

FIELD OF SCIENCE:

ENGINEERING AND TECHNOLOGY

DISCIPLINE OF SCIENCE:

INFORMATION AND COMMUNICATION TECHNOLOGY

DOCTORAL DISSERTATION

APPLICATION OF MULTIMODAL NEURAL

NETWORKS IN SOLVING PROBLEM OF LABELING

BUG REPORTS

Łukasz Chmielowski, MSc, Eng.

Supervisor:

Prof. Robert Burduk, DSc, PhD, Eng.

Assistant supervisor:

Michał Kucharzak, PhD, Eng.

Keywords:

Bug assignment, Bug triaging, Bug report, Software bug, Text analysis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

WROCŁAW 2024

ABSTRACT

In large scale software development organizations, there are often deployed com-

plex processes related to the handling of software bug reports. Such documents about

system malfunctions usually contain a title and a description of the discrepancy in the

behavior of the solution in relation to the expected one in the form of natural language.

In addition, system information is attached in raw format or processed by tools that an-

alyze it. The main problem is assigning a problem report to the proper organizational

unit and determining whether a given bug report is related to a security risk, memory

issue, or performance issue. The data used in the experimental studies comes from a set

of reports of bugs from telecommunications operators or were reported inside a com-

pany which develops telecommunications equipment including software for it. Dossier

concerns base transceiver stations (BTS).

The research confirmed the thesis stated that there exists a method for automated

assignment of a software bug report to appropriate development group, responsible for

resolving the bug, which outperforms well-known methods for bug report assignment.

A literature review was conducted. One of the important conclusions was to de-

fine the research gap which indicates the drawbacks of the currently used validation

techniques and to propose an alternative one devoid of the above-mentioned negative

features. Experiments using protocols utilizing different ways of building training and

test sets showed a significant difference in results. An analysis of the possibility of

using explainable artificial intelligence (XAI) has been performed.

A number of studies were carried out, both related to preprocessing, vectorization

of source data and at various levels of the company’s structure. As part of the im-

plementation of the doctorate, a novel method of assigning reports in the context of

the organization’s composition has been proposed. On the basis of research on the ef-

fectiveness of selected machine learning algorithms, a decision was made, and a pilot

solution was implemented in the company. Due to the fact that it was possible to collect

both the predictions of the machine learning model and the decisions of humans under

certain conditions, it was decided to conduct a comparative analysis of the results.

The applicability of multimodal neural networks as well as other ways of solving

i

the problem of assigning reports was investigated. The key aspect was to prepare an

appropriate representation of the input data as well as to design the required multi-

modal neural network architecture. The conducted studies showed the superiority of

this method compared to the reference methods used.

Attestation about implementation works at company is placed in Appendix C. It

contains information about the ongoing work related to the introduction of a multimodal

neural network. Its first versions are already implemented. Currently, work is underway

related to a better selection of features and dealing with missing data. In addition, it

provides information on other implementations related to software bug reports.

Keywords: Bug assignment, Bug triaging, Bug report, Software bug, Text analysis.

ii

STRESZCZENIE

W dużych organizacjach zajmujących się rozwojem oprogramowania występują

często złożone procesy związane z obsługą raportów o defektach powstałych podczas

jego wytwarzania. Takie dokumenty o awariach systemu, zazwyczaj zawierają tytuł

i opis rozbieżności w zachowaniu rozwiązania w stosunku do oczekiwanego w formie

języka naturalnego. Dodatkowo są załączane informacje systemowe w formacie suro-

wym lub przetworzonym przez narzędzia je analizujące. Głównym zagadnieniem jest

przypisanie raportu do odpowiedniej komórki organizacyjnej oraz określenie czy dany

raport jest powiązany z zagrożeniem dla bezpieczeństwa, nieprawidłościami z pamię-

cią lub wydajnością. Wykorzystane w badaniach eksperymentalnych raporty pochodzą

od operatorów telekomunikacyjnych bądź zostały zgłoszone w firmie zajmującej się

wytwarzaniem oprogramowania i sprzętu telekomunikacyjnego. Dotyczą one stacji

bazowych (BTS).

Badania potwierdziły tezę mówiącą, że istnieje metoda automatycznego przypisy-

wania raportu o błędzie oprogramowania do odpowiedniej grupy badawczo-rozwojowej,

odpowiedzialnej za rozwiązanie błędu, która przewyższa dobrze znane metody przypisy-

wania raportów o błędach.

Dokonano przeglądu literatury. Jako jeden z istotnych wniosków było zdefiniowanie

luki badawczej wskazującej wady aktualnie używanych technik walidacyjnych oraz

zaproponowanie alternatywnej pozbawionej wyżej wspomnianych negatywnych cech.

Przeprowadzone eksperymenty przy użyciu protokołów wykorzystujących różne spo-

soby budowania zbiorów trenujących i testowych wykazały istotną różnicę w wynikach.

Wykonano analizę możliwości zastosowania wyjaśnianej (wytłumaczalnej) sztucznej

inteligencji.

Przeprowadzono szereg badań zarówno związanych z preprocessingiem, wekto-

ryzacją danych źródłowych jak i na różnych poziomach struktury firmy. W ramach

realizacji doktoratu zaproponowano nową metodę przypisywania raportów w kontekś-

cie kompozycji organizacji. Na postawie badań skuteczności wybranych algorytmów

uczenia maszynowego, podjęto decyzję oraz wdrożono pilotażowe rozwiązanie w fir-

mie. Ze względu na to, iż udało się zebrać w określonych warunkach zarówno predykcje

iii

modelu uczenia maszynowego jak i decyzje ludzi, zdecydowano się przeprowadzić

analizę porównawczą wyników.

Badano możliwość zastosowania multimodalnych sieci neuronowych jak również

innych sposobów rozwiązania problemu przypisywania raportów. Kluczowym aspek-

tem było przygotowanie odpowiedniej reprezentacji danych wejściowych jak i zapro-

jektowanie wymaganej architektury multimodalnej sieci neuronowej. Przeprowadzone

badania wykazały wyższość tej metody w porównaniu do zastosowanych metod refer-

encyjnych.

Zaświadczenie o pracach wdrożeniowych w firmie zostało umieszczone w załączniku

C. Zawiera ono informacje o trwających pracach związanych z wprowadzeniem multi-

modalnej sieci neuronowej. Pierwsze jej wersje są już wdrożone. Obecnie trwają prace

związane z lepszym doborem cech i walką z brakującymi danymi. Ponadto zawarte są

tam informacje na temat innych powiązanych wdrożeń związanych z raportami o błę-

dach w oprogramowaniu.

iv

ACKNOWLEDGEMENTS

With immense pleasure and deep sense of gratitude, I wish to express my sincere

thanks to my supervisors Prof. Robert Burduk, DSc, PhD, Eng. and Michał Kucharzak

PhD, Eng. from Wrocław University of Science and Technology, for their support,

advice and encouragements.

I am grateful to NOKIA company for sharing essential data and providing me

with infrastructural facilities and many other resources needed for my research. Last

but not least, I would like to thank my coworkers for support in implementation.

This work has been carried out in cooperation between NOKIA and Wrocław

University of Science and Technology in context of a Ph.D. grant under the fourth

edition of the "Implementation Doctorate Programme".

Place: Wrocław

Date: 03/07/2024 Łukasz Chmielowski

v

TABLE OF CONTENTS

ABSTRACT . i

STRESZCZENIE . iii

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . x

LIST OF TABLES . xiv

LIST OF TERMS AND ABBREVIATIONS xvi

1 Introduction 1

1.1 Background . 1

1.2 Problem description, motivation, challenges 1

1.3 Description of single data record . 5

1.3.1 Natural language description of problem 5

1.3.2 System information – raw log package and processed data 6

1.3.3 Additional remarks . 7

1.4 Scientific motivation and research gap 7

1.5 Research questions, thesis, its aims and goals 8

1.6 Planned research methods . 9

1.7 State-of-the-art . 10

1.7.1 Papers related to the topic of software bug report assignment . . . 10

1.7.2 Natural language processing . 11

1.7.3 Validation techniques . 12

1.7.4 Usage of thesholds . 12

1.7.5 Usage of explainable artificial intelligence 12

1.7.6 Multimodal neural network . 13

1.8 Content of document . 14

1.8.1 Overview . 14

vi

1.8.2 Scientific articles included in dissertation 14

2 Impact of software bug report preprocessing and vectorization on

bug assignment accuracy 17

2.1 Introduction . 17

2.2 Related works . 18

2.3 Natural language processing pipeline . 19

2.3.1 Typical natural language processing pipeline 19

2.3.2 Preprocessing methods . 19

2.3.3 Vectorization methods . 20

2.4 Numerical experiments . 21

2.4.1 Research questions . 21

2.4.2 Description and experimental protocol 21

2.4.3 Results and lessons learned . 22

2.5 Summary . 23

3 A novel method for software bug report assignment 26

3.1 Introduction . 26

3.2 Related Works . 27

3.3 Research questions . 28

3.4 Proposed solution . 29

3.5 Results . 29

3.6 Discussion on requirements for application of solution inside company . . 31

3.6.1 Minimal requirements . 31

3.6.2 Human factors . 32

3.6.3 Advantages and disadvantages of such solutions 33

3.7 Next steps which were made . 33

3.8 Summary . 34

4 Novel method of building train and test sets for evaluation of machine

learning models related to software bugs assignment 37

4.1 Background of the study . 37

4.1.1 Problem statement . 38

4.1.2 Organization of the chapter . 38

vii

4.1.3 Related works . 38

4.1.4 Motivation and research gap . 39

4.1.5 Main contributions of research 40

4.2 Methods . 41

4.2.1 Building train and test sets . 41

4.2.2 Novelty in building train and tests sets in the context of software

bug reports assignment . 42

4.2.3 Machine learning metrics and ways of presenting results 45

4.2.4 Description and experimental protocol 46

4.3 Results and Discussion . 47

4.4 Conclusion . 47

5 Potential application of XAI 53

5.1 Introduction . 53

5.2 Methods . 55

5.3 Results and discussion . 56

5.4 Conclusion . 60

6 Application of multimodal neural networks in solving problem of la-

beling bug reports 61

6.1 Introduction . 61

6.2 Methods . 65

6.3 Results and discussion . 72

6.4 Conclusions . 85

7 Architecture, Environment and Orchestration 88

7.1 Introduction . 88

7.2 Data system . 88

7.2.1 Software Bug Report Dataset Builder 88

7.2.2 Data Selection Service . 91

7.2.3 Snapshot processing . 91

7.2.4 Postgres service . 91

7.3 Model serving system . 91

7.3.1 General overview of major components 91

viii

7.3.2 Analyzer core . 92

7.3.3 Main service for predictions . 92

7.3.4 Preprocessing service . 92

7.3.5 Filtering service . 92

7.3.6 Direct hardware unit mapping . 96

7.3.7 Part of production setup installation 96

7.4 Model Retraining System . 97

7.4.1 Vectorizer service . 97

7.5 Installation of SSL certificate . 97

7.6 Clearing not needed images . 98

7.7 Installation of GitLab runner . 99

7.8 Installation of Renovate Bot . 102

8 Conclusions and future works 104

REFERENCES . 107

Appendices

Appendix A Template of bug report 120

Appendix B User/Developer guide for accessing machine learning based

bug assignment predictions (Anonymized version) 121

B.1 Introduction . 122

B.1.1 General purpose . 122

B.2 Available services . 122

B.2.1 Cross department predictions . 122

B.2.2 Predictions inside department . 124

B.2.3 Example of usage . 127

B.3 Accessing predictions based on snapshot log content 129

B.3.1 Via standardized Analysis Platform API 129

B.3.2 Via standardized Bug Tracking Support System reports 131

B.3.3 Via not standardized solution for additional prototype results . . . 133

Appendix C Implementation Attestation 135

ix

LIST OF FIGURES

1.1 The First "Computer Bug" [104] . 2

1.2 Software testing levels [59] . 3

1.3 Devops [45] . 4

1.4 Problem description . 4

1.5 Single data record . 6

2.1 Flow chart presenting pipeline related to machine learning solution of

software bug assignment including among others preprocessing and vec-

torization. 20

2.2 Accuracy in function of TF-IDF parameters 23

3.1 Flow chart of process of transferring reports of bugs inside company, 3

layers shown . 27

3.2 Number of bug reports meet threshold conditions in function of given

thresholds . 34

3.3 Precision of predictions of bug reports meet threshold conditions in

function of given thresholds excluding cases which ended outside of

department A1 . 35

3.4 Precision of predictions of bug reports meet threshold conditions in

function of given thresholds including cases which ended outside of

department A1 . 35

4.1 Cross-Validation. 42

4.2 Timeline of bugs (reported and solved if applicable). 44

4.3 Sequence diagram presenting time dependencies of real use case in the

context of solution related to software bugs assignment systems. 45

4.4 Comparison of accuracy. 50

4.5 Normalized confusion matrix random split. 50

4.6 Normalized confusion matrix Cross-Validation. 51

x

4.7 Normalized confusion matrix by creation date. 51

4.8 Normalized confusion matrix with the use of novelty. 52

5.1 Diagram of tree build on dataset from Mozilla to recognize types of issues. 58

5.2 Diagram of tree build on dataset from Mozilla to recognize types of issues. 59

5.3 Diagram of tree build on internal company dataset to recognize security

related issues. 59

6.1 Example of multimodal neural network. 63

6.2 Example of dense (fully connected) neural network. 65

6.3 Multimodal deep neural network with labelled Input, Hidden and Out-

put layers. According to [136] when autoencoder architecture is applied

then first layer is called input followed by preprocessing layer and the

last here is representation layer of autoencoder. 66

6.4 Architecture of neural network T1 with the inputs (a). 67

6.5 Architecture of neural network T2 with the inputs (b). 67

6.6 Architecture of neural network T3 with the inputs (c). 68

6.7 Architecture of neural network T4 with the inputs (a), (b). 68

6.8 Architecture of neural network T5 with the inputs (a), (b), (c). 69

6.9 Architecture of neural network T6 with the inputs (a), (b). 69

6.10 Architecture of neural network T6A with the inputs (a), (b). 70

6.11 Architecture of neural network T7 with the inputs (a), (b), (c). 70

6.12 Architecture of neural network T7A with the inputs (a), (b), (c). 71

6.13 Training and validation accuracy as a function of epoch for experiment

of type T4 in series 1. 73

6.14 Training and validation accuracy as a function of epoch for experiment

of type T6 in series 1. 73

6.15 Training and validation accuracy as a function of epoch for experiment

of type 2 in series 2. 74

6.16 Training and validation accuracy as a function of epoch for experiment

of type 6 in series 2. 75

xi

6.17 Accuracy as a function of experiment of type and number of maximum

number of features set in TF-IDF in series 3. Presented accuracy was

calculated with the state of network from model checkpoint monitoring

validation loss. 78

6.18 Training and validation accuracy as a function of epoch for experiment

of type T2 in series 3. 78

6.19 Training and validation accuracy as a function of epoch for experiment

of type T3 in series 3. 79

6.20 Training and validation accuracy as a function of epoch for experiment

of type T6 in series 3. 79

6.21 Loss and validation loss as a function of epoch for experiment of type

T6A in series 3 for training Autoencoder. 79

6.22 Training and validation accuracy as a function of epoch for experiment

of type T6A in series 3 for training classification model. 80

6.23 Training and validation accuracy as a function of epoch for experiment

of type T7 in series 3. 80

6.24 Loss and validation loss as a function of epoch for experiment of type

T7A in series 3 for training Autoencoder. 80

6.25 Training and validation accuracy as a function of epoch for experiment

of type T7A in series 3 for training classification model. 81

6.26 Accuracy as a function of experiment of type and number of maximum

number of features set in TF-IDF in series 4. 84

6.27 Training and validation accuracy as a function of epoch for experiment

of type T1 in series 4. 84

6.28 Loss and validation loss as a function of epoch for experiment of type

T7A in series 4 for training Autoencoder. 84

6.29 Training and validation accuracy as a function of epoch for experiment

of type T7A in series 4 for training classification model. Presented ac-

curacy was calculated with the state of network from model checkpoint

monitoring validation loss. 85

7.1 General overview of systems architecture. 89

7.2 Component diagram which includes data services. 90

xii

7.3 Component diagram of system responsible for providing predictions

based on content extracted from archive of logs. 93

7.4 Component diagram of system responsible for providing predictions

based on title, description and categorical fields. 94

7.5 Component diagram of system responsible for providing predictions

based on title, description, categorical fields and archive of logs. 95

xiii

LIST OF TABLES

2.1 Sample cases of stemming and lemmatization 20

2.2 Train and test set data distribution . 22

2.3 Impact of changing method of preprocessing on results 23

2.4 Impact of n–gram range and maximum number of features set on results 24

2.5 Results for calculations with following settings: n-gram range: 1–3,

maximum number of features: 32k. 25

3.1 General flow of issues in organization 31

3.2 General flow of issues in organization 31

3.3 General flow of issues in organization 32

3.4 Chosen results transferred cases based on ML model decision 33

3.5 Chosen results of suggested cases based 33

3.6 Distribution of specific types of results of suggested cases 34

4.1 Normalized confusion matrix for multiclass problems. 46

4.2 Comparison of accuracy. 48

4.3 Detailed results of random split. 48

4.4 Detailed results of Cross-Validation. 49

4.5 Detailed results of split with use of the novelty. 49

4.6 Detailed results of split with use of the novelty. 49

5.1 Distribution of security related and not security related issues (internal

company data) . 55

5.2 Distribution of type od issue (Mozilla Defect Dataset) 55

5.3 Comparison most important features related to label issue as security

related or not (internal company data) in condition of selected algorithm 57

5.4 Comparison most important features related to type od issue (Mozilla

Defect Dataset) in condition of selected algorithm 57

xiv

5.5 Comparison of results related to label issue as security related or not

(internal company data) . 57

5.6 Comparison of results related to label issue as security related or not

(internal company data) . 58

5.7 Comparison of results related to type od issue (Mozilla Defect Dataset) . 58

5.8 Comparison of results related to type od issue (Mozilla Defect Dataset) . 58

6.1 Data quantity related to first series . 71

6.2 Data quantity related to second series 72

6.3 Data quantity related to third series . 72

6.4 Data quantity related to fourth series 72

6.5 Results related to first series of experiment 73

6.6 Results related to second series of experiment 74

6.7 Results related to third series of experiment 75

6.8 Results related to fourth series of experiment 81

xv

LIST OF TERMS AND ABBREVIATIONS

ACC - Accuracy

ARFCN - absolute radio frequency channel number

BTS - base transceiver station

CBOW - Continuous Bag of Words

CI / CD - Continuous Integration / Continuous Delivery

CNN - Convolutional Neural Network

DNN - deep neural network

EM - electromigration

EOS - Electrical Over Stress

ESD - Electrostatic Discharges

FN - False Negative

FP - False Positive

HCD - Hot Carrier Degradation

kNN - k - Nearest Neighbors

LDA - Latent Dirichlet Allocation

LIME - Local Interpretable Model-agnostic Explanations

LR - Logistic Regression

LSTM - Long Short-Term Memory

ML - Machine Learning

MOSFET - metal-oxide-semiconductor field-effect transistor

NB - Naive Bayes

REST API - Application Programming Interface

RF - Radio Frequency

SVC - Support Vector Classifier

TF-IDF - Term Frequency - Inverse Document Frequency

TN - True Negative

TP - True Positive

URL - Uniform Resource Locator [73]

XAI - Explainable Artificial Intelligence

XGBoost - eXtreme Gradient Boosting

xvi

CHAPTER 1

Introduction

1.1 Background

This paper concerns applications of artificial intelligence and machine learning in the

context of applications related to software lifecycle processes [1]. Even though the

quality of software [98] is sometimes marginalized in creating a variety of solutions for

specific ones, it can be crucial. For high-responsibility and safety-related applications,

the implementation of high-quality products is a key aspect. Unfortunately, even there

problems cannot be avoided. For instance, a soviet satellite detected incoming missiles

from the United States (in 1983). That warning was false. Fortunately, commanding

officer decided to ignore it. In other applications where consequences are less hazardous

but might have serious safety or financial implications. Time of solving a problem is

key. For instance, customers of one of biggest US mobile phone operator AT & T, after

a software upgrade in 1990, were not able to make a long distance call on that day.

Losses valued at over 60 million dollars [54].

The author of this dissertation is personally involved in the development of Soft-

ware Quality Assurance [110] tools in large scale telecommunication company. Some

improvements were introduced into company internal systems even on a global scale.

1.2 Problem description, motivation, challenges

Software bugs and hardware defects are unavoidable in product development, such as

base transceiver station (BTS). A software bug is an error, flaw or fault in a computer

program or system that causes it to produce an incorrect or unexpected result, or to

behave in unintended ways. The origin of the name of this term may be related to the

following situation.

This bug (Figure 1.1), however, was literally a bug. “First actual case of bug being

found,” one of the team members wrote in the logbook. The team at Harvard University

in Cambridge, Massachusetts, found that their computer, the Mark II, was delivering

consistent errors. When they opened the computer’s hardware, they found ... a moth.

1

Fig. 1.1 The First "Computer Bug" [104]

The trapped insect had disrupted the electronics of the computer [50].

Hardware bugs may be an effect of defects created in the design phase, during man-

ufacture or operation of computer devices [124]. The problems of incorrect operation

of system might be related to various reasons. Common ones are breakages of bound

points, mechanical stresses, thermal change stresses, Electrostatic Discharges (ESD),

Electrical Over Stress (EOS) and electromigration (EM) [76]. ESD may cause soft fail-

ures like temporary failure after which systems recovers after reboot or hard failures

causing permanent damage of to the system [77]. Additionally, problems might be re-

lated to time-dependent wearout like Gate Oxide Wearout or Hot Carrier Degradation

(HCD). Hot carriers degrade the gate dielectrics in MOSFET [113]. As a result of such

processes shifts in threshold voltages may appears or even device failures [42].

To ensure the highest possible quality of the product, great emphasis is placed on

its testing. A wide variety of tests are performed. Common fundamental ones include

booting the system, upgrading, and downgrading software. A separate branch of testing

is related to the functionality of the product, where the behavior of the system is verified

against the specification. There are activities to check system performance, security,

documentation, and scalability. Tests that are performed on a regular basis are called

regression tests. Nevertheless, there is also another important category of robustness

tests, which includes, e.g., power cycle tests, high availability tests, and special system

configuration conditions with boundary values. As a result, software bug reports are

created that contain discrepancies in the system’s behavior [93].

Software testing can be divided into four different levels such as:

• unit testing,

• integration testing,

• system testing,

2

Fig. 1.2 Software testing levels [59]

• acceptance testing.

This is shown schematically in Figure 1.2. At unit testing level the smallest parts of

code are being tested. Those parts of code are usually called units. At this step software

testing, tests are generally prepared by the developers or workers which cooperate on a

daily basics. Various scenarios describing interactions between components are being

under verification during integration testing. System level testing checks if technical

and functional requirements are met. Moreover, performance tests should be carried

out at this step. Last but not least described phase is acceptance testing. Those tests

may be performed at a software producer environment or directly at a customer one. At

that stage actual user should be involved [59]. Referring to the problem of assigning

a report of problem, we can expect that if software bug occurs at unit testing level it

should be handled by one of developers responsible for development of this unit. More

challenging part is when a software bug occurs at the later stage of development or

even in real customer use. For large and complex systems even pointing out department

can be a complicated task [45]. Departments are marked in Figure 1.4 as Group <let-

ter><digit>, e.g., Group A1; whereas divisions are groups within departments marked

as Group <letter><digit><letter><digit>, e.g., Group A1C1.

In fact, real applications employ continuous development. There can be imple-

mented an approach like DevOps, see Figure 1.3. This methodology consists of two

tasks at the same time. The origin of name comes from two terms Dev (development)

3

Fig. 1.3 Devops [45]

Fig. 1.4 Problem description

and Ops (operations). In short, DevOps is a set of practices which combines software

development with operations that result in a better and faster software development cy-

cle with high quality software and enables agile development. CI/CD is a principal part

there. CI stands for continuous integration, whereas CD from continous delivery, or

continuous deployment [46].

Discussed problem concerns about assigning a software bug report suggestions

about to groups on different levels of organization which should be involved in in-

vestigation of problem or deliver correction. In addition, aspects related to whether the

reports are related to security or not are considered, as well as an indication of the type

of defect, such as related to, e.g., performance, memory or crash, see (Figure 1.4).

The business motivation to analyze the problem of assignment of bug report was the

fact that enough good solution potentially may reduce time needed to assign a bug to

the correct group which should be engaged in solving reported problems. Solving of

reported problem may require delivery of source code patch, changes in documentation,

4

analysis of environment. Sometimes enough is to tell that there is a need for little

reconfiguration of setup or that the system works as expected by design, but still there

is a need to assign to proper group of people who are able to deal with particular cases.

It also might reduce number of unnecessary transfers between groups, but at the same

time we must remember that the part of them is expected by design like transfer between

group which investigate a problem and a group which implement the correction or if

a correction is made during working hours in different time zones, then it might be

reassigned to another group which works in a different time zone.

The specific aspects that make data analysis and implementation of the solution in

the company difficult are related to:

• complexity of the system,

• experience of engineers submitting defect reports taking into account subjective

perspective,

• the use of natural language by the reporters,

• a numerous of words/tokens which are non-English words,

• content of system logs which may vary depends on parameters of logging level

respective for different components,

• variability of system logs resulting from development of product.

1.3 Description of single data record

Single record consists of among others title, description, detailed system logs, group or

groups involved in solving problems unless it is in its first phase (Figure 1.5). System

information as package of logs (snapshot) contains, among others, information about

hardware used or log content. Snapshot may be transformed with usage of analyzers

which are made by different groups of developers and highlight potential problems.

1.3.1 Natural language description of problem

Natural language description is always created within form with two separate fields.

The first one consists of title of problem reports which might also include tags written as

plain text at the beginning like ’[TAG] Rest of title’. Second field is a short description

of a problem, and it is written according to internal company template shown in listing

A.1. It usually contains information like:

• expected result,

• actual result,

• detailed scenario of reproduction if applicable,

5

Fig. 1.5 Single data record

• execution log,

• . . .

This kind of document is called issue report, but is also known as anomaly report,

bug report, defect report, error report, issue, problem report and trouble report, amongst

other terms [60].

1.3.2 System information – raw log package and processed data

Log archive contains logs from main module (system module) of BTS and different con-

nected devices like for instance radio modules. BTS consists of radio channels, each of

which has its own absolute radio frequency channel number (ARFCN), as well as trans-

mitter and receiver antennas. Telecommunications equipment is strategically placed

on the tower to provide services in a specific geographic region. Strategic orientation

of communication directional antennas affecting the quality of voice and data services

provided to customers [20]. Log archive has a complex structure and contains a lot of

various files and nested archives. Archives might be for instance related to correspond-

ing radios. Inside its recent restarts of system module can be found with the reasons if

known. There is a specific part of blackbox related to firmware where is placed serial

number of main modules and data about recent updates of selected components.

Additionally, there may be available extracted data from log analyzers written based

on experts’ domain knowledge. The aim of these scripts is to get most important log

messages and present its content to users with usage of graphical user interface, but one

of novel approach was to use that information as part of input data to solve problem of

assignment of bug report.

6

1.3.3 Additional remarks

The research experiments covered in this work are related to the usage of data in dif-

ferent forms. Firstly, possibilities of the use of representation with the use of natural

language form and categorical data were evaluated. Next solutions which use extracted

data from log analyzers were involved. Finally, a solution has been applied, which used

all three of mentioned type of data. That data come from Nokia company. Please note

that additional other data from Mozilla Dataset were utilized in studies in Chapter 5.

1.4 Scientific motivation and research gap

To the best of author’s knowledge, there is no application with usage of multimodal neu-

ral networks with combined information from text description and system information

like for example hardware used or analyzed log content. This thesis is related to novel

application of multimodal neural networks in problem of assigning group for handling

a bug. There is a possibility to try to use multimodal deep learning approach to solve

the presented problem. Multimodal deep learning is typically used in problems where

we have combined data from audio and video [95]. Another currently used application

of deep multimodal network is an application where pictures and text are combined

[66, 79]. Multimodal representation learning is a type of representation learning, which

learns features from multiple modalities, and these should not be independent. Corre-

lations and associations among modalities should be present [134]. In case of usage

information about hardware it might give potential profits in case of bugs related to

specific radio modules or hardware, but usage of analyzers might have positive impact

in general. To potentially introduce multimodal neural network there is a need to verify

possibilities of applying that in the context of software bug report assignment. There

is a need to design the exact architecture of the network, conduct research on possi-

bilities of representation of data and choose input types for the network. Part of them

is related to representation of data based on natural language processing, part related

to title and description, part related to categorical data, another part is related to rep-

resentation of available system information. To apply methods related to multimodal

learning or multimodal neural networks are used both of those representations. Overall,

there are also considered research gaps strictly related to the subject of assignments of

software bug reports like possible industry applications, methods of evaluation of mod-

els created specifically for that purpose. The impact of time dependencies related to

time of the creation and resolving the issue on results obtained with the use of machine

learning models were investigated. For industrial applications also was evaluated the

possibility of use of XAI methods. There was a need to inspect the influence of apply-

ing algorithms or heuristics related to XAI methods on results and also verify whether

7

the results of explanations seem to be consistent for domain experts.

1.5 Research questions, thesis, its aims and goals

Research aims and goals

One of the work’s goals is to review solutions in areas related to the applications of

artificial intelligence or machine learning solutions in handling software bug reports.

The aim of the dissertation is to verify the possibility of using a multimodal neural

network for that purpose. For this verification, it is necessary to propose the architecture

of such a network and to design a representation of the data provided as input. However,

this is not the only method that falls under the scope of this work, as there was a need to

review modern solutions in this field. It is also important to propose the implementation

of system solutions in the company if satisfactory results are achieved.

Thesis

There exists a method for automated assignment of a software bug report to appropriate

development group, responsible for resolving the bug, which outperforms well-known

methods for bug report assignment.

Research questions

This dissertation discusses the following research questions:

RQ.A are related to predictions on department level

• RQ.A.1: What is an impact of stemming and lemmatization on bug assignment

accuracy?

• RQ.A.2: What is an impact of different settings of n-gram and max features of

TF-IDF on bug assignment accuracy?

• RQ.A.3: What is an impact of additional information from bug report related to

product type on bug assignment accuracy?

RQ.B are related to predictions on division level

• RQ.B.1: What is an impact of introducing multimodal neural network on bug

assignment accuracy?

8

RQ.C are related to state of art of current evaluation

• RQ.C.1: Are the standard machine learning methods for evaluation are appropri-

ate to evaluate problems related to bug handling?

• RQ.C.2: If not then what experimental protocol should be introduced?

RQ.D: comparison results of machine learning predictions versus humans’ predictions?

• RQ.D.1: What are results of human predictions on department and inside depart-

ment level?

• RQ.D.2: What is the relation between results of machine learning predictions

versus human predictions?

• RQ.D.3: What are the factors impacting human predictions?

RQ.E what are benefits of proposed solution?

• RQ.E.1: What are minimal requirements for solution applicability in software

development company?

• RQ.E.2: What are the scenarios of deployment of application?

• RQ.E.3: What are main advantages and disadvantages against humans?

RQ.F potential application of XAI

• RQ.F.1: What is accuracy when comprising standard and easily explainable

algorithms?

• RQ.F.2: What benefits that might gives?

• RQ.F.3 Does information provided by explainable models seems to be consis-

tent?

1.6 Planned research methods

In purpose to answer research questions (RQ.A) which are related to predictions of as-

signments on department level especially about an impact of stemming, lemmatization,

different settings of n-gram and max features of TF-IDF, additional information from

bug report related to product type and algorithm selection on bug assignment accuracy

there was a plan to use numerical simulations. Data to perform almost all of simula-

tions were gathered from historical reports of problems inside NOKIA company. For

those data it is planned to split them into training and testing set. An evaluation was

planned to be done on newer data than training one. A similar experimental protocol

9

was planned to be introduced during work related to predictions inside the department

(RQ.B). There was a need to verify an impact of introducing multimodal neural network

on bug assignment accuracy. As input related to natural language part was planned to

utilize best settings obtained during performing experiments on depatment level. For

the reference it was planned to utilize neural network similar in build to logistic regres-

sion. There was performed exploratory research related to state of the art of current

methods of evaluation related to solving problems. Analytical research was planned

to be introduced to compare results of human decisions and machine learning predic-

tions. What is more, it is planned to find out whether the comparison according to

simple check of first human prediction is adequate? Conclusive research aims at po-

tential benefits of proposed implementation of solution of automated assignments of

reports of problems? What are the minimal requirements to introduce them. What can

give specific postprocessing method with thresholds? What is the main advantage and

disadvantage comparing to humans? Descriptive research was planned to be applied for

considering potential application of XAI to extract knowledge based on XAI analysis.

What is more there were considerations whether it is possible to extract knowledge to

classify whether bug is related to security or not?

1.7 State-of-the-art

1.7.1 Papers related to the topic of software bug report assignment

There are already present publications related to software bug reports. One of them,

[127], shows a solution to predict a faulty component. It uses call stack, primary data

of bug reports in that work. Bug handling process demonstrated there include both

assignment and reassignment of issue in case if wrong component was previously indi-

cated. In that solution as a machine learning model were chosen finally random forest

with parameters tuned by GridSearchCV, [101]. However, there were considered and

verified different solutions such as decision tree [48], LSTM [58], feedforward neural

network [25]. Before feeding these data into the model, there were previously applied

preprocessing and extracting component features. Another Paper [135] utilizes Latent

Dirichlet Allocation (LDA) [27]. Then the representation is transformed to a feature

vector and then fed into Deep Neural Network.

In the literature it is mentioned not only assigning the components, but also differ-

ent tasks. There is even a term bug triage in the nomenclature. This expression is used

among others in [83, 131, 132]. The problem related to duplicates of software bugs

are mentioned in, e.g., [69, 82, 83]. Paper [117] discusses a possibility of detecting

bug report duplication with the use of Support Vector Machine to solve that problem.

10

There are created pairs from duplicated reports as well as there are generated pairs of

non-duplicated cases. To fit model outputs were assigned for given pairs as follows, for

duplicate pair was given 1, whereas for non-duplicate set −1. No all possible combina-

tions of pairs were taken due to fact that there would be significant imbalance of type

of pair in training set. In Mozilla Project were introduced a solution called just-in-time

retrieval. Authors of [126] claims that even after introduction of that, there are still over

10% of bug duplicates. Assignment of priority might also be important to be created au-

tomatically, especially as it might be expected early response for those cases. Paper [26]

utilizes TF-IDF and Naive Bayes, [122], for identification of security and non-security

cases. Paper [94] related to software bug assignment uses both natural language de-

scription and discrete features. Principal Component Analysis is performed on one-hot

encoded data. Whereas, on textual data natural language processing techniques are used

to tokenize and then entropy-based feature selection, [114], is applied.

There are multiple papers which utilize neural networks for tasks related to soft-

ware bug report assignment. In [86] is applied Bidirectional Long Short-Term Memory

Network was considered to automate the bug triaging process in publication.

Predicting simultaneously developer and the team is introduced in [41], where is

used two-output deep neural network architecture (Dual DNN). The used network is

designed as follows. There is an input layer where data are fed which are previously

transformed with the use of latent semantic analysis, [72]. After that are two hidden

layers and two output layers. The first output layer is related to developers, the other is

related to teams. There exists one more connection designed in that way that, the output

of team layer is fed into developer layer.

1.7.2 Natural language processing

Natural language processing is an essential part of work as problem reports contain

descriptions in natural language. Processing of natural language may contain the fol-

lowing steps preprocessing (see Section 2.3.2), vectorization (see Section 2.3.3). Pre-

processing is a phase where the text is being prepared for further steps. Raw data are

cleared, for instance, can be there removed special characters, letters converted to lower

case, performed stemming or lemmatization. Following that step to provide data to

machine learning models, there is a need for change the representation of text data to

numerical representation. Example of methods are bag of words, term frequency, term

frequency – inverse document frequency, continuous bag of words, [88], skipgram,

[88]. Having such representation can be applied in the next step of processing like for

instance clusterization, classification, or labeling. Then is performed the task, which is

required in specific problems, e.g., clusterization, classification, labelling.

11

1.7.3 Validation techniques

For creation of train and test set usually in the context of evaluation of machine learning

models there is a need for selecting data for train and test sets. That might be done

randomly, or with the use of split by time. There might also be an applied stratification

process which tries to ensure that the data is split such as that each part contains similar

number of instances related to given class in each set or fold. A fold is a set created by

Cross-Validation method. In k-fold cross-validation the data is divided into k folds of

equal size (or nearly equal). For each iteration of algorithm, the data from k-1 folds are

taken as a train set, and the one which is not present in train set is used as validation

fold. The predictions of the model are made on validation fold in each iteration. Then

the results are summarized. Different methods might be used to achieve aggregated

measures from these samples, like for instance average [106].

Techniques like cross-validation are utilized for evaluation of software bug reports

related tasks. For instance, in paper, [70], related to predicting whether the first assign-

ment of bug report is likely to be reassigned in the future and in [14] where bug reports

are triaged with the use of Latent Semantic Indexing and Support Vector Machine.

In the context of tasks related to software bug reports assignment there was a need

to introduce the solution which includes not only splitting by date, but also the fact that

from reporting software malfunction to resolving the issue, time passes. That fact was

not taken for evaluation in the context of that specific problem.

1.7.4 Usage of thesholds

Machine learning models may have a possibility to return not only chosen decision by

model, but also that result may be supported by probability estimates. That fact has

already been applied in solutions related to software bug reports transfers in that fact

that only ones with the highest probability are transferred [112]. Because there is a

compromise between the accuracy of the solution and the number of requests handled,

the golden mean must be established somewhere. The split point can be called threshold

or cutoff value.

There was lack of solution which enables the usage of such thresholds in the context

of organizational structure. One of the possibilities of such an application is transferring

bug reports based on outputs from models which predict groups on distinct levels of

organization. Such a solution also may have final decision only based on thresholds.

1.7.5 Usage of explainable artificial intelligence

Explainable artificial intelligence allows solutions of machine learning to be explainable

to the end user. It might be used for validation of models before production or to explain

given decisions. That might be utilized as a decision support system, so the decision

12

is made by a person who may utilize the prediction of model as well as explanations

if given. In practical use, the decision might be made automatically with a machine

learning model and recorded with explanation. That might be utilized later in case of

doubts of such decision. Solutions with the usage of recommendations have already

been introduced in software development. There is an application related to predic-

tion which delivers explanations about chances of introducing bug within the software

commit [65].

There were not found the works using explainable techniques in the context of soft-

ware bug assignment.

1.7.6 Multimodal neural network

Multimodal neural networks are usually applied in the context of applications related to

videos where one modality comes from audio whereas the second from image. Those

applications might be related to emotion recognition. An example is related to work,

whereas one input to neural network is related to vocal embedding, and the second

related to visual embedding [34]. The predicted class comes from a set of emotions

like, e.g., neutral, happy, sad, surprised.

Currently many blogs and posts are supplemented with hashtags. To suggest one

appropriate might also be used multimodal neural network. Encouraging results were

obtained when as input was taken image and text in [128].

In [74] a solution is shown where input data come from camera to capture vision,

and sensors related to the position of robotic arm, and force sensor. In network is

created multimodal representation. The goal of that work was related to evaluation the

ability to transfer multimodal representations across tasks and the value of combination

of multisensory information.

Another field of application where multimodal neural networks are utilized is the

use for Geosciences. An example related is to classification of flood tweets. There

were used not only textual features come from messages, but also information related

to location and time of publishing the content [44].

Multimodal neural network has been applied for the solving of task of estimation

of energy and time usage in 3D Printing [35]. As inputs was taken information related

to time series extracted from G-code files, [67], and images extracted from 3D digital

model. The results showed the effectiveness of that approach on real-world data.

On the global market there is a lot of mobile software. For the task of categoriza-

tion Two-Phase Multimodal Neural Network was used. Inputs come from applications

packages and are related to titles, permissions and file named Strings.xml. Then var-

ious representations are utilized followed by separated parts of neural networks, then

concatenated, and fed to the next part of the neural network [108].

13

Multimodal Neural Networks have also been utilized for public opinion risk moni-

toring and early warning systems. The collected data like images and text come from

social media [125].

To utilize Multimodal Neural Network in the context of software bug report assign-

ment with the use of both natural language form, categorical fields, or content extracted

from system information there is a need to create a representation for input layers and

create specific architecture of neural network which would be appropriate for solving

that problem.

Topics related to state-of-the-art are also covered in Sections 2.1, 3.2, 4.1.3, 5.1

and 6.1.

1.8 Content of document

1.8.1 Overview

Chapter 1 contains introduction, motivation, challenges, and general description of data

used for research. There is covered general knowledge about state-of-the-art, research

methods and questions. Following that are present modified articles, detailed infor-

mation about them is in Section 1.8.2. Chapter 7 describes part of work related to

environment and orchestration. Summary of that work and information about future

works are placed in Chapter 8. Appendix A contains template of report of bug, whereas

Appendix B covers user guide for accessing machine learning based bug assignment

predictions. Appendix C include attestation of implementation of selected parts in com-

pany. It describes what author of dissertation introduced in the company systems and

what methods are still ongoing related to works which are taken.

1.8.2 Scientific articles included in dissertation

• Chapter 2 is a modified article about the impact of software bug report prepro-

cessing and vectorization on bug assignment accuracy. It covers general knowl-

edge about bug assignment, description of typical natural language pipeline and

research questions related to that part of work.

L. Chmielowski and M. Kucharzak. Impact of software bug report preprocessing

and vectorization on bug assignment accuracy. In M. Choraś, R. S. Choraś, M.

Kurzyński, P. Trajdos, J. Pejaś, and T. Hyla, editors, Progress in Image Process-

ing, Pattern Recognition and Communication Systems, pages 153–162, Cham,

2022. Springer International Publishing. [38]

Contribution of author of dissertation:

Conceptualization; Methodology; Software; Writing - Original Draft

14

independently conceived the experiments; analyzed results; wrote original draft;

provided editorial suggestions; conducted editing of work; attempted to disprove

the novelty; reviewed the manuscript

• Information about predictions both at department level and division level is cov-

ered in Chapter 3. There is also present material containing benefits of proposed

solution based on specific combination of results from machine learning models

where at least one predicts department and at least one predicts division.

L. Chmielowski, P. Konstantynov, R. Luczak, M. Kucharzak, and R. Burduk. A

novel method for software bug report assignment. Reliability Theory and Appli-

cations. [37]

Contribution of author of dissertation:

Conceptualization; Methodology; Software; Writing - Original Draft

independently conceived the experiments; analyzed results; wrote original draft;

provided editorial suggestions; conducted editing of work; attempted to disprove

the novelty; reviewed the manuscript

• Chapter 4 is related to advances in problems of evaluation of software bug report

assignment.

L. Chmielowski, M. Kucharzak, and R. Burduk. Novel method of building train

and test sets for evaluation of machine learning models related to software bugs

assignment. Scientific Reports, 13, 12 2023. [40]

Contribution of author of dissertation:

independently conceived the experiments; analyzed results; wrote original draft;

provided editorial suggestions; conducted editing of work; attempted to disprove

the novelty; reviewed the manuscript.

• Chapter 5 show potential applications of explainable artificial intelligence in bug

assignment in software development.

L. Chmielowski, M. Kucharzak, and R. Burduk. Application of explainable ar

tificial intelligence in software bug classification. Informatyka, Automatyka, Po-

miary w Gospodarce i Ochronie Srodowiska, 13(1):14–17, Mar. 2023. [39]

Contribution of author of dissertation:

independently conceived the experiments; analyzed results; wrote original draft;

provided editorial suggestions; conducted editing of work; attempted to disprove

the novelty; reviewed the manuscript

• Chapter 6 is related to potential application of multimodal neural networks in

solving problem of labeling bug reports.

15

L. Chmielowski, P. Konstantynov, R. Luczak, M. Kucharzak, and R. Burduk. Ap-

plication of multimodal neural networks in solving problem of labeling bug re-

ports. [36]

Contribution of author of dissertation:

Conceptualization; Methodology; Software; Writing - Original Draft

independently conceived the experiments; analyzed results; wrote original draft;

provided editorial suggestions; conducted editing of work; attempted to disprove

the novelty; reviewed the manuscript

16

CHAPTER 2

Impact of software bug report preprocessing and vectorization on
bug assignment accuracy

This chapter is modified from Impact of Software Bug Report Preprocessing and Vec-

torization on Bug Assignment Accuracy in collaboration with Michal Kucharzak [38].

In modern and professional large software development organizations, bug handling

processes are an important part of the software lifecycle and usually have a very formal

process definition. To effectively provide resolution, improvements to such a process

may include automatic bug assignment, which is a task of selecting the proper team of

developers to further investigate the bug report. This research focuses on the impact

of natural language preprocessing and vectorization on the accuracy of assigning error

reports based on data captured in large software development projects. The results of the

experiments include stemming and lemmatization techniques used to pre-process the

description of bug reports and parameterization of term frequency – inverse document

frequency (TF-IDF).

2.1 Introduction

An integral part of the software lifecycle is software testing. It becomes more resource-

intensive as the complexity of the system or product increases. Bugs or errors can occur

during software testing processes, and their proper operation is a key task to meet time-

to-market requirements as well as improve software quality. Assigning a bug report to

appropriate developers or development teams for further maintenance is known as "bug

triage" [131, 132], which may also involve assigning priority [15, 135] to issues. To

manage software bugs in the practice of software development, bug tracking systems

are widely used [78]. Such systems are used by users to report problems or bugs in an

organized and process-defined manner. Thanks to that, bug report repositories can be

later utilized for data mining.

This paper focuses on the automatic assignment of a software bug to the proper de-

velopment team, based on the data in the software bug report. Such a report typically

17

includes a title and description in natural and free-form language, as well as additional

data or predefined parameters from a limited set of options, such as software version or

product type. A natural language title most likely contains a short summary of the ob-

served issue, while a description provides more detailed information about the problem.

The description should include specific information for developers and other parties on

any adverse events that have occurred, e.g., the stages of the test necessary to repro-

duce the fault, requirements not met, comparison of actual and expected results with

justification, references to historical results, etc.

The quality and accuracy of the software bug report description depends largely on

the system’s complexity in large development projects. The same effect can be noticed

by different tests in different contexts, and the description of the fault often varies de-

pending on the test engineer’s subjective perception, grammar, typos, language style,

or observation correctness. It becomes a more complex task which requires natural lan-

guage processing research to implement automated tools assisted by machine learning

techniques. Moreover, accurately assigning a software fault report based on natural lan-

guage descriptions becomes more challenging. The impact of natural language prepro-

cessing and vectorization methods on software bug report assignment on the accuracy

of software bug assignment has been inspected.

Numerical experiments based on real data from a large software development or-

ganization are the main research contribution of this work. Verification teams located

in many different countries create software bug reports in English, what also affects

the natural language style used in the documents. The bug report repository contains

descriptions of numerous bugs reported.

2.2 Related works

Text fields in fault reports typically contain text in free form, including software system

log printouts, source code, specific technical words, or hashes. Many papers related to

software bug reports discuss the topic related to natural language processing. The paper

[137] considers software-specific recognition of named entities using a linear string of

conditional random fields. A machine learning tool that automatically assigns a product

and component for every incoming Mozilla Firefox bug based among others on texts

in free form utilize the xgboost classifier [81]. The solution utilizes processing of the

natural language pipeline title and comments on the software bug report.

The solution to predict the reassignment of fault reports based on data from different

Eclipse and Mozilla products with the use of removing stopwords, stemming, and Naive

Bayes classifier was described in [70]. Bayesian approach has also been utilized in [43]

for software bug report assignments. Paper [55] shows an analysis of the possibility

of predicting the severity level of fault reports with the use of the term frequency –

18

inverse document frequency (TF-IDF) and the Naive Bayes classifier. There was also a

proposal for the creation of a dictionary containing critical terms, which might be useful

for assigning the severity level.

What’s more, there are also papers related to research about possible applications

of machine learning solutions to determine whether a bug is security-related or not

[26, 53]. Another article [103] which was created by Microsoft on fault security classi-

fication includes three techniques: boosted decision trees, logistic regression, and Naive

Bayes, logistic regression. Experts from the University of Toronto and Intel introduced

Dual-output deep neural network for automated fault classification at the team and de-

veloper level in [41]. At Ericsson, a doctoral dissertation related to automatic fault

assignment and automatic fault location was conducted [62]. Paper [117] shows Sup-

port Vector Machine used to find duplicate fault reports. The problem of qualifying

tickets as bugs, documentation requests, refactoring requests, improvement requests,

feature requests, or others was discussed in [63] where fastText was utilized in order to

perform that task.

The article focuses on the comparison of the effects of preprocessing (stemming and

lemmatization techniques) and vectorization (TF-IDF) on the accuracy of software bug

assignment using logistic regression.

2.3 Natural language processing pipeline

2.3.1 Typical natural language processing pipeline

A typical natural language pipeline may have a couple of stages, like preprocessing,

vectorization, and finally clustering, labeling, or classification. The main goal of pre-

processing is to modify the raw text, for instance by inflectional suffixes, or special

characters. Creation of the representation of text data as a vector of numeric data is

called vectorization. Finally, the numeric data is utilized by classifiers.

Figure 2.1 presents a general diagram of automatic software bug report assignment,

among others, a typical natural language pipeline, described later. Title and description

fields 1 as input are taken directly from the fault report.

2.3.2 Preprocessing methods

Preprocessing stage 2 (see Figure 2.1) modifies the natural language-based title and

description for next stages by performing selected operations:

1. change the letters to lowercase,

2. remove special characters,

3. remove stop words.

19

Fig. 2.1 Flow chart presenting pipeline related to machine learning solution of software
bug assignment including among others preprocessing and vectorization.

Table 2.1 Sample cases of stemming and lemmatization

operation used Example 1 Example 2
None package is missing at receiver connection has been established
Stemming packag is miss at receiv connect ha been establish
Lemmatization package be miss receiver connection have be establish

Common standard methods were used, such as changing the letter to a lowercase

letter (step 1). In step 2, special characters (for example, $, #, etc.) are removed,

leaving only alphanumeric characters and an underscore. Then, in step 3, stop words

such as the, or are removed.

Stemming or lemmatization was utilized in the preprocessing phase, depending on

the type of the experiment. The goal of stemming processes is to reduce the inflection

of words to their root forms. Stem does not have to be the correct word. Root is a

canonical form of lemmatization [61]. Table 2.1 presents examples of stemming and

lemmatization.

2.3.3 Vectorization methods

Because numerical representation is a required input into algorithms, vectorization 3 is

used to transform natural language text into its vector numerical form. Common numer-

20

ical representations are bag of words (multiset words), binary frequency (set of words),

term frequency (TF), or term frequency - inverse frequency of the document (TF-IDF)

[107]. The term can be interpreted as one or more words. In addition, texts in natural

language can be represented by n-gram sequences, i.e., consecutive positions of neigh-

bors n (e.g., words) are treated as a single term. For simplicity, a single term defines

a single feature. The equation (2.1) presents TF representation, where d is a document

(e.g., fault report) and t is a term. The formula (2.2) shows TF-IDF representation.

The equation (2.3) defines the IDF, where P means the corpus, for instance, the set

of all documents d. Moreover, the space of terms can be constrained by an additional

vectorization parameter called max features, which sets the maximum number of

features used. Eventually, after preprocessing and vectorization, the classification 4 of

the bug report is made utilizing Logistic Regression.

TFt,d =
no. of occurrence of t ∈ d

total length of d
(2.1)

TF-IDFt,d = TFt,d × IDFt (2.2)

IDFt = log10
no. of documents ∈ P

no. of documents of P containing term t
(2.3)

2.4 Numerical experiments

2.4.1 Research questions

The aim of numerical experiments is to evaluate preprocessing techniques and parame-

terization of TF-IDF vectorization. Below are research questions presented:

• RQ.A.1: What is an impact of stemming and lemmatization on bug assignment

accuracy?

• RQ.A.2: What is an impact of different settings of n-gram and max features of

TF-IDF on bug assignment accuracy?

• RQ.A.3: What is an impact of additional information from bug report related to

product type on bug assignment accuracy?

2.4.2 Description and experimental protocol

Due to trade secrets, it was not possible to provide details on the number of samples, but

information on data distribution and division into train and test set is presented in Ta-

ble 2.2. The selected departments are the five biggest in the company. The training set

21

Table 2.2 Train and test set data distribution

department
name

percent of reports
from training set

percent of reports
from test set

Department A 27.3 % 19.7 %
Department B 25.7 % 32.5 %
Department C 16.4 % 17.5 %
Department D 15.8 % 13.5 %
Department E 14.9 % 16.9 %

comprises data for 12 months, while the test set contains newer fault reports collected

over the next 1 month. Many technical phrases, abbreviations, as well as software-

specific configuration names, values, or parameters are comprised in software bug re-

port titles and descriptions. The accuracy of the bug assignment is further verified using

Logistic Regression with the use of the same train and test sets for all calculations that

were carried out. Text preprocessing, a common step in all experiments, is described

in section 2.3.2. The following metrics are calculated: accuracy, precision, recall, F1.

Reasons for choosing indicators:

• accuracy is a fundamental global metric in classification problems,

• precision is a fundamental metric in information retrievals systems,

• recall that determines sensitivity,

• F1 is an additional balanced metric between precision and recall.

2.4.3 Results and lessons learned

Experiment results showing accuracy, weighted precision, weighted recall, weighted F1

measures for various preprocessing options are shown in Table 2.3. Basic preprocessing

is compared to one with application of stemming and lemmatization. In addition to title

and description in natural language form, product type was utilized as an additional

feature. Accuracy of software bug report assignment increases when using the product

type, by about 1.0%, 0.8% and 0.7%, respectively, for lemmatization, stemming and

without these techniques. What is more, even without the use of the product from

the software bug report reports, lemmatization gives better results than with the use of

stemming, which exceeds the basic preprocessing by 1%.

Table 2.4 and Figure 2.2 present the effect of TF-IDF parameterization vectoriza-

tion on bug assignment accuracy. Experiments with settings n-gram range: 1—3, max

features: 32k; n-gram range 1—2 and max features 64K led to the best results. In gen-

eral, increasing the maximum number of features provides an improvement in accuracy;

after the value 32k is reached, the results stabilize, and no additional enhancement is

observed. Up to 16k as the maximum number of features in TF—IDF, introducing bi-

22

Fig. 2.2 Accuracy in function of TF-IDF parameters

Table 2.3 Impact of changing method of preprocessing on results

Preprocessing option acc precision recall F1
lemma 0.728 0.742 0.728 0.728
lemma (+product) 0.735 0.749 0.735 0.736
stem 0.722 0.733 0.722 0.723
stem (+product) 0.728 0.741 0.728 0.730
none 0.720 0.732 0.720 0.722
none (+product) 0.725 0.737 0.720 0.722

grams and trigrams usually positively impact the results. For bigger values like 32k or

64k, using n-grams may still improve the quality of outcomes.

Table 2.5 presents results of calculations where the n-gram range was set to 1—3,

the maximum number of features to 32k and lemmatization and product information

were utilized. Results are much worse for one Department (A) compared to the others.

This may be due to the fact that keywords (terms) in that case are not so specific, or due

to differences in distribution in train and test sets, see Table 2.2.

2.5 Summary

Assigning software bug reports to the department in charge of reported issues and fur-

ther handling of the use of machine learning solutions is considered in this article. Var-

23

Table 2.4 Impact of n–gram range and maximum number of features set on results

Vectorizing option acc precision recall F1
max features: 0.5k, n-gram range: 1–1 0.641 0.656 0.641 0.64
max features: 0.5k, n-gram range: 1–2 0.605 0.62 0.605 0.604
max features: 0.5k, n-gram range: 1–3 0.562 0.579 0.562 0.56
max features: 1k, n-gram range: 1–1 0.681 0.703 0.681 0.685
max features: 1k, n-gram range: 1–2 0.652 0.668 0.652 0.653
max features: 1k, n-gram range: 1–3 0.648 0.663 0.648 0.648
max features: 2k, n-gram range: 1–1 0.699 0.716 0.699 0.701
max features: 2k, n-gram range: 1–2 0.691 0.709 0.691 0.693
max features: 2k, n-gram range: 1–3 0.688 0.705 0.688 0.689
max features: 4k, n-gram range: 1–1 0.715 0.73 0.715 0.717
max features: 4k, n-gram range: 1–2 0.714 0.729 0.714 0.715
max features: 4k, n-gram range: 1–3 0.697 0.712 0.697 0.699
max features: 8k, n-gram range: 1–1 0.733 0.747 0.733 0.735
max features: 8k, n-gram range: 1–2 0.718 0.732 0.718 0.719
max features: 8k, n-gram range: 1–3 0.714 0.731 0.714 0.716

max features: 16k, n-gram range: 1–1 0.732 0.745 0.732 0.734
max features: 16k, n-gram range: 1–2 0.733 0.746 0.733 0.735
max features: 16k, n-gram range: 1–3 0.726 0.74 0.726 0.727
max features: 32k, n-gram range: 1–1 0.732 0.746 0.732 0.734
max features: 32k, n-gram range: 1–2 0.737 0.751 0.737 0.739
max features: 32k, n-gram range: 1–3 0.738 0.753 0.738 0.739
max features: 64k, n-gram range: 1–1 0.729 0.743 0.729 0.73
max features: 64k, n-gram range: 1–2 0.738 0.753 0.738 0.739
max features: 64k, n-gram range: 1–3 0.737 0.751 0.737 0.738

ious preprocessing and vectorization settings were inspected. For comparing obtained

results, metrics like accuracy, weighted precision, weighted call, weighted F1 were

used. There are no major improvements in the change between stemming and lemma-

tization, however applying lemmatization and an extra feature related to product type

slightly enhances results. Nonetheless, obtained results with the use of preprocessing

methods are still better than those from initial text preprocessing. An increase in accu-

racy is visible when bigrams and trigrams are utilized compared to the situation when

only unigrams are utilized as terms in the TD—IDF vectorization. Enlarging the maxi-

mum number of features used enhances the results to some value of that parameter set.

It stabilizes at about 32k, further increasing that value might not have a positive effect.

Future work will include research which utilizes other vectorization techniques like

Skip-Gram, fastText, CBOW [89]. There is also a plan to use different classification

methods which will take as an input preprocessed and vectorized data related to soft-

ware bug reports.

24

Table 2.5 Results for calculations with following settings: n-gram range: 1–3, maxi-
mum number of features: 32k.

Department precision recall F1
Department A 0.560 0.711 0.627
Department B 0.787 0.864 0.824
Department C 0.759 0.683 0.719
Department D 0.829 0.629 0.716
Department E 0.846 0.671 0.749

25

CHAPTER 3

A novel method for software bug report assignment

During the development of software and electronic devices, it is inevitable to make

mistakes. In large, developed companies, assigning a request to the right development

team or even a department is not an easy task. Often, the creation of software bug re-

ports and assignment to groups is also formalized by appropriate processes. The paper

presents a novel method of software bug report assignment to a group of developers or

analysts. A specific usage of organizational structure at the company is a key compo-

nent of the proposed approach. There are presented results from real use application

including both machine learning predictions and human decisions. Human predictions

are not independent, the issues are raised as to why comparing the results of machine

learning models with those of humans may be inappropriate and what factors influence

human decisions. The work also covers conclusive research about potential benefits of

the application of automated assignment of bug reports.

3.1 Introduction

Discussed problem concerns about assigning a software bug report to correct group

automatically based on given data like description, system information in raw format

or already processed by analyzing tools. Approaches similar to these presented in the

paper may be applied to situations which work with other software development cases

like related to feature requests, supporting questions or similar issues which should

be handled during software development or maintenance. The approach might also be

applied to any other different task related to machine learning tasks like classification or

labeling in a similar context. It is expected that if a software bug occurs at unit testing

level it should be handled by one of developers responsible for development of this unit.

More challenging part is when a software bug occurs at the later stage of development or

even in real customer use. For large and complex systems even pointing out department

can be a complicated task [45]. Additionally, there is an assumption that the company

is divided into at least two organization levels, like departments and divisions, as shown

in Figure 3.1. Please note that the names "department" and "division" and relations

between them are shown in Figure 3.1 serve only to better illustrate the example. In

26

Fig. 3.1 Flow chart of process of transferring reports of bugs inside company, 3 layers
shown

real use cases testers or customer support engineers decide which department is most

suitable for resolving issue a , while reporting a software defect or anomaly. Next,

a report is being assigned to one of the divisions inside the current department b or

transferred to another one c . The problem of assigning a software bug report to correct

group in that context may be interpreted as:

• assigning to department a or c ,

• assigning to division in context of department b ,

• assigning to division directly e .

3.2 Related Works

There is a plethora of ways to classify issues, i.e., classifying severity [55] or assigning

the issue to a group which should handle particular case. As there may be numerous

bug reports, not all of them are handled simultaneously. Among others based on clas-

sification of severity decisions are made as to whether the bug will be fixed now, later

27

or never. In [70] an approach to assign issue to specified components is presented. In

above-mentioned work authors predicts if reassignment of created bug report will oc-

cur. For that purpose they are using data which come from major projects Eclipse and

Mozilla. In [19], bug report assignment is done directly to developers. In the scope

was to build time oriented expert model which assigns more priority to developer who

had worked on the similar bugs in the past. There are created activity profiles of peo-

ple who deliver corrections with usage of factor for normalizing which uses the time

of last usage of term by developer. [38] addresses bug report assignment to depart-

ments. It uses a specific time dependencies for creating train and test sets. Also one of

the scope of that work was to investigate the impact of different way of preprocessing

and vectorization on bug assignment accuracy. [112] considers bug report assignments

to development teams. Moreover, the approach presented in [112], uses only selected

cases to automate bug triaging. Selection is made based on confidence of the predic-

tion. A threshold (cutoff) for the confidence is used as there exists a trade-off between

accuracy and the number of predictions. [41] presents dual-output deep neural network

which simultaneously predicts developer and team. Authors of that work also indicate

the fact that this approach is robust against organizational changes as relations between

teams and developers may change. In different kind of applications like disease de-

tection and classification, a hierarchical concept of combination of machine learning

models is used in [18]. There are used two layers. The purpose of the first of them is

disease detection and seconds one is its classification. The results also suggest that the

hierarchical approach can outperform the flat one, especially in case of small amount of

data. A general concept of hierarchical classification algorithms is described in [28]. It

presents among others different type of structures for hierarchical problems.

Although in [112] was introduced the possibility of transferring bug reports to se-

lected organization parts based on the thresholds, there is lack of publication which

applies specific context and additional possibilities which can be gain due to known hi-

erarchical structure, like for instance combination of models related to different levels

especially with usage of tuning of thresholds.

3.3 Research questions

• RQ.D.1: What are results of human predictions on department and inside de-

partment levels?

• RQ.D.2: What is the relation between results of machine learning predictions

versus human predictions?

• RQ.D.3: What are the factors impacting human predictions?

• RQ.E.1: What are minimal requirements for solution applicability in software

28

development company?

• RQ.E.2: What are the scenarios of deployment of application?

• RQ.E.3: What are main advantages and disadvantages against humans?

3.4 Proposed solution

The novelty is that the cases incoming into department are being transferred into di-

visions (operation (b) in Figure 3.1) only in specific conditions. In that case a novel

combination of machine learning models may be used, where one of the models pre-

dicts which division the issue should be addressed to, whereas the second one predicts

whether the current department is the proper one. As a result, it is a transfer to proper

division only in case if both of used models exceeded respective threshold. By the

threshold we understand the cutoff confidence score based on the output of machine

learning model. The novel features can be expressed as follows:

• assigning only selected cases of all cases incoming into department (or created

inside) to specific divisions based on confidence level of prediction or state of

issue,

• creating a model or other decision system based on at least two classification

models, where at least one of them predicts division and at least one of them

predicts department.

That approach is general and it is not limited to one way of creating a model. In a

specific implementation in the company, predictions come from models prepared in a

way similar to the approach presented in [38] . Fields used from bug report are title,

description, product and release. The preprocessing phase uses methods for cleaning

the text like removing chosen special characters, changing to lower letters, removing,

stopwords and part of content related to company template. The training set is built

from data related to relevant cases from last 365 days up to date of creation of model.

For each case the result of prediction was collected at the time when formally correct

bug report appeared for the first time at A1. Different models are used for predictions at

different levels of organization. Department is being predicted with the use of logistic

regression classifier; division with use of support vector classifier with linear kernel.

This production setup is being updated daily to get the newest available data for training

as fast as possible.

3.5 Results

The doctoral student conducted research on the possibility of automatic assignment of

bug reports in selected cases. The results of the studies show what the effect on histori-

29

cal data would be if bug reports were sent to inside department from interface group A1.

The predictions come from are cases which passed formal check of correctness of report

filling at the time of use of machine learning model to make prediction and contain valid

log content. Table 3.1 shows the number of cases above a certain threshold of a model

which would be sent predicting department and respective precision. Similar research

was conducted for model which predicts divisions inside the department. Table 3.2 in-

dicates the number of cases which would be transferred from group A1 to A1B1 and its

precision. The results with combination of those two models are placed in Table 3.3.

Based on above data, the decision about implementation pilot solution with thresholds

0.6 for department, 0.3 for division was made. Within that solution problem reports

which meet the above-mentioned requirements were transferred. For those cases which

did not meet these conditions were only placed information about suggested transfer

possibilities. Selected results are presented in Tables 3.4 to 3.6. Presented data do not

show cases which were created at early stages of software development and discovered

in later phases or even in customer use. The following notations are used in Table 3.6:

• Human only - percentage of cases where human prediction was correct, but ML

model prediction was incorrect;

• ML only - percentage of cases where ML model prediction was correct, but hu-

man model prediction was incorrect;

• ML & Human - percentage of cases where both ML and human model predictions

were correct;

• Both incorrect - percentage of cases where neither ML nor human model predic-

tions were correct.

.

Additionally, we can see the benefits like that for cases in date ranges from Novem-

ber 2021 to January 2022 where the decision about transfers was made 79% of them

were resolved1 (or fix was not required2) inside department A1, but for cases where

only decision about suggestion was made only 66% were resolved (or fix was not re-

quired) inside.

1Resolved - resolved; not including internal department cases; ended inside department
2Fix not required - fix not required; not including internal department cases; ended inside department

including inflow group A1

30

Table 3.1 General flow of issues in organization

Threshold set
Cases predicted

as A1

Precision of A1

in the context of
cases above threshold

0.2 266 58
0.3 244 61
0.4 183 64
0.5 130 68
0.6 71 67
0.7 48 71

Table 3.2 General flow of issues in organization

T
hr

es
ho

ld
se

t

C
as

es
pr

ed
ic

te
d

as
A

1
B

1

Pe
rc

en
to

fc
as

es
A

1
B

1

am
on

g
ac

ce
pt

ed
en

de
d

on
R

D
_R

F_

Pe
rc

en
to

fc
as

es
A

1
B

1

am
on

g
ac

ce
pt

ed

0.2 206 39 20
0.3 148 40 23
0.4 95 42 23
0.5 53 38 23
0.6 28 39 25

3.6 Discussion on requirements for application of solution inside com-
pany

3.6.1 Minimal requirements

Although many people at glance think that such solutions have opportunities to be in-

troduced only in case the predictions are better than human ones, this is not so simple as

it is thought. In the case when machine learning predictions are better than it is rather

obvious that is worth to make it application. Otherwise when it is worse, in some cases

it may be also worth developing and applying such solutions. One of the reasons is that

it may work as decision supporting system which does not make a binding decision,

but only delivers suggestions which may be helpful for cases when a reporter has no

idea how to address the problem, and sometimes may ignore suggestions when is sure

where to address that or knows that the suggested target is wrong. Sometimes an issue

with group overloading may occur, like for instance they currently handle too many

bug fixes simultaneously, or have to deliver already committed new important features

to product. Then, from the businesses perspective it may be reasonable to redirect cases

to groups where it is less likely that the corrections will be delivered, but they may de-

31

Table 3.3 General flow of issues in organization

T
hr

es
ho

ld
se

t
fo

rd
ep

ar
tm

en
tA

1

T
hr

es
ho

ld
se

tf
or

A
1
B

1

C
as

es
pr

ed
ic

te
d

as
A

1
B

1

Pr
ec

is
io

n
of

A
1
B

1

in
th

e
co

nt
ex

to
f

ca
se

s
ab

ov
e

th
re

sh
ol

d
an

d
en

de
d

in
A

1

Pr
ec

is
io

n
of

A
1
B

1

in
th

e
co

nt
ex

to
f

ca
se

s
ab

ov
e

th
re

sh
ol

d

0.3 0.3 88 36 25
0.3 0.4 60 38 26
0.3 0.5 40 38 25
0.3 0.6 26 41 27
0.4 0.3 65 34 25
0.4 0.4 44 34 25
0.4 0.5 31 34 26
0.4 0.6 21 33 24
0.5 0.3 49 40 29
0.5 0.4 34 40 29
0.5 0.5 21 43 33
0.5 0.6 13 44 30
0.6 0.3 29 57 41
0.6 0.4 20 64 45
0.6 0.5 11 75 55
0.6 0.6 7 80 57

liver detailed analysis or reject bug report as not valid. That effect may be gained due to

tuning of mentioned in this work thresholds. Even if this change could lead to accuracy

reduction, it may help to achieve business goals.

3.6.2 Human factors

There are usually many validation aspects when comparing machine learning and hu-

man predictions in software bug report assignment process. Chosen of them are pre-

sented in the following paragraph. One of the most important ones is that the reporters

may use an already introduced decision supporting system. The different aspect is

that in cases when multiple groups delivered correction people can choose which one

will be the final main one and may want to boost human or machine learning result if

they wish so. What is more, reporters sometimes ask before creating reports where re-

ports should be sent before creating formally one. At that step, many developers might

be involved or even the solution might be known before the actual report is officially

processed. Sometimes developer teams ask for verification of some functionality and

create a report directly against them. In those last two cases the final group is known

even before creating bug report. What is more, not always the best accuracy is the aim

32

Table 3.4 Chosen results transferred cases based on ML model decision

Date range type of resolution Accuracy
November and December Resolved 38 %
November and December Fix not required 55 %

December Resolved 50 %
December Fix not required 80 %

Table 3.5 Chosen results of suggested cases based

Date range type of resolution Human accuracy ML model accuracy
November and December Resolved 54 % 38 %
November and December Fix not required 65 % 35 %

December Resolved 56 % 38 %
December Fix not required 64 % 32 %

of introduction such solutions. Last, but not least, recently detailed instructions on how

to address the most common types of bug reports and responsibilities of divisions inside

department were made to improve human decision making.

3.6.3 Advantages and disadvantages of such solutions

The main disadvantage of such solutions, which are often pointed out during automatic

transfers, is the lack of analysis that would provide information on why such a decision

was made. There is already a paper [39] on the possibility of using explainable artificial

intelligence to deal with that problem. The second issue that will help minimize these

defects is the implemented solution, which conveniently displays to developers’ key

information about the content of the base station configuration state logs at the time of

collecting logs, provided of course the logs have collected in the correct way.

3.7 Next steps which were made

Referring to the progress of implementation in industry, prepared an earlier pilot solu-

tion supporting the group A1, dealing with the handling of applications within the de-

partment in which the doctoral student works, was gradually extended to handle more

bug reports. The solution was to transfer selected bug reports from the group sym-

bolically marked as A1 to selected groups in the conditions specified by the machine

learning model and if met the formal conditions for notification. This decision shall be

taken automatically without the need for human verification. The model prepared was

also used for transfers from department A2 to the teams (A1Bx) responsible for analysis

in department A1 as well as transfers to department A2. One of the models that the doc-

toral student prepared is also used as one of the component models to solve suggesting

to the reporter whether the report should be opened against department A2. In addition,

33

Table 3.6 Distribution of specific types of results of suggested cases

D
at

e
ra

ng
e

Ty
pe

of
re

so
lu

tio
n

H
um

an
on

ly

M
L

on
ly

M
L

&
H

um
an

B
ot

h
in

co
rr

ec
t

Nov and Dec Resolved 31 % 15 % 23 % 32 %
Nov and Dec Fix not required 40 % 10 % 25 % 25 %

Dec Resolved 34 % 16 % 22 % 28 %
Dec Fix not required 40 % 8 % 24 % 28 %

Fig. 3.2 Number of bug reports meet threshold conditions in function of given thresh-
olds

it is also used as a component model for the automatic transfer solution applications

between departments A2 and A3. There was decided to remove a group responsible for

initial investigation inside that department A1 in June this year, thus fully abandoning

one layer of analysis. In connection with these changes, the doctoral student adapted

the solution so that the submitted applications from department B were sent directly to

groups A1Bx . In addition, the system had to be adapted to indicate new groups after

organizational changes, because on this layer the structure has also changed.

3.8 Summary

The paper discusses problems related to methods of assignment of reports, feature re-

quests, supporting questions or similar issues to group of employees, developers, orga-

34

Fig. 3.3 Precision of predictions of bug reports meet threshold conditions in function of
given thresholds excluding cases which ended outside of department A1

Fig. 3.4 Precision of predictions of bug reports meet threshold conditions in function of
given thresholds including cases which ended outside of department A1

35

nization unit, etc. The novelty introduced in this paper is related to the specific usage

of the organizational structure in processes of handling (assigning) an issue. The paper

shows possible scenarios of deployment of application supporting fault management

with the use of solution based on machine learning. The study demonstrates factors im-

pacting human predictions, main advantages, and disadvantages of automated solution

against human. Comparison of results between human and model predictions at both

department and inside department levels are presented. Minimal requirements for the

company in case of application of machine learning supporting system in the company

are also defined.

36

CHAPTER 4

Novel method of building train and test sets for evaluation of
machine learning models related to software bugs assignment

Nowadays many tools are in use in processes related to handling bug reports, feature

requests, supporting questions or similar related issues which should be handled during

software development or maintenance. Part of them use machine learning techniques.

In introduction is presented a review of fundamental methods used for evaluation of

machine learning models. This paper points out weak points of currently used metrics

for evaluation in specific context of the cases related to software development espe-

cially bug reports. The disadvantages of state of the art are related to disregarding time

dependencies which are important to be applied for creating train and test sets as they

may have impact on results. Extensive research of the art has been conducted and has

not been found any article with the use of time dependencies for evaluation of machine

learning models in the context of works related to software development applications

like machine learning solutions to supporting bug tracking systems. This paper in-

troduces a novel solution which is devoid of these drawbacks. Experimental research

showed the effectiveness of the introduced method and significantly different results

obtained compared to the state-of-the-art methods.

4.1 Background of the study

During the development of various types of systems, including software and those re-

lated to the hardware part, it is inevitable to make mistakes. In the event of noticing

unexpected behavior of the system, testers or users create bug reports. Such a report

may contain the contents of the log, screenshots, photos, reports from the spectrum an-

alyzer, etc. Reporters should include information related to the discrepancy between

the expected operation of the solution and the actual results obtained. This discrepancy

may be the result of, e.g., a software malfunction, hardware failure, or environmental

factors. Such a report must be assigned to a group of engineers for further analysis.

This activity can be supported by machine learning solutions.

37

4.1.1 Problem statement

The paper discusses different methods of evaluation of results of machine learning pre-

dictions related to reports of bugs, feature requests, supporting questions or similar

related issues which should be handled during software development or maintenance.

For instance, it may be evaluation of machine learning predictions of bug reports as-

signments. There is plethora of ways to classify issue or bug report as for instance

classify severity in article [55] or assign it to group in which should handle cases in

papers [19, 70]. The problem raised in the article concerns about use for evaluation in

these specific applications time dependencies with usage of for instance: date of issue

creation, date of solving issue or assigned states with corresponding dates of changes.

Time from creation bug report to solving the case may, contrary to appearance, take a

long time. For example, it may take a day or two to resolve a problem, but on the other

hand, some cases are resolved after more than a year. Transition states might be also

used in cases like an issue that has been marked as solved and later reverted from that

state due to finding that delivered fix had been working only partially.

4.1.2 Organization of the chapter

The chapter is organized as follows.

Section Introduction contains information about background of the study, problem

statement, related works, motivation including research gap. At the end of this part,

the work contribution and its significance are shortly summarized. Next section, Meth-

ods, begins with ways of presenting machine learning results with the use of confusion

matrix and description of state-of-the-art methods for building train and test sets in the

context of software bug reports assignment. The section also discusses novelty in build-

ing train and test sets in the context of software bug reports assignment. The chapter

ends with sections Results and Discussion and Conclusion.

4.1.3 Related works

There are plenty of publications related to handling of reports of bugs, feature requests,

supporting questions or similar related issues which should be handled during soft-

ware development or maintenance. None of those publications consider the influence

of time dependencies related to date of reporting and solving software bug reports on

evaluation methods which are used in them. However, in these publications, state-of-

the-art methods that are not suitable for evaluation of machine learning models related

to software bug reports have been used to evaluate machine learning tasks. Currently

different approaches are being used, for instance precision used in this work is about a

bug mining tool to identify and analyze security bugs using Naive Bayes and TF-IDF

[26]. Combination of metrics like accuracy, precision and recall are applied in analyses

38

with the aim to detect bug report duplication [117]. As there were no details about ways

of data splitting into train and test sets, there were probably applied default assumption

about random split. More advanced train and test sets creation methods, e.g., cross-

validation, are also applied in problems related to software bug report assignment. As

another example, there is a need to predict whether the first assignment of bug report is

likely to be reassigned in the future [70]. In the second example [14], Latent Semantic

Indexing for reduction of the dimensionality and Support Vector Machine for triaging

bug reports is applied. Time based activity profiling of developers for creation of time

oriented expertise model was investigated in paper [19] where top-k accuracy metric

was used. Metric which takes into consideration a couple of best predictions was also

used in work [94] which utilizes data from two types of inputs. Natural language de-

scription and discrete features separately. On non-textual inputs Principal Component

Analysis is applied. For text data is utilized Entrophy-based feature selection. Bidirec-

tional Long Short-Term Memory Network was considered to automate the bug triaging

process in publication [86]. In material [38] standard methods for evaluation on train,

test set are applied, but separated based on time dependencies in that way that reported

earlier were used for train set and reported later used for test set. The problem of bug

report duplicates is mentioned in works [82, 83]. The first is about possibilities of re-

ducing redundant bug records, whereas the second about risk estimation among others

considers predicting bug fix time. Publication [126] presents the statement that even

after application of solution for just-in-time retrieval solution to avoid duplicates being

created, there is still over 10% of bug duplicates in described Mozilla Projects. Authors

of paper [69] even divides duplicated bug reports into two different categories. The

first is related to reported bugs duplicates the master report of the same issue while the

master problem was not yet resolved. The second category when during the report of

issue master issue was already solved. Other works in the field of technical information

technology and telecommunications where time dependencies are important are arti-

cles related to Quality of Service where topics like and latency re-transmission of data

packets [17], latency [109] are considered.

4.1.4 Motivation and research gap

The research gap is strictly related to impact of time dependencies related to software

bug creation and resolution dates with the use of machine learning techniques. Current

methodologies do not employ these time dependencies. They are significant due to the

fact that, in general, the problems solved in each department are expected to be sim-

ilar to some extent, but we must bear in mind that the characteristics of the reported

faults by software users change over time. The problem related to time dependencies

is considered due to the fact that during software development, its behavior, the flaws

39

it possesses, or its characteristics change. For instance, introduction into developed ap-

plication new functionalities which are expected by the customers is accomplished by

modification of existing source code. Therefore, in such cases new error numbers, con-

figuration parameters, patterns of messages, alerts etc. may be introduced. Those parts

when creating machine learning models lead to creating new features in representation

of data like feature vector shown in Equation 4.1. For instance, related to new types of

configuration parameters may be then introduced as new terms in term frequency repre-

sentation. In real use applications from creating bug reports to solving ones take time.

The models for production use are trained only with the use of resolved cases. There-

fore, data representations used for creation of model for predictions at the beginning of

introduction of each new functionality will miss at the time of creation of the first bug

reports specific features related to them in vector representation like in Equation 4.1.

X = [x1 x2 x3 . . . xN] (4.1)

The new features will not be introduced into representation until the first case is

resolved and used for training of model for production purposes. Before that time,

some similar cases may be reported, in real case application all of these will be predicted

with the use of model being trained without those described examples on data which

were currently possessed and labelled. Common approaches in ML applications utilize

randomized ways of creating train and test sets. It may lead to a situation in which

different samples referring to the same or similar case which were reported nearby will

be present in both train and test set what is not possible in real case applications due

to the above-mentioned restrictions. Therefore, the results of evaluation where those

restrictions are disregarded may be significantly different. Those approaches should

not be used for evaluation in those applications if the aim is to get results similar to

that which we can obtain in production of solution. The main advance of the proposed

method in paper being verified is that it reflects possible real-world scenarios.

Two research questions were explored:

• RQ.C.1: Are the standard machine learning methods for evaluation appropriate

to evaluate problems related to bug handling?

• RQ.C.2: If not then what experimental protocol should be introduced?

4.1.5 Main contributions of research

The paper shows that state-of-the-art methods are not appropriate for evaluation of ma-

chine learning models in the context of cases related to software bug reports. Current

solutions disregard time dependencies like creation and resolving date of issues related

to software bug reports. What is not appropriate especially in case of results of predic-

tions of software bug report assignment if the aim is to estimate what kind of results are

40

possible to obtain in real production use. The outcomes of work are results of scien-

tific research related to introduced in this paper original and innovative solutions of the

scientific problem of evaluation of machine learning models in the context of software

bug reports assignment. Introduced in this paper methods related to including time

dependencies into evaluation of machine learning models in the context of software

bug reports assignment do not impact accuracy of production solutions itself, however

thanks to them the results better reflect real use cases. The presented innovative original

solution in the field of application of research results are significant for the economic

sphere.

4.2 Methods

4.2.1 Building train and test sets

In case of classification problems in machine learning to train model is used a set of

data called train set. To test model is used a set of data called test set. Especially for

applications related to neural networks sometimes is also used third type of set called

validation set. The purpose of using that set may be for instance to check the state of

neural network every epoch during the training phase and decide whether the training

of the network meets condition for early stopping. In that situation the state of network

is saved and used for further evaluation on separate test set, which has never been used

during the test or evaluation phase of model.
4.2.1.1 Standard train test splitting

During common creation of train and test set for evaluation usually dataset is split into

train and test set randomly.
4.2.1.2 Stratified train test splitting

The stratified version for division into multiple sets uses the information about classes

and tries to keep the radio between the classes in sets as much as possible like each

other.
4.2.1.3 No shuffle

In implementations like in library [99], there is an option to use a split of the dataset for

train and test without shuffling. That might be applied in an application where the order

of samples matters.
4.2.1.4 k-Fold Cross-Validation

Cross-validation is a procedure used to evaluate machine learning models which uses

many splits on data. Generally, data is divided into k sets usually called folds. For each

split one set is chosen as validation set, and the rest of data is used for training model

41

in given split. After getting results for each split the results are summarized. Example

of visualization of splits is shown in Figure 4.1 [29].

Fig. 4.1 Cross-Validation.

4.2.1.5 Leave One Out Cross-Validation

This procedure might be useful especially for small datasets. In that case the number of

folds equals the number of samples in the dataset. The model is tested on single sample

while trained using the rest of available data [111].

4.2.2 Novelty in building train and tests sets in the context of software bug reports
assignment

The novelty is about specific splitting of train and test sets for purpose of evaluation

to be more adequate and like results which we could expect from working production

setup. While preparing model for production mode usually only solved cases with re-

spective final correct labels are used for creating train set. The advance is taking for

evaluation cases separated with the use of time dependencies. An example of data de-

pendency is shown in Figure 4.2. For sake of simplicity of presentation each case is

identified with the id like A, B, C, . . . It is only a identifier and it is not a label/class

in the context of Machine Learning task. Figure 4.2 shows an example diagram with

issues named A, B, C, D, E, where AR is point where case A was reported, AS is a

point where case A was solved. The proper label/class related to group(s) which were

engaged in solving case used for training can be assigned after the case is solved. Ac-

cording to this example the split point is marked as t1. For train data cases A, C were

selected as were solved before t1 and for test set selected cases reported after t1 (D,

F). However, in some applications software bug reports which were reported before t1,

42

but not solved at the time of prediction might utilize machine learning supporting solu-

tions to point out the proper group. Sequence diagram has been presented in Figure 4.3.

There are shown interactions in chronological order between objects called setOfIssues,

machineLearningModel, reporter, and developer. The diagram clearly shows accessible

data over time which can be utilized for model training. Dataset of issues is updated

there by developer at the time of resolving issues when the labels are assigned, what

triggers retraining of model which can be accessed by reporter. More complex solu-

tions may utilize also the time needed for real use application to deliver new model

for production ∆t. For evaluation it might be also used with derived approaches using

results from multiple splits by moving time division point or moving windows using

this fact. After calculating results for multiple splits, they may be averaged or ana-

lyzed in another way for better presentation of results. These time dependencies are

important for evaluation especially when taken into consideration duplicates and dura-

tion of solving issue related to bug report. In case of random split and other standard

machine learning methods for creating train and test sets like these in source [99], these

time dependencies are skipped. This fact may impact on results, because model used

for production purpose cannot be trained with the recently reported or not yet resolved

bug reports that situation is not the case in random split evaluation especially when

there is a lot of bug report duplicates. We should expect that in general when applying

these time dependencies, the results which would be obtained will be worse than with

standard methods which do not meet those requirements like Cross-Validation. At the

same time, we have to remember that the results which were obtained using methods

which do not meet the requirements of time dependencies do not show results which

are similar to that what might be obtained in production of such solutions.

In practical applications such models may be retrained daily or even more frequent

to minimize the effect. Moreover, in such cases the window which is used for training

might be fixed by the beginning date, time duration, number of samples in the window

or even more complex to somehow adjust the distribution of classes inside training set.
4.2.2.1 Set of novel methods

tS

S
tR

; tS − date of solving ; tR − date of reporting ; S − Software Bug Report (4.2)

X =

{
tS

S
tR

: tS < tD

}
; X − Train Set ; tD − time of division (4.3)

Y =

{
tS

S
tR

: tR > tD

}
; Y − Test Set (4.4)

Z =

{
tS

S
tR

: tR < tD ∧ tS > tD

}
; Z − Spare Data (4.5)

43

Fig. 4.2 Timeline of bugs (reported and solved if applicable).

Single division point:

In the novel approach metric for evaluation of machine learning models related to

software bug reports assignment is being calculated with the use of single split point

tD used for building train and test sets for evaluation. Introduced symbols and general

definitions of sets are presented in Equations (4.2) to (4.5). Division point tD can be

selected arbitrarily, e.g., tD = tp80, where tp80 is a date of reporting case in about 80th

percentile of dates of creation. Let assume that the calculation of metric in single point

will be symbolized with λmetric (tD) for instance λacc (tp80) (See Equation (4.6)). The

point t1 does not have to be chosen randomly, it may be selected in a different ways

depending on needs.

acc = λacc (tp80) (4.6)

Multiple division points:

There might be multiple solutions for averaging metric with the use of multiple di-

vision points, for every point or for instance with the use of moving window which can

be defined both by time, or number of issues, or even some kind of stratification. In

Equations (4.7) to (4.10) is defined example with the use of division for every reason-

able point. However, in practice, the starting point should not be one of the first, given

the chronological order.

T =

{
tR : ∀

S∈{X,Y}

tS

S
tR

}
∪

{
tS : ∀

S∈{X,Y}

tS

S
tR

}
(4.7)

Q = T \ {min (T) , max (T)} (4.8)

44

Fig. 4.3 Sequence diagram presenting time dependencies of real use case in the context
of solution related to software bugs assignment systems.

metric =

∑
t∈Q λmetric (t)

card (Q)
(4.9)

acc =

∑
t∈Q λacc (t)

card (Q)
(4.10)

4.2.3 Machine learning metrics and ways of presenting results

4.2.3.1 Confusion matrix

Confusion matrix is used for presenting information related to results of machine learn-

ing predictions. In columns are presented predicted classes, in rows actual classes. That

way of orientation of matrix is used in many sources[22, 24, 47, 57, 100, 115, 123, 129],

however different sources [21, 49, 64] use another. This means that adding the right

45

Predicted class

D
ep

ar
tm

en
tK

D
ep

ar
tm

en
tL

D
ep

ar
tm

en
tM

D
ep

ar
tm

en
tN

Actual class

Department K XKK∑
X

XKL∑
X

XKM∑
X

XKN∑
X

Department L XLK∑
X

XLL∑
X

XLM∑
X

XLN∑
X

Department M XMK∑
X

XML∑
X

XMM∑
X

XMN∑
X

Department N XNK∑
X

XNL∑
X

XNM∑
X

XNN∑
X

Table 4.1 Normalized confusion matrix for multiclass problems.

headings in this kind of presentation is very important to avoid misunderstanding. Ad-

ditionally normalized way of confusion matrix is presented in Table 4.1. By normal-

ization means the division of each element in the matrix by the sum of the samples

(
∑

X).

4.2.4 Description and experimental protocol

For below described experiments were performed calculations with four different meth-

ods of evaluation:

• split for train and test set randomly with shuffle of data (20% for test data);

• Cross-validation (5 folds);

• split for train and test set with the use of only date of reporting (8 months for train

set, following 2 months for test set);

• split for train and test set with the use of novelty so both data of reporting and

solving was taken into consideration (8 months for train, following 2 months for

test).

Each experiment contains data from the range of 10 months. Please note that in the last

of evaluation methods cases reported within the first 8 months and resolved later cannot

be taken into consideration and were removed. The task performed during the experi-

ments is to assign the report of bug to proper department responsible for investigation or

solving issue. For performing that research only cases where fixes have been delivered

have been taken into consideration. All calculations have been performed with the same

46

way of preprocessing, with the same parameters to build TF-IDF representation. As a

finial algorithm to assign department was used Logistic Regression. For each setting

described above 10 series of calculations were performed with the move of dataset by

one month between series.

4.3 Results and Discussion

Table 4.3 contains the results with the random split with shuffling. The measures which

were presented are accuracy, weighted precision and weighted recall. The weight is re-

lated to the number of samples. Table 4.4 presents accuracy in case of Cross-Validation.

Accuracy in the case of splitting data for train and test set with the use of time depen-

dencies is shown in Tables 4.5 and 4.6. First of them with the only use of date of

reporting of report, second with use of novelty for date of solving. Although the results

of evaluation based on time split by creation dates includes dependencies relating to

date of creation, they disregard the time of resolving the issues, therefore they do not

obey the laws of physics. For each of ways of evaluation for the first series results are

presented in normalized confusion matrices (Figures 4.5 to 4.8). From the results we

can clearly notice that results with the use of novelty are significantly different than the

rest of results which have been obtained. Comparison of accuracy has been also shown

in the chart (Figure 4.4) and Table 4.2 for sake of transparency. For all series the results

gathered with the use of novel method includes time dependencies between dates of

creation and resolution of software bug report prediction accuracy is lower by at least

fifteen percentage points by methods disregarding them. That novel method of building

train and test sets for evaluation of machine learning models is the only one from those

taken to comparison which meets the real use conditions. Mentioned dependencies are

related to dates of creation and resolving the case. The model for evaluation should be

trained only with cases which have labels assigned (in that case were resolved), before

date of possible real usage in production (in that case date of creation software bug

report). Noticing this fact and knowing that this method better reflects the production

conditions of the applications of these methods, the thesis is put forward that it is better

to use the method related to time dependencies and introduced novelty, if the aim is to

reflect the results that can be achieved in real use.

4.4 Conclusion

The paper summarizes different methods of evaluation of machine learning models

in the context of problems related to software bugs. Commonly used machine learn-

ing evaluation methods like random split, Cross-Validation and even standard splitting

based on time like for instance based on date of creation of problem reports does not

47

Series Random split Cross-Validation
Time split

by creation date

Time split with the
usage of a novel

time dependencies
s1 0.86 0.84 0.86 0.64
s2 0.85 0.83 0.85 0.63
s3 0.85 0.83 0.85 0.64
s4 0.87 0.85 0.87 0.64
s5 0.86 0.84 0.86 0.66
s6 0.86 0.85 0.86 0.69
s7 0.88 0.86 0.88 0.67
s8 0.87 0.85 0.87 0.66
s9 0.86 0.85 0.86 0.67

s10 0.86 0.85 0.86 0.66

Table 4.2 Comparison of accuracy.

Table 4.3 Detailed results of random split.

No. Accuracy Precision Recall
1 0.86 0.87 0.86
2 0.85 0.86 0.85
3 0.85 0.86 0.85
4 0.87 0.88 0.87
5 0.86 0.87 0.86
6 0.86 0.87 0.86
7 0.88 0.89 0.88
8 0.87 0.87 0.87
9 0.86 0.87 0.86

10 0.86 0.88 0.86

include the time of solving issue what may have serious impact on results. In the paper

was introduced a proposition to create train and test sets built based on time dependen-

cies to create test set with bug report created not earlier than the latest date of solving of

bug report from train set. The main advantage is that the results come from predictions

in simulations which better reflect real use. Please note that although the results with

the use of novelty may be significantly worse as they are in that case, the other ones

are not reasonable due to breaking time requirements and should not been applied for

such cases. Experimental results which were conducted in that work clearly show the

difference between evaluation with the use of novelty and standard methods for general

classification problems. Authors claim that the rest of the methods which do not meet

time dependencies are not appropriate for evaluation problems related to software bugs

reports as they do not respect real time dependencies.

48

Table 4.4 Detailed results of Cross-Validation.

No. Accuracy Precision Recall
1 0.84 0.84 0.84
2 0.83 0.84 0.83
3 0.83 0.84 0.83
4 0.85 0.85 0.85
5 0.84 0.84 0.84
6 0.85 0.85 0.85
7 0.86 0.87 0.86
8 0.85 0.85 0.85
9 0.85 0.86 0.88

10 0.85 0.86 0.85

Table 4.5 Detailed results of split with use of the novelty.

No. Accuracy Precision Recall
1 0.86 0.87 0.86
2 0.85 0.86 0.85
3 0.85 0.86 0.85
4 0.87 0.88 0.87
5 0.86 0.87 0.86
6 0.86 0.87 0.86
7 0.88 0.89 0.88
8 0.87 0.87 0.87
9 0.86 0.87 0.86

10 0.86 0.88 0.86

Table 4.6 Detailed results of split with use of the novelty.

No. Accuracy Precision Recall
1 0.64 0.64 0.64
2 0.63 0.64 0.63
3 0.64 0.65 0.64
4 0.64 0.65 0.64
5 0.66 0.67 0.66
6 0.69 0.69 0.69
7 0.67 0.68 0.67
8 0.66 0.66 0.66
9 0.67 0.68 0.67

10 0.66 0.67 0.66

49

Fig. 4.4 Comparison of accuracy.

Fig. 4.5 Normalized confusion matrix random split.

50

Fig. 4.6 Normalized confusion matrix Cross-Validation.

Fig. 4.7 Normalized confusion matrix by creation date.

51

Fig. 4.8 Normalized confusion matrix with the use of novelty.

52

CHAPTER 5

Potential application of XAI

Fault management is an expensive process and analyzing data manually requires a lot

of resources. Modern software bug tracking systems may be armed with automated bug

report assignment functionality that facilitates bug classification or bug assignment to

proper development group. For supporting decision systems, it would be beneficial to

introduce information related to explainability. The purpose of this work is to evalu-

ate the use of explainable artificial intelligence (XAI) in processes related to software

development and bug classification based on bug reports created by either software

testers or software users. The research was conducted on two different datasets. The

first one is related to classification of security vs non- security bug reports. It comes

from a telecommunication company which develops software and hardware solutions

for mobile operators. The second dataset contains a list of software bugs taken from

an opensource project. In this dataset the task is to classify issues with one of follow-

ing labels crash, memory, performance, and security. Studies on XAI-related algorithms

show that there are no major differences in the results of the algorithms used when com-

paring them with others. Therefore, not only the users can obtain results with possible

explanations or experts can verify model or its part before introducing into production,

but also it does not provide degradation of accuracy. Studies showed that it could be put

into practice, but it has not been done so far.

5.1 Introduction

For large scale software development many tools related to the environment are usually

used including among others code repositories, bug tracking systems or decision sup-

port systems. Part of them might use machine learning predictions. They are supporting

or providing different decisions like assigning priority, severity, group to investigate or

solve problem, or label issue as security related or not. An example of black-box model

application for identifying security bugs is described in publication [41]. In contrast to

black-box solutions a proposition of application of one based on expert rules is shown

in paper [19]. Bug mining tool to identify and analyze security bugs using naive bayes

and TF-IDF was shown in International Conference on Reliability Optimization and

53

Information Technology [26]. Both methods used allow solutions to be explainable, but

this circumstance was not used. The main aim was to analyze possibilities of applica-

tions of the explainable artificial intelligence (XAI) in specific case related to software

development.

There are two major taxonomies related to explainability of Machine Learning (ML)

models. The first, related to distinction between transparency (including models that

are transparent by design), including post-hoc explainability. The second taxonomy,

which concerns XAI methods tailored to explain deep learning models. In this context,

XAI uses classification criteria based on ML techniques, e.g., representation vectors,

layerwise attention [23]. As the first taxonomy is more general and extensive, it is used

as a baseline definition of XAI in this document. General review on XAI and its various

applications can be found in material [120].

According to the best knowledge of authors there is no application of explainable

artificial intelligence techniques in neither solving the problem of assigning security

labels nor group responsible for investigating or solving software bugs. Nevertheless,

there are articles related to possible applications of XAI techniques and their benefits

into a system that suggests patches into source code. According to authors of publica-

tion [91] in cases where proposed patches are provided without explanations they are

usually ignored. In that paper was a statement that those kind of systems which sup-

ports developers in way that it can be explained to them is a future of supporting tools

in software development.

Another application of explainable artificial intelligence in software development

was found in paper [65]. There is a description of works related to predicting whether

the software commit is risky. To explain it uses predefined features extracted from

commits like among others number of modified lines, files, subsystems and information

if change was related to fixing defect. In article [16] are shown results of application of

model agnostic explanation methods like LIME and iBreak on bug prediction models.

Paper [55] is about predicting the bug severity level and whether is not strictly related

to XAI methods. At one of steps is used algorithm based on dictionary of critical

terms related to appropriate severity level. That information might be useful to support

creation of expert systems to support or provide such decisions when there is lack of

trust in black-box models.

Explainable artificial intelligence systems might be applied in cases where there

is special need for trust in model predictions especially in safety critical applications

[32]. Part of those white-box models make the option to generate rules which might be

verified by experts with domain knowledge possible. Those kinds of solutions might

be useful especially in systems with high responsibility. One of methods of extracting

rules which might be verified by experts is to use univariate tree classifier. Then the

54

Table 5.1 Distribution of security related and not security related issues (internal com-
pany data)

Type of issue Percent of reports
Security related issues 4.1 %

Non-security related issues 95.9 %

tree structure might be inspected. Another use case is to provide expert support by

providing decision of model with explainable rule extracted from tree. Example of

publication with use of such trees is paper [84]. For extracting rules with a decision tree

from black-box model as example may be an article [31]. The research questions which

are being answered in the work are presented below:

• RQ.F.1: What is accuracy when comprising standard and easily explainable al-

gorithms?

• RQ.F.2: What benefits that might gives?

• RQ.F.3: Does information provided by explainable models seems to be consis-

tent?

5.2 Methods

The data used for research comes from two different sources:

1. Internal company data:

The purpose of internal data is to distinguish between security and non-security

issues. Due to trade secrets no details about quantity of samples could be pro-

vided, but information about distribution of data is shown in Table 5.1. Another

example of article using data comes also from NOKIA is publication [38].

2. Mozilla Defect Dataset:

Table 5.2 Distribution of type od issue (Mozilla Defect Dataset)

Type of issue percent of reports
Crash related issue 66.3 %

Memory related issue 11.4 %
Security related issue 11.2 %

Performance related issue 11.1 %

Data from Mozilla is widely available. It contains software bugs labeled as per-

formance problem, security related issue or crash, memory. Details with quantity

of samples of dataset extracted for this publication are shown in Table 5.2. Sam-

ples with multiple labels were removed. Generally, publicly available bug reports

55

from Mozilla projects are accessible, among others, in repository [71] or can be

gathered with script [80].

For chosen selected classification not found any publication which has data to com-

parison. The selection of those specific datasets is justified by the fact that relatively

no such deep domain knowledge is required to interpret those cases. Research has been

carried out in both cases according to the same experimental protocol. Firstly, on raw

text data extracted from title of cases was performed preprocessing contains among oth-

ers, removing special characters, stop word then applying lemmatization. In the next

step was applied vectorization with usage of TF-IDF with limitation of max features

parameter to 1000. Features which were taken into consideration by tf-idf are both

unigrams and bigrams. On data prepared that way were performed calculations with

usage of different algorithms. Results of selected standard algorithms used for XAI

applications were compared against the rest which were introduced. The method to ex-

plain results was univariate tree to extract the rules. Moreover, most important features

according to different models were extracted to be compared in subjective way. That

extraction may potentially be used in context of creation expert rules.

5.3 Results and discussion

Comparison of results with usage of both types of algorithms which can be used straight-

forward to as explainable and not are shown in Tables 5.5, 5.6, 5.7, 5.8. Headings used

in Tables are:

• kNN - k - Nearest Neighbors;

• LR - Logistic Regression;

• NB - Naive Bayes;

• SVC - Support Vector Classifier;

• XGBoost - eXtreme Gradient Boosting;

• x-y-z - Decision Tree Classifier where:

– x - minimum number of samples required to split an internal node leaf,

– y - minimum number of samples required to split an internal node,

– z - maximum depth of tree.

As is shown in table 5.3 most important features for chosen classifiers related to

task to distinguish if case is security related or not are: vulnerability, svm, sensitive,

security. For use case related to label issue as performance, security, crash or memory

related problem following terms are most important: crash, leak, memory (Table 5.4).

It is noticeable in both of cases there are at least some of the same features are common

for most important classifiers. This is also confirmed in Figures 5.1 and 5.3. Diagrams

56

Table 5.3 Comparison most important features related to label issue as security related
or not (internal company data) in condition of selected algorithm

tree 5-5-15 LR SVC XGBoost
vulnerability vulnerability vulnerability vulnerability

sensitive security sensitive sensitive
security svm security security

svm sensitive svm svm
password sec scan password

Table 5.4 Comparison most important features related to type od issue (Mozilla Defect
Dataset) in condition of selected algorithm

tree 5-5-15 LR SVC XGBoost
crash crash crash crash

regression application leak leak
content intermittent memory regression
memory leak usage addresssanitizer

slow moz_crash lazily build

(Figures 5.1 to 5.3) present decision making process, how the classification is performed

with the use of decision trees. Each of them shows a section of the decision tree related

to one of the discussed problems. Analyzing the content of diagram in Figure 5.3, the

root node is shown at the top. The first text line of that node indicates that the decision

depends on frequency of occurrence of keyword vulnerability. It is shown that in that

case, if value of parameter related to vulnerability is above threshold, the condition for

node is False. Therefore, following the arrow (branch) marked False, the next node is

selected. It has the majority class Yes, what means it is related to security as it was

expected. As that one node is not a leaf node, algorithm follows the next conditions.

Color of node which is used for presentation depends on the purity of the node. In this

example security related issues are in blue and non-security related ones are in orange.

There is also presented a measure of impurity which is in that case Gini.

Results between decision tree as one which is interpretable by design (transpar-

ent model) and support vector classifier which requires external XAI techniques to be

explained (post-hoc explainability) for explainable were used for explainability com-

Table 5.5 Comparison of results related to label issue as security related or not (internal
company data)

kNN LR NB SVC XGBoost
class prec recall prec recall prec recall prec recall prec recall

Security
related 0.96 0.84 0.98 0.79 0.32 0.90 0.97 0.85 0.99 0.76

Non-security
related 0.99 1.00 0.99 1.00 1.00 0.92 0.99 1.00 1.00 0.92

57

Table 5.6 Comparison of results related to label issue as security related or not (internal
company data)

5-5-10 5-5-15 10-10-15 3-3-15 5-5-5
class prec recall prec recall prec recall prec recall prec recall

Security
related 0.93 0.86 0.93 0.86 0.92 0.82 0.95 0.84 0.96 0.79

Non-security
related 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 0.99

Table 5.7 Comparison of results related to type od issue (Mozilla Defect Dataset)

kNN LR NB SVC XGBoost
class prec recall prec recall prec recall prec recall prec recall

Crash 0.88 0.94 0.97 0.97 0.97 0.47 0.98 0.96 0.98 0.95
Memory 0.72 0.38 0.83 0.46 0.12 0.65 0.78 0.59 0.69 0.33

Performance 0.72 0.65 0.83 0.88 0.76 0.68 0.83 0.88 0.97 0.49
Security 0.52 0.47 0.70 0.74 0.25 0.69 0.69 0.74 0.38 0.85

Table 5.8 Comparison of results related to type od issue (Mozilla Defect Dataset)

5-10-15 5-5-15 10-10-15 3-3-15 5-5-5
class prec recall prec recall prec recall prec recall prec recall

Crash 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.95 0.98 0.92
Memory 0.77 0.33 0.77 0.33 0.69 0.30 0.80 0.31 0.78 0.17

Performance 0.99 0.59 0.99 0.59 0.99 0.59 0.99 0.59 0.98 0.43
Security 0.41 0.87 0.41 0.87 0.41 0.87 0.41 0.90 0.33 0.87

Fig. 5.1 Diagram of tree build on dataset from Mozilla to recognize types of issues.

58

Fig. 5.2 Diagram of tree build on dataset from Mozilla to recognize types of issues.

Fig. 5.3 Diagram of tree build on internal company dataset to recognize security related
issues.

59

parison [23].

With significance threshold at α = 0.05, performing paired t test 5x2cv procedure

returned p − value = 0.19. As p − value > α, the null hypothesis cannot be rejected

and it may be concluded that the performance of the two algorithms is not significantly

different. That is expected as we gain explainability, without loss of quality of results.

More details about used test procedure is in [105].

5.4 Conclusion

The paper discusses potential application of the explainable artificial intelligence in

software bug report classification. In the article the authors discuss the possibility of

using XAI methods in the context of assigning a department, group, or any label for

software bug reports created by the user or testers. According to authors there is cur-

rently no application of such solution, however there are papers which consider differ-

ent, but sometimes confused with the mentioned problem. That similar, but significantly

different topic is software bug prediction, which aims to indicate whether introducing

software change will lead to a defect. The presented results show experimental research

with the use of simulations of predictions of type of software bug or classify the issue as

security related or not. One of the steps in the research was to apply explainable artifi-

cial intelligence methods and compare results between standard black-box methods and

XAI ones. The result of comparison on Mozilla data shows that it can be useful. When

applying XAI methods on dataset with company internal data it can be clearly noticed

that rules generated seem to be legit and might be potentially used for explaining deci-

sions or suggestions. For both cases there have been gathered most important features

according to the trained models. In the presented diagrams (Figures 5.1 to 5.3) the way

how chosen built models make the decisions are shown. For one algorithm shown that

has been applied, the decision-making process is shown. For each step (node) a deci-

sion condition is presented, what is the main class of samples that meets the specified

conditions of the current node. To sum up this paper clearly shows that there is a pos-

sibility to apply explainable artificial intelligence methods in the context of problems

related to bug assignment and the results are reasonable.

60

CHAPTER 6

Application of multimodal neural networks in solving problem of
labeling bug reports

Handling bug reports is a crucial part of software development, especially for high relia-

bility systems. Nowadays in processes which deal with these issues specific procedures

using automated tools are introduced to enhance bug report assignment accuracy. Those

tools might be enhanced with machine learning techniques. The purpose of this chap-

ter is to examine the applicability of a multimodal neural network in a software bug

assignment task based on diverse types of data, such as features extracted from logs,

combination of natural language text fields such as title and description, and categori-

cal information like product type. Computational experiments comparing results from

multimodal neural network and reference methods like dense (fully connected) neural

network is presented. Multiple series of experiments on different datasets have been

prepared and performed with various configurations of neural network architectures

as well different preprocessing settings for preparing data for respective input types.

The charts in this paper show training and validation accuracy as a function of epoch

of training and impact of introduced methods on minimization of overfitting. Results

clearly showed that application of multimodal neural network brings benefits.

6.1 Introduction

In software development there are situations when software bugs or hardware defects

should be handled. When a system malfunctions, user or tester prepares a report related

to that issue. It contains the title of issue, description with the actual and expected

behavior, steps to reproduce the issue if known. The case may rarely occur, may be

not permanent and occur randomly or only in specific conditions, so it may be hard to

reproduce the issue. Reporter also attaches the logs, sometimes they do not cover the

issue (e.g., insufficient data collection duration time, inadequate data collection method

like no debug flag added), and thus, additional log collection is required. The bug

report should be assigned to a proper group in charge for further analysis of the case. It

might be a team of developers or preinvestigators, department or division. It is usually

61

specific to an organization or a company. The task of bug labeling differs due to the

goal to achieve and might be different based on incomplete data and/or insufficient

competences of people who make such decisions. These issues might be resolved by

providing: label related to given department or division like in paper [37], or provide

problem type label in article [39] as well as information whether is related to security

or not. The datasets used in the study are not publicly available due to trade secrets of

the company.

Currently according to the best knowledge of the authors there is no application of

multimodal neural network in problems related to software bug assignment. This ar-

chitecture has been considered because of its positive impact on practical applications

with complex structure and heterogenous inputs. That problem is usually analyzed with

fields like title and description. However, there are publications related to the use of

some categorical fields like product type [38], [81]. There are also applications of neu-

ral networks in solving that task, but multimodal one has not been found. The paper

[41] shows usage of two-output deep neural network architecture (Dual DNN) for pre-

dicting an assignment of a bug report to both developer and team. At the first step of the

proposed method, the raw data is transformed with the use of latent semantic analysis,

[72], reducing the input vector dimension to 1000. Following the input layer of neural

network, there are two hidden ones. The last of them is connected to two output layers:

teams and developers. There exists also one more connection from team layer to devel-

oper layer such that the team prediction information is used to predict developers. These

two papers use summary and description from reported bugs to create a word document

graph. Various neural network architectures have been applied to solving problems re-

lated to bug reports handling. The bug report assignment related problems are solved

with the use of Long Short-Term Memory (LSTM), [58], in [116]. The bug report is

preprocessed with the use of Word2Vec, [52], a natural language processing technique.

Feature vectors are built using Senti4SD, [30], a sentiment analysis technique. That

method is applied for bug prioritization. Convolutional Neural Network (CNN), [96],

is utilized in [118] for automatic prioritization of bug reports. To create proper text

representation some preprocessing techniques like stopwords removal, spelling correc-

tion, lemmatization are used. The work in this paper also employs Emotion analysis,

[97], and word2vector [90]. The main machine learning model is based on a single

Convolutional layer with multiple filters followed by pooling layer and fully connected

layer with softmax activation as the output one. CNN has been also utilized in [130] for

bug report assignment. The representation of issues was made with the two techniques

which were used for comparison (Word2Vec and GloVe, [102]). The neural network for

that purpose was created as follows: the input layer, convolution layer with multiple fil-

ters, max pooling layer, flattening and layer with softmax activation as output. A graph

62

Fig. 6.1 Example of multimodal neural network.

representation method for the bug reports dataset is presented in [131] and [133]. This

representation is further used for assigning bug reports. The paper [131] uses data re-

lated to natural language fields of bug reports like summary and description. The nodes

represent documents (bug reports) and words. Edges are of two types: word-word co-

occurrences and word-documents co-occurrences. Following heterogenous graph input,

there are two layers of Graph Convolutional Network. For weighting the graph edges

between bug document nodes and word nodes the term frequency-inverse document

frequency (TF-IDF) is used, [107]. Weights of word-words edges are related to cosine

similarity, [56]. [133] extends the paper [131] by adopting different similarity metrics

and correlation metrics for weighting word–word edges.

The purpose of this chapter is to analyze applicability of multimodal neural network

in task of software bug assignment based on data of diverse types like logs and com-

bination of natural language text fields like title and description. An approach to train

deep neural networks using data coming from multiple modalities was introduced in

[95]. According to authors of that paper previously only data from one modality have

been taken into consideration for training neural networks to solve that problem. In the

example presented in Figure 6.1, there are two modalities: one is related to audio and

second to image input which were gathered from video. With the use of data provided

into presented autoencoder neural network architecture, [87], a shared representation,

in that case the third layer, is obtained. The paper [95] reports superior results of shared

representation coming from multiple modalities compared to that with only one modal-

63

ity. However, the results were obtained for a specific problem not related to software

bug reports and even similar use in their field of application with the use of different

data sources may lead to opposite conclusions. An application of Multimodal Deep

Learning in the context other than audio and image application is shown in [136]. It

is used for data related to citation networks. It is worth to note that the number of in-

puts and outputs of artificial neural networks are different in drawings and calculations.

The figures clearly present the network with a small number of nodes but in compu-

tations the number of inputs and outputs of artificial neural networks is identical with

input features and output classes, respectively. Multimodal neural networks differ from

others in such a way they have multiple inputs to the network followed by separated

parts of at least one hidden layer. It is clearly visualized in Figures 6.1 and 6.3. The

concept of multimodal neural networks can be applied when the inputs come from data

of different nature. In this study are discussed diverse types of data like categorical,

short part of textual data in the form of natural language, as well as log content which

is not a standard natural language. Typical is the usage when is processed video, then

the data come from both audio and image. However, there are different applications of

such neural networks, part of them is presented in Section 1.7.6.

From the point of view of a software development company, it is important that the

software bug handling process is as efficient as possible. It is important to continuously

develop the tools used to suggest the group in charge for further analysis. One of the

ideas is to verify the possibility of introducing multimodal neural network. Research

activity related to improvements of software bug assignment are very important for the

company. Part of them may end with conclusions that the verified solution which is

being verified overbeat the state-of-the-art one. Of course, like in almost all research

activities the results are not guaranteed to be positive. Negative results reporting and

publishing is also important to show other researchers not to follow the chosen path.

Therefore, the aim of such works is to investigate the impact of chosen methods on re-

sults over reference methods. One of them used shallow dense (fully connected) neural

network with inputs related to title and description of software bug report represented

with the use of TF-IDF and categorical data with hot encoding. It is, to some degree,

similar to logistic regression with data represented with TF-IDF related to title, de-

scription and product type in [38], therefore is threatened as reference state-of-the-art

solution. In case of positive outcomes of such activities there might be a recommen-

dation to introduce them in a company. The research related to multimodal network

architectures is especially important since it deals with input of diverse input of data.

That situation is related to data which the company possesses. It is a mix of natural

language text fields like title and description, categorical fields, and data extracted from

archives with log content. The architecture of multimodal neural network may vary

64

Fig. 6.2 Example of dense (fully connected) neural network.

depending on for instance input data types used, its representations, number of layers.

This paper discusses the following research question:

• RQ.B.1: What is an impact of introducing multimodal neural network on bug

assignment accuracy?

Hypothesis:

There exists a method for automated assignment of a software bug report to appro-

priate development group, responsible for resolving the bug, which outperforms well-

known methods for bug report assignment.

6.2 Methods

In this study numerous computational experiments by using different datasets as inputs

as well as different architectures of artificial neural networks were performed. The

output classes were groups where the cases were finally fixed. The proposed method

utilizes a neural network with diverse input types coming from different modalities. To

create such a solution there was a need to design the architecture of network specifically

to solve that problem and propose how input data would be represented. The following

diverse input types, which are used as parts of input layers, or as a whole layer if only

one input type is utilized:

a – part of input layer related to combined text from title and description has been

taken. This is a short form in natural language form that describes the discrepancy in

the behavior of system. On that data, the preprocessing operations were involved letter

changing from upper to lower case and removing special characters, stop words, and

email addresses. Lemmatization was also applied. As vectorization TF-IDF was used

with n-grams in length range from 1 to 3 and maximum number of features limited to

32 000. Parameters were set using work [38];

65

Fig. 6.3 Multimodal deep neural network with labelled Input, Hidden and Output lay-
ers. According to [136] when autoencoder architecture is applied then first layer is
called input followed by preprocessing layer and the last here is representation layer of
autoencoder.

b – part of input layer was defined by one hot encoded features related to different

categorical fields like software release, problem type, product information, repeatability

of issue, the phase of cycle where the problem has been discovered;

c – part of input layer related to content of log archives (snapshots). Their pro-

cessing used log analyzers which were written as plugins in dedicated platform. Each

analyzer was created based on experts’ domain knowledge. At least one plugin used

for computational experiments was directly related to Radio Frequency (RF) software

and Radio Modules. The aim of the current tools is to get the most important log mes-

sages and present their content to users with usage of graphical user interface. In this

novel approach that information, after being preprocessed and vectorized as described

in point a was used as part of input data to solve the problem of bug report assignment.

The list of experiment of types used in this study includes:

• T1: Artificial neural network (ANN) with the architecture like in Figure 6.4 with

input layer with a .

• T2: ANN with the architecture like in Figure 6.5 with input layer with b

• T3: ANN with the architecture like in Figure 6.6 with input layer with c

• T4: ANN with the architecture like in Figure 6.7 with input layer with a , b .

• T5: ANN with the architecture like in Figure 6.8 with input layer with a , b , c .

• T6: ANN with the architecture like in Figure 6.9 with input layer with a , b .

• T6A: ANN with the architecture like in Figure 6.10 with input layer with a , b .

66

Fig. 6.4 Architecture of neural network T1 with the inputs (a).

Fig. 6.5 Architecture of neural network T2 with the inputs (b).

• T7: ANN with the architecture like in Figure 6.11 with input layer with a , b ,

c .

• T7A: ANN with the architecture like in Figure 6.12 with input layer with a , b ,

c .

Training for experiments named T6A is divided into two phases. In the first one,

Autoencoder is trained. For instance, for T6A required Autoencoder architecture is like

in Figure 6.1 (please note that in this Figure the input descriptions differ from expected

and are demonstrated only for the purpose of visualization of architecture). Then the

wages are copied to the network from Figure 6.10 up to the shared representation Layer.

Copied wages are then frozen, and the network is fit for obtaining the rest of parameters.

Analogous situation is for experiment T7A.

Neural networks were trained with the use of Adam optimizer. In each computa-

tional experiment three models were saved: final model derived during training phase,

the one with the lowest validation loss, and the highest validation accuracy. Every layer

of neural networks dropout has been set to 25%. The activation function softmax was

always used in the last layer and ReLu in all other layers.

67

Fig. 6.6 Architecture of neural network T3 with the inputs (c).

Fig. 6.7 Architecture of neural network T4 with the inputs (a), (b).

68

Fig. 6.8 Architecture of neural network T5 with the inputs (a), (b), (c).

Fig. 6.9 Architecture of neural network T6 with the inputs (a), (b).

69

Fig. 6.10 Architecture of neural network T6A with the inputs (a), (b).

Fig. 6.11 Architecture of neural network T7 with the inputs (a), (b), (c).

70

Fig. 6.12 Architecture of neural network T7A with the inputs (a), (b), (c).

Table 6.1 Data quantity related to first series

Train set Test set Spare data
7142 359 490

First series

Data with cases which were opened after October 1, 2021 and resolved before May 1,

2022 were used for training. As a test set data related to software bug reports opened

after May 1, 2022 and resolved before May 30, 2022 were used. Detailed information

about training and test sets quantity are shown in Table 6.1. The spare data shows the

quantity of cases reported before May 1, 2022 and resolved after that date. These spare

data do not meet requirements to be included in either training or test set. These kind

of time dependencies have been introduced in paper [40]. Tests were performed with

experiments of type T4 and type T6. In experiment of type T6, the size of each part of

hidden layer connected to respective input is equal to the number of neurons of output

layer.

Second series

The quantity of data is shown in Table 6.2. The split date for training and test sets was

set Feb 1, 2022. For experiment of types T6 and T7 the size of hidden layer parts related

to a , b , c is equal to 128, 32, and 128, respectively.

71

Table 6.2 Data quantity related to second series

Train set Test set Spare data
227 72 40

Table 6.3 Data quantity related to third series

Train set Test set Spare data
221 330 36

Third series

The quantity of data is shown in Table 6.3. The split date for training and test data was

set on Feb 1, 2022. In series 1 and 2 the value of the maximum number of features in

TF-IDF was set to 32 000 on inputs to a and c . In series 3 and 4 this value was set

to every number in the sequence 256, 512, 1024, 2048, 4096, 8192, 16384, 32768. In

experiments of types T6 and T7 the sizes of hidden layer parts related to a , b , c are

128, 32, and 128, respectively. Experiments of types T6A and T7A are trained in two

phases. In the first phase, Autoencoder is fitted with the sizes of parts of hidden layers

the same as the ones defined in experiment of type T6. There are 256 cells used for

hidden layer for shared representation. In the next phase, the weights are transferred,

and the neural network is finally being fitted with an input layer followed by two layers

from Autoencoder and the output layer. After transferring weights, they are no longer

being updated during the training of final neural network.

Fourth series

The difference between this and the previous series is the date set in the data split

method. The quantity of data is shown in Table 6.4. The split date for training and test

sets was set on Jul 1, 2022.

6.3 Results and discussion

First series

Table 6.5 presents the summary of results obtained with different experiment of types

and different states of network which were used for the comparison. It seems to be the

best to compare different experiment types between each other with the use of the state

Table 6.4 Data quantity related to fourth series

Train set Test set Spare data
445 109 33

72

Table 6.5 Results related to first series of experiment

Experiment
type

Accuracy of
neural network

with best
validation loss

Accuracy of
neural network

with best
validation accuracy

Accuracy of
last in training
neural network

T4 67.97 % 67.97 % 69.64 %
T6 67.97 % 68.25 % 67.41 %

Fig. 6.13 Training and validation accuracy as a function of epoch for experiment of type
T4 in series 1.

of neural network taken from early stopping related to parameter of validation loss or

validation accuracy. There are also results presented with the last state of network dur-

ing training phase. In those cases where state of network was taken based on validation

loss the prediction results for experiments of types T4 and T6 were identical. Addition-

ally Figure 6.13 and Figure 6.14 show the progress of training of neural networks.

Fig. 6.14 Training and validation accuracy as a function of epoch for experiment of type
T6 in series 1.

73

Table 6.6 Results related to second series of experiment

Experiment
type

Accuracy of
neural network

with best
validation loss

Accuracy of
neural network

with best
validation accuracy

Accuracy of
last in training
neural network

T1 23.61 % 20.83 % 23.61 %
T2 18.06 % 18.06 % 18.06 %
T3 27.78 % 27.78 % 27.78 %
T4 22.22 % 22.22 % 22.22 %
T5 26.39 % 23.61 % 26.39 %
T6 25.00 % 25.00 % 25.00 %
T7 29.17 % 25.00 % 23.61 %

Fig. 6.15 Training and validation accuracy as a function of epoch for experiment of type
2 in series 2.

Second series

Results related to the second series are shown in Table 6.6. When the state of network

comes from model checkpoint monitoring validation loss then the highest prediction

accuracy among all experiment types in this series is achieved with multimodal archi-

tecture of network. It can be clearly noticed that they are better than results obtained

with same inputs, but with different architecture of neural network which is fully con-

nected and without hidden layer. Using all types of inputs revealed that the prediction

accuracy in experiment of type T7 was higher than for any experiment of types T1-T3.

It was observed that providing additional inputs do not always have a positive impact on

accuracy. Even if results may be criticized due to overfitting which can be easily noticed

based on charts showing accuracy and validation loss as a function of epoch of train-

ing (Figures 6.15 and 6.16), they are still relevant. Table 6.6 presents that multimodal

neural network architecture gave better results than other ones.

74

Fig. 6.16 Training and validation accuracy as a function of epoch for experiment of type
6 in series 2.

Third series

Results related to the third series are shown in Table 6.7. Figure 6.17 shows that the

highest prediction accuracy was achieved with the use of multiple inputs, but not al-

ways with all of them. For part of sub-series related to size of maximum number of

features set in TF-IDF, the best result was obtained using multimodal neural network

and training with Autoencoder. Figures 6.18 to 6.20, 6.22, 6.23 and 6.25 show accu-

racy and validation loss as a function of epoch of training. Figures 6.21 and 6.24 present

loss and validation loss as a function of epoch of experiment of type T6A for training

Autoencoder.

Table 6.7 Results related to third series of experiment

maximum

number of

features set

in TF-IDF

Experiment

type

Accuracy of

neural network

with best

validation loss

Accuracy of

neural network

with best

validation accuracy

Accuracy of

last in training

neural network

256 T1 33.33 % 26.36 % 33.33 %

256 T2 33.64 % 33.64 % 33.64 %

256 T3 29.09 % 22.12 % 29.09 %

256 T4 32.42 % 9.70 % 32.42 %

256 T5 30.30 % 9.39 % 30.30 %

256 T6 33.03 % 33.03 % 31.82 %

256 T6A 35.45 % 34.55 % 35.45 %

256 T7 32.12 % 27.27 % 27.27 %

256 T7A 33.94 % 8.18 % 33.94 %

512 T1 32.73 % 19.39 % 32.73 %

Continued on next page

75

Table 6.7 – continued from previous page
maximum

number of

features set

in TF-IDF

Experiment

type

Accuracy of

neural network

with best

validation loss

Accuracy of

neural network

with best

validation accuracy

Accuracy of

last in training

neural network

512 T2 33.64 % 33.64 % 33.64 %

512 T3 25.76 % 26.36 % 25.76 %

512 T4 33.03 % 11.82 % 33.03 %

512 T5 33.64 % 29.39 % 29.39 %

512 T6 33.64 % 29.39 % 29.39 %

512 T6A 33.94 % 33.03 % 33.94 %

512 T7 30.30 % 30.61 % 29.70 %

512 T7A 33.33 % 13.03 % 33.33 %

1024 T1 31.82 % 33.64 % 31.82 %

1024 T2 33.64 % 33.64 % 33.64 %

1024 T3 27.58 % 28.48 % 27.58 %

1024 T4 32.12 % 26.67 % 31.52 %

1024 T5 33.94 % 34.24 % 33.33 %

1024 T6 32.42 % 30.30 % 29.39 %

1024 T6A 34.85 % 33.94 % 34.85 %

1024 T7 30.91 % 25.45 % 33.64 %

1024 T7A 33.94 % 33.94 % 33.94 %

2048 T1 31.82 % 16.06 % 31.82 %

2048 T2 33.64 % 33.64 % 33.64 %

2048 T3 28.18 % 30.91 % 28.18 %

2048 T4 31.82 % 26.06 % 31.82 %

2048 T5 33.33 % 23.94 % 33.33 %

2048 T6 32.73 % 33.94 % 30.91 %

2048 T6A 32.73 % 21.82 % 32.73 %

2048 T7 34.55 % 31.52 % 34.24 %

2048 T7A 34.85 % 33.64 % 34.85 %

4096 T1 31.21 % 31.21 % 31.21 %

4096 T2 33.64 % 33.64 % 33.64 %

4096 T3 28.79 % 28.79 % 28.79 %

4096 T4 31.21 % 23.33 % 31.21 %

4096 T5 33.64 % 27.58 % 34.24 %

4096 T6 32.42 % 34.55 % 26.36 %

Continued on next page

76

Table 6.7 – continued from previous page
maximum

number of

features set

in TF-IDF

Experiment

type

Accuracy of

neural network

with best

validation loss

Accuracy of

neural network

with best

validation accuracy

Accuracy of

last in training

neural network

4096 T6A 34.24 % 33.94 % 34.24 %

4096 T7 35.15 % 32.73 % 32.73 %

4096 T7A 33.94 % 34.24 % 33.94 %

8192 T1 31.21 % 33.94 % 31.21 %

8192 T2 33.64 % 33.64 % 33.64 %

8192 T3 28.48 % 28.48 % 28.48 %

8192 T4 31.52 % 30.91 % 31.52 %

8192 T5 33.94 % 31.82 % 33.94 %

8192 T6 32.12 % 34.24 % 30.30 %

8192 T6A 33.94 % 33.33 % 33.94 %

8192 T7 36.67 % 33.64 % 32.73 %

8192 T7A 33.94 % 33.64 % 33.94 %

16384 T1 31.52 % 33.64 % 31.52 %

16384 T2 33.64 % 33.64 % 33.64 %

16384 T3 29.09 % 33.94 % 29.39 %

16384 T4 31.82 % 31.52 % 31.82 %

16384 T5 34.24 % 33.94 % 34.24 %

16384 T6 33.64 % 30.91 % 30.00 %

16384 T6A 34.55 % 11.52 % 34.55 %

16384 T7 35.76 % 21.21 % 34.55 %

16384 T7A 33.94 % 12.42 % 33.94 %

32768 T1 31.82 % 33.33 % 31.82 %

32768 T2 33.64 % 33.64 % 33.64 %

32768 T3 28.48 % 28.48 % 28.48 %

32768 T4 31.52 % 33.64 % 31.52 %

32768 T5 33.33 % 34.85 % 33.33 %

32768 T6 33.03 % 33.94 % 30.61 %

32768 T6A 34.55 % 33.64 % 34.55 %

32768 T7 36.97 % 35.15 % 34.55 %

32768 T7A 33.94 % 23.64 % 33.94 %

77

Fig. 6.17 Accuracy as a function of experiment of type and number of maximum num-
ber of features set in TF-IDF in series 3. Presented accuracy was calculated with the
state of network from model checkpoint monitoring validation loss.

Fig. 6.18 Training and validation accuracy as a function of epoch for experiment of type
T2 in series 3.

78

Fig. 6.19 Training and validation accuracy as a function of epoch for experiment of type
T3 in series 3.

Fig. 6.20 Training and validation accuracy as a function of epoch for experiment of type
T6 in series 3.

Fig. 6.21 Loss and validation loss as a function of epoch for experiment of type T6A in
series 3 for training Autoencoder.

79

Fig. 6.22 Training and validation accuracy as a function of epoch for experiment of type
T6A in series 3 for training classification model.

Fig. 6.23 Training and validation accuracy as a function of epoch for experiment of type
T7 in series 3.

Fig. 6.24 Loss and validation loss as a function of epoch for experiment of type T7A in
series 3 for training Autoencoder.

80

Fig. 6.25 Training and validation accuracy as a function of epoch for experiment of type
T7A in series 3 for training classification model.

Fourth series

Results related to the fourth series are shown in Table 6.8. Figure 6.26 shows that the

highest prediction accuracy was achieved with experiment of type T3 (used single input

c). Given multiple inputs the highest prediction accuracy, in most cases, was achieved

by Autoencoder used to train multimodal neural network. Figures 6.27 and 6.29 show

accuracy and validation loss as a function of epoch of training. Figure 6.28 present

loss and validation loss as a function of epoch of experiment of type T6A for training

Autoencoder.

Table 6.8 Results related to fourth series of experiment

maximum

number of

features set

in TF-IDF

Experiment

type

Accuracy of

neural network

with best

validation loss

Accuracy of

neural network

with best

validation accuracy

Accuracy of

last in training

neural network

256 T1 33.03 % 38.53 % 33.03 %

256 T2 37.61 % 37.71 % 37.61 %

256 T3 38.53 % 33.94 % 38.53 %

256 T4 34.86 % 34.86 % 34.86 %

256 T5 35.78 % 38.53 % 35.78 %

256 T6 28.44 % 28.44 % 28.44 %

256 T6A 36.70 % 39.54 % 36.70 %

256 T7 33.94 % 30.28 % 31.19 %

256 T7A 35.78 % 22.94 % 35.78 %

512 T1 36.70 % 36.70 % 36.70 %

512 T2 37.61 % 37.61 % 37.61 %

Continued on next page

81

Table 6.8 – continued from previous page
maximum

number of

features set

in TF-IDF

Experiment

type

Accuracy of

neural network

with best

validation loss

Accuracy of

neural network

with best

validation accuracy

Accuracy of

last in training

neural network

512 T3 39.45 % 39.45 % 39.45 %

512 T4 36.70 % 34.86 % 36.70 %

512 T5 33.03 % 35.78 % 33.03 %

512 T6 34.86 % 32.11 % 30.28 %

512 T6A 39.45 % 37.61 % 39.45 %

512 T7 28.44 % 31.19 % 30.28 %

512 T7A 37.61 % 36.70 % 37.61 %

1024 T1 33.94 % 34.86 % 33.94 %

1024 T2 37.61 % 37.61 % 37.61 %

1024 T3 39.45 % 31.19 % 39.45 %

1024 T4 34.86 % 35.78 % 34.86 %

1024 T5 33.94 % 40.37 % 33.94 %

1024 T6 35.78 % 33.94 % 33.03 %

1024 T6A 37.61 % 32.11 % 37.61 %

1024 T7 33.03 % 30.28 % 35.78 %

1024 T7A 37.61 % 37.61 % 37.61 %

2048 T1 32.11 % 34.86 % 32.11 %

2048 T2 37.61 % 37.61 % 37.61 %

2048 T3 37.61 % 37.61 % 37.61 %

2048 T4 33.03 % 33.03 % 33.03 %

2048 T5 31.19 % 38.53 % 31.19 %

2048 T6 36.70 % 27.52 % 28.44 %

2048 T6A 35.78 % 32.11 % 35.78 %

2048 T7 34.86 % 27.52 % 29.36 %

2048 T7A 39.45 % 39.45 % 39.45 %

4096 T1 33.94 % 36.70 % 33.94 %

4096 T2 37.61 % 37.61 % 37.71 %

4096 T3 38.53 % 38.53 % 38.53 %

4096 T4 32.11 % 33.94 % 32.11 %

4096 T5 30.28 % 30.28 % 30.28 %

4096 T6 37.61 % 36.70 % 35.78 %

4096 T6A 36.70 % 37.61 % 36.70 %

Continued on next page

82

Table 6.8 – continued from previous page
maximum

number of

features set

in TF-IDF

Experiment

type

Accuracy of

neural network

with best

validation loss

Accuracy of

neural network

with best

validation accuracy

Accuracy of

last in training

neural network

4096 T7 38.53 % 35.78 % 33.03 %

4096 T7A 37.61 % 14.68 % 37.61 %

8192 T1 32.11 % 30.28 % 32.11 %

8192 T2 37.61 % 13.76 % 37.61 %

8192 T3 39.45 % 39.45 % 39.45 %

8192 T4 32.11 % 36.70 % 32.11 %

8192 T5 33.03 % 33.03 % 33.03 %

8192 T6 35.78 % 33.03 % 36.70 %

8192 T6A 37.61 % 20.18 % 37.71 %

8192 T7 33.03 % 36.70 % 35.78 %

8192 T7A 37.61 % 26.61 % 37.61 %

16384 T1 32.11 % 31.19 % 32.11 %

16384 T2 37.61 % 37.61 % 37.61 %

16384 T3 40.37 % 41.28 % 40.37 %

16384 T4 31.19 % 32.11 % 31.19 %

16384 T5 33.03 % 32.11 % 33.03 %

16384 T6 33.94 % 33.03 % 34.86 %

16384 T6A 37.61 % 37.60 % 37.61 %

16384 T7 34.86 % 35.78 % 36.70 %

16384 T7A 36.70 % 36.70 % 36.70 %

32768 T1 32.11 % 33.03 % 32.11 %

32768 T2 37.61 % 37.61 % 37.61 %

32768 T3 38.53 % 38.53 % 39.45 %

32768 T4 31.19 % 33.03 % 31.19 %

32768 T5 33.03 % 32.11 % 33.03 %

32768 T6 35.78 % 34.86 % 36.70 %

32768 T6A 39.45 % 39.45 % 39.45 %

32768 T7 34.86 % 37.61 % 35.78 %

32768 T7A 37.61 % 14.68 % 37.61 %

83

Fig. 6.26 Accuracy as a function of experiment of type and number of maximum num-
ber of features set in TF-IDF in series 4.

Fig. 6.27 Training and validation accuracy as a function of epoch for experiment of type
T1 in series 4.

Fig. 6.28 Loss and validation loss as a function of epoch for experiment of type T7A in
series 4 for training Autoencoder.

84

Fig. 6.29 Training and validation accuracy as a function of epoch for experiment of type
T7A in series 4 for training classification model. Presented accuracy was calculated
with the state of network from model checkpoint monitoring validation loss.

Discussions

There are some limitations of the presented approach especially at the current state as

they are related to the data used in this study. The constraints involve situations where

not all problem reports contain data required to correctly extract all modalities. To

overcome this difficulty, only sets without missing data were used in this study. It should

be noted that in the series in which there was a greater cardinality of the sets, the results

obtained were higher. The novel approach used only a part of internal company data

and it was compared with state-of-the-art methods. The utilization of data coming from

different modalities showed that there was room for model prediction improvement.

This observation is a significant element related to software bug report assignments. It

shows that with the use of different data than typical like from title and description of

issue the results may be achieved higher, but at the same time we must remember that

such solution is not immune to log changes in the time and such changes would affect

the results.

6.4 Conclusions

The paper presents different approaches of assigning software bug reports to appropriate

investigation or development group with the use of machine learning techniques. A few

key findings are summarized in this section.

The paper compares results which can be obtained with the use of diverse parts

from available data about bug reports. These parts involve natural language processing

applied to title and description, categorical fields, and log archives from which fea-

tures are further extracted. Data from snapshots are processed with the use of solution

which aims to get most important log messages. Next, the processing of such data ex-

tracted from log messages includes operations like changing letters from upper to lower,

85

removing stopwords. The same steps are applied for preprocessing of title and descrip-

tion. Afterwards, TF-IDF was employed and verified with the use of different settings

for maximum number of features set. Categorical data were transformed with the use

of hot encoding. The analysis of results showed that in general no single data input

type can lead to superior model prediction accuracy. The majority of the experiments

conducted in this study showed that the highest model accuracy was obtained when

archives of logs and/or categorical data were also used for building model. Therefore, it

can be concluded that introduced methods improve software bug assignment accuracy

and, at same time, confirm the hypothesis that There exists a method for automated

assignment of a software bug report to appropriate development group, responsible for

resolving the bug, which outperforms well-known methods for bug report assignment.

It is not clear that the methods introduced will always improve software bug assignment

accuracy but it is still a big step in the development of such approaches, and it is still

worth to further investigating that topic.

Regarding further answering the research question about an impact of introducing

multimodal neural network on bug assignment accuracy and confirming about hypoth-

esis there were made comparison with state-of-the-art methods used in company. These

reference methods come from [38] and are similar to type T1 and T4. Based on t-test

performed for selected experiments from fourth series with null hypothesis verifying

whether that two independent samples have identical expected values [121]. It is shown

that there is a significant difference between results gained from experiment type T1 and

type T7A (p-value 0.00014 for null hypothesis) as well as type T4 and T7A (p-value

0.00048 for null hypothesis) what highlights the importance of results. These results

combined with the fact that average value of software bug report assignment accuracy

for model with architecture T7A was higher lead to conclusion that the results with the

architecture T7A are improved significantly in statistical way.

The analysis showed that neural network architecture with the use of separated hid-

den layers (see, for example, Figure 6.3) for multiple inputs, in most cases lead to better

prediction accuracy than obtained with fully connected neural network (see, for exam-

ple, Figure 6.2) with respective inputs. This can be observed in Figures 6.17 and 6.26

comparing types of experiments between each other with same setting of maximum

features set in TF-IDF. The conducted experiments show the advantages of the use

of multimodal neural network in the application of assigning software bug reports to

groups of developers or preinvestigators.

In all series of experiments of type 2 with categorical data the maximum value of

training and validation accuracy was obtained at early phases of training. No further

improvement is seen after third epoch (Figures 6.15 and 6.18), yielding that for this

kind of training early stopping criteria might be applied without degradation of model.

86

Figures 6.21, 6.24 and 6.28 show smooth curves representing loss as a function of

epoch during training of Autoencoders. All of these curves have a decreasing trend. The

smoothness and decreasing trend confirm correct learning process of the model. They

are related to experiments of types 6A and 7A, where training of network was divided

into two phases, first related to training of Autoencoder, second related to obtaining the

weights in the rest of the network. Experiments of types 6A and 7A result in smaller

difference between training and validation accuracy (Figures 6.22, 6.25 and 6.29) com-

paring to the other experiment types (Figures 6.13 to 6.16, 6.18 to 6.20, 6.23 and 6.27).

In the second phase of training there was only one layer fitted after transformation of

weights from Autoencoder. It leads to simplification of the prediction model, by em-

ploying fewer layers and neurons. This means that fewer weights are required to be

fitted. Moreover, results of experiments of experiments of types 6A and 7A have less

difference in model prediction accuracy at training and test phases, suggesting the im-

pact of overfitting minimized.

87

CHAPTER 7

Architecture, Environment and Orchestration

7.1 Introduction

This manual is intended for developers and DevOps engineers of services related to

machine learning software bug assignment predictions. It contains also a part related to

data gathering and processing. Figure 7.1 presents a general overview of systems archi-

tecture which includes Reporting System, Data System (Section 7.2), Model Retraining

System (Section 7.4) and Model Serving System (Section 7.3). Reporting System is a

main system which is responsible for storing information about software bug reports,

whereas Data system is a solution created for the purpose of more convenient access to

data. Model Retraining System gathers data from Data System and updates the Model

Serving System regularly providing newer models.

7.2 Data system

Data system is located in the namespace data-services. General information re-

lated to data services is present in Figure 7.2. Reporting System is the main system

in company which stores information regarding software bug reports. In Figures 7.3

to 7.5, Reporting System refers to exactly the same entity. Software Bug Report Dataset

Builder (Section 7.2.1) gathers data from Reporting System and update dataset in or-

ganized manner in Storage. Regularly, there is run a task which performs snapshot

processing (Section 7.2.3) on data gathered from Storage. Part of data which is kept in

this storage is accessible for further model retraining via Data Selection Service (Sec-

tion 7.2.2). Moreover, there is a Postgres Service for the purpose of keeping data for

PowerBi [10].

7.2.1 Software Bug Report Dataset Builder

Dataset Builder is responsible for gathering data from tool which is utilized in company

to keep the data related to software bug reports. The main purpose of those services

is to create a local copy of data. It contains information about title, description and

88

Fi
g.

7.
1

G
en

er
al

ov
er

vi
ew

of
sy

st
em

s
ar

ch
ite

ct
ur

e.

89

Fi
g.

7.
2

C
om

po
ne

nt
di

ag
ra

m
w

hi
ch

in
cl

ud
es

da
ta

se
rv

ic
es

.

90

some categorical fields of software bug reports. Description field may contain also

information about references to logs or parts of logs themselves.

7.2.2 Data Selection Service

Data Selection Service is a service which allows user to send a request to get selected

part of data created with the use of Software Bug Report Dataset Builder described in

Section 7.2.1.

7.2.3 Snapshot processing

Snapshots processing combines gathering zip files related to particular cases and ana-

lyzing them. The process is performed in Docker [85, 68] and Kubernetes [8] environ-

ments.

7.2.4 Postgres service

Snapshots processing combines gathering zip files related to particular cases and ana-

lyzing them. The process is performed in Docker [85, 68] and Kubernetes [8] environ-

ments.

7.3 Model serving system

7.3.1 General overview of major components

This Section presents three approaches of systems responsible for providing predictions

related to software bug assignment with or without using archive of logs. Most of the

system is kept in namespace called namespace-production. A log may be defined as

an operation system information which is saved to any kind of file including standard

Syslog [51] or other specific files containing binary data or even files containing infor-

mation about configuration. The approach without using archive of logs may employ

description of the problem report which also may contain log content. The architec-

ture of the approach with the use of only archive of logs is shown in Figure 7.3. The

architecture of the approach without using archive of logs is visualized in Figure 7.4

a similar way with two modifications: remove Analyzer Core (Container) and send

suspected groups predictions from "Main service for predictions" directly to Reporting

system. There is also visualized combined version in Figure 7.5 which utilizes at once

data from archive of logs as well as data from title, description and categorical fields of

software bug report.

Currently, Environment and Orchestration of machine learning services related to

software bug report assignment are based on two different architectures depending on

91

the data being taken as input. Nevertheless, they have common services to be reused by

design to avoid code duplicates and avoid duplicating the same kind of resource if pos-

sible. Both architectures, by their design, use the same kind of preprocessing service;

if possible, they use the same instance for both. To avoid as much as possible depen-

dencies from systems and python packages with a specific version, Docker [85], was

introduced. To provide high availability of service, Kubernetes [119] was employed.

The major benefits of these two software management solutions are reliability of ser-

vices and possibility of creating updates with rolling update policy [9]. That policy

enables the option to update the version of services related to machine learning models

from currently used for newer without any break in availability of services during that

update.

7.3.2 Analyzer core

It is a part responsible among others for reading log archives to extract selected data.

As next step, Analyzer core requests main service to get machine learning prediction

and deliver it to Reporting system which may decide based on strict rules whether do

the transfer of problem report to another team responsible or not (see Figure 7.3). De-

velopers deliver source code available under: repository link, according to standardized

internal template and the maintenance of service is under responsibility of authors of

respective plugins, not maintainers of main platform.

7.3.3 Main service for predictions

The main services keep the machine learning models running and generate software bug

assignment predictions. They use the preprocessing activity described in 7.3.4 during

both the production mode and the training phase. By production mode, we understand

the mode when the user gets predictions based on the API. They also use the vectorizer

function, described in 7.4.1, during the training phase.

7.3.4 Preprocessing service

The preprocessing service cleans data based on the configuration set by the user in

the parameters. It applies selected standard preprocessing techniques from the natural

language processing field and also specific ones related to company data.

7.3.5 Filtering service

Filtering Service provides filter predictions based on given information. As an example,

it removes part of predictions related to particular groups in postprocessing.

92

Fi
g.

7.
3

C
om

po
ne

nt
di

ag
ra

m
of

sy
st

em
re

sp
on

si
bl

e
fo

rp
ro

vi
di

ng
pr

ed
ic

tio
ns

ba
se

d
on

co
nt

en
te

xt
ra

ct
ed

fr
om

ar
ch

iv
e

of
lo

gs
.

93

Fi
g.

7.
4

C
om

po
ne

nt
di

ag
ra

m
of

sy
st

em
re

sp
on

si
bl

e
fo

rp
ro

vi
di

ng
pr

ed
ic

tio
ns

ba
se

d
on

tit
le

,d
es

cr
ip

tio
n

an
d

ca
te

go
ri

ca
lfi

el
ds

.

94

Fi
g.

7.
5

C
om

po
ne

nt
di

ag
ra

m
of

sy
st

em
re

sp
on

si
bl

e
fo

rp
ro

vi
di

ng
pr

ed
ic

tio
ns

ba
se

d
on

tit
le

,d
es

cr
ip

tio
n,

ca
te

go
ri

ca
lfi

el
ds

an
d

ar
ch

iv
e

of
lo

gs
.

95

7.3.6 Direct hardware unit mapping

Direct Hardware Unit mapping predicts groups only based on information related to the

presence of hardware used.

7.3.7 Part of production setup installation

All configuration data except secrets are stored in repository. Chosen requirements are

presented below:
7.3.7.1 Required namespace

1. namespace-production
7.3.7.2 Required secrets

1. s3cfg-experiments-archive

2. research-services-pass

3. apm-private-key
7.3.7.3 Required services (deployment + service + ingress)

1. data-preprocessor

2. A2_to_A6

3. cross_department_predictions

4. direct_hwunit_mapping

5. internal_predictions

6. internal_predictions_analyzer

7. internal_predictions_analyzer_prototype_1

8. internal_predictions_analyzer_prototype_2

9. internal_predictions_analyzer_prototype_3

10. internal_predictions_pilot

11. predictions_combiner_service

12. A6_threshold

13. A6_to_A2
7.3.7.4 Required volumes

1. data-preprocessor

96

7.4 Model Retraining System

For the creation of models for production use research-services namespace is utilized.

Configurations related to part of updating of machine learning services is kept in re-

spective repository. Retraining is done with the use of Kubernetes CronJobs. For the

purpose of retraining the models is utilized same part of services which are also present

in Section 7.3 (Section 7.3.4, Section 7.3.3), but also Section 7.4.1 which is not required

in Section 7.3.

7.4.1 Vectorizer service

It is a service responsible for vectorization of preprocessed data. User provides param-

eters and data. Then the service produces vectorizer or vectorized data. There is also

an option to remove the vectorized data from service. The service uses asynchronous

communication.

7.5 Installation of SSL certificate

To install a wildcard SSL certificate in ingress by default with .pem and .key files:

• sample-domain.pem,

• sample-domain.key

use the following steps:

1. convert .pem and .key files to base64 format as shown in Listing 1;

2. modify the template shown in Listing 2 by adding TLS secret to Kubernetes ;

3. edit daemonset related to SSL ingress by adding line with reference to default

SSL certificate (Listings 3 and 4).

Listing 1: Encode with base64 SSL certificates.
1 cat sample-domain.pem | base64

2 LS0tLS1CRUd...

3 cat sample-domain.key | base64

4 LS0tLS1CRU...

Listing 2: Example of Kubernetes secret with SSL certificate.
1 apiVersion: v1

2 data:

3 tls.crt: LS0tLS1CRUd...

4 tls.key: LS0tLS1CR...

5 kind: Secret

6 metadata:

7 annotations:

8 cert-manager.io/alt-names: 'sample-domain.net'

97

9 cert-manager.io/certificate-name: tls-tools

10 cert-manager.io/common-name: 'sample-domain.net'

11 cert-manager.io/issuer-group: www.digicert.com

12 cert-manager.io/issuer-kind: Issuer

13 cert-manager.io/issuer-name: DigiCert Inc

14 name: tls-sample-domain

15 namespace: ingress-nginx

16 type: kubernetes.io/tls

17

Listing 3: Command to edit ingress NGNIX to set default SSL certificate.
1 kubectl --namespace=ingress-nginx edit

daemonset/ingress-nginx-controller↪→

Listing 4: Part of configuration of ngnix ingress controller.
1 containers:

2 - args:

3 - /nginx-ingress-controller

4 - --publish-service=$(POD_NAMESPACE)/

ingress-nginx-controller↪→

5 - --election-id=ingress-controller-leader

6 - --controller-class=k8s.io/ingress-nginx

7 - --ingress-class=nginx

8 - --configmap= $(POD_NAMESPACE)/ingress-nginx-controller

9 - --validating-webhook=:8443

10 - --validating-webhook-certificate=

/usr/local/certificates/cert↪→

11 - --validating-webhook-key= /usr/local/certificates/key

12 - --watch-ingress-without-class=true

13 - --default-ssl-certificate= ingress-nginx/tls-sample-domain

14 env:

15 - name: POD_NAME

16

7.6 Clearing not needed images

In order to clear actions related to the removal of images from remote Artifactory, the

following commands might be found useful:

• command to show currently used Docker images in Kubernetes Listing 5,

• command to delete images from remote Artifactory Listing 6,

• command to show currently stored Docker images in remote Artifactory [75] List-

ing 7,

• Script to remove stored Docker images in remote Artifactory based on ids stored

in txt fileListing 8.

98

Listing 5: Command to show currently used Docker images in Kubernetes.
1 kubectl get pods --all-namespaces -o

jsonpath="{.items[*].spec.containers[*].image}" |tr -s

'[[:space:]]' '\n' |sort |uniq -c | tr -s " " | cut -f3 -d" "

↪→

↪→

Listing 6: Command to delete images from remote Artifactory.
1 curl -u 'user:pass' -X DELETE

"https://artifactory-address.net/artifactory/

folder-name/image-id"

↪→

↪→

Listing 7: Command to show currently stored Docker images in remote Artifactory.
1 curl -u 'user:pass' "https://artifactory-address.net/

artifactory/api/storage/ml-ci/"↪→

Listing 8: Script to remove stored Docker images in remote Artifactory based on ids
stored in txt file.

1 import requests

2

3 with open("images_to_remove_ids.txt") as f_images_to_remove_ids:

4 images = f_images_to_remove_ids.readlines()

5

6 images = [image.strip() for image in images]

7 for image_id in images:

8 if image_id:

9 requests.delete(

10 "https://artifactory-address.net/",

11 f"artifactory/folder-name/{image_id}",

12 auth=("user", "pass"),

13)

7.7 Installation of GitLab runner

GitLab [2] is a solution to managing Git [33] repositories. It enables Continuous In-

tegration and Continuous Delivery (CI/CD). This section is based on instructions in

[92]. If there is a need to create standalone GitLab runner then extract token obtained

during registration from /etc/gitlab-runner/config.toml. Standard regis-

tration from a standalone machine can be done with the command shown in Listing 9.

Registration tokens can be gathered from Settings tab CI/CD section. After registra-

tion, the token should be filled into the ConfigMap resource which general concepts

are described in [5]), whereas the example of required one is shown in Listing 11. A

namespace called gitlab-runner has to be created. This step is required to the apply

configuration of Service Account described in [7] and shown in Listing 10. In the final

step, file shown in Listing 12 should be used to create the Deployment [6].

99

Listing 9: Command to register runner.
1 gitlab-runner register --name gitlab-runner-data-selector --url

https://gitlab-address.com/ --registration-token ***↪→

Listing 10: Creating Service Account.
1 apiVersion: v1

2 kind: ServiceAccount

3 metadata:

4 name: gitlab-admin

5 namespace: gitlab-runner

6 ---

7 kind: Role

8 apiVersion: rbac.authorization.k8s.io/v1

9 metadata:

10 namespace: gitlab-runner

11 name: gitlab-admin

12 rules:

13 - apiGroups: [""]

14 resources: ["*"]

15 verbs: ["*"]

16

17 ---

18 kind: RoleBinding

19 apiVersion: rbac.authorization.k8s.io/v1

20 metadata:

21 name: gitlab-admin

22 namespace: gitlab-runner

23 subjects:

24 - kind: ServiceAccount

25 name: gitlab-admin

26 namespace: gitlab-runner

27 roleRef:

28 kind: Role

29 name: gitlab-admin

30 apiGroup: rbac.authorization.k8s.io

31

Listing 11: ConfigMap of GitLab Runner Settings contains among other standard
TOML config content.

1 apiVersion: v1

2 kind: ConfigMap

3 metadata:

4 name: gitlab-runner-config

5 namespace: gitlab-runner

6 data:

7 config.toml: |-

8 concurrent = 4

100

9 [[runners]]

10 environment = ["DOCKER_AUTH_CONFIG={\"auths\":

{\"artifactory-address.net\":{\"auth\"\"***\"}}}", "FUNCTI ⌋

ONAL_ACCOUNT_LOGIN=***","FUNCTIONAL_ACCOUNT_PASSWORD=***"]

↪→

↪→

11 pre_build_script = "mkdir ~/.docker -p && echo

$DOCKER_AUTH_CONFIG > ~/.docker/config.json && mkdir -p

/etc/functional_account_0 && echo

${FUNCTIONAL_ACCOUNT_LOGIN} >

/etc/functional_account_0/functional_account_0_login &&

echo ${FUNCTIONAL_ACCOUNT_PASSWORD} >

/etc/functional_account_0/functional_account_0_password"

↪→

↪→

↪→

↪→

↪→

↪→

12 name = "Kubernetes Runner"

13 url = "https://gitlab-address.com/"

14 token = "***"

15 executor = "kubernetes"

16 [runners.kubernetes]

17 namespace = "gitlab-runner"

18 poll_timeout = 600

19 cpu_request = "1"

20 service_cpu_request = "200m"

21 privileged = true

22 [[runners.kubernetes.pod_spec]]

23 name = "val1 node"

24 patch = '''

25 [{ "op": "add", "path": "/nodeSelector", "value": {

"environment": "production" } },{ "op": "add",

"path": "/tolerations", "value": { "key":

"environment", "operator": "Equal", "value":

"production", "effect": "NoSchedule" } }]

↪→

↪→

↪→

↪→

26 '''

27 patch_type = "json"

28

Listing 12: GitLab runner deployment.
1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: gitlab-runner

5 namespace: gitlab-runner

6 spec:

7 replicas: 1

8 selector:

9 matchLabels:

10 name: gitlab-runner

11 template:

12 metadata:

13 labels:

101

14 name: gitlab-runner

15 spec:

16 tolerations:

17 - key: "environment"

18 operator: "Equal"

19 value: "research"

20 effect: "NoSchedule"

21 nodeSelector:

22 environment: research

23 serviceAccountName: gitlab-admin

24 containers:

25 - args:

26 - run

27 image: gitlab/gitlab-runner:latest

28 imagePullPolicy: Always

29 name: gitlab-runner

30 resources:

31 requests:

32 cpu: "100m"

33 limits:

34 cpu: "100m"

35 volumeMounts:

36 - name: config

37 mountPath: /etc/gitlab-runner/config.toml

38 readOnly: true

39 subPath: config.toml

40 volumes:

41 - name: config

42 configMap:

43 name: gitlab-runner-config

44 restartPolicy: Always

7.8 Installation of Renovate Bot

Renovate Bot [11, 12] is a solution which automatically indicates the recent updates for

packages available. It creates new merge requests with proposals for changes. It can be

installed by using a package manager for Kubernetes called Helm [4]. Default config is

in public repository [13]. There is a need to change part of the yaml configuration plac-

ing the appropriate token and repositories. A token is created as described in manual

[3]. Example of that part is shown in Listing 13.

Listing 13: Renovate Bot part of config which has to be updated.
1 config: |

2 {

3 "platform": "gitlab",

102

4 "endpoint": "https://gitlab-address.com/api/v4",

5 "token": "glpat-v-z*****z",

6 "autodiscover": "true",

7 "dryRun": false,

8 "printConfig": true,

9 "repositories": ["filtering_service","project_template"],

10 "pip_requirements": {

11 "fileMatch": ["requirements/base.txt"]

12 }

13 }

14

Listing 14: Commands required to install Renovate Bot.
1 kubectl create ns renovate-bot-helm

2 helm repo add renovate https://docs.renovatebot.com/helm-charts

3 helm upgrade --install --namespace renovate-bot-helm rosie

renovate/renovate -f values.yml↪→

4

103

CHAPTER 8

Conclusions and future works

This paper shows the area of use of machine learning in applications related to bug re-

ports in software development. The main research objectives of the work were related

to assignment of software bug reports to specific development groups. This was done

at different levels of organization. In addition, research about assigning other security-

related classes was conducted. For both above cases, the possibilities of using methods

related to the explainable artificial intelligence were analyzed. The potential applica-

tion of a multimodal neural network to solve the problem of assigning error reports in

software to groups responsible for their correction or analysis was also investigated.

During the evaluation of the possibility of improving industrial implementations, some

of the results of the evaluation were compared with the results of human prediction.

One of the key methods which have been examined in this work was the possibil-

ity of application of multimodal neural network for software bug report assignment.

The study including numerical simulations showed possible benefits of such solution

in better accuracy comparing to reference methods. The inputs which were used come

from title, description and extracted data from log archives represented with the use of

TF-IDF and categorical data.

The main thesis stated in the work is:

There exists a method for automated assignment of a software bug report to appro-

priate development group, responsible for resolving the bug, which outperforms well-

known methods for bug report assignment.

Thesis statement is confirmed in this dissertation. In the first material [38], the

results are improved by extending utilized bug report data of features about information

related to product type what gave a positive impact on accuracy. Paper [36] (Chapter 6

which is planned to be published) presents application of multimodal neural network

for software bug report assignment. Research in this material utilized data of software

bug report such as title, description, categorical fields from software bug report and

data extracted from respective log archives. The use of multimodal neural network

outperforms referenced state-of-the-art solutions.

Time dependencies presented in [40] introduce important factor for evaluation, es-

104

pecially when taken into consideration duplicates and duration of solving issue related

to bug report in the context of continous software development. This fact may have an

impact on results, because the model used for production purposes cannot be trained

with the recently submitted (or not yet resolved) bug reports. This restriction is not

obeyed in the case of utilizing random split in building sets for evaluation.

Different research in this dissertation focused among others on potential application

of explainable artificial intelligence, software bug report classification and labelling. In

the course of conducting the research, peculiar discoveries were reported in the com-

pany’s internal process regarding Intellectual Properties Right. As a result, three in-

ternal patent-like applications were prepared. Processing one of the documents, the

company purchased a prior art search. The patentability search report did not identify

references in worldwide patent and non-patent literature, confirming a decent level of

novelty. Eventually, NOKIA decided to make a publication and did not file the patent

request. That content has been published in IAPGOS [39]. Other selected results which

were also reported in the Intellectual Properties Right process were published in Scien-

tific Reports of Nature [40].

Based on the results of the analysis, the innovative software bug report assignment

method was implemented at NOKIA. Selected parameters from research on changes in

preprocessing and vectorization of text were used and implemented in company sys-

tems. These results were presented at the 12th International Conference on Computer

Recognition Systems and printed as a chapter in a peer-reviewed international mono-

graph of international importance published by Springer [38].

In addition, a solution with the selection of confidence thresholds when combining

predictions was implemented. Detailed results related to that novel method for software

bug assignment were published in [37]. This implementation took place gradually. The

development group responsible for analysis of software bug reports within the depart-

ment was supported by a tool. The system entered suggestions to which division the

member of above-mentioned development group should transfer bug report for further

processing. At a later stage, for selected reports, a decision was made to transfer indi-

vidual error reports automatically. Later the quantity of automatically transferred cases

increased. Subsequently, from the managerial side a decision was made to completely

omit the above-mentioned group from the chain of analysis of bug reports and transfer

software bug reports directly to divisions. As a result, cases which are transferred with

the use of the tool into department areautomatically assigned directly to divisions.

All research questions, Section 1.5, have been discussed and answered directly or

indirectly inside articles [36, 37, 38, 39, 40]. These papers discuss topics related to

impact of stemming and lemmatization on bug assignment accuracy, comparison of

results of machine learning predictions versus humans predictions, benefits of the pro-

105

posed novel method of software bug report assignment. Potential application of XAI

and multimodal neural network were discussed. A few key findings related to these two

approaches were also shown.

This research is targeted for assignment a software bug report to proper group

which should be involved in resolving problem. The list of accomplishments, extending

knowledge in software bug report assignment area, includes:

• compared possible results which might be achieved with usage of title, descrip-

tion and product versus results based on features extracted from snapshot(s);

• discussed limitations of state of the art evaluation methods;

• conducted exploratory research about comparison simulation results against hu-

man predictions;

• conducted conclusive research about potential benefits of application of auto-

mated assignment of bug at current/improved state of the art;

• analyzed application of XAI methods in software bug assignment or labeling;

• examined possibility of application of multimodal neural network in software bug

report assignment problems.

Selected implementations introduced in the company during PhD studies are among

others listed below and in Appendix C. Currently, there is ongoing work related to im-

plementing multimodal neural network into the company system. This includes hy-

perparameter optimization, feature selection, and handling missing data. Nevertheless,

the first version of the system with multimodal neural network has already been intro-

duced. Moreover, many smaller improvements related to handling software bug report

processes were also introduced, including both those related to machine learning and

not. One of the solutions was upgraded using part of parameters related to prepro-

cessing and vectorization further described in Chapter 2. What is more, there has also

been introduced a solution related to transferring software bug reports between groups

in case it meets specific conditions among others related to confidence level thresholds

and appropriate log content presence. Work is currently underway to implement so-

lutions related to explainable artificial intelligence and multimodal neural network in

software bug report solutions within the company.

The software bug report assignment enhanced with the use of machine learning

techniques is discussed in literature and some results are publicly available. Taking into

account that this topic is in interest of mainly big software companies and thus, the re-

search work results in this area are rather modest. Smaller companies are less interested

in such approaches as there is no need for highly complex methods of automatic soft-

ware bug report assignment. Smaller projects require fewer developers and thus the task

of software bug report assignment is usually much simpler. Eventually the software bug

106

report assignment is a research niche.

As a future work it is planned to extend research related to application of multimodal

neural networks of another type of inputs which will be gathered from logs archives,

but with the use of different representations of data.

107

REFERENCES

[1] Iso/iec/ieee international standard - software engineering - software life cycle

processes - maintenance. ISO/IEC/IEEE 14764:2022(E), pages 1–46, 2022.

[2] Gitlab. https://about.gitlab.com/, 2023. [Online; accessed 15-Jun-

2023].

[3] Gitlab docs - personal access tokens. https://docs.gitlab.com/ee/

user/profile/personal_access_tokens.html, 2023. [Online; ac-

cessed 30-Aug-2023].

[4] Helm docs. https://helm.sh/docs/, 2023. [Online; accessed 30-Aug-

2023].

[5] Kubernetes - configmaps. https://kubernetes.io/docs/concepts/

configuration/configmap, 2023. [Online; accessed 15-Jun-2023].

[6] Kubernetes - deployments. https://kubernetes.io/docs/

concepts/workloads/controllers/deployment/, 2023. [On-

line; accessed 15-Jun-2023].

[7] Kubernetes - service accounts. https://kubernetes.io/docs/

concepts/security/service-accounts/, 2023. [Online; accessed

15-Jun-2023].

[8] Kubernetes manual. https://kubernetes.io/docs/home/, 2023.

[Online; accessed 02-Mar-2023].

[9] Performing a rolling update, May 2023.

"https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/".

[10] Powerbi. https://www.microsoft.com/en-us/power-platform/

products/power-bi/, 2023. [Online; accessed 19-Mar-2024].

[11] Renovate docs. https://docs.renovatebot.com/, 2023. [Online; ac-

cessed 30-Aug-2023].

[12] Renovate docs. https://github.com/renovatebot/

helm-charts/tree/main, 2023. [Online; accessed 30-Aug-2023].

[13] Renovate docs. https://github.com/renovatebot/

helm-charts/blob/main/charts/renovate/values.yaml,

2023. [Online; accessed 30-Aug-2023].

[14] S. N. Ahsan, J. Ferzund, and F. Wotawa. Automatic software bug triage system

108

https://about.gitlab.com/
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://helm.sh/docs/
https://kubernetes.io/docs/concepts/configuration/configmap
https://kubernetes.io/docs/concepts/configuration/configmap
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/home/
https://www.microsoft.com/en-us/power-platform/products/power-bi/
https://www.microsoft.com/en-us/power-platform/products/power-bi/
https://docs.renovatebot.com/
https://github.com/renovatebot/helm-charts/tree/main
https://github.com/renovatebot/helm-charts/tree/main
https://github.com/renovatebot/helm-charts/blob/main/charts/renovate/values.yaml
https://github.com/renovatebot/helm-charts/blob/main/charts/renovate/values.yaml

(bts) based on latent semantic indexing and support vector machine. In 2009

Fourth International Conference on Software Engineering Advances, pages 216–

221, 2009.

[15] I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis. Automatic bug triage in

software systems using graph neighborhood relations for feature augmentation.

IEEE Transactions on Computational Social Systems, 7(5):1288–1303, 2020.

[16] R. Aleithan. Explainable just-in-time bug prediction: Are we there yet? In 2021

IEEE/ACM 43rd International Conference on Software Engineering: Compan-

ion Proceedings (ICSE-Companion), pages 129–131, 2021.

[17] J. Ali, M. Adnan, T. R. Gadekallu, R. H. Jhaveri, and B.-H. Roh. A qos-aware

software defined mobility architecture for named data networking. In 2022 IEEE

Globecom Workshops (GC Wkshps), pages 444–449, 2022.

[18] G. An, M. Akiba, K. Omodaka, T. Nakazawa, and H. Yokota. Hierarchical deep

learning models using transfer learning for disease detection and classification

based on small number of medical images. Scientific Reports, 11(1):4250, Mar

2021.

[19] Anjali, D. Mohan, and N. Sardana. Visheshagya: Time based expertise model

for bug report assignment. In 2016 Ninth International Conference on Contem-

porary Computing (IC3), pages 1–6, 2016.

[20] O. A. Antwi, A. O. Owusu, J. W. Nanjo, G. B. Gidisu, D. Sackey, and H. Mo-

hammed. Analysis of collocated base transceiver stations and associated risks in

erecting base stations. In 2021 International Conference on Computing, Compu-

tational Modelling and Applications (ICCMA), pages 92–97, 2021.

[21] F. Ariza-Lopez, J. Rodriguez-Avi, and M. Alba-Fernandez. Complete control

of an observed confusion matrix. In IGARSS 2018 - 2018 IEEE International

Geoscience and Remote Sensing Symposium, pages 1222–1225, 2018.

[22] J. Banda, R. Angryk, and P. Martens. Steps toward a large-scale solar image data

analysis to differentiate solar phenomena. Solar Physics, 288, 05 2013.

[23] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-

bado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Her-

rera. Explainable artificial intelligence (xai): Concepts, taxonomies, opportuni-

ties and challenges toward responsible ai. volume 58, pages 82–115, 2020.

[24] A. G. Barto. Adaptive real-time dynamic programming. In C. Sammut and G. I.

Webb, editors, Encyclopedia of Machine Learning, pages 19–22. Springer, 2010.

[25] G. Bebis and M. Georgiopoulos. Feed-forward neural networks. IEEE Potentials,

13(4):27–31, 1994.

[26] D. Behl, S. Handa, and A. Arora. A bug mining tool to identify and analyze

security bugs using naive bayes and tf-idf. In 2014 International Conference on

109

Reliability Optimization and Information Technology (ICROIT), pages 294–299,

2014.

[27] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

machine Learning research, 3(Jan):993–1022, 2003.

[28] H. B. Borges, C. N. Silla, and J. C. Nievola. An evaluation of global-

model hierarchical classification algorithms for hierarchical classification prob-

lems with single path of labels. Computers & Mathematics with Applications,

66(10):1991–2002, 2013. ICNC-FSKD 2012.

[29] J. Brownlee. Machine learning mastery: A gentle introduction to

k-fold cross-validation. https://machinelearningmastery.com/

k-fold-cross-validation/, 10 2022.

[30] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli. Sentiment polarity detec-

tion for software development. pages 128–128, 05 2018.

[31] A. Carlevaro, M. Lenatti, A. Paglialonga, and M. Mongelli. Counterfactual build-

ing and evaluation via explainable support vector data description. IEEE Access,

10:60849–60861, 2022.

[32] A. Carlevaro and M. Mongelli. A new svdd approach to reliable and explainable

ai. IEEE Intelligent Systems, 37(2):55–68, 2022.

[33] S. Chacon and B. Straub. Pro Git. Apress, 2014.

[34] X. Chang and W. Skarbek. Multi-modal residual perceptron network for au-

dio–video emotion recognition. Sensors, 21(16), 2021.

[35] Q. Cheng, C. Zhang, and X. Shen. Estimation of energy and time usage in 3d

printing with multimodal neural network. In 2022 4th International Conference

on Frontiers Technology of Information and Computer (ICFTIC), pages 900–

903, 2022.

[36] L. Chmielowski, P. Konstantynov, R. Luczak, M. Kucharzak, and R. Burduk.

Application of multimodal neural networks in solving problem of labeling bug

reports. Unpublished material.

[37] L. Chmielowski, P. Konstantynov, R. Luczak, M. Kucharzak, and R. Burduk.

A novel method for software bug report assignment. Reliability Theory and

Applications.

[38] L. Chmielowski and M. Kucharzak. Impact of software bug report preprocessing

and vectorization on bug assignment accuracy. In M. Choraś, R. S. Choraś,

M. Kurzyński, P. Trajdos, J. Pejaś, and T. Hyla, editors, Progress in Image

Processing, Pattern Recognition and Communication Systems, pages 153–162,

Cham, 2022. Springer International Publishing.

[39] L. Chmielowski, M. Kucharzak, and R. Burduk. Application of explainable ar-

tificial intelligence in software bug classification. Informatyka, Automatyka, Po-

110

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/

miary w Gospodarce i Ochronie Srodowiska, 13(1):14–17, Mar. 2023.

[40] L. Chmielowski, M. Kucharzak, and R. Burduk. Novel method of building train

and test sets for evaluation of machine learning models related to software bugs

assignment. Scientific Reports, 13, 12 2023.

[41] C. A. Choquette-Choo, D. Sheldon, J. Proppe, J. Alphonso-Gibbs, and H. Gupta.

A multi-label, dual-output deep neural network for automated bug triaging. In

2019 18th IEEE International Conference On Machine Learning And Applica-

tions (ICMLA), pages 937–944, 2019.

[42] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. A flexible software-

based framework for online detection of hardware defects. IEEE Transactions

on Computers, 58(8):1063–1079, 2009.

[43] D. Cubranic and G. Murphy. Automatic bug triage using text categorization. In

SEKE, 2004.

[44] J. A. de Bruijn, H. de Moel, A. H. Weerts, M. C. de Ruiter, E. Basar, D. Eilan-

der, and J. C. Aerts. Improving the classification of flood tweets with contextual

hydrological information in a multimodal neural network. Computers & Geo-

sciences, 140:104485, 2020.

[45] M. Dutta. BEFORE AND AFTER OF DevOps: A PEEK INTO AGILE DevOps,

Nov 2019. https://medium.com/mainakdutta76/before-and-after-of-devops-a-

peek-into-agile-devops-3600c26129ac.

[46] B. El Khalyly, A. Belangour, M. Banane, and A. Erraissi. A new metamodel

approach of ci/cd applied to internet of things ecosystem. In 2020 IEEE 2nd

International Conference on Electronics, Control, Optimization and Computer

Science (ICECOCS), pages 1–6, 2020.

[47] P. Flach. Performance evaluation in machine learning: The good, the bad, the

ugly, and the way forward. Proceedings of the AAAI Conference on Artificial

Intelligence, 33(01):9808–9814, Jul. 2019.

[48] J. Fürnkranz. Decision Tree, pages 263–267. Springer US, Boston, MA, 2010.

[49] J. L. Garcia-Balboa, M. V. Alba-Fernandez, F. J. Ariza-López, and J. Rodriguez-

Avi. Homogeneity test for confusion matrices: A method and an example. In

IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Sym-

posium, pages 1203–1205, 2018.

[50] N. Geographic. World’s first computer bug, Oct 2020.

"https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/".

[51] R. Gerhards. The Syslog Protocol. RFC 5424 (Proposed Standard), March 2009.

[52] Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et als negative-

sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[53] K. Goseva-Popstojanova and J. Tyo. Identification of security related bug reports

111

via text mining using supervised and unsupervised classification. In 2018 IEEE

International Conference on Software Quality, Reliability and Security (QRS),

pages 344–355, 2018.

[54] S. S. Group. 10 historical software bugs with extreme consequences, Jan 2017.

"https://safebytes.com/10-historical-software-bugs-extreme-consequences/".

[55] S. Gujral, G. Sharma, S. Sharma, and Diksha. Classifying bug severity using dic-

tionary based approach. In 2015 International Conference on Futuristic Trends

on Computational Analysis and Knowledge Management (ABLAZE), pages 599–

602, 2015.

[56] J. Han, M. Kamber, and J. Pei. 2 - getting to know your data. In J. Han, M. Kam-

ber, and J. Pei, editors, Data Mining (Third Edition), The Morgan Kaufmann

Series in Data Management Systems, pages 39–82. Morgan Kaufmann, Boston,

third edition edition, 2012.

[57] M. Heydarian, T. E. Doyle, and R. Samavi. Mlcm: Multi-label confusion matrix.

IEEE Access, 10:19083–19095, 2022.

[58] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computa-

tion, 9(8):1735–1780, 1997.

[59] I. S. T. Institute. Software testing levels, Jan 2021. https://www.test-

institute.org/Software_Testing_Levels.php.

[60] ISO/IEC/IEEE 29119-3:2021 Software and systems engineering — Software

testing — Part 3: Test documentation. Standard, International Organization for

Standardization, Oct. 2021.

[61] H. Jabeen. Stemming and Lemmatization in Python, Oct 2018.

https://www.datacamp.com/community/tutorials/stemming-lemmatization-

python.

[62] L. Jonsson. Machine Learning-Based Bug Handling in Large-Scale Software

Development. PhD Thesis, Linköping Studies in Science and Technology, 2018.

[63] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella. Ticket tagger: Machine

learning driven issue classification. In 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 406–409, 2019.

[64] Z. Karimi. Confusion matrix. https://www.researchgate.net/

publication/355096788, 10 2021. [Online; accessed 13-October-2022].

[65] C. Khanan, W. Luewichana, K. Pruktharathikoon, J. Jiarpakdee, C. Tantithamtha-

vorn, M. Choetkiertikul, C. Ragkhitwetsagul, and T. Sunetnanta. Jitbot: An

explainable just-in-time defect prediction bot. In 2020 35th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pages 1336–1339,

2020.

[66] R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models.

112

https://www.researchgate.net/publication/355096788
https://www.researchgate.net/publication/355096788

In E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Con-

ference on Machine Learning, volume 32 of Proceedings of Machine Learning

Research, pages 595–603, Bejing, China, 22–24 Jun 2014. PMLR.

[67] T. Kramer, F. Proctor, and E. Messina. The nist rs274ngc interpreter - version 3,

2000-08-01 2000.

[68] Docker manual. https://docs.docker.com/, 2023. [Online; accessed

02-Mar-2023].

[69] B. Kucuk and E. Tuzun. Characterizing duplicate bugs: An empirical analy-

sis. In 2021 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 661–668, 2021.

[70] A. Lamkanfi and S. Demeyer. Predicting reassignments of bug reports - an ex-

ploratory investigation. In 2013 17th European Conference on Software Mainte-

nance and Reengineering, pages 327–330, 2013.

[71] A. Lamkanfi, J. Pérez, and S. Demeyer. The eclipse and mozilla defect tracking

dataset: A genuine dataset for mining bug information. In 2013 10th Working

Conference on Mining Software Repositories (MSR), pages 203–206, 2013.

[72] T. Landauer, P. Foltz, and D. Laham. An introduction to latent semantic analysis.

Discourse Processes, 25:259–284, 01 1998.

[73] B. T. Lee, L. Masinter, and M. Mccahill. RFC 1738: Uniform resource locator

(URL). http://www.ietf.org/rfc/rfc1738.txt, 1994.

[74] M. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese, L. Fei-Fei, A. Garg, and

J. Bohg. Making sense of vision and touch: Self-supervised learning of multi-

modal representations for contact-rich tasks. pages 8943–8950, 05 2019.

[75] J. Light, P. Pfeiffer, and B. Bennett. An evaluation of continuous integration

and delivery frameworks for classroom use. In Proceedings of the 2021 ACM

Southeast Conference, ACM SE ’21, page 204–208, New York, NY, USA, 2021.

Association for Computing Machinery.

[76] H. Lin, H. Sheng-zong, W. You-liang, L. Xiao-si, and J. Qi-zheng. Study on

electrostatic discharge damage and defect damage failure analysis technology

for semiconductor devices. In 2018 19th International Conference on Electronic

Packaging Technology (ICEPT), pages 1246–1249, 2018.

[77] T. D. Lingayat. Prediction of electrostatic discharge soft failure issue in case

of a six layer pcb of a tablet using siwave tool. In 2016 IEEE International

Conference on Recent Trends in Electronics, Information and Communication

Technology (RTEICT), pages 1361–1366, 2016.

[78] K. Liu, H. Beng Kuan Tan, and H. Zhang. Has this bug been reported? In 2013

20th Working Conference on Reverse Engineering (WCRE), pages 82–91, 2013.

[79] V. M. P. M. Abavisani. Deep multimodal subspace clustering networks. 2018.

113

https://docs.docker.com/

[80] e. a. M. Castelluccio. bugbug, Apr 2019. https://github.com/mozilla/bugbug.

[81] S. L. M. Castelluccio. Teaching machines to triage firefox bugs, Apr 2019.

https://hacks.mozilla.org/2019/04/teaching-machines-to-triage-firefox-bugs/.

[82] H. Mahfoodh and M. Hammad. Word2vec duplicate bug records identification

prediction using tensorflow. In 2020 International Conference on Innovation

and Intelligence for Informatics, Computing and Technologies (3ICT), pages 1–

6, 2020.

[83] H. Mahfoodh and Q. Obediat. Software risk estimation through bug reports anal-

ysis and bug-fix time predictions. In 2020 International Conference on Innova-

tion and Intelligence for Informatics, Computing and Technologies (3ICT), pages

1–6, 2020.

[84] S. Matzka. Explainable artificial intelligence for predictive maintenance appli-

cations. In 2020 Third International Conference on Artificial Intelligence for

Industries (AI4I), pages 69–74, 2020.

[85] D. Merkel. Docker: lightweight linux containers for consistent development and

deployment. Linux journal, 2014(239):2, 2014.

[86] T. S. Mian. Automation of bug-report allocation to developer using a deep learn-

ing algorithm. In 2021 International Congress of Advanced Technology and En-

gineering (ICOTEN), pages 1–7, 2021.

[87] U. Michelucci. An introduction to autoencoders. CoRR, abs/2201.03898, 2022.

[88] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. Proceedings of Workshop at ICLR, 2013, 01

2013.

[89] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space, 2013.

[90] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-

sentations of words and phrases and their compositionality. Advances in neural

information processing systems, 26, 2013.

[91] M. Monperrus. Explainable software bot contributions: Case study of automated

bug fixes. In 2019 IEEE/ACM 1st International Workshop on Bots in Software

Engineering (BotSE), pages 12–15, 2019.

[92] B. Murugan. Configure gitlab runner on kuber-

netes. https://www.linkedin.com/pulse/

configure-gitlab-runner-kubernetes-bala-murugan, 2023.

[Online; accessed 15-Jun-2023].

[93] K. Naik and P. Tripathy. Software testing and quality assurance: Theory and

practice. pages 601–616, 02 2008.

[94] V. Nath, D. Sheldon, and J. Alphonso-Gibbs. Principal component analysis and

114

https://www.linkedin.com/pulse/configure-gitlab-runner-kubernetes-bala-murugan
https://www.linkedin.com/pulse/configure-gitlab-runner-kubernetes-bala-murugan

entropy-based selection for the improvement of bug triage. In 2021 20th IEEE In-

ternational Conference on Machine Learning and Applications (ICMLA), pages

541–546, 2021.

[95] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Ng. Multimodal deep

learning. pages 689–696, 01 2011.

[96] K. O’Shea and R. Nash. An introduction to convolutional neural networks.

CoRR, abs/1511.08458, 2015.

[97] X. Ouyang, P. Zhou, C. H. Li, and L. Liu. Sentiment analysis using convolutional

neural network. In 2015 IEEE International Conference on Computer and Infor-

mation Technology; Ubiquitous Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive Intelligence and Computing, pages

2359–2364, 2015.

[98] G. O’Regan. Introduction to Software Quality. Undergraduate Topics in Com-

puter Science. Springer International Publishing, 2014.

[99] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[100] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python, confusionmatrixdisplay. Journal of Machine Learning

Research, 12:2825–2830, 2022.

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-

chine learning in Python, tuning the hyper-parameters of an estimator. Journal

of Machine Learning Research, 12:2825–2830, 2022.

[102] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for

word representation. In Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, 2014.

[103] M. Pereira, A. Kumar, and S. Cristiansen. Identifying security bug reports based

solely on report titles and noisy data. In 2019 IEEE International Conference on

Smart Computing (SMARTCOMP), pages 39–44, 2019.

[104] U. N. H. C. Photograph. The first "computer bug", Oct 2020. "https:

//web.archive.org/web/20150112215748/http://www.

history.navy.mil/photos/images/h96000/h96566kc.htm".

115

"https://web.archive.org/web/20150112215748/http://www.history.navy.mil/photos/images/h96000/h96566kc.htm"
"https://web.archive.org/web/20150112215748/http://www.history.navy.mil/photos/images/h96000/h96566kc.htm"
"https://web.archive.org/web/20150112215748/http://www.history.navy.mil/photos/images/h96000/h96566kc.htm"

[105] S. Raschka. 5x2cv paired ttest, Jan 2021. https://rasbt.github.io/

mlxtend/user_guide/evaluate/paired_ttest_5x2cv.

[106] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-Validation. 2009.

[107] R. K. Roul, J. K. Sahoo, and K. Arora. Modified tf-idf term weighting strategies

for text categorization. In 2017 14th IEEE India Council International Confer-

ence (INDICON), pages 1–6, 2017.

[108] M. Rungta, P. P. Sherki, M. P. Dhaliwal, H. Tiwari, and V. Vala. Two-phase

multimodal neural network for app categorization using apk resources. In 2020

IEEE 14th International Conference on Semantic Computing (ICSC), pages 162–

165, 2020.

[109] M. M. Saad, M. T. R. Khan, G. Srivastava, R. H. Jhaveri, M. Islam, and D. Kim.

Cooperative vehicular networks: An optimal and machine learning approach.

Computers and Electrical Engineering, 103:108348, 2022.

[110] M. Salahat, R. A. Said, K. Hamid, U. Haseeb, E. Abdel Maguid Abdel Ghani,

A. Abualkishik, M. W. Iqbal, and M. Inairat. Software testing issues improve-

ment in quality assurance. In 2023 International Conference on Business Ana-

lytics for Technology and Security (ICBATS), pages 1–6, 2023.

[111] C. Sammut and G. I. Webb, editors. Leave-One-Out Cross-Validation, pages

600–601. Springer US, Boston, MA, 2010.

[112] A. Sarkar, P. C. Rigby, and B. Bartalos. Improving bug triaging with high con-

fidence predictions at ericsson. In 2019 IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME), pages 81–91, 2019.

[113] M. C. Schneider. Mosfet Modeling for Circuit Analysis And Design. World

Scientific Publishing Co., Inc., USA, 2007.

[114] K. Singh and A. Raut. Feature selection for anomaly based intrusion detection

using rough set theory. 04 2014.

[115] M. Sokolova and G. Lapalme. A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45(4):427–437,

2009.

[116] H. Tahir, S. U. R. Khan, and S. S. Ali. Lcbpa: An enhanced deep neural network-

oriented bug prioritization and assignment technique using content-based filter-

ing. IEEE Access, 9:92798–92814, 2021.

[117] A. Tsuruda, Y. Manabe, and M. Aritsugi. Can we detect bug report duplica-

tion with unfinished bug reports? In 2015 Asia-Pacific Software Engineering

Conference (APSEC), pages 151–158, 2015.

[118] Q. Umer, H. Liu, and I. Illahi. Cnn-based automatic prioritization of bug reports.

IEEE Transactions on Reliability, 69(4):1341–1354, 2020.

[119] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek. Kubernetes as an

116

https://rasbt.github.io/mlxtend/user_guide/evaluate/paired_ttest_5x2cv
https://rasbt.github.io/mlxtend/user_guide/evaluate/paired_ttest_5x2cv

Availability Manager for Microservice Applications. arXiv/CoRR, 2019.

[120] G. Vilone and L. Longo. Explainable artificial intelligence: a systematic review.

volume abs/2006.00093, 2020.

[121] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-

napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,

M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,

R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,

D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,

A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nature Methods, 17:261–272, 2020.

[122] G. I. Webb. Naïve Bayes, pages 713–714. Springer US, Boston, MA, 2010.

[123] Wikipedia contributors. Confusion matrix — Wikipedia, the free en-

cyclopedia. https://en.wikipedia.org/w/index.php?title=

Confusion_matrix&oldid=1107701525, 2022. [Online; accessed 13-

October-2022].

[124] Wikipedia contributors. Hardware bug — Wikipedia, the free encyclopedia,

2022. [Online; accessed 14-August-2022].

[125] J. Wu. Multi platform public opinion risk monitoring and early warning algo-

rithm based on multimodal neural network. In 2022 International Conference

on Knowledge Engineering and Communication Systems (ICKES), pages 1–5,

2022.

[126] G. Xiao, X. Du, Y. Sui, and T. Yue. Hindbr: Heterogeneous information net-

work based duplicate bug report prediction. In 2020 IEEE 31st International

Symposium on Software Reliability Engineering (ISSRE), pages 195–206, 2020.

[127] Y. Xu, C. Liu, Y. Li, Q. Xie, and H.-D. Choi. A method of component predic-

tion for crash bug reports using component-based features and machine learn-

ing. In 2023 IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 773–777, 2023.

[128] Q. Yang, G. Wu, Y. Li, R. Li, X. Gu, H. Deng, and J. Wu. Amnn: Attention-

based multimodal neural network model for hashtag recommendation. IEEE

Transactions on Computational Social Systems, 7(3):768–779, 2020.

[129] P. D. Yasen Jiao. Performance measures in evaluating machine learning based

bioinformatics predictors for classifications. Quantitative Biology, 4(4):320,

2016.

[130] S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C.-G. Lee. Applying convo-

lutional neural networks with different word representation techniques to recom-

mend bug fixers. IEEE Access, 8:213729–213747, 2020.

117

https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1107701525
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1107701525

[131] S. F. A. Zaidi and C. G. Lee. Learning graph representation of bug reports to

triage bugs using graph convolution network. In 2021 International Conference

on Information Networking (ICOIN), pages 504–507, 2021.

[132] S. F. A. Zaidi and C. G. Lee. One-class classification based bug triage system to

assign a newly added developer. In 2021 International Conference on Informa-

tion Networking (ICOIN), pages 738–741, 2021.

[133] S. F. A. Zaidi, H. Woo, and C.-G. Lee. A graph convolution network-based bug

triage system to learn heterogeneous graph representation of bug reports. IEEE

Access, 10:20677–20689, 2022.

[134] S. Zhang, J. Zhai, B. Xie, Y. Zhan, and X. Wang. Multimodal representation

learning: advantages, trends and challenges. 2019.

[135] W. Zhang. Efficient bug triage for industrial environments. In 2020 IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME), pages

727–735, 2020.

[136] C. Zheng, L. Pan, and P. Wu. Multimodal deep network embedding with inte-

grated structure and attribute information. IEEE Transactions on Neural Net-

works and Learning Systems, 31(5):1437–1449, 2020.

[137] C. Zhou, B. Li, X. Sun, and H. Guo. Recognizing software bug-specific named

entity in software bug repository. In 2018 IEEE/ACM 26th International Confer-

ence on Program Comprehension (ICPC), pages 108–10811, 2018.

118

Appendices

119

Appendix A

Template of bug report

Listing A.1: Template of bug report
[1. Detail Test Steps:]

[2. Expected Result:]

[3. Actual Result:]

[4. Tester analysis:]

[5. Internal tool information:]

[6. Log(s) file name containing a fault: (clear indication (exact file name) and
timestamp where fault can be found in attached logs):]

[7. Test-Line Reference/used HW/configuration/tools/SW version:]

[8. Used Flags: (list here used R & D flags):]

[9. Test Scenario History of Execution: (what was changed since it was tested
successfully for the last time):]

Was Test Scenario passing before? (YES | NO | New scenario)

What was the last SW version Test Scenario was passing? (SW load | New scenario)

Were there any differences between test-lines since last time Test Scenario was
passing? (YES, explanation | NO | New test-line)

Were there any changes in Test Scenario since last run it passed? (YES, explanation |
NO | New scenario)

[10. Test Case Reference: (QC, RP or UTE link):]

120

Appendix B

User/Developer guide for accessing machine learning based bug
assignment predictions (Anonymized version)

author:

Lukasz Chmielowski

partially reviewed by:

Pavlo Konstantynov

Ryszard Luczak

121

B.1 Introduction

B.1.1 General purpose

Machine learning predictions of bug assignment are being used in software develop-

ment. This user guide is related to selected internal services with following endpoints

(section B.2). One of the ends of communication channel is called API Endpoint in

REST API Architecture of applications [1]. To access each of those endpoints (URLs)

where are serving models, we have to have access to NOKIA intranet. The general

purpose of each of the following is to predict group(s) which should be involved in in-

vestigation or solving issues. Machine learning predictions are made with usage of a

part of bug report based on internal standardized formats described with details in in-

ternal documents which presents its golden standard . Additionally, information about

harmonized way of creating title of issue and description can be found in internal docu-

ments about NOKIA Fault Management process. Below described services are created

to deliver machine learning predictions based mainly on natural language description

extracted from title and description and categorical fields. They also utilize log con-

tent placed in description. Standardized API (Application Programming Interface) is

described in section B.2.3. That part is sometimes known as a contract between par-

ties which create software. Here we have defined the way of communication between

micro-services serving machine learning predictions and part of application(s) which

utilize them.

There are also available predictions currently based on only log content extracted

from snapshots. They are returned with usage of interface from log analyzers. Each of

them is a plugin written mainly based on experts’ domain knowledge to extract most

important parts from the log content. Via that interfaces related to plugins developers

provide suggestions about the possible next group which should be engaged in analysis.

So that interface can be utilized for both machine learning predictions and suggestions

based on strict rules.

B.2 Available services

B.2.1 Cross department predictions

B.2.1.1 Cross department predictions standard

This model for predictions cross departments is available under URL:

https://cross-department-predictions

The purpose of that service is to deliver machine learning predictions related to

122

https://cross-department-predictions

departments. It currently returns in response results of biggest departments:

• A1,

• A2,

• A3,

• A4,

• A5,

• A6.

Designed output is following (listing 15):

Listing 15: Universal raw response
b'{"Group_A":0.075,"Group_B":0.351,"Group_C":0.045}\n{"Group_A":0.16 ⌋

5,"Group_B":0.247,"Group_C":0.054}'↪→

For convenience of documentation is shown formatted below (listing 16):

Listing 16: Cross department model response example
{

"A1": 0.0756872861,

"A2": 0.3516054862,

"A3": 0.0454938939,

"A4": 0.144986243,

"A5": 0.2984029639,

"A6": 0.0838241267

}

{

"A1": 0.1659842426,

"A2": 0.2475543452,

"A3": 0.0542832767,

"A4": 0.0391181373,

"A5": 0.4385185125,

"A6": 0.0545414858

}

Pandas view of the data shown above is listed below (Listing 17):

Listing 17: Cross department model response example, Pandas view

A1 A2 A3 A4 A5 A6
0 0 .075687 0 .351605 0 .045494 0 .144986 0 .298403 0 .083824
1 0 .165984 0 .247554 0 .054283 0 .039118 0 .438519 0 .054541

B.2.1.2 A6 to A2 predictions

That API returns the decision if the case should be transferred (from A6) to A2 de-

partment. API returns empty dictionary or selected group from A2 department. The

selected group is A2. This group handles cases when A6 models decide to transfer

cases to A2 department. It is available under following URL:

123

https://a6-to-a2

Designed output is following and according to standard (listing 15). For conve-

nience of documentation is shown formatted below (listing 18):

Listing 18: A6 to A2 model response example

{

"A2" : 0 . 3 6 9 7 3 2 9 4 8 7

}

Pandas view of the data shown above is listed below (Listing 19):

Listing 19: A6 to A2 model response example, Pandas view

A2
0 0.369733

Note: Do not use for that API multiple rows as input, as API will return cor-
rupted data.
B.2.1.3 A2 to A6 predictions

That API return the decision if the case should be transferred (from A2) to A6 de-

partment. API returns empty dictionary or selected group from A6 department. The

selected group might be one of following from subsection B.2.2.1. This group handles

cases when A6 models decides to transfer cases to A6 department. It is available under

following URL:

https://a2-to-a6

Designed output is following and according to standard (listing 15). For conve-

nience of documentation is shown formatted below (listing 20):

Listing 20: A2 to A6 model response example
{

"A6":0.3697329487

}

Pandas view of the data shown above is listed below (Listing 21):

Listing 21: A2 to A6 model response example, Pandas view

A6
0 0.369733

Note: Do not use for that API multiple rows as input, as API will return cor-
rupted data.

B.2.2 Predictions inside department

B.2.2.1 Internal predictions standard

This service delivers predictions of competence area groups inside the department. It is

available under following URL:

124

https://a6-to-a2
https://a2-to-a6

https://internal-predictions

Designed output is following and according to standard (listing 15). For conve-

nience of documentation is shown formatted below (listing 22):

Listing 22: Internal model response example
{

"A6_B1":0.0489433877,

"A6_B2":0.3697329487,

"A6_B3":0.1701030593,

"A6_B4":0.0428020803,

"A6_B5":0.0197555647,

"A6_B6":0.0974732439,

"A6_B7":0.1007073794,

"A6_B8":0.0380263329,

"A6_B9":0.1124560031

}

{

"A6_B1":0.0857559838,

"A6_B2":0.2583321536,

"A6_B3":0.2105480732,

"A6_B4":0.0409904,

"A6_B5":0.0296723177,

"A6_B6":0.1820736771,

"A6_B7":0.0661168893,

"A6_B8":0.0174926122,

"A6_B9":0.1090178933

}

Pandas view of the data shown above is listed below (Listing 23):

Listing 23: Internal model response example, Pandas view

A6_B1 A6_B2 A6_B3 A6_B4 A6_B5 . . . A6_B6 ENERAL A6SW_RUNTIMEALGOS_GENERAL A6SW_SWMAN_GENERAL A6SW_UOAM_GENERAL
0 0.048943 0 .369733 0 .170103 0 .042802 0 .019756 0 .097473 0 .100707 0 .038026 0 .112456
1 0 .085756 0 .258332 0 .210548 0 .040990 0 .029672 0 .182074 0 .066117 0 .017493 0 .109018

B.2.2.2 Internal predictions pilot

The purpose of this service is to return non-empty response (non-empty dictionary in

response) only in case of high confidence that case would be handled inside one of

groups from API from subsection B.2.2.1 and at the same time with high confidence of

predictions for current department (A6). It is available under following URL:

https://a6-internal-pilot

Designed output is following and according to standard (listing 15). For conve-

nience of documentation is shown formatted below (listing 24):

{

"A6_B1 " : 0 . 3 6 9 7 3 2 9 4 8 7

125

https://internal-predictions
https://a6-internal-pilot

}

Listing 24: Internal pilot model response example
b'{"Group_A":0.075,"Group_B":0.351,"Group_C":0.045}\n{"Group_A":0.16 ⌋

5,"Group_B":0.247,"Group_C":0.054}'↪→

Pandas view of the data shown above is listed below (Listing 25):

Listing 25: Internal pilot model response example, Pandas view

A6_B1
0 0 .369733

Note: Do not use for that API multiple rows as input, as API will return cor-
rupted data.
B.2.2.3 Internal predictions prototype 1

This prototype is available under URL:

https://internal-predictions-prototype-1

The output should be compatible with standard API like in listing 15. However, as

it is a prototype slot for temporary testing models. These slots may have responses like

any of the above in this section.
B.2.2.4 Internal predictions prototype 2

This prototype is available under URL:

https://internal-predictions-prototype-2

The output should be compatible with standard API like in listing 15. However as

it is a prototype slot for temporary testing models. These slots may have responses like

any of above in this section.
B.2.2.5 Direct hwunit mapping

This service is available under URL:

https://direct-hwunit-mapping

The output should be compatible with standard API like in listing 15. The purpose

of this service is to directly map the case with groups for particular issues in case of

presence of specific HW Units.
B.2.2.6 Direct hwunit mapping with additional department filter

This prototype is available under URL:

https://direct-hwunit-mapping-a6-threshold

The output should be compatible with standard API like in listing 15. The purpose

of this service is to directly map the case with groups for particular issues in case of

presence of specific HW Units and high probability for A6 department.

126

https://internal-predictions-prototype-1
https://internal-predictions-prototype-2
https://direct-hwunit-mapping
https://direct-hwunit-mapping-a6-threshold

B.2.3 Example of usage

In listing 29 is placed an example of request API of multi row request. For real usage

url address in line 23 should be changed for one of following described in section B.2.

An example of detailed json prepared for request contains sample of full title and de-

scription is placed in Listing 26. A request of single row prediction and response for

respective queries are placed in Listings 27 and 28. Numbers in response sometimes

may be treated as probability, but not always. It depends on developers / machine learn-

ing engineers what will be provided via this API. In general, we can only assume that

the sum of those number in a row should not be greater than 1 and the order matters

like the bigger value, more confident response. Here we should remember that some-

times from models there are responses like 0.98..,0.01. It not always indicates that the

response 0.98 means almost sure as part of models for manual analysis require of cal-

culating logarithm of those value for convenient analysis. What is more users should

not assume that this part and numbers will be similar for a longer period as changes in

model may change the distribution of those values. The only valid assumption for long

term is that the order matters, for any other please contact the author directly for more

information.

Listing 26: Example of content of POST request which contains title and description
fields filled
{"title":"[TAG1][TAG2][TAG3] example title

text","description":"Sample text according to template\r\nline 2

of sample text\r\nline 3 of sample text\r\nline 4 of sample

text\r\n","product":"product type","softwareRelease":"release

name","hwUnit":"example radio type"}

↪→

↪→

↪→

↪→

In line 11 of Listing 29 is a field related to id, it is not mandatory to add that field

and it is not taken into consideration when the predictions are being done. Similar situ-

ation is related to key: ’healthcheck’, the purpose of healthcheck field is to distinguish

whether the predictions come from user requests or are made as healthcheck request,

for instance, to not use them for collecting data for statistics usage.

Note: Part of API endpoints are limited to accept as input only one record at
once to provide correct output or provides only selected subgroups as result. For
details check respective subsections of the manual in section B.2.

Listing 27: Example of single row request to standard API
1 #!/usr/bin/env python3

2 import json

3 import logging

4 import pandas as pd

5 import requests

6

7 logging.basicConfig(level=logging.INFO)

127

8

9 data = pd.DataFrame(

10 data={

11 "title": ["title1"],

12 "description": ["desc1"],

13 "softwareRelease": ["softwareRelease1"],

14 "problemType": ["Software"],

15 "repeatability": ["Permanent"],

16 "discoveredIn": ["System Test"],

17 "product": ["product1"],

18 "hwUnit": ["radio1"],

19 }

20)

21 data_json = data.to_json(orient="records", lines=True)

22 r = requests.post(

23 url=f"http://localhost",

24 data=data_json,

25)

26 logging.info(r.content)

27 res = pd.read_json(r.content, orient="records", lines=True)

28 logging.info(res)

29 assert r.status_code == 200

Listing 28: Example of response of single row request
1 INFO:root:b'{"A1":0.0827859652,"A2":0.3321372892,"A3":0.0469098809," ⌋

A4":0.1578360036,"A5":0.3206158486,"A6":0.0597150126}'↪→

2 INFO:root: A1 A2 A3 A4 A5 A6

3 0 0.082786 0.332137 0.04691 0.157836 0.320616 0.059715

Listing 29: Example of multi row request to standard API
1 #!/usr/bin/env python3

2 import json

3 import logging

4 import pandas as pd

5 import requests

6

7 logging.basicConfig(level=logging.INFO)

8

9 data = pd.DataFrame(

10 data={

11 "id": ["P1", "P2"],

12 "title": ["title1", "title2"],

13 "description": ["desc1", "desc2"],

14 "release": ["release1", "release2"],

15 "problemType": ["Software", "Documentation"],

16 "repeatability": ["Permanent", "One Occurrence"],

17 "discoveredIn": ["System Test", "Functional Test"],

128

18 "product": ["product1", "product2"],

19 "hwUnit": ["radio1", "radio2"],

20 "healthcheck": [True, True],

21 }

22)

23 data_json = data.to_json(orient="records", lines=True)

24 r = requests.post(

25 url=f"http://localhost",

26 data=data_json,

27)

28 logging.info(r.content)

29 res = pd.read_json(r.content, orient="records", lines=True)

30 logging.info(res)

31 assert r.status_code == 200

Listing 30: Example of response for multi row request
1 b'{"A1":0.0756872861,"A2":0.3516054862,"A3":0.0454938939,"A4":0.1449 ⌋

86243,"A5":0.2984029639,"A6":0.0838241267}\n{"A1":0.1659842426," ⌋

A2":0.2475543452,"A3":0.0542832767,"A4":0.0391181373,"A5":0.4385 ⌋

185125,"A6":0.0545414858}'

↪→

↪→

↪→

2 A1 A2 A3 A4 A5 A6

3 0 0.075687 0.351605 0.045494 0.144986 0.298403 0.083824

4 1 0.165984 0.247554 0.054283 0.039118 0.438519 0.054541

B.3 Accessing predictions based on snapshot log content

B.3.1 Via standardized Analysis Platform API

B.3.1.1 Description

Analysis Platform is a solution which is a platform with different log analyzers. They

are written as plugins. At least one of plugins is related to Radio Frequency (RF)

software. Each plugin has a possibility to provide suggestions about suspected groups

(groups which according to results of analysis should be involved in delivering the

solution for a problem which occurred). There is also a possibility to return next to

check information. Via that part is returned group which should be involved in further

analysis, but the authors do not suggest that they should also deliver fix.
B.3.1.2 Example of usage

To access ML predictions based on snapshots user can utilize standard Analysis Plat-

form API for delivering suggestions about possible suspected groups. That API in this

case was used in context of machine learning based suggestions, but we should know

that this is not the only purpose of its usage. Via that API suggestions about potential

problems and groups responsible for investigation without any machine learning can be

129

also sent. In below example is ID651. User should modify that part of following URL:

https://solution.cloud/api/v2/analysissuite/bot/ID652

, to get proper results related to particular problem report by its id. From following

response (listing 31), user can get information about files attached which were detected.

Each has a unique identifier made, in response as key "hash". For each file might be

added separate prediction (listing 32), every of them is available under URL:

https://solution.cloud/api/analysis/v2/wnnw97/_results

Here wnnw97 is an example of the value of hash key.

Listing 31: Analysis Platform main API to gather files detected related to particular
problem report
{"creation_time": "2022-06-06 07:12:23.833710", "log_bundles":

[{"hash": "x993xo", "name": "ID652_details.json",

"creation_time": "2022-06-06 07:12:25.227740", "lb_author":

"bot", "as_author": "bot", "as_id": "95443"}, {"hash": "wnnw97",

"name": "a1log_20220606_124937_b7a802b7.zip", "creation_time":

"2022-06-06 07:12:24.680969", "lb_author": "bot", "as_author":

"bot", "as_id": "95443"}, {"hash": "vyy89y", "name":

"Snapshot_20220606-125158_724d11a3.zip", "creation_time":

"2022-06-06 07:12:23.837496", "lb_author": "bot", "as_author":

"bot", "as_id": "95443"}], "case_ids": []}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

130

https://solution.cloud/api/v2/analysissuite/bot/ID652
https://solution.cloud/api/analysis/v2/wnnw97/_results

Listing 32: Analysis Platform detailed response for single log file
{"a6Analysis": {"status": "success", "config": {"imageName":

"analysis/a6-analysis:1.0.9", "alias": "A6Analysis", "frontend":

{"title": "A6 Analysis", "description": "A6 Analysis shows

selected information related to A6 logs. For example carriers

configurations, CPRI link states, chosen data from EEPROM, LED

states.", "version": "1.0.9", "bundleUrl": "https://artifactory/ ⌋

analysis-local/A6Analysis/1.0.9/A6Analysis.js", "tags":

["#basic"], "topLevelObjectName": "A6Analysis", "authorEmail":

"", "mailingGroup": "", "organizationName": "", "teamName": "",

"repo": "https://analysis/a6-analysis/tags/1.0.9"},

"requirements": {"log": "none", "snapshot": "none",

"matchingFilePaths": ["\\.zip$"]}}, "results": {"version": 1,

"meaningful": true, "executive_summary": {"status": "ok",

"summary_info": [{"id": "RMOD_L_1", "hw_unit": "radio1",

"sw_version": "", "serial_number": "", "pcode": ""}]}, "extra":

{"bot": {"suspects": {"A6_B1": {"score": 0, "reason": "Based on

ML prediction.", "level": "gic"}, "A6_B2": {"score": 0,

"reason": "Based on ML prediction.", "level": "gic"}, "A6_B3":

{"score": 0, "reason": "Based on ML prediction.", "level":

"gic"}, "A6_B4": {"score": 1, "reason": "Based on ML

prediction.", "level": "gic"}, "A6_B5": {"score": 0, "reason":

"Based on ML prediction.", "level": "gic"}, "A6_B6": {"score":

0, "reason": "Based on ML prediction.", "level": "gic"},

"A6_B7": {"score": 0, "reason": "Based on ML prediction.",

"level": "gic"}, "A6_B8": {"score": 0, "reason": "Based on ML

prediction.", "level": "gic"}, "A6_B8": {"score": 0, "reason":

"Based on ML prediction.", "level": "gic"}, "A6_B9": {"score":

0, "reason": "Based on ML prediction.", "level": "gic"},

"A6_RD_UOAM_WR1": {"score": 0, "reason": "Based on ML

prediction.", "level": "gic"}}, "next_to_check": {}, "schema":

{"name": "bot", "version": "1"}}}, "files": ["details.json"]},

"promoted": false}}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

B.3.2 Via standardized Bug Tracking Support System reports

B.3.2.1 Description

Bug Tracking Support System (BTSS) is a solution which is responsible for communi-

cation with NOKIA systems related to management and reporting of software bugs. It

follows the current state of cases and makes actions like for instance transferring cases

between responsible groups or printing suggestions. It collects data of external services

which deliver suggestions. Users are able to check historical data of suggestions like in

the example below B.3.2.2.

131

B.3.2.2 Example of usage

Additionally, user can get summarize reports for each case by getting reports with fol-

lowing command:

Listing 33: Command to gather summarized results
wget http://example1.cloud/reports/basic/investigators.csv.gz

132

An example of record of the following file is shown below:

Listing 34: Single record from csv which contains summarize report of predictions
1 ;A6;process:investigator_result;- possible affected gic A6_B4 at

score 1 with reason Based on ML

prediction.;;Investigator_Analysis_Platform_A6;;true;;business;b ⌋

ot.monitoring.business_events_emitter;;"{"bot_extra":

[{"schema": {"name": "bot", "version": "1"}, "suspects":

{"A6_B1": {"score": 0, "reason": "Based on ML prediction.",

"level": "gic"}, "A6_B2": {"score": 0, "reason": "Based on ML

prediction.", "level": "gic"}, "A6_B3": {"score": 0, "reason":

"Based on ML prediction.", "level": "gic"}, "A6_B4": {"score":

1, "reason": "Based on ML prediction.", "level": "gic"},

"A6_B5": {"score": 0, "reason": "Based on ML prediction.",

"level": "gic"}, "A6_B6": {"score": 0, "reason": "Based on ML

prediction.", "level": "gic"}, "A6_B7": {"score": 0, "reason":

"Based on ML prediction.", "level": "gic"}, "A6_B8": {"score":

0, "reason": "Based on ML prediction.", "level": "gic"},

"A6_B9": {"score": 0, "reason": "Based on ML prediction.",

"level": "gic"}, "A6_B10": {"score": 0, "reason": "Based on ML

prediction.", "level": "gic"}, "A6_B11": {"score": 0, "reason":

"Based on ML prediction.", "level": "gic"}}, "next_to_check":

{}}, {"schema": {"name": "bot", "version": "1"}, "suspects": {},

"next_to_check": {"A6_B7": {"score": 1, "reason": "Most probably

a1log_20220606_124937.zip does not contain FRM logs.", "level":

"gic"}}}]";"[{"score": 1, "subsystem": "AMBIGUOUS_SUBSYSTEM",

"development_unit": "A6", "group_in_charge":

"A6_B4"}]";"[{"development_unit": "A6", "group_in_charge":

"A6_B7", "score": 1, "subsystem":

"AMBIGUOUS_SUBSYSTEM"}]";"[{"subsystem": "AMBIGUOUS_SUBSYSTEM",

"development_unit": "A6", "group_in_charge":

"A6_B7"}]";A6_DEFAULT;ID652;"[{"subsystem":

"AMBIGUOUS_SUBSYSTEM", "development_unit": "A6",

"group_in_charge": "A6_B4"}]";bf6f176a-135e-4c48-a3c0-cbba59ae0c ⌋

af;bot;72911c979882d0cc;2022-06-06T07:23:40.227218Z;045cfb59d8b0 ⌋

e4b64e65a6457730cf30;0deb9bc957cf38c1;1.118.1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

B.3.3 Via not standardized solution for additional prototype results

B.3.3.1 Description

To avoid excessive resource usage, temporary was created additional way for providing

results of prototypes for suggestions. They are build into log analyzer. Example of

accessing is shown below B.3.3.2.
B.3.3.2 Example of usage

https://solution.cloud/api/analysis/v2/wnnw97/a6Analysis/_logs

133

https://solution.cloud/api/analysis/v2/wnnw97/a6Analysis/_logs

Listing 35: Chosen part of log of log analyzer
2022-06-06T07:19:15.530921120Z DEBUG -

https://internal-predictions-analyzer-prototype-2 "POST

/gic/predict-proba-with-classes HTTP/1.1" 200 413

↪→

↪→

2022-06-06T07:19:15.538384116Z INFO - External service

https://internal-predictions-analyzer-prototype-3 response

results: {'A6_B1': 0, 'A6_B2': 0, 'A6_B3': 0, 'A6_B4':

0.1666666667, 'A6_B5': 0.33333333330000003, 'A6_B6': 0, 'A6_B7':

0, 'A6_B8': 0.33333333330000003, 'A6_B9': 0, 'A6_B10': 0,

'A6_B11': 0.1666666667}

↪→

↪→

↪→

↪→

↪→

2022-06-06T07:19:15.548701454Z INFO - External service

https://internal-predictions-analyzer-prototype-1 response

results: {'A6_B1': 0.0081865325, 'A6_B2': 0.0044039579, 'A6_B3':

0.3379770554, 'A6_B4': 0.19636470220000002, 'A6_B5':

0.1419945044, 'A6_B6': 0.012377810900000001, 'A6_B7':

0.0025201137000000003, 'A6_B8': 0.22617901440000002, 'A6_B9':

0.039268514500000004, 'A6_B10': 0.0065098135, 'A6_B11':

0.0242179805}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

2022-06-06T07:19:15.550666707Z INFO - External service

https://internal-predictions-analyzer-prototype-2 response

results: {'A6_B1': 0.0454744734, 'A6_B2': 0.0456472114, 'A6_B3':

0.22147178650000002, 'A6_B4': 0.0853524283, 'A6_B5':

0.22741401200000003, 'A6_B6': 0.0456536524, 'A6_B7':

0.045453392, 'A6_B8': 0.1268815547, 'A6_B9': 0.0645140409,

'A6_B10': 0.0453951545, 'A6_B11': 0.0467423052}

↪→

↪→

↪→

↪→

↪→

↪→

2022-06-06T07:19:15.734188522Z INFO - analysis - end

REFERENCES

[1] SMARTBEAR. Api endpoints - what are they? why do they matter?, June 2022.

"https://smartbear.com/learn/pea1ormance-monitoring/api-endpoints/".

134

Appendix C

Implementation Attestation

135

	ABSTRACT
	STRESZCZENIE
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF TERMS AND ABBREVIATIONS
	Introduction
	Background
	Problem description, motivation, challenges
	Description of single data record
	Natural language description of problem
	System information – raw log package and processed data
	Additional remarks

	Scientific motivation and research gap
	Research questions, thesis, its aims and goals
	Planned research methods
	State-of-the-art
	Papers related to the topic of software bug report assignment
	Natural language processing
	Validation techniques
	Usage of thesholds
	Usage of explainable artificial intelligence
	Multimodal neural network

	Content of document
	Overview
	Scientific articles included in dissertation

	Impact of software bug report preprocessing and vectorization on bug assignment accuracy
	Introduction
	Related works
	Natural language processing pipeline
	Typical natural language processing pipeline
	Preprocessing methods
	Vectorization methods

	Numerical experiments
	Research questions
	Description and experimental protocol
	Results and lessons learned

	Summary

	A novel method for software bug report assignment
	Introduction
	Related Works
	Research questions
	Proposed solution
	Results
	Discussion on requirements for application of solution inside company
	Minimal requirements
	Human factors
	Advantages and disadvantages of such solutions

	Next steps which were made
	Summary

	Novel method of building train and test sets for evaluation of machine learning models related to software bugs assignment
	Background of the study
	Problem statement
	Organization of the chapter
	Related works
	Motivation and research gap
	Main contributions of research

	Methods
	Building train and test sets
	Novelty in building train and tests sets in the context of software bug reports assignment
	Machine learning metrics and ways of presenting results
	Description and experimental protocol

	Results and Discussion
	Conclusion

	Potential application of XAI
	Introduction
	Methods
	Results and discussion
	Conclusion

	Application of multimodal neural networks in solving problem of labeling bug reports
	Introduction
	Methods
	Results and discussion
	Conclusions

	Architecture, Environment and Orchestration
	Introduction
	Data system
	Software Bug Report Dataset Builder
	Data Selection Service
	Snapshot processing
	Postgres service

	Model serving system
	General overview of major components
	Analyzer core
	Main service for predictions
	Preprocessing service
	Filtering service
	Direct hardware unit mapping
	Part of production setup installation

	Model Retraining System
	Vectorizer service

	Installation of SSL certificate
	Clearing not needed images
	Installation of GitLab runner
	Installation of Renovate Bot

	Conclusions and future works
	 REFERENCES

	Appendix Template of bug report
	Appendix User/Developer guide for accessing machine learning based bug assignment predictions (Anonymized version)
	Introduction
	General purpose

	Available services
	Cross department predictions
	Predictions inside department
	Example of usage

	Accessing predictions based on snapshot log content
	Via standardized Analysis Platform API
	Via standardized Bug Tracking Support System reports
	Via not standardized solution for additional prototype results

	Appendix Implementation Attestation

