays the target agent, smaller ones
portray its neighbors. Light blue color represents a positive opinion (S = +1), dark red represents a
negative one (S = −1), and beige marks a randomly chosen group of influence, with darker beige
for repetitive choice. Degree k = 6 and size of the influence group q = 4 in all the above cases.

All methods presented in this work have also been tested on other networks, including
square lattices, Watts-Strogatz graphs and scale-free networks. The results turned out to be
qualitatively the same as for the random regular graphs.

In order to analyze stationary states, we define a macroscopic measure—the concen-
tration of positive opinions (S = +1):

c+ =
N+

N
=

1
2N

N

∑
i=1

(Si + 1). (1)
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We will use it as our default measure throughout this paper. For simplicity, we will
just call it “concentration” and omit the superscript + (c+ → c).

To clarify, we perform simulations as follows. First, we generate a graph structure
with a given degree k and assign agents their initial opinions S(0), according to a specified
initial concentration c0, which can be understood as the probability of an agent having a
positive opinion S(0) = +1. Then, we run the simulation until the system reaches its stable
state and save final concentration. We repeat such simulation multiple times for a given set
of parameters and average the results over these independent runs.

2.2. Mean-Field Approximation

Within the mean-field approximation we abstract away from the actual network of
connections between the agents and assume that every agent may interact with anybody
else [25]. In each elementary step, the number of agents in the state S = 1 may increase by
1, decrease by 1 or remain unchanged. The corresponding transition probabilities of the
first two events in the repetition variant are qiven by

Pr(c(t + ∆t)← c(t) + ∆N) = (1− p)α+ + pβ+,

Pr(c(t + ∆t)← c(t)− ∆N) = (1− p)α− + pβ−, (2)

where

α+ = (1− c)cq, α− = c(1− c)q,

β+ =
1
2
(1− c), β− =

1
2

c. (3)

Assuming N → ∞, the following dynamical equation may be derived from the above
probabilities:

∂c
∂t

= (1− p)α + pβ, (4)

where

α = α+ − α−,

β = β+ − β−. (5)

In the stationary state, we have ∂c
∂t = 0. This leads to the following relationship

between the probability of independence p and the stationary concentration c (hidden in
α and β):

p =
α

α− β
. (6)

The basic mean-field approximation does not distinguish between the variants of the
model. However, we can modify it slightly to catch the characteristics of the no-repetition
dynamics. We retain the assumption about the infinite size of the system (N → ∞).
Additionally, we introduce a finite degree (and equal for all the agents) k. Then, α+ and α−

take the following forms:

α+ = (1− c)
q−1

∏
i=0

max
[

k× c− i
k− i

, 0
]

,

α− = c
q−1

∏
i=0

max
[

k× (1− c)− i
k− i

, 0
]

, (7)

while β+ and β− remain unchanged. The rest, including the condition for stationary states
(Equation (6)), is the same as in the repetition variant. In the remaining part, we call this
approach a network aware MFA (naMFA). It should be emphasized here that in the model
with repetitions, naMFA reduces to MFA.
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2.3. Pair Approximation

The pair approximation (PA) is a moment closure method in which the mean-field
description of a model is supplemented by an approximate equation for the time evolution
of the density of the active links, i.e., the edges in a network joining two agents in different
states. PA is one of the possible ways to incorporate the structure of the underlying network
into the description of the model. This approximation has been already used for the q-voter
model with independence [29,39] and turned out to yield precise results for a wide variety
of networks. However, regardless of all its advantages, it has a major flaw—it provides
a closed-form solution only for the no repetition variant. For the repetition one, it seems
impossible to obtain such a solution [39]. Therefore, we must rely on a numerical one.
Although the latter can be very precise, it is not as satisfactory and informative as an
analytical formula.

A detailed derivation of PA may be found in Refs. [29,39]. Here, we will only recall
the most important results for the q-voter model on random regular graphs.

To recall, the degree distribution of a random regular graph is given by P(k′) = kδk,k′ ,
where k is simply the degree of each node in the network. Following [39], the model
reduces in this case to two closed rate equations for the density of active links ρ(t) and the
concentration c(t) of agents in state S = 1:

dρ

dt
= 2 ∑

i=⊕,⊖
Pi⟨(k− 2l)F(l; k, q, p)⟩ρi

dc
dt

= − ∑
i=⊕,⊖

SiPi⟨F(l; k, q, p)⟩ρi
(8)

Here, S⊕ = 1, S⊖ = −1, P⊕ = c, P⊖ = 1− c, ρ⊕ = ρ/(2c), ρ⊖ = ρ/(2(1− c)) and ⟨. . . ⟩ρi

is the average calculated over the binomial probability (k′
l )ρ

l
i(1− ρi)

k′−l . The probability
that an agent with l active links flips its state is

F(l; k, q, p) =
p
2
+ (1− p) f (l; k, q), (9)

where

f (l; k, q) =





(k−q
l−q)/(

k
l) no-repetition,(

l
k

)q
, repetition.

(10)

Moreover, in the no-repetition variant it is understood that f (l; k, q) = 0 if k < q.
Due to some cancellations of the combinatorial numbers, the averages ⟨. . . ⟩ρi in

Equation (8) in the no-repetition variant lead to relatively simple expressions which are
linear in k. In this case, the condition dc/dt = 0 yields the following relationship between
the independence p and the stationary concentration c:

p−1 = 1 +
2q−1

(
k−1
k−2

)q

q− 1
. (11)

In the model with repetitions, a closed-form expression does not exist, and one has
to resort to numerical solutions. A difficulty in the numerical calculations relates to the
fact that the binomial coefficients appearing in the rate equations take huge values for
large k, while ρk is very small. To avoid this problem, Vieira et al. [39] made expansions in
Equation (8) using the moments of the binomial distribution and the negative moments of
the degree distribution.

In this work, we followed a slightly different approach. We took a log-transformed
version of Equation (8) and solved it numerically for a given value of p (and other param-
eters of the model). The times taken were long enough to arrive at a stationary solution.
The concentration at the last point along the time axis together with the corresponding p
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was stored as the contribution to the p(c) relationship, and the procedure was repeated
for a different value of p. The logarithmic transformation [41] of Equation (8) solved the
problem with both the huge values in the binomial coefficients and the small ones related to
ρk. It worked well even with the standard Runge-Kutta methods of the second and fourth
order [42].

2.4. Heuristic Mean-Field Approximation

To capture the characteristics of sparse networks, we may also look for a more sophis-
ticated version of MFA. The one we propose here will be refered to as a heuristic MFA
(hMFA) in the remaining part of the paper, since we are not (yet) able to derive all of its
ingredients. However, it works quite well in all analyzed cases.

Let us first randomly pick a target and all its closest neighbors. This forms a local con-
figuration. Then, we include Plocal describing the probability of constructing an unanimous
group of influence, for a given configuration:

α+ = (1− c)
k

∑
i=x

(
k
i

)
ci(1− c)k−iPlocal ,

α− = c
k

∑
i=x

(
k
i

)
(1− c)ick−iPlocal . (12)

In the above formulas, the first part describes initial stage of the process, i.e., probability of
obtaining a certain configuration, while Plocal stands for the probability of constructing an
unanimous group of influence. Both Plocal and x are dependent on the variant of the model.
In the no repetition one they take the following form:

Plocal =
q−1

∏
j=0

i− j
k− j

, x = q. (13)

Hence, Equation (12) becomes:

α+ = (1− c)
k

∑
i=q

(
k
i

)
ci(1− c)k−i

q−1

∏
j=0

i− j
k− j

,

α− = c
k

∑
i=q

(
k
i

)
(1− c)ick−i

q−1

∏
j=0

i− j
k− j

. (14)

In the repetition variant, Plocal and x are:

Plocal =

(
i
k

)q
, x = 1, (15)

and Equation (12) becomes

α+ = (1− c)
k

∑
i=1

(
k
i

)
ci(1− c)k−i

(
i
k

)q
,

α− = c
k

∑
i=1

(
k
i

)
(1− c)ick−ic

(
i
k

)q
. (16)

Now, we can use these α+ and α− to compute stationary states, analogously to the
ordinary MFA (Equation (6)). Unfortunately, this approach turned out to perform poorly in
the case of sparse networks. Thus, it provides only little advantage over the ordinary MFA
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so far. To change that, we will append some corrections. First, let us introduce a corrected
formula for stationary states (see Equation (6)):

p′ =
α

α− hβ
, (17)

where h is a positive value, related to the impact of a sparse network on the model’s
dynamics. We assume h of the form

h = 1 + q/k + 2p(q/k)2 + 32(qk)−2. (18)

The first element is just 1 and corresponds to the ordinary MFA without any corrections
(Equation (6)). The second term , q/k, is there to catch the characteristics of a sparse
network. It describes the probability of destroying unanimity within the q-panel by a single
neighbor (see Figure 2 for a graphical explanation).

q-panel
q-panel

Figure 2. Depiction of two possible configurations. The big circle portrays the target agent,
the smaller ones portray its neighbors. Light blue color represents a positive opinion (S = +1),
dark red represents a negative one (S = −1). Beige color marks a chosen group of influence. Degree
k = 6 and size of the influence group q = 4 in both cases. The first (top) group of influence is not
unanimous and provides no change, while the second one (bottom) is unanimous and leads to change
in target’s opinion. The difference is all due to the single neighbor with negative opinion (dark red),
being in or outside the group of influence. Probability of containing this neighbor inside the q-panel
is equal to q/k.

Adding the q/k correction has already significantly improved the results yielded by
our method. However, the agreement with the ABM simulations was still much worse
than that of PA. Thus, we decided to add two other terms based on the calibration of the
method to the simulation data. The first of them, 2p(q/k)2, improves the accuracy of the
method in all cases except the low values of k. And finally, the 32(qk)−2 term provides the
needed correction for low values of k.

Interestingly, the 2p(q/k)2 term was proposed after calibrating the model with the simula-
tion data in the case k = 50, q = 5. The last correction was added after the analysis of the k = 5
and q = 4 case. However, the Formula (18) works reasonably well for all parameter sets we
have tested in the preparation phase of this paper. As it will be shown in Section 3.2, the method
works only slightly worse than PA, especially in the variant with repetitions, but allows for
easier and quicker generation of the results.
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2.5. Comparison of Methods

In order to compare accuracy of different approximation methods, we introduce the
following measure:

∆ = ln

[
1

< ps >

n

∑
i
|ps(ci)− pt(ci)| : ci ≥ 0.6

]
, (19)

where ps is the simulated value, pt is the value from one of our theoretical models and 0.6
is a cutoff threshold for the simulated values of c to remove the finite size effects near the
critical value of p (see Section 3.1 for explanation). The outcome is normalized by the factor

1
<ps>

, to make comparison between various values of q possible. The logarithm function is
there to display differences using the same scale in different charts.

3. Results
3.1. Simulations

We run most of the simulations on random regular graphs of size N = 1000, with various
degrees k. The size of the networks may seem too small at first glance. However, we also
checked the simulations on larger networks, and the results were practically the same, except for
a small region close to the phase transition (i.e., for c(t) close to 0.5, see Figure 3 for an
explanation). In larger systems, the order-disorder phase transition is well defined. In smaller
ones, we observe a slower decay of the ordered phase due to the finite size effects [43]. Since
a detailed analysis of the phase transition is out of the scope of this paper, we decided to
keep the size of the system rather small to reduce computational efforts in the simulations.
To ensure that the system reaches its stable state, we set the time horizon T = 1000 MCS in
each simulation. For each set of the parameters, we perform 100 independent simulations and
then average the final concentration, c(T), over these runs.
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Figure 3. Comparison between the no repetition (left) and repetition (right) variants in the
simulation model (see Sec. 2.1). Concentration c as a function of independence probability p is
plotted for two different system sizes. Every circle corresponds to the state of the system after 1000
MCS, for a random regular graph with degree k = 4, averaged over 100 independent runs. Initial
concentration c0 = 1 in all simulations. The size of the group of influence is q = 3. Note the longer
decay of the ordered phase, characterized by c(t) > 0.5, in the case of the smaller system.

3.1. Simulations 228

We run most of the simulations on random regular graphs of size N = 1000, with 229

various degrees k. The size of the networks may seem too small at first glance. However, 230

we also checked the simulations on larger networks, and the results were practically the 231

same, except for a small region close to the phase transition (i.e. for c(t) close to 0.5, see 232

Fig. 3 for an explanation). In larger systems, the order-disorder phase transition is well 233

defined. In smaller ones, we observe a slower decay of the ordered phase due to the finite 234

size effects [43]. Since a detailed analysis of the phase transition is out of the scope of 235

this paper, we decided to keep the size of the system rather small to reduce computational 236

efforts in the simulations. To ensure that the system reaches its stable state, we set the time 237

horizon T = 1000 MCS in each simulation. For each set of the parameters, we perform 100 238

independent simulations and then average the final concentration, c(T ), over these runs. 239

The actual comparison between no repetition and repetition variants is shown in Fig. 4. 240

Although at first glance both variants behave similarly, there are some major differences. 241

First of all, in the no repetition variant a group of influence cannot be greater than the 242

degree of a target (q ≤ k). It is not an issue in the repetition one, as we can choose a single 243

neighbor multiple times, when constructing the group of influence. In the no repetition 244

variant with q = k the system becomes disordered (c ≈ 0.5) whenever independence is 245

Figure 3. Comparison between the no repetition (left) and repetition (right) variants in the simulation
model (see Section 2.1). Concentration c as a function of independence probability p is plotted for
two different system sizes. Every circle corresponds to the state of the system after 1000 MCS, for a
random regular graph with degree k = 4, averaged over 100 independent runs. Initial concentration
c0 = 1 in all simulations. The size of the group of influence is q = 3. Note the longer decay of the
ordered phase, characterized by c(t) > 0.5, in the case of the smaller system.

The actual comparison between no repetition and repetition variants is shown in Figure 4.
Although at first glance both variants behave similarly, there are some major differences.
First of all, in the no repetition variant, a group of influence cannot be greater than the
degree of a target (q ≤ k). It is not an issue in the repetition one, as we can choose a single
neighbor multiple times, when constructing the group of influence. In the no repetition
variant with q = k, the system becomes disordered (c ≈ 0.5) whenever independence is
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present (p > 0). This is not the case in the repetition one. In addition to that, the models
behave differently for other values of q as well. For larger influence groups, the system in
the no repetition variant becomes disordered for much smaller probabilities of independence
p than in the repetition one. The closer the value of q to k, the greater the difference. It is an
expected, yet important, outcome. The greater the degree k in respect to q, the lower the
probability of choosing a single neighbor multiple times in the repetition variant and thus,
the less visible the differences between the variants.
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Figure 4. Comparison between the no repetition (left) and repetition (right) variants in the simulation
model (see Section 2.1). Concentration c as a function of independence probability p is plotted for
different sizes q of the group of influence. Every circle corresponds to the state of the system after
1000 MCS, for a random regular graph of size N = 1000, with degree k = 4 (top) and k = 10 (bottom),
averaged over 100 independent runs. Initial concentration c0 = 1 in all simulations. Please note that
in the repetition variant, q can be greater than k.

3.2. Approximation Methods

The ABMs constitute state-of-the-art tools to simulate complex systems and emergent
phenomena, including opinion dynamics on networks. However, understanding and
analyzing the ABMs is very challenging. The behavior of those models often depends
on many parameters. Even in the case of the simple q-voter model, we have to deal
with the size of the system N, the independence p, the degree k (which fortunately is the
same for all nodes in a random regular graph) and the size q of the group of influence.
Exploring the parameter space and discovering the impact of different parameter sets
on the time evolution of the model can be very time-consuming and usually requires a
high-performance computing infrastructure. In many cases, running the model with all
possible combinations of parameters is infeasible. On the other hand, varying only one
chosen parameter at time may lead to overlooking some interesting patterns in the behavior
of the system. This is actually why one is still interested in some analytical approximations
of an agent-based system. Although some microscopic details of the dynamics may be
ignored, those approximations generate results much faster than computer simulations
of ABMs.
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As mentioned before, we are going to compare four approximation methods, i.e., MFA,
naMFA, hMFA and PA, with the results of our simulations. We are not only interested
in the overall agreement with ABMs, but also in the ease of producing the results. Based
on the findings for the q-voter model so far, we expect that the closer the network is to a
complete graph, the more accurate the methods should be. Let us check how well they
perform in less obvious cases.

First, a dense network (with the degree k = 50) was considered (Figure 5). Although it
is still far from a complete graph (for which we would have k = 999), it is dense enough
for almost all approximation methods to perform well and nearly identically. The only
one falling behind is the ordinary mean-field approximation in the no repetition variant.
The MFA does not utilize the information about the density of the network and assumes the
possibility of repetitions when constructing a group of influence. Still, differences between
the variants of the model remain small for such a large value of k, as mentioned in the
Section 2.1.
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k = 50,  q = 5

Figure 5. Comparison between the simulation results and the approximation methods in the no
repetition (left) and repetition (right) variants of the model, for a random regular graph of size
N = 1000, with the degree k = 50 and the size of a group of influence q = 5. The solid, light gray line
indicates ordinary MFA, the dashed dark gray one indicates naMFA, the dashed green one indicates
hMFA, and the solid orange one indicates PA. Simulation results for the initial concentration c0 = 0.5
(blue triangles) and 1 (red circles) are shown. In the repetition variant, PA is obtained numerically.

Next, a sparser network (degree k = 10) was examined (Figure 6). Here, the differ-
ences between the methods and variants become visible. As mentioned earlier, the system
in the no repetition variant disorders sooner, i.e., for lower values of p, than in the repeti-
tion one. This becomes even more apparent as we increase q from 4 to 5. As expected,
the ordinary MFA performs poorly in the repetition variant and terribly in the no repetition
one. The network-aware MFA works slightly better in the no repetition variant, but only
for q = 4. For values of q approaching k it fails as well. Note that the naMFA method
in the repetition version is equivalent to ordinary MFA. The pair approximation performs
best in all cases studied. However, the heuristic MFA is not far behind. Moreover, it has
a significant advantage over the PA—it uses a closed-form formula in both variants of
the model.

Last but not least, a very sparse network (k = 5) was analyzed (Figure 7). Here,
inaccuracies of the methods are magnified. Both ordinary MFA and naMFA perform
terribly, regardless of the variant of the model or the value of q. The PA is still the most
accurate method, although the hMFA is again not that far behind. Especially in the repetition
variant, for which the closed form of the PA cannot be obtained. Since in this case one must
rely on a numerical solution of the PA, the hMFA may be an attractive alternative.
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Figure 6. Comparison between the simulation results and the approximation methods in the no
repetition (left) and repetition (right) variants, for a random regular graph of size N = 1000, with the
degree k = 10 and the sizes of the group of influence q = 4 (top), and 5 (bottom). The solid,
light gray line indicates ordinary MFA, the dashed dark gray one indicates naMFA, the dashed
green one indicates hMFA, and the solid orange one indicates PA. Simulation results for the initial
concentration c0 = 0.5 (blue triangles) and 1 (red circles) are shown. In the repetition variant, PA is
obtained numerically.
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Figure 7. Comparison between the simulation results and the approximation methods in the no
repetition (left) and repetition (right) variants, for a random regular graph of size N = 1000, with the
degree k = 5 and the sizes of the group of influence q = 3 (top), and 4 (bottom). The solid,
light gray line indicates ordinary MFA, the dashed dark gray one indicates naMFA, the dashed
green one indicates hMFA, and the solid orange one indicates PA. Simulation results for the initial
concentration c0 = 0.5 (blue triangles) and 1 (red circles) are shown. In the repetition variant, PA is
obtained numerically.
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The summary of the differences between various approximation methods is presented
in Figure 8. The methods are presented from top to bottom in the order of growing accuracy:
MFA, naMFA, hMFA and PA. Note that the differences are displayed in a logarithmic
scale. The first row corresponds to the ordinary MFA. As already mentioned, it performs
satisfactorily only for large values of k and fails miserably in all other cases. The second
row presents the network aware MFA, a slight modification of MFA with an attempt to
capture some aspects of the underlying network. In the no repetition variant it performs
slightly better. The third row shows the heuristic MFA (hMFA). Overall it yields better
accuracy than the former methods, especially in the repetition variant. The last row is the
PA—the most accurate method, yet it is still not perfect (see k = q = 3 and k = q = 4 in the
no repetition variant). Moreover, in the repetition variant, its performance becomes worse
when q is large (see q = 20). It is not a numerical artifact, but a property of the PA itself.
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Figure 8. Difference ∆ (Equation (19)) between the simulation results and the ordinary MFA (first
row), the naMFA (second row), the hMFA (third row), and the PA (fourth row), in the no repetition
(left) and repetition (right) variants.
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4. Discussion and Conclusions

This paper consists of two parts. First, we studied the differences between the repetition
and no repetition variants of the q-voter model. We found out that differences between
them occur and become significant for sparse networks. Thus, one cannot simply use these
variants interchangeably without any information.

Secondly, we examined two known approximation methods: the mean-field approxi-
mation and the pair approximation, and proposed two additional ones: the network-aware
MFA and the heuristic MFA. We compared all these methods in terms of accuracy with the
results of agent-based simulations. Two findings stand out as the most significant in our
opinion. First, the PA remains the most accurate method overall. Unfortunately, it provides
a closed form solution only in the no repetition variant. In the repetition one we must rely
on numerical methods. Second, the hMFA is quite accurate as well. Moreover, it yields
formulas much simpler than PA, and thus allows for an analytical solution in both variants
of the model. As such, it is an alternative worth considering.
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3. Krueger, T.; Szwabiński, J.; Weron, T. Conformity, anticonformity and polarization of opinions: Insights from a mathematical

model of opinion dynamics. Entropy 2017, 19, 371. [CrossRef]
4. Macy, M.W.; Willer, R. From factors to actors: Computational sociology and agent-based modeling. Annu. Rev. Sociol. 2002,

28, 143–166. [CrossRef]
5. Newman, M. Networks: An Introduction; Oxford University Press: New York, NY, USA, 2010.
6. Rahmandad, H.; Sterman, J. Heterogeneity and network structure in the dynamics of diffusion: Comparing agent-based and

differential equation models. Manag. Sci. 2008, 54, 998–1014. [CrossRef]
7. Kiesling, E.; Günther, M.; Stummer, C.; Wakolbinger, L. Agent-based simulation of innovation diffusion: A review. Cent. Eur. J.

Oper. Res. 2012, 20, 183–230. [CrossRef]
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36. Sznajd-Weron, K.; Szwabiński, J.; Weron, R. Is the Person-Situation Debate Important for Agent-Based Modeling and Vice-Versa?

PLoS ONE 2014, 9, e112203. [CrossRef] [PubMed]
37. Javarone, M.A.; Squartini, T. Conformism-driven phases of opinion formation on heterogeneous networks: The q-voter model

case. J. Stat. Mech. Theory Exp. 2015, 2015, P10002. [CrossRef]
38. Muslim, R.; Nqz, R.A.; Khalif, M.A. Mass Media and Its Impact on Opinion Dynamics of the Nonlinear q-Voter Model. Physica A

2024, 633, 129358. [CrossRef]
39. Vieira, A.R.; Peralta, A.F.; Toral, R.; Miguel, M.S.; Anteneodo, C. Pair approximation for the noisy threshold q-voter model. Phys.

Rev. E 2020, 101, 052131. [CrossRef]
40. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 1978, 83, 1420–1443. [CrossRef]
41. Tang, Y. Applying a transformation-based method to extract optical traveling waves from the Kundu-Mukherjee-Naskar equation.

Results Phys. 2023, 53, 106943. [CrossRef]
42. Butcher, J.C. On the attainable order of Runge-Kutta methods. Math. Comp. 1965, 19, 408–417. [CrossRef]
43. Toral, R.; Tessone, C.J. Finite Size Effects in the Dynamics of Opinion Formation. Commun. Comput. Phys. 2007, 2, 177–195.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



Paper 4

Multi-layer diffusion model
of photovoltaic installations

Tomasz Weron



Multi-layer diffusion model of photovoltaic installations

Tomasz Weron
Department of Applied Mathematics, Faculty of Pure and Applied Mathematics,

Wrocław University of Science and Technology, Wrocław, Poland

Abstract
Nowadays, harmful effects of climate change are becoming increasingly apparent. A vital
issue that must be addressed is the generation of energy from non-renewable and often
polluting sources. For this reason, the development of renewable energy sources is of great
importance. Unfortunately, too rapid spread of renewables can disrupt stability of the power
system and lead to energy blackouts. One should not simply support it, without ensuring
sustainability and understanding of the diffusion process. In this research, we propose a
new agent-based model of diffusion of photovoltaic panels. It is an extension of the q-voter
model that utilizes multi-layer network structure. The novelty is studying both opinion
dynamics and diffusion of innovation simultaneously, on a multidimensional structure. The
model is analyzed with Monte Carlo simulations and mean-field approximation. The impact
of parameters and specifications on the basic properties of the model is discussed. Firstly,
we show that for a certain range of parameters, innovation always succeeds, regardless of the
initial conditions. Secondly, that the mean-field approximation gives qualitatively the same
results as computer simulations, even though it does not utilize knowledge of the network
structure.
Keywords: agent-based modeling, complex networks, computational statistics, diffusion
of innovation, dynamical system, opinion dynamics, mathematical modeling, renewable
energy

1. Introduction

Nowadays, we are experiencing effects of climate change and environmental pollution
more and more often. What might have once seemed insignificant, such as glaciers melting
thousands of kilometers away, now begins to affect us directly. While the gigantic fires that
devastated countries like Australia, Canada or Greece have spared the one of the author’s
origin, Poland, we experience another environmental disaster – air pollution. In Poland, low-
quality heating installations in single-family households or multi-family tenements are among
the main causes of its formation [1]. Generally speaking, the problem is the generation of
energy from non-renewable and often polluting sources. High emissions of pollutants directly
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threaten our lives and, in the already coming future, lead to dangerous climate change [2],
of which global warming is probably the most widely discussed. It not only affects entire
ecosystems and the comfort of life, but according to some studies may lead to aggravation
and spread of many dangerous diseases as well [3].

That is why the development of renewable energy sources (renewables, RES) is so im-
portant. Across the European Union in 2023, about 45% of electricity generation came from
RES [4]. Poland, although it saw a rapid expansion of renewables, still falls behind with
around 26% [5]. In Europe, wind is the main source of renewable energy [6]. Unfortunately,
wind farms require huge investments and vast free space, far from residential buildings. An
alternative devoid of these limitations, and rapidly gaining popularity in Poland over the
past few years, are photovoltaic panels (PVs), see Fig. 1 for exact numbers. Those can be
installed on a roof of a single-family house without adversely affecting the quality of life,
while the cost of such a project is achievable already for a middle-income family [7]. How-
ever, it is not only important to provide this opportunity and encourage it through subsidy
programs or public campaigns, but to ensure sustainability as well. Excessive support of
RES diffusion can lead to a significant increase in the variability of demand for conventional
generation on a 24-hour basis, and in extreme cases can even cause loss of stability of the
power system. Examples are countries/regions with a large operation of the sun during a
year, such as Australia [8] or California [9], but also Poland’s neighbor – Germany [10].
Apart from that, there is another threat, more closely related to the common folk. Present
transmission system grids in Poland and other countries are not prepared for such a rapid
PVs expansion. If unrestricted, it may lead to grid overload and blackouts. In fact, this is
an already emerging risk [11].

The aim of this research is to better understand how various factors impact the diffusion
of PVs. Diffusion is understood here as the process of spreading a new product through
a population [12]. Diffusion of innovation has been modeled for years. It began in a very
simplified manner. A classic example is the Bass diffusion model – a fully deterministic one,
consisting of a single differential equation [13]. However, for a problem as complex as the
diffusion of PV installations, aggregated models are just not enough [14]. They are unable
to describe clustering of individuals, a phenomenon observed in real life [15]. The afore-
mentioned Bass diffusion of innovation model can dramatically change its behavior, when
rewritten to an agent-based model (ABM) and tested on a network structure [16]. In social
sciences, an agent-based model is usually understood as a simulation of certain interactions
between so-called agents (representing individuals, households, companies, etc.), and taking
place within a certain structure, symbolizing a network of acquaintances, contacts or coop-
eration [17]. Mathematically, we would call such a structure a graph, with vertices being
the agents, and edges – the connections between them [18]. ABMs allow for a much more
accurate representation of reality, including heterogeneity of individuals and the interactions
between them [18]. As such, ABMs are currently one of the most powerful tools in study-
ing opinion dynamics and diffusion of innovation [19]. Although they have been used for
years to model the diffusion of new energy solutions [20, 21, 22, 23, 24], their applications
in modeling the diffusion of PVs remain few [25, 26, 27, 28].

Although much more advanced than simple deterministic models, ABMs are still merely
2



Figure 1: Data on solar installations in Poland in years 2019–2023, according to ARE (Polish energy market
agency). More detailed data is being collected from 2021 onward, most likely due to the growing interest in
the prosumer market. Data freely available at www.are.waw.pl.

a hypothetical approximation of reality. With that in mind, one should adjust them to a
problem at hand as accurately as possible, instead of constructing a one-size-fits-all model.
A huge role here is played by the underlying structure. For example, when modeling a
spread of gossip in a high school class, a simple network of class acquaintances would be
sufficient. However, to properly represent the flow of information and exchange of opinions
in the modern world, a much more complex structure is needed. This is where multi-layer
networks come in. They are applied in many fields of science [29], for they can provide multi-
level representation of real world dependencies [30]. For instance, an individual (agent) may
learn about recent sport results either from friends at work (one layer), or through social
media (another layer).

Sociologists have long pointed out that structures of social interaction should not be re-
duced to single-layer networks [30]. However, multi-layer structures have only been studied
intensively since the last decade [31]. Recently, they have been used in modeling the diffu-
sion of innovation [32, 33]. Nevertheless, this is still a relatively fresh concept. One issue
that arises with multi-layer networks is generalization of models’ rules that where originally
implemented on single-layer structures. For instance, one may assume that social influence
is only effective if it comes from all the layers (AND rule). However, it can also be assumed
that the influence is effective even if it comes from a single layer only (OR rule) [34]. In this
research, we follow the approach from [35] and study both variants.

Monte Carlo (MC) computer simulations are the main research method for ABMs. How-
ever, in some limited cases, as for networks being complete or random graphs with a low
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clustering coefficient, analytical methods such as mean-field (MFA) or pair approximation
(PA) can be used [36, 37, 38]. Unfortunately, real world networks are characterized by
a high clustering coefficient [18], so often the analytical results obtained this way differ
quantitatively from ones given by Monte Carlo simulations [37]. The need to sweep a mul-
tidimensional space of input parameters and perform multiple independent repetitions to
obtain good statistical parameters makes Monte Carlo simulations very time-consuming. For
this reason, we utilize both computer simulations and analytical methods in this research.

A popular agent-based model that already has found its use in studying diffusion of eco-
innovation is the q-voter model [20, 23, 39]. In this model, conformity is the basic form of
social response. Agents are characterized by a single binary variable denoting their opinion
and placed in nodes of some underlying graph structure. Their opinions change upon impact
with so-called groups of influence, i.e. q of the agent’s neighbors chosen randomly, but only
if a given group presents an unanimous opinion. A well-established extension to the q-
voter model is the addition of independence – a probability that an agent acts and changes
opinion independently of the group of influence [40]. The q-voter model has been already
examined on multi-layer networks, but to the best of our knowledge only ones consisting of
two identical layers [35, 41].

In this paper, we introduce a new model based on the aforementioned q-voter model with
independence. Our goal is to capture both opinion dynamics and diffusion of innovation
jointly. Hence, we introduce (compared to the original q-voter model) a second agent’s
attribute, in addition to the opinion – an adoption state. Similarly to the opinion, it is
a binary one. Positive value means that an agent possesses a PV installation, negative –
it does not. An agent (in this case a household) can acquire knowledge of PVs from two
sources. Either it sees panels on the roofs of neighboring households, or communicates
with friends/colleagues. To model this twofold dynamic, we utilize a two-layer network as
the underlying topology. The first layer of the network depicts the spacial location of an
agent, similarly to [42, 43]. From a mathematical point of view it is just a square lattice
(SL) with Moore’s neighborhood [44]. At this level, each agent possesses only knowledge
of the adoption states of the closest neighborhood, and these adoption states shape agent’s
opinion, according to the q-voter rule. The agent cannot share opinion or be subject to the
opinions of the neighborhood. This is the visual observation part. A single-family house
owner sees only PV panels, or lack thereof, on the roofs of neighboring houses, and does
not exchange information or opinions with neighbors. The second layer of the network
corresponds to structure of contacts and relationships of agents. For this reason, here we
use two-dimensional Watts-Strogatz graph (WS2D) [45]. It possesses some characteristics
of real world social networks [18, 46] and, in a specific case (when randomness equals 0),
reduces to a square lattice. At this level, a connection between two agents implies their
familiarity, through which they can exchange opinions, but do not observe their adoption
states. In this case, social influence is also described by the q-voter model. Lastly, it is
an agent’s opinion solely that impacts its adoption state. An agent with a positive opinion
can install photovoltaic panels with probability a1, one with a negative one can resign with
probability a2. The reason for this research is to thoroughly examine this mathematical
model, to understand how its parameters shape the outcome.
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Figure 2: Graphical representation of the model. The network consists of 2 layers: Square Lattice (SL, left
side), on which adoption states Ai are visible and two-dimensional Watts-Strogatz (WS2D, right side) with
opinions Si. Adoption states Ai are represented by outer circles (green – Ai = +1, red – Ai = −1), while
opinions – by inner circles. Grey areas correspond to adoption states or opinions unknown to the target
agent (marked with a dark blue circle). Groups of influence (of size q = 4, marked with light blue circles)
are constructed independently on each layer. In the given example, such a choice would be sufficient to
change target’s opinion (Starget → +1) in the OR variant, but not in the AND variant, as unanimity is only
achieved in one of the two groups of influence.

The rest of this article is organized as follows. In the next section, we provide a more
detailed description of the model and the methods used. Then, in Section 3, we examine
the two variants, AND and OR rules, which were explained above. Both by means of
computer simulations, numerical and analytical methods. Finally, in Section 4, we wrap up.
Additionally, in Appendix, we consider various initial conditions.

2. Model and Methods

2.1. Simulation Model
We consider a set of N agents, each of which is characterized by 2 binary variables:

adoption Ai = ±1 (adopted or not adopted), and opinion Si = ±1 (positive or negative),
for i = 1, 2, . . . , N . Agents are located on a two-layer network (Fig. 2). The first layer of the
network depicts the spacial location of an agent and is represented by a square lattice (SL)
with Moore’s neighborhood, meaning that each agent possesses 8 neighbors surrounding it
(except for agents in corners and along edges, which have 3 and 5 neighbors, respectively)
[44]. At this level, an agent sees only the adoption states of its neighbors. The second layer
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corresponds to the structure of social ties of agents, which is described by a two-dimensional
Watts-Strogatz graph [45]. Here, an agent sees only the opinions of its neighbors. Each
layer is a connected simple graph [47], as described in Definition 1.

Definition 1. Let G = [GX,i,j] denote an adjacency matrix for the two-layer network, with
each layer X, X ∈ {1, 2}, being a connected simple graph, i.e. an unweighted, undirected
graph containing no graph loops or multiple edges [47]. Then, for i, j = 1, 2, . . . , N :

• ∀X∀i∀jGX,i,j = 1 ⇐⇒ edge between i and j exists on layer X,

• ∀X∀i∀jGX,i,j = 0 ⇐⇒ edge between i and j does not exist on layer X,

• ∀X∀i∀jGX,i,j = GX,j,i,

• ∀X∀iGX,i,i = 0.

We investigate the model through Monte Carlo simulations with a random sequential
updating scheme. Within a single simulation, the time is measured in so-called Monte Carlo
sweeps (MCS) [48]. One MCS consists of N elementary events, each of length ∆t = 1

N
.

In each elementary event, an agent i is chosen at random (uniformly from all N). Then,
with probability p, agent i acts independently and changes its opinion Si randomly. With
complementary probability 1 − p, the agent is susceptible to social influence (based on the
q-voter model [39]), combined from both layers of the network with respect to the variant,
AND or OR. Lastly, if agent i has positive opinion Si = +1, but negative adoption state
Ai = −1, it changes the latter to positive, Ai → +1, with probability a1. Otherwise, if
it possesses negative opinion Si = −1, but positive adoption state Ai = +1, it looses the
latter, i.e. Ai → −1, with probability a2. Simulation details are shown in Algorithm 1, and
the graphical representation of the model in Fig. 2. In Algorithm 1:

• U [0, 1] stands for a continuous uniform distribution, while U{X} – for a discrete one,
where each element from set X is chosen with equal probability.

• G is an adjacency matrix for the two-layer network, as per Definition 1,

• p, a1, and a2 denote probabilities of independence, adopting (getting positive adoption
state) and unadopting, respectively. As probabilities, p, a1, a2 ∈ [0, 1]. In this research,
we only consider a1 ∈ (0, 1] and:

a2 = h × a1, (1)

where h ∈ (0, 1).

• q stands for the size (the number of neighbors) of the group of influence. In here, we
consider q ∈ N, q ≥ 2.

6



Algorithm 1: Simulation dynamics
for t B 1 to T do

for k B 1 to N do
i B i ∼ U{1, . . . , N}
r B r ∼ U [0, 1]
if r < p then

r B r ∼ U [0, 1]
if r < 1

2 then
Si B −Si

else
for l B 1 to q do

j1,l B j1 ∼ U{j1 : G1,i,j1 = 1}
j2,l B j2 ∼ U{j2 : G2,i,j2 = 1}

end
Q1 B 1

q

∑q
l Aj1,l

Q2 B 1
q

∑q
l Sj2,l

if Variant = AND then
if Q1 + Q2 = −2Si then

Si B −Si

else if Variant = OR then
if (Q1 = −Si and Q2 , Si) or (Q1 , Si and Q2 = −Si) then

Si B −Si

end
end
r B r ∼ U [0, 1]
if Si = 1 and Ai = −1 and r < a1 then

Ai = 1
else if Si = −1 and Ai = 1 and r < a2 then

Ai = −1
end

end
end

To clarify, we do the following. At the beginning of each independent simulation (trajec-
tory), we set the initial conditions. In simulations, we always start from a fully unadopted,
negative state, i.e., ∀i Ai(0) = −1, Si(0) = −1. Then, we perform Monte Carlo sweeps until
a determined time horizon T is reached (T is the number of MCS). We repeat independent
simulations multiple times with the same set of parameter values for a better statistical
accuracy. We also run separate simulations for different sets of parameter values.

To examine the model on a macroscopic scale, we use two measures: concentration
(fraction) of positive adoption states and concentration of positive opinions.

Definition 2. Let N be the number of agents, Ai ± 1 the adoption state and Si = ±1 the
7



opinion of agent i, for i = 1, 2, . . . , N . Then, the concentrations of positive adoption states
cA and opinions cS are given by:

cA = 1
N

N∑

i=1
(2Ai − 1) , cS = 1

N

N∑

i=1
(2Si − 1) . (2)

By definition cA ∈ [0, 1] and cS ∈ [0, 1]. For the sake of simplicity, we refer to them as just
concentrations of adoption states (or adopted) and opinions, respectively.

2.2. Mean-Field Approximation
Here, we utilize the mean-field approximation (MFA) [40] to derive a set of equations

describing the dynamical system.

Theorem 1. Let cA and cS denote the concentrations of positive adoption states and positive
opinions respectively (as per Definition 2). Under the assumption that each layer of the
network is a complete graph of size N → ∞, the dynamics of the system is described in the
AND variant by:

dcA

dt
= cS (1 − cA) a1 − (1 − cS) cAha1, (3)

dcS

dt
= (1 − cS)

(1
2p + (1 − p)cq

Scq
A

)
− cS

(1
2p + (1 − p)(1 − cS)q(1 − cA)q

)
, (4)

and in the OR variant by:
dcA

dt
= cS (1 − cA) a1 − (1 − cS) cAha1,

dcS

dt
= (1 − cS)

{1
2p + (1 − p) (cq

S (1 − cq
A − (1 − cA)q)

+cq
A (1 − cq

S − (1 − cS)q) + cq
Scq

A)
}

− cS

{1
2p + (1 − p) ((1 − cS)q (1 − cq

A − (1 − cA)q)

+(1 − cA)q (1 − cq
S − (1 − cS)q) + (1 − cS)q(1 − cA)q)

}
. (5)

Proof. Under the assumption that each layer of the network is a complete graph of size
N → ∞, we can write down probability γ+

A that a number of agents with positive adoption
states will increase by 1 and probability γ−

A that it will decrease by 1:

γ+
A = cS (1 − cA) a1, (6)

γ−
A = (1 − cS) cAa2. (7)

Then, we derive the differential equation, analogously to [19, 49]:

dcA

dt
= γ+

A − γ−
A , (8)
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which gives us Eq. (3), after replacing a2 with ha1 (Eq. (1)). Eq. (3) is common for both
AND and OR variants of the model. Similarly, we can write down probabilities γ+

S and γ−
S

that a number of agents with positive opinion will increase or decrease by 1 respectively.
These are:

γ+
S,AND = (1 − cS)

(1
2p + (1 − p)cq

Scq
A

)
, (9)

γ−
S,AND = cS

(1
2p + (1 − p)(1 − cS)q(1 − cA)q

)
, (10)

in the AND variant, and:

γ+
S,OR = (1 − cS)





1
2p + (1 − p)


cq

S

q−1∑

i=1

(
q

i

)
ci

A(1 − cA)q−i

+cq
A

q−1∑

i=1

(
q

i

)
ci

S(1 − cS)q−i + cq
Scq

A





 , (11)

γ−
S,OR = cS





1
2p + (1 − p)


(1 − cS)q

q−1∑

i=1

(
q

i

)
(1 − cA)icq−i

A

+(1 − cA)q
q−1∑

i=1

(
q

i

)
(1 − cS)icq−i

S + (1 − cS)q(1 − cA)q





 , (12)

in the OR variant. Using the binomial formula, we can replace sums in γ+
S,OR and γ−

S,OR

with:
q−1∑

i=1

(
q

i

)
ci

X(1 − cX)q−i =
q−1∑

i=1

(
q

i

)
(1 − cX)icq−i

X = 1 − (1 − cX)q − cq
X , X = A, S. (13)

Then:
dcA

dt
= γ+

S,AND − γ−
S,AND (14)

gives us Eq. (4), and
dcA

dt
= γ+

S,OR − γ−
S,OR (15)

gives Eq. (5).

Due to the power of q in Eqs. (4)-(5), time trajectories of the system given by Eqs. (3)-(5)
cannot be determined analytically. Hence, one must resort to numerical methods, which we
show in Section 3. However, stationary states can be found analytically and there existence
can be proven.

Theorem 2. Let cA and cS denote the concentrations of positive adoption states and positive
opinions respectively (as per Definition 2). Under the assumption that each layer of the
network is a complete graph of size N → ∞, for any q ∈ N, q ≥ 2, p ∈ [0, 1], h ∈ (0, 1) and
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a1 ∈ (0, 1], there always exists at least one stationary state (c′
A, c′

S), and all stationary states
(c′

A, c′
S) must satisfy:

cA = cS

cS + h − cSh
, (16)

p = f2(cS)
f2(cS) + f3(cS) , (17)

in the AND variant, and:

cA = cS

cS + h − cSh
,

p = f5(cS)
f5(cS) + f3(cS) , (18)

in the OR variant. Here:

f2(cS) = cS(1 − cS)
(
c2q−1

S − hq(1 − cS)2q−1
)

,

f3(cS) =
(

cS − 1
2

)
(cS + h − cSh)q,

f5(cS) = cS(1 − cS)
{(

cq−1
S − (1 − cS)q−1

)
(cS + h − cSh)q

+ cq−1
S (1 − cS)q−1(1 + hq)(2cS − 1)

+ cq−1
S − c2q−1

S + hq(1 − cS)2q−1 − hq(1 − cS)q−1
}

.

Proof. A stationary state (c′
A, c′

S) must satisfy:

dcA

dt
= 0,

dcS

dt
= 0. (19)

First, let us consider Eq. (3), common for both AND and OR variants of the model:

0 = cS(1 − cA)a1 − (1 − cS)cAha1. (20)

Since a1 > 0, we can rewrite it as:

cS = cA(cS + h − cSh). (21)

Because cS ∈ [0, 1] and h ∈ (0, 1), (cS + h − cSh) > 0 always, and hence:

cA = cS

cS + h − cSh
= cS

(1 − h)cS + h
= f1(cS). (22)

Note, that function f1(cS) is a rational one of degree 1. Therefore, for any cS ∈ [0, 1], there
always exists exactly one cA ∈ [0, 1] that satisfies Eq. (22).
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Now, let us consider Eq. (4) from the AND variant:

0 = (1 − cS)
(1

2p + (1 − p)cq
Scq

A

)
− cS

(1
2p + (1 − p)(1 − cS)q(1 − cA)q

)
. (23)

By expanding the brackets and putting all the terms containing p on one side, we arrive at:

p
(

cq
Scq

A − cq+1
S cq

A − cS(1 − cS)q(1 − cA)q + cS − 1
2

)
=

cq
Scq

A − cq+1
S cq

A − cS(1 − cS)q(1 − cA)q. (24)

Next, by replacing cA with f1(cS) and multiplying all the terms by (cS + h − cSh)q, we get:

p
{

cS(1 − cS)
(
c2q−1

S − hq(1 − cS)2q−1
)

+
(

cS − 1
2

)
(cS + h − cSh)q

}
=

cS(1 − cS)
(
c2q−1

S − hq(1 − cS)2q−1
)

. (25)

Then, denoting:

f2(cS) = cS(1 − cS)
(
c2q−1

S − hq(1 − cS)2q−1
)

, (26)

f3(cS) =
(

cS − 1
2

)
(cS + h − cSh)q, (27)

we obtain:
p (f2(cS) + f3(cS)) = f2(cS). (28)

If f2(cS) + f3(cS) = 0, then f2(cS) = 0, and hence f3(cS) = 0 as well. Function f3(cS) = 0
only if cS = 1

2 , as (cS + h − cSh) > 0. For cS ∈
[

1
2 , 1

)
, function f2(cS):

f2(cS) = cS(1 − cS)
︸          ︷︷          ︸

>0

(
c2q−1

S − hq(1 − cS)2q−1
)

︸                               ︷︷                               ︸
>0

> 0, (29)

because for cS ∈
[

1
2 , 1

)
, cS ≥ 1 − cS, and h ∈ (0, 1). Hence, there is no cS for which

f2(cS) = f3(cS) = 0, and therefore no cS for which f2(cS)+f3(cS) = 0 that satisfies Eq. (28).
As further we consider only f2(cS) + f3(cS) , 0, we can write:

p = f2(cS)
f2(cS) + f3(cS) = f4(cS). (30)

From Eqs. (26)-(30), we can notice that:

for cS = 1 : f2(cS) = 0, f3(cS) > 0 =⇒ f4(cS) = 0

for cS = 1
2 : f2(cS) > 0, f3(cS) = 0 =⇒ f4(cS) = 1,

for cS ∈
(1

2 , 1
)

: f2(cS) > 0, f3(cS) > 0 =⇒ f4(cS) ∈ (0, 1). (31)
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When cS ∈
[

1
2 , 1

]
, f4(cS) is a rational function with positive denominator, and hence contin-

uous within that interval. As it is continuous in
[

1
2 , 1

]
, f4(1) = 0 and f4

(
1
2

)
= 1, it achieves

any value of between 0 and 1. Hence, for any p ∈ [0, 1] there always exists at least one
cS ∈ [0, 1] that satisfies Eq. (30). Therefore, in the AND variant, there always exists at least
one stationary state.

Similarly in the OR variant, we have:

0 = (1 − cS)
{1

2p + (1 − p) (cq
S (1 − cq

A − (1 − cA)q)

+cq
A (1 − cq

S − (1 − cS)q) + cq
Scq

A)
}

− cS

{1
2p + (1 − p) ((1 − cS)q (1 − cq

A − (1 − cA)q)

+(1 − cA)q (1 − cq
S − (1 − cS)q) + (1 − cS)q(1 − cA)q)

}
, (32)

from Eq. (5). Analogously to the AND variant, by expanding the brackets, putting all the
terms containing p on one side, then, by replacing cA with f1(cS) and multiplying all the
terms by (cS + h − cSh)q, we get:

p (f5(cS) + f3(cS)) = f5(cS), (33)

where

f3(cS) =
(

cS − 1
2

)
(cS + h − cSh)q,

f5(cS) = cS(1 − cS)
{(

cq−1
S − (1 − cS)q−1

)
(cS + h − cSh)q

+ cq−1
S (1 − cS)q−1(1 + hq)(2cS − 1)

+ cq−1
S − c2q−1

S + hq(1 − cS)2q−1 − hq(1 − cS)q−1
}

. (34)

Again, if f5(cS) + f3(cS) = 0, then f5(cS) = 0, and hence f3(cS) = 0 as well. Function
f3(cS) = 0 only if cS = 1

2 . For cS ∈
[

1
2 , 1

)
, function f5(cS):

f5(cS) = cS(1 − cS)
︸          ︷︷          ︸

>0

{(
cq−1

S − (1 − cS)q−1
)

︸                         ︷︷                         ︸
≥0

(cS + h − cSh)q

︸                  ︷︷                  ︸
>0

+ cq−1
S (1 − cS)q−1(1 + hq)(2cS − 1)
︸                                          ︷︷                                          ︸

≥0

+ cq−1
S − c2q−1

S + hq(1 − cS)2q−1 − hq(1 − cS)q−1
︸                                                             ︷︷                                                             ︸

>0, by Lemma 1

}
> 0, (35)

because for cS ∈
[

1
2 , 1

)
, cS ≥ 1 − cS, and h ∈ (0, 1). Lemma 1 is presented below this

proof. Hence, there is no cS for which f5(cS) = f3(cS) = 0, and therefore no cS for which
12



f5(cS) + f3(cS) = 0 that satisfies Eq. (33). As further we consider only f5(cS) + f3(cS) , 0,
we can write:

p = f5(cS)
f5(cS) + f3(cS) = f6(cS). (36)

From Eqs. (33)-(36), we can notice that:
for cS = 1 : f5(cS) = 0, f3(cS) > 0 =⇒ f6(cS) = 0

for cS = 1
2 : f5(cS) > 0, f3(cS) = 0 =⇒ f6(cS) = 1,

for cS ∈
(1

2 , 1
)

: f5(cS) > 0, f3(cS) > 0 =⇒ f6(cS) ∈ (0, 1). (37)

When cS ∈
[

1
2 , 1

]
, f6(cS) is a rational function with positive denominator, and hence contin-

uous within that interval. As it is continuous in
[

1
2 , 1

]
, f6(1) = 0 and f6

(
1
2

)
= 1, it achieves

any value of between 0 and 1. Hence, for any p ∈ [0, 1] there always exists at least one
cS ∈ [0, 1] that satisfies Eq. (36). Therefore, in the OR variant, there always exists at least
one stationary state.
Lemma 1. Let cS ∈

[
1
2 , 1

)
, h ∈ (0, 1) and q ∈ N, q ≥ 2. Then:

cq−1
S − c2q−1

S + hq(1 − cS)2q−1 − hq(1 − cS)q−1 > 0. (38)

Proof. First, we show that for cS ∈
[

1
2 , 1

)
:

c2q−2
S − (1 − cS)2q−2 ≥ c2q−1

S − (1 − cS)2q−1

c2q−2
S − c2q−1

S ≥ (1 − cS)2q−2 − (1 − cS)2q−1

c2q−2
S (1 − S) ≥ (1 − cS)2q−2(1 − (1 − cS))

c2q−3
S ≥ (1 − cS)2q−3 (39)

is true, because cS ≥ 1 − cS and 2q − 3 ≥ 1. Then:
cq−1

S − c2q−1
S + hq(1 − cS)2q−1 − hq(1 − cS)q−1 =

cq−1
S − c2q−1

S − hq
(
(1 − cS)q−1 − (1 − cS)2q−1

)

︸                                    ︷︷                                    ︸
>0

h<1
>

cq−1
S − c2q−1

S −
(
(1 − cS)q−1 − (1 − cS)2q−1

)
=

cq−1
S − (1 − cS)q−1 −

(
c2q−1

S − (1 − cS)2q−1
) Eq. 39

≥
cq−1

S − (1 − cS)q−1 −
(
c2q−2

S − (1 − cS)2q−2
)

=

cq−1
S − (1 − cS)q−1 −

(
cq−1

S − (1 − cS)q−1
) (

cq−1
S + (1 − cS)q−1

)
=

(
cq−1

S − (1 − cS)q−1
)

︸                         ︷︷                         ︸
≥0

(
1 − cq−1

S − (1 − cS)q−1
)

︸                               ︷︷                               ︸
≥0

≥ 0. (40)
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3. Results

3.1. Simulation Details
First, we examine our model with Monte Carlo computer simulations. In order to mea-

sure the outcomes at a macroscopic level, we use concentrations, i.e. fractions, of positive
adoption states cA and positive opinions cS, see Definition 2. In all the simulations, we study
a system of size N = 2500 (number of agents, which may be interpreted as a borough in a
city). As mentioned in the Introduction, the first layer of the two-layer network is always a
Square Lattice with Moore’s neighborhood [44], and no periodic boundary conditions, which
means that almost every agent has exactly 8 neighbors (except those on the edges of the
lattice). We denote it as SL(N = 2500, m = 1), where m = 1 indicates the range of a neigh-
borhood on a square grid. The second layer is always a two-dimensional Watts-Strogatz
graph [45], with Moore’s neighborhood before rewiring and rewiring probability β = 0.2,
and again, without periodic boundary conditions. We wanted a layer that possesses char-
acteristics of a real world social network, but still bears a resemblance to the other layer.
We denote it as WS2D(N = 2500, m = 1, β = 0.2). We study the behavior of the system
with respect to the parameters p, a1 and a2. Although the size of the group of influence q is
a parameter as well, here we keep it constant, as its impact in the q-voter model with inde-
pendence is well studied [40]. We choose q = 4 motivated by real life experiments [50]. This
will help us to reduce computational efforts slightly. In all the simulations, we start from a
fully unadopted, negative state, i.e., cA(0) = 0, cS(0) = 0. Lastly, for illustrative purposes,
the time horizon T for each simulation is limited to 5000 Monte Carlo steps (MCS), and the
number of time trajectories to 10.

3.2. Simulation Model
Let us begin with Fig. 3. It shows evolution of the system, for both variants (AND

and OR), and a range of values of p, a1 and a2, where a2 = 0.5a1 in all cases. We can
observe that several final outcomes are possible. When p is low, we retain an unadopted
state (cA(T ) ≈ 0, cS(T ) ≈ 0). None of the agents have a positive opinion or adoption
state, except for a few rebels. Then, there is a critical value of p, above which the system
becomes adopted (cA(T ) ≈ 1, cS(T ) ≈ 1). If the value of p is high, independence surpasses
conformity and we end up with a disordered system (cA(T ) ≈ 0.5, cS(T ) ≈ 0.5). There is a
visible difference between the two variants: AND and OR. In the first, much lower values of
p are required to enter adopted or disordered state than in the latter. Finally, the value of
a1 itself has no impact on the final state (except for a1 = 0, which is not shown here), only
on the time needed to reach it, with the higher value speeding up the process.

What affects the final state, however, is the relationship between a1 and a2, namely the
coefficient h (Eq. (1)). Let us move to Fig. 4. There, a2 is twice as small relative to a1 as
before, a2 = 0.25a1. With this decrease in a2 much lower values of p are needed, in both
variants, for the system to become adopted. This itself is a rather trivial conclusion, as now
the probability of loosing adoption is four times smaller that the one of adopting. There is,
however, a secondary effect to it, due to the fact how the first layer of the network impacts
opinions in our model. Positive adoption states support positive opinions (and vice versa).

14



Figure 3: 10 simulated time trajectories of cA (red) and cS (blue) for different values of p: the AND variant
(top), the OR variant (bottom). Values of a1: a1 = 0.04 (left), a1 = 0.16 (right). First layer – SL(N,1),
second layer – WS2D(N,1,0.2), size N = 2500 and a2 = 0.5a1 in all cases.
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Figure 4: 10 simulated time trajectories of cA (red) and cS (blue) for different values of p: the AND variant
(top), the OR variant (bottom). Values of a1: a1 = 0.04 (left), a1 = 0.16 (right). First layer – SL(N,1),
second layer – WS2D(N,1,0.2), size N = 2500 and a2 = 0.25a1 in all cases.
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For this reason, the adopted state is not only easier to reach, but also more difficult to
disorder.

We decided not to examine a symmetrical case a1 = a2, i.e. h = 1, because there is
no adopted state there. From cA(0) = 0, cS(0) = 0, the system can only evolve into total
disorder or remain unadopted.

3.3. Mean-Field Approximation
Monte Carlo computer simulations are the first choice when it comes to agent-based

models. Unfortunately, as mentioned in the Introduction, they can be very time-consuming.
For this reason, we derive a set of equations describing dynamics of the system (Eqs. (3)-(5)),
under the assumption that each layer of the network is a complete graph of size N → ∞.
Thanks to this approach, we can examine a wide range of parameter values, which we could
not achieve with Monte Carlo simulations in any reasonable amount of time.

Before discussing the analytical results themselves, we compare them with the simu-
lations. For this, see Fig. 5, where we combine the latter and numerically obtained time
trajectories from Eqs. (3)-(5). As shown there, mean-field gives fairly good approximation,
except for the bottom row (OR variant, p = 0.2). This is due to the fact, that in the MFA
critical values of p required for the system to adopt are slightly higher, as presented in the
next two Figures (Figs. 6 and 7).

Mean-field time trajectories, and hence times to reach a stationary state, are obtained
numerically from Eqs. (3)-(5). Analytically, we are only able to compute stationary states
(Eqs. (16)-(18)). We compare the two in Fig. 6, for a2 = 0.5a1. Numerically computed
stationary states perfectly match analytical ones. Segments not covered by the numerical
results are due to the fact that the analytical solution shows all the possible stationary
states, while the numerical one only those achievable from given initial conditions (cA(0) = 0,
cS(0) = 0). Clearly visible here are the three possible groups of stationary states: unadopted
(cA(T ) ≈ 0, cS(T ) ≈ 0), adopted (cA(T ) ≈ 1, cS(T ) ≈ 1) and disordered (cA(T ) ≈ 0.5,
cS(T ) ≈ 0.5), although a transition between the latter two in the OR variant is very smooth.
As already mentioned, the value of a1 (a1 ∈ (0, 1]) itself has no impact on a stationary state.
Therefore, we set it arbitrarily to 0.5 (only left side of Fig. 6). On the right, times to reach
a stationary state with respect to a1 and p are presented. These drop dramatically with an
increase of a1, but only for very low values of a1. After that, the change is unnoticeable.
There are significant „ridges” for the values of p corresponding to transitions between groups
of stationary states (left side). There are two such ridges in the AND variant, but only one in
the OR variant, as transition between adopted and disordered is very smooth there. These
increases in times are logical, as the system needs more time to „decide” which path to take,
and consistent with our knowledge on phase transitions.

When we decrease a2 to 0.25a1 (see Fig. 7), transitions between adopted and disordered
states become less apparent in both variants of the model. Moreover, values of p needed
for adoption decrease, while those needed for disorder increase, which is consistent with the
simulations results.
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Figure 5: 10 simulated time trajectories of cA and cS versus numerically obtained time trajectory (from
Eqs. (3)-(5)), for different values of p and a1. the AND variant (top 4) and the OR variant (bottom 4).
First layer – SL(N,1), second layer – WS2D(N,1,0.2), size N = 2500 and a2 = 0.5a1 in all cases.
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Figure 6: Stationary states (left) and time to reach a stationary state (right) for the AND variant (top)
and the OR (bottom). Left side compares numerical results (from Eqs. (3)-(5); markers) vs analytical (from
Eqs. (16)-(18); continuous lines). Numerical results cover only a portion of analytical ones, as they present
stationary states from a single pair of initial conditions (cA(0) = 0, cS(0) = 0) only, while the latter show
all the possible stationary states. Right side shows time to reach a stationary state obtained with numerical
methods. Adoption probabilities a1 = 0.5 (left side only) and a2 = 0.5a1.
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Figure 7: Stationary states (left) and time to reach a stationary state (right) for the AND variant (top)
and the OR (bottom). Left side compares numerical results (from Eqs. (3)-(5); markers) vs analytical (from
Eqs. (16)-(18); continuous lines). Numerical results cover only a portion of analytical ones, as they present
stationary states from a single pair of initial conditions (cA(0) = 0, cS(0) = 0) only, while the latter show
all the possible stationary states. Right side shows time to reach a stationary state obtained with numerical
methods. Adoption probabilities a1 = 0.5 (left side only) and a2 = 0.25a1.
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4. Conclusions

In this research, we proposed a new agent-based model that describes both opinion for-
mation and diffusion of photovoltaic panels. Although, it is based on the well-known model
of binary opinion dynamics, the q-voter model, we extended it by adding a second agent
attribute (adoption state) and rewrote it to a two-layer network structure. To generalize the
model from a single-layer, we considered two variants. First, when the q-voter’s social influ-
ence is required on both layers of the network to impact one’s opinion (the AND variant).
Second, where influence from just one layer is sufficient (the OR variant). We investigated
the model, the effect of parameters on stationary states and times to reach them, using
both Monte Carlo computer simulations and Mean-Field Approximation. For the approxi-
mation’s results, we used analytical methods wherever it was possible, and numerical ones
otherwise.

Let us begin with our main goal, which was to build a diffusion of innovation model
that does not reduce the dynamics to a one-dimensional mechanism, as classical models do
[13], but combines the adoption process with opinion formation. Consequently, diffusion
of innovation and opinion dynamics are dependent on each other, with parameters only
impacting one of these directly, influencing the other as well.

More specifically, within the model there exist three possible final states: unadopted
system, adopted and finally, disordered one. The system transitions from the first, through
the second, to the third, as the probability of independence p increases. Broadly speaking,
independence is initially essential for the adoption process to take off. However, as the
diffusion accelerates, independence hinders innovation and ultimately prevents full adoption.
Except for a1 = 0, the probability of adoption has no impact on the stationary states, only
on times to reach them. What impacts stationary states, however, is the relation between
a1 and probability of loosing adoption a2. As a2 becomes less and less of a1, critical values
of p required to reach the adopted state decrease, while those required for the disordered
one increase. Basically, the greater the difference between people’s willingness to install
solar panels versus their willingness to get rid of them, the better for the innovation. This
difference not only amplifies independence in the initial phase of adoption, but dilutes it in
the final phase as well.

Regarding the studied variants, there is a significant difference between the two, AND and
OR. In the AND variant, other states are achieved more easily than in the OR variant, i.e.
lower values of p are sufficient, but the transitions between these states are more pronounced.
This is because, in the AND variant the initial negative consensus is more easily disrupted
than in the OR variant, but so is the later positive consensus.

Finally, it should be noted that MFA approximates the simulation results fairly well. Al-
though, in the simulation version the network consists of Square Lattice and two-dimensional
Watts-Strogatz graph, structures pretty far from complete graph. Still, there are visible dif-
ferences. Critical values of p to reach various states differ slightly, but the general picture
remains.
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Appendix

In the basic research, only cA(0) = 0, cS(0) = 0 initial state was considered. However,
one could investigate others as well. Here, we examine, what happens if initially a small
fraction of agents possess positive opinions and adoption states, A(0) = +1, S(0) = +1.
These agents could be chosen randomly or determined by some centrality measure. We
compare time trajectories for the basic case (no such agents), with a number of such agents
chosen randomly and the same number determined by highest degree on the second layer
(degree centrality).

Figure 8: 10 simulated time trajectories of cA (red) and cS (blue) for cA(0) = 0, cS(0) = 0 (left), 100
agents with A(0) = +1, S(0) = +1 chosen randomly (middle) and 100 agents with A(0) = +1, S(0) = +1
determined by highest degree on the second layer (number of neighbors, right). The AND variant (top)
and the OR variant (bottom). First layer – SL(N,1), second layer – WS2D(N,1,0.2), size N = 2500 and
a2 = 0.5a1 in all cases.

Results are shown in Fig. 8. In AND variant there are no visible changes, as such agents
easily loose either their positive opinion or adoption state when their numbers are low.
Then, with the AND rule in play, they have negligible impact on the whole system. In
the OR variant however, there are significant differences. Existence of such agents visibly
decreases the time needed for the system to reach the adopted state. Method of their choice
bears a lesser impact. This is due to the fact, that the second layer is described by the
two-dimensional Watts-Strogatz graph, WS2D(N = 2500, m = 1, β = 0.2). Distribution of
degrees of such a random graph corresponds to the binomial (for small networks, N = 102)

22



or the Poisson distribution (for larger networks, N ≥ 103) [51]. Therefore, the network lacks
agents with degrees greatly exceeding the average, who could bear an impact.
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